
9010A

0]

PIN 609289
June 1981

9010A
Micro-System

Trou bleshooter

Programming Manual

©1981, John Fluke Mfg. Co., Inc., all rights reserved Litho in U.S.A.
I!:=F=LU=K=c==1
~ ®

9010A

Table of Contents

SECTION TITLE PAGE

1 INTRODUCTION . .. 1-1

1-1. PROGRAMMING OVERVIEW 1-1
1-2. ORGANIZATION OF THE 9010A PROGRAMMING MANUAL . 1-2
1-3. THE 9010A INSTRUCTION MANUAL SET 1-2

2 GETTING STARTED .. 2-1

2-1. INTRODUCTION .. 2-1
2-2. SAMPLE PROGRAM .. 2-1

3 CREATING, EDITING, AND EXECUTING PROGRAMS : 3-1

3-1. INTRODUCTION .. 3-1
3-2. PROGRAM NUMBERING 3-1
3-3. CREATING A NEW PROGRAM 3-1
3-4. OPENING AND EDITING AN EXISTING PROGRAM 3-2
3-5. Moving Around in the Program 3-2
3-6. Deleting or Adding Program Steps• 3-3
3-7. CLOSING A PROGRAM 3-3
3-8. EXECUTING A PROGRAM 3-4
3-9. DELETING A PROGRAM 3-5
3-10. REPORTING INSUFFICIENT MEMORy 3-5

4 CREATING PROGRAM STEPS 4-1

4-1. INTRODUCTION .. 4-1
4-2. REVIEW OF IMMEDIATE MODE KEYS

USED TO CREATE STEPS 4-2
4-3. KEYS WITH APPLICATIONS UNIQUE TO PROGRAMMING .. 4-4
4-4. The EXEC Key ... 4-4
4-5. The STOP Key ... 4-7
4-6. The LABEL Key .. 4-7
4-7. The GO TO Key ... 4-7
4-8. The IF, >, and = Keys 4-8
4-9. The DISPL Key .. 4-10
4-10. The AUX IfF Key .. 4-12

5 PROGRAMMING EXAMPLES AND TECHNIQUES 5-1

5-1. INTRODUCTION•.................... 5-1
5-2. CREATING DISPLAY MESSAGES 5-2
5-3. Displaying Text ... 5-2
5-4. Displaying Register Contents 5-2
5-5. Displaying Text and Register Contents Together 5-2

(continued on page iiJ

9010A

TABLE OF CONTENTS, continued

SECTION TITLE PAGE

5-6. Causing the 9010A to Beep 5-3
5-7. CONTROLLING PROGRAM FLOW 5-3
5-8. Using the Goto, Stop, and If Steps

to Control Program Flow 5-3
5-9. Using the Execute Step

to Control Program Flow 5-6
5-10. Using the Loop or Repeat Modifiers

to Control Program Flow 5-7
5-11. SYNCHRONOUS OPERATOR INPUT 5-7
5-12. Hexadecimal Input .. 5-8
5-13. Decimal Input .. 5-8
5-14. Boolean (YES or NO) Input 5-8
5-15. Multiple Inputs and Outputs 5-8
5-16. ASYNCHRONOUS OPERATOR INPUT 5-9
5-17. USING THE PROBE IN PROGRAMS 5-12
5-18. Using the Logic Level History 5-l3
5-19. Gathering Signatures .. 5-15
5-20. Using the Event Count 5-16
5-21. USING RUN UUT IN PROGRAMS 5-16
5-22. Running a Program from UUT RAM 5-16
5-23. Communicating With a Machine

Language Program in UUT RAM 5-18
5-24. USING THE AUX II F IN PROGRAMS 5-18
5-25. Output to the AUX IIF 5-19
5-26. Input from the AUX IIF 5-21

6 ERROR HANDLING IN THE EXECUTING MODE 6-1

6-1. INTRODUCTION .. 6-1
6-2. TIMEOUT ERRORS, UUT SYSTEM ERRORS,

AND TEST ERRORS ... 6-1
6-3. FATAL ERRORS .. 6-1

7 DATA FORMAT FOR AUX IIF IMMEDIATE MODE OPERATION 7-1

7-1. INTRODUCTION .. 7-1
7-2. THE AUX IIF WRITE AND AUX IIF READ OPERATIONS 7-1
7-3. DATA FORMAT FOR AUX IIF WRITE 7-1
7-4. Detailed Description of Fixed-Length Record Types 7-2
7-17. Detailed Description of Format for Program Records 7-5
7~18. PROCESSING OF RECORDS FOR AUX IIF READ OPERATION 7-6
7-19. EXAMPLES OF DATA FORMAT FOR AUX IIF OPERATIONS 7-7

ii

9010A

List of Tables

SECTION TITLE PAGE

3-1. Moving Around in a Program 3-3
4-1. Function of the Sixteen 32-Bit Registers 4-6
4-2. Function of the 90 lOA Keys When

Used in the Display Step .. 4-10
4-3. Function of Special Symbols in the Display Step 4-11
4-4. Function of Special Symbols in the AUX IIF Step 4-13
5-1. Asynchronous Input Values for the 9010A Keys 5-10
6-1. Fatal Error Messages ... 6-2
7-1. Fixed-Length Record Types ... 7-2
7-2. Numeric Values for Keys in Program Records 7-5

iii/iv

9010A

List of Illustrations

SECTION TITLE PAGE

4-1. Function of 9010A Keys Used in the
Creating of Program Steps .. 4-1

4-2. Immediate Mode Keys With Similiar
Applications in the Programming Mode 4-2

4-3. Keys With Applications Unique to Programming 4-4
4-4. The Execute Step .. 4-5
4-5. The Goto (Unconditional Branch) Step 4-8
4-6. The Syntax for the Specification of the If Step 4-9
4-7. The If (Conditional Branch) Step 4-9
5-1. Probe Data Format for Register 0 5-13
5-2. Sample Output to AUX IfF From

Program That Reads UUT Memory 5-20
7-1. Data Format for AUX IfF Setup,

AUX IfF Learn, and AUX IfF Program Operations 7-7
7-2. Data Format for AUX IfF Write Operation 7-8

v

9010A

t m Trou A Mlcro-Sys e 9010

vi

bleshooter

1-1. PROGRAMMING OVERVIEW

Section 1

Introduction

It is easy to learn 9010A programming. Experience or knowledge of complicated
programming languages is not required. If the programmer understands how to use the
9010A in the "Immediate Mode (as described in the 90l0A Operating Manual), then the
programmer already knows most of what is required to program the 901OA.

Programs are sequences of 90 lOA tests, functions, and operations. Any of the built-in
tests or troubleshooting functions may be included in programs, as well as the Learn,
Read Probe, and Arithmetic operations. In addition, test sequencing keys are available to
help direct the flow of the programs, and allow the construction of conditional and
unconditional branches. Specific 90l0A features related to programming include the
following:

• An internal memory of 10K bytes that can store up to 100 programs and up to
approximately 1000 total program steps.

• Up to 16 labels for each program.

• Test sequencing keys for the construction of conditional and unconditional branch
steps.

• A display step which allows the programmer to create operator messages.

• Programmable output to and input from the operator during program execution.

• Ability for one program to execute another program in a subroutine-like fashion.

• Programmed implementation of the Learn and Probe operations, the functional
tests, and the troubleshooting functions.

• Fun use of the sixteen 32-bit internal registers for storage and manipUlation of data
during program execution.

• Full use of the Arithmetic operations.

• Programmed implementation of the Run UUT Mode.

• Nonvolatile storage of programs on cassette.

• Transfer of programs from the 90 lOA to another 9010A or a remote device via the
optional AUX IfF RS-232 Interface.

• Programmable output to and input from the optional AUX IfF RS-232 Interface.

9010A

1-1

9010A

1-2

1-2. ORGANIZATION OF THE 9010A PROGRAMMING MANUAL
The 90lOA Programming Manual is written with the assumption that the reader is
already familiar with 90 lOA Immediate Mode operation. If this is not the case, it may be
necessary for the reader to refer to the 90lOA Operator Manual.

The 90lOA Programming Manual is divided into seven sections:

I INTRODUCTION
2 GETTING STARTED
3 CREATING, EDITING, AND EXECUTING PROGRAMS
4 CREATING PROGRAM STEPS
5 PROGRAMMING EXAMPLES AND TECHNIQUES
6 ERROR HANDLING IN THE EXECUTING MODE
7 DATA FORMAT FOR AUX II F IMMEDIATE MODE OPERATION

Section I provides an overview of programming and the 9010A Programming Manual.
Section 2 consists of a sample program that may be entered and executed to simply get
started. Section 3 explains how to initially create, enter, edit, exit, and execute a program.
Section 4 is a definition and reference section which defines all possible program steps
that may be created and the keys that are used to create the steps. Section 5, the heart of
the manual, is organized according to topic, and explains how to effectively use the
programming steps defined in Section 4. Section 5 includes numerous programming
examples. Section 6 describes error handling. Section 7 provides a detailed explanation
of the data format for the AUX II F Immediate Mode operation.

Much of the programming may be learned without having an interface pod or a UUT
connected to the 90lOA main instrument. This is because a considerable number of the
programming features (such as the creation of display messages) do not require the 90 I OA
to communicate with an interface pod or UUT. Wherever possible, the example program
steps given in this manual are written so that they may be used in a program and executed
without having an interface pod or a UUT connected to the 901OA.

The following definitions are provided as a reminder of the differences in 90 I OA
operation in the three operating modes. For more information, refer to the 90 lOA
Operator Manual.

IMMEDIATE MODE 90lOA actions are performed as soon as they are selected
and the specification is complete.

PROGRAMMING MODE When 90lOA actions are selected and specified, they are
not performed, but are stored as program steps.

EXECUTING MODE 90lOA actions are performed as specified by the steps in
the program that is being executed.

1-3. THE 9010A INSTRUCTION MANUAL SET
The 9010A Programming Manual is part of a set of manuals that document the 90lOA
Micro-System Troubleshooter. The manual set also includes the Operator Manual, the
Service Manual, and a Reference Guide. For reference, all the manuals in the set are
described as follows:

OPERATOR MANUAL Instrument description and specifications, operating
instructions, probe use, execution of programs, options
and accessories, and routine maintenance.

PROGRAMMING
MANUAL

SERVICE MANUAL

REFERENCE GUIDE

Description of instrument programming capabilities,
writing, editing, and execution of programs. Little or no
previous programming experience required.

Specifications, theory of operation, troubleshooting,
repair and maintenance information, a list of replaceable
parts, and schematics. Intended for use by a qualified
technician.

Quick-reference operating and programming
information.

In addition, an Interface Pod Manual is available for each interface pod, and provides the
following information:

INTERFACE POD
MANUAL

Specifications, theory of operation, maintenance, a list of
replaceable parts, and schematics.

9010A

1-3/1-4

2-1. INTRODUCTION

Section 2
Getting Started

This section provides a sample program which may be entered and executed to get a
feeling for the ease and simplicity of901OA programming. Note that it is not necessary for
the 9010A to be connected to a unit under test (UUT) or an interface pod to execute the
program.

2-2. SAMPLE PROGRAM
At this point it is not necessary to understand how to create or execute programs. Simply
follow the instructions listed below.

1. Turn off the 9010A power (if on) and turn on again. This clears the memory of
any previous programs. The 9010A displays the following power-on message:

FLUKE 9000 POWER-UP OK VER-nn

2. Press the PROGM key, the I key, and then the ENTER key. The PROGMING
annunciator begins flashing and the 9010A displays the following message:

PROGRAM 1 CREA TED

3. Press the keys in the order listed below to enter the program steps listed. The
keys are separated by commas for ease in reading. If a mistake is made when
entering a step, press the CLEAR key until the STEP CLEARED message is
displayed, and then begin reentering the step.

PRESS

REG, 1,2,0, ENTER
LABEL, 1
DISPL, RUN UUT, 1, ENTER
REG, 2,1,0, ENTER
LABEL, 2
DECR,2
IF, REG, 2, >, 0, GOTO, 2
DECR,1
IF, REG, 1, >, 0, GOTO, 1
DISPL, D, >, IF, E, ROM VIEW, ENTER

DISPLAY

REG1 = 20
LABEL 1
DPY-@1
REG2 = 10
LABEL 2
DEC REG2
IF REG2 > 0 GOTO 2
DEC REG1
IF REG1 > 0 GOTO 1
DPY-DONE 4

9010A

2-1

9010A

2-2

4. Press the PROG M key, which closes the program (turning offthe PROG MIN G
annunciator) and causes the 9010A to enter the Immediate Mode and display the
following message:

PROG 1 CLOSED-10141 BYTES LEFT

To execute the program, press the EXEC key, the 1 key, and then the ENTER key. As the
program is being executed, the display shows a countdown beginning with 32 and ending
with 1. The final message on the display is the word DONE, and it is accompanied by the
audible beep. Note that the EXECUTING annunciator flashes while the program is being
executed and stops flashing after the execution is complete. More sample programs are
presented in Section 5.

Section 3

Creating, Editing, and Executing Programs

3-1. INTRODUCTION
This section describes how to enter, edit, exit, and execute programs. It also includes
information about program numbering and program deletion.

3-2. PROGRAM NUMBERING
The 9010A can store up to 100 programs, which are stored in the tape-transferable
memory. Each program is assigned a number by the programmer when it is first created.
Program numbers are displayed in decimal and may range from 0 to 99.

The 9010A also stores a list of the program numbers for existing programs. To examine
the list of programs that are stored in the 901OA, press the PROGM key and then the =
(equals) key. If there are any programs stored in the 901OA, the 9010A displays the
following message:

PROGRAMS dd dd dd dd dd dd etc.

The letters dd represent the program numbers for existing programs. The numbers are
listed in numeric order, beginning with the smallest number. Up to eight program
numbers may be listed on the display. If the list is too long to fit on one line, the MORE
annunciator flashes to indicate that more information is available. Subsequent numbers
in the list may be brought to the display with the MORE and PRIOR keys.

If no programs are stored in the 90 lOA, when the PROGM key and the = keys are pressed
the following message is displayed:

NO PROGRAMS DEFINED

3-3. CREATING A NEW PROGRAM
To create a new program, do the following:

1. Press the PROGM key. The 9010A displays a prompt for the program number
by displaying the following message:

PROGRAM _

2. Select a number for a program that does not already exist in 9010A memory.
Key in the number in decimal and press the ENTER key. The 9010A displays the
following message:

PROGRAM dd CREA TED

9010A

3-1

9010A

3-2

Notice at this point that the PROGMING annunciator begins flashing, indicating that
the 90lOA is no longer in the Immediate Mode, but is in the Programming Mode. Now
the programmer may create the desired program steps.Program steps are stored in the
program in the order in which they are created, with one line for each step. For example, if
the programmer presses the BUS TEST key, the 90lOA stores the Bus Test as a single
program step as follows:

BUS TEST

If the Read function is specified at an address aaaa, the Read function is stored as a single
program step as follows:

READ @ aaaa

The creation of program steps is described in detail in Section 4.

3-4. OPENING AND EDITING AN EXISTING PROGRAM
An existing program is opened in the same way a new program is created, by pressing the
PROGM key and then entering the program number. The message that appears on the
display is slightly different, however, and is as follows:

PROGRAM dd OPENED - nn BYTES

Notice that the display now includes additional information. The letters nn represent a
decimal number which tells how many bytes are presently needed to store the program.

The 9010A provides a default value for the program number if the programmer presses
the PROGM key and then the ENTER key without specifying the program number. The
90lOA opens the last program that was opened. If the last program opened has since been
deleted, the 901 OA creates it. Note that if no programs have been created after power-on,
the default program number supplied by the 90 lOA for the first program created is zero.

3-5. Moving Around in the Program
When a program is opened, the program steps may be brought to the display one at a
time. The 901 OA displays a start message and an end message to indicate the start and end
of the program as follows:

START OF PROGRAM dd

l
l
l
l
l

END OF PROGRAM dd

The start message

Steps created by the programmer

The end message

The start message and end message are only for reference when examining the program as
it is stored in the 901 OA. The start message and end message are not part of the pro gram
listing that is transferred via AUX IIF, and do not appear when a program is printed out
or viewed on a video display.

There are two ways to move around in the program and examine the program steps. One
way is to move forward or backward step-by-step with the MORE and PRIOR keys.

The other way of moving around in the program requires an understanding of labels.
Labels are simply program steps that are inserted into a program to provide points of
entry for branching steps. Each program may contain up to 16 distinct labels (numbered 0
through 9, A through F). Labels are explained in detail in Section 4. At this point it is not
important to understand everything about labels. It is only important to know that if a
label exists in a program, pressing the hexadecimal digit key for that label causes the
program step containing the label to appear on the display. This provides a convenient
way of moving around in the program.

If the number zero is not used as a label, pressing the 0 key causes the start message to
appear on the display. Similarily, if the number F is not used as a label, pressing the F key
causes the end message to appear on the display. Table 3-1 shows how the hexadecimal
keys are used in scrolling.

Table 3-1. Moving Around in a Program

START OF PROGRAM 1 _.--- Pressing the 0 key brings this message to the display.
REG1 = 20

LABEL 1
DPY-@ 1
REG2 = 10
LABEL 2
DEC REG2
IF REG2 > 0 GOTO 2
DEC REG1
IF REG1 > 0 GOTO 1

DPY-DONE J.
END OF PROGRAM 1

---Pressing the 1 key brings this message to the display.

--- Pressing the 2 key brings this message to the display.

--- Pressing the F key brings this message to the display.
Note that this program is the sample program from Section 2.

3-6. Deleting or Adding Program Steps
To delete a step that appears on the display, press the CLEAR key. The 90 lOA deletes the
step and places the following message on the display:

STEP DELETED

A program step may be added anywhere in the program. When a program step is added to
the middle of a program, the step is stored in the program after the step that appears on
the display. Note that if a step is added when the end message (END OF PROGRAM dd)
appears on the display, the step is stored before the end message.

3-7. CLOSING A PROGRAM
To close a program, press the PROGM key. The 9010A displays the following message:

PROG dd CLOSED-nnnnn BYTES LEFT

The letters nnnnn represent a decimal number which tells how much space is left in the
90 lOA memory. There are 10,192 bytes available in memory for program storage. Notice
that when a program is closed, the PROGMING annunciator stops flashing, indicating
the 9010A has entered the Immediate Mode.

9010A

3-3

9010A

3-4

A program cannot be closed if it contains duplicate labels (using the same label more than
once in the program) or is missing a label (a label is missing if a branch step points to a
label that is not present in the program). If the programmer attempts to close a program
that contains duplicate labels, the following message appears on the display:

DUPLICA TE LABEL h

If the programmer presses the MORE key, the step that appears on the display is the
second occurrence of the label in the program.

If the programmer attempts to close a program that is missing a label, the following
message appears on the display:

MISSING LABEL h

If the programmer presses the MORE key, the step that appears on the display is the first
branch step that points to the missing label.

3-8. EXECUTING A PROGRAM
To execute a program, do the following:

1. First make sure the 9010A is in the Immediate Mode. Then press the EXEC key.
The 9010A prompts for the program number by displaying the following message:

EXECUTE PROGRAM _

2. Key in the program number and press the ENTER key.

If the program does not exist in 9010A memory, the following message appears on
the display:

EXECUTE PROGRAM dd - NOT FOUND

If the program exists in 9010A memory, the EXECUTING annunciator begins
flashing and the program begins executing. The following message appears on the
display:

EXECUTE PROGRAM dd

The 90 lOA provides a default value for the program number if the operator presses the
EXEC key and then the ENTER key without specifying the program number. The 9010A
attempts to execute the last program that was executed (note that this may not be the
same as the last program opened). The default program number for program execution
after power-on is program zero.

When the 9010A executes a program, the 9010A performs the actions specified for each
step, one step at a time. For example, if a Read function is specified as a step, the 9010A
performs the Read function as specified when it encounters the step during program
execution.

In addition to the EXECUTE PROGRAM dd message, there are two other types of
messages that may appear on the display: programmer-created display messages or error
messages.

Programmer-created display messages may be strictly informative, telling the operator
the results of tests or operations. Or the messages may require the operator to enter data
or perform some action on the UUT. The programmer-created display messages are
created with the DISPL key, and are described in Sections 4 and 5.

The other messages that may appear during program execution are error messages. Error
handling and error messages that may appear during execution are described in Section 6.

After the program has completed execution (and the EXECUTING annunciator stops
flashing), the last message displayed remains on the display until the operator initiates
some other action.

During program execution, the operator may interrupt program execution by pressing
the STOP key, causing the STOPPED annunciator to flash along with the EXECUTING
annunciator. The operator may continue program execution by pressing the CONT key,
or abort program execution by selecting any Immediate Mode operation such as the Bus
Test. When program execution is aborted, the EXECUTING annunciator stops flashing,
the 9010A enters the Immediate Mode, and the 9010A presents the display message
associated with the Immediate Mode operation selected.

3-9. DELETING A PROGRAM
To delete a program, do the following:

1. Open the program by pressing the PROG M key and specifying the program
number. If the program is already open, move to the START OF PROGRAM dd
message.

2. Press the CLEAR key. The 9010A responds with the following message:

DELETE PROG dd - ARE YOU SURE?

If the programmer presses the NO key, the start message for the program appears on
the display. If the programmer presses the YES key, the program is deleted and the
following message appears on the display:

PROG dd DELETED-nnnnn BYTES LEFT

3-10. REPORTING INSUFFICIENT MEMORY
As the programmer adds steps to a program, the 9010A keeps track of the amount of
memory that has been used and reports to the programmer when no more steps may be
stored. For example, if there is insufficient memory to store a program step in a program,
the following message appears when the programmer completes the specifications for the
step:

INSUFFICIENT MEM TO STORE STEP

If a program step has been successfully stored in a program but there is not enough
memory left to store the RPEAT or LOOP modifiers, the following message is displayed:

INSUFFICIENT MEM TO STORE KEY

If there is not enough memory to allow the programmer to create a new program, the
following message is displayed:

INSUFFICIENT MEM TO CREA TE PROG

If the 9010A memory is full, the programmer may store the contents on a cassette tape,
clear the 9010A memory, and then continue writing programs.

9010A

3-5/3-6

Section 4
Creating Program Steps

4-1. INTRODUCTION
There are 29 keys that may be used to initiate program steps, with each key initiating a
particular type of step. This section lists the keys that initiate steps and describes the
resulting steps. The keys that provide supplementary functions are also listed and their
functions described. The sixteen 32-bit registers are described, with emphasis on how
their function in the Executing Mode differs from the Immediate Mode.

Note that this section is not an exhaustive discussion of programming techniques.
Instead, it provides extended definitions of the functions relevant to programming, with
short examples where appropriate. This section is organized according to the keys on the
keyboard and provides a foundation for understanding Section 5. Section 5 is a
discussion of programming techniques and is organized according to topic.

The 9010A keyboard is shown in Figure 4-1. The keys are grouped in three categories: (1)
the 29 keys that initiate program steps, (2) the keys that do not initiate program steps but
perform supplementary functions in the creation of program steps, and (3) the disallowed
keys that are not used in the Programming Mode.

KEYS USED TO INITIATE PROGRAM STEPS. o
B KEYS WITH SUPPLEMENTARY FUNCTIONS IN THE

CREATION OF PROGRAM STEPS .

• KEYS NOT USED IN CREATING PROGRAM STEPS.

B.tll
L~
~-lffiS

wr;;)
CL::.J,
r::1 G§)AM t..::.J SHORT

"

E1G

I!I~

I;I~II;I~II~I~II~I;I
I~IJ' 1;;I~llil~' 1~lil
1~'~~II~I~II~I~II~I;1
1~1~11~~1~~11~~'~11~~'~1
'11111~1 ill,1 il~l

SP

TEST SEQUENCING

Imlt 8 I ~~: ,
I J K

TROUBLESHOOTING

BJWRITt
[:1 8 M

8JABEltEl

Bill , .
REAO 00

PROBE t.::.J+ 0_

Figure 4-1. Function of 9010A Keys in The Creating of Program Steps

PROBE

B
PULSE ,
i

9010A

4-1

9010A

4-2

Most of the keys in the first two categories operate in the same way in the Programming
Mode as in the Immediate Mode. These keys are listed in the following paragraphs, with
important differences in Programming Mode behavior pointed out. The remainder of the
keys in the first two categories have applications in the Programming Mode that are
either considerably different from the Immediate Mode or do not exist in the Immediate
Mode at all. The function of each of these other keys is described following the review of
the Immediate Mode keys.

Note thatthere is a limit to the length of a program step. The maximum length ranges
from 35 to 47 keystrokes, depending on the type of keystrokes used to create the step. If
the limit is exceeded, all the keystrokes for the step are deleted and the following message
is displayed:

STEP TOO LONG

The programmer may then begin entering another program step.

4-2. REVIEW OF IMMEDIATE MODE KEYS USED TO CREATE STEPS
The Immediate Mode keys that initiate program steps or perform supplementary
functions are shown in Figure 4-2. These keys are used to create program steps in the
Programming Mode in the same way they are used to specify operations in the Immediate
Mode. The same prompts occur during specification, and the same default values are
available. The main difference is that when the specification of the operation is complete
in the Programming Mode, the 9010A stores the specified operation as a program step
instead of performing the operation.

o KEYS THAT INITIATE PROGRAM STEPS

II KEYS WITH SUPPLEMENTARY FUNCTIONS IN CREATING STEPS

D
El r;;,.;)

AUTO ~I

o (;§lAM r...:.:J SHORT

"

E1G

TE TS

II PROBE

liEl

D
Figure 4-2. Immediate Mode Keys With Similar Applications in the Programming Mode

For example, to specify a Bus Test in the Programming Mode, the operator presses the
BUS TEST key. The 90lOA stores Bus Test as a program step. For another example, to
specify the Ramp troubleshooting function, the operator presses the RAMP key. After
the operator specifies the address, the 90lOA stores the final specification as a program
step. Other important notes about programming with the Immediate Mode keys follow.

• The Repeat function may not be specified as a step by itself, but may be specified one
or more times as a 'modifier' after a test or a troubleshooting function has been
specified. The word REPT is appended on the same line as the specification, with
one REPT appearing for each time the Repeat function is specified. This is
illustrated as follows:

READ @ 50E3 REPT REPT

• Like the Repeat function, the Loop function may not be specified as a step by itself,
but may be specified once as a "modifier" after a troubleshooting function or test has
been specified. The word LOOP is appended on the same line as the specification.
This is illustrated as follows:

WRITE @ 4C25 = F7 LOOP

• The Loop modifier may be specified after the Repeat modifier has been specified
one or more times. The Repeat modifier may not be specified after the Loop
modifier has been specified.

• When executing a Run UUT step, the interface pod is placed in the Run UUT mode
and the 901 OA continues to execute program steps. The interface pod remains in the
Run UUT mode until a step is executed which requires use of the interface pod, such
as a read or write operation.

Another difference between the Programming Mode and the Immediate Mode is that
expressions involving registers or Arithmetic operations are not evaluated until the step
containing the expression is executed. This includes the use of the default registers during
the specification of a test or function. For example, if the operator selects the Ramp
function by pressing the RAMP key, the 90 lOA displays a prompt for the address. If the
operator presses the ENTER key, the 90l0A stores the following specification as the
program step:

RAMP@ REGF

When the program step is executed, the 90 1 OA supplies the value contained in the address
default register, Register F, and performs the Ramp function at that address.

Another example involves the use of a troubleshooting function, a default register, and an
Arithmetic operation. Consider the following sequence of keystrokes: READ, INCR,
ENTER. When these keys are pressed in the order listed while in the Immediate Mode,
the 90lOA increments the value provided by the address default register, Register F, and

9010A

4-3

9010A

4-4

performs the Read function at the resulting address. In the Programming Mode, when
the READ, INCR, and ENTER keys are pressed in order, the 9010A stores the following
program step.

READ @ REGF INC

When the program step is executed, the 90 lOA increments the value provided by Register
F and performs the Read function at the resulting address.

4-3. KEYS WITH APPLICATIONS UNIQUE TO PROGRAMMING
The keys shown in Figure 4-3 have applications that are unique to programming or are
considerably different from Immediate Mode operation. The PROGM key allows the
programmer to enter or exit programs and the Programming Mode, as described in
Section 3. The other keys are used to create program steps as described in the following
paragraphs.

4-4. The EXEC Key
The EXEC key allows the programmer to create Execute steps. Execute steps cause the
90 lOA to execute one program from within another program in a subroutine-like fashion.
To create the Execute step, press the EXEC key and then enter the program number dd of
the program that is to be executed. When the Execute step is stored in the program, it
looks like the following:

EXECUTE PROGRAM dd

o KEYS THAT INITIATE PROGRAM STEPS

KEYS WITH SUPPLEMENTARY FUNCTIONS IN CREATING STEPS

MODE

Bw

[~l········
E1E:tEt

Figure 4-3. Keys With Applications Unique to Programming

D
-

The Execute step is illustrated in Figure 4-4. The program that is selected for execution is
program 1. When the 90 lOA encounters the Execute step, the 90 lOA "calls" program 2
and begins executing it. When the 90 I OA completes the execution of program 2, it returns
to the original program, program I, and begins executing the step that follows the
Execute step.

Notice in Figure 4-4 that Registers 0 through 7 are "local" registers whose values are
accessible only within the currently executing program. When program 2 is called, the
values in Registers 0 through 7 are stored and then Registers 0 through 7 are set to zero.
After program 2 is executed and program control returns to program I, the original
values are restored in Registers 0 through 7. Registers 8 through F are "global" registers
whose values are accessible throughout the calling or called programs. The values in
Registers 8 through F are not affected when passing between the calling or the called
programs. For reference, the function of the 16 registers is presented in Table 4-1.

• A program may not call itself.

• A program may call a program which in turn calls another program. Programs may
be called up to 10 levels away from the original program.

• If multiple levels of programs are called, a program may not call any program from a
previous level. For example, if program I calls program 2 which calls program 3,
program 2 may not call program I, and program 3 may not call program 2 or
program I.

• When creating the Execute step, the program number may be specified as an
expression involving registers, decimal numbers, or Arithmetic operations (such as
EXECUTE PROGRAM REG7).

END OF PROGRAM 1

Values for Registers 0-7 are
stored. Registers 0-7 are

then set to zero.

Figure 4-4. The Execute Step

END OF PROGRAM 2

9010A

4-5

9010A

4-6

TYPE OF
REGISTER

DEDICATED

NON-DEDICATED

NOTES:

Table 4-1. Function of the Sixteen 32-bit Registers

REGISTER FUNCTION

A Stores the last bit mask specified by the programmer.
Also, if the UUT I/O address descriptors are invoked as
default values when the I/O Test is performed, the bit mask

specified by the last I/O address descriptor is stored in
Register A.

B Stores the last ROM signature specified by the pro
grammer. Also, if the UUT ROM address descriptors are
invoked as default values when the ROM Test is per
formed, the ROM signature specified by the last ROM
address descriptor is stored in Register B.

C Stores the last status/control information specified by the
programmer for the Write Control or Toggle Data Control
functions, or generated by the 9010A during performance
of the Read Status function.

D Stores the last bit number (in the range 0-31) specified by
the programmer for the Toggle Address, Toggle Data, or
Toggle Data Control functions.

E Stores the last data specified by the programmer or gener
ated by the 9010A during operation.

F Stores the last address specified by the programmer or
generated by the 9010A during an operation involving the
interface pod.

o Stores data accumulated during the Read Probe
operation.

1-9
Non-dedicated registers for sole use by programmer for
storage and manipulation of data as specified by the
programmer.

1. Dedicated Registers A through F and 0 are also available to the programmer for storage and
mainipulation of data.

2. Registers 0 through 7 are local registers whose values are local to the currently executing program.

3. Registers 8 through F are global registers and unaffected by passing between called and calling
programs.

4-5. The STOP Key
The STOP key is used to create Stop steps which suspend program execution at desired
points in the program. To specify the Stop step, press the STOP key. The specification is
complete (pressing the ENTER key is not required), and the 9010A displays the step as
follows:

STOP

The Stop step may not be modified or combined with another function in the same step.

When the Stop step is executed, the STOPPED annunciator begins flashing and the
9010A suspends program execution. The Stop step itself does not cause a message to
appear on the display. The message that appears on the display is the message that is
present when the program execution is suspended.

To cause the 9010A to resume program execution, the operator must press the CONT
key. While the 9010A is in the stopped state (as indicated by the flashing STOPPED
annunciator), the selection of any Immediate Mode test, function, or operation causes the
program execution to be aborted. The message that is displayed is the message associated
with the selection of the Immediate Mode action.

4-6. The LABEL Key
The LABEL key allows the programmer to create labels. Labels are program steps that
are inserted into programs to provide points of entry for branching steps.

• There are 16 possible labels for each program. Each label is identified by a single
hexadecimal digit (0 through 9 and A through F).

• Each label may be used only once in a program.

• Labels may appear in any order.

• Labels allow the programmer to move around when examining a program in the
Programming Mode, as described in Section 3. If a label exists in a program,
pressing the key for the hexadecimal digit of the label causes the label to appear on
the display.

• A label may exist without the need for a branch (Goto) step designating that label.

To specify a label as a program step, press the LABEL key and then press a single
hexadecimal digit. The specification is complete (pressing the ENTER key is not
required), and the 9010A displays the following message.

LABEL n

The letter n represents any of the hexadecimal digits.

4-7. The GOTO Key
The GOTO key allows the programmer to construct Goto (unconditional branch) steps.
A Goto step is a program step which redirects program execution to a label in the
program.

9010A

4-7

9010A

4-8

To create a Goto step, press the GOTO key and a single hexadecimal digit. The
specification is complete (pressing the ENTER key is not required), and the 9010A
displays the following message:

GOTO n

The letter n corresponds to the hexadecimal digit of the label where program execution is
to be redirected. The use of a Goto step is shown in Figure 4-5. When the program step
GOTO 7 is executed, the program execution is redirected to LABEL 7.

• More than one Goto step may redirect program execution to the same label.

• The label to which program execution is redirected by the Goto step may appear
anywhere in the program.

Execution is
redirected to
LABEL 7.

Program
Execution

• +
~+

+
~

~~

START OF PROGRAM 1

REGS = BOFO

LABEL 7

READ @ REGS

INC REGS

GOTO 7

END OF PROGRAM 1

Figure 4-5. The Goto (Unconditional Branch) Step

4-8. The IF, >, and = Keys
The IF, >, and = keys may be combined with the GOTO key to create If (conditional
branch) steps. An If step differs from a Goto step in that, depending on certain conditions
specified by the programmer, the program execution mayor may not be redirected to a
label in the program.

The conditions that determine whether the branch occurs are based on a comparison of
two expressions for greater than, equal, or greater than or equal. The syntax for the
specification of the If step is illustrated in Figure 4-6, along with examples. Note that an If
step is initiated with the IF key and always includes two expressions separated by either or
both of the> and = keys, followed by the GOTO key and a hexadecimal digit.

The use of an If step is shown in Figure 4-7. Note that program 2 in Figure 4-7 is identical
to program 1 in Figure 4-5, except that the Goto step is replaced by an If step. When the If
step in program 2 is executed, the program execution is redirected to Label 7 only ifthe
contents of Register 5 are less than 80FF. When program 2 is executed, the 9010A reads
the data at addresses 80FO through 80FF and completes the execution of the program.

• More than one If step may redirect program execution to the same label.

• The label to which program execution is redirected by the If step may appear
anywhere in the program.

EXAMPLES:

NOTES:

I expression I

I hex digit I

IF REG4 > 2000 GOTO 5

IF REGE OR FFF7 = FFFF GOTO B

IF 8000 > REG6 GOTO 9

IF REGE CPL >= REG 3 GOTO A

a sequence of keystrokes consisting of
numeric values and/or registers. It may

also include Arithmetic operations.

single hexadecimal digit which designates

the label where the branch redirects

program execution.

Figure 4-6. The Syntax for the Specification of the If Step

• • --.+ ,..-
/' .

If REGS<80FF, (, I
then execution ..
is redirected to ____ •

;;eb:~:~~~~~r~~~~inues •
to the last program step.

START OF PROGRAM 2

REG5 = BOFO

LABEL 7

READ @ REG5

INC REG5

IF BOFF > REG5 GOTO 7

END OF PROGRAM 2

Figure 4-7. The If (Conditional Branch) Step

9010A

4-9

9010A

4-10

4-9. The OISPL Key
The DISPL key allows the programmer to compose messages that are presented to the
operator when a program is executed. Some ofthe messages simply provide information,
such as the data at an address or the contents of a register. Other messages suspend
program execution and display a prompt for operator input. The program steps that are
created with the DISPL key are called Display steps.

To create a Display step, press the DISPL key. The 90 lOA responds by presenting the
following message:

DPY-_

After the DISPL key has been pressed, a message may be created one character at a time
by pressing the appropriate key. The numerals 0 through 9 and the letters A through Fare
entered with the corresponding hexadecimal keys. Additional characters and symbols
available for use are located on the keyboard panel near the lower right corner of the
associated key. For example, the letter Q is located next to the TOGGL ADDR key.
When the TOGGL ADDR key is pressed, the letter Q is specified and appears in the
display mes'sage-when the Display step is executed. Similarly, when the OR key is pressed,
the equal sign (=) is specified and appears in the display message when the Display step is
executed.

Characters that have been entered in the message may be deleted one character at a time
by pressing the PRIOR key. The entry of characters or symbols in the message is
terminated by pressing the ENTER key.

Table 4-2 presents a list of all the keys that have valid display characters or symbols. The
available characters and symbols include all numbers 0 through 9, all 26 uppercase letters,
common punctuation marks, and several special symbols.

Table 4-2. Function of the 9010A Keys When Used In the Display Step

CHARACTER
OR SYMBOL

o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
G
H
I

KEY NAME

o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

READ
WRITE
PROGM

CHARACTER
OR SYMBOL

J
K
L
M
N
o
P
Q
R
S
T
U
V
W
X
Y
Z

@

KEY NAME

EXEC
AUX I/F
RAMP
WALK
IF

>

TOGGL ADDR
TOGGL DATA
DISPL
LABEL
GOTO
CONT
STOP
AND
SHIFT LEFT
INCR
RPEAT
RUN UUT

CHARACTER
OR SYMBOL

<
>

?

+

%

\
/

$
space
A (bell)

KEY NAME

OR
SHIFT RIGHT
DECR
LOOP
SETUP
READ PROBE
REG
COMPL
LEARN
I/O VIEW
RAM VIEW
AUTO TEST
RAM LONG
BUS TEST
ROM TEST
STS/CTL
ROM VIEW

The following items pertain to the creation of Display steps:

• During execution of the Display step, only the characters following the initial
display (DPY-) appear on the display. The characters DPY- do not appear on the
display.

• Up to 27 characters may be entered for a Display step. The9010A emits a beep if the
programmer attempts to enter another character.

• Whenever a Display step is executed, previous information on the display is always
cleared unless the first character of the Display step message is the + symbol. If the
first character is the + symbol, the Display step message is appended to any previous
message on the display.

• Six of the keys are not allowed during the creation of a Display step. The 9010A
emits a beep when they are pressed. The keys are: RAM SHORT, I/O TEST,
MORE, READ TAPE, WRITE TAPE, and SYNC.

The following example shows the keystrokes necessary to create the message REPLACE
U27. The keys are separated by commas for ease in reading.

PRESS

DISPL

DISPLAY (PROGRAMMING MODE)

DPY-_
TOGGL DATA, E, =, RAMP, A, C, E
STS/CTL, GOTO, 2, 7, ENTER

DPY-REPLACE_
DPY-REPLACE U27

When the Display step is executed (in the Executing Mode), the message is displayed as
follows:

REPLACE U27 (The portion DPY- does not appear)

In addition to the text-creating capability of the display function, there are eight symbols
which have special meaning when they are specified in the proper format in a Display
step. The function of each ofthese symbols is described in Table 4-3. Examples of the use
of each symbol are provided in Section 5.

Table 4-3. Function of Special Symbols In the Display Step

CHARACTER
KEY NAME ACTION CAUSED

OR SYMBOL

4 (bell) ROM VIEW Causes the 901 OA to beep when the Display step is
executed. The bell symbol does not appear on the
display when the step is executed.

$ ROM TEST When followed by a hexadecimal digit, it causes
contents of the register designated by the digit to be
displayed in hexadecimal on the display.

@ RUN UUT The same as for the $ symbol, except that the
contents are displayed in decimal.

9010A

4-11

9010A

4-12

Table 4-3. Function of Special Symbols In the Display Step (cont)

CHARACTER
OR SYMBOL

/

?

%

+

KEY NAME

RAM LONG

AUTO TEST

READ PROBE

I/O VIEW

REG

ACTION CAUSED

When followed by a hexadecimal digit, it suspends
program execution and prompts for input. When the
operator enters a hexadecimal value terminated by
ENTER, the 9010A places the value in the register
designated by the digit and resumes program
execution. Pressing ENTER without specifying a
hexadecimal value causes the value to default to the
previous contents of the register.

The same as for the / symbol, except that the 901 OA
accepts only a decimal entry.

When followed by a hexadecimal digit, it suspends
program execution and displays the question mark
(?). If the operator presses the ENTERIYES key, the
9010A places a 1 in the designated register. If the
operator presses the CLEAR/NO key, the 9010A
places a 0 in the designated register. After the 1 or
o is placed in the register, the 9010A removes the
question mark and then resumes program
execution.

When followed by a hexadecimal digit, it enables
or disables asynchronous input from the operator
during execution. Asynchronous input is stored in
the register designated by the hexadecimal digit.
Asynchronous input is described in Section 5.

When it is the first character in the specification, it
causes the following characters in the specification
to be appended to the text that is on the display atthe
time the Display step is executed.

NOTE: In order to causes the $, /'\' or%symbols to appear in the displayed text when the Display
step is executed, the symbols must appear twice in the specification.

4-10. The AUX IIF Key
The Auxiliary Interface (AU X I/F) functions much differently in the Programming and
Executing Modes than it does in the Immediate Mode. In the Immediate Mode,
information sent to the AUX II F may consist of programs, program numbers, Setup
parameters, or address descriptors. In the Executing Mode, information sent to the AUX
I I F consists of programmer-created messages that are composed character-by-character
in a fashion that is identical to the Display step messages. The main difference is that

instead of pressing the DISPL key, the programmer presses the AUX II F key. Instead of
presenting DPY-_on the display, the 9010A presents the following message:

AUX-_

At this point the programmer may compose messages that are sent to the A UX I I F when
the AUX II F step is executed in the program. Note that some of the symbols that have
special meaning in the Display steps (as described in Table 4-3) have a slightly different
meaning when used in an AUX II F step. The function of these symbols is described in
Table 4-4. The use of these symbols in programs is discussed in Section 5.

When an AUX II F step is executed the terminator sequence is sent (as determined by the
"NEWLINE" Setup parameter in the Immediate Mode) unless the + symbol is the final
character in the A U X I I F message.

Table 4-4. Function of Special Symbols In the AUX IIF Step

CHARACTER
KEY NAME ACTION CAUSED

OR SYMBOL

;. (bell) ROM VIEW Sends a control G (bell) to the RS-232 interface.

$ ROM TEST When fOllowed by a hexadecimal digit, it causes the
contents of the register deSignated by the digit to be
transmitted in hexadecimal to the RS-232 interface.

@ RUN UUT The same as for the $ symbol, except that the
contents are transmitted in decimal.

(RAM LONG When followed by a hexadecimal digit, it suspends
program execution, waits for the next byte of data
from the RS-232 interface, and places the value of
the byte in the register deSignated by the hexa-
decimal digit (the upper three bytes of the register
equal zero). If the RS-232 interface is configured to
transfer eight data bits, then eight data bits appear.
Otherwise the eighth data bit (bit 7) is zero.

\ AUTO TEST When followed by a hexadecimal digit, it places the
status of the RS-232 interface in the lower five bits of
the register deSignated by the hexadecimal digit (the
upper 27 bits are zero). The five status bits are as
follows:

Bit 0: 1 = Parity Error/O = No Parity Error
Bit 1: 1 = Framing Error/O = No Framing Error
Bit 2: 1 = Overrun Error/O = No Overrun Error
Bit 3: Status of Receive Buffer

1 = Character Received
o = No Character Received

Bit 4: Status of Transmit Buffer
1 = Transmit buffer is empty, ready for next
character
o = Character still being sent

? READ PROBE Not used with AUX I/F.

9010A

4-13

9010A

Table 4-4. Function of Special Symbols in the AUX IIF Step (cont)

CHARACTER
KEY NAME ACTION CAUSED

OR SYMBOL

% 1/0 VIEW When followed by a hexadecimal digit. it transmits
the low-order byte contained in the register
designated by the hexadecimal digit. This provides
a way for the programmer to send the full range of
ASCII characters to the AUX I/F. Eight data bits are
sent if the RS-232 interface is configured to transfer
eight bits.

+ REG When it is the last character in an AUX IIF step. it
prevents a line termination sequence from being
sent at the end of the line.

NOTE: In order to causes the $, @,I':\. ' or % symbols to appear in the text when the A UX II Fstep is
executed, the symbols must appear twice in the specification.

Section 5

Programming Examples and Techniques

5-1. INTRODUCTION
This section expands on the step definitions provided in Section 4 and explains how the
steps may be used in a program. Programming techniques for each type of step are
discussed and illustrated by examples.

Note that program steps are presented in this section in the AUX IIF format in which
they appear when printed out on a printer or viewed on an auxiliary video display. To
distinguish these program steps, they are shown in this manual in PR INTER
TYPEFACE. Messages that appear on the 90lOA display are shown in UPPERCASE
ITALIC TYPEFACE. Comments that appear beside the program steps are shown in the
regular typeface.

The sample program from Section 2 is shown below to illustrate the difference between
the A UX I I F format and 90 lOA display format. The program is shown at the left as it
appears through A UX II F; the program steps are shown at the right as they appear when
viewed one-by-one on the 9010A display in the Programming Mode. Remember that the
steps shown on the right are not the messages that appear on the 901 OA display when the
program is executed.

AUX ifF FORMAT 9010A DISPLAY FORMAT

PROGRAM 1 51 BYTES
START OF PROGRAM 1

REG1 = 20 REG1 = 20
1 : LABEL 1 LABEL 1

DPY-@l DPY-@1
REG2 = 10 REG2 = 10

2: LABEL 2 LABEL 2
DEC REG2 DEC REG2
IF REG2 } 0 GOTO 2 IF REG2 > 0 GOTO 2
DEC REG! DEC REG1
IF REGl > 0 GOTO 1 IF REG1 > 0 GOTO 1
DPY-DONE# DPY-DONE ;.

END OF PROGRAM 1

The AUX II F format differs from the 9010A display format in the following ways: the
program number is listed along with the size ofthe program (51 bytes); label numbers are
JPIrhrAted in the left margin so they are easily recognized; the start message and end message
do not ~h;o 1:11:: Ra§l R1KllC of the K / F dud AJJ X l/ Jr

\0, the .J"

9010A

9010A

5-2

5-2. CREATING DISPLAY MESSAGES
When the program is executed, the only messages that may appear on the display are
error messages, the initial specification message (EXECUTE PROGRAM nn), or display
messages created by the programmer. Display steps allow the programmer to display
text, register contents, or cause the 9010A to beep. The following paragraphs contain
programs illustrating the use of Display steps.

5-3. Displaying Text
The programmer may use the alphabetic and numeric characters to create messages that
provide information or instructions during program execution. The following steps
provide examples. Note that the program steps are presented at the left as they appear in
the A UX II F program listing. The corresponding display messages at the right appear on
the 9010A display when the steps are executed.

DPV-PROGRAM 15 COMPLETED
DPV-REPLACE U27

PROGRAM 15 COMPLETED
REPLACE U27

DPV-PRESS CONT KEV WHENREADV
DPY-PLACE PROBE @ U4 PIN6

PRESS CONT KEY WHEN READY
PLACE PROBE @ U4 PIN6

Whenever the Display step is executed, the 9010A display is cleared unless the Display
step begins with the + symbol. Sometimes it is useful to append a message onto a previous
message using the + symbol as follows:

DPY-PLACE PROBE @ U4 PIN6
DPY-+-PRESS CONT

5-4. Displaying Register Contents

PLACE PROBE @ U4 PIN6
PLACE PROBE @ U4 PIN6-PRESS CONT

The $ and @ symbols allow the programmer to display register contents in either
hexadecimal or decimal respectively:

REG1 = 12E4
DPY-$1 12E4
DPV-@l 4836

In order to display the $ and @ symbols, they must be followed by either a non
hexadecimal digit, or inserted twice:

REGE = 27AA3
DPV-ABCDEFG$H
DPY-ABCD$EFGH
DPY-ABCD$$EFGH

ABCDEFG$H
ABCD27 AA3FGH
ABCD$EFGH

5-5. Displaying Text and Register Contents Together
Display steps may also display text and register contents in the same step:

REG7 = 3B7
DPY-REG7 CONTAINS $7 HEX REG7 CONTAINS 3B7 HEX

Text and register contents may be appended to a previous step with the + symbol:

REG7 = 3B7
DPY-REG7 CONTAINS $7 HEX
DPY-+ OR @7 DEC

REG7 CONTAINS 3B7 HEX
REG7 CONTAINS 3B7 HEX OR 951 DEC

The $ and @ symbols may be used more than once in the same step:

REOl = 1111
RE02 = 2222
DPV-REOI = $1, RE02 = $2 REG1 = 1111, REG2 = 2222

To perform hexadecimal-to-decimal conversion, place the desired value in Register 6 in
the Immediate Mode and then execute a program consisting of the following step:

DPV-$6 HEX EGUALS @6 DECIMAL

5-6. Causing the 9010A to Beep
The 90lOA beep may be used to call attention to a particular step or operator instruction
when the program is executed:

DPV-PLACE PROBE AT U15 PIN3 * PLACE PROBE AT U15 PIN3 (beep)

When this step is executed, the 90lOA emits a beep to call the operator's attention to a
displayed instruction. Note that the~ (bell) symbol appears in the program listing as the #
symbol. Consecutive occurrences of the # symbol do not cause multiple beeps. The
execution of a Display step causes the previous message to be cleared from the display
unless the Display step begins with the + symbol:

DPV-REPLACE UB
DPV-*
DPV-REPLACE Ui4
DPV-+*

REPLACE UB
(display cleared, 9010A beeps)
REPLACE U14
REPLACE U14 (beep)

5-7. CONTROLLING PROGRAM FLOW
There are three ways of controlling the program flow during execution: (1) with the If,
Goto, or Stop steps, (2) with the Execute step, (3) with the Loop or Repeat modifiers. All
three types of control are discussed in the following paragraphs.

5-8. Using Goto, Stop, and If Steps to Control Program Flow
The sample programs in this section demonstrate the use of the If, Goto, and Stop steps.
Simple loops are illustrated, as well as the use of registers and Arithmetic operations.

Most of the sample programs in this section involve a Read operation which requires that
an interface pod and a UUT be connected to the 90 lOA. The address specified for the
Read operations in these programs is arbitrarily selected as 8000 (and up). In order to
obtain stable data when executing these sample programs, it is recommended that the
programmer replace the address 8000 with a ROM address in the UUT.

The following program performs a very simple but useful task; it reads the data at an
address and displays the data:

READ @ 8000
DPV-ADDRESS $F DATA $E Reg F contains address, Reg E contains data

9010A

5-3

9010A

5-4

The preceding program can be expanded with the use of a Goto step and a loop. This
program reads and displays the data at a sequence of addresses:

REG1 = 8000
1: LABEL 1

READ @ REG1
DPY-ADDRESS $1 DATA $E
INC REG1
GO TO 1

Initial address loaded into Reg I
Entry point for branch

Reg I incremented for next address
Branch back and read next address

When the preceding program is executed, a problem arises; the 9010A reads, displays,
and increments the addresses so fast that the addresses and data cannot be read by the
operator. One way of overcoming this difficulty is with the Stop step, as shown in the
following program:

REG1 = 8000
1: LABEL 1

READ @ REG1
DPY-ADDRESS $1 DATA $E
DPY-+-PRESS CONT
STOP
INC REG1
GO TO 1

Append instruction
Suspend execution, wait for CONT

When the preceding program is executed, the 9010A reads the first address and displays
the data. When the Stop step is executed, the 9010A suspends execution with the address
and data present on the display and turns on the flashing STOPPED annunciator. When
the operator presses the CO NT key, program execution is resumed and the STOPPED
annunciator turns off. The program increments Register I, loops back to Labell, and
reads and displays the data at the next address. This use of the Stop step gives the
operator control over the Read operations.

Another way to control the preceding program is with an If step as follows:

REG1 = 8000
1: LABEL 1

READ @ REG1
DPY-ADDRESS $1 DATA $E
REG5 = 30

2: LABEL 2
DEC REG5
IF REG5 > 0 GO TO 2
INC REG1
GOTO 1

Sets number of delay loops

Decrement delay loop register

When the preceding program is executed, the 9010A steps through the addresses in
sequence, reading and displaying the data. However, the four new steps in this program
(beginning with REG5 = 30) make up a delay loop. The sole purpose of the delay loop is
to increase the amount of time that each address and data appear on the display so that
they may be read by the operator. The length of the delay can be adjusted by changing the
initial value that is placed in Register 5.

The delay loop could also be constructed as follows:

REG5 = 0
2: LABEL 2

INC REG5
IF 30) REG5 GOTO 2

One disadvantage of the preceding construction is that the adjustment of the length of the
delay involves changing the longer If step rather than the shorter first step.

The following If step is a useful addition at the end of the program, for it sets an upper
limit for the address range:

REG1 = 8000
1: LABEL 1

READ @ REG1
DPV-ADDRESS $1 DATA $E
REG5 = 30

2: LABEL 2
DEC REG5
IF REG5 > 0 GOTO 2
IF REG1 = 801F GOTO 3
INC REG1
GOTO 1

3: LABEL 3
DPV-+-COMPLETE

Branch when address = 80lF

Word appended when program complete

After the data at address 80lF is read and displayed, the program control branches to
Label 3, where the final message is displayed and execution is completed.

The following program demonstrates more uses of loops, the If step, and Arithmetic
operations. The program counts the number of one bits in a hexadecimal number and
displays the result. To use the program, enter the desired hexadecimal number into
Register 1 and then execute the program.

REG2 = 20
REG3 = 0
REG4 = REG1

1: LABEL 1
IF REG4 AND 1 = 0 GOTO 2
INC REG3

2: LABEL 2
SHR REG4
DEC REG2
IF REG2 } 0 GOTO 1
DPY-$1 HEX HAS @3 ONE BITS

Original number placed in Reg 1
Loop counter set
Initialize bit counter
Original number placed in Reg 4

Check farthest right bit
Increment Reg 3 if bit is 1

Bits are shifted right
Decrement loop counter
Branch if more bits to test
Display number and list count

In the preceding program, Register 2 is the loop counter which counts the 32 loops that
are required to examine all 32 bits in Register I (32 decimal equals 20 hexadecimal).
Register 3 counts the number of one bits that are determined by the logical AND
operation in the first If step.

9010A

5-5

90tOA

5-6

5-9. Using the Execute Step to Control Program Flow
The Execute step allows the programmer to use modular design when creating programs.
Sequences of frequently used steps such as delay loops can be stored as separate programs
and called by any other program stored in memory. This can save program steps in a large
program, make it easier to read, and also save registers. The following two programs
show how the Execute step may be used. For reference, the program numbers are
included at the top of the program.

PROGRAM 40 21 BYTES
REG1 = REG8

1 LABEL 1
DEC REG!
IF REGl) 0 GOTO 1

PROGRAM 10 78 BYTES
REGl = 8000

1: LABEL 1
READ @ REG1
DPY-ADDRESS $1 DATA $E
REG8 = 20
EXECUTE PROGRAM 40
IF REG1 = 801F GOTO 2
INC REG1
GO TO 1

2: LABEL 2
DPY-+-COMPLETE

Sets number of delay loops
Calls delay loop program

Program 40 is a simple delay loop program which is called by program 10. Notice in the
first step in Program 40 that the delay loop counter (Register 1) is set equal to Register 8, a
global register. This provides more flexibility in using the delay loop, because the
program that calls Program 40 can set the length of the delay by placing a value in
Register 8 and passing the value to Program 40.

Notice also that Register 1, a local register, is used in both Program 40 and Program 10,
and the value in Register 1 in one program is not carried over to another program. In
Program 10, Register 1 contains the address for the Read operation. When Program 40 is
executed from Program 10, the contents of Register 1 are saved and then Register 1 is set
to O. The first step in Program 40 places a new value in Register 1. When Program 40 has
completed execution, the value saved from Program 10 is restored in Register 1 and
execution of Program 10 resumes.

Another example of the use of the Execute step is provided in the following program:

DPY-PROBE U17 PIN6-PRESS CONTi
STOP
EXECUTE PROGRAM 20
DPY-PROBE U9 PIN11-PRESS CONTi
STOP
EXECUTE PROGRAM 20
DPY-PROBE U10 PIN3-PRESS CONTi
STOP
EXECUTE PROGRAM 20
DPY-PROGRAM COMPLETE

Operator instructions
Wait for CONT
Probe program called
Operator instructions
Wait for CONT
Probe program called
Operator instructions
Wait for CONT
Probe program called

In the preceding program, the operator is given instructions about where to place the
probe and the,n Program 20 is called. Program 20 (not listed) could be a sequence of steps
involving the probe which applies to all three of the nodes listed.

5-10. Using the Loop or Repeat Modifiers to Control Program Flow
The Loop or Repeat modifiers may be appended to any of the built-in tests or
troubleshooting functions when a step is created. When a step with the Repeat modifier is
executed, the test or function is performed twice. When a step with the Loop modifier is
executed, the 9010A turns on the flashing LOOPING annunciator and repeatedly
performs the test or function.

When a test or function is looping, the operator has the same control as in the Immediate
Mode: pressing the STOP key while looping causes the 90 lOA to turn off the LOOPING
annunciator, turn on the STOPPED annunciator, and enter the stopped state; pressing
the LOOP key while stopped causes the 9010A to resume looping (indicated by the
LOOPING annunciator). Unlike the Immediate Mode, however, if the CONT key is
pressed while looping, the 9010A continues program execution and executes the next
program step.

The following program demonstrates one use of the Loop modifier. The program allows
the operator to examine the waveforms that occur at data bit 3 on an oscilloscope. The
operator is instructed where to place the scope probe and then a looping Write operation
is performed which forces data bit 3 high. The operator may stop and resume the looping
Write operation (by pressing the CONT key while in the stopped state). The next looping
Write operation forces data bit 3 low, and the operator has the same choices as described
for the first looping Write operation.

DPY-PUT SCOPE @ U7 PIN9
DPY-+-PRESS CONT
STOP
DPY-DATA BIT 3 IS HIGH
WRITE @ 8000 = 8 LOOP
DPY-DATA BIT 3 IS LOW
WRITE @ 8000 = 0 LOOP
DPY-TEST COMPLETE

Operator instruction

Wait for CO NT
Tells value of bit 3
Set data bit 3 high
Tells value of bit 3
Writes data bits low
Final message

Note that a Display step is specified before each of the looping Write operations that
describes what takes place during the operation. The reason for the message is that when
the looping Write operation takes place, the operator has no way of knowing what is
taking place except for the flashing LOOPING annunciator. The Display step message
provides more information about what the 9010A is doing.

5-11. SYNCHRONOUS OPERATOR INPUT
Synchronous operator input is input that may only be provided while program execution
is suspended. When a Display step is executed that requires synchronous input, program
execution is suspended at that step until the operator enters a valid input. The valid input
is placed in the designated register and program execution resumes. While program
execution is suspended, the STOPPED annunicator flashes; when the program execution
resumes the annunciator stops flashing.

When the / ,\, or? symbols are followed by a hexadecimal digit in the Display step, the
90 lOA accepts hexadecimal, decimal, or Boolean (YES or NO) input. Each type of input
is discussed and illustrated in the following paragraphs.

9010A

5-7

9010A

5-8

5-12. Hexadecimal Input
This hexadecimal-to-decimal conversion program illustrates hexadecimal input and
output, and decimal output. When the first step in the program'l:;"executed, the 90 lOA
suspends program execution and displays the cursor which prompts for a hexadecimal
value. When a value is entered, the value is placed in Register I and program execution is
continued. The second step displays the hexadecimal value and the decimal equivalent.

DPY-ENTER A HEX VALUE /1
DPY-$1 HEX EGUALS @1 DECIMAL

5-13. Oecimallnput

Prompt for the value
Display in hex and decimal

This program illustrates decimal input and output. When execution begins, the program
displays a prompt for a hexadecimal number. After a number is entered, the program
displays a message which prompts the operator to guess the decimal equivalent of the
hexadecimal number. If the guess is incorrect, the program displays a prompt for another
guess. If the guess is correct, the 9010A emits a beep and displays the correct value. Notice
that the 9010A only accepts decimal input when the decimal guess is entered (otherwise
the 90 lOA emits a beep).

DPY-ENTER THE HEX NUMBER /1 Hex input to Reg 1
DPY-ENTER YOUR DECIMAL GUESS Prompt for guess

1 : LABEL 1
DPY-+ \2 Decimal input to Reg 2
IF REG2 = REG1 GOT03 Guess is correct
IF REG2 > REG1 GOTO 2 Guess too high
DPY-@2 IS TOO LOW-TRY AGAIN Guess too low
GOTO 1

2: LABEL 2
DPY-@2 IS TOO HIGH-TRY AGAIN High guess displayed
GOTO 1

3: LABEL 3
DPY-*YES* HEX $2 = DECIMAL @2# Correct guess displayed

5-14. Boolean (YES or NO) Input
This program illustrates Boolean (YES or NO) input. When this program is executed, the
question ARE YOU READY? appears. The characters ?A in the first step cause the
program execution to be suspended. If the YES key is pressed, a I is stored in Register A
and program execution is continued. If the NO key is pressed, a 0 is stored in Register A
and program execution is continued. Notice that unlike the other special symbols for the
Display step, the? symbol appears on the display as the prompt for a response. The?
symbol is removed from the display when a response is entered.

DPY-ARE YOU READY?A
IF REGA = 0 GOTO 1
DPY-+ YES
GOTO 2

1: LABEL 1
DPY-+ NO

2: LABEL 2

5-15. Multiple Inputs and Outputs

Prompt for input to Reg A
Branch if NO key pressed
YES response displayed

NO response displayed

More than one input request may be included in a single Display step as illustrated in the
following example. Note that when the step is executed the 90 lOA only displays the text

portion to the left of the first prompt (ENTER ADDR). When a value is entered in
response to the first prompt, the 9010A appends the remaining portion of text to the
message on the display along with the second prompt. The first value entered is stored in
Register I, and the second value entered is stored in Register 2.

DPY-ENTER ADDR 11 ENTER DATA 12

The following program illustrates mUltiple inputs and outputs. During execution, the
90 lOA displays prompts for the first and last address of an address block and for an
operator-specified value. When the addresses and data are specified, the 9010A searches
through the address block for a memory location with the specified value. Ifthe specified
value is found, the 901 OA displays the data, the memory location where it was found, and
asks if the search is to continue.

DPY-FIRST 11 LAST 12 DATA 13
1: LABEL 1

READ @ REG1
INC REG1
IF REGE = REG3 GOTO 3
IF REGl) REG2 GO TO 2
GOTO 1

2: LABEL 2
DPY-DATA NOT FOUND
GOTO 4

3: LABEL 3
DPY-$3 FOUND AT $F - CONTINUE?5
IF REG5 = 1 GOTO 1
DPY-

4: LABEL 4
DPY-+SEARCH COMPLETE

5-16. ASYNCHRONOUS OPERATOR INPUT

Prompts for addresses, data

Read performed

Data found
Data not found in block

Data and address displayed
Branch if YES key pressed
Clears the display

During program execution, it is often desirable to have the 90 lOA be responsive to input
from the operator while it continues to execute program steps. This is not possible with
synchronous input since program execution is always suspended when synchronous
input is requested, and program execution is not continued until a value is entered. With
asynchronous input, however, the 90lOA may be executing program steps but still be
responsive to input from the operator.

Asynchronous input is characterized as follows:

• Asynchronous input is enabled when a Display step is executed which contains the
% symbol followed by a hexadecimal digit.

• While asynchronous input is enabled, pressing any key (except STOP, HIGH, or
LOW) causes the associated value from Table 5-1 to be entered into the register
designated by the hexadecimal digit. This allows the programmer to redefine the
keyboard during program execution.

• Once asynchronous input is enabled, it remains enabled until it is disabled.
Asynchronous input is disabled if the operator presses any key (except STOP,
HIGH, or LOW), or if a Display step is executed which contains the % symbol
followed by the hexadecimal digit for the enabled register.

• Only one register can be open for asynchronous input at a time. Enabling a register
for asynchronous input disables any register previously enabled.

9010A

5-9

9010A

5-10

Table 5-1. Asynchronous Input Values for the 9010A Keys

VALUE KEY VALUE KEY VALUE KEY VALUE KEY

0 0 10 LEARN 20 WRITE 30 AND
1 1 11 RAM VIEW 21 RAMP 31 OR
2 2 12 I/O VIEW 22 WALK 32 SHIFT LEFT
3 3 13 ROM VIEW 23 TOGGLADDR 33 SHIFT RIGHT
4 4 14 AUTO TEST 24 TOGGL DATA 34 INCR
5 5 15 BUS TEST 25 CO NT 35 DECR
6 6 16 ROM TEST 26 RPEAT 36 COMPL
7 7 17 RAM LONG 27 LOOP 37 EXEC
8 8 18 RAM SHORT 28 (not used) 38 REG
9 9 19 I/O TEST 29 RUN UUT 39 READ PROBE
A A 1A PRIOR 2A PROGM 3A READ TAPE
B B 1B MORE 28 LABEL 3B WRITE TAPE
C C 1C ENTERIYES 2C GOTO 3C SYNC
D 0 10 CLEAR/NO 20 IF 3D SETUP
E E 1E STS/CTL 2E > 3E DISPL
F F 1F READ 2F = 3F AUX I/F

NOTE: Asynchronous input is not defined/or the STOP, HIGH, and LOW keys.

The following program steps illustrate how to enable and disable the asynchronous input.
Assume in this example that no keys are pressed during the execution of the steps.

DPY-Xl
DPY-Xl
DPY-X2
DPY-Xl

DPY-$l
DPY-+7.1

Enable async input for Reg I
Disable Reg 1
Enable Reg 2
Disable Reg 2
Enable Reg 1
Display Reg 1 contents in hex
Do not clear display, disable async input for Reg 1

The following program shows how asynchronous input may be used. While the 90 lOA is
executing the program, press any of the keys on the 9010A keyboard and observe the
90lOA display. Notice that the values that are shown for each key pressed are the values
listed for the asynchronous input in Table 5-1. Table 5-1 does not include the STOP key
because the STOP key functions as usual to suspend program execution.

1: LABEL 1
REGl = 40
DPV-+1.1

2: LABEL 2
IF REGl = 40 GO TO 2
DPV-$l
GOTO 1

No key has this async input value
Enable async input for Reg 1

Display Reg t
Set up for another key press

In the preceding program, Register 1 is first loaded with a value that is not one of the
asynchronous input values for the keys listed in Table 5-l. Then the asynchronous input is
enabled for Register 1. The LABEL 2 step and the If step that follow make up a loop
which continues to loop as long as no key is pressed. As soon as a key is pressed, the

asynchronous input is disabled, the associated value is displayed, and the program
control returns to the first step to begin the sequence again.

One of the advantages of asynchronous input is that the programmer can redefine the use
of the keys during program execution. The following program demonstrates this
redefinition of the keys. When the program is executed, the 90 I OA prompts for an
address. When the address is entered, the 901 OA reads and displays the data at the address
and waits for another key to be pressed. The keys that are defined by this program and
may be used during execution are as follows:

MORE
PRIOR
ENTER
Other Keys

Read and display the data at the next address
Read and display the data at the previous address
Prompt for new starting address
Beep when pressed (except STOP, HIGH, and LOW)

1 : LABEL 1 Arrive here if ENTER pressed
DPV-ADDRESS 11 Prompt for new address

2: LABEL 2
REAO @ REG1 Read UUT data
DPV-ADDRESS $1 DATA $E Display address and data

3: LABEL 3
REG2 = 40 No key has this value
DPV-+i.2 Enable async input for Reg 2

4: LABEL 4
IF REG2 = 40 GOTO 4 Branch if no key pressed
IF REG2 = IC GO TO 1 Branch if ENTER pressed
IF REG2 = 1B GOTO 5 Branch if MORE pressed
IF REG2 = 1A GO TO 6 Branch if PRIOR pressed
DPV-+# Beep if other key pressed
GOTO 3 Branch and wait for key

5: LABEL 5 Arrive here if MORE pressed
INC REG1 Set to next address
GO TO 2

6: LABEL 6 Arrive here if PRIOR pressed
DEC REG1 Set to previous address
GOTO 2

In the preceding program, notice that pressing any of the asynchronous input keys
besides ENTER, MORE, and PRIOR causes a beep. This is accomplished by the DPY
+# step below Label 4. When this program is executed, it is also possible to cause the
90lOA to beep if the MORE or PRIOR key is pressed very rapidly. This is because
initially pressing the MORE or PRIOR key causes the asynchronous input to be disabled
until the program control loops back to Label 2 and performs the step (DPY -+%2) which
enables asynchronous input again. If any asynchronous key is pressed during the time the
asynchronous input is disabled, the 90 lOA beeps as usual.

The following program demonstrates the ability ofthe 90 lOA to perform operations and
yet still be responsive to asynchronous input from the keyboard at the same time. The
keys that are defined by this program and may be used during execution are as follows:

MORE

PRIOR

ENTER

Step through addresses in ascending order, reading and displaying data

Step through addresses in descending order, reading and displaying data

Prompt for new starting address

9010A

5-11

9010A

5-12

Other Keys Beep when pressed (except for STOP, HIGH, and LOW)

1 : LABEL 1
REGO = 0 Up/down Cdunter set to up
DPY-ADDRESS 11 Prompt for starting address

2: LABEL 2
REG2 = 40 No key has this value
DPY-+i.2 Enable async input for Reg 2

3: LABEL 3
IF REG2 = 40 GOTO 6 Branch if no key pressed
IF REG2 = 1C GOTO 1 Branch if ENTER pressed
IF REG2 = 1B GO TO 4 Branch if MORE pressed
IF REG2 = 1A GOTO 5 Branch if PRIOR pressed
DPY-+# Beep if other key pressed
GOTO 2 Branch to restart

4: LABEL 4
REGO = 0 Up / down counter set to up
GO TO 2 Branch to restart

5: LABEL 5
REGO = 1 Up/down counter set to down
GO TO 2 Branch to restart

6: LABEL 6
IF REGO = 1 GOTO 7 Branch if counter set to down
INC REG1 Increment 1 eg with address
GOTO 8

7: LABEL 7
DEC REG1 Decrement reg with address

8: LABEL 8
READ @ REG1 Read address in Reg I
DPY-ADDRESS $1 DATA $E Display address and data
REG6 = 10 Delay loop count

9: LABEL 9
DEC REG6
IF REG6 > o GOTO 9 Delay loop branch
GOTO 3

In the preceding program, the 901 OA steps through addresses- and displays the data in
either ascending order (selected by pressing the MORE key) or descending order (selected
by pressing the PRIOR key). When the program execution begins, the 90 lOA prompts for
a starting address. A new starting address may be specified by pressing the ENTER key
and then entering the address. Register 1 is used to store the address that is being read.
Register 0 is used as an up / down counter. When Register 0 is zero, the 90 lOA steps
through addresses in ascending order, and when Register 0 is one, the 9010A steps
through addresses in descending order.

5-17. USING THE PROBE IN PROGRAMS
The READ PROBE key and the SYNC key may each be used to create program steps
which control probe operation in programs. The probe stimulus capabilities controlled
by the HIGH and LOW keys are not subject to program control during program
execution,although they are still available for use and may be manually controlled by the
operator.

The use of the Read Probe step and the Sync step are discussed in the following
paragraphs. The discussion is divided into three parts, with one part for each ofthe three
types of information available with the Read Probe operation: the logic level history, the
computed signature, and the event count. The sample programs included show how to set
up the Sync and Read Probe steps, and how to obtain the data from Register 0 and
display it. For reference, the format for the probe response data obtained with Read
Probe is presented in Figure 5-1. Note that executing the Read Probe step also
extinguishes the indicator lights in the probe.

The probe response data is stored in bits 0-31 of Register 0 as follows:

a bits 16 bits a bits
Register 0 - 1311· •.••• 1241231 •.•. ·l aI71· ••. ·10 I

l // \ ~Bit7=O
;"""'::1 xT-1 x-r-I x""-I x-'-I x--T-g--'-612-"512~41 1231. • • • .Ial ~-r--~"""'"

LOGIC LEVEL COMPUTED EVENT
HISTORY SIGNATURE COUNT

Bit 24 = 1 if logic high detected
Bit 25 = 1 if logic tristate (invalid) detected
Bit 26 = 1 if logic low detected

NOTES:

1. Accumulated probe data is placed in Register 0 when the Read Probe step is executed.

2. Signatures may range from 0000 to FFFF.

3. Event Counts may range from 0 to 127. When a count of 127 is reached, the counter begins
counting again at O.

Figure 5-1. Probe Data Format for Register 0

5-18. Using the Logic Level History
A basic application of the Read Probe step involves the determination of the logic level of
a static node, as shown in the following program:

SYNC FREE-RUN
DPY-PUT PROBE @ U6 PIN12
DPY-+-PRESS CDNT#
STOP
READ PROBE
READ PROBE
DPY-NDDE LOGIC LEVEL WAS
IF REGO AND 1000000 > 0 GO TO 1
IF REGO AND 2000000 > 0 GOTO 2
DPY-+ LOW
GOTD 3

1: LABEL 1
DPY-+ HIGH
GOTO 3

2: LABEL 2
DPY-+ INVALID

3: LABEL 3

Set the Sync mode
Operator instruction
Bell (#) calls attention
Wait for CONT
Clears previous probe data
Places data in Reg 0
First part of message
Check for high logic level
Check for invalid logic level
Remaining choice is low

9010A

5-13

9010A

5-14

The second and third steps of the preceding program instruct the operator how to set up
the Read Probe operation. The beep (# symbol) in the thitd step calls the operator's
attention to the instruction. Two Read Probe steps are specified, the first to clear previous
probe information from Register 0, and the second to place the accumulated data in
Register O. Since the node is static, no stimulus is needed between the two Read Probe
steps. The two If steps determine what the logic state was at the node.

The first step in the preceding program sets the synchronization mode to free-run. Note
that the synchronization mode setting is maintained when passing between the
Immediate Mode and the Executing Mode.

The following program can be used to identify address lines on the bus:

SYNC ADDRESS
1: LABEL 1

DPY-PLACE PROBE AND PRESS CaNT
STOP
REG1 = 1
REG2 = 0

2: LABEL 2
READ PROBE
READ @ REGl
READ PROBE
IF REGO AND 1000000) 0 GOTO 3
IF REG2 = F GOTO 4
SHL REGl
INC REG2
GOTO 2

3: LABEL 3
DPY-PROBE ON ADDRESS BIT @2
GOTO 5

4: LABEL 4
DPY-NOT AN ADDRESS LINE

5: LABEL 5
DPY-+-NEW PT?3
IF REG3 = 1 GOTO 1
DPY-PROGRAM COMPLETE

Operator instruction
Wait for CONT
Set address reg to I
Set bit counter to 0

Clear previous probe data
Read stimulates address bit
Places data in Reg 0
Check if probe detected bit
Check bit count
Move to next address bit
Increment bit counter

Display probe location

No bits found high by probe

Prompt for repeat
Branch and repeat if YES

To use the preceding program, place the probe on some random address bit when
prompted. The program stimulates the address bits beginning with bit 0 and continuing
through all 16 bits, checking each time to see if the pro be detected the high bit. Register 1
contains the address where the Read operation is performed, and Register 2 keeps track
of the bit number (the microprocessor is assumed to have 16 address lines). The address
synchronization is specified to limit the probe data accumulation to the address activity.
The technique shown in this program can be useful for checking the address decoding
circuitry.

5-19. Gathering Signatures
The following program shows how to isolate and display the signature. Assume that the
probe is already placed when the program is executed.

SYNC DATA
READ PROBE
RAMP @ 5000
READ PROBE
REGO = REGO SHR SHR SHR SHR
REGO = REGO SHR SHR SHR SHR
REGO = REGO AND FFFF
DP¥-SIGNATURE IS $0

Clears previous probe data
Provides stimulus for sig
Places data in Reg 0
Removes first hex digit
Removes second hex digit
Masks logic level information

In the preceding program, the eight shift-right operations remove the two event count
digits, and the logical AND operation masks off the logic level digit, leaving the four-digit
signature in Register 0 as desired.

The following program shows how to gather a signature for an 8-bit microprocessor and
display the results:

SYNC DATA
DPY-PROBE ON DATA BIT 0 Data bit 0 selected
DP¥-+-PRESS CONT
STOP Wait for CONT
READ PROBE
RAMP @ 4000
READ PROBE
REGO = REGO SHR SHR SHR SHR Removes first hex digit
REGO = REGO SHR SHR SI-IR SHR Removes second hex digit
REGO = REGO AND FFFF Masks off logic level
IF REGO = 96EC GOTO 1 Compares signatures
DP¥-SIG INCORRECT-
DP¥-+WAS $0 NOT 96EC
GO TO 2

1: LABEL 1
DPY-SIG CORRECT-$O

2: LABEL 2

In the preceding program the operator is prompted to place the probe on data bit O. The
Read Probe operation is performed with the Ramp function providing the stimulus. The
signature is isolated and compared with the expected signature. For an 8-bit
microprocessor, a Ramp function produces a signature of 96EC at data bit O.

9010A

5-15

9010A

5-16

5-20. Using the Event Count
The following program shows how the event count may be used to test an I/O device:

DPY-PUT PROBE @ U9 PIN7
DPY-+-PRESS CONT
STOP
READ PROBE
REG1 = 40

l.: LABEL 1
DTOG @ COOO = 0 BIT 0
DEC REG1
IF REG1) 0 GOTO 1
READ PROBE
REGO = REGO AND 7F
IF REGO = 10 GOTO 2
DPY-COUNT INCORRECT
DPY-+WAS @O NOT 16
GOTO 3

2: LABEL 2
DPY-COUNT CORRECT-@O

3: LABEL 3

Probe placed on I/O output

Wait for CONT
Clear previous probe data
Loop counter set to 64 (dec)

Toggle Data performed

Places data in Reg 0
Isolates event count in Reg 0
Compares count

In the preceding program the operator is instructed to place the probe at the output pin of
the I/O device that is being tested. There is a divide-by-four counter on the output port so
that the count at the input to the I/O device is divided by four at the output. The Toggle
Data function is performed 64 times at the input, so a count of 16 is expected at the
output. The event count is isolated and compared with the expected count and the results
are displayed.

Note that the maximum number of counts that may be counted by the event counter is
127. After 127 counts, the counter starts over at O.

5-21. USING RUN UUT IN PROGRAMS
Sometimes it is useful to execute program code out of UUT memory during programs,
particularly if execution speed is important. The following programs show how to load a
program into UUT RAM, and then execute the program with the Run UUT step. All of
the following examples use the 8080 microprocessor instruction set and assembly
language mnemonics. The machine instructions also execute properly on the 8085 and Z-
80 microprocessors.

Since instructions are fetched from UUT RAM, it is important to verify that the UUT
timing supports instruction fetches from RAM. Some processors, such as the Z-80, have
tighter timing margins for instruction fetches than for data fetches.

5-22. Running a Program from UUT RAM
In this example, there is an output port at I/O address 20. Assume that bit 0 ofthis port
drives additional circuitry, and that the normal operating software for the UUT generates
short pulses on the line by setting it high and then low. When troubleshooting, it would be
useful to have the 901 OA generate similar pulses. The pulses can be generated using either
the Write troubleshooting function:

WRITE @ 10020 = 1
WRITE @ 10020 = 0

Or the Toggle Data troubleshooting function:

OTOG @ 10020 = 0 BIT 0

The width of the resulting pulses is several milliseconds (the exact value depends on the
type of interface pod and the UUT clock frequency). If the circuit being driven must have
shorter pulses, then the troubleshooting functions cannot be used. Instead, a short
program may be loaded into UUT RAM, then executed using the Run UUT function.
The program can contain the same instructions as the normal operating program, thus
providing an operator-controlled stimulus that duplicates normal operating conditions.
The following assembly language program generates a short pulse on bit 0 of port 20.

8000 3E 01 MVI A, 1 ; set accumulator to I
8002 D3 20 OUT 20 ; raise the line
8004 AF XRA A ; set accumulator to zero
8005 D3 20 OUT 20 ; lower the line
8007 76 HLT

The following 90 lOA program loads and executes the program at address 8000. Since the
assembly language program does not contain any absolute addresses, it may be loaded
and executed at any address.

WRITE @ 8000 = 3E
WRITE @ 8001 = 01
WRITE @ 8002 = 03
WRITE @ 8003 = 20
WRITE @ 8004 = AF
WRITE @ 8005 = 03
WRITE @ 8006 = 20
WRITE @ 8007 = 76
RUN UUT @ 8000

Each time the preceding 90 lOA program is executed, the machine instructions are loaded
into UUT RAM and executed, generating one pulse. Note that once the assembly
language program is loaded into UUT RAM, it may be executed again without reloading.

In the following program, the same assembly language program is used, but the 90 lOA
program is more flexible, allowing the machine instructions to be loaded and executed at
any address. Register 8 is assumed to contain the RAM address at which to load and
execute.

WRITE @ REGS = 3E
WRITE @ REGF INC = 1
WRITE @ REQF INC = 03
WRITE @ REQF INC = 20
WRITE @ REQF INC = AF
WRITE @ REQF INC = 03
WRITE @ REQF INC = 20
WRITE @ REQF INC = 76
RUN UUT @ REQS

9010A

5-17

9010A

5-18

5-23. Communicating With a Machine Language Program in UUT RAM
The following program shows one method for allowing a 9010A program to
communicate with a downloaded machine language program. The machine language
program reads the data at an operator-specified address, then stores it at a known
address. The 9010A may then gain access to the stored data using the Read function.

The machine language program is as follows:

8000 3A
8003 32
8006 76
8007 00

bb aa LDA aabb
07 80 STA 8007

HLT
DB 0

The 9010A program is as follows:

WRITE @ 8000 = 3A
WRITE @ 8003 = 32
WRITE @ 8004 = 07
WRITE @ 8005 = 80
WRITE @ 8006 = 76

1 : LABEL 1
DPY-ADDRESS 11
WRITE @ 8001 = REGl AND
REG1 = REG1 SHR SHR SHR
REG1 = REG1 SHR SHR SHR
WRITE @ 8002 = REGl AND
RUN UUT @ 8000
READ @ 8007
DPY-+ DATA $E
STOP
GO TO 1

FF
SHR
SHR
FF

LDA instruction
S T A instruction
low byte of address 8007
high byte of address 8007
HLT instruction

Prompt for and read address
Fill in low byte of LDA address
Shift Reg I four places right
Shift Reg I four places right
Fill high byte of LDA address
Execute UUT program
Get result of UUT program
Display result
Wait for CONT

The first five steps load all of the program except the address in the LDA instruction. The
operator is then prompted for an address. The operator-supplied address is loaded into
the second and third bytes of the LDA instruction; the program is then executed using the
Run UUT step. After the Run UUT step is executed and the program in UUT RAM is
being run by the interface pod, the 90 lOA executes the program steps following the Run
UUT step. Once the interface pod is placed in the Run UUT mode, the 90 lOA does not
communicate with the interface pod. If a subsequent step requires use of the interface
pod, the interface pod is automatically removed from the Run UUT mode to begin
communicating with the 90 lOA, even if the program loaded in the UUT is not completed.

In the preceding 90 I OA program, the step READ @ 8007 removes the interface pod from
the Run UUT mode. The data from 8007 (which was stored by the machine language
program) is then appended to the display. Note that if the program loaded in the UUT
must run for more than a few milliseconds, a delay should be placed between the Run
UUT step and the first step that uses the interface pod. Otherwise, the interface pod will
be removed from the Run UUT mode before the machine language program has
completed execution.

5-24. USING THE AUX IIF IN PROGRAMS
Like the Display step, the AUX II F step provides a way for external input and output
during program execution. With the AUX II F step, however, the input and output take

place through the RS-232 interface. The input may be single bytes which are stored in a
programmer-designated register. The output may include text and register contents.
Input and output are described in the following paragraphs.

AUX II F data is transmitted in the same way in the Executing Mode as in the Immediate
Mode with one exception: the line size is not controlled by the Setup LINESIZE
parameter. The line size is determined by the length of the text in the A UX I I F step. A line
terminator (as determined by the NEWLINE Setup parameter) is sent at the end of each
AUX I/F step unless the + symbol is the last character in the AUX I/F step.

5-25. Output to the AUX IIF
Operator output via the A UX I I F can have a variety of uses. The following program
demonstrates a typical application: logging test results on a printer. The program is used
in testing a printed circuit board which contains an 8-bit analog-to-digital converter
which provides digital output at address 8000.

1: LABEL 1
REGA = 1
DPY-ENTER SERIAL NUMBER \1
DPY-CONNECT POWER-PRESS CONT
STOP
AUX-SERIAL NUMBER - @1
AUX-
AUX-VOLTAGE (V) DATA
AUX------------------

2: LABEL 2
DPY-SET TO @A VOLTS-PRESS CONT
STOP
READ @ 8000
AUX- @A $E
INC REGA
IF 9 }= REGA GOTO 2
DPY-DISCONNECT POWER
DPY-+-PRESS CONT#
STOP
GOTO 1

Reg for voltage settings
Prompt for information
Operator instruction

Serial number printed out
Insert blank line in table
Heading for table
Dashed line under heading

Operator instruction

Read digital side of al d
Print setting and data
Increment to next setting
Branch back for next setting
Operator instruction

Repeat test for next pcb

During the execution of the preceding program, the operator receives instructions
through the 9010A display. The operator is instructed to: (1) enter the serial number for
the printed circuit board, (2) connect a power supply to the analog input of the analog-to
digital converter, and (3) set the power supply voltages.

The voltage settings are stored in Register A, which is initially set to 1. After the operator
sets the voltage, the 9010A reads the digital output of the analog-to-digital converter (at
address 8000) and sends the voltage setting and the data to the printer via the AUX II F.
This process is repeated for eight more voltage settings. After the test is completed the
operator is instructed to disconnect the power supply, and the test branches back to the
beginning for the next printed circuit board.

9010A

5-19

9010A

5-20

The following program demonstrates how to read and list the contents of UUT memory:

DPV-FIRST 11 LAST 12
REGl = REGl AND FFFO
AUX-

1: LABEL 1
IF REG1 AND F) 0 GOTO 3
AUX-
IF REG1 > FFF GOTO 2
AUX-O+
IF REGl) FF GOTO 2
AUX-O+
IF REGl) F GOTO 2
AUX-O+

2: LABEL 2
AUX-$1+

3: LABEL 3
AUX- +
IF REG1 AND 7) 0 GOTO 4
AUX- +

4: LABEL 4
READ @ REG1
IF REGE) F GOTO 5
AUX-O+

5: LABEL 5
AUX-$E+
INC REG1
IF REG2)= REGl GO TO 1
AUX-

Prompt for address range
Last byte 0 in first address
Ensures printer at left side

Selects every sixteenth address

I----Formats and prints address

Inserts single space

Inserts two spaces

Reads data

Inserts 0 if data F or less

Sends data to AUX IIF
Increment to next address
Branch back if not finished
Returns printer to left side

When the preceding program is executed, the 9010A prompts for the first and last
address. After the operator enters the addresses, the 90 lOA reads the data at the addresses
and sends the data to the AUX I/F. Figure 5-2 is a sample printout using this program
with addresses 0100 through OlFF. The first column at the left of Figure 5-2 lists every
sixteenth address. The rows beside the column of adresses list the data for the addresses.

0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
01AO
01BO
01CO
0100
OlEO
01FO

17 CA E9 01 35 6E 29 91
13 46 04 63 87 33 A9 40
OF 79 E6 FE 4F C9 2A E4
3A DF 8F 5F CO 4E 02 CO
37 01 22 E4 8F 7B 32 OF
08 8F 2A EC 8F 16 11 CD
1C lB 15 14 14 79 E6 02
13 B7 F4 53 28 9A EA 59
12 42 90 F8 C5 3A 72 66
2A EC 8F 41 68 03 A5 CA
02 5E E1 CD 4E 02 CD 6E
2B FE 01 CA 5C 01 E5 21
50 7A 31 68 A3 8E 42 74
24 14 BA E5 04 22 46 F9
54 02 36 78 F2 14 E6 81
FE 4A 3B 87 40 91 06 B8

43 75 C1 B4 62 94 5C 21
81 4E 9F 60 03 49 OD 34
8F CD 3A OD 79 17 02 44
6E 02 Fl 2A B4 05 39 38
8F C3 10 01 El 3E 10 32
48 02 CO 6E 02 FA 07 06
CA 80 01 35 60 56 81 90
22 EC 7A 36 71 23 04 D9
81 30 02 55 A7 83 FE 70
97 63 5B 88 14 52 74 OA
02 FO 07 55 15 IB 24 24
48 05 06 08 CD 61 02 D8
9B 83 41 29 7C 89 42 63
8B 67 88 92 09 07 35 66
26 71 A4 D5 62 83 OB DE
71 23 4A 74 89 03 A2 78

Figure 5-2. Sample Output to AUX IIF From Program that Reads UUT Memory

Sometimes it is useful to send single byte information via the AUX I/F. For example,
assume the programmer wants to send information to a printer which requires the ASCII
character with the hexadecimal value OC to do a form feed. The programmer can
accomplish this with the following two steps:

REG6 = OC
AUX-i.6

The first step loads the hexadecimal value (OC) for the character into Register 6. When the
second step is executed, the 90 I OA sends the lower order byte contained in Register 6 to
the A UX I I F. This technique provides a way for the programmer to send the full range of
ASCII characters to the A UX I IF.

5-26. Input from the AUX IIF
Input from the A UX I I F is similar to the synchronous input from the 901 OA keyboard
with a Display step. When an A UX I I F step is executed which contains the I symbol
followed by a hexadecimal digit, the 9010A suspends program execution, waits for the
next byte of data from the RS-232 interface, and places the byte in the designated register
(the upper three bytes of the register equal zero). The following program demonstrates
how the operator may interact with the 9010A via the AUX II F during program
execution. The program also demonstrates how the RS-232 status register may be used.

In this program, a keyboard and video display are connected to the A UX I I F. The
operator may interact with the 90 lOA during the execution of the program by pressing
anyone of four keys which have functions defined as follows:

S key:
C key:

Suspends program execution until the C key is pressed
Continues program execution if suspended

R key:
X key:

Restarts the program execution at the beginning
Terminates the program execution

1 : LABEL 1
REGl = 0

2: LABEL 2
READ @ REG1
AUX-ADDRESS $1 DATA $E
INC REG1
AUX-\5+
IF REGS AND 8 ::::: 0 GOTO
AUX-/6+
IF REG6 = 53 GOTO 3
IF REG6 = 52 GO TO 1
IF REG6 = 58 GOTO 4
AUX-#+
GOTO 2

3: LABEL 3
AUX/6+
IF REG6 = 43 GOTO 2
IFREG6 = 52 GOTO 1
IF REG6 = 58 GOTO 4
AUX-#+
GOTO 3

4: LABEL 4
AUX-EXIT PROGRAM

2

Initial address set to 0

Read at address
Send address and data to A UX
Increment address register
Read RS-232 status into Reg 5
Check to see if key pressed
Place hex value of key in Reg 6
If key was S, branch to 3
If key was R, branch to 1
If key was X, branch to 4
Key pressed was none of above

Wait for key, place in Reg 6
Program continues if C pressed

Final message if X pressed

9010A

5-21

9010A

5-22

When the preceding program is executed, the 901 OA begins reading data at a sequence of
addresses, beginning with address o. After the data is read at an address, the 901 OA sends
the address and data to the A UX I j F. The register containing the address is incremented,
and then the next two steps check to see if a key was pressed. The AUX-\5 step reads the
status of the RS-232 into register 5. The next step (IF REG5 AND 8 = 0 GOTO 2) checks
the fourth bit (bit 3) to see if it is 1. If the fourth bit is 1, then a character has been received
and is waiting in the RS-232 receive buffer (meaning a key was pressed). The AUX-j 6 step
places the hexadecimal value of the key into Register 6, and the If steps that follow
identify the key and branch to the appropriate place.

Section 6

Error Handling in the Executing Mode

6-1. INTRODUCTION
Any of the errors that may be detected and reported in the Immediate Mode may be
detected and reported in the Executing Mode. These include the Timeout errors, UUT
System errors, and Test errors. In addition, there are five fatal error messages that may be
encountered only when executing or attempting to execute programs. All the possible
errors are discussed in the following paragraphs.

6-2. TIMEOUT ERRORS, UUT SYSTEM ERRORS, AND TEST ERRORS
The detection and reporting of Timeout errors, UUT System errors, or Test errors is
handled in the Executing Mode in a manner very similar to the Immediate Mode. The
error messages are the same, and the operations performed by the 901 OA when looping on
the errors are the same. When an error is detected, program execution is suspended and
the error is reported. During the reporting of or looping on errors, the behavior of the
MORE, LOOPING, and STOPPED annunciators is the same as in the Immediate
Mode.

For more details about the Timeout errors, UUT System errors, and Test errors, refer to
the 9010A Operator Manual.

6-3. FATAL ERRORS
The five fatal error messages are called fatal because they abort the program that is being
executed and return the 901 OA to the Immediate Mode. There is no way to loop on a fatal
error or disregard it and continue with program execution. The five fatal error messages
are listed and described in Table 6-1.

Each fatal error message consists of two lines. The first line identifies the type of error.
The second line consists of from one to eleven program numbers. If a single number is
listed, the number indicates the program that was executing. If more than one number is
listed, the program numbers trace the "calling path" for the programs involved. For
example, assume that Program 1 calls Program 2 which then calls Program 1. When
Program 1 is executed, the first line of the following two-line error message is presented
on the display:

FA TAL-A TTEMPTED RECURSION
01 0201

MORE annunciator begins flashing

The first line indicates that a program called a preceding program in the calling path. The
second line indicates the order of programs that did the calling, i.e., Program 1 called
Program 2 which called Program 1. The MORE and PRIOR keys may be used to bring
the desired line to the display.

9010A

6-1

9010A

6-2

The last three error messages can occur only if the executing program contains an illegal
Execute step. In this case, the next-to-last number in the calling path is the program that
contains the illegal Execute step. The last number in the calling path is the program
designated by the Execute step.

Table 6-1. Fatal Error Messages

FIRST LINE OF ERROR MESSAGE*

FATAL-MEMORY EXCEEDED FOR LEARN

DESCRIPTION

The address descriptors obtained during a
Learn operation have exceeded the 9010A
internal memory. This situation is described in
the 9010A Operator Manual.

FATAL-NUMERIC VALUE OUT OF RANGE A value (such as data or an address) was
specified which is out of the valid range
permitted for that quantity (such as a bit
number greater than 31).

FATAL-ATTEMPTED RECURSION A program attempted to call itself, or to call a
program which preceded it in the calling path.

FATAL-DEPTH EXCEEDED A program attempted to call another program
more than ten levels deep. The maximum
number of programs that can be involved in
the calling path is ten.

FATAL-PROG NOT FOUND A program was called which does not exist in
memory.

* The second line of the error message consists of the calling path for the programs involved.

7-1. INTRODUCTION

Section 7

Data Format for AUX IfF
Immediate Mode Operation

This section contains a detailed description of the data format used in the AUX II F Write
and AUX IIF Read operations. These operations allow information to be sent to and
received from remote devices. The reader is assumed to be familiar with the Setup
parameters and their meanings.

Note that the operator does not need this information to use the AUX II F Write and
AUX IIF Read operations to transfer 901OA-generated information from a 90 lOA to a
remote device or to another 901OA. However, if the information is destined for a
computer and subsequent manipulation, the information described in this section is
required.

7-2. THE AUX IIF WRITE AND IIF READ OPERATIONS
When the AUX IIF Write operation is selected, the following information is sent to the
RS-232 interface:

1. Setup parameters
2. Address space descriptors
3. All programs

Note that this is exactly the same data that is recorded on tape when the Write Tape
operation is performed. In fact, the AUX IIF Write and AUX IIF Read operations can
be thought of as RS-232 counterparts of the Write Tape and Read Tape functions. The
main difference between the RS-232 port and the tape is that information sent to the RS-
232 may be accessed and possibly modified by the user.

The A UX II F Read operation attempts to read the same information back into the
9010A. The format of the incoming data is expected to be the same as that produced by
the AUX II F Write operation. As a result, it is possible to send information from one
9010A to another by connecting the RS-232 ports together, performing an AUX IIF
Read on one unit and an AUX II F Write on the other.

7-3. DATA FORMAT FOR AUX IIF WRITE
The AUX II F Write operation sends information as a series of records. Each record
begins with a colon and ends with the NEWLINE terminator (referred to as
{terminator », as specified in Setup. There are two types of record formats, one for
programs, and one for all other information. The second type consists of fixed-length
records and is described in the following paragraphs. The record format for programs is
described later.

9010A

7-1

9010A

7-2

Each fixed-length record contains specific data, e.g. a Setup parameter or an address
descriptor. The general form of a fixed-length record is

:(record type) (data) (checksum) (terminator)

For example, the following record specifies a default Run UUT address of 12345678.

:0634l278561A(terminator)

All characters between the colon and the terminator are interpreted as hexadecimal
digits, with each pair of digits representing one eight-bit byte. The first byte (first two
characters) is the record type. The next four bytes (next eight characters) are the data - in
this case the Run UUT address. The last byte is the checksum. The checksum is computed
by adding the record type and all data bytes and taking the two lower-order bytes of the
sum. The number of data bytes is fixed for each record type, but varies with record type.
Table 7-1 lists all fixed-length record types, their lengths (number of data bytes), and
contents.

A record ofthe form :00 (terminator) is sent at the end of an AUX IfF Write operation.

7-4. Detailed Description of Fixed-Length Record Types
A detailed description of the data portion for each record type is given in the following
paragraphs. References to bit numbers follow the convention of numbering bits from
least to most significant, starting at zero.

Table 7-1. Fixed-Length Record Types

Record Length
Contents

Type (bytes)

01 1 Error mask for traps
02 1 Mask of enabled forcing lines
03 1 Beep on error flag
04 1 Exercise errors flag
05 4 Bus test address
06 4 Default Run UUT address
07 4 Stall character
08 4 Unstall character
09 4 line size
OA 4 Timeout length
OB 4 NEWLINE infE>rmation
OC 7 Pod name
OD 1 Mask of forcing lines that may be enabled
OE 28 Names of first 4 forcing lines that may be enabled
OF 28 Names of last 4 forcing lines that may be enabled
10-17 32 Reserved - data bytes will be zero for AUX IIF WRITE
18 - Not used
19 18 One address descriptor
1A 1 Program number

7-5. TYPE 01 - ERROR MASK FOR TRAPS
The single data byte contains the Setup values for the seven "trap" parameters (e.g.
"TRAP ADDR ERR"), one bit per parameter. A 1 indicates YES, and a 0 indicates NO.
The bits are mapped as shown below.

BIT SETUP PARAMETER

o TRAP DATA ERR
I TRAP ADDR ERR
2 TRAP CTL ERR
3 TRAP ACTIVE FORCE LINE
4 TRAP ACTIVE INTERRUPT
5 TRAP ILLEGAL ADDRESS
6 not used - always I
7 TRAP BAD PWR S UPPL Y

7-6. TYPE 02 - MASK OF ENABLED FORCING LINES
The data byte is a mask of the forcing lines that may be enabled which are enabled. Each
bit corresponds to one Setup parameter of the form EN ABLE xxxxxx. A I indicates that
the line associated with that bit is enabled. See the discussion of record types OD, OE, and
OF for more information on forcing lines that may be enabled.

7-7. TYPE 03 - BEEP ON ERROR FLAG
A value of 01 for the data byte means that the BEEP ON ERR TRANSITION parameter
is set to YES. A value of 00 means NO.

7-8. TYPE 04 - EXERCISE ERRORS FLAG
A value of 01 for the data byte means that the EXERCISE ERRORS parameter is set to
YES. A value of 00 means NO.

7-9. TYPE 05 - BUS TEST ADDRESS
The four-byte data field contains the 32-bit Bus Test address. The data bytes map into the
32-bit address as follows:

first byte
second byte
third byte
fourth byte

address bits 16-23
address bits 24-31
address bits 0-7
address bits 8-15

This mapping of four data bytes into a 32-bit number is used for all four- byte records.

7-10. TYPES 06 THROUGH OB
These records all have four data bytes which map into a 32-bit number. The mapping is
identical to that for record type 05. Note that some parameters, such as STALL and
UNST ALL, have upper limits which cause some of the data bytes to always be zero.
Internally however, these parameters are treated as 32-bit numbers and will always be
sent and received using four data bytes.

7-11. TYPE OC - POD NAME
This record contains the name of the currently connected pod. The name may be up to six
ASCII characters, with the first null byte terminating the name. If there is no pod
connected at the time of an AUX II F Write, the first byte of the data field will be 00. There
are always seven data bytes, even if the pod name is less than six characters. In this case,

9010A

7-3

9010A

7-4

the bytes after the first null are meaningless. Note that each data byte (two characters)
contains the ASCII value of one character in the pod name. The actual characters do not
appear in the data stream.

7-12. TYPE 00 - MASK OF FORCING LINES THAT MAY BE ENABLED
This byte is a mask that is used with records OE and OF to determine which forcing lines
may be individually enabled using Setup. There are up to eight such lines per pod, and
they are different for each pod. Typical pods use only two or three of the bits. A 1 bit
means that the corresponding line can be enabled, i.e., there will be a Setup entry ofthe
form ENABLE xxxxxx, where xxxxxx is the name of the; line. This byte should not be
confused with the data byte in record type 02. A 1 bit in a OJp type record says 'this line can
be enabled or disabled', whereas the corresponding bit'in a type 02 record says 'it is
enabled or disabled'. If the line cannot be enabled (record type OD), the corresponding bit
in record 02 is meaningless.

7-13. TYPES DE, OF - NAMES OF FORCING LINES THAT MAY BE ENABLED
These two records contain the names of the forcing lines that may be enabled. Each name
may be up to six ASCII characters, terminat~d by a null byte. Therefore, each name
occupies seven bytes in the record. (for names with less than six characters, the unused
data bytes are meaningless) These are the names that appear in Setup entries of the form
EN ABLE xxxxxx. Record types OE and OF each contain four names, for a total of eight.
There is a one-to-one correspondence between the names and the bits in the type OD
record.

BIT LOCATION OF NAME

o record OE, bytes 0-6 (first 7 bytes)
1 record OE, bytes 7-13
2 record OE, bytes 14-20
3 record OE, bytes 21-27 (last 7 bytes)
4 record OF, bytes 0-6 (first 7 bytes)
5 record OF, bytes 7-13
6 record OF, bytes 14-20
7 record OF, bytes 21-27 (last 7 bytes)

If a bit in the OD record is zero, the corresponding name is meaningless.

7-14. TYPES 10-17 - RESERVED
These records are reserved for use by the John Fluke Mfg. Co., Inc. At present, all data
bytes are output as 00.

7-15. TYPE 19 - ADDRESS DESCRIPTOR
Each type 19 record contains the information for one address descriptor. There may be up
to lOO such records.

BYTE(S) CONTENTS

0-3 32-bit low address of block, 4-byte format
4-7 32-bit high address of block, 4-byte format
8 block type (01 = I/O, 02 = RAM, 03 = ROM)
9-13 not used
14-17 dependent on block type

I/O - 32-bit Read/Write mask, 4-byte format
RAM - not used
ROM - bytes 14-15 are ROM Sig, least significant byte first

7-16. TYPE 1A - PROGRAM NUMBER
This record contains only one data byte in the following format:

: lAhh (checksum) (terminator)

The data byte hh is the number of a program. The actual program is contained in one or
more program records which immediately follow the type lA record.

7-17. Detailed Description of Format for Program Records
Program records (those records that are listed following a type lA record) are actually a
keystroke representation of a program. Each byte (two hex digits) corresponds to one
key. For example, the step WRITE @ 123 = 45 is produced by the keystroke sequence
WRITE 1 2 3 ENTER 4 5 ENTER, and would result in the following string of data bytes
in a program record:

2001 0203 lC 04 05 IC

The numeric values associated with each key are shown in Table 7-2. Note that these are
the same values that are used for asynchronous input. In addition, the following four
special bytes may appear:

53 indicates the start-of-program, and is always the first byte in a program.
50 indicates the end-of-program, and is the last byte of a program (labels may

follow, see below).
44 is used instead of 38 for REG when REG is the first key in a program step.

For example, REGI = REG2 would produce 44 01 3802 lC.
7C indicates the end of the text string in a Display or AUX II F program step.

This byte appears instead of I C, even though the step is ended with ENTER.

Table 7-2. Numeric Values For Keys in Program Records

VALUE KEY VALUE

o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

NOTES:

o
1
2
3
4
5
6
7
8
9
A
B
C
o
E
F

10
11
12
13
14
15
16
17
18
19
1A
1B
1C
10
1E
1F

KEY

LEARN
RAM VIEW
I/O VIEW
ROM VIEW
AUTO TEST
BUS TEST
ROM TEST
RAM LONG
RAM SHORT
I/O TEST
PRIOR
MORE
ENTERIYES
CLEAR/NO
STS/CTL
READ

VALUE

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F

KEY

WRITE
RAMP
WALK
TOGGL ADDR
TOGGL DATA
CO NT
RPEAT
LOOP
STOP
RUN UUT
PROGM
LABEL
GOTO
IF

>

1. The keys have the same values that are used/or asynchronous input.
2. The STOP key is included.

VALUE

30
31
32
33
34
35
36
37
38
39
3A
38
3C
3D
3E
3F

KEY

AND
OR
SHIFT LEFT
SHIFT RIGHT
INCR
DECR
COMPL
EXEC
REG
READ PR08E
READ TAPE
WRITE TAPE
SYNC
SETUP
DISPL
AUX IIF

3. The HIGH and LOW keys are not included since they cannot be controlled by program steps.

9010A

7-5

9010A

7-6

The ASCII characters in Display and AUX II F steps have the usual ASCII codes, except
that the eighth bit is always a one. For example, the ASCII code for "A" is 41, so in a
Display or AUX II F step it would appear as Cl.

If a program contains one or more labels, three bytes per label are present immediately
following the end of program byte (50). Each three-byte sequence has the format shown
below:

first byte
second byte
third byte

label number (OO-OF)
low byte of offset
high byte of offset

The offset is a 16-bit unsigned value equal to the byte position of the step following the
label, relative to the start of the program. This is most easily shown with an example:

(start)
READ @ 12
LABEL 1
READ @ 34
(end)
(label 1 description)

53
IF 01 02 1C
2B 01
IF 03 04 lC
50
01 07 00

The step READ @ 34 follows LABEL 1, and is seven bytes beyond the beginning of the
program.

7-18. PROCESSING OF RECORDS FOR AUX IfF READ
When AUX II F Read is selected, the 9010A sends the terminator (selected by the
NEWLINE Setup parameter), then reads records until the end-of-data record (:00) is
encountered, or an error condition is detected. Although all of the previously defined
record types are accepted, A UX I I F Read is most commonly used to download
programs. The input records are processed according to the following rules:

1. Fixed-length records (types 01-19) may appear in any order.

2. It is not necessary to load all record types.

3. Programs must be loaded in numeric order.

4. If record lypes 10- 7 are loaded, the data bytes should all be 00. Non-zero data
will produce unpredictable results.

5. All characters between the end of a record and the next colon are ignored.

6. If there are mUltiple occurrences of the same record type, the last one is used.
(This does not apply to types 19 and lA.)

7. Program records may be any length, although extremely long records will result
in weaker checksum protection.

8. Hex digits A through F must be in upper case only.

NOTE

Since the record contents are NOT checked when loaded, it is therefore
possible to load meaningless information into the 901OA. This may produce
unpredictable results, but cannot harm the instrument or UUT.

7-19. EXAMPLES OF DATA FORMAT FOR AUX IIF OPERATIONS
Figure 7-1 presents a sample printout of 90 lOA data for the AUX IIF Setup, AUX II F
Learn, and AUX II F Program operations. For comparison, Figure 7-2 presents a sample
printout of the same 90 lOA data for the AUX II F Write operation. In Figure 7-2, notice
that the first two characters in the records indicate the record type.

SETUP INFORMATION

POD - 8080

TRAP BAD POWER SUPPLY-YES
TRAP ILLEGAL ADDRESS-YES
TRAP ACTIVE INTERRUPT-NO
TRAP ACTIVE FORCE LINE-YES
TRAP CONTROL ERROR-YES
TRAP ADDRESS ERROR-YES
TRAP DATA ERROR-YES

EXERCISE ERRORS-YES
BEEP ON ERR TRANSITION-YES

BUS TEST @ FFFF
RUN UUT @ 0000
TIMEOUT 200
STALL 13
UNSTALL 11
NEWLINE OOOOODOA
LINESIZE 70

ADDRESS SPACE INFORMATION

RAM @ 8000-8FFF
RAM @ AOOO-A3FF

ROM @ 0000-03FF SIG 256E
ROM @ 0800-0FFF SIG C43B

110 @ COOO-COOl BITS iF
1/0 @ C040 BITS EO
1/0 @ C080-C083 BITS 7F
110 @ DOOO-DOFF BITS FO

PROGRAM 2 17 BYTES

READ @ 1234
WRITE @ 4567 = 89

PROGRAM 5 56 BYTES

DPY-START OF PROGRAM 5
READ @ 100
IF REGE = 38 GOTO 1
WRITE @ 200 = 21
WRITE @ 201 = 35

1: LABEL 1

1------- AUX ifF Setup Operation

AUX ifF Learn Operation

AUX ifF Program Operation

Figure 7-1. Data Format For AUX IIF Setup, AUX IIF Learn, and AUX IIF Program Operations

9010A

7-7

9010A

7-8

SETUP---I
INFORMATION

POD NAME":"

RESERVED~
ADDRESS~ SPACE
INFORMATION

PROGRAM 2-[

PROGRAM 5-{
I

01EFFO
023032
030104
040105
050000FFFF03
060000000006
07000013001A
080000110019
09000046004F
OAOOOOC800D2
OBOOOOOD0018
OC38303830000000DC
OD303D
OEOOOE
OF52454144590000484F4C44002000000000000000000000000000OOOOCS
100010
110011
120012
130013
140014
150015
160016
170017
19000000000000FF030300000000006E250000B1
19000000080000FFOF0300000000003BC4000031
19000000800000FF8F0200000000000000000029
19000000AOOOOOFFA3020000000000000000005D
19000000C0000001C001000000000000001FOOBA
19000040C0000040C00100000000000000EOOOFA
19000080COOoo083COO1 000000000000007F001C
19000000DOOOOOFFD00100000000000000FOOOA9
lA021C
531F010203041C20040506071C08091C50$67
1A051F
533ED3D4C1D2D4AOCFC6AODOD2CFC7D2C1CDAOB5741F0100001C2D380E2F0308*BE
2C01200200001C02011C200200011C03051C2B0150013400$9E
00

Indicates End-ot-Data tor AUX IIF Write Operation

Figure 7-2. Data Format For AUX IIF Write Operation

	0000
	0001
	0002
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	6-01
	6-02
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08

