WINDOWS FOR C
by
Vince Taylor
Robert Otterberg
Reference Manual

Version 4.0

April 1986

Windows for C
Version 4.0

DISCLAIMER OF WARRANTY

This manual and associated software are sold "as is" and without warranties as to
performance or merchantability. The seller’s salespersons may have made statements
about this software. Any such statements do not constitute warranties.

This program is sold without any express or implied warranties whatsoever. No
warranty of fitness for a particular purpose is offered. The user is advised to test
the program thoroughly before relying on it. The user assumes the entire risk of
using the program. Any liability of seller or manufacturer will be limited exclusively
to replacement of diskettes defective in materials or workmanship.

Vermont Creative Software
21 Elm Ave

Richford, VT 05476
(802)848-7738

Version 4.0 Reference Manual

First Printing October, 1985
Second Printing November, 1985
Third Printing (revised) February, 1986

Fourth Printing (revised) April, 1986

Windows for C Documentation

(c) Copyright 1984, 1985 Vermont Creative Software
All Rights Reserved

Windows for C Software

(c) Copyright 1984, 1985 Vermont Creative Software
All Rights Reserved

Windows for C is a trademark of Vermont Creative Software.

—ii-

Windows for C
Version 4.0
PREFACE
This reference manual provides information necessary to use Windows for C.

Chapter 2 provides a guide to the organization of the manual and diskettes. For
information on the contents of this reference manual, refer to Chapter 2.

AUTHORS’ NOTE

The first version of Windows for C was conceived and written by one of us (V.T).
The revisions that produced the present version were a joint effort.

Revising Windows for C while producing Windows for Data has not been easy. We
would like to thank our wives for their understanding and forbearance at the long
hours we’ve spent away from home. We also want to express our thanks for the
support and assistance of Evelyn Guilmette, who has kept the business running
smoothly while we were programming and writing.

Finally, thanks to the many customers who have expressed their appreciation of
Windows for C. Without your support, this new version would not have happened.

Vince Taylor
Robert Otterberg

—iii-

Windows for C
Version 4.0

This page intentionally left blank.

—iv—

Windows for C Warning
Version 4.0

WARNING TO ALL USERS

We are considering revising the order of elements in the WINDOW and FREC structures
that carry the basic information about windows and memory files. No final decision

on this revision has been made. We are providing this forewarning so that you can
take steps to minimize the difficulties that such a revision would cause you.

To keep future problems to a minimum:

1) Use functions rather than external or static initializations to assign

initial values to WINDOW and FREC structures. The functions def_wn(),
defs_wn(), and def_fr() are provided for this purpose. You may wish to
construct additional ones.

2) Place external initializations of structures in a single include file and
#include it prior to main().

3) Avoid static initializations that are buried in subroutines.

We realize that any revision in the WINDOW and FREC structures will create problems
for users, and we will not undertake it lightly. However, the computer world
continues to change, and Windows for C must also change to maintain viability. As
we continue to add to the capabilities of Windows for C, the original ordering
becomes less and less logical. In new versions, some of the original elements may
become archaic, and we would like to be able to place them at the bottom, where
they would be available for those who continue to need them, but where users who
did not need them would not be required to allocate memory for them.

Internal Subroutines
Windows for C contains a number of subroutines that are internal and not intended

for user access. The names of internal Window subroutines begin with a prefixed
underscore. Avoid names with this prefix to avoid possible conflict in names.

-V -

Windows for C

Warning
Version 4.0

This page intentionally left blank.

vi

Windows for C Table of Contents
Version 4.0

TABLE OF CONTENTS

Preface and Authors’ Note « « « o « « o o o e e e e e e e e e e iii
WArDing . - o « o o o+ o e e e e e e e e e e e e e e e s e e v
Changes from Prior Versions « o « « o o e e e e e e C-1
Chapter 1: Overview of Windows FOP C o v o s 5 & o o 5 @ s v s o o 5+ o o w 1~
Chapter 2: Getting Started« o« o o e e e e e e e e e e 2-1
Organization of Material s . 2-3
Organization and Contents of the Dlskettes 2-3

Where to Find Information in this Manual. 2-4
Compiling and Linking Programs 2-5
Include Files Required by Wlndows for C 2-5
Referencing the Include Files in Your Programs 2-5

Linking Window Libraries with Your Programs 2-5

A Batch File for Compiling and Linking 2-5

Using Physical Attributes 2-6
Some IBM Compatibles Are Incompatlble w1th TopV1ew and MS Wlndows 2-6
Chapter 3: Window Basics 3-1
Direct Display and Memory File Display 3-3

The First Window Program: "Hello, World" 3-3

Six Steps To Windows 3-4
Step 1: Include System Flles 3-4

Step 2: Declare a Window 5 B 3-5

Step 3: Initialize Windows for C o @ 3-5

Step 4: Define Initial Values of the Wlndow . 3-5

Step 5: Set the Window On The Screen 3-6

Step 6: Write To the Window 3-6

Recap 3-6
Changing Defaults and U31ng Optlons 3-7
Definitions, Usage, and Abbreviations 3-7
Set-Window-Member Functions 3-8

Making Pop-up Windows 3-8

Naming a Window . 3-9
Changing Window Margins : 3-9
Changing Word-wrap, Auto- scroll and Cursor Placement Optlons . 3-9
Changing Special Options & o 3-10
Modifying Window Size and Locatlon T T -
Controlling the Appearance of Output: Attributes . . .« .« « + o+ o . . 3=11
Physical Attributes « « o o o e e e e e e e e e s 3-11

Logical Attributes . . e s s s s e e e e m ww wowomos e 3=

Using Physical Attrlbutes o e e e e om i w s ow s s s 212
Physical and Logical Attributes Don t Mlx e o oe s s i owmowmow s s =12
Changing the Attribute of Output « « < « v o v v 3-13
Displaying and Removing Windows « « ¢« o e e 3-14
Displaying a Window On the SOTBEIL « « v o o o o & 5 o o & ¢ ¢ o « D2=14&
Removing Windows from the Screen o o« o - o 3-14
Controlling the Location of Output« « « o o « o oo v 3-15

The Virtual CUIrSOT . « « « « o o o o o o o o o & o o o s o = o - 3-15
Controlling the Screen Cursor « « « « « « « « « = = - - 3-16

-vii-

Chapter 4:

Chapter 5:

Windows for C
Version 4.0

Writing To W
Basic St
Full-str
Writing

Table of Contents

TABLE OF CONTENTS

indows e e e e e e e e e
ring Output: v_st() ..
ing Output Function: v fst() ..

a String at a Specified Location: v plst()

Centering, Left-Justifying and Right-Justifying Text

Formatte
Writing

Sounding
Changing

d String Output: v_printf()
Characters

the Bell (Beep) . . .

the Attribute of a Character

Scrolling Direct Display Windows

Reading the
Reading
Reading
Reading
Reading

Reading the
Keycode
The Read-
Executin
Creating
Checking

Clearing the
Clearing
Clearing
Removing
Controlli

Using Window
Saving,
Moving,
Writing

Another Vers

Practical Ex
An Error

Contents of Windows

a Character
an Attribtute . § s
the Character Contents of Parts of the Wlndow y s
the Character-attribute Contents of Parts of the Wlndow
Keyboard

Conventions . . . s i s @ oW @

Keystroke Functlon kl() P s
g Subroutines While Waiting for Keystrokes

a Pause in a Program . . . o @ ‘

the Keyboard Buffer: ki_chk()

Screen and Windows

the Screen . .

Windows v g .

a Window from the Screen " R
ing The Color of the Screen Background SR R
Functions on the Full Screen

Clearing, and Restoring the Original DOS Screen
Saving, and Restoring the Screen Cursor .

To the Full Screen

ion of "Hello, World"

amples of Windows

Message Window

Establishing a Status Line

Tuto
Cont
The Logical

Why Log
Logical

rial on Windows for C

rolling Color: Logical and Physcal Attributes
Attribute System

ical Attributes? . .

Attributes

Changing the Physical Attrlbutes of Loglcal Attrlbutes

Adding
Adding
Initial

Constructing and Using Window-Specific Loglcal Attrlbute Tables

Using Physi
Setting
Monochr
Avoid U
Managin
Selecti
"Hello,

Determining

New Logical Attributes o e i m e s e
New Columns of Logical Attrlbutes T
izing the Logical Attribute Array

cal Attributes 5

the System To Use Phys1ca1 Attrlbutes
ome Attributes
nderline in System Logical Attrlbutes
& Window Colors ¢

ng the Screen Border Color .
World" with Physical Color Attrlbutes .
and Changing Video Modes

-viii-

Jl Ul Ul
|
_.‘___\l

3-18
3-18
3-18
3-19
3-19
3-19
3-19
3-20
3-20
3-20
3-21
3-21
3-21
3-21
3-21
3-22
3-22
3-22
3-23
3-23
3-23
3-24
3-24
3-24
3-24
3-24
3-25
3-25
3-25
3-26
3-26
3-26
3-26
3-27

Ul
|

| [{ |

|

[|

U1 UT UT JUT U U1 U1 U T JT Ul Ul JT
]
NN = OVOVODDTIOAVJ WA A

Windows for C Table of Contents
Version 4.9

TABLE OF CONTENTS

Using Graphics in Programs that Use Windows for ¢ 5-12
Coding Example . . . « « o « « « o o o e e e e e e e e e e 5-1

Chapter 6: Creating and Viewing Memory Files « « « « « « o« o o o . 6-1

Creating Memory Files e
Coding Example . . . g s wow o
Three Steps to Creatlng a Memory Flle
Reading a Memory File from Disk s & s
Writing Lines Directly to a Memory File
Viewing Memory Files through Windows . . .+« « « « o« o o« .« .
Setting a Window to View a File
Viewing a File . . . T
Scrolling a File in a Wlndow 5o oo & s .
Performing Operations on a File Dlsplayed in a Wlndow :
Modifying Memory Files « « . . .
Accessing Memory-File Lines . . s v @ m oW e wm w
Modifying and Replacing Memory- Flle Llnes « ¥ o om s s e oW w
Scrolling The Contents of Memory Files . . s @
How Windows for C Functions Manage Memory Files
Clearing and Freeing a Memory File « « « « ¢ « =

[0,)
| T N |
& W

OO ONONOY N ON OV O
|

| |
N ST SRV Ve IEVo IRV ¢ JREN BENEEN R G RRC)

N O O
|
—_

Chapter 7: Help Files, Menus, and Off-Screen Buffers

3
|

Using a Pop-Up Help File
Preparing the Help File
Reading Help Files Into Memory R R SR Rt
Displaying Files « « « « o « o o o e e e e e e e
Coding Example . . . « « « « o o o e e e e e e e e e e
Multiple Help Files . . . S o w s w

Creating and Displaying Pop-Up Menus o m s 5 o
Preparing to Call a Menu . . . « . « « « o « « ¢ o o o e e
Calling the Menu « « + « « o o+« o e e e e e e
Coding Example of a Menu« « « « =
Menu Demonstration Program . 5 s s w

Managing an Off-Screen Display Buffer o 8 5 =
Memory Files as an Alternative to Vlrtual Screens
Using a Memory File as an O0ff-Screen Buffer

g9 ~1-334
] | | | | | |
W W WA

ST, (R, R, O, I, G, PSS, N
(I
® -1~ ~31~10 VU - HVWW

Chapter 8: Advanced Topics, Utilities, and Demonstrations

(04}
|

Window Viewing of Multiple Files
Memory Requirements
Handling Multiple Files .
Demonstration of Viewing Multlple Flles
Moving Information from and to Windows <
Moving the Character Contents of Windows
Using a Window as an Edit Buffer . . .
Copying the Contents of a Window to a Flle v
Moving Character and Attribute Contents of Windows
Moving, Saving, and Restoring Window Images .
Moving Windows . . . e T
Saving and Replacing Wlndow Images i B om o w e e @
Character-Graphics Animation
Storing Window Images on Disk - T S S B

35 %

oooooocinclzom
— Q8 WWOWE O~V VU IR

(D(ID(D

—-ix-

Windows for C Table of Contents
Version 4.0

TABLE OF CONTENTS

Highlighting and Changing Attributes . . ¢ % ow e s T s s s 8=11
Highlighting a Specified Number of Characters o & o ow s 80w @ oa os B=11
Formatting Text for Printing with Windows . . . o o s s ow ow s 8=12
A Demonstration of Prlntlng Side-by-Side Labels « & @ F osom % w s 8=12
Graphing Functions . . W ow omo®m ® s s owmomom o E omowmow w5 8=12
Using and Modifying System Globals o om omow @ s s ow wow e e omom @ owm s 815
Using Alternative Dlsplay Adapters « « s o 3 s ¢ & o s % * o 3 & « ¢ 8-13
String Utilities . . @ w e % s W ow w3 s s owmow v bk owmowmomow 3 B=173
Miscellaneous Ut111t1es o w w s+ omow o® ow s o4 owowowow sz B=14
Low-Level Character and Strlng Functlons v_qch() and v_st rw() . 8-14
Macros for Window Row and Column Quantities 8-15
Error Exit Function . . . v e owmomow ox ®ow o om ow e w b owomow s s B~15
Duplicating Window Structures f o om om ks 8w om o ow s b owowm e ¢ s B=15
Developing Your Own Applications 8-15
User-Reserved Pointers ¢« & & ¢ o 4« o %« s« « o & o s +« » 8-15
Building New Functions« 8-16

Chapter 9: Microsoft Windows and TopView Compatibility 9-1
Video Mangement Under TopView and Microsoft Windows o 9-3

How Windows for C Operates Under MSW/TV O T 9-3

Program Control of Screen Updates Under MSW/TV e+ e+« . 9-4

Direct Control of Screen Updates Under MSW/TV I T -

MSW/TV Program Information Files 9-5
Running Window Programs Under MSW/TV . 9-5
Tables and Listings« © © ¢« ¢« v v v v e e e e e e e e e e T
Table 3.1: Window Members, Default Settings, and Change Functions T-2
Table 3.2: Logical Attribute Definitions Sol oo . T-4
Table 5.1: Physical Attribute Definitions T-5
Listing 5.1: 1Initializing the Logical Attribute Array T-6
Listing 5.2: Window-Specific Logical Attributes . . T-7
Listing 5.3: Hello World in Color Using Physical Attrlbutes T-8
Table 6.1: File Viewing Key Assignments T-9
Listing 7.1: Displaying and Scrolling a Help F11e : . T-10
Listing 7.2: Demonstration @f a Vertical-Format Pop-Up Menu . T-11
Listing 7.3: Function for Writing a String to an Off-Screen Buffer T-14
Appendix 1: #Include Files « v ¢ v v v v v v v v v e e e e oo AT
Appendix 2: Windows for Data -- Library Functions A2-1
Appendix 3: Source Code Files « « « « « « « « « «. « « . A%
Appendix 4: Definitions and Abbreviations A4
Appendix 5: Window and Memory File Structures A5-1
Appendix 6: Error Handling and Error Codes « « « +« A6-1
Appendix 7: System Diskette Files « « « « « « « « « . . AT-1
INAEX « « o o © & & & % © ® © & % & & & & s & ¥ F & 5 e % @ & HF 5 b s w e LI

Windows for C Changes
Version 4.0

CHANGES FROM PRIOR VERSIONS

CHANGES FROM VERSION 3.1 to 4.0

The major changes are:

x A logical attribute system allows you to write one program for both color and
monochrome systems.

* Pop-up windows are now implemented by setting a switch in the window
structure. Functions set_wn() and unset_wn() do the rest.

x The functions di_f() and v_f() have been replaced by an extensive set of new
functions for creating, modifying, and displaying files in memory. Among the
benefits:

x* You can easily create memory files from in-line code.
x* Information for display can be stored and updated off-screen.
%* The menu function is much easier and less demanding.

¥ Formatted output, equivalent to printf(), is available.

N

x Windows can have names automatically displayed on the border.

x When the IBM Enhanced Graphics Adapter is active, the system takes advan-
tage of its faster output.

x The manual has been extensively revised.

Many changes have been made to Windows for C to increase its power and improve
ease of use. Even if you are very familiar with Windows for C, you should read the
remainder of this section and review Chapters 3 through 7. There is much new mate-
rial.

All of the changes made are summarized below, and you are referred to appropriate
sections of the manual for further information.

CHANGES IN INCLUDE FILES

Files bios.h and window.h remain the two top-level include files and retain the same
functions, but the internal organization has undergone major revision. We have
separated the top-level files into more subsidiary files to try to bring together

similar information. This should make it easier for you to find specific #defines,
declarations, and constants once you are familiar with the organization. See

Appendix 1 for more information.

LOGICAL ATTRIBUTES

A logical video attribute system has been created which permits programs to run
correctly on both monochrome and color screens without special code.

Windows for C Changes
Version 4.0

Use of logical attributes is now the default. If you want to run your old programs,
which use physical attributes, without change, you will need to disable logical
attributes. For more information on logical and physical attributes refer to Chapters
3 and 5.

EXPLICIT INITIALIZATION OF WINDOWS FOR C RECOMMENDED

You should make the first statement in your main programs a call to a new initial-
ization function:

init wfc();

Your existing programs will run without the addition of this statement, but we
recommend that you use it in all new programs.

In Version 3.0, we introduced an internal initialization routine that assigned values
to global variables used by the system. This routine was called automatically by
output functions. Even in Version 3.1 it was possible to reference the system
globals before they were initialized. With the introduction of logical attributes, the
possibility has become a likelihood. For safety’s sake, explicitly initialize Windows
for C.

If you have previously included explicit initialization by calling the internal routine
_v_init(), you do not need to change the code. Calling this function is equivalent to

calling init_wfc().

Changing the Initialization Values

To permit users to adapt the initialization to different display boards, the initializa-
tion routine init_wfc() calls u_init() at the end. At present, u_init() is simply a
dummy program that returns immediately, but you can add code to this to alter the
values assigned to any of the global variables or to initialize additional variables of
your choosing. Function u_init() is supplied as a source file.

DETECTION OF THE IBM ENHANCED GRAPHICS ADAPTER BOARD

The initialization routine checks to see if the Enhanced Graphics Adapter board is
present and active. If it is, the global variables _ibmega and no_retr are set to
one. When no_retr is set to one, screen output is made without waiting for video
retrace (as is necessary in color modes with the IBM Color/Graphics Adapter).

If you are supporting a non-IBM board that does not require output during retrace,
set no_retr to one in u_init().

STRUCTURE CHANGES

WINDOW Structures

Five new members have been added to the WINDOW structure: char *wname, char
¥larray, char ¥pu_storp, char bdratt, and char popup. These new members have been
added after the two user reserved pointers, char xuserp[2].

If you have added your own members after wn.userp[2], there will be a conflict and
it will be necessary to move your own members after the new members that we
added and then recompile all of your code.

For a description of all WINDOW structure members refer to Appendix 5.

Cc-2

Windows for C Changes
Version 4.0

FREC Structures

Four new members have been added at the end of the FREC structure: FLINEPTR X*far-
ray, int fmaxline, int ftabq, and int fmaxcol.

If you have added your own members to the FREC structure, there will be a conflict
and it will be necessary to move your own members after the new members that we
added and then recompile all of your code.

For a description of all FREC structure members refer to Appendix 5.
INITIALIZATION OF wnO

The initialization of wnO is no longer done explicitly in window.h. The initialization
has been moved to the initialization routine init_wfc().

USE OF TYPES OF NULL POINTERS

We have tried to consistently replace NULL in our functions by either NULLP, for null
character pointers, or NULLFP for null pointers to functions. We have done this to
avoid errors in compiler memory models that mix large and small data and function
types (for example, the Lattice data model). See wfc_defs.h for definitions.

NEW FUNCTIONS

csr_hide() -- hides cursor off-screen

csr_show() __ restores cursor to previous position from off-screen

csr_type() -- changes shape of cursor

def fr() __ defines initial values for a FREC structure

di_file() —— reads a file from disk into a memory file

dup_wn() -— duplicates the member values of a WINDOW structure

file 1lnp() -- returns a pointer to the string associated with the i-th line in a
memory file

free file() -- frees memory allocated for a memory file

free mem() -- frees memory with error checking

get mem() —- allocates memory with error checking

init_wfc() -- initialization function

lower_st() -- converts a string to lower case

menu2() -- improved pop-up menu function

mod_wn() —-- modifies coordinates of window

mv_cs() __ moves virtual cursor within a window

pl_mfwn() —— places window origin at specified location in memory file

scrl_file() —-— scrolls a memory file

skip_wh() —— skips the leading white space in a string

stblank() __ allocates memory for a string; initializes to blanks

sti_file() -- stores string information in a memory file

strepyp() -- copies source string to destination string; returns pointer

strip wh() -- strips trailing white space from string

s_latt() - support function for logical video attributes

upper_st() —— converts a string to upper case

vo_att() —— reads an attribute from the window

vo_ch() —— reads a character from the window

vs_file() _— views a memory file and permits scrolling

v_att() -— writes an attribute to a window

v_border() -- displays a border around a window; writes window name in border

v_ch() —-— writes a character to a window

Windows for C Changes
Version 4.0

v_file() -- views a memory file within a window

v_mova() -- moves characters from a window to standard ASCII string and vice-
versa

v_plst() -- writes a string at the specified location in a window

v_printf() -- formatted string output within a window

NEW MACROS

Many new macros have been added which simplify setting the individual members
within WINDOW structures. See Chapter 3.

OBSOLETE FUNCTIONS

Several functions available in Version 3.1 are no longer used internally or have been
replaced by new functions. We have eliminated these functions from the documen-—
tation. With the exception of cs_add(), which was really an internal function that
has not been used for some time, the obsolete functions have been retained in the
library.

Obsolete function Replacement function
di_f() di_file()
v_T() v_file()
v_bdr() v_border()
menu() menu2()
es add() =, @ cesaee-
set_cwn() set_wn()

Obsolete functions will be dropped from the library on the next major upgrade. If you
wish to retain use of a function after is dropped from the current library, use a

library manager to extract the function from the previous version of the library and
insert it into the new version of the library.

We strongly recommend that you change to the new functions in new programs. They
have major advantages over the functions they replace.

BUG FIXES
cls() attempted to clear a 80 column screen even in 40 column video modes.

ki_chk() did not properly detect the CTRL-BREAK key. This affected the operation of
ki_cum().

k_vcom() did not properly place the cursor if the top-of-file or bottom-of-file
message appeared in a 1 row window.

k_vcom() permitted the cursor to move beyond the end of the file if the file length
was shorter than the display window.

k_vcom() always positioned the cursor to the first line when <K_UP> was pressed and
the top-of-file message appeared in the window.

pl_wn() allowed the window to be prlaced 1 column too far to the right which resulted
in the right most column being placed off-screen. This caused the column to be
wrapped around to the left side of the screen. v_st_nop() improperly handled output if
the virtual cursor was not in the first column in the window. The string would write
beyond the right boundary of the window.

Windows for C Changes
Version 4.0

v__st_rw() improperly word wrapped a line if a newline was the first character beyond
the word wrap boundary. This resulted in an extra blank line being displayed in the
window.

CHANGES FROM VERSION 2.2 to 3.1

The major changes made between Versions 3.+ and Version 2.2 are related to improv-
ing the portability of Windows for C.

Most of the portability-related changes are in internal routines and do not involve
changes in functions available to the user. Some changes, however, will be notice-
able to the user and may require changes in previously coded user programs:

WINDOW STRUCTURES

Window coordinates and virtual cursor values have been changed from type char to
type int. This change was made to permit use of Windows for C with screens
greater than 128 columns and still allow error checking for negative window dimen-
sions or virtual cursor locations. The change to type int will not require changes in
any user C routines, but if assembler routines reference window-structure values, the
offsets will need to be revised.

The WINDOW element wn.reservl is now utilized in internal routines, with the name
wn.location. This element should always be assigned the value 0, as is now done
by def wn() and defs_wn(). WINDOW structures that are assigned initial values in
the declaration statement must also give the value 0 to wn.location. In future
multi-tasking versions, this parameter will be used in connection with providing
off-screen window buffers. At present, the routines for this capability are not
implemented. Attempts to write output with wn.location not equal to zero will cause
the program to abort.

TOPVIEW COMPATIBILITY

Versions 3.1+ of Windows for C are fully compatible with TopView, IBM’s multi-
tasking operating programs. Programs that rely on Windows for C for screen output
can operate in the background mode under TopView and can make use of TopView’s
windowing functions.

Screen compatibility with TopView is handled automatically by Windows for C.
Windows for C detects operation in the TopView environment and adjusts its screen
handling to conform to the requirements of TopView.

Although no special programming is required to make Windows for C compatible with
TopView, the speed of screen updating under TopView can often be improved by tail-
oring the screen updating procedures to a specific application. Windows for C allows
you to easily change the default video updating procedures built into library
functions.

For a complete discussion of using Windows for C under TopView, see the new
Chapter 9 in the Reference Manual entitled, TopView Compatibility Features.

FUNCTION CHANGES
New Options in the String Output Functions

v_st_rw(), v_st(), and v_fst() in prior versions always advanced the virtual cursor and
cleared to the end of the window row, even if the string was shorter than the

C-5

Windows for C Changes
Version 4.0

remaining spaces in the window. In response to popular demand, switches are now
available in the WINDOW structure to disable advance of the virtual cursor and to
disable clearing to the end of the row in these functions.

Another switch is provided to enable automatic placement of the screen cursor at the
location of the virtual cursor upon return from these functions. The ability to disable
advance of the virtual cursor is useful primarily for writing output to status lines or
comparable displays, where the string to be written is less than one window row in
length.

Functions v_st() and v_fst() will not work properly with cursor advance disabled if
the string will not fit on the present row; thus caution must be exercised in setting
these switches.

See the revised reference page for v_st_rw() for details on implementing these
switches.

New String Output Function

Checking for the various options now provided slows down v_st_rw() and the other
string output functions. This is not noticeable except when viewing files, using
v_f(). To improve speed of v_f(), a new string output function has been added:
v_st_nop(), where "nop" stands for "no options". This function does just what is
required in v_f() and no more. v_f() has been changed to call v_st nop() and also
to call v_gch() instead of v_rw() to write spaces to blank rows. The source for v_1()
is provided.

Scrolling Changed

The way in which scrolling was implemented in demo_wn and dem_menu was

changed. Formerly multiple keystrokes were collected from the buffer and implemented
at once when scrolling did not keep up with the demand. Now identical keystrokes
are removed from the buffer after each scroll operation, but only one of these is then
implemented. This provides a smoother, visually more pleasant scroll. See the
discussion of ki_cum() in demo_wn.

Macros Added

c_att() has been changed from a function to a macro (in bios.h).

Macros have been added to calculate the number of columns and rows in a window.
See col_qty(wnp) and row_qty(wnp) near the end of wfc_defs.h. Note that these

macros require the input variable to be of type WINDOWPTR.

BUG FIXES

itoa() in dem_menu returned the wrong number in early copies of Version 2.20. (Fixed
late in July).

copy_wc() called a non-existent subroutine in early copies of Version 2.20. (Fixed
late in July).

prt_labl had an error in early copies of Version 2.20. (Fixed late in July).

menu.c omitted from early copies of Version 2.20. (Corrected 2 August.)

Windows for C Changes
Version 4.0

pl_csr() and mv_csr() were in wrong order in DeSmet library (which requires that later
functions not call earlier functions). (Corrected in Version 2.21.)

c_att() did not work. (Corrected in Version 2.21.)

copy_wc() did not copy correctly. (Corrected in Version 2.21.)

v_gch() did not write extended character set properly for CI C86. (Corrected Serial #
2C161.)

Output to non-zero pages of the Color Graphics Adapter card was not implemented
properly. (Corrected in Version 3.0.)

mv_wi() did not erase borders of previous image. (Corrected in Version 3.1)

Minor bugs in v_natt(), v_rw(), mv_rws(), and v_st_rw() ;avere corrected in Version 3.0.
CHANGES FROM VERSION 2.1

Several functions available in Version 2.1 have been eliminated. In all cases, other
functions can be substituted to accomplish the same purpose. If you wish to retain

the function available in a previous version, use a library manager to move the
function to the new Window library.

Eliminated functions Replacement functions
new_att() v_natt()
setcsr() pl_csr()
v_att() v_natt()
v_ch() v_qch()
v_hr_ch() v_qch()
v_mov_rw() v_mov()

Bug Fixes
Bugs appearing in Versions 2.0+ and 2.1+ have been fixed. Functions affected:
mv_rws, vid_int, v_mov, menu, v_qch, di_f.

Some of these bugs are minor, but others involve hidden problems that could cause
problems later. Recompilation with the new library functions is recommended.

Returns Changed from NULL to Zero

In previous versions, a number of functions that return integers (adj_cs(), set_wn(),
v_axes(), v_bar(), v_co(), and v_rw()) were programmed to return NULL when an error
occurred. This was at variance with standard C nomenclature, which uses NULL only
for the special (zero) pointer. It also created some confusion with respect to the
Lattice suggestion that it may be necessary to define NULL as a long integer to
make code compatible with long integers. To do this would create no problems with
the NULL-returning functions of Windows for C, but it might appear to do so.

In Version 2.2, the integer-returning functions that formerly returned NULL now return
zero to indicate an error condition.

Windows for C

Changes
Version 4.0

This page intentionally left blank.

Windows for C Chapter 1
Version 4.0

Chapter 1

OVERVIEW OF WINDOWS FOR C

CONTENTS

This chapter describes the features and capabilities of Windows for C. The overview
will help guide you through the rest of the reference manual. Windows for C has
many options and capabilities, each of which needs to be covered one at a time in
the manual. The overview will place the initial sections of the manual in a helpful
context and also point you toward sections of particular interest.

Windows for C

Chapter 1
Version 4.0

This page intentionally left blank.

1-2

Windows for C Chapter 1
Version 4.0

OVERVIEW OF WINDOWS FOR C

Windows for C provides an integrated set of window-based functions that simplify all
common screen display tasks.

Capabilities include:

Unlimited windows and files

Horizontal and vertical scrolling

Pop-up windows, menus, and help files
Status line management

Off-screen buffers

Rapid screen changes

Frugal memory use

Microsoft Windows and TopView Compatibility
Logical video attributes

Color-control

Highlighting

Window names

String output with word wrap and auto scroll
Formatted string output

Print windows

Keyboard input

Read screen attributes and characters

Plus a library of over 80 building block subroutines

K OK K X X X X X X XK X X X X X X X X

Managing windows: There is no limit to the number of windows that can be estab-
lished. Each window is controlled by a C-language structure that contains all the
information needed for managing the window. Reference to the window structure
substitutes for long parameter lists in function calls. This simplifies coding,
reduces errors, and saves time.

Displaying files: Routines are provided for reading ASCII files into memory and
viewing them through windows. A cursor-pad interpreter permits scrolling through the
file horizontally or vertically. These routines, for which source is provided, will be
especially helpful for providing users with access to help files. Context-sensitive
help systems are easily implemented.

Pop-up windows: Windows can either pop-up onto or overwrite the screen. Pop-up
windows are implemented simply by setting a switch in the window structure. Under-
lying screen contents are automatically saved and restored for pop-up windows.

Pop-up menus: Ready-to-use routines are provided for pop-up menus. The menu can
be larger than the window. The cursor keys are used to select an item. Selections
are highlighted. Source is provided so that the routines can be modified and
enhanced to meet individual needs.

Status-line management: Status lines are easily maintained as single-line windows.
Special options in the string output functions simplify the task of updating informa-
tion in the status line.

Off—screen buffers: Facilities are provided for managing and displaying memory files.
These files, which can be of any size, can be updated dynamically. They provide a
superior alternative to virtual screens for the capture and display of real-time
information.

1-3

Windows for C Chapter 1
Version 4.0

Display speed: Writing to the screen is done via our own interface routines that
have been designed to achieve speed without sacrificing clarity.

Memory usage: The only memory initially required by a window is that required by
the window structure -- about 50 bytes.

Memory is used only when needed. All functions are in separate modules; so only
those used are linked into the executable program. Because of efficient design, the
code is compact. Typically, programs that make extensive use of the Windows
library will increase in size by 15 to 20 kilobytes.

Memory is allocated for window buffers only when off-screen storage of window
contents is needed, such as when a pop-up window is displayed. Only the amount
of memory needed at the moment is allocated. When no longer needed, buffer mem-
ory is released.

Microsoft Windows and TopView Compatibility: Windows for C (and Windows for Data)
are fully compatible with Microsoft Windows and IBM’s TopView. Programs that use
Windows for C for screen output and keyboard input can operate within a window in

MS Windows and TopView and run in the background.

Programs built using VCS Windows will automatically run under TopView and MS
Windows. You do not need to buy Microsoft’s or IBM’s Programmer’s Toolkits or
incorporate any special code in your programs. Compatibility is handled automati-
cally by Windows for C, which detects the presence of MS Windows or TopView and
adjusts its screen handling to conform to their requirements.

Logical video attributes: Professional programmers will appreciate the availability of
logical video attributes in Windows for C. A single program can be written that uses
the full color capabilities of the IBM Enhanced Graphics Adapter and the more limited
colors available with the standard Color/Graphics adapter, while still being com-
pletely legible on monochrome displays.

Color-control: Functions provide complete control over color capabilities of the IBM
PC family. The colors of window borders and contents can be set individually. A
Window will automatically be cleared to the background attribute specified for that
window.

Highlighting: Highlighting is easily accomplished using a function that changes the
attribute without affecting the character contents of specified portions of a window.

Writing to windows: A variety of string and character output functions are available.
Switches are provided to control word wrap, auto scrolling on full screen, automatic
updating of the cursor, screem cursor placement, and auto clearing to the end of a
row.

Formatted output: Formatted string output, equivalent to printf(), is provided. Screen
output is much faster than that provided by compiler-supplied printf() routines, which
utilize DOS function calls to write to the screen.

Printing windows: Contents of windows can be copied to standard ASCII files or to
the printer. The print-window function simplifies printing text in unusual formats.

Reading the keyboard: A function is provided that reads the keyboard and returns

the entire IBM Extended ASCII key set with a single call. The keyboard buffer can
also be checked for an available keystroke.

1-4

_—n

Windows for C Chapter '1
Version 4.0

Reading the screen: Characters and attributes can be read singly, or the character-
attribute contents of specified parts of a window can be read in a single call.

IBM Enhanced Graphics Adapter support: A global variable is set when the IBM EGA
is the active display adapter. When the EGA is active, output to the screen in color
modes is as fast as with the Monochrome Display Adapter.

Building blocks: A library of over 80 building-block subroutines allows you to
modify the supplied modules and to construct new integrated routines to suit your
needs.

PRACTICAL ROUTINES AND LEARNING AIDS

In addition to tutorials and code examples included in the reference manual, several
integrated routines are provided that can be used without modification to accomplish
common tasks of window management. These routines are incorporated in demonstra-
tion programs that illustrate their use and serve as teaching tools for the use of
Window functions. C source to the library level is provided for these programs.

* demo_wn reads multiple ASCII files into memory, displays them in multiple
windows, and provides the user with cursor-pad control for viewing the
files. Complete C source is provided for the file-input and cursor-control
routines.

* dem_menu reads an ASCII file into memory and provides the user with the
ability to call up a menu and select an item. Cursor pad commands are
used to move through the menu, which can be larger than the menu-display
window. Menu items pointed to are highlighted with reverse video. After
selection, the menu is automatically removed and the original screen
contents replaced. The item selected is reported on a status line.

* dem_cmov demonstrates the color management and window storage and
movement capabilities of Windows for C. Colored windows are moved
rapidly around the screen. The movement of images is useful for games,
but the rapid speed with which windows can be stored and restored is also
valuable for business applications.

* prt_labl reads addresses stored sequentially in a file and places them on
the screen in side-by-side format. A print-window function is then used
to print the windows in this format. This program illustrates how Window
functions can be use to simplify printing in unusual formats.

* dem_grph illustrates the use of the graphing functions included in Windows
for C. Vertical and horizontal bar graphs are drawn.

1-5

Windows for C

Chapter 1
Version 4.0

This page intentionally left blank.

Windows for C Chapter 2
Version 4.0

Chapter 2

GETTING STARTED

CONTENTS

ORGANIZATION OF MATERIAL
Organization and Contents of the Diskettes
The System Diskette
Library Files
Where to Find Information in This Manual

COMPILING AND LINKING YOUR PROGRAMS
Include Files Required by Windows for C
Referencing the #include Files in Your Programs
Linking Window Libraries with Your Programs
A Batch File for Compiling and Linking

USING PHYSICAL ATTRIBUTES

SOME IBM COMPATIBLES ARE INCOMPATIBLE WITH TOPVIEW AND MS WINDOWS

Windows for C

Chapter 2
Version 4.0

This page intentionally left blank.

Windows for C Chapter 2
Version 4.0

GETTING STARTED

This chapter provides essential information on using Windows for C and provides a
guide to finding information in this manual. Everyone should review this chapter.

ORGANIZATION OF MATERIAL

ORGANIZATION AND CONTENTS OF THE DISKETTES
Windows for C comes on either one or two diskettes:
* A system diskette for Windows for C and, in some cases,
* A library diskette for Windows for C
If you have a version of Windows for C that has libraries for only one or two
compiler memory models, the libraries may be included on the system diskette, in

which case you will have one diskette for Windows for C.

The original diskettes should be copied and stored in a safe place. Use the copy for
working purposes.

The System Diskette

The system diskette for Windows for C contains:

* read.aaa, which reports the changes that have occurred since this manual
was published

* the include files listed in Appendix 1

¥ source code and ASCII files for the library functions and tutorials listed in
Appendix 3.

* source code for the demonstration programs listed in Chapter 8.
For a complete listing of the contents of the system diskette, see Appendix 6.
Library Files

The library files may be either on your system diskette or a separate library
diskette.

Separate libraries are provided for each memory model supported by your compiler.
The initial letters of the libraries for Windows for C are wn.

When there are different memory models, the initial letters will be followed by the
letter used by the compiler authors to identify the model. For example, for the
large-data model of Lattice, the appropriate Window library wmnd.lib. For the C86

big-memory model, the Window library is wmnb.lib. This method of identification
allows you to set up standard batch files for processing the different memory models.

2-3

Windows for C Chapter 2
Version 4.0

WHERE TO FIND INFORMATION IN THIS MANUAL
Chapter 1 provides an overview of Windows for C.

Chapter 2 provides the essential information that you need to incorporate the
facilities of Windows for C in your programs. This chapter is essential reading for
everyone.

Chapter 3 covers all of the basics of Windows for C. Everyone, including those who
are already familiar with Windows for C should read this chapter. Many new features
and capabilities of Version 4.0 are introduced here. This is the place to start when

looking a for a way to do something with Windows for C.

Chapter 4 provides a tutorial on using the functions introduced in Chapter 3.

Chapter 5 explains how to control color. The logical attribute system of Windows for
C is explained. Logical attributes allow you to write one program that will use color
on color systems and monochrome attributes on black and white systems. This
chapter also describes the facilities provided for controlling color through physical
attributes.

Chapter 6 explains how to build and open windows on memory files. With memory
files, you can retrieve and display text files stored on disk, and you can capture
real-time data for later display. Memory files can be created and edited internally
to programs. Windows on memory files can be scrolled either horizontally or verti-
cally.

Chapter 7 illustrates the use of memory files to provide pop-up help files and menus
and to manage off-screen buffers for storage of real-time information.

Chapter 8 covers advanced topics, utilities, and demonstration programs
Chapter 9 explains the IBM TopView and Microsoft Windows compatibility features.

Tables and Listings contains all of the tables and listing referred to in the text
chapters.

Appendix 1 explains the structure of the include files and lists the most important of
them.

Appendix 2 provides reference pages for the functions of Windows for C. The
reference pages are in alphabetical order by name of function, except for string
utilities, which are listed under stringf. Listings of the functions both alphabetically
and by category of use are provided in an initial section of Appendix 2.

Appendix 3 lists the source files provided on the system diskette. These include
tutorials, demonstration programs, and library functions. Source is provided for
functions involved with file management so they can be modified for your own infor-

mation structures.

Appendix 4 provides definitions of the variables and mnemonic abbreviations used in
calling Window functions.

Appendix 5 provides a detailed guide to the structures that are used to manage
windows and memory files within Windows for C.

Appendix 6 explains the error handling system of Windows for C.

2-4

Windows for C Chapter 2
Version 4.0

Appendix 7 lists and briefly describes the files included on the system diskette.

COMPILING AND LINKING YOUR PROGRAMS

INCLUDE FILES REQUIRED BY WINDOWS FOR C

All of the include files (.h files) on the Windows for C system diskette need to be
accessible to your compiler when you compile programs that reference the functions
of Windows for C.

REFERENCING the #INCLUDE FILES IN YOUR PROGRAMS

Two top-level include files reference all definitions and global-variable declarations
required by Windows for C. The rules for #including these files in the programs that
you write are:

File bios.h must be #imcluded in all modules that call Window library functions. It
provides typedef definitions of the data structures used by Window library functions
and #defines parameters that are useful in calling the library functions.

File window.h must be #included in the main program only, following bios.h. It
contains all of the globally defined variables and structures used by Window
functions. Exterm declarations for these global variables are contained in vextern.h.

Users of Windows for Data, take mnote: the top-level include files provided with
Windows for Data reference the include files of Windows for C. File wifd.h includes
bios.h, and wfd_glob.h includes window.h; thus you should not place separate
include statements for bios.h or window.h in data-entry functions or main programs.

LINKING WINDOW LIBRARIES WITH YOUR PROGRAMS

The libraries of Windows for C have the same format as the libraries supplied with
the supported compiler version. To include them in the linking process, simply add
the appropriate Window library names to the list of libraries in the link statement.

CAUTION: the Windows for C library must precede the standard compiler library in
the linking statement.

For example, with the Microsoft linker, the following will link "filename" with the
small-memory-model libraries of Windows and Lattice C:

(d:)link (d:)cs + (d:)filename, (d:)filename, , (d:)wns+ (d:)lcs
where (d:) stands for the drives (and paths) where the linker, compiler, object
modules, and libraries are located. The values of (d:) may be different for the

various components of the link statement.

WARNING: If you do not place the libraries im the correct order, you will get the
message: UNRESOLVED EXTERNALS.

A BATCH FILE FOR COMPILING AND LINKING YOUR PROGRAMS
The system diskette provides a sample batch file, CL.BAT, specific to your compiler,

for compiling and linking a program. This batch file assumes that everything is on
the default drive. Modify it by assigning the proper drive and path designations.

Windows for C Chapter 2
Version 4.0

Use this batch file to run the demonstration programs and tutorials included on the
system diskette (see Appendix 3 for a listing).

USING PHYSICAL ATTRIBUTES

Windows for C is set up to use logical attributes as the default. If you have
programs that you coded previously with Windows for C, they assume use of physical
attributes. See Chapter 3 for instructions on enabling physical attributes.

SOME IBM COMPATIBLES ARE INCOMPATIBLE WITH TOPVIEW AND MS WINDOWS

Windows for C contains code to make it completely compatible with TopView and
Microsoft Windows. This can create problems with some IBM compatibles, which use
for other purposes an interrupt number that TopView and MS Windows use. If this is
a problem for you, see Chapter 9 on how to disable TopView and MS Windows com-
patibility.

See the READ.AAA file on the system diskette for the names of computers for which
we have had reports of problems.

Windows for C Chapter 3
Version 4.0

Chapter 3
WINDOW BASICS

CONTENTS
DIRECT DISPLAY AND MEMORY FILE DISPLAY
THE FIRST WINDOW PROGRAM: "HELLO, WORLD"

SIX STEPS TO WINDOWS

Step 1: Include System Files

Step 2: Declare a Window

Step 3: Initialize Windows for C

Step 4: Define Initial Values of the Window
Border Types
Default Window Settings

Step 5: Set the Window On The Screen

Step 6: Write To the Window
String Output: v_st()

Recap

CHANGING DEFAULTS AND USING OPTIONS
Definitions, Usage, and Abbreviations
Set-Window-Member Functions

Direct Assignment and Macros
Window Initialization Required
Making Pop-up Windows
Naming a Window
Removing a Window Name
Changing Window Margins
Changing Word-wrap, Auto-scroll and Cursor Placement Options
Changing Special Options
Modifying Window Size and Location

CONTROLLING THE APPEARANCE OF OUTPUT: ATTRIBUTES

Physical Attributes

Monochrome Attributes

Color Attributes

Problems Created by Physical Attributes
Logical Attributes
Using Physical Attributes
Physical and Logical Attributes Don’t Mix
Changing the Attribute of Output

Changing Window Attributes

Changing Border Attributes

DISPLAYING AND REMOVING WINDOWS
Displaying a Window On the Screen
Removing Windows from the Screen

Windows for C Chapter 3
Version 4.0

CONTROLLING THE LOCATION OF OUTPUT
The Virtual Cursor
Working Dimensions and the Origin for Measuring the Virtual Cursor
Moving the Virtual Cursor
Direct Assignment of the Virtual Cursor Location
Macros for Row and Column Size of Windows
Controlling the Screen Cursor
Automatic Placement of the Screen Cursor
Direct Placement of the Screen Cursor
Reading the Location of the Screen Cursor
Hiding and Restoring the Screen Cursor

WRITING TO WINDOWS
Basic String Output: v_st()
Full-string Output Function: v_fst()
Writing a String at a Specified Location: v_plst()
Centering, Left-Justifying and Right-Justifying Text
Formatted String Output: v_printf()
Writing Characters
Single Characters
Rows and Columns of Characters
Filling a Window with a Specified Character
Sounding the Bell (Beep)
Changing the Attribute of a Character
Scrolling Direct Display Windows

READING THE CONTENTS OF WINDOWS
Reading a Character
Reading an Attribute
Reading the Character Contents of Parts of the Window
Reading the Character-attribute Contents of Parts of the Window

READING THE KEYBOARD
Keycode Conventions
The Read-Keystroke Function: ki()
Executing Subroutines While Waiting for Keystrokes
Creating a Pause in a Program
Checking the Keyboard Buffer: ki_chk()

CLEARING THE SCREEN AND WINDOWS
Clearing the Screen
Clearing Windows
Removing a Window from the Screen
Controlling The Color of the Screen Background

USING WINDOW FUNCTIONS ON THE FULL SCREEN
Saving, Clearing, and Restoring the Original DOS Screen
Moving, Saving, and Restoring the Screen Cursor
Moving the Screen Cursor
Saving and Restoring the Screen Cursor
Writing To the Full Screen

ANOTHER VERSION OF "HELLO, WORLD"
PRACTICAL EXAMPLES OF WINDOWS

An Error Message Window
Establishing a Status Line

3-2

Windows for C Chapter 3
Version 4.0

WINDOW BASICS
This chapter explains how to establish, display, write to, and modify windows. It
contains the basic information that you will need to use Windows for C and to

understand the remaining chapters.

DIRECT DISPLAY AND MEMORY FILE DISPLAY

Windows for C has two approaches to displaying output in windows: 1) writing
directly to a window on the screen and 2) writing information to a memory file and
then opening a window onto the file. Direct display windows have the virtues of
simplicity, speed, and minimum memory usage. Advantages of memory file windows
are: text files stored on disk can be displayed; information for display can be
stored and updated off-screen; the underlying file can be of any size, and the
window can be scrolled horizontally or vertically over the file. Both approaches use
the same windows, but different functions are used to display output within the
windows.

Both direct display windows and memory-file windows can be either pop—up windows
or overwrite windows. Pop-up windows preserve the underlying screen and restore it
when removed. The memory required to save the underlying image is released when
the window is removed.

This chapter deals only with direct display windows, that is windows in which
writing is done directly to screen. This allows us to concentrate on explaining the
basic features of the window system. These basic features will apply, in large part,
whether you are writing directly to windows or displaying memory files in windows.
Chapters 5 and 6 explain how to manage memory files and view them through win-
dows.

THE FIRST WINDOW PROGRAM: "HELLO, WORLD"

Kernighan and Ritchie note at the beginning of "The C Programming Language:"

The only way to learn a new programming language is by writing programs in it.
The first program to write is the same in all languages:

Print the words
Hello, world

They note that once the mechanical details of doing this are mastered, "everything
else is comparatively easy." Lets proceed to clear this basic hurdle right away.

The simplest program that writes "Hello, world" in a window -- call it hello_wn.c --
is:

Windows for C Chapter 3
Version 4.0

#include <bios.h)
#include <window.h)

main()

{
WINDOW wn;

init_wfc();

defs wn(&wn, 10, 30, 8, 25, BDR_DLNP);
set_wn(&wn);

v_st("Hello, world\n", &wn);

)

The program illustrates all of the six Window steps. Try it on your system. You will

find it helpful to run the program before reading the following explanation of the
program.

SIX STEPS TO WINDOWS

The "Hello, world" program illustrates the six simple steps to introducing windows
into your programs:

1. Include the system files

2. Declare a window

3. Initialize Windows for C

4. Define initial values of the window
5. Set the window on the screen

6. Write to the window

STEP 1: INCLUDE SYSTEM FILES

The program begins with two #include statements. The rules for including these files
are:

File bios.h must be #included in all modules that call Window library functions.
It provides typedef definitions of the data structures used by Window library
functions, #defines parameters that are useful in calling the library functions,
and provides extern declarations for the system global variables.

File window.h must be #included in the main program only, following bios.h. It
contains all of the globally defined variables and structures used by the system.

Users of Windows for Data, take note: The two top-level include files provided

with Windows for Data, wfd.h and wfd_glob.h, reference bios.h and window.h within
them. You should not place separate include statements for bios.h or window.h in
data-entry functions or main programs. The initial lines of hello_wn would read:

#include <wfd.h>
#include <wfd_glob.h>

Windows for C Chapter 3
Version 4.0

STEP 2: DECLARE A WINDOW

A data structure is used to contain all of the information needed to manage a
window. Declaring the variables used to represent these structures is no more
difficult than declaring a variable to be of type int. To declare "wn" to be a window
structure, use the declaration:

WINDOW wn;

WINDOW is a typedef specifier for window structures. It is not necessary to know
the details of this structure to use most window functions.

STEP 3: INITIALIZE WINDOWS FOR C

The first statement in your main program, after the declarations, should always be:
init_wfc();

This function call initializes all of the global variables used by the window system.

These include variables for the size of the screen, the video mode, and the logical
attribute system.

If you do not call this function explicitly, Windows for C will call it internally when
you call an output function, but you could easily attempt to use the system globals
before this, creating hard-to-detect errors.

For safety’s sake, always make init_wfc() the first statement in your main program.
STEP 4: DEFINE INITIAL VALUES OF THE WINDOW

The initial values of a window can be defined most simply by using a window ini-
tialization function. Two of these are provided in the window library: def wn() and
defs_wn(). "Hello, world" used defs _wn().

defs_wn(&wn, row_beg, col_beg, row_q, col_q, BORDER_TYPEP);
The arguments passed to this function are:

1) A pointer to a WINDOW structure (&’ signifies a pointer)

2) The beginning screen row of the window (0 is at the top)

3) The beginning screen column of the window (0 is first column)
4) The quantity of rows in the window

5) The quantity of columns in the window

6) BORDER TYPEP is one of the pre-defined border pointers

Border Types

Borders are controlled by special structures that contain the characters used to draw
the borders. Pointers to the following border types are #defined:

Pointer Name Border Type

BDR_LNP Single line border
BDR_DLNP Double line border
BDR_@P No (zero) border
BDR_REVP Reverse border

Windows for C Chapter 3
Version 4.0

Default Window_ Settings

There are other elements in the WINDOW structure that are not specified by the
parameters in defs_wn(). Values not assigned directly by an initialization function
are assigned default values. You will learn about these values and how to change
them in following sections.

STEP 5: SET THE WINDOW ON THE SCREEN

After a window is declared and defined, it is placed on the screen and made ready
to receive output by the statement:

set_wn(&wn);
The function set wn() clears the area of the screen where the window will appear,
draws the border, and reduces the "working dimensions" of the screen by the width
of the borders and by the width of the margins specified in the WINDOW structure.
Function defs_wn() sets the margins between the text and borders at 1 column on
both the left and right sides of the window.
Window output functions operate within the working dimensions of a window. Thus
after a window is "set," text will automatically be written within the margins
established for a window.
STEP 6: WRITE TO THE WINDOW
String Output: v_st()
The function, v_st(), which was used to write the "Hello" message, is the basic
Window function for writing a string to window. Underneath this simple function lies
the output control system of Windows for C. Output can be done simply, as in
"Hello, world," but many options and variations exist for controlling output. These

are described in following sections.

RECAP
The "Hello, World" program consisted of six steps:
1. Including the system files bios.h and window.h.
2. Declaring a window to be of type WINDOW.
3. Initializing Windows for C by calling init_wfc().
4. Defining the initial values of the window using defs_wn().
5. Setting the window on the screen by calling set_wn().
6. Writing to the window with v_st().
The window in this program overwrites the contents of the screen, destroying what is
underneath. In following sections, you will learn how to designate a window as a

pop-up window and to change the other default settings used in this first window
program.

3-6

Windows for C Chapter 3
Version 4.0

CHANGING DEFAULTS AND USING OPTIONS

The operation of Window library functions are controlled by parameter values and
variables stored as members of a WINDOW structure. The standard window initializa-
tion function, defs_wn(), allows you to specify the size, location, and border for a
window. The alternative initialization function, def wn(), additionally allows you to
specify left and right margins for the window. The rest of the members in a window
are set to default values.

This section introduces and explains the use of functions that are provided for
changing the values of the window members.

DEFINITIONS, USAGE, AND ABBREVIATIONS

Variables and functions in Windows for C use a consistent set of mnemonic abbrev-
iations. The most commonly used ones are described here. A comprehensive alpha-
betical listing of abbreviations is in Appendix 4.

v = video. ’v’ generally refers to output to a window on the video screen. For
example, the function v_st() refers to output of a string to a video window.

wn = a type WINDOW data structure that holds the information for managing a
window. In library functions and in text discussion, wn is generally used to
refer to a window data structure.

Members of the WINDOW structure are addressed in the form wmn.x, where X is
one of the members. For example, wn.rb refers to the screen row-number of

the top ("beginning") row of window wn. The top row of the screen is row
ZEero.

wnp = pointer to a type WINDOW data structure. wnp can be declared using the
typedef type-specifier WINDOWPTR (defined in wfc_defs.h). In a function call,
&wn is equivalent to wnp.

In general, p is appended to a variable to refer to a pointer to the variable
in question.

cs = the virtual cursor in a window. The virtual cursor is the position in a window
at which the library functions will begin writing output. It differs from the
screen cursor (abbreviated csr, see below) that appears on the screen. The
screen cursor need not be located at the virtual cursor position to write at
that point.

r = the row position of the virtual cursor, that is wn.r is the window-row number
of the virtual cursor. The window row-number is measured relative to the top
of the window, not from the top of the screen. Zero is the row-number of the
first row of a window available for output to or input from a window.

c = the column position of the virtual cursor, that is wmn.c is the window column
number of the virtual cursor. Window column-numbers begin at the left-hand
side of the window. Zero is the column-number of the first column available
for output to or input from a window.

csr = the screen cursor, the blinking cursor that appears on the screen. The
screen cursor is distinct from the virtual cursor of a window (see above).

Windows for C Chapter 3
Version 4.0

bdr = refers to a type BORDER data structure. The typedef type-specifier BORDER is
defined in wfc_stru.h. bdr contains the information necessary for drawing a
border on a window.

bdrp = a pointer to a type BORDER data structure.
SET-WINDOW-MEMBER FUNCTIONS

A set of functions is provided for changing the values of the WINDOW structure
members. The functions have the general form: sw_member(), where sw is a
mnemonic for "set window" and member is a mnemonic for the window member (or
members) affected.

Table 3.1 lists the set-window-member functions, the names of the related WINDOW
structure members, when appropriate, and the default values assigned by defs_wn().
Tables are in Tables and Listings, a separate section which follows the text
chapters and precedes the appendices. The interpretation and use of these functions
is explained in the remainder of this section, with the following exceptions: the two
functions that allow you to change attributes are covered in the following section;
the function for referencing a memory file in a window is covered in Chapter 5.

Direct Assignment and Macros

You can change the values of the window members by direct assignment rather than
using the set-window_member functions. For example:

wn.rb = 0;
will set the beginning row of window wn to 0.
Note that the set-window-member functions are implemented as macros. Direct
assignment will produce the same code as use of the macros because the macros

will be expanded into in-line assignment statements by the preprocessor.

Window Initialization Required

The following discussion of the functions for changing window values assumes that
the window has already been initialized by a call to defs_wn(). You must always
initialize a window after declaring it and before using it, else you will write output
to unknown locations in memory.

Windows that have the default values assigned by defs_wn() will be called default
windows.

MAKING POP-UP WINDOWS

Default windows will overwrite the screen, destroying permanently what was there
before. Windows can be made pop-up windows by the call:

sw_popup(ON, &wn);
The window management functions of Windows for C will automatically save the
underlying image before displaying a pop-up window on the screen and will restore

that image after removing the window. The memory allocated to store the underlying
image will be released as soon as the image is restored.

3-8

aA‘

Windows for C Chapter 3
Version 4.0
NAMING A WINDOW

A window can have a name automatically printed in the border, starting at the top
left-hand corner. To assign a name to a window:

char *name = "Window 1";
sw_name(name, &wn);

Or, more directly, you can write:

sw_name("Window 1", &wn);
Function set_wn() will automatically write the assigned name on the window border,
starting at the top left-hand corner. If the window has no border (the border pointer

is BDR _OP), the assigned name will not be written.

Removing a Window Name

If a name has been assigned and you want to remove it from the structure, use:
sw_name(NULLP, &wn);

NULLP is a #defined null pointer. When the wname member of the window structure
is a null pointer, no name will be written on the border.

The default name value is a null pointer; so no name will appears on a window until
you assign it a name.

CHANGING WINDOW MARGINS

The left and right margins have default values of 1 space from each side of the
border. To change these margins:

sw_margin(left_margin, right_margin, &wn)
int left_margin;

int right_margin;

WINDOW wn;

Note that contrary to typewriter convention, margins are measured in spaces from the
nearest border. For example,

sw_margin(0, 0, &wn);
would allow text to be written in all spaces between the borders of a window.
CHANGING WORD-WRAP, AUTO-SCROLL AND CURSOR PLACEMENT OPTIONS

Default windows have word-wrap and auto-scroll ON and cursor placement OFF. With
these settings:

1) string output functions will always break on a even word;

2) if an attempt is made to write to a full window, the window will automati-
cally be scrolled up one line;

3) the position of the screen cursor will not affected by string output functions.

Windows for C Chapter 3
Version 4.0

To change these options, use:

sw_wwrap(OFF, &wn); /*will do char. wrap, not word wrap */
sw_scroll(OFF, &wn); /*¥will not write when window full */
sw_plcsr(ON, &wn); /¥screen cursor at virtual cursor */

When screen cursor placement is turned on, using sw_plcsr(), the blinking screen
cursor will automatically be placed at the location of the window virtual cursor.

The virtual cursor does not appear on the screen. It is the location where the next
output to the window will be placed. After a write function is called, the virtual
cursor will be just after the last character written. The location of the virtual cursor
is kept in the window structure.

CHANGING SPECIAL OPTIONS .

Two special window options are pfovided to control the behavior of the string output
functions: auto-clear to the end of row, and automatic advance of the virtual cursor.

The functions for initializing‘,ﬂ\”&indows set auto-clear and virtual-cursor advance ON.
When v_st() or another /S'{r“ffig}output function is called, the row on which output ends
will automatically be cleared with spaces from the end of ocutput to the end of the
row. The virtual cursor will be placed just after the last character written. These
settings are appropriate for most applications.

The special-purpose option settings are for special applications, such as maintaining
a status line, where output is written to the same place repetitively. To set these

options, use:

sw_cleor(OFF, &wn); /*disable auto-clear to end of row */
sw_csadv(OFF, &wn); /*disable virtual cursor advance * [

Warning: Disabling these options can cause problems in many normal output func-
tions. Exercise care.

For an example on using these functions, see the section later in this chapter on
setting up and maintaining a status line.

MODIFYING WINDOW SIZE AND LOCATION
To change the size and location of a window that has been initialized, use

mod_wn(row_beg, col_beg, row q, col q, &wn);

int row_beg; /*beginning row * [
int col_beg; /*beginning col * /
int row_g; /*number of rows * /
int col _q; /*number of columns */
WINDOW wn; /*structure */

This function will leave all elements of a window unchanged except the origin and
size of the window.

Note: This is implemented as a function call and not a macro.

Windows for C Chapter 3
Version 4.0

Warning: Do not call this function when a window has been set on the screen but
not yet removed. This call will not affect the size of the window on the screen, but
will create errors when a call is made to remove it.

CONTROLLING THE APPEARANCE OF OUTPUT: ATTRIBUTES

Attribute is the technical term for the color or monochrome appearance of text on the
screen. Monochrome and color attributes are controlled by the value of an attribute
byte that accompanies each character written to the screen.

Windows for C uses an attribute value stored in the WINDOW structure to determine
the attribute of text written within a window. A separate attribute is stored in the
structure for the border. Attributes can be changed at any point in a program. Output
written prior to the change will keep the old attribute, and output after the change
will have the new attribute.

PHYSICAL ATTRIBUTES
In Windows for C, each character displayed on the screen has associated with it an
attribute byte that determines its display appearance. The attribute-byte values are

termed physical attributes.

Monochrome Attributes

The IBM Monochrome Display Adapter has three "base" attribute states: normal,
reverse, and underline. Values are #defined for these attributes: NORMAL, REVERSE,
and UNDERLINE. These base states can be modified by adding to them the values
#defined for HIGH_ INT (high intensity) and BLINK.

See, "Changing the Attribute of Output" later in this chapter for an example of how to
use the #defined attribute values to set the attribute for a window.

Color Attributes

The IBM Color/Graphics and Enhanced Graphics Adapters have other sets of physical
attribute values that control the color possibilities of these adapters. Color attributes
are discussed in Chapter 5.

Problems Created by Physical Attributes

Use of physical attributes in programs creates problems. Not all color attributes will
display properly on black and white monitors. If you use physical attributes in your
programs, you must either restrict the color choices or write separate code for color
and black and white video modes.

LOGICAL ATTRIBUTES

To eliminate the problems caused by physical attributes, Windows for C optionally
implements a system of logical attributes. Logical attributes allow you to write one
program that utilizes the full color capabilities of color monitors and is fully legible
on monochrome monitors.

Logical attributes are categorized by function or purpose. For example, some of the
pre-defined logical attributes used in Windows for Data are: LNORMAL, LHIGHLITE,
LERROR, LMESSAGE. Each of these logical attributes has a color attribute and a
monochrome attribute defined for it. When a computer is in a color mode, the

3-11

Windows for C Chapter 3
Version 4.0

display functions will use the color attribute. When in a monochrome mode, the
monochrome attribute will be used.

Table 3.2 lists the pre-defined logical attributes, together with associated mono-
chrome and color attributes.

For a full explanation of logical attributes, see Chapter 5, Controlling Color with
Logical and Physical Attributes. There you can find out how to change the physical
attributes associated with given logical attributes and how to add logical attributes.
The use of set-window-member function sw_latt() is also explained there.

USING PHYSICAL ATTRIBUTES

As you receive Windows for C, it is set up to use logical attributes rather than
physical attributes in window structures and function calls. If you use physical
attributes in the system as configured, you will create errors.

You can easily change to using physical attributes. Logical attributes are imple-
mented in the system by a #define statement near the top of bios.h:

#define ATT LOGIC /*use logical attributes */

To use physical attributes, all you need to do is to comment out or remove this
statement:

/* #define ATT_LOGIC use physical attributes */

Alternatively, you can make a specific program use physical attributes by undefining
ATT_LOGIC at the start of the program. Use the following sequence of statements:

#include <bios.h>

#undef ATT LOGIC /*set for physical attributes */
#include <window.h>

Warning: The #undef statement must come between the two #includes.

PHYSICAL AND LOGICAL ATTRIBUTES DON’T MIX

Be aware that once you set the type of attributes that the system is to use, you
must be consistent throughout the program. You cannot mix physical and logical
attributes in a single program.

You should make your subroutines use physical or logical attributes conditionally, if
you are going to make some programs that use physical and some that use logical
attributes. When and only when logical attributes are being used, the global
variable _lattsw will be 1. Use this in the conditional test, as in the following
code fragment:

if(_lattsw)

sw_att(LNORMAL, &wn);
else

sw_att(NORMAL, &wn);

3-12

Windows for C Chapter 3
Version 4.0

CHANGING THE ATTRIBUTE OF OUTPUT

Changing Window Attributes

The window-initialization functions set the window attribute to LNORMAL (or NORMAL,
if physical attributes are specified for the system). All output to a window will
have this attribute.

If you do not want the default attribute, you can change it with the "set window
attribute" function:

sw_att(attribute, &wn) int attribute; WINDOW wn;

For example, if you are working with physical attributes, you could set the window
to write normal text in high intensity with blink by the statement:

sw_att(NORMAL + HIGH_INT + BLINK, &wn);
You can use the "set window attribute" function to change logical as well as physi-
cal attributes. For example, this code fragment sets up a one-row "window" for error
messages:

WINDOW wn_err;

defs_wn(&wn, 24, 0, 1, 80, BDR_0P);
sw_att(LERROR, &wn_err);

The window has no borders. It is the full width of the screen and appears on the
bottom row of the IBM PC. Output to this window will have the attribute LERROR (see
Table 3.2 for the physical attributes associated with LERROR).

Changing Border Attributes

A separate member in the window structure specifies the attribute of window borders.
The default value is LNORMAL (or NORMAL, if physical attributes are specified for the
system). To change the value, use the "set window border-attribute" function:

sw_bdratt(attribute, &wn);

For example, to make the border LRED (which will show up as red on blue in color
monitors and reverse in monochrome modes):

sw_bdratt(LRED, &wn);

You must change the border attribute prior to calling a function that draws the border
on the screen. If the window is already on the screen, changing the border attribute
will have no effect until the border is redrawn.

In general, you will want to use sw_bdratt() before you call function set_wn(), which
sets a window on the screen and draws the border. If the window is already on the
screen and you want to change the border (either its type or its attribute), issue a
call to:

v_border(&wn, bdrp)
WINDOW wn; window structure
BORDERPTR bdrp; pointer to a border structure

Windows for C Chapter 3
Version 4.0

For example, suppose window wn has been initialized with border attribute LNORMAL o ¥
and a single line border. If after this window has been displayed on the screen,

you want to give it a double line border with attribute LMESSAGE, you would use the

following code:

sw_bdratt(LMESSAGE, &wn);
v_border(&wn, BDR_DLNP);

DISPLAYING AND REMOVING WINDOWS

DISPLAYING A WINDOW ON THE SCREEN

The same function is used to place either pop-up or overwrite windows on the
screen:

set_wn(&wn);

This function clears the area of the screen where the window will appear, draws the
border, and reduces the "working dimensions" of the screen by the width of the
borders and by the margins specified in the WINDOW structure. Function defs_wn()
sets the margins between the text and borders at 1 column on both the left and right
sides of the window.

The output functions of Windows for C operate within the working dimensions. You
can change the working dimensions to include the border if desired. See the refer-
ence page for dim_wn() in Appendix 2.

The virtual cursor is set to location 0, 0.
If a window name is specified, set_wn() will write the name over the top border,
beginning at the left corner. For pop-up windows the underlying image is saved.
Function set_wn() sets window member wn.setsw to 1. You can test the value of
wn.setsw to find out whether the window has been set on the screen.
REMOVING WINDOWS FROM THE SCREEN
To remove a window from the screen, use:

unset_wn(&wn);
If wn is a pop-up window, the underlying image will be restored; otherwise the area
covered by the window will be cleared to the screen background. Memory used to
store the underlying image for a pop-up window will automatically be released by
this function.
This function restores the "working dimensions" of the window (the dimensions within
which the output functions operate) to the full outside dimensions, including the
margins and the borders.
Function unset_wn() sets window member wn.setsw to 0. You can test the value of
wn.setsw to find out whether the window is on the screen or not.

P

3-14

Windows for C Chapter 3
Version 4.0

CONTROLLING THE LOCATION OF OUTPUT

THE VIRTUAL CURSOR

Window output functions begin writing at the location in a window specified by the
“yvirtual cursor". The virtual cursor is independent of the physical cursor that
appears on the screen. A separate virtual cursor is defined for each window.

In the "Hello, world" program, output starts at row 0, column 0, because function
set_wn() sets the virtual cursor location to that position.

The location of the virtual cursor is maintained as part of the information contained
in the window structure. The location is automatically updated by the string output
functions (unless automatic updating is disabled). With this system, output can be
made to several different windows alternately without any need for the programmer to
move the cursor location each time.

Working Dimensions and the Origin for Measuring the Virtual Cursor

The virtual cursor position is always measured relative to the origin of the window,
as recorded within the window structure in members wn.rb and wn.cb, the beginning
screen row and the beginning screen column of the window.

The window origin from which the virtual cursor location is measured depends upon
whether the working dimensions of a window are FULL or INSIDE. The working
dimensions are boundaries within which Window output functions will write. The
working dimensions are changed automatically by set_wn().

Before the window is set on the screen, its working dimensions are FULL; they
include the border and margins. (To draw the border, the dimensions must be FULL.)
After set_wn() draws the border, it changes the working dimensions to INSIDE. It
does this by changing the values of the beginning and ending rows and columns of
the window by the width of the border and margins. The values of the members in
the window structure are actually changed.

When working dimensions are adjusted, the setting for the virtual cursor is not
changed. Thus, if the location of the virtual cursor is 0, 0, it will be at the top
left corner of the border when the dimensions are FULL, and it will be at the first
position inside the borders and margins when the dimensions are changed to INSIDE.

When a window is removed from the screen (see below), its dimensions are automati-
cally restored to FULL. A function, dim_wn(), is also provided to allow you to
change the working dimensions (see Chapter 8 and the reference page in Appendix 2
for more information).

Moving the Virtual Cursor

To move the virtual cursor to the window location where you want to write, use

mv_cs(row, column, &wn);
int row;

int col;

WINDOW wn;

3-15

Windows for C Chapter 3
Version 4.0

Note: the mnemonic used for the virtual cursor is always c¢s and that for the
physical screen cursor is esr. Function mv_cs() does not affect the physical
cursor. The similarly named function, mv_csr(), which has the same arguments as
mv_cs, moves both the virtual and screen cursor.

To write a string at row 3, column 5 of a window:

char *string = "This is easy.";

mv_cs(3, 5, &wn);
v_st(string, &wn);

After string is written, cs will be located immediately after the last written character.

Direct Assignment of the Virtual Cursor Location

You can also locate the cursor by direct assignment:

wn.r = 3;
wn.c = 5;

This is equivalent to the call to mv_cs() made above.

Direct assignment is especially useful for iterations within for and while loops, eg:

wn.r = 0;

wn.c = 0;

while(wn.r++ <= wn.re - wn.rb)
{

v_st("Write this on each row of the window", &wn);
wn.c = 0;
}
Macros for Row and Column Size of Windows

Macros are provided that return the quantity of rows and columns in a window:

row_qty(&wn);
col_qty(&wn);

These are quite useful, as you will find that you need to know the size of a window
for many purposes. The above while statement could have been written:

while(wn.r++ < row_qty(&wn))
CONTROLLING THE SCREEN CURSOR

Automatic Placement of the Screen Cursor

The position of the screen cursor is normally independent of the position of the
virtual cursor position. With the default window settings, the screen cursor will not
move when you call v_st() or other Window output functions.

You can, however, change the default window setting so that the output functions
automatically place the screen cursor at the virtual cursor location after it finishes

3-16

Windows for C Chapter 3
Version 4.0

writing a string. To do this, make the following call after you initialize the window
values:
sw_plcsr(ON, &wn);

Direct Placement of the Screen Cursor

At any time, whether or not automatic cursor placement is implermented, you can
place the screen cursor directly at the virtual cursor location by:

pl_csr(&wn);

You can also move the location of the virtual cursor and place the screen cursor at
that location with the function:

mv_csr(row, column, &wn)
int row;

int column;

WINDOW wn;

To move the physical cursor to a specified location on the screen (as opposed to a
location within a window), you can use mv_csr() in a pre-defined full screen
window, wnO. See "Using Window Functions on the Full Screen," later in this
chapter.

Reading the Location of the Screen Cursor

You can read and save the location of the screen cursor with:

rd_csr(&row, &col, page)
int row;

int col;

int page;

Warning: you must use pointers to the row and column variables. The page argument
applies only to the Color Graphics Adapter or the Enhanced Graphics Adapter.

Hiding and Restoring the Screen Cursor

You can hide the cursor so that it doesn’t show on the screen by moving it just
below the last row of the screen:

mv_csr(v_rwq, 0, &wn0);
This call uses the global variable v_rwq, which is set to the quantity of rows on
the screen. Because the screen rows are measured from a 0 origin, the v_rwq row
will be one below the screen. The cursor will not show on the screen.
You can hide the cursor and save its location with:

csr_hide();
Function csr_hide() stores the location of the cursor internally, in static variables.

To restore the cursor to the screen at the location saved by csr_hide(), use:

csr_show();

3-17

Windows for C Chapter 3
Version 4.0

Warning: You cannot use csr_show() to restore the cursor if you make two or more
calls to csr_hide() without an intervening call to csr_show(). After the second
straight call to csr_hide() the stored location of the cursor will be off-screen. A
call to csr_show() will simply leave the cursor off-screen. If this is a possibility,
use rd_csr() to store the location and pl_csr() or mv_csr() to restore the screen
cursor.

WRITING TO WINDOWS

All functions that write to the screen are prefaced by v_. This is an abbreviated
mnemonic for "video". Functions that read from the screen are prefaced by vo, which
stands for "video out", short for "out from video".

You can use window functions without the windows being set on the screen. As
soon as a window is declared and initialized, window functions can refer to it. Note,
though, that if a window has borders, writing will cover the FULL dimensions of the
window, including the border, until its dimensions are set to INSIDE (either by
set_wn() or by dim_wn()).

BASIC STRING OUTPUT: v_st()

The "video string" function, v_st(), is the basic string output function of Windows for
C. The format of the call is:

v_st(st, &wn);
char *st;
WINDOW wn;

Function v_st() will write output beginning at the location of the virtual cursor. With
default window values, output will have attribute LNORMAL and word wrap will be
implemented. You can change these defaults, as described in an earlier section of
this chapter.

Function v_st() will stop writing when it fills the window. If scrolling is enabled
and you call v_st() when the window is already full, the window will be scrolled up
one line and v_st() will write on the bottom line of the window. Only one row will
be written. If the string is longer than the window width, it will stop when the
window becomes full.

If you know the strings you are writing are all less than a window width, you can
call v_st() repeatedly, and it will always write the string, scrolling up the window
with each call after it becomes full. If you are not sure of the string lengths, and
you want to be certain that a string is entirely written, use v_fst() (see below).

FULL-STRING OUTPUT FUNCTION: v_fst()

If you want to ensure that a string is written entirely, use "video full-string",
v_fst(). It is identical to v_st(), except that it will ensure that the end of a string

is written to a window, automatically scrolling up the text in the window when this
is required.

For more information on controlling scrolling for string output in direct display
windows, see the reference page for v_st() in Appendix 2.

3-18

Windows for C Chapter 3
Version 4.0

WRITING A STRING AT A SPECIFIED LOCATION: v_plst()

Moving the virtual cursor to a specific location and then writing a string can be
done with one call to the "video place-string" function:

v_plst(row, column, string, &wn);
int row;

int column;

char *string;

WINDOW wn;

This function places the virtual cursor at row and column and calls v_st.
CENTERING, LEFT-JUSTIFYING AND RIGHT-JUSTIFYING TEXT

You can automatically center output within a window row by using CENTER_TXT as the
column value in v_plst(), e.g.

v_plst(3, CENTER_TXT, "Hello, world", &wn);
will center the text string in the fourth row (row 0 is the first row).
Similarly, using RIGHT_TXT will place the last character of the string in the
right-most position of the window, and LEFT_TXT will place the first non-whitespace
character in the left-most position of the window.
FORMATTED STRING OUTPUT: v_printf()
The equivalent of printf() is provided by

v_printf(&wn, control, argl, arg2, ive)
See your compiler reference manual or K&R, Chapter 7, for the interpretation of control
and the arg’s parameters in v_printf(). Function v_printf() calls v_st() and, thus, has

the same options as v_st().

Warning: The number of arguments in v_printf() is limited to 20 ints, 10 longs and
5 doubles or floats.

Note: This function calls sprintf(), which is quite large. If code size is a concern,
you can save thousands of bytes by avoiding v_printf() (and sprintf() and its
cousins, scanf(), printf(), etc.). Use v_st() as the standard output function and do
explicit conversions from numbers to strings when required.

WRITING CHARACTERS

Single Characters

The window equivalent of putchar() is:

v_ch(character, &wn)
char character;
WINDOW wn;

This writes a character at the virtual cursor position. The default setting is for
advance of the virtual cursor, but this can be changed with sw_csadv().

Windows for C Chapter 3
Version 4.0

Rows and Columns of Characters

Functions are provided for writing rows and columns of identical characters:

v_rw(character, quantity, &wn)
char character;

int quantity;

WINDOW wn;

v_co(character, quantity, &wn)
char character;

int quantity;

WINDOW wn;

Both of these functions advance the virtual cursor and will continue writing until the
quantity of characters specified is written or the window is full.

Filling a Window with a Specified Character

Setting the virtual cursor to 0, 0 and calling v_rw() or v_co() with a quantity larger
than the number of screen positions is an easy way to fill the window with a
desired character:

mv_cs(0, 0, &wn);
v_rw(’X’, 4000, &wn);

SOUNDING THE BELL (BEEP)

The speaker can be made to beep by
bell();

so named for historical reasons.

CHANGING THE ATTRIBUTE OF A CHARACTER

You can change the attribute of a character at the location of the virtual cursor with:
v_att(attribute, &wn)
char attribute;

WINDOW wn;

The default setting is for advance of the virtual cursor, but this can be changed
with sw_csadv().

Library functions are provided for changing specified parts of the screen in one call.
See Chapter 8.

SCROLLING DIRECT DISPLAY WINDOWS
You can scroll a direct display window upward or downward with:

mv_rws(nlines, dir, &wn);

int nlines; number of lines to scroll
char dir; direction
WINDOW wn; window structure

3-20

Windows for C Chapter 3
Version 4.0

EXECUTING SUBROUTINES WHILE WAITING FOR KEYSTROKES

The keyboard-read function, ki(), allows you to install a user-developed function that
will be executed whenever the program is waiting for input from the keyboard. When
ki() is called, the program will execute an endless loop that consists of checking for
a keystroke and, if not found, executing the user-developed function. Exit from the
loop will occur when a keystroke is found.

The following code fragment shows how to install the keyboard loop function:
int loop_func();
s_keyloop(loop_func);

Whenever you call ki() and there are no keystrokes waiting in the keyboard buffer,
the loop function will be executed.

To remove the keyboard loop function, give the following call
s_keyloop(NULLFP);

For an example on how to install and use a keyboard loop function, refer to the
file LOOP.C on the system diskette.

Warning: The keyboard loop function is not available in the UNIX/XENIX version of
Windows for C.

CREATING A PAUSE IN A PROGRAM

You can create a user—controlled pause in a program by using ki(), as illustrated in
the following code fragment.

v_plst(0, 0, "Type any key to proceed: ", &wn);
pl_csr(&wn);
ki();

The message is written on the next to first line of the window, the screen cursor is
placed after the message, and a call is made to read the keyboard. The program will
halt until a key is pressed.

CHECKING THE KEYBOARD BUFFER: ki_chk()

Function ki_chk() checks the keyboard buffer. If a keycode is in the buffer, it
returns its value, but does not remove the code from the buffer. If no code is in
the buffer, ki_chk() returns a 0. It does not wait for a keystroke.

You can use this function to see if a key has been entered without halting oper-

ations until a key is entered. In some applications you may wish to check for a
keystroke periodically and to continue processing until one needs to be serviced.

3-23

Windows for C Chapter 3
Version 4.0

CLEARING THE SCREEN AND WINDOWS

CLEARING THE SCREEN
To clear the screen, use:
cls();
CLEARING WINDOWS
To clear a window (but leave the border intact), use:
cl_wn(&wn);
The window will be cleared with spaces of the window attribute value.
REMOVING A WINDOW FROM THE SCREEN
To remove a window (including borders) from the screen, use
unset_wn(&wn);

For pop-up windows, this function will restore the underlying image; for overwrite
windows, it will clear the area covered by the window to the background. See the
discussion earlier in this chapter, under "Displaying and Removing Windows", for more
details.

CONTROLLING THE COLOR OF THE SCREEN BACKGROUND

The attribute value of the screen background is stored in the background attribute
portion of ‘the global variable cl_att. Blank spaces of attribute cl_att are written by
cls() to clear the entire screen and by unset_wn() to clear the area covered by an
overwrite window.

The value of cl_att is initialized to NORMAL for physical attributes and to LDOS for
logical attributes. The pre-defined value of LDOS is white on black for both
monochrome and color modes. As initialized, the system will clear the screen to a
black background.

You can change the background to which the screen is cleared by directly assigning
a new value to cl_att. After changing the value of cl_att, call cls() to clear the
screen with the new background. For example:

cl_att = LNORMAL;
cls();

will clear the screen to the background portion of LNORMAL (blue on color screens
and black on monochrome screens).

If you are operating with logical attributes, you can only set the screen background
to background attributes contained in one of the defined logical attributes. If you
want a background attributes not included in the pre-defined logical attributes, you
can add a new logical attribute with the desired background color; see Chapter 5.

If you are operating with physical attributes, a special function is provided to assist
you in setting color backgrounds; see Chapter 5.

3-24

Windows for C Chapter 3
Version 4.0

The direction must be specified as either UP or DOWN. For example
mv_rws(3, UP, &wn);

will move all lines in the window up 3 rows. The top 3 rows will be lost, and the
bottom 3 rows will be cleared. The virtual cursor will be moved by the number of
rows scrolled (but will always stay within the window).

Note: This scrolling function works on the contents of a window displayed on the

screen. If you want to scroll through text that is larger than a window, you should
use memory-file functions. These functions allow horizontal and vertical scrolling.

See Chapter 5.

Hint: If you want to scroll less than the entire window, define a separate window
to cover the area that you desire to scroll, and then use mv_rws() on the separate

window.

READING THE CONTENTS OF WINDOWS

READING A CHARACTER

You can read the ASCII value of the character located at the virtual cursor with the
"video-out character" function, as in the following code fragment:

char character;
character = vo_ch(&wn);
The virtual cursor is not advanced.

READING AN ATTRIBUTE

You can read the attribute associated with character located at the virtual cursor
with the "video-out attribute" function, as in the following code fragment:

char attribute;

attribute = vo_att(&wn);
The virtual cursor is not advanced.
READING THE CHARACTER CONTENTS OF PARTS OF THE WINDOW
You can transfer the character contents of specified portions of a window to or from
a character string with the function, v_mova(). You can transfer a character, a row,
a column, the entire window, and other portions of the window. This function is
described fully in Chapter 8.
READING THE CHARACTER-ATTRIBUTE CONTENTS OF PARTS OF THE WINDOW
You can transfer the character-attribute pairs of specified portions of a window to or
from a special "video string" with the function, v_mov(). You can transfer a

character, a row, a column, the entire window, and other portions of the window.
This function is described fully in Chapter 8.

3-21

Windows for C Chapter 3
Version 4.0

READING THE KEYBOARD

KEYCODE CONVENTIONS

The IBM PC has two sets of keycodes: 1) the set of standard keycodes, which are
numbered from 0 through 255, include all of the standard ASCII character set and a
special character set; and 2) a set of "extended codes." The extended codes range
from 3 to 132. The extended codes thus overlap the standard codes. The IBM BIOS
differentiates between them by setting an extra switch when an extended code is
being returned.

The keyboard functions of Windows for C return both standard and extended codes in
the same variable. To differentiate between them, extended codes are returned as
negative values and standard codes as positive values.

Unfortunately, when we #defined keycode values for the keys, we used IBM’s conven-
tion of positive values for the extended codes, instead of the convention of negative
values used by our own keyboard functions. This was not a good design decision.
Because of this, when you are looking for a particular keystroke, you must know if
the key returns an extended code. For extended codes, you must compare the nega-
tive of the keycode with the value returned by the keyboard function (because
extended codes are returned as negative values). This creates an additional burden
on you for which we apologize.

Fortunately, keys returning extended codes fall, for the most part, in a few groups:
function keys, cursor pad keys and <ctrl-cursor-keys>, and <alt-keys) (a standard
key pressed simultaneously with the <alt) key). The #defines for the extended
codes for the function and cursor pad keys are listed separately in computer.h.

Another solution is for you to change the #defines for extended codes to negative
values. Although we do not want to change the key definitions and create incompa-
tibilities for existing programs of our customers, you are free to change them to
negative values. All library functions will work without any problem. You will,
however, need to modify our demonstration programs by changing the key values for
keys returning extended codes. If you are also using Windows for Data, you will
need to make similar changes to wfd_glob.h.

THE READ-KEYSTROKE FUNCTION: ki()
The Windows for C basic function for reading the keyboard is:
ki();
When a keystroke is entered by a user, the IBM operating system places it its code
in a keyboard buffer until it is removed. Function ki() will remove a code and return

its value each time it is called. If no code is in the buffer when it first looks, ki()
will wait until one is entered.

Extended codes (see above) are returned as negative values.

As noted above, when using ki() to check for an extended code, the return value
must be compared with the negative of the #defined key value. For example, the
following code line obtains a keystroke and checks to see if it is function key

F-10:

if(ki() == -K_F10)

Windows for C Chapter 3
Version 4.0

USING WINDOW FUNCTIONS ON THE FULL SCREEN

At times you may wish to use Window functions on the full screen. To simplify
this, a window equal to the full screen, wnO (wn zero), is pre-defined and globally
available. The full-screen window has no border. It has the attribute LDOS (or
NORMAL for physical attributes). This window is useful in a number of ways.
SAVING, CLEARING, AND RESTORING THE ORIGINAL DOS SCREEN

Use wnO to save the DOS screen that existed prior to entering your program if you
want to restore it at the end of your program. At the beginning of the program,
before you change the screen, include the statements:

sw_popup(ON, &wnO0);
set_wn(&wn0);

This will save the image of the full-screen, because wn0 has been made into a
pop-up window. The screen will be cleared to black (unless you have changed the
definition of LDOS).
Note: Saving a full 25 by 80 screen will use 4000 bytes of memory.
At the end of the program, restore the DOS screen by:

unset_wn(&wnO0);
You will also want to save and restore the DOS screen cursor (see below).

MOVING, SAVING, AND RESTORING THE SCREEN CURSOR

Moving the Screen Cursor

You can move the screen cursor to any row and column on the full screen by using
the mv_csr() function on the full-screen window:

mv_csr(row, column, &wnO);

Use this to place the cursor on the last line (or the first line) at the end of a
program.

Programming hint: If you place the screen cursor on row 23 before exiting, the
cursor will move to the last line of the screen when you return to DOS, but the

screen will not scroll.

Saving and Restoring the Screen Cursor

You can save the location of the cursor at any point in a program with:

rd _csr(&row, &column, page)

int row;

int column;

int page; page number of graphics card

The page argument will zero, unless you are using additional memory pages on the
graphics adapter board. Note that the arguments for row and column are pointers.

3-25

Windows for C Chapter 3
Version 4.0

To restore the cursor to the saved position at a later point in the program, use:
mv_csr(row, column, &wnO0);

WRITING TO THE FULL SCREEN

At times, especially during program development, you may wish to write information
to the full-screen. Using the pre-defined window wn0 avoids the need to first
declare and define a window before using the Window output functions. For example,

pl_csr(5, 0, &wn0);
v_st("This writes its output on row 5, starting a column 0.", &wn0);

Note: Output will be written with attribute LDOS (or NORMAL), unless you change the
attribute of wn0.

ANOTHER VERSION OF "HELLO, WORLD"

Using the features discussed above, we can write another version of "Hello, world:"

#include <bios.h>
#include <window.h>

main()

{
WINDOW wn;
defs_wn(&wn, 10, 30, 8, 25, BDR_DLNP);
sw_popup(ON, &wn); /*make a popup window */
sw_name("First Window", &wn); /*give it a name */
csr_hide(); /*hide the cursor */
set_wn(&wn); /*pop wn up on screen ‘ * /
v_plst(3, CENTER_TXT, "Hello, world\n", &wn); /*center string */
sw_att(LHIGHLITE, &wn); /*change output attribute */
v_plst(7, @, "Press any key to exit.", &wn);
ki(); /*wait for a keystroke */
unset_wn(&wn); /*restore the original screen%*/
csr_show(); /*restore the cursor */

}

PRACTICAL EXAMPLES OF WINDOWS

AN ERROR MESSAGE WINDOW

The following code creates a one-row pop-up window for error messages on the last
row of the screen. The "window" has no border and has attribute LERROR.

WINDOW wn_err;

defs_wn(&wn_err, v_rwq - 1, 0, 1, v_coq, BDR_0P);
sw_popup(ON, &wn_err);
sw_att(LERROR, &wn_err);

The variable v_rwgq is a system global variable that contains the number of rows on
the screen (which will generally be 25 on the IBM PC, but can be 43 with the
enhanced graphics adapter and may have other values for other display boards).
Variable v_coq similarly contains the number of columns on the screen.

3-26

Windows for C Chapter 3
Version 4.0

To write an error message:

set_wn(&wn_err);
v_st("Undefined key", &wn_err);

To remove the message:
unset_wn(&wn_err);
ESTABLISHING A STATUS LINE

The following example uses a one line window to establish a status line on the next
to last line of the screen (leaving the last line for an error window). The status
line is not a popup but will remain permanently. Automatic cursor advance and
automatic clear-to-the-end-of-the-row are turned off on the status line. This gives
better control over output on the line and will prevent status information near the
end of the line from being erased when the positions to the left are updated.

The top part of the screen, above the status line is defined as another window.
General output will go to the main window. Automatic screen cursor placement is
turned on in the main window.

WINDOW wn_stat, wn_main;

defs_wn(&wn_stat, v_rwq - 2, 0, 1, v_coq, BDR_OP);
sw_csadv(OFF, &wn_stat);

sw_cleor(OFF, &wn_stat);

sw_att(LREVERSE, &wn_stat);

defs_wn(&wn_main, 0, 0, v_rwq - 2, v_coq, BDR_OP);
sw_plcsr(ON, &wn_main);

Variables v_rwq and v_coq are system global variables that contain the number of
rows and columns on the screen. They are set by init_wfc() and may change if
vid_mode() is used.

When you wish to write to the main part of the screen, reference wn_main in the
output functions. Output will not be permitted to go to the status line. Conversely,
when you want to write to the status line, reference wn_stat.

For example, if you are keeping the value of the column position of the screen
cursor in the main window at position 70 on the status line, you could update this

position with:

pl_csr(0, 70, &wn_stat);
v_printf(&wn_stat, "%d", wn_main.c);

The current location of the cursor is in wn_main.c.

3-27

Windows for C
Version 4.0

This page intentionally left blank.

3-28

Chapter 3

P N

Windows for C Chapter 4
Version 4.0

Chapter 4

TUTORIAL ON WINDOWS FOR C

CONTENTS

ANNOTATED CODE LISTING

Windows for C Chapter 4
Version 4.0

This page intentionally left blank.

Windows for C Chapter 4
Version 4.0

TUTORIAL ON WINDOWS FOR C

This chapter consists of a commented program listing that uses many of the func-
tions introduced in Chapter 3. It shows how windows are initialized, established on
the screen, cleared, written to, scrolled, and removed from the screen.

This program calls a function, rd_lines(), that draws on material introduced in later
chapters. Code for this function is listed at the end. You will be referred back to

rd_lines() at the appropriate time.

Source code for this listing is on the system diskette in file tutor.c

Windows for C Chapter 4
Version 4.0

TUTORIAL ON WINDOWS FOR C-

* tutor.c -- tutorial program for Windows for C
g
xxxxx%®x%%%% (C) Copyright Vermont Creative Software 1985 *¥xxxxxaiiixxxxxx

A simple program that establishes two windows, reads lines typed by the user in
one window, and writes the lines in the other window.

This program illustrates how windows are initialized, established on the screen,
cleared, written to, scrolled, and removed from the screen. It shows how window
functions can be used to simplify constructing line editors.

i |

#include <bios.h>
#include <window.h>

#define MAX_ CHAR 73 /*max characters in edit line */
WINDOW wnil, wn2; /*declare two windows */
/* __ */
/* The following strings provide the text that will be put into wn2 */
/* by v_st(). */
/* ___ */
char *st[] =

{"\nTo place lines of text into the top window on the screen, .,
"type the lines here, pressing Enter (Carriage Return) after ",
"each line:\n"

};
char *st1 = " To exit, press 'Escape’.";
main()
{
int i, csr_row, csr_col;
char line[MAX CHAR + 1]; /*array for user input of text */
/* __ */
/* First save the cursor location by calling rd_csr(); then */
/* Save the screen by using the predefined full-screen window wng; */
/* setting wn0® will clear the screen to black, because wnf.att = LDOS. */
/* __ */
init_wfc(); /*always initialize WFC first */
rd_csr(&csr_row, &csr_col, 0); /*store cursor location */
sw_popup(ON, &wn®); /*make a popup to save screen */
set_wn(&wno); /*saves screen and then clears it * [

Windows for C Chapter 4
Version 4.0

/* __ */
/* Initialize the windows. Text entered in window 2 will be copied to * /
/* window 1 for display. When window 1 is full, text will be automatically */
/* scrolled upward to make room for additional lines of text. */
[* */
/* Window 1 will have attribute LNORMAL and border attribute LRED. Margins */
/* will be 3 on each side. The border is a double line. */
/* The window goes from row 3 through row 10, column 20, through column 60. */
/* */
/* Window 2 will have attributes of LNORMAL for text and LNORMAL for border.*/
/* Margins are 2, 2. The window has a single line border */
/* The window goes from row 14 through row 20, column &, through column 79. */
/* */
/* Function def_wn(), which allows explicit setting of margins, is used for */
/* initialization. */
/* __ */

def_wn(&wnt, 3, 10, 20, 60, 3, 3, BDR_DLNP);
sw_bdratt(LRED, &wni1); /*change border att from default*/
def wn(&wn2, 14, 20, @, 79, 2, 2, BDR_LNP);

/* __ */
/* Place the windows on the screen with calls to set_wn. A pointer to */
/* +the WINDOW struct must be passed as the calling parameter. */
& e
/* set_wn returns NULL if there is an inconsistency in the initial values */
/* of wn. */
/* */

/* The error message can be written in a window even though it is not set. */
/* Setting of a window clears it and sets border and margins, but none of */

/* these are essential to the writing of the error message */
/* __ */
if(set_wn(&wnt) == 0)
{
v_st("wn1 definitions inconsistent",&wn2);
exit(1); /*exit to DOS with error code set */
)
if(set_wn(&wn2) == 0)
{
v_st("wn2 definitions inconsistent",&wn2);
exit(1); /*exit to DOS with error code set * [
}

Windows for C Chapter 4
Version 4.0

/* __ */
/* Repeated calls to v_st() are made to write the st[] array to wn2. * [
/* */
/* The initial location of of cs, the virtual cursor is at 9,9; v_st() */
/* automatically updates the location of cs so it points to the next */
/* space after the last character written. */
/* */
/* After st[] is written, the attribute of wn2 is changed to LERROR and */
/* wn.r is advanced by two, moving cs down two rows. */
/-x- */
/* v_st() is called to write st1, the exit instruction; the attribute is */
/* changed to LFIELDA, the location of c¢s is moved to the location */
/* where the user is to type in text, and the screen cursor is placed at */
/* cs by a call to pl csr(). */
/* __ */

for(i = @; i < 3; i++)
v_st(st[i], &wn2);

wn2.att = LERROR; /*use LERROR to make prominent */
wn2.r += 2;
v_st(st1, &wn2);

wn2.att = LFIELDA;
wn2.r -= 2;

wn2.c = 9;

pl _csr(&wn2);

/-x- __ */

/* Clear the edit row to LFIELDA and restore the virtual cursor to the */

/* beginning of the row. Note that the screen cursor is not moved by */

/¥ the call to v_rw(). *

/* __ */
v_rw(' ', MAX_CHAR, &wn2);

’
wn2.c = 0;

/* __ */
/* The following code sets up a while() loop. The loop is broken */
/* when the user satisfies the exit condition: */
/* -x-/
/* TUser text is read into line[], using rd line(), a function defined */
/* following main. Text is read until <Escape> is pressed on an empty */
/* line. */
fix *./
/* Rd_line() returns -1 when <Escape> is pressed; otherwise the number */
/* of characters in the returned string (excluding the terminal null) */
/* The loop is exited upon the -1 return. */
/-x- __ */

Windows for C Chapter 4
Version 4.0

while(rd_line(line, MAX_CHAR, &wn2) '= -1) /*set up loop * /

{
/* __ */
/* The contents of line[] are written to wnl by a call to v_fst(). */
/* For strings longer than the width of wn1, v_fst() automatically performs*/
/* word wrap. */
/* */
/* When v_fst() fills the window without finishing writing the string, it */
/* scrolls the window to make room for the remainder of the string. */
/* __ */

/* __ */
/* After the line has been transferred to wnil, the user text in wn2 is */
/* cleared by writing MAX CHAR "spaces" using v_rw(). */
/* The virtual cursor and screen cursor are returned to the initial * /
/* position. */
/* __ */

wn2.c = 0;

v_rw(' ', MAX_CHAR, &wn2);
wn2.c = 0;

pl_csr(&wn2);

}
/* __ */
/* When this point is reached, the user has requested exit. * [
/* The original screen is restored by popping down window wn@. The cursor */
/* 1is restored to its original location by calling mv_csr() in wn@. */
/* __ -x-/

unset_wn(&wno);
mv_csr(csr_row, csr_col, &wn®);
return;

Windows for C Chapter 4
Version 4.0

/* __ */
/* The rd line() function */
/* -x/

/* The rd_line() function calls ki() to read keystrokes and v_ch() to write*/
/* the corresponding ASCII character to the window. Backspace and left and */

/* right cursor keys are implemented; but not insert and delete. * /
/* */
/* ki() returns ASCII codes or the IBM "extended codes." The extended * [
/* codes are returned as negative values. */
/* */
/* Keystrokes are written to the window until <Enter> is pressed, * /
/* max_q characters have been written to the window, */
/* <Escape> is pressed. */
/* */
/* When <Escape> is pressed, -1 is returned immediately; */
/* otherwise the contents of the window row are copied to the passed * [
/* string. Trailing blanks are stripped; if <Enter> was pressed, a */
/* mnewline is inserted prior to the terminal null. */
/* */
/* The number of characters in the string (excluding the NULL terminator) */
/* is returned. */
{* ot |
/* The passed string must have at least max_q + 1 spaces in it */
/* __ */

rd_line(stp, g_max, wnp)
char *stp;
int q_max;

WINDOWPTR wnp; /*typedef WINDOWPTR is in bios.h * [
{
int c;
int kenter = FALSE; /*set to TRUE if user pressed <ENTER> */
int done = FALSE; /*set to TRUE when line is full or */
/*user pressed <ENTER> * [
int count;
int cmax; /*maximum value of wn.c */
cmax = q_max -1; /*cs has zero origin; so g_max-1 */
if(q _max < 1) return(9); /*need g = 1 to get 1 char */
while(! done) /*set up loop */
{
switch(c = ki())
{
case K ENTER: /*user pressed <ENTER> */
kenter = 1;
done = 1;
break;
case K _ESC: /*user wants to exit */

return(-1);

Windows for C
Version 4.0

case K BACK:
if(wnp->c > @)

{
wnp->c--;
v_ch(' ', wnp);
wnp->c--;
pl_csr(wnp);

}

else
bell();

break;

case -K LEFT:
if(wnp->c > 0)
{
wnp->c--;
pl_csr(wnp);
}
else
bell();
break;

case -K RIGHT:
if(wnp->c < cmax)

{
wnp->c++; /*¥move cursor 1 column right
pl csr(wnp); /*place screen cursor
}
else /*can't move cursor right
bell();
break;
default: /*handle all other possibilities
if(c > @) /*check for printable character
{
if(wnp->c == cmax)/*Done. write last char & goto end
{ /*check cs limit first, because wn.c
v_ch(c, wnp); /*will go to zero if at edge of wind.
done = 1;
¥
else
{
v_ch(c, wnp); /*else write character and continue
pl_csr(wnp);
}
)
else /* extended code
bell(); /* let user know it’'s illegal
break;

Chapter 4
/*handle backspace */
/*if not at left boundary */
/*go back one position */
/*print "space" */
/*go back one position */
/*place screen cursor */

/*can't backspace beyond left boundary*/

/*handle left cursor
/*if not at left boundary

/*move cursor 1 column left
/*place screen cursor

/*can’t move cursor left

/*handle right cursor
/*if not at right boundary

&)
iy

*/
*f

*f

*/
*/

*/
*/

*/

*/
*/

*/

et}
*/

*/

*/
*/

Windows for C Chapter 4
Version 4.0

v_mova(stp, wnp, ROW, OUT); /*transfer window row to string */
strip_wh(stp); /*strip white spaces from end of strin*/
count = strlen(stp);
if(kenter) /*need to append newline */
{
stp += count++; /*go to null, increment count */
*stp++ = '\n’; /*append newline */
*stp = '\9°'; /*append NULL terminator */
}
return(count); /*¥return number of char in string */

Windows for C Chapter 5
Version 4.0

Chapter 5

CONTROLLING COLOR: LOGICAL AND PHYSICAL ATTRIBUTES
CONTENTS

THE LOGICAL ATTRIBUTE SYSTEM
Why Logical Attributes?
Logical Attributes
System Logical Attributes and Window-Specific Logical Attributes
Changing the Physical Attributes of Logical Attributes
Adding New Logical Attributes
Step 1: Define a Logical Attribute Name
Step 2: Change the Number of Logical Attributes
Step 3: Add the New Definition to the Logical Attribute Table
Adding New Columns of Logical Attributes
Step 1: Change the Physical-Attribute-Quantity Parameter
Step 2: Add a New Column of Physical Attributes
Initializing the Logical Attribute Array
Coding Example
Constructing and Using Window-Specific Logical Attribute Tables
Setting a Window to Use a Specified Logical Array: sw_latt()

USING PHYSICAL ATTRIBUTES
Setting the System To Use Physical Attributes
Physical and Logical Attributes Don’t Mix
Monochrome Attributes
Avoid Underline in System Logical Attributes
Managing Window Colors
Differences Between the Enhanced Graphics and Color/Graphics Adapters
Foreground and Background Colors
Changing the Color of Window Borders
Removing Color Windows: Maintaining the Background
Selecting the Screen Border Color
"Hello, World" with Physical Color Attributes

DETERMINING AND CHANGING VIDEO MODES
Using Graphics in Programs that Use Windows for C
Coding Example

Windows for C Chapter 5
Version 4.0

This page intentionally left blank.

5-2

Windows for C Chapter 5
Version 4.0

CONTROLLING COLOR: LOGICAL AND PHYSICAL ATTRIBUTES

Windows for C provides complete, easy control of the color capabilities provided by
the IBM Color/Graphics Adapter. Background, foreground, and border colors can be
specified for each window. Video modes can be changed within programs, and the
color of the screen border specified.

This chapter explains how to control the color and monochrome attributes of screen
displays. Attribute is the technical term for the color or monochrome appearance of
characters written on the screen.

Windows for C optionally implements a system of logical attributes. Logical attributes
allow you to write one program that utilizes the full color capabilities of color
monitors and is fully legible on monochrome monitors. You can modify the colors
associated with a given logical attribute and add new logical attribute definitions.

Logical attributes are strongly recommended if you are developing software that may
run on either monochrome or color displays.

For software intended to run on one type of display, you can use physical attrib-
utes. Windows for C provides a number of functions to facilitate controlling color
via physical attributes.

The first part of this chapter explains the logical attribute system. The latter part
of the chapter describes the functions provided for handling physical attributes and
the function provided for changing video modes. ’

This chapter assumes that you have read the introductory material on attributes in
"Controlling the Appearance of Qutput: Attributes," in Chapter 3.

THE LOGICAL ATTRIBUTE SYSTEM

WHY LOGICAL ATTRIBUTES?

Windows for C uses the attribute system of the IBM PC for controlling display
attributes. Each character displayed on the screen has associated with it an
attribute byte that determines its appearance. The attribute-byte values are termed
physical attributes.

Use of physical attributes in programs creates problems. Not all color attributes will
display properly on black and white monitors. If you use physical attributes in your
programs, you must either restrict the color choices or write separate code for color
and black and white video modes.

If you are developing software to run on both monochrome and color displays, we
strongly recommend that you use the logical attribute system of Windows for C. In
addition to providing color and monochrome display compatibility, logical attributes
make it much easier to change color choices in a program.

LOGICAL ATTRIBUTES

Logical attributes allow you to write one program that utilizes the full color
capabilities of color monitors and is fully legible on monochrome monitors.

Windows for C Chapter 5
Version 4.0

Each logical attribute has a physical color attribute and a physical monochrome
attribute defined for it. When a computer is in a color mode, the display functions
will use the color attribute. When in a monochrome mode (black and white) mode,
the monochrome attribute will be used.

Logical attributes are generally categorized by function or purpose. For example,

some of the pre-defined logical attributes of Windows for C are: LNORMAL, LHIGHLITE,

LERROR, LMESSAGE. You can also have logical color attributes, which associate a
given color attribute with a chosen monochrome attribute. For example, LRED and
LGREEN are pre-defined logical attributes. LRED provides a red foreground color
against a blue background in color modes and white foreground against black back-
ground in monochrome modes.

Table 3.2 lists the pre-defined logical attributes, together with associated mono-
chrome and color attributes.

You can change the physical attributes associated with the pre-defined logical
attributes and you can define as many additional logical attributes as you wish.

System Logical Attributes and Window-Specific Logical Attributes

When logical attributes are being used, there will always be system logical attrib-

utes. These are pre-defined by the system (although you can modify the definitions)
and can be used to write in any window. For most applications, the system logical
attributes will suffice.

For some applications, primarily in developing software tools, you may wish to have
logical attributes that are separate from those of the system. Windows for C allows
you to define one or more additional sets of logical attributes and assign a specific
set to be used with each window. When you do not assign a set to a window, the
system logical attributes will be used by output functions.

System logical attributes will be described first.
CHANGING THE PHYSICAL ATTRIBUTES OF LOGICAL ATTRIBUTES

The physical attributes that are associated with each system logical attribute are
specified in a logical attribute table, datt_tbl[J[] contained in file att_glob.h. This
table has a row for each pre-defined logical attribute, and each row has two col-
umns. The first column contains the physical attribute to be used in monochrome
modes and the second the one to be used for color modes.

The output functions will use the Column 0 (first column) entry for IBM video modes
0, 2, and 7 (the black and white and monochrome/adapter modes) and Column 1 for
modes 1 and 3 (color modes).

To change the physical attributes associated with a logical attribute, edit file
att_glob.h and change the entries in the logical attribute table datt_tbl[][]. For
example, the row in the table for LNORMAL now reads:

{NORMAL, c_att(WHITE, BLUE)}, /*LNORMAL %/

NORMAL, WHITE, and BLUE are #defined values of physical attributes (see Table 5.1
for a complete listing of #defined physical attributes). Function c_att() returns the
value of a physical attribute byte. The first argument in c_att() specifies the
foreground color and the second argument specifies the background color.

Windows for C Chapter 5
Version 4.0 '

To change LNORMAL so that GREEN on RED would be displayed in color modes, make
the LNORMAL line read:

{NORMAL, c_att(GREEN, RED)}, /*LNORMAL */

You can change the colors or monochrome attribute for any logical attribute in similar
fashion. See the later section in this chapter for more information on how to specify
physical attributes.

ADDING NEW LOGICAL ATTRIBUTES

As supplied, the system logical attribute table defines 19 logical attributes and
reserves space for 13 more. You can add as many logical attributes as you wish
onto the end of this table.

Warning: The first 32 positions in the logical attribute table are reserved for system
use. If you use any of these positions to define new logical attributes, you may
conflict with definitions used within the system at some point in time. At present,
only the first two logical attributes are used internally within Windows for C, and
only the first 11 are used by Windows for Data. This may change at a later time.

To add a logical attribute, you need to take 3 steps: 1) #define the name for the
new attribute, 2) change the parameter for the number of logical attributes, and 3)

add the logical attribute to the logical attribute table.

We will go through these steps for an example: creating the logical attribute
LSTATUS.

Step 1: Define a Logical Attribute Name

Logical attribute names are #defined in def_att.h. Edit this file and go to the last
entry. The last several entries currently read:

#define LAVR11 30 /*reserved logical attribute */
#define LAVR12 31 /*reserved logical attribute */

Add the new entry to the end and give it the next number in sequence:

#define LAVR11 30 /*reserved logical attribute */
#define LAVR12 31 /*reserved logical attribute */
#define LSTATUS 32 /*logical status line attribute*/

Step 2: Change the Number of Logical Attributes

At the top of def_att.h, the number of logical attributes is #defined as LATTQ. This
originally is set to 32. There are now 33 logical attributes (note that the attributes
are numbered starting with 0):

#define LATTQ 33 /*number of logical attributes*/

Step 3: Add the New Definition to the Logical Attribute Table

Edit file att_glob.h and go to the bottom of datt_tbl[]J[], which now reads:

{g, 0}, (0, 0}, {0, 0) /*RESERVED */
Yi

Windows for C Chapter 5
Version 4.0

and add the physical attributes you want to use for LSTATUS. In the example, we
use REVERSE for monochrome and BLUE on CYAN for color modes. The last two lines
now read:

{g, ¢}, (0, 0}, {2, 0), /*RESERVED */
{REVERSE, c_att(BLUE, CYAN)) /*LSTATUS */
¥3

Note: A comma has been appended to the previous last row. The new last row is
not terminated by a comma.

ADDING NEW COLUMNS OF LOGICAL ATTRIBUTES

The system logical attributes, as provided, have only two categories of physical
attributes: monochrome modes and color modes. You may wish to make further cate-
gories. For example, the IBM Enhanced Graphics Adapter allows high-intensity colors
in the background as the default setting. You may wish to make a separate column
for this adapter. Or you may wish to support an alternate color card that has more
colors than the IBM cards.

There are two steps required to add an additional column of physical attributes to
the logical attribute table: 1) change the parameter for the number of physical
attributes for each logical attribute, and 2) add the new column to the logical
attribute table.

Step 1: Change the Physical-Attribute—-Quantity Parameter

The number of physical attributes per logical attribute is #defined in def_att.h as
PATTQ. There will be three when you add a column:

#define PATTQ 3 /*number of phys. atts per logical att*/

Step 2: Add a New Column of Physical Attributes

Add your choice of attributes to each row in datt_tbl[]J[] in att_glob.h. For example,
you might want LMESSAGE to appear as black on light blue. The line in the attribute
table would read:

{NORMAL + HIGH_INT, c_att(WHITE + LIGHT, BLUE), /*MESSAGE */
c_att(BLACK, LIGHT + BLUE)}, /*MESSAGE */

When you define a new column of logical attributes, you need to add code to use
this column under the appropriate conditions, as described in the following section.

INITIALIZING THE LOGICAL ATTRIBUTE ARRAY

When the system is initialized by init_wfc(), the appropriate column of the logical
attribute table is copied into a single-index logical attribute array, latt[]. The
entries in this array specify the physical attributes used by the output functions
when given logical attributes are specified.

When you add a new column of logical attributes, you must see that they are copied
to latt[] under the appropriate circumstances. Add the code to do this in a

subroutine u_init(), which will be automatically called at the end of the initialization
routine.

Windows for C Chapter 5
Version 4.0

Coding Example

Listing 5.1 provides an example of how u_init() can be written to initialize the
system logical attribute array. It assumes that a third column (column 2) of physical
attributes has been defined to be used when the IBM Enhanced Graphics Adapter (EGA)
is being used in a color mode. The added column has been reflected in the value
of PATTQ, which has been changed to 3 (see above).

When the EGA is present and in a color mode (1 or 3), u_init()'uses s_latt() to copy
column number 2 (based on a zero origin) of the attribute table to latt[], the system
logical attribute array.

To know when to call s_latt(), function u_init() makes use of system globals
_ibmega, which is set to 1 when the EGA is present, and v_mode, which contains the
current video mode number. Function s_latt() makes use of system globals _attrowgq,
which contains the number of system logical attributes, and _attcolg, which contains
the number of columns in the system logical attribute table. For more information

on s_latt(), see its reference page in Appendix 2.

CONSTRUCTING AND USING WINDOW-SPECIFIC LOGICAL ATTRIBUTE TABLES

System logical attributes provide a very flexible means of color control and will
suffice for most applications. We have provided for logical attributes separate from
the system ones primarily for our own development of software tools, but they are
available for your use. We expect to use them in a forthcoming data-entry screen
generator. They will allow us to maintain our own logical attributes within the
editor, while simultaneously allowing the user to specify a set of logical attributes
to use with the data forms he or she creates.

The WINDOW structure that controls output to a window contains a member whose
purpose is to allow window-specific logical attributes. When this member is not
NULL, the system assumes it points to a logical attribute array; Window output
functions will use the contents of this array, rather than the system array, to
determine the physical attribute that corresponds to a specified logical attribute.

To use logical attributes other than the system ones, you must:
1) define a new, separate logical attribute table,

2) provide code in u_init() (see above) to copy the appropriate column of the
attribute table into a separate logical attribute array that you define, and

3) place a pointer to your logical attribute array in each window that is to use
this array rather than the system array.

To illustrate the principles, we have constructed a two row by two column logical
attribute table, uatt_tbl[]J[], and written a simple program that writes output to a
window with these "user logical attributes". The code is contained in Listing [5.2].
Included in the listing is the code for a version of u_init() that will copy the
appropriate column of the logical attribute table to the logical attribute array, ulatt[].

Windows for C Chapter 5
Version 4.0

Setting a Window to Use a Specified Logical Array: sw latt()

In the example in Listing [5.2] the set-window-member function sw_latt() is used to
set the window to use ulatt[]. The form of this function is:

sw_latt(latt, &wn)
char latt[];
WINDOW wn;

Note: When a pointer to an array is required in function arguments or elsewhere, the
name of the array, without terminal ’[]’s, is used. In C, the name of an array is a
pointer to the beginning of the array.

USING PHYSICAL ATTRIBUTES

SETTING THE SYSTEM TO USE PHYSICAL ATTRIBUTES

As you receive Windows for C, it is set up to use logical attributes rather than
physical attributes. If you use physical attributes in the system as configured, you
will create errors.

You can easily change to using physical attributes. Logical attributes are imple-
mented in the system by a #define statement near the top of bios.h:

#define ATT LOGIC /*use logical attributes */

To use physical attributes, all you need to do is to comment out or remove this
statement:

/* #define ATT LOGIC use physical attributes * [
Alternatively, you can #undef ATT_LOGIC in your application program:
#include <bios.h>

#undef ATT LOGIC
#include <window.h>

If you use this approach, the undefine statement must be inserted between the two
#includes.

Users of Windows for Data take note: logical attributes are required; you cannot use
physical attributes.

Physical and Logical Attributes Don’t Mix

Be aware that once you set the type of attributes that the system is to use, you
must be consistent throughout the program. You cannot mix physical and logical
attributes in a single program.

5-8

Windows for C Chapter 5
Version 4.0

You should make your subroutines use physical or logical attributes conditionally if
you are going to make some programs that use physical and some that use logical
attributes. When and only when logical attributes are being used, the global
variable _lattsw will be 1. Use this in the conditional test, as in the following
code fragment:

if(_lattsw)
sw_att(LNORMAL, &wn);
else
sw_att(NORMAL, &wn);

MONOCHROME ATTRIBUTES

The IBM Monochrome Display Adapter has three "base" attribute states: normal,
reverse, and underline. Values are #defined for these attributes: NORMAL, REVERSE,
and UNDERLINE. These base states can be modified by adding to them the values
#defined for HIGH_INT (high intensity) and BLINK.

To set window wn to produce normal (white-on-black) text in high intensity, with
blink:

sw_att(NORMAL + HIGH_INT + BLINK, &wn);

With the exception of UNDERLINE, these monochrome attributes will produce the same
effects on IBM color adapters operating in black and white modes (modes 0 or 2).

AVOID UNDERLINE IN SYSTEM LOGICAL ATTRIBUTES

UNDERLINE is not supported by either the Color/Graphics Adapter or the Enhanced
Graphics Adapter (except when emulating the Monochrome Adapter).

If you use UNDERLINE in the definitions of the monochrome physical attribute for a
system logical attribute, the attribute will not be properly translated in the black and
white modes (0 and 2) on either color adapters.

If you wish to use UNDERLINE, you will need to have separate logical-attribute
columns for the Monochrome Adapter and for the black and white modes of the color
adapters.

MANAGING WINDOW COLORS

Differences Between the Enhanced Graphics and Color/Graphics Adapters

The Color/Graphics Adapter (CGA) is the original color adapter supplied by IBM. In

1984, the Enhanced Graphics Adapter (EGA) was introduced. The EGA provides
compatibility with the CGA. Programs built to run on the CGA will run identically on the
EGA.

One important difference between the two adapters is that the EGA can write output to
the screen at any point during the video cycle without causing "snow," whereas this
cannot be done on the CGA. Windows for C detects the presence of the EGA and
takes advantage of its faster screen output capability.

Major differences between the adapters are in graphics modes, which Windows for C
does not support, but there are also differences in the text modes. There is a wider
choice of colors on the EGA, and a special BIOS call installed on the EGA allows you
to choose between using the LIGHT modifier for background colors and the BLINK

5-9

Windows for C Chapter 5
Version 4.0

modifier for foreground colors (see below). The default setting of the EGA has blink

enabled, as in the CGA, and accepts the same logical attribute definitions as the
CGA.

The discussion here assumes that the EGA is operated with its default settings, so it
behaves like a CGA. Windows for C does not provide special support for the EGA. If
you modify the default settings of the EGA, you are responsible for adapting the
attribute definitions to fit the settings you choose.

Foreground and Background Colors

Both foreground and background colors in a window are specified by the attribute
byte stored in the attribute member of a window. A function is provided to simplify
setting the window attribute value for different colors:

color_wn(foreground, background, &wn);

The eight basic color values that can be assigned these arguments are #defined in
computer.h (which is nested within bios.h): BLACK, BLUE, GREEN, CYAN, RED,
MAGENTA, BROWN, and WHITE.

For reference, the attribute definitions are listed in Table [5.1].

Adding the value LIGHT to the basic colors yields the second eight of the 16 colors
available as foreground colors in the text modes, e.g. specifying LIGHT + RED as the
foreground parameter will provide light red characters. For convenience, the color
LIGHT + BROWN is #defined as YELLOW. Note that on some monitors BROWN will also
show up as yellow.

The LIGHT colors (including YELLOW) are not supported for background colors
(because the color values would then overlap the attribute bit that creates blinking).

Adding BLINK to the foreground parameter value will cause blinking.
The attribute byte value also can be set directly by using c_att(), which accepts
foreground and background colors as inputs and returns the corresponding color
attribute. For example,

sw_att(c_att(RED + LIGHT + BLINK, BLUE), &wn);
or more directly,

wn.att = c_att(RED + LIGHT + BLINK, BLUE);
will set the window attribute for blinking light red characters on a blue background.
Underlining is not supported by the Color/Graphics adapter. Specifying the UNDERLINE
attribute for text to be displayed on the Monochrome Adapter will show up on a color
display as a blue character against a black background. Conversely, characters
specified as having a BLUE foreground attribute will- be appear as an underlined
character on the Monochrome Adapter display.
A foreground color of BLACK and a background color of WHITE will display as

REVERSE on the Monochrome Adapter display. All other basic colors will display on
the Monochrome Adapter as NORMAL, and the LIGHT colors will display as HIGH_INT.

5-10

Windows for C Chapter 5
Version 4.0

Warning: For the window to appear on the screen with a desired background color
inside the window, the window attribute must be specified before setting the window
on the screen with set_wmn().

To set the attribute to a color, call color_wn() after calling defs_wn() or def_wn() but
before calling set_wn().

Changing the Color of Window Borders

A separate member in the window structure specifies the attribute of window borders.
The default value for physical attributes is NORMAL, which displays as white on
black. To change the value, use the "set window border-attribute" function in
combination with c_att():

sw_bdratt(c_att(foreground, background), &wn);
For example, to make the border RED on BLUE:

sw_bdratt(c_att(RED, BLUE), &wn);
You must change the border attribute prior to calling a function that draws the border
on the screen. If the window is already on the screen, changing the border attribute
will have no effect until the border is redrawn. Chapter [3] describes how to change

borders for windows displayed on the screen.

Removing Color Windows: Maintaining the Background

Windows for C will restore the background color of the screen when removing
overwrite windows from the screen. The space occupied by the window will be
replaced with spaces of the color of the background.

A function is provided to change the background color:

color_sc(background);
Functions cls() and unset_wn() will clear the screen to the background color set by
color_sc(). To set the screen color initially, call color_sc() with the desired
background color and then call cls(). Overwrite windows that are later removed from
the screen with unset_wn() will be replaced with the same background color.
The function color_sc() assigns a color value to the background section of the global
variable cl_att. See "Controlling the Color of the Screen Background" in Chapter 3 for
more information on how cl_att is used by the system.

SELECTING THE SCREEN BORDER COLOR

When the Color/Graphics Adapter is in use, a border can be drawn around the screen.
The color of the screen border is specified by:

vid_bdr(color);
All sixteen color values may be specified for the border.
A call to this function will have no effect when the Monochrome Adapter is in use.

Warning: Only a physical attribute can be specified as an argument in this
function.

Windows for C Chapter 5
Version 4.0

"HELLO, WORLD" WITH PHYSICAL COLOR ATTRIBUTES

In Listing [5.3], hello_wn.c is rewritten as hello_wc.c to provide a demonstration of
using physical attributes to produce color windows. The program also illustrates the
use of vid_mode() (see below) to switch between video adapters on systems that
have both the Color/Graphics and Monochrome Adapters (and corresponding monitors).
Program hello_wn.c is included on the system diskette.

This demonstration program will only display well on a color monitor. If you are
going to provide color in a program for general distribution, use the logical attribute

system.

DETERMINING AND CHANGING VIDEO MODES

The current video mode number is returned by:
rd_mode();

The video mode can be selected from within a program by:
vid_mode(mode);

This function also can be used to switch between the Monochrome and Color/Graphic
Adapters if both are installed.

The values that can be assigned to the "mode" parameter are #defined in computer.h
(which is nested within bios.h). The abbreviations are the same as those used by
the DOS MODE command:

Color/Graphics Adapter Text Modes

BW4 0 ‘ Black and white 40 column screen
BwW89 Black and white 8@ column screen
C049 Color 40 column screen
co8g Color 80 column screen

Monochrome Adapter Mode
MONO Monochrome adapter display
USING GRAPHICS IN PROGRAMS THAT USE WINDOWS FOR C

You can use vid_mode() to access the graphics modes available on color adapters
(see the reference page for vid _mode() in Appendix 2), but graphics modes are not
supported by any of the display functions of Windows for C.

If you want to use graphics and Windows for C in the same program, you can first
save the text-mode screen (using wnO or a full-screen pop-up window declared for
this purpose) and then set a graphics mode. You must not attempt to use the
Window output functions while in the graphics mode. When you are done with graph-
ics, call vid_mode() to set the text mode, and then restore the saved text screen.

5-12

Windows for C
Version 4.0

Coding Example

Chapter 5

The following code saves the screen prior to entering a graphics mode and restores
it upon exit. It makes use of functions sav_wi() and unsav_wi(), which are
discussed in Chapter 8. This example assumes that wn0 has not been used to store

a screen image previously.

int tmode;
tmode = v_mode;
sav_wi(&wnod);
vid mode(6);

vid mode(tmode);
unsav_wi(&wno);

/*¥save current mode
/*save the current screen
/*graphics mode

/*your graphics functions

/*restore original text mode
/*restore text screen, free image

5-13

*/
*/
*/

*/

*/
*/

Windows for C Chapter 5
Version 4.0

This page intentionally left blank.

5-14

Windows for C
Version 4.0

Chapter 6

CREATING AND VIEWING MEMORY FILES

CONTENTS

CREATING MEMORY FILES

Coding Example

Three Steps to Creating a Memory File
Step 1: Declare a File-Record
Step 2: Initialize the File-Record

Error Handling
Step 3: Place Lines in the Memory File

Reading a Memory File from Disk
Error Handling in di_file()

Writing Lines Directly to a Memory File
Warning: Blank Lines In Memory Files
Error Handling in sti_file()

Memory Handling by sti_file()

VIEWING MEMORY FILES THROUGH WINDOWS
Setting a Window to View a File
Viewing a File
Moving the Origin of a Window in a File
Scrolling a File in a Window
Turning off the Top and Bottom File Messages
Performing Operations on a File Displayed in a Window

MODIFYING MEMORY FILES
Accessing Memory-File Lines
Modifying and Replacing Memory-File Lines
Scrolling The Contents of Memory Files

HOW WINDOWS FOR C FUNCTIONS MANAGE MEMORY FILES

CLEARING AND FREEING A MEMORY FILE

Chapter 6

Windows for C Chapter 6
Version 4.0

This page intentionally left blank.

Windows for C Chapter 6
Version 4.0

CREATING AND VIEWING MEMORY FILES

This chapter explains how to build and open windows on memory files. A memory
file consists of a sequence of strings, each of which is terminated by a newline.
Memory files provide an alternative to using the string output functions to write
directly to windows on the screen.

With memory files, you can:
* retrieve and display text files stored on disk
* files can be of any size
* files can be scrolled horizontally or vertically in a window.
* store information off-screen for later display
* capture real-time data for later display
* build and modify menus dynamically
The following chapter explains how memory files can be used for:
help files
menus

* communication display buffers

CREATING MEMORY FILES

CODING EXAMPLE

The following code fragment illustrates the three steps required to create a memory
file and read in a file, help.txt, from the a: drive. The maximum number of lines in
the file is 201 (including an "end of file" line and the maximum length of line that
will be read in is 512 characters. Explanations follow the code.

#define MAXLINES 200
#define MAXCOLS 512

begin main program

FREC mfile;
char *filespec = "a:help.txt";

if(def fr(&mfile, filespec, MAXLINES, MAXCOLS) == 0)

errout("Error creating memory file ", filespec);
if(di_file(&mfile) == 0)
errout("Error reading ", filespec);

Windows for C Chapter 6
Version 4.0

THREE STEPS TO CREATING A MEMORY FILE

Step 1: Declare a File Record

The information needed for managing and displaying a memory file is contained in a
memory file structure of type FREC (file record). The first step in creating a memory
file is to declare a file record:

FREC mfile;

Step 2: Initialize the File-Record

A file record is initialized by:

def fr(&mfile, filespec, maxlines, maxcols)
FREC mfile;

char *filespec;

int maxlines;

int maxcols;

This function assigns values to members of the memory file record specified as the
first argument (mfile, in our example). The other arguments have the follow
interpretation:

filespec: a string specifying the filename (and optionally, the drive and path)
of an ASCII file on disk. This is used if the contents of the
memory file are to read from disk or are to be stored to disk. If
the memory file will not refer to disk files, this can be specified
as NULLP (NULL pointer).

maxlines: the number of lines in the memory file (not including a position for
an end of file marker)

maxcols: The maximum number of columns allowed on any one line, not
including the newline and terminal null that end each line.

Function def fr() also allocates storage for a memory file array, which is an array of
pointers to FLINE structures. FLINE structures are used to hold information on each
line in the memory file. The size of the memory file array equals the specified
maximum number of lines in the memory file, plus one additional space for an end-
of-file marker. All elements of the array are initialized to NULLP. A pointer to this
array is assigned to a member of the memory file record:

mfile.farray pointer to an allocated array of FLINEPTRS

See Appendix 5 for a description of the members of the FREC structure and their use
in managing memory files.

Error Handling

If there is insufficient memory to allocate the memory file array, def fr() function will
return a zero and set _wn_err to MEMLACK.

Windows for C Chapter 6
Version 4.0

Step 3: Place Lines in the Memory File

Information can be placed in a memory file either from a disk file or by writing
strings directly to the file. These two alternatives are described in the following
sections.

READING A MEMORY FILE FROM DISK

In our coding example above, lines were read from a file on disk by calling the
"disk-in_file" function:

di_file(&mfile)
FREC mfile;

This function performs all the work of reading lines from the disk file and adjusting
values in the FREC so that the video-file function (see below) will work properly.

See the reference page on di_file() in Appendix 2 for more details.

Error Handling in di file()

If di_file() is successful, it returns a 1. Function di_file() can encounter a number
of different errors. If it encounters a fatal error (one that prevents all lines of the
file from being read, it sets global error variable _wmn_err to a code that indicates
the type of error and returns a 0. The possible fatal errors and codes are:

Error Error Code
Unable to open file ERR_OPEN
Error reading file READERR
Insufficient memory to copy file MEMLACK
File lines exceed maxlines FILETOOBIG

When di_file returns a zero, you can check _wn_err to determine the cause of error.
See Appendix 6 for more information on system error handling.

Function def fr() specifies the maximum number of lines that can be placed in the
memory file. If the file to be read in has more lines than maxlines, some of the
lines will not be read in. If you want to view the truncated file, you can do so. If
a line in the disk file is longer than maxcols, the line transferred to the memory file
is truncated at that length, but processing continues.

Source is provided for di_file() so that you can modify it to work with a different
file structure than the sequential array used here.

WRITING LINES DIRECTLY TO A MEMORY FILE

Instead of reading lines from a disk file to the memory file, you can write strings
directly to the memory file, using the "string-in_file" function:

sti_file(st, frow, &mfile);
char *st;

int frow;

FREC mfile;

Argument st is the string to be placed in the file, frow is the row (0 origin) of the
memory file in which a copy of the string is to be placed.

6-5

Windows for C Chapter 6
Version 4.0
Uses of function sti_file() include:

* building menus for display using our menu2() function

* storing strings of information off-screen for later display

* transferring lines from an edit buffer to an underlying memory file

Warning: Blank Lines In Memory Files

If you want a blank line in a memory file, you must explicitly write a line consist-
ing of a mewline character, ’\n’, on the desired file row. After a memory file is
initialized, all lines in the file are "empty." The file viewing functions described
later in this section will stop displaying lines at the first empty file line. You must
write each line of the memory file up to the last line that you want displayed. This
is done automatically by di_file(), but you must ensure that this is the case when
creating memory files using sti_file().

Error Handling in sti file()

If the string is successfully placed in the memory file, sti_file() returns a one. If
sti_file() encounters an error, it will set global error variable _wn_err to a code that
indicates the type of error and returns a zero. The possible errors and codes are:

Error Error Code
Insufficient memory to copy string MEMLACK
File line number exceeds maxlines FILETOOBIG

When sti_file returns a zero, you can check _wn_err to determine the cause of error.
See Appendix 6 for more information on system error handling.

The operation of sti_file() is subject to the values of maxlines and maxcols placed
in the memory file record by def fr() (see above). The second error listed above
occurs if frow exceeds maxlines.

If the string to be copied is longer than maxcols, the string transferred to the
memory file is truncated at that length, and sti_file() returns a -1. You can use the
-1 return to ensure that you place all of long strings in the memory file. The
following code fragment will copy long strings on multiple lines, if necessary:

int val;
char *gstp;
int frow;
FREC mfile;

[initialize file, point stp to string information.]

Windows for C Chapter 6
Version 4.0

while((val = sti_file(stp, frow, &mfile)) <= 0)

{
if(val == 0)
{
err_proc(); /* process error */
break;
)
stp += mfile.fmaxcol /* advance stp */
frow++; /* advance file row */
}

If the string is not fully copied by a call to sti_file(), the string pointer is advanced
by the number of characters copied and sti_file() is called again. The string is
advanced by the value of mfile.fmaxcol. (The mfile member fmaxcol equals the value
of maxcols specified in def_fr(), and this is the number of characters placed on the
file row when the string length exceeds the limit.)

The while loop will exit when the return is > 0, meaning that the copy has been
successfully made.

Memory Handling by sti file()

Function sti_file allocates memory from the heap (via malloc()) to hold a copy of the
string passed as an argument. To simplify replacing lines in a memory file, memory
allocated previously for the line being replaced is automatically released by

sti file().

VIEWING MEMORY FILES THROUGH WINDOWS

SETTING A WINDOW TO VIEW A FILE

To view a memory file through a window, first place a pointer to a file record (FREC)
in the window structure with:

sw_mfile(&mfile, &wn);
VIEWING A FILE

After the file record has been referenced in a window structure, the window can be
placed on the screen and the file displayed within it by a call to the "video_file"
function:

v_file(&wn);
Warning: If you have created a memory file using sti_file() and not all of the file
can be viewed, check your code to ensure that you have placed newlines on all
blank lines. The file viewing functions will stop display at the first empty file line.

See above: "Warning: Blank Lines in Memory Files" for more information.

Moving the Origin of a Window in a File

The file record contains the location where the origin of the window will be placed
in the file by v_file(). When initialized, the file record sets the window origin at
the file origin. You can change the location of the window in the file with the
"place_memory-file-window" function:

Windows for C Chapter 6
Version 4.0

pl_mfwn(frow, fcol, &wn);
int frow;

int fcol;

WINDOW wn;

The values of the memory file row, frow, and column, fcol, are measured from a 0
origin.

For example, to view the memory file referenced in wn through a window placed at
row 5, col 10 of the file:

pl_mfwn(5, 10, &wn);
v_file(&wn);

Source for v_file() is provided to allow you to modify it.
SCROLLING A FILE IN A WINDOW

You can display a memory file in a window and then give the user the ability to
scroll through the file using the cursor-pad keys with the "view-scroll_file" function:

vs_file(exit_key, &wn);

The user will remain within vs_file() until he presses exit _key. See computer.h for
key definitions.

Warning: If you use a key that returns an "extended code", you must use the
negative of value #defined in computer.h. For example, if you want <F10> to be the
exit key, use:

vs_file(-K_F10, &wn);

Table 6.1 lists the keys implemented by vs file(). The keys assigned to the cursor
functions are assigned in k_vcom(), the function used by vs_file() to implement
scrolling.

Source is provided for k_vcom(); so you can change key assignments and add other
key functions.

Warning: If you have created a memory file using sti_file() and not all of the file
can be viewed, check your code to ensure that you have placed newlines on all
blank lines. The file viewing functions will stop display at the first empty file line.
See above "Warning: Blank Lines in Memory Files" for more information.

Turning off the Top and Bottom File Messages

In the default setting, vs_file() will display "Top" and "Bottom" of file messages in
the window. The display of these messages can be switched on and off by:

s_tbfmsg(switch);

where switch can be either ON or OFF.

6-8

Windows for C Chapter 6
Version 4.0

PERFORMING OPERATIONS ON A FILE DISPLAYED IN A WINDOW

As written, vs_file(), does not allow any functions to be executed on a memory file,
other than the scrolling functions provided by k_vcom(). Source is provided for
vs_file() to allow you to modify it to call your own functions. You can use vs_file()
as the starting point for building a simple editor, or you can perform more limited
operations by assigning the desired operations to function keys and checking for
these keys within the key-processing loop of vs_file().

MODIFYING MEMORY FILES

ACCESSING MEMORY-FILE LINES
You can access a line in a memory file with:
char *file_lnp(frow, &mfile);

which returns a pointer to the specified line in the memory file. Thus, to write the
contents of file row number 5 (the sixth line) to a window, you could use the
following code fragment:

char *file Inp();
char *stp;

stp = file_lnp(5, &mfile);
v_st(stp, &wn);

MODIFYING AND REPLACING MEMORY-FILE LINES

If you wish to modify a line in a memory file, copy the contents of the desired line
to a buffer. Make the modifications in the buffer, and then use sti_file() to write
the contents of the buffer back to the file. For example, to change a line to all
upper case:

char stbuf[81]; /* file lines no more than 89 char*/
char *file 1np();

char *stp;

int frow;

/*change file row 5 to upper case * /
frow = 5;
stp = file 1np(frow, &mfile);

/*copy contents of file line to buffer */
strepy(stbuf, stp); /*standard library function */
/*modify contents of buffer to be all upper case */
stp = stbuf; /*start at beginning of buffer */
while(*stp !'= '\0')

toupper (*stp++); /*standard library function */
/*replace file line with contents of buffer */

sti_file(stp, frow, &mfile);

Windows for C Chapter 6
Version 4.0

In this example, which does not change the length of the file line, it would have
been possible to do the operations directly on the file line, rather than using a
buffer. The example used the buffer to illustrate the procedure that is required when
the operation increases the length of the file line.

Note that when sti_file() is used to write to a file row that already contains a file
line, as in the above example, the memory used to hold the original line will
automatically be freed before the new line is installed in the file.

SCROLLING THE CONTENTS OF MEMORY FILES

The lines in a memory file can be scrolled up or down, creating space for the
addition of one or more new file lines without overwriting any existing lines.

The scrolling of lines in a memory file is different than scrolling a window over a
memory file. When the lines of a memory file are scrolled, the positions of the
lines in a file are actually changed; lines scrolled beyond the top and bottom of the
file are lost. When a window is scrolled over a memory file, the contents of the
memory file are not changed in any way; only the viewing window is changed.

The file scrolling function is:

scrl file(nrows, dir, beg_row, &mfile)

int nrows; number of rows to scroll

int dir; direction to scroll

int beg_row; starting row of scroll region
FREC mfile; FREC structure

This function will scroll in either direction, starting at the specified file row number.
By specifying the #defined value ALL_ROWS as the value of beg_row, the entire file
will be scrolled.

When lines are scrolled in a memory file, the blank lines that are created contain a
single newline character, ’\n’. Use sti_file() to replace the "empty" lines with text.

For more details and an example, see "Managing An Offscreen Display Buffer" in
Chapter 7.

HOW WINDOWS FOR C FUNCTIONS MANAGE MEMORY FILES

When a memory file is created by a call to def_fr(), space is allocated for an array
of pointers equal to the number of lines in the memory file plus one. All of these
pointers are set equal to NULLP (a null pointer). When lines are written to the
memory file by sti_file() or di_file(), the NULLP’s are replaced by pointers to the
specified lines. If the file is completely filled with lines, the last position in the
array of pointers will still equal NULLP, but all other positions will contain the
addresses of the file line strings.

The functions that allow you to display a memory file for viewing, v_file() and
vs_file(), treat the first NULLP ("empty line") detected in the array as an end-of-file
marker. Any file lines that follow the first NULLP will not be displayed.

For more detailed information on the internal management of memory files, see
Memory File Structures in Appendix 5.

Windows for C Chapter 6
Version 4.0

CLEARING AND FREEING A MEMORY FILE

When you no longer need the contents of a memory file, you can free the memory
allocated to hold the contents by calling:

free_file(&mfile)
FREC mfile;

Note: This function should have been named clear_file() because it does not
actually free the file. Rather it clears the contents of the file. The array of
pointers to file lines will still exist after this function returns, but all of the lines
of the file will be empty. You can place new lines in the memory file with
sti_file().

If you do not want to use a file further and want to free the memory allocated for
the array of pointers to file lines, you must free this memory by a call to:

free_mem((char *)mfile.farray);

6-11

Windows for C Chapter 6
Version 4.0

This page intentionally left blank.

6-12

Windows for C
Version 4.0

Chapter 7

HELP FILES, MENUS, AND OFF-SCREEN BUFFERS
CONTENTS

USING A POP-UP HELP FILE

Preparing the Help File

Reading Help Files Into Memory

Displaying Files

Coding Example

Multiple Help Files
Changing the Filename of a Memory File
Coding Example

CREATING AND DISPLAYING POP-UP MENUS
Preparing to Call a Menu
Step 1: Creating a Menu Memory File
Menu Format
Placing the Menu in a Memory File
Defining the Menu Display Window
Note to Previous Users of Windows for C
Pointing To the Memory File in the Display Window
Calling the Menu
Coding Example of a Menu
Menu Demonstration Program

MANAGING AN OFF-SCREEN DISPLAY BUFFER
Memory Files as an Alternative to Virtual Screens
Using a Memory File as an Off-Screen Buffer
Scrolling the Contents of a Memory File
Coding Example

Chapter 7

Windows for C Chapter 7
Version 4.0

This page intentionally left blank.

Windows for C Chapter 7
Version 4.0

HELP FILES, MENUS, AND OFF-SCREEN BUFFERS
This chapter illustrates the use of memory files, introduced in the previous chapter,
to provide pop-up help files and menus and off-screen buffers for the storage of real
time information.

You must read Chapter 6 to understand this chapter.

USING A POP-UP HELP FILE

With the facilities provided by Windows for C, implementing a pop-up help file is
very easy. You prepare the help file with any editor, read the contents into a
memory file, and call the file-display function. These steps are explained in more
detail below.

PREPARING THE HELP FILE

Prepare the contents of the help file using any editor that produces standard ASCII
files. Generally, you will want to format the text to the width of the window that
you plan to use for the help file, but this is not a requirement. Give it the name you

will use in your program.

You could have also have multiple help files, each one covering a different subject.
Multiple files are discussed below.

The program must know where to find the help file. The simplest way is to ask the
user to keep the file on the default drive.

READING HELP FILES INTO MEMORY

Before the help file can be displayed in a window, it must be read into memory.
This can be done either at the beginning of a program or whenever the file is
requested.

Multiple help files can be read in all at once or when requested. If you plan to
read files in as requested, you will need only one memory file. Free the contents

of the file each time you have finished displaying a requested file.

See Chapter 6 for information on creating memory files and placing information in
them.

DISPLAYING FILES

You can display the help file in a window and then give the user the ability to
scroll through the file using the cursor-pad keys with the "video-scroll file" function:

vs_file(exit_key, &wn);

If the file will fit entirely within a window without the need for scrolling, display
the file with:

v_file(&wn);
CODING EXAMPLE
Listing 7.1 shows how a help file can be displayed. The program is included on the

system diskette in file tut_help.c. This example assumes that file help.txt will be

7-3

Windows for C Chapter 7
Version 4.0

available to the program on the default drive. The help file is read in only when
requested and freed after the user is done with it. The help file is called up and
exited by pressing <F1> while within a key processing loop. The key processing

loop exits on <F10)>.

In this example, calling help is the only function within the key processing loop. In
a practical program, there would be other key functions within the loop.

MULTIPLE HELP FILES

Changing the Filename of a Memory File

If you wish to choose from among multiple help files for display, you can use a
variation of the code in Listing 7.1. When help is called, you need to place the
name of the appropriate help file in the mfile structure before calling di_file(). The
file name is in member mfile.fn. Place the name in this member by direct assign-
ment:

FREC mfile;
mfile.fn = "filename.txt";

Coding Example

If the file names were in an array of strings, fnames[], the code to read in and
display the jth file (0 origin) would be:

mfhelp.fn = fname[j];

if(! di_file(&mfhelp)) /*read in help file */
err_out("error reading file ", fname[j]);
vs_file(HELPKEY, &mfhelp); /*turn over to viewer */

free_file(&mfhelp));

Note that this code is identical to the central part of the program in Listing 7.1,
except that the filename is specified before reading in and displaying the file.

CREATING AND DISPLAYING POP-UP MENUS

Windows for C contains a function, menu2(), that simplifies the task of providing
pop-up menus within your programs. (The "2" in "menu2" indicates that this is a
revision of our earlier menu() function.)

Function menu2() will place a pre-defined menu on the screen, allow the user to
move from item to item with the cursor control keys, highlight the current item, and
return a number identifying the item selected by the user. The original screen image
is restored after the selection is made.

The menu can be arranged either horizontally or vertically. The menu can be wider
or longer than the menu window if desired.

Source code is provided for menu2() on the system diskette.

Windows for C Chapter 7
Version 4.0

PREPARING TO CALL A MENU

Before you can call menu2() to get a menu choice, you must prepare the menu and
the display window. The steps involved are:

x Create a menu memory file
% Define a display window for the menu
¥ Point to the menu file in the display window

Step 1: Creating a Menu Memory File

Function menu2() requires that the menu to be displayed be in a memory file. You
can either construct menus with an editor, place them in separate ASCII files on
disk, and read them into a memory file, or you can code them directly in your
program.

Menu Format
* Menus can consist of any number of items.

% Menu items can be arranged in one or more rows, and each row can have one
or more items. The same number of items must be on each row except the
last one.

¥ The same space must be allocated to each item in the menu. Use spaces to
pad items to make them all the same length.

For example, you might have a menu of 6 items, with the longest item 8 characters.
They could be in a vertical format of 6 rows, with each item eight characters. If
you wanted a horizontal format, you could have 1 row of 6 items or two rows of
three items. If you use a horizontal format, make each item 9 characters, including
1 space to separate the menu items when they are displayed.

Placing the Menu in a Memory File

You can prepare the menu with an editor and read it into a memory file with
di_file(). See Chapter 6 for details. Alternatively, you can code the menu lines and
place them in a memory file with sti_file(). Here is a fragment for preparing a
simple menu in code. The menu is two rows of 3 items. ‘BEach item is 10 charac-
ters.

FREC mfile;

def_fr(&mfile, NULLP, 2, 30);
sti_file("Apples Oranges Pears", @, &mfile);
sti_file("Avocados ananas Pineapples", 1, &mfile);

The memory file is first defined and initialized by the call to def_fr(). No name

is specified for the file, because the name will never be referenced. The memory file
will have two rows of thirty characters each. The two calls to sti_file() place the
specified strings in the two rows of the memory file.

Windows for C Chapter 7
Version 4.0

Defining the Menu Display Window

The window for displaying the menu can be of any size. The user will be able to
scroll to the boundaries of the memory file, just as with any memory file. Use

defs wn() to define and initialize the window to the desired size. Remember to allow
for margins and borders when defining the window. Function defs_wn() assigns
margins of 1 on each side of the window. If you do not want these margins, use
def_wn() instead of defs_wn(), or use sw_margin() to change the margins.

For example, the menu size is 30 columns by two rows and you want a single-line
border on the display window, you could define the window with:

defs_wn(&vmenu, 0, 0, 4, 34, BDR _LNP);

This allows 4 columns for the border and the margins, yielding the desired 30
columns for the inside dimensions of the window.

Note to Previous Users of Windows for C

In versions of Windows for C prior to version 4.0, window dimensions had to be
chosen carefully to avoid unwanted horizontal scrolling. In the present version,
horizontal scrolling will not occur as long as the inside dimensions of the window
are at least as wide as a row of the menu, as defined in the call to def_fr() by
maxcol. For example, horizontal scrolling would not occur if you had specified the
window width in the previous example as 36.

Further, there is no need, as there was formerly, to allow a space at the end of a
menu item. The largest menu item in a vertical-format menu can completely fill the
inside of the window.

Pointing To the Memory File in the Display Window

After the memory file and window are both defined, the display window must be made
to point to the memory file containing the menu:

sw_mfile(&mnfile, &vmenu);

CALLING THE MENU

After the menu is placed in a memory file and the display window is defined, the
menu is called to the screen by:

menu2(&wn, qitems, itemlength, rowitems, initial_item);
WINDOW wn;

int qitems;

int itemlength;

int rowitems;

int initial_item;

These arguments have the following meaning:

qitems: the number of items in the menu
itemlength: the number of column positions filled by each item
rowitems: the number of items in a single row

Windows for C Chapter 7
Version 4.0

initial_item: the number (1 origin) of the item where the highlight cursor-bar
should be placed initially

When menu2() is called, the menu is popped up on the screen. The initial item is
highlighted, and control is turned over to the user. The user can move the cursor to
jitems by using the cursor keys. When he presses <(Enter>, the menu is popped down
and the item number (1 origin) of the selected menu item is returned.

Thus, to call up a menu with 7 items arranged in rows of 3 items per row (except
for the last row), with 10 characters per menu item (including padding-spaces), use:

int item_selected;

item_selected = menu2(&menu_wn, 7, 10, 3, 1);
CODING EXAMPLE OF A MENU

Listing 7.2 provides an example of a vertical pop-up menu. The source code is
included on the system diskette as vmenu.c.

The menu for the example is contained in an ASCII file, vmenu.txt (also on the
system diskette). The menu has 10 lines. Each line contains one menu item, and
the longest item is 10 spaces, including one space at the end of the text. The
menu itemlength is 10, items per row (itemrow) 1, and the total number of items
(qitems) is 10.

A window for the menu display is declared as WINDOW vmenu and initialized with the
following characteristics: origin at 0,0; single-line border, left and right margins of
1: overall width of 14 spaces (10 inside borders and margins); overall height of 8
rows (6 inside of borders).

The menu file is read into memory, information messages printed, and control turned
over to the user. Pressing function key <F9)> calls menu2() to display the menu file.
Function k_vcom() interprets cursor-pad keystrokes for moving through the menu.
Pressing <Enter> exits from the menu and the underlying screen is restored. Press-
ing <F10)> exits from the program.

MENU DEMONSTRATION PROGRAM

The system diskette contains source for a demonstration program that incorporates a
pop-up menu in a program that also calls in a text file for display in a window.
Compile and link dem_menu for a further illustration of how pop-up menus can be
configured.

MANAGING AN OFF-SCREEN DISPLAY BUFFER

MEMORY FILES AS AN ALTERNATIVE TO VIRTUAL SCREENS

Some windowing systems provide "virtual screens." Information can be written to
virtual screens without affecting the actual screen display until a call is made to a
function that opens or updates a window onto the virtual screen. This capability is
especially useful for real-time processes, such as communication programs, where
you may want to keep track of incoming information but not to display it constantly.

7-7

Windows for C Chapter 7
Version 4.0

Memory files provide the same capability as a virtual screen (but use much less
memory). Use sti_file() to write strings of data to a memory file, file_Inp() to
access lines in the file, and vs_file() to open a window on the file when desired.

USING A MEMORY FILE AS AN OFF-SCREEN BUFFER

Scrolling the Contents of a Memory File

Using memory files, you can create off-screen text buffers of any desired number of
columns and rows, up to the maximum value of an integer (about 32,000 on the
8086).

The amount of memory used for each line in the buffer will equal (approximately) the
memory required for two pointers plus an integer for each line in the file, plus the
memory allocated to hold the strings actually placed in the file. The memory used
in this buffer can be freed at any time by calling free_ file().

A function, scrl_file() is provided for scrolling lines in a memory file; so it is easy
to write to the buffer until it is full, and then to scroll the file upward by one line
each time you write an additional line to the file.

The file scrolling function is:

scrl_file(nrows, dir, beg row, &mfile)

int nrows; number of rows to scroll
int dir; direction to scroll

int beg_row; starting row of scroll region
FREC mfile; FREC structure

This function will scroll in either direction, starting at the specified file row number.
By specifying the #defined value ALL_ROWS as the value of beg_row, the entire file
will be scrolled.

When lines are scrolled in a memory file, the blank lines that are created contain a
single newline character, ’\n’. Use sti_file() to replace the "empty" lines with text.

If a scrolling operation causes file lines to be scrolled off the top or bottom of the
file, the memory used to hold these lines is freed, and the contents of these lines

can no longer be accessed.

Coding Example

Listing 7.3 is for a function, sti_buf(), that uses scrl_file() to assist in maintaining
an off-screen buffer. Function sti_buf() will place a specified string in the first
empty line of the specified memory file, if space is available. If the file is full,
all of the lines in the file will be scrolled up one line and the specified string will
be placed in the last line of the file.

Upward scrolling of the memory file will cause the first line in the file to be
scrolled off the top of the file and lost. If you want to save this in a permanent
location, you would need to check on whether scrolling will occur before calling
sti_buf(). If scrolling will occur, move the first line to its permanent location and
then call sti_buf(). One way to accomplish this would be to always store the first
line of the file in a temporary location before calling sti_buf(). If the return value
indicates that scrolling occurred, move the first line from its temporary place to
permanent storage. Copy the new first line to the temporary storage and continue.

Windows for C Chapter 7
Version 4.0

Function sti_buf() returns values that tell when file scrolling has occurred and if a
line has been truncated.
Before using sti_buf(), you must first initialize the memory file by calling def_fr().

The source for sti_buf() is included on the system diskette. It is not in the
Windows for C library, but you can add it if you want to use it.

Windows for C Chapter 7
Version 4.0

This page intentionally left blank.

7-10

Windows for C
Version 4.0

Chapter 8
ADVANCED TOPICS, UTILITIES, AND DEMONSTRATIONS
CONTENTS

WINDOW VIEWING OF MULTIPLE FILES
Memory Requirements
Handling Multiple Files
Using the Same Window for More than One File
Overlapping Windows
Multiple Windows on the Same File
Demonstration of Viewing Multiple Files
Managing Multiple Files with Arrays of Structures

MOVING INFORMATION FROM AND TO WINDOWS

Moving the Character Contents of Windows
Window Dimensions: dim_wn()
Allocating Memory for the String: get_mem() and size_wn()
Applications of v_mova()

Using a Window as an Edit Buffer
Coding Example

Copying the Contents of a Window to a File

Moving Character and Attribute Contents of Windows
Coding Example

MOVING, SAVING, AND RESTORING WINDOW IMAGES
Moving Windows
Moving Windows on Memory Files
Moving Windows Under User Control
Saving and Replacing Window Images
Memory Management
Character-Graphics Animation
A Demonstration of Moving Images
Storing Window Images on Disk

HIGHLIGHTING AND CHANGING ATTRIBUTES
Highlighting a Specified Number of Characters

FORMATTING TEXT FOR PRINTING WITH WINDOWS
A Demonstration of Printing Side-by-Side Labels

GRAPHING FUNCTIONS
USING AND MODIFYING SYSTEM GLOBALS
USING ALTERNATIVE DISPLAY ADAPTERS

STRING UTILITIES

Chapter 8

Windows for C Chapter 8
Version 4.0

MISCELLANEOUS UTILITIES
Low-Level Character and String Functions: v_qch() and v_st_rw()
Macros for Window Row and Column Quantities
Error Exit Function
Duplicating Window Structures

DEVELOPING YOUR OWN APPLICATIONS
User-Reserved Pointers
Building New Functions

8-2

Windows for C Chapter 8
Version 4.0

ADVANCED TOPICS, UTILITIES, AND DEMONSTRATIONS
This chapter covers a variety of topics

Viewing multiple files in multiple windows
Overlapping windows

Moving information from windows

Text editing

Saving, moving, and restoring window images
Character animation

Highlighting text and changing attributes
Printing window contents

Graphing functions

Using alternative display adapters
Miscellaneous utilities

String utilities

Also described are demonstration and tutorial programs related to several of these
topics:

Viewing multiple files demo_wn.c
Moving window images dem_cmov.c
Printing window contents prt_labl.c
Graphing Functions dem_grph.c

Source for these programs is included on the system diskette. You will need to
compile and link these programs to obtain an executable file.

WINDOW VIEWING OF MULTIPLE FILES

MEMORY REQUIREMENTS

Chapters 6 and 7 explained how to create memory files and display them in windows.
Subject only to memory limitations, you can have as many files and windows as you
want in your program. The windows themselves require very little memory (about. 50
bytes per window). Memory use will be closely related to the amount of text in the
files (empty lines and trailing blanks use little space). When you are done with a
memory file, you can free the memory used to store the contents of the file by
calling free_file().

HANDLING MULTIPLE FILES

When your program has multiple memory files resident, you can open windows on
them simultaneously. See the previous chapters for the steps required to display a
single memory file in a window. Follow these steps for each file you want to
display.

Using the Same Window for More than One File

You can use the same window to display multiple files, as long as you display the
files sequentially. You can’t have the window on the screen in two locations at the
same time. To display the memory file controlled by FREC mfile in window wnmn, use:

sw_mfile(&mfile, &wn);
vs_file(&wn);

Windows for C Chapter 8
Version 4.0

To display another file in this window, repeat the above statements, using the new
memory file record in the first statement.

Overlapping Windows

Pop-up windows opened onto memory files can overlap one another without creating
problems, as long as the following rules are observed:

Only the top window can be written to, scrolled, or otherwise updated. For most
applications, this is not an important restriction, because normally you will want
to have the window on top when you are going to change information in it.

Remove windows in the order they were placed on the screen. If you do not,
the underlying screen will not be properly restored. This is the normal
sequence. The top window is always the active window and will be the one
from which you call up the next window, which will in turn become the active
window until it is removed from the screen or another window is called up.

Multiple Windows on the Same File

The management structure for viewing memory files was designed primarily for having
one window open on a memory file at one time. You can open multiple windows on
the same file, but you must have a separate memory file record (FREC structure) for
each window. The contents of the FRECs should be identical, except for the
members that specify the location of the window in the file, mfile.wfr and mfile.wfc.
Refer to Appendix 5 for information on the members of the FREC structure.

As an example, consider setting up two windows for the same file. The sequence of
steps would be:

1. Declare two windows and two memory file records:

WINDOW wnl, wn2;
FREC mfilel, mfile2;

2. Take all of the steps required to initialize mfilel and fill the associated
memory file with information.

3. Copy the members of mfilel to mfile2. You will need to copy the following
members:

mfilel.fn
mfilel.fmaxlines
mfilel.fmaxcol
mfilel.farray
mfilel.ln_q
mfilel.c_q
mfilel.wfr
mfilel.wfc

You must fill the memory file before you duplicate the memory file record.
4. Reference the second memory file record in wn2, that is:
sw_mfile(&mfile2, &wn2);

You are now ready to use v_file() or vs_file() with both windows.

8-4

Windows for C Chapter 8
Version 4.0

If you want wnl and wn2 initially to display different parts of the file, use
pl_mfwn() to place the windows in the desired locations before calling them to the
screen.

Warning: Except for the values of mfile.wfr and mfile.wfc, the two structures must
have identical values. If you change any lines in the file (using sti_file()), you
should copy the values of mfile.c_q and mfile.ln_q to the other structure to ensure
that they are the same in both structures.

DEMONSTRATION OF VIEWING MULTIPLE FILES

Included on the system diskette is a source file, demo_wn.c, for a program that
reads in multiple files and allows the user to view them in different windows.
Compile, link, run, and review this program to get a better idea of capabilities for
file management.

For purposes of study, the source code can be printed. It can also be viewed by
running demo_wn.exe, because one of the files which this program permits the user

to view is demo_wn.c.

Managing Multiple Files with Arrays of Structures

Multiple files and windows can be managed by using arrays of structures to define

the windows and file-records. Demo_wn uses an array wn[] to define six windows
and an array fr[] to define four file-records. Standard subroutines can then manage
different windows and files by using different index values in wn[] and fr[].

MOVING INFORMATION FROM AND TO WINDOWS

Chapter 3 described the functions for reading and writing single characters and
attributes in a window. This section describes functions for reading and writing
larger parts of a window in a single call. These "move" functions move information
in both directions, OUT from a window and IN to a window. The functions are
primarily intended for applications, like editing and highlighting, where information is
first read from a window, stored or modified, and then later returned to the window.

MOVING THE CHARACTER CONTENTS OF WINDOWS

You can transfer the character contents of designated parts of a window to a string,
and vice versa, with function "video_move-ASCII":

v_mova(st, wnp, part, direct)

char st[]; string for window data
WINDOWPTR wnp; pointer to a window structure
int part; part-of-window parameter

int direct; direction-of-move parameter

Seven different parts of a window can be moved with this function:

CH the character at the location of the virtual cursor
ENDROW from present location of virtual cursor to end of row
ROW row on which the virtual cursor is located

COL column on which cs is located

Windows for C Chapter 8
Version 4.0

ENDCOL from the present location of virtual cursor to the last row in this
column
ENDWIND row on which the virtual cursor is located to end of window
WIND entire window
The values of the window parts, ENDROW, etc., are #defined in wfc_defs.h.
The direction of the move parameter in the call determines whether the data is
moved out from the screen to a string (direct = OUT) or in to the screen from a

string (direct = IN). The values of IN and OUT are #defined in bios.h.

When you move a string into a window, it will be written with the current window
attribute.

Window Dimensions: dim wn()

Function v_mova() operates on the working dimensions of a window. You can change
the dimensions (using dim_wn()). When a window is set on the screen, the
dimensions are set to INSIDE. This means that only information inside the margins
and borders will be moved by v_mova(). If you want to include the border, you need
to set the working dimensions to FULL. To change the working dimensions of a
window, use:

dim_wn(size, &wn);
int size;
WINDOW wn;

The argument size can be either INSIDE or FULL.

Programming Hint: If you change the working dimensions to full, change them back
when you are done. The value of the working dimensions is maintained in wn.setsw.
If you consistently keep it to INSIDE while a window is on the screen and to FULL

when it is off, you will always be able to tell if a window is on the screen or not,

Allocating Memory for the String: get mem() and size wn()

The string specified in the call must be large enough to hold the character contents
of the portion of the window read out. You can use Windows for C functions to
allocate the required memory from the heap. The following code fragment illustrates
this for a full window:

char *st, *get mem();
WINDOW wn;

if((st = get_mem((size_wn(WIND, &wn)/2 + 1)) == NULLP)
error_process();

Function size_wn() returns the number of bytes within the working dimensions of a
window. It counts two byte for each position in a window: one for the character
and one for the accompanying attribute. This is the amount of space actually filled
by the window in the video display buffer. Because v_mova() moves only characters,
we divide by two, and then add one for the terminal null.

Windows for C Chapter 8
Version 4.0

Function get_mem() calls the standard C library function malloc(). It returns a NULLP
and sets the global error code _wn_err if the requested memory cannot be allocated.
See Appendix 6.

Applications of v_mova()

Use v_mova() whenever you want to store or manipulate the character contents of a
part of the window. We use the equivalent of this function in the library routines
that change the attribute of a part of a window (v_natt()) and that copy the character
contents of a window to a file (copy_wc()) and to a printer (prt_wn()). These
functions are described in later sections of this chapter.

Use v_mova(OUT) to store the character contents of a window in user memory for
later restoration by v_mova(IN).

Because v_mova() does not do word wrap, cursor advance, Or provide other options,
it is much faster than v_st(). You can use this to advantage in many applications.

Function v_mova() is useful in constructing a simple editor, as described in the next
section.

USING A WINDOW AS AN EDIT BUFFER

Function v_mova() can assist in constructing simple editors. To edit a single line,
define a one-row window without borders within which you will operate. Locate the
window where you want it on the screen. It could be placed over existing text or
at a place for the entry of new text. Do not set it on the screen. Window func-

tions will operate properly after a window is defined, whether or not it appears on

the screen.

For entry of text use v_ch() to write to the window. At the simplest level, where
only writing and destructive backspacing are allowed, all you need to write text is
v ch().

If you want to insert and delete characters, you will need to read information to the
right of the cursor and move it one space in the appropriate direction. You can use
v_mova() OUT for ENDROW. This string will include trailing blanks. You can remove
them with strip_wh() (see "String Utilities" later in this chapter). Locate the virtual
cursor where you want to replace the line, and use v_st() to write the string back to
window.

Programming Hint: When editing, it is helpful to disable advance of the virtual
cursor:

sw_csadv(OFF, &wn);

and keep track of it yourself. Otherwise the virtual cursor will sometimes unex-
pectedly advance to the next row.

Do not disable auto-clear-to-end-of-row, because you do want to erase text to the
right of what you write back in to the window.

Coding Example

See the function rd_line(), which appears at the end of the program listing for tutor.c
in Chapter 4.

Windows for C Chapter 8
Version 4.0

COPYING THE CONTENTS OF A WINDOW TO A FILE
Function copy_wc() copies the character contents of a window to a file:

copy_wc(dimen, filename, dmode, wnp)

char dimen; INSIDE or FULL window copy
char *filename; name of the file to copy to
char *dmode; mode of disk operation
WINDOWPTR wnp; pointer to a window structure

The dmode parameter specifies whether the file is to be opened in the FWRITE mode,
which erases contents of the file specified, or FAPPEND mode, which appends the
copied information to existing information in the file. If the specified file does not
exist, it is created. FWRITE and FAPPEND are #defined in wfc_defs.h.

The filename can include the drive and path if supported by your compiler and
version of DOS.

MOVING CHARACTER AND ATTRIBUTE CONTENTS OF WINDOWS

Function v_mov() moves both the character and attribute contents of windows to and
from strings. Its definition, arguments, function are identical to v_moval() (see
above), except that rather than dealing with characters, it deals with attribute-
character pairs.

This function is a low-level function used to build higher-level functions in the
Window library. For most purposes, you will find higher-level functions that are
easier than v_mov().

Because attributes can have the value zero, which is the value of the standard
string terminator, ’\0Q’, the strings in which v_mov() stores information are not
standard strings. To distinguish them from standard strings, they are termed video
strings. Function v_mov() returns the number of bytes it moves to the specified
video string. A terminal null is not appended.

See the discussion of v_mova() above for more information.
Note: The character precedes its associated attribute in a video string.

Coding Example

The following example illustrates the use of v_mov(). This is intended as purely as
an example. The function accomplished in this code is much more easily done using
the library function save_wi(), described later in this section.

To move a window into a video string, obtaining the memory from the heap, use the
following code:

8-8

Windows for C Chapter 8
Version 4.0

char *vst, *get mem();
WINDOW wn;

[declare the window, initialize it, and write in it]
dim_wn(FULL, &wn);
vst = get_mem(size_wn(FULL, WIND, &wn));
v_mov(vst, &wn, WIND, OUT);

You can restore the window at a later time by calling:
v_mov(vst, &wn, WIND, IN);

You do not need to set the window on the screen.

Warning: Do not change window dimensions between calls.

MOVING, SAVING, AND RESTORING WINDOW IMAGES

MOVING WINDOWS

Function mv_wi() can be used to move any type of window from one screen location
to another. It works whether a window is a pop-up or an overwrite window and
whether it is a direct-display window or a window on a memory file. If it is a
pop-up window, the underlying images are properly handled and saved. The function
definition is:

mv_wi(rw, co, &wn)

int rw; screen row of new window origin
int co; screen column of new window origin
WINDOW wn; window structure

Moving Windows on Memory Files

Function mv_wi() stores the image of the window on the screen before making the
move. This is not necessary for windows on memory files, because the window
information is already in memory. You can reduce the transitory memory requirement
(and perhaps move the window faster) by using the following sequence of calls:

unset_wn(&wn);
pl_wn(row, col, &wn);
v_file(&wn);

This is only applicable to windows on memory files.

Moving Windows Under User Control

Be aware that moving window images requires substantial computation. If you are

going to allow a user to move a window dynamically, we recommend that you break
the process into two steps: 1) provide indicators of the window location, such as
reverse video corners or borders, and allow the user to move these with the cursor
keys; 2) when the new location is determined, move the window in one step. This
will look better than moving the window after each cursor movement.

Windows for C Chapter 8

Version 4.0

SAVING AND REPLACING WINDOW IMAGES

Underlying mv_wi() are lower-level functions for storing and replacing window images:
sav_wi(&wn) saves the window image to memory.

unsav_wi(&wn) replaces on the screen a previously saved image and frees the
memory that held the image.

repl_wi(&wn) replaces on the screen a previously saved image and retains the
image in memory.

The window image functions operate on the window image within the area defined by
a WINDOW structure. Window images are the full dimensions of the window, includ-

ing the borders.

Memory Management

Memory allocation is handled automatically by the window image functions. The only
time that you need to be concerned about the memory allocations associated with
using the window image functions is if you have not unsaved previously stored
images. These images will consume memory until explicitly released. If you do not
need the images further and do not want to call unsav_wi(), which will replace the
stored image on the screen, free memory by calling:

free_mem(wn.storp);

CHARACTER-GRAPHICS ANIMATION

The window image functions simplify moving images around the screen. This capa-
bility can be used to create movement and simple animation for games.

The images to be moved can be built with the block-graphics characters provided on
the PC as part of the "extended ASCII" character set. (These extended characters
will be much easier to use if they can be assigned to single keys, using a keyboard
redefinition utility). The images can be built with an editor and then read into a
window using di_file() and v_file(). Alternatively, they can be created directly in a
window with a sequence of calls to v_st(). Place them on the screen in a window
with a null border (bdr_0) and move them as desired with mv_wi().

To create simple animation, create several sequential-movement images, store them
as window images in separate windows, and place and remove them from the screen
in sequence. In this case, you will want to retain the images in memory, so use
repl_wi() to place them on the screen and unset_wn() or cl_wn() to erase them from
the screen.

A Demonstration of Moving Images

The demonstration program dem_cmov.c included on the system diskette shows how
windows can be used to move images around on the screen. Movement is rapid
enough to make it practical for gaming applications. (On the AT, movement is
actually more rapid than desirable. A time-delay should be inserted in the move-
ment loop to slow it down.)

Program dem_cmov was written using physical attributes and illustrates what must be
done to use physical attributes on both black and white and color monitors.

8-10

Windows for C Chapter 8
Version 4.0

STORING WINDOW IMAGES ON DISK
Saved window images can be stored in disk files using standard C library functions.

Save the window image with sav_wi(&wn). Function sav_wi() will place a pointer to
the video string containing the window image in wn.storp.

Open the file in the untranslated or binary mode. Consult your compiler manual for
the appropriate file open command. After you have opened the file, you can write
the video string to the file with the following line of code:

write(file, wn.storp, size_wn(FULL, WIND, &wn));

The size (in bytes) of the video string that holds the image in memory is returned
by size wn(FULL, WIND, &wn).

When you no longer need the stored window image, remember to free the memory
allocated to hold it by calling free(wn.storp).

a
In order to redisplay the stored image, read the file back into a video string and
point to it with wn.storp, then call unsav_wi() or repl_wi(). You will need to use a
window of the same size as the one for which the image was saved.

HIGHLIGHTING AND CHANGING ATTRIBUTES

Highlighting is accomplished by changing the attribute of selected portions of the
screen. A function is provided for this purpose:

v_natt(att, part, &wn);

This function sets the part of wn specified to attribute att. It operates within the
current working dimensions of the window. Seven different parts of a window,
relative to the location of the virtual cursor, can be moved with this function: CH,
ENDROW, ROW, ENDCOL, COL, ENDWIND, and WIND. See the discussion in a previous
section of this chapter under "Moving the Character Contents of Windows" for defini-
tions of the window parts. The values of the window parts, ENDROW, etc., are
#defined in wfc_defs.h.

As an example of changing text attributes, you might wish to highlight a row of text
appearing in a window. To do this, locate the virtual cursor on the desired line and
call:

v_natt(REVERSE, ROW, &wn);

The function v_natt() is not restricted to highlighting but can be used to set any
desired attribute to a specified part of a window.

HIGHLIGHTING A SPECIFIED NUMBER OF CHARACTERS
If you want to highlight less than a row of a window, you can do this in two ways:

* define a one-row window of the desired length, locate it over the text to be
highlighted, and call v_natt() for the window.

* call function v_att() for each position to be changed

8-11

Windows for C Chapter 8
Version 4.0

See the source code for menu2() for an example of the first approach. See Chapter 3
for more information on v_att().

FORMATTING TEXT FOR PRINTING WITH WINDOWS

Window functions can simplify the often-frustrating task of printing independent
groups of text in parallel columns. For example, on an invoice form, you may wish
to have the "Ship To" address adjacent to the "Bill To" address. With standard string
functions, this is relatively complex. With Windows for C, it is easy.

The print window function
prt_wn(&wn);

copies the character contents of a window to a printer. Use this in combination with
other Window functions to format and print text.

You can format independent groups of text side-by-side, or in any other desired
arrangement, by placing windows of appropriate size in the desired locations on the
screen and then using a Window string output function to write the text into the
windows. The windows can be borderless if boxes are not desired around the text.
If you do want borders and your printer cannot print the IBM block-graphics charac-
ters, define a border using a character, such as "*", from the standard character set.

To transfer the formatted text to paper, define a window of width equal to that of the
screen (paper) and of height appropriate to the text that is to be copied to the
printer. Place it in the proper location with pl_wn(), and call prt_wn().

A DEMONSTRATION OF PRINTING SIDE-BY-SIDE LABELS

The system diskette includes a program, prt_labl.c, that illustrates the formatting and
printing capabilities of Windows for C. This program reads labels stored sequentially
in a disk file and places them on the screen in the format required by five-line,
three-abreast labels. The prt_wn() function is then used to print the windows in this
format.

Program prt_labl must be compiled and linked before running. After linking, a sample
file of addresses, test.adr can be printed by issuing the command from DOS, "prt_labl
test.adr".

Complete instructions for running and modifying the program for other label formats
are included in prt_labl.c. In its present form, the program must be re-compiled to
print different formats, but it could be easily changed to allow the user to select

from and modify label formats stored on disk.

GRAPHING FUNCTIONS

Windows for C provides two functions that can be used to draw simple bar graphs in
text modes. One function, v_axes(), draws axes for the graph. The second, v_bar(),
draws the bars. Horizontal or vertical bar graphs can be drawn.

The use of the graphing routines is illustrated in dem_grph(), for which source code
is included on the diskette.

Beyond their direct usefulness, the graphing routines are interesting as examples of

the versatile, non-obvious ways in which windows can help to simplify programming
tasks. Both the axes and bars are drawn by defining windows of the appropriate size

8-12

Windows for C Chapter 8
Version 4.0

and location. The axes are filled with reverse-video spaces and the bars with
block-graphics characters.

USING AND MODIFYING SYSTEM GLOBALS

Windows for C uses a number of global variables to control various aspects of its
operation. All of these global variables are defined in window.h and given external
declarations in vextern.h.

Brief descriptions of the global variables are provided in window.h. You can make
use of the values contained in these variables for your own program. For example:

v_mode contains the current video mode.

v_rwq contains the number of rows in the video display

v_coq contains the number of columns in the video display
_ibmega equals one when an Enhanced Graphics Adapter is present

You can also modify the system global variables, but exercise care, especially with
those variables that specify the location of the video display buffer (see below). Do
not modify _1 ptr, v_contig, or _d_seg.

Global variable tv_upd is part of the system for compatibility with TopView and
Microsoft Windows. It can be set to zero to disable checking for the existence of
these programs. This may be desirable if you are developing a program that you
know will not use TopView or MS Windows, because certain IBM "compatibles" are
incompatible with the code that does this checking. See the chapter entitled
"Microsoft Windows and TopView Compatibility” for more information.

USING ALTERNATIVE DISPLAY ADAPTERS

You can adapt Windows for C to operate with display adapters that have special
features, such as more columns or rows than the standard IBM display adapters. To
do this, you must correctly set the values of the global variables that specify the
size of the screen and the video display buffer. Do this in the special "user-
initialization" routine, u_init(), which is called by the system initialization routine,
init_wfc(). The variables that you must set properly are:

v_seg /* video regen buffer segment */
v_coq /* number of columns in screen display*/
v_rwq /* number of rows in screen display */
v_pbytes /* number of bytes in vrb page */
ADDR v_vrb; /* address of video regen buffer -- */

/* offset and segment * /

The ADDR structure is defined as:

typedef struct addr_struct

{
int off; /*address offset */
int seg; /*address segment */
} ADDR, *ADDRPTR;

You will need to consult the documentation for the display board for the correct
values to assign to these variables.

8-13

Windows for C Chapter 8
Version 4.0

STRING UTILITIES

The library contains several string utilities to assist in editing and entry tasks. See
the listing under stringf.c in Appendix 2 for more details on these functions.

lower_ st(st) Each position in the string is converted to lowercase.

skip wh(st) Skips the leading white space in the string and returns a
pointer to the first non-whitespace character.

stblank(q) Allocates memory to hold a string of length q and the
terminating '\@’ and initializes the string to blanks.
Returns a pointer to the string.

strepyp(d, s) Copies the contents of the source string to the destination
string. Returns a pointer to the terminating '\@' in the

destination string.

strip_wh(st) Strips the trailing white space from the string and
repositions the terminating '\@’.

upper_st(st) Converts the string to uppercase.
Note: the functions that return pointers have been so declared in vextern.h. You do
not need to declare them as functions returning pointers in functions you build. If

you do not like this convenience feature, delete the declarations in vextern.h.

MISCELLANEOUS UTILITIES

LOW-LEVEL CHARACTER AND STRING FUNCTIONS: v_qgch() and v_st_rw()

The lowest-level character output function in Windows for C is:

v_qch(character, g, &wn);

char character; character to write
int q; number of characters to write
WINDOW wn; window structure

This function does not advance the virtual cursor and does not observe window
boundaries.

The lowest-level string output function in Windows for C is:

char *v_st_rw(st, q, &wn)

char *st; string to be put
int q; number of char in string
WINDOW wn; window structure

This function is similar to v_st(), except:
1) you can specify how many characters, maximum, are to be written.

2) only one row of output to a window will be written; the function returns
when it detects a newline.

3) the function does not observe window boundaries.

8-14

Windows for C Chapter 8
Version 4.0

See the reference pages in Appendix 2 for more details on these functions.
MACROS FOR WINDOW ROW AND COLUMN QUANTITIES

Macros have been defined that return the quantities of the rows and columns in a’
window:

row_qty(&wn);
col_qty(&wn);

You will need these quantities for many purposes. As with all macros, be careful of
side effects if you incorporate them in complex expressions.

ERROR EXIT FUNCTION
An error-exit function is available:

errout(stl, st2);
char *stl;
char *st2;

This function will print both strings on the screen at the bottom, one after the other,
and call the system function exit() with an argument value of 1, the normal error exit
code.

Having two strings available is convenient. One can be a fixed message and the
other can be a variable argument. For example, to report an error opening a file
with the name contained in string variable filename:

errout("Error opening file ", filename);

DUPLICATING WINDOW STRUCTURES

A function is available for copying the values of the members in one window into
another:

dup_wn(&dwn, &swn)

WINDOW dwn; destination window structure
WINDOW swn; source window structure

Use this function when you want to replicate a window that has already been
created.

DEVELOPING YOUR OWN APPLICATIONS

The library of functions provided by Windows for C will permit you to efficiently
program just about any screen task you can imagine. To select the best functions
for the task you wish to accomplish, first study the examples provided, and then
look through the summary listing in Appendix 2 that groups the functions by category
of use. Refer to the reference pages for detailed explanations of function and
usage. In many instances, it will be possible to start with the code provided in
one of the demonstration programs, adapting sections of it to your needs.

USER-RESERVED POINTERS

Two pointers are reserved within WINDOW structures for users. You can use these
pointers to refer to information you want associated with a specific window. They

8-15

Windows for C Chapter 8
Version 4.0

can point to other structures, so there is no limit on the number of variables you
can tie to a window structure. These pointers will be maintained in future revisions.

BUILDING NEW FUNCTIONS

The Window library contains an extensive set of primitive functions. These permit
you to construct higher-level functions that meet your needs. The library routines
are flexible and easy to combine. A little thought will usually allow you to quickly
adapt Window functions to meet your special needs.

8-16

Windows for C
Version 4.0

Chapter 9

MICROSOFT WINDOWS AND TOPVIEW COMPATIBILITY

CONTENTS

VIDEO MANAGEMENT UNDER MICROSOFT WINDOWS AND TOPVIEW
How Windows for C Operates Under MSW/TV
Incompatibility With Some IBM PC Compatibles
Program Control of Screen Updates Under MSW/TV
Direct Control of Screen Updates Under MSW/TV

MSW/TV PROGRAM INFORMATION FILES

RUNNING WINDOW DEMONSTRATION PROGRAMS UNDER MSW/TV

Chapter 9

Windows for C Chapter 9
Version 4.0

This page intentionally left blank.

Windows for C Chapter 9
Version 4.0

MICROSOFT WINDOWS AND TOPVIEW COMPATIBILITY

NOTE: In this chapter we use the abbreviation MSW/TV to refer to both Microsoft
Windows and TopView. The compatibility features described in this chapter apply
equally to Microsoft Windows and TopView. Exactly the same functions of Windows
for C are used to interface Microsoft Windows and TopView. The interface routines
were originally written for TopView and, thus, bear names that reflect this origin, but
this does not affect their applicability to MS Windows.

Windows for C (and Windows for Data) are fully compatible with Microsoft Windows
and IBM’s TopView. Programs that use Windows for C for screen output and keyboard
input can operate within a window in MS Windows and TopView and run in the back-
ground.

Programs built using VCS Windows will automatically run under TopView and MS
Windows. You do not need to buy Microsoft’s or IBM’s Programmer’s Toolkits or
incorporate any special code in your programs. Compatibility is handled automatically
by Windows for C, which detects the presence of MS Windows or TopView and
adjusts its screen handling to conform to their requirements.

The Program Interface File (PIF) format is exactly the same in TopView and MS
Windows; thus the demonstration programs for which PIF files are provided on the
system diskette can be run under either TopView or MS Windows.

VIDEO MANAGEMENT UNDER MICROSOFT WINDOWS AND TOPVIEW

Programs that can operate in the background mode under MSW/TV are termed "well-
behaved" or "MSW/TV compatible." There are a number of conditions that programs
must fulfill to be MSW/TV compatible. (See the TopView or Microsoft Windows docu-
mentation for a complete list of conditions.)

The most important and difficult condition for MSW/TV compatibility is that programs
not write information directly to the computer’s video regeneration buffer. This
means either that 1) programs must access the screen only through DOS or BIOS
calls, which put one character to the screen at a time and are, therefore, very slow,
or 2) programs must explicitly deal with MSW/TV’s video management functions.

To permit programs to operate in the background while another program has control of
the screen, MSW/TV provides the capability, via a "Get Video Buffer" function, to
assign each program an individual "video buffer" located in user memory. The
individual video buffers are distinct from the computer’s video regeneration buffer
that controls the information displayed on the video screen; thus output written to
the individual video buffers will not appear on the screen. MSW/TV provides an
Update Video Display function to move information from the individual video buffers to
the regeneration buffer when the program has control of or shares the video display.

HOW WINDOWS FOR C OPERATES UNDER MSW/TV

In normal operation, Windows for C directly writes all screen output to the

computer’s video buffer, providing rapid screen updating. Under MSW/TV, all screen
output is directed to the individual video buffer assigned by MSW/TV. Window output
functions call the MSW/TV Update Video Display function to transfer this information to
the screen when a program is operating in the foreground mode.

Windows for C adjusts to operation under MSW/TV automatically. No special coding

is required. You can write your programs just as you would for operation under DOS.
All of the screen-handling requirements of MSW/TV will be taken care of by Windows

9-3

Windows for C Chapter 9
Version 4.0

for C. Window functions automatically update the video display when in the MSW/TV
environment.

Incompatibility with Some IBM PC Compatibles

Checking for MSW/TV availability causes Windows for C to be incompatible with some
IBM PC compatible computers. On the IBM PC, MSW/TV adds several new BIOS inter-
rupt calls which are assigned to previously unused interrupts. To determine if
MSW/TV is resident, we must call one of these new interrupts. Some IBM PC compa-
tibles use these interrupts to perform other tasks. When this is the case, Windows
for C incorrectly interprets the return values causing the program to crash. This
problem can be eliminated by setting the global variable tv_upd to 0. The variable
tv_upd is found in window.h. When tv_upd is initialized to 0, Windows for C will
not check to determine if MSW/TV is resident.

PROGRAM CONTROL OF SCREEN UPDATES UNDER MSW/TV

The rate at which screen changes occur under MSW/TV can vary dramatically, espe-
cially when the display is controlled by the Color/Graphics Adapter, depending upon
how the MSW/TV Update Video function is used. Each call to the Update function
takes an appreciable amount of time; thus if many calls to this function are made
while updating a single screen, performance will suffer.

We have tried to minimize the number of Update Video calls made by Window func-

tions, consistent with the need to insure that the screen is updated at the end of

each function call. The functions cls(), cl_wn(), mv_rws(), v_f(), mv_wi(), repl_wi(),
unsav_wi(), v_mov(), and v_natt() only make one Update Video call. The character

output functions, v_co() and v_rw(), also make one Update call. The string output ~
functions, v_st(), v_fst(), v_st_nop(), and v_st_rw(), make one Update call per screen

row. Because these last functions generally only write to one or two screen rows in

a single call, there is little performance penalty to updating after writing each

screen row.

The screen updating algorithms used within Windows for C may degrade performance
under MSW/TV when repeated calls to character or string output functions are made
to perform a single screen update. In this case, it may be desirable to disable the
automatic screen-updating capability of the functions at the beginning of the
procedure and to explicitly call the Update Video function at the end of the proce-
dure.

DIRECT CONTROL OF SCREEN UPDATES UNDER MSW/TV

Automatic screen updating of Window functions is controlled by a global variable,
tv_upd. This variable is 1 in the MSW/TV environment and 0 otherwise. The Window
output functions call the MSW/TV Update Video function only when tv_upd is 1.
Thus, automatic updating can be disabled simply by setting tv_upd to O.

A function, v_tv(), is provided in the library for calling the MSW/TV Update Video
function. See the reference page for v_tv() for details of its use.

To directly control screen updating in a part of your program:
1) save the value of tv_upd (so it can be restored at the end);
2) set tv_upd to 0 to disable automatic updating;

3) carry out the procedures for which screen updating is not desired;

9-4

Windows for C Chapter 9
Version 4.0 :

4) 1issue a Update Video call, using v_tv();
5) restore the original value of tv_upd.
For an example, see v_file(), for which source code is provided on the system disk.

MSW/TV PROGRAM INFORMATION FILES

MSW/TV requires specific information about a program in order to rum it. For
programs that you develop, this should be supplied along with the program in a
special file called a Program Information File (PIF), with the extension PIF. This file
is created with a utility supplied with the MSW/TV Programmers Toolkit. (Alterna-
tively, the information required can be supplied to the user, and the user can enter
the information directly into MSW/TV when adding your program to MSW/TV).

When preparing a PIF for your program, you will need to know that Windows for C:
1) does not swap any software interrupt vectors,
2) permits you to answer no to each of the four yes/no questions.

The use of Windows for C in your program does not place any special restrictions on
its use under MSW/TYV.

RUNNING WINDOW DEMONSTRATION PROGRAMS UNDER MSW/TV

Program Information Files (PIFs) have been supplied on the system diskette for
demo_wn(), dem_menu(), and demo_wfd() (Windows for Data); thus these can be run
under MSW/TV without the need to supply program information to MSW/TV. If you
wish to run other demonstration programs under MSW/TV, refer to the previous section
for information you will need to supply MSW/TV.

9-5

Windows for C Chapter 9
Version 4.0

This page intentionally left blank.

Windows for C Tables and Listings
Version 4.0

TABLES AND LISTINGS

ALL CHAPTERS

Windows for C Tables and Listings
Version 4.0

Table %.1: Window Members, Default Settings, and Change Functions

Window Feature Window Member Change Function?
(default value)

Window origin rb [row begin] mod_wn(rb, cb, row_g, col_gq, &wn)
and re [row end]
size cb [col. begin]

ce [col. end]

pop-up popup sw_popup(switch, &wn)
(OFF)

Window name wname sw_name("name", &wn)
(NULLP)

Margins 1 mg [left margin] sw_margin(l _mg, r_mg, &wn)
r mg [right margin]
(9, @)

Attribute att sw_att(attribute, &wn)
(LNORMAL)

Border Attribute bdratt sw_bdratt(attribute, &wn)
(LNORMAL)

Word Wrap options parameter3 sw_wwrap(switch, &wn)
(ON)

Auto Scroll scr_qg# sw_scroll(switch, &wn)
(oN)

Place Cursor options parameter3 sw_plesr(switch, &wn)
(OFF)

Clear end row options parameter? sw_cleor(switch, &wn)
(oN)

Virtual cursor options parameter3 sw_csadv(switch, &wn)

advance (ON)

Logical attributes larray sw_latt(latt, &wn)

Memory file pointer frp sw mfile(&mfile, &wn)

(Continued)

Windows for C Tables and Listings
Version 4.0

Table 3.1 (Continued)

(1)

(2)

(3)

(4)

The "window member" is the declared name of the window-structure member (or
members) that control the given window characteristic. Where the names are
not self explanatory, descriptive name are given in brackets. The default
values assigned to the members by defs_wn() are given in parentheses.

Function arguments denoted as "switch" can have the #defined values OFF (0)
or ON (1).

This window feature is controlled by a bit-value within a single options
integer member, which has the name wrap.

The scr_q member specifies the number of lines that will be scrolled when
an attempt is made to write to a full window. The default value is one
(which is the #defined value of ON).

Windows for C
Version 4.9

Table 3.2: Logical Attribute Definitions

Tables and Listings

Logical Monochrome Color Primary Function
Attribute Attribute Attribute or Purpose

LDOS normal white/black DOS display

LNORMAL normal white/blue Regular text
LHIGHLITE high int. bright white/blue Emphasize text
LREVERSE reverse blue/white Emphasize text
LURGENT high int/blink red/black Urgent attention
LHELP high int. blue/white Help text

LERROR reverse red/black Error messages
LMESSAGE high int. blue/white Information message
LFIELDI high int. cyan/blue Inactive entry field
LFIELDA reverse black/cyan Active entry field
LMARK reverse blue/white Mark text area
LNODISPLAY] blue/blue Non-display of text
LBLACK reverse black/blue Black foreground
LBLUE reverse blue/white Blue on white
LGREEN normal green/blue Green foreground
LCYAN normal cyan/blue Cyan foreground
LRED reverse red/blue Red foreground
LMAGENTA reverse magenta/blue Magenta foreground
LBROWN normal brown/blue Brown foreground
LWHITE normal white/blue White foreground

Logical attribute names are #defined in def_att.h.

assigned to logical attributes in att_glob.h.

Physical attributes are

Windows for C Tables and Listings
Version 4.0

Table 5.1: Physical Attribute Definitions'
Monochrome Mode Color Modes
NORMAL BLACK
UNDERLINE BLUE
REVERSE GREEN
HIGH_INTZ2 CYAN
BLINK2 RED
MAGENTA
BROWN
WHITE
LIGHT2
YELLOW?

(1) The physical attributes listed here are #defined in computer.h.

(2) This is an "attribute modifier" and must be added to one of the basic
physical attributes to form a legitimate value.

(%) This attribute is defined for convenience. It is identical to LIGHT +
BROWN.

Windows for C
Version 4.0

Listing 5.1: Initializing the Logical Attribute Array

Tables and Listings

#include <bios.h>

u_init()
§
int row;
if(_ibmega) /*if EGA active
{
if(v_mode == 1 |! v_mode == 3) /*if color mode
[*copy column 2 of datt_tbl[][] to latt[]
s_latt(2, _attrowg, _attcolq, datt tbl, latt);
}
}

*/
*/

Windows for C Tables and Listings
Version 4.0

Listing'5.2: Window-Specific Logical Attributes

#include <bios.h>
#include <window.h>

#define LODD 0
#define LODDER 1

#define ULATTQ 2
#define UPATTQ 2

uatt_tbl[ULATTQ][UPATTQ]

{
{REVERSE, C_att(RED, GREEN) }, /*LODD */
{REVERSE + BLINK, C_att(GREEN, MAGENTA) } / *LODDER */
¥3
ulatt[ULATTQ]; /*user logical attribute array */
main()
{
WINDOW wn;
init wfc(); /*initialize window system */
defs wn(&wn, 10, 20, 10, 50, BDR_DLN); /*initialize window */
sw_latt(ulatt, &wn); /*set logical attributes to ulatt[] */
sw_att(LODD, &wn); /*use LODD for output in wn */
v_st("This output is written with logical attribute LODD.", &wn);
return;
}
u_init() /*called by init wfc() #/
{
int latt_col;
if(v_mode == 1 || v_mode == 3) /*if color mode */
latt_col = 1t; /*use second column of table */
else
latt_col = 03 /*use first column of table */
s_latt(latt_col, ULATTQ, UPATTQ, uatt_tbl, ulatt); /*copy col to ulatt[]*/
return;
}

Windows for C Tables and Listings
Version 4.9

Listing 5.3: Hello World in Color Using Physical Attributes

/* hello wc.c -- demo of color capabilities using physical attributes */

#include <bios.h>
#undef ATT LOGIC /*set for physical attributes */
#include <window.h>

main()

{
WINDOW wn;
int kc;
vid mode(C080); /*80 column color display */
vid_bdr(YELLOW); /*yellow screen border */
color_sc(GREEN); /*clear attrib. to green */
cls(); /*clear with green spaces */
defs_wn(&wn, 5, 20, 10, 40, &bdr_dln);
color_wn(WHITE, BLUE, &wn); /*must follow defs_wn */
sw_bdratt(c_att(LIGHT + BROWN, BLACK), &wn); /*yellow window border */
set_wn(&wn); /*set window on screen */
v_st("\nHello, world\n", &wn);
mv_cs(24,0, &wnd); /*locate for msg at bottom */
sw_att(c_att(RED, BLACK), &wn®); /*set attribute in wno */
v_st("Do you want to change to a Monchrome Display Adapter? (y/n): ", &wng);
pl_csr(&wng); /* cursor at end of message*/
ke = ki(); /*wait for keystroke */
if(ke == 'y’ || ke == 'Y’)

vid mode(MONO); /*g0 to Monochrome display */

return;

}

Windows for C Tables and Listings
Version 4.0

Table 6.1: File Viewing Key Assignments'

Key Function

Cursor arrow keys one space in direction of the arrow; except that
left and right arrows cause horizontal scrolling
of five spaces when cursor is at screen edge.

Ctrl-left-arrow five spaces left
Ctrl-right-arrow five spaces right
Ctrl-PgUp five spaces up
Ctrl-PgDhn five spaces down
Home top of file

End end of file

PgUp page up

PgDhn page down

(1) Key assignments are made in k_vcom(), for which source is provided.

Windows for C Tables and Listings
Version 4.0

Listing 7.1: Displaying and Scrolling a Help File!

/*tut_help.c -- displaying and scrolling a help file */
#define HELPFILE "help.txt"
#define HELPKEY -K F1 /*"extended keys" return negative code*/
#define EXIT -K F19
#define MAXCOL 76 /*window will have only 76 col for txt*/
#define MAXLINES 200 /*the help file is < 200 lines */
#include <bios.h>
#include <window.h>
main()
{
WINDOW hwn;
FREC mfhelp; /*memory file for help file */
int kc; /*key code */
init_wfc(); /*initialize program * /
cls();
def fr(&mfhelp, HELPFILE, MAXLINES, MAXCOL); /*init. file record */
defs_wn(&hwn, 16, @, 9, 8¢, BDR_LNP); /*define help window */
sw_popup(ON, &hwn); /*make a pop-up window */
sw_att(LHELP, &hwn); /*set attributes for help */
sw_bdratt(LHELP, &hwn);
sw_mfile(&mfhelp, &hwn); /*install pointer to mfhelp */
v_st("Press key F1 to toggle help window\n" ,&wn0);
v_st("When not in help window, press F10 to exit program.", &wn®);
while((ke = ki()) != EXIT)
{
if(kc == HELPKEY) /*help requested */
(
if(! di_file(&mfhelp)) /*read in help file */
errout("error reading file ", HELPFILE);
vs_file(HELPKEY, &hwn); /*turn over to viewer */

free_file(&mfhelp);

(1)

Source for this program is on the system diskette in file tut_help.c

Windows for C Tables and Listings
Version 4.0

Listing 7.2: Demonstration of a Vertical-Format Pop-Up Menu'

/* vmenu.c -- tutorial showing vertical pop-up menu
INTRODUCTION

This program shows the steps required to implement a pop-up menu, using the
functions provided in the Window library.

The menu chosen for display is a vertical menu with one item per row. The menu
is longer than the menu window; so vertical scrolling occurs.

To keep the program simple, no files other than the menu-information file are
read in for display. For a more complex and realistic example of implementing a
pop-up menu, see dem_menu.c.

OUTLINE OF PROGRAM

The menu for this example is contained in an ASCII file, vmenu.txt, (also on
the system diskette). The menu has 10 lines. Each line contains one menu item,
and the longest item is 10 spaces. The total number of items (qitems) is 18,
the length of of a menu item (itemlength) is 10, and the items per row
(rowitems) 1.

The menu is displayed in a window, declared as WINDOW vmenu_wn, with the
following characteristics: origin at 0,0; single-line border, left and right
margins of 1; overall width of 14 spaces (19 inside borders and margins);
overall height of 8 rows (6 inside of borders).

The menu file is read into a memory file, information messages printed, and
control turned over to the user. Pressing function key <F9> calls menu2()

to display the menu file and interpret cursor-pad keystrokes for moving through
the menu. Pressing <Enter> exits from the menu and the underlying screen is
restored. Pressing <F18> exits from the program.

*/

(Continued)

Windows for C Tables and Listings
Version 4.9

Listing 7.2 (Continued)

#include <bios.h>
#include <window.h>

#define FILENAME "vmenu.txt"

#define MAXLINES 10 /*maximum number of lines in mem. filex*/
#define QITEMS 10 /*number of items in menu */
#define ITEMLENGTH 10 /*maximum no. of columns in menu item */
#define ROWITEMS 1 /*items per row * /
#define ROWCOL 10 /*items/row times itemlength */
WINDOW vmenu_wn; /*window for file display */
main()
{
int nlines; /*number of lines read into memory */
int itemnumber; /* number or selcted menu item */
int kc; /* keycode value */
FREC mfile; /* memory file record for menu */
cls(); /*clear screen */
v_qch(’'C’, 2000, &wnd); /*fill screen with C's, just to fill ¥/
defs_wn(&vmenu wn, @, 0, 8, ROWCOL + 4, &bdr_1ln); /*define vmenu wn window*/
/* __ */
[*Note: menu2() will treat vmenu wn as a pop-up; no need to set popup switch */
/* __ */
def fr(&mfile, FILENAME, MAXLINES, ROWCOL); /*define menu file record */
if(di_file(&mfile) == 0) /*read menu file to memory file */
errout("error in reading file ", FILENAME);
sw_mfile(&mfile, &vmenu wn); /*point to menu in vmenu_wn */
/* __ */
/* Ready for menu display. Inform user of the rules */
/* __ */
mv_cs(21, 0, &wn0);
v_fst("To call pop-up menu, press function key F9. \nUse cursor ", &wn®);
v_fst("pad keys to move through menu. \nPress Enter key to select ", &wn0);
v_fst("item and exit from menu. \nPress F10 to exit from program." , &wn@);
mv_csr(25, 0, &wnd); /*hide cursor */
/* __ */
/* <check for keystrokes and implement correct action. */
/* menu2() will allow user to user cursor keys and will redraw window */
/* display when scrolling occurs. */
/* __ */

(Continued)

Windows for C Tables and Listings

Version 4.0

Listing 7.2 (Continued)

while((kec = ki()) !'= -K F10) /*exit on F10 *
(
if(kc == -K_F9)
{
R it
/* The following call implements the pop-up menu
et e

itemnumber = menu2(&vmenu_wn, QITEMS, ITEMLENGTH, ROWITEMS, 1);
/*display item number in reverse video in full-screen window

wn@.att = LREVERSE;
mv_cs(20, @, &wnd);
v_printf(&wng, "Item %d selected", itemnumber);
wn@.att = LNORMAL; /*restore normal attribute
}
}

mv_csr(24, 0, &wno); /*place cursor on last line

/

*/
*/

£l

#{

2y

(1) Source for this program is on the system diskette in file vmenu.c

Windows for C Tables and Listings
Version 4.9

Listing 7.3: Function for Writing a String to an Off-Screen Buffer'

/* sti_buf.c -- an example of how sti_file() and scrl file() can be used to
maintain an "off-screen buffer".

FUNCTION

Before calling this function, a memory file must have been initialized with a
call to def_fr(). The maximum number of lines and the maximum number of columns
in the file will be dependent on your requirements.

This function will place the specified string in the first empty line of the
memory file, if space is available. If the file is full, all of the lines in
the file will be scrolled up one line and the specified string will be placed in
the last line of the file.

Upward scrolling of the memory file will cause the first line in the file to be
scrolled off the top of the file and lost.

CALL

sti_buf(st, &mfile)

char *st; pointer to string to be placed in file
FREC &mfile; FREC structure
RETURNS

-2 if string is truncated and file is scrolled

1]

-1 if string is truncated and file not scrolled

@ if unable to allocate memory

1 if full string is written and file not scrolled

2 if full string is written and file is scrolled

CAUTIONS

Before using this function, the memory file must be initialized by a call to
def fr().

*/

(Continued)

Windows for C

Version 4.0

Listing 7.3 (Continued)

Tables and Listings

#include <bios.h>

sti_buf(st, mfp)
char *st;
FRECPTR mfp;

{
int 1n_q;
int retval;
int scroll; /* = 1 if no scroll; = 2 if scroll */
scroll = 1;
ln q = mfp->1n_gq; /*avoid indirection *[
if(1ln_q >= mfp->fmaxline) /*no more room -- must scroll file * [
{
scroll = 2;
if(scrl_file(1, UP, ALL_ROWS, mfp) == 0) /*scroll whole file */
return(9);
if((retval = sti_file(st, ln_q - 1, mfp)) == 0)/*replace last line */
return(®);
)
else /*room available -- simply append */
if((retval = sti_file(st, ln_gq, mfp)) == 2) /*add new line to end */
return(9);
return(retval * scroll);
}
(1) Source for this program is on the system diskette in file sti_buf.c

Windows for C Tables and Listings
Version 4.0

This page intentionally left blank.

Windows for C Appendix 1

Version 4.0

APPENDIX 1

#INCLUDE FILES

A1-1

Windows for C
Version 4.0

/*bios.h -- Top level include file for Windows for C

Appendix 1

rHRXFXXHH XXX XXX Copyright 1985 by Vermont Creative SoLtware *%% %% %% %% %% xx

VERSION: 4.94

/* Implement Logical Attributes as the default
/* To use physical attributes, comment out the following #define

/* ___

#define ATT LOGIC /*use logical attributes

#ifdef MSDOS
#include <computer.h>
#endif

#ifdef UNIX
#include <terminal.h>
#endif

/* ___

A1-2

*/
*/
®]

®f
*/
*/

*/
*/

Windows for C
Version 4.0

bios.h (continued)

#include <vextern.h>

#ifdef UNIX
#include <ux_xtrn.h>
#endif

Appendix 1

/*extern declarations of global var.’'s¥*/

A1-3

Windows for C
Version 4.0

/*computer.h

Appendix 1

- contains definitions for the specific computer being used

These definitions are for the IBM PC/XT/AT

*/

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define

RW_QSCRN 25
CO_QMAX 80
Co_80 80

CO_40 40
V_OFFSET 0
MONO_SEG 0xBOO0O
GRPH_SEG 0xBS800
BYTES_80 4096
BYTES 40 2048
MONOMODE 7
EGA43ROWS 43
EGA43PBYTES 8192

DOS_INT 0x21
GET DATE 0x2a00
GET TIME 0x2c00

/*number of rows on PC video screen

/*max number of cols on PC video scr.

/*80 columns in display

/*48 columns in display

/*offset of the video regen buffer
/*monochrome board video segment
/*graphics board video segment
/*number of bytes on page in 88 cols
/*number of bytes on page in 40 cols
/*mode number for monochrome board
/*number of rows on EGA screen
/*number of bytes on page in 43 rows

/*The following are definitions for the video interupt routines INT10H

/* __

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

VI_INT 0x10
VI_MODE 0x0
VI_CSR_TYPE 0x0100
VI_PL_CSR 0x0200
VI_RD_CSR 0x0300
VI_SET DP 0x0500
VI_UPSCROLL 0x0600
VI_DNSCROLL 0x8700
VI_RD_CHATT 0x0800
VI_WR_CHATT 0x0900
VI_COLOR 0x0B0O
VI_WR_TTY 0X0E®Q
VI_VSTATE 0x0F00

/*video interupt number

/*¥set mode

/*set cursor type

/*place cursor

/*read cursor positions

/*set active display page
/*scroll up

/*scroll down

/*read char-att at csr position
/*write char-att at csr position
/*set color pallete or border
/*write teletype char at csr pos
/*¥current video state

/*The following definitions are for control of attribute bytes

/-x-

/* Attribute values for the Monochrome Adapter

#define
#define
#define
#define
#define

NORMAL @x@7
UNDERLINE 0x01
REVERSE 0x70
HIGH_INT 0x028
BLINK 0x80

/*attribute base state
/* ditto
/* ditto
/*attribute added state
/*attribute added state

Al-4

*y
#f
i
*/
bt §
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

Windows for C Appendix 1
Version 4.9

computer.h (continued)

/* __ -x-/
/* Color attribute values for use with the Color/Graphics Adapter * [
/* ___ -x-/
#define BLACK]

#define BLUE 1

#define GREEN 2

#define CYAN 3

#define RED 4

#define MAGENTA 5

#define BROWN 6

#define WHITE 7

#define LIGHT 8

#define YELLOW 14 /* LIGHT + BROWN */
/* __ */
/* For use with vid_mode(): parameters as defined in DOS 2.0 MODE */
/* __ */
#define BW4O O

#define C040 1

#define BW80 2

#define C080 3

#define MONO 7

/* __ */
/*The following are for the keyboard interupt routines INT 16H */
/* __ */
#define KI_INT @X16 /*keyboard interupt number */
#define KI_READ /*read buffer */
#define KI_CHECK 0x0100 /*check buffer */
/* ___ -x-/
/* -- defines key values used in Window functions */
/* -x-/
/* IBM INT 16H returns the following key code as normal codes */
/* WFC keyboard functions, ki(), ki _chk(), and ki_cum() return positive */
/* codes */
/* __ */
#define K_BACK 8

#define X_ESC 27

#define K_SPACE 32

#define K_LINE 10

#define K_ENTER 13

A1-5

Windows for C Appendix 1
Version 4.0

computer.h (continued)

/-x- __ */
/* IBM INT 16H returns the following key code as "extended codes" */
/* WFC keyboard functions, ki(), ki chk(), and ki_cum() return negative */
/* codes */
/* __ */

#define QK_BREAK 1
#define K_F1 59
#define K _F2 6¢
#define K F3 61
#define K_F4 62
#define K _F5 63
#define K _F6 64
#define K _F7 65
#define K _F8 66
#define K_F9 67
#define K F10 68
#define K _HOME 71
#define K_UP 72
#define K_PGUP 73
#define K_LEFT 75
#define K _RIGHT 77
#define X _END 79
#define X DN 8¢
#define X _PGDN 81
#define K_INS 82
#define X DEL 83
#define QK _LEFT 115
#define QK_RIGHT 116
#define QK_END 117
#define QK_PGDN 118
#define QK_HOME 119
#define QK _PGUP 132

/* __ */
/* defines values for block-graphics characters */
/* __ */
#define LIGHT SHADE 178 /*lightest shading character */
#define MEDIUM_SHADE 177 /*medium shading character */
#define DARK SHADE 176 /*dark shading character */
#define SOLID 219 /*solid bar character */

A1-6

Windows for C Appendix 1
Version 4.0

/* wfc_defs.h —-- definitions for Windows for C

rxxxxxrxxxx%x%x Copyright 1985 by Vermont Creative Software *¥xxxxxxwxxxxx

*/
typedef int (*PFI)(); /*PFI - pointer to a function */
/* returning an integer * [
/* __ */
/* If not already defined by wfc_comp.h, then define NULLP, NULLFP and NULL*/
/* __ -x-/
#ifndef NULLP
#define NULLP (char *)@ /*NULL pointer to data * /
#endif
#ifndef NULLFP
#define NULLFP (int(*)())) /*NULL pointer to function returning */
/*an integer */
#endif
#ifndef NULL
#define NULL NULLP
#endif
#define TAB '\t’ /*C definition of ASCII tab number */
#define NEWLINE °’'\n’ /*C definition of ASCII newline */
#define BACKSPACE '\b’ /*C definition of ASCII backspace * [
#define VPSTMAXLEN 133 /*buffer size for use with v _printf() */
/* __ */
/* Definitions for use with mv_rws() */
/* __ */
#define UP 6 /*moves rows up (mv_rws) */
#define DOWN 7 /*moves rows down (mv_rws) */
o * [
/* Definitions for scrl file() */
/* __ */
#define ALL_ROWS -1 /*¥scroll all rows in file */
/* __ */
/* Bit switch definitions for use with v_st(), v_st_rw(), v_plst(), etc. */
/-x- __ */
#define NO_WRAP 2 /*No wrap, cs adv, clear in v_st_rw */
#define WRAP 1 /*Specifies word-wrap in v_st rw, etc */
#define NO_CLEAR 2 . /[*disable auto clear to end row */
#define NO_CS_ADV 4 /*disable cs advance on v_st_rw * [
#define PL_CSR 8 /*enable auto place of csr at cs */

A1-7

Windows for C Appendix 1
Version 4.0

wfc_defs.h (continued)

e e e i e e s e e e e o */
/* Definitions for use with v_mov(), v_mova() */
/* __ */
#define CH 2 /*size definition for v_mov, etc */
#define ENDROW 1 /*size definition for v_mov, etc */
#define ROW 2 /* ditto */
#define ENDWIND 3 /* ditto */
#define WIND 4 /* ditto */
#define ENDCOL 5 /* ditto *if
#define COL 6 /* ditto */
#define OUT @ /*type definition for v_mov, etc */
#define IN 1 /* ditto */
/* __ */
/* The following definitions are for possible cursor shapes */
/* __ */
#define LINE 2 /* a line at the bottom */
#define BLOCK 1 /* a full block */
#define BOT BLK 2 /* a block in the bottom half of the */
/* character box * [
#define TOP_BLK 3 /* a block in the top half of the */
/* character box */
/* __ */
/* Definitions for border pointers */
/* __ -x-/
#define BDR_OP &bdr_0 /*No border */
#define BDR_LNP &bdr_1n /*Single line border *
#define BDR_DLNP &bdr dln /*Double line border *f
#define BDR_REVP &bdr rev /*Reverse border *]
#define BDR_DOTP &bdr_dot /*Dot border %/
#ifdef UNIX
#define BDR_STARP &bdr_star /*Star border */
#endif
/* __ */
/* Different move types for internal low-level move function */
/* __ -x-/

#define VM_MOVE 0 /*video to user-memory type of move */
#define MV_MOVE 1 /*user-memory to video type of move */
#define VV_MOVE 2 /*video to video type move */
#define MM _MOVE 3 /*user-memory to user-memory type move¥*/

/* __ */
/* Definitions for use with dim_wn() */
/* __ */
#define INSIDE 1 /* def for wn.setsw, copy wn, dim wn */
#define FULL 0 /* ditto */

A1-8

Windows for C Appendix 1
Version 4.0

wfc_defs.h (continued)

/* __ */,
/* Definitions for use with copy_wc() */
/* __ */
#define FREAD "r" /*fopen() mode for read open */
#define FWRITE "w" /*fopen() mode for write open */
#define FAPPEND "a" /*fopen() mode for append open */
/-x- __ */
/* Definitions for use with boolean parameters */
/* _____________________________________ e e e e e e o S */
#define YES 1 /*for use with boolean parameters */
#define NO 0 /* ditto */
#define ON 1 /* ditto */
#define OFF 0 /* ditto */
#define TRUE 1 /* ditto */
#define FALSE 0 /* ditto */
/* __ l/
/* Centers text within window - for use with v_plst() */
e */
#define LEFT TXT 0 /*left justifies text in window */
#define CENTER_TXT -1 /*centers text in window */
#define RIGHT_TXT -2 [*right justifies text in window */
/* __ &/
/* Macro definitions */
/* __ i/
#define min(a,b) ((a) <=(b) ? (a): (b)) /*minimum value function */
#define max(a,b) ((a) >=(b) ? (a): (b)) /*maximum value function */
#define col qty(wnp) ((wnp)->ce - (wnp)->cb + 1) /*number of col in window */
#define row_qty(wnp) ((wnp)->re - (wnp)->rb + 1) /*number of rows in window*/
#define hi_byte(a) (((a) >> 8) & 0x00ff) /*returns high byte of word */
#define lo_byte(a) ((a) & Ox@Bff) /*returns low byte of word */
#define c_att(fground,bground) ((bground << 4) + fground)

#define s_tbfmsg(a) (tbf_msg = (a))

#ifdef MSDOS

#define s_keyloop(p) (_wfckifp = (p))

#endif

A1-9

Windows for C Appendix 1
Version 4.0

wfc_defs.h (continued)

/-x- __ */
/* Macros for setting members of the WINDOW structure #
/* __ -x-/
#define sw_att(attrib, wnp) ((wnp)->att = (attrib))

#define sw_bdratt(att, wnp) ((wnp)->bdratt = (att))

#define sw_border(borderp, wnp) ((wnp)->bdrp = (borderp))

#define sw_cleor(a, wnp) ((wnp)->wrap = ((a) == ON ? (wnp)->wrap)\
&“NO_CLEAR : (wnp)->wrap | NO_CLEAR))

#define sw_csadv(a, wnp) ((wnp)->wrap = ((a) == ON ? (wnp)->wrap)

& “NO_CS_ADV : (wnp)->wrap | NO_CS_ADV))

#define sw_latt(a, wnp) ((wnp)->larray = (a))

#define sw_margin(l, r, wnp) ((wnp)->1_mg = (1), (wnp)->r mg = (r))
#define sw mfile(a, wnp) ((wnp)->frp = (a))

#define sw_name(name, wnp) ((wnp)->wname = (name))

#define sw_plcsr(a, wnp) ((wnp)->wrap = ((a) == ON ? (wnp)->wrap)

i PL_CSR : (wnp)->wrap & “PL_CSR))

#define sw_popup(a, wnp) ((wnp)->popup = (a))

#define sw_scroll(a, wnp) ((wnp)-»>scr_q = (a))

#define sw_wwrap(a, wnp-) ((wnp)->wrap = ((a) == ON ? (wnp)->wrap)\

i WRAP : (wnp)->wrap & “WRAP))

/* __ -x/
/* String images of maximum integer and long integer */
/* __ */
#define MAXLONGSTR "2147483647" /¥ (2%%31) - 1 */
#define MAXINTSTR "32767" [* (2%%15) - 1 */
#define MAXEXP 307 /* maximum floating point exponent */

A1-190

Windows for C Appendix 1
Version 4.0

/* window.h -- include file that defines global variables for Windows for C

xxxxxxxxx%x% Copyright 1985 by Vermont Creative Software *x**¥xxxxxxxxxx

COMMENT

#includes an include file (att_glob.h) that specifies default logical
attributes. To implement logical attributes, the parameter ATT_LOGICAL
must be #defined equal to 1 here or in a prior include file.

Defines several standard borders: a null border, a dotted border, a
line border, and a light (reverse) border.

A null border is indicated by a ¢ (NULL) in ch h (the second parameter
in the BORDER 1list).

Includes wn®, which is the basic 80 column screen without borders or
word wrap and with scrolling with scr_q = 1.

Initial declaration of cl_att, attribute variable used to clear window
area by unset_wn() and cls(). Set to NORMAL.

The definitions here assume the use of standard (not logical)
attributes. When logical attributes are implemented (by #defining

ATT LOGICAL), _v_init() will change the standard attributes assigned to
the border structures, wn®, and cl_att to logical attributes. The
logical attribute used is LNORMAL, except that cl_att and wn@® are set
LDOS.

Initial values are set for global variables.

Reserves space for a permanent string buffer, v_sbuf[], used by video
functions.

Reserves space for a global error-code variable, _wn_err. This may be
set by routines that experience errors so that higher level routines can
know the cause of the error.

CAUTION

*/

Place in main program following "bios.h".

Do not use v_sbuf[]. This must be reserved for internal use by video
routines.

A1-11

Windows for C Appendix 1

Version 4.0

window.h (continued)

/* __ */

/* Defines the default logical attributes */

/* __ u-/

#include <att_glob.h> /*defines default logical attributes */

#ifdef UNIX

/* __ */

/* Include the global variables for the standard terminal interface */

/* __ */

#include <ux_glob.h>

#endif

/* __ */

/* Initialize the border structures */

/* __ */

BORDER bdr 0 = {@};

BORDER bdr_rev = {REVERSE,32,32,32,32,32,32);

#ifdef MSDOS

BORDER bdr_dot = {NORMAL,178,178,178,178,178,178)};

BORDER bdr_dln = {NORMAL,205,186,201,187,188,200);

BORDER bdr_1n = {NORMAL,196,179,218,191,217,192} ;

#endif

#ifdef UNIX

BORDER bdr_dot = {NORMAL, '.’, ':', '.*', ', 2 ¥

BORDER bdr_star = {NORMAL, ’'*’', %' '%3 1% 13 s

/* __ */

/* For bdr_dln and bdr_ln, the proper characters will be inserted into the */

/* structures during initialization if specified in WFCTERMCAP. */

/* __ -x-/

BORDER bdr_dln = {BLK_GRAPH, ' ', ' ', ' ', , ')

BORDER bdr_1n = {BLK GRAPH, ' ', ' ',k ' 1, » V')

#endif

WINDOW wno; /*initial values assigned during WFC */

/*initialization routine */

/*The following are definitions for globally known variables. They are */

/*declared as extern variables in vextern.h, which is nested in bios.h */

/*Initial values are assigned here to avoid serious errors; but the correct */

/*initial values are assigned by _v_init(). */

/*initial values assigned here are for IBM Monochrome Display Adapter, */

/*with standard (not logical) attributes. * [

char cl_att = NORMAL; /* used by unset_wn() and cls() in */
A /* clearing windows */

char v_mode = MONOMODE; i /* current video mode */

A1-12

Windows for C
Version 4.0
window.h (continued)

char tv_upd = 1;

char tbf_msg = 1;

char v_contig = 1;

char v_sbuf[CO_QMAX * 2];
int _wn_err;
int _vpstlen = VPSTMAXLEN;

#ifdef MSDOS
char v_retr = 0; e
char no_retr = 9; o

—@1int _ibmega = @;

int v_seg = MONO_SEG;
int v_coq CO_QMAX;

int v_rwq = RW_QSCRN;
int v_pbytes = BYTES 80;
ADDR v_vrb;

n

int _1_ptr
int _d_seg

0;
0;

PFI _wfckifp;
#endif

#ifdef UNIX

int v_coq;

int v_rwq;

int v_pbytes;
char *v_vrb;

int _wn_init = 0;
#endif

/*
/*
/-l-
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

A1-13

Appendix 1

enable updating under TopView or */
UNIX. For MSDOS systems, this will*/
be reset to zero if TopView is not */
present. User can set to zero to */

to manually inhibit all video */
updating under TopView or UNIX. */
controls if the "top of file" and */
"bottom of file" messages are */
displayed by v_file(). * [
adjacent lines on the display are */

contiguous in video regen buffer */
string buffer for video functions */
error code variable */
maximum length of buffer associated*/
with v_printf() */

set hy v_init(), depending on mode */

set to one to disable retrace * /
IBM EGA not present = 0; */
video regen buffer segment */
number of columns in screen display*/

number of rows in screen display */

number of bytes in vrb page */
address of video regen buffer -- */

offset and segment */
= 1 if long pointers (large data) */
data segment, set = @ initially */
to indicate v_init() not done */
pointer to keyboard loop function */

number of columns in screen display*/
number of rows in screen display */

number of bytes in vrb page */
pointer to virtual video buffer */
initialization flag */

Windows for C Appendix 1

Ver

sion 4.0

/* att_glob.h -- contains default definitions and declarations of logical

attribute tables for use in Windows for C.
Nests in window.h. The #defines for logical attributes are
in def att.h, which is nested in bios.h

**x*N*X¥%X%%% Copyright 1985 by Vermont Creative Software *xxxxxxxxxxxxx

IMPLEMENTING LOGICAL OR PHYSICAL ATTRIBUTES

THE

Logical attributes will be implemented if ATT_LOGIC is defined. This is
the default condition set in bios.h.

To use physical attributes, #undefine ATT_LOGIC here or in an include file
that precedes this one. Alternatively, the #define ATT LOGIC statement in
bios.h could be commented out. Generally, the include file for a specific
application would set ATT_LOGIC.

LOGICAL-ATTRIBUTE TABLE

The physical attributes associated with each logical attribute are
specified in a logical-attribute table (two dimensional array),
datt_tbl[][]. There is a row for each logical attribute; the number of
rows in the table equals LATTQ. The number of columns equals PATTQ, the
number of physical attributes for each logical attribute. LATTQ and PATTQ
are #defined in def_att.h.

The system, as supplied has two physical attributes for each logical
attribute: a monochrome attribute, and a color attribute; thus PATTQ is
set to two in att_def.h. You can add more physical attributes by
increasing the value of PATTQ and adding more columns to the logical
attribute table.

*f

#ifdef ATT LOGIC /*LOGICAL ATTRIBUTES in use */
int _lattsw = 1;

char 1latt[LATTQ]; /*array of logical attributes * [

char datt_tbl [LATTQ] [PATTQ] =

{

#ifdef MSDOS

{NORMAL, c_att(WHITE, BLACK)}), / *LDOS */
{NORMAL, c_att(WHITE, BLUE)}, /*LNORMAL */
{REVERSE, c_att(BLUE, WHITE)}, /*LREVERSE */
{NORMAL + HIGH INT, c_att(WHITE + LIGHT, BLUE)}, /*LHIGHLITE*/
{NORMAL + HIGH INT + BLINK, c_att(RED + BLINK, BLACK))}, /*LURGENT */
{NORMAL + HIGH INT, c_att(BLUE, WHITE)}, / *LHELP */
{REVERSE, c_att(RED, BLACK)}, / *LERROR */
{NORMAL + HIGH INT, c_att(WHITE + LIGHT, BLUE)}, /*MESSAGE */
{NORMAL + HIGH INT, c_att(CYAN, BLUE)}, /*LFIELDI */
{REVERSE, c_att(BLACK, CYAN)}, /*LFIELDA */
{REVERSE, c_att(BLUE, WHITE)}, / *LMARK */

A1-14

Windows for C
Version 4.0

att_glob.h (continued)

{9, c_att(BLUE, BLUE)},
{REVERSE, c_att(BLACK, BLUE)),
{REVERSE, c_att(BLUE, WHITE)),

{NORMAL,

c_att(GREEN, BLUE)},
{NORMAL, c_att(CYAN, BLUE)),
{REVERSE, c_att(RED, BLUE)},
{REVERSE, c_att(MAGENTA, BLUE)},

{NORMAL, c_att(BROWN, BLUE)},
{NORMAL, c_att(WHITE, BLUE)},

{0,
{0,
{0,
#endif

{0’
{90,

2},
2},
o)

(o,
{0,
{2,

2},
2},
@>’

#ifdef UNIX
{NORMAL, COLOR9},
{NORMAL, COLOR10},
{REVERSE, COLOR11},

{HIGH_INT, COLOR12},

{BLINK, COLOR13},

{HIGH_INT, COLOR11},

{REVERSE, COLOR14},

{HIGH_INT, COLOR12},
{HIGH_INT, COLOR15},

{REVERSE, COLOR16),
{REVERSE, COLOR11},
{INVISIBLE,
{REVERSE, COLOR1},
{REVERSE, COLOR2},
{NORMAL, COLOR3},
{NORMAL, COLOR4},
{REVERSE, COLOR5},
{REVERSE, COLOR6},
{NORMAL, COLORT7},
{NORMAL, COLORS8},
{0, o}, (0, 0}, {0,
{@,- @), (0» Q)’ (Q!
{g, 0}, {0, 0}

ffendif

i

int _attrowq = LATTQ;

#else

int _lattsw =

char latt[1];

23

2},
2},

INVISIBLE},

o},
0},

char datt_tbl [1][PATTQ];

int _attrowqg =
#endif

13

int _attcolq = PATTQ;

(o,
(o,

(o,
(o,

Q}’
o),

o),
o},

Appendix 1

/*LNODISPLA*/

/*LBLACK */

/ *LBLUE */

/ *LGREEN *®/

/ *LCYAN */

/*LRED */

/*LMAGENTA =/

/*LBROWN */

/*LWHITE */

{0, 0}, /*RESERVED */
{9, 0}, /*RESERVED */
/ *RESERVED */

/*LDOS */

/*LNORMAL */

/*LREVERSE */

/*LHIGHLITE*/

/*LURGENT */

/ *LHELP */

/*LERROR */

/*MESSAGE */

/*LFIELDI */

/*LFIELDA */

/ *LMARK */

/*LNODISPLA*/

/ *LBLACK */

/*LBLUE */

/ *LGREEN */

/*LCYAN */

/*LRED */

/*LMAGENTA */

/ *LBROWN */

/*LWHITE */

{9, 0}, /*RESERVED */
{0, 0}, /*RESERVED */
/*RESERVED */

/*PHYSICAL ATTRIBUTES in use */
/*array of logical attributes */

A1-15

Windows for C Appendix 1

Version 4.0

This page intentionally left blank.

A1-16

)

/* wfc_stru.h -- Windows for C structure declarations

EEREXEREEXLERE Copyright
x/
typedef struct bord
’ char batt;

char h_ch, v_ch;s
char ¢1, ¢c2, ¢c3, c4;

} BORDER, *BORDERPTR;

typedef struct file_line

int line_len;
char *line_st;
JFLINE, *FLINEPTR;

.typedef struct file_record

char *fn;
int ib;

char *Ilbp; i
char *lep; = &
int c_q;q)*

int In_qg; 0

int wfr;
int wfc; =)
—ELINEPTR *farray;
int fmaxline; &°
int ftabg;
int fmaxcol; i¢
} FREC, *FRECPTR;

typedef struct wnd
{

int rb;

int re;

int cb;

int ce;

int r;

int c;

thar att;

char page;

int wrap;

int location;

int scr_g;
int I_mg, r_mg;

BORDERPTR bdrp;

1985 by Vermont Creative Software

/*BORDER STRUCTURE

/*attribute of border characters

/*horizontal and vertical characters
[*corner char, starting in upper

/*and continuing clockwise.

/*ASCI | FILE LINE STRUCTURE

/[*length of a line in the file

[*pointer to line string

/[*ASCI| FILE RECORD STRUCTURE

[*filename

[*line-pointer array index of

/[*beginning line of file

[*pointer to beginning line of file

[*pointer to end line of file

/*max number of columns, equal to
[*to maximum length line of file,
/[*including newline. .

/*number of lines in file,| including
/*EOF (NULL) Iline

/*row of file to appear in wn.r = 0

/[*col. of file to appear in wn.c =
[*pointer to a pointer to a FLINE
[*max number of lines allowed
/*number of spaces per tab character

/*maximum number of columns

/*WINDOW STRUCTURE

[*top row of window
/*bottom row of window

/[*left hand column of window

in

/[*right hand column of window
/*virtual cursor row-position
[*virtual cursor column-position

/*window video attribute

file

/*graphics-card alpha mode page #

/*word-wrap switch
/*window location parameter

/*max number of lines to scroll

*left and right spaces (margins) -

/
/*to border
/*pointer to border struct

XXX XK KX XX XXX XX

left

0

~ e~~~ ~

* 3

N N N ~

LT T T T O T R S O Y

»

MO M M K M O M N M N M N
B S N N S S N ~

))

char setsw; =\ /[*window dimensions: FULL = 0, INSIDE
/* = 1; initialize to O
#ifdef MS
char wn_dummy ; [*dummy byte for alignment
#endif
#ifdef LATTICE
char wn_dummy; /*dummy byte for alignment
#endif
FRECPTR frp; /*pointer to file-record struct
char *storp; /*pointer to window storage
. ochar *userpl[2];~ /*2 pointers reserved for users
char *wname; /*pointer to window name
char *larray;« [*pointer to logical attribute array
char *pu_storp; /[*pointer to pop-up window storage
char bdratt; /[*video attribute attribute of border
char popup; [*popup switch: 0 = no popup
‘ [* 1 = popup
/* char *reserv3[4]; four reserved pointers
/* int reserv2[6]; six reserved words, not now used
} WINDOW, *WINDOWPTR;
typedef struct krec /*MULTIPLE KEYSTROKE STRUCTURE
(.
int kv; /*key code value
int kg /*quantity of identical codes found
int kmax; /*limit on number of codes to be
} KEYR, *KEYRPTR; [*moved from buffer
#ifdef MSDOS
typedef struct addr_struct /*8086 ADDRESS STRUCTURE
(
int off; [*address offset
int seg; /*address segment
} ADDR, *ADDRPTR;
#endif
typedef struct vidioregs /*8086 REGISTER STRUCTURE
(
unsigned int ax, bx, cx, dx, si, di, es, ds;
} VIDIO, *VIDIOPTR;
#ifdef UNIX
typedef struct kdef /*KEYSTROKE DEFINITION STRUCTURE
(
char *key_st; [*pointer to keystroke string
int key_len; /*length of keystroke string
int key_xlat; [*translated value of string

} KEYDEF, *KEYDEFPTR;
#endif

%* »*
~ ~

% % O M X N ¥ M N 2*

N e S ~

~ e~~~ ~

* % ke

x/

~N~~ ~

* %

o —

Windows for C
Version 4.0

APPENDIX 2

WINDOWS FOR C -- LIBRARY FUNCTIONS

A2-1

Appendix 2

Windows for C Appendix 2
Version 4.9

ALPHABETICAL LISTING OF LIBRARY FUNCTIONS

adj cs(&wn) -- adjusts cs row and col values and checks limits

bell() -- sound the bell (beep) on the IBM PC

cls() -- clears screen with clear-screen attribute

cl wn(&wn) -- clears windows

color_so(bground) —— sets a color attribute for use in clearing the screen
color_wn(fground, bground, &wn) -- sets the foreground and background colors

in a window

copy_wc(dimen, filename, dmode, &wn) -- copies the contents of a window image
to a file

csr_hide() -- hides the screen cursor

csr_show() -- restores the screen cursor to its previous location

csr_type(type) -- controls size and style of screen cursor

c_att(fground, bground) -- returns the attribute value for the specified
colors

defs_wn(&wn, rb, cb, rw_g, co_q, &bdr) -- alternate define window function,

defines size
def fr(&fr, fname, fmaxline, fmaxcol) -- assigns values to the FREC structure

def wn(&wn, rb, re, cb, ce, 1_mg, r_mg, &bdr) -- assigns initial values to the
members of a window structure

dim wn(dimen, &wn) -- adjusts the working dimensions of a window

di file(&fr) -- read disk file into memory

di_st(fp, stp, q, brk ch, tab_q) -- general purpose routine for disk input
(di) to string (st)

dup_wn(&dwn, &swn) -- duplicates a window structure

errout(stl, st2) -- prints fatal error messages and exits

char *file lnp(frow, &mfile) -- returns a pointer to the string associated with
Ehe i-th line in the file

free_fil@(&fr) -- frees FLINE structures associated with a file

free mem(p) -- frees memory obtained from get_mem() or malloc()

(Continued)

A2-2

Windows for C Appendix 2
Version 4.9

ALPHABETICAL LISTING OF LIBRARY FUNCTIONS (continued)

char *get _mem(size) -- calls malloc() with error checking

init wfc() -- initializes Windows for C system

ki() -- obtains key code from keyboard

ki chk() -- checks buffer for key value; returns value if available.

ki_cum(&keyr) -—- obtains identical codes from buffer

k vcom(kv, kq, &wn) -- translates special key codes into video movement
commands

void lower_st(st) -- converts each position in string to lowercase

menu2(&wn, gitems, itemlength, item row, def pos) -- pop-up menu display

and selection routine

mode_col() -- obtains number of video columns in current mode

mod _wn(rb, cb, rowq, colq, &wn) -- modifies coordinates of a window

mv_cs(rw, co, &wn) -- changes value of virtual cursor; does not move screen
cursor

mv_csr(rw, co, &wn) -- changes value of virtual cursor and moves screen cursor

to virtual cursor location

mv_rws(ﬁlines, dir, &wn) -- scrolls designated window by nlines in given
direction

mv_wi(rw, co, &wn) -- moves a window image to a new location on the screen

pl_csr(&wn) -- places screen cursor at window virtual cursor

pl_mfwn(frow, fcol, &wn) -- places window origin at specified location in file

pl wn(rw, co, &wn) -- places window at specified location

prt_wn(&wn) -- copies contents of a window to a printer

rd_csr(&row, &col, page) -- reads the current location of the screen cursor

rd mode() -- returns current video mode of the IBM PC

repl wi(&wn) -- replaces onto the screen a saved window image

sav_wi(&wn%ﬁ—— saves a window image in memory

scrl_fil@iﬁgéws, dir, beg_row, &mfile) -- scrolls a memory file

(Continued)

A2-3

Windows for C Appendix 2
Version 4.0

ALPHABETICAL LISTING OF LIBRARY FUNCTIONS (continued)

set_wn(&wn) -- sets borders and margins on designated window

size_wn(dimen, part, &wn) -- calculates size of video string needed for window
saves

char *skip wh(st) -- skips leading whitespace in string

sti_file(st, frow, &mfile) -- loads strings into WFC data structure used for
files

char *stblank(len) -- allocates memory for string and initializes to blanks

char *strcpyp(dest, src) -- copies source string to destination string

void strip wh(st) -- strips trailing whitespace from string

sw_att(att, &wn) -- sets wn.att to the specified attribute

sw_bdratt(att, &wn) -- sets wn.bdratt to the specified attribute

sw_border(&bdr, &wn) -- sets wn.bdrp to the specified border

sw_cleor(state, &wn) -- sets the clear to end of row bit-switch in wn.wrap

sw_csadv(state, &wn) -- sets the cursor advance bit-switch in wn.wrap

sw_latt(att_arry, &wn) -- sets wn.larray to point to the specified logical

attribute array

sw_margin(l_mg, r_mg, &wm) -- sets the wn.l mg and wn.r_mg to the specified
values

sw mfile(&mfile, &wn) -- sets wn.frp to point to the specified memory file
structure

sw_name(name, &wn) -- set wn.wname to the specified name

sw_plcsr(state, &wn) -- sets the place cursor bit-switch in wn.wrap

sw_popup(state, &wn) -- set wn.popup to the specified state

sw_scroll(state, &wn) -- sets wn.scr_q to the specified state

sw_wwrap(state, &wn) -- sets the wrap bit-switch in wn.wrap

s_latt(col, rowq, colg, att_tbl, att_arry) -- copies appropriate column from

the attribute table into the logical attribute array
unsav_wi(&wn) -- replaces a saved window image, frees memory

(Continued)

A2-4

Windows for C Appendix 2
Version 4.0

ALPHABETICAL LISTING OF LIBRARY FUNCTIONS (continued)

unset_wn(&wn) -- removes a window from the screen

void upper_st(st) -- converts each position in the string to uppercase
u_init() -- allows initialization of globally known variables

vid bdr(color) -- sets color border around screen

vid _int(&vri, &vro) -- General video interrupt (INT 19H) routine
vid_mode(mode) -- sets the video mode, switches display adapters
vo_att(&wn) -- reads an attribute from the window

vo_ch(&wn) -- reads a character from the window

void vs_file(exit_key, wnp) -- view and scroll a file

v_att(att, &wn) -- writes the specified attribute to the current virtual

cursor position
v_axes(r_origin, c_origin, height, width, &wn) -- draws axes for graphs

v_bar(row_size, col_size, r_begin, c_begin, ch, attrib, &wn, &bdr) -- draws a
horizontal or vertical bar

v_border(&wn, &bdr) -- draws specified border on specified window

v_ch(ch, &wn) -- writes specified character to window at the virtual cursor
position

v_co(ch, q, &wn) -- puts column of attribute-char's to a window
v_file(&wn) -- puts a file to a window
v_fst(st, &wn) -- puts full character string to a window

v_mov(vst, &wn, part, direction) -- moves info between video and a "video
string"

v_mova(st, &wn, part, direction) -- moves info between video and a standard
ASCII string

v_natt(att, part, &wn) -- gives a new attribute to a section of a window

v_plst(rw, co, st, &wn) -- writes string to window starting at specified
location

v_printf(&wn, fmt, args....) -- performs formatted output to window

(Continued)

A2-5

Windows for C Appendix 2
Version 4.0

ALPHABETICAL LISTING OF LIBRARY FUNCTIONS (continued)

v_qch(ch, q, &wn) -- writes q character-attribute pairs to window

v_rw(ch, g, &wn) -- puts a row of attribute-char's to a video window

char *v_st(st, &wn) -- puts character string to video window

void v_st_nop(st, q, &wn) -- variation of v_st rw() for use by v _file()

char *v_st_rw(st, g, &wn) -- puts character string to a row of a video window

v_tv(rd, r1, c@, c1, &wn) -- issues a request to TopView to update video
display

A2-6

Windows for C Appendix 2
Version 4.0

LIBRARY FUNCTIONS BY CATEGORY OF USE

BIOS Video Routines, Access to

vid_int(&vri, &vro) -- General video interrupt (INT 10H) Routine
v_tv(r®, r1, c0, ci, &wn) -- issues a request to TopView to update video
display

Bit-Switch Utilities

sw_cleor(state, &wn) -- sets the clear to end of row bit-switch in wn.wrap
sw_csadv(state, &wn) -- sets the virtual cursor advance bit-switch in wn.wrap
sw_plcsr(state, &wn) -- sets the place cursor bit-switch in wn.wrap
sw_wwrap(state, &wn) -- sets the word wrap bit-switch in wn.wrap

Color Window Control
color_sc(bground) -- sets a color attribute for use in clearing the screen

color _wn(fground, bground, &wn) -- sets the foreground and background colors
in a window

c_att(fground, bground) -- returns the attribute value for the specified
fground and bground colors

rd_mode() -- returns current video mode of the IBM PC
vid _bdr(color) -- sets color border around screen
vid mode(mode) -- sets the video mode, switches display adapters

Cursor Control and Scrolling

adj_cs(&wn) -- adjusts cs row and col values and checks limits

csr_hide() —-- hides the screen cursor

csr_show() -- restores the screen cursor to its previous location

csr_type(type) -- controls size and style of cursor

mv_cs(rw, co, &wn) -- changes value of virtual cursor; does not move screen
cursor

mv_csr(rw, co, &wn) -- changes value of virtual cursor and moves screen

cursor to new location

(Continued)

A2-7

Windows for C Appendix 2
Version 4.0

LIBRARY FUNCTIONS BY CATEGORY OF USE (continued)

mv_rws(nlines, dir, &wn) -- scrolls designated window by nlines in given
direction

pl csr(&wn) -- places screen cursor at location of window virtual cursor

rd csr(&row, &col, page) -- reads the current location of the screen cursor

Defining and Adjusting Values of Windows

def_wn(&wn, rb, re, cb, ce, 1_mg, r_mg, &bdr) -- assigns initial values to the
members of a window structure

defs_wn(&wn, rb, cb, rw_g, co_q, &bdr) -- alternate define window function,
defines size

dup_wn(&dwn, &swn) -- duplicates a window structure
dim wn(dimen, &wn) -- adjusts the working dimensions of a window
mod wn(rb, cb, rowq, colq, &wn) -- modifies coordinates of a window

Error Messages

errout(st1, st2) -- writes error messages and calls exit(1)

File Viewing and Management

def fr(&fr, fname, fmaxline, fmaxcol) -- assigns values to the FREC structure
di_file(&fr) -- read disk file into memory

di_st(fp, stp, q, brk_ch, tab_q) -- general purpose routine for disk input
(di) to string (st)

char *file lnp(frow, &mfile) -- returns a pointer to the string associated with
the i-th line in the file
S

free_file(&fr) -- frees FLINE structures associated with a file

k_vcom(kv, kq, &wn) -- translates special key codes into video movement
commands

pl_mfwn(frow, fcol, &wn) -- places window origin at specified location in file

scrl_filé(ﬁrows, dir, beg row, &mfile) -- scrolls a memory file

sti file(st, frow, &mfile) -- loads strings into WFC data structure used for
files

(Continued)

A2-8

Windows for C Appendix 2
Version 4.0

LIBRARY FUNCTIONS BY CATEGORY OF USE (continued)

vs_file(exit_key, wnp) -- view and scroll a file

v_file(&wn) -- puts a file to a window

Initialization

init_wfc() -- initializes the Windows for C system

u init() -- allows initialization of globally known variables

Keyboard Functions

ki() -- obtains key code from keyboard
ki chk() -- checks buffer for key value; returns value if available.
ki cum(&keyr) -- obtains identical codes from buffer

Graphing Functions
v_axes(r_origin, c_ofigin, height, width, &wn) -- draws axes for graphs

v_bar(row_size, col_size, r_begin, c_begin, ch, attrib, &wn, &bdr) -- draws a
horizontal or vertical bar

Logical Attribute Support Functions

s_latt(col, rowq, colqg, att_tbl, att_arry) -- copies appropriate column from
attribute table into logical attribute array

Memory Management

free_mem(p) -- calls free() with error checking

char *get mem(size) -- calls malloc() with error checking
Menu Management

menu2(&wn, qitems, itemlength, item_row, def pos) -- a pop-up menu display
and selection routine

Reading Information from Screen

vo_att(&wn) —-- reads attribute from window at current virtual cursor position
vo_ch(&wn) -—- reads character from window at current virtual cursor position
v_mova(st, &wn, part, direction) -- reads specified section from window to

standard ASCII string

(Continued)

A2-9

Windows for C Appendix 2
Version 4.0

LIBRARY FUNCTIONS BY CATEGORY OF USE (continued)

Set Window Structure Member Functions

sw_att(att, &wn) -- sets wn.att to the specified attribute

sw_bdratt(att, &wn) -- sets wn.bdratt to the specified attribute
sw_border(&bdr, &wn) -- sets wn.bdrp to the specified border

sw_latt(att_arry, &wn) -- sets wn.larray to point to the specified logical
attribute array

sw_margin(l_mg, r_mg, &wn) -- sets the wn.l mg and wn.r _mg to the specified
values

sw_mfile(&mfile, &wn) -- sets wn.frp to point to the specified memory file
structure

sw_name(name, &wn) -- set wn.wname to the specified name

sw_popup(state, &wn) -- set wn.popup to the specified state

sw_scroll(state, &wn) -- sets wn.scr_gq to the specified state

Sound

bell() -- sound the bell (beep) on the IBM PC

String Utility Functions

void lower_st(st) -- converts each position in string to lowercase

char *skip_wh(st) -- skips leading whitespace in string

char *stblank(st) -- allocates memory for string and initializes to blanks
char *strcpyp(dest, src) -- copies source string to destination string
void strip_wh(st) -- strips trailing whitespace from string

void upper_ st(st) -- converts each position in the string to uppercase

Window Screen Images: Moving, Changing, Saving, and Restoring

copy_wc(dimen, filename, dmode, &wn) -- copies the character contents of a
window image to a file

mv_wi(rw, co, &wn) -- moves a window image to a new location on the screen

prt_wn(&wn) -- copies the character contents of a window to a printer

(Continued)

A2-19

Windows for C Appendix 2
Version 4.0

LIBRARY FUNCTIONS BY CATEGORY OF USE (continued)

repl wi(&wn) -- replaces onto the screen a saved window image

sav_wi(&wn) -- saves a window image in memory

size_wn(dimen, part, &wn) -- calculates size of video string needed for window
saves

unsav_wi(&wn) - places onto the screen a saved window image, frees memory

v_natt(att, part, &wn) - gives a new attribute to a section of a window

v_mov(vst, &wn, part, direction) -- moves info between video and a "video
string"
v_mova(st, &wn, part, direction) -- moves info between video and standard

ASCII string

Window Management

cls() -- cleags screen with screen background attribute

cl wn(&wn) -- clears windows

mode_col() -- obtains number of video columns in current mode
pl_wn(rw, co, &wn) -- places window at specified location
set_wn(&wn) -- sets borders and margins on designated window
unset_wn(&wn) -- removes windows from the screen, resets dimensions
v_border(&wn, &bdr) -- draws border on designated window

Writing Text to Video

v_att(att, &wn) -- writes specified video attribute to window at current
virtual cursor position

v_ch(ch, &wn) -- writes single character to window at current virtual cursor
position

v_co(ch, q, &wn) -- puts column of attribute-char’s to a window
v_fst(st, &wn) -- puts full character string to a window

v_plst(rw, co, st, &wn) -- writes string to window beginning at specified row
and column

v_printf(&wn, fmt, args...) -- performs formatted output to window

(Continued)

A2-11

Windows for C Appendix 2
Version 4.0

LIBRARY FUNCTIONS BY CATEGORY OF USE (continued)

v_qch(ch, q, &wn) -- writes q character-attribute pairs to window

v_rw(ch, q, &wn) -- puts a row of attribute-char’s to a video window

char *v_st(st, &wn) -- puts character string to video window

void v_st_nop(st, q, &wn) -- puts character string to a row of a video window,

no options

char *v_st rw(st, q, &wn) -- puts character string to a row of a video window

A2-12

Windows for C Appendix 2
Version 4.0

NAME

adj_cs.c -- adjusts cs row and col values and checks limits

DATE: October 23, 1985

USAGE

To check and adjust the position of the virtual cursor in a window. The
virtual cursor is the position defined by the values of wn.r and wn.c

contained in the structure WINDOW wn.

To check whether cs is beyond the window bottom, that is, if the window is
full.

To adjust wn.r and wn.c after incrementing wn.c, to ensure that cs is kept
within the window boundaries.

FUNCTION
If wn.c is greater than wn.ce, wn.r is incremented and wn.c is set to zero.

If cs is beyond the lower right corner of a window, wn.r is set to the first
row beyond the window and wn.c is set to zero.

If wn.r or wn.c is less than zero, the negative value is set to zero.
CALL

adj cs(&wn)
WINDOW wn; window structure

RETURNS

¢ if beyond window lower right corner;

1 otherwise

CAUTIONS

None

A2-13

Windows for C Appendix 2
Version 4.0

NAME

bell.c -- sounds the bell on the IBM PC

DATE: January 30, 1986

USAGE

To sound the bell (generally as a warning).

FUNCTION

For MSDOS, calls BIOS interrupt 10H, function 14 (via vid_int()) to sound the
bell (beep).

For UNIX, sends the terminal command string that rings the bell.
CALL

void bell()

RETURNS

None

CAUTIONS

None

A2-14

Windows for C Appendix 2
Version 4.0

NAME

cls.c -- clear screen

DATE: January 3@, 1986

USAGE

To clear the entire video screen.

FUNCTION

MSDOS Systems:

The screen is cleared with spaces with the attribute cl_att. Variable cl_att is
a globally known variable defined in window.h. It is assigned an initial value
of NORMAL if physical attributes are used and LDOS if logical attributes are
used. These values can be changed within the program.

UNIX Systems:

If a clear screen escape sequence has been defined, it will be used to clear the
screen; otherwise the screen will be filled with blanks. The escape sequence
approach is much faster and is the preferred method.

If the escape sequence is used to clear the screen and cl_att is not NORMAL, the
current video attribute for the terminal is set to cl_att. The escape sequence
is then sent to the terminal to clear the screen.

The virtual video buffer is cleared and with the cl_att attribute.

Variable cl_att is a globally known variable defined in window.h. It is
assigned an initial value of NORMAL if physical attributes are used and LDOS if
logical attributes are used. These values can be changed within the program.
CALL

void cls();

RETURNS

None

CAUTIONS

None

A2-15

Windows for C Appendix 2
Version 4.0

NAME

cl_wn.c -- clears windows

DATE: October 23, 1985

USAGE

Clear window and set background attribute to wn.att.
FUNCTION

Fills window with spaces of attribute wn.att, using v_qch().
The virtual cursor is set to 0,0.

CALL

void cl_wn(&wn)
WINDOW wn; window structure

RETURNS
None
CAUTIONS

None

A2-16

Windows for C Appendix 2
Version 4.9

NAME

color_sc.c -- sets a color attribute for use in clearing the screen

DATE: January 30, 1986

USAGE

When using physical attributes, to set the background attribute used by
functions that clear to the screen background (cls() and unset_wn()).

FUNCTION

Assigns a color value to the public attribute byte (cl_att) according to codes
used for colors. For a definition of the colors, see color_wn().

Variable cl_att is the attribute byte used by cls() and unset_wn() when clearing
the screen area with spaces.

Variable cl att is defined in window.h. Because it is defined externally before
main(), it is available for use or modification in all subroutines.

The initial value of cl_att is NORMAL (BLACK background and WHITE foreground).
Generally, this value should be restored by direct assignment before returning
from a color to a black and white mode.

A WHITE background assigned by color sc() will result in the clearing to REVERSE
in non color modes. This same result can be obtained by direct assignment of
REVERSE to cl_att.

MSDOS Systems:

Note: This function only assigns a value to the background 3 bits of cl_att.
The BLINK bit is turned off. The foreground color is set to WHITE (#). A color
value can be directly added to cl att after calling color_sc() to provide a non-
WHITE foreground color. The foreground is never used by cls() and unset_wn(),
but you may wish to use it for another purpose in your own functions.

UNIX Systems:

Invalid attribute values are mapped to NORMAL.

CALL

void color_sc(bground)
char bground; background color value

RETURNS

None

CAUTIONS

Use only when physical attributes are implemented.

For UNIX systems, invalid attributes are mapped to NORMAL.

A2-17

Windows for C Appendix 2
Version 4.0

NAME

color_wn.c -- sets the foreground and background colors in a window.
DATE: January 30, 1986

USAGE

When using physical attributes, to set the colors displayed in a window when
using the Color/Graphics Adapter or Enhanced Graphics Adapter under MSDOS or
color terminals under UNIX.

FUNCTION

Assigns values to the attribute byte (wn.att) in a window structure according to
codes used for colors on the color adapters or terminal.

MSDOS Systems:

To simplify use, the numeric codes are #defined into color words in computer.h
(which is nested within bios.h). Eight basic color values are #defined:

BLACK, BLUE, GREEN, CYAN, RED, MAGENTA, BROWN, WHITE

Adding the #defined value LIGHT to the basic colors yields the second eight of
the 16 colors available as foreground colors in the text modes, e.g&. specifying
LIGHT + RED as the foreground parameter will provide light red characters. For
convenience, LIGHT + BROWN is #defined as YELLOW (see the caution below on use
of LIGHT colors). On some monitors BROWN will also show up as yellow.

The LIGHT colors are not implemented for background colors when blink is enabled

(because the color values would then overlap the attribute bit that creates
blinking).

When blink is enabled adding BLINK to the foreground parameter value will cause
characters to blink.

UNIX Systems:

To simplify use, the numeric codes are #defined into color words in terminal.h
(which is nested within bios.h). Generic colors are #defined for 16 colors:

COLOR1 COLOR2 ... COLOR16

These definitions refer to the specific colors (foreground/background combina-
tions) that were loaded in from the WFCTERMCAP file. There is no limit on the
number of color combinations that can be read in from the WFCTERMCAP file. How-
ever, only COLOR1 - COLOR16 are #defined in terminal.h. If you wish to use more
than 16 color combinations, you should add the appropriate definitions. The

global array (va_cmd[][]) must be large enough to hold the desired number of
video attribute commands.

(Continued)

A2-18

Windows for C Appendix 2
Version 4.0

color_wn (continued)
For convenience, more specific definitions may be made to reference the appro-
priate colors. For example, suppose that the first color (scl@, rcl@®) defined
in WFCTERMCAP is blue on a black background. You could make the following defi-
nition

#define BLUE COLOR1
You could then use BLUE when referring to this color combination.
For compatibility with the PC/MSDOS version of Windows for C, there are fore-
ground and background arguments in the call. In the Unix/Xenix version, wn.att
is set the foreground argument. The background argument is ignored.

CALL

void color wn(fground, bground, &wn)

char fground; foreground color value
char bground; background color value
WINDOW wn; window structure
RETURNS

None

CAUTIONS

Use only when physical attributes are being implemented.

A2-19

Windows for C Appendix 2
Version 4.0

NAME

copy_wc.c -- copy character contents of a window image to a file
DATE: October 23, 1985

USAGE

To copy character information only (not attributes) from a window to a file.

Copies contents within the working dimensions of the window. If the
dimensions are set to INSIDE, the border will not be copied. To copy the full
window including the border, the dimensions need to be FULL. If necessary,
use dim_wn() to alter the working dimensions.

FUNCTION

The "dmode" parameter specifies whether the file is to be opened in the FWRITE
mode, which erases contents of the file specified, or FAPPEND mode, which
appends the copied information to existing information in the file. If the
specified file does not exist, it is created. FWRITE and FAPPEND are #defined
in wfc_defs.h

Whether the full window or only window contents are copied is specified by the
value of the "dimen" parameter. The values FULL (0) and INSIDE (1) are
#defined in wfc_defs.h.

Allocates sufficient memory (via get _mem()) to store one row of the window in
a video string and calls v_mov() (ROW,0UT) to fill the string.

Copies the characters in the video string to a specified file using putc().
Appends a newline to the end of each window row copied to the file.

CALL

copy_wc(dimen, filename, dmode, &wn)

char dimen; INSIDE or FULL window copy
char *filename; name of the file to copy to
char *dmode; mode of disk operation
WINDOW wn; window structure

RETURNS

= 1 if the copy is successful.

= 0 if copy unsuccessful because file can not be opened or there is
insufficient memory for the video-string buffer; check _wn_err code for
more information.

= -1 if dimen specified was not equal to FULL (@) or INSIDE (1)

CAUTIONS FOR PROGRAMMING

Uses "stdio.h".

A2-20

Windows for C Appendix 2
Version 4.0

NAME
csr_hide() -- hides the screen cursor
csr_show() -- restores the screen cursor to its previous location

DATE: January 39, 1985

USAGE

To hide and restore the screen cursor.
FUNCTION

The present location of the screen cursor is read, via rd_csr(), and stored.
A call to csr_show() will restore the cursor to its previous location.

MSDOS Systems:
The cursor is moved off the screen so that it does not show.
UNIX Systems:

The cursor is turned off (if supported) by csr_hide() and turned on by
csr_show().

CALL

void csr_hide();
void csr_show();

RETURNS

None

CAUTIONS
MSDOS Systems:

Do not make two calls to csr_hide() without an intervening call to

csr_show(). If you do, the stored location of the cursor will be offscreen. The
next call to csr_show() will simply leave the cursor offscreen. If this is a
possibility, use pl_csr() or mv_csr() to restore the screen cursor to a known
location.

If the Color/Graphics Adapter is in use, it is possible to have more than one
display page of information stored in the video buffer. Only one of these can
be active and show on the screen. The default page is page ¢. This function
assumes that page @ is the active page; thus it stores the location of the cur-
sor in page @, and csr_show will restore the cursor to this location.

UNIX Systems:

If the terminal does not support turning the cursor on/off, nothing will happen.

A2-21

Windows for C
Version 4.0

NAME

Appendix 2

csr_type.c -- controls size and style of screen cursor

DATE: January 30,

USAGE

To change the size and style of the screen cursor.

FUNCTION

MSDOS Systems:

Calls vid _int() to set the size of the cursor via PC INT 10H, function 1.

Provides for four cursor types. The cursor type is specified in the function
call by the following parameter values #defined in wfc_defs.h:

LINE (2) a line at the bottom
BLOCK (1) a full block
BOT BLK (2) a block in the bottom half of the character
box
TOP_BLK (3) a block in the top half of the character
box
UNIX Systems:
This is a dummy function in the Unix version of Windows for C. It is provided

for compatibility with the MSDOS version.

CALL

void csr_type(type)
int type;

RETURNS
None

CAUTIONS

type parameter

For UNIX systems, this function performs no action.

A2-22

Windows for C Appendix 2
Version 4.0

NAME

c_att.c -- returns attribute value for specified colors

DATE: October 2%, 1985

USAGE

To set the foreground and background sections of an attribute byte. For a
definition of the colors, see color_wn().

FUNCTION

Shifts the background value left by 4 bits and adds the foreground value.

CALL

c_att(fground, bground)

char fground; foreground color value
char bground; background color value
RETURNS

= attribute value for specified colors
CAUTIONS

Implemented as a macro. Be aware of side effects.

A2-23

Windows for C Appendix 2
Version 4.0

NAME

defs_wn.c -- define-window function, defines size
DATE: October 23, 1985

USAGE

To define a window in a standard manner. This alternate to def wn() defines
the length and width of a window rather than the beginning and ending row and
column numbers.

FUNCTION

The beginning coordinates, the size of the window and the border are specified
in the call. The margins are set to 1 by this function.

The minimum value allowed for wn.rb and wn.cb is 0.

The maximum value allowed for wn.re and wn.cb are the last row and column on
the screen. If the window size specified in the call would make the window
lie outside of the screen, the origin will be as specified, but the size
reduced to make it lie within the screen.

If logical attributes are being used (_lattsw == ON), the window and border
attributes are set to LNORMAL, else they are set to NORMAL.

Elements of the window not specified in the call are set within the function
as follows:

int wn.c = 0
int wn.r = @;
char wn.att = NORMAL or LNORMAL;
char wn.page = 0;
int wn.wrap = WRAP
int wn.location
char wn.scr_q =
int wn.1l _mg = 1
int wn.r_mg = 1;
char wn.setsw = 0;
FRECPTR wn.frp = NULLP;

char *wn.storp = NULLP;

char *wn.userp[®] = NULLP;

char *wn.userp[1] = NULLP;

char *wname = NULLP;

char *larray = NULLP;

char *pu storp = NULLP;

char bdratt = NORMAL or LNORMAL;
char popup = NO;

»

See def wn() for further discussion.

(Continued)

A2-24

Windows for C Appendix 2
Version 4.0

defs_wn (continued)

CALL

void defs_wn(&wn, rb, cb, rw_q, co_g, &bdr)

int rb; See WINDOW typedef in wfc_stru.h for
int cb; definitions of these variables.

int rw_q;

int co_q;

BORDER bdr;

RETURNS

None

RELATED FUNCTIONS

def _wn()

CAUTIONS

The WINDOW structure must be declared before the call. This function only
sets the element values, it does not declare the window.

A2-25

Windows for C Appendix 2
Version 4.0

NAME
def_fr.c -- initializes a memory file
DATE: October 23, 1985

USAGE

To initialize a memory file by assigning initial values to a memory-file
record structure (an FREC structure) and allocating an array to hold
information on each line of the file. Members of the structure not specified
in the call are assigned default values.

FUNCTION

Before calling this function, a memory file record (mfile) of type FREC must
be declared. A pointer to this file record is passed as an argument.
Additional arguments specify the file name, the maximum number of lines in the
file, and the maximum number of columns in a single line. These values are
assigned to the memory file record as follows:

mfile.fn filename, including drive (and path, if supported by
compiler and DOS and file not in default directory)

mfile.fmaxlines the number of lines in the memory file (not including
a position for an end of file marker)

mfile.fmaxcol the maximum number of columns allowed in a file line

Storage is allocated for a memory file array, which is an array of pointers to
FLINE structures. FLINE structures are used to hold information on each line
in the memory file. The size of the memory file array equals the specified
maximum number of lines in the memory file, plus one additional space for an
end-of-file marker. All elements of the array are initialized to NULLP. A
pointer to this array is assigned to the FREC member:

mfile.farray pointer to an allocated array of FLINEPTRS

Structure members not specified in the call are assigned the following default
values:

mfile.c_q = @; will be set by di_file or sti file
mfile.ln q = 0; will be set by di_file or sti file
mfile.wfr = 0; origin of the window in file
mfile.wfc = 0; origin of the window in file
mfile.ftabqg = 8; ‘ tab spacing, for di_file()
mfile.ib = @; not currently used

mfile.lbp = NULLP; not currently used

mfile.lep = NULLP; not currently used

If values other than those assigned internally are desired, assign them after
calling def fr.

(Continued)

A2-26

Windows for C Appendix 2
Version 4.0

def fr (continued)
CALL

def_fr(&mfile, fname, fmaxline, fmaxcol)

FREC mfile FREC structure to be initialized
char *fname pointer to filename string

int fmaxline maximum number of lines in file
int fmaxcol; maximum number of columns in file
RETURNS

= @ if unable to allocate storage for array of FLINE pointers
= 1 otherwise

RELATED FUNCTIONS

di_file()

sti file()

free file()

v_file()

vs_file()

CAUTIONS

The FREC structure must be declared before the call. This function only sets
the member values, it does not declare the frec.

A2-27

Windows for C Appendix 2
Version 4.0

NAME

def _wn.c -- assigns values to WINDOW-structure elements

DATE: October 23, 1985

USAGE

To define a window in a standard manner. After declaring a structure, this
function can be used to simplify assigning initial values to the structure.

FUNCTION

Dimensions, margins, and the border are specified in the call. Remaining
elements of the WINDOW structure are assigned values internally.

Pointers to the standard borders are #defined in wfc_defs.h The borders and
their definitions are:

BORDER #define bdrp BORDER STYLE

bdr_0 BDR_@P No border

bdr_1n BDR_LNP Single line border
bdr_dln BDR_DLNP Double line border
bdr_rev BDR_REVP Reverse border
bdr_dot BDR_DOTP Dot border

If values other than those assigned internally are desired, assign them after
calling def_wn.

The minimum value allowed for wn.rb and wn.cb is @.

If logical attiributes are being used (_lattsw == ON), the window and border
attributes are set to LNORMAL, else they are set to NORMAL.

The maximum value allowed for wn.re and wn.cb are the last row and column of
the current screen-size.

(Continued)

A2-28

Windows for C
Version 4.0

def wn (continued)

Appendix 2

Elements of the window not specified in the call are set within the function

as follows:

int wn.c = @;
int wn.r = @;

char wn.att = NORMAL or LNORMAL;

char wn.page = 0;

int wn.wrap = WRAP;

int wn.location
char wn.scr_gq =
char wn.setsw =

FRECPTR wn.frp =
char *wn.storp =
char *wn.userp[0]
char *wn.userp[1]

Q - i

0;

.
’

’
NULLP;
NULLP;
= NULLP;
= NULLP;

char *wname = NULLP;
char *larray = NULLP;

char *pu_storp =

NULLP;

char bdratt = NORMAL or LNORMAL;

char popup = NO;
CALL

void def wn(&wn, rb,
int rb;

int cb;

int re;

int ce;

int 1_mg;

int r_mg;

BORDER bdr;

RETURNS

None

RELATED FUNCTIONS
defs_wn()

CAUTIONS

The WINDOW structure must be declared before the call.

sets the element values, it does not declare the window.

re, cb, ce, 1_mg, r_mg, &bdr)

B

ORDER structure

A2-29

See WINDOW typedef in bios.h for
definitions of these variables.

This function only

Windows for C Appendix 2
Version 4.0

NAME
dim wn.c -- adjusts the working dimensions of a window
DATE: October 23, 1985

USAGE

To adjust the "working dimensions" of a window to either the full dimensions
including the border or to the inside dimensions, which are smaller than the
full dimensions by the amount of the border and margins.

Working dimensions are defined by the values of wn.rb, wn.re, wn.cb, and wn.ce
(the beginning and ending row and column values of the wn structure). When a
window is first initialized, these members reflect the full dimensions of the
window, to the outside of the borders. After a window is "set," using
set_yn(), the values of these members are reduced by the width of the border
and the margins. The inside of the window now represents the working
dimensions.

Full dimensions are needed for routines that affect an entire window such as
sav_wi(), whereas string output functions generally expect inside dimensions.

FUNCTION

A parameter in the call specifies whether the working dimensions of a window
are to be set to the full or inside dimensions of a window. The values FULL
(0) and INSIDE (1) are #defined in wfc_defs.h.

The value of wn.setsw is checked to determine the present status of the window
dimensions, and the values of wn.rb, wn.re, wn.cb, and wn.ce are adjusted

appropriately.

The value of wn.setsw is set to reflect the status of the working dimensions
of the window: @ for FULL and 1 for INSIDE.

CALL

dim wn(dimen, &wn)

char dimen FULL (@) or INSIDE (1)
WINDOW wn; window structure
RETURNS

= -1 if dimen is not equal to FULL (@) or INSIDE (1)
= 1 otherwise

CAUTIONS

Does not perform consistency checks on the window dimensions. Use set_wn()
initially to perform this check.

A2-30

Windows for C Appendix 2
Version 4.0

NAME

di_file.c -- to transfer an ASCII file from disk into a memory file

DATE: October 23, 1985

USAGE

To read an ASCII file from disk and place file contents in a memory file.
FUNCTION

This function draws on information set in a passed FREC structure, mfile, to
perform the file operations. The FREC must be initialized by a call to
def_fr() prior to calling this function. Function def fr() will allocate and
initialize a memory file array, which is an array of pointers to FLINE
structures.

The memory file consists of FLINE structures. Function di_file() allocates a
separate FLINE structure for each line of the ASCII file that is read into the
memory file and place a pointer to this structure in the memory file array.

The structure FLINE fline contains two members:

fline.line_len is an integer and holds the length of the file line
(excluding the terminal newline and null).

fline.line_st is a character pointer and points to the location where the
file line-string is stored.

Function di_st() is called to read a file-line string terminated by newline
into a string buffer. Tab expansion is performed. Function di_file()
allocates the memory necessary for the FLINE structure and the file line
string and then fills the FLINE structure with the appropriate information. A
pointer to the FLINE structure is then placed in the memory file array and the
array is indexed to prepare for the next entry.

The above functions are continued until end-of-file is reached or the limit on
number of lines (mfile.fmaxlines) is reached.

If EOF is reached or the limit on number of lines is exceeded, a NULLP is
placed in the last position in the array of FLINEPTR's.

The member mfile.ln_g is set to the number of lines read into the memory file.
Member mfile.c_q is set to the length of the longest line (not including the
terminal newline null on each file line). The values of mfile.c_gq and
mfile.ln_q are used by the functions (v_file(), k _vcom(), and vs_file()) that
provide capability for displaying and scrolling through a memory file.

Source code for this function is provided on the system diskette.

(Continued)

A2-31

Windows for C Appendix 2
Version 4.9

di_file (continued)

CALL

di_file(&mfile)
FREC mfile; memory file record

RETURNS

= 1 if the copy is successful

= @ if error, check _wn_err for more information
ERROR HANDLING

The global variable _wn_err is set to different error codes to indicate that
cause of an error return:

_wn_err = ERR_OPEN unable to open file
= READERR error reading file
= MEMLACK insufficient memory to copy file
= FILETOOBIG number of lines in file exceeds mfile.fmaxline
= ERR_CLOSE unable to close file
= BADHEAP error trying to free temporary buffer

You might wish to proceed when an error is returned (for example if the ASCII
file contained more lines than would fit in the memory file), therefore no
memory that is allocated by this function is released prior to an error
return. Call free file() to release the memory allocated by this function if
you do not want to proceed.

RELATED FUNCTIONS

def _fr()
free_file()
sti_file()
v_file()
vs_file()
scrl_file()

CAUTIONS

Before using this function, the memory file must be initialized by calling
def_fr().

A2-32

Windows for C Appendix 2
Version 4.9

NAME

di_st.c -- general purpose routine for disk input (di) to string (st)
DATE: October 23, 1985

USAGE

To read input from a disk file to a string, with capabilities to limit the
number of characters read, to expand tab characters, and to specify the break
character that indicates end of string within the disk file.

The limit specified for the limit on the number of characters in the string
should include the break character and the null terminator (if it is not the
break character).

The break character may differ from the standard null terminator that is used
internally within C programs to indicate an end of string.

By specifying newline as a break character, one line of a standard ASCII file
will be copied to a string. The newline will be included and a null byte will
be appended.

The number of spaces (tab_q) to be inserted in the string for a tab character
is a function parameter. 1If tab_q = @, no tab expansion occurs.

FUNCTION

The specified file is read until the specified break character is detected,
the number of characters read equals one less than the limit specified, or the
EOF is reached. Characters are placed sequentially into a specified string.

If the 1limit on number of characters is reached before the break character,
the remaining characters in the record to the break character are discarded.
The break character is placed at the end and a null terminator appended.

A null terminator ('\@’) is placed in the string after the last character
read. If the first character read is EOF, a null terminator is placed in the
first position of the string. If the limit on the string size (q) equals @, a
return is made without placing any characters in the string.

CALL

di_st(fp, stp, q, brk_ch, tab _q)

FILE *fp; file pointer

char *stp; output string pointer

int q; limit on the string size

char Dbrk_ch; denotes end of string in disk file
int tab_q; number of spaces between tabs

(Continued)

A2-33

Windows for C
Version 4.9

di_st (continued)

RETURNS

= -1 if EOF is first character read.

string position.

CAUTIONS

Appendix 2

A null terminator is placed in the first

@ if q = 8. Nothing is placed in the string.

number of characters placed in string, including the null terminator

Functions included in stdio.h are used.

A2-34

Windows for C
Version 4.0

Appendix 2

NAME

dup_wn.c -- duplicates a window structure
DATE: October 23, 1985

USAGE

To duplicate a window structure by copying the elements of a source window to
a destination window.
allocated) before calling this function.

FUNCTION

The destination window must be defined (have storage

All elements of the source window are copied to the destination window.

The elements copied are:

CALL

void dup_wn(&dwn, &swn)

int
int
int
int
int
int
char
char
int
int
char
int
int

wn.rb
wn.re
wn.cb
wn.ce
wn.c

wn.r
wn.att
wn.page
wn.wrap
wn.location
wn.scr_q
wn.l mg
wn.r_mg

BORDERPTR wn.bdrp

char

wn.setsw

FRECPTR wn.frp

char
char
char
char
char
char
char
char

*¥wn.storp
*wn.userp[0]
*wn.userp[1]
*wname
*larray
*pu_storp
bdratt
popup

WINDOW dwn
WINDOW swn

(Continued)

destination window structure
source window structure

A2-35

Windows for C Appendix 2
Version 4.0

dup_wn (continued)

RETURNS

None

CAUTIONS

The WINDOW structure must be declared before the call. This function only
sets the element values, it does not declare the window.

A2-36

Windows for C

Version 4.9

NAME

errout.c -- prints fatal error messages and exits

'DATE: October 23, 1985

USAGE

To exit from programs when a function returns an error signal.
FUNCTION

Prints error message using v_st() and calls exit(1). Exit(1) is the
conventional exit indicating an error.

CALL

void errout(s1, s2)
char *s1, *s2; error message strings

RETURNS
None
CAUTIONS

This function does not return. It causes the application program to
terminate.

A2-37

Appendix 2

Windows for C Appendix 2
Version 4.0

NAME

file lnp.c -- returns a pointer to the string associated with the i-th line in
the file

DATE: October 24, 1985
USAGE
Used to access the string associated with the i-th line in the file.

FUNCTION

Accesses the array of pointers to FLINE structures for the specified line in
the file and returns the line_st member found in the FLINE structure.

S AN weadels WaRAATL
CALL i ‘}g,'vf* AN ""’\\i\‘?“
char *file lnp(frow, &mfile)
int frow; line number to access
FREC mfile; FREC structure
RETURNS

= NULLP if requested line number is negative or greater than the actual number
of lines in the file

= pointer to character string otherwise

CAUTIONS

The first line in the file is line 0.

A2-38

Windows for C Appendix 2
Version 4.0

NAME

get_mem.c -- call to malloc() with error checking

DATE: October 23, 1985

USAGE

Used to call malloc() and perform standard error procedure

FUNCTION

Calls malloc(). If insufficient memory, _wn_err is set to MEMLACK.

CALL

char *get mem(size)
int size; number of bytes of memory

RETURNS

= pointer to allocated memory if successful

= NULLP if insufficient memory.

ERROR HANDLING

If insufficient memory, _wn_err is set to MEMLACK and an error return is made.
RELATED FUNCTIONS

free mem()

CAUTIONS

None

A2-41

Windows for C Appendix 2
Version 4.0

NAME

init_wfc.c -- initializes Windows for C system

DATE: February 5, 1986

USAGE

Initializes the global variables for the Windows for C system.

FUNCTION

Initializes the global variables declared in window.h.

Initializes wn® to cover the full screen.

Initializes internal global variables.

CALL

void init_wfc()

RETURNS

None

CAUTIONS

MSDOS Systems:

Should be called before any Windows for C functions. Many WFC functions, but
not all, check if the initialization has been performed and if not, will invoke
the initialization routine. To be absolutely safe, the main application program
should call this function as its first task. In the future it may be required
that the main application program call init wfc().

UNIX Systems:

Must be called before any Windows for C functions.

A2-42

Windows for C Appendix 2
Version 4.0

NAME

free_filg.c -- frees FLINE structures associated with a file
DATE: October 23, 1985

USAGE

To clear a memory file of its contents, so it can be filled again. Frees
FLINE structures and string pointers allocated by di file(). This function
does not free the array that holds the pointers to the FLINE structures.

FUNCTION

Calls free mem() to free each non-NULL string pointer and FLINE structure in
the FLINEPTR array pointed to by fr.farray.

free mem() will return a 0 on errors for those compilers that support this
error return. Otherwise a 1 is returned even on errors.

CALL
free file(&fr);
FREC fr; pointer to FREC structure

RETURNS
= 1 if no error or if compiler does not provide error return

= @ if attempt to free a pointer not allocated from the heap (only for those
compilers supporting an error return).

RELATED FUNCTIONS
def _fr()
di_file()
v_file()
CAUTIONS

Does not free the array that holds the pointers to the FLINE structures. If
this is desired, give the call

free mem((char *)mfile.farray);

A2-39

Windows for C Appendix 2
Version 4.0

NAME

free_mem.c -- call to free() with error code setting

DATE: October 23, 1985

USAGE

Used to call free() and set error code.

FUNCTION

Calls free() if pointer is not NULLP. If free() makes an error return, _wn_err
is set to BADHEAP.

CALL

free_mem(p)
char *p; pointer to allocated memory

RETURNS

= 1 if successful

@ if error on free() (only for those compilers that support an error return
on free())

ERROR HANDLING

If error return on call to free(), _wn err is set to BADHEAP and an error
return is made. Not all compilers provide an error return from free().

RELATED FUNCTIONS

get_mem()

CAUTIONS

The pointer to the memory block must be cast to a character pointer.

Check your compiler documentation for free(). Many compilers do not make an
error return from free() but will exit to the operating system for this error.

A2-40

Windows for C Appendix 2
Version 4.9

NAME

ki.c -- obtains key code from keyboard

DATE: January 31, 1986

USAGE

Waits until a key is pressed, then returns ASCII or extended codes.
FUNCTION

MSDOS Systems:

Calls BIOS int 16H, function 1, and returns code value.

Extended codes are returned as negative values. See the IBM Technical Reference
Manual, Section 2, "Keyboard Encoding and Usage" for more information on
extended codes.

UNIX Systems:

In general, this routine will read a character (or characters in the case of
multiple character escape sequences generated by a single key), check the char-
acter (or characters) against the keystroke definition table and return an
extended code in case of a match or the raw keystroke in the case of no match.

Reads a character from the keyboard using stdio.h routines. The keystroke defi-
nition table is then checked to see if the received keystroke matches the first
character of any of the keystroke strings in the table. If no match is found,
the keystoke is returned. If a match is found and the length of the string is
1, then the extended code for that string is returned.

If a match is found but the number of keystrokes received is less than the
length of the string, another character is read from the keyboard. The key-
stroke definition table is checked to see if this keystroke matches the second
character of any of the keystroke strings in the table. If no match is found
and the first keystroke equals the second keystroke, then the keystroke is
returned. This permits a <lead-in> character to be entered from the keyboard by
pressing that key twice. (For example, ESC on ANSI terminals). If no match is
found and the first and second keystrokes are different, then the bell is
sounded and the process starts over. If a match is found and length of the
string is 2, then the extended code for that string is returned.

If a match is found but the number of keystrokes received is still less than the
length of the string, the process is repeated again.

If we process as many keystrokes as in the longest string without finding a
match, then the bell is sounded an the process starts over.

CALL
ki();

(Continued)

A2-43

Windows for C Appendix 2
Version 4.0

ki (continued)

RETURNS

ASCII code if normal key.

- (Extended Code) if special key.
RELATED FUNCTIONS

ki_cum() -~
ki_chk() -

CAUTIONS
Return must be checked for negative value (which indicates extended code).
MSDOS Systems:

Key definitions in computer.h #define positive values for keys returning
extended codes. Compare the negative of these #defined values against ki().

CTRL-BREAK is mapped to -1.
UNIX Systems:
The maximum length of any keystroke sequence is 10.

Functionally the same as the PCDOS version; however the actual implementation
is different to handle multiple keystroke escape sequences.

A2-44

Windows for C _ Appendix 2
Version 4.0

NAME

ki _chk.c -- checks buffer for key value; returns value if available.

DATE: October 23, 1985

USAGE

To check if a key code is available in buffer. If available, the key code is
returned, but the keystroke is not removed from the buffer.

FUNCTION
MSDOS Systems:

Calls BIOS int 16H, function 2; returns code value if found in buffer. Extended
codes are returned as negative values.

UNIX Systems:
Checks the structure associated with stdin to determine if any keystrokes are in
the pbuffer. If there are no keystrokes here it does not mean that there are no

keystrokes waiting in the terminal’'s keyboard buffer.

The value of the keystroke is returned. Extended key codes are returned as neg-
ative values.

CALL

ki _chk();

RETURNS

= ASCII code if normal key.
For UNIX Systems, this key may be first keystroke of an escape sequence
or may be an extended code if a translated keystroke was pushed back by
a previous call to ki_cum().

= - (Extended Code) if special key.

= ¢ if no code in buffer

RELATED FUNCTIONS

ki()
ki_cum()

CAUTION
Return must be checked for negative value (which indicates extended code).

Key definitions in computer.h #define positive values for keys returning
extended codes. Compare the negative of these #defined values against ki().

CTRL-BREAK is mapped to -1.

A2-45

Windows for C Appendix 2
Version 4.0

NAME

ki _cum.c -- obtains identical codes from buffer

DATE: January 31, 1986

USAGE

To obtain at least one key code and to check keyboard buffer for additional
identical keycodes. Identical keycodes are removed and the number returned as

an element of a structure.

May be used to minimize over-scrolling on systems with slow screen updating (see
k vcom()).

FUNCTION

Waits until at least one key code is available (via ki()) and then calls
ki_chk() to check if an additional identical code is still in the buffer. Iden-
tical codes are removed from buffer until either a specified maximum number is
reached or a non-identical code encountered.

A typedef KEYR structure is used to return the value of the keycode and the num-
ber of identical keystrokes found in the buffer.

CALL

ki_cum(&keyrec)

KEYR keyrec; key record structure
typedef struct krec defined in bios.h
{
int kv; key code value
int kq; quantity of identical codes found
int kmax; limit on number of codes to be returned

} KEYR, *KEYRPTR;
RETURNS
= key code value (Extended Codes are returned as negative values).
Values are also returned in keyrec structure:
keyrec.kv = code value (negative value for extended codes).

keyrec.kq

quantity of identical keycodes found.
RELATED FUNCTIONS

ki()

ki chk()

k_vcom()

vs _file()

(Continued)

A2-46

Windows for C Appendix 2
Version 4.0

ki cum (continued)

CAUTIONS

keyrec.kmax must be specified before call.

Key definitions in computer.h (terminal.h for UNIX systems) #define positive
values for keys returning extended codes. Compare the negative of these #def-
ined values against ki().

MSDOS Systems:

CTRL-BREAK is mapped to -1.

UNIX Systems:

Because ki_cum() calls ki_chk() and the Unix version of ki chk() is slightly
different from the MSDOS version of ki_chk(), the Unix version of ki_cum() will
behave slightly differently than the MSDOS version.

In actual practice, if 6 identical keystrokes are in the buffer the MSDOS ver-
sion of ki cum() will return all 6 at once. The Unix version of ki cum() will
probably return the 6 keystrokes in two groups. This is due to the nature of

ki _chk() and is dependent on how quickly the keystrokes are entered and when the
terminal’s keyboard is actually read.

A2-47

Windows for C Appendix 2
Version 4.0

NAME

k_vcom.c -- translates special key codes into video movement commands
DATE: April 17, 1986
USAGE

To translate Extended Codes (obtained via ki()) into video movement commands.
This function is used by vs_file(). It provides for moving the virtual and
screen cursor within a window and also for moving the window over a file that is
larger than the window dimensions.

FUNCTION

This function operates on a memory file. It requires that a FREC structure for
the file be established, and that a pointer to the FREC be installed in the
wn.frp member of the window.

Translates various keys on the cursor pad into movements of the virtual and
screen cursors within a window.

The cursor-movement commands will move the cursor to the edge of the window and,
if text remains beyond the edge, additional cursor movements will shift the win-
dow origin in the file (wn.frp->wfr and wn.frp->wfc will be altered).

This function does not redraw a window. If the window location in the memory
file is moved, it is necessary to redraw the window contents upon return. A
non-zero return indicates the window origin has been shifted. Use v_file() to
redraw the window.

Function vs_file() incorporates k_vcom() and automatically redraws the window
when its location in the memory file moves.

Provision is made for handling more than one identical keystroke. For example,
if q up-cursor strokes are collected before calling k vcom, and kq is set equal
to q, k_vcom will process g up-cursor moves in one call.

The following keys are translated:
cursor arrow keys: one space in direction of the arrow; except that left

and right arrows cause horizontal scrolling of five
spaces when cursor is at window edge.

Home: top of file
End: end of file
PgUp: page up
PgDhn: page down

(Continued)

A2-48

Windows for C Appendix 2
Version 4.0

k_vcom (continued)

MSDOS Systems:

Ctrl-left-arrow: five spaces left
Ctrl-right-arrow: five spaces right
Ctrl-PglUp: five spaces up

Ctrl-PgDhn: five spaces down

UNIX Systems:
Page left: five spaces left
Page right: five spaces right

If a keystroke is passed to this function that is not recognized the bell is
rung.

Source is provided to allow you to change this function. ¥i<k~}
CALL ~
k_vcom(kv, kg, &wn) fﬁ

int kv; Extended key code value.

int kqg; quantity of keystrokes to implement
WINDOW wn; window struct

RETURNS

= @ if the window origin in the file-record is unchanged
= 1 if the window origin in the file-record is shifted
RELATED FUNCTIONS

vs_file()
v_file()

CAUTIONS

If k vcom() causes a shift in file origin (the value returned by k vcom '= 0),
the window contents must be redrawn (using v_file() or alternative function).

A2-49

Windows for C

Appendix 2
Version 4.0

NAME

menu2.c -- a menu display and selection routine
DATE: October 23, 1985

USAGE

To display a pop-up menu on a screen, allow menu selection, and then restore
the original screen content.

FUNCTION

This function displays a menu that resides in a memory file. Prior to calling
this function, the memory file must be created and a pointer to the file
placed in member wn.frp of the menu display window. See the text chapters for
more information.

Menus have the following format:

Menus can consist of any number of items.

Menu items can be arranged in one or more rows, and each row can have one or
more items. The same number of items must be on each row except the last
one.

The same space must be allocated to each item in the menu. Use spaces to
pad items to make them all the same length.

The window in which the menu is to be displayed is passed as an argument of
menu2(). Additional parameters specify the number of items in the menu,
number of characters per item, the number of items per row and the default
position of the bar cursor.

The area of the screen where the menu is to appear is stored using sav wi().
The menu-window is placed on the screen and the menu text moved to the window.

The default item is highlighted.

Highlighting is accomplished by using a sub-window that is one-menu item

in size. The sub-window is placed over the menu item, and v_natt is
called to change the text attribute within the window to REVERSE or
LREVERSE.

Cursor pad keys are used to move the highlight area to other menu items.

(Continued)

A2-50

Windows for C Appendix 2
Version 4.9
menu?2 (continued)

Pressing the enter key "selects" the menu item highlighted, which causes the
following sequence:

The original screen is restored over the menu window.

The code number of the menu item is returned on exit.
The cursor is restored to its original position before this function returns.
Source code for this function is included on the system diskette.
CALL

menu2(wnp, gqitems, itemlength, item_row, def pos)

WINDOWPTR wnp; menu window struct

int gitems; no. of menu items

int itemlength; no. of char space per item A4
int item_row; no. of items per row . &V Al
int def pos; default position in menu ~

RETURNS

= the number of the menu item, counting from left to right and starting at
in the upper left corner. =

= -1 if error; check _wn_err for more information.
RELATED FUNCTIONS

def fr()
di_file()
sti file()

CAUTIONS
This function displays a menu that resides in a memory file. Prior to calling
this function, the memory file must be created and a pointer to the file

placed in member wn.frp of the menu display window. See the text chapters for
more information.

A2-51

Windows for C Appendix 2

Version 4.0

NAME W
mode col.c -- obtains number of video columns in current mode

DATE: January 31, 1986

USAGE

To obtain the number of character columns (40 or 88) in the current (text) mode.

FUNCTION

MSDOS Systems:

Calls VID INT to obtain the mode and column quantity via PC INT 10H, with AH =
OFH.

UNIX Systems:

Returns the global variable v_coq. This function is included in the UNIX ver-
sion for compatibility with the MSDOS version of WFC.

CALL

mode_col()

RETURNS _—
= number of character columns on screen in current mode.
CAUTIONS
None
P

A2-52

Windows for C Appendix 2
Version 4.9

NAME

mod wn.c -- modifies the coordinates of a window

DATE: October 23, 1985

USAGE

Modifies the coordinates of a previously defined window.

FUNCTION

Modifies the coordinates of a previously defined window. The dimension of the
window is checked. If the dimension is INSIDE, the dimension is changed to
FULL before the modifications are made. The dimension will be restored to its
original condition before return.

CALL

void mod_wn(rb, cb, rowg, colq, &wn)

int rb; new beginning row window

int c¢b; new beginning column of window
int rowq; number of rows in window

int colq; number of columns in window
WINDOW wn; window structure

RETURNS

None

CAUTIONS

Changing window dimensions between calls to sav_wi() and unsav_wi() or
repl_wi() can result in errors. For popup windows changing the window
dimensions between calls to set_wn() and unset_wn() can result in errors. In
these situations, the window coordinates may be changed after a call to
sav_wi() or set_wn() but should be restored to the original values before a
call to unsav wi(), repl_wi() or unset_wn().

A2-53

Windows for C Appendix 2
Version 4.0

NAME

mv_cs.c -- changes the location of the virtual cursor; does not move screen
cursor

DATE: October 23, 1985

USAGE

To change location of virtual cursor. Does not place screen cursor at new
virtual cursor position.

FUNCTION

Moves the virtual cursor to specified row and column on designated window.
CALL

void mv_cs(rw, co, &wn)

int rw, co; row and column

WINDOW wn; window structure

RETURNS

None

CAUTIONS

None

A2-54

Windows for C Appendix 2
Version 4.0
NAME

mv_csr.c -- changes the location of the virtual cursor and moves the screen
cursor to new location

DATE: January 31, 1986

USAGE

To move the virtual and screen cursor to a new location.
FUNCTION

Moves the virtual and screen cursor to the specified row and column on the
designated window.

CALL

void mv_csr(rw, co, &wn)

int rw, co; row and column
WINDOW wn; window structure
RETURNS

None

CAUTIONS

MSDOS Systems:

wn.page, the active video page, must be set correctly before this call. Unless
you are using multiple pages of the color graphics display cards (not usual),
this will be done by defs wn() and def_wn().

A2-55

Windows for C Appendix 2
Version 4.0

NAME

mv_rws.c -- scrolls designated window by nlines in given direction (nlines = 0,
clears window).

DATE: October 23, 1985

USAGE

To scroll lines of text up or down on wn; also to clear window. This function
is used to create space for new output at the top or bottom of a screen
window. It is not used for scrolling within memory files using the cursor
control keys. Function vs_file() is provided for moving a window over a text
file contained in memory.

FUNCTION

Uses v_mov() to move nlines of text up or down in a screen window. All of the
rows within the window are affected. Information scrolled off the top or the
bottom of the window is lost. Blank rows will be created at the bottom of the
window (scroll direction = UP) or at the top of the window (scroll direction =
DOWN). Decrements (scroll up) or increments (scroll down) virtual cursor row
value by nlines, so it is correctly valued.

The maximum allowed value of the virtual cursor after scrolling is one row
below the working dimensions of the window (with wn.c = 9).

The minimum allowed value of the virtual cursor after scrolling is @, 0.

If nlines = 0, the window is cleared and cs is set at ©,0. The cleared area
is filled with spaces of attribute wn.att.

If nlines is greater than the window size, the window is cleared. The virtual
cursor is set to the maximum (direction = DOWN) or the minimum (direction =
UP).

CALL

mv_rws(nlines, dir, &wn);

int nlines; number of lines to scroll

char dir; direction 6=UP, 7=DOWN (defined in wfc_defs.h)
WINDOW wn; window structure

RETURNS

= 1 if successful
= -1 if error; check _wn_err code for more information
CAUTIONS

None

A2-56

Windows for C Appendix 2
Version 4.0

NAME

mv_wi.c -- moves a window image to a new screen location

DATE: October 23, 1985

USAGE

To move a screen window, including borders and contents, to a new location on

the screen. The location of the window structure and the window image on the
screen are both moved.

FUNCTION

Calls sav_wi() to save window image. If there was already a saved window
image in wn.storp, it will be freed. The window is then removed from the
screen with a call to unset_wn(). If this was a pop-up window, the underlying
information will be restored. The window location members are changed to the
new values by a call to pl wn(). If the window is a pop-up window, the

underlying information is saved and the screen image is placed in the new
location with unsav _wi().

Parameters in the call specify the origin of the FULL dimension of the window.
Working dimensions are not altered. See dim wn() for definitions.

Because pl wn() keeps windows within the screen boundaries, this function will
not permit window images to be moved off the screen.

Memory is allocated temporarily for the saved image but is released at the end
of the call.

If window is a pop-up window, the contents of wn.pu storp will be changed.
Member wn.storp will always be NULLP on return.
CALL

mv_wi(rw, co, &wn)

int rw; screen row of new origin
int co; screen column of new origin
WINDOW wn; window structure

RETURNS

= @ if move is successful
= -1 if insufficient memory for move
CAUTIONS

None

A2-57

Windows for C | Appendix 2
Version 4.0

NAME

pl_csr.c -- Sets screen cursor at virtual cursor in a window

DATE: February 3, 1986

USAGE

To set screen cursor at the location of virtual cursor in a designated window.
FUNCTION

MSDOS Systems:

Calls VID_INT to set the cursor via PC INT 1¢H, function 3.

UNIX Systems:

Uses the appropriate command string defined in wfctermcap to position the
cursor.

CALL

void pl_csr(&wn)
WINDOW wn; pointer to window struct

RETURNS

None

CAUTIONS
MSDOS Systems:

If virtual cursor is off video screen, cursor will disappear.

UNIX Systems:

Functionally the same as the PCDOS version; however the actual implementation
is different to handle terminals.

If virtual cursor is off of the video screen, an attempt will be made to turn
the cursor off. The cursor will not be moved.

A2-58

Windows for C Appendix 2
Version 4.0

NAME

pl mfwn.c -- places window origin at specified location in file

DATE: October 24, 1985

USAGE

Used to set the origin of the window within the file. v_file() has the
capability of displaying different sections of the file within the window
based on wnp->frp->wfr and wnp->frp->wfc. pl_mfwn() provides a convenient
method of setting fr.wfr and fr.wfc.

FUNCTION

Sets wnp->frp->wfr and wnp->frp->wfc to the specified values.

CALL

pl _mfwn(frow, fcol, &wn)

int frow; row of file to appear in first row of window

int fcol; column of file to appear in first column of
window

WINDOW wn; WINDOW structure

RETURNS

= ¢ if wn.frp is NULLP
= 1 otherwise
CAUTIONS

Pointer to FREC must be installed in WINDOW structure.

A2-59

Windows for C Appendix 2
Version 4.9

NAME

pl_wn.c -- sets location members of a window structure to a specified position
on the screen

DATE: October 23, 1985

USAGE

To set the location members of a window to a desired location on screen.
FUNCTION

Sets the FULL dimension origin of a window (wn.rb and wn.cb) to the specified
row and column values. Working dimensions not altered. See dim_wn() for

definitions.

Will not locate a window so that any part of it is outside of the borders of
the screen.

CALL

void pl wn(rw,co,wnp)

int rw; screen row

int ©o; screen column
WINDOWPTR wnp; window structure
RETURNS

None

CAUTIONS

Do not use this function to move a window that has already been placed on the
screen. Use mv_wi().

This function only changes the member values of a window structure. It does
not set the window on the screen.

A2-60

Windows for C Appendix 2
Version 4.0

NAME

prt_wn.c -- copy character contents of window to printer

DATE: February 3, 1986

USAGE

Copies the character contents within the working dimensions of a window to the
printer. If the dimensions are set to INSIDE (wn.setsw = 1), the border will
not be copied. To copy the full window including the border, the dimensions
need to be FULL (wn.setsw = 0). If necessary, use dim wn() to alter the working
dimensions.

FUNCTION

The type of copy (FULL or INSIDE) is determined by the value of wn.setsw.
MSDOS Systems:

Calls copy wc() to transfer window contents to the printer "file".

UNIX Systems:

Opens a pipe to the shell command "lpr" and transfers the contents of the
window through the pipe.

CALL

prt_wn(&wn)
WINDOW wn; window structure

RETURNS
= 1 if the copy is successful.

= @ if copy unsuccessful because file can not be opened or there is insufficient
memory for the video-string buffer.

= -1 if wn.setsw not equal to zero or one.
CAUTIONS

None

A2-61

Windows for C Appendix 2
Version 4.0

NAME

rd_csr.c -- reads cursor position

DATE: February 3, 1986

USAGE

To read x and y coordinates of the cursor on the screen.

FUNCTION

MSDOS Systems:

Calls vid_int to read the screen cursor position function via PC INT 10H, with
AH = 3.

"page" is a parameter in the call. The page applies only to the Color/Graphics
Adapter(CGA) or the Enhanced Graphics Adapter(EGA). The normal setting for this
is @ (zero), unless you are using the additional memory pages available on the
CGA or EGA.

UNIX Systems:

Places the contents of the internal global variables used to hold the row and
column of the screen cursor in the locations specified by row and col.

If the user makes use of non-WFC output routines (such as putchar(), puts(),
printf(), etc), the values returned by this function will be incorrect until an

intervening pl csr() call is made.

The 'page’ argument in the call is retained for compatibility with the PC/MSDOS
WFC version. It has no meaning at the present time.

CALL

void rd_csr(&row, &col, page)

int row; variable to contain row
int col; variable to contain column
int page; page number (graphics card)
RETURNS

None. Values are placed in variables pointed to in the call.

(Continued)

A2-62

Windows for C Appendix 2
Version 4.0

rd_csr (continued)

CAUTIONS

Pointers to the row and column positions must be passed in call, not the vari-
ables themselves.

MSDOS Systems:

"page" number must be set if the graphics display adapter is being used.

UNIX Systems:

Use of non-WFC output routines (such as putchar(), puts(), printf(), etc), will

result in incorrect values being returned by this function until an intervening
pl csr() call is made.

A2-63

Windows for C Appendix 2
Version 4.9

NAME

rd mode.c -- returns current video mode

DATE: February 3, 1986

USAGE

To obtain the current video mode.

FUNCTION

MSDOS Systems:

Calls vid int() to read the current video mode via PC INT 10H, with AH = 15.
The mode values returned are the same as those used by vid mode().

UNIX Systems:

Simply returns the value of the global variable v_mode. This global variable
indicates if the terminal is operating in a monochrome mode or color mode.

CALL

rd _mode()

RETURNS

= current video mode
RELATED FUNCTIONS
vid mode()

CAUTIONS

None

A2-64

Windows for C Appendix 2
Version 4.0

NAME

repl wi.c -- places a saved window on the screen

DATE: October 23, 1985

USAGE

To place on the screen a window previously saved by sav _wi(). Image stored in
memory is retained. Use unsav _wi() to free memory at the same time.

FUNCTION

The contents of the window image stored in the video string pointed to by
wn.storp are transferred to the screen to the current location of wn, via
v_mov(). See sav wi().

If wn.storp = NULLP, no transfer is made.

CALL

repl wi(&wn)
WINDOW wn; window structure

RETURNS

= @ if replace is successful
= -1 if wn.storp = NULL
RELATED FUNCTIONS

sav_wi()
unsav_wi()

CAUTIONS

None

A2-65

Windows for C Appendix 2
Version 4.9

NAME
sav_wi.c -- saves a window image in memory
DATE: October 23, 1985

USAGE

To save a window image currently on the screen in order to replace it later,
with repl _wi() or unsav_wi().

FUNCTION

The contents of the window image in the regen buffer (attributes and
characters) are transferred to an internal video string via v_mov().

Space for the video string is allocated via get_mem() and a pointer to the
string is placed in the window structure (in wn.storp) for use by other
functions that operate on saved or stored windows.

The FULL window is saved. Working dimensions are not altered.

CALL

sav_wi(&wn)
WINDOW wn; window structure

RETURNS

= @ if save is successful

= -1 if insufficient memory for save
RELATED FUNCTIONS

repl wi()
unsav_wi()

CAUTIONS

Memory is used by this function. When the saved window is no longer needed,
release the memory by a call to unsav_wi() or to free_mem(wn.storp).

A2-66

Windows for C Appendix 2
Version 4.0

NAME

scrl _file.c -- scrolls a memory file
DATE: October 23, 1985

USAGE

To scroll a group of lines in a memory file up or down within the file
structure. Lines scrolled off the top or bottom of the file structure are
lost.

All rows in a file may be scrolled by specifying the special #defined constant
ALL_ROWS as the beginning row.

FUNCTION

This function operates on a memory file. Prior to calling this function, a
memory file record (of type FREC) must have been initialized, using def fr(),
and information placed in it using di_file() or sti file().

The scrolling direction is checked. If it is not UP or DOWN, an error return
is made.

If the specified beginning row of the scrolling region is not within the
limits of the file, an immediate return of @ is made.

The number of rows to scroll is adjusted, if necessary, so that it does not
exceed the number of rows between the beginning row and the limit of the
memory file.

If the specified beginning row is ALL_ROWS, the actual beginning row is set
according to the scrolling direction. For UP, the beginning row is set to the
last row in the file. For DOWN, the beginning row is set to the first row.
Setting the number of rows to scroll to a value larger than the file will
essentially cause all rows in the file to be replaced with blank lines.

If the scrolling direction is UP, all of the rows between and including the
first row of the file and the specified beginning row (beg row) are scrolled
up the specified number of rows (nrows). The first nrows of the file are
lost. Starting at the row where the scrolling initiated (beg_row), nrows of
blank lines are added.

If the scrolling direction is DOWN, all of the rows between and including the
specified beginning row (beg_row) and the last row in the file are scrolled
down the specified number of rows (nrows). The last nrows of the file are
lost. Starting at the row where the scrolling initiated (beg row), nrows of
blank lines are added.

All scrolling is accomplished by moving pointers within the memory file array
pointed to by mfile.farray.

(Continued)

A2-67

Windows for C Appendix 2
Version 4.0

&

scrl_filﬁf(continued)

If the current row is to be scrolled off the top of the file (dir = UP) or the
bottom of the file (dir = DOWN), the FLINE structure associated with this row
is freed.

If a blank line is to be placed in a row, the existing FLINE structure is
freed and a new FLINE structure is allocated and initialized to a blank line.
A pointer to the new FLINE structure is placed in the appropriate element of
the memory file array.

If an error occurred when trying to free an existing FLINE structure or
allocating a new FLINE structure, an error return is made.

This function does not alter the total number of rows in a memory file. It
will only change the relative position of the lines in the file.

CALL

scrl_file(nrows, dir, beg row, é&mfile)

int nrows; number of rows to scroll

int dir; direction to scroll

int beg_row; starting row of scroll region
FREC mfile; FREC structure

RETURNS

= @ if direction not UP or DOWN, beginning line outside file limits, or
memory allocation error; check _wn_err code for more information

= 1 if success

ERROR HANDLING

One possible error would result from insufficient memory to allocate the
necessary structures for the new blank lines. In this case, the global error
variable wn _err will be set to MEMLACK. Insufficient memory is unlikely
since in almost all cases we will free more memory than we are likely to

allocate.

If the error return is due to parameters specified that are outside file
limits, _wn_err will equal 0.

(Continued)

A2-68

Windows for C Appendix 2
Version 4.0

scrl file (continued)

RELATED FUNCTIONS

def fr()

di_file()

sti_file()

v_file()

vs_file()

CAUTIONS

Rows are numbered starting with @.

Prior to using this function, a memory file record must be established and
lines placed in the memory file.

A2-69

Windows for C

Appendix 2
Version 4.0

NAME
set_wn.c -- sets a window on the screen
DATE: October 23, 1985

USAGE

Use to place a window on the screen.

FUNCTION
For given window:

1) Checks defining parameters for consistency: after allowing for margins and
border, window must be at least one character in size; all dimensions must be
non-negative.

2) Checks the window dimensions to insure that it does not lie outside of the
screen. When necessary, the values of wn.rb and wn.ce are reduced to make the
window lie entirely within the screen.

3) If wn.popup = 1, the information underlying the window is saved so that it
may be restored when the window is unset. A pointer to the saved image is
placed in wn.pu_storp.

4) Clears window with "space" character and attribute wn.att.

5) Draws 1-character wide border (using v_border), unless a null border
(BDR_@P) is specified.

6) Adjusts the working dimensions of the window to inside dimensions, which

are smaller than the full dimensions of the window by the amount of the border
and margins.

7) Sets wn.setsw = INSIDE (= 1) to indicate inside dimensions have been set.
See dim wn() for further explanation. The value of wn.setsw can be used to
tell if a window is on the screen. All Windows for C functions maintain this
value consistently. It will always be @ when the window is not on the screen.
8) Places virtual cursor at 0, 9.

CALL

set_wn(&wn)
WINDOWPTR &wn; pointer to window structure

(Continued)

A2-70

Windows for C Appendix 2
Version 4.0

set_wn (continued)

RETURNS

= ¢ if fails consistency check, if any wn dimension is negative or if unable
to allocate storage for underlying window in case wn.popup is set

= 1 otherwise.

CAUTIONS

Initial values of window structure must be defined before call.

Repeated calls can be made to this function without creating errors in the
working dimensions of a window, as long as the BORDER structure associated
with the window has not been changed. If called more than once for the same

window without an intervening call to un_set(), the border must have the same
dimensions as in the prior call; otherwise screen dimensions will be in error.

A2-T71

Windows for C Appendix 2
Version 4.0

NAME

size_wn.c -- calculates size of video string needed for window saves

DATE: October 15, 1985

USAGE

To determine the number of bytes that must be allocated to a video string to
store a window or window section. Useful for calls to get mem() used in
conjunction with v_mov().

FUNCTION

An argument in the call specifies whether size is calculated for the FULL or
INSIDE dimensions of the window (see dim wn()). The working dimensions of the

window are not altered.

A second argument specifies the part of the window to be sized. Five window
parts are defined:

CH -- the character at the location of the virtual cursor

ENDROW -- from present location of virtual cursor (cs) to last column of
this row

ROW -- row on which cs is located

COL -- column on which cs is located

ENDCOL -- from the present location of virtual cursor to the last row in

this column
ENDWIND -- row on which cs is located to end of window
WIND -- entire window
The values of the window "parts", ENDROW, etc., are #defined in wfc_defs.h.

The calculated size equals two bytes for each character space in the window
section specified (one for the character and one for the attribute byte).

CALL

size wn(dimen, part, &wn)

char dimen; FULL (@) or INSIDE (1) dimensions
int part; portion of the window to size
WINDOW wn; window structure

RETURNS

= size (in bytes) of video string needed to hold window part

A2-72

Windows for C Appendix 2
Version 4.9

NAME

sti file.c -- places a string in a memory file

DATE: October 23, 1985

USAGE

To place a string in a specified row of a memory file.
FUNCTION

This function provides a means of directly placing strings in a memory file.
It provides an alternative to di_file() for placing information in a memory
file. Function di_file() transfers lines from a disk file to a memory file.

This function draws on information set in a passed FREC structure, mfile, to
perform the file operations. The FREC must be initialized by a call to

def fr() prior to calling this function. Function def fr() will allocate and
initialize a memory file array, which is an array of pointers to FLINE
structures.

A memory file consists of a number of FLINE structures. The structure FLINE,
fline, contains two members:

fline.line len is an integer and holds the length of the file line
(excluding the terminal newline and null).

fline.line_st is a character pointer and points to the location where the
file line-string is stored.

Function sti_file() allocates memory for a FLINE structure and for a copy of
the string that is to be placed in the memory file. It fills the FLINE
structure with the appropriate information and places a pointer to the
structure in the specified row of the memory file array.

If there is already a pointer for the specified element in the array, the
pointer is freed.

Function sti_file() performs the following checks and actions:
If the row specified as the location of the string in the memory file is
less than @ or greater than the length of the memory file
(mfile.fmaxlines), an immediate return of 0 is made.
The length of the specified string is checked. The string length must be
less than mfile.fmaxcol. If the string is longer than mfile.maxcol, the
string is truncated. A return of -1 will be made to indicate that the

string was truncated.

(Continued)

A2-73

Windows for C Appendix 2
Version 4.0

sti_file (continued)

Enough space is allocated to hold a copy of the specified string plus a
newline which will be appended to the string. The specified string is
copied to the new location and the newline appended. A pointer to the
allocated string location is placed in flineé.line_st. The length of the
string (excluding the newline (’\n’) and null terminator ('\@')) is placed
in the fline.line_len.

The structure members mfile.ln_q and mfile.c_q are updated. See def fr()
for the definition of these members.

CALL

sti_file(st, frow, &mfile)

char *st; pointer to source string

int frow; row in file to place new string
FREC mfile; FREC structure

RETURNS

= -1 if string is truncated

= @ if unable to allocate sufficient memory or frow outside file limits
= 1 if success

ERROR HANDLING

If unable to allocate sufficient memory, the global variable _wn _err is set to
MEMLACK. 1If frow is outside limits, _wn_err will equal 0.

RELATED FUNCTIONS
def fr()
di_file()
v_file()

vs__ file()

scrl file()
CAUTIONS

Before using this function, the memory file must be initialized by calling
def_fr().

A2-74

Windows for C Appendix 2
Version 4.0
NAME
stringf.c -- string utility functions
DATE: October 24, 1985
USAGE & FUNCTION
lower st()
Each position in the string is converted to lowercase.
skip wh()

Skips the leading white space in the string and returns a pointer to the
first non-whitespace character.

stblank()

Allocates memory to hold the string and the terminating ’'\@’ and
initializes the string to blanks. Returns a pointer to the string.

strepyp()

Copies the contents of the source string to the destination string.
Returns a pointer to the terminating '\@' in the destination string.

strip_wh()

Strips the trailing white space from the string and repositions the
terminating '\9°’.

upper_st()
Converts the string to uppercase.
CALLS

void lower_st(st)
char *st; pointer to string

char *skip_wh(st)
char *st; pointer to string

char *stblank(len)
int len; length of string to create

char *strcpyp(dest, src)
char *dest; pointer to destination string

char *src; pointer to source string

(Continued)

A2-75

Windows for C Appendix 2
Version 4.0
stringf (continued)

void strip_wh(st)
char *st; pointer to string

void upper_st(st)
char *st; pointer to string

RETURNS
lower_st()
None

skip_wh()

NULLP if string is all white space
pointer to first non-white space character in string

it

stblank()

NULLP if unable to allocate memory
pointer to string

strepyp()

= pointer to terminating '\0@' in destination string
strip_wh()

None
upper_st()

None

CAUTIONS

Little or no error checking is done by any of these routines. It is your
responsibility to pass correct arguments.

Any routine that adjusts the size of a string assumes that the string buffer
is large enough to hold the longer string.

A2-76

Windows for C
Version 4.0

NAME

sw_att()

sw_bdratt()
sw_border()
sw_cleor()
sw_csadv()
sw_latt()

sw_margin() -
sw_mfile()
sw_name()

sw_plesr()
sw_popup()
sw_scroll()
sw_wwrap()

I

sets
sets
sets
sets
sets
sets
sets
sets
sets
sets
sets
sets
sets

DATE: October 23,

USAGE

Appendix 2

wn.att to the specified value

wn.bdratt to the specified value

wn.bdrp to the specified border

the clear to end of row bit-switch ON/OFF

the virtual cursor advance bit-switch ON/OFF
wn.larray to point to the specified logical attribute array
wn.l mg and wn.r_mg to the specified values

wn.frp to point to the specified memory file structure
wn.wname to the specified name

the place cursor bit-switch ON/OFF

wn.popup to the specified state

wn.scr_q to the specified state

the wrap bit-switch ON/OFF

1985

These functions control the setting of the bit-switches controlling the string
output functions and will set various window structure members.

FUNCTION
The functions

sw_wwrap() -
sw_cleor() -

sw_csadv() -
sw_plesr() -

The following

sw_att() -
sw_bdratt()
sw_border()
sw_latt()

sw_margin() -
sw_mfile() -
sw_name() -
sw_popup()
sw_scroll()

|

CALL

will

will
will
state
will
will

funct

will
will
will
sets
sets
sets
will
will
will

modify wn.wrap accordingly.

set the wrap bit-switch to the specified state
set the clear to end of row bit-switch to the specified

set the cursor advance bit-switch to the specified state
set the place cursor bit-switch to the specified state

ions set various members in the window structure.

set wn.att to the specified attribute

set wn.bdratt to the specified attribute

set wn.bdrp to point to the specified border

wn.larray to point to the specified logical attribute array
wn.l mg and wn.r_mg to the specified values

wn.frp to point to the specified memory file structure

set wn.wname to point to the specified window name

set wn.popup to the specified state

set wn.scr_q to the specified state

void sw_att(att, &wn)

int att;
WINDOW wn;

(Continued)

video attribute
window structure

A2-717

Windows for C Appendix 2
Version 4.0

Set Window Member Macros (continued)

void sw_bdratt(att, &wn)
int att; video attribute
WINDOW wn; window structure

void sw_border(&bdr, &wn)
BORDER bdr; border structure
WINDOW wn; window structure

void sw_cleor(state, &wn)
int state; state of clear to end of row bit-switch
WINDOW wn; window structure

void sw_csadv(state, &wn)
int state; state of cursor advance bit-switch
WINDOW wn; window structure

void sw_latt(att_arry, &wn)
char att_arry[]; logical attribute array
WINDOW wn; window structure

void sw_margin(l_mg, r_mg, &wn)
int 1_mg, r_mg; values for left and right margins
WINDOW wn; window structure

void sw mfile(&mfile, &wn)
FREC mfile; memory file FREC structure
WINDOW wn; window structure

void sw_name(name, &wn)
char *name; pointer to window name string
WINDOW wn; window structure

void sw_plcsr(state, &wn)
int state; state of place cursor bit-switch
WINDOW wn; window structure

void sw_popup(state, &wn)
int state; state of pop-up member; YES or NO
WINDOW wn; window structure

void sw_scroll(state, &wn)

int state; value to set wn.scr_g
WINDOW wn; window structure

void sw_wwrap(state, &wn)

int state; state of wrap bit-switch

WINDOW wn; window structure

(Continued)

A2-78

Windows for C

Version 4.0

Set Window Member Macros (continued)
RETURNS

None - for all functions

CAUTIONS

All of these functions are implemented as macros;

A2-79

Appendix 2

beware of side effects.

Windows for C Appendix 2
Version 4.9

NAME

s_latt -- copies appropriate column from the attribute table into the logical
attribute array

USAGE

Used by initialization routines to put correct physical attributes for the
current mode into a logical attribute array.

FUNCTION

If the global variable _lattsw is 0, physical attributes rather than logical
attributes are to be implemented. A return of ¢ is made immediately in this
case.

This function is passed five arguments. The first argument specifies the
column to be copied from the multiple column table of logical attribute
information. The second argument specifies the number of rows in the logical
attribute table. The third argument specifies the number of columns in the
logical attribute table. The fourth argument is a pointer to the
multiple-column table of logical attribute information. The fifth argument is
a pointer to an single-index array that will contain the correct logical
attribute information for the current mode and display adapter.

The specified column in the multi-dimensional table is copied to the single -
index logical-attribute-array.

Note that graphics modes are not supported; thus the logical attribute tables
and arrays only are relevant to the alpha/numeric modes.

CALL l‘“¢”yt o2 h }‘{ﬁi' 3
!,/'{“ X, ‘ {\/\"A % :‘; D(),r‘:‘ o ¢ ’v‘ﬁk}xu b

s_latt(col, rowqg, colq, att_tbl, att arry)

int col; column to be copied

int rowq; number of rows in att table

int colq; number of cols in att table
_pchar att_tbl[][]; pointer to multi-dimensional table

char att_arry[]; pointer to single-dimensional array

RETURNS

= 1 if logical attributes are in use (_lattsw = 1)
= @ if physical attributes are in use (_lattsw = 0)

CAUTIONS

The variable att_arry must be dimensioned large enough to receive a single
column from att_tbl.

A2-80

Windows for C Appendix 2
Version 4.0

NAME

unsav_wi.c -- places a saved window on the screen and frees memory

DATE: October 23, 1985

USAGE

To place on the screen a window previously saved by sav_wi() and to free the
memory space used for storage. Use repl wi() to replace the window and retain
the memory image.

FUNCTION

The contents of the window image stored in the video string pointed to by
wn.storp are transferred to the screen to the current location of wn, via
v_mov(). See sav_wi().

If wn.storp = NULLP initially, no transfer is made. Otherwise, memory
allocated to storing the window image is freed after the transfer has been
made, and wn.storp is set to NULLP.

CALL .

unsav_wi(&wn)
WINDOW wn; window structure

RETURNS

= ¢ if unsave is successful

= -1 if wn.storp = NULLP or if free _mem() is unsuccessful

ERROR HANDLING

On an error return by free _mem(), _wn_err is set to BADHEAP. This only
applies to compilers that support an error return by free(). Check the docu-
mentation for your compiler.

RELATED FUNCTIONS

sav_wi()
repl wi()

CAUTIONS

None

A2-81

Windows for C Appendix 2
Version 4.0

NAME

unset_wn.c -- removes a window from the screen, resets dimensions
DATE: October 23, 1985

USAGE

Use to remove a window from screen. Will restore underlying information if
wn.popup was set.

FUNCTION

If wn.popup is set, the underlying information is restored, otherwise the
window is cleared with spaces with attribute in global variable cl_att.
Variable cl_att is declared in window.h with the initial wvalue NORMAL or LDOS.

The value of cl_att can be changed to provide a different background for the
screen.

Sets working dimensions to FULL. (set_wn()) sets working dimensions to
INSIDE.) See dim _wn() for definitions.

Sets cs location to origin (0,0).
CALL

unset_wn(&wn)
WINDOW wn; window structure

RETURNS
= -1 if unable to restore underlying information for a pop-up window
= @ otherwise

CAUTIONS

If bdrp is not the same as the one used in the call to set_wn, an error in
dimensions may be created (if one had a NULL border but not the other).

If this was a popup window, the underlying information where the window
existed will be restored. Otherwise, the screen where the window existed will
be filled with cl_att attribute spaces. If the underlying screen should have
a different attribute, change the value of c¢l_att before calling unset_wn().

A2-82

Windows for C Appendix 2
Version 4.9

NAME

u_init -- allows users to initialize globally known variables

DATE: October 23, 1985

USAGE

To alter the values assigned by the initialization routine, init wfe(), to the
globally known variables that reflect specific computer and mode display
information. The user supplies code in this routine.

FUNCTION

This function is called by init_wfc() just prior to returning; thus any values
assigned in u_init() will take precedence over those assigned previously by
init _wfc().

init_wfc() uses values supplied in computer.h to initialize the values of
globally known variables declared in window.h. See these files for specific

information.

As supplied in the Windows for C library, u_init() is a dummy routine,
returning immediately upon call.

CALL

void u_init();
RETURNS

None

CAUTIONS

None

A2-83

Windows for C Appendix 2
Version 4.0
NAME

vid _bdr.c -- sets color of the screen border (IBM PC Color/Graphics Adapter
only)

DATE: February 3, 1986
USAGE

When using physical attributes, to set the color of the screen border in the
text modes on the IBM PC Color/Graphics Adapter.

FUNCTION

MSDOS Systems:

Uses physical color attributes defined in computer.h to describe the desired
border color. Any one of sixteen colors may be specified. See the discussion
under color_wn() for a description of the physical color attributes.

Calls BIOS interrupt 10H, function 11 (via vid_int()) to set the border color.
UNIX Systems:

This is a dummy function. It does nothing and returns nothing.

CALL

void vid bdr(color)
int color;

RETURNS

None

CAUTIONS
MSDOS Systems:

Works with physical video attributes only. Will not work correctly if passed a
logical video attribute.

UNIX Systems:

Provided for compatibility with MSDOS versions of Windows for C. This function
has no effect in the terminal environment.

A2-84

Windows for C Appendix 2
Version 4.9

NAME
vid_int.c -- General video interrupt (INT 10H) Routine
DATE: February 3, 1986

USAGE

To access any of the video-IO interrupt functions (INT 1¢H) in the IBM PC ROM
BIOS from C programs.

FUNCTION
MSDOS Systems:

This function is passed pointers to VIDIO data structures that contain values
for the 8088/8086/80186/80286 registers: ax, bx, cx, dx, si, di, es, and ds.
The values in the input structure are transferred to the 80xxx registers and INT
10H is called. The values returned by the interrupt are placed in the data
structure for the output values. See wfc_stru.h for the definition of the
structure.

For information on the input and output values for INT 10H, see the IBM
Technical Reference Manual -- 6025005 , Appendix A, pp. A-47 to A-49.

Many of the available INT 10H functions have been #defined in computer.h for
your convenience. These constants would be loaded into vri.ax to invoke the
appropriate INT 1¢H function.

UNIX Systems:

This is a dummy function. It does nothing and returns nothing. It is provided
for compatibility with PC/MSDOS versions of Windows for C.

CALL

void vid_int(&vri, &vro)

VIDIO vri input data structure
VIDIO vro output data structure
RETURNS

None

CAUTIONS

MSDOS Systems:
None
UNIX Systems:

Provided for compatibility with MSDOS version of Windows for C. This function
has no effect in the terminal environment.

A2-85

Windows for C Appendix 2
Version 4.0

NAME

vid _mode.c -- sets video mode, switches display adapters

DATE: April 17, 1986

USAGE

To set the video mode on the IBM PC and to switch between display adapters when
both the Color/Graphics and Monochrome Adapters are installed.

Can be called from within a program to allow displays to be switched
dynamically. Useful for program development as well as for allowing end users

to select a video mode.

Also used to check for the IBM Enhanced Graphics Adapter (EGA) being present and
active without switching modes.

FUNCTION

MSDOS Systems:

The code numbers for video mode as defined in the ROM BIOS are used. The code
specified in the call is used to set the proper equipment flag value in the BIOS

data area, and then INT 10H, function @ is called to reset the mode.

If the IBM EGA is present and active, the global variable _ibmega is set to 1,
otherwise it is set to 4.

If the "mode number" passed as an argument in the call is < @, this function
will set the value of _ibmega and return without switching modes.

The modes and corresponding mode numbers are:

Mode Mode Number Symbolic
Mode Value
Text Modes
40x25 B&W] BW40
49x25 Color 1 BW4 0
80x25 B&W 2 c0o89
80x25 Color 3 co89
Graphics Modes
320x200 Color 4
320x200 B&W 5
640x200 B&W 6
Monochrome Board 7 MONO

NOTE: Windows for C does not support any graphics modes. If vid mode is called
with mode numbers 4-6, all video display routines of Windows for C will be
inoperative.

(Continued)

A2-86

Windows for C Appendix 2
Version 4.0

vid_mode (continued)

The symbolic mode values can be used instead of the mode numbers in Vid_mode().
The symbolic values are the same as those used in the DOS 2.9 MODE command.
They are #defined in the computer.h (which is nested within bios.h).

Mode numbers greater than 7 are treated as graphics modes.

UNIX Systems:

This is a dummy function. It does nothing and returns nothing. It is provided
for compatibility with MSDOS version of Windows for C.

CALL

void vid mode(mode)
int mode; video mode number

RETURNS

None

CAUTIONS
MSDOS Systems:
None

UNIX Systems:

Provided for compatibility with PC/MSDOS version of Windows for C. This
function has no effect in a terminal environment.

A2-87

Windows for C Appendix 2
Version 4.9

NAME

vo_att.c -- reads a attribute from a window

USAGE

To read an attribute from a window.

FUNCTION

Calls v_mov() to obtain the physical attribute at the current virtual cursor
position and returns its value.

The attribute returned will be the physical attribute for the character at the
virtual cursor position. There is no way to map this physical attribute to
its logical attribute counterpart.

The virtual cursor is not advanced.

CALL

vo_att(&wn)
WINDOW wn; window structure

RETURNS
= The attribute read.
CAUTIONS

Returns physical attribute only.

A2-88

Windows for C Appendix 2
Version 4.0

NAME

vo_ch.c -- reads a character from a window

USAGE

To read a character from a window.

FUNCTION

Calls v _mova() to obtain the character at the current virtual cursor position
and returns its value.

The virtual cursor is not advanced.
CALL

vo_ch(&wn)
WINDOW wn; window structure

RETURNS

The ASCII code for the character read. The valid codes range from 2 to 255.
RELATED FUNCTIONS

v_mova()

CAUTIONS

For multiple characters, v_mova() is much faster. Use the predefined parts of

a window available for v_mova() or use a small one-row window to read part of
a line in a larger window.

A2-89

Windows for C Appendix 2
Version 4.0

NAME

vs_file.c -- view and scroll a file

DATE: October 23, 1985

USAGE

To allow a user to view a file through a window and scroll through it.

FUNCTION

This function opens a display window on a memory file and then allows the user
to scroll through it.

Prior to calling this function, a memory file record (of type FREC) must have
been initialized, using def_fr(), and information placed in it using di_file()
or sti_file(). The window member wn.frp must have been set tg point to the

memory file record.

Uses v_file() to display the file and calls k_vcom() to allow the user to
scroll through the file by using the cursor pad keys.

Purges identical keystrokes from the keyboard buffer to prevent continued
scrolling after a cursor key is released.

Calls unset _wn() prior to returning.

Returns when the "exit-key" specified in the call is pressed. Note that the
keycode for keys that return "extended codes" must be negative (see Caution).

Top and bottom of file messages can optionally be displayed. The default is
to have the messages displayed. The display is controlled by the global
variable tbf msg. You can turn off the message by direct assignment

tbf msg = OFF;
or use the system macro provided:

s_tbfmsg(OFF);
Source for this file is provided on the system diskette.

CALL

void vs_file(exit key, &wn)

int exit_key; : key code for exit key
WINDOW wn; pointer to window structure
RETURNS

None

(Continued)

A2-990

Windows for C Appendix 2
Version 4.9

vs_file (continued)
RELATED FUNCTIONS

def _fr()
di_file()
sti file()
v_file()
scrl_file()

CAUTIONS

The values #defined for "extended code" keys (which includes the function
keys) in computer.h are positive. If one of these is used as the exit key,
place a minus sign in front of it in the call.

Prior to using this function, a memory file record must be established, lines

placed in the file, and window member wn.frp must be pointed to the memory
file record.

A2-91

Windows for C Appendix 2
Version 4.0
NAME

v_att.c -- writes the specified video attribute to the current virtual cursor
position

DATE: October 23, 1985

USAGE

To write the specified video attribute to the current virtual cursor position.
FUNCTION

Calls v_natt(att, CH, wnp) to change the attribute associated with the
character at the current virtual cursor position.

If virtual cursor advance is turned off (see v_st rw()), the virtual cursor is
unchanged.

If virtual cursor advance is turned on:
The virtual cursor position is advanced. If the virtual cursor is moved
beyond the end of a row, it will be placed at the first column of the next
row.
If the current virtual cursor position is the last position in the window,
the virtual cursor will be placed in the row below the window so that

adj_cs() can detect that the window is full.

If the present virtual cursor position is not within the window, the attribute
will not be written.

This routine supports both logical and physical video attributes.
CALL

v_att(att, &wn)

int att; video attribute
WINDOW wn; window structure
RETURNS

= @ if window is filled

= 1 otherwise

CAUTIONS

For changing the attribute of more than one character at a time, v_natt() is

much faster. Use the predefined parts of a window available for v _natt() or
use a small one-row window to read part of a line in a larger window.

A2-92

Windows for C Appendix 2
Version 4.0

NAME

v_axes.c -- draws axes for graphs

DATE: October 23, 1985

USAGE

To draw horizontal and vertical axes for graphs

FUNCTION

Calls v_rw and v_co to draw axes of specified length from a specified origin.

The bars are drawn within window "wn", specified as an argument in the call.
The bar location is measured relative to the window origin.

Axes are drawn with REVERSE or LREVERSE video spaces, so they entirely fill
the line and columns designated as the origins of the axes. Because of the
nature of text graphics, the horizontal axis is relatively wide.

If non-error return, wn.r and wn.c are set at origin of axes.

CALL

v_axes(r_origin, c_origin, height, width, &wn)

int r_origin; row value of origin

int c_origin; column wvalue of origin

int height; height of vertical axes (in rows)
int width; width of horiz. axis (in columns)
WINDOW wn; window structure

RETURNS

= 0 if the origin of the axes does not fall within window or the height of . the
axes does not fit within window

= 1 otherwise.
RELATED FUNCTIONS
v_bar()

CAUTIONS

In constructing graphs, the beginning locations of bars should not be in the
same row or column as the axes, but in the adjacent locations.

A2-93

Windows for C Appendix 2
Version 4.9

NAME

v_bar.c -- draws a horizontal or vertical bar

DATE: April 17, 1986

USAGE

Draw bars for bar graphs.

FUNCTION

Calls set_wn to define and fill a window of specified dimensions and location
with a specified attribute-character pair.

The bars are drawn within window "wn", specified as a parameter in the call.
The bar location is measured relative to the window origin.

By properly defining row_size and col_size, either horizontal or vertical bars
can be drawn.

Borders can be drawn around bars by defining bdr struct. If no borders are
desired, make call with BDR _@P (NULL border).

This routine supports both logical and physical video attributes.

MSDOS Systems:

The block-graphic shading characters useful for filling in bars are #defined in
"computer.h". The available shades are: LIGHT_SHADE, MEDIUM_SHADE, DARK_SHADE,
SOLID.

CALL

v_bar(row_size, col_size, r_begin, c_begin, ch, attrib, &wn, &bdr)

int row_size; height of bar measured in rows
int col_size; width of bar measured in columns
.int r_begin; bottom row of bar

int c¢_begin; left hand column of row

char ch; character with which to fill bar
char attrib; attribute with which to fill bar
WINDOW wn; window structure

BORDER bdr; border structure

RETURNS

= ¢ if bar dimensions are inconsistent or location is off the window;
= 1 otherwise.

RELATED FUNCTIONS

v_axes()

(Continued)

A2-94

Windows for C Appendix 2
Version 4.0

v_bar (continued)

CAUTIONS

In constructing graphs, the beginning locations of bars should not be in the same
row or column as the axes, but in the adjacent locations. Axes are drawn with
REVERSE or LREVERSE video spaces, so they entirely fill the line and columns
designated as the origins of the axes.

Accuracy of bar graphs is limited by the number of discrete steps from the

origin to the end of the bar. Because there are three times as many columns as
rows on the video, greater accuracy can be achieved with horizontal bar graphs.

A2-95

Windows for C Appendix 2
Version 4.9

NAME

v_border.c -- draws border on designated window
DATE: October 23, 1985

USAGE

Used to put borders on windows.

FUNCTION

Borders defined by a specified BORDER structure are used to place borders on
windows. Standard borders are defined in "window.h" include file.

NOTE WELL: the border attribute specified in the BORDER structure is NOT
used. This attribute was used in earlier functions of Windows for C, but
v_border() uses the attribute defined in the WINDOW structure, wn.bdratt.
This allows all information on the window and border to be stored in the
WINDOW structure. The same border characters can be conveniently used in
different windows with different attributes.

Pointers to the standard borders are #defined in wfc_defs.h The borders and
their definitions are:

BORDER #define bdrp BORDER STYLE
bdr_0 BDR_0P No border

bdr_1n BDR_LNP Single line border
bdr_dln BDR_DLNP Double line border
bdr_rev BDR_REVP Reverse border
bdr_dot BDR_DOTP Dot border

If the wn.name element of the referenced window structure is not NULL, the
name string pointed to by this element is written at the top left corner of
the border, beginning in column 1 of the FULL dimension window.

If the passed pointer to a border structure is NULLP, a return is made without
drawing a border.

A return without drawing a border is also made if border pointer BDR 0P is
specified. Border bdr_@ is a null border, used if no border is desired.
Routine checks for a NULL (@) character in bdr.h_ch. If found, routine
returns without drawing a border.

If no border is drawn, no window name is written, even if wn.wname is not
NULL.

The border is drawn around the FULL dimension of the window, regardless of the
current dimension.

All the values in the window structure are preserved.

(Continued)

A2-96

Windows for C

Version 4.¢

v_border (continued)
CALL

void v_border(&wn, &bdr)
WINDOW wn;

BORDER bdr;

RETURNS

None

CAUTIONS

window structure
pointer to border structure

Appendix 2

Include "window.h" in main program if standard borders or windows are to be

used.

The border attribute is contained in wn.bdratt.

A2-97

bdr.batt is not used.

Windows for C Appendix 2
Version 4.0

NAME

v_ch.c -- writes a single character to a window
DATE: October 24, 1985

USAGE

To write a character to a window.

FUNCTION

Writes the specified character to the virtual cursor position in the window
using the attribute specified in the window structure.

If virtual cursor advance is turned off (see v_st_rw()), the virtual cursor is
unchanged.

If virtual cursor advance is turned on:
The virtual cursor position is advanced. If the virtual cursor is moved
beyond the end of a row, it will be placed at the first column of the next
rowv.
If the character is written to the last position in the window, the
virtual cursor will be placed in the row below the window so that adj cs()

can detect that the window is full. A return of ¢ will be made.

If the present virtual cursor position is not within the window, the character
will not be written.

CALL

v_ch(ch, &wn)

int ch; character to be written
WINDOW wn; pointer to window structure
RETURNS

= ¢ if window is filled
= 1 otherwise
CAUTIONS

None

A2-98

Windows for C Appendix 2
Version 4.0

NAME

v_co.c -- puts a column of attribute-char's to a window

DATE: October 24, 1985

USAGE

To draw borders on windows, to fill windows used as bars, to draw vertical
lines.

FUNCTION

Prints q characters in column format on wn, starting at the position of the
virtual cursor. Advances the virtual cursor. Will move to the next column if
necessary to fit q char.

If q exceeds the space remaining in the window, output will stop when the
bottom right position of the window is filled, and the virtual cursor will be
placed in the row below the window so that adj cs() can detect that the window
ig full.

Uses function v_qch.

Operation of this function is not affected by the setting of the options
parameter, wn.wrap.

CALL

v_co(ch, q, &wn)

char ch; character to use

int q; number of characters to put
WINDOW wn; window structure

RETURNS

= @ if window filled;
= 1 otherwise.
RELATED FUNCTIONS
v_rw()

CAUTIONS

None

A2-99

Windows for C Appendix 2
Version 4.9

NAME

v_file.c -- displays a memory file in a window.
DATE: October 15, 1985

USAGE

Used to view a memory file through a window.

FUNCTION

This function displays a memory file in a window. Information on the memory
file is contained in an FREC structure. This structure, called a memory file
record, must have been initialized, using def fr(), and information placed in
it using di_file() or sti_file(). The window member wn.frp must be set to
point to the memory file record before calling v_file(). See the text
chapters for more information.

This function:
Calls set_wn() if the window is not set on the screen.

Puts lines to the window from the designated file, starting from the
location in the file indicated by fr.wfr and fr.wfc (the row and column in
the file where the upper left-hand corner of the window is located).

Calls v_st_nop() to put the lines to the window until the window is full
or the end of file is reached.

Top and bottom of file messages can optionally be displayed. The default is
to have the messages displayed. The display is controlled by the global
variable tbf msg. You can turn off the message by direct assignment

tbf _msg = OFF;
or use the system macro provided:

s_tbfmsg(OFF);
Source for this file is provided on the system diskette.
DISCUSSION

v_file() has the capability of starting the display of file lines in the
window from different points in the file, effectively allowing the origin of
the window in the file to be changed. The starting point of the transfer is
determined by the values of wfr and wfc in the memory file record pointed to
by wn.frp. Thus, for example, the file can be scrolled down one line by
incrementing wn.frp->wfr and calling v_file(). This capability is used in
vs_file(), which provides for displaying and scrolling of a file.

(Continued)

A2-100

Windows for C
Version 4.0

v_file (continued)
CALL

void v_file(&wn)
WINDOW wn;

RETURNS

None

RELATED FUNCTIONS
def_fr()
di_file()
sti_file()

vs_ file()

serl file()

CAUTIONS

Prior to using this function,

window structure

Appendix 2

a memory file record must be established, lines

placed in the file, and window member wn.frp must be pointed to the memory

file record.

A2-101

Windows for C Appendix 2
Version 4.0

NAME
v_fst.c -- puts full character string to video window
DATE: October 24, 1985

USAGE

A general purpose routine for putting full strings to video windows. This
function differs from v_st() in that it will write to a window until the last
character has been written, even if this involves scrolling the beginning of
the string off the top of the window. This is useful to insure that a full
string will be written in circumstances where the bottom of the window might
be reached in the middle of the string.

FUNCTION

Scrolling is enabled for the duration of this call, regardless of the setting
of wn.scr_q. v_st() is called repeatedly (if necessary) until the end of
string is reached.

SEE CAUTIONS BELOW.

CALL

void v_fst(st, &wn)

char *st; string to be put
WINDOW wn; window structure
RETURNS

None (end of string will always be reached).

CAUTIONS

Will scroll the beginning of the string off the top of the window if this is
required to provide space in the window for the last character.

Does not handle tabs, backspaces, or any special characters other than
newlines (@AH). These must be processed by a separate subroutine (not
provided).

The window can be set to disable cursor advance and disable automatic clearing
to end of row. These options are primarily intended to improve the usefulness
of v_st() for maintaining status lines and other situations where output is
written to the same place repetitively. They should not be invoked when
calling this function.

A2-102

Windows for C Appendix 2
Version 4.0

NAME

v_mov.c -- moves info between video buffer and "video" string
DATE: October 24, 1985

USAGE

To transfer character-attribute information from a window to a string in user
memory and also to restore previously stored information to a window. This
routine is intended primarily as a subroutine for higher-level window
transferring routines, such as sav_wi(), unsav_wi(), etc. Memory management
is not automatic with this routine.

FUNCTION

This function operates within the working dimensions of a window (see
dim wn()).

Seven different "parts" of a window can be moved with this function: CH,
ENDROW, ROW, ENDCOL, COL, ENDWIND, and WIND (see size wn() for definitions).
The values of the window "parts", ENDROW, etc., are #defined in wfc_defs.h
The direction of move parameter in the call determines whether the data is
moved out from the screen to a string (direct = OUT) or in to the screen from
a string (direct = IN).

The values of IN and OUT are #defined in wfc_defs.h.

CALL

v_mov(vst, &wn, part, direct)

char vst[]; string for video screen data
WINDOW wn; window structure

int part; part-of-window parameter

int direct; direction-of-move parameter
RETURNS

= @ if invalid direction specified
= number of bytes transferred if successful.

(Continued)

A2-103

Windows for C Appendix 2
Version 4.0

v_mov (continued)

CAUTIONS

A "video" string consists of character-attribute pairs and does not have a
terminating '\@’'. It cannot be manipulated using standard library string

ot A=A X

Functions (strlen(), etc.).

Memory management is not automatic. The size of vst must be sufficient to
hold the amount of information to be moved from the screen. No check is made

on the size of the string. Use size wn() to determine the required size of
vst.

Changing the window between IN and OUT moves can cause problems. On IN moves,
the length of the string to move is calculated from the dimensions of the
window and the window part specified. If no changes are made in the values of
the elements of the window structure between the OUT and IN movements, and the
part parameter is kept fixed, no problems will arise. Changing the window
dimensions or the location of the virtual cursor between IN and OUT moves may
cause problems. For instance if a move OUT for part ENDWIND is made and then
wn.r is decremented, a move IN for part ENDWIND will move more bytes of data
than were placed in vst by the OUT move (because the number of bytes to the
end of the window was increased when wn.r was decreased).

A2-104

Windows for C Appendix 2
Version 4.9
NAME

v_mova.c -- moves character info between the screen and a standard ASCII
string

DATE: October 15, 1985
USAGE

To transfer character information from a window to a standard ASCII string in
user memory and also to restore previously stored information to a window.

FUNCTION

The character information is read from the screen and stored in the specified
string buffer. A terminating ’'\@’' is placed at the end of the string.

This function operates within the working dimensions of a window (see
dim wn()).

Seven different "parts" of a window can be moved with this function: CH,
ENDROW, ROW, ENDCOL, COL, ENDWIND, and WIND (see size_wn() for definitions).
The values of the window "parts", ENDROW, etc., are #defined in wfc_defs.h.
The direction of move parameter in the call determines whether the data is
moved out from the screen to a string (direct = OUT) or in to the screen from
a string (direct = IN).

The values of IN and OUT are #defined in wfc_defs.h.

Memory for a working buffer is allocated by this function and will be released
on exit.

CALL

v_mova(st, &wn, part, direct)

char st[]; standard ASCII string
WINDOW wn; window structure

int part; part-of-window parameter
int direct; direction-of-move parameter
RETURNS

= -1 if error; check _wn_err code for more information
= number of bytes transferred if successful.
ERROR HANDLING

If insufficient memory is available to allocate a working buffer, wn err is set
to MEMLACK.

(Continued)

A2-105

Windows for C Appendix 2
Version 4.0

v_mova (continued)
CAUTIONS

Memory management is not automatic. The size of st must be sufficient to hold
the amount of information to be moved from the screen regen buffer. No check
is made on the size of the string. Use size wn() to determine the required
size of st.

Changing the window between IN and OUT moves can cause problems. On IN moves,
the length of the string to move is calculated from the dimensions of the
window and the window part specified. If no changes are made in the values of
the elements of the window structure between the OUT and IN movements, and the
part parameter is kept fixed, no problems will arise. Changing the window
dimensions or the location of the virtual cursor between IN and OUT moves may
cause problems. For instance if a move OUT for part ENDWIND is made and then
wn.r is decremented, a move IN for part ENDWIND will move more bytes of data
than were placed in st by the OUT move (because the number of bytes to the end
of the window was increased when wn.r was decreased).

A2-106

Windows for C Appendix 2
Version 4.0

NAME

v_natt.c -- sets a new attribute to a part of a window

DATE: October 24, 1985

USAGE

To change the attribute value of a section of a window without affecting the
text.

FUNCTION

Calls v_mov() to move a section of a window to a "video string" (vst), change
the attribute, and move it back to the screen.

This function operates within the working dimensions of a window (see
dim wn()).

Seven different "parts" of a window can be changed with this function: CH,
ENDROW, ROW, COL, ENDCOL, ENDWIND, and WIND (see size wn() for definitions).
The values of the window "parts", ENDROW, etc., are #defined in wfc_defs.h.

CALL

v_natt(att, part, &wn)

char att; attribute byte

int part; part-of-window parameter
WINDOW wn; window structure
RETURNS

= @ if successful

= -1 if insufficient memory to save window part; _wn _err will be set to MEMLACK.

CAUTIONS

None -

A2-107

Windows for C Appendix 2
Version 4.9

NAME

v_plst.c -- puts character string to window beginning at the specified row and
column.

DATE: October 24, 1985

USAGE

A general purpose routine for putting strings to video windows at the
specified row and column. See cautions for limitations.

FUNCTION

The virtual cursor is moved to the specified row and column and v_st() is
called. The virtual cursor remains where v_st() leaves it.

If the column is specified as CENTER_TXT, the string will be centered within
the window if possible. If the string is too long to fit within the window,
the string will start in the first column. CENTER_TXT is #defined in
wfc_defs.h.

If the column is specified as LEFT TXT, the string will be left justified
within the window. LEFT TXT is #defined in wfc_defs.h.

If the column is specified as RIGHT_TXT, the string will be right justified
within the window. If the string is too long to fit within the window, the
string will start in the first column. RIGHT TXT is #defined in wfc_defs.h.

All of the bit switch options controlling string output are observed. See
v_st_rw() for more information.

See v_st() for more detailed information.

CALL

char *v_plst(row, col, st, &wn)

int row; row where string is to begin
int col; column where string is to begin
char *st; string to be put

WINDOW wn; window structure

RETURNS

= Pointer to next character in string if writing stops before end of string is
reached.

= NULLP if end of string is reached.

(Continued)

A2-108

Windows for C Appendix 2
Version 4.0

v_plst (continued)
CAUTIONS

Does not handle tabs, backspaces, or any special characters other than
newlines (QAH). These must be processed by a separate subroutine (not
provided).

Disabling of cursor advance and disabling automatic clearing to end of row are
primarily intended to improve the usefulness of v_plst(), which calls v_st(),
for maintaining status lines and other situations where output is written to
the same place repetitively. Disabling these functions will cause problems in
many normal output situations. Exercise care.

A2-109

Windows for C Appendix 2

Version 4.9

NAME

v_printf.c -- performs formatted output to windows
DATE: October 24, 1985

USAGE

A general purpose routine for performing formatted output conversions and
displaying the resulting string in the window. See cautions.

FUNCTION

Allocates a buffer of _vpstlen bytes to hold the formatted string. _vpstlen
is a global variable that is initialized to 133. It may be changed by the
user at any time.

Calls sprintf() to format the variables according to the format control
string. The result is placed in the previously allocated buffer.

Calls v_st() to display the string in the specified window. If the string
will not fit in the window, the remainder of the string is lost.

The buffer is freed.

All of the bit switch options controlling string output are observed. See
v_st_rw() for more information.

CALL

void v_printf(&wn, fmt, args...)

WINDOW wn; window structure

char *fmt; format control string

———— args; list of arguments to be formatted
RETURNS

None

(Continued)

A2-110

Windows for C Appendix 2
Version 4.0

v_printf (continued)
CAUTIONS

A maximum a 20 integer arguments, or 10 long integer arguments, or 5 single
precision or double precision floats are allowed in the call.

The allocated buffer must be large enough to hold the resulting formatted
string. It may be necessary to change the value of _vpstlen.

Use of this routine will link in sprintf() and all of its underlying routines.
This may result in significantly larger executable files.

Printing floating numbers may require that you link in the floating point math
library or some floating point object module. Consult your compiler manual
for the specifics.

Disabling of cursor advance and disabling automatic clearing to end of row are
primarily intended to improve the usefulness of v_printf(), which calls
v_st(), for maintaining status lines and other situations where output is
written to the same place repetitively. Disabling these functions will cause
problems in many normal output situations. Exercise care.

A2-111

Windows for C Appendix 2
Version 4.0

NAME

v_qch.c -- writes q character attribute pairs to a window

DATE: October 24, 1985

USAGE

To write q character-attribute pairs to a window.

FUNCTION

The value of q is checked. If negative, a return is made without writing any
characters.

Obtains address of current virtual cursor position and puts g characters to
that address. Does not observe window boundaries.

The attribute of the displayed characters will be the value in wn.att.
Does not advance the virtual cursor.

v_qch(ch, q, &wn)

char ch; character to write

int q; number of characters to write
WINDOW wn; window structure

RETURNS

=1 if q >=0

= -1 1if g < ©

CAUTIONS

The value of q must be checked to insure that it does not exceed the remaining
columns in the window, else writing will occur beyond the window boundaries.

Does not handle any special characters as command characters; does not advance
cursor.

A2-112

Windows for C Appendix 2
Version 4.0

NAME

v_rw.c -- puts rows of attribute-char's to a video window

DATE: October 24, 1985

USAGE

To place a row of characters to a window.

FUNCTION

Prints q characters in row format on wn, starting at present position.
Advances virtual cursor. Will move to next row if necessary to fit q char.

If q exceeds the space remaining in the window, output will stop when bottom
right position of the window is filled, and the virtual cursor will be placed
in the row below the window so that adj_cs() can detect that the window is
full.

CALL

v_rw(ch, q, &wn)

char ch; character to write

int q; quantity of char to write
WINDOW wn; window structure

RETURNS

= @ if window filled;
= 1 otherwise.
CAUTIONS

None |

A2-1173

Windows for C Appendix 2
Version 4.0

NAME
v_st.c -- puts character string to video window
DATE: October 24, 1985

USAGE

A general purpose routine for putting strings to video windows. See cautions
for limitations.

FUNCTION

This function writes the specified string within the working dimensions of the
window, using v_st_rw().

AUTO SCROLLING

Scrolling behavior is controlled by window member wn.scr_q, which specifies

the number of lines by which text is to be scrolled when v_st() attempts to

write to the bottom of a full window. Scrolling can only occur if automatic
updating of the virtual cursor is enabled (see below).

The function v_st() will stop writing when it reaches the end of the window,
assuming it started writing prior to the end. The virtual cursor will be
placed in the first column position of the first row below the bottom of the
window. The window is defined as "full" when the virtual cursor is in this
position. The function adj_cs() returns -1 when a window is full, allowing
this condition to be determined.

It v_st() ig called when the window is full, the window text and the virtual
cursor are scrolled upward by the number of lines specified by wn.scr_g, and
then v_st() writes the specified string until the end of the string is
reached, or the window is full.

When v_st() reaches the end of a window without writing an entire string, it
returns a pointer to the next character in the string. If the end of the
string is reached, NULLP is returned. Together with v_st()'s ability to
scroll text up automatically, this feature permits you to control what happens
when a string cannot be fully written before filling the window.

(Continued)

A2-114

Windows for C Appendix 2
Version 4.9

v_st (continued)

The following code fragment shows how a string can be written so that the
window line will be scrolled just one line upward in an attempt to write a
string. If it will not fit in the second line, additional scrolling will not
occur.

write st(st, wnp)

char *st;

WINDOWPTR wnp;

X
char *st1, *v_st();
int qt;
qt = wnp->scr_g; /save current value /
wnp->scr_q = 1; /scroll only 1 line /
if((st1 = v_st(st, wnp)) !'= NULLP) /write string i

v_st(stl, wnp); /write overflow /

wnp->scr_q = qt; /restore original value /
return;

)

If v_st() reaches the end of the string on the first try, the condition test
will fail; otherwise v_st() will be called again for st1, which starts where
v_st() left off writing on the first attempt.

BIT-SWITCH OPTIONS
The member wn.wrap, which controlled only word wrap (and thereby got its name)

in early versions of Windows for C, now controls a number of options via bit
switches. Values are #defined in wfc_defs.h to allow the switches to be set.

Option Switch Value
Word wrap enabled WRAP (1)
Auto clear to row-end disabled NO_CLEAR (2)
Virtual cursor advance disabled NO_CS_ADV (4)
Place screen cursor at v. cursor PL CSR (8)

When these switches are not set, the opposite of the actions is carried out by
v_st(). The switches may be set in any combination. Fusctions defs wn() and
def wn() set word wrap ON and all other options OFF.

Macros are #defined in wfc_defs.h to aid in setting these bit-switches.

sw_wwrap(state, &wn) -- sets word wrap switch to the specified state

sw_cleor(state, &wn) -- sets auto clear to row-end switch to the specified
state

sw_csadv(state, &wn) -- sets the virtual cursor advance switch to the
specified state

sw_plcsr(state, &wn) -- sets the cursor placement switch to the specified
state

(Continued)

A2-115

Windows for C Appendix 2
Version 4.9

v_st (continued)
CALL

char *v_st(st, &wn)

char *st; string to be put
WINDOW wn; window structure
RETURNS

= Pointer to next character in string if writing stops before end of string is
reached.

= NULLP if end of string is reached.

CAUTIONS

Does not handle tabs, backspaces, or any special characters other than
newlines (0AH). These must be processed by a separate subroutine (not
provided).

Disabling of cursor advance and disabling automatic clearing to end of row are
primarily intended to improve the usefulness of v_st(), which calls v_st_rw(),
for maintaining status lines and other situations where output is written to
the same place repetitively. Disabling these functions will cause problems in
many normal output situations. Exercise care.

A2-116

Windows for C Appendix 2
Version 4.9

NAME

v_st_nop.c -- puts string to window in specific format, no options

DATE: February 4, 1986

USAGE

To copy q characters of a string to one row of window. Intended primarily as a
subroutine in v_file(). No options are allowed. No interpretation of special
character is done.

FUNCTION

This function makes no checks at all. It writes q characters from the
specified string to a row in the specified window, beginning at the current

position of the virtual cursor, fills rest of the row with spaces, and advances
the virtual cursor to next line. T

CALL

void v_st_nop(st, q, &wn)

char *st; string to be written

int q; number of char to be written
WINDOW wn; window structure

RETURNS

None

CAUTIONS

No checks of any kind are made. If q exceeds the remaining spaces in a window
row, the window boundaries will be exceeded.

The bit-switch settings in wn.wrap are not observed.

When running on UNIX systems, does not restore screen cursor to its original
position.

A2-117

Windows for C Appendix 2
Version 4.0

NAME
v_st_rw.c -- Puts string to a row of a window
DATE: October 24, 1985

USAGE

To copy a string to one row of video window, with word wrap if specified.
Intended primarily as a subroutine to more general string-to-window functions,
such as v_st(). This function handles newlines and detects the NULL
terminator, but does not handle tabs or other special characters.

Logical attributes can be used.

FUNCTION

Transfers q characters of a string to the video regen buffer, beginning at the
address corresponding to the location of the virtual cursor in the specified
window.

The attribute of the displayed string will be the value in wn.att. Logical
attributes are implemented. If the globally known switch, _lattsw, is set,
wn_att is interpreted as a logical attribute. See the text discussion of
logical attributes for further details.

Generally, q will be the number of columns to the right margin of the window.
If the number of characters put to a row is less than q (because of a newline,
end of string, or word wrap), the remaining screen positions can be automati-
cally cleared with spaces. This has the effect of erasing the previous con-
tents of the row before writing the current string. If this is not desired, a
bit switch in wn.wrap can be set to disable automatic clearing (see below).

BIT-SWITCH OPTIONS:

The parameter wn.wrap, which controlled only word wrap (and thereby got its
name) in early versions of Windows for C, now controls a number of options via
bit switches in the parameter. Values are #defined in wfc_defs.h to allow the
switches to be set.

Option Switch Value
Word wrap enabled WRAP (1)
Auto clear to row-end disabled NO_CLEAR (2)
Virtual cursor advance disabled NO_CS_ADV (4)
Place screen cursor at vir. cursor PL CSR (8)

When none of these switches are set (wn.wrap = @ or NO WRAP), the opposite of
the actions listed above is carried out by v_st rw().

(Continued)

A2-118

Windows for C Appendix 2
Version 4.0

v_st_rw (continued)

Macros are #defined in wfc_defs.h to aid in setting these bit-switches.

sw_wwrap(state, &wn) -- sets word wrap switch to the specified state

sw_cleor(state, &wn) -- sets auto clear to row-end switch to the specified
state

sw_csadv(state, &wn) -- sets the virtual cursor advance switch to the
specified state

sw_plcsr(state, &wn) -- sets the cursor placement switch to the specified
state

See CAUTIONS about improper uses of disabling switches.
GENERAL:

If word wrap is specified, v_st rw() insures that next character in the string
after the last one printed is a space or a NULL (indicating end of string).

If a string fills an entire row without any spaces, word-wrap is disabled for
that row.

If the virtual cursor advance is enabled (default):

If a linefeed is detected, it is not printed, but wn.r is incremented and

wn.c set = @. No further characters are printed. The next character is
checked for end of sitring indicator (NULL); if found, return is set to so
indicate.

If end of string is not reached, wn.r is incremented and wn.c set = 0.

The next character is checked for end of string indicator (NULL); if
found, return is set to so indicate.

If end of string is reached (NULL detected), wn.c is incremented by the
number of characters put from string to video.

If no characters can be put to video, or q = 0, a linefeed/carriage-return
is executed.

If the virtual cursor advance is disabled:

If a newline or end of string indicator (NULL) is detected, no further
characters are printed. By definition, the virtual cursor is not moved.

The function always returns NULLP.

(Continued)

A2-119

Windows for C Appendix 2
Version 4.0

v_st_rw (continued)

CALL

char *v_st_rw(st, q, &wn)

char *st; string to be put

int q; number of char in string, maximum equals co_g
remaining in row.

WINDOW wn; window structure

RETURNS

If virtual cursor advance is disabled
= NULLP regardless of whether or not the end of string was reached.

If virtual cursor advance enabled (default):

pointer to next character in string if terminal '\@’ is not detected.

NULLP if terminal '\@’' is detected
CAUTIONS

Value of q must be checked prior to call to insure that string will fit on
current row, otherwise string will be written beyond window boundaries.

Does not provide for tabs, backspaces, or any special characters, other than
newlines (QA).

If the last line of a window is filled on a call, the newline executed at the
end of the line will result in wn.r = wn.re + 1 and wn.c = @, that is the
virtual cursor will lie in the first row beyond the window. If v _st rw is
called in this circumstance, the row will be written below the window.

The full-window condition can be determined by a call to adj cs(wnp), which
will return @ when wn.r exceeds wn.re. Room for the next line of text can be
obtained by a call to mv_rws.

Disabling of cursor advance and disabling automatic clearing to end of row are
primarily intended to improve the usefulness of v_st(), which calls v_st rw(),
for maintaining status lines and other situations where output is written to
the same place repetitively. Disabling these functions will cause problems in
many normal output situations. Exercise care.

A2-120

Windows for C Appendix 2
Version 4.0

NAME

v_tv.c -- issues a request to Topview to update video display

DATE: February 4, 1986

USAGE

In WFC/MSDOS, to update the video display under the Topview environment. In
WFC/UX, issues a call to upd_vdisp().

FUNCTION

Accepts as inputs the two positions in a window between which the screen is to
be updated. The positions are specified by row and column numbers.

MSDOS Systems:

The starting and ending positions to be updated in the TopView-assigned video
buffer are calculated and passed in prescribed form to the TopView Update Video
Display function (INT 10H, function AH = @FFH).

UNIX Systems:

The WFC/UX version of this function merely calls upd_vdisp().

CALL

void v_tv(r@, r1, c@, c1, &wn)

int ro, r1, c@, cl; window row and column begin and end
positions for update

WINDOW wn; WINDOW structure

RETURNS

None

CAUTIONS

MSDOS Systems:
None
UNIX Systems:

Provided for compatibility with MSDOS version of Windows for C. The function
upd vdisp() should be used by Unix/Xenix programs.

A2-121

Windows for C Appendix 2
Version 4.0

This page intentionally left blank.

A2-122

Windows for C Appendix 3
Version 4.9

APPENDIX 3

SOURCE CODE FILES

A3-1

Windows for C Appendix 3
Version 4.0

SOURCE CODE FILES

Source code is provided on the accompanying diskette for the following library
functions:

di_file() -- reads a disk file into memory into a sequential array.

k vcom() -- translates keyboard "extended codes" into video movement
commands .

menu?2() -- pop-up menu display and selection routine

v_file() -- puts a file read by di_file() into a window for viewing.

vs_file() -- puts a file read by di_file() into a window for viewing and

permits the user to scroll through it.
These functions may be modified to accommodate your information structures.

Code for other library functions may be provided on updated disks. Check your
diskette.

Source code is provided on the accompanying diskette for the following
demonstration programs:

demo_wn.c -- A demo program that views multiple files in several
different overlapping windows.

dem_cmov.c -- A demo program that illustrates the use of windows in
animation and movement.

dem_menu.c -- A demo program that illustrates the use of pop-up menus.

dem_grph.c -- A demo program that illustrates the use of windows in
drawing block graphics mode bar charts.

prt_labl.c -- A demo program that illustrates the use of windows in
printing texts in uncommon formats.

Source code is provided on the accompanying diskette for the following
tutorials and examples:

hello_wc.c -- A tutorial for using physical color attributes.
loop.c -- A tutorial for implementing the keyboard loop function.
sti_buf.c -- An example function that can be used to add lines to an

off-screen memory file.

tutor.c -- A tutorial program that illustrates some text editing
capabilities using windows.

tut_help.c -- A tutorial that illustrates pop-up help files.

vmenu. c -- A tutorial program for using pop-up menus. A much simpler
program than dem_menu.c.

A3-2

Windows for C Appendix 4
Version 4.9

APPENDIX 4

DEFINITIONS AND ABBREVIATIONS

A4-1

Windows for C Appendix 4

Version 4.0

DEFINITIONS AND ABBREVIATIONS

bdr

bdrp

cl

cls

co =

cs =

csr

cwn

a type BORDER data structure. The typedef type-specifier BORDER is
defined in "wfc_stru.h". "bdr" contains the information necessary
for drawing a border on a window.

a pointer to a type BORDER data structure BORDERPTR, a typedef type-
specifier defined in "wfc_stru.h", can be used to declare "bdrp".
One of the elements of "wn" is a pointer to a BORDER structure, that
is, "wn.bdrp" is an element of "wn."

the column position of the virtual cursor in window "wn", that is
"wn.c" specifies the window column-number of the virtual cursor in a
window. Window column-numbers begin at the left-hand side of the win-
dow. Zero is the column-number of the first column available for
output.

After a window has been "set" using function "set_wn", which draws a
border and sets left and right margins for the window, the columns
occupied by the border and the left margin are no longer counted in
measuring the row-number, as they are no longer accessible until the
window is "unset".

clear, as in clear window (cl wn).
clear screen.

a general abbreviation for column, distinct from the column-number of
the virtual cursor.

the virtual cursor in a window. The virtual cursor is the position in
a window at which the library functions will begin writing output. It
differs from the screen cursor (abbreviated "csr", see below) that
appears on the screen. It is not necessary for the screen cursor to
be located at the virtual cursor position to write at that point.

the screen cursor; the blinking cursor that appears on the screen.
The screen cursor is distinct from the virtual cursor of a window

(see above).

color window. Used to indicate functions intended primarily for use
in managing window structures for color displays.

disk, used in naming functions that access disks.

dimension.

file of data, which may be either on disk or in memory.

a type FREC data structure. The typedef type-specifier FREC is def-
ined in "wfc_stru.h". "fr" refers to "file-record" and contains the
basic information required for Window library functions to access

ASCII text files that have been read into memory.

input, used as a suffix to denote an input operation; thus "di"
refers to input from disk.

A4-2

Windows
Version

mv

pl

rw

sSC =

st

vid

Vo

for
4.9

C Appendix 4

key data, read from keyboard; sometimes combined with "i" to empha-
size its input nature, as in "ki" (key input).

move, as in "mv_rws" (move rows).
output, used a suffix to denote an output operation.

In general, "p" is appended to a variable to refer to a pointer to
the variable in question.

place, as in "pl _csr" (place cursor).

quantity, used as a suffix to denote the quantity of certain vari-
ables. For example, "co_q" stands for the quantity of columns in
window. "q" is used in preference to "n", which is commonly used as
an varying index number rather than as an indicator of fixed quan-
tity.

the row position of the virtual cursor in window "wn", that is "wn.r"
specifies the window row-number of the virtual cursor in a window.
The window row-number is measured relative to the top of the window,
not from the top of the screen. Zero is the row-number of the first
row of a window available for output.

After a window has been "set" using function "set_wn", which draws a
border on the window, the row occupied by the border is not counted
in measuring the row-number, as it is no longer accessible until the
window is "unset".

a general abbreviation for row, distinct from the row-number of the
virtual cursor.

screen.
string (of characters), as in "v_st" (video output of string).
video. "v" refers to writing to a window on the video screen. For
example, the function "v_ch" refers to writing a character. to a win-

dow.

video interrupt. Indicates functions that obtain information by call-
ing the IBM video interrupt function (INT 10H).

video out. "vo" refers to reading a character/attribute out of the
video buffer. For example, the function "vo_ch" refers to reading a
character from a window.

window contents. Used to indicate functions that operate on the
character contents only (not attributes) of window images.

window image. The image on the screen within the area defined by a
WINDOW structure.

a type WINDOW data structure. 1In library functions and in text dis-

cussion, "wn" is used to refer to a window data structure declared
using the typedef type-specifier WINDOW.

A4-3

Windows for C
Version 4.0

Appendix 4

Members of the WINDOW structure are addressed in the form "wn.x,"
where "x" is one of the members. For example, "wn.rb" refers to the
screen row-number (zero is the top row of the screen) of the top row

of window "wn". (See the discussion in Appendix 5, WINDOW STRUC-
TURES.)

wnp = pointer to a type WINDOW data structure. "wnp" can be declared using
the typedef type-specifier WINDOWPTR (defined in "wfc_stru.h").

A4-4

Windows for C Appendix 5
Version 4.0

APPENDIX 5

WINDOW AND MEMORY FILE STRUCTURES

A5-1

Windows for C Appendix 5
Version 4.0

This appendix provides a detailed guide to the structures that are used to
manage windows and memory files within Windows for C.

WINDOW STRUCTURES

Those who are unfamiliar with the use of pointers and structures in C will
need to read Chapters 5 and 6 of K&R to fully understand this section.

All Window functions make use of information contained in a C structure that
ig defined for each window. This structure contains (or refers to) all of the
information needed for a window’s management. Reference to the structure
substitutes for long paramenter lists in parameter call. This simplifies
coding, saves time, and reduces errors.

The structures that contain the information for a window are of type WINDOW.
WINDOW is defined using the typedef facility of C (see K&R, pp. 140 and 200)

in the wfc_stru.h #include file. This definition is reproduced here:

typedef struct wnd

{
int rb; /*top row of window */
int re; /*bottom row of window */
int cb; /*¥left hand column of window */
int ce; /*right hand column of window * [
int r; /*virtual cursor row-position */
int c¢; /*virtual cursor column-position */
char att; /*character attribute * /
char page; /*graphics-card alpha mode page # */
int wrap; /*word-wrap switch */
int location; /*must be initialized to @ */
int scr_q; /*max number of lines to scroll * /
int 1_mg, r_mg; /*left and right spaces (margins) -- */
/*to border * [
BORDERPTR bdrp; /*pointer to border structure */
char setsw; /* = 1 for INSIDE, = 9 for FULL dimen;*/
/*initialize to @ */
FRECPTR frp; /*pointer to file-record structure */
char *storp; /*pointer to window storage */
char *userpl[2]; /*2 pointers reserved for users * /
char *wname; /*pointer to window name */
char *larray; /*pointer to logical attribute array */
char *pu_storp; /*¥pointer to pop-up window storage */
char bdratt; /*¥video attribute of border * [
char popup; /*popup switch: 0 = no popup */
/* 1 = popup %]
/* int reserv2[6]; six reserved words, not now used */
/* char *reserv3[4]; four reserved pointers * [

} WINDOW, *WINDOWPTR;
DESCRIPTION OF STRUCTURE MEMBERS
Each member of the structure WINDOW wn is described briefly below:
%* The first four entries (rb, re, cb, ce) define the location and size of a
window. The values of these parameters are measured in terms of screen

row-numbers and column-numbers (which begin at zero in the upper left-
hand corner of the screen).

A5-2

Windows for C Appendix 5
Version 4.0

* r and ¢ define the virtual cursor position in the window. The values of
wn.r and wn.c are measured relative to the origin of the window (its
upper left-hand corner).

The virtual cursor is the position in a window at which the library func-
tions will begin writing output. A separate virtual cursor is defined
for each window. The virtual cursor differs from the actual cursor that
appears on the screen. It is not necessary for the actual cursor to be
located at the virtual cursor position to write at that point.

* page applies only to the Color/Graphics Adapter. It refers to the memory
page within the Color/Graphics Adapter card that the window is address-
ing. A page must be the "active" page before text written to it will
appear on the screen. Upon initialization of the computer, page 9 (zero)
is made the active page; thus the normal setting for wn.att will be 0
(zero).

By setting wn.page to another page number, information can be stored for
later output to the screen (remember, though, that this only applies to

the Color/Graphics Adapter). The active page must be changed (using IBM
BIOS interupt 10H, function 5 -- which can be done with Window function

vid int()) to display the contents of other memory pages.

* wrap, which controlled only word wrap (and thereby got its name) in early
versions of Windows for C now controls a number of options via bit
switches in the member. Values are #defined in wfc_defs.h to allow the
switches to be set.

Option Switch Value
Word wrap enabled WRAP (1)
Auto clear to row end disabled NO CLEAR (2)
Virtual cursor advance disabled NO_CS _ADV (4)
Place screen cursor at virtual cursor PL_CSR (8)

The word wrap switch specifies whether or not word wrap should be imple-
mented for strings put to the window by the library function v_st()
(video_string). If word wrap is implemented, only entire words will
appear on a line. If no-wrap is implemented, contents of a string will
fill entire rows of a window, without regard to whether a word is split
with a part on each line.

The auto clear to row end switch controls whether or not the row should
be cleared from the last character written to the end of the row. This
has the effect of erasing the previous contents of the row before writing
the current string. For most applications this is the preferred setting.
However, when setting up status lines where only a small section of the
row is updated by a video output call, the rest of the row should not be
deleted because it contains relevant information.

The virtual cursor advance switch controls whether the virtual cursor is
updated to reflect the ending location of the string just written to the
window. For most applications the virtual cursor should be advanced.
This ensures that subsequent writes to the window will start where the
current string ended. However, in some applications this may be undesir-
able and can be inhibited by properly setting this switch.

A5-3

Windows for C Appendix 5
Version 4.0

The place screen cursor at virtual cursor switch controls whether the
physical screen cursor is placed at the virtual cursor location after the
string is written to the window. In most situations this is not neces-
sary and may actually distract the user. However in some instances it
may be advantageous to place the cursor at the virtual cursor to draw the
user’s attention to some important piece of information.

* location is reserved for use in later versions of Windows for C. Code is
not operable for this parameter in the present version. It must be set
to zero before calling video output functions, or the application program
will abort with an appropriate error message.

* scr_q specifies whether or not upward scrolling of text is to be automat-
ically implemented by the library function v_st(). If scr_q is greater
than zero, a call to v_st() when the window is full will automatically
scroll up the text by the number of rows specified in the scr_gq variable.

* 1 mg and r_mg specify the number of spaces of margin between text and
border on the left and right sides of the window.

*¥ bdrp is a pointer to a (typedef) BORDER structure, which contains the
information necessary for drawing borders on a window. The BORDER struc-
ture is defined in wfc_stru.h, and a number of standard BORDER structure
declarations are contained in window.h. If the standard borders (or the
standard full-screen window) defined in window.h are to be used, this
file should be #included following bios.h in the main program.

* setsw indicates whether the "working dimensions" reflect the FULL dimen-
sions of the window, before adjustment for left and right margins and the
border, or INSIDE dimensions, after these adjustments have been made.
FULL and INSIDE are #defined in wfc_defs.h and have the values @ and 1,
respectively.

The value of wn.setsw ("set switch") is modified by set _wn(), unset _wn(),
and dim_wn(). Setting a window with set_wn() includes adjusting the
dimensions of the window (rb, re, cb, ce) to INSIDE to reflect the space
allocated to a border and to 1_mg and r_mg. Function unset_wn() restores
FULL dimensions. Function dim wn() allows the working dimensions to be
specified directly.

Window functions involving movement of information to or from windows
operate within the working dimensions of a window. For certain purposes
FULL dimensions will be preferred to INSIDE dimensions.

* frp is a pointer to a (typedef) FREC (File-RECord) structure, which con-
tains information on a data file in memory. This information is used by
function v_file() to allow viewing of the file through a window. FREC is
defined in wfc_stru.h. Programmers may wish to redefine FREC to contain
the information necessary for their specific choice of list-handling
methodologies. For more information see Chapter 6.

* storp is a pointer to storage for a window image. This pointer is
assigned by functions that move window images to storage, such as
sav_wi(), and is used to determine storage location by functions that
retrieve images, such as repl wi().

A5-4

Windows for C Appendix 5
Version 4.0

* char *userp[2] reserves two pointers for users. You can use these point-
ers to refer to information you want associated with a specific window.
They can point to other structures, so there is no limit on the number of
variables you can tie to a window structure. These pointers will be
maintained in future revisions.

* wname is a pointer to the string which contains the name for the window.
If this pointer is not NULL, the string containing the window name will
be placed in the top border of the window starting at the left hand cor-
ner when the window is set on the screen using set _wn() or when a new
border is drawn using v_border(). If no border is specified, the window
name will not be written to the window.

* larray is a pointer to a character array which maps the logical attrib-
utes for the active adapter and mode into physical attributes. Although
there is a default logical attribute array, latt[], for the Windows for C
system, a unique logical attribute array may be associated with each win-
dow. If a unique logical attribute array is specified for a window, it
will be used instead of the default logical attribute array. This feature
provides the flexibility to map the same logical attribute to different
physical attributes for different windows.

* pu_storp is a pointer to storage where the underlying window image will
be stored for pop-up windows. Before pop-up windows can be displayed on
the screen, the underlying screen information must be saved so that it
can be restored when the pop-up window is removed. This pointer is
manipulated by the set_wn() and unset_wn() functions and should not be
changed by the application program.

% pdratt defines the video attribute of the border for the window.
wn.bdratt may be interpreted as a physical attribute value or a logical
attibute value depending if logical or physical video attributes are in
use. In earlier versions of Windows for C the border attribute was
stored in the border structure. Although an attribute still exists in
the border structure it is no longer used.

* popup is a switch which identifies if the window is a pop-up window or a
standard window. If the window is a pop-up window, before the window can
be set on the screen, the underlying information must be saved.

Additionally, the system reserves storage at the end of the present WINDOW
structure for future expansion. The reserved storage is:

* char *reserv3[4] reserves four pointers.
* int reserv2[10] reserves ten words.

The reserved pointers and words are not now currently used, nor is storage
allocated for them in WINDOW structures.

Before using a window, values must be assigned to the members in the window
structure. The preferred method of assigning values to the WINDOW structure
members is to use the functions def wn(), defs_wn(), or a function of your own
creation. In this way future changes to the window structure are isolated
from the rest of your program. Only the window assignment function need be
changed and recompiled. Another method (not recommended) of initialization
would be to place external or static initializations of WINDOW structures in a

A5-5

Windows for C Appendix 5
Version 4.0

single include file and #include it prior to main(). You should definitely
avoid external or static initializations that are buried in subroutines.

Not all members of a window structure will be utilized in all uses. For
example, if only individual strings are put to a window and the window is not
used to view an entire ASCII file, the frp member will not be addressed. For
those members not used in the program, the values are immaterial and initial
values need not be assigned.

MEMORY FILE STRUCTURES

The basic structure used to manage memory files is a memory file record of
type defined by the typedef specifier FREC. The members of this mfile struc-
ture are:

mfile. fn 4. filename (drive and path)
mfile.fmaxlines maximum number of lines in memory file
mfile.fmaxcol maximum number of colums in a line
mfile.farray pointer to an array of FLINEPTRS
mfile.ln q will be set by di_file or sti_file
mfile.c_q will be set by di_file or sti_file
mfile.wfr origin of the window in file
mfile.wfc origin of the window in file
mfile.ftabg tab spacing, for di_ file()
mfile.ib not currently used

mfile.lbp not currently used

mfile.lep not currently used

DESCRIPTION OF STRUCTURE MEMBERS

mfile.fn: filename, including drive (and path, if supported by compiler
and DOS and file not in default directory) of an ASCII file. The filename
is specified as an argument in def fr().

The filename is used by di_file() to read a file from disk to a memory
file. If you are creating a memory file, using sti_file(), and intend to
write the file to disk, store the intended file name in this member.
(Note, a function for writing a memory file to disk is not supplied).

If you are not intending to do any disk operations on the memory file, the
filename argument in def_fr() can be specified as NULLP (a null pointer).

mfile.fmaxline@: ‘the maximum number of lines in the memory file (not
including a position for an end of file marker). The value of this member
is specified as an argument in def fr().

mfile.fmaxcol: +the maximum number of columns allowed in a file line (not
including the terminal newline and null that will be appended to each line
by di_file() and sti_file(). When di_file() or sti_file() copy a string
to the memory file, they will truncate the copy at fmaxcol; thus you can
control the length of strings that will be placed in the file.

If you want to control the length of file lines but do not want to lose
information by truncation, use sti_file() (and di_st(), if you are going
to obtain the strings from a disk file) to place lines in the memory file.
Function sti_file() will return a -1 when a line is truncated. You can

A5-6

Windows for C Appendix 5
Version 4.0

call sti_file() again to copy the following part of the string to the fol-
lowing line. Repeat this until the string is fully copied.

mfile.farray: A pointer to an array of pointers to FLINE structures. Each
FLINE structure will contain information for one line of the memory file.

Function def fr() allocates storage for the array and places a pointer to
this array into mfile.farray. The size of the array is equal to
mfile.fmaxline plus one additional element for an end-of-file marker. All
- elements of the array are initialized to NULLP. The initialization to
NULLP is done because sti_file(), which places copies of strings into the
file will attempt to free the contents of any FLINE element that does not
contain a NULLP.

mfile.ln_q: the number of lines placed in the memory file by di_file() or
sti_file(). This number will always be less than or equal to the
mfile.fmaxlineg. If the actual number of lines is less than fmaxlineg,
the end of file will be marked by a NULLP in the element of farray that
follows the pointer to the last line of the file. You can check if frow
of the memory file is the end of file by:

if(mfile.farray[frow] == NULLP) /*end of file */

mfile.c_q: the maximum number of characters (excluding the newline and
terminal null on each line) in any line in the memory file. This value is
maintained by di_file() and sti_file().

The values of mfile.c_q and mfile.ln_q are used by the functions
(v_file(), k_vcom(), and vs_file()) that provide capability for displaying
and scrolling through a memory file. They tell these functions where the
row and column limits of text occur in the memory file.

mfile.wfr and mfile.wfc: the row and colum in the memory file where the
origin of the display window will be placed by v_file() and vs_file().
Consider an example where window wn points to memory file mfile, that is
wn.frp = &mfile. When v_file(&wn) is called, the window origin will be
at mfile.wfr, mfile.wfc. To scroll the file down one line in the window,
all that needs to be done is to increment mfile.wfr and call v_file(&wn).
This capability is used in vs_file(), which provides for displaying and
scrolling of a file.

mfile.ftabq: the spacing of tab stops in a file stored on disk to be read
into a memory file by di_file(). Some editors and MS/PCDOS expect tabs to
be spaced every 8 spaces and will correctly expand tab characters (ASCII
9) embedded in file lines. The subroutine called by di_file() to read in
file lines, di_st(), has the capability to expand tabs to specified tab
spacing. Function di_file() passes di_st() the value of mfile.ftabq for
the tab spacing to be used. The default value set by def fr() is 8, the
same as that assumed by DOS; thus standard DOS files with embedded tabs
will be expanded properly.

The remaining members of the FREC structure are not used in the present imple-
mentation.

A5-7

Windows for C Appendix 5
Version 4.0

HOW LINE INFORMATION IS STORED IN A MEMORY FILE

Function def_fr() allocates memory for memory file array. This is an array of
pointers to FLINE structures. A separate FLINE structure is allocated for
each line of a memory file. The structure FLINE fline contains two members:

fline.line_len is an integer and holds the length of the file line
(excluding the terminal newline and null).

fline.line_st is a character pointer and points to the location where the
file line-string is stored.

Functions di_file() and sti_file() fill the array of FLINE pointers as they
add lines to the file.

DIRECTLY ACCESSING THE STRINGS IN A MEMORY FILE

Once lines have been placed in a file, you can access them by using the system
function:

char *file lnp(frow, &mfile)
int frow;
FREC mfile;

which returns a pointer to the string that is in frow of the memory file. The
string will be be terminated by a newline and a null.

Function file_lnp() is convenient for many uses, but if you intend to work
intensively with memory files, you may wish to reference the file strings more
directly.

For example, if you are going to reference file strings a number of times in a
module, you will save code if you first set a variable to point to the array
of FLINE pointers and then use this variable as the base for accessing the
strings. Assume that a pointer to FREC mfile, mfp, is passed to your func-
tion, then this code fragment illustrates the approach:

FLINEPTR *farray;
char *string;

farray = mfp->frp;
string farray[frow]—)line_st;

Variable string will point to the string that is in frow of the memory file.
CODING EXAMPLE

The following code reads in a file from disk named "junk.txt". The maximum
number of lines in the file is 100 and the maximum number of characters in a
line is 80. After the memory file is established, lines of the file are dis-
played in the full-screen window, using v_st(), until the window is full or
the end of file is reached. Before returning, memory allocated for the con-
tents of the file is freed.

A5-8

Windows for C Appendix 5
Version 4.0

void view file(mfp)
FRECPTR mfp;

{
FLINEPTR *1linep;
int line_len;
char *line_st;
int i = @;
def_fr(mfp, "junk.dat", 100, 80); /*initialize FREC * /
di file(mfp); /*read in file */
linep = mfp->farray; /*avoid indirection */
while (linep[i] != NULLP)
{
v_st(linep[i]->line_st, &wno);
if(! adj_cs(&wnd)) /*window is full -- */
break; /*so break out of loop */
i++; /*advance to next pointer */
}
free file(mfp); /*free allocated memory */
return;
}

A5-9

Windows for C Appendix 5
Version 4.0

This page intentionally left blank.

A5-10

Windows for C Appendix 6
Version 4.0

APPENDIX 6

ERROR CODES AND ERROR HANDLING

A6-1

Windows for C Appendix 6
Version 4.0

ERROR CODES AND ERROR HANDLING

ERROR HANDLING

All of the high level functions of Windows for C will signal an error condition
on return, generally by returning a @ or a -1. This allows you to test for an
error by, for example:

if(set_wn(&wn) == 0)
err_proc(); /*¥process the error * /

The Global Error Variable: _wn_err

Whenever an error return is made, you can check the global error code variable,
_wn_err, to identify the root cause of the error. Any function of Windows for C
that detects an error will place an error code in _wn_err. See Table A6.1 for a
listing of the error codes.

At the start of the program, _wn_err is initialized to zero. Functions detect-
ing an error overwrite the current value of _wn_err with the appropriate error
code. If you want _wn_err to equal zero after you have processed your error,
you must make this assignment.

Memory Management Functions: get_mem() and free_mem()

Special memory management functions are provided, get_mem() and free_mem(),
which will set the global error code, _wn_err, when an error is detected.

The function get_mem() calls the function malloc() in the C library supplied
with your compiler. If there is insufficient memory to fulfill the request,
get_mem() returns a NULLP and sets _wn_err to MEMLACK.

The function free_mem() calls the function free() in the C library supplied with
your compiler. If your version of free() supports an error return and an error
is detected, free_mem() returns @ and sets _wn_err to BADHEAP. Not all compiler
versions of free() support an error return. Check your compiler documentation.
If free() does not support an error return, free_mem() always returns a 1.

FATAL ERRORS

Windows for C has one error that will cause the application program to write an
error message and return to the operating system level.

Error Message
The window element wn.location must be 0
Cause

Attempting to write to or read from a window whose structure member
wn.location is not equal to zero.

All window structures must have the member wn.location set equal to zero.
All functions of Windows for C will initialize window structures in this
manner. If wn.location becomes non-zero it will be as a result of improper
explicit initialization by the programmer or overwriting memory as a result

A6-2

Windows for C Appendix 6
Version 4.0

of using a stray pointer or accessing an array beyond its bounds. No rou-
tine of Windows for C will change wn.location.

NON-FATAL ERRORS

Handling of non-fatal errors is your responsibility. Based upon program context
and the code in _wn_err, you must determine whether to proceed with the program,
invoke an error handling routine, or abort the program. Table A6.1 lists all
error codes assigned to _wn_err. ’

A6-3

Windows for C Appendix 6
Version 4.0

Table A6.1: Error Codes!

Error Condition Error Code Value Comments

MEMLACK 1 Insufficient memory
BADHEAP 2 Memory corrupted

READERR 3 Error reading file
BAD_EOF 4 Unexpected End of File
BADPARM 5 Bad parameter value
ERR_OPEN 6 Error opening file
ERR_CLOSE 7 Error closing file
WRITEERR 8 Error writing to file
DISKFULL 9 Full disk

FILETOOBIG 19 Too many lines in file
BADWNCOORD 14 Invalid window coordinates

(1) Error codes 1 - 9 are #defined in wn_errd.h.

Error codes 10 - 19 are reserved for future use by Windows for C

Error codes 20 - 33 are reserved for use by Windows for Data

A6-4

Windows for C Appendix 7
Version 4.0

APPENDIX 7

SYSTEM DISKETTE FILES

AT-1

Windows for C

Version 4.0

Appendix 7

The following files are on the system diskette for Windows for C.

READ.AAA
TEST . ADR
CL.BAT
DEMO_WN.C
DEM_CMOV.C
DEM_GRPH.C
DEM_MENU. C
DI_FILE.C
HELLO_WC.C
K_VCOM.C
LOOP.C
MENU2.C

PRT LABL.C
SET_MODE.C
STI_BUF.C
TUTOR. C
TUT_HELP.C
U_INIT.C
VMENU. C
VS_FILE.C
V_FILE.C
MENU . DEM
GRPH_HLP .DOC
MENU . DOC
MENU_HLP . DOC
VERSION.DOC
WFC_FLY.DOC
WN_HELP .DOC
ATT GLOB.H
BIOS.H
COMPUTER.H
DEF_ATT.H
LABELS.H
LABELS2.H
LABELS3.H
LLIST.H
VEXTERN . H
WFC_COMP . H
WFC_DEFS.H
WINDOW.H
WN_ERRD.H
DEMO_WN.PIF
DEM_MENU.PIF
HELP . TXT
VMENU . TXT

Contains information on current version. Read.

Names and addresses for prt_labl demo program.

Example batch file for compiling and linking a program.
Source code for multiple files in multiple windows demo program.
Source code for block graphics animation demo program.
Source code for bar graph demo program.

Source code for the pop-up menu demo program.

Source code for the WFC library function di_file().
Source code for the color version of "hello world".
Source code for the WFC library function k_vcom().
Source code for the keyboard loop tutorial program.
Source code for the WFC library function menu2().
Source code for the label printing demo program.

Source code for the video mode switching tutorial program.
Source code for the off-screen buffer tutorial function.
Source code for the "typing tutor" demo program.

Source code for the pop-up help file tutorial program.
Source code for the WFC library function u_init().
Source code for the pop-up menu tutorial program.
Source code for the WFC library function vs_file().
Source code for the WFC library function v_file().
ASCII file for menu choices used by dem_menu.

ASCII file used by dem grph.

ASCII file used by dem menu.

ASCII file used by dem menu.

Contains WFC version history information.

ASCII file used by demo_wn.

ASCII file used by demo_wn.

Include file for globally assigned logical video attributes.
Top level include file for Windows for C.

Include file of computer specific definitions.

Include file of logical video attribute definitions.
Include file for prt labl. Sets placement of labels.
Include file for 2 across labels.

Include file for 3 across labels.

Include file of linked list definitions.

Include file of external declarations.

Include file of compiler specific definitions.

Include file of WFC specific definitions.

Include file of WFC global variable declarations.
Include file of WFC error definitions.

TopView/MS Windows Program Interface File for demo_wn.
TopView/MS Windows Program Interface File for dem_menu.
ASCII file for pop-up help tutorial program, tut_help.
ASCII file for menu choices used by vmenu.

Library files may be included on the system diskette or be provided on a sepa-

rate diskette.
individual compiler.
assigned by the compiler to its libraries.

The names and extensions depend upon the conventions of the
Each library name begins with wn, and has the extension
For those compilers having more than

one memory model, following wn will be a letter or letters identifying the mem-

ory model.
wnp.lib.

For example, the library for the large program model of Lattice C is

A7-2

Windows for C
Version 4.9

A

Abbreviations 3-7, A4-2 thru A4-4
ADDR 8-13
ADDR structure 8-13
ADDRPTR 8-173
Advanced topics 8-3 thru 8-16
Allocating memory 8-6
ALL_ROWS 6-10, 7-8
Alternative display adapters 8-13
Animation 8-10
demonstration 8-10
Applications,
v_mova() 8-7
WFC 8-15
attcolq 5-7
Attribute 3-11
base state 3-11
changing 8-11
highlighting 8-11
highlighting specified number of
characters 8-11
logical 3-24
physical 3-24
monochrome 5-9
Attribute byte 3-11, 5-3
_attrowqg 5-7
att _glob.h 5-4, 5-5, 5-6, T-4,
A1-14 thru A1-15
ATT LOGIC 3-12, 5-8
Auto-clear-to-end-of-row 3-19, 8-7
Auto-scroll 3-9
Automatic virtual cursor advance 3-19

B

Background color 5-3, 5-10
Bar graph 8-12
horizontal 8-12
vertical 8-12
Batch file for compiling and
linking 2-5
BDR_ QP 3-5
BDR_DLNP 3-5
BDR_LNP 3-5
BDR_REVP 3-5
bell() 3-20, A2-14
Bell, ring 3-20
bios.h 2-5, 3-4, 3-12, 3-26, 5-8,
5-1¢, 5-12, A1-2 thru A1-3
BLACK 5-10
BLINK 3-11, 3-13, 5-9, 5-10
Block graphics character 8-10
BLUE 5-4, 5-10
BORDER 3-8
Border
changing attributes 3-13

Index

changing color 5-11
color 5-3
structure 3-8
types 3-5

BROWN 5-10
Building new functions 8-16
BW40 5-12
BW80 5-12

c

Calling a menu 7-5, 7-6
CENTER_TXT 3-19

CGA See Color Graphics Adapter
CH 8-5, 8-11

Changes

version 2.0 to 2.1 C-7
version 2.2 to 3.1 C-5 thru C-7
version 3.1 to 4.0 C-1 thru C-5

Changing

attributes 8-11

border attributes 3-13
character attributes 3-20
special options 3-10
window attributes 3-13
window defaults 3-7
window margins 3-9
working dimensions 3-14

Character

block graphics 8-10
changing attribute 3-20
delete 8-7

insert 8-7

functions 8-14

Character output 3-19

columns 3-20
low level 8-14
rows 3-20

Character-graphics animation 8-10
cl.bat 2-5
Clearing

memory file 6-11
screen 3-24
windows 3-24

cls() 3-24, 5-11, A2-15
cl att 3-24, 5-11

cl wn() 3-24, 8-10, A2-16
C040 5-12

co80 5-12

COL 8-5

Color

border 5-3

controlling 1-4, 5-3
foreground 5-190
background 5-10

screen background 3-24
window background 5-3

Windows for C
Version 4.0

window foreground 5-3

Color attributes 3-11, 5-3, 5-9
background 5-10
border 5-11
foreground 5-19¢

Color graphics adapter 5-9, 5-11

color_sc() 5-11, A2-17
color wn() 5-10, 5-11, A2-18, A2-19
Column quantity macro 3-16, 8-15
col_gty() 3-16, 8-15
Communication display buffer 6-3
Compiling programs 2-5
computer.h 3-22, 5-10,
A1-4 thru A1-6
Controlling
color 5-3 thru 5-13
output location 3-15
screen cursor 3-16
copy_wc() 8-7, 8-8, A2-20
Creating a menu memory file 7-5
csr_hide() 3-17, 3-18, 3-26, A2-21
csr_show() 3-17, 3-18, 3-26, A2-21
csr_type() A2-22
Cursor -- See Virtual cursor or
Screen cursor
Cursor placement 3-9
CYAN 5-10
c_att() 5-4, 5-5, 5-6, 5-18, 5-11,
A2-23

5-12, 6-8, T-5,

D

datt_tbl[][] 5-4, 5-5, 5-6
Declaring windows 3-5
Default window settings 3-6, T-2
Default windows 3-8, 3-9
Defining
initial value of window 3-5
menu display window 7-6
Definitions 3-7, A4-2 thru A4-4
defs_wn() 3-4, 3-5, 3-6, 3-7, 3-8,
3-13, 3-14, 3-26, 3-27, 5-11,
A2-24, A2-25
def_att.h 5-5, 5-6, T-4
def_fr() 6-3, 6-4, 6-5, 6-6, 6-7,
6-106, 7-5, 7-9, A2-26, A2-27
def_wn() 3-5, 3-7, 5-11, 7-6, A2-28,
A2-29
Demonstration 8-3 thru 8-16
vertical-format pop-up menu
T-11 thru T-13
moving images 8-10
printing side-by-side labels 8-12
viewing multiple files 8-5
demo_wfd.c 9-5
demo_wn.c 1-5, 8-5, 9-5, A3-2
dem_cmov.c 1-5, 8-1¢, A3-2

7-6,

Index

dem grph.c 1-5, 8-12, A3-2
dem_menu.c 1-5, 7-7, 9-5, A3-2
Developing applications 8-15
Dimensions

FULL 3-15

INSIDE 3-15
dim_wn() 3-14, 3-15, 3-18, 8-6, A2-30
Direct assignment

virtual cursor 3-16

window members 3-8
Direct display windows 3-3
Diskette contents 2-3
Display adapters, alternative 8-13%
Display speed 1-4
Displaying

files 1-3

help file 7-3,

windows 3-14
di file() 6-3, 6-5, 6-6, 6-16, 7-4,

T-10

7-5, 8-10, A2-31, A2-32, A3-2
di_st() A2-33, A2-34
DOS Screen

clear 3-25

restore 3-25

save 3-25
DOWN 3-21

Duplicating window structures 8-15
dup_wn() 8-15, A2-35, A2-36
_d_seg 8-13

E

Edit buffer 8-7
code example 8-7
Editor, line 4-8
EGA See Enhanced Graphics Adapter
ENDCOL 8-6, 8-11
ENDROW 8-5, 8-7, 8-11
ENDWIND 8-6, 8-11
Enhanced Graphics Adapter 1-5,
Error
codes A6-2 thru A6-4
fatal A6-2
non-fatal A6-3
Error exit function 8-15
Error handling 6-4, A6-2 thru A6-4
di file() 6-5
sti_file() 6-6
Error message window 3-26
errout() 8-15, A2-37
ERR_OPEN 6-5
Example
changing memory file name 7-4
creating memory files 6-3
edit buffer 8-7
error message window 3-26,
graphics 5-13

5-9

3-27

Windows for C
Version 4.0

help file 7-3
initializing logical attribute
array 5-7
LSTATUS logical attributes 5-5
menu 7-7
moving character/attribute
contents of a window 8-8
moving characters/attributes
8-8 thru 8-9
scrolling memory file 7-8
status line 3-27
windows 3-26
exit() 8-15
exit_key 6-8
Extended keycode 3-22

F

FAPPEND 8-8
Files
viewing in multiple windows 8-4
viewing key assignments T-9
copy window contents to 8-8
Files, multiple,
arrays of structures 8-5
demonstration 8-5
handling 8-3
one window 8-3
overlapping windows 8-4
viewing 8-3
File Line Structure A5-8
File messages, turning top/bottom off
6-8
File mode 8-8
File record
declaring 6-4
initializing 6-4
Filespec 6-4
FILETOOBIG 6-5, 6-6
file 1lnp() 6-9, 7-8, A2-38, A5-8
FLINE 6-4
Foreground color 5-3,
Formatted output 1-4
Formatting text for printing windows
8-12
FREC 6-4, 6-5, 6-11, 7-4, 8-3, 8-4
Freeing memory file 6-11
free file() 6-11, 8-3, A2-39
free mem() 6-11, 8-10, A2-40
FULL 3-15, 3-18, 8-6
Full screen, writing to 3-26
Functions, building new ones 8-16
FWRITE 8-8

5-10

G

Get video buffer call 9-3

Index

get mem() 8-6, 8-7, A2-41
Globals, using and modifying 8-13
Graphics 5-12

Graphing functions 8-12

GREEN 5-5, 5-10

H

Handling multiple files 8-3 thru 8-5
Heap 8-6
Hello world 3-3, 3-15, 3-26
color attributes 5-12
in color using physical attr. T-8
hello wn.c 5-12, A3-2
Help file 6-3, 7-3% thru 7-9
code example 7-3
display 7-3
displaying T-10
multiple 7-4
pop-up 7-3
‘preparing 7-3
reading 7-3
, scrolling T-10
help.txt 6-3, 7-3
Highlighting 1-4
attributes 8-11
specified number of characters
8-11
HIGH_INT 3-11, 3-13, 5-9, 5-10

I

IBM BIOS 3-22, 5-9, 9-3

_ibmega 5-7, 8-13

IN 8-7

Include files 3-4, A1-1
referencing 2-5
required 2-5

Initialization 3-5

init_wfc() 3-4, 3-5, 5-6, 3-27, 8-13,
A2-42

INSIDE 3-15, 3-18, 8-6

Internal subroutines v

thru A1-15

K

Keyboard
checking buffer 3-23
loop functions 3-23
read single keystroke 3-22
reading 3-22
Keycode conventions 3-22
ki() 3-22, 3-26, A2-43, A2-44
ki _chk() 3-23, A2-45
ki _cum() A2-46, A2-47
k _vcom() 6-8, 6-9, T-9, A2-48, A2-49,
A3-2

I-3

Windows for C
Version 4.0

L

LATTQ 5-5
latt[] 5-6, 5-7
_lattsw 3-12, 5-9
LAVR 5-5
LDOS 3-24, 3-25, 3-26
LEFT TXT 3-19
LERROR 3-11, 3-13, 3-26, 5-4
LGREEN 5-4
LHIGHLITE 3-11, 5-4
Library diskette 2-3
Library files 2-3
LIGHT 5-10
Line editor 4-8
Linking
libraries 2-5
programs 2-5
Listings T-1 thru T-15
LMESSAGE 3-11, 5-4, 5-6
LNORMAL 3-11, 3-12, 3-18, 5-4, 5-5
Logical attribute 3-11, 3-24,
5-3 thru 5-8
adding to 5-5
adding new columns 5-6
changing number of 5-5
changing physical attributes of
5-4 thru 5-5
constructing and using window
specific tables 5-7
defining a name 5-5
definitions T-4
incompatible with physical
attributes 3-12, 5-8
problem with UNDERLINE 5-9
system 5-4
window-specific 5-4, T-7
Logical attribute array 5-6
initializing 5-6, T-6
setting window to 5-8
Logical attribute table 5-4
adding a new definition 5-5
Logical color attributes 5-4
Logical video attributes 1-4
loop.c 3-23, A3-2
Low-level
character functions 8-14
string functions 8-14
lower_st() 8-14, A2-75, A2-76
LRED 3-13, 5-4
LSTATUS 5-5, 5-6
_1 ptr 8-13

M

Macros 3-8
column size %-16, 8-15

Index

row size 3-16, 8-15
MAGENTA 5-10
malloc() 6-7, 8-7
Managing
memory files 6-10
windows 1-3
Margins 7-6
Maxcols 6-4, 6-5, 6-6, 6-7
Maxlines 6-4, 6-5, 6-6
MEMLACK 6-4, 6-5, 6-6
Memory file 3-21, 7-3, 7-8, 8-3
accessing lines 6-9, A5-8
alternative to virtual screens 7-7
array 6-4
as off-screen buffer 7-8
assigning to window 7-6
blank lines 6-6, 6-7
bottom of file message 6-8
changing name 7-4
clearing 6-11
creating and viewing 6-3 thru 6-11
declare FREC 6-4
display 3-3
error handling 6-4, 6-7
error handling in di file() 6-5
error handling in sti_ file() 6-6
freeing 6-11
initialize FREC 6-4
management 6-10
memory requirements 8-3
modifying 6-9
modifying lines 6-9
move origin in window 6-7
operations on 6-9
placing lines into 6-5
reading from disk 6-5
replacing lines 6-9
scroll 6-3
scrolling contents 6-10, 7-8
scrolling in window 6-8
set window for viewing 6-7
structure 6-10, 7-4,
A5-6 thru A5-7
top of file message 6-8
viewing through windows 6-7
writing directly to 6-5
Memory
allocating 8-6
requirements 8-3
usage 1-4
Memory management 8-10
error handling A6-2
sti_file() 6-7
Menu 6-3, 7-3 thru 7-9
calling 7-6
code example 7-7
creating memory file 7-5

I-4

Windows for C
Version 4.0

defining display window 7-6
demonstration program 7-7
display on screen 7-6
format 7-5
placing in a memory file 7-5
pop-up 7-4, T-11 thru T-13
pop-up, creating 7-4
preparing to call 7-5
tutorial T-11
menu() 7-4
menu2() 6-6, 7-4, 7-5,
A2-50, A2-51, A3-2
mfile.c_q 8-5
mfile.farray 6-4, 6-11
mfile.fn 7-4
mfile.ln _gq 8-5
mfile.maxcol 6-7
mfile.wfc 8-5
mfile.wfr 8-5
Microsoft Windows -- See MS Windows
Miscellaneous utilities 8-14
mode col() A2-52
Modifying
memory files 6-9
window location 3-10
window size 3-10
mod wn() 3-106, T-2, A2-53
MONO 5-12
Monochrome attributes 3-11, 5-3,
problem with UNDERLINE 5-9
Moving
character contents of windows
8-5 thru 8-6
character/attribute information of
window 8-8
information from window 8-5
information to window 8-5
virtual cursor 3-15
windows 8-9
MS Windows 8-13, 9-3 thru 9-5
control of screen updates 9-4
direct control of screen updates
9-4
incompatibility with some
compatibles 9-4
incompatible machines 2-6
running demonstrations 9-5
WFC operation 9-3
WFC video management 9-3
Multiple files
handling of 8-3
managing 8-5
using same window 8-3
Multiple help files 7-4
Multiple windows on same file 8-4
mv_cs() 3-15, 3-16, 3-20, A2-54
mv_csr() 3-16, 3-17, 3-18, 3-25, A2-55

7-6, 7-7, 8-12,

5-9

Index

mv_rws() 3-20, 3-21, A2-56
mv_scr() 3-26
mv_wi() 8-10, 8-9, A2-57

N
Naming windows 3-9

NORMAL 3-11, 3-12,
3-26, 5-4,

3-13, 3-24, 3-25,

5‘9:- 5—11
0

Off-screen buffer 1-3, 7-3 thru 7-9
code example 7-8, T-14

Organization of material 2-3

ouT 8-7

Overlapping windows 8-4

Overwrite windows 3-3

P

Page 3-25

PATTQ 5-6, 5-7
Pause, create 3-23

Physical attribute 3-11, 3-24,

5-3 thru 5-6, 5-8 thru 5-13

adding new column 5-6

color 5-4, 5-9

definitions T-5

enabling 5-8

incompatible with logical
attribute 3-12, 5-8

monochrome 5-4, 5-9

problem with underline 5-9

problems 3-11

quantity parameter 5-6

usage of 5-8

using 2-6, 3-12
Physical cursor -- See screen cursor
PIF 9-3

pl cs() 3-26, 3-27

pl csr() 3-17, 3-18, A2-58
pl mfwn() 6-8, 8-5, A2-59
pl wn() 8-9, 8-12, A2-60

Pointers, user-reserved 8-15

Pop-up
help file 7-3
menu 1-3, 7-4, T-11 thru T-13
window 1-3, 3-3, 3-8, 3-14, 8-9

Printer 8-12

printf() 3-19

Printing windows 1-4, 8-12

demonstration 8-12

Program Information Files 9-5
Program Interface File 9-3
Program pause, create 3-23
prt_labl.c 1-5, 8-12, A3-2

I-5

Windows for C
Version 4.0

prt wn() 8-7, 8-12, A2-61
putchar() 3-19

R

rd csr() 3-17, 3-18, 3-25, A2-62,
A2-63
rd line() 4-3, 4-8, 8-7
rd_mode() 5-12, A2-64
read.aaa 2-3, 2-6
READERR 6-5
Reading
attributes 3-21
help files 7-3
keyboard 1-4, 3-22, 3-23
files from disk 6-5
Reading windows 3-21
attribute 3-21
character 3-21
character/attribute 3-21
multiple characters 3-21
Real-time process 7-7
RED 5-5, 5-10
Removing
color window 5-11
window names 3-9
windows 3-14, 3-24
repl wi() 8-10, 8-11, A2-65
REVERSE 3-11, 5-9, 5-10, 8-11
.RIGHT TXT 3-19
ROW 8-5, 8-11
Row quantity macro 3-16, 8-15
row_qty() 3-16, 8-15

S

sav_wi() 5-12, 8-10, 8-11, A2-66
scanf() 3-19
Screen
background color 3-24
border color 5-11
clear 3-24
remove window 3-24
Screen cursor 3-7
automatic placement 3-16
direct placement 3-17
hiding 3-17
moving 3-25
reading location 3-17
restoring 3-17, 3-25
saving 3-25

scrl file() 6-10, 7-8, A2-67, A2-68,

A2-69

Scrolling 3-18
contents of memory file 6-10,
direct display window 3-20
file in a window 6-8

7-8

Index

help file T-18
horizontal 6-3
vertical 6-3
Set window member functions 3-8
Setting a window to view a file 6-7
Setting window on screen 3-6
set_wn() 3-4, 3-6, 3-9, 3-13, 3-14,
3-15, 3-18, 3-25, 3-26, 3-27,
5-11, A2-70, A2-71
size wn() 8-6, 8-11, A2-72
skip wh() 8-14, A2-75, A2-76
Snow 5-9
Source code supplied, list of A3-2
sprintf() 3-19
Standard compiler library 2-5
Standard keycode 3-22
Status line
establish 3-27
managemnent 1-3
stblank() 8-14, A2-75, A2-76
sti_buf() 7-8, 7-9, T-14, A3-2
sti file() 6-5, 6-6, 6-7, 6-8, 6-9,
6-186, 7-5, 7-8, 8-5, A2-73, A2-74
Storing window images on disk 8-11
strepyp() 8-14, A2-75, A2-76
String functions 8-14
String output 3-6
at specified location 3-19
basic 3-18
centered 3-19
formatted 3-19
full 3-18
left justified 3-19
low level 8-14
right justified 3-19
String utilities 8-14
stringf.c 8-14, A2-75, A2-76
strip wh() 8-7, 8-14, A2-76, A2-78
sw_att() 3-13, 3-26, 3-27, 5-10,
A2-77, A2-78, T-2
sw_bdratt() 3-13, 3-14, 5-11, T-2,
A2-77, A2-78
sw_border() A2-77, A2-78
sw_cleor() 3-10, 3-27, T-2, A2-77,
A2-78
sw_csadv() 3-10, 3-19, 3-20, 3-27,
8-7, T-2, A2-77, A2-78
sw_latt() 3-12, 5-8, 5-9, T-2, A2-77,
A2-78
sw_margin() 3-9, 7-6, T-2, A2-77,
A2-78
sw mfile() 6-7, 7-6, 8-3, 8-4, T-2,
A2-77, A2-78
sw_name() 3-9, 3-26, T-2, A2-77, A2-78
sw_plesr() 3-10, 3-17, 3-27, T-2,
A2-77, A2-78

Windows for C
Version 4.0

sw_popup() 3-8, 3-25, 3-26, T-2,
A2-77, A2-78

sw_wwrap() 3-190, T-2, A2-77, A2-78
System diskette 2-3

System globals 8-13

s_keyloop() 3-23

s_latt() 5-7, A2-80

s_tbfmsg() 6-8

T

Tables T-1 thru T-15
test.adr 8-12
Text
centered 3-19
left-justified 3-19
right-justified 3-19
TopView 1-4, 8-13, 9-3

compatability 1-4, 9-3 thru 9-5

control of screen updates 9-4

direct control of screen updates

9-4
incompatibility with some
compatibles 9-4
incompatible machines 2-6
running demonstrations 9-5
WFC operation 9-3

R —— WFC video management 9-3

tutor.c 4-3, 8-7, A3-2
Tutorial 4-3

tut_help.c 7-3, T-10, A3-2
tv_upd 9-4, 9-5

U

uatt_tbl[][] 5-7
ulatt[] 5-7
UNDERLINE 3-11, 5-9, 5-10
problems 5-9
UNIX 3-23
Unresolved externals 2-5
unsav_wi() 5-12, 8-10, 8-11, A2-81
unset_wn() 3-14, 3-24, 3-25, 3-26,
3-27, 5-11, 8-9, 8-190, A2-82
Up 3-21
Update video call 9-3, 9-5
upper_st() 8-14, A2-76, A2-78
User-reserved pointers 8-15
Utilities
miscellaneous 8-14
string 8-14
u_init() 5-6, 5-7, 8-13, A2-83

\

gl

vextern.h 8-13%, 8-14

sw_scroll() 3-1@, T-2, A2-77, A2-78

Index

Video buffer 9-3
Video management
MS Windows 9-3
TopView 9-3
Video mode
change 5-12
current 5-12
determine 5-12
graphics 5-12
Video string 3-21, 8-8, 8-11
vid bdr() 5-11, A2-84
vid_int() A2-85
vid_mode() 3-27, 5-12, A2-86, A2-87
Viewing a file 6-7
Virtual cursor 3-7, 3-10, 3-15, 3-16,
3-21, 8-7
automatic advance 3-10
direct assignment 3-16
moving 3-15
origin 3%-15
Virtual screen 7-7, 7-8
vmenu.c T-11, A3-2
vo_att() 3-21, A2-88
vo_ch() 3-21, A2-89
vs file() 6-8, 6-9, 6-19, 7-3, 7-8,
8-3, 8-4, A2-90, A2-91
vs_file.() A3-2
v_att() 3-20, 8-11, 8-12, A2-92
v_axes() 8-12, A2-93
v_bar() 8-12, A2-94, A2-95
v_border() 3-13, 3-14, A2-96, A2-97
v_ch() 3-19, 8-7, A2-98
v_co() 3-20, A2-99
v_contig 8-13
v_coq 3-26, 3-27, 8-13
v_file() 6-7, 6-8, 6-10, 7-3, 8-4,
8-9, 8-106, 9-5, A2-100, A2-101,
A3-2
v_fst() 3-18, A2-102
v_mode 5-7, 8-13
v_mov() 3-21, 8-8, A2-103, A2-104
v_mov(), code example 8-8
v_mova() 3-21, 8-5, 8-6, 8-7, A2-105,
A2-106
v_mova(), applications of 8-7
v _natt() 8-7, 8-11, A2-107
v_pbytes 8-13
v_plst() 3-19, 3-26, A2-108, A2-109
v_printf() 3-19, 3-27, A2-110, A2-111
v_qch() 8-14, A2-112
v_rw() 3-20, A2-113
v_rwq 3-17, 3-26, 3-27, 8-13
v_seg 8-13
v_st() 3-190, 3-16, 3-18, 3-19, 3-26,
3-27, %-4, 3-6, 6-9, 8-7, 8-10,
8-14, A2-114, thru A2-116
v_st_nop() A2-117

I-7

Windows for C
Version 4.0

v_st _rw() 8-14, A2-118, thru A2-120
v_tv() 9-4, 9-5, A2-121
v_vrb 8-13

W

Warning to all users v
WFC operation
MS Windows 9-3
TopView 9-3
WFC
applications 8-15
capabilities 1-3
initialization 3-5
overview 1-3 thru 1-5
wfc_defs.h 8-6, 8-8, 8-11,
A1-7 thru A1-190
wfc_stru.h 3-8
wfd.h 2-5, 3-4
wfd _glob.h 2-5,
WHITE 5-4, 5-10
WIND 8-6, 8-11
WINDOW 3-7
Window
as an edit buffer 8-7
changing attributes 3-173
changing defaults 3-7
changing margins 3-9
character and attribute contents
8-8
clear 3-24
copying contents of to a file 8-8
declare 3-5
default 3-9
default settings 3-6, T-2
define initial valages 3-5
dimensions 8-6
displaying 3-14
duplicating structures 8-15
error message 3-26
fill with specified character 3-20
formatting text for printing 8-12
initialization required 3-8
managing colors 5-9
member change functions T-2
members T-2
memory file 8-9
modifying location 3-10
modifying size 3%-10
moving character contents of
8-5 thru 8-6
moving character/attribute
information 8-8
moving information from 8-5
moving information to 8-5
name 3-9, 3-14
number of columns 8-15

3-4, 3-22

Index

number of rows 8-15
overlapping 8-4
overwrite %-24,
place 8-12
pointing to memory file 7-6
pop-up 3-8, 3-14, 3-24, 3-26,
8-9
practical examples 3-26
print 8-12
reading 3-21
removing from screen 3-14,
5-11
removing name 3-9
scroll memory file 6-8
scrolling 3-20
setting on screen 3-6
structure 3-7, 3-8, 5-7, 8-15,
A5-2 thru A5-6
using logical attribute array 5-8
viewing memory files 6-7
viewing multiple files 8-3
writing to 3-6, 3-18
writing to full screen 3-26
Window image 8-10
demonstration 8-10
memory management 8-10
moving 8-9, 8-10
moving under user control 8-9
replacing 8-10
restoring 8-9
saving 8-9, 8-10
storing on disk 8-11
window.h 2-5, 3-4, 3-12,
8-13, 9-4, A1-11
WINDOWPTR 3-7
Windows for C, previous users 7-6
Windows for Data 2-5, 3-4, 3-11,
5-8, 9-3
wn.setsw 3-14, 8-6
wn.storp 8-10, 8-11
wn@® 3-25, 3-26, 5-12
_wn_err 6-4, 6-5, 6-6,
Word wrap 3-9, 3-18
Working dimensions 3-14,
changing 3-14
write() 8-11
Writing
columns of characters 3-2¢
lines to a memory file 6-5
rows of characters 3-20
string to an off-screen buffer
T-14 thru T-15
to windows 1-4, 3-6,

5-11, 8-9

8-4,

3-24,

226,
thru A1-13

5-8,

5-5

8-7, A6-2

3-15, 8-6

3-18
X

XENIX 3-23

Windows for C

Index
Version 4.0

_attcolq 5-7

_attrowg 5-7

_d seg 8-13

_ibmega 5-7, 8-13

_lattsw 3-12, 5-9

_1 ptr 8-13

_wn_err 6-4, 6-5, 6-6, 8-7, A6-2

