“c" Information
Systems

301 Processor

Studeht Guide

September 1970 © Copyright By:

July 1970

October 1969 RCA Computer Systems Division ,
July 1969 Field Engineering Technical Education

PSM 213 Camden, New Jersey 08101

A,
B.
C.
D,
E,
F.
G,
H.
I,

A,
B.
C.

F.
G.

CONTENTS
301 PROCESSOR

SECTION I

General System Information

TITLE

INTRODUCTION

.DIGITAL COMPUTER COMPONENTS

INTRODUCTION TO THE 301 COMPUTER
THE RCA 301 SYSTEM

TYPICAL SYSTEM APPLICATION

THE ROLE OF INSTRUCTIONS
STATICIZING

301 CONSOLE

MEMORY DISPLAY PANEL

SECTION II

THE DATA HANDLING INSTRUCTIONS, INTRODUCTION
- TRANSFER TO FILL (SF)

- TRANSFER DATA LEFT (DL) REPEATABLE
- TRANSFER DATA RIGHT (DR) REPEATABLE

TRANSFER DATA BY SYMBOL LEFT (DSL) REPEATABLE
- TRANSFER DATA BY SYMBOL RIGHT (DSR) REPEATABLE

- LOCATE SYMBOL LEFT (LSL)
- LOCATE SYMBOL RIGHT (LSR)

A - TRANSLATE (TRA)

INDIRECT ADDRESSING
ANSWERS TO PRACTICE PROBLEMS

X TR 22
]

PAGE

I-1
I-2
I-8
I-11
I-16
I-21
I-35
I-46
I-53

II-55
IT-55
II-64

I1-77

II-92

I1-102

I1-114
I1-127

O "7 W o 0w >

A,
B.
C.
D,
E,

G.
H.

I.
J.

L.

SECTION III
TITLE

DECISION AND CONTROL INSTRUCTION, INTRODUCTION
V - STDRE REGISTER (REG)

W - CONDITIONAL TRANSFER OF CONTROL (CIC)

Y - COMPARE LEFT (COM)

X - TALLY (TA)

HALT (HLT)

R - REPEAT (RPT)

S - INPUT - OUTPUT SENSE (IOS)

ANSWERS TO PRACTICE PROBLEMS

SECTION IV

ARITHMETIC INSTRUCTIONS, INTRODUCTION

+/- ADD OR SUBTRACT (ADD OR SUB)

LOGICAL INSTRUCTIONS (Q = OR) (T = AND) (U = EXO)
ANSWERS TO PRACTICE PROBLEMS

SECTION V

INPUT - OUTPUT INSTRUCTIONS, INTRODUCTION
CARD READ NORMAL (@) (CRN/BCRN)

CARD READ SIMULTANEOUS (1) (CRS/BLRS)
CARD READ NORMAL (@) (CRN)

CARD READ SIMULTANEOUS (1) (CRS)

CARD READ NORMAL (2) (CPN)

CARD PUNCH SIMULTANEOUS (3) (CPS)

CARD PUNCH NORMAL (2) (CPN)

CARD PUNCH SIMULTANEOUS (3) (CPS)
REWIND TO BIC (;) (RWD)

TAPE READ FORWARD NORMAL (4) (RFN)

TAPE READ FORWARD SIMULTANEOUS (5) (RFS)

ii

PAGE

ITI-141
IIT-141
III-154
ITI-164
IITI-172
ITI-181
ITI-185
ITI-200
III-212

Iv-223
Iv-223
Iv-257
IV-267

v-271
v-272
V=279
V-280
V-286
Vv-286
v-288
V-288
v-291
V-295
V-295
V=297

A,
B,
C.
D,
E.

A,
B.
C.

E,

SECTION V

(continued)

TITLE

TAPE READ REVERSE NORMAL (6) (RRN)

TAPE READ REVERSE SIMULTANEOUS (7) (RRS)

TAPE WRITE NORMAL (8) (TWN)

TAPE WRITE SIMULTANEOUS (9) (TWS)

PRINT AND PAPER ADVANCE NORMAL (B) (PAN)
PRINT AND PAPER ADVANCE SIMULTANEOUS (C) (PAS)
BAND SELECT NORMAL (D) (BSN)

BAND SELECT RECORD FILE MODE (E) (BSM)

BLOCK READ FROM RBCORD NORMAL (F) (BRN)

BLOCK READ FROM RECORD SIMULTANEOUS (G) (BRS)
BLOCK WRITE TO RECORD NORMAL (H) (BWN)

BLOCK WRITE TO RECORD SIMULTANEOUS (I) (BWS)
RECORD FILE MODE READ (*) (RMR)

RECORD FILE MODE WRITE (%) (RMW)

SECTION VI

FLOW CHARTING AND CODING, INTRODUCTION
ED, EF, AND ETW ROUTINES

SWITCHES

CONSTANTS

HOUSEKEEPING

SECTION VII

PROCESSOR LOGIC DESCRIPTIONS, INTRODUCTION
TIME PULSE GENERATOR

STATUS LEVEL GENERATION AND SELECTION

NOR AND OPERATION DECODE MATRIX

N REGISTER

iii

PAGE

V=297
V=299
V=300
V-301
V-301
V-303
V-303
V-307
V-308
V=310
V-310
v-311
v-312
Vv-313

VIi-315
Vi-321
VI-326
V1i-327
VI-328

VII-343
VII-343
VII-347
VII-352
VII-353

SECTION VII

(continued)
TITLE
F. ADDRESSABLE REGISTERS
G. BUS ADDER
H. MEMORY REGISTER AND INTERCHANGE
I. NR REGISTER
J. D REGISTER
K. D COMPARATOR
L. STANDARD ADDRESS GENERATOR
M. STOP ALARM LOGIC
LIST OF ILLUSTRATIONS
FIGURE
1 BASIC COMPONENTS OF A DIGITAL COMPUTER
2 301 RACK LAYOUT
3 RCA 301 INPUT-OUTPUT EQUIPMENT
4 THE THREE BASIC RACKS OF THE 301 COMPUTER
5 RCA 301 SYSTEM FOR LABOR DISTRIBUTION-PAYROLL
APPLICATION
6 DAILY LABOR DISTRIBUTION TO DEPARTMENTS, USING
RCA 301 SYSTEM
WEEKLY PAYROLL FLOW, USING RCA 301 SYSTEM
TIMING BREAKDOWN OF A TYPICAL 301 INSTRUCTION
PROCESSOR BLOCK DIAGRAM
10 POSITIVE AND NEGATIVE BUS LINES
11 GATING OUT OF N REGISTER |
12 PULSE TRAIN FOR DOLLAR SYMBOL ($)
13 GATING INTO THE D3 REGISTER
14 TYPICAL MEMORY CYCLE

iv

PAGE

VII-356
VII-357
VII-363
VII-364
VII-365
VII-366
VII-367
VII-369

PAGE

1-2
I-9

I-12
I-13
I-17

I-20
I-24
I-25
I-26
I-27
I-28
I-30
I-34

FIGURE

15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

LIST OF ILLUSTRATIONS

P1 STATUS LEVEL

P2 STATUS LEVEL

P3 STATUS LEVEL

P4 STATUS LEVEL

P5 STATUS LEVEL

STRIP SWITCH

BUS SWITCHES

BUS DISPLAY CHART

READ FROM MEMORY STATUS-FLOW
WRITE TO MEMORY STATUS-FLOW
MEMORY DISPLAY PANEL

A2 OF SYMBOL TO FILL

Al OF TRANSFER DATA LEFT
B OF TRANSFER DATA LEFT
Al OF TRANSFER DATA RIGHT
B OF TRANSFER DATA RIGHT

Al OF TRANSFER DATA BY SYMBOL LEFT OR RIGHT
B OF TRANSFER DATA BY SYMBOL LEFT OR RIGHT

STA 1 STATUS LEVEL

STA 2 STATUS LEVEL

Al AND X1 OF LSL/LSR

X2 OF LSL/LSR; STAl AND STA2
Al AND D OF TRA

A2 OF TRA

M1 AND M2 STATUS LEVELS

M3 AND M4 STATUS LEVELS
STATICIZING BLOCK DIAGRAM

PAGE

I-41
I-43
I-44
I-45
I-46
I-48
I-48
I-49
I-51
I-52
I-54

ITI-60
I1-69
II-70
II-72
II-73
I1-83
I1-84
II-86
I1-87
II-96
II-98
II-108
II-109
II-118
II-119
IT-120

FIGURE

42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62
63
64
65
66

LIST OF ILLUSTRATIONS

A2 AND A4 OF A REG

X1 AND X2 OF A CIC

Al, B, AND X1 OF COM

Al AND X3 OF A TALLY

A2, X1, AND X2 OF A TALLY
X1 AND X2 OF A RPT

REP1 AND REP2

I0S N CHARACTERS

A CHARACTER OF IOS
LEVELS USED IN SETTING JMP DURING SIO
SIO OF AN IOS

X1 AND X2 OF AN IOS

SUM AND DIFFERENCE TABLES

BASIC BLOCK DIAGRAM OF ADD OR SUBTRACT
B AND Al OF ADD OR SUB

D AND A2 OF ADD OR SUB

FLIP-FLOPS |

COMPLETE BLOCK DIAGRAM OF ADD OR SUBTRACT

DETAILED STATUS FLOW (X1, X2, B)
DETAILED STATUS FLOW (A1)
DETAILED STATUS FLOW (D)
DETAILED STATUS FLOW (A2)
DETAILED STATUS FLOW (X3, X4, A3)
DETAILED STATUS FLOW (A4)
LOGICAL INSTRUCTION STATUS FLOW

vi

PAGE

III-147
III-161
III-169
III-177
III-178
IITI-194
ITII-195
III-201
III-203
III-205
III-206
III-207

Iv-232
Iv-235
IV-236
IVv-237
Iv-238
IV-242
IV-243
IV-244
IV-245
IV-246
IV-247
IV-248
IV-264

FIGURE

67
68
70
71
72
73
74

75
76
77
78
79
80
81
82
83
84
85
86

87

88
89
90
91

LIST OF ILLUSTRATIONS

EAM CARD FORMAT (301 CARD CODE)

EAM CARD FORMAT, STRAIGHT BINARY MACHINE CODE
EAM CARD, 323 CARD READER CODE V

TIMING CHART (330 READER UNIT)

FRONT VIEW OF OUTPUT HOPPERS

TIMING CHART FOR EXAMPLE PROGRAM

SIMPLIFIED ILLUSTRATION OF DISC ON RECORD FILE

FLOWCHART SYMBOLS
301 COMPUTER PROGRAM RECORD
301 COMPUTER HSM RECORD

'START OF FLOWCHART

SIMPLIFIED FLOWCHART

FLOWCHART INCORPORATING ED/EF CHECK
FLOWCHART SHOWING ED/EF SUBROUTINE
FLOWCHART SHOWING ETW CHECK

SYMBOL FOR SOFTWARE SWITCH

EXAMPLE OF SWITCH IN FLOWCHARTING

FLOWCHART FOR UPDATING A MASTER BANK ACCOUNT FILE

301 RECORD PROGRAM FOR UPDATING A MASTER BANK
ACCOUNT FILE

301 HSM RECORD FOR UPDATING A MASTER BANK ACCOUNT FILE

301 TIME PULSE GENERATION TIMING CHART
STATUS LEVEL SELECTION AND GENERATION
301 BUS ADDER

LOGIC EXTRACT FROM BUS ADDER C2 STAGE

vii

PAGE

vV-272
V=274
v-277
V-283
V-284
V-294
V-304

VI-316
VI-317
VI-317
VI-318
VI-319
VI-322
VI-323
VI-325
VI-326
VI-327
VI-329

VI-333
VI-341

VII-345
VII-351
VII-359
VII-360

SECTION I
GENERAL SYSTEM INFORMATION

A, INTRODUCTION

An exact definition of a digital bomputer would be quite detailed, lengthy,
and difficult to fully formulate. This is due in part to the large and
rapidly changing field of computer development. However, in a few words we
might say simply that a digital computer is a device that counts. A general
purpose digital computer is capable of performing arithmetic operations on
information and is under the control of what is known as a program. A pro-
gram is a sequence of logical instructions that a computer performs in order
to obtain a desired result. The Automatic Sequence Control Calculator (aﬁ
early computer) was an electro-mechanical computing device under the control
of an external program. The external program consisted of a plug-board which
was wired to sequence the computer through certain arithmetic and logical
steps. After the plug-board was wired, it was inserted into the computer,
and all operations were sequenced through this plug-board. However, using
an externally programmed computer provided relatively little flexibility in
the operations that the computer could perform. In the case of electronic
devices, internal programmed steps can be inserted in such a manner as to

perform virtually an infinite number of steps.

In addition to counting, a digital computer can perform many "logical" func-
tions and decisions. Considering the computer as a data processing device,
then improvising symbolism for the representation of data and instructions,
the accomplishment of data processing in the electronic system is reduced to
.a process of manipulations, of direction and control of numbers and other
éharacters as represented by electronic equivalents. Essentially, manipula-
tion is accomplished by equipment design, utilizing the characteristics and
capacities of various devices to move the data and instructions through the

system,

The heart of the electronic data processing system is the digital computer,
sometimes referred to as the central processing unit (CPU). The computer
receives data and instructions, stores them in cells (memory) and calls them
out of its memory as needed by the computer during a processing function.

It can perform the arithmetic operations of addition, subtraction, multipli-

cation, and division and has further ability, found only to a very limited
degree in mechanical systems, to make comparisons between numbers or other
characters and take the action called for by the results. It also directs
the processing operations within itself and controls the flow of input and
output information. All these operations are performed at electronic speed.
The electronic pulses and other electrical manifestations, acting as signals
in the functional operation of the unit are symbolic representations of num-

bers and other characters.

B. DIGITAL COMPUTER COMPONENTS

The majority of digital computers on the market today are functionally similar

and each consists of the basic components in Figure 1.

The heart of every computer is the Program Control Unit which directs and
governs the operation of all other components. The Program Control Unit is
usually constructed in such a manner as to obey coded instructions. In the
early days of digital computers, a plug-board type of programming was used
which was cumbersome and not very versatile. If it was desired to change the
pattern of events in the computer, a technician had to change a number of
wires on the plug-board. Therefore, human intervention was necessary for

program variation and a great deal of processing time was lost.

HIGH PROGRAM
SPEED ~—™ CONTROL |f—™ AR'L:’,“}ET'C
MEMORY UNIT

Figure 1 Basic Components of a Digital Computer

Internal wiring of the computer to follow a set number of coded operations
increased the processing efficiency and versatility of the machine. The pro-
blem then became one of informing the computer which instruction or instruc-
tions to execute. A need for communication arose between man and machine;

hence, the birth of programming.

1. Component Functions

Ultimately, any computer works with information in binary form, as this is
really all that digital circuits are capable of. However, writing programs
or entering data directly in binary form is extremely awkward. Therefore,
the majority of modern computers use an internal code (based on octal, hexa-
decimal, or binary-coded-decimal) for representing all numeric and alphabetic
characters and the more common symbols (such as $, #, @). The use of such a
code requires that logic be provided within the computer to recognize the
various characters of the code and correlate them with the binary configura-
tions that the machine actually uses. The cost of this logic is more than
compensated for by the flexibility and ease of operation that is gained by
not having to use direct input binary. The RCA 301 uses a six-bit code that

is based on binary-coded-decimal.

The High Speed Memory (HSM) like the Program Control Unit (PCU) has evolved
to a high degree of efficiency. Early memory units used mercury delay tanks,
cathrode ray tubes, or magnetic drums, all of which were serial accessible
and quite slow. The modern day computers use magnetic core matrices which
are extremely fast and random accessible. Many High Speed Memories are
separate units which require only a command from the Program Control Unit
before beginning a memory cycle, while other High Speed Memories rely on al-
most all commands from the program control and only perform a portion of a

memory cycle at a time. (i.e., only read out or only regenerate.)

The logic involved with arithmetic operations is usually considered as a
separate unit in most computers. Depending upon the size and speed of the
machine, the Arithmetic Unit may operate on various multiples of characters,

half words or words or even entire operands at one time. The means used in

I-3

carrying out these arithmetic functions may be by an adder or by table look-

up.

2. Input/Output

Input-output control logic mates peripheral devices to the Program Control
Unit and HSM. Data may be placed directly into memory from an external de-
vice, or buffered to permit more than one operation at the same time (simul-
taneity). Likewise, data may be sent from memory to a device directly or by
way of a buffer. The timing for this transfer of information hinges on the

peripheral device and is developed by the control logic.

Input information applied into the '"reading" device must be expressed in, or
converted into, the code of the computer and conversely, output information
emitted from the computer through the "writing" device in the same code, must
be converted to plain language and transcribed upon the output document. To
do these things necessitates the use of input preparation equipment and out-

put printing equipment.

3. Computer Operation

By means of equipment design, devices are provided which will bring the data
and instructions to the computer, manipulate them there, and take out the re-
sults. Without troubling at the moment to understand how, it is sufficient
to know that the devices within the computer can add, subtract, multiply, and
divide, and make comparisons between numbers, alphabetic or other characters,
and that they have the power of memory. They can retain data and instructions
and introduce them into the manipulation routine as needed. They can even
amend basic instructions as required in the course of processing. Further,
the computer does all these things at electronic speed. How this is done, in
terms of the methods used in directing the system to make the manipulations
is important as a basic concept. These methods may be illustrated by an

elementary analogy.

Assume that a newly hired office clerk is given the assignment of adding a
column of figures using a desk calculator. Also, assume that this is the

clerk's first encounter with a desk calculator. 1In order to perform this

addition, a list of instructions will be given to the clerk which details

the procedures to be followed.

Step 1. Clear the keyboard and the accumulator.

Step 2., Insert first number into keyboard.

Step 3. Depress ADD button. (This will insert the first number
into the accumulator.)

Step 4. Insert next number into keyboard.

Step 5. Depress ADD button. (This will cause the accumulation of
the first two numbers.)

Step 6. Repeat Steps 4 and 5 until all the numbers' to be added

have been accumulated.

In this example, the desk calculator functioned as the arithmetic unit and
storage device for results, and the clerk as the control unit and instruction
and data storage device. As stated earlier, the control unit interprets the
program of the problem and directs the processing operations. Instructions
in pre-planned sequence are routed into the control unit. The internal logic
design of the computer interprets and transmits the instructions to the sys-
tem as directions for the processing of data. In order to perform this data
processing, there must be a means for storing both the data and the instruc-

tions in this operation.

Memory devices provide a place to which data and instructions may be directed
in the first instance and there held for introduction into a processing rou-
tine as required. In the processing which takes place within the computer,
everything (all data and instructions) must be assigned to specific locations
(addresses) within the system at all times; otherwise, the system would be in

chaos.

Speed of processing (computer access time) is affected by the time required
to find data and instructions as needed in the sequence of processing opera-
tions. Since all, and not merely part, of the data and instructions flow in
and out of storage in the course of processing, it is obvious that storage

volume and speed of access to storage are very important factors in deter-

mining the capabilities of the system.

The principal types of storage devices are transistor flip-flops, cathode
ray tubes, magnetic cores, acoustic delay lines, magnetic drums, magnetic

tapes, paper and magnetic cards.

The RCA 301, 501, 601 Systems use magnetic core storage. Magnetic cores are
doughnut-shaped ferro-magnetic rings, usually about 1/16 inch in diameter.
Bits of information are written into the cores by sending current through the
centers of the cores. Each core stores only one bit of information at a time,
hence, storage volume depends upon the number of cores used. Bits are read
from the cores by sending current through the wires passing through the cen-
ters of the cores and transferring the resulting pulses to sensing lines

linked to the main circuitry of the equipment.

Magnetic tapes are used extensively as secondary storage, as well as input
and output media. When used as secondary storage, "bits" in primary storage
are read out and written upon magnetic tape by the same reading-writing de-
vices used in the input and output functions. Access to "bits" upon magnetic
tape occurs as the tape moves mechanically past the reading head and, there-
fore, the rate of access is relatively slow as compared to the primary or

"built-in" time of the computer.

Where the medium is a punched card, the method of representing data is by
means of one or more holes in various positions in the vertical column§ of
the card. The same principle is used in respect to paper tape. The coding
of a character takes the form of holes or inked dots across the width of the
and in channels running the length of the tape. Paper tape is approximately
one inch in width. Various codes are used, having from five to eight channels
or positions. The recording of characters on magnetic tape takes the form of
signals placed laterally on the tape by means of pulses from small electro-
magnets. Magnetic tapes vary from 1/4 inch to 3 inches in width. They are
either metallic or plastic and contain a magnetizable material. Characters
may be compactly stored upon magnetic tape -- up to 800 or more, to each inch

of length.

Following these operations by the input preparation equipment, the input
medium passes to the input reading devices, the first link in the chain of
true electronic processing. These devices function under the direction of

the control unit of the system, in accordance with the program of instructions.
Reading occurs as the medium physically moves through the reading device,

which translates the data and instructions expressed upon the medium in bi-
nary code into their electronic equivalents in the computer. The reading

rate depends upon the type of medium used.

Reading devices consist of punched-card readers, paper-tape readers, and
magnetic tape readers. Punched cards may be read at speeds up to 1500 a
minute, or a maximum of about 2000 characters a second. Paper tapes may be
read at speeds of 10 to 1,000 characters a second and magnetic tapes may be

read at speeds of 360 to 120,000 characters a second.

The input medium may be introduced directly into the reading device., How-
ever, in some situations the original medium is converted into another, either
to provide greater reading speed or to bring the medium into compatability

with the system. Conversion is effected by special devices.

In addition to the devices previously mentioned as employed in the input
cycle, a certain device is unecessary in all electronic systems to provide
access to the system. It is required to give the system its first instruc-
tion to start the processing routine and also, to permit intervention in
unusual circumstances by direct insertion of correntional data or instruc-

tions. This device manually operated is a keyboard known as the console.

Output data are emitted from the control processing unit in binary coded
form. The output function is essentially one of conversion, which may be
direct or indirect. Direct conversion occurs when the -‘output data are trans-
ferred to a medium which carries or incorporates the data in end-use form.
This medium will be magnetic or paper tape, or punched cards, if the end use
is storage of the output data for use as input in subsequent processing. If
the end use is the production of report data, the medium will be the final

report document.

Indirect conversion occurs when it is desirable, in connection with the
preparation of the final report document, to hold all or part of the output
data in intermediate storage (magnetic or paper tape or punched cards) in

order to avoid reducing the overall speed of processing.

The computer emits information in the form of pulses and these must be trans-
lated into their electronic or other equivalents in the end-use medium. Even
though the code of the end-use medium may still be in binary form, it is
necessary to effect translation into the code scheme of the medium, that is,
from pulses to magnetic tape and from pulses to holes or inked dots in the
case of cards or paper tape. If the code of the end-use medium is not in
binary form, which is the case in the final report document, the pulses must

be translated into final report language.

Various conversion devices are interposed to make these translations. Where
the translation of the pulses is made upon magnetic tape, a tape reading-
writing device is used -- one identical with that employed for reading in
connection with the input function. Where the translation is made upon paper
tapes or cards, the device used is a punching or writing unit which is actu-
ated by the pulses and internal circuitry to produce punched holes. Where
the translation is made upon the final report document, the device is a print-
ing unit, again actuated by pulses and internal circuitry, to print graphic
characters in report language. To effect translations from intermediate
storage to report dopuments,'the device is the same printing unit, actuated
in this case, however, by circuitry and by pulses created by the spots, dots
or holes upon the tapes or cards to print characters in the language of the

report.

C. INTRODUCTION TO THE 301 COMPUTER

The 301 Computer (Figure 2) has three basic racks of logic. The Program
Control Unit occupies three quarters of Rack 2 and is governed by 41 aiffer-
ent wired-in instructions. Being synchronous machine, the 301 contains a
timing generator which is controlled by a one-megacycle oscillator and pro-

duces seven sequential one-microsecond time pulses per machine cycle. The

time pulse generator generates the basic timing for almost the entire system.

1
HIGH !
SPEED :

INPUT-oUTPUT | MEMORY INPUT—QUTPUT
CONTROL [~ — CONTROL
LOGIC PROGRAM LOGIC

CONTROL
UNIT
N —— N —— ———N

RACK | RACK 2 RACK 3

Figure 2 301 Rack Layout

1. 301 Component Specifications

The HSM and its associated logic occupies the remaining quarter of Rack 2.
Depending upon which model is desired, the capacity of the memory is 10,000,
20,000, or 40,000 characters (Models 303A, 304A, and 305, respectively).
However, the 301 10K or 20K memory cannot be expanded to 40K in the field.
Two characters (a diad) are read out and regenerated during one memory cycle.
This takes approximately seven microseconds. Each character contains six
binary information bits and one parity bit for error checking purposes.
Decimal addressing is used in the 301, and each address is constructed of
four characters. For the 10K memory, addresses range from 0000 to 9999, but
for the 20K and 40K memories, a special character is necessary in the most
significant digit position. The second ten thousand from -000 to R999, and
the fourth ten thousand from '"000 to Z999. (See page I-6 of the 301 Pro-

grammers' Reference Manual.)

The 301 does not have a specific arithmetic unit since no adder exists; the
table look-up technique is used instead. However, what logic there is, which
is peculiar to the arithmetic operations, exists in the PCU, Only decimal

addition and decimal subtraction can be executed in the 301. Three other

operations performed by logic are also available, but multiplication and

division must be performed by programming.

The control logic which communicates with the peripheral gear can be found in
racks one and three. Two racks are used only if the system is sufficiently
large. Each piece of input-output equipment has its own panel of control
logic of from three to eleven rows on one side of a rack. A common bus con-
nects the control modules to the Processor but otherwise the modules are in-
dependent of one another. Should a customer wish to extend his system, he
simply buys the necessary control logic and device, bolts in the modules,

and connects the cables. No common input-output buffer exists. Each piece
of control logic has effectively its own buffer, hence, several different

operations may be proceeding at the same time.

2., Simultaneous and Record File Modes

Available at optional cost along with the peripheral equipment are two modes
of logic called Simultaneous and Record File. Each mode is almost another
complete Program Control Unit in itself except that they both use the Pro-
cessor timing pulses. Specific instructions are designed to work only in
these modes with input-output equipment. The Record File Mode is restricted
to Record File Units and Communications only, however, The Simultaneous and
Record File modes are located in racks one and three with the peripheral
control logic., If a system contains three modes - Normal, Simultaneous and
Record File - then three different instructions can be executed simultaneous-
ly while time sharing memory. In addition, there are three independent opera-
tions; namely, rewinding magnetic tape, paper advancing on the Line Printer,
and band selecting on the Record File. These operations need only be ini-
tiated and they will proceed independently of any computer modes. Thus it

is possible to perform six different operations at the same time on one 301

System.

The Power Supply for the 301 Computer System is found in one or two addition-

al racks, depending on the size of the system.

D. THE RCA 301 SYSTEM

The RCA 301 Electronic Data Processing System is composed of a Processor
Model 303/304 (Program Control Unit and High Speed Memory) and the following

"on-line" peripheral equipment:

a. Paper Tape Reader
b. Paper Tape Punch

c. On-Line Printer

d. Card Punch

e. Card Reader

f. 581 Tape Station

g. Hi-Data Tape Group
h. Record File

i. Check Sorter-Reader
j. R.A.C.E. Unit

k. Interrogating Typewriter
1. Monitor Printer

m. Various Communications Equipment

The Burrough's Check Sorter-Reader is not considered part of the 301 System,
but optional control logic is available to make it compatible with RCA equip-
ment. The above peripheral equipment is termed "on-line'" because it is tied-
in directly to the Processor and receives its control levels from the Proces-
sor. Another term used is "input-output equipment". Certain pieces of per-
ipheral equipment are used as input devices while others are used for output.
The magnetic tape units (581 and Hi-Data Tape Group) as well as the RACE Unit
can be used as either input or output devices with the Processor. (See

Figure 3).

| 1] Hipara
4 TAPE GROUP

HI DATA
TAPE GROUP

CENTRAL PROCESSOR
AND MEMORY

y/

PAPER TAPE READER

ON LINE PRINTER

Figure 3 RCA 301 Input-Output Equipment

The Program Control Unit and High Speed Memory occupy one rack of logic while
the input-output control panels occupy two additional racks of logic -- one
on either side of the Processor rack. (See Figure 4). Included with the

Processor rack is the console for the Computer.

-

|
|
|
e | PROGRAM
HSM | CONTROL [T~~~ ————————
| UNIT
ot | R
Nt [<® e
/0\) ‘\Q\’ | . /0\\ ‘xa\,
BT S At AL o
WO o™ eV a0~
AN CONSOLE W <
c® 00\\

— —— D W PR W WD S o— — G— D d I e —"

Figure 4 The Three Basic Racks of the 301 Computer

1. System Elements Description

Processor, Model 303/304 - The Processor is a general purpose, digital,
stored program, transistorized machine consisting of the following integrated
units: High Speed Memory, Program Control, Console Panel and Power Supply.
The High Speed Memory is a random access, magnetic core device which provides

storage and work area for programs and data.

The memory capacity is either 10,000 (Model 303) or 20,000 (Model 304) alpha-
numeric characters. The Program Control executes the instructions of the
program stored in the High Speed Memory and performs the required accuracy

checks. The Console Panel provides for complete monitoring of the Computer

- operation. Adequate indicators and controls are provided on the panel to
initiate normal computer operation and to facilitate program checkout and

maintenance.

2. Paper Tape Reader and Punch, Model 321 - Paper Tape input and output is
provided by the Paper Tape Reader and the Paper Tape Punch. The Paper Tape’

Reader provides for the entry of 7-channel paper tape at a rate of 100 char-
acters per second. Accuracy of data on paper tape is assured by parity checks.
The Paper Tape Punch produces paper tape data from the Computer at 100 char-

acters per second. The accuracy of the output is assured by an echo check.

3. On-Line Printer, Model 333 - The On-Line Printer provides high-speed
printed output for the RCA 301 System. The printer, operating completely
under program control, has a line capacity of 1000 lines per minute, and
paper can be advanced in excess of 70 lines per second. Variations in for-
mat, as well as complete editing, are under the control of the stored program.

Paper advance is independent of the normal data processing activity.

4, Card Punch, Model 334 - The Card Punch automatically translates RCA 301

characters from memory to 80-column card code and punches the information
into cards. The output rate is 100 cards per minute. The card punching
unit includes an automatic card reading station for automatic accuracy checks.

Information is edited and re-arranged under program control.

5. Card Reader, Model 323 - The Card Reader reads information into memory

from 80-column card code. Cards are read at the rate of 600 cards per min-
ute. Reading and editing is under complete control of the stored program.

Two reading stations are provided for automatic accuracy checks.

6. Tape Station, Model 581 ~ To provide data ébmpatability with other RCA

Data Processing Systems, Tape Adapters can be added to the RCA 301 System.
The Tape Adapter permits the RCA 301 Computer to read from or write to a
Model 581 Tape Station. The 581 Tape Station reads or writes information

on magnetic tape at a density of 333 characters to the inch, while moving

I-14

tape at 100 inches per second.

7. Hi-Data Tape Group, Model 381 - The Hi-Data Tape Group is composed of a

cluster of six tape decks with a common set of control, power supply, and
switching circuits. Each tape deck responds to programmed instructions by
reading and writing information on magnetic tape. Reading is performed in
either the forward or reverse direction. Data is recorded in seven channels,
with a density of 333 characters per inch. Tape speed is 30 inches per sec-
ond. Tape rewind at 90 inches per second is independent of the normal data

processing ability.

8. Record File, Model 361 - Record files, with a capacity of over 4.6 mil-

lion characters each, are available with each RCA 301 System. The Record
File contains 128 magnetic discs, and each side of one of these discs is
divided into two bands with each band containing ten cells. Each cell has

a storage capacity of 900 characters.

Data may be transferred between the core memory and the Record File., The
contents of as many as ten cells can be transferred with one instruction.
The transfer rate between the Record File and the High Speed Memory is 2500

characters per second.

9. Check Sorter-Reader, Model 101 - The Check Sorter-Reader processes docu-

ments at the maximum rate of 1560 per minute. Documents are sorted to one of
13 pockets. The Sorter-Reader can be operated in the sort (local) mode or in

the external mode controlled by the 301 Processor.

SUMMARY OF PERIPHERAL EQUIPMENT PERFORMANCE

Record File..veveeeeeeeeesess.Storage of over 4.6 million alpha-numeric
characters, transfer rate of 2500 characters
per second.

Hi-Data Tap@.secsssesecesesssses333 characters per inch, tape speed of 30

inches per second.

I-15

581 Tape Station....eeeeceeeeeeeeesss333 characters per inch, tape speed of

i T A t
(with Tape Adap er) 100 inches per second.

Card Reader.ceeeceeceseseesessssnese 600 cards per minute.
Card Punch......c.0ei0ivivivsienees..o100 cards per minute.

On-Line Printer........e.+.vvvs0s0....1000 lines per minute, 120 characters

per line.
Paper Tape Reader.......s¢¢s:s.......100 characters per second.
Paper Tape Punch.......¢..+..+s.4v.......100 characters per second.

Check Sorter Reader..........¢.s.....1560 documents per minute.

E. TYPICAL SYSTEM APPLICATION

The flexibility of the RCA 301 System makes it ideal for a widely diversified
range of applications. To illustrate the efficiency and versatility of the
RCA 301, an example has been chosen of its application to common distribution
reports and the weekly payroll. Figure 5 illustrates the system configura-

tion for this application.

I-16

I
|
|
I
I
I
|
I
I
[
I
I
i

—_———————dd

-
|
I
|

ON-LINE
PRINTER

HI-DATA
TAPE GROUP
(6 MAGNETIC

TAPES)

COMPUTER

SIMULTANEOUS
MODE CONTROL

NORMAL OPERATION

- mm == === SIMULTANEOUS OR PARALLEL OPERATION

Figure 5 RCA 301 System for Labor Distribution-Payroll Application

Inputs to the daily run are time-clock cards and labor tickets for straight

time or piece work., A report of labor distribution by department is prepared

for cost accounting as output.

As a by-product of the daily run, the input is prepared for the payroll and

stored within the 301 System in an optimum fashion. The weekly payroll run

produces the paycheck for each employee.

and deduction register.

It also creates a payroll register

The daily input of clock cards, straight-time cards, and piece work cards 1is

I-17

read in batches and sorted within the high speed memory. (See Figure 6).

Va
DAILY
CLOCK CARDS CARD READER COMPUTER
/ n HI DATA
STRAIGHT-TIME - TAPE GROUP
LABOR CARDS T — ;

PIECE-WORK
LABOR CARDS

RCA 301
SORT BY DEPARTMENT A\
AND EMPLOYEE NUMBER | ON-LINE
PRINTER
RECONCILE
LABOR TO

CLOCK CARDS

ACCUMULATE
TOTALS

DAILY LABOR
DISTRIBUTION LIST

Figure 6 Daily Labor Distribution to Departments, Using RCA 301 System

Off-line sorting equipment is not required. The data, sorted by department
and employee number, is sent to the Tape Station. This procedure is repeated
until the input data is exhausted. The data stored on the Tape Station is
then transferred in sections to the core memory and merged in the required
sequence. A reconciliation of clock cards to labor cards is performed for
each employee. Concurrently, employee data is grouped and sent to the Tape
Station to be used as input for the weekly payroll. The department totals

are accumulated and labor distribution information edited and printed out.

The Payroll, which is prepared weekly, utilizes the data provided by the
daily labor distribution run (Figure 7). The RCA 301's ability to store the

data in an expedient manner on the Tape Station requires only simple merging

in the high speed core memory.

The master employee file is run against the employee information as each
section is in high speed memory. At the same time, the payroll and deduction
registers are created on magnetic tape and the payroll checks are prepared on
the On-Line Printer. Eliminated in this phase is the necessity of running a
transaction tape against the master file tape. This means that full advan-

tage is taken of simultaneity. The payroll and deduction registers may be

printed after the checks.

This application shows the capabilities and power of the RCA 301 System. All
data manipulation, sorting, intermediate storage of data, processing, and
printing is accomplished within the System. System efficiency is reflected
in the time required to perform these operations. For a 1,000 employee firm,
each labor distribution function requires only one-half hour, and the weekly

payroll run takes less than 15 minutes.

MASTER UPDATED MASTER
EMPLOYEE FILE EMPLOYEE FILE

RCA 301 MERGES 5 GROUPS
AND UPDATES PAYROLL

COMPUTER

©9

GJ () 6(2) 0
GS,OETO

~)

DEDUCTION

PAYROLL REGISTER

REGISTER

y

PAYROLL PAYROLL DEDUCTION
REGISTER CHECKS REGISTER

Figure 7 Weekly Payroll Flow, Using RCA 301 System

I-20

F, THE ROLE OF INSTRUCTIONS

Nothing of significance can be accomplished in the 301 Computer unless it is
done by instruction. The computer can only obey the 41 wired-in instructions
that exist in the Program Control Unit. Basically speaking, the Computer
executes only one instruction at a time; hence, every program must be solved

step-by-step.

A 301 instruction consists of ten characters in coded form which, when de-
coded, will dictate a specific course of action. If, for example, it was
desired to add two given numbers, the computer must be told (1) the operation
that is to be performed and (2) the number of digits contained in each oper-
and. The first character (Operation Code) of the instruction will indicate
the type of operation. In the case of an Add instruction, this would be a
"plus" symbol (+). The second character (N character) of the instruction
will determine the number of digits contained in each operand. Therefore,
when adding two five-digit numbers, the Operation Code sould be + and the N
Character would be 5. It should be noted that the function of the N Charac-
ter is not the same for all instructions, e.g., in a Tape Write instruction

it determines which tape station is to be utilized.

Almost all data, as well as the program, are stored in the High Speed Memory
(HSM). Every character contained in memory (including the characters that
make up the instructions) has its own memory address. An address is simply
four decimal digits which represent a location or a series of magnetic cores
in memory. These cores can hold information in binary bit form. If it is
desired to retrieve or insert information into these cores, they must be
identified by an address. In a 10K memory, addresses range from 0000 to
9999, In a 20K memory, addresses range from 0000 to I999, and in a 40K
from 0000 to Z999. See page I-6 of the Programmers' Reference Manual.

There are four basic groups of instructions, namely:

a. Data Handling Instructions.
b. Decision and Control Instructions.
c. Arithmetic Instructions.

d. Input/Output Instructions.

I-21

In an Add instruction, for example, the address of each operand must be
specified. These two addresses are called the A Address and the B Address,
respectively. The A Address will designate the location of the least sig-
nificant digit (LSD) of the augend and the sum. The B Address will designate
the location of the LSD of the addend.

All 301 instructions follow a similar instruction format of:
O N AAAA BBBB

where:

@)
1l

Operation Code AAAA

4-digit A Address
4-digit B Address

N Character BBBB

The N character can be used for many different functions, depending on the
instruction, such as specifying length of operands, specifying certain op-

tions, etc.

A typical Add instruction, where it is desired to add two three-digit numbers
would be as follows:

+ 3 1002 2015

This instruction states that we will add two operands consisting of three
digits each. The first addition will take place with characters from each
operand found at locations 1002 and 2015. The second addition will be upon
characters found at locations 1001 and 2014 and the third addition will be
upon characters found at locations 1000 and 2013. The result of each addi-

tion will be placed back in memory at locations 1002, 1001, and 1000.

Memory contents are often illustrated as follows:

00 01 02 03 12 13 14 15

10 5 6 3 2 20 8 1 3 8

HSM Before Execution of Instruction

I-22

00 01 02 03 12 13 14 15

10 7 0] 1 2 20 8 1 3 8

HSM After Execution of Instruction

The two digits on the left of each box denote the first two digits of the
address. The last two digits of each address are shown above the box.
Within the box are the actual contents of memory. Thus, after executing

the Add instruction, memory would contain the characters shown above.

1. The Role of Status Levels

The instruction itself is broken down into subdivisions called status levels.
(See Figure 8). Each status level exists for seven microseconds. There are
twenty-four status levels, each of which accomplishes one basic function
(such as loading a register, accessing HSM, etc.). Each instruction is made
up of a certain combination of status levels, in a certain order, to produce
a desired result. A status level can be described as a gating level which
opens paths in the Computer Logic for information flow. Usually a status
level is named for the register with which it primarily works. For example,
a P1 status level works with the P register; while an A3 status level works
with the A register. Some status levels such as Sense Input-Output (SIO) are

named after their function.

2. The Role of Time Pulses

The status level, in turn, is broken down into time pulses. In almost every
synchronous machine, the memory cycle dictates the timing for internal opera-
tions. Since the 301 memory cycle consumes approximately seven microseconds,
seven one-microsecond pulses called time pulses (TPO, TP1, TP2, TP3, TP4,
TP5, TP6) comprise the basic timing of the Computer. Almost every function
carried out in the 301 is done at a specific time pulse of a given status

level, during a particular instruction.

I-23

le
STATUS
LEVEL
(7US)
|!Illll Lrrrrrrrerrrr b
| __TIME PULSE

T Gs)

A

INSTRUCTION

Figure 8 Timing Breakdown of a typical 301 Instruction

An instruction is identified by its operation code. The operation code is
the major control level which in most cases, exists for the entire execution
of the instruction. It is the operation code which determines what status
levels are necessary for carrying out the instruction, and it is the time
pulses which determine when these status levels will occur. All the logic
responsible for generating operation codes, status levels, and time pulses

exists in the Program Control Unit.

3. Processor Block Diagram

A block diagram of the Basic Processor is shown in Figure 9. Note that a
common bus, capable of transmitting four 301 characters in parallel, connects
to all registers. Bus lines 2 and 3 each have seven isolated wires to handle
seven bits per character, but Bus lines O and 1 have six and five wires,
respectively, for Models 303A and 304A., Model 305 has seven wires for Bus
line 0. The bus lines which have less than seven wires are those used to
handle addresses only. Most 301 addresses are four decimal digits and all
decimal digits have no "one" bits in the 24 and 2° position (301 code).

The 24 bit in Model 304 and the 24 and 25 bit in Model 305 are used in the

most significant digits of addresses over ten thousand.

I-24

D REG.

ADDRESS P A A-8 1 | B NOR

GENERATOR REGISTER REGISTER EQUAL REGISTER 02 lo3

NR comp ||

8uUS 0
8US | T 1
BUS 2
BUS 3

MEMORY

ADDRESS

REGISTER

INTERCHANGE
BUS
ADDER
EGENERATION MEMORY REGISTER
HIGH SPEED At AfpAfAAAF A+
MEMORY i MRO MRI

1

gec-I

Figure 9 Processor Block Diagram

Therefore, Bus O which carries the MSD characters of addresses needs six or

seven wires (depending on the model) while Bus 1 needs only five wires - no
5

wire necessary for 24 or 27,
In reality, there are two four-character buses in the 301. One is called
the positive bus and the other the negative bus. Inverters separate the two
buses such that any signal on one is carried on the other, but in opposite

polarity (See Figure 10).

€ OR 7

WIRES ' BUS O (POSITIVE)
5 WIRES BUS | (POSITIVE)
7 WIRES

7 WIRES

frpmy—rf—#BUS 3 (POSITIVE)

[6
or
7
(J

R7 ,
GW?RES A+ F—rF— ;Jr‘ f—fojtef—pfmpf—rf—rf BUS O (NEGATIVE)
V4

5 WIRES pfrfrftf—sfrp—rt—t—~r—+—F
7 WIRES pfyfesff
7 WIRES

f—rfrff—rf—F—F—F—7-BUS | (NEGATIVE)

BUS 2 (NEGATIVE)

BUS 3 (NEGATIVE)

Figure 10 Positive and Negative Bus Lines

A +6.5 volt signal on the positive bus indicates a '"one'" bit and a zero volt
signal a '"zero" bit. Conversely, on the negative bus a zero volt signal is
a "one" bit and a +6.5 volt signal is a '"'zero" bit. The reason for a double
set of bus lines is that the basic 301 AND gate reQuires low inputs to pro-
duce a high output. If "one" bits on the positive bus were required to prime

the AND gates, the signals would all have to be inverted. Therefore, to

I-26

economize on hardware, two sets of bus lines exist; the positive bus to re-

ceive outputs from gates, and the negative bus to provide inputs to gates.

4., Gating Information From Register To Register

To illustrate transmission of data from one register to another, an example
involving the N register and the D register will be used. (See Figure 11).

"P45(N) Al-DSL(N)

S
N-28 SN-20"
| | 0
Q
)N BUS 3
= (POSITIVE)
s

Figure 11 Gating Out of N Register

I-27

(1)

(1
(0)
(1)
()
(1)

(1)

(r
("

(0)
()
(0)

()
(1)

POSITIVE BUS

NEGATIVE BUS

Figure 12 Pulse Train for Dollar Symbol ($)

BUS

BUS

BUS

BUS
BUS

BUS

BUS

BUS
BUS

BUS
BUS

BUS
BUS
BUS

3-20(p)

3-2l(p)
3 - 22(p)

3-23(P)
3 - 2%(P)

3-25(p)

3 - 28(p)

3 - 20(N)
3-2"(N)

3 - 22(N)
3-23(\N)

3 - 24(N)
3 - 29(N)
3 - 25(N)

Assume that a $ is in the N register. Since the bit configuration for a $

is 1 101 011 including parity, the N register 26, 25, 23, 2!

and 20 flip-
flops would all be set, while 24 and 22 would be reset. At TP4 time of an
Al status level, during a Transfer Data by Symbol Left instruction (DSL),
the upper leftmost AND gate would be primed and produce a high output. This
output would exist for two microseconds (duration of TP4 and TP5) and after
inversion would prime all of the AND gates shown below the N flip-flops.

Any flip-flops in the set state would also be placing a low level on the
aforementioned AND gates. Thus, for each flip-flop that is holding a one
bit, its corresponding AND gate would be primed and produce a high onto the
respecti e bus line. This high would be a two microsecond signal. For the

character $, the pulse train would be as shown in Figure 12.

While the character $ is on the bus during TP4 and TP5, the D3 register is
prepared for receiving this character. At TP4 of an Al status level during
a DSL instruction, the D3 register is reset and at TP5 (See Figure 13) the
character is gated into D3 from Bus 3 negative. It should be noted that
whenever the 301 transfers data onto the bus, a two-microsecond gating pulse
is the minimum used, and in some cases it is a 3 microsecond pulse. Gating

from the bus into a register is usually done by a 1 microsecond pulse.

I-29

Al-DSL(N) : .
TPS(N) L ')

1T BUS 3
< > NEGATIVE

/

Al-DSLI(N)

f TP4(N)
S R S S R
03-22 p3-2! p3-2°
| [¢] | [o] | 0

| (o B o

Figure 13 Gating Into the D3 Register

5. The 301 Memory Cycle

Being familiar with 301 instruction format, one can note that the instruction
registers in the block-diagram are the Normal Operation Code Register (NOR) ,
the N Register, and the A and B Registers. The other addressable register in
the Basic Processor is the P register, which is used for program control. The
D register is used primarily for temporary storage, while the NR register is
only used during the repeat instruction. The address generator is responsible

for creating a special address whenever needed, such as in the STA process.

The bus adder is used to increment or decrement addresses found in the Memory
Address Register (MAR), and the interchange is a series of AND gates and OR
gates which govern the gating between the bus lines and the Memory Register
(MR). Any character coming from memory or going to memory must pass through
the MR.

I-30

The MAR and HSM as well as some other logic are located in that quarter of
rack 2 housing memory. Everything else on the block diagram can be found in

the remaining three quarters of rack 2 designated as the Program Control Unit.

The function of the MAR is to hold the address while it is decoded and the
memory cores are accessed. It is the basic structure of the 301 to access
two locations, or a diad, for each address sent to the MAR, A diad can be
remembered as the even address on the left and the odd address on the right.

The locations shown below are divided into diads.

32 33 34 35 36 37 38 39 40 41

84

Effectively, the computer ignores the 2O bit of the Least Significant Digit
(LSD) of an address when addressing memory. For example, in the address

8437, the LSD is a seven or binary 000 111 excluding parity. If the 2O bit
is ignored, the character could also be 000 110, which represents 6 to the

301. Hence, the diad is composed of locations 8436 and 8437.

Usually the status level alone is sufficient to request a memory cycle.
Occasionally the operation code is also required. Nevertheless, the computer
will not generate a memory cycle unless the Program Control Unit commands one.
A signal known as command level is sent to memory logic at the beginning of
the status level which is to use memory, and when coupled with TP1, the
command level begins the memory timing generator sequence. The memory timing
generator produces a series of control signals which carry out the memory
cycle. These signals are not the same as TP's, but are so regulated that

the memory cycle will be completed by TP-6, when the status level is com-
pleted. The first phase of the cycle is read-out, and the last phase is
write-in (Regenerate). Once a memory cycle is started, it is always carried
out to completion. When a diad is read, the contents of 14 cores are auto-
matically destroyed; the two characters found there are sent to the MR.
However, these two characters must be gated into the MR or they will be lost

completely. The reason for the gating process is to permit the insertion of

I-31

new information into the memory cores. Whatever exists in the MR during the
write-in phase will be regenerated into the selected 14 cores. Hence, if
both of the characters are permitted to reach the MR during read-out, then
the same two characters will be regenerated and memory would be effectively
unchanged. 1If, however, only one character is permitted to reach the MR
during read-out, and a new character is inserted from the bus into the MR
prior to write-in time, memory would contain one new character after regen-
eration. Two new characters can be written into a diad if the original con-
tents of the diad are not permitted to reach the MR and the new characters

are inserted into the MR before write-in time.

Obviously something must control the gating into the MR during read-out.

Once again, the status level and the instruction make the primary decision

as to whether or not a new character will be written into memory. Many times
the computer simply wants to transfer information from memory to register and
permits both characters during read-out. The other decision as to which
character to permit of the two, if not both, is made by the address in the
MAR. The address being odd or even specifies what character is gated from
memory to the MR and also designates what position of the MR will receive the

new character from the bus.

Because of the timing generator in memory, all memory cycles perform read-out
and regeneration at approximately the same time. Read-out occurs around TP2
and TP3 of a status level and regeneration at about TP4 and TP5. The MAR is
reset at every TPO and the MR at every TP1, in preparation for the new memory

cycle.

Assume that a B status level of a Transfer Data Left instruction is about to
be executed. During this status level a character will be transferred from

the D2 register to memory as specified by the B address.

At TPO of the B status level the MAR is reset and at TP1 the B address is
gated into the MAR, Also at TP1 the MR is reset. If the B address is 7103,
the diad selected would be 7102 and 7103. Since the B status level is writ-

ing a new character to memory at the address in the MAR, only one character

I-32

would be read-out at TP23 into the MR, This character would come from 7102
and would be placed in MRO because the MAR address is odd. The character
from the D2 register would be on Bus 2 by TP2 time and would be gated into
MR1 at TP3 time through the interchange. Regeneration would occur at TP45
time and the character that was held in D2 would now exist in memory at 7103,

while 7102 would be unchanged.

The discussion above is illustrated in Figure 14 by using X and Y as original

contents of memory, and Z as the character in the D2 register,

E33

D2
Z

8-DL TP23
MAR '
711]o]3
BUS 2
MAR ADDRESS EVEN —— —— MAR ADDRESS OC
TP3 E TPz
HIGH SPEED MEMORY
02 03

roTr ,
71X r Y 7,
-1~ MEMORY REGISTER
I
MAR ADDRESS MAR ADDRESS MRO | MRI
oo . T} EVEN i
[’ X | -3
1
READ OUT (= TP23) }
READ OUT CYCLE
MAR
7111013

|

HIGH SPEED MEMORY MEMORY REGISTER
|
02__ 03 _ MRO l MR
T | '
7L X 1 2 |
[X | Z
|
T REGENERATION (=TP45) '

WRITE IN CYCLE

Figure 14 Typical Memory Cycle

I-34

G, STATICIZING

Before discussing individual instructions, it should be pointed out that,
although the actual instruction is stored in memory as part of a program,

the computer must place the entire instruction in registers for execution.

The process of bringing an instruction out of memory and distributing it to
appropriate registers is known as staticizing. Each instruction in the pro-
gram must be staticized before the computer can execute it. The Operation
Code is placed in the Normal Operation Register (NOR), the N Character in the

N Register and the A and B addresses in the A and B Registers, respectively.

Since an instruction consists of ten characters (an Operation Code, an N
Character and two addresses of four characters each), ten locations in memory
are needed to accommodate an instruction. Usually, the Operation Code is
placed at an address ending in zero. If this is true of the first instruc-
tion in a program, all succeeding instructions will have their Operation
Codes at an address ending in zero. For example, an instruction might be
placed in memory beginning at address 3000. The individual characters of

this instruction would then have the addresses as shown:

00 o1 02 03 04 05 06 07 08 09

30 + 3 1 0] 0 2 2 0 1 5
OoP N A B
Code Char. Address Address

A second instruction would start at address 3010 with the Operation Code in
that location. A third instruction in this program would have its Operation

Code in location 3020 and so on.

A program can be placed anywhere in memory except between addresses 0000 and
0225 which are reserved for certain operations. See page E-1 of Programmers'

Reference Manual.

In order to staticize an instruction, the computer must know the address of

that instruction. In the 301, this function is controlled by the P Register.

I-35

The P Register must be supplied with the address of the first instruction in
a program (the address of the first Operation Code). After being given an
address, the P Register will proceed to increment this address during the

process of staticizing and will thus locate or keep track of each instruction

in the program.

The 301 memory cycle reads two characters at a time from memory in seven
microseconds. This pair of characters is called a diad. A diad consists of
two consecutive memory locations with the even address on the left and the
odd address on the right. (The computer actually ignores the 2O bit of the
LSD of the address in the process of addressing memory.) Thus, to staticize
an instruction, the computer must go through five memory cycles (two charac-
ters per cycle times five equals 10 characters). When staticizing an in-
struction, in order to keep track of the addresses of the individual diads,
-the P Register must be incremented by two, five times. For this reason, the
OP code must be in an even address; that is, the OP code and N count must be

in the same diad.

Thus, it can be stated that the purpose of the P Register is to hold the

address of the next instruction to be executed.
To clarify the concept of staticizing, the following illustration is given.

After the program has been loaded into memory, from paper or magnetic tape
(this is accomplished by an instruction manually set up on the console), the
address of the first instruction in the program must be manually placed in

the P Register.

P 3 0] 0] 0]

Once the start button is depressed, the computer will gate the contents of

the P Register to the MAR (memory Address Register).

The MAR will hold the address while decoding logic selects the locations in
memory. The output of the MAR also feeds the Bus Adder which modifies the
address by +2.

The diad which is addressed by the contents of the MAR is brought from memory
to the MR (Memory Register). During this memory cycle, the diad will be re-

generated into the original locations in memory.

00 01 02 03 04 05 06 07 08 09
HSM 30 + 3 1 0] 0] 2 2 0] 1 5
MR + 3

The contents of the MR are then sent to their respective registers, the NOR
and N,

MR + 3

NOR + |N| 3

Meanwhile, the Bus Adder has finished modifying the P Address by +2. The P

Register is reset and the new address is gated back from the Bus Adder to the

P Register.

BUS ADDER 3000 + 2 = 3002

P 3 (0] 0] 2

The P Register is now addressing the second diad of the instruction. A sim-

ilar process is repeated four more times to staticize the entire instruction.

P 3 | o|o] 2
| S !
MAR o | of 2

I-37

I-38

00 01 02 03 04 05 06 07 08 09
HSM 30 + 3 1 0] 0] 2 2 0 1 5
MR 1 0]
A 1 0]
BUS ADDER 3002 + 2 = 3004
P 3 0] 0] 4
MAR 3 0] (0] E-T
00 01 02 03 04 05 06 07 08 09
HSM 30 + 3 1 0] 0] 2 2 0] 1 5
MR 0] 2
A 1 o) 0 2
BUS ADDER 3004 + 2 = 3006
P 3 0] 0] 6
13 | "2 b
MAR 3 o 0] 6

00 01 02 03 04 05 06 07 08 09

HSM 30| + 3 1 0] 0] 2 2 0 1 5
MR 2 0]
B 2 0]
BUS ADDER 3006 + 2 = 3008
P 3 0 0] 8
MAR 3 0] 0] 8
00 01 02 03 04 05 06 07 08 09
HSM 30 + 3 1 0] 0] 2 2 o) 1 5
MR 1 5
B 2 0] 1 5
BUS ADDER 3008 + 2 = 3010

Note that P is addressing the operation code of the second instruction in the
program when staticizing is completed. Final register contents would be as

follows:

NOR + N 3 A 1 0] 0] 2 B 2 (0] 1 5

I-39

1. P1 Thru P5 Status Flow

Staticizing is accomplished by five status levels, P1 through P5. Each one
staticizes one diad or two characters of the instruction. Five of them, then,
will staticize ten characters or the complete instruction. They are desig-

nated "P" because they work with the P Register.

The following are charts that show what happens at each TP of the status

levels, and the pertinent portions of the processor block diagram.

P1

TPO1 P Address is sent to Bus.

Memory Register is reset. Contents of Bus are sent to MAR and
TP1 the Bus Adder where 2 is added to the address. A command level
is sent to memory and the memory timing sequence begins. The
MAR address is decoded and the diad selected.

TP2 P Register is reset. Read out from memory has begun.

TP23 Both characters read out are permitted to reach the MR. The
modified address in the Bus Adder is gated back to Bus.

TP3 Read out is complete. The contents of the Bus are placed in the
P register.

TP4 The NOR and N registers are reset.

TP456| The contents of MRO are gated thru the interchange onto Bus 2 and
the contents of MR1 onto Bus 3.

TP456 | Regeneration of the characters in the MR occurs.

TP5 The contents of Bus 2 are gated into the NOR and the contents of
Bus 3 are gated into the N register.

TP6 A P2 status level is automatically selected. Reset MAR,

I-40

The main purpose of the P1 status level, therefore, is to bring out

operation code and the N character, and place them in the NOR and N

respectively.

TPI

— P2 — TPa P4
R R R
P REG. NOR N
wowt:j
—-TP3 TPS TPS
BUS O
BUS |
BUS 2
A BUS 3
P23
aus TPE
MAR e TP456 TP456
Pl
T
BA (+2)
SELECT
T P2
|
HSM S MRO | MRI
REGENERATION !
=~ TP4S) 1
=
PERMIT

READ OUT (= TP23)

Figure 15 P1 Status Level

Note that the address in P register is now 2 greater

a new diad is to be addressed.

The P2 status level automatically follows the P1 with the following

occurring.

the
registers,

and that

events

I-41

P2
TPO MAR is reset.
TPO1 P address is sent to Bus.
MR is reset. Contents of Bus are sent to MAR and Bus Adder
TP1 where 2 is added. A Command Level is generated and sent to
HSM. The MAR address is decoded and the diad is selected.
TP2 P register is reset. Readout begins.
TP23 Both characters readout are permitted to reach MR, The modified
address in the Bus Adder is gated onto the Bus.
TP3 Readout is complete. Contents of Bus are gated into P register.
TP4 A register is reset.
TP456 The contents of MRO are gated thru interchange onto Bus O and
contents of MR1 onto Bus 1. Regeneration takes place.
TP5 The contents of Bus O and Bus 1 are gated into A register.
TP6 A P3 status level is automatically selected.

I-42

— TP4

TP2

R A REGISTER
v T Y
P REG. AO | Al | A2 | A3
A L 1
TPo:U f
TP3 TPS é _[Q P8 8Us 0
ous |
v BuUS 2
e + suUs 3
™23 ™e
s TP456 TPASE
MAR ***™ aooer
T
4.
BA (+2) cr
T s
HSM pAAASAAAAAAAAAAAAAA# MRO ! L
REGENERATION !
(= Tr4s) L
PERMIT
0T™H

READ OUT (= TP23)

Figure 16 P2 Status Level

The function of the P2 status level then is to bring out the first two

characters of the A address and place them in the A register.

The P3 status level follows immediately and brings out the last two
characters of the A address. Note that the A register is not reset
at TP4 of P3 as in P2, since the computer would destroy the first two

characters brought out if this were permitted.

—TP2
R A REGISTER
P REG. H H T
AO | Al | A2 | A3
i 1 !

TPOI

TP3 TPS T
TPS BUS O
4 BUS |
y BUS 2
TPl —o- Y - y BUS 3
TP23 TP6
BUS 4
MAR 4+™ ADDER TP456 TPA4SE
P3
—
BA (+2)
SELECT
T P4
HSM A pbAfpfAAAAAA4AA] MRO | MR
REGENERATION !
(= TPa5) !
PERMIT

BOTH

READ OUT (= TP23)

Figure 17 P3 Status Level

The P4 and P5 status levels bring out the B address and place it in the B

register in the same general steps performed by P1, P2 and P3,.

At the end of P5 the P register would hold an address of ten greater than
the address it started with at the beginning of P1. This address would re-
main in the P register while the computer executed the current instruction
just brought out. When the instruction was finished, the computer would
automatically select a P1 status level and the process of staticizing would

again take place bringing out the second instruction in the program.

It should be noted that after a P5 status level, the Computer would examine

the operation code and select the first processing level. This is the first

I-44

status level involved with the actual processing of an instruction.

Upon the completion of the instruction, the Pl status level is automatically
selected and staticizing of the next instruction begins. The P Register at

this time contains the address of the first diad of this instruction.

P4
P2 L
R B REGISTER
P REG. : T v
B8O , Bl | B2 | 83
1 i |
TMPE
TP3 TS TPS
—+ BUS O
BUS |
BUS 2
™ + BUS 3
™23 ™6
BuUS TP4
MAR 4™ ADDER 56 TP456
L]
I
BA(+2)
SELECT
T [
1
HSM FAAAAAAAAAAAAAAAAAA MRO | MRI
REGENERATION [
= TP4S) 1

READ OUT (== TP23)

Figure 18 P4 Status Level

By means

Operator

R B REGISTER

T T ¥
80 | Bl ! B2 | B3

n 1 1

TPOI E T ?
TP3 PS5

TPS

BUS O
BUS |
D BUS 2
™I 1 8US 3
TP23 TP6— . —OP. CODE
B8uUS TP456
MAR s ADDER TP456
PS
T
BA (+2)
SELECT
T FIRST
; PROCESSING
HSM St dd A A A A4S MRO | MRI LEVEL
EGENERATION |
(= TPas) "

READ OUT (=~ TP23)

Figure 19 P5 Status Level

to be explained in the next section, it is possible

to manually insert the characters of an instruction

A and B Registers. The net result of this resembles that of

since it is accomplished by different means, it is not to be

staticizing.

H, 301 CONSOLE

for the Console
into the NOR, N,
staticizing, but

confused with

The 301 Processor Console is located on the front of Rack 2 or the PCU Rack.

It contains the pushbuttons and indicators necessary to operate the 301 pro-

cessor.

I-46

For the arrangement of the buttons, see the Programmers'! Reference

Manual, Figure 6, on Page III-13. On Pages III-10 thru III-12, each push-

button and its use are listed.

The console switches are two basic types: microswitches and strip switches.
Some of the microswitches are momentary contact (activated only as long as
the switch is held depressed); the others are alternate action switches, that

is Press On, Press Off, Those in the latter category are:

1. OCSP 6. WTAB 11. BCT

2, FPLS 7. BAI 12. STLR
3. ICSsP 8. INT 13, HSMI
4, RDM 9., ISIM 14, ALI

5. WRM 10. SMDI

(See Programmers' Reference Manual for Switch Function.)

The upper center two rows of switches on the console are the register select
switches. Each row of switches is called a "strip switch'". The register
select switches are series leaf-type contact switches that are mechanically
interlocked, so that only one switch can be "set" at a time. The mechanism
is such that depressing any given switch causes any other switch that is
"set" in that row to be released. Viewing fhe console from the front, the
rightmost buttons of the two upper center rows are reset buttons. They are
associated with strip switches--depressing one of these reset switches re-

leases any other switch that may be set in its row. Both strip switches

must be reset before the Processor can be started.

I-47

l‘ ONE COMPLETE STRIP SWITCH ..’

NOR <>
[: P A 8 /N 0 MR

ENGRAVING DENOTES WHICH
REGISTERS WILL BE SELECTED RESET- DEPRESSING CAUSES

ANY OTHER SWITCH THAT MAY
g‘étg?'}:}&”fg-ggﬁ BE'SET" TO BE RELEASED.

EFFECTS ONLY THOSE SWITCHES
IN ITS ROW,

SPARE POSITION-DEPRESSING BOTH RESET SWITCHES MUST

WILL CAUSE ANY OTHER SET" BE "SET" (LIGHT ON IN SWITCH)

SWITCH TO BE RELEASED, BEFORE PROCESSOR CAN BE

HOWEVER, IT WILL NOT CAUSE STARTED.

THE STRIP TO APPEAR RESET

N

] T SORy M u v FOR/L <>

i- ONE COMPLETE STRIP SWITCH .

Figure 20 Strip Switch

On the right of the console (viewed from operator's side) are four rows of
switches and lights. Each row within the block has eight positions. They

are designated by the engraving on the rightmost button.

DISPLAY RESET- DEPRESSING WILL
§FoR AN RESET ANY REGISTER

THAT IS SELECTED

BUS ¢ @ BY THE SELECT STRIP

- SWITCHES

8US | Ciw
DUMMY

8US 2 Co = POSITIONS

BUS 3 Cy

2 2 24 23 2 2l 20 «—— BIT SIGNIFICANCE

Figure 21 Bus Switches

The upper row of switches and indicator are connected to the Processor Bus @.
The character as displayed on the console is called the C@ character. The
second row from the top is connected to Bus 1 and called the Cl1 character,
and so on through the C3 character. The console switches for the C3 charac-
ter are connected to the Processor Bus 3 and through wiring unique to these

switches to the N register.

DISPLAYED REGISTER SELECTED

dion [| a |8 %L s T PSRy ™%
Co Ppg | ag | Bg | nonE|NONE [NONE | sg | T@ |NONE| ug | NONE | NONE
c, Pi | a1 | 81 |NONE|NONE|NONE| st | Ti |NONE| Ut | i |NONE
[P2 |a2 | B2 |Nor | 02 [MRg | s2 | T2 |sor | u2 | v2 |FoR
Cy P3 A3 83 N 03 | MRI S3 T3 M u3 v3 L

Figure 22 Bus Display Chart

When a register is selected by the register select switches, the contents
will be displayed in the C@ through the C3 console indicators as shown in

Figure 22,

The proper operating technique for the strip switches, is to reset them,
each by its own reset button, between the selection of registers. For exam=-
ple, if the operator wished to place or view information in both the A and B

registers, the selection sequence should be:

1 - Select A 1 - Select B
2 - Reset strip switch 2 - Reset strip switch
3 - Select B OR 3 - Select A
4 - Reset strip switch 4 - Reset strip switch

This technique will preclude the possibility of inadvertently gating the
contents of one register to another.

Many lights on the console are 1lit by lamp driver circuits and not directly
by the switches. The bus display lights, for instance require lamp drivers.
Switches are provided to place information on the buses, and lamp drivers

formed to the buses connect back to the lights in the switches on the console,

In other cases, the console provides display (lights) only without switches.
Examples of this are the error indicators to the left of the console. It is
desirable to have some means of checking for open lamp filaments in circuits
of this type with no switch to cause a lamp to light. This need is fulfilled
by a lamp check circuit. The lamp check circuit checks only those lamps in
the error indicatoré. The FAL (Record File mode alarm) indicator is above

the lamp check switch.

1. Read From Memory Procedure

The following procedure will enable you to read successive memory locations

out of memory at a diad rate.
Procedure:

1. Depress general reset.
- 2. Select the "A" register.
3. Set the required four character address, with correct
parity, in C@, C1, C2 and C3,
4., Reset the Strip Switch.
5. Set RDM switch.,
6. Depress START,
7. Select MR to display the diad that was addressed in C2 and C3.
8. To read the next diad, repeat steps 4, 6 and 7.

The status-flow for Read From Memory is shown in Figure 23.

READ FROM MEMORY (RDM)

TPO1 A - BUS

BUS - MAR BA (+2)
TP1 Generate CL
Permit Both

TP2 Reset A
TP23 BA - BUS
TP3 BUS - A
TP6 Inhibit Parity Checking on: NOR; N; STL

Figure 23 Read From Memory Status-Flow

2, Write to Memory Procedure

The following procedures will allow you to change information in memory or to

insert new information in memory at a diad rate:

Procedure:
1. Depress general reset.
2, Select the "A" register.
3. Set the required four character address with correct parity
in Cg, C1, C2, and C3,
4. Reset the strip switch.
5. Select the MR register.
6. Set the diad that is to be written in memory in C2 and C3
with correct parity.
7. Reset the strip switch.
8. Set WRM switch.
9. Depress START,
10. To write to the next successive diad locations repeat

steps 5, 6, 7 and 9.

3, Write to Memory (WRM)

TPO1 A -» BUS
Inhibit Resetting MR
TP1 BUS - MAR BA (+2)
Generate CL
Inhibit Both
TP2 Reset A
TP23 BA - BUS
TP3 BUS - A
TP6 Inhibit Parity Checking ON: NOR, N, STL

Figure 24 Write to Memory Status-Flow
The two characters inserted in the MR during the write memory cycle are now
regenerated into the memory at the address specified by the "A" register.

The status-flow for this operation is shown in Figure 24.

4, Manual Staticizing

To manually staticize an instruction, you must do what is normally done dur-

ing the P1 thru P5 status levels.

Procedure:
1. Press general reset.
2. Select NOR/N (you will note that C3 is all 1lit. This is
because the N register is down counter and must be "set"

and then the unwanted bits '"'reset"out).

3. Enter the OP code in C2 and the N count in C3 by resetting

unwanted bits. Be sure C2 and C3 contain good parity.
4. Reset the strip switch,
5. Select the "A" register.

6. Enter the required four digit address in C@, C1, C2, and C3
with good parity.

7. Reset the strip switch.
8. Select the "B" register,

9. Enter the required four digit address in Cg, C1, C2,
C3 with good parity.

10. Reset the strip switch.

11. Reset the status level register by pressing STL button.
(Note General Reset put a P1 status level in the status

level register.)

12. Enter the first processing level of the instruction to be
done in the status level register with good parity. (This
information can be found on your code card or your status

flow manual.)
13. Press the ICSP button.

14. Press any other buttons necessary to do the instruction
such as WTAB or ALI,
15. Press START,

If you make a mistake when setting information in a register, use the C@
Reset button to reset the selected register, only. If you press General

Reset, all the registers but the selected register will be reset.

I, MEMORY DISPLAY PANEL (Figure 25)

The memory display panel (MDP) is located on the wiring side (side "A") of
the Processor rack. The display panel consists of 42 lights for the purpose
of displaying the condition of numerous flip-flops. The upper four rows dis-
play the information in the memory addressing registers. Starting at the
top and working down they are C@ through C3 or the MSD through the LSD of an
address., The bit positions are arranged with 2o on the right and 26 on the
left. The lower two rows of lights show the conditions (set or reset) of
certain logic flip-flops. In all cases, the light is 1lit when the flip-flop

is "set".

LoGIC
P—FLOPS

Co (MARO)
Cl (MARI)
C?(MARZ)
C3 (MAR 3)

Yt

OEOEEOE

HEOOO®
HEHOOOG
OHHHOG

HOO00OO®
_OOOO..

NOT USED

Figure 25 Memory Display Panel

I-54

SECTION II
DATA HANDLING INSTRUCTIONS

TO THE STUDENT

"This lesson is designed to develop the student's understanding of the data
handling instructions. Each instruction is first described in terms of its
purpose and effect. Then the details of its execution are shown with the

aid of a simplified block diagram of the computer and simplified status level
timing charts. Finally, practice problems are provided to help the student

gain skill in using the data handling instructions.

A, The DATA HANDLING INSTRUCTIONS, INTRODUCTION

The Data Handling instructions are eight in number and each performs the
function that its name implies. These instructions will be involved with
transferring data and locating specific characters in memory. The following

is a list of the 301 instructions classified as Data Handling:

Op. Code
J - TRANSFER SYMBOL TO FILL
M - TRANSFER DATA LEFT
N - TRANSFER DATA RIGHT
- TRANSFER DATA BY SYMBOL LEFT
P - TRANSFER DATA BY SYMBOL RIGHT
K - LOCATE SYMBOL LEFT
L - LOCATE SYMBOL RIGHT
A - TRANSLATE BY TABLE

B, J - TRANSFER SYMBOL TO FILL (SF)

In order to make use of HSM for storage and as a work area, we must be able
to insert into HSM the characters we wish to store and use. An instruction
which may be used for inserting characters is the Transfer Symbol to Fill
instruction. The Transfer Symbol to Fill instruction places a selected sym-
bol in each memory location between and including two given addresses. Dur-
ing staticizing, the operation code (J) is placed in the NOR register. The
selected symbol is placed in the N register. The two given addresses are

placed in the A and B registers.,

II-55

P

' SF opefates from left to right in HSﬁbétArting with the A address and ter-
minating after the location addressed by B has been filled. The A address
| determines the location into which the N character is to be written during
the current memory cycle. The A register is incremented by one during each
memory cycle, which causes the instruction to operate from "left to right".
When A-B equality is reached (i.e. when the A address = the B address) the
instruction terminates., The SF instruction is useful for '"filling" many
consecutive locations in memory, or even all of memory; with a selected
character. It may also be used to insert a selected character into one

specific memory location.

NOTE: For a brief summary of the operating characteristics,

see page V-13 of the Programmer Reference Manual.

1. Transfer Symbol to Fill Instruction Format

Op. Code N A B
J Selected Symbol Leftmost location Rightmost location
(any 301 character) to receive selected to receive selected
' symbol symbol

2. Instruction Execution

Example: J @ 1001 1003
00 o1 02 03 04 05 00 01 02 03 04 05
10| S I M P L E 10| S @ @ @ L E
HSM before instruction HSM after instruction
execution execution

PRACTICE PROBLEMS

1. J ¥ 1000 1002
(o]0} 01 02 03 04 (e]0] 01 02 03 04
10| R C A * * 10
HSM Before HSM After

II-56

2. JE 2003 2003

00 01 02 03 04 00 01 02 03 04
20l R A C C * 20
HSM Before HSM After

3. Show how the following program will affect memory. (The numbers 1000,

1010, and 1020 are the addresses of the instructions in memory.)

1000 J5 3005 3006
1010 JD 3002 3002
1020 J¥* 3004 3006
00 o1l 02 03 04 05 06 00 o1 02 03 04 05 06

30| * E X P E R T 30

HSM Before HSM Final

Because all 301 instructions are wired to operate in a certain manner, and
because each instruction is executed while it is held in specific registers,
there will exist an initial address and a final address for both the A and B
Registers, at given times. Immediately after staticizing, the address in the
A Register will be called Ai (A initial) and the address in the B Register
will be called B, (B initial). During the execution of the Symbol to Fill
instruction, the B Address will remain the same while the A address is in-
cremented by one each time, thereby designating where the selected symbol

(N character) will be placed in memory. Once the A Address equals the B
Address, a flip-flop called ABE will become set. However, the symbol must
still be placed in the last location (B Address) and during the final memory
cycle, the A Address is counted up once more. Therefore, Af (A final) or the
contents of the A Register, once the instruction has been completed, will be
Bi + 1, This is one location to the right of the initial B Address. The

control flip-flop ABE is the deciding factor in terminating the instruction.

II-57

Throughout this manual, reference will be made to Ai’ Af, Bi’ and B_ because

f

initial and final register contents play an important role in programming.

It will become evident, as we discuss each instruction, that successive in-

structions in a program can be made dependent upon final register contents

of preceding instructions.

Also, it should be noted that, where HSM or Register contents are displayed,

the symbol @ will be substituted for a zero, when it is considered that it

might be mistaken for the letter "o,

Example:
J * 1005 1009
04 05 06 07 08 09 10 04 05 06 07 08 09 10
10| A B C D E F G 10| A * * * * * G
¥ L fﬂr‘l
Ai Bi Bf Af
HSM Before HSM After
4. Write an instruction which would fill the last four locations of a 10K
memory with zeros.
5. Write an instruction to change memory as shown. Give A and B final
31 32 33 34 35 36 37 31 32 33 34 35 36 37
52| E X A M P L E 52|E X A M - - -
HSM Before HSM After
A.f = Bf =

IT-58

3. Machine Operation

After staticizing, the Symbol to Fill instruction uses just one status level -
an A2, The selected symbol is placed in memory at the A address, and the
address is incremented by one. The process continues until the A address is
equal to the B address at which time the instruction terminates. The se-

quence of events for an A2 is:

A2
TPO1 A address is gated onto Bus.
Contents of Bus gated into MAR and sent to Bus Adder to be
TP1 modified by +1. Generate a command level., Decode MAR ad-
dress and select diad. Set ABE flip-flop if A register
contents equal B register contents.
TP23 Gate N character onto Bus 3. Permit one character opposite
to that specified by MAR address, to be read out into MR.
TP3 Gate contents of Bus 3 into MR as specified by MAR address.
TP4 Reset A register.
TP45 Regenerate old and new character into selected diad. Gate
modified Bus Adder address onto Bus.,
TP5 Gate contents of Bus into A register.
TP6 If ABE flip-flop is set, select Pl; if not set, select A2,

II-59

N
8 REG REG
TPOI U TP23
BUS O
BUS 1
T
™19 ‘ — ,
MAR MAR .
ADDRESS ADDRESS TP A8
EVEN :j 00D
i TPas
8US 3
MAR P ADDER ABE
T

BA (#1)

REGENERATION T

(= TPAS) : ™6

HSM I/IIIIIIIIIII/ /Irlll/rl + Illlllllfl [MRO E MRi ABE(0) ABE()
1
= MAR ADDRESS EVEN
MAR ADDRESS ODD
SELECT SELECT
A2 Pl
READ OUT (= TP23)

Figure 26 A2 of Symbol to Fill

The phrase ''generates a command level" at TPl means "initiate a memory cycle."”
If no command level is generated, the read-out-regenerate cycle involving

HSM will not be performed.

Note that the equality of addresses is checked at the beginning of A2, and
not after modification. Therefore, when A-B equality is reached and the ABE
flip-flop becomes set, the A address will be incremented by one once more.
Hence, the final contents of the A register is one location greater than

that in the B register.

It should be pointed out that the ABE flip-flop is reset during P5 of a

Symbol to Fill instruction.

II-60

Notice that if the SF instruction is to terminate (i.e., AB equality has
been reached), Pl is selected at TP6 of the last A2 status level. In fact,
when any instruction terminates, Pl will be selected at TP6 of its last pro-
cessing status level, This selection of Pl is the factor which provides for
sequential execution of the instructions in the order they are stored in

memory .

4. Programming Erxors

One programming mistake that can be made with the SF instruction is the re-
versing of the A and B addresses. The A address must identify the leftmost
location to be filled and the B address the rightmost. If A is greater than
B, A will count up for each location filled and move farther away from A-B
equality. As soon as the upper limit of memory is reached, adding one more
will revert the address back to all zeros and a WIT alarm will occur, pro-
vided WTAB is not set. If WTAB is set, the entire memory may be filled and

the instruction will terminate on A-B equality.

Example:
J O 1091 1090

Locations 1091 through 9999 (10K Memory) will be filled with zeros before a

WTT alarm would occur (Assuming WTAB is not set).

Since SF terminates on A-B equality, if for some reason the A-B equality
circuit fails to set the ABE flip-flop, the instruction will continue to

fill HSM with the N character until a WIT error occurs. If WIAB is depressed,
not setting ABE will cause the instruction to fill all of HSM repeatedly --

the computer will be '"cycling" in a SF instruction.

A common way for this error to occur is to staticize a non-numeric address
such as ;000 in the B register. Since the A register will be counting numer-
ically during execution of the SF instruction, A-B equality will never be
reached. However, notice that a simple parity error in the B register is

not enough to cause this failure since the AB equality circuitry compares

only the data bits, it does not examine the parity bits. Also notice that

II-61

not any non-numeric address will work., For example, a "K" in B2 would appear
as a "2" since B2 has no 25 flip-flop. A $§, however, would appear as a non-
numeric character in any position of the B register since the four low-order

bits are "10ll" which is greater than "1001" or nine, the largest numeric.

PRACTICE PROBLEMS

6. The WTAB button is depressed. The following instruction is

inserted manually into a 303A processor (1OK).

J 0 00001 0000

What are: Ai= B

i Ag= Be=

7. How many memory locations will be filled with O's in Problem 67

a. 10,000
b. 1

c. 10,001
d., none

8. How many A2 status levels will be performed in problem 67

a, 10,001
b. 10,000
c. O
d. 1

9. Write an instruction to fill every location in a 20K memory with ¥'s,

(Assume WTAB is depressed.)

10. An operator attempts to manually insert O's in the first 300 HSM
locations with a "symbol fill" instruction (assume WTAB and ICSP
'is depressed). He enters J - NOR register, O = N register,
0000 = A register, but he forgets to enter a B address, so the
B register remains completely blank., What happens?

II-62

a, total number of locations filled ==~
b. does computer stop --

If so Af= Bf=

c. Any errors =-

If so which?

11, At TP4 time during the execution of the following instruction what

will be the content of the MR? Complete "HSM After."

J * 1002 1002

00 01 02 03 04 00 01 02 03 04
10| A B c D E 10
HSM Before ' HSM After
a. MR at TP4: MRO , MR1

b. At which TP time will the character "C" appear in the MR?

12, At what TP time of which A2 status level during the execution
following instruction will the '"D" appear in the MR? Will it

in MRO or MR1l or neither?

J4 1001 1003

00 01l 02 03 04 00 01 02 03 04
10 A B C D E 10
HSM Before HSM After

of the

appear

II-63

C. M - TRANSFER DATA LEFT (DL) REPEATABLE |

N - TRANSFER DATA RIGHT (DR) REPEATABLE

The Transfer Data Left and Right instructions are used to transfer a number j
of characters from ohe group of consecutive locations in memory to another
group of consecutive locations. The N character gives the number of charac-
ters to be transferred., The A address gives the star?éﬂg 1oc§tion from which
characters are to be taken. The B address gives the starting location into
which the characters being moved are written. (Because of the regeneration
portion of the memory cycle, the character "transferred" will also be re-

written into the location from which it was 'taken.")

The DL instruction works from left to right (incrementing both the A and B
register by 1, each memory cycle). The DR instruction works from right to

left (decrementing both the A and B registers by 1, each memory cycle).
Each time a character is transferred the N count is reduced by one.

Both instructions terminate upon reducing the N count to zero. If N is zero
when the instruction is staticized, no characters are transferred; the next
instruction will be staticized and executed (i.e., P5 of DL or DR selects

Pl to start staticizing the next instruction). The final addresses are:

DL: Af= Address location one to the right of the last character
transferred.
Bf= Address location one to the right of the last destination

address.

DR : Af= Address location one to the left of the last character
transferred.
Bf= Address location one to the left of the last destination

address.

These instructions are labeled "REPEATABLE" which means they may be used in
conjunction with the repeat instruction which will be covered in the next

lesson,

NOTE: The transfer data instructions are covered on pages V-9

and V-10 of the Programmer's Reference Manual.

II-64

1, Instruction Format

Op. Code N A B

M or N 0-44 HSM Location of Destination
Characters First Character Location of
Transferred to be transferred First Character

2. Instruction Execution

Example 1:
N 3 2545 4763
40 41 42 43 44 45 60 61 62 63 64 65
25 3 0 1 - (o (0] 47 D A T A - P
A, B.
i i
HSM Before
40 41 42 43 44 45 60 61 62 63 64 65
25 3 0] 1 - C (0] 47 D - C O - P
Ag Be
HSM After
Example 2:
M 2 3617 3619
16 17 18 19 20 21 16 17 18 19 20 21
36 * D I A L * 36 * D I D I *
Ai Bi Af Bf
HSM Before HSM After

The question might arise as to the need for transfer instructions working

in either direction (in the general transfer of characters, there is really

II-65

not much need). However, if it is desired to shift a certain number of
characters in memory for positioning purposes, in one direction or the other,

the two instructions, M and N, are convenient.
For example, assume that ten characters in memory between 4000 and 4009 are
to be shifted two positions to the right. The instruction would be:
N & 4009 4011
Note that an M instruction could not be used because of the '"overlapping' of

characters.

The instruction, M & 4000 4002, would shift ten characters to the right
but would wipe out all characters from 4002 to 4009 with the two characters
in 4000 and 4001.

Similarly, if it was desired to shift the original ten characters two posi-

tions to the left, an M instruction must be used

M & 4000 3998

The "overlapping'" problem again inhibits using an N instruction in this case.

II-66

1.

2.

31

PRACTICE PROBLEMS

Execute the following instruction and show final HSM contents.

M 4 0212 0216
10 11 12 13 14 15 16 17 18 19 20 21 22 23
02 A 5 6 3 2 1 7 8 4 9 3 2 (0] 6
HSM Before
10 11 12 13 14 15 16 17 18 19 20 21 22 23
02
HSM After
Execute the following instruction and show final HSM contents.
M 2 1562 1561
58 59 60 61 62 63 58 59 60 61 62 63
15 A B C D E F 15
HSM Before HSM After
Write an instruction which will transfer 31 characters from address
5038 to address 7196 (working from right to left).
Execute the following two instructions and show final HSM contents.
4 3104 3105
J * 3101 3101
00 o1 o2 03 04 (0} 06 (0]0) o1 o2 03 04 05 06
* c A S E * * |31
HSM Before HSM After

II-67

3. Machine Operation

The Transfer Data Left instruction has two different status levels, an Al
and a B. The Al status level brings out the character found at the A ad-
dress and stores it in the D2 register. In addition, the A address is
incremented by one and sent. back to the A register. The N register con-
tents are decreased by one. The B status level transfers the character
from D2 to memory as addressed by B, then increases the B address by one
and sends it back to the B register., If N is equal to 2ero, the instruc-
tion terminates by selecting a P1. If N is not equal to zero, another Al

status level is selected. The process is repeated until N equals zero.

Note that A final will always be one location to the right of the last
character transferred and B final one to the right of the last destina-
tion location. The DL instruction works from left to right with both
addresses incrementing during execution. However, the DL instructions
can be used to transfer characters from any HSM location to almost any
other location if one bears the '"overlap" problem in mind. For example:
M2 1009 1006 or M2 1006 1009 are both legal operations, but with

different end results.

Al

TPO1 A address is gated onto Bus.

Contents of Bus are sent to MAR and Bus Adder and one is added
TP1 to the address. Command Level is generated. MAR address is
decoded and diad is selected.

TP2 A register is reset.
TP3 N-1 Bus = A
TP23 Both characters are read out into MR, Contents of Bus Adder

are gated onto Bus.

TP4 D register is reset.

TP45 Regeneration occurs and contents of MRO or MRl as determined by
address in MAR are sent to Bus 2.

TP5 Contents of Bus 2 are gated into D2 register.

TP6 B status level is automatically selected.

IT1-68

TP4

™2
o R gy PRI
A REG. Frps €6
TPOI s T R
n-2°
TP3
IPSgus o
8uUS |
BUS 2
™ 8uUS 3
T™P23
BUS MAR TP6
MAR 7™ ADDER ADDRESS Aogggss
TPAS
T
BA(+1)
r SELECT
H 8
HSM yYSYYyY VYV YNV, MRO } MRI
F ENERATEN }
PERMIT

BOTH

READ OUT (= TP23)

Figure 27 Al of Transfer Data Left

II-69

B

TPO1 B address gated onto Bus. ;

TP1 Contents of Bus to MAR and Bus Adder where one is added to
address. Generate Command Level, Decode address and select
diad.

TP2 Contents of D2 are gated onto Bus 2. Permit one character from
opposite location, as addressed by MAR to reach MR during read
out, o

TP3 Gate character from Bus 2 into MR as specified by address in MAR.

TP4 Reset B register.

TP45 Regenerate old and new character. Gate modified address from
Bus Adder to Bus.

TP5 Contents of Bus are gated into B register.

TP6 If contents of N are equal to zero select.Pl, if not equal to
zero select Al. :

TP4
R : 02
_ 8 REG. REG
TPOI . f j-TPZB
IFS BUS O
BUS !
BUS 2
TPI—o- " BUS 3
TP4S TP3
- NZ. TPE NZ
ADDRESS ADDRESS
" BUS
MAR ## ADDER EVEN 906
I
BA)
SELECT SELECT
REGENERATION T Al Pl
(= TPaS) !
HSM Aobefofbbf A A A A AAA MRO | MRI
|
1

MAR ADDRESS EVEN
MAR ADDRESS 00D

READ OUT (=X TP23)

Figure 28 B of Transfer Data Left

I1I-70

The Transfer Data Right instruction has two different status levels, an Al
and a B. The Al status level brings out the character found at the A ad-
dress and stores it in the D2 register. The A address is decremented by
one and sent back to the A register. The N register contents are also
decreased by one. The B status level transfers the character from D2 to
memory as addressed by B, then decreases the B address by one and sends

it back to the B register. If N is equal to zero the instruction termi-
nates by selecting a Pl and if N is not zero another Al status level is

selected. The process is repeated until N equals zero.

Note that A final will always be one location to the left of the last

character transferred and B final one to the left of the last destination

location.

The DR instruction works from right to left. That is, both addresses

count down during execution., However, the Transfer Data Right can trans-
fer characters from any HSM location to almost any other location without
regard to relative position of the addresses to one another. For example:
N 2 1006 1009 or N 2 1009 1006 are both entirely legal operations,

but with different end results of course.

I1-71

Al

TPO1 A address is gated onto Bus.

TP1 Contents of Bus are sent to MAR and Bus Adder and one is sub-
tracted from the address., Command Level is generated. MAR
address is decoded and diad is selected.

TP2 A register is reset.

TP23 Both characters are read out into MR. Contents of Bus Adder
are gated onto Bus.

TP3 Contents of Bus are gated into A register. N is triggered down
by one.

TP4 D register is reset.

TP45 Regeneration occurs and contents of MRO or MR1 as determined by
address in MAR are sent to Bus 2,

TP5 Contents of Bus 2 are gated into D2 register.

TP6 B status level is automatically selected.

I1-72

2 TP
uy TRIGGER
Ni=1) 02
A REG. — TP3 | REG.
TPOI [3 1 R
: n-2°
TP.
3 "’sBUSO
BUS 1
aUs 2
™ — 8US 3
23
s AR MAR e
wan 7] aooen p wfifes AoBo*
a8
T
BA(-1)
T seLecT
: []
HOM \ MO | MM
[RATION !
?¥“mu) A
PERMIT

READ OUT (= TP23)

Figure 29 Al of Transfer Data Right

TPO1 B Address gated onto Bus,

Contents of Bus to MAR and Bus Adder where one is subtracted
TPl from address. Generate Command Level. Decode address and
select diad.

Contents of D2 are gated onto Bus 2, Permit one character from
TP23 opposite location, as addressed by MAR to reach MR during read

out.
TP3 Gate character from Bus 2 into MR as specified by address in MAR.
TP4 Reset B Register
TP45 Regenerate old and new character. Gate modified address from

Bus Adder to Bus.,

TP5 Contents of Bus are gated into B register.

TP6 If contents of N are equal to zero select Pl, if not equal to
zero select Al,

—TPa
R 02
B REG. REG
TPOI : TP23
TP5
BUS 0
BUS |
BUS 2
TP —o- BUS 3
TP45S TP3
NZ TPe NZ
ADBRESS AR
BUS ADDRESS
MAR ™ ADDER EVEN 300
|
BA (1)
SELECT SELECT
REGENERATION T Al]
(= TP4S) I
HSM AffhdddddAA44 4441 MRO | MRI
|
1

MAR ADDRESS EVEN
MAR ADDRESS 00D

READ OUT (=X TP23)

Figure 30 B of Transfer Data Right

II-73

4. Programming Errors

There are basically two ways that the M or N instructions may cause unsus-
pected trouble. One way is in transferring an overlapping field in one
direction or the other. For example, assume one wishes to transfer five

characters two positions to the right.

10 11 12 13 14 15 16 10 11 12 13 14 15 16
22 R I G H T - - | 22|R I R I G H T

HSM Before HSM After

The only single instruction which will accomplish this is a Transfer Data
Right:

N 5 2214 2216
If a Transfer Data Left is used, the following would occur.,

M 5 2210 2212

10 11 12 13 14 15 16
221 R I R I R I R

HSM After

A similar problem occurs in shifting to the left., Therefore, the B address
of an M or N instruction should not fall between the initial A address and

A * N(+ for Data Left, - for Data Right) where N is the N character.

The second method whereby the M or N instructions might not function properly
is where an N character is used which does not exist in the N count. 1In this
instance there is no alarm, but the number of characters that will be trans-
ferred will be a number which is an extension of the nearest lower N count.

For example in the following instruction, the N character is an asterisk(¥).

M * 1000 3000

The nearest lower N count character is R which represents 29. An ¥ would
transfer 32 characters since it is 3 characters away from R in the code.

An S (legal N count for 32) would transfer the same number of characters.

IT-74

It should be noted that if one forgets to use an N count character and in-
stead writes a two digit number for the N character, every character of the
instruction as well as those in succeeding instructions will be shifted over
one location to the right since a maximum of ten characters is permitted per
instruction.
For example: N 12 3046 5028
would be executed as: N 1 2304 6502

The operation code of the next instruction would be an 8.

The correct instruction is: N B 3046 5028

PRACTICE PROBLEMS

5. Refer to the simplified status flow just presented and describe the
differences between the Transfer Data Right and Transfer Data Left

instructions.

6. Perform the following instruction and give the required information.
M 5 2250 2252

50 51 52 53 54 55 56 50 51 52 53 54 55 56
221 E X A M P L E | 22

HSM Before HSM After
Af= Bf:
7. Execute: N 5 2254 2256
50 51 52 53 54 55 56 50 51 52 53 54 55 56

22 | E X A M P L E 22

II-75

8., Which instruction should you use to successfully move a block of six

characters two positions to the right.

9. Execute the following program and indicate the final HSM contents.
1000 J1 2004 2004
1010 M2 2000 2005
1020 N1 2009 1031
1030 N4 2008 2003

00 o1 02 03 04 05 06 07 08 09

20 | A N T I * * O D A 2

HSM Before

00 0ol 02 03 04 05 06 07 08 09

20

HSM After

10. Use either a DL or DR instruction to duplicate the results obtained
by "J % 1001 1005."

Instruction:

00 01 02 03 04 O05 00 01 02 03 04 O5
10 * A B C D E 10
HSM Before HSM After

II-76

D. # - TRANSFER DATA BY SYMBOL LEFT (DSL) REPEATABLE

P - TRANSFER DATA BY SYMBOL RIGHT (DSR) REPEATABLE

The DSL and DSR instructions are; like the DL and DR instructions, used to
transfer a number of characters from one group of consecutive locations in
memory to another group of consecutive locations. Also, like the DL and DR
instructions, DSL and DSR use the A register to address the transfer location
and the B register to address the destination location. However, unlike the
DL and DR instructions, DSL and DSR continue to transfer characters until a
selected character has been transferred. The selected character is the N
character. DSL works from left to right, and DSR works from right to left.
DSL and DSR store Af in a standard location called STA (Store A). STA con-
sists of memory locations 0212-0215 inclusive. Because we know Ay (A initial)
which is just the contents of the A register after staticizing, by consulting
STA after execution, the number of characters transferred during execution

‘can be determined.

Again the word ''repeatable'" after DSL and DSR means that the instructions can

be repeated using the Repeat instruction.

NOTE: Pages V-11 and V-12 of the Programmer's Reference Manual give

operations summaries.

The final addresses are:

DSL: A One location to right of selected symbol in original area.

f
Bf = One location to right of selected symbol in destination area.
DSR : Af = One location to left of selected symbol in original area.
Bf = One location to left of selected symbol in destination area.

1. Instruction Format

Op. Code N A B
or P Selected Symbol HSM Location of Destination
on Which to Stop First Character Location
Transferring to be Transferred First Character

II-77

2. Instruction Execution

Example #1: P @ 2003 3005
00 01 02 03 04 ’ o1 02 03 04 (01
20l 3 e 7 8 D 30 |lc 2 ¢ B @
i
HSM Before
00 o1 02 03 o4 ' 01 02 03 04 05
20A 3 @ 7 8 D 30 G 2 @ 7 8
T*
Af Bf
HSM After
Example #2: # * 4105 4108
04 05 06 o7 08 09 10
41 S Y M * * P L
HSM Before
04 05 06 07 08 09 10
41 S Y M * Y M *
HSM After
Example #3:k # # 5550 5553
50 51 52 53 54 55 50 51 52 53 54 55

55 C # D E F 55 C # D C # F

o —W

#
i By Ag : £
HSM Before HSM After

Note that the selected symbol is itself the last character to be

transferred.

IT-78

PRACTICE PROBLEMS

1. Using a DSR instruction and the following HSM contents, transfer the
characters, ¥* P RO, to locations 4818, 4819, 4820, and 4821,

respectively.

10 11 12 13 14 15 16 17 18 19 20 21

48 |* P R 0O G R A M * 1 2 3

2, Execute the following instruction and show final HSM contents.

E 8826 8825

25 26 27 28 29 30 31 25 26 27 28 29 30 31

88 R E S U L T S 88

HSM Before HSM After

12 13 14 15

02

HSM After

3., If the following instruction were attempted what would occur?
P / 3564 3563 '

60 61 62 63 64 65 066

3511 2 3 / 4 5 6

HSM Before

a. Use of DSL/DSR to Locate a Symbol in HSM

The DSL and DSR instructions can be used to locate a specified character and

II-79

not change the contents of memory in the process.

NOTE: These instructions are the true locate symbol instructions.
Assume a quantity of unknown length exists in memory between 1000 and 1005,
and that the quantity will never exceed five characters. The quantity will
always, however, be preceded by an asterisk (¥). If it is desired to locate

the MSD of the quantity and not disrupt memory, the following instruction

will suffice.

Example #4: # ¥ 1000 1000

00 o1 02 03 04 05

10 | * X X X X X

Example #5: * 1000 1000
00 o1 02 03 04 05

1

£ £

10 | X X * X X

NOTE: In both of the above examples, Ai = Bi and Af = Bf.

The only assumption needed is that the characters preceding the asterisk are

not asterisks.

The LSD of a quantity can similarly be located by using a P (DSR) instruction.

II-80

PRACTICE PROBLEMS

4, Execute the following program and show final HSM contents.
1000 J @ 3000 3006
1010 P * 2005 3006
1020 # * 3000 3000

00 01 02 03 04 05 06 00 01 02 03 04 05 06
20 | * 3 6 8 7 9 * 30| A B C D E F G
HSM Before
00 01 02 03 04 05 06 00O 01 02 03 04 05 06
20 30
HSM After

What address would be in 0212 to 02157

12 13 14 15

02

5. Execute the following program and show final HSM contents.
1000 P @ 3334 3335
1010 N 4 0215 1025
1020 # @ 3330 3330

30 31 32 33 34 35 30 31 32 33 34 35
33 | A @ B @ C @ 33
HSM Before HSM After

IT-81

12 13 14 15

02

HSM After

1 The Transfer Data Right instruction transfers the contents of STA to

the locations which make up the A Address of the Transfer Data by

Symbol Left instruction.

3. Machine Operation

Again only two basic status levels are used, an Al and aB. The function of
the Al is to bring out the character as addressed by A and place it in the
D2 register. The N character is gated into D3 and a comparison takes place
between D2 and D3, Meanwhile the A address is incremented or decremented by
one and sent back to the A register. The B status level transfers the char-
acter from D2 to memory at the B address and increments or decrements that
address by one. The result is sent back to the B register. The comparator
output is then examined. If the character transferred is equal to the N
character (D2 = D3) the instruction terminates; if not the instruction con-

tinues by selecting another Al status level.

II-82

Al

TPO1 Gate A address onto Bus.

TP1 Contents of Bus sent to MAR and Bus Adder where one is added or
subtracted from address. Command Level is generated and MAR
address is decoded.

P2 A register is reset.

TP23 Both characters are read out into the MR. The contents of Bus
Adder are gated onto the Bus,

TP3 The address on the Bus is sent back to the A register.

TP4 The D register is reset.

TP45 Regeneration occurs., Character as specified by address in MAR
is gated onto Bus 2, Contents of N register gated onto Bus 3.

TP5 Contents of Bus 2 gated into D2 and contents of Bus 3 gated into
D3.

TP6 Select B status level.

—————<—TP4
—TP2 Cal 3
|
N D2 03
A REG. REG. REG. : REG
|
Tpou-t ? f TP4S
s s IP¥ 8us o
BUS |
8US 2
™I Py BuS 3
P23
TP6
BUS MAR MAR
MAR ™ ADDER ADDRESS ADDRESS
EVEN 000
T TP4S
BA(+1)
BAC-D T SELECT
| 8
HSM FA At AoAAAAAAAAFA44+ MRO | MRI
REGENERATION |
(= TP45) 1
PERMIT

READ OUT (== TP23)

Figure 31 Al of Transfer Data by Symbol Left or Right

IT-83

B

TPO1 B address onto Bus.

TP1 Contents of Bus to MAR and Bus Adder where on is added to or
subtracted from the address. Command Level is generated and
MAR address is decoded.

TP23 The contents of D2 are gated onto Bus 2. One character is read
out from the opposite location of the address in the MAR into
the MR.

TP3 Depending upon the MAR address, the character on Bus is gated
into either MRO or MR1.

TP4 B register is reset.

TP45 Regeneration occurs. Contents of Bus Adder gated onto Bus.

TP5 Address on Bus gated into B register.,

TP6 If contents of D2 equal contents of D3 select STA 1, if not
select Al.

II-84

—TP4
R
8 REG D2

REG
TPOI E T TP23

TP5

(-4
("]
o
N
"
o
o

0
COMPAR | _ 53753

e — =
b]
m
(2]

™I Bus 3

™3 TPE
Pag 1

LU BUS
MAR Lt A S MAR aciar
EVEN 000

BAI [+
sl
REGENERATION

' (=TP4S)
HSM MRO

MAR ADDRESS EVEN
MAR ADDRESS

SELECT SELECT
Al STAI

o - - — -
3
3

READ OUT (xTP23)

Figure 32 B of Transfer Data by Symbol Left or Right

a.) STA 1 and STA 2

Termination for the DSL and DSR is slightly different than the previous in-
structions discussed., Two additional status levels called STA 1 and STA 2
are executed when transferring is complete. These two status levels com-

" prise the process known as Store A - storing the final A address in standard
| locations 0212 through 0215. The time pulse breakdown for the Al of a DSL

is as follows.

STA 1 and STA 2 were not used with DL and DR because with these instructions
the N count is used to determine the number of characters moved, so given
the initial A address and the N count, the programmer can easily determine
A final. However, when using DSL or DSR, transfer continues until a selec-
ted symbol is encountered in the "A-field.'" The programmer may not know in
advance where in HSM the termination symbol will be found, so the STA 1 and
STA 2 are used to insert this information into a standard location (0212-
0215) so that the programmer will know how many characters were transferred,

etc.

11-85

STA 1

TPO1 Generate address 0212 from address generator onto Bus.
TP1 Contents of Bus to MAR. Generate command level and decode MAR
address.

TP23 Gate A address onto Bus. Inhibit both characters being read out
from reaching MR.

TP3 Gate contents of Bus O into MRO and Bus 1 into MR1.

TP45 Regenerate.

TP6 Select STA 2,
ADORESS A REGISTER
GENERATOR T 1
o212 A0 | Al i A2 IAS
TPOIt f TPZSt T TP23
8US 0
2 BUS |
B8US 2
T , 8US 3
TP3 TP3
™6
MAR
SELECT
H STA 2
HSM A At AAAAAAAAAAAAA MRO | MRI
REGENERATION |
y T (= TPaS) |
1 1 q o
e T i |
o t l
L ‘\ J | |
T T | |
: b e e e e e e J |
L e e e e e e e e —— J

Figure 33 STA 1 Status Level

1I-86

STA 2

TPO1 Generate 0214 onto Bus from Address Generator.

TP1 Gate contents of Bus into MAR. Generate command level and
decode MAR address.

TP23 Gate A address onto Bus. Inhibit two characters being read
from reaching MR.

TP3 Gate contents of Bus 2 into MRO and contents of Bus 3 into MR1.

TP45 Regenerate.

TP6 Select P1 status level.

ADDRESS A REGISTER
GENERATOR T T T
(0214) AD | Al | A2 | A3
1 i 1
TPOI) szsr I f jTst
BUS O
BUS |
BUS 2
3
TP - BUS
TP3 TP3
TP6
MAR
] SELECT
H Pl
HSM AAAAAAAAAAAAAAAAF MRO | MRl
REGENERATION :
y T (= TPas) \ T
t
r2 et . !
| [|]
[l\ | ‘
\11 _[/ ' X
I
| e - e - - - J |
e e e e o o — - — s e)

Figure 34 STA 2 Status Level

I1-87

4, Programming

Errors

The DSL and DSR
Transferring an
DR instructions

However, in the

instructions may go awry if care isn't taken with the address.
overlapping field was described as a problem in the DL and
and this problem also exists in the DSL and DSR instruction.,

DSL. and DSR instructions the end result is more serious in

that the selected symbol(s) will be eliminated and the instruction will con-

tinue to transfer until a WTT alarm occurs.

Example #6:

@ 7205 7207

05 06 o7 08 09 05 06 o7 08 09
72 1 A B @ C D 72 | A B A B A
HSM Before HSM After

The characters A B are inserted in memory up through the highest address

thereby wiping out any symbols. A WIT would occur when location 0000 was

addressed if WTAB was not set., If WTAB is set, the computer would cycle

through memory without terminating the instructions.

Example #7:

21

2

P § 4325 4324

2 23 24 25 21 22 23 24 25

43 6

$

5 S 2 43 | 2 2 2 2 2

"Twos'" would be transferred to every location down to 0199 and a WIT alarm

would occur.

II-88

PRACTICE PROBLEMS

6., Write an instruction to move 30 characters from 1020-1049 to 5030-5059.

7. Memory is first filled completely with *'s, Then a word of indeterminate

length is written into HSM starting at 1000.

Use one instruction to move the entire word to 5000, (1000 is the loca-
tion of the first letter of the word) How would you determine quickly

how many letters the word contained?

IT-89

8. With the WIAB button depressed, execute the following program:
1000 J * 0000 0000
1010 P * 0000 0000

How can the DSR instruction in this program be used to determine the

size of memory?

9. Given initial HSM contents and the following program to be executed,

what are final HSM contents, A final, and the final contents of 0212-02157?

1000 P * 2009 2009
1010 M 4 0212 1032
1020 N 4 0215 1039
1030 J @ 2000 2009

00 o1 02 03 04 05 06 07 08 09

20 P A C E S * 0] N E S

HSM Before

II-90

00 01 02 03 04 05 06 07 08 09
20
HSM After
At end of execution: Af =
Final Contents: 12 13 14 15
02

10. With the WTAB button depressed, execute the following program and give

the required information:

1000 # * 2001 2000
1010 P * 2009 2008
1020 J * 0001 0000

00 o1 02 03 04 05 06 07 08 09
20 P A C E S * (0] N E S
HSM Before
00 01 02 03 04 05 06 o7 08 09
20
HSM After
At end of execution: Af =
Final Contents. 12 13 14 15
02

I1-91

E. K - LOCATE SYMBOL LEFT (LSL)

L - LOCATE SYMBOL RIGHT (LSR)

These instructions search a designated area for a selected symbol. Both in-
structions terminate upon finding a non-selected symbol or upon searching the
entire designated area (A-B Equality). The LSL instruction operates from
left to right and the LSR instruction operates from right to left. The final
contents of the A regisfer are stored in STA during both instructions. The
PRI's (Previous Result Indicators) are set during execution of the LSL and

LSR with their indications as follows:

PRN is set when the first character searched is not equal to contents of N.
PRZ is set when all characters are equal to contents of N,
PRP is set if a non-symbol is found in the specified HSM area after a

character equal to the contents of N has been found.

The PRI's are flip-flops which may be sensed (using the CTC instruction)
during the execution of a program, Control is transferred to different

points in the program depending upon which PRI is set.

Final Register Contents:
If all characters searched are equal to N '

Af = Bi

Be = By

If a non-selected symbol is found

LSL: Af

LSR: Af

One location to left of non-selected symbol., B_ = B.

One location right of non-selected symbol. Bf = Bi

NOTE: See pages V-5 and V-7 of Programmers' Reference Manual for

operations summary.

1, Instruction Format

Op. Code N A B
K or L Selected Leftmost Location Rightmost Location
Symbol to be Searched in K to be Searched in K
Instruction-Rightmost Instruction-Leftmost
In L Instruction in L instruction

I1-92

2., Instruction Execution

Example #1: K @ 2300 2305

00 01 02 03 04 05 06 07

23 | @ 4) @ 3 4 5)
Ai Af Bi = Bf
HSM Before and After -- PRP would be set.
Example #2: L ¥ 7588 7583

83 84 85 86 87 88 89

75 C A * * * L *
Bi= Bf Ai Af
.HSM Before and After -- PRN would be set.

PRACTICE PROBLEMS

1. If the following instruction were executed, what would locations

0212-0215 hold, and what PRI would be set?

L #Z 3058 3055

53 54 55 56 57 58 59

30|42 g /] 2 3 @ g

HSM Before and After

12 13 14 15

02 PRI?

I1-93

2. What PRI would be set if the following instruction were executed?

K A 6581 6583

80 81 82 83 84 85 86

65 |c A A A 7 G 6

HSM Before

3. A quantity exists in memory between locations 4000 and 4007. The number
of digits this quantity contains is unknown, but is is known that non-

significant zeros precede the most significant digit (MSD).

Example: MSD

O00XXXXX

Non-significant Quantity
zeros

The total number of characters is always 8. Write an instruction which

would locate the position one to the left of the MSD for any case.

4, Execute the following program and show final HSM contents.

5000 P * 2515 3439
5010 K @ 3434 3439
5020 N 4 0215 5039
5030 J * 3434 3434
10 11 12 13 14 15 34 35 36 37 38 39
25 |lA N * 1 2 3 34 |6 4 ¢ @ @ &
HSM Before

II-94

10 11 12 13 14 15 34 35 36 37 38 39

25 34

HSM After

3. Machine Operation

In this section we will introduce a new format for describing the sequence

of events during the execution of an instruction. This new format is less
cluttered and will make it easier for the student to follow the "status flow"
or sequence of status levels. For example, in the new format "A - BUS" will
replace "The A address is gated onto the bus." "TBEEBET" means '""The charac-

ter in the D2 register is unequal to the character in the D3 register."

Termination of the LSL/LSR instruction is a bit more complex than that of
any previous instruction. There are three things to be done: (1) the appro-
priate PRI must be set, (2) the contents of the A register must be adjusted

properly, and (3) the final contents of the A register must be stored.

Notice that PRZ is set at TP2 of the P5 status level which completes staticiz-
ing of the LSL/LSR instruction. If the instruction is completed without
finding a non-selected character (i.e. terminates on A-B equality) PRZ re-

mains set.

Consulting the status flow chart (Figure 35) we find that as long as neither
A-B equality nor a non-selected character have been found, the instruction
loops through Al and X1 status levels, performing one Al and one X1 for each
character examined. The Al status level is used to bring the N character to
D3 and the character addressed by the A register to D2 for comparison. The
X1 status level is used to (a) set PRN if a non-compare is found in the first
location chedked, or to (b) set PRP is a non-compare is found in some suc-

ceeding location.

IT-95

II-96

P5
Set PRZ
TP2 Set FD
TP6 Reset ABE
A
r
Al
TPO1 A BUS
If LSL: BUS—%» MAR —» BA(+1)
, If LSR: BUS—» MAR —»BA(-1)
TP1 Generate CL
Permit Both
If A=B: Set ABE
TP2 Reset A
TP23 BA —=BUS
TP3 BUS—>A
TP4 Reset D .
If MAR3-20(0): MRO-> BUS2
TP45 If MAR3-20(1): MR1-—BUS2
N BUS3
TP5 BUS2 —=D2
BUS3 —»D3
TP6 Select X1
X1
— If FD(1).(D2=D3): Set PRN
If FD(0). (D2=D3): Set PRP
TP5 Reset FD ,
TP6 If (D2=D3)/ABE(1): Select X2
If (D2=D3). ABE(0): Select Al
(D2=D3)/ABE(1))& (D2=D3). ABE(0)
*END STAT

Figure 35 Al and X1 of LSL/LSR

The method used to determine whether or not a character being examined is
the first character examined by the instruction depends upon the setting of
the FD (first digit) flip-flop at TP2 of P5 during staticizing of the in-
struction. FD remains set until TP5 of the first X1 status level when it

is reset. Thus when checked at TP4 of an X1 when D2=D3 if FD is set it
means "This is the first X1 status level since P5" indicating that the first

character addressed is now being compared to the N character in the D register.

From examining TP4 of the X1 status level we see that PRN is set if the first
character is a non-selected character, and PRP is set if any succeeding char-

acter is a non-selected character,

Finally, if a non-selected character is found or A-B equality is reached an
X2 status level is selected at TP6 of the X1. The X2 status level is used
to modify the the A final address. Examining TPl of the X2 we see that if
a non-selected character has been found, the A address is adjusted by two in
a direction opposite to that of its movement during the execution of the Al

status level.

The address thus produced will be that of the last selected character to be
examined, provided that at least the first character examined was a selected
character. If the first character examined was a non-selected character, the
final address will then be one to the left of this character for LSL or one
to the right of the character for LSR. If no non-selected character is
found, the adjustment produces an A final address which is that of the last

character of the field, that is, the same as the B initial address.

The X2 status level selects a STAl status level, which in turn automatically
selects a STA2 status level. The STAl and STA2 store the newly adjusted A

final address.

I1-97

II-98

X1
4
X2

" TPO1 A BUS
If LSL. (D2=D3): BUS—»MAR BA(~-2)
TP1 If LSR. (D2=D3): BUS—»MAR BA(+2)
If LSL. (D2=D3): BUS—> MAR BA(-1)
If LSR. (D2=D3): BUS—sMAR BA(+1)
TP2 Reset A
TP23 BA—BUS
TP3 BUS—>A
TP6 Select STA1
¥
STA1l
TPO1 0212 —=BUS
BUS—-MAR
TP1 Generate CL
Inhibit Both
A0 —»BUSO
TP23 Al—>BUS1
BUS0—»MRO
TP3 BUS1—-=MRI1
TP6 Select STA2
¥
STA2
TPO1 0214 —>=BUS
BUS—+»MAR
TP1 Generate CL
Inhibit Both
A2->»BUS2
TP23 A3—»BUS3
BUS2-> MR0
TP3 BUS3—=MR1
TP6 _Select P1_
Pl

Figure 36 X2 of LSL/LSR; STA1l and STA2

4. Programming Errors

In the LSL and LSR instructions memory is not changed, only examined, hence
very little can go wrong with any combination that is written. However, it
is possible to obtain incorrect PRI settings and final STA contents by re-
versing the A and B addresses. For example suppose the field to be examined

exists between 1003 and 1008 but the instruction was written as:

03 04 05 06 07 08

10 - - - 3 6 5

K - 1008 1003

The final A address would be 1007 and PRN would be set while if the instruc-

tion were written correctly:
K - 1003 1008

The final A address would be 1005 and PRP would be set. Note that although
the field limits are misaddressed, the instruction can still terminate since

a non-selected symbol as well as A - B equality halts the operation,

PRACTICE PROBLEMS

5. It has been found that the D2 register equals the D3 register and the
processor has selected an X2 status level of an LSL instruction. What

causes the selection of the X2 STL?

II1-99

6. What is the purpose of the X1 of the LSL/LSR? The X27?

7. A 10K HSM is first filled with @'s, and then a word of indeterminate
length is inserted at an arbitrary location higher than 2000. You are asked
to find: (a) the starting location of the word, and (b) the number of letters

in the word. (The word will contain no numeric data.) How would you do it?

II-100

8.

Execute the following program and show HSM final.,
1000 K¥ 2000 2004
1010 M4 0212 1032
1020 M4 0212 1036
1030 JR 2000 3000
00 01 02 03 04 00 01 02 03 04
20 | * * C A * 20
HSM Before HSM After
What PRI will be set?
The following instruction is manually inserted and executed.
the HSM final contents? What is Af? Which PRI will be set?
L¥ 3001 3000
00. 01 02 03 04 00 01 02 03 04
30| * A B C * 30
HSM Before HSM After
Af = Which PRI
Is ABE set .

What are

I1-101

10‘

F. A

What is HSM content after execution?

This instruction translates a specified number of characters in a designated

area from one binary code to another by use of a translate table.

the Translate instruction is exXecuted,

lated are replaced by their equivalent from the table.

1000 K*¥ 5000 5005
1010 M4 0212 1022
1020 L1 5002 5000
1030 N4 0215 1045
1040 J¥ 5004 5004
00 o1 02 03 04 05 00 o1 02 03 04 05
50 * * 1 2 3 * 50
HSM Before HSM Af ter
What PRI is set 12 13 14 15
02
HSM After
~TRANSLATE (TRA) Repeatable

operates from left to right and does not go through STA.

II-102

NOTE:

be found on Page V-3 of the Programmer's Manual.

>
1]

The table
can be stored anywhere within memory and must be previously inserted before
The characters which are to be trans-

The TRA instruction

An operations summary of the Translate instruction may

£ One location to the right of last character translated.

By = B;

l, Instruction Format

Op. Code N A B
A Number of Location of Location of First
Characters to Leftmost Char- Character of
be Translated acter to be Translate Table.
(0-44) Translated and (3283 must be (00)

its Result

NOTE: If N = @, no characters are translated and the next
instruction in sequence is executed (i.e., P5 of the

TRA selects P1).

2, Instruction Execution

The character to be translated is read out of memory and split into two

octal digits. The 20, 21, and 22 bits form one digit and this digit is

inserted in the D3 register. The 23, 24, and 2° bits form the second

octal digit which is placed in the D2 register in the 20, 21, and 22 posi-

tions. The 23, 24, and 25 bits in both D2 and D3 are left as zero bits

thus forming two decimal numbers.

Example:

Character to be translated:

2 2 2 2 2 2
C = (0] 1 (0} (0] 1 1
25 24 23 22 21 20 25 24 23 22 21 20
0 0 0 0 0 0] 0 0 0 0 0] 0
D2 initially D3 initially

I1-103

The character C is split into O 1
o ,1

O and O 1 1 and the bits are

inserted into the 27, 27 and 22 positions of D2 and D3 as follows:

10

D2 after

(@]
o
@)
(@]
[
jury
i

W

10

D3 after

The octal numbers created from the splitting process are now the decimal

numbers 2 and 3.

The first two digits of the B Address are then combined with the contents

of D2 and D3 to form an address which is addressing within the translate

table. If the table starts at address 5500, then the address 5523 would

be constructed in this example. At

location 5523 should exist a combina-

tion of binary bits which represents the translated character for the

letter C, This translated character is read from the table and written

over the original letter C as addressed by A, The A Address is then in-

cremented by one and the next character is translated in a similar fashion.

Translation continues until the N count is reduced to zero.

Example: A 3 1000 2700
00 01 02 03 21 22 23 24
10| A B C D 27| - J K L
A.
i
HSM Before
00 01 02 03 21 22 23 24
10| - J K D 271 - J K L
Af Bf = 2700
HSM After

IT-104

In the above example, the 301 characters A, B and C were translated into
501 code. Note that in locations 1000, 1001 and 1002, after the instruc-
tion has been executed, exists octal numbers 40, 41 and 42, respectively.

Octal numbers 40, 41, and 42 are 501 characters A, B, and C,.

Translation from 301 to 501 or vice versa is not the only form of transla-
tion that can be done with the TRA instruction. On the contrary, any code
can be translated to any other code. All that is required is the proper

translate table.

PRACTICE PROBLEMS

1. Execute the following instruction and show final HSM contents.

A 4 2010 4000

08 09 10 11 12 13 14 15 16

20 A L K O M P * *

40 41 42 43 44 45 46 47 48

40 L A B 0] R * E T C

HSM Before

08 09 10 11 12 13 14 15 16

20

40 41 42 43 44 45 46 47 48

40

HSM After

I1I-105

2. Give the table addresses of the proper characters which are necessary

to change memory by the instruction shown below.

A 7 1452 3600

50 51 52 53 54 55 56 57 58

14| T R A N S L z T E

HSM Before

50 51 52 53 54 55 56 57 58

14 | T R (0] P I C A L *
HSM After

Tabie location should contain a
Table location should contain a
Table location should contain a
Table location should contain a
Table location should contain a
Table location should contain a
Table location should contain a
Table location should contain a

3, Machine Operation

The translate instruction requires three status levels: an Al, or D, and

an A2. The Al status level brings a character out of memory and puts the

II-106

23, 24, and 25 bits into the 20, 21, and 22 positions of D2 and the 20,

21, and 22 positions of D3,

The D status level gates the contents of D2 and D3 register (plus parity
bits if needed) onto BUS 2 and BUS 3, and simultaneously gates the B
register contents onto BUS 0, BUS 1, BUS 2, and BUS 3 all at TPOl.

Since B2 and D2 are both gated onto BUS 2 and B3 and D3 are both gated
onto BUS 3, you might expect to find '"garbage'" on BUS 2 and BUS 3, But
remember, B2 and B3 must both be equal to ZERO; and furthermore, the
parity bits in B2 and B3 are both inhibited from reaching the buses.
Therefore, no bits from B2 or B3 actually reach BUS 2 or BUS 3 (unless
there is a programming error). So finally, BO, Bl, D2, and D3 are used
to address memory. The character thus addressed is gated via BUS 3 into

D3. (See Figure 37, Al and D of TRA)

The A2 status level again addresses the location where the character we
are translating is located. (Notice that during the Al status level
BA(+0) was used so the A address is the same now.) Then the character
from D3 is written into this location in HSM. There are ways to leave
the A2 status level: either REPl, Pl, or Al may be selected. REP1l is
used only if the translate instruction is in the field of a repeat in-
struction, which will be covered 1later. 1If the N count has not yet
gone to ZERO, the next character must be translated, so an Al (of the
translate instruction) is selected., If the N count has been exhausted
(and the translate instruction is not being repeated using the repeat

instruction) a Pl is selected to start staticizing the next instruction.,

11-107

P5

NZ Nz
END STAT
Al
TPO1 A—>»BUS
TP1 BUS ->MAR BA(+0)
Permit Both, Generate CL
TP2 Reset A
TP23 BA —=~BUS
TP3 BUS —>A
TP4 Reset D
If MAR3-20(0): MRO —>BUS3
TP456
If MAR3-20(1): MR1 —» BUS3
— BUS3(23, 24, 25)—D2(20, 21, 22)
BUS3(20, 21, 22) —D3(20, 21, 22)
TP6 Select D
D
D2 —=BUS2
TPO1 D3 —»BUS3
(Create Correct Parity on BUS2 and BUS 3)
B — BUS (Inhibit B2, B3 Parity)
TP1 BUS —=MAR BA(+0)
Permit Both, Generate CL
TP4 Reset D
' If MAR3-29(0): MRO —»BUS3
TP456 0
If MAR3-20(1): MR1 — BUS3
L - TP5 BUS3 —s=D3
P1 TP6 Select A2

'

A2

Figure 37 Al and D of TRA

IT-108

D
'
A2

TPO1 A—>BUS
BUS—MAR BA(+1)
TP1 If MAR3-20(0): Permit C1, Inhibit CO

If MAR3-20(1): Permit CO, Inhibit C1
Generate CL

TP23 D3 —> BUS3
If MAR3-20(0): BUS3— MRO
TP3 If MAR3-20(1): BUS3 —MR1
Trigger N(-1)
TP4 Reset A
TP45 BA—>BUS
TP5. BUS —>A
If NZ.NRZ: Select REP1
TP6 If NZ.NRZ: Select P1

If NZ: Select Al

' NZ.NRZ NZ.NRZ NZ

REP1 P1 Al
Figure 38 A2 of TRA

4, Programming Errors

Besides an incorrect table or an N character outside of the N count (des-
cribed in DL and DR instructions), the Translate instruction can be mis-
used by making the initial B2 and B3 characters something other than zero.
During the process of creating the table address (D status level) D2 and
D3 are gated onto Bus 2 and Bus 3 and the B address excluding B2 and B3
parity is gated onto all four bus lines. Thus, if some bit combination
existed in the last two characters of the B address originally, the vol-

tage levels would combine on BUS 2 and BUS 3 and probably create bad parity

IT-109

which would produce a MAPE alarm.

Example:

Character M = (44)8

D2 and D3 would each create a decimal four.

B address 5502 is gated

BUS 3 would receive the

A 2 1000 5502
00 01
10 M C

=1 100 100

During the D status level, the
out onto the BUS and 44 is placed on BUS 2 and BUS 3.

following:

From D3 = 0000100 =

From B3 = 0000010 =

Result

on Bus 3 = 0000110 = 6 with bad parity

This would cause a MAPE
It is possible that the
occur, however, the resu

Example: A 1

alarm,

end result would have good parity and no alarm would

1ting table address may not be the correct one.

1000 5503
00

10

M

From D3

From B
NOTE Parit

Result

Bus 3

Constructed table addres

II-110

0000100
0000011

3

3

y is inhibited

on

0000111

7 with good parity

s would be 5547 instead of 5544 as it should be.

3.

Describe the execution

PRACTICE PROBLEMS

of the following instruction:

A 1 3003 9803

30

00 o1 02 03 04 53 54 55 56 57
30 | * R (o * * 98 | 9 A B C D
HSM Before
00 0ol 02 03 04 53 54 55 56 57
98
HSM After

Any alarm lights?

In problem 3. the translate table started at 9800.

Could we start a translate table at 45507

Where did it end?

Explain your answers.,

I1-111

5. Given the following instruction and the contents of HSM after its execu-

tion, determine the initial HSM contents.

A5 2055 5000

55 56 57 58 59 30 31 32 33 34
20| 7 a3 / 1 5 50 |/ 1 @ 7 5
HSM After
55 56 57 58 59 30 31 32 33 34
20 50
HSM Before

6. There is a character located in HSM at location 8919. Write a two-in-
struction program to determine whether the character is Group I, II,

III, or IV and if:
Group I - Place a "1" in location 4001
Group II - Place a '"2" in location 4002
Group III - Place a "3" in location 4003
Group IV - Place a '"4" in location 4004

HSM may be prepared in any way you wish before executing the two in-

structions, but be sure to mention these preparations in your answer.

II-112

7. During the D status level, which register receives the modified address

from the Bus Adder?

8. Show HSM final contents.

A7 4520

20 21 22 23 24 25 26

45 E A B D C D E

HSM Before

4500

45

20

21 22 23 24 25 26

HSM After

I1-113

G. INDIRECT ADDRESSING

Many times in programming it is necessary and/or advantageous to use the
final register contents of some preceding instruction as the A or B address
of another instruction. In previous problems a Transfer Data instruction
has been used to perform this operation. There is another method, however,
which in most cases involves fewer instructions and less computer time.

his second method is called indirect addressing.

An indirect address is not the ultimate address which will be used in execu-
tion of the instruction, but is instead the address of a storage location
which will contain the ultimate or direct address. The computer will recog-
nize an indirect address by the presence of the 2% bit in the LSD. For
example, the address 0215 is a direct address since the 24 bit is a zero

in the number 5 (00010l1). On the other hand, O21E is an indirect address
since the LSD does contain a 2% bit (E=010101). Note that the information
bits, 2O through 23, still represent a decimal 5., Therefore, an E is a 5
with a 2% bit.

In order that the process of indirect addressing be carried out correctly,
the indirect address must specify the rightmosf diad of the storage locations
housing the direct address. Thus, to use the contents of STA (1006) as the

A Address of an M instruction, the instruction would be coded as follows:

M 2 021E 2000

12 13 14 15

02 1 0 0] 6

In this example, the contents of memory locations 0214 and 0215 (rightmost
diad) would be stored temporarily in the D Register. During this operation,
the address 0O21E will be modified by -2, The A Register would then hold
the address 021C, which specified the leftmost diad. The contents of this
diad (1 and O) are then read from memory and combined with the contents of

the D register (O and 6). Finally, all four characters are gated into the A

II-114

Register as the address 1006. The M instruction then would be executed as

though it were written:

M 2 1006 2000

NOTE: - The same result could have been obtained using 021D,
since the indirect address must initially specify the

rightmost diad.

An indirect address is not restricted to standard locations. One can in-
directly address any location in memory. Nor is the indirect address asso-
ciated with only the A Address of an instruction. The A Address, the B
Address, or both can be indirect addresses. Also, an indirect address may
specify the location of another indirect address. The computer will con-
tinue to bring out four new characters for every indirect address, until

it finds an address which does not contain a 24 bit in the LSD.

Example #1: P * O021H O21E

Instruction Initially

12 13 14 15 16 17 18 19

0213 0 7 8 02| 4 9 5 2

HSM Before and After Indirect Addressing

P ¥ 4852 3078

Instruction Just Prior to Execution

I1-115

Example #2:

Assume the following instruction in memory starting at 1000

1000 J * 200H 200G

04 05 06 o7 08 09

2019 7 6 4 5 3

HSM Before and After
J * 6453 09764

Instruction Just Prior to Execution

Example #3:
1000 M 2 1011 101
1010 N 1021 102E
1020 J * 1031 103E
1030 . O 2034 2032

30 31 32 33 34 35 36

20 | A B C D E F G

HSM Before Execution of Program

Prior to execution of each instruction, the respective addresses shown

below would be placed in the A and B Registers as:

, M 2 2032 2034
2034 2032

J * 2032 2034

. O 2034 2032

30 31 32 33 34 35 36

20 | A B * * * D G

HSM After Execution of Program

IT-116

It should be noted that the original instruction is unchanged in memory,
i,e., indirect addresses still exist in the memory. The instructions are
brought out one at a time and modified in the registers during indirect

addressing and then executed.

1, Machine Operation

The process of replacing an indirect address by the contents of the location
addressed until there is no 24 bit in the LSD of the A or B addresses must
all take place before execution of the instruction. Since this process,
performed by the M1, M2, M3, and M4 status levels, is completed before the
first processing level (FPL) is selected, the process is considered part of

staticizing.

The M1 and M2 (Figure 39) status levels are used to replace the address in
the A register with the contents of the location addressed. At TP6 of M2,
if there is no longer a 24 bit in the LSD of the A address, either an M3 or
the FPL is selected, An M3 is selected only if the LSD of the B address
contains a 24 bit. In fact, if only the B address is indirect, the P5
status level will select the M3 directly. M3 and M4 (Figure 40) bring the
contents of the location addressed by the B register into the B register.
When there is no longer a 24 bit in the LSD of the B address at TP6 of M4,
the FPL is selected.

Figure 41 shows the complete staticizing procedure. Notice that if an in-
struction which uses the N REGISTER as a counter or selector is staticized

with N = O, P1 will be selected at TP6 of P5 even if the instruction has an

indirect address. This may be expressed symbolically: NZ.RINZ.P5 P1,
Figure 41 defines "RINZ" and also defines END STAT.

I1-117

¥
M1
TPO1 A —=BUS
BUS —MAR BA(-2)
TP1= Generate CL
Permit Both
TP2 Reset A
TP23 BA— BUS
TP3 BUS —-A
TP4 Reset D
MRO —-BUS2
TP456 MR1 —=-BUS3
BUS2 —D2
P
TIPS BUS3 =>D3
TP6 Select M2
j r
M2
TPO1 A —>BUS
BUS—>MAR BA(-2)
TP1 Generate CL
Permit Both
TP2 Reset A
MRO —= BUSO
MR1 — BUS1
TP45 D2 — BUS2
D3 -—=>-BUS3
TP5 BUS —=>A
If A3-24(1): Select M1
TP6 If A3-24(0). B3-2%4(1): Select M3
If END STAT*: Select FPL
o4 -4 24 END
A3-24(1) A3-24(0). B3-24(1) STAT*
M3 FPL

*END STAT = A3-24(0). B3-24(0)

Figure 39 M1l and M2 Status Levels

II-118

*END STAT = B3-24(0)

Figure 40 M3 and M4 Status Levels

FPL

P5 M2
] r
M3
TPO1 B —+~BUS
BUS —MAR BA(-2)
TP1 Generate CL
Permit Both
TP2 Reset B
TP23 BA—-BUS
TP3 BUS—B
TP4 Reset D
MRO —BUS2
TP456 MR1 —-BUS3
BUS2 —D2
TP5 BUS3 —D3
TP6 Select M4
17
M4
TPO1 B —BUS
BUS > MAR BA(-2)
TP1 Generate CL
Permit Both
TP2 Reset B
MRO —BUSO
MR1 — BUS1
TP45 D2 — BUS2
D3 —BUS3
TP5 BUS =B
TP6 If B3-24(1): Select M3
If END STAT*: Select FPL
B3-24(1) END STAT*

I1-119

P1

(P)—>OP & N
P+2

]

P2

(P)—=A0 & Al
P+2

I

P3

(P)—>A2 & A3
P+2

]

P4

(P)—»B0 & B1
P+2

1

P5

NZ.RINZ*

A3-24(1)

A3-24(0), B3-24(1)

(P)—>»B2 & B3
P+2

A3-24(0). B3-24(0) |

(A—>D2 & D3
A-2

!

M2

A3-24(1) (A)—>A0 & Al
D2&D3 —>A2&A3

A3-24(0). B3-24(1)

A3-24(0). B3-24(0)

E— M1 . [

M3

(B)—>D2 & D3
B-2

'

M4

(B)—>B0 & B1
D2&D3 —>B2&B3

B3-24(1)

B3-24(0)

J rr

Select P1 End Stat. - Select FPL

*RINZ = Any instruction that uses the N Register as a counter or selector (i.e. COM/DL/

DR/ADD/SUB/OR/AND/EX0O/TRA/REG/CTC)

Figure 41 Staticizing Block Diagram

IT-120

2. Programming Errors

The most common error in the use of indirect addressing results from an
attempt to use as a final address four characters the leftmost of which is
in an odd location. Notice that the M1 and M2 (or M3 and M4) status levels
pull two diads out of HSM. Therefore, the final address must be the four
characters of the two diads, the leftmost character of which is in an even

location.,
Example: K 1 400D 5500 1is the instruction in HSM.

00 01 02 03 04 05 06 o7 08

40 5 4 4 %) %) a3 2 3 7

The programmer may intend the address '4400" to replace the indirect A
address, but actually the final A address just prior to execution will
be "4000." An indirect address of 400D or 400E will bring the same two
diads out of HSM, so, the address pulled out of HSM by an indirect address

will always start at an even location.

PRACTICE PROBLEMS

1. Write a two-instruction program that is equivalent to the following

four instruction program.

1000 P * 2009 2009

1010 M 4 0212 1032
1020 N 4 0215 1039
1030 J O 2000 2009

II-121

2. Write a five-instruction program equivalent to the following three-in-

struction program,

1000 K * 5000 5005
1010 L 1 021D 5000
1020 J * O21E 5004

3. How many status levels are used to staticize the following instruction?

M 4 502I 6000

20 21 22 23 24 25 26 27 28 29

50 2 1 5 5 3 a3 5 0] 2 E

HSM Before

What does the instruction in the registers look like just prior to
execution?

IT-122

4., How many status levels are used to staticize the following instruction?

20

What does the instruction in the registers look like just prior to

execution.

J 200D 200H

00 0l 02 03 04 05 06 o7 08 09

1 2 2] g C (0] 0] B *
HSM Before

Describe the execution.

I1-123

5. Show the HSM contents just prior to execution, and after execution:

5020 = 5029 in problem three and 2000 - 2009 in problem four.

6. At some location greater than 1000 in a 10K memory which has been
cleared to @'s, an "X" has been placed. Write a program to fill

HSM from 1000 to the "X'" with *'s, Use indirect addressing.

II-124

7. Describe the staticizing of the following instruction.

J 2 400V 400N

00 01 02 03 04 05 06

40 | 2 3 4 7 1 5 A

HSM

I11-125

8. A block of information read into HSM from tape starts at location 2000

and consists of four sub-blocks separated from each other by *. There

Write a program to
transfer sub-block #1 to 5000, sub-block #2 to 6000, sub-block #3 to
7000, and sub-block #4 to 8000,

is also a *¥ at the end of the fourth sub-block,

IT-126

ANSWERS TO PRACTICE PROBLEMS

Pgs. 1I-56, 57, 58, 62
1. J * 1000 1002
00 o1 02 03 04 00 0ol 02 03 04
10 R C A * * 10 * * * * *
HSM Before HSM After
2, JE 2003 2003
00 01 02 03 04 00 o1l 02 03 04
20 R A C C * 20| R A C E *
3., At end of first instruction: J5 3005 3006
00 01l 02 03 04 05 06
30 * E X P E R T
HSM Before
00 ol 02 03 04 05 06
30 * E X P E 5 5

I1-127

At end of second instruction: JD 3002 3002
00 01 (0] 03 04 05 06 00 01 02 03 04 05 06
30 * E X P E 5 5 30| ¥ E D P E 5 5
HSM Before HSM After
At end of last instruction: J * 3004 3006
00 01 02 03 04 05 06 00 01 02 03 04 05 06
30 * E D P E 5 5 30| * E D P * * *
Answer
4, J @ 9996 9999
5. J -~ 5235 5237
Af=5238, Bf=5237
7. a. 10,000 locations will be filled. First 0001 if filled, then 0002 is
filled, and so on until 9999 is filled. The next and last location
to be filled in 0000 since for a 10K memory machine 9999 + 1 0000
since 9999 is the largest number the A register can hold. When 0000
is filled, A-B equality occurs and when ABE is checked at TP6 of
this last A2 status level, a Pl status level is selected and the
instruction terminates. Note, however, that at TP4-TP5 time of
this last A2 status level, the A register had already been modified
by +1, so the Af=0001.
8. 10,000. See explanation to No. 7.

II-128

There are three ways to approach this problem. The most straightforward
method is to use the instruction:

J * 0000 I 999
Note on your 301 code card that I is equivalent to 19, so the instruction
above will fill, starting at 0000, each location in memory through 19,999

or every location in the 20K memory.

A second method makes use of what you learned in problem number six and
is a bit more elegant since it can be used to fill a memory of any size,
even if this size is unknown to the operator. You could use the

instruction:
J ¥ 0001 0000

This will fill memory starting with 0001 to the '"top" of memory (be it
10K, 20K, or 40K) and then "wrap-around" to fill 0OOOO as the last loca-

tion, ABE will be set while 0000 is being filled and the Af=0001.

The third method is to use in the B address a non-numerical character

such as ";"

J ¥ 0000 000 for instance

Write an instruction to fill every location in a 20K memory with *'s,

(Assume WTAB is depressed.)

Since the A register is augmented numerically, it will never hold a
configuration such as ;000 so A-B equality will never be reached and
the computer will continue wrapping around memory, filling every loca-
tion many times, looking for A-B equality. Since ABE is never set,
the instruction will never terminate, and must be stopped by use of
the OCSP button.

Note that it makes no difference which A initial address we use since
all memory will be filled many, many times before you can push OCSP.

Also, note that any non-numeric character in any digit location of the
B address will give the same result (provided that the B register sup-

plies all the needed bit positions in the chosen digit position -~ care

II-129

must be exercised expecially in B, and B2).

1

10. a. Since the A-B equality circuitry doesn't look at the 26 bits, the
0000 in the A register and the blank B register will set ABE. Thus,
one location (0000) will be filled with d.

b. Af=0001, Bf=b1ank. Computer does stop.

c. Since WTAB was depressed, there are no errors. If WTAB had not

been depressed, a WIT error would have been generated.

11. 00 01 02 03 04
10

A B * D E

a. MR at TP4:

b, "C" will not appear in the MR. It is inhibited from reaching

MRO so that the N character (¥*) can be gated in instead.

12. The D will appear in MRl during the second A2 status level--actually
during the time that a "4" is being inserted into location 1002. It
will appear at about TP23 time of the second status level and remain
in the MR until the MR is reset at TPl of the third A2 status level.
(See page 2-1 of STATUS FLOW manual. This shows the functions per-

formed during every status level).

II-130

Pgs. II-67 & 75
1. 10 11 12 13 14 15 16 18 19 20 21 22 23
o2 | A 5 6 3 2 1 6 2 1 3 2 0 6
HSM After
2. 58 59 60 61 62 63
15| A B C E F F
HSM After
3. N/5038 7196 (or M/5008 7166)
4, 00 01 02 03 04 05 06
31 | * * C A S E *
HSM After
5. DL increments the A and B addresses; DR decrements them,
6. 50 51 52 53 54 55 56
22 | E X E X E X E Af=2255, Bf=2257
HSM After
7. 50 51 52 53 54 55 56
22 | E X E X A M P Af=2249, Bf=2251

I1-131

8. Transfer Data Right

9. 00 01 02 03 04 05 06 07 09
20 A N D A 1 A N D 2
HSM After
10. M5 1000 1001
00 01 02 03 04 05
10 * * * * * *
HSM After

IT-132

Note that the
instruction at
1020 changes the
instruction at
1030 to read

N2 3008 2003 be-
fore 1030 is
staticized.

Pgs. II-79, 81, 89, 90, 91

1.

P * 4813 4821

25 26 27 28 29 30 31 12 13 14 15
88| E E S U L T S 0z]8 8 2 7
HSM After HSM After

The selected symbol (/) would be destroyed and HSM would be filled with
4's down to 0199-WTIT alarm.

00 01 02 03 04 05 06 00 01 02 03 04 O5 06
20| * 3 6 8 7 9 * 30) * 3 6 8 7 9

12 13 14 15
0oz2| 3 0] 0] 2

HSM After
30 31 32 33 34 35 12 13 14 15
33| B @ B @ @ C 0oz| 3 3 3 4
HSM After

M "1020 5030 or N'" 1049 5059

% 1000 5000. To quickly determine how many letters the word contained,
examine the A final address by selecting the A register. A - 1000 - the
number of letters in the word +1., The "two extra'" are due to the facts
that an ¥, not a letter of the word was the last to be transferred, and
even after this transfer the A register will have been incremented by

one more. So the number of letters in the word + A_ - 1001.

f

IT1-133

8. The DSR instruction will transfer the * from 0000 to 0000 and the A
register will decrement by one going to the top of memory. Then by
either examination of A final or of the contents of 0212-0215, memory
size may be determined. 9999 - 303A, I999 - 304A, Z999 - 305. Note
that the instruction "N1 0000 0000" will allow you to determine HSM
'size by examination of the A final. This is simpler for manual deter-
mination. But also notice that "N" doesn't store A final, So is HSM
size is to be determined in a program, the "P" instruction will have to

be used in order to store the top HSM address.

9. 00 01 02 03 04 05 06 07 08 09 12 13 14 15
20| P A C E [} * (0] N E S 0212 (0] (0] 4
A HSM After Final
Af = 2005

The important points in this problem are: the fact that none of the
instructions following the DSR affect the store A area; and the fact
that the information in 0212 - 0215 is used to fill both the A and B

addresses of the SF instruction.

10. The instruction at 1010 will fill memory with "S's'" and continue looping
around HSM looking unsuccessfully for a *. Thus Af will depend upon when
the operator hits OCSP to terminate the cycling, and both locations 2000- -

2009 and 0212-0215 will contain all "S's.,"

II-134

Pgs. II-93, 94, 99, 100, 101, 102

12 13 14 15

02 3 0] 5 8 PRP Set

PRZ set

K@ 4000 4007

10 11 12 13 14 15 34 35 36 37 38 39
25 A N * 1 2 3 34 | * * * 1 2 3
HSM After

Set a PRI, adjust A store A_.

£’ f
The X1 is used to set the PRI's; the X2 is used to adjust A final.

One method is to use a LSL instruction to locate the last @ before
the word. Af + 1 = starting address of word. Then using Af + 1
as your starting A address, do a DSL from Af + 1 to A.f + 1. This
will stop after finding the first @ on the other side of the word.
The final A address of the DSL minus one will be the address the

last character of the word.

00 01l 02 03 04
20 * R C A * PRP will be set.

HSM After

II-135

10.

IT-136

00 01 02 03 04

30 * A B C * Af = 3002, PRP is set.

ABE is not set.

Since the first character examined was a non-selected character, we
would expect to set PRN. However, we inserted this instruction into
the registers manually, so there was no P5 status level to set the
FD flip-flop. On a non-compare, PRN is set only if FD is set at

TP4 of the X1 status level. Since in this case FD will not be set,
PRP is set instead of PRN,

00 01 027 03 04 05 12 13 14 15

50 | * * * * * * 02 5 0] 0] 2

PRN is set (by the LSR at 1020).

Pgs. 1I-105, 106, 111, 112, 113

1.

08 09 10 11 12 13 14 15 1316 40 41 42 43 44 45 46 47 48

20

A L B E R T * * * | 40|L A B 0 R * E T C

HSM After
Location 3621 contains (0]
Location 3645 contains P
Location 3662 contains I
Location 3643 contains C
Location 3671 contains A
Location 3663 contains L
Location 3625 contains *
Location contains
00 0l 02 03 04 53 54 55 56 57
30 * R C D * 98 | 9 A B C D

The B address must be 9800 not 9803, Because of this programming error,
the D status level will address 9857 instead of 9854, Since parity will

be correct, there will be no error lights.

It ended at 9876. Actually the table could go to 9877, but = is the 301
character with the highest binary bit value (octal 76). 77 is the largest
octal number possible with six data bits so the table must stop at 9877.
In fact it must start at XX00 and extend to XX77 due to the method used

for translation, so you would not find a translate table starting at 4450.

I1-137

20| . + H I 50 | / 1 %) 7 5

we

HSM Before

6. Prepare HSM as follows. Fill with: '"O" from 4000 thru 4004
"1 from 5000 thru 5017
n2" from 5020 thru 5037
"3 from 5040 thru 5057

"4" from 5060 thru 5077
Insert the following instructions at HSM locations shown:

8000 Al 8919 5000
8910 M1 8919 4007

The question mark in location 8919 indicates that this location
contains the unknown character and was not changed when inserting
the two instructions. The translate instruction will replace this
unknownAcharacter with a 1, 2, 3, or 4 depending upon the group to
which it belongs. Then the 1, 2, 3 or 4 will be written by the DL
instruction to 4001, 4002, 4003 or 4004, respectively.

7. The Bus Adder is not gated to the BUS during the D status level.

8. 20 21 22 23 24 25 26

45 | D A B C C Cc C

HSM After

IT-138

Pgs. I1-121 through 126

1000 P * 2009 2009
1010 J O O021E O021E

1000 K * 5000 5005
1010 M 4 0212 1022
1020 L 1 0000 5000
1030 N 4 0215 1045
1040 J * 0000 5004

9. (P1-P5, M1, M2, M1, M2). M 4 5500 6000

Eleven status levels. When staticized, the instruction looks like this:
J * 1220 002@, where the B2 and B3 characters have had parity. How-
ever, since the B register doesn't check parity and is not used to ad-
dress memory during execution, no alarm occurs until a WIT at location
0000, 1If WTAB is depressed, the instruction will not terminate since

"@" is not a BCD character and thus A-B equality will not be reached.

In neither problem 3. nor problem 4. will the contents of HSM be altered
by the indirect addressing procedure. 1In problem 4. all memory will be

filled with ¥ by execution of the instruction.

0900 K O 1000 9999
0919 J * 1000 OZ21E

II-139

7. Pl1-P5 would be performed correctly. Ml selected., When the contents
of the A register are used to address HSM during M1, a MAPE will occur
since the 2> bit of the "V" was dropped creating bad parity in A3.

8. 1000 # * 2000 5000
1010 # * O021E 6000
1020 # * O21E 7000
1030 # * O021E 8000

II-140

SECTION III
DECISION AND CONTROL INSTRUCTIONS

A, DECISION AND CONTROL INSTRUCTIONS, INTRODUCTION

The Decision and Control Instructions might be considered the heart of

modern data processing machines. One instruction in particular, the Condi-
tional Transfer of Control (CIC), is responsible for making several differ-
ent types of decisions (one per instruction), and then directing the path

the computer should take. It simulates human reasoning. A similar instruc-
tion within the group is the Input-Output Sense (IOS), which is involved with
decisions about the peripheral equipment. The seven decision and control in-

structions are:

OP Code Instruction
\Y STORE REGISTER
W CONDITIONAL TRANSFER OF CONTROL
Y COMPARE LEFT
X TALLY
. HALT
R | REPEAT

INPUT-OUTPUT SENSE

B. V - STORE REGISTER (REG)

The REG instruction is used to transfer the contents of a selected register
(P, A, B, S, or U) into four specified HSM locations. The P address trans-
ferred will be the address of the RBG instruction plus 10. The A or B
address stored is the A or B of the instruction immediately preceding the

Store Register instruction.

The A address of the REG instruction specifies the address of the right-
most diad where the four characters of the selected register are to be
stored. The only exception is when the A register (A of the previous
instruction) is to be stored. 1In this case, STAl and STA2 are used and

A is stored in 0212-0215, the standard STA location. The last four charac-
ters of the REG instruction are not used unless the contents of the P regis
ter are being stored. 1In this case, the B address of the REG instruction

will be gated into the P register. The program will then continue by sta-

ITI-141

ticizing and executing the instruction at the newly created P address.

The N character determines which register will be stored. A list of N
‘characters and their corresponding register is given under '"Instruction
Format."
NOTE: Pages VII-3 and VII-4 of the Programmers'
Reference Manual give an operations summary

of the REG instruction,

1. Instruction Format

Op. Code N A B
\Y See Table Address of Rightmost Ignored Unless

Below Diad to Receive Contents Storing P Register.
of P, B, S, or U Register. Address of next
A Register Stored Auto- Instruction to be
matically in STA, if N=2, executed, if N=1

REGISTER
TO BE STORED N CHARACTER

P 1
A 2
B 4
S 8
U &

A_ = Ai -2 if P, B, S, or U are stored; if A is stored,

A.f of previous instruction.

o
1]

£ Bi if P, S, or U are stored; if A or B, Bf of

previous instruction,

ITI-142

2. Instruction Execution

Example 1:

Assume B Register contains the address 2963 prior to executing the
following instruction:

\% 4 3725 7186

The B Register contents (2963) will be stored at address 3725 and the B
Address of the instruction (7186) will be ignored. Memory after execution

of the B instruction would be as follows:

22 23 24 25

3712 9 §) 3

NOTE: If N = O, no register is stored and next

instruction in sequence is executed.

Had the A Address of the instruction been 3724, the same result would occur
since this is the other half of the diad. A diad always consists of an
even address on the left and an odd address on the right. If the A Address
were 3723 initially, then the 6 and 3 would have been placed in locations
3722 and 3723, respectively, and the 2 and 9 in locations 3720 and 3721,

respectively.

Example 2: A" 1 2003 1030

If the above instruction is located in memory, beginning at address 1000,
the P Register would hold the address 1010 after staticizing. This store
instruction specifies storing the P Register contents at address 2003 and
transferring control to the B address 1030. Therefore, memory would hold

the following after executing the instruction.

00 01 02 03

2011 0] 1 0

I1I-143

The contents of the B Register, 1030, would then be placed in the P Register.
The address in the P Register is always that of the next instruction to be
executed., Thus, the operation code of the next instruction to be executed

is located at address 1030.

Practice Problems:

1. List the four memory locations which would receive the contents of the
selected register in the following instruction. Assume the A Register

holds 6034, prior to staticizing of this instruction.

\Y% 2 5061 3025

a. HSM Location will contain .
b. HSM Location will contain .
c. HSM Location will contain .
d. HSM Location will contain .

2. If the Operation Code (V) of the following instruction is located at
address 7750 in memory, show the contents of memory between addresses
1032 and 1035 after execution of the instruction.

\% 1 1035 8000

32 33 34 35

10

What would the P Register hold after execution of the above instruction?

3. Write an instruction to store the S Register contents in memory locations

5106, 5107, 5108, and 5109.

III-144

4,

77

Execute the following program showing final HSM contents.

2000 N 1 7770 7772

2010 M 3 7766 7770

2020 v 2 0000 0000

2030 N 4 0215 2049

2040 J * 7766 0000
66 67 68 69 70 71 72 66 67 68 69 70 71 72
S A M P L E * 77

HSM BEFORE HSM AFTER

Execute the following program showing final HSM contents.

3000 # @ 8980 8988

3010 \% 4 3039 0000

3020 M 4 0212 3032

3030 # @ 0000 0000
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 095
8910 N E @ T W o a 1 2 3 4 5 6 7 8

HSM BEFORE

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

89

HSM AFTER

III-145

6. Execute the following program showing final HSM contents.

1000 N 3 6662 6666 3000 J * 6665 6665
1010 vV 4 1039 0000 3010 v 1 0219 0000
1020 VvV 1 3019 3000
1030 N 2 6662 6666
60 61 62 63 64 65 66 60 61 62 63 64 65 66
66 | R C A - 3 o 1 66
HSM BEFORE HSM AFTER

3. Machine Operation

The Store Register instruction uses two status levels for execution, either
an A2 and A4 or a STAl and STA2. During TP6 of P5, if the N character is a
12" (indicating that the A Register is to be stored) a STAl is selected.
STA1l and STA2 are then used to store the A Register.

If the N character is not a "2", an A2 will be selected. The A2 and A4
status levels are used to store the P, B, S, or U Register. The contents
of the selected register will be stored at the location specified by the A

address of the Store Register instruction.

The B address of the Store Register instruction is not used unless the P
Register is being stored. 1In this case, the contents of the B Register are
gated into the P Register at TP5 of the A4 status level. Thus, the B
address of the Store P instruction indicates the address of the next in-

struction to be executed.

Remember, the purpose of the Store Register instruction is to store the
final register contents of the preceding instruction. Staticizing, however,
will destroy the A-final and B-final addresses of the previous instruction.
Thefefore, something must be done during staticizing to preserve the A or B

address of a store A or store B instruction.

III-146

Pl

END STAT NA
NA
LOGIC
A2 LOCATION
TPO1 A —8BUS 0554C2
BUS —sMAR —s=-BA(-2) | 067L4B6
TP1 Generate CL 0676D5
Inhibit Both ek
If NZg(l): B—®BUS 0573¢C2
TP23 If N2 (1): P—»BUS 0524D1
If NS; S—=BUS 252A8¢l
If N2%(1): U—BUS
BUS2—ss MRO 0656¢C
TP3 BUS3—s= MR1 S 3
TP4 Reset A 0556C3
TP45 BA—= BUS 0672C5
TP5 BUS —sA {1 0556C3
TP6 Select A4 (TO STL-PT) 0822B3
' LOGIC
A4 LOCATION
TPO1 A—=BUS oss5lc2
BUS —s MAR —#=BA(+0) e
TP1 Generate CL 0676D5
Inhibit Both 3%
If N2(2)(1): B —e= BUS 0573¢C2
TP23 If N2°(1): P—s BUS 0524D1
If NS: S—s=BUS 252A8clL
1f N2%(1): u—sBUS
BUSO —# MRO
TP3 BUS1 —& MR1 0657¢CL
TP4 Ir N20(1) Reset P 0526D1
TP45 "1f N20(1): B—eBUS 0573C5
TP5 if N29(1): BUS —eP 0526D1 .
TP6 Select P1(TO STL-PT) oamucu[_
L STAl
Pl
3t Absence of Permit Both on 0677C6
3#%3=¢ Absence of BA +1, +2, -1, =2

Figure 42 A2 and A4 of a REG

ITI-147

Refer to Page 2-8, 2-9 amd 2-10 in the Status Flow Manual (Staticizing). At

TP4 of P2, the A Register is reset if "REG + NA". "RBEG" means that a

Store Register instruction code is in the NOR register and '"NA" means that

a 21 bit is present in the N register indicating that the A Register is the
one whose contents are to be stored. If a Store A instruction is being sta-
ticized, the A register is not reset at TP4 of P2 and the new A address being

brought out of HSM is not gated into the A register at TP5 of P2 and P3,

The B Register will be reset at TP4 of P4 if REG °* (NA/N22). That is, the
B register will not be reset if either a store A or store B is being sta-
ticized, (N'22 indicates a 22 bit is present in the N register.) Also, if
either a store A or store B is being staticized, the B address of the store

instruction is not gated to the B register at TP5 of P4 and P5.

The question naturally arises: "Why is the B, of the previous instruction
saved during a store A?" Assume that you wanted to store both the A-final
and the B-final of the previous instruction. If you do a store B instruc-
tion and then a store A instruction, the A address stored will be the A

address (-2) used to store the B register contents. If, however, you do a
store A instruction and then a store B instruction, you will successfully
store Af and Be of the instruction immediately preceding the two store in-
structions. This is possible only because the store A instruction saves

both the Af and B, of the previous instruction.

4, Programming Errors

The Store Register instruction can be used incorrectly thereby creating
strange results by having an N character other than those which are specified

or by storing certain constants in the B address of a V8 or V & instruction.

If the N character is 2, 3, 6, 7 or any character with a 21 bit, the instruc-

tion will automatically go through STA with no alarms, since a 21 bit in the
N register automatically selects STAl., If, however, the combination is 5,
9, A, D, H or some other character which specifies more than one register

to be stored, the contents of the designated registers will all be gated

onto the Bus at the same time and more than likely bad parity will result

IITI-148

causing a MRPE alarm. The computer only examines the single bit of the N

character set aside for each register.

20 = P Register
21 = A Register
22 = B Register
23 = S Register
24 = U Register

A one bit in the respective position is sufficient to gate the contents of
that register onto the bus during an A4 status level. EXAMPLE: Register con-

tents prior to staticizing V instruction:

P A B
1020 2360 5143

Instruction at 1020 is V 5 7004 0000.

Register contents after staticizing V instruction:

P A B
1030 7004 5143

Since the N character is a 5 (000101 excluding parity) both the P and B
registers are specified to be stored. Therefore, during the A4 status level

addresses 1030 and 5143 are gated onto the Bus.

Bus O receives a 1(0000001) and a 5 (1000101) resulting in a 5 (1000101)
with good parity.

Bus 1 receives a O (1000000) and a 1 (0000001) resulting in a 1 (1000001)
with bad parity.

Bus 2 receives a 3 (1000011) and a 4 (0000100) resulting in a 7 (1000111)
with bad parity.

Bus 3 receives a O (1000000) and a 3 (1000011) resulting in a 3 (1000011)
with good parity.

III-149

The resulting address on the Bus is 5173 with bad parity in the Cl1 and C2

characters thus causing a MRPE during the A4 status level.

Care must be exercised in specifying the rightmost diad of the four loca-
tions which are to receive the contents of the designated register. For
example, assume one desires to store the contents of the B register in loca-

tions 1066, 1067, 1068, and 1069. The instruction must be:

A% 4 1068 0000
or

\Y 4 1069 0000

If the instruction is written using the A address 1066 or 1067; then loca-

tions 1064, 1065, 1066, and 1067 would receive the contents of B,

It should be noted that the B address is ignored in all cases of the Store
Register instruction except when N = 1, However, the B address is staticized
for N = 8 and N = &. Therefore, if constants are placed in memory in the
locations which make up the B address of a V8 or V& instruction and a 24 bit
exists in the LSD position, the computer will go through indirect addressing

possibly causing a MAPE or MRPE alarm, EXAMPLE:
A% 8 1032 -~END

The above instruction would cause a MAPE alarm during indirect addressing
(M1 status level) because bad parity is created by the loss of the 25 bits
of the CO and C2 characters and the 24 bit of Cl while placing -END into

the B register.

A MRPE can also be generated by trying to store the contents of a non-

existing register. For instance, if a "V8'" is attempted on a computer with
no Simultaneous Mode or a "V&'" is attempted on a computer with no File Mode,
nothing will be gated onto the BUS at TP23 time of the A2 status level, and

a MRPE will occur since no bits will be present in the MR.

However, attempting a "V9'" on a computer with no Simultaneous Mode, will

cause a "V1" to be performed. In the case, since the S Register is non-

III-150

existent, it will not be gating any information onto the BUS for comparison

with the P Register bits to create a MRPE.

PRACTICE PROBLEMS

Execute the following program and show the final HSM contents indicated.

0218 1010
0219 2250
5009 1020
10 11 12 13 14 15 16 17 18 19 20
A B C D E F G H I J K
HSM BEFORE
10 11 12 13 14 15 16 17 18 19 20

HSM AFTER

final HSM contents.

2000 3000
0515 1010
0218 1000
10 11 12 13 14 15 16 17 18 19
E F G H I J K L M N
HSM BEFORE
10 11 12 13 14 15 16 17 18 19

7.
1000 V1
1010 V2
1020 v4
05 06 07 08 09 10
501 2 3 4 5 6 02
HSM BEFORE
05 06 07 08 09 10
50 02
HSM AFTER
8. Execute the following program and show the
1000 J¥*
1010 v4
1020 v2
10 11 12 13 14 15 16
0510 1 2 3 4 5 6 02
HSM BEFORE
10 11 12 13 14 15 16
05 02

HSM AFTER

HSM AFTER

III-151

9. Describe execution of the following program. What will be stored and
where will it be stored? What is the P address after execution? Any
alarm lights?

1000 M4 2000 3000
1010 V3 5025 1030

10. Describe execution of the following program. What will be stored and
where will it be stored? What is the P address after execution? Any
alarm lights?

1000 N2 2001 3000
1010 V5 0218 0218

III-152

C. W - CONDITIONAL TRANSFER OF CONTROL (CTIC)

The Conditional Transfer of Control instruction is the principal decision-
maker used by the 301. During the execution of a program, there will be
times when the next step will depend upon the outcome of a group of opera-
tions already performed. For instance, assume a certain number of orders
are to be processed. The total number of orders is stored as a two-digit
quantity in HSM, After processing an order, this two-digit quantity is
decremented by one, indicating that there is one less order still to be
processed. Now a decision based on the present state of the two digit
quantity must be made. (1) If the quantity is a non-zero positive number,
there are more orders still to be processed and control must be transferred
to the "top'" of the program in order to repeat these operations on the next
order in line. (2) If the quantity is equal to zero, all orders have been
processed and control must be transferred to a termination routine. (3) If
the two-digit quantity is a negative number, a mistake has been made and
control is transferred to an error routine. (It is impossible to process
more orders than the number of orders available.) The CTC instruction could

be used to make the three-way decision described above.

The CTC instruction makes decisions by: (1) sensing certain levels which
indicate the present state of the processor and (2) transferring control
to either the next instruction in sequence, the instruction addressed by
A of the CTC, or the instruction addressed by B of the CTC, To transfer
control to the instruction addressed by A of the CTC means to insert the
A address of the CIC into the P register and select a Pl. In this case,
the next instruction executed would be the instruction whose P address is

the same as the A address of the CTC instruction.

The N character of the CIC instruction determines which indicator will be
sensed, The N codes and their corresponding indicators as well as the
conditions for selecting the A or B address for control transfer are listed
under "Instruction Format." If neither of the conditions necessary for
selecting the A or B address is met, the next instruction in normal sequence

will be staticized and executed. The instruction does not go through STA,

III-154

but does go through STP (STORE P) which is an abbreviation for storing the

P register contents in 0216 through 0219,

This is done on transfer only

as a means of saving for future reference the location from which control

was transferred.

NOTE:

Pages VII-5 and VII-6 of the Programmer's Reference

Manual give an operations summary of the CTC instruction.

1. Instruction Format

B

Address of Next
Instruction, If
One Set of Condi-
tions Described
Below is True.

and the Interrupt (INT) Indicator is set.

Op. Code N Sense A
W 1 PRI's Address of Next
Instruction, if
2 Overflow One Set of Con-
Indicators ditions Described
Below is True.
4 Simul-
taneous
Indicator
8 ED/EF Normal
Indicator
& Interrupt
Indicator
- ED/EF Simul-
(minus) taneous
Indicator
A Address
N 1 and PRP is set,.
N 2 and First Overflow Indicator is set.
N 4 and a Read instruction is in Simultaneous Mode.
N 8 and the EF/ED Normal Indicator is set.
N &
N

- and the EF/ED Simultaneous Indicator is set.

ITII-155

B Address
and PRN is set,

n
X 00 A D R

and neither Overflow Indicator is set.
and Write instruction is in the Simultaneous Mode.

and the EF/ED Normal Indicator is not set.

i

and the Interrupt Indicator is not set.

2 2 2 2 Zz2 2
|

- and the EF/ED Simultaneous Indicator is not set.

If N=0, or N=1 and PRZ is set, or N = 2 and ‘Second Overflow Indicator
is set, or N = 4 and Simultaneous Mode is not busy, no transfer of control
takes place and the next instruction in sequence is executed.

Af = Ai and Bf = Bi‘

2., Instruction Execution

Example:

Write an instruction that will transfer control to 3750 if PRP is set, or

3760 if PRN is set.

w 1 3750 3760

Practice Problems:

1. Write an instruction that will transfer control to address 5580 if

the INT button is not set or to address 4320 if INT is set.

2, Assume the following instruction exists in memory beginning at address
2000. If the First Overflow Indicator is set when this instruction is

‘executed, what will memory locations 0216 through 0219 containto show
w 2 3120 2050 ?

16 17 18 19

02/

III-156

3. Write an instruction which will sense the ED/EF normal indicator.

When indicator is set, transfer control 4650; when not set, trans-

fer to 4630.

4. Execute the following program showing final HSM contents.

1500 K O 6560
1510 'w 1 1530
1520 J * 6566
1530 N 4 0215
1540 J ¥ 6560
60 61 62 63 64 65 66
6sf o o o o 3 8 5
HSM BEFORE

a.) CTC Indicators

6566
1530
6566
1549
0000

60 61 62 63 64 65 66

65

HSM AFTER

The N character of the CTC instruction determines which of six possible

indicators the instruction will sense. If the N =

O no indicator will

sensed and the next instruction in sequence is staticized and executed.

If N =1, the PRI's will be sensed,

There are eight 301 instructions

which set the PRI's as part of their normal operation. The student has

already studied two of these instructions; LSL and LSR. The other in-

structions which set the PRI's are: Compare Left, Logical "AND,'" And,

Subtract, Tape Read Forward Normal and Tape Read Reverse Normal. When

~ the CTC instruction is sensing the PRI's, a PRP will cause transfer of

be

control to the A address, a PRN will cause transfer to the B address, and

a PRZ will allow the next instruction in sequence to be staticized and

executed.

ITI-157

If N = 2, the Overflow Indicators will be sensed. The "Overflow Indicators"
are actually two flip-flops called SCAR 1 and SCAR 2 (SCAR = sum carry).
These flip~flops indicate that there is a carry present and will be mentioned
at greater length in the arithmetic instruction lesson. The 10K and 20K
301's have only one SCAR slip-flop; only the 40K 301 has SCAR 2. If SCAR
(SCAR 1 in the 40K machine) is set, the CTC will transfer control to the A
address. If no overflow indicator is set, control is transferred to the B
address., If SCAR 2 is set (40K only), the next instruction in sequence will

be staticized and executed.

If N = 4, the Simultaneous Indicator is sensed. If a Simultaneous Read is
being executed, control will be transferred to the A address. If write in-
struction in the Simultaneous Mode is being executed, control will be trans-
ferred to the B address., If the Simultaneous Mode is unoccupied, the next
instruction in sequence will be staticized and executed.

NOTE: The Simultaneous Mode is used only for I/O Instructions.

If N = 8, control will be transferred to the A address if the ED/EF Normal
Indicator is set, or to the B address if the ED/EF Normal Indicator is not
set, ED and EF are 301 characters usually used to mark the end of a block,

or group of blocks, of data. ED stands for "End Date'", EF for "End File."

If N = &, the Interrupt Indicator will be sensed. This indicator is con-
trolled by the Interrupt Button (INT) on the console. If this button is
1it, control will be transferred to the A address. If INT is not 1lit, con-

trol will be transferred to the B address.,

If N = -, the ED/EF Simultaneous Indicator will be sensed. If ED or EF
had been read during the execution of a Simultaneous Instruction currently
being executed, the CTC will transfer control to the A address. Otherwise,

control will be transferred to the B address.

3. Machine Operation

The Conditional Transfer of Control instruction uses two status levels, an
X1 and X2, These status levels are used to store the P address in stan-

dard location 0216-0219, The X1 stores the two most significant digits in

III1-158

0216, 0217. The X2 stores the two least significant digits in 0218, 0219,
In addition, at TP4 of X2, the P register is reset and at TP5 the appropri-

ate address (A or B) is gated into the P register. Pl is selected at TP6
of X2,

The abbreviations used in X2 are:

SRB - Simultaneous Read Busy

SWB - Simultaneous Write Busy

NEDF - An ED or EF sensed during a normal read instruction.

SEDF - An ED or EF sensed during a simultaneous read instruction.

a.) Non-Transfer of Control

There are four instances where a Pl status level will be selected immediately

upon completion of staticizing the CTC instruction. These four are:

(1) When N = O

(2) When N = 1 and PRZ is set

(3) When N = 2 and SCAR 2 is set (40K only)

(4) When N = 4 and neither a simultaneous read nor a simultaneous

write is being performed.

4, Programming Errors

In the CTC instruction, it is possible to use an N character which is not
one of the characters specified, Each of the bits 20, 21, 22, 23, 24 and
2° represent the testing of a given indicator or indicators. If a combina-
tion of these bits is used for the N character, more than one indicator

will be sensed.

Any N character of a CTC instruction, containing a 20 bit when PRZ is set,
a 21 bit when SCAR 2 is set, or a 22 bit when the Simultaneous Mode is
unoccupied (or not existing) will cause a Pl status level to be selected

immediately after staticizing, thus not permitting a transfer of control.

Any other combinations will select an X1 status level after staticizing

and then, depending upon the N character and the selected indicators, may

III-159

or may not attempt to gate both the A and B addresses onto the Bus at the
same time during the X2 status level. If both addresses are gated onto the
Bus, bad parity might result which would be gated into the P register. Dur-
ing the next Pl status level, bad parity would produce a MAPE alarm. How-

ever, good parity may result and the computer could jump to a completely

different address without any alarm occurring.

III-160

NZ

END STAT

r

N-Zo(l)-PRZ(l)/N—:Z(l)°SRB°SWB

X1

TPO1

0216 —»=BUS

TP1

BUS —#=MAR —#=BA(+0)
Generate CL
Inhibit Both

P—»BUS

TP3

BUSO —s= MRO
BUS1 —s= MR1

TP6

Select X2 (TO STL-PT)

!

X2

TPO1

0218 —sBUS

TP1

BUS —# MAR —a=BA(+0)
Generate CL
Inhibit Both

TP23

P— BUS

TP3

BUS2 —s= MRO
BUS3—s MR1

TP4

Reset P

TP45

If N28(l)-PRP(l): A—==BUS
If NZl(l)-PRN(l): B —e=BUS
If N2l(l)'SCAR(l): A—»=BUS
If N22(l)-SCAR(O): B —s=BUS
If N22(1)-SRB(1): A —s=BUS
If N25(1)*SwB(1): B—wBUS

If N22(1)*NEDF(1): A—s=BUS
if NZZ(l)ONEDF(O): B—=BUS
If N2,/(1)+INT: A—#BUS
If N2_(1)«INT: B—#=BUS
If N22(1)eSEDF(1): A—==BUS
If N2°(1)*SEDF(0): B—s= BUS

TP5

BUS —s»= P

TP6

Select P1(T0 STL-PT)

L

Pl

Figure 43 X1 and X2 of a CTIC

9] — i
N-2“(1)-PRZ(1)/N-2“(1)-SRB-swn

ITI-161

Example 1:

Assume PRP is set and INT is not set on the console when the following in-

struction is staticized.
W A 4210 4280

Since an A contains a 20 bit and a 24 bit, both the PRI's and the Interrupt
Button will be sensed., The X1 and X2 status levels are executed after sta-
ticizing and during X2, the PRI's and INT are examined. With PRP set and
N-ZO a one bit, the A address is gated onto the Bus. Also with N-24 set and
INT not set, the B address is gated onto the bus. The Addresses 4210 and
4280 combine to create 4290 with bad parity in P2, Therefore, a MAPE alarm

would occur during the next Pl status level.

Examgle 2:

Assume the simultaneous mode is unoccupied when the following instruction

is attempted and SCAR (overflow) is set.
W 6 7350 7370

Since the N character is 6, the 22 and 2t flip-flops would be set in the N
register. The 22 indicates testing the Simultaneous Mode and because the
mode is unoccupied, a Pl status level is selected after staticizing and
SCAR is not tested. No transfer of control takes place and the next in-

struction in sequence is executed. No alarm would occur.

Practice Problems:

5. A CTC instruction always uses X1 and X2 status levels - True or False?

Explain your answer.

ITI-162

8.

There is one ";" in HSM located somewhere between 2000 and 2999,
Write a program to search 2000 - 2999 for the ";" and replace the
";" with a "," if INT on the console is set. If INT is not set,

the program should replace the ";'" with a "@"., At the completion

of this program, transfer control to location 4000.

Write a program to fill 2050 through 2100 with "@'s" and check to make
certain 2050 through 2100 all contain "@'s"; if not, repeat operation

until "O's" appear in these locations. When area is filled with "O's"
transfer control 3000.

Why are A3 and B3 of a CTC instruction usually "@'s"?

Write a three-instruction program starting at 1000 to search 5000 thru
5999 inclusive for an& character other then "¥", If the character at
5000 is something other than "*¥", transfer control to 1080. If there
is a character other than "#'" in 5001 thru 5999 inclusive, transfer

control to 2020, If all Characters are "¥'s" transfer to 3000,

ITI-163

10. An ED has just been sensed in the Simultaneous Mode. No I/O instruc-
tions have been performed in the normal mode. Describe the execution
of: W Q 1230 5300.

D. Y - COMPARE LEFT (COM)

In some cases during the execution of a program, the choice "what course of
action next" must be based on the contents of a particular location or loca-
tions in HSM. There is need for an instruction which will examine the con-
tents of a certain portion of memory and make a decision based on those con-

tents. "Compare Left" is such an instruction.

This instruction compares two given quantities or items and determines which
is the larger. The PRI's are set to indicate the result. Comparison begins
with the most significant digits and proceeds from left to right. The in-
struction terminates upon finding the first non-comparison or upon decreasing
the N Count to zero, if all characters are equal. PRZ is set initially and,
if still set after execution of the Compare, will indicate that the operands
are equal., PRP being set upon termination of the instruction signifies that
a positive result was obtained (first operand larger than second operand,
i.e., the operand addressed by A is larger than the operand addressed by B).
PRN being set indicates a negative result (first operand smaller than second

operand). This instruction does not go through STA or STP.
p -

The COM instruction does not transfer control, but it does set the PRI to
indicate the results of its comparison. Thus it may be used in conjunction
with the CTC instruction (which can sense the PRI) to cause transfer of con-
trol. This transfer will then depend upon the contents of that part of

memory examined by the COM instruction.

NOTE: Pages VII-7 and VII-8 of the Programmers' Reference Manual

give an operation summary of the COM instruction.

III-164

1., Instruction Format

Op. Code N A
4 Numbers of HSM Address HSM Address of
Characters to be of Leftmost Leftmost Character
Compared (0-44) Character of of Second Operand

First Operand

>
]

£ One location to the right of the last character

compared in the first operand.

oy}
1]

£ One location to the right of the last character

compared in the second operand.

NOTE: If N = O, no characters are compared and the next

instruction in sequence is executed.

2. Instruction Execution

Example: Y 5 1000 1006

00 01 02 03 04 05 06 07 08 09

10

10 3 2 6 4 8 * 2 7

3
A T T

i f
PRN would be set upon completion of the above instruction.

Practice Problems

1. Write an instruction to compare two operands consisting of six

characters each. The LSD of one is at address 3150 and the LSD

of the other is at address 7582,

III~165

2. 1If the following instruction were executed, how many characters would

the computer actually compare?

Y B 8000 8105

00 o1 02 03 04 05 06 07

80 4 - 8 2 5 6 4 9 7

05 06 07 08 09 10 11 12

81 4 8 2 5 3 4 9 7

What PRI would be set upon termination?

PRI?

3. Write two instructions which will compare unknown items A and B, and
determine where to transfer control. If A is greater than B, transfer

to address 5500. If A is less than B, transfer to address 5550.

30 31 32 33 34 35 36

76 | A A A * B B B

4. Execute the following program showing final HSM contents.
6000 N 3 3032 3038

6010 # @ 3033 3030
6020 M 4 0212 6032
6030 Y 2 0000 3037
6040 W 1 6060 6070
6050 \% 1 0219 6070
6060 J 0 3037 3038

III-166

30 31 32 33 34 35 36 37 38

30 | @ A 3 @ B 4 A C 5

HSM BEFORE

30 31 32 33 34 35 36 37 38

30

HSM AFTER

5., Two unknown characters, X and Y, exist in memory at locations 1000 and
1001, Write a program to compare these characters and determine which
one is larger. Move the larger character to HSM location 1005, If
both characters are equal, place an "E" in location 1005. Use 2000
as the address of the first instruction in the program. Terminate

by transferring control to 3000.

6. What are the two situations which cause a Compare Left Instruction to

terminate?

7. How many status levels are used to staticize and execute the COM

Instruction of Problem #27?

ITI-167

3. Machine Operation

There are three basic status levels involved with the COM Instruction. An
Al status level brings out the character addressed by A and places it in D2,
N is triggered down by one and the A address is incremented by one. A "B"
status level brings out the character from the second operand as addressed
by B and places it in D3. The comparison takes place while B is incremented
by one and sent back to B. The third status level is an X1 which checks

the result of the comparison and sets the proper PRI. (Notice that the X1
status level does not generéte a command level). If the N Count is down to
zero or the comparison was unequal, the instruction terminates by selecting
a P1 status level. However, if N is not down to zero and the comparison
just completed was equal, another Al status level is selected. The sequence
of Al, B, X1 continues until a non-compare occurs or until N is reduced to
zero., It should be noted that PRZ is set during staticizing (P5) and will
remain set until an X1 resets it while setting PRP or PRN. Therefore, if
all comparisons prove equal, PRZ will remain set throughout the entire in-

struction, while N is reduced to zero.

NOTE: 1In Figure 44, " D2 > D3" means "D2 is greater than D3",
" and "D2 < D3" means "D2 is less than D3",

4. Programming Errors

About the only misuse of the Compare Instruction that can occur, is using
an N character which is not part of the N count. (This was described in
the DL and DR section of the prévious lesson.) However, one must remember
that the initial A and B addresses must specify the location of the MSD's

of the operands to be compared and not the LSD locations,

III-168

END STAT

NZ *LITZ-
AI LOGIC
LOCATION
TPO1 A —s BUS 0554.c2
BUS —e MAR —& BA(+1) 0675C1
TP1 Generate CL 0676D5
Permit Both 0676D3
TP2 Reset A 0558¢1
TP23 BA —e=BUS 0672CL
TP3 BUS —e A 0558¢1
‘ Trigger N (-1) 0614D2
TP4 Reset D 0588D2
TP4S If MAR3-28(0): MRO —e BUS2 0653C3
If MAR3-2(1): MR1 —e BUS2 0653C3
TP5 BUS2 —e D2 0588D2
TP6 Select B (TO STL-PT) 0830C1
B LOGIC
LOCATION
TPO1 B — BUS 0574C1
BUS —# MAR —®= BA(+1) 0675C1
TP1 Generate CL : 0676B2
Permit Both 0677D1
TP2 Reset B 0575C2
TP273 BA —e BUS 0673D1
TP3 BUS —»= B 0575¢C2
- If MAR3—28(O): MRO —= BUS3 065306
> If MAR3-2°(1): MR1 —e BUS3 0653C6
TP5 BUS3 —s~D3 0594D1
TP6 Select X1 (TO STL-PT) 0835¢c2
XI LOGIC
LOCATION
If D2>D3: Set PRP 089A7D6
TP6 If D2<D3: Set PRN 089A6D2
If NZ/(D2=D3): Select P1(TO STL-PT) |08LA6CY
If NZ+(D2=D3): Select Al(TO STL-PT)}|0827B2
Nz/(D2-D3) 1 NZ+(D2=D3)
p]

Figure 44 Al, B, and X1 of COM

III-169

Practice Problems

8.

10.

Write a program to compare the character in 1086 with the character in
5023, 1If the character in 1086 is the larger, transfer control to 2000.
If the character in 5023 is the larger, transfer control to 3000. If
rhw characters are equal, move the contents of 0532-0535 to 1066-1069.

There is a character, either Group 1 or Group 11, in location 5239, If
it is Group 1, write a "1" in location 5501. If it is Group 11 write

a "2" in location 5611. Terminate by transferring control to 3000.
(Start program at 1000). Use location 8000 for storage of the character

to be compared against the character in location 5239,

Locations 9000-9099 inclusive contain a mixture of numeric and alpha-
betic information. Write a program to replace each letter of the alpha-
bet between 9000-9099 with a '"O'"., The numeric data should not be

changed. Program starts at 1000. After all alphabetic characters have
been replaced with "O", transfer control 2000.

III-170

BE. X - TALLY (TA)

The Tally Instruction enables a certain portion of a program to be répeated

a specified number of times by transferring control to a specified location

a given number of times. The quantity which determines how many times this
transfer of control is to be made is called the "Tally Quantity'". This
quantity can be as large as 99. Each time the transfer of control is made,
the Tally quantity is decremented by one. Exhausting the Tally quantity
terminates the effectiveness of the instruction and the instruction follow-
ing the Tally is staticized and executed. The Tally instruction goes through

STP when transfer of control is effected.

NOTE: Operation of the Tally Instruction is summarized on

Page VII-9 of the Programmers' Reference Manual.

1. Instruction Format

Op. Code N A B
X Ignored HSM address of diad HISM Address of next
containing Tally instruction to be
quantity. executed if Tally
Quantity is not
exhausted.

III1-172

The A address given the location of the Tally quantity in memory. Remember
that this consists of an even and odd location, the even location holding
the MSD of the diad. The B address is the address to which control is
transferred, provided the contents of the diad addressed by A are not equal

to 00, The N character is ignored.

2, Instruction Execution

Example 1:

X 0 1005 3000

02 03 04 05 06

10| 3 2 0 2 8

The above instruction will transfer control to address 3000 two times.

NOTE: If Tally Quantity is initially 00, no transfer
of control takes control.

Example 2

1000 J * 1550 1600
1010 N K 2300 1600
1020 X 0 1034 1000
1030 . (¢ 0002 0000

The J and N instructions would be executed a total of three times in the
above program, Each instruction would be executed once initially and then

repeated twice, since the Tally quantity is 02.

If it is desired to perform a segment of a program the exact number of
times of the Tally quantity, two more instructions are needed. The follow-

ing is an example of this.

ITI-173

1000 X o 1054 1020
1010 v 1 0219 1050
1020 J * 1550 1600
1030 N K 2300 1600
1040 vV 1 0219 1000
1050 . 0] 0002 0000

The third time the Tally instruction is staticized in this example, the
tally quantity will have been reduced to zero and the Store instruction
(1010) will be staticized. When the Store instruction is executed, control
will be transferred to 1050, which is a Halt instruction. Thus, the J and

N instructions will be eXecuted a total of two times.

Practice Problems

1. How many times will the computer transfer control to address 2000, if

the following instruction is executed?

X 9 1608 2000

05 06 07 08 09

l6 | 8 5 6 3 4

2, Assume the following instruction is located in memory, beginning at
address 4240, What will locations 0216 through 0219 contain after this

instruction is executed?

X 5 3622 4250
20 21 22 23 16 17 18 19
3610 i (0] 2 1027

I11-174

3. Write an instruction which will loop back to address 2300 nine times.

Designate tally quantity in memory at 4620.

19 20

21 22

46

4, Execute the following program and show final HSM contents.

20 21 22

3300 M 1
3310 \% 4
3320 X 0]
3330 . o

23 24 25 26

38 | A * B

* C * D

HSM Before

5. Explain what the following program is doing (Note: X = unknown

character).

3820 3821
3309 0002
3318 3300
0000 0000
20 21 22 23 24 25 26
38
HSM After

10

00 01 02 03 04 05 06
A B C D E F X
2000 N 4 2019 2045
2010 Y 1 1006 1000
2020 \Y% 4 2019 0000
2030 1) 1 2060 2060
2040 M 1 0000 1010
2050 \Y 1 0219 2070
2060 X - 2072 2000
2070 . () 0500 0000

III-175

3. Machine Operation

The Tally instruction uses five status levels during execution: Al, X3, A2,
X1, and X2, The Al status level is used to gate the Tally Quantity (i.e.,

the contents of the diad addressed by the A register) into the D register.,

‘Notice that BA (+0) is used since we may want to address this same diad

again and again.

The X3 status level is used to decrement the Tally Quantity by one. The
bus adder circuitry is used to perform this function. At TPOl of the X3,
the standard address generator puts O's on BUS O and BUS 1 and D2 and D3
are gated onto BUS 2 and BUS 3, respectively. This pseudo-address is then
gated into the MAR where the bus adder will decrement it by one. Since the
X3 status level does not generate a memory cycle, the "address'" in the MAR
will not be used to address memory. At TP5 of X3, the decremented Tally
Quantity is gated into the D register. At TP6, the D register is checked
to see if it contains a count of 99, A count of 99 at this time would indi-
cate that there had been a count of 00 present at the beginning of the X3
" status level. If D = 99, a Pl is selected and the instruction following
‘" the tally will be executed. f?—57;755, an A2 status level is selected in

order to transfer control.

The A2 status level is used to write the decremented Tally Quantity into
the diad in HSM addressed by the A register. The X1 and X2 status levels
are used to store the P register contents in 0216-0219 and to replace the

contents of P with the contents of B. Then a Pl status level is selected.

III-176

END STAT

Al
TPO1 A —8 BUS
BUS —#=MAR —&=BA(+0)
TP1 Generate CL
Permit Both
TP2 Reset A
TP23 BA —sBUS
TP3 BUS —a=A
TP4 Reset D
MRO— BUS2
TP45 MR1 —#BUS3
BUS2 —s= D2
TP5 BUS3 —a=D3
TP6 Select X3
(0)10——> BUSO
TPO1 (o)lo——suu
D2 —eBUS2
D3 —eBUS3
TPl . BUS —s»MAR —=BA(=-1)
TP4 Reset D
TP45 BA—— BUS
TP5 BUS—aD
TP6 If D=99: Select Pl
If D=99: Select A2
D=99 D=99
Pl A2

Figure 45 Al and X3 of a Tally

IT1-177

X3

|

TPO1 A —e=BUS
BUS —e=MAR —e=BA(+0)
TP1 Generate CL
Inhibit Both
D2 —es=BUS2
P25 D3 —e=BUS3
BUS2 —e=MRO
TP3 BUS3 —a MR1
TP4 Reset A
TP4S BA —= BUS
TP5 BUS —e A
TP6 Select X1
TPO1 0216—s BUS
BUS —s=MAR
TP1 Generate CL
Inhibit Both
TP23 . P—=BUS
BUSO —»MRO
TP3 BUS1 —eMR1
TP6 Select X2
TPO1 | 0218—e=BUS
BUS —s»MAR
TP1 Generate CL
Inhibit Both
TP23 P—aBUS
BUS2 —&MRO
TP3 BUS3 —a=MR1
TP4 Reset P
TP45 B —&BUS
F5 BUS —e=P
TP6 Select Pl
Pl

Figure 46 A2, X1, and X2 of a Tally

III-178

4. Programming Errors

In the Tally instruction, some unusual things can occur if an incorrect
Tally Quantity is used, A Tally Quantity between 00 and 99 causes no prob-
lems but should certain zone bits occur in the tally diad, the computer will

malfunction due to the Bus Adder.

2

Any 2° bit in either character of the Tally Quantity will cause a DPE (D

register parity error),.

The reason is that the Bus Adder does not provide for a 25 bit in either
character when subtracting one from the Tally Quantity (X3 status level).
If this bit exists, bad parity will be generated and a D register parity

error will result,

A 24 bit in the C2 character of a Tally Quantity will also generate a DPE,

since the Bus Adder does not provide for a 24 bit in C2.

However, because of the provision for indirect addressing, a 24 bit in C3
will be handled by the Bus Adder. This will cause erratic tallying and in-
termittent DPE's.

Care must be taken when addressing the Tally Quantity. Since the Tally
Quantity is always a diad, one might easily obtain a larger number than

desired for the Tally Quantity.
Example: X (0] 1006 5000

04 05 06 07 o8 09

10| 5 (o) 2 0] (0] 2

The above instruction would transfer to address 5000 twenty times and not
two times. If it were desired to tally twice, the tally quantity should
be arranged as shown in diad 1008 and 1009.

III-179

Practice Problems

6. Write a program to move 600 characters from location 2000-2599 to
location 3000-3599, Use the Tally Instruction.

7. Describe the execution of the following program.

1000 J 1 2000 4000
1010 X 0] 3031 1000

28 29 30 31 32 33 28 29 30 31 32 33
30 (0] 1 2 3 4 5 30
HSM Before HSM After

8. Describe the execution of the following program.

1000 J 0] 2000 3000
1010 J 1 3001 3099
1020 X (0] 1002 1020
1030 X 0] 3000 1000

9., What is the differencé between a Tally instruction and a "Store P"?

10. Write a program that will translate 6000 characters from 3000-8999.
Program to start at location 1000 and table to start at location 2000

III-180

'F. HALT (HLT)

In the programs you have been asked to write so far, and in the sample pro-
grams given, the problem of termination has been largely avoided. You have
been told to '"transfer to 3000 to terminate'" or the problem has been ignored
altogether. A brief example will illustrate the need for a means of termin-

ating.

1000 J @ 5000 5099
1010 M & 5000 1020

During execution of the preceeding program, the SF instruction will fill
the indicated locations with "@" and the DL instruction will move ten "@"

to 1020-1029., The program will now read in memory:

1000 J @ 5000 5099
1010 M & 5000 1020
1020 @ @ @a@a @a@@a

At TP6 of the P5 used to staticize the last two characters of the "instruc-
tion'" in location 1020, no status level will be selected since it is not a
legal operation code. Thus, the computer will stop on an STLE with an

empty Status Level Register. If location 1020 had contained a legal opera-
tion code, a status level would have been selected and execution attempted

leading to any of a number of errors.,

The Halt instruction is usually used to solve the problem of termination.
You have already seen this instruction used several times in the section
on the Tally Instruction. The Halt instruction is unique among RCA 301

instructions in that it has no first processing level,

NOTE: Page VII-10 of the Programmers' Reference Manual

summarizes operation of the Halt Instruction.

1., Instruction Format

Op. Code N A B
(period) Ignored Ignored Ignored

III-181

Because everything except the operation code is ignored in the Halt
instruction, there are nine convenient locations which can be used for

storing constants. This procedure has been illustrated in previous prob-
lems of this lesson,

2. Instruction Operation

One useful technique is the use of numbers in the N character to indicate
which halt terminated processing. For instance, a ".1" (Halt 1) might indi-
cate normal termination; a ".2" (Halt 2) might be chosen in the event of a

machine or programming error.

Another useful feature of the Halt instruction is its ability to stop pro-
cessing while needed information is entered. (This feature is used exten-
sively by the Test and Maintenance routines). For instance, if Halt 4 is
followed by a Store A and Store B, information inserted manually into the
" A and B registers while the computer is stopped at ".4" will be stored in

memory at the indicated locations.,

Example:
1000 . 4 0000 0000
1010 \% 2 0000 0000
1020 \Y% 4 1008 0000
1030 . 5 0000 0000

If the P register is manually set to 1000 and "Start'" is depressed, the " ,4"
in location 1000 will be staticized and then the computer will stop. Now
the operator may insert characters into the A and B registers manually, say
"1234" and '"5678" into the B register.. "Start" is depressed a second time,
The '"1234" will be written into memory at location 0212-0215, The "5678"

- Will be written into memory at 1006-1009., The computer will then stop on

".5".

NOTE: This method is somewhat limited by the fact that not
all characters can be inserted into certain digit

positions of the A and B register.

III-182

Practice Problems

1., Write a program to search 2000-3000 for O starting at 2000. If the
first character searched is not zero, transfer control to "Halt 1",
If the first character is zero but some character following the first
is not zero, transfer control to "Halt 2". If every character in

2000-3000 inclusive is zero, transfer control to "Halt 3",

2., Write a program which can be used to store manually inserted numericaly

information in location 1054 - 1056 and 2132 - 2135,

3. Which Status Level is the First Processing Level used by the Halt

Instruction?

3. Machine Operation

Now we mﬁst consider how the Halt instruction stops the computer. Remember
that the computer is started by pushing the START button. This action starts
the_Timing Pulse Generator. It would seem logical that to stop the computer,
one must stop the TP Generator. This is exactly what the Halt Instruction

does.

If the Simultaneous Mode and Record File Mode are unoccupied when the Halt
instruction is staticized, completion of staticizing produces TPO*ST(P).
These signals stop the TP generator before Pl (which is the next status
level selected) can be executed, If either the Simultaneous Mode or the
Record File Mode is busy, the instruction in that mode is completed before
the processor stops. Remember, all 10 characters of the Halt instructions

will be staticized before the computer will stop.

ITI-183

4. Programming Errors

The Halt instruction appears to be very simple and, therefore, free of pro-
gramming problems since everything except the operation code is ignored.
However, if the A and B addresses are used for constants, characters con-
taining 24 bits may occupy the A3 position or the B3 position and produce
an indirect address. If the A address is indirect, nothing will occur re-
gardless of the B address. The computer will halt selecting a Pl status
level after a P5. (NOTE: An M1l and Pl are selected but "ORing" the two
together produces a Pl.) Should an indirect address exist in B and not in
A, the computer will attempt to select both an M3 and a Pl status level and
produce an STLE (378 with bad parity).

Example 1:

. O _301 TAPE

Since the B3 character is an E, the computer would attempt indirect address-

ing and would stop on an STLE alarm.

Example 2: * FIRST TAPE

In the above example, both A and B appear as indirect addresses. However,
A is always handled first during indirect addressing, therefore, no alarms

occur and the computer stops having selected a Pl,

Practice Problems

4. Rewrite the program required in Practice Problem 5 of this lesson using
the Halt instruction. Do not use the RBEG instruction. (It is not

necessary to transfer control to 3000 to terminate).

5. P is set to 1000. What happens when Start is depressed? What happens

when Start is depressed a second time?

1000 . o A BAD TIME
1010 . 1 F OR2 MORE

ITI-184

G. R - REPEAT (RPT)

The Repeat instruction is used in conjunction with "Repeatable" instructions.
There are 12 Repeatable instructions in all; you have been introduced to 5:
TRA, DL, DR, DSL, and DSR. (The remaining seven are: EXO, AND, OR, ADD, and
SUB which are all arithmetic instructions, and RFN and RRN which are input
from tape instructions.) The Repeat instruction causes the next Repeatable
instruction in sequence to be executed the number of times specified by the
N character of the Repeat. All non-repeatable instructions which occur be-
tween the Repeat and the next Repeatable instruction in sequence will also
be repeated. All these instructions which are repeated are referred to as
the "field" of the specific Repeat instruction. The A and B addresses of

the Repeat instruction are not used to address memory, but they have a very
important function. This function makes the Repeat instruction quite differ-
ent from the Tally instruction, which it so far seems to resemble closely.

If the A address is even (i.e., no 20 bit in A3), no A address of any suc-
ceeding instruction is staticized except the A address of the first instruc-
tion following the Repeat instruction. The A address of the first instruc-
tion following the Repeat will be staticized the first time it is to be
executed only. After this the A address will be used (in its incremented

or decremented form) as the A address of every instruction in the field of

the Repeat instruction until the repeat quantity is exhausted.

However, if the A address is odd (i.e., A3 has a 2O bit), each A address
will be staticized in the usual way. This even/odd convention holds for

the B address also., That is, if B of the Repeat is even, only the B address
of the instruction immediately following the Repeat will be staticized, and
it will be staticized the first time it is to be executed only. From then
on, the B of one execution will be the B of the next execution. If B of

the Repeat is odd, staticizing of the B address will proceed in a normal

fashion.

The Repeat instruction holds its N count in the NR Register. It is the
only instruction to use this register. The Repeat instruction uses a special
N count with a maximum count of 14, The Group 1 characters are the only le-

gal N characters for Repeat.

ITII-185

NOTE: Page F-1 of the Programmers' Workbook gives a table

of legal N characters for Repeat.

The Repeat instruction uses a standard location for storing the contents of
the P register: 0222-0225, Notice that this is a different location from
the STP location (0216-0219). The P address of the instruction immediately
following the Repeat must be stored in a standard location because this is
the location to which control must be transferred after execution of the Re-
peatable instruction as long as NR # O. This location must be different
from STP, because an instruction which uses STP may be in the field of the
Repeat. From the above, it becomes evident that a Repeatable instruction

is merely one which checks the contents of NR at the end of its execution
and if NR # O selects a status level which will start the transfer of con-

trol to the address contained in 0222-0225.

NOTE: Page VII-1ll of the Programmers' Reference Manual

summarizes the operation of the Repeat instruction,

l. Instruction Format

Op. Code : N* A , B
R Number of Times to Even-Do Not Staticize Even-Do Not Sta-
Repeat the Repeatable A Address of Instruc- ticize B Address
Instruction (0-14) tion. Odd-Always of Instruction.
Staticize. Odd-Always Staticize.

Those instructions which are repeatable are:

1. Data Left 6. Add

2, Data Right 7. Subtract

3. Transfer Data By Symbol Left 8. Tape Read Forward Normal
4, Transfer Data By Symbol Right 9. Tape Read Reverse Normal
5. Logical AND/OR/EXO 10. Translate

% NOTE: If N = O, no instruction will be repeated.

III-186

2, Instruction Operation

Example: R 2 0000 0000
M 3 1000 2000

This combination will transfer a total of nine consecutive characters
starting at address 1000 to the address beginning at 2000. Note that

the total number of times the repeatable instruction is executed is one
more than the N Character of the Repeat instruction. This is because the
repeatable instruction is executed once initially before the N Count is

reduced,

00 01 02 03 04 O5 06 07 08 09

10| R E P E A T - E X A

00 o1 02 03 04 05 06 07 08 09

20 | * * J K 8 7 G H A *

HSM Before

00 o1 02 03 04 05 06 07 08 09

10| R E P E A T - E X ;;J

00 o1 02 03 04 05 06 07 08 09

20 | R E P E A T - E X *

HSM After

III-187

The characters '"REP" would be transferred during the first execution of the
M. A final would be 1003. This would become A initial for the second exe-
cution of the M instruction. B final would be 2003 which would also be B
initial for the second execution. The M instruction would be repeated a
total of two times but executed a total of three times. The sequence of

its initial addresses after staticizing each time would be:

M 3 1000 2000 NR
M 3 1003 2003 NR
M 3 1006 2006 NR

NOTE: - NR = N Count for Repeat Instruction.

Had the A and B addresses of the Repeat instruction been odd instead of

even, final HSM contents would be as follows:

00 o1 02 03 04 05 06 07 08 09

10| R E P

00 ol 02 03 04 05 06 07 08 09

i

£

20 | R E P

In this case, the same three characters were transferred to the same three

addresses three times.

ITII-188

Had the A address been even and the B odd in the Repeat instruction, final

HSM contents would appear as follows:

OO0 01 02 03 04 0O5 06 07 08 09

10| R E P E A T - E X A

00 01 02 03 04 05 06 07 08 09

20| - E X K 8 7 G H A *

Here all nine characters were placed in the same three locations 2000, 2001
and 2002, since A kept counting up but B was restaticized each time. The
final case of A initially odd and B even in the Repeat instruction gives a

HSM result as follows:

00 01 02 03 04 O5 06 07 08 09

10| R E P E A T - E X A

OO 01 02 03 04 05 06 07 08 09

20 | R E P R E P R E P *

Practice Problems

1. Execute the following instructions and show final HSM contents.
R 1 5660 4753

P # 3006 4009

III-189

OO 01 02 03 04 05 06 07 08

30| 6 4 # 9 3 # P G H

Ol 02 03 04 05 06 07 08 09

40| 2 3 8 G # X B A #

HSM Before

00 01 02 03 04 O5 06 07 o8

30

0 02 03 04 05 06 07 08 09

40

HSM After

2. Write two instructions which will transfer 132 characters from consecu-
tive locations starting at 1000 to consecutive locations starting at
2000 (left to right).

3. What would A final be after the # instruction has been executed for the

last time?

R 3 0000 0000

* 5530 5530
30 31 3z 33 34 35 36 37 38
55| A * B * C * D * E
Af =

III-190

4. Execute the following program and show final HSM contents.

3000 R 2 1005 2030
3010 M 1 4000 4001
3020 \Y 4 3015 0000
3030 X 0 3047 3000
3040 . 0} 0000 0102
O0 01 02 03 04 O5 06 00 01 02 03 04 05 06
40 A B (o D E F G 40
HSM Before HSM After

5. Describe the execution of the following program and show final

HSM contents.,

31

31

1000 R 1 3113 3115
1010 J * 3112 3114
1020 M 2 3110 3116
1030 .] 0000 0000

10 11 12 13 14 15 16 17 18

19 20

0] 1 2 3 4 5 6 7 8

HSM Before

10 11 12 13 14 15 16 17 18

19 20

HSM After

IIT-191

3. Machine Operation

The Repeat instruction utilizes four status levels: X1, X2, REP1l, and REP2,
The X1 and X2 status levels are used primarily to store the P address of the
instruction immediately following the Repeat in sequence. The X1 status
level has several other important functions. The standard address generator
is used to produce the conventional addresses 0222 for X1 and 0224 for X2.
At TP3 of X1, the 2°, 21, 22, 23, and 2% bits of the N character are gated
into the NR register (NR uses only Group 1 characters). At TP4 of the X1,
the A and B addresses of the RPT are checked. If A is even, the INHA flip-
flop (Inhibit A) is set to prevent staticizing of the A address. If B is
even, the INHB flip-flop (Inhibit B) is set to prevent staticizing of the

B address. FREP (First Repeat) is also set at TP4 of X1.

Now refer to pages 2-8, 2-9, and 2-10 of the Status Flow Manual (Staticizing).
Notice that at TP4 and TP5 of P2 and P%,normal staticizing will occur if
INHA is not set or FREP is set. Also, at TP4 and TP5 of P4 and PQ,normal
staticizing will occur if INHB is not set or FREP is set. FREP will be
reset at TP6 of the next P5 executed, or after staticizing the instruction
immediately following the Repeat in sequence. This means that the instruc-
tion immediatély following the Repeat when the A and/or B address of the
Repeat are/is even will be staticized normally the first time. After that
INHA and/or INHB will prevent staticizing of the ‘associated register(s)
INHA and INHB will be reset at TP6 of the first P5 after the NR count is
exhausted. This can lead to trouble if a group of instructions are being

repeated with an odd A or B address in the Repeat.

Every instruction after the one immediately following the Repeat instruction
will be staticized when the NR count = ZERO. The problem will be mentioned

again under "Programming Errors".

The REP 1 Status Level is selected after executicon of the first repeatable
instruction if NR # O, REP1 and REP2 are used: (1) to read the stored P
address of the instruction immediately following the Repeat out of memory
and (2) to insert it into the P register. This transfers control for another

execution of the instruction(s) to be repeated. At TP2 of REP1l, a parity

ITI-192

adjustment for the NR character "to be" is made. At TP3 of REP1l the NR
count is triggered down one and assumes its ''good parity" condition., At

TP6 of REP1l, NRPE (NR register parity error) is set and stops the computer
if the NR register contains bad parity. At TP6 of REP2 (which was automati-
cally selected by REP1) Pl is selected to start staticizing the instruction

immediately following the Repeat in sequence.

4, Programming Problems

One of the major sources of trouble with the Repeat instruction is follow-
ing the RPT with a non-repeatable instruction when the A or B address of

the Repeat is even.

The R instruction itself sets up initial coﬁditions for repeating and is
normally executed just once. One of the functions of the Repeat is to
store the contents of the P register (address of next instruction in se-
quence) in standard locations 0222-0225. If the next instruction is a Re-
peatable instruction, it selects a REP1 and REP2 status level upon comple-
tion. These two status levels count the NR register down one and bring out

the address stored in 0222-0225 to be placed in the P register.

II1-193

END STAT

X

TPO1 0222 —e BUS

BUS —e=MAR
TP1 Generate CL
Inhibit Both

TP2 Set NR
TP23 P —»= BUS

BUSO —e MRO
TP3 BUSL;—e- MRL
N-(2"—s= 2382°) —= NR

If A3—28(0): Set INHA
TP4 If B3-27(0): Set INHB
Set FREP

Select X2
If PE: Set NRPE

!
X2

TPO1 0224 —e=BUS

BUS —s= MAR
TP1 Generate CL
Inhibit Both

TP23 P —» BUS

BUS2 —& MRO
BUS3 —» MR1

TP6 Select P1

y
STATICIZE*

REP2~- Next Instruction in Sequence

b
EXECUTE *

Next Instruction in Sequence

LNRZ LNRZ

REP1 Pl

TP3

Figure 47 X1 and X2 of a RPT

*Note: It is assumed here that the '"Next Instruction in Sequence" is
a repeatable instruction.

III-194

REP1

TPO1 0222 —e BUS
BUS —s= MAR
TP1 Generate CL
Permit Both
0 1 2) 6
TP2 If NR-2(1)/[27(0)e2°(1)): Trigger NR-2
TP3 Trigger NR(-1)
TP4 Reset P
MRO —& BUSO
TP45 MR1 —s BUS1
BUSO —s PO
TP3 BUS1 —e=P1
Select REP2
TP6 If PE: Set NRPE
TPO1l 0224 —e= BUS
BUS —&= MAR
TP1 Generate CL
Permit Both
. MRO —» BUS2
TP45 MR1 —® BUS3
BUS2 —s» P2
TP5 BUS3 —#=P3
TP6 Select P1
Pl

Figure 48 REP1 and REP2

III-195

Therefore, the next instruction to be executed should be the same instruc-
tion just completed which is the one immediately following the R instruc-

tion. The process of repeating continues until NR is decreased to zero.

If the instruction immediately following the R instruction is non-repeatable,
however, the computer will continue to execute instructions until a repeat-
able instruction is found. Then when REP1 and REP2 bring out the pre-stored
address from 0222-0225 the computer goes back to the instruction immediately
following the R instruction. Therefore, a group of instructions can be

repeated.

Example:

5000 R 2 0001 0001
5010 J (0] 3000 3050
5020 M 1 3000 3050

Symbol to Fill (J) is a non-repeatable instruction but DL (M) is Repeatable.
Both instructions will be executed a total of three times using the same
addresses each time. (The A and B addresses of the RPT are odd.,) If the

A and/or B address(es) of the Repeat instruction were even, each instruc-

tion repeated would use the final address(es) of the preceeding instruction,

Examgle:
5000 R 2 0000 0001
5010 J 0 3000 3050

5020 M 1 3000 3050

When the J instruction is executed initially, the addresses used are those
read out of memory during staticizing. Af will be 3051, Since the A ad-
dress of the RPT is even, the A address of the DL instruction is not sta-
ticized (since INHA is set) and A, will be 3051. A of the DL is 3052,
Upon termination of the DL, REPl and REP2 would be selected and control
would be transferred to 5010 to do the SF a second time. Again, since INHA
is set, the A address of the J instruction is not staticized and 3052 is

used as A of the SF., Memory would then be filled to the top, A-B equality

IIT-196

could not be reached and a WIT would occur.

Example 2

5000 R 2 0001 0000
5010 J 0 3000 3000
5020 M 1 2000 0000

Again, the A and B addresses of the SF instruction are both staticized the
first time through, since FREP is set. However, FREP will be reset at TP6
of the P5 used to staticize SF. Af of SF = 3001, Bf of SF = 3000. Since
the B address of the Repeat instruction is even: Ai of the DL = 2000 and B,
of the DL = 3000. Control will now be transferred (by REPl and REPZ) to
5010 where A; = 3000 (A will be staticized), B, = 3000 (B will not be sta-
ticized). The NR count was decremented by 1 by REP1l. The same process is
repeated again., However, the third time the SF instruction is staticized,
INHB will be reset at TP6 of P5 since NR = O at this time., Thus, the third
time the DL instruction is staticized, the B address will be staticized also.
The computer will be stopped by a WIT or the DL tries to move a character
to 0000.

The conclusions are: (1) The Repeat instruction functions as it should if

a repeatable instruction is coded immediately following the R, (2) The Re-
peat instruction can be used to repeat a group of instructions if the A

and B addresses of the R instruction are odd, (3) Sharing of final addresses
occurs if the A or B of the Repeat is even and at least one non-repeatable
instruction exists between the Repeat and the Repeatable instruction, Sit-
uation (3) can rarely be used to advantage and should be avoided if at all

possible since it can cause errors.

Another common source of error is use of an improper N character. It is
possible to cause a NRPE if an incorrect N character is used in the Repeat
instruction. The N character should be one of those characters existing in
group 1 of the 301 code (0O for zone bits 27 and 24). If one of the char-
acters in groups II or III is used as the N character of an R instruction,

the zone bit (25 or 24) will be lost upon transfer into the NR register and

III-197

an NRPE will occur (X1 status level). The loss of the zone bits occurs be-
cause there is no 25 or 24 flip-flop in the NR register. If, however, a
character from code group IV (11 for zone bits 2° and 24) is used as the N
character, both zone bits are dropped and good parity is maintained. Never-
theless the computer can only repeat the decimal equivalent of the informa-
tion bits 20, 21, 22, and 23, thus no advantage is gained by using group IV

characters.

Another possible source of error is misuse of indirect addressing. If in-
direct addresses are used in the Repeat instruction, the addresses which
finally determine whether or not INHA and/or INHB will be set are the final
addresses after all indirect addresses have been replaced. Indirect address-
es in the field of the Repeat instruction can be responsible for mistakes

if either the A or B address of the RPT is even.

Practice Problems

6. List the Status Flow for the following program.

1000 R 1 0000 0001
1010 N 2 3000 4000
1020 . 0 0000 0000
(i.e., P1, P2, P3, P4, X1, X2)

What are Af and Bf before the halt?

7. List the Status Flow for the following programs

(a) (b)

1000 R 1 0001 0000 : 2000 R 0] 0000 0000
1010 J * 2999 3000 2010 J * 3000 3000
1020 N 1 3000 4000 2020 N 1 3000 2999

What are A.f and Bf in both cases?

ITI-198

10.

Show HSM final and Af and B just before the "Halt'" is staticized.

1000 R 1 0001 0000
1010 J 0 3989 3990
1020 J * 3988 39088
1030 P * 3990 3990
1040 . 0 0000 0000

85 86 87 88 89 90 91 92 85 86 87 88 89 90 91 92

39 | ¥ 1 2 3 4 5 6 7 39

HSM Before HSM After A

i

Write a three-instruction program including the Halt to perform the

same function as the following program:

1000 N 4 1055 0215
1010 M " OZ21E 3000
1020 \Y 2 0000 0000
1030 \Y% 4 1018 0000
1040 X 0] 1058 1010
1050 . 0] 3001 0012

List the Status Flow of the following program.

1000 R 1 0000 0000
1010 1 0225 1030
1020 . 0] 0000 0000

1030 M 1 3000 3000

Write an equivalent two-instruction (including HALT) program.

IIT-199

H, S - INPUT-OUTPUT SENSE (IOS)

The Input-Output Sense instruction, like the CTC, is a decision making in-
struction. There are a number of differences between CTIC and IOS, however.
The CIC senses indicators of internal states of operation; the IOS senses
indicators of the states of operation of peripheral devices., Since the
choice of indicators for the CTC may be covered entirely by the information
given by the N character, CIC is capable of transferring control to either
the A or B address. The IOS has to choose from a much larger number of in-
dicators, so more information is needed to determine which indicator is to
be sensed., The N Character determines first which device will be addressed.
AO is used to determine which indicator of the addressed device will be
sensed (Al, A2, and A3 are Ignored). Thus, control may be transferred only
to the B address.

. The CTC can provide a three-way decision: Transfer control to the A address,
transfer control to the B address, or staticize and execute the next instruc-
tion in sequence. The IOS (since the A address is needed to determine
which indicator is to be sensed) can provide only a two-way decision: trans-
fer control to the B address, or staticize and eXecute the next instruction

in sequence. The IOS goes through STP on transfer of control only.

NOTE: The IOS instruction is covered in the Input-Output instruction
section of the Programmers' Reference Manual, Operations
summaries are given separately for each N character, i.e., a

different description for each device. See Sections VIII -~ XIV,

l, Instruction Format

Op. Code N A B
S Device to be AO- Indicator to be HSM Address of next
tested (See checked. Al, A2, instruction to be
Figure 49) and A3 ignored. executed if the con-
(See Figure 50) dition or conditions

being tested are

Mpggsent.

III-200

N
Device :

Unit #1 Unit #2
Hi Data Tape Group 1,2,3,4,5,6 A,B,C,D,E, F
33 KC Adapter . J N ’
66 KC Adapter L P
Dual Tape Channel (2 x 6) - 1,2,3,4,5,6
Dual Tape Channel (2 x 12) 123456 ABCDEF
Paper Tape Reader - 8
Paper Tape Punch 9
Card Reader or Read Unit of R-P (
Card Punch or Punch Unit of R-P)
On-Line Printer , 7 G
'Interrogating Typewriter 8)
Record File R z
Record File Mode # % .,
Data Disc File R Z

Fig. 49 108 N Characters

III-201

DEVICE

'1" BIT IN | NUMERIC
EQUIV,

TESTS

Magnetic Tape

o

1

Is the Tape Station Inoperable?

Is the Tape in Motion?

[\o] I

Has ETW been Sensed?

Is Tape Positioned at BTC?

-

Is Tape Moving in Reverse?

Paper Tapé Reader
or Punch

NI\JLNI\JNN
O] & W

|

Is the Selected Device Inoperable?

Is the Selected Device Operating?

Card Reader or Punch

Is the Selected Device Inoperable?

Is the Selected Device Operating?

On Line Printer

Is the Printer Inoperable?

Is a Line Being Printed?

Interrogating

Typewriter

=l o] |] o] | o] =

Is the Paper Advancing?

Is the Typewrinter Inoperable?

N = JRe Jo = o j 0 j JRe OO [0

[\CH {\SJ \SIN N\CIE (\CJ [\CIN | (VY J \V]

Has a Read Parity Error Occurred?

n
[\
-

Has "Program Interrogate' been
received?

n

Has a Write Parity Error occured?

Has '"Message Erase' been received?

Record File

O] FH1 W

[\SJR [

Is the Record File Inoperable?

Is the Device Reading or Writins?

| Sl [\S)

Is a Record on the Turntable?

Data Disc File

Is the Disc File Inoperable?

Is the Device Busy?

N o o

Is the Track Select Complete?

Wl N =) O] v -
o | Jo = 0 f R oo

[\V]

Has Incorrect Parity been Read?

Figure 50 A@ Character of IOS

III-203

2, Instruction Operation

Example: S 7 1000 3650

The above instruction is sensing the Printer for non-operability. If the
Printer is non-operable, the Computer will transfer control 3650, If the

Printer is operable, the Computer will execute the next instruction in

sequence.

Practice Problems

1. Write an instruction to sense for ETW on tape station B. If the Tape

Station is at EIW, transfer control to 2550.

2. Write an instruction to sense if the Card Reader (1st unit) is reading

any cards, If yes, transfer control to 7580.

3. Tape Station 5 is rewinding to BTIC, when the following instruction is
executed, What is the address of the next instruction to be executed?

(Assume the S instruction is in memory beginning at 1000).

S 5 AOOO 1030

Address of next instruction

(See notice on next page.)
4, If the following instructions are attempted, explain what would occur.

(Assume tape station 2 is rewinding).

1000 S 2 8000 1020
1010 \Y 1 0219 1000

- - - - - -t M G e S e Gmt e e e e S S G G e G G e M e G S S G G S e G e e e S e e B S e e G e G

1020 Remaining Portion of Program

ITI-204

Notice in Practice Problem #3 that two conditions are being sensed simul-
taneously since "A" contains both a 24 bit and a 20 bit. We shall see that
if any condition sensed is present, transfer of control to the B address

will take place.

3. Machine Operation

The IOS instruction uses three status levels: SIO, X1, and X2, The SIO
(Sense Input-Output) status level is the foundation of the IOS instruction,
(Refer to Figure 52) Two flip-flops are used by the SIO to determine which
HO (Hold-Off) and JMP (Jump). Both
flip-flops are reset at TPOl of the SIO. If HO is in the set state at TP6
If HO is not set, X1

will be selected if JMP is set and Pl will be selected if JMP is not set.

status level will be selected next:
of the SIO, another SIO is automatically selected.
TP2 and the first line of TP5 and TP6 refer to the Hi-Data Tape Station and

The JMP flip-flop will be set if the tested condi-
tion is present at TP5 of the SIO.

will be covered later.
Figure 51 gives an interpretation of

levels used in setting JMP.

DEVICE MOTION ETW BTC REVERSE
DENOTES DENOTES- DENOTES DENOTES
Any tape .
Hi Data Tape movement ETW BTC Tape movement in
reverse
except Rwd.
33KC Tape Any tape ETW BTC Tape movement in
movement reverse
66KC Tape Any tape ETW BTC Tape movement in
movement reverse
Paper Tape Reader Reading NA* NA* NA‘
Paper Tape Punch Punching NA* NA ¥ NA ¥
. . . * %x Paper
Printer Printing NA NA advancing
Reading .
Record File or Disc on NA * NA‘
S Turntable
Writing
Card Reader Reading NA " NA x Na ¥
Card Punch Punching NA * NA X NA x

Figure 51 Levels Used in Setting JMP During SIO

*¥NA = Not Applicable

III-205

SIO

TP1 Reset HO
Reset JMP

TP2| If Hi Data TS Unlike Add/Add Chg (1): Set HO _
If HDB(O)+Unlike Add-HD WR RET(0): Set Add Chg¥,N-TAR%¥

If N-TAR(1):Unlike Add: Reset HDTARst
If A0-20(1)+Inoperable: Set JMP
rpg| If 40-21(1)*Motion: Set JMP
If A0-22(1)+ETW: Set JMP
If A0-2P(1)+BTC: Set JMP
If AO-27(1)+Reverse: Set JMP

If N-TAR(1): XN HDTAR:¢
TP6 If HO(1): Select SIO

If HO(O)+JMP(1): Select X1
If HO(O)+JMP(0): Select P1

HO(O)+JMP(1) .HO(O)~JMP())

HO(1) X1 P1

Figure 52 SIO of an IOS

Notice that if any one of the tested conditions is present, JMP will be set

and if HO is not set, an X1 status level will be selected at TP6.

The X1 and X2 status levels are used to store the contents of the P register
and to gate the contents of the B register into P. X1l and X2 are used only
when the tested condition was found to be present and control is to be trans-
ferred to the B address.

III-206

SIO

b

Xi
TPO1 0216 —e BUS
TP1 BUS —e>MAR —&BA(+0)
Generate CL, Inhibit Both
TP23 P —» BUS
il W=
TP6 Select X2
!
X2
TPO1 0218 —e BUS 4
TP1 BUS —= MAR —& BA(+0)
Generate CL, Inhibit Both
TP23 P —e= BUS
w | o
TP4 Reset P
TP45 B —= BUS
TP5 BUS —»P
TP6 Select Pl

LP‘]

Figure 53 X1 and X2 of an IOS

There is one situation where the desired '"sense' cannot be made immediately.
This involves the Hi-Data Tape Station. The Hi-Data has multiple tape trans-
ports (2-6) sharing a common set of logic. 1In order to address transport #3
after performing an instruction on transport #2, for example, the logic must
be "switched" from transport #2 to transport #3. Since relays are used to
switch the logic channels, this operation takes several milliseconds, which

is several thousand microseconds.

Now, if the programmer attempts to sense transport #4 to see if it is at

BTC just after performing a read from transport #1, the computer will have

ITI-207

to wait until the Logic '"switch" is made before #4 can be sensed. The HO
flip~-flop is used to keep the computer "waiting'" until the switch has been
made. At TP2 of the SIO status level of the IOS instruction, HO is set if
a Hi-Data Transport is being addressed and if it is necessary to make an

address change or "switch.'" Notice that with HO set, TP6 of the SIO will
select another SIO status level. HO will continue to be"set at TP2 of the
SIO until the address change has been completed. Thus the computer will

"cycle in SIO" until the logic switch is made.

The process of making this address change is also shown in the SIO chart
of Figure 52. The "HDB(O)" found at TP2 of the SIO means that the Hi-Data
Busy Flip-flop is not set. If HDB were set, it would indicate that one of
the Hi-Data transports is executing a simultaneous mode instruction. For
instance, '""Unlike Add'" means that the current N character which determines
the transport to be addressed is different from the character in the Tape
Address Register (TAR) which is the number of transport currently being
used, '"HD WR RET (O)" means that no Hi-Data Write Return is present; i.e.,
a Hi-Data Write instruction is not engaged in the execution of an instruc-
tion, and an '"address change'" is called for to set the address change flip-

flop and the.N-TAR (N character to the Tape Address Register) flip-flop.

At TP5 of the SIO if N-TAR is set and unlike addresses are present, the Hi-
Data Tape Address Register will be reset., At TP6 if N-TAR is set, the N
character is gated into the Hi-Data Tape Address Register. This action

will initiate the pulling of the relays necessary to '"switch' the Hi-Data
Logic channels., HO will continue to be set at TP2 until the Address Change
flip-flop is reset (actually llms, the amount of time the relays are allowed
to switch the Logic). Finally, when the address change is completed, HO is
not set, and depending upon the results of sensing the desired indicator,

either an X1 or a Pl is selected,

4, Programming Errors

The Input-Output Sense instruction can be coded incorrectly and thus pro-
duce difficulty.

III-208

Since the input-output tests are specified by the AO character bits, it is
possible to test for more than one condition with a single instruction.
However, only one '"yes'" reply to any given test will cause the computer to

jump to the B address.
Example: S 2 6000 2000

The AO character 6, is testing for tape in motion (21) and EIW having been
sensed (22). If the computer jumps to address 2000 because of a yes re-
sponse, the programmer would not know whether the response was from both

tests or only one; nor would he know which of the two produced the yes reply.
Example: S 3 HOOO 4000

Since the AO character is H, the tests to be performed are for tape moving
in reverse (24) and BTC (23). If it is desired to rewind a given tape but
it is not known whether or not the tape is at BIC, in the process of re-
winding, or positioned beyond BTC, the above instruction could ask two
questions at once. A "yes" reply would indicate that it is unnecessary to
rewind trunk 3 while a '"no" response would indicate trunk 3 can be rewound.
(i.e., the tape on trunk 3 is positioned beyond BTC and is not moving in

reverse.)

The Al, A2 and A3 characters are ignored for most combinations of S. How-
ever, constants being stored in the A3 position will cause indirect address-
ing to occur if the 24 bit is a '"one'" bit. It is very possible that a MAPE

alarm or incorrect results may occur as a result of this indirect addressing.
Example: S 2 19DC 3000

The 301 would attempt indirect addressing in the above example and since the
24 bit of the A2 character is dropped in the A register, bad parity would

result and a MAPE alarm would occur during the M1l status level.
Example: S 2 194C 3000

The 301 would again attempt indirect addressing. This time indirect ad-
dressing would be successful, but the test performed would then depend upon

the new contents of AO which would be the MSD of the new address.

III-209

Practice Problems

5. What is the difference between these two programs?
(a) 1000 S 2 4000 2000 (b) 1010 S 2 5000 2000
1010 S 2 1000 2000

6. What would be the state of the Hi-Data transport #3 if the instruction

at 1010 is executed immediately after the IOS instruction?

1000. S 3 . 000 2000
1010 . (0] 0000 0000

7. Describe the purpose and execution of the following instruction?

s) 4000 2000

8. Write a program to check for On-Line Printer Paper Advance. As long as
paper is advancing, keep checking. When advance is finished, transfer

control to 3000. Start the program at 1000.

III-210

9. Write an instruction at location 1000 to transfer to 3050 if the Paper

Tape Reader is inoperable. Otherwise, execute the instruction at 1010.

10. Write a program to determine whether or not Hi-Data transport #6 is in
rewind or at BTC, If it is, transfer to 3000, If not, transfer to 2000.
Start program at 1000.

I11-211

ANSWERS TO PRACTICE PROBLEMS

Pgs. III-144, 145, 146, 151, and 152

1. 0212 will contain
0213 will contain
0214 will contain

B W O O

0215 will contain

10| 7 7 6 0] P 8 0] 0] 0]

HSM AFTER

3. V 8 5108 0000 or \% 8 5109 0000

4, 66 67 68 69 70 71 72

77 | ¥ * * * S A M

HSM AFTER

5. 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

89|10 N E @ T W o a@ 0 N E @ T W o @

HSM AFTER

6. 60 61 62 63 64 65 66

66 | R C C A R * A

HSM AFTER

7. 05 06 07 08 09 10 10 11 12 13 14 15 16 17 18 19 20

5o 1 (0] 1 (@) 6 oz | A B 0] 2 1 6 1 (0] 1 0] K

HSM AFTER HSM AFTER

ITI-212

10 11 12 13 14 15 16, 10 11 12 13 14 15 16 17 18 19

(0] 1 3 0] o o) 6|02 |E F (0] 5 1 3 K L M N

1o.

HSM AFTER

Notice that there are two bits in the N character of the Store Register
instructions. There is a 21 bit, however, STAl will be selected and
12004" will be stored in standard store A location 0212-0215. P is

1020 after executionh.

Again there are two bits present in the N character of the Store Regis-
ter instructions. Since no 21 bit is present, an A2 will be selected.
However, the A2 will try to store both P and B. At TP3 a '"20" from

the P register and a "18" from the B register will both be gated into
the MR, giving bad parity in both MRO and MR1l, The computer will stop

with a MRPE.

Pgs. III-156, 157, 162, 163, and 164

5.

W & 4320 5580
2010

W 8 4650 4630

60 61 62 63 64 65 66

65 | * * * * 3 8 5

False. There are four conditions when a Pl is selected by P5 of
the CTC directly. These are listed in Section III, C, 3a =~

Non-transfer of Control.

III-213

6. 1000 # ;3 2000 2000 1000 P ; 2999 2999
1010 K ; O21E 0000 1010 L ;3 O021E 0000
1020 W & 1030 1050 1020 W & 1030 1050
1030 J . O21E O21E or 1030 J . O021E O21E
1040 V 1 0219 4000 1040 V 1 0219 4000
1050 J O O21E O21E 1050 J O O21E O21E
1060 V 1 0219 4000 1060 VvV 1 0219 4000

7. 1000 J O 2050 2100
1010 K O 2050 2100
1020 w 1 1000 1000
1030 VvV 1 0218 3000

8. A3 and B3 of a CTIC instruction usually contains "O" because they
replace P addresses, and instructions usually start at a location

with O and an LSD.

9. 1000 K * 5000 5999
1010 W 1 2020 1080
1020 VvV 1 0218 3000

10. "Q" is an illegal N character for the CTC instruction since it contains
two bits plus parity. Both the 25 bit and the 23 bit are present, so
both the Normal ED/EF Indicator and the Simultaneous ED/EF Indicator
will be sensed. In this case, sensing the Normal Indicator will trans-
fer control to the B address and sensing the Simultaneous Indicator
will transfer control to the A address. So at TP45 of the X2 status
level, both the A and the B address will be gated into the P register.
The addresses "1230" and "5300" when OR'ed together produce the ad-
dress '"5330", Control will be transferred to 5330 and since thé newly

created address had good parity, no MAPE will occur during‘staticizing.

III-214

Pgs. III-165, 166, 167, 170

Y 6 3145 7577
5 , PRP
Y 3 7630 7634
w 1 5500 5550
30 31 32 33 34 35 36 37 38
30| @ A 3 @ B 4 @ 0 0
2000 Y 1 1000 1001
2010 w 1 2040 2060
2020 J E 1005 1005
2030 \% 1 0219 3000
2040 N 1 1000 1005
2050 \% 1 0219 3000
2060 N 1 1001 1005
ZQ7O \Y% 1 0219 3000
Either (1) A-B equality or (2) a non-compare
Twenty
1000 Yy 1 1086 5023
1010 W 1 2000 3000
1020 M 4 0532 1066 or N 4 0535

1069

ITI-215

9. Put a ")" in location 8000 before execution.

1000
1010
1020
1030
1040
1050

10. 1000
1010
1020
1030
1040

Y

< 4 < 4 =

2 2 < < =X

1

(R N N -

B H N R A

8000 5239
1020 1040
5501 5501
0219 3000
5611 5611
0219 3000

1022 0212
O21E 1026

9000 9099
1080 1040
0212 1022

Pgs, III-174, 175, 180

1, 34 times

1050
1060
1070
1080
1090

< W< =2 K

2, 16 17 18 19
02] 4 2 5 (0]
2 21 22
3. X 0] 4620 2300 19 0
46 X 0] 9 X
4, 20 21 22 23 24 25 26
38 | A A A A C * D
HSM AFTER

II1-216

H O H M N

To22
2000
0219
102E
0219

1026
1010
1010
102E
1040

10.

The program compares unknown character X with each of the six letters
A, B, C, D, E, and F. The letter which is found equal to X (if any)
is transferred to location 1010 and the computer stops. If X is not
equal to any of the six characters, the computer will stop upon ex-

haustion of the Tally Quantity located in 2072.

1000 M 4 1022 0212
1010 M " 021E 3000
1020 V2 2000 0000
1030 VvV 4 1019 0000
1040 X 0 1058 1010
1050 . O 0000 0019

28 29 30 31 32 33

* Could be one or zero, depending
30 1 1 1 * 1 1 on when looked at.

- The SF instruction will continually replace the Tally Quantity with

~"11", Thus, the program will never leave the loop created by the

Tally instruction.

The two SF instructions at 1000 and 1010 will perform correctly. The
Tally instruction at 1020 is designed to continue transferring control
to itself until the Tally Quantity is exhausted. However, the Tally
Quantity is, in this case the first two digits of the A address of the
SF instruction at 1000. So when the Tally in 1020 has reduced its
Tally Quantity to "OO'", the Tally in 1030 will transfer control to 1000
(Note: The Tally Quantity is in this case "Ol".,) The instruction in

1000 now reads: J O 0000 3000, So, a WIT alarm will occur,

Tally will transfer control a certain number of times., '"Store P"

always transfers control.

1000 M 1022 0212
1010 A E, O21E 2000
1020 Vv 2 3000 9950
1030 X 0 1026 1010

1040 X O 1028 1010

II1-217

. Pgs. III-183 and 184

1. 1000 K (0] 2000 3000
1010 W 1 1030 1040
1020 . 3 0000 0000
1030 . 2 0000 0000
1040 . 1 0000 0000
2. 1000 . 0] 0000 0000 Manually insert numerical info in
1010 v 2 o000 oopo ° 2and B register.
1020 A% 4 2135 0000
1030 M 4 0212 1056
1040 . 1 0000 0000

3. The Halt instruction uses no First Processing Level.

4. 2000 Y 1 1000 1001
2010 W 1 2040 2060
2020 J B 1005 1005
2030 . O 0000 0000
2040 N 1 1000 1005
2050 . O 0000 0000
2060 N 1 1001 1005
2070 . O 0000 0000

5. The first time Start is depressed, the Halt instruction in 1000 is sta=-
ticized. Since both A3 and B3 contain 24 bits, indirect addressing will
be attempted. 1In this case both Pl and M1 will be selected and '"ORed"
together giving a result of Pl with good parity. So the Halt at 1000
will operate properly.

The second time Start is depressed, the Halt instruction in 1010 is sta-
ticized. Since only B3 contains a 24 bit this time, both a Pl and an
M3 will be selected. The result is a (37)8 with bad parity. The computer

will stop with an STLE.

IIT-218

N

Pgs, III-189, 190, 191, 198, 199

1.

00O 01 02 03 04 05 06 07 08

30| 6 4 # 9 3 # P G H

HSM After

Ol 02 03 04 05 06 07 08 09

40 | 2 3 8 G # X # 9 3

HSM After

One combination: R 2 0000 0000

= 1000 2000

5538

00 01 02 03 04 05 06

40 | A E E E E F G

Since both the A and B addresses are odd, the SF and DL instructions

will each be executed twice using the addresses shown,

10 11 12 13 14 15 16 17 18 19 20

31}|0 1 * * * 5 0} 1 8 9 &

P1-P5, X1, X2, P1-P5, Al, B, Al, B, REP1, REP2, P1-P5, Al, Bl, Al,

Bl, P1-P5, HALT. Ap = 2996, B = 3998,

IT1I-219

(b)

P1-P5, X1, X2, P1-P5, A2, A2, P1-P5, Al, B, REP1, REP2,
P1-P5, A2, P1-P5, Al, B '

A, = 2999,

B

£ = 3999

P1-P5, X1, X2, P1-P5, A2, P1-P5, Al, B,
B, = 2998

A = 2999,

f

Notice in (b) that although INHA and INHB are set during X1, they

will be reset during P5 of the SF since the NR count = O,

8. 85 86 87 88 89 90 91 92

39 | ¥ 1 2 * * 6 7 Af 3989, B 3988.
9. 1000 R B 0000 0000

1010 M " 3001 3000

1020 o 0] 0000 0000

10. P1-P5, X1, X2, P1-P5, A2,

HALT*

1000
1010

IITI-220

M 1
. 0]

0223
0000

A4, P1-P5, Al, B, REP1, REP2, P1-P5,

1030
0000

Pgs. III-204, 210, 211

1o.

S B 4000 2550
s (2000 7580
1030

Tape Station #2 is being sensed for BTC. If the Tape Station is still
rewinding, the answer is no and the next instruction in sequence is
executed, This instruction transfers control back to the Sense instruc-
tion. This little loop is continued until transport #2 reaches BTC.

Then the computer jumps to 1020 to resume execution of the program.

They both will have the same effect.

. 4 3 1 o ..
The . in AO of the IOS has a 27,,2", 27, and 2~ bit. If any of the con-
ditions specified by these bits is sensed, control will be transferred
to 2000, So transport #3 must be not: in reverse, at BTC, in motion,

or inoperable. Thus, #3 is operable, not at BTC, and tape is not moving.

This instruction is addressing card punch #1. The AO character contains
only a 22 bit. By consulting Table 8.2, we see that this will not per-
form a test, so it is impossible to set the JMP flip-flop. So, the next

instruction in sequence will be executed.

1000 S &000 1000
1010 \Y 1 ' 0218 3000

~

1000 S 8 1000 3050

1000 S 6~ 2000 2000 Is tape in motion?
1010 S 6 HOOO 3000 Is tape in reverse or at BIC?
1020 \% 1 0219 2000

If transport #6 is in RWD, it will not be motion, but tape will be mov-

ing in reverse,

ITI-221

SECTION IV
ARITHMETIC INSTRUCTIONS

A. ARITHMETIC INSTRUCTIONS, INTRODUCTION

The Arithmetic Instructions, as their name implies, are used to perform
arithmetic operations. This group is composed of two decimal and three

binary bit instructions. The five Arithmetic instructions are:

Op. Code Instruction

Decimal + - ADD (ADD)
Operations

- - SUBTRACT (SUB)
Binary Bit Q - LOGICAL OR (OR)
Operations

T - LOGICAL AND (AND)

U - EXCLUSIVE OR (EXO)

B. +/- ADD OR SUBTRACT (ADD OR SURB) Repeatable

The Add and Subtract instructions are the foundation of any mathematical
function performed by the 301. These instructions perform algebraic addi-
tion or subtraction upon two equal length operands of up to 44 characters
each. Only one addition or subtraction is performed at a time. The result
is stored in memory in place of the augend or minuend (i.e. at the A ad-
dress). The instructions operate from right to left and terminate upon de-
creasing the N count to zero. The PRI's are used to indicate the sign of
the result. PRP is set if the sum or difference is positive; PRZ indicates
that the sum or difference is zero; and PRN indicates a negative sum or
difference. Neither the standard STA nor STP locations are used by the Add

or Subtract instruction.

NOTE: Pages VI-3 through VI-7 of the Programmers' Reference
Manual give operational outlines and cover exceptional

cases of the Add and Subtract instructions.

l. Instruction Format

Operation Code: +/ =

N Character: Number of characters per operand (0-44 using N count)

Iv-223

A Address: LSD location of 1lst operand and result
B Address: LSD location of 2nd operand

NOTE: If N = O, no characters are added or subtracted. The

next instruction in sequence is executed.

The sign of each operand is incorporated in the 2° bit position of the LSD.

If the 25 bit of the LSD is a one, the entire operand is negative; if the

27 bit of the LSD is a zero, the entire operand is positive.

Example 1:

+ 2 4205 4208

04 O5 06 07 08 04 05 06 07 08
42 | 4 K 3 9 1 42 | 4 % 3 9 1
HSM Before HSM After
PRP is set.

The augend in the above example is 4K or a minus 42. The addend is a posi-
tive 91. Algebraic addition produces a positive result of 49 and PRP is
set. Note that the result (49) replaced the augend (4K). If a carry is
Qenerated on the last addition, the carry is incorporated as a one bit in
the 24 position of the MSD and the overflow indicator SCAR is set, however,

in this example, no carry is generated.

Example 2:
- 3 5102 5105
00 01 02 03 04 OS5 00 01 02 03 04 O5
51| 7 2 P 5 8 4 51| C 1 J 5 8 4

PRN is set.

In the above example, the minuend is 72P or a negative 727. The subtra-

hend is a positive 584 but due to the algebraic subtraction, the subtra-

Iv-224

hend appears to be negative and the result is a negative 1311, This is

recorded as ClJ.

2. Instruction Execution

Example: + 3 4510 5620

04 0O5 06 07 08 09 10 17 18 19 20 21 22 23
45 |1 4 6 7 5 3 8 9 56| 4 9 5 3 6 2 7

A. B.

1 1

HSM Before

04 O5 06 07 08 09 10 17 18 19 20 21 22 23
45 | 4 6 7 5 C 4 2 56| 4 9 5 3 6 2 7

> —M
w

HSM After

In this example, three additions were performed and the result is '"C42",
Note that a carry was produced from the addition of the most significant
digits. Since only three characters were specified for each operand, the
result must be three characters. Therefore, a carry, if it occurs, must
be incorporated in the MSD of the result. This is done by inserting a 1
in the 24 bit position. The actual result should be 1342 in this example,

but becomes C42 since a C is a decimal three with a 1 in the 24 bit position.

It should also be noted that in this case both operands were positive,
thereby producing a positive result. Had the result been negative, the 25
bit in the LSD would have been a 1. A negative 1342 would be C4K, where K

is a decimal two with a 1 in the 25 bit position.

' IV-225

Example: - 3 3888 3892

85 86 87 88 89 90 91 92

38 3 7 4 6 2 8 1 P
A. B.
i i

HSM Before

85 86 87 88 89 90 91 92

38 3 E 6 3 2 8 1 P

‘f4

Ag Be

HSM After

In this example, a positive number, 746, is the minuend and a negative num-
ber, 817, is the subtrahend. Since the instruction is a Subtract, the com-
puter effectively changes the sign of the subtrahend and adds. Thus, a
positive 746 and a positive 817 give a result of 1563 or E63. This is a
positive result, which would set PRP. |

- 4 4114 4119

10 11 12 13 14 15 16 17 18 19

41| 7 2 6 8 9 4 5 2 1 3

?T

A, B.
i i

HSM Before

10 11 12 13 14 15 16 17 18 19

41 %; 2 5 2 M 4 5 2 1 3
Af Bf
HSM After

I1v-226

In this example, the subtrahend (+5213) is larger than the minuend (+2689).

Consequently, a negative result of 2524 is obtained, and PRN is set.

negative 2524 is placed in memory as 252M,

Problem No. 1

Execute the following instruction and show final HSM contents.

is set?

PRACTICE PROBLEMS

- 2 5652 5656

50 51 52 53 54 55 56 57
56| 6 7 P 8 9 5 2 3
HSM Before
50 51 52 53 54 55 56 57
56
HSM AFTER
PRI?

Problem No. 2

Execute the following

20

The

Which PRI

instruction and show final HSM contents.

- 3 2622 2628

21 22 23 24 25 26 27

28

26| 8

6 5 1 3 2 5 6

20

HSM Before

21 22 23 24 25 26 27

28

26

HSM After
PRI?

1V-227

Problem No. 3

Execute the following instruction and show final HSM contents.

+ 4 2003 4008

00 01 02 03 04 05 06 07 08 09
208 6 5 3 2 | | 0|1 4 8 0 9
HSM Before
00 01 02 03 04 05 06 07 08 09
20 40
HSM After
PRI?

Problem No. 4

Execute the following instruction and show final HSM contents. Which PRI
becomes set?

+ 3 4862 2113

60 61 62 63 64 65 09 10 11 12 13 14

48 | 3 8 N 6 K 4 21| B 4 6 4 4 A
HSM Before
60 61 62 63 64 65 09 10 11 12 13 14
48) 21
HSM After
PRI?

- Iv-228

Problem No. 5

Write an instruction which will add ten characters.

The MSD of the Augend

is located at address 1003 and the MSD of the addend is at address 4632,

Problem No. 6

Execute the following instructions and show final HSM contents.

2500 K @ 3787 3793
2510 + 4 0215 2539
2520 J @ 3787 O21E
2530 . O 0000 0001
87 88 89 90 91 92 93 87 88 89 90 91 92 93
371 @ & . 2 6 7 37

HSM Before

Problem No. 7

HSM After

Two unknown operands exist in memory between 1000 and 1008, and 1010 and 1018.

Each consists of an unknown number of digits

from one to eight preceded by an

@ symbol. Any characters to the left of the @ symbol will be insignificant

zeros, Write a program which will add these

address of the initial instruction in your program.

constants used,

Problem No, 8

1000
1010
1020
1030

3+

J

.

O M 1k

1200
0215
021E
0001

What is the purpose of the program above?

1200
1035
021E
0000
Will it work? Why?

two variable length operands
and place the result in locations 1000 through 1008.
location to the left of the MSD of the result.

Place an @ symbol one
Use address 2000 as the

Show addresses of any

Iv-229

3. Machine Operation

- The Add and Subtract instructions use just four status levels for the addi-

tion or subtraction of two characters. A "B" status level brings out one

character and places it in D3; an Al status level brings out the other char- .
acter and places it in D2; a D status level obtains the result by table look

up, and an A2 stores the result back in memory.

There are other status levels in the Add and Subtract instructions but they
are not part of the basic operation. The X1 and X2 status levels perform
preparatory steps such as setting and resetting certain flip-flops, and
storing the A address at standard locations 0206-0209. The storing of the
A address is done in case the computer must complement the answer. Comple-

mentation requires three additional status levels (A3, D, and A4) for each

digit of the result.

The actual process of addition or subtraction is done by 'table look-up".

Prestored in memory, there is a sum table between 0000-0099 and a difference
table between 0100-0199.

After each LSD has been brought out and placed in D3 and D2 (B and Al status
levels, respeétively) the signs are examined along with the operation codes.
If "like signs'" are found, the address generator creates 00 on Bus O and

Bus 1, D2 is placed on Bus 2 and D3 during the D status level. For example
if 3 and 4 are the operands, the address 0034 is generated. At this address
is a 7 which is brought out (also during the D status level) and stored in
D3. (See Figure 54) The answer is then written back into memory at the A

address during an A2 status level.

If "unlike signs'" are found, the digits Ol are generated and the computer
goes to the difference table for the result. Subtracting 5 from 8 would
generate the address 0185. At this location would be a 3. Note that the

computer can use the sum table or difference table for either an Add or Sub-

tract instruction.

Notice that the sign of the instruction (+ or -) as well as the signs of the

operands are considered in deciding whether these are '"like'" or '"unlike".

IV-230

In fact the only time a "+" instruction will differ from a "-" is in deciding
whether or not to set the '"unlike'" signs flip-flop. This flip-flop determines
whether the sum or the difference table will be accessed. (See ULS FF Fig. 5.)

Examples:
Add Instruction Add Instruction
Augend = 743 Augend = 81L
Addend = 752 Addend = 49¢
Sum table is used with result Difference table is used with
positive D95. result negative 32L.
Subtract Instruction Subtract Instruction
Minuend = 95N Minuend = 7¢5
Subtrahend = 322 Subtrahend = 699
Sum table is used with result Difference table is used with
negative B7P. result positive @@6.

Iv-231

SUM TABLE HSM 0000-0099

Addend (D3)
or

Subtrahend

ol ols]lclmjolAal®|e|o |z
ol ojlolI]l<]lmjo|lAalmx O
~| NMojlols|<lmlola|m |
ol vivn|lofjoll<]mljo | |@
n| njojnjolols|l<im|o |a
| ¥njoin]oljo]las]l<|m jo
™ mjeln|joln]joloals|< |m
Al ajlm|wx|jnjolnjolo |z |«
Al Al |t wn]oln]o o |
o] olrlalo|lw]n]oln]o |o

Augend (D2) : i

or
Minuend

DIFFERENCE TABLE HSM 0100-0199

Addend or
. Subtrahend (D3)

o lmlolal Qo] H]|O
@© mlojlQAalRAl]| Tl H]O]|H
&~ ol EL]jOlTlH]O]IH A
O AN L]Ol Tl =0l |jm
n MicloioiH]|OlHIiN{m |
< wlolmiH]OlH QAN |0
™ ol |H]OlH]Qa]l| |0 |O
a T jH|OlH || |F]n]O |
L] Hl]OlH ||| D] O] DO
(@] Oid NN]F N[O]JOO
Ot injoln]ojo
R R R R R A A R
oJjojojJojojJjolojojo|o
~~
N
[a
| TN
o.d
T a
c o
[R=]
[o)\¥ =}
3.+
< =

Figure 54 Sum and Difference Tables

Iv-232

The 24 zone bit is used to recognize a carry or borrow during an arithmetic
operation. For example, assume that the characters 8 and R are being sub-
tracted. The subtrahend being negative would appear positive for algebraic
subtraction, and "like signs'" would be recognized. The address 0089 would
be formed and at this address would be a 7 with a carry (24 bit or a Gj.
During the D status level, when the answer is brought out, the 24 bit is
examined and if it is a one bit, Sum Carry (SCAR) becomes set. SCAR sets
Initial Carry (ICAR) and before the next addition takes place D3 is triggered

up one, thus incorporating a carry.

The reader should note that in most cases the 24 zone bit is eliminated prior

to writing the answer back into memory.

The 24 bit is also used to execute a borrow by using the same steps. Assume
the minuend is 3K and the subtrahend is 1M during a subtract operation. The
K and M are brought out in D2 and D3, respectively, and unlike signs are
found. The address 0124 is generated during the D status level and at that -
location is an 8 with a borrow (4 from 2 = 8 with borrow) or an H. SCAR is
set, and the first character of the result (8) is written back into memory
during the A2 status level. (Actually a Q is written to show the negative
sign of the result.) The next series of‘status levels, B and Al, bring out
the 3 and 1. Since SCAR was set, ICAR becomes set and D3 is triggered up to
2. The address 0132 is generated during a D status level, and a 1 is brought
out of memory. Hence a borrow occurred in the same manner as a carry - the
difference being the table that was addressed.

The Rule is:

If a 24 bit comes from the Sum table it is recognized as a carry.

If a 24 bit comes from the Difference table, it is a borrow.

Since the computer cannot recognize the MSD's of the operands until it has
first processed the other characters, the machine must predict the sign of
the result during the first Al status level. It can be stated that the com-
puter will assume the sign of the character in D2 (the A operand) as the sign

of the result. Only in two instances will the computer be wrong:

Iv-233

(1) When the subtrahend is larger than the minuend and the Difference Table
is being addressed; and (2) When a zero result is obtained and a negative
result is predicted. . For both of these cases, the computer must go through

complementation.

Figure 55 is a block diagram of an add or subtract not requiring complemen-
tation. Figure 56 is a simplified chart of the B and Al status levels; and
Figure 57, a simplified view of D and A2. Notice how a cafry (or borrow) is
performed at TP4 of the Al. (Incrementing D3 will add one to a sum or sub-
tract one from a difference.) At TP6 of the Al status level, if an add
instruction is being executed and the signs of the addend and augend are
unlike, or a sub instruction is being executed and the signs of the subtra-
hend and minuhend are like, the ULS FF will be set., If ULS is set, the
difference table will be addressed during the D status level. ULS and other

important flip-flops are shown schematically in Figure 58,

Iv-234

STAT.

Xl
STORE A ADDRESS
> AT 0206-0209
SET FD,D2S, PRZ
RESET SCAR,ICAR, ULS
X2
B (8) ~= D3, B~-1—»B
Al . (A)—e=D2 A+0—wA

NZ
CONSTRUCT TABLE ADDRESS
D FROM ADD. GEN., D2 & D3.
PLACE RESULT IN D3
A2 D3 —==(A), A—-| = A
N?-l' () = CONTENTS OF MEMORY AS
Pl ADDRESSED BY
Figure 55 Basic Block Diagram of Add or Subtract

IV-235

B
TPO1 . B address onto Bus.
Contents of Bus to MAR. Generate Command Level and
TP1 decode address in MAR. Modify address in Bus Adder
by minus one.
TP2 Reset B register.
TP23 Permit both characters being read to reach MR.
Gate modified address from Bus Adder to Bus.
TP3 Gate Bus contents into B,
TP4 Reset D register.
TP45 Regenerate diad. Gate MRO or MRl onto Bus 3 as
directed by MAR address.
TP5 Gate contents of Bus 3 into D3,
TP6 Select Al status level.
Al
TPO1 Gate A address onto Bus.
Contents of Bus to MAR and Bus Adder where modified by O.
TP1 Generate a command level and decode MAR address. If SCAR
is set, set ICAR,
P2 Reset A register. Reset SCAR,
TP23 Gate contents of Bus Adder onto Bus. Permit both
characters being read out to reach MR,
TP3 Gate contents of Bus to A register. Trigger N
down one.
TP4 If ICAR is set, trigger D3 up one.
TP45 Regenerate diad. Gate MRO or MR1 onto Bus 2 as
directed by MAR address.
TP5 Gate contents of Bus 2 to D2. Reset ICAR,
If FD is set and D2 - 2° is set, set PRN. If FD is set
and Add instruction has opposite signs in D2 and D3,
TP6 set Unlike Signs (ULS). If FD is set and subtract in-
struction has same signs in D2 and D3, set ULS. Select
D status level.

IV-236

FIGURE 56 B AND Al OF ADD OR SUB

D

Generate zero onto Bus O, If ULS is reset, generate zero onto

TPO1 Bus 1. If ULS is set, generate 1 onto Bus 1. Gate D2 onto Bus 2
and D3 onto Bus 3,

TP1 Gate address from Bus to MAR, Generate command level and
decode MAR address.

TP23 Permit both characters to be read out into MR,

TP4 Reset D register.

TP45 . If MAR address is even, gate MRO onto Bus 3; if odd, gate
MR1 onto Bus 3, Regenerate diad.

TP5 Gate contents of Bus 3 into D3.

P6 1f D3 - 2% is set, set SCAR; if not D3Z or if D3 - 2%
is set, reset DZS, Select A2 status level.

A2

TPO1 Gate A address to Bus.
Contents of Bus to MAR and Bus Adder where one is subtracted.

TP1 Generate command level and decode MAR address. If NZ, reset
D3 - 24, If FD is set and PRN is set, set D3 - 25,

P2 If DZS is reset and PRN is reset, set PRP. Reset FD,.

TP23 Inhibit one character from reaching MR during read out as.
addressed by MAR, Gate D3 onto: Bus 3.

TP3 Gate contents of Bus 3 into MRO or MRl as directed by MAR
address.

TP4 Reset A register.

TP45 Regenerate diad. Gate address from Bus Adder onto Bus.

TP5 Gate contents of Bus into A register.

TP6 If NZ select B status level, If NZ select Pl status level.

FIGURE 57 D and A2 of ADD or SUB

Iv-237

02-25(1) 02-25(0) 02-25(0) p2-25(1)

ADDE : jo:s-25(0) ADD 03-25() SUT : j03—25<o> suaC jos~25u)
b3z D3-2%1)
Al
. TP6 Fo(y X2 TP4
X2 TP4 x2 TP4
? | D TP6 . w
S ‘ S
s PR

R S R

0z uLs

SCAR(I) 03 2%1) FD(1) —D2-23(1)
, . TPE Al
TPI@M AI@TPS D TP6 pTPZ
S R S R S
ICAR SCAR PRN
D25(0) —— PRN(0)
TP4 X2 A2 TP2 TP2 A2
03-2'(0) D3-22(0) |
03-2°(0)— | | —03-23%0)
S R S
D32 FD PRP

FIGURE 58 FLIP-FLOPS

Iv-238

The following is an example of the status flow of an add instruction not

requiring complementation of the answer.

P1 -

X1

X2

Al

A2

Al

A2

P1

+ 2 1506 1509

04 05 06 07 08 09

151 6 4 M 3 2 9

HSM Before

P5

9 - D3, 1508 - B
M > D2, Set ULS, Set PRN, N-1 = 1

Generate address 0149, E - D3, Set SCAR, Reset DZS

5

Reset D3 - 2%, Sset D3 - 2°, N> (A) 1505 - A, Reset FD

2 - D3, 1507 - B

Set ICAR, Reset SCAR, 4 - D2, Trigger D3 to 3, N-1

Generate Address 0143, 1 - D3
1-> (A), 1504 = A

04 O5 06 07 08 09

1516 1 N 3 2 9

HSM After

=0

Figure 59 shows the complete block diagram of the status flow of add or

subtract. The right-hand branch is used to complement the answer when a

mistake is made in predicting the result.

Example:

10

- 2 1001 2001

00 o1 00 o1

2 3 2015 1

HSM HSM

Iv-239

Since the A operand (the minuend) of the instruction above is a positive
number, the processor assumes that the result will be positive. ULS is set
so the difference table is addressed. If you were to perform the subtrac-

tion:
23
- 51

100 must be subtracted from the result previously obtained which contains a
borrow. This is performed by the X3, X4, A3, D, and A4 status levels. The
EAC flip-flop will be set at the end of the last A2, if the result obtained

by that time must be complemented.

At TP6 of the A2 status level (Figure 63) EAC will be set if "NZ-:AA". uNzZ"
just means that all digits of the operands have been added or subtracted.
"AA" is defined beneath the chart of the status level. There are 3 ways

to get "AA": (1) When a borrow was made while handling the MSD's during a
"subtract" (i.e., ULS set) and the MSD of the minuend was equal to 9 or less
or the MSD of the subtrahend was greater than 9. (2) When a negative result
was predicted but a zero result was obtained, and the MSD of the minuend was
equal to 9 or less or the MSD of the subtrahend is greater than 9. (3) When
the difference- table is being used and the MSD of the minuend is 9 or less

and the MSD of the subtrahend is greater than 9.

If any of these conditions are present at TP6 of the last A2, EAC will be
set and X3 selected. The purpose of the X3 and X4 status levels is to re-
place the present contents of the A register with the address of the LSD of
the minuend (which is also the result). This is the A initial of the in-
struction which was stored in standard location 0206-0209 by X1 and X2 imme-

diately after staticizing. Now the process of complementing can begin.

In the example of 51 subtracted from 23, the answer was larger than it should
have been by the amount of the borrow (100). Subtracting 100 from 72 will
give the correct answer. This is the same as subtracting 72 from 100 and
making the result negative which is just what the computer does. During

the A3 status level, '"2", the LSD of the false answer, is sent to D3 and

a @, representing the LSD of "100", is sent to D2. Table look-up is

IvV-240

performed by the D status level. Notice that the difference table is still

being used since we are subtracting 72 from 100. During A4, a 2> bit is

added to the character from the table to make it negative and the final re-
sult ("Q") is written into memory as the new LSD. During the next A3, the

"G" is brought out of memory and put into D3 and a 9 is put into D2, Since

a borrow had to be made to subtract "2" from "@" during the first A3, the
"21" was actually subtracted from 19; and now the "70" must be subtracted
from "90", (i.e., 100 | 1%%

(- 72 - 72)

(

The D status level performs table look-up, and the A4 stores the result

("2") in memory. "LD" is now set because the MSD of the result contained

a 24 bit. This will always be the case when complementing is to be performed
since this 24 bit indicates a "borrow". (Note: No digits of the result ex-
cept the MSD or LSD may contain a 24 bit.) The final "difference" in our

example is then "2Q" which represents '"-28",

Reviewing the example briefly:

A, "23-51" gives a result of "G2" after the last AZ.

B. Since a borrow was generated when subtracting the MSD's of
the operands, complementation must be performed.

C. "72-100" = =28 = "2Q" is the final result after complementation

is complete.

IvV-241

END STAT

NZ NZ
[A
X1
A0 — 0206
Al —e= 0207
X2 X3
A2 — & 0208 0206 ———e= AO
A3 —e 0209 0207 —a= Al
: B X4
(B)—e D3 0208 —= A2
B-1-—a B 0209 —= A3
Al A3
(A)—e»D2, A+O—eA (A)—e D3 '
N-1 —e= N A+O0 —e A
D D
D2+D3 — D3 D2-D3 —=D3
A2 A4
DA D3 —s= (A) D3 —a (A)
Nz A-1— A NZ-EAC Aol —u A LD(0)
NZ+<EAC *NRZ L NZ+*EAC*NRZ LD(l)‘NRZL LLD(l)‘NRZ
y
REP1 Pl REP1 P1
FIGURE 59 COMPLETE BLOCK DIAGRAM OF ADD OR SUBTRACT

Iv-242

Pl

P5

T7 =

END STAT
——
X1
TPO1 0206 = BUS
TPl BUS - MAR
Generate CL
Inhibit Both
AO - BUSO
P23 A1 - BUS1
BUSO = MRO
TP3 BUS1 - MR1l
TP6 Select X2)
m
X2
TPO1 0208 - BUS
BUS = MAR
TP1l Generate CL
Inhibit Both
TP2 Reset SCAR, TD9
A2 - BUS2
TP23 A3 - BUS3
BUS2 - MRO
TP3 BUS3 - MR1
TP4 Set FD, DZS, PRZ
Reset LD, EAC, ULS, IDA, D20OF, D30OF, EACC
TP5 Reset ICAR
TP6 Select B
A2 v
> B
TPO1 B = BUS
BUS - MAR - BA(-1)
TP1 Generate CL
Permit Both
TP2 Reset B
TP23 BA - BUS
TP3 BUS - B
TP4 Reset D
If MAR 3-27(0); MRO -+ BUS3
TP45 1f MAR 3-2°(1); MR1 - BUS3
TP5 BUS3 = D3
IP6 Select Al

‘Al

Figure 60 Detailed Status Flow (X1, X2, B)

IV-243

')

Al

TPO1

A - BUS

TP1

BUS - MAR - BA(+0)
Generate CL

Permit Both

If SCAR(1): Set ICAR

P2

Reset A, TD9
Reset SCAR

TP23

BA - BUS

TP3

BUS = A
Trigger N(-1) o 4
If ICAR(1).D3-2)(1).D3-27(1): Set SCAR, TD9

If ICAR(1)-D3-2°(0)/D3-21(1)-D3-22 (0): Trigger D3-2°

TP4

If ICAR(1): Trigger D3(+1)

TP45

If MAR3-28(0): MRO - BUS2
If MAR3-2(1): MR1 - BUS2

TP5

BUS2 - D2
Reset ICAR 1 3'
If SCAR(1): Reset D3-27, 2

TP6

If (Nz)-p2-2%(1)/p3-2%(1): set ICAR
If FD(0):NZ.-D2-24(1)/D3-24(1): Set ARIE

CIf FD(l)-D2-2§(1)/D3-24(1): Set -IDA

If FD(1).D2-2"(1): Set PRN

If FD(1)-ADD.02-25(1)-D3-2§(0): Set ULS
If FD(1)-ADD.D2-2_(0)D3-2_(1): Set ULS
If FD(1).SUB.D2-2_(1)-D3-27(1): Set TLS
If FD(1).SUB-D2-27(0)+D3-27(0): Set ULS
If NZ.ULS(0)+D2-27(1)-D3-27(1): Set ARIE
If NZ.D3-22(1): Set D30OF

If NZ D2-27(1): Set D20OF

Select D
l[)

*D20F/D30F = See Page IV-249

IV-244

Figure 61 Detailed Status Flow (Al)

(0);, = BUSO
If ULS(0): (0),, ~ BUS1
If ULS(1): (1), = BUS1

TPO1
D2 - BUS2
D3 - BUS3
BUS = MAR - BA(+0)
TP1 Generate CL
Permit Both
TP4 Reset D
pas If MAR 3-20(0): MRO - BUS3
If MAR 3-2 (1): MR1 - BUS3
TP5 BUS3 = D3
If EAC(0): Select A2
If EAC(1l): Select A4
TP6 If D3-24(1): Set SCAR

If ICAR(1)-D3-24(1N)/NZ.SCAR (1N)-ULS(O):
If D20OF (0) -D30F (1)/D20F(1)-D30F(0) /D3-2

4/Set¢ARIE*
(1N)/D3Z: %%
Reset DZS*#*#*

EAC (1) EAC (0)

A4 A2

*ARIE - See Page IV-253

*¥D3Z

*¥%%¥DZS

ingicates ghe decimal portion of the D3 register
(27 thru 27) contains zero (0000).

See Page IV-249

Figure 62 Detailed Status Flow (D)

IV-245

e O

A2

TPO1 A - BUS

If SCAR(O)+D20F (1) -D30F(0)/D20F (0):D30F(1): Set D3-24

If FD(1)-IDA(1).-SCAR(O): Set D3-2

If NZ.PRN(1).DZS(1): Set D3-24

If NZ-TD9(1)-D20F(0): Set D3-2 i

BUS = MAR - BA(-1) |

Generate CL 4
TP1 If NZ-IDA(ON)-TD9(ON): Reset D3-2 4

If NZ.ULS(1).D20F(1).D30F(0).SCAR(IN).TD9(0): Reset D3-2 ;

If FD(1)- PRNél) Set D3-25 {

Correct D3-2 :

If ULS(1).SCAR(1).D20F (0).D30F(1)/DZS(1)-D20F(0)-D30F(1):

Set EACC**

If MAR- 20(0) Permit Cl, Inhibit CO

If MAR-2 (1): Permit CO, Inhibit C1

If DZS(0O) PRN(ON): Set PRP 4 ;
. If NZ.ULS(1).D20F(1).D30F(0).D3-27(ON): Reset SCAR, TD9 §
e Reset FD !

Reset IDA :
TP23 D3 - BUS3 !

If MAR3-20(0): BUS3 = MRO §

If MAR3-2 (1): BUS3 - MR1 ;
TP4 Reset A }
TP45 BA - BUS ’
TP5 BUS - A

If NZ: Select B |

If NZ-AA*: Select X3, Set EAC i
TP6 If NZ-AA-NRZ: Select P1

If NZ.AA.NRZ: Select REP1 i

If NZ.ULS(1).D3-24(1).D20F(1)-D30F(0): Set SCAR
NZl NZ»AA‘ JNZ.AA-NRZ = NZ+AA-NRZ

B X3 P1 REP1

*AA = ULS(1)+SCAR(1)-D20F(1)-D30F(0) / DZS(1)-PRN(1).D20F(1)-D30F(0) /

*¥EACC =

IV-246

ULS (1) -D20F(0) -D30F (1)

For explanation see Page 30.

(A2)

Figure 63 Detailed Status Flow

AL

TPOL 0206 —e= BUS
BUS —#=MAR
TP1 Generate CL
Permit Both
TP Reset A
MRO —#= BUSO
oY N=%
TP45 MR —e»BUS
BUSO —e=AO
TP5 BUSL —e=AL
TP6 Select X4
TPO1 0208 —=BlS
BUS —#=MAR
TP1 Generate CL
Permit Both
TP2 Reset SCAR
Set FD, PRZ
TP4 Reset LD
MRO —#=BUS2
TP456 MR1 —8=BUS3
BUS2 —#= A2
TP5 BUS3 —a=A3
Reset ICAR
TP6 Select A3
2
TPO1 A—8 BUS
BUS —#» MAR —#»BA(+0)
Generate CL ..
TP1 Permit Both
If SCAR(1): . Set ICAR
. Reset A
Tp2 Rescet SCAR
TP23 BA —e= BUS
TP3 BUS —#= A
TP4 Reset D
P45 If MAR3-20(0): MRO—8#»BUS3
If MAR3-2"(1): MR1—&BUS3
If ICAR(0): (0)10—>D2
TPS If ICAR(1): (9)10-—>02
BUS3 —#=D3 :
Select D
6 If D3-24(1): sSet LD :
TP If FD(1)eDZS(0)eD3-25(0): Set PRN
If FD(1)eDZS(0)eD3-25(1): Set PRP

Figure 64 Detailed Status Flow (X3, X4, A3)

'

D

IvV-247

i

A4
TPO1 A - BUS
BUS - MAR - BA(-1)
Generate CL 5 6
If FD(1)-PRN(1): Set D3-2" and Trigger D3-2
TP1 If LD(1)-EACC(1):SCAR(0O): Set D3-2
If LD(1)-BEACC(1)-SCAR(O): Reset D3-2
If MAR 3-29(0): Permit Cl, Inhibit CO
If MAR 3-27(1): Permit CO, Inhibit C1
Reset FD
TP2 If LD(1)-D3-2%(0): Reset SCAR
TP23 D3 - BUS3
p3 If MAR 3-20(0): BUS3 = MRO
If MAR 3-2 (1): BUS3 - MR1
TP4 Reset A
TP45 BA = BUS
TP5 BUS - A
If LD(0):_Select A3
TP6 If LD(1) NRZ: Select REP1
If LD(1)*NRZ: Select P1
1LD(O) lLD(l)-NRZ lLD(l)-NRZ
A3 REP1 Pl

NOTES: =+ Sign is in 2% bit of LSD: 25(0)-—positive, 25(1)--nega-
4 tive.
« Final carry is stored in 2~ bit of MSD and SCAR is set.
- Operands must not contain a 24 bit in any position other
than the LSD or MSD. 4
« Indirect address is indicated by 27 (1) in LSD.
+ Addresses should always be positive.
* If the sum of any MSD exceeds 19 (I), an Alarm Stop will
occur (excluding 305 Processor).

Figure 65 Detailed Status Flow (A4)

Iv-248

4, Special Flip-Flops

1. Overflow Indicators (D20F and D30OF)

The purpose of these flip-flops is to indicate if either or both of the
operands contain a carry bit (24) in the most significant character position.
The condition of these flip-flops will be checked at various times and their
state will help determine the steps the processor will take in executing an

add/sub operation.

2. Decimal Zero Sum FF (DZS)

DZS will be in the set state at the completion of an add or subtract instruc-

tion, if the end result is zero.

DZS is set initially during the X2 status level. An attempt is made to Re-
set DZS during every D status level. If the character taken from the table
area of HSM is something other than zero, or if either (not both) of the
overflow indicators (D20F/D30F) is set, TP6 of the D status level during

which this occurred will cause DZS to be reset.

EACC: The "End Around Condition Carry' flip-flop is used in certain special

cases during an add or subtract to insert a 24 bit (carry or borrow) into the

most significant character of the result.

This can only occur when an answer must be complemented, and then only in

certain special cases. The following example will illustrate one of these

cases.
1. Augend = 05- Decimal . ~0050
Addend = +I60 Equivalent (+)+1960
+1910

Correct Result

In this example, a -50 is being added to a +1960. Since the sign of the
augend is negative, PRN will be set. The signs are unlike. Therefore, ULS
will be set. This tells the processor to utilize the difference table during

execution of the add instruction.

IV-249

Starting with the least significant characters, the first address generated
during the first "D" status level will be 0100. The zero (O) in this loca-~
tion will become the LSD of the result.

2. 05~
+I60

O LSD of Result
However, since the processor predicted a negative result, this must be indi-

cated in the LSD. During the first "A2" status level, the signal "FD+<PRN"
will set the 25 bit in the LSD of the result. This changes the zero to a

minus.

+I60

- Set 25 Bit

During the second "D'" status level the address 0156 will be generated. The I

in this location indicates a 9 with a borrow (24 bit).

4, 05~
+I160
4 . .
2" indicates I-
" borrow

The 2% bit will cause the SCAR FF to become set. SCAR now indicates the

borrow.

During the second A2 status level the signal "NZ+IDA+TDO" will cause the

24 bit to be reset, changing the I to a 9.

5. 05~
+I60

4 _ .
2" Bit Reset 9~

IV-250

We are now ready to process the most significant characters of the augend

and addend. During the third "B" status level, the I (MSD of addend) will
be placed in D3.

The third "Al" status level will place the MSD of the augend (0) in D2.
Since SCAR is set, ICAR will now also be set. (SCAR is then RESET.)

At TP3 of the "Al" STL, since ICAR is set and D3 contains an I, (9 with a
24 bit) SCAR and TD9 will be set. We must now incorporate the borrow from
the last subtraction by triggering D3 + 1. Before triggering, D3 contained

an I [bllooi] (2); after triggering, D3 will contain a + [bllOIQJ (2)"

At TP5 of the "Al" STL, since SCAR is set, D3 -~ 21, 22 and 23 will be reset,

changing the character in D3 from a "+'" to an "&'". At TP6 of the Al STL,
the signal "NZ'D3-24" will set the D3OF FF. We will now go into the third
"D'" status level generating the address 0100. The "O" in this location will

become the MSD of the result.

6. 05~
+I60

MSD of Result = 09~

At TP1 of the third A2 STL, the signal "ULS-:SCAR.D20F-:D30F" will set the EACC
FF. The condition of EACC will be utilized at the end of the complementation

process.,

During the third "A2" status level, the processor will realize that it has

made a mistake. It had assumed that the augend was the larger quantity and
had taken its sign as the sign of the result. However, at this point since
D20F is reset and D3OF is set, the processor realizes that the addend was in

fact the larger quantity.

To correct for this error in judgment, the result must be 10's complemented
and the sign must be changed. This is indicated by the signal "ULS.D2OF.D30F"

setting the EAC (End Around Condition) FF. The processor must now complement

each character of the result (using the difference table) and restore the

IvV-251

complemented answer in HSM.

NOTE: During the third "A2'" status level, the signal
"NZ +«TD9 *D20F" caused the 24 bit in the MSD of

the result to be set.

7. 05~
+I60
4 _.
Set 27 Bit - &9~

During complementation, the processor has no way of knowing the number of
characters in the result since N is now zero. It will check each character
it complements looking for a 24 bit. When one is found, the processor knows

that it is complementing the MSD of the result.

The first status levels used during complementation are X3 and X4. These

are used to restore in the A address the location of the LSD of the result.

An "A3" status level is now executed. This will place the LSD of the result
5

17"

(-) in D3, and since ICAR is reset, a zero (0O) in D2. The signal "FD+DZS°*D3-2
will set PRP correcting the sign of the result. A "D" status level is now

executed generating the address 0100. The zero in this location becomes the

LSD of the complemented result.

8. & 9 -
0

Result

Complement

The first "A4" status level will place the zero into HSM.

The second "A3" status level will place the second character of the result

(9) into D3 and a zero into D2.

The second "D'" status level will generate the address 0109. The A in this

location (one with a borrow) will cause SCAR to set.

During the second '"A4'" status level, since we are not on the last digit

(LD), the 24 bit will be reset and a (1) will be placed in HSM.

IV-252

9. & 9 - T Result
1 0 =Complement

During the third "A3" status level SCAR will set ICAR and the third character
of the result (&) will be placed in D3, Since D3-24 = 1, LD will be set
(last digit) ICAR being set will place a (9) in D2.

The third "D" status level will generate the address 0190. The (9) in this

location will become the MSD of the complement result.

I}

10. & 9 -
0]

Result

Complement

However, we must first set the 24 bit., This will be accomplished during the

last "A4" status level by the signal "LD:EACC-:SCAR".

11. & 9 - = Result
= Complement
1 9 1 O = Decimal Equivalent

The MSD (I) is now stored in HSM, and LD being set, tells the processor

that the complementation process is now'complete.

5. Arithmetic Error (ARIE)

Listed below are the conditions that will generate an ARIE during the execu-

tion of an ADD or Subtract instruction.

1. (p2-2%/p3-2%).(FD-NZ) = ARIE

The only locations in an operand where a 24 bit is allowed will be the LSD
(indirect address) and the MSD (carry). The presence of a 24 bit in any

character of either operand will generate an ARIE.

Example: 1 2 E O ARIE
+ 3451

Iv-253

2., ULS'Al'NZ'D2-24°D2--24 = ARIE

Any time a summation operation is in progress (ULS), and the MSD of the
operands are being added (NZ), and both MSD's contain carry bits (D2-24-D3-24)
an overflow will occur generating an ARIE.

Example: ARIE A 420
+C 620

3. D-ULS-ICAR-D3-2% = ARIE

ICAR will be set in this condition when "Al°NZ (D2-24/D3-24)" indicating that
we are processing the MSD's of the operands and either or both contain a
carry bit. If on the following "D" status level, while accessing the sum
table, a result with a carry bit (D3-24) is extracted, an overflow will
occur generating an ARIE.

ICAR I 200
ARIE +4 500

D3-24 cC700

4, D°ULS°*NZ°SCAR*ICAR = ARIE

This condition could occur while doing a summing operation (ﬁfg) if the addi-
tion of the characters preceding the most significant characters of the two
operands resulted in a carry. This carry would have to be incorporated into
the addition of the MSD's by triggering D3 + 1., If however, D3 contained

a 9 before triggering, it would be triggered to zero and SCAR would be set

indicating a carry.

If at this time, the MSD of either operand contains a carry bit (indicated
by ICAR being set), an ARIE will be generated (two carries out of the MSD
addition).

Example:

Set ICAR A 500
ARIE (o)
Set SCAR TRIG + 1 9500

00O
twith a carry

IV-254

6. Programming Errors

Besides using an N character outside of the N count as described in the DL/DR
section, the Add and Subtract instructions have a few combinations that might
cause difficulties. All of the problems in Add and Subtract result from the
actual characters involved in the arithmetic operation and not from the in-

struction itself.

As stated in the 301 Programmer's Reference Manual, any character containing
a 24 bit in any position of the operand other than in the LSD or MSD posi-
tions causes an ARIE alarm. Also generating an ARIE is the addition of two
MSD's which contain 24 bits. Effectively the 24 bit in an MSD indicates an
overflow or carry. For example, the operand G13 represents 1713 because a G
is a seven with a 24 bit. Therefore, if two such characters are added (Sum
Table only) the result would be 20 or greater which effectively would require
a single character with a double carry. The largest number that can be
represented by one character is 19 or the letter I. Hence the addition of

.. 4 .
two MSD's containing 2 bits causes an alarm,

If one MSD contains a 24 bit and an incoming carry along with the other MSD
produces a result greater than 19, an ARIE will occur.
Example:

Add Instruction

Augend = H257 18257
Addend = 1923 +1923
2¢18d

An ARIE would be generated during the fourth D status level because 20 cannot

be represented by one character.

To eliminate either of the aforementioned problems, one can insert insignifi-
cant zeros into the operands before performing the addition.
Example:

18257 Add 5 characters

31923

2@184d

IV-255

The 25 bit in the least significant digit is recognized as a minus sign.
However, the 25 bit is ignored in any other character position and no alarms
occur as a result of it. The 24 bit is recognized and permitted in the LSD
position. The computer will assume an indirect address is being used as an
operand if a 24 bit is found in the LSD, hence a 24 bit is always inserted
into the LSD of the result if this occurs, even though the operands and re-

sult are greater or less than 4 characters.

Example 1: Add Instruction
58@32
4176F

9979H Result (No Alarm)

Example 2: Add Instruction
2A
34

5E Result (No Alarm)

If, however, the computer must perform complementation when a 24 bit exists
in the LSD, an incorrect result will be obtained. This is true even in the

case of indirect addresses.

Subtract Instruction
328D = Minuend
3298 -~ Subtrahend

I99W =~ Result (Incorrect but no alarm)
Result should be @@gw.

Note that any resultant address, even if indirect, should not be negative.

Therefore, the number of occurrences of an incorrect result such as described

should be very few if any.

Since the Add and Subtract instructions use the characters of each operand
as part of an address during the D status levels, it is possible to generate

a MRPE alarm if illegal characters are used. All characters used in the

IV-256

operands of an Add or Subtract must have their 20 through 23 bit configura-
tion between binary 0000 and 1001. In other words, no characters other than
the decimal digits, letters of the alphabet, symbols &, minus sign, quotation
mark, and virgule (/) are permitted within either operand of a decimal opera-
tion.

Example: Add Instruction

Augend = 64*M
Addend E32K

The character (¥) will generate a MRPE and DPE because the address formed
would be 00%¥2 during the second D status level and no X drive line can be
selected. Therefore, nothing is read out of memory and bad parity is de-

tected in the Memory Register as well as the D register.

C. Logical Instructions (Q=0R) (T=AND) (U=EXO) Repeatable

The logical instructions used in the 301, perform Boolean Algebra (AND, OR,

o

EXO) on each information bit (27 - 25) of each character in both operands.

The proper parity is also generated as a result of the operation.

Examples:
1. AND - 7(10) = © 000111
%10y = 1 001001
Result - O 000001 = 1(10)
2, OR - 6(10) = 1 000110
1(10) = 0O 000001
Result = O 000111 = 7(10)
3. EXCLUSIVE OR - A = 1 010001
I = 0 011001

Result = O 001000 = 8(10)

Iv-257

NOTE: Pages VI-8 through VI-13 of the Programmers' Reference
Manual give operational outlines and some examples of
the "AND", "OR" and "EXO" instructions.

Since the 1ogica1 instructions do not involve carries, their functions might '
be questioned. Because the 301 code uses zone bits to specify certain char-
acteristics in characters, the logical instructions serve a very useful pur-
pose in extracting or adding these zone bits without disturbing the infor-
mation bits., This process is known as '"making". For example, to make a
quantity negative, all that need be done is to insert a 1 in the 25 bit
position of the LSD of that quantity. A logical OR instruction could be
used in this case. If a decimal 5 were OR'ed with a minus symbol, the re-

sult would be the letter N, which is a negative 5.

5 000101

100000

Result 100101 = N = -5

To remove a given bit or bits, the Exclusive OR and Logical AND instructions
are used., For example, to remove the 25 bit from the letter N, thereby

producing the number 5, an Exclusive OR could be used.

N = 100101
- = 100000
Result = 000101 = 5
1, Instruction Format

Operation Code: Q/T/U
N Character: Number of characters per operand (N count = 0-44)
A Address: LSD location of first operand and result
B Address: LSD location of second operand.

NOTE: If N=0O, nothing is done and the next instruction

in sequence is executed.

Iv-258

DIRECTION OF OPERATION: Right to Left,

PRI's: The PRI's are set only in the Logical AND
instruction, where PRN indicates all resultant
bits are O's and PRP indicates at least one

resultant 1 bit.

Example 1: Q 1 2016 2018
2015 2016 2017 2018
HSM Before
1010001 1010010 0010011 1010100
(B) (D)
2015 2016 2017 2018
HSM After
1010001 0010110 0010011 1010100

(F)

In this example, the letter B was logically OR'ed with the letter D.

The result is an F.

Example-2:
U 4 1003 1008

00 01 02 03 04 05 06 07 08

10] 8 6 J K B * U A% 3
A. B.
1 1

HSM Before

OO 01 02 03 04 O5 06 07 08

10| M S D J * 8) \'% 3

B
Be
HSM After

Af = 0999

IV-259

PRACTICE PROBLEMS

Problem No. 1
Execute the following instruction and show final HSM contents. What PRI
is set?

T 3 2105 2102

00 01 02 03 04 O5

21 | 8 6 A = G B

HSM Before

00O 01 02 03 04 O5

21

HSM After
PRI?

Problem No. 2

Execute the following instruction and show final HSM contents.

0 4 2012 2013

o8 09 10 11 12 13 14

20 | H P 7 6 * @ K

HSM Before

o8 09 10 11 12 13 14

20

HSM After
Problem No. 3

Execute the following instructions and show final HSM contents.

U 2 4685 4682

80 81 82 83 84 85 86 87

46| 1 2 3 4 5 S T U

HSM Before

IV-260

80 81 82 83 84 85 86 87

46

HSM After

Problem No. 4
00 01 02 03

10 Unknown Q

There is an unknown quantity (positive or negative) in HSM locations 1000 -
1004. Write a program that will check to see if it is a negative quantity.
If it is, remove the negative indicator (25 bit) and halt. If it is a

positive quantity, just Halt,

Problem No. 5
1000 M = 1000 2000

How could you modify the DL instruction to move 45 characters?

2. Machine Operation

The logical instructions all use the same status levels and operate in much
the same manner, the main difference being the logical operation performed

on the two operands (AND, OR, EXO).

If an "AND" instruction is being staticized, PRN will initially be set

during PS5.

The Al status level is used to access memory bringing out one character and

placing it in D2. The N count is also decremented by one.

IV-261

The B status also accesses memory bringing out the other character and plac-

.ing it in D3. The logic operation specified is now being performed on the

two characters in D2 and D3.

The A2 status level will take the logical result (LR) and store it back into-
memory at the original "A" address. If an "AND'" instruction is being execu-

ted, and there is at least one "1" bit in the result, PRP will be set during
the A2 status level.

If the N count is not zero at this time, another Al status level is selected

and the entire cycle is repeated on the next two characters.

If however, NZ and NRZ (used in conjunction with the Repeat instruction) are
present, a Pl status level will be selected and the next instruction in se-

quence is executed,
In order to trace through the status flow, utilize the following example:

NOR N A B 01 02

T 1 1001 | 1002 10| 9 8

NOTE: See Status Flow on pages 273 and 274.

The instruction will initially be staticized and, being an "AND" instruction,
‘P5.TP2 will set "PRN",

Since we have NZ, an Al status level is selected. The A address is gated to
the MAR (TP1l) and used to address memory. You will note that the A address

will not be modified at this time, since the result must be placed back into

this location.

A read-type memory cycle is initiated (GEN CL'Permit both) and the original
address is géted back to the A register. The N count is then decremented by
a (TP3). The D register is reset (TP4) and the character in MR1 (address
odd) is gated to Bus 2 (TP45). Bus 2 is then gated to D2 (TP5). TP6°Al will

select a B status level. At this time, the registers contain the following:

IV-262

NOR N A B D2 D3

T O | 1001 | 1002 9

During the B status level, the B address is gated to the MAR (TPl) and used
to address memory. The B address is modified (BA-1). A read-type memdry
cycle is initiated (GEN:CL Permit Both) and the modified address (1001) is
gated back to the B register. The character in MRO (even location) is gated
to Bus 3 (TP45). TP5 gates Bus 3 into D3. TP6:B will select an A2 status

level. At this time, the registers contain the following:

NOR N A B D2 D3

T 0] 1001 | 1001 9 8

Since the 8 and 9 in D2 and D3 are being AND'ed, the LR (Logical Result)
would be = 8.

The A2 status level will gate the original A address into the MAR (TP1l). It
will now be modified (BA-1l). A write-type memory cycle is now initiated

(address add - Permit CO, inhibit C1).

The logical result (8) is gated to bus 2 (TP23) and then bus 2 is gated to
MR1 (address add). The A register is reset, and since at least one "1" bit
is present in the result (8), PRP is now set (TP4-A2). During the regenera-
tion portion of the memory cycle (TP45), the LR (8) will be written into
location 1001. The modified A address is now gated back to the A register
(TP5). At TP6, since we have NZ:NRZ, indicating completion of the AND in-
struction, a Pl status level is selected. The final register contents are

as follows:

NOR N A B
T 0| 1000 | 1001

IV-263

IV-264

LOGICAL LNSTRUCTIONS (Q OR) (T = AND) (U = EXO)
LOGIC
STAT LOCATION
P5eTP2 If AND: Sct PRN 089A5D1
NZ =
pl - Nz L A2
A] LOGIC
LOCATION
TPO1 A —s=BUS 0554D3
BUS —#» MAR —8»=BA (+7) 33635
TP1 Generate CL 0676D5
Permit Both 0676D3
TP2 Reset A 0558¢1
TP23 BA —#BUS 0672CY
TP3 BUS —&= A 0558¢1
Trigger N(-1) 061401
TP4 Reset D 0588D2
TP If MAR 3-28(0): MRO —&» BUS2 0653C3
> 1f MAR 3-2°(1): MR1—s= BUS2 0653C3
TP5 BUS2 —a= D2 0588D2
TP6 Select B 0838¢1
B LOGIC
LOCATION
TPO1 B —&BUS 057401
BUS —#=MAR —#»BA(~1) 0675B6
TP1 Generate CL 0676B2
Permit Both 0677C5
TP2 Reset B 0576CL
TP23 BA —s BUS 0672C1
TP3 BUS —a=B 0576CL
P4 If MAR 3-28(0): MRO —»BUS3 0653C6
> 1f MAR 3-2°(0): MR1 —e=BUS3 065306
TP5 BUS3 —&=D3 o594D2
TP6 Select A2 0824BlL
ekAbsence of BA +1, BA +2,
A2

BA -1, BA -2

Figure 66 Logical Instruction Status Flow

LOGICAL INSTRUCTIONS (Cont'd.)

LOGIC
A2 LOCATION
TPO1 A - BUS 0554D3
BUS - MAR - BA(-1) 0675B5
TP1 Generate CL 0676D5
If MAR 3-20(0): Permit C1, Inhibit CO 0677C2
If MAR 3-27(1): Permit CO, Inhibit C1 0677C2
If OR: D2/D3 - BUS2 . 0692D1
TP23 If AND: D2.D3 - BUS2 0693D2
If EXO: D2/D3.(D2.D3) = BUS2 0693D1
p3 If MAR 3-2(0): BUS2 = MRO 0655C1
If MAR 3-2"(1): BUS2 - MR1 0655C1
TP4 Reset A 0556C3
If AND'COZ: Set PRP 089A6D1
TP5 BUS = A 0556C3
If NZ: Select Al 0827C1
TP6 If NZ NRZ: Select P1 084A7C2
If NZ NRA: Select REP1 084A7C2
NZ NZ «NRZ ' NZ .NRZ
Al Pl REP1

IV-265

ANSWERS TO PRACTICE PROBLEMS

Pgs. IV-227, 228, 229

Problem #1 50 51 52 53 54 55 56 57
56/6 B R 8 9 5 2 3
HSM After
PRI PRN
Problem #2 20 21 22 23 24 25 26 27 28
26/3 0o 3 1 3 2 5 6 2
HSM After
PRI PRP
Problem #3
00 01 02 03 04 05 06 07 08 09
20 |& 1 3 3 2 401 4 8 0 9
HSM After
Problem #4
60 61 62 63 64 65 09 10 11 12 13 14
482 5 9 6 K 4 21|B 4 6 4 4 A
HSM After
PRI PRP
Problem #5 - + & 1012 4641

IV-267

Problem #6
87 88 89 90 91 92 93

37 |¢g 6 8 6 2 6 7

Problem #7 One Possible Solution
2000 K @ 1000 1008
2010 + 4 0215 2099
2020 J @ 1000 O21E
2030 K @ 1010 1018
2040 + 4 0215 2099
2050 J @ 1010 O21E
2060 + 8 1008 1018
2070 K @ 1000 1008
2080 J @ O21E O21E
2090 . O 0000 0001

Problem #8

The purpose of the program in Problem #8 is to search memory, (beginning
at location 1200) for a location containing a zero. If a zero is found,
STA will contain the HSM address of the location to the right of the
zero. The program is then subtracting a constant of one (1) from the
contents of STA to establish the exact location of the zero. An "at the
rate of" symbol is then placed in this location. The program works, provided:
1. That at least one zero will always be located somewhere in
memory. This is because no provision has been made in the
program to take care of the case where there are no zeros

in memory.
2, That the zero is never stored in a memory location ending in nine.

Example: Let us assume that HSM location 1299 contains a zero.

IV-268

The contents of STA after completion of the "Transfer Data by Symbol'" in-

struction would be:

12 13 14 15

02 |1 3 0] 0]

STA

The "Sub" instruction will subtract the constant '"1'" in location 1035 from

the "O" in location 0215.

)
H O

Result -1=J

The contents of STA after completion of the '"Sub" instruction will be:

12 13 14 15

o211 3 0] J

STA

The "Symbol to Fill" instruction is then'staticized; and during indirect
addressing on A and B, the processor will attempt to place the contents of

0215 (J) in A3 and B3 neither of which contain a 2> bit., Therefore, after

5

staticizing, (the 27 bit having been dropped) A and B will contain:

Bad Parity (1000001)

During the first A2 status level of the "SF" instruction, when the "A"

address is gated into the MAR, the processor will stop with a 'MAPE".

IV-269

~ ANSWERS TO PRACTICE PROBLEMS

Problem No. 1 » Pgs. IV-260, 261
OO0 01 02 03 04 O5

21 8 6 A Y F &

HSM After
PRI PRP

Problem No. 2
08 09 10 11 12 13 14

20 | H (57)g (57)g By * @ K

NOTE: (57)8 does not correspond to any 301 character but

will still be generated as such.

Problem No. 3
80 81 82 83 84 85 86 87

47 11 2 3 4 7 / T U

Problem No., 4

Possible Solution

0300 T 1 0332 1003
0310 W 1 0320 0330
0320 U 1 1003 0336
0330 . O =000 =000

Minus Minus

Problem No. 5

By ORing the N char (=) at 1001 with a "1'", generating an octal 77 (778).
This would increase the N count by 1, from 44 to 45,

Iv-270

SECTION V
INPUT/OUTPUT INSTRUCTIONS

A. INPUT-OUTPUT INSTRUCTIONS, INTRODUCTION

The largest group of 301 instructions is the Input-Output group. Twenty-

one instructions perform all operations involved with the peripheral equip-

ment. All input-output equipment is tied in directly to the computer and

must therefore receive commands and information from the computer. The

following list comprises the Input-Output group.

Op. Code

O ® N O A W N H O

“e

¥ H H o T O O 73 m W o U 0w

Q-

Instruction

CARD READ NORMAL

CARD READ SIMULTANEOUS

CARD PUNCH NORMAL

CARD PUNCH SIMULTANEOUS

TAPE READ FORWARD NORMAL

TAPE READ FORWARD SIMULTANEOUS
TAPE READ REVERSE NORMAL

TAPE READ REVERSE SIMULTANEOUS
TAPE WRITE NORMAL

TAPE WRITE SIMULTANEOUS

REWIND TO BTC

PRINT AND PAPER ADVANCE NORMAL
PRINT AND PAPER ADVANCE SIMULTANEOUS
BAND SELECT NORMAL

TRACK SELECT

BAND SELECT RECORD FILE MODE
BLOCK READ FROM RECORD NORMAL
SECTOR READ DISC NORMAL

BLOCK READ FROM RECORD SIMULTANEOUS
SECTOR READ DISC SIMULTANEOUS
BLOCK WRITE TO RECORD NORMAL
SECTOR WRITE DISC NORMAL

BLOCK WRITE TO RECORD SIMULTANEOUS
SECTOR WRITE DISC SIMULTANEOUS
RECORD FILE MODE READ

RECORD FILE MODE WRITE

v-271

B. CARD READ NORMAL (@) (CRN/BCRN)

This instruction reads the contents of one punched EAM card in the 323 Card
Reader and places the information into HSM. The word "Normal'" indicates the
mode in which the instruction is executed and will be described later in

greater detail.

There are two types of code which can be punched in a 301 EAM (Electronic
Accounting Machine) card. The more common of the two is the 301 Card Code
which, uses one, two or three punches in a column to represent one 301 charac-

ter.

\ 2
X Y
0 # -
I
2 +
3
rios <
5
6 3
7
8 L
9 2
G
k‘ 234567 y
N
80 COLUMNS

Figure 67 EAM Card Format (301 Card Code)

1. 301 Card Code

Figure 67 illustrates a portion of a card which has been punched in 301
Card Code. Note that there are 12 rows and 80 columns. Each column contains

one 301 character, hence a maximum of 80 characters can be represented on

V=272

one card in 301 Card Code. The rows Y, X and O are special zone punches.
No zone punch corresponds to Group I in 301 Machine Code (25 bit = O,

24 bit = 0). A Y zone punch corresponds to Group II in 301 Machine Code
(25 bit = O, 24 bit = 1), an X zone punch corresponds to Group III in Ma-

chine Code (25 bit = 1, 24 bit = 0) and a O zone punch is equivalent to a

character in Group IV (25 bit = 1, 24 bit = 1). All the decimal digits are
represented by a single punch in the proper row O through 9. All the letters
of the alphabet have a zone punch (Y, X or O) in conjunction with a numeric
punch. The special control symbols for the most part are represented by two
or three punches. They are a combination of row 8 and some other numeric
punch whose total will be the decimal equivalent of the binary bits 2O - 23,
and a zone punch if necessary. For example, the 301 Machine Code for a
period is 011011 (excluding parity). The zone bit 24 being a one, indicates
the need for a Y zone punch. The remaining bits (2O - 23) add up to a deci-
mal 11 (8 + 3). Thus, a period would be represented by three punches in a

column - a punch in each of the rows Y, 3 and 8.
In Figure 67, columns 1 through 7 contain 6, M, @, B, *, SP and Z, respectively.

Note that there are a few violations to the rule of zone punches, namely
that a punch in row O, alone, is the character zero which has no zone bits
and the character quotation marks is a punch in rows X and O. Also, the
character +0 is a punch in row Y and a punch in row O. A fourth exception
to the rules presented is the space or underline character. This character
is represented by no punches at all in a card column, although in Machine
Code the character is a binary coded decimal 10 (001010). See column 6 of
Figure 67. Any more than three punches in a column or any combination of
punches which do not agree with the 301 Card Column causes a multipunch

alarm.

2. Straight Binary Machine Code

The second type of code used on 301 EAM cards is the straight binary Machine
Code. Since there are 12 rows, two six-bit characters can be represented in
each of the 80 columns. Parity is not recorded and rows 9 through 4 are

equivalent to the 25 through 20 bit, respectively, as are rows 3 through Y.

vV-273

In Figure 68, the characters punched in the "A" half of the card columns 1
through 4 are N, SP, B and $, respectively. The characters punched in the
- "B" half of the card columns 1 through 4 aré 1, G, ¥4 and &, respectively.
There are no exceptions in this type of recording. Wherever a hole is
punched, a one bit is represented and no hole represents a zero. The binary
Machine Code of six bits per character is represented exactly on the card.

This type of code provides twice as many characters on a card (160) as the
other type (Card Code).

L
0 Y
ol X
gt o
23 1 :
42 f%
5
3
20 4—THh
o 5
n 228 FL
23 7 —
4 8 -
5 9—8 8
| 234 567
N\ J
Y
80 COLUMNS

Figure 68 EAM Card Format, Straight Binary Machine Code

3., The 323 Card Reader and Codes

With the 323 Card Reader, the type of code being used on the cards read is
indicated by the BCT (Bypass Card Translate) console button. If 301 Card
Code is used, translation must be performed and the BCT button must not be

set. If binary Machine Code is used, the BCT button must be set in order

V-274

to bypass card translation and permit each row to represent a bit position.

Due to mechanical restrictions of the 323 Card Reader, the N character of

the Card Read instruction is a code designating how many cards will be fed
and read. Only one card is read for each instruction. However, if the N
character is 4, it denotes continuous reading and cards will be fed at a
specific rate. At the maximum reading rate of 600 cards per minute, there
are three cards always moving on the transport. A Card Read instruction with
a N character of 4 must be executed for every Card Read until the last two
cards are about to be read. Card Read instructions with N = 2 and N = 1 are
then executed to read the last two cards without feeding any additional
cards. Obviously, this means that in order to use the 323 Card Reader at

the maximum reading rate, either the exact number of cards to be read must

be known or a special character must exist on the third from last card to
indicate when the termination sequence should begin. If it is desired to
read cards at a slower rate (200 cards per minute), a CRN instruction could
be executed with an N character of 1 as many times as desired. This tech-
nique reads the same amount of information but at one third the rate. How-
ever, the 323 Reader was not designed to be used as a demand feed type reader
in this manner and thus should be programmed at the maximum rate or by using

alternate feed.

Alternate feed is a means of picking every other card. This uses a special
N character of M., Instead of three cards moving on the transport only two
cards are moving. The reading rate of course is halved to 300 cards per
minute, but the advantage is that processing time is gained between cards.
At 600 cards a minute, there are 100 milliseconds (MSEC) between cards.
Eighty msecs are consumed by the reading process leaving 20 msecs for pro-
cessing. A new card read instruction must come up before the 20 msecs have
elapsed or information will be lost resulting in an alarm. The use of alter-
nate feed provides an additional 100 msecs before a new instruction must be
executed., The termination sequence then requires execution of one instruc-
tion with an N character of 8 to read the last card without feeding any

‘additional cards.

vV-275

The Card Read Normal instruction does not go through STA and is not repeatable.

Op. Code N A B
@ Code for number Leftmost location Ignored
(ZERO) of cards to be to receive first
read (see below character being
read,

N = 4 continuous reading at 600 cards per minute

Z
1]
N

used in terminating 600 card a minute sequence

N =1 wused in terminating 600 card a minute sequence or single
card feed (200 cards per minute).

N = M alternate card reading at 300 cards per minute.

N = 8 wused in terminating 300 card a minute sequence.

Once a terminating sequence has begun, it must be completed before a new

sequence is started,

Af Ai + 80 If BCT was not set or

Ai + 160 If BCT was set.

Bf = Ai If BCT was not set or

Ai + 80 If BCT was set.

Since a blank column on a card produces a space or underline in memory, there
will always be 80 memory locations consumed per card if BCT is not set and
160 memory locations if BCT is set. When cards are read with BCT, set, in-
formation in rows 9 through 4 is placed in the first 80 memory locations
while information in rows 3 through Y will be placed in memory beginning at

Ai + 80, See Figure 70.

V-276

Example:) 1 3000 0000

(-
Y
X

0 8
|
2
12 3
ROWS a4
5

6 3
7

s |4
9
&
|1 234 567
N\ J
N
80 COLUMNS

Columns 7 through 80 are blank

Figure 70 EAM Card, 323 Card Reader Code

If BCT were not set when the above instruction was executed, the following

would exist in memory.

00 01 02 03 04 05 Locations 3006 through
3079 would contain
30 E, 2 SP D a W% spaces (SP).

V=277

If BCT were set when the above operation was carried out, HSM would contain:

00 o1 02 03 04 o5 Locations 3006 through
3079 would contain zeros.
30 | B) /] 1 g 4%
80 81 82 83 84 85 Locations 3086 through
: 3159 would contain zeros.,
30 |2 &] 1 4 4 :§
Example: 1000 %) 4 2000 0080
1010 + 4 1005 1009
1020 X o} 1039 1000
1030 1] 2 100E 0022 Assume BCT not set.
1Q4O A% 2 0000 0000
1050) 1 021E 0000
1060 . o 0000 0000

The above program would read

minute. The contents of the

in 25 cards at the maximum rate of 600 cards a

entire 25 cards would be strung end to end in

HSM beginning at 2000 and ending at 3999.

1500
1510
1520
1530
1540

Example:

The above program would read

the 300 card a minute rate.

) M 3000 0160
+ 4 1505 1509
X o} 1539 1500 Assume BCT is set,
@ 8 150E 0008
. (o] 0000 0000

in a total of 10 cards using alternate feed or

Information on each card would consume 160 lo-

cations since BCT was set and the data would be strung end to end in HSM

between 3000 and 4599.

v-278

C. CARD READ SIMULTANEOUS (1) (CRS/BCRS)

Three modes exist in the 301 System-Normal, Simultaneous and Record File.
Each mode has specific instructions which can be executed only in that mode
and the latter two modes are optional equipment. A complete set of registers
exists for each mode:

NOR N A B Normal

SOR M S T Simultaneous

FOR L U \Y% Record File

All instructions are staticized in the Normal mode and from there are trans-
ferred accordingly to the mode for which they were written. The Normal mode
is all inclusive. That is, the Normal mode can carry out any internal opera-
tion such as Add or Subtract, Data Handling or Decision and Control, and it
can control any type of peripheral gear. The Simultaneous mode, on the other
hand, can only carry out Input-Output instructions. It cannot perform in-
ternal operations. The Record File Mode is further restricted to operating
four Record Files which are under its exclusive control. The File mode can

not operate any other device nor can it perform any internal operations.

Once an- instruction has been transferred to the Simultaneous or Record File
mode, the Normal mode is free to staticize the next instruction in the pfo-
gram. Thus, if programmed correctly, three separate instructions could be
executed at the same time, time-sharing memory. In using this programming
tool, one does not need to worry about the type of operations being carried
out. The only restriction is that the same device cannot be controlled by
two or three different instructions at the same time. If the device is busy
or the mode is busy when the instruction is staticized, the computer will
automatically hold off until they are free. Another point concerning simul-
taneity is that the programmer must take care not to attempt storing a final
register setting before the completion of instruction execution in the Simul-

taneous or Record File mode.

The Card Read Simultaneous instruction has the exact same format as the CRN
except that the Operation Code is a 1 and the instruction is carried out in

the Simultaneous Mode registers.

V=279

Sf = Ai + 80 if BCT is not set '1‘f = Ai if BCT is not set

Ai + 160 is BCT is set) Ai + 80 is BCT is set

Page VIII-8 of the Programmers' Reference Manual covers the CRS instruction

for the 323 reader.

D, CARD READ NORMAL (@) (CRN)

This instruction will read the contents of one EAM card on the 330 Card
Reader-Punch into High Speed Memory. The same 301 system cannot contain

a 323 Card Reader and a 330 Card Reader-Punch, therefore, no conflict

arises from the use of the same operation code for both Card Read instruc-
tions. The 330 Card Read unit is a demand feed type mechanism which can
read at a maximum rate of 800 cards a minute. Because of its technique in
reading, it is not necessary to program the card rate by the N character as
on the 323 operation. There is another instruction (IOC), however, which

is used in conjunction with the CRN in order to provide more processing time

between cards. This will be explained shortly.

The 330 CRN instruction also permits the N character to select the binary
mode or translate mode (301 Card Code) for reading. (K and 1, respectively).

The BCT console button has no effect on this instruction.

Op. Code N A B
[} K - Binary Left most location Ignored
Mode to receive the first
1l - Translate character read.
Mode
Af = Ai + 80 if translate mode is used.

A. + 160 if binary mode is used.

B_ = A. if translate mode is used.

A. + 80 if binary mode is used.

V-280

Example : # K 4207 0000

Assume punches exist in rows 5 and @ of column 1; row 9 of column 2; rows 8
and 3 of column 3; and rows 7, 6, 2 and Y of column 4. The remaining columns
are blank,

Memory would contain the following after reading the card:

07 08 09

10
42 2 - & @}

Locations 4211 through
4286 and 4291 through

87 88 89 90 4366 would contain zeros.
2 |4 g - A g
A.f = 4367 Bf = 4287

When the 330 reader unit is operating at maximum speed, only 10 milliseconds
are available between cards for processing. During this time, another Card
Read instruction (or an IOC instruction) must be executed if it is desired
to maintain the 800 card a minute rate., If a Card Read instruction does not
come up within the 10 millisecond period, an additional 25 msecs must elapse
before the reader can accept the clutch command. (See timing chart) The
clutch command must precede the process feed signal which occurs every 25
msecs, Once a clutch command has been accepted, no more card feeds can

occur until the read has been completed.

The Read instruction itself, is not really needed until the card has moved
under the brushes (about 21 ms, after clutch command is accepted). There-
fore, if a clutch command alone could be sent at the proper time, an addi-
tional 21 msecs could be gained before another Read instruction would be

needed. This is one of the functions of the Input-Output Control (IOC) in-

struction which is known as Read Release.

The Input-Output Control instruction is covered on page VIII-19 of the Pro-

grammers' Reference manual and has three primary functions, One of the

v-281

functions is Read Release which releases the computer of the obligation for

a second read instruction to be staticized within 10 msecs after the first

has finished. The IOC instruction can provide the clutch command necessary

to feed a new card and thus give an additional 21 msecs or a total of 31 msecs

processing time between read instructions. (See timing chart).

A second function of the IOC instruction is punch release which is the same
concept as read release except that it is involved with the punch unit of
the 330. And, finally, the third function is stacker select which enables
the programmer to select one of two output hoppers for either the read unit

or the punch unit.

v-282

L

1

210 240 2|70 300 330

150 180
1 1

120
1

1

240 270 300 330
1

PROCESS
FEED

F--H

- -

k-

{

(72}
w
3
= w
(O] L8]
Z|9
ola
W
a
" - ROW 9 STROBED HERE, READ
W= — INSTR. IN BY HERE TO SUPPLY
osz0 |¥ SERVICE
zo%g,?g
xrw
eero |5 — CLUTCH TRIPS,
< = > BEGINS CARD MOTION
5z (IF COMMAND)
318 o NEXT CL COMM(FOR MAX RATE)
© IN BY HERE
g ROW Y FINISHED HERE, RD INST.
NOT NECESSARY ANY MORE
w
(8}
[~ ¢
p
a
(2]
w
b 4
(=4
[y
(L]
=
o
<
w
[+ 4
0 ROW 9 . STROBED HERE, READ
Y L INSTR. IN BY HERE TO SUPPLY
8525 |u SERVICE
o28Eola
S“ES |F CLUTCH TRIPS HERE
Q T 1= > BEGINS CARD MOTIGN
ez (IF COMMANDS)
3 10
D4————® CLUTCH COMM IN BY HERE

Figure 71 Timing Chart (330 Reader Unit)

UNTIL Y IS READ

cycLe ¥2

SAOYAVVAANNANANANANNNNNNNANL

a— =~ 2| MS —wile—— =44MS

~IOMS

cycLe ¥

ANV AVAVNVANINANNAYNN NN NN NN N NNNNDN

a— = 2|MS —»l@——— =44 MS

Vv-283

There are five output hoppers on the 330 Card Reader-Punch as shown below,

PUNCH ‘ READ
STATION STATION
NP q 8/2 | NR

Figure 72 Front View of Output Hoppers

The NR (Normal Read) and 1 hoppers are used only with the reader and the
NP (Normal Punch) and 4 hoppers are used only with the punch unit. The
center hopper (8/2) can be used by either the reader or the punch. If an
IOC instruction selecting an output hopper does not follow the card read
operation, then the card will automatically go to the NR hopper. Unfor-
tunately, if a reject card occurs during reading, it will also end up in
the NR hopper. Thus, if the programmer desires to keep the reject cards
separate from the rest, he must follow every card read with an IOC instruc-

tion and select hopper 1 or 2.

A similar thing happens when the punch is used. If an IOC instruction does
not follow the card punch operation, the card will end up in the NP hopper.
Reject cards, likewise, are sent to NP during punching. Therefore, a pro-
grammer will normally follow a card read or card punch instruction with an
IOC instruction to select the proper output hopper and also to exercise the

option of read or punch release.

V-284

The IOC instruction format is:

Op. Code

.
b

N A : B
(AOAlA.2 Ignored
Ignored

A, designates
3 .
function
(See Below)

A3 Character

Function

I%I\OCD\IG\UIP-U)NH

Select Reader Stacker No. 1

Select Reader Stacker No. 2

Select Punch Stacker No. 4

Select Punch Stacker No. 8

Read Release

Punch Release

Read Release and Select Stacker No.

Read Release and Select Stacker No.

Punch Release and Select Stacker No.

Punch Release and Select Stacker No.

1

2
4
8

The IOC instruction only needs to be initiated and the Processor becomes

free to bring out a new instruction from the program.

Example:

Ap = Ay

Af = Bi

g 1 2000 0000
; (0007 0000

V-285

The prior combination would read in one card from the 330 Card Reader-Punch
unit in the translate mode and locations 2000 -- 2079 would receive the data
which existed on the card. As soon as the read finished, the IOC instruc-
tion would request a new card (read release) and permit the Processor to
continue on with the program, allowing about 31 msecs before a second read

instruction was necessary.

NOTE: - If another read does not come up

in time, a CIG alarm will occur.

The IOC instruction would also select output hopper number 1, where the card

which was read would be deposited,

E, CARD READ SIMULTANEOUS (1) (CRS)

This instruction has the exact same format as the CRN operation for the 330
Card Reader-Punch except for the operation code and the fact that it is
executed in the Simultaneous Mode. Page VIII-10 of the Programmers' Refer-

ence Manual covers the CRS instruction.

S

£ A; + 80 (translate mode) or A.i + 160 (binary mode)

Te

A; (translate mode) or A; + 80 (binary mode)

F., CARD PUNCH NORMAL (2) (CPN)

This instruction enables the 334 Card Punch to punch 80 column cards from
information contained in memory between the A and B addresses. The infor-
mation will be punched exclusively in 301 Card Code and will handle as many
cards as are necessary at 80 characters per card. The CPN instruction oper-
ates from left to right, is not repeatable and does not go through STA. See

page VIII-12 of the Programmers' Reference Manual.

Op. Code N A B
2 Must be Leftmost Character Rightmost Character
zero to be punched to be punched
Af = One location to the right of the last character punched or Bi + 1.
Be = By

V-286

Example 1:

00 01 02 03 04 05 06 . 07
2 [1000 1006

10| C A R D SP # 8 3

One card would be punched as follows:

[' Columns 8 through

~QL$_ 80 would be blank
L4 =
Af 1007
L J
B Bf = 1006

"
ROWS

f@mﬂmo\buw—ox<\

’

T
1234567
N

80 COLUMNS

Example 2:
2) 6320 6492

The above instruction would punch out two full cards and the first 13 col-
umns of a third card with information which existed between locations 6320

and 6492, Af = 6493, Bf = 6492,

Due to the mechanics of the 334 Card Punch, the last card punched is not
read checked nor placed in the output hopper until two additional "dummy"
card punch instructions are executed. These two CPN instructions should

both address a single '"space'" character with the A and B addresses equal.

v-287

Example 3:
2 4] 1478 1482

2 a3 1483 1483
14 | 4 8 2 1 5 SP 2 [} 1483 1483

78 79 80 81 82 83

The above instructions would punch one card, read check it and move it to

the output hopper.

G. CARD PUNCH SIMULTANEOUS (3) (CPS)

This instruction has the same format as CPN except the operation code is a
3 and it is carried out in the Simultaneous Mode. The N character must be
zero to properly address the 334 Card Punch., Page VII-16 of the Programmers'

Reference Manual covers the CPS instruction for the 334 Card Punch.

H. CARD PUNCH NORMAL (2) (CPN)

This instruction permits the Punch Unit of the 330 Card Reader-Punch to
punch 80 column cards according to the information in memory between the

A and B addresses., The N Character will designate whether punching will
take place in the Binary mode or the Translate mode. The operation is not
repeatable aﬁd does not go through STA. Page VIII-15 of the Programmers'
Reference Manual covers the Card Punch Normal instruction for the 330 Card
Reader-Punch., The same 301 system cannot contain a 330 Card Reader-Punch
and a 334 Card Punch.

Op. Code N A B
2 & - Binary Leftmost character Rightmost character
Mode to be punched to be punched
@ - Translate
Mode
Af = One location to right of last character punched or B, = 1
Be = By

When using the Binary mode of punching, the characters from Ai to Ai + 79

V-288

are punched in rows Y through 3 (Y = 20, 3 = 25) while the characters in

memory between Ai + 80 and Ai + 159 are punched in rows 4 through 9 (4 = 20,
9 = 25). Note that this is directly opposite to the Binary Read operation.
Hence, if a card were to be duplicated using the Binary mode, the informa-

tion would be reversed.

Y Y
X X
BY D X ?
2
3N — :
4 — T e - T e e s e v e e s v e o
5 :
6 6
Ad 7 Yy 7
8
s s
INFORMATION READ INFORMATION PUNCHED

Data read from the A half of the card on the left would end up punched on
the X half of the card on the right. Data read from the B half of the card
on the left would end up on the Y half of the card on the right. The pro-
grammer must also use a multiple of 160 characters when punching in the

Binary mode.

Example 1: 2 & 0700 0859
00 o1 02 03 04 80 81 82 83 84
07 |3 $ E] X % o7 | + \Y 9 M) %

HSM Before and After

v-289

Locations 0705 to 0779 and 0785 to 0859 contain zeros. One card would be
punched on the 330 Punch Unit as follows:

Ll 11
20 Y]
ol X —
22 0 *— Columns 6
23 1 $ through 80
A2 would be blank
53
20 a Af = 0860
ol 5 —
22 6 — B, = 0859
23 7 f
24 8 —
2% ° '+

]

Y
80 COLUMNS

Example 2:

Eight full cards and column 1 of a ninth card would be punched in the trans-
late mode according to information in memory between 2100 and 2740. Each
Card Punch instruction which uses the 330 Card Reader-Punch should be foll-
owed by an IOC instruction (see page VIII-19 of Programmers' Reference
Manual) to select the desired output hopper as well as give the optional
punch release. If the output hopper is not selected, the card will be

placed in the NP hopper along with any reject cards.

To move the last card to the output hopper (and also read check the card)
one additional "dummy' punch instruction must be written., This instruction
should have the A and B addresses equal with both addressing a non-punchable

character such as a space (using the translate mode).

V-290

Example 3:
2 %) 3400 3479

; (0003 0000

2 B 3416 3416 (Assume location 3416
contains a space.)

The above group of instructions will punch one card in the Translate Mode,

read-check it, and place the card in Output Hopper Number 4.

When the 330 punch is operating at maximum speed, the punching rate is 250
cards per minute. This gives approximately 22.5 msecs of processing time
between cards. If the punch release option is used, an additional 37 mil-

liseconds of processing time could be gained.

NOTE: If more than one card is punched
by the same CPN instruction, the
punch release feature and stacker
select option only affects the

last card of the series.

I. CARD PUNCH SIMULTANEOUS (3) (CPS)

This instruction has the same format as the CPN operation which uses the
330 Card Reader Punch except that the operation code is a 3 and the in-
struction is carried out in the Simultaneous Mode. Page VIII-18 of the

Programmers' Reference Manual covers the CPS instruction.

Example Program

Remarks
1000 %) 1 5080 0000 Read-in area 1
1010 H (0001 0000 Select read hopper 1
1020 @ 1 5000 0000 Read-in area 1
1030 H (0001 0000 Select read hopper 1
1040 W 4 1040 1040 Sense Simultaneous Mode
1050 H (0003 0000 Select punch hopper 4
1060 3 & 5000 5159 Punch out area 1
1070 @4 1 5240 0000 Read-in area 2
1080 H (0001 0000 Select read hopper 1

V-291

Remarks

1000 @ 1 5160 0000 Read-in area 2

1100 R (0001 0000 Seléct read hopper 1
1110 w 4 1110 1110 Sense Simultaneous Mode
1120 ; (0003 0000 Select punch hopper 4
1130 3 & 5160 5319 Punch out area 2

1140 X 0 1175 1000 Tally back to read-in 1
1150 2 ¢ 1171 1171 Move last card out

1160 ; (0003 0000 Select punch hopper 4
1170 . SP 0004 0000 Halt

The above program places the contents of 20 cards (which have been punched

in 301 Card Code) on 10 cards in Binary code. To increase the total number
of cards processed, one only need change the tally quantity at 1165, (Note
for each single increment of this tally quantity, 4 additional cards will be

read and processed),

The program also exemplifies the use of the Simultaneous Mode by reading two
cards in the Normal Mode and punching one in the Simultaneous. The reader
will operateAat about 500 cards a minute and the punch at 250 cards a minute.
Note that two separate read-in areas are used., While the punch is punching
the contents of two previous cards which have been read, the reader reads

two additional cards into a different area. (See timing chart on page 7-23).

The read-in areas are:

50 50 51
5000 79 80 59
Card 2 Card 1
Area 1
51 52 52 53
60 39 40 19
Card 4 Card 3
Area 2

V-292

Because the Binary Mode card format is reversed for read and punch opera-
tions, the first card read is placed in the last 80 memory locations of a
given read-in area while the second card read goes into the first 80 memory
locations. When the 160 locations are punched, the first 80 locations
(Card No. 2) will end up in rows Y through 3 while the remaining 80 loca-
tions (Card No. 1) are punched in rows 4 through 9. The end result is that
if the binary punched cards are read at a later date, the information comes
into memory in the same sequence as that of successive card reads from the

original 20 cards,

It should be pointed out that the cards being read are directed to Hopper
Number 1 and the cards being punched are directed to Hopper Number 4. The
CTC sense of the Simultaneous Mode is to determine when the CPS instruction
has finished and therefore when to select the punch output hopper. The
initial exXecution of the CTC and IOC instructions at 1040 and 1050 havebno

function ~ they are only useful for subsequent times around.

V=293

V-294

25MS

2
] w®
@©
llllllllllll N
- o
a~
_ w
@
——
7] 2
_ w @
@
| 2
— ww
R ——
e - —.
— wY s
@ o
&
- - g
) 2
_ w ™
@
- -0
WL
— @
- wn o 7]
=
b w-
——— 0w
® T, o
asp Iy
a52 Q
= O
w0 os
xoa >

{ PUNCH 586

<
(4]
”
I
Q
Z
2
a

.

D e

Z

Figure 73 Timing Chart for Example Program

PUNCH | & 2

1

SIMULTANEOUS
MODE

PUNCH IOC

J. REWIND TO BTC (;) (RWD)

This instruction causes a specified magnetic tape to start rewinding. Once
the instruction is executed, the rewinding becomes independent of the com-
puter, and another instruction can be executed. See page IX-13 of Program-

mers' Reference Manual.

Op. Code N A B

; Identification Ignored Ignored
of Tape Station
A-F, 1-6, J or N,
L or P

K. TAPE READ FORWARD NORMAL (4) (RFN) Repeatable

This instruction brings a series of characters, one at a time, from mag-
netic tape or punched paper tape into the HSM. Transfer from tape begins
with the first character following a gap and ends when the next gap is
sensed or the specified HSM area is filled. The instruction operates from
left to right and goes through STA. The PRI's are set according to the

following:

PRP: The A and B Registers are equal before a gap has

been found on tape.

PRN: A gap has been found on tape and the A and B

Registers are not equal,

PRZ: At the time a gap has been found on tape, the

A and B registers are equal.

NOTE: If an EF or ED alone is read from magnetic

tape, the ED/EF Normal Indicator is set.

One location to the right of the last character read into HSM.

>
I

V-295

Op. Code N A B

4 Identification HSM Address which HSM Address which
Character of will Receive First will Receive Last
Device (see Character from Character from Tape
below) Tape

N DEVICE
i, 2, 3, 4, 5, 6 Magnetic Tape
A, B, C, D, E, F Magnetic Tape
J 33KC Adapter (1lst unit)
N 33KC Adapter (2nd unit)
8 Paper Tape Reader
L 66KC Adapter (1st Unit)
P 66KC Adapter (2nd Unit)

See page IX-3 of Programmers' Reference Manual.

Example: ' 4 2 3016 3023

Tape On Tape Station 2

Direction of
tape movement

L)

{ (Gap) EXAMPLE-1 (Gap) ED (Gap) ;
N f

Read<Write Position of Read-Write
Head before Head after instruction
instruction is executed

is executed

V-296

14 15 16 17 18 19 20 21 22 23 24

30 |¢ ¢ 6 6 6 ¢ 6 ¢ @ ¢ &

HSM Before

14 15 16 17 18 19 20 21 22 23 24

30 | 4 E X A M P L E - @

HSM After

PRP would be set and Af would be 3024.

L. TAPE READ FORWARD SIMULTANEOUS (5) (RFS)

This instruction follows the same format as the RFN, except that the Opera-
tion Code is a 5 and the instruction is executed in the Simultaneous Mode.
The RFS instruction does not go through STA and does not set the PRI's,

If an ED or EF is read-in along from magnetic tape, the ED/EF simultaneous
indicator is set,

See page IX-6 of Programmers' Reference Manual.

M. TAPE READ REVERSE NORMAL (6) (RRN) Repeatable

This instruction transfers a series of consecutive characters from magnetic
tape or paper tape into the HSM. Transfer from tape begins with the first
character following a gap, and ends when the next gap is sensed or the
specified HSM area is filled. Though the tape moves in reverse, the charac-
ters will be placed in their proper relative positions within HSM. The in-
struction operates from right to left and goes through STA. The PRI's are

also set as follows:

PRP: A Register equals B Register before gap is

sensed on tape.

PRN: Gap is found on tape before A and B Registers

are equal.

PRZ: A Register equalled B Register at time gap

was sensed on tape.

vV-297

An ED or EF alone read in from magnetic tape sets the ED/EF Normal Indicator,

character read in,

B.
1

Address of location one to the left of the last

See page IX-7 of Programmers' Reference Manual.

OE. Code
6

Example:

57

57

V-298

N

A

B

Identification
Character of Tape
Station or Paper
Tape Reader

6 C

5790 5780

Tape on Tape Station C

Direction of
tape movement

Address which will
Receive First
Character from Tape

v

i (Gap) MAGNETIC-TAPE (Gap) ;
Position of Read-Write
Read-Write Head Initially
Head after
Instruction

80 81 82 83 84 85 86 87 88 89 90

HSM Before
80 81 82 83 84 85 86 87 88 89 90
G N E T I C - T A P E

PRP would be

HSM After

set and A_ would be 5779.

£

Address which
will Receive
Last Character
from Tape

Although the tape instructions terminate on A-B equality, even if a gap
has not been sensed, the Tape Station itself continues to run until it
finds a gap. The characters on tape which were not read into HSM still
exist on tape. Because of this double method of terminating the read-

instructions, positioning tape without destroying memory is quite easy.

For example, assume that the read-write head was positioned as shown below

and it was desired to read Message No. 3 only from Tape Station 6.

Tape on Tape Station 6

%% (Gap) Mess.#1 (Gap) Mess .#2 (Gap) Mess.#3 Z

A\ T

Read-write Position of
Head Head After
Initially Instructions

R 1 0001 0001
4 6 1000 1000

The above two instructions would read one character from message No. 1
and one character from message No. 2 into the same HSM location (1000).
The read-write head would be in position to read Message No. 3, with only
one location in memory having been disrupted. This technique is very de-

sirable for variable length messages,

N. TAPE READ REVERSE SIMULTANEOUS (7) (RRS)

This instruction has the same format as RRN except that the operation code
is a 7 and the instruction is executed in the Simultaneous Mode. The RRS
instruction does not go through STA and does not set the PRI's. The ED/EF

Simultaneous Indicator will become set if an ED or EF is read in alone.

See page IX~9 of Programmers' Reference Manual,

V-299

O. TAPE WRITE NORMAL (8) (TWN)

This instruction writes a specified number of characters from HSM to a desig-
nated Tape Station, Paper Tape Punch or Monitor Printer. The instruction
operates from left to right and the tape moves forward, The TWN instruction
does not go through STA and does not set the PRI's, Instruction terminates

on A-B equality. See page IX-10 of Programmers' Reference Manual,

Op. Code N A B
8 Identification Address of First Address of Last
Character of Character to be Character to be

Tape Station Written Written

Paper Tape Punch
or Monitor Printer

N DEVICE

i, 2, 3, 4, 5, 6 Magnetic.Tape

A, B, C, D, E, F Magnetic Tape

33KC Adapter (1lst Unit)
33KC Adapter (2nd Unit)
Monitor Printer

Paper Tapé Punch

66KC Adapter (1lst Unit)
66KC Adapter (2nd Unit)

Uort o N 24y

Af = Address of location one to the right of the last
character written or punched.
Be = By

V=300

Example:

8 2 3161 3165

60 61 62 63 64 65 66

31 * w R I T E *

Tape on Tape Station 2

g‘ (Gap) WRITE (Gap{4§

AN

Read-Write Position of
Head Initially Head After
Instruction

The letters '"WRITE" are placed on tape when the above instruction is

executed.,

P. TAPE WRITE SIMULTANEOUS (9)(IWS)

This instruction follows the same format as the TWN instruction, except that
the operation code is a 9 and the instruction is executed in the Simultaneous

Mode. Page IX-12 of the Programmers' Reference Manual covers the TWS

instruction.,

Q. PRINT AND PAPER ADVANCE NORMAL (B) (PAN)

This instruction can cause the Line Printer to print 120% consecutive char-
acters (one line) from the contents of HSM, and/or advance paper for the

next line of printing. The paper advance can be controlled by the instruc-
tion itself or by a paper tape loop on the printer. The instruction operates
from left to right and does not go through STA. See page X-3 of Programmers'

Reference Manual.

A

£ Address of location one to the right of the last character
printed if printing is done, otherwise, it is Ai‘

B

£ Bi with B

3 set to zero.

*¥335 Printer normally prints 160 characters per line.

v-301

Op. Code N A B

NOTE:

Number of Lines Ignored Address of Data to
(0-14) to Advance ' be Printed from HSM
Paper if B; equals 1 Excluding By
25(0) - Asychronous By - MSD of address
25(1) - Synchronous B1 - If digit is even
4 printing will occur.
27(0) - 1st Unit If odd - no printing,
24(1) ~ 2nd Unit B, - Always zero
By - Indicates type of
paper advance
N Count for PAN & PAS
is shown on page X-3
of Programmers' Refer-
ence Manual.
B
Type of Paper Advance 3
No Paper Advance 0]
Line Shift using N as count 1
Vertical Tab (VSiNg paper 2
tape loop)
(using paper
Page Change tape loop) 3

Two modes exist in the printer - synchronous and asychrounous. The synchro-

nous mode gives the fastest printing rate at 1000 lines per minute or 660

lines per minufe, but has only 47 printable characters. The non-synchro-

nous mode has 64 printable characters but prints at a slower rate or 790 or

590 lines per minute. See Page II-3 of Programmers' Reference Manual for a

list of printable characters in each mode.

V-302

Example 1: B 3 0000 3501

In this example, no printing will occur since the B, character (5) is odd,
Only Paper Advance will take place. Three lines of paper will be advanced

on the 1st unit printer.

Af = 0000 Bf = 3500

Example 2: B 2 0000 7803

2T

7800 7801 %] 7917 7918 7919
P R ; :
[,

In this example, characters between locations 7800 through 7919 would be

I N T

printed and paper would be advanced, using the paper tape loop, one page.

Printing would occur in the asychronous mode on the 1lst unit printer.

Af = 7920 Bf = 7800

R. PRINT AND PAPER ADVANCE SIMULTANEOUS (C) (PAS)

This instruction follows the same format as the PAN instruction, except
that the operation code is a C and the instruction is executed in the

Simultaneous Mode,

S. BAND SELECT NORMAL (D) (BSN)

This instruction searches one Record File for a specific disc, places the
disc with the correct side facing up on the turntable and electronically

positions the read-write head over one of two bands.

Before progressing further with the Band Select Normal instruction or any
other Record File instruction, a general description of the device involved

is necessary.

V-303

The Record File has a capacity of 128 discs which are coated with a substance
similar to magnetic tape on both sides. Each surface of the disc is divided
into two concentric spiral bands. Each band is divided into ten cells and

each cell can hold a maximum of 900 characters recorded in serial fashion.

A cell is defined as two revolutions of the disc (speed of disc is 300 rpm)

and the revolutions are counted by a black dot passing before a photo-sensing
diode.

PLASTIC MAGNETIC
SPIRAL SUBSTANCE
GROOVES

READ-WRITE

’ HEAD
"/Q
BAND O //

STYLUS

BAND |

Figure 74 Simplified Illustration of Disc on Record File

The read-write head is connected to a stylus which tracks a plastic spiral
groove in the center of the disc., As the disc revolves, the stylus moves
toward the center pulling the read-write head with it. Thus the read-write

head tracks the magnetic surface in relationship to the plastic spiral

V-304

grooves, Two read-write heads permit the tracking of two interwoven "bands,"
The Band Select instruction must determine which read-write head will be

energized electronically.

Since the capacity of one cell is 900 characters, one band (10 cells) éan
hold 9000 characters, and one disc (4 bands at 2 per side) can store 36000
characters. Therefore, one Record File with 128 discs can hold approximately
4.6 million characters. Two Record Files can be incorporated under control
of the Normal and Simultaneous Modes and four additional Record Files can be
included under control of a separate mode - the Record File Mode. Hence,

six Record Files with a capacity of about 27.6 million characters could be

controlled by one 301 Processor.

Since it is necessary to locate a specific band on one of 128 records, some
arrangement of identification is needed, With four bands per disc and 128
discs in a file, there are 512 bands which must be identified. Addresses
000 through 511 are used to identify these 512 bands. The breakdown of

bands and their addresses is as follows:

Disc No. O Disc No, 1
Band No. 00O | Top Side . ’ Band No. 004 | Top Side
Band No., 00l | (zero side) Band No. 005 [(zero side)
Band No. 002 | Reverse Side Band No. 006 | Reverse Side
Band No. 003 [(one side) Band No. 007 | (one side)

The lowest band address on a record can be obtained by using the formula,
4N, where N is the number of the record (O through 127)., For example, to
determine the band addresses for disc number 15, the formula can be applied
(4 x 15 = 60) to show that 060 and 061 are the band addresses for the zero
side of the disc and 062 and 063 are the band addresses for the one side of
the disc. Note that each side of a record contains an even and an odd num-

bered band and that the innermost band is the even numbered band,

To determine the disc number, when the band address is known, the band
address can be divided by four, e.g., 063 24 =15, Note that any remainder

would indicate the side of disc and odd or even band,

V-305

From the above information, it can be seen that the Band Select instruction
must include an address between 000 and 511. From this address, the Computer
will locate the correct disc, determine which surface is required, place the
disc on the turntable in proper position, and electronically select the even:
or odd band on that side.

Once a Band Select instruction has been initiated, a large portion of the
operation performed is independent of the Computer. A Band Select is neces-
sary before every Read or Write instruction, unless it is known that the de-
sired band has already been selected, Once a Read or Write has been accom-
plished, the read-write head returns to the beginning of the band that was

selected prior to the read or write operation.

The BSN instruction does not go through STA and is covered on page XI-3 of

the Programmers' Reference Manual.

A.f = Ai
Bf = Bi
Op. Code . N A : B
D See Below Ignored B0 Ignored
Bl’ Bz, B3 -~ Band

Address (000-511)

N Character Bits Function

25, 23, 22, 21 Ignored

24(0) Selects Unit 1

24(1) Selects Unit 2

20(0) Returns any disc on
turntable to basket

20(1) Uses disc already
on turntable

V-306

The N character 20 bit has the function of returning the disc presently on
the turntable to the basket and searching for the correct disc which corres-
ponds to the B Address or leaving the.present disc on the turntable and
choosing the even or odd band. The object of this is to save time if the
disc presently on the turntable is known to be the desired one. If N 2O is
a zero bit, the disc currently on the turntable if any, will be returned to
the cage and the search for the correct one will bégin. If N 2O is a one
bit, the current disc is left on the turntable and the odd or even band will

be selected according to the address.

NOTE: If the disc on the turntable is the
desired one but the desired band is
on the opposite side of the disc, the
N character 2O bit must be a zero in

order that the disc will be flipped over.

Example: D 0 0000 0012

The even band on the zero side of disc number 3 on the first unit is selected
from the address 012, Because N 20 is a zero bit, any disc on the turntable

prior to this instruction would be returned to the basket.

T. BAND SELECT RECORD FILE MODE (E) (BSM)

This instruction has the same format as the Band Select Normal instruction
except that the N character will select one of four Record Files under con-
trol of the Record File Mode. The BSM instruction does not go through STA
but is partially executed independent of the Computer once it is initiated.
Page XI-5 of the Programmers' Reference Manual covers the Band Select Record

File Mode instruction. A_ = A. B. = B.
f i f i

V-307

OR. Code N A B
E See Below

Ignored , BO Ignored

By» By, By -

2’ 73
Band Address (000-511)

N Character Bits Function

3 2 1 Ignored

2(0), 24(0)
2>(0), 2%(1)

22(1), 24(0)

Selects Unit 1
Selects Unit 2

Selects Unit 3

23(1), 2%(1) Selects Unit 4

20(0) Returns any disc on
turntable to basket
20(1) Uses disc already

on turntable

Example: E " 0000 0104

This instruction would select band 104 (first band on disc number 26) of
Unit 4. Any disc presently on the turntable would be returned to the basket

first,

U. BLOCK READ FROM RECORD NORMAL (F) (BRN)

This instruction reads from a selected band on a Record File (beginning with
a specified cell) into high speed memory. From one to ten "blocks" of in-
formation can be read with one BRN instruction. A '"block" is defined as the
contents of one cell, This can be from one to 900 characters, but if less
than 900, the block of characters must be terminated by an EB symbol (End
of Block). The Read instruction will terminate a block of information by

finding either an E_ symbol or a 900 count as programmed. When the specified

B

V-308

number of blocks have been read (N = 0), the instruction terminates. Block
Read from Record Normal goes through STA and is covered on page XI-7 of the

Programmers' Reference Manual.

Af = One location to the right of the last character read.
Be = By
Op. Code N A B
F Number of Blocks Location to See Below
to be Read (From Receive First
one to Ten with Character of
Zero Representing First Block

Ten) 24(0) = Unit 1
24(1) = Unit 2

BO - Ignored.

B1 - Determines if disc remains on turntable after read.

B1 1l - Disc is returned.

B1 O - Disc remains on turntable and read-write head is
positioned back at the beginning of previously

selected band.

B, - Specifies type of termination for each block.
B2 = 1 - Block is terminated by 900 character count only.
B2 = O - Block is terminated by either EB or 900 count.

B, -~ Addresses cell (0-9) from which to begin the read.

NOTE: A Band Select instruction must

have previously been executed.
Example:

D 0] 0000 0002
F 4 1000 0105

V-309

The above combination of instructions would read the contents of cells 5, 6,
7 and 8 of band 002 on Unit 1 into memory beginning at 100. The number of

characters read in could vary since termination of a block could be by an EB
symbol or by 900 count. The disc would be returned to the cage when reading

was finished,

V. BLOCK READ FROM RECORD SIMULTANEOUS (G) (BRS)

This instruction has the same format as the Block Read from Record Normal
except that the operation code is a G and the instruction is executed in
the Simultaneous Mode. BRS does not go through STA and is covered on page

XI-9 of the Programmers' Reference Manual.

W. BLOCK WRITE TO RECORD NORMAL (H) (BWN)

This instruction has a similar format to the Block Read from Record instruc-
tions except that writing is done rather than reading. From one to ten
blocks of information can be written to a previously selected band. The
blocks of information can be defined by EB symbols or 900 character count,
If the number of blocks to be written exceeds the number of available cells
remaining in the selected band, the excessive blocks of information will be
lost. The BWN instruction does not go through STA and is covered on page

XI-11 of the Programmers' Reference Manual.

1]

A.f One location to the right of the last character written.

Bf = Bi
Op. Code N A B
H Number of Blocks Location of First See Below
to be Written (From Character to be
One to Ten with Zero Written

Representing Ten)
24(0) = uUnit 1
24(1) = unit 2

V=310

B. - Ignored.

B, - Determines if disc remains on turntable after read.

B

1 1 - Disc returned to cage.

O -~ Disc remains on turntable and read-write head is
positioned at beginning of previously selected band.

B

1

B, - Specifies type of termination of each block.

By

By

1 - 900 count only.

0o - EB or 900 count.

B, - Addresses first cell (0-9) to receive first block.

Example : D 0] 0000 0116
H 3 3100 0002

00 01 02 03 04 O5 06 07 08 09

31 |F I L E BB 0] F -EB EB I

HSM Before and After

In the above combination of instructions, band 116 of disc number 29 will

be selected on Unit 1. The Write instruction will write out, "FILE EB" to
cell 2 of band 116, "OF EB" to cell 3, and "EB" to cell 4 since three blocks
must be written and each block can be terminated by an EB symbol or 900
character count. The disc would remain on the turntable when writing is
complete and the read-write head would be positioned at the beginning of
band 116, A final would be 3109,

X. BLOCK WRITE TO RECORD SIMULTANEOUS (I) (BWS)

This instruction is identical to the BWN except the operation code is an I

and the instruction is executed in the Simultaneous Mode. Page XI-13 of the

v-311

Programmers' Reference Manual covers the BWS instruction.

Y. RECORD FILE MODE READ (*) (RMR)

This instruction has the same format as the Block Read from Record Normal
except the instruction is executed in the Record File Mode and the N charac-
ter must specify one of four Record Files under control of the Record File
Mode. A Band Select Record File Mode (E) instruction must be used in con-
junction with this instruction rather than Band Select Normal (D). The RMR
instruction does not go through STA and is covered on page XI-15 of the

Programmers' Reference Manual.

U (Same as AL in Normal Mode)

One location to right of last

character read.,

Vf (Same as B_ in Normal Mode) = B

f i

Op. Code N A B

* Number of Blocks Location to See Below
to be Read from One to Receive First
Ten with Ten Specified Character of
by Zero. The Zone Bits First Cell
Select the Unit as Shown
Below.

N Bits Select B0 - Ignored.

25(0) 24(0) Unit 1 B, - Determines if disc remains

25(0) 24(1) Unit 2 on turntable.,

25(1) 24(0) Unit 3 B, = 1 - Disc returned to cage.

5 4 .
27(1) 27(1) Unit 4 B1 = O - Disc remains on turntable.

w
1

2 Specifies type of block termination,

B

2 1 - 900 count only.

B

2 O - EB or 900 count.

B, - Addresses cell (0-9) to be read.

v-312

Example: E & 0000 0425
* E 1000 0103

The preceding pair of instructions would read the contents of cells 3, 4,
5, 6 and 7 of band 425 on Unit 2 Record File (under control of the Record
File Mode). The disc would be returned to the cage after the operation was

complete.

Z. RECORD FILE MODE WRITE (%) (RMW)

This instruction functions similarly to the Block Write to Record Normal
except the instruction is executed in the Record File Mode and the N charac-
ter must select one of four units to be used. The RMW does not go through

STA and is covered in the Programmers' Reference Manual on page XI-17,

Uf = One location to right of last character written.
Ve = By
Op. Code N A B

% ’ Number of Blocks Location of See Below
to be Written from First Character
One to Ten with to be Written
Ten Specified by
Zerxro

N Bits Select Bo - Ignored.

25(0) 24(0) Unit 1 B1 ~ Determines if disc remains

5 4 on turntable.

25(0) 24(1) Unit 2 B1 = 1 - Return disc to cage.

2 (1) 2 (O) Unit 3

23(1) 24(1) Unit 4 B, = O - Leave disc on turntable.

B, - Specifies type of block termination.

By

1 - 900 count only.
82 =0 =~ EB or 900 count,

B, ~ Addresses cell (0-9).

V-313

Example: E " 0000 0105
% S 0302 0102

00 01 02 03 04 05 06 07 08 09 10 11

03 | R E C 0] R D _EB F I L E EB

HSM Before and After

Executing the above instructions would write out "CORD EB" to cell number 2
and "FILE BB" to cell number 3 on band 105 unit number 4 under the Record
File Mode control. The disc would be returned to the cage upon termination

of the write instruction. U final would be 0312.

V-314

SECTION VI

Flow Charting and Coding

A, FLOW CHARTING AND CODING, INTRODUCTION

The RCA 301 computer is essentially a machine designed to automatically
process information for business, commercial and industrial organizations.
Since the majority of business operations are straightforward and basic in
nature, the interpretation and conversion of business routines and transac-

tions into machine language will be of primary concern to the programmer.

A thorough understanding of flowcharting is not required to code short pro=-
grams, but when a program reaches any significant length, flowcharting be-
comes a very effective tool, i.e., it allows the programmer to solve the
general problem and isolate the details. The purpose of this section is

to help the reader develop a technique for flowcharting and coding to pro-

duce a program.

Most programmers maintain relatively standard flowcharting symbols. These

symbols and their meaning are shown in Figure 75.

Figure 76 shows the 301 Computer Program Record. A completed record will

be illustrated later.

Figure 77 shows the 301 Computer HSM Record. This is completed by the pro-
grammer and shows how the data pertaining to his program will be placed in

memory., A completed 301 HSM Record will be shown later,

VI-315

DENOTES BEGINNING PRINT OUT PRINTER
OF PROGRAM SURPLUS OPERATION

OPERATION COMPUTER PROCESSING <::>>

IS WRITTEN
OPERATION
IN THIS BOX T

DECISION BOX WHERE END OF RUN
RESULT MAY CHOOSE
m PATH TO BE TAKEN OR PROGRAM

<: :> H COMPARISON

CONNECTOR

R.I. CARD OPERATION () oF

MAGNETIC TAPE
OPERATION

(» INDICATES CONTENTS

EQUAL TO

NOT EQUAL TO

GREATER THAN

LESS THAN

v A v W\

GREATER THAN
OR EQUAL TO

PAPER TAPE

OPERATION LESS THAN OR

EQUAL TO

IN

Figure 75 Flowchart Symbols

VI-316

TITLE 301 COMPUTER PROGRAM RECORD : DATE

CODER INDEX NO.

REMARKS BLOCK NO.
FROM HSM oP| N A B

INSTRUCTION REMARKS CHAR
LocaTion | LOCATION [Ty Fa s a|s|e|7[s]s NO.

Figufe 76 301 Computer Program Record

301 COMPUTER HSM RECORD

0Jo1]0z] 03] 04 Jos] os] 67] e[os] 10] 11| 2] 13| ve] 1] 1] 7] 8] 1] 20 [21]22]23] 24] 25 26| 27| 28] 2| 30| 31| 32] 33] 3a] 35 36 37| sa 9 [o[r[az]aa] a4 asJas[a7 an] a5

so[s1 [s2] 53] 4] 55] s6] 57] 58] 5 | 60] 61] 62] 63| 64 65] 66] 67| e8] 69| 70 [71] 72]73] 74| 75[76] 77| 78] 75 J0 a1 2] 83 na] as[6 |67 a8]as [50 [91]52]93]94 95]96]97]98] 95

00]o1[02]03] 0a}os] 06 ov] oe] o8] o] 11| 2] 3] 1a| 15| 16] 7] 18] 19 20 [27] 22] 23] 24| 28 [26] 27 28] 29 | 30 [31| 32] 33 3af 3536 [37[a8] 39 w]er[az[e3]aafas]as]ar] aa] 9]

50 [51]52] 53] 4] 53] 56 7] 58] 59] 0] 51 62| 63| 64] 65] s6] 67] e8] 6] 70 [71[72] 73] 74] 75[76] 77[18] 79 J 80 a1 [82] 03] 84 as]ec 87| e8] 83} 90 91[s2]91]9¢ 95]96]97] 98! 99

00 o102 03] 0afos] 06] 7] os[os] 10 11] 12] 13| va| 15| v6] 17] 18] 15| 20 [21] 22]23] 24| 25| 26] 27] 28| 29 | 30 [31]32]33[34| 33[36] 37| e[f a0 [a1]az[e3]asfasae]ar a0 &5

50 [51[52] 53] sa| 55 s6] s7] se] 5] 60] 1] 62] 63| 64| 65| 66] 67] e[63§ 70 71| 72[73] 74| 75| 76 17] 78] 73 [80 01 [82] 83] 84| ws[ws|e7] s8] e3] 90|91 [s2]s3]se[os se]97]s0] 90

oc [o1]02] 03] 0a)os] 06 o7] sl osf 1o [1] v2] 1] val 151617 18| 1 f 20|21 | 22] 23] 24| 25] 26 27| 28] 2 [30 31]32] 33] 34 3s[36]37] 3] 39 [0 | a1]az[43]as as]ec[ar[48] a3

sofs1[s2]s3[se ssjiiﬁvlse]s.; o] 61[c2]63]6a] 65| s8] 67] 60]69] 707+ [72] 73] 7a| 75 |76 7] 78] 73 Jeo[u1]82]e3[a4l es]as a7 s8] 65 50 |31 92]93] 94 9596 [s7]se] 99

56]o1]0z]03] 0% o506 07| 8 os] 1] 11[12] 13]1a] 1]v6 |17 |18 |15] 20 [z |22 23 24} 25 |26] 271 28] 28 |30 1] az[33] 2af a5 36 [37 (s8] 3 w41 1az]a3 a4 |as[e6 a7 a0 a8

50]51]52] 53] 54| 55| 56| 57| 58] 55§ 60| 51| 62] 63| 64] 65| 66] 67] 68169 § 70 |71] 72| 73] 74| 75] 761 77| 7879 [0 (21 [82[83] e s[5 A7 08 89 | 90 |51 921339419596 [s7] s8] 99]

00]o1]oz] 0z oejos]o6]07]om]os] to] 1] 12 13] 1a} 15|16] 17] 18] 1920 [21] 22127 24| 2s] 28] 27] 28] 29 20731 32133 3af3s[e 37 el sofan [arfazjar]es as]as a7, a8 a9

5051 [52] 53] 54 55] 56 57 58] 59] 60] a1 |62 3 64|65 6] 67] e[60 | 70 [71]72]73] 74| 76 672 18] 75 50 |6]82]83] 84| as|ns |87 88 [se f90 [51 (92| 939 9596 |97 98] 99

00 Jo1 [0z] 03] oafos[oe]o7]ce oaf 1o 11 [2] 13] ra] 1s] re[17 18] vs |0 [2122] 23] 24 2s] e[27[8] 2 30]31] 32| 33] 24| 35] 36] 37 38]] ac &1 Jaz]as]as a5 [as |47 48] 9

0[5 [52] 53] 54] 5] 56| 57] 58] 55] 60] 61|62 [63] 64 | 65| 66] 67 6269 | 70 |71 72| 73| 78] 75[76] 77 78] 75 J 80 81 [s2[3] aefus[es [ar Jes]as 5 |51 52193 94|95 96 [s7]se] 99

00 [o1[02]03] 04]0s] 06| o7]ae] o8] 10] 11 1213 1a] 1s] 6] 17 1819 |20 [21]22]23] 26} 25 26 [27[28] 29 | 0 a1]32] 33] 34 5] % [37] 8] 39J a0 &1 [az a3 aa]asTas[ar]aa] a9

So]51]52]53] 54| 55| 56]57] 58] 55 | s0]et 62|63] sa| 65] 66] 67| se] 63 | 70 [71[72] 73] 74| 75| 76 77[78] 75 Jao [a1az[a3 s] os[ne [87[oe as 5 [s7 [92]93 [94]ss o6 [97]s2] 90

oolm]ozloslon oslos[wLouloe 10] n[uru[u 'sl'qﬁ’[‘”l” 20 J21]22[23] 24] 25| 26 EE ml;v]nln]n 35]36]:7]15])9 w[ulfnz[u]u nsluin[uhe

5051 [52] 3] 54 |55 56| 57] 58] 53§ 6061 [s2 63 [e5 |66 €7 [68]65 § 70 [71 (7273 74|75 76 77] 76| 75 Jao [a1[s2]a3] e4]es]ec a7 [ea as 90 [91[92]93 94 |95 9697 sa] 99

25 [01 [02]03 [e Jos]0s [o7 [o8 [60 §10] 11 [v2[13] raf1s] 16| 7] 18] 15 [20 [21[22[23]2a} 25 [2627] 28] a8 k0 [31[32] 33 3¢ 53] % [37 [28] s8]0 [a1]s2+3 []as[a6[er [a] as

so [s1]s2]s3]sa ss[se[s7]se[s9f o[61]62]63]ea sscs]67[6s]69 70 [11]72]73]74 751677 78] s ac[s1]s2]a2]6s ws[ss o7 sa]es s0[91]s2[s3]se 95 [9s]a7]s8] 99

TITLE: BLOCK NO.: INDEX NO.: PROGRAMMER: DATE PAGE___OF _

Figure 77 301 Computer HSM Record

VI-317

In flowcharting, the steps the computer must take to solve this problem
would begin with reading in a transaction and the first message on the mas-
ter file. The next step would be to compare the serial numbers to détermine
whether this particular item is being shipped or not. If the item is being
shipped, the quantity on hand must be reduced and if the item is not being
shipped, the quantity on hand should be unaltered. Thus, the beginning of

the flowchart would be as follows:

Read in
Transaction

Read in
Master File -
Tape Station No. 1

Compare Master Serial
Number to Transaction
Serial Number

Figure 78 Start of Flowchart

From the decision block, which compares the serial numbers, three paths must
be provided., The three paths would correspond to: M=T (serial numbers
equal): M £ T (transaction serial number is greater than master serial num-
ber); and M>» T (master serial number is greater than transaction serial num-
ber). Since all master items are in sequence according to their serial num-
bers and all transactions are in sequence according to their serial numbers,
at no time should the master serial number be greater than the transaction
serial number., If this happens, an error has occurred in the original sort-
ing of these items, Therefore, the program should provide for the recogni-

tion of this error.

VI-318

If the serial numbers are equal, the item must have been shipped and the
quantity on hand must be updated. After updating the quantity on hand, the
master item must be recorded on the néw master tape. Having done this, the
computer must bring in the next message from the original master (on Tape
Station 1). The process of comparing serial numbers would again resume

with the next transaction read in from paper tape.

The third and final path provided (M &€ T) would signify that there is no
transaction against this particular master. In other words no shipment of
this item has been made, and the original master item must be recorded on

the new master tape without any alterations.

The transaction, which is still in memory, has not been matched with its
master item. Thus, a new master item must be read in, and these serial
numbers must be compared. The final flowchart with just the bare essentials

would be as follows.

READ IN
TRANSACTION

M>T

T

SUBTRACT THE
TRANSACTION QUANTITY
FROM QUANTITY ON HAND

9

Figure 79 Simplified Flowchart

VI-319

Before coding the program, read-in areas for the master and transaction files
must be determined. Since the master file item is a total of nine characters,
nine memory locations would be required for the master read-in area. Assume
this area to be locations 1000 through 1008. The transaction consists of
nine characters, thus, locations 1010 through 1018 would suffice as the
transaction read-in area. If the program exists in memory beginning at

address 2000, the coding for the flowchart would be as follows:

HSM LOCATION INSTRUCTION

2000 4 8 1010 1018 Read-in Transaction

2010 4 1 1000 1008 Read-in Master

2020 Y 4 1000 1010 M:T

2030 W 1 2070 2080 Sense PRI's o 1

2040 - 5 1008 1018 Subtract shipment quantity
from quantity on hand

2050 8 2 1000 1008 Write out new master

2060 1 0219 2000 Transfer control to 2000

2070 . 1 1111 0000 Error Stop

2080 8 2 1000 1008 - Write out new master

2090 1 0219 2010 Transfer control to 2010

From the coding of the flowchart, it can be seen that approximately one
instruction exists for every block on the flowchart. It should also be
noted that no provision was made to stop the computer by instruction (except
for Error Stop). This means that the computer would continue to process in-
formation contained on the master file tape and paper tape until one or the
other was depleted. This would cause an Alarm Stop, due to physical end of
tape. Therefore, the program should contain instructions which will recog-
nize when the operation has been completed and stop the computer accordingly

without alarms,

VI-320

B. ED, EF AND ETW ROUTINES

Within the 301 System, certain control symbols exist. On magnetic tape two
control symbols are used extensively. The EF symbol means end of file and
will be placed on tape at the end of every distinct file of information,
e.g., the master inventory file. This control symbol must be preceded and
followed by a gap, and will constitute a message. All information on tape
in the form of a file must be terminated by an EF symbol. The ED symbol
means end of data and is placed on tape to specify the end of information

or data on that particular reel. Thus, if a file extends beyond one reel
of tape, there will be an ED at the end of the first reel and an EF followed
by an ED on the last reel. Also, the ED symbol is preceded and followed by

a gap and constitutes a message in itself,

The 301 computer incorporates a single indicator for each mode. There is
an ED/EF Normal indicator for the Normal Mode, and there is an ED/EF Simul-
taneous indicator for the Simultaneous Mode. These indicators will become
set when an ED or EF is read in from magnetic tape. Writing out an ED or

EF does not set the indicator.

The fact, that an ED/EF control symbol will exist on tape, was not considered
in the preceding inventory problem. Reading an ED or EF from paper tape does
not set the ED/EF Indicator. Therefore, the check for these symbols must be
by a compare against a constant if paper tape is used. Therefore, the flow-
chart must be ammended by incorporating ED/EF decision blocks as shown on

the following page.

vi-321

R.I.
Transaction

Figure 80 Flowchart Incorporating ED/EF Check

VI-322

An ED/EF subroutine must be flowcharted from connectors D and E. A typical

flowchart for this routine would be drawn as follows:

<giil)YEs

PRINT OUT
"REPLENISH
INPUT"

ERROR

Figure 81 Flowchart Showing ED/EF Subroutine

This subroutine will determine whether the ED/EF indicator was set by (1)

an ED symbol, (2) an EF symbol or (3) some character other than ED/EF.

Upon sensing an ED control symbol, the tape on Tape Station No. 1 will be
rewound, the operator will be instructed by the print-out to place a new
master file tape on Tape Station No. 1, and the computer will halt. The
T.C.B (transfer control to connector B) block allows the computer to resume

its processing when the operator depresses the Start button.

The presence of an EF on the master tape will indicate that the updating
has been completed. An EF followed by an ED will be placed on the new mas-

ter file tape and both tapes will be rewound.

VI-323

Setting the ED/EF indicator, when neither an ED or EF control symbol exists,

will cause an error stop.

The operator must know why the computer stopped. If the machine stops on
an ED, '"Replenish Input" will be printed, but, if the ED/EF indicator is

set by some condition other than an ED, the operator would have to examine
the contents of the P Register and then refer to the program in order to
determine whether the updating has been completed or an error halt occurred.

To simplify the above procedure, the three halts involved can be coded.

One method of coding the halts is by filling the N, A and B Registers with
zeros or ones to indicate normal or error halts, respectively. The instruc-

tions would be coded as:

. 0] 0000 0000 =~ Normal Halt
. 1 1111 1111 - Error Halt

Using this method, if there is no print-out, the operator can select the N,
A or B Register, on the console and determine the type of halt without re-

ferring to the program.

There is a second method of coding halts, which is more inclusive, due to
the fact that a program usually incorporates more than one normal halt and
more than one error halt, Using the normal N Register count, 45 individual
halts can be recognized without reference to the program. The ED/EF sub-

routine could be coded as:

. 0 0000 0000 - Halt on ED
. 1 0000 0000 - End of Run
. 2 0000 0000 =~ Error Stop

The operator can recognize a specific halt with this method and, since the
A and B Registers are not coded, the respective HSM locations can be used

as storage or work areas. This method of coding the halts also has an ad-
vantage in the case where the printer is inoperable and "Replenish Input"

is not printed. The print instruction can actually be eliminated, but,

normally, most programmers include it in their program as an "insurance

VI-324

policy." Another feature that should be included in the inventory problem
is a means for checking the output tape to insure that information will not
be lost because the new master file is too large to be recorded on one reel
of tape. Sensing for ETW before every write-out will provide a solution to
‘this problem. EIW is an abbreviation for End of Tape Warning and when this
condition is sensed an indicator is set, which effectively tells the computer
that approximately 24 feet of usable tape is left on the reel. A subroutine

should be flowcharted to sense for ETW as follows:

FROM MAIN
PROGRAM

PRINT OUT

"REPLENISH
OUTPUT"
TO MAIN
PROGRAM
TC

Figure 82 Flowchart Showing ETW Check

VI-325

When ETW is sensed, an ED will be written to the New Master on Tape Station
No. 2, the tape will be rewound and a command for the operator (replenish

output) will be printed.

C. SWITCHES

When one subroutine is to be used for two or more portions of a program, it
becomes economical to incorporate a switch or variable connector. A switch

is normally represented in a flowchart as:

Figure 83 Symbol for Software Switch

From point A, the computer will take one of two paths - Al or A2, The

switch is set previous to the time the compﬁter'will reach point A. Physic-
ally a switch is simply one instruction - A transfer of control instruction
or, in the case of the 301, a Store Register instruction with the N Character
equal to 1. This designates storing the P Register contents and transferring
control the B Address. To set the switch, one merely needs to transfer a
predetermined address into the locations which make up the B Address of the
Store Register instruction. Once a program has been coded, the addresses
which have been temporarily omitted can be included as constants of the pro-

gram.

For example, if the same subroutine were needed for two different sections
of the main program, a switch could be used to determine where to return
after executing the subroutine. The following coded example should help

clarify this switch concept.

VI-326

&

YES

SET
TS 1 SWITCH A

SET
SWITCH A
TO A2

Figure 84 Example of Switch in Flowcharting

1000 S 1 4000 3000 ~ 3000 N 4 0303 4009
1010 S 2 4000 3020 3010 \Y 1 0219 3030
1020 Continue Main Program 3020 N 4 0307 4009

ETW Subroutine

4000 \Y 1 0219 Switch A

D, CONSTANTS

00 01 02 03 04 05 06 07

0311 o) 1 o 1 0] 2 0]

T T

Al A2

vI-327

Switch A is the B Address of the Store Register instruction at 4000. The
instruction at 3000 sets Switch A to Al and the instruction at 3020 sets
Switch A to A2,

Switches do not have to be limited to two paths. On the contrary, a switch
may incorporate any number of alternatives. Of course, an address must be

stored for each alternative.

E. HOUSEKEEPING

Included in almost every flowchart, and consequently in every program, is a
series of preparatory operations, such as clearing work areas, rewinding
tapes, restoring tally quantities and setting switches to their initial posi-
tions. Normally these operations are included under one large block called
"housekeeping." This is usually the first block after the start symbol, and
it represents all miscellaneous operations which ensure proper execution of

the program.

The following pages illustrate a typical program. A banking problem is
chosen which involves the need for producing an updated master account file
for a given daﬁg transactions. The transactions will be in the form of
checks or deposits. The master file is on magnetic tape and blocks are of

variable format. See the flowchart of Figure 85 (4 shts).

This flowchart illustrates the problem., Figure 86 presents the coded portion
of the program and Figure 87, the 301 Computer HSM Record showing the infor-
mation as it will appear in memory. All of the locations necessary for the

program starting at 1000 are not shown. The program occupies locations 1000
through 2349,

VI-328

l \
HOUSEKEEPING

2
READ IN
TODAY'S DATE
3
READ 1IN
TRANSACTION
4

SAVE A
<I> ‘

o—
RI
TS 1
6 .

SAVE Af

20 21

SET SWITCH
B
Bl

Figure 85 (Sheet 1) Flowchart for Updating A File

VI-329

/ TRANSFER ALL
QUANTITIES TO
BE UPDATED TO
WORK AREA

ADD TRANS.
QUANTITY TO ADD ONE
TOTAL DEPOSITS TO
TOTAL CHECKS
2k | S I2 1
ADD TRANS. SUBTRACT
QUANTITY TRANS. QUANTITY
TO BOH FROM
[T BOH
Bt 25
SET
—— SWITCH

PRN A TO A2

14 PRZ) PRP

SET
SWITCH
A TO Al

15

SET UP
MASTER WRITE
OUT AREA

O—A

17

READ IN
TRANSACTION

SAVE Af

Figure 85 (Sheet 2) Flowchart for Updating a Blank File

VI-330

A

ERROR CODE

INSERT

IN MEMORY

Figure 85 (Sheet 3)

|

E)

INSERT
wtiiOR CODE
IN MEMORY

(___I____

b

PUNCH

TRANSFER
TRANS.

TO
AREA

/y 9

b

INS
ERROR
I'N

TRANS.

ERT
CODE

50

PU
our

TRANS.

NCH

51

31 >
COMPUTE PRINT Ol SET SWITCH
@__ OVERDRAFT | VERDRAF T A
SET UP P.A. TO Al
36 37
SET up S e o o .
PRINT AREA : e o
ho 38
SET SWITCH
C
TO C1

SET UP
PRINT
AREA

44

PRINT OUT
"REPLENISH
ouTpruT"

Flowchart for Updating a Bank File

VI-332

SET UP
PRINT AREA

56

PRINT OUT

"REPLENI SH
INPUT"

74

SET
SWITCH
C TO C2

@'9

SAVE

70 71 72

Y SET SWTCH
j B TO B2 |

Figure 85 (Sheet 4) Flowchart for Updating a Bank File

TITLE UPDATING A MASTER BANK ACCOUNT FILE DATE

(1 302ys) 98 @2anbT4

paooay weaboag aa3ndwod 10¢

cee~IA

CODER INDEX NO.
REMARKS [0OAD CONSTANTS IN AT 0635. LOAD PROGRAM AT 1000 BLOCK NO.
'N:;EEE?ASN L°CH::'°N c:)P ? 2 3A4 s |6 |7 Ba 9 REMARKS C:G?T

10 ol;11fojojojo]ojojolo Rewind T.S. 1 1
"W;falolo|o|lo]ojofo]o Rewind T.S. 2 1

2INjalol6 {7 |7]1]6]7]9 Set switch A to Al 1

3lJ[glo|3 |o|ofo]|5 |49 Fill work area 1

‘lile]ols |3]olo |5 (3]0 Place @ symbol in BOHWA 1

Slalefols |3]7l0]l5]3]7 nooonmn " TCWA 1

slglelo|s |4|8]o|5]|4|8 nooon " TDWA 1

71418101319 1(4l0|3]9]9 Read in today's date 2

8148|033 |7 l0]0|3 |8 |4 " " transaction 3

IN[4]ol2 |1 |5]0o]|3]6]5 Save A_ 4

1790 11 %lylglols lojo]o|3]|6]o Clear master R.I. area 5
'W4l1]o|3 |o|o]o|3|6]0 Read in master 5

2INf4]of2 |1 |5]0]3]6]9 Save A_ 6
Sl-fulolsl6lololel6]l9 Adjust A_2(-1) 6

1560 “lwlslils|7]o]1]1]5]0 ED/EF? yes-20 no-8 7
Slylalolslolalols]7]a M:T (account numbers) 8
Slwli]2|o|7]ofl1]6]7]0 PRI'S PRP—=47 PRN—=26 8

I'rlelo 3161103193 Transfer statement date 9

8 Ple@lo|2|1|E]O|5]| 4|7 " total deposits —=TDWA 9
‘lplejo|2|1|E|lo]|5]3]|6 " " checks—e TCWA 9

PAGE 1 oF 8

vee~IA

(z 322ys) 98 2inbryg

paooay weaboig aaindwod TOg

TITLE DATE
CODER INDEX NO.
REMARKS BLOCK NO.
INSTRUCTION ook on ol REMARKS CHART
LOCATION 0j1}2|3)4|5)6 |7 81|09
12 °lplelolalale]olsizalo Transfer balance on hand—eBOHWA 9
"[klglols|3l8lols|ulz Locate @ of TDWA 9
2lilalol2]als]ol6l6]o9 Adjust Af(+l) 9
3tglglofl2|1|lElo|2|1|E Mask out @ 9
dk|glols|3l1]o|5|3]|6 Locate @ of TCWA 9
Sl+J4joj2[1|5]0[6]6[9 Adjust A_(+1) 9
Slglglol2l1lejo]2|1]E Mask out @ 9
Ik g lols]|2]lofo|5]2]9 Locate @ of BOHWA 9
81+ 4 Jof2|1]|5 |0 |6 [6]9 Adjust A_(+1) 9
“lalglolelilelole|1|E Mask out @ 9
13 f_lulol3]6l5]ol616]9 Adjust A_l of transaction (-1) 10
yli1]o|3|6|E]o|6]9]8 X:C] 10
2lwl1l1|s5]|9jofz2|1]60 PRI'S PRP—=22 PRN —=52 10
Slilslolsl3l6]ol7 1]t Add 00001 to total checks 11
4 @lo|3|6|EJO0|31|6|E Locate LSD of trans. quant. 12
Si-18lols5|2|9(012|1]|E Subtract trans. quant. from BOH 12
1640 slwlif1|3|7lo]1|6]|5]0 PRI'S PRP—= 14 PRN—=25 13
7INJajo|6|7]7 12161719 3et switch A—=Al 14
1660 8l lelo|3|0l6 0|3 |06 Locate MSD of BOH in original R.I. area 15
lylglol2]|1]|E 31611 Clear original read-in area 15

PAGE 2

OF 8

see-IN

(¢ 129ys) 98 2anbt4g

pxooay weiaboxg z23ndwo)d TOE

TITLE DATE
CODER INDEX NO.
REMARKS BLOCK NO.
INSTRUCTION LocATION ll REMARKS o
LOCATION 01 2|3 (4(5]6 17|89
14 °Intulololalslilalsle Transfer address of MSD of BOH—=(B) of # 15
[k lglolsl2lolols]2lo Locate MSD of BOHWA 15
2lila]olz2]a 510161619 Adjust A_(+1) 15
3 #l@]JO|2]1|E |JO|O|O}|O Transferlnew BOH—=W.O. area 15
dlvisdar|4j7]9]0o]0|0]0O Store B_—=—(B) of # 15
sk |{glo|s|3]1]o|5]|3]|6 Locate MSD of TCWA 15
flelulolalalslol6l6]9 Adjust A (+1) 15
I#lelolz2|1|E oo o]0 Transfer new TC——W.0. area 15
8lv]alar|s|1]|9 |o|ofo]o Store B, —=(B) of # 15
IK|glo|5|3(8|o]|5 |47 Locate MSD of TDWA 15
15 Ol+|4lo|2|1|5]0|6]|6]9 Adjust A_(+1) 15
% @lo(2]1|E |0 |0 {010 Transfer new TD—=W.0. area 15
2lv]alalz]1lolololo]o Store B_—e(B) of 28 15
2150 g glo|3|7j0]l0o|31]|81|4 Clear t;‘ansaction R.I. area 16
“lulslo|3|7]o o |3 |84 R.I. trans. 16
SINJ4|o|2|1|5]|0|3|6}5 Save A_1 17
slw|8 |2 |3|4lofl1 |1 (510 ED/EF? yes—=66 no—e8 18
1140 In | 0/6[8]5]212]5]9 Set switch B—=B1 20
8lv]ilol2]1]g 8o T.C. to 53 21
1320 Ily]ilol3]6lE 61919 X:D 22
PAGE 3 OoF 8

9ee~IA

(v 322ys) 98 2anb1yg

paooay weaboxg xa3ndwo) TOg

TITLE DATE
CODER INDEX NO.
REMARKS BLOCK NO.
NSTRUCTION LocATION - - REMARKS Mo
LOCATION of1l2[3]afs]|6|7]8]9
16 Olwlilol1l6lofe]1l6]lo0 PRI'S PR —=—52 22
'lple]o|3|6|E|0]|3]|6]|E Locate trans. quantity LSD 23
2l lolols|ualz]ol2]|1]E Add quantity to TDWA 23
31+l9lolsf2|o9]lol2]|1]|E " " to BOHWA 24
4iv]jijolz2]1]l9f1|3]6]0 T.C.—=13 24
1360 SINj4jo|6]|8|1|1|6|7]9 Set switch A to A2 25
slvliifo|2|1|9|1|3|8]0 T.C.—=15 25
1160 tviifolzli1lo]ololo]o Switch A 26
1880 8lyl6lo{3]|8[8|lo|3]|9]4 Statement date: today's date 27
Slwl1|1|7|1]lof1|8]9]0 PRI'S PRP——28 PRN —=735 27
17 °lvlalolalalof1(8l9]o T.C.—= 35 27
iggg 'f'Mm|6lo|3]|8|8|o|o|0|O Transfer new statement date—eW.0O. area 28
2lv]4jof3]6|9]|0jO0|O}0 Store B_ over A_2 28
3l-14]l0|3|6|910(6|61]9 Modify A_2(-1) 28
“Isfiajuafolojofr]ols]o Sense ETW yes—e39 2
51g8lajlol3|lololo|3|6|1I Write out new master
stglglols|z2iolo|s512]9 Fill BOHWA with zeros 29
falglols|3l1]lol5]|3]|6 " TCWA nooon 29
8 0l51318 105 {47 " __TDWA nooon 29
lvlidolelaleolilalo T.C.—=35 30
PAGE 4 OF 8

Lee-IA

(s 322ys) 98 2anbt4

piooay weaboad xa3ndwod TOE

TITLE DATE
CODER INDEX NO.
REMARKS BLOCK NO.
INSTRUCTION LocaTION bl 2 2 REMARKS CRART
LOCATION 0|1 2 (3 |4(5]61|7 8|9
18 °lileloluslolo]ols|alo Fill print area 31
! RI121]1010/l0]0]JO0j0O]O1lO0O Transfer acct. no., name, address and BOH 31
2|#lelolslolilolalslo 31
Silv]af1|8]|5|5]olofofo 31
4-lal1|8|s5l5]|0l6]|7]|3 Subtract 0002 from B_ 31
slul1]o|o]olo]1|8]6]5 Mask out 2° bit . 31
élclolololomilol4 o]l Print out overdraft 32
IN|4alol6l7]l7]1r]6]7]9 Set switch A to Al 33
8fvi1jo|2f1|j9]1|6]|8]0 T.C.—=27 34
T690 5 : : . -
Z00 Jj@elo|4]jojoJo|5]|1]9 Fill print area 35
19 olr 31]0{0]0fjO0O OO]JO|O Transfer acct. no., name, address, BOH and 35
NW#lelo|3|ol1 o4 |L4]o Total deposits 35
’lclojololojoolulolifl Print out statement 36
*lvfajol3|ojofol7]ol1 YR:12 37
“Ywlifa]o|7zlofr]o|7]o PRI'S 37
Sl+l4lo|3|9|1|o|7]|0]5 Add 0089 to YRMO 37
flvlalolalalofalzlalo T.C.—=28 38
4 +1210(3]9l1lo(7l1]1 Add 01 to MO 37
8lvii]ol2]1]lofrlz]1]o T.C.——28 38
1740 Inju]ol6lolzf2]o]6]9 Set switch C—=—Cl 39
PAGE 5 OF 8

8€e-IA

pxooay weaboag za23ndwo) TOE

(9 322ys) 98 2inbTy

TITLE DATE
CODER INDEX NO.
REMARKS BLOCK NO.
m:g?goﬁ;gn LocATIoN t:)P ? 2 3A4 516 |7 Ba 9 REMARKS o
2440 20 0 8lAal210!5]|812]0]|5]8 W.0. ED—=T.S.A. 41
! ;s 1AJOJOJOJO]O OO0 Rewind A 42
2|5le]ol4]olofols]1]o Fill print area 43
3IMJF|o|6]|5]0]o |4 |5]0 Transfer '"replenish output'"—eP.A. 43
4Blololojojojo |4 |o|1 Print out Ll
Slodolalalalilolo Bolfr Halt 45
Sfv 1 foj2]1]9 o o |o |oO Switch C 46
1160 “Igflajolel3la]lol6e |3 |4 Insert crror code A in constant location 47
2170 81J |splo|s5|5]lo]oj6l2]9 Fill punch area 48
‘IrR|2]olojolojojolo]o 48
21 0 Pl@]o| 3| 6lE]JO|5(6]|5 Transfer transaction to_punch area 48
' "InJalo|3l6ls]ol6]3]53 Store B 48
2l 1ulol6]3]|3lol6l6]09 Adjust B (+1) 48
3N 0| 6] 3 ik' 0|6 C Insert error code in transaction 4o
412110 515010101010 Punch out transaction 50
e z villaol2l1i931 151310 T.C.— 10 51
1600 JIBlol 6131410161314 Insert_error code B in constant location 52
, lvliilol2lalof2lol8lo T.C.—=48 . 52
2420
1580 8lvy{1lol3}lojof2]0|5]|8 Char: ED 53
lwli]zlz2]6 213103 PRI'S PRP—==59 PRN—eerror halt 65 53
PAGE 6 OF 8

6ec-IA

(2 329ys) 98 @2anb1y

pxooay weiboid x2indwo) TOE

TITLE DATE
CODER INDEX NO.
REMARKS BLOCK NO.
FROM
INEgg‘%ch:gN LocATioN CLP :l 2|3 45|67]8]09 REMARKS o
22 °l. [1]lolololo]olololo Rewind 1 54
! Jl@e]lol4]0]l0]lO[5(1]9 Clear print area 55
2Im|E |06 3{5{0l4 {510 Transfer '"replenish input"—eP.A. 55
3IBlo9|lojololofo |4 |o]|1 Print out 56
4 odOo121 21212 10101010 Halt 57
Slvlijolelilolo]olo]o Switch B 58
2190 Sly(1]o|3]0olo]2]o]5]9 Char: EF 59
“lwlif2|3]3]l0]2]|3]|3]0 PRI'S PRP-PRN—=65 error halt 59
818 |af2]0|5]|9|2(0(5]9 W.0. EF—=A 60
‘laflalololslalelols|8] w.o. ED—=a 61
23 ° ;JAJOJO]lO|O]JO]O (OO Rewind A 62
"":l1]olololo]ololo]o 1 63
2l lo]olololofolo]olo E.O.R. 64
5125(? *I.lilolololofolololo Error halt 65
%%(6)8 4 sjal4d{ofojo]2]l4]3]0 Sense ETW on A ves —e=773 66
5 81A]JOo|3}l0]0]JO0|3]|6]I Write out new master 67
515]1g]lol3]lolojol3]6]0 Clear R.I. area 68
Tuf1lo|3]|olo]lo|3]|6]0 R.I. master 68
8INfualolz2]als]0]3]6]9 Save A 69
I-]s]ol3l6lo]ol6l6]9 Adjust A (-1) 69
PAGE 7 oF 8

ove-IA

paoody ueaboirg aaindwo) T0Og

(8 32°ys) 98 2anbtyg

TITLE DATE
CODER INDEX NO.
REMARKS BLOCK NO.
FROM oP{N
m:;ggg:" LockTioN of1{2)3]a|s]s|{7]8]s REMARKS Mo
24 °lw|8]z|4]1lo]2|3]|4]o0 ED/EF? yes—e71 no—e66 70
'Infslol6]l8lola]2]5]9 Set switch B—eB2 71
2tivli1fol2|1]l9f2]18]0 T.C.—=53 72
2340 3INj4jof6]9]7|2]0(61]9 Set switch C—=C2 73
avirlo|z2|1|of2|olo]o T.C.—=hl 74
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
PAGE g OF g

IPe-IA

p1oo92y WSH F23ndwod [Og L8 2anb1y

301 COMPUTER HSM RECORD

03 00]o1]02]03]oa[os]os][07[08[os] 10] 11]12]v3]1af1s] 6] 17] 18] 1920 [21[22] 23] 28] 25 26] 27] 28] 29[30 [31] 32] 33] 3a[35] 36 [37] 38] 390 [0] a1]a2[a3]aa]as a6 a7 8] &
MASTER READ IN AREA
03 5051]s2]53] 54| 5s]s6]57] s8] se] e0] 61]62]63[ea|65[66] 67]68]69 | 70 [71]72] 73] 7a] 75 [76] 77] 78] 79 |80 |81 82| 83| 84| 85| 86 | 87| 88]89 | 90 [91]92 93|94 |95 9697 98] 99
Afl Af2 [¢—TRANSACTIION READ IN AREA—¥] STATERENT DATE | TPDAY'S DATE
04 oofo1Jo2]o3]oafos]os[o7]osos | 10]11]12]13]1a]15] 16] 17[18] 19| 20 [21] 22[23] 24| 25[26 [27] 28] 29 | 30 [31] 32] 33 34] 35 36 [37] 3839 J 40 [a1 a2 |43 aa[4as]ac[a7] 48] 49
04 so [s1]s2] s3] sa]ss]s6]s7] se] s9] 60] 61]62]63]6a]65] 66] 67] 6] 69| 70 [71]72] 73] 74| 75[76] 77[78] 79 | 80 [81 [82] 3] 84| 65] o6 [67] e8] 83] 50 [919293945556 97] 58] 99
PRINT OUT AREA
05 I 01]o02]o03]oafos]o6Jo7[ososf 1o] 11]12]13[1a] 15[16] 17[18] 19] 20 [21]22] 23] 24| 25 [26 [27] 28] 29 [30 [31] 32] 33] 34] 35[36] 37] 38] 39 J a0 [a1[a2]a3] as|as]ac]a7] 4] a5
: BOHWA Q@ TcwA—1—— @ TOWAT——* @
05 50 [s1]s2] s3] s4]ss]s6]s7] s8] so] 60] 61]62]63]6a]65] 66] 67 c8[69 | 70 [71]72] 73] 74| 75[76] 77] 78] 75 | 80 |81 [2[83 64| B[86 [87 [88] so) 90 [91 [92[93] 94 [os]| 96| 97] 98] 09
CARD PUNCH AREA
06 00 o1]o2]o3oafos]os[o7[o8] oo 10 [11]v2]13[va]vs[r6[17 181920]21]22]23] 24 25] 26 27] 28] 2 30]3![32]33{534 3s[36[37]38[39 [ao [a1]42]a3]aafasas [47] 8] a5
Bfl ¢JRE PLEJN | SH_|JINPUT
06 |zolst[s2[s3]se]ss]s6[s7]se[s0f eo[61]62]63]6a 65]66] 67] 68]69 | 70 [71]72]73]74] 75[76[77] 78] 79 | 80 [81] 82] 83| 84] m5[e6 67]88] 9] 90 [51 [92[93[s4 55|96 [97] 98] 09
REPLE|N I SH_JouTPU|lTOOOI!I!IJOOO21|/680T18BJ]OOTI!1 1 O0J]023 4 01 75 02{350¢CD
07 00 [01]02]03] 04]os[os[o7]os]os] 0] 1] 12[13]1e]1s[16[17 [18] 19 | 20 [21[22]23[2a] 25 [26] 27] 28] 29 | 30 [31 32] 33 34] 35] 36 [37] 38 30 f a0 [a1 a2 a3] aa Jas [a6 [a7] 28] as
I 2 008900 00}]0 !
07 50 [51]52]53]54]55]56] 57] s8] 59 60] 61]62[63]64]65] 66] 676869 | 70 [71]72[73] 74| 7576 [77] 78] 79 [80 &1]62] 3] 84] 5] 86 87 [88]89 [90 51 o2 [s3[04 |95]s6 [97[98] 99
08 0001 02 03] 0a|os]o6[o7[os]os] o[11]12[13] 14| 15[16]17 [18]19 | 20 [21] 22] 23] 2a] 25[26 [27] 28] 2 | 30 [31] 32] 33] 34] 35] 36 [37 [38] 3] a0 [a1]a2[a3[a4 [as]ac [47] 48] 45
08 50515253 sa|ss][s6]s7] s8] so] so[61[62]63]6afe5]66] 7] 6069 [70 [7ﬂ7z[73[74 75]76] 77] 78] 79 |80 [81] 6283 84| 5[66 [67 [e8]0s [50 [s1 [02 [93[94|55 96 [97[989
09 |oo]oroz[os]os]os[os07] o8] 09 o[nz[13]1af1s[r6[17[18]19 [20 [21]22[23] 28] 2526 [27] 28] 9 [30 [31 32[33] 34] 35] 36] 37 [38] 39 40 [a1 [a2[a3[aa] a5 [ac |47 a8 as
09 5051]52]53] 54| 55[56]57] s8] s9] e0[61[62[63]6a[65] 66 67[8] 69 [70 [71[72[73[74[75[76] 77] 78] 75 | 80 [81]02] 03] 84| 85[ec [e7e8]es Joc [o1 [s2[93[s4]os 96 [97] 98] o0
10 ;o[m[oz[oaloa os[osJo7[oaJos] 10] 11] 12[13] 14| 15[16]17 [18[19§ 20 [21]22] 23] 2a| 2526 [27[28] 20 | 30 [31] 3233 3a] 3s] 36 [37[38] 39 f 40 [a1 [42[a3|aa[as [ac [a7] aa] a9
0 50[51]52]53]sa|ss[se[s7]sa[sof 0[61[62][63]6a]6s|66[67]e8[60] 70 [71]72]73]74[75[76] 77 78] 79 [0 [61]82]83] 04| 65]ac [67 a8]es Joo o1 [s2[s3[s4]os [s6 [o7] o8] 9o
00 [o1o2]03]oaos]os o708 as] 10 11] 12[13]1a] 15[16] 17] 18] 19 J 20 [21 [22[23[24| 25[26] 27[28] 29 [30 [31]32[33] 34| 35] 36 37 [38 [39 | a0 a1 Jaz [a3[aa[as[ac [47[a0 40
H PROGRAM
¥ 50 [s1]s2]s3]sa[ss[se[s7]s8[sof 60|61 |62[63[6ales|66] 67 68]69 [70 [71[72[73]74]75[76] 77 78] 79 Jeo [a1]s2]a3]84]e5[6 [87[8 a9 Js0 [o1[s2[93 [s4]ss o6 [97 s8] 0o
12 e [o1]o2]o3 Joa JosJos Jo7Jos Jos Jro[11[12]13[1a] 15[16] 17[1819 20 [21]22]23[24| 25[26[27] 28] 2 [30 [31[32]33] 3a] 35] 36 [37 [38] 39] a0 [a1]a2]a3[aa[as [a6 [47]an] 4o
12 so[s1[s2]s3]sa]ss]se[s7]sa]s9] 60[61[62]63[64]65|66]67[68[69)70 [71]72[73]7a]75[76] 77[78] 75 Jeo[s1]a2]aa] sa]as]ee [a7 ea]as] 90]91]92[03]94 a5 96 o7 s8] 99
UPDATING A MASTER BANK
TITLE: ACCOUNT FILE BLOCK NO.: INDEX NO.: PROGRAMMER: DATE PAGE_! OF L

SECTION VII

Processor Logic Descriptions

A. PROCESSOR LOGIC DESCRIPTIONS, INTRODUCTION

Various portions of logic in the Basic Processor will now be discussed in
detail with reference to the Engineering Logic Diagrams. The logic blocks

to be covered in sequence are:

Time Pulse Generator

Status Level Generation and Selection

NOR and Operation Decode Matrix

N Register

Addressable Registers

Bus Adder

MR and Interchange

Z 0 0m wm g 0w o»

NR Register
D Register

o H

D Comparator

~

Standard Address Generator

B. TIME PULSE GENERATOR (Engineering Diagram 3506929, Training No. 079).

The 301 Time Pulse Generator under control of a one-megacycle oscillator
produces seven sequential one-microsecond pulses, TPO, TP1l, TP2, TP3, TP4,
TP5, and TP6. One cycle of time pulses is equivalent to the time of one
301 memory cycle, or one status level. The Time Pulse generator also pro-
duces combination pulses by means of OR gates such as TPOl, TP123, etc.
Normally these combination pulses exist for the duration of the individual

time pulses which produce them.

1, Detailed Logic

Pushing the START button on the console sets Flip-flop 0797C1l, which in turn
produces a low output to pin 10 of AND Gate 0797C3. If the Start Inhibit

ST INH(P) level is not present, a high output will result from that AND
Gate. ST INH exists if any select switch is set on the console. The output
from 0797C3 will set the Delayed Start (DELST) Flip-flop and also produce,
through a pulse chopping network, a one-microsecond pulse labeled Start

Reset, ST RES(P) . ST RES (P) then sets the TPOl Flip-flop and initiates TPOl.

VII-343

ST RES(P) also sets the DPO Flip-flop and resets the DP6 Flip-flop. These
DP or Delayed Pulse Flip-flops act as intermediate stages between time pulses,
and ensure that the time pulses will occur in sequence, rather than simul-

taneously with every low oscillator pulse.

Once the DELST Flip-flop is set, a low is present on pin 16 of AND Gate
0797B2. A second low on pin 12 of that AND Gate will occur when the START
button is released and Flip-flop 0797B3 becomes reset. The output of AND
Gate 0797B2 will not be high, however, until a third low is present on pin 15,
This low will be obtained from the oscillator which produces a one-megacycle
output, as long as power is supplied to the system (See Figure 88). All
three lows being present on 0797B2 will reset the Stop Flip-flop. The re-
set output of the Stop Flip-flop then provides a prime to AND Gate 0796D1
(pin 18). The other low to that AND Gate (pin 17) will not occur until AND
Gate 0797B4 receives a high input pulse from the oscillator. Thus, when

AND Gate 0796D1 receives its two lows, it will produce a high output which
will reset the DELST Flip-flop and also prime pin 9 of AND Gate 0796D4,

Once the DELST Flip-flop becomes reset, AND Gate 0797B4 will be continually
inhibited and its output always low. This low output in turn will provide

a constant prime to 0796D1 which was previously dependent upon the oscillator
pulse. Note that STOP becoming reset inhibits generation of another series
of time pulses by applying a high to pin 19 of Flip-flop 0797Cl (set output).
AND Gate 0796D4 is the key to starting the series of time pulses., In its
present state, 0796D4 simply needs a low pulse from the oscillator, to pro-
duce a high output. If termination conditions exist, ST(P) (Stop) will be
present (originates on Training Drawing 078, A-7). This level will inhibit
the production of TPl and all succeeding time pulses. If ST(P) goes high
after TPl is initiated, it can do nothing until TPl is about to occur again.
Therefore, the computer will always finish generating time pulses through TPO

before stopping.

VII-344

w
2.2 . I | . ! ! _ [[! ! ! ! ! [I '
<3 [} | | ' | X | | i |]
“wg> | | I | | | | !

| | | [
oS>~ I | | | | |
oo | I ! _ | [; ! ! ! : ! I ! |

| _ ! | _ _ ! ! | _ " ! ! “ _ | !

y | A I T N A T N (NN AR SO (N NN NI IR DA

| | | | | | |
—_ —_— — 1] - N SR | | | !
! — ! H S R A o~ I I | ! ' _ I | | !
—_rl 1!|r.ch||_lxl_|| h— —2 |) | | | | 1) i |

! | ! i | ! , | I | !)
D D R T e | 1 | | “] ! ! !]
— - ad

T 11T+ ——— &7 [| I I I ! !)

] | ! ! | 1
-4 —— 1,.|¢.I| —— 44— -4 —+—-t-d4—-1—-++ |-+ I_lll.Tlll_I...xlm.IlT +
—4 g SN U NN N N [AN SN NN S N S N S R S S ——
_ i M I . hl I |] | T] _ | o ' ! <
\ T Tttt 1" " rrrtr-—1T/1tTrr1"r—rr— 1T o1 T
—4——— ||“||.+'||_|]~|Lv|“|l|.“|. T..|1|L|;I_|l|"| —|— 4 + —b—=— 24 — "
4 g —] RN U S R N S R S !

i i I - . I TJ. . | . | | !
-—-tr——}— ‘lﬂl|||14.v||_|||. JIIJI".ITTITI”'[I.]I[TJ' m ‘Wﬁv _ | 1 \
Y NS N AR SN SR NN NN NN SRR N SN SO !

] -+ | | ". — 7 “ -+] — T+] -1 n i | X |

— 4 14 S DU R SO S 4t} S —_— ey — . | !

! - T _ | T ! HE I i il I ! _ I ' !
N R |].'l+||.|11|l.__|1||._|‘T.._al T — [1 ! “ !] \
—_————— -+ —_ o1 —_ . —a4 | ' |

] T X 1 hn 1 T ! = \ | | | \ ! ! 1
|l e i s B e et e L SN IR N I IR RO O
S N1 A S (N A R BT 1 N [N N R T R I A A
SN [T S S S—— N W SO GE—— ! | | ! ! _ ! 'z

| ! \ ! 1 | i]) | e,

| ' ! — | | =
S R I R) it I _ _ ! [i ' | I3y

[! | | l | | | | | | I . | _lA
—_— — — — +— — —— 1 — \ | |) | ' -

) 1 | | | ! | 159
y ——L . | ! ! _ | | [_ s&
| 1 Bl | ! 1 I | I | | i _] 14
— - |] | | N i ! ! ! ! | ! N ! ! &
%) T t T t+ T t T T T
1 T [[| [I 1
..ru“ 1 | | | !] I 1 | “ | ! | ! | | ! 2
Py | 1 ! | I ! | | (| | | “ I [I 19
o ! | I ! |] ! " I | | ! | X ! | ! o
Ll [| | 1 “ 1 “ | | | | “ i h | . “ | _wm

1 | | | i | | ! =3

! | i ! ! I I) 1 1 ! ! | | ' ! | ! =%

nﬂu ! I | | | l | | | 1. | | | |) i | | | @

M 1 ! ! ! ! 1 2 | ! | 1 !) | | &
w M T 1]] I [} i | 1 i [] T [}] 1) 1)

« o - < -— < - = . — —_ — —_ — - —
SeES & 2 2 @ = z = = = =z - z z z z z = =
gEe R 2 2 g g g z H g g g g H H g g g 4 £
W“mo S (=] o o b3 = & - =3 - P=3 - b= = =3 - (3

Figure 88 301 Time Pulse Generation Timing Chart

VII-345

As soon as 0796D4 has a high output, the TPl Flip-flop becomes set and TPl (N)
is produced. One-half microsecond later, when the oscillator pulse goes high,
two lows will be present on AND Gate 0796C4, and the DPO Flip-flop will be- |
come reset and DPl will become set. The DP1l Flip-flop being set, provides a
prime to AND Gate 0795D1. On the next low oscillator pulse, TPl will become
reset and TP2 will become set. Thus, Time Pulse 1 existed for one micro-

second and upon its termination, Time Pulse 2 began.

All the remaining time pulses are produced similarly. First the TP Flip-
flop is set, then the DP Flip-flop is set. The DP Flip-flop then provides
a prime for resetting the first TP Flip-flop, and at the same time sets the

succeeding TP Flip-flop.

Once TP6 becomes set, DP6 will receive a setting pulse on the next high
oscillator pulse (DP5 being reset at the same time). The low output now
present from the set side of DP6 will, when coupled with a low oscillator
pulse, reset TP6 and set TPO which is the last time pulse in the series.
Once again when the oscillator pulse goes high, DPO will become set and if
ST(P) is present, nothing else will occur since (TPO ¢ ST) (P) would have
set the Stop Flip-flop, and TPl will not be produced because (ST(P) inhibits
AND Gate 0796D5. AND Gate 0796D1 will also be inhibited since STOP (ON)
will now be high.

Combination time pulses exist for as long as the title designates., For
example, TP23 will commence at TP2 and terminate at the end of TP3 (a
total of two microseconds). The problem arising from the possibility of
spikes or divisions between time pulses is overcome by using the DP Flip-
flops as additional primes to the OR Gates producing the combination time
pulses (note OR Gate 079 4B3 and Figure 88). Thus, if a slight division

occurs between TP2 and TP3, the combination TP23 will be unaffected.

One additional small point concerning the Time Pulse Generator is that the
START light on the Console will be 1lit when the STOP Flip-flop is set (area
7B). In other words, the light under the start button will be out when the

computer is running.

VII-346

C. STATUS LEVEL GENERATION AND SELECTION

In the 301 System, a status level is a level which exists for seven micro-
seconds and is one of three major factors in computer operation, the other
two major factors being operation codes and time pulses. Each status level

performs a specific function or functions.

Generation of status levels is somewhat dependent upon the time pulses, in
that TPO begins a status level and TP6 ends a status level, under normal

computer operation.

Detailed Logic

Logically speaking, there are two ways of producing a status level. The
first is by means of console buttons, which can manually set up a status
level in the Status Level Flip-flops. The second way (which is the standard
method) is by producing a SELECT level which sets Pretransition Flip-flops
whose outputs, in turn, set the Status Level Flip-flops. In either case,
the ultimate objective is to set a specific bit configuration into a series
of six Flip-flops known as the Status Level (STL) Flip-flops on drawing
3506931, area B (Trng. No. 081l). The outputs of these Flip-flops are then

decoded into what is known as a Status Level,

Drawing No. 8617058 (Trng. No. 0O0l) is the Console Wiring Diagram, In area

B3 through B5 exists the Console STL switches 20, 21, 22, 23, 24 and parity

26. By depressing any of these switches, the corresponding STL 2% (P) sig-
nals will be generated. These signals directly set the STL Flip-flops in
the Status Level Generator. (Dwg. No. 3506931, Trng. No, 08l). Note also
that the Reset Status Level button (RES STL) on the Console produces a

positive signal which when present resets the same STL Flip-flops.

As soon as a bit configuration exists in the STL Flip-flops, a Status Level
will be generated, provided the Normal Gate (NG) Flip-flop is set. If in
the set condition, the NG Flip-flop basically states that an STL is desired
for the Processor's Normal Mode. Dwg. No. 3506925 (Trng. No. 076) .

VII-347

On drawing 3506931 (08l) in areas A3 and A5 exist two octal decoders. The
first octal decoder (area A3) produces one of eight levels by examining the

o 1

outputs of the 27, 27 and 22 Flip-flops. - The binary configuration in these

three Flip-flops is converted into one octal level called STL - 80 - O(N)

through STL - 8O ~ 7(N). The other octal decoder in area A5 produces one

of four levels, by examining the contents of STL 23 and STL 24 Flip-flops.
The outputs from the second decoder are labeled STL - 81 - O(N) through
STL - 81 - 3(N). Keep in mind that only one STL - 8O level and only one
STL - 81 level will exist for any given bit configuration in the STL Flip-

flops. (Also note that NG is a necessary prime on the 81 decoder.)

The STL - 80 and STL - 81 levels are then sent to Print No. 8617030 (Trng.
No. 080) where they are coupled on AND Gates to produce the actual status
levels. For example, assume that an operator at the Console first depressed

RES STL and then depressed STL 23, 22, and 20. If NG were set, STL - 81 -

1(N) and STL - 80 -~ 5(N) would be generated (octal 15). Gate B-0803C3 on

Print (Trng. No. B-080) would be primed and an SIO status level would exist.

If the General Reset (GEN RES) button is depressed on the Console, a Pl
status level (octal 31) is automatically set up -in the STL Flip-flops.
(See Print No. 8617058, Console Wiring Diagram, area B4 and BS5.)

The octal configurations for the 24 Processor Status Levels are:

Octal Octal Octal
STL Code STL Code STL Code _
Al 03 X4 14 REP1 24
A2 04 SIO 15 REP2 25
A3 05 B 16 M4 27
A4 06 M3 17 P1 31
M1 10 M2 20 P2 32
X1 11 D 21 P3 33
X2 12 STA1 22 P4 34
X3 13 STA2 23 P5 35

VII-348

The second means of status level generation is slightly more complicated

and involves selection of a status level prior to generation. The Computer's
very first status level must be supplied manually from the Console. Normally
if a program exists in memory and is to be executed, the first status level

is a P1,

Once the first status level is executed, succeeding status levels are auto-

matically selected and generated.

A Pl status level generates SEL P2 on Dwg. No. 8617034 (Trng. No. A-084)
area A3. This level, in turn, is taken to Dwg. No. 3506931 (Trng. No. 081)
and primes OR Gates 0814D6, 0815D3, and 0816C4. At TP5 time, AND Gate 318D1
will produce a resetting pulse, if the Normal Gate is set and Console Button
Status Level Repeat (STLR) is not depressed. Note that this resetting pulse
occurs at TP5 of the Pl status level, and resets only the Pretransition
(STL-PT) Flip-flop and not the STL Flip-flops. Therefore, at TP6 when the
P2 status level (octal 32 is inserted in the Pretransition Flip-flops, the
Pl status level is still being carried out. At TPO a signal known as Gate
Normal Pretransition (Gate N-PT) is generated, Dwg. No. 3506925 (Trng. No.
076) area A5, The contents of the STL-PT Flip-flops are gated into the STL
Flip~-flops on Dwg. 081, area B8. Immediately, the STL Flip-flop contents

are decoded, and a P2 status level begins.

Subsequent status levels P3, P4 and P5 are similarly produced by first gener-
ating an SEL level (to set the Pretransition Flip-flops) and then gating
the new status level into the STL Flip-flops at TPO time, with the Gate N-PT

signal.

After staticizing, a level known as END STAT is generated, and this together
with the instruction operation code generates a Select (SEL) level for the
First Processing Level. (The first status level involved with the actual
processing of the instruction.) For example, END STAT and SF (Symbol to
Fill) on Gate 0824B2 Dwg. No. 3506932 (Trng. No. 082) produces SEL A2. Thus
the FPL for a Symbol to Fill is an A2 (octal 04) status level.

VII-349

At the end of the First Processing Level, the Computer will automatically

select the next status level, depending upon the following factors:

(1) OPERATION CODE
(2) CURRENT STATUS LEVEL
(3) MISCELLANEOUS CONTROL SIGNAL

In the case of the Symbol to Fill instruction, the next status level after
an A2 could be another A2 or a Pl, depending upon the ABE Flip-flop. Dwg.
'No. 3506932 (Trng. No. 082), Gate 0823B2 shows the selection of another A2
if ABE is reset, while Gate 346B3, on Dwg. No., 3506934 (Trng. No. A-084),

selects a P1 if ABE is set. '

A Print breakdown for the SEL levels:

(082) Produces SEL....Al, A2, A3, A4, SIO
(083) Produces SEL....B, D, X1, X2, X3, X4

(084) Produces SEL....STAl, STA2, REP1, REP2, P1, P2, P3, P4,
P5, M1, M2, M3, M4

Figure 89 illustrates the selection and generation of status levels.

The developmeﬁt of Gate N-PT and NG is very involved, especially for input-
output gear and simultaneity. However, for normal processing one can state
that Pre-Normal Request (P-NRQ) is always set except for an input-output
instruction Dwg. No. 3506925 (Trng. No, 076) ; therefore, Normal Request
(NRQ) will become set at every TP6. With NRQ set and again under normal
conditions, GATE N-PT will be developed at‘TPO; NG will receive a 2-micro-

second setting pulse at that time as well.

0dd parity is maintained in the STL Flip-flops to ensure proper status
level generation. If more than one SEL level is generated or none at all,
a Status Level Error (STLE) will probably occur. In area D2 on Dwg. No.
3506931 (Trng. No. 08l) exists the STL parity checker. If bad parity is
found in the STL Flip-flops, STLE (N) is generated which is sent to the
Alarm Stop logic on Dwg., No. 3506927 (Trng. No. 077) area 4C.

VII-350

OP CODE OP CODE

STL END STAT GENlRES
S . R
P-NRQ
| 0
TPG-—1 .

STLR
SEL STL NG(1)
TPE TPS
TPS
—
S R
NRQ
S R

| 0
STL
PRE -TRANSITION
FLIP-FLOPS
GATE
H O N-PT _}—Tp0 TPOI
S R
STL
FLIP-FLOPS | S R
| 0 NG
] 4 | 0
| $ 1 1
OCTAL OCTAL
NG()— DECODER DECODER
24' 23 ‘ 22. 2', 20
L _gl | _p0
sTL-8 sTL-8
STL

Figqre 89 Status Level Selection and Generation

VII-351

One final point on status level generation is that if the Console Button
STLR is depressed, the machine will cycle in the status level which is cur-
rently being executed. Setting STLR inhibits changing the STL-PT Flip-flop
contents and the Computer cannot recognize any SEL levels. Therefore, the

Computer keeps repeating the status level in the STL - PT Flip-flops.

IBesides generating status levels, the 301 decodes the contents of the STL-PT
Flip-flops to generate a "PT" level. These PT levels are generated across
the top of Dwg. No. 3506930 (Trng. No. A-080) and have two advantages over
normal status levels. First they exist one time pulse sooner (at TP6) and
secondly some PT levels are developed to cover a number of status levels,
such as P-PT. The level P-PT will exist for any P status level, Pl1, P2, P3,
P4, or P5, This combination level is advantageous for gating into and out

of the P register, since all five status levels use P,

D. NOR AND OPERATION DECODE MATRIX

The Normal Operation Code Register (NOR) exists on Dwg. No. 3506912 (Trng.
No. 062) and is composed of seven flip-flops. All flip-flops connect only
to Bus 2 positive and negative. The only way to gate the contents from the
NOR to the Bus is by selection from the Console (NOR/N SEL). The instruc-
tion operation code is gated into the NOR at TP5 of a Pl status level and

remains there until the next Pl of a new instruction.

The Operation code used throughout the computer logic comes from a decoding
matrix which connects to the NOR. Drawing No. 3506938 (Trng. No. 088) con-
tains a series of AND Gates across the top of the print, which examine the

outputs of the NOR Flip-flops. The‘25, 24, 23 outputs produce one of eight

octal levels labeled CO through C7, while the 22, 21 and 2o outputs produce
one of eight octal levels labeled DO through D7. The C and D lévels are
then combined on an AND Gate on dwgs. 3506938 (088) or 3506937 (087) to

produce the operation code.

For example, assume a J (Symbol to Fill) is gated into the NOR. The 301 bit

configuration for a J is 100 001, excluding parity.. Since the 25, 24, and 23

VII-352

bits are 100, respectively, AND Gate 088 7D3 Dwg. No. 3506938 (Trng. No. 088)
is primed and generates the level C4., Gate 0882D2 on the same drawing is
also primed by the combination of bits in the 22, 21, 2O Flip-flops (0O01),

and produces the level Dl1. The two levels C4 and Dl are then combined on
Gate 0876B1 Dwg. No. 3506937 (Trng. No. 087) and the output is SF(N) for

Symbol to Fill.

On Dwg. No. 3506937 (Trng. No. 087), the reader should note that input-output
instructions always develop the normal operation code. For example, a 5
instruction which is a Tape Read Forward Simultaneous, produces a CO and D5
combination on AND Gate 0873Dl,. But the output of this AND Gate generates
the operation code Read Forward Normal (RFN) just as the 4 instruction does.
The reason for this is that if the Simultaneous Mode Inhibit (SMDI) Console
Button is set and a simultaneous instruction is staticized, the instruction
will be carried out in the normal mode. If SMDI is not set, the instruction
is transferred to the simultaneous mode where the simultaneous operation

code is developed. Therefore, the normal mode generates a normal operation

code for every simultaneous instruction just in case the SMDI button is set.

E. N REGISTER

The main function of the N register on Dwg. No, 3506911 (Trng. No., 061) is
to hold the N character of each instruction. However, depending upon the
operation code, the N register can be used as a counter, storage device or
selector. Because of its counting function, the N register is composed of
seven triggerable flip-flops, set up to count down. In other words, if a
flip-flop changes from the reset state to the set state, the following stage
will be triggered. Therefore, the normal means of inserting a character into
a register by resetting all stages first and setting those which should con-
tain one bits, cannot be used in the case of the N register. The reason is,
whichever stages went from reset to set would trigger the succeeding stages
and the original character would become altered. Thus, when a new character
is to be placed in the N register from Bus 3, all stages are first set, then

those stages that should hold zero bits are reset.

VII-353

Gate 0613C1l at TP4 of a Pl is responsible for setting all stages of the N
register while inverter 064C2 receives the signal which gates into N at TP 5,
of Pl status level from Bus 3, (Note that zeros on Bus 3 (N) are positive

signals).

The N register is used as a counter in two different ways. One way is as

a straight binary down-counter, while the other way is in effect as a binary
coded decimal type down-counter., The Print and Paper Advance instruction
used the N register as a straight binary down counter during the X1 status
level (Gate 0614C6), However, all of the instructions which use the N count
are listed as inputs to OR Gate 0614D2, and the N count is a form of binary
coded decimal. The output of 0614D2 goes to two places - one being the same
path as the Print and Paper Advance to trigger the 20 stage and the other
path leads to AND Gate 0614A3, which is involved with adjusting the N count.

When an N count of 30, 20 or 10 is reached in the N register, the computer
must produce an N count of 29, 19 or 9, respectively, with one trigger pulse.
However, the N count for 30, for example, is binary 110000 (301 Character
Quotation Marks) and a trigger pulse will create 101111, which is not the

character representing the N count of 29. Hence, an adjustment is necessary.

AND Gate 0614B3 is fully primed when N-2°, N-21, N-22, and N-2° are all re-

set. The output of 0614B3, in turn, primes Gate 0614A3 and at TP2 is an
instruction using the N count is being executed, the N Count Adjust Flip-flop
(NCA) will become set. At TP3, the N register is triggered down, and with
NCA set, Gate 0615D1 at TP4 will generate an output which resets the 22 and
21 stages. Thus if N was triggered from 110000 to 101111 during an instruc-
tion which was using the N count, NCA would have become set and the end re-

sult would be 101001, or the proper combination for an N count of 29, Note

that dropping two bits does not change parity.

The ultimate goal in using N as a down-counter is to reach a zero count.
AND Gates 0614B3 and 0615A1 detect when all stages of N are reset; they in
turn generate the level N Equals Zero (NZ).

VII-354

Parity correction takes place when N is used as a counter. Gates 0618Cl1,
0618C2, 0618C3 and 0618C4 handle the correction of parity if an output

exists from Gate 0618C4. Note that correction occurs one time pulse prior

to the triggering down. In area D2 exists a parity checker which checks
parity at all times in the N register. However, bad parity must exist at

TP6 time, to stop the Computer on an alarm, (Dwg. No. 3506927 (Trng. No. 077)

area 6D.)

When N is used for temporary storage, no triggering occurs, 1In area 2C of
Dwg. No. 3506971 (Trng. No. 061) are the three gates which permit gating

the N character onto Bus 3, and ‘listed on two of these gates are the instruc-
tions which use N for temporary storage: Symbol to Fill on Gate 0612C2;
Locate Symbol Left/Right on Gate 0613C3; and Transfer Data by Symbol Left/
Right on Gate 0613C3.

The N register is used as a selector in several instructions and for the
majority of those, the individual flip-flop outputs are examined. 1In two
instances, there are special levels generated. One of these is the level
NA which is produced if the 21 Flip-flop is set (area A4). The primary
function of NA is during a Store Register instruction when N = 2, denoting
the storage of the A register contents in STA. During a Store Register in-

struction, NA selects the STAl status level after END STAT,.

The other special selection level is NS in area B4. NS is generated when

N = 8 or when the 23 Flip-flop is set. Again the NS level is used during
the Store Register instruction, for storing the contents of the S register.
The S register, however, exists in the simultaneous mode. Therefore, if

the Console Button SMDI is depressed, all simultaneous instructions will be
executed in the normal mode, and the S register will not be used. Since the
S register corresponds to the A register in the normal mode, the level NA

will be generated when N = 8 and SMDI is set.

VII-355

F. ADDRESSABLE REGISTERS

In the 301 Processor itself, there are three addressable registers; namely
the P register, the A register, and the B register. Each register has the
function of holding an address, therefore, it is capable of storing four

characters. All three registers connect to the common Bus and each one can

gate its contents onto the Bus, as well as receive characters from the Bus.

1. P Register

The function of the P register is for program control, or, to hold the ad-
dress of the next instruction to be executed. The logic of the P register
exists on Dwg. No. 3506901 (Trng. No. O051) and is composed of 21 Flip-flops.
For the 10K and 20K Processor there should never be a 25 bit in any character
of any normal address. Nor should the 24 bit exist in the P1, P2, or P3
characters. The 24 bit is necessary in PO, however, for addresses over 10
thousand. Therefore, the P register contains six flip-flops for the PO
character, and five for each of the characters Pl, P2, and P3. To gate into
or out of the P register, or to reset the P register, a control level must
be generated on Dwg. No. 3506902 (Trng. No, 052). Bus to P is generated in
area A6, Reset P (RES P) is generated in area A5 and P to Bus is generated

in area, during a specific status level and time pulse.

2, A Register

The function of the A register is to hold the A address of each instruction
during the execution of that instruction. Dwg. No. 3506904 (Trng. No. 054)
contains the 22 flip-flops which make up the A register. The one additional
flip-flop that is found in the A register and not in the P register is the

A3 character 24 bit. This flip-flop is necessary to handle indirect addresses.

Just as with the P register, the A register is controlled by three basic
levels which are Bus to A, Reset A, and A to Bus. Dwg. No. 3506905 (Trng.

No. 055) contains the A register controls. (See areas A6 and A4)

VII-356

3. B Register

The function of the B register is to hold the B address of each instruction.
Like the A register, B is composed of 22 flip-flops with a 24 stage in B3,

to handle indirect addresses. Also similar to the A and B registers, the
logic which controls the B register exists on Dwg. No. 3506906 (Trng. No. 057).
One difference is that the resetting level is split up for the Print and

Paper Advance instruction where it is desired to reset B3 alone. (See areas

A7, A5, A4 and A2 for the control levels on Dwg. No. 057.)

Note that no parity checkers exist for the addressable registers., It is
therefore possible to gate into a register, drop one or more bits and never
detect the loss., This is only true, however, if the address never reaches
the MAR to address memory since a parity checker does exist in the MAR, The
majority of instructions do address memory with the A and B addresses at

one time or another.

G. BUS ADDER

The purpose of the Bus Adder is to modify four given characters by plus one,
minus one, plus two, or minus two. In some instances no modification at all
takes place. The four characters to be modified must come from the MAR and

in all but one case, represent an address. The only exception is in a TALLY

instruction in which case the Bus Adder is used to reduce the tally quantity.

The Bus Adder is divided into four stages - CO, Cl, C2 and C3 - which corres-
pond to the characters in the MAR., The outputs from the MAR are taken direct-
ly from the set and reset sides of the flip-flops, and are fed to the Bus
Adder by bits. The Bus Adder provides for information bits (20, 21, 22, and
23) in all four stages but only makes provision for a 24 bit in the C3 and

CO stages. No provision is made for a 25 bit in any stage.

To perform any modification, the Bus Adder needs control levels which are
shown on Dwg. No. 3506917 (Trng. No. 067). These control levels consist of
modifying levels BA(-1), BA(+1), BA(-2) and BA(+2) as well as the gate-out
levels BAOl-Bus and BA23-Bus. The Modifying levels are used for internal

VII-357

operation and the gate-out levels are used to place the modified result on
the bus at a specific time. The original modifying levels (BA(-1), etc.,
are used only in the C3 stage of the Bus Adder (Dwg. No. 3506923) (Trng. No.
073). These levels will then give rise to carry and borrow levels, which
will become modifying levels for subsequent stages. The Bus Adder and con-

necting logic is shown in Figure 90,

The most complicated stage in the Bus Adder is the b3 state since the
majority of modifications will affect only the least significant digit of
an address. However, all stages of the Bus Adder have a great deal in
common., Each stage generates carry and borrow levels abbreviated CAR and
BOR. These two levels signify a decimal carry or decimal borrow to the
succeeding stage. They also are involved in converting the binary output

of the adder into decimal form for each stage when the result is gated onto

the Bus lines.

VII-358

OP. CODE-STL

]

BA (-1)(41) (-2) (+2)

—OP. CODE-STL

—TP23

—OP. CODE-STL
BUS O
BUS 1|

—TP45

SO,

—LL

BUS 2

D30 W W N N S B Y

’V
A

CAR 3/BOR 3

1

4

CAR2/BOR 24 4

AL

I

14
w
" o 8 Y
@ “ BRRARI R R R LR s e s e nue e n e s e s o 0= m ..AI
<
w on
N~ S-
’ a
m|m
x| ®
. Aw
© «
8 w
N
RF SN N N 8 8 N NNy SN A A, mzm
AF T O T U AUET T UTT TITTTTTITTTTTTTTETERTTRRTTEN CT
n
Z 0 Q o
’ [+ o}
Nl
[+ 4
S
Ola
@
»m llllM w
'F VVrrfrrrr!rrrr//rI////,// DIIG
MF L35 W W W w W W W wa W W W W W W W W W N W w N U N Acm
" »n
20 g
[o]
1 4Y 4
g0
Ol
1 4
w
o 2.8
R “ - ’}’/f"/ '/ " //" "'/ 'J 'ﬂ ,/ '//4 /‘ ,/,/ ’1 f}" ’4 A w m
MG % 7]
@

A Y Y W Y W Y

AR 1/BOR I

(&)

p
O

b, N . W . . . §
AR <

B IAYNAN

CARO/BORO

AR NN

BUS 3

VII-359

Figure 90 301 Bus Adder

For the C3 stage on Dwg., No. 3506923 (Trng. No. 073) in area D2 and D3
exist the gates which give rise to the CAR 3 and BOR 3 levels. Basically
speaking, Gate 0732Cl1l will produce a carry té the C2 stage when adding a
one to a decimal nine and Gate 0732C3 will generate a carry when adding two
to eight or nine. AND Gate 0732C5 causes a borrow from the C2 stage when
subtracting one from zero, while Gate 0731Cl produces BOR 3 when two is sub-
tracted from zero or one. Producing CAR 3 or BOR 3 also generates the com-
bination level CAR 3/BOR 3.

Because the C3 stage is somewhat more involved, a portion of the C2 stage
will be extracted in order to explain -how binary addition and subtraction

is performed. The C2 stage is on Dwg. No. 3506922 (Trng. No. 072).

CAR 3 (N)

BOR 3 (N)
MAR 2 - 20(IN)

MAR 2-29 (ON)

MAR 2 —2' (ON)

MAR 2 - 2! (IN) ——

4CS

Ir2e ThsE
AND 224CI GATE OUT
(BA23--BUS)(N)

RESULT |
GOING TO BUS 2-2" LINE

Figure 91 Logic Extract From Bus Adder C2 Stage

VII-360

AND Gate 4C2 will produce a high output if the 2O bit of the C2 character
is a one and a decimal carry was generated from the C3 stage. AND Gate 4C3
will produce a high output if the 20 bit of C2 is a zero and a decimal bor-
row was generated from the C3 stage. Note that regardless of the incoming
bit for the 21 stage of C2, if a carry or borrow is generated from the 2O
stage of C2 (high output from 4C4), the result for the 21 stage will be the

complement of the bit coming in.

Incoming 21 bit o 0 1 0 1
Modification (From 2~ bit) +1 +1 -1 -1
Resulting 21 bit 1 (0] 1 0

Effectively then, the output of 4C4, if high, states that an interbit carry
or borrow exists from the 2O stage to the 21 stage of the C2 character.
Therefore, depending upon the state of the 21 Flip-flop the complement will
be generated onto Bus 2—21 line at gate-out time. (Bear in mind that the

decimal conversion is ignored for the present.)

For example, if the 21 bit is a one and the output of Gate 4C4 is high,
Gates 4Bl and 4B2 would both be inhibited, and no positive pulse is gated
onto Bus 2-21 line when gate-out occurs. (This represents a zero bit re-
sult). If the 21 bit is a zero, initially, Gate 4B2 will be primed to

generate a one bit onto Bus 2-21 when the result is gated out.

On the other hand, if the output of 4C4 is low, this indicates no carry or
borrow from the 20 stage, hence no change in the 21 output. That is, if
the 21 is a one, Gate 4Bl will produce a high output at gate-out time to
generate a one on Bus 2 and if the 21 bit is a zero neither 4B2 nor 4Bl

will be primed, thus no one bit is generated on Bus 2,

The output from 4C4 also is used to determine whether or not a carry or
borrow is generated from the 21 stage to the 22 stage (Gates 0725C2 and
0724C1l on Dwg. No. 072).

Examination of the logic of the Bus Adder C3 stage on Dwg. No., 073 reveals

a similar composite of gates, such as those used in the C2 stage. A slight

VII-361

difference exists in the fact that the original modifying levels (BA+l etc.)
are used and also that the 21 logic must handle the addition and subtraction

of 2,

The 20 bit is complemented if the output from Gate 0733Bl is a low, denoting

modification by +1 or -1, If the output from 0733Bl is high, the 20 bit is

gated unchanged onto Bus 3—20 line.

Adding or subtracting two is done by priming Gate 234B1 with the levels
BA(+2) and BA(-2) to act as a carry and a borrow, respectively, for the 21

bit.

The second function of the CAR and BOR levels other than acting as decimal
carries and borrows between the four stages CO, Cl, C2, and C3; is that

they convert the output of the Bus Adder into decimal notation,

Note that adding one to a decimal nine as the C3 character, would generate

CAR 3. Binary addition would be as follows for the 20 through 23 bits.

C3 Character = 1001 = 9
Modified by = +0001 = +1 _
Result 1010 (Binary Coded Decimal 10)

The result should be zero for the C3 stage therefore CAR 3 must inhibit the
output gates for the 23 and 21 bits to produce 0000 on the Bus, (See Gates
6B2, 6B3, 3B3 and 3B4, on Trng. No. 073).

Adding two to a nine or eight causes the generation of CAR 3, Binary bit

addition is:

C3 Char. 1001 = 9 1000 = 8
Modified by +0010 = 2 +0010 = 2
Result 1011 1010

Once again, the CAR 3 level inhibits the output from the 23 and 21 stages
since a one (0001) is desired when adding 2 to 9 and a zero (0000) is de-

sired when adding 2 to 8.

VII-362

BOR 3 is generated when one is subtracted from zero or two is subtracted

from zero or one. Binary subtraction would be:

C3 Char. 0000 = O C3 Char,. 0000 = O C3 Char. 0001 = 1
Modified by -0001 = -1 Modified by 0010 = -2 Modified by 0010 = -2
Result 1111 Result 1110 Result 1111

Since the results should be nine, eight and nine respectively, BOR 3
inhibits the 21 and 22 stage outputs. (See Gates 5B2, 5B3, 4B3 and 4B4,

on T ng. Dwg. 073),

The 25 bit is not provided for-in any stage of the Bus Adder and the 24 bit
is simply gated out unchanged for the C3 stage (Gates 0737B1 and 0737B2),
The presence of a 24 bit in the output of the C3 stage would signify an
indirect address under normal conditions. However, the 24 bit for stages
C2 and C1 is not permitted. The 24 bit is permitted for the CO stage, to

represent addresses over ten thousand.

Each stage generates its own parity as needed by examining the original

character and the modification level for that stage.

Depending upon the model, the CO stage of the Bus Adder (Dwg. No. 3506920)
will generate addresses over ten thousand or inhibit the generation of such
addresses by the presence of three +6,5 volt levels on Gates 0706B4, 0706B3,
0706C2 and 0707C3. 1In all cases, the Bus Adder will always keep within the
limits of the memory. For example, adding one to 9999 in a 10K system pro-
duces 0000, while in a 20K system &000 will be produced. Likewise, adding
one to I999 in a 20K system will produce 0000. Subtracting one from 0000
gives a result of 9999 for the 10K system and 1999 for the 20K system,

H. MEMORY REGISTER AND INTERCHANGE

The 14 flip-flops which make up the Memory Register are shown on Dwg,
Nos. 3506913 (Trng. No., 063) and 3506914 (Trng. No. 064).

The MR is divided into two sections, MRO and MR1l, to correspond to the two

characters in a diad which are labeled CO and Cl. The MRO portion of the

VII-363

Memory Register connects to Bus lines O, 2 and 3 while the MRl portion con-
nects to Bus lines 1, 2 and 3, The control levels which set up the paths
for information flow between the Bus and the MR come from a series of gates
known as the interchange on Dwg. No. 3506915 (Trng. No. 065).' Also shown on -
Dwg. 065 are the reset levels for the MR (area A2) and the two parity check-

ers (area D5).

At the bottom of Dwg. Nos. 063 and 064 are shown the light drivers for the
common display lights on the Console. Any voltage levels on the four Bus
lines will light the corresponding lights on the Console. Thus if it is
desired to view the contents of the particular register, the proper select
switch is set and the contents of the selected register are gated onto the

Bus where they light their respective lights.

The P, A and B registers use all four Bus lines, but the MR and D register
use only Bus 2 and Bus 3, to display their contents. The NOR contents are

shown by way of Bus 2 and the N register contents are shown by way of Bus 3.

The select switch, when set, not only gates out of the selected register
onto the Bus but also permits gating in from the Bus. Hence to insert new
information into a register, bits are inserted on the Bus while the select
switch is set., The common display lights on the Console are also momentary
contact switches. On Dwg., Nos. 063 and 064, the signals generated by these
switches are shown as inputs to the AND Gates below the MR Flip-flop;

(Co - 20 SET(N) on Gate 064782 etc.). Depressing the proper Console switches
produces momentary voltages on the corresponding bus lines. These voltage
(bits) are then gated into the flip-flops of the selected register., When
the Console switches are released, the lights will remain 1lit for those
flip~-flops which were set, since the select switch is still gating out of
the selected register. If a flip-flop does not become set, the light on the
Console will be 1lit oniy for the duration of the time that the momentary

contact switch is making contact.

I. NR REGISTER

The N for Repeat register, abbreviated NR, exists on Dwg. No. 3506916 (Trng.

VII-364

No. 066). The NR register is only used during the Repeat instruction

to hold the count of the number of times to repeat. Five triggerable flip-
flops, including parity, comprise a doWn counter., Since the register is set
up to count down, all stages must be set first (TP2 of an X1 status level

of a Repeat instruction Gate 0663Cl) and those stages which are to hold
zeros will be reset according to the contents of the N register (TP3 of

X1 RPT - Gate 0665D1). Note that only the 20, 21, 22 and 23 bits are gated

into the NR from the N register and that if the 24 or 25 bits exist in N,

they will be dropped upon transfer into the NR., Thus, if one bit is dropped,
bad parity will result and an NRPE will be generated from the parity checker,
in area B3, If both the 2° and'24 bits are dropped, the parity remains good

and no alarm occurs.

The NR is triggered down at TP3 of an REPl status level and parity is
corrected each time. The end result is to trigger down to zero, and Gate

0664B1 will produce NRZ (NR equals zero) when this occurs.,

The three flip-flops on the right-hand side of the print (INHA, INHB and

FREP) are used during the repeating process.

J. D REGISTER

The D register can hold one or two characters for temproary storage. One
half of D, called D2, connects to Bus 2 and the other half of D, called D3,
connects to Bus 3, The D2 portion of the register is shown Dwg. No. 3506908
(Trng. No. 058) while the D3 portion exists on Dwg. No. 3506909 (Trng. No.
059).

The D2 register is composed of seven normal flip-flops whose outputs can be
gated only onto Bus 2 (P). Information is normally inserted into D2 from
Bus 2 (N), however, during the Translate instruction, bits from Bus 3 (N)

25, 24 and 23 lines can be gated into D2 22 , 21 and 20

, respectively.

(Gates 0583B1, 0583B2, and 0582B2) The parity checker for D2 exists in

area D3. Parity is checked on D2 only during certain status levels of cer-
tain instructions. Gates 0584Dl1 and 0583D2 are mainly responsible for deter-

mining when parity should be checked. If bad parity is found, a low will

VII-365

exist from the output of the D2 parity checker and Gate 0583D6 will set the
DPE Flip-flop in area AS8,

The D3 register is composed of five triggerable flip-flops (20, 21, 2% 23,

and 26) and two normal flip-flops (25 and 24). The triggerable flip-flops

constitute an up=-counter which is used during the Add and Subtract instruc-
tions., Otherwise D3 is used as a storage register for one character. The

D3 register can only be accessed from Bus 3 whether it is during gating in

or gating out., Parity is also checked on D3 during certain instructions;

its parity checker exists on Dwg. No. 3506906, area D2,

On Dwg, No, 3506910 (Trng. No. 060) a number of controls exist which affect
the D3 register. The majority of these control levels are for the Add and

Subtract instructions.

K, D COMPARATOR

The purpose of the D Register Comparator is to compare the contents of the
D2 register to those of the D3 register, and to produce an appropriate level
(D2 :> D3, D2 <: D3, or D2 = D3). Since no time pulses or instructions gate
the comparator logic, one of the three output levels should exist at all
times. If no output level exists, a Comparator Error (COME) will be gener-
ated,

On Dwg. No. 3506918 (Trng. No. 068), the outputs of both the D2 Register and
the D3 register flip-flops are compared directly to one another, bit by bit.
In the series of AND Gates in area D (3, 4, 5, 6 and 7) exact equality is
sought.

Both bits must be present or absent for a given position in D2 and D3 to
produce a desired output. All outputs culminate on AND Gate 0682B1, If

six lows are present, the level D2 = D3 is generated (area A2). If six lows
are not present, then obviously one register's contents are greater than

the other's. Allowance had been made to make use of what equalities were
found, if not all six. The series of AND Gates in area B (5, 6 and 7)

check all possibilities of D2 being greater than D3, First, the most sig-

VII-366

nificant bits are compared on AND Gate 0687B1, If D2 25 is present and D3
25 is not, a high output is produced, which will generate the level D2 > D3,
area A7. If the 25 bits from D2 and D3 are the same, AND Gate 0687B2 com-
pares the 24 bits and so on. Any high output from this series of AND .Gates
will produce the level D2 > D3,

In area B (2, 3 and 4), bit-by-bit comparison is made to determine if
D2 £ D3. Any equalities found through the first series of AND Gates in

area D (3, 4, 5, 6 and 7) are used as inputs to these gates.

If no final result is obtained or if more than one result is obtained,

the error level COME(N) is produced from Gate 0686A3. AND Gate 0686Al1
checks for the level D2 > D3 existing and the other two levels not existing.
If this is ture, COME(N) will be high, and therefore does not indicate an
error. AND Gate 0686A2 checks for D2 £ D3 existing with the other levels
absent. AND Gate 06084Al1 checks for D2 = D3 existing, but not the other two
levels. The reader should note that each of these three gates, 0686Al,
0686A2 and 0684Al1l, must be inhibited if COME(N) is low., Only in case no
output levels are produced from the comparator, or more than one level is

produced, will this condition be brought about.

L, STANDARD ADDRESS GENERATOR

The Standard Address Generator is found on Dwgs., 074 and AO0O74. All 3 models
of the 301 Processor utilize this generator. The function of this generator
is to generate bits on the bus which will constitute an address or a portion

of an address. This will depend upon the status level and the instruction.

For example, during the STAl status level when the AO and Al characters of
the A address are to be stored in memory, the address 0212 is generated
(Dwg. No. 3506029, area C2) and the level STAl - PT(P) primes Gates 293Al,
295A2, 297D1, 297Al1, and 298Al1l. The outputs of these gates at TPOl time
produce positive voltage signals on Bus 3 =~ 21, Bus 2 =~ 20, and Bus O - 26.
On all other lines of the Bus there are effectively zero bits., Therefore

the bit configuration for each Bus line, at TPOl of STA 1, would be:

VII-367

24 23 22 Ll 20 22 24 23 2 Ll o,

Bus ;7 6o 0 0o o o o Busl 1y 5 0 0o o 1 o
20 25 24 3 52 1 50 20 25 o4 3 52 51 50

Bus2lo0 o 0o o o o 1 Bus 3 |0 0 0o o o0 1 o

This represents the numbers 0212 respectively.,

The only difference between the Model 303A Generator and the Model 304A
Generator is in the X1 or Yl status level of a Print and Paper Advance In-
struction., The PAN/PAS instructions use a table look-up technique to obtain
the 301 Character Code of the character appearing on the drum about to be
printed. In a 10K System this table ranges from 9900 to 9977, but in a 20K
system the table exists between I900 and I977. Therefore, during the X1/Y1
status level of a PAN/PAS instruction, the 303A Model generates 99 onto Bus O
and Bus 1, respectively. (Gates BO746Al1l, 6A2, 6A3, 5Al1l, 5A3, 4A2), The 304A
Model generates I9 on Bus O and Bus 1, respectively, during the same status

levels (Gates BO746A1, 6A2, 6A3, 5Al, 5A2, 5A3),

Numbers
1. Signals Generating Complete Addresses Generated
S - (0278) - BLIS (P) @ e o c 4 s o @ e 60 ¢ 0 00 o0 e 6 a4 0 @ s 8 s 0 a8 s a8 s e @ e 0202

S = (0280) == BUS (P) 4. iviieeenntteneossnssssocsssncsesnssesess 0204
CPN/BCPN (N) * X1=PT/X3=PT (P)oucvceronsoanssasssssssssanssssass 0202
CPN/BCPN (N) * XZ2-PT/X4=PT (P)eteeteeeaososssocscsssscsassssasss 0204
Add/Sub (N) * XL1=PT/X3=PT (P)uuteeeesecntoecacsstasscsscasssansses 0206
Add/Sub (N) * X2=PT/X4=PT (P)us.ceutsentensasisnasssnsassasssosss 0208
STA 1 = Pl ieeuteenennenetesesnsanssssssassnscsssssssasssnsacaesss 0212
STA 2 = PT,euteeersnotareoessaseecens ettt eeateeseataiaeaaaee. 0214
X1 = PT (N) * CTC/TA/IOS (P).eetueseeessassnsssssessesnnsnsennssss 0216
X2 = PT (N) * CTC/TA/TIOS (P)at cueeosscascasstensssssssnssessssee 0218

VII-368

Numbers
Signals Generating Complete Addresses (cont'd) Generated

(X1=PT) (N) « RPT (N) / REP L1-PT (P)u.vrerueseenennnnenseess 0222
(X2-PT) (N) + RPT (N) / REP 2-PT (P)ee..vireecarernnsonnans, 0224

2, Signals Generating Part of Addresses - Bus O and Bus 1

ULS (IN) + Add/Sub (N) ¢ D-PT(N) e uuueeeenueeeonnennsnnnoaansssoe=lom
ULS (ON) « Add/Sub (N) ¢ D=PT(N)uuvueerosoeenooeeoanseeasnoeanse=0mm
X3 = PT ¢« TA (N)tuueeoeooeoeoasseaessansasssesssessseseacsassnsass00mm
D - PT ¢ (AdA/SUb) (N)seeeeoooaseoeseaossossnsssessasssassssoaseaOmmm
X1 = PT * PAN (P) (303A) et teecconessassosecessssscocsssansnsonssed9mm
X1 = PT ¢« PAS (P) (303A)4uiiueececenconseneannsassensassscconsessd9=m
X1 = PT ¢« PAN (P) (304A) 4t vuueesaceonanaseosssonsssscosssnsaseaalOmm
X1 = PT * PAS (P) (B04A) 4. .ivuieuncenenneeanesssnssssasassssossaselOmm

M. STOP ALARM LOGIC

The Stop Alarm Logic exists on two prints within the Processor; Dwg. Nos
3506927 (Trng. No. 077) and 3506928 (078).

The function of the Stop Alarm Logic is to stop the Computer upon: (1) a
Halt instruction, (2) a Console button manual stop or (3) an alarm. To
accomplish this, the level ST(P) must be generated to inhibit the Time Pulse
Generator from functioning, and to set the Stop Flip-flop (Trng. Dwg. 079,
area B7). ST(P) is generated from Gate 0786Bl on Dwg. No. 078 in one of two
ways: if the Manual Stop (MSP) Flip-flop is set which covers functions (1)

and (2) above, or if Error Stop (ERSP) is generated which covers function (3).

A Halt instruction can only stop the Computer after the instruction has been
completely staticized, i.e., at the end of the P5 status level. In area C-7,
HLT(P), the operation code, energizes OR Gate 0787D1 and only if P1-PT is
present can an output be obtained from AND Gate 0787Cl. The presence of P1-PT
denotes that staticizing has been completed. This output from 0787C1 will

in turn generate the level MSTP which means machine stop. The level MSTP

VII-369

alone cannot stop the Computer. A check must first be made on the other
modes - Simultaneous and Record File. Only if these modes are not busy or
an alarm exists in them, will the level MSTP be permitted to halt the Com-
puter (AND Gate 0786Cl)., Once this check has been made, MSTP will set the
MSP Flip-flop at TP6, thereby producing ST(P).

Two other manual stops which produce the level MSTP are Console buttons
FPLS and ICSP.

FPLS stands for First Processing Level Stop and will stop the Computer after
staticizing and indirect addressing are complete. ICSP means Instruction
Complete Stop and will stop the Computer once Pl - PT is generated, i.e.,
the present instruction has been completed and the next instruction is ready

to be staticized.

Three other Console buttons which set MSP but do not generate the level
MSTP are OCSP, RDM and WRM. All three buttons stop the Computer after one
series of time pulses without checking other modes. Thus, these buttons
could be called immediate stops. In fact, One Cycle Stop (OCSP) is used as
an emergency stop button since it stops the computer at the end of the next
status level. Read From Memory (RDM) and Write to Memory (WRM) are not
used to stop the Computer normally, but do permit only one series of time

pulses to occur,

All modes of stopping the Computer by setting MSP also permit the Computer
to be started again by simply depressing the start button (ST RES, Dwg. No.
079). Error stops, however, will constantly'produce ST(P) as long as the
alarm is present., Thus, if the Computer stops on an alarm, it cannot be

started again until the alarm is reset.

There are two general types of alarms; namely, immediately stop alarms and
delayed stop alarms. The immediate stop alarms are Memory Address Register
Parity Error (MAPE) and Memory Register Parity Error (MRPE). These alarms
will stop the Computer regardless of what is occurring in other modes.
However, a certain restriction does exist. These alarms must occur when

Memory is in use, since the Command Level Flip-flop provides a necessary

VII-370

prime (area B-2) in stopping the Computer. Either one of these alarms will

then stop the Computer upon the next TPO.

The delayed stop alarms are all of the remaining alarms in the Computer.
Each mode (Normal, Simultaneous and Record File) has characteristic alarms,
but no one alarm will stop the machine until the other two modes are free,
unless an alarm also exists in those modes. Immediate stop alarms, MAPE and
MRPE, are involved with a portion of the Computer which is common to all
three modes, - If the Memory Address Register or Memory Register contains

bad parity, the Computer must stop immediately, since all three modes are
effectively tied up. However, if only a register parity error or user
equipment error occurs in one mode, the other two modes are still free to
carry on and will until they finish their operation or until they, too,

develop an alarm.

AND Gate 0785C1 will produce an cutput if a Normal Mode error exists, AND
Gate 0784C2 will produce an output if a Simultaneous Mode error exists and

AND Gate 0783C4 will produce an output if a Record File Mode error exists.

In addition, if a Simultaneous alarm occurs, the SAL light becomes 1lit on

the Console. This is to indicate that a peripheral device alarm (OR Gate
0785D4) or the Status Level Error (STLE) occurred in the Simultaneous Mode
and not in the Normal Mode or Record File Mode. On the other hand, the FAL
light becomes 1lit for a Record File alarm to distinguish the fact that the
Record File Mode caused the peripheral equipment alarm, and not the Normal

or Simultaneous Mode. And if neither SAL nor FAL are 1lit, the error occurred
in the Normal Mode. With the exception of MAPE and MRPE, the alarm flip-
flops and associated lights are shown on (Trng. Dwg. No. 077)..

Any mode alarm, except MAPE and MRPE, must check the other modes first before
stopping the Computer by way of OR Gate 0783C5 on Dwg. No. 078. It is pos-
sible to inhibit alarm stops by the Console Button Alarm Inhibit (ALI) on
Gate 0785B1. However, in the case of most alarms, the ALI button does not
inhibit the Alarm light from becoming 1it but only inhibits stopping the

Computer.

vII-371

“c" Information
Systems

