
Ren Information
Systems

September 1970
July 1970
October 1969
July 1969
PSM 213

301 Processor

Student Guide

© Copyright By:

RCA Computer Systems Division
Field Engineering Technical Education
Camden, New Jersey 08101

CONTENTS

301 PROCESSOR

SECTION I

General System Information

TITLE

A. INTRODUCTION

B. .DIGITAL COMPU!ER COMPONENTS

c. INTRODUCTION TO nm 301 COMPU!ER

D. THE RCA 301 SYSTEM

E. TYPICAL SYSTEM APPLICATION

F. THE ROLE OF INSTRUCTIONS

G. STATICIZIJIG

H. 301 CONSOLE

I. MEMORY DISPLAY PANEL

SECTION II

A. THE DATA HANDLIJIG INSTRUCTIONS, INTRODUCTION

B • J - TRANSFER TO FILL (SF)

C. M - TRANSFER DATA LEFT (DL) REPEATABLE
N - TRANSFER DATA RIGHT {DR) REPEATABLE

D. # - TRANSFER DATA BY SYMBOL LEFT {DSL) REPEATABLE
P - TRANSFER DATA BY SYMBOL RIGHT (DSR) REPEATABLE

E. K - LOCATE SYMBOL LEFT (LSL)
L - LOCATE SYMBOL RIGHT {LSR)

F. A - TRANSLATE (TRA)

G. INDIRECT ADDRESSIJIG
ANSWERS TO PRACTICE PROBLEMS

i

PAGE

I·l

I-2

I-8

I-11

I-16

I-21

I-35

I-46

I-53

II-55

II-55

II-64

II-77

II-92

II-102

II-114
II-127

SECTION III

TITLE

A. DECISION AND CONTROL INSTRUCTION, INTRODUCTION

B. V - STDRE REGISTER (REG)

C. W - CONDITIONAL TRANSFER OF CONTROL (CTC)

D. Y - COMPARE LEFT (COM}

E. X - TALLY (TA)

F. HALT (HLT)

G. R - REPEAT (RPT}

H. S - INPUT - OUTPUT SENSE (IOS)

ANSWERS TO PRACTICE PROBLEMS

SECTION IV

A. ARITHMETIC INSTRUCTIONS, INTRODUCTION

B. +/- ADD OR SUBTRACT (ADD OR SUB}

C. LCX3ICAL INSTRUCTIONS (Q = OR) (T = AND} (U = EXO)

ANSWERS TO PRACTICE PROBLEMS

SECTION V

A. INPUT - OUTPUT INSTRUCTIONS, INTRODUCTION

B. CARD READ NORMAL (0) (CRN/BCRN}

C. CARD READ SIMULTANEOUS (1) (CRS/BLRS)

D. CARD READ NORMAL (0) (CRN}

E. CARD READ SIMULTANEOUS (1) (CRS)

F • CARD READ NORMAL (2} (CPN}

G. CARD PUNCH SIMULTANEOUS (3) (CPS}

H. CARD PUNCH NORMAL (2) (CPN}

I. CARD PUNCH SIMULTANEOUS (3) (CPS)

J. REWIND TO BTC (;} (RWD}

K. TAPE READ FORWARD NORMAL (4) (RFN}

L • TAPE READ FORWARD SIMULTANEOUS (5} (RFS}

ii

PAGE

III-141

III-141

III-154

III-164

III-172

III-181

III-185

III-200

III-212

IV-223

IV-223

IV-257

IV-267

V-271

V-272

V-279

V-280

V-286

V-286

V-288

V-288

V-291

V-295

V-295

V-297

TITI....E

SECTION V

(continued)

M. TAPE READ REVERSE NORMAL (6) (RRN}

N. TAPE READ REVERSE SIMULTANEOUS (7) (RRS}

O. TAPE WRITE NORMAL (8) (TWN}

P. TAPE WRITE SIMULTANEOUS (9) (TWS)

Q. PRINT AND PAPER ADVANCE NORMAL (B) (PAN}

R • PRINT AND PAPER ADVANCE SIMULTANEOUS (C} (PAS}

S. BAND SELECT NORMAL (D} (BSN}

T. BAND SELECT RECORD FILE MODE (E} (BSM)

U. BLOCK READ FROM RECORD NORMAL (F} (BRN}

V. BLOCK READ FROM RECORD SIMULTANEOUS (G} (BRS}

W. BLOCK WRITE TO RECORD NORMAL (H} (BWN)

X. BLOCK WRITE TO RECORD SIMULTANEOUS (I) (BWS)

Y. RECORD FILE MODE READ (*} (RMR}

z. RECORD FILE MODE WRITE (%} (RMW}

SECTION VI

A. FLOW CHARTING AND CODIN3, INTRODUCTION

B. ED, EF, AND ETW ROUTINES

c. SWITCHES

D. CONSTANTS

E. HOUSEKEEPING

SECTION VII

A. PROCESSOR :r.ffiIC DESCRIPTIONS, INTRODUCTION

B. TIME PULSE GENERATOR

C. STATUS LEVEL GENERATION AND SELECTION

D. NOR AND OPERATION DECODE MATRIX

E. N REGISTER

iii

PAGE

V-297

V-299

V-300

V-301

V-301

V-303

V-303

V-307

V-308

V-310

V-310

V-311

V-312

V-313

VI-315

VI-321

VI-326

VI-327

VI-328

VII-343

VII-343

VII-.347

VII-352

VII-353

F.

G.

H.

I•

J.

K.

L.

M.

TITI...E

SECTION VII

(continued)

ADCRESSABLE REGISTERS

BUS ADDER

MEMORY REGISTER AND INTERCHANGE

NR REGISTER

D REGISTER

D COMPARATOR

STANDARD ADDRESS GENERATOR

STOP ALARM LOGIC

LIST OF ILLUSTRATIONS

FIGURE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

BASIC COMPONENTS OF A DIGITAL COMPUTER

3 01 RACK LAYOUT

RCA 301 INPUT-OUTPUT EQUIPMENT

THE THREE BASIC RACKS OF THE 301 COMPUTER

RCA 301 SYSTEM FOR LABOR DISTRIBUTION-PAYROLL
APPLICATION

DAILY LABOR DISTRIBUTION TO DEPARTMENTS, USI!'-{;
RCA 301 SYSTEM

WEEKLY PAYROLL FLOW, USING RCA 301 SYSTEM

TIMIN3 BREAKDCMN OF A TYPICAL 301 INSTRUCTION

PROCESSOR BLOCK DIAGRAM

POSITIVE AND NEGATIVE BUS LINES

GATING OUT OF N REGISTER

PULSE TRAIN FOR DOLLAR SYMBOL ($)
GATING INTO THE D3 REG I STER

TYPICAL MEMORY CYCLE

iv

PAGE

VII-356

VII-357

VII-363

VII-364

VII-365

VII-366

VII-367

VII-369

PAGE

I-2

I-9

I-12

I-13

I-17

I-18

I-20

I-24

I-25

I-26

I-27

I-28

I-30

I-34

FIGURE

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

LIST OF ILLUSTRATIONS

Pl STATUS LEVEL

P2 STATUS LEVEL

P3 STATUS LEVEL

P4 STATUS LEVEL

PS STATUS LEVEL

STRIP SWITCH

BUS SWITCHES

BUS DISPLAY CHART

READ FROM MEMORY STATUS-FLOW

WRITE TO MEMORY STATUS-FLOW

MEMCRY DISPLAY PANEL

A2 OF SYMBOL TO FILL

Al OF TRANSFER DATA LEFT

B OF TRANSFER DATA LEFT

Al OF TRANSFER DATA RIGHT

B OF TRANSFER DATA RIGHT

Al OF TRANS~ER DATA BY SYMBOL LEFT OR RIGHT

B OF TRANSFER DATA BY SYMBOL LEFT OR RIGHT

STA 1 STATUS LEVEL

STA 2 STATUS LEVEL

Al AND Xl OF LSL/LSR

X2 OF LSL/LSR; STAl AND STA2

Al AND D OF TRA

A2 OF TRA

Ml AND M2 STATUS LEVELS

M3 AND M4 STATUS LEVELS

STATICIZING BLOCK DIAGRAM

v

PAGE

I-41

I-43

I-44

I-45

I-46

I-48

I-48

I-49

I-51

I-52

I-54

II-60

II-69

II-70

II-72

II-73

II-83

II-84

II-86

II-87

II-96

II-98

II-108

II-109

II-118

II-119

II-120

FIGURE

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

LIST OF ILLUSTRATIONS

A2 AND A4 OF A REG

Xl AND X2 OF A CTC

Al, B, AND Xl OF COM

Al AND X3 OF A TALLY

A2 , Xl , AND X2 OF A TALLY

Xl AND X2 OF A RP'f

REPl AND REP2

IOS N CHARACTERS

Aflf CHARACTER OF IOS

LEVELS USED IN SETTING JMP DURIN.'.i SIO

SIO OF AN IOS

Xl AND X2 OF AN IOS

SUM AND DIFFERENCE TABLES

BASIC BLOCK DIAGRAM OF ADD OR SUBTRACT

B AND Al OF ADD OR SUB

D AND A2 OF ADD OR SUB

FLIP-FLOPS

Ca.IPLETE BLOCK DIAGRAM OF ADD OR SUBTRACT

DETAILED STATUS FLCM (Xl, X2, B)

DETAILED STATUS FLOW (Al)

DETAILED STATUS FLOW (D)

DETAILED STATUS FLOW (A2)

DETAILED STATUS FLOW (X3, X4, A3)

DETAILED STATUS FLOW (A4)

LOGICAL INSTRUCTION STATUS FLCM

vi

PAGE

III-147

III-161

III-169

III-177

III-178

III-194

III-195

III-201

III-203

III-205

III-206

III-207

IV-232

IV-235

IV-236

IV-237

IV-238

IV-242

IV-243

IV-244

IV-245

IV-246

IV-247

IV-248

IV-264

FIGURE

67

68

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

LIST OF ILLUSTRATIONS

EAM CARD FORMAT (301 CARD CODE)

EAM CARD FORMAT, STRAIGHT BINARY MACHINE CODE

EAM CARD, 323 CARD READER CODE V

TIMING CHART (330 READER UNIT)

FRONT VIEW OF OUTPUT HOPPERS

TIMING CHART FOR EXAMPLE PROGRAM

SIMPLIFIED ILLUSTRATION OF DISC ON RECORD FILE

FLOWCHART SYMBOLS

301 COMPUTER PROORAM RECORD

301 COMPUTER HSM RECORD

START OF FLOWCHART

SIMPLIFIED FLOWCHART

FLOWCHART INCORPORATING ED/EF CHECK

FLOWCHART SHOWING ED/EF SUBROUTINE

FLOWCHART SHOWING ETW CHECK

SYMBOL FOR SOFTWARE SWITCH

EXAMPLE OF SWITCH IN FLOWCHARTING

FLOWCHART FOR UPDATING A MASTER BANK ACCOUNT FILE

301 RECORD PROGRAM FOR UPDATING A MASTER BANK
ACCOUNT FILE

301 HSM RECORD FOR UPDATIN3 A MASTER BANK ACCOUNT FILE

301 TIME PULSE GENERATION TIMING CHART

STATUS LEVEL SELECTION AND GENERATION

301 BUS ADDER

LOGIC EXTRACT FROM BUS ADDER C2 STAGE.

vii

PAGE

V-272

V-274

V-277

V-283

V-284

V-294

V-304

VI-316

VI-317

VI-317

VI-318

VI-319

VI-322

VI-323

VI-325

VI-326

VI-327

VI-329

VI-333

VI-341

VII-345

VII-351

VII-359

VII-360

SECTION I

GENERAL SYSTEM INFORMATION

A. INTRODUCTION

An exact definition of a digital computer would be quite detailed, lengthy,

and difficult to fully formulate. This is due in part to the large and

rapidly changing field of computer development. However, in a few words we

might say simply that a digital computer is a device that counts. A general

purpose digital computer is capable of performing arithmetic operations on

information and is under the control of what is known as a program. A pro­

gram is a sequence of logical instructions that a computer performs in order

to obtain a desired result. The Automatic Sequence Control Calculator (an

early computer) was an electro-mechanical computing device under the control

of an external program. The external program consisted of a plug-board which

was wired to sequence the computer through certain ari thm.etic and logical

steps. After the plug-board was wired, it was inserted into the computer,

and all operations were sequenced through this plug-board. However, using

an externally programmed computer provided relatively little flexibility in

the operations that the computer could perform. In the case of electronic

devices, internal programmed steps can be inserted in such a manner as to

perform virtually an infinite number of steps.

In addition to counting, a digital computer can perform many "logical" func­

tions and decisions. Considering the computer as a data processing device,

then improvising symbolism for the representation of data and instructions,

the accomplishment of data processing in the electronic system is reduced to

.a process of manipulations, of direction and control of numbers and other

characters as represented by electronic equivalents. Essentially, manipula­

tion is accomplished by equipment design, utilizing the characteristics and

capacities of various devices to move the data and instructions through the

system.

The heart of the electronic data processing system is the digital computer,

sometimes referred to as the central processing unit (CPU). The computer

receives data and instructions, stores them in cells (memory) and calls them

out of its memory as needed by the computer during a processing function.

It can perform the arithmetic operations of addition, subtraction, multipli-

I-1

cation, and division and has further ability, found only to a very limited

degree in mechanical systems, to make comparisons between numbers or other

characters and take the action called £or by the results. It also directs

the processing operations within itself and controls the £low 0£ input and

output information. All these operations are performed at electronic speed.

The electronic pulses and other electrical manifestations, acting as signals

in the functional operation 0£ the unit are symbolic representations 0£ num­

bers and other characters.

B. DIGITAL COMPUTER COMPONENTS

The majority 0£ digital computers on the market today are functionally similar

and each consists 0£ the basic components in Figure 1.

The heart 0£ every computer is the Program Control Unit which directs and

governs the operation 0£ all other components. The Program Control Unit is

usually constructed in such a manner as to obey coded instructions. In the

early days 0£ digital computers, a plug-board type of programming was used

which was cumbersome and not very versatile. I£ it was desired to change the

pattern 0£ events in the computer, a technician had to change a number 0£

wires on the plug-board. Therefore, human intervention was necessary £or

program variation and a great deal 0£ processing time was lost.

I-2

HIGH
SPEED

MEMORY

PROGRAM
CONTROL

UNIT
1.r------1 ... ARITHMETIC

UNIT

Figure 1 Basic Components 0£ a Digit~! Computer

Internal wiring of the computer to follow a set number of coded operations

increased the processing efficiency and versatility of the machine. The pro­

blem then became one of informing the computer which instruction or instruc­

tions to execute. A need for communication arose between man and machine;

hence, the birth of programming.

1. Component Functions

Ultimately, any computer works with information in binary form, as this is

really all that digital circuits are capable of. However, writing programs

or entering data directly in binary form is extremely awkward. Therefore,

the majority of modern computers use an internal code (based on octal, hexa­

decimal, or binary-coded-decimal) for representing all numeric and alphabetic

characters and the more common symbols (such as$,#,@). The use of such a

code requires that logic be provided within the computer to recognize the

various characters of the code and correlate them with the binary configura­

tions that the machine actually uses. The cost of this logic is more than

compensated for by the flexibility and ease of operation that is gained by

not having to use direct input binary. The RCA 301 uses a six-bit code that

is based on binary-coded-decimal.

The High Speed Memory (HSM) like the Program Control Unit (PCU) has evolved

to a high degree of efficiency. Early memory units used mercury delay tanks,

cathrode ray tubes, or magnetic drums, all of which were serial accessible

and quite slow. The modern day computers use magnetic core matrices which

are extremely fast and random accessible. Many High Speed Memories are

separate units which require only a command from the Program Control Unit

before beginning a memory cycle, while other High Speed Memories rely on al­

most all commands from the program control and only perform a portion of a

memory cycle at a time. (i.e., only read out or only regenerate.)

The logic involved with arithmetic operations is usually considered as a

separate unit in most computers. Depending upon the size and speed of the

machine, the Arithmetic Unit may operate on various multiples of characters,

half words or words or even entire operands at one time. The means used in

I-3

carrying out these arithmetic functions may be by an adder or by table look­

up.

2. Input/Output

Input-output control logic mates peripheral devices to the Program Control

Unit and HSM. Data may be placed directly into memory from an external de­

vice, or buffered to permit more than one operation at the same time (simul­

taneity). Likewise, data may be sent from memory to a device directly or by

way of a buffer. The timing for this transfer of information hinges on the

peripheral device and is developed by the control logic.

Input information applied into the "reading" device must be expressed in, or

converted into, the code of the computer and conversely, output information

emitted from the computer through the "writing" device in the same code, must

be converted to plain language and transcribed upon the output document. To

do these things necessitates the use of input preparation equipment and out­

put printing equipment.

3. Computer Operation

By means of equipment design, devices are provided which will bring the data

and instructions to the computer, manipulate them there, and take out the re­

sults. Without troubling at the moment to understand how, it is sufficient

to know that the devices within the computer can add, subtract, multiply, and

divide, and make comparisons between numbers, alphabetic or other characters,

and that they have the power of memory. They can retain data and instructions

and introduce them into the manipulation routine as needed. They can even

amend basic instructions as required in the course of processing. Further,

the computer does all these things at electronic speed. How this is done, in

terms of the methods used in directing the system to make the manipulations

is important as a basic concept. These methods may be illustrated by an

elementary analogy.

Assume that a newly hired office clerk is given the assignment of adding a

column of figures using a desk calculator. Also, assume that this is the

clerk's first encounter with a desk calculator. In order to perform this

I-4

addition, a list of instructions will be given to the clerk which details

the procedures to be followed.

Step 1. Clear the keyboard and the accumulator.

Step 2. Insert first number into keyboard.

Step 3. Depress ADD button. (This will insert the first number

into the accumulator.)

Step 4. Insert next number into keyboard.

Step 5. Depress ADD button. (This will cause the accumulation of

the first two numbers.)

Step 6. Repeat Steps 4 and 5 until all the numbers to be added

have been accumulated.

In this example, the desk calculator functioned as the arithmetic unit and

storage device for results, and the clerk as the control unit and instruction

and data storage device. As stated earlier, the control unit interprets the

program of the problem and directs the processing operations. Instructions

in pre-planned sequence are routed into the control unit. The internal logic

design of the computer interprets and transmits the instructions to the sys­

tem as directions for the processing of data. In order to perform this data

processing, there must be a means for storing both the data and the instruc­

tions in this operation.

Memory devices provide a place to which data and instructions may be directed

in the first instance and there held for introduction into a processing rou­

tine as required. In the processing which takes place within the computer,

everything (all data and instructions) must be assigned to specific locations

{addresses) within the system at all times; otherwise, the system would be in

chaos.

Speed of processing {computer access time) is affected by the time required

to find data and instructions as needed in the sequence of processing opera­

tions. Since all, and not merely part, of the data and instructions flow in

and out of storage in the course of processing, it is obvious that storage

volume and speed of access to storage are very important £actors in deter-

I-5

mining the capabilities of the system.

The principal types of storage devices are transistor flip-flops, cathode

ray tubes, magnetic cores, acoustic delay lines, magnetic drums, magnetic

tapes, paper and magnetic cards.

The RCA 301, 501, 601 Systems use magnetic core storage. Magnetic cores are

doughnut-shaped ferro-magnetic rings, usually about 1/16 inch in diameter.

Bits of information are written into the cores by sending current through the

centers of the cores. Each core stores only one bit of information at a time,

hence, storage volume depends upon the number of cores used. Bits are read

from the cores by sending current through the wires passing through the cen­

ters of the cores and transferring the resulting pulses to sensing lines

linked to the main circuitry of the equipment.

Magnetic tapes are used extensively as secondary storage, as well as input

and output media. When used as secondary storage, "bits" in primary storage

are read out and written upon magnetic tape by the same reading-writing de­

vices used in the input and output functions. Access to "bits" upon magnetic

tape occurs as the tape moves mechanically past the reading head and, there­

fore, the rate of access is relatively, slow as compared to the primary or

"built-in" time of the computer.

Where the medium is a punched card, the method of representing data is by

means of one or more holes in various positions in the vertical columns of

the card. The same principle is used in respect to paper tape. The coding

of a character takes the form of holes or inked dots across the width of the

and in channels running the length of the tape. Paper tape is approximately

one inch in width. Various codes are used, having from five to eight channels

or positions. The recording of characters on magnetic tape takes the form of

signals placed laterally on the tape by means of pulses from small electro­

magnets. Magnetic tapes vary from 1/4 inch to 3 inches in width. They are

either metallic or plastic and contain a magnetizable material. Characters

may be compactly stored upon magnetic tape -- up to 800 or more, to each inch

of length.

I-6

Following these operations by the input preparation equipment, the input

medium passes to the input reading devices, the first link in the chain of

true electronic processing. These devices function under the direction of

the control unit of the system, in accordance with the program of instructions.

Reading occurs as the medium physically moves through the reading device,

which translates the data and instructions expressed upon the medium in bi­

nary code into their electronic equivalents in the computer. The reading

rate depends upon the type of medium used.

Reading devices consist of punched-card readers, paper-tape readers, and

magnetic tape readers. Punched cards may be read at speeds up to 1500 a

minute, or a maximum of about 2000 characters a second. Paper tapes may be

read at speeds of 10 to 1,000 characters a second and magnetic tapes may be

read at speeds of 360 to 120,000 characters a second.

The input medium may be introduced directly into the reading device. How­

ever, in some situations the original medium is converted into another, either

to provide greater reading speed or to bring the medium into compatability

with the system. Conversion is effected by special devices.

In addition to the devices previously mentioned as employed in the input

cycle, a certain device is necessary in all electronic systems to provide

access to the system. It is required to give the system its first instruc­

tion to start the processing routine and also, to permit intervention in

unusual circumstances by direct insertion of correntional data or instruc­

tions. This device manually operated is a keyboard known as the console.

Output data are emitted from the control processing unit in binary coded

form. The output function is essentially one of conversion, which may be

direct or indirect. Direct conversion occurs when the·output data are trans­

ferred to a medium which carries or incorporates the data in end-use form.

This medium will be magnetic or paper tape, or punched cards, if the end use

is storage of the output data for use as input in subsequent processing. If

the end use is the production of report data, the medium will be the final

report document.

I-7

Indirect conversion occurs when it is desirable, in connection with the

preparation of the final report document, to hold all or part of the output

data in intermediate storage {magnetic or paper tape or punched cards) in

order to avoid reducing the overall speed of processing.

The computer emits information in the form of pulses and these must be trans­

lated into their electronic or other equivalents in the end-use medium. Even

though the code of the end-use medium may still be in binary form, it is

necessary to effect translation into the code scheme of the medium, that is,

from pulses to magnetic tape and from pulses to holes or inked dots in the

case of cards or paper tape. If the code of the end-use medium is not in

binary form, which is the case in the final report document, the pulses must

be translated into final report language.

Various conversion devices are interposed to make these translations. Where

the translation of the pulses is made upon magnetic tape, a tape reading­

writing device is used one identical with that employed for reading in

connection with the input function. Where the translation is made upon paper

tapes or cards, the device used is a punching or writing unit which is actu­

ated by the pulses and internal circuitry to produce punched holes. Where

the translation is made upon the final report document, the device is a print­

ing unit, again actuated by pulses and internal circuitry, to print graphic

characters in report language. To effect translations from intermediate

storage to report do?uments, the device is the same printing unit, actuated

in this case, however, by circuitry and by pulses created by the spots, dots

or holes upon the tapes or cards to print characters in the language of the

report.

C. INTRODUCTION TO THE 301 COMPUTER

The 301 Computer (Figure 2) has three basic racks of logic. The Program

Control Unit occupies three quarters of Rack 2 and is governed by 41 differ­

ent wired-in instructions. Being synchronous machine, the 301 contains a

timing generator which is controlled by a one-megacycle oscillator and pro­

duces seven sequential one-microsecond time pulses per machine cycle. The

I-8

time pulse generator generates the basic timing for almost the entire system.

T

HIGH :
SPEED

INPUT-OUTPUT
MEMORY I

INPUT-OUTPUT
CONTROL r---_J CONTROL

LOGIC PROGRAM LOGIC
CONTROL

UNIT

RACK I RACK 2 RACK 3

Figure 2 301 Rack Layout

1. 301 Component Specifications

The HSM and its associated logic occupies the remaining quarter of Rack 2.

Depending upon which model is desired, the capacity of the memory is 10,000,

20,000, or 40,000 characters {Models 303A, 304A, and 305, respectively).

However, the 301 lOK or 20K memory cannot be expanded to 40K in the field.

Two characters (a diad) are read out and regenerated during one memory cycle.

This takes approximately seven microseconds. Each character contains six

binary information bits and one parity bit for error checking purposes.

Decimal addressing is used in the 301, and each address is constructed of

four characters. For the lOK memory, addresses range from 0000 to 9999, but

for the 20K and 40K memories, a special character is necessary in the most

significant digit position. The second ten thousand from -000 to R999, and

the fourth ten thousand from "OOO to 2999. {See page 1-6 of the 301 Pro­

grammers' Reference Manual.)

The 301 does not have a spe~ific arithmetic unit since no adder exists; the

table look-up technique is used instead. However, what logic there is, which

is peculiar to the arithmetic operations, exists in the PCU. Only decimal

addition and decimal subtraction can be executed in the 301. Three other

1-9

operations performed by logic are also available, but multiplication and

division must be performed by programming.

The control logic which communicates with the peripheral gear can be found in

racks one and three. Two racks are used only if the system is sufficiently

large. Each piece of input-output equipment has its own panel of control

logic of from three to eleven rows on one side of a rack. A common bus con­

nects the control modules to the Processor but otherwise the modules are in­

dependent of one another. Should a customer wish to extend his system, he

simply buys the necessary control logic and device, bolts in the modules,

and connects the cables. No common input-output buffer exists. Each piece

of control logic has effectively its own buffer, hence, several different

operations may be proceeding at the same time.

2. Simultaneous and Record File Modes

Available at optional cost along with the peripheral equipment are two modes

of logic called Simultaneous and Record File. Each mode is almost another

complete Program Control Unit in itself except that they both use the Pro­

cessor timing pulses. Specific instructions are designed to work only in

these modes with input-output equipment. The Record File Mode is restricted

to Record File Units and Communications only, however. The Simultaneous and

Record File modes are located in racks one and three with the peripheral

control logic. If a system contains three modes - Normal, Simultaneous and

Record File - then three different instructions can be executed simultaneous­

ly while time sharing memory. In addition, there are three independent opera­

tions; namely, rewinding magnetic tape, paper advancing on the Line Printer,

and band selecting on the Record File. These operations need only be ini­

tiated and they will proceed independently of any computer modes. Thus it

is possible to perform six different operations at the same time on one 301

System.

The Power Supply for the 301 Computer System is found in one or two addition­

al racks, depending on the size of the system.

I-10

D. THE RCA 301 SYSTEM

The RCA 301 Electronic Data Processing System is composed of a Processor

Model 303/304 (Program Control Unit and High Speed Memory) and the following

"on-line" peripheral equipment:

a. Paper Tape Reader

b. Paper Tape Punch

c. On-Line Printer

d. Card Punch

e. Card Reader

f. 581 Tape Station

g. Hi-Data Tape Group

h. Record File

i. Check Sorter-Reader

j. R.A.C.E. Unit

k. Interrogating Typewriter

1. Monitor Printer

m. Various Communications Equipment

The Burrough's Check Sorter-Reader is not considered part of the 301 System,

but optional control logic is available to make it compatible with RCA equip­

ment. The above peripheral equipment is termed "on-line" because it is tied­

in directly to the Processor and receives its control levels from the Proces­

sor. Another term used is "input-output equipment". Certain pieces of per­

ipheral equipment are used as input devices while others are used for output.

The magnetic tape units (581 and Hi-Data Tape Group) as well as the RACE Unit

can be used as either input or output devices with the Processor. (See

Figure 3).

I-11

I-12

INPUT

HI DATA

TAPE GROUP

CARD READER ..

PAPER TAPE READER

~
~c~
II :.J :::1
r.l(Oll: •X<:

-

HI DATA
TAPE GROUP

ON LINE PRINTER

OUTPUT

Figure 3 RCA 301 Input-Output Equipment

The Program Control Unit and High Speed Memory occupy one rack of logic while

the input-output control panels occupy two additional racks of logic -- one

on either side of the Processor rack. (See Figure 4). Included with the

Processor rack is the console for the Computer.

_________ .__,.._,_.,....

--~....,.-- ,,.... ___ __

I
I
I
I
I PROGRAM

HSM. I CONTROL
I UNIT
I
I
I

CONSOLE

I
I
I
I

____________ _._ ______ 1 ______ ..._ __________ ...,.vv

Figure 4 The Three Basic Racks of the 301 Computer

1. System Elements Description

Processor, Model 303/304 - The Processor is a general purpose, digital,

stored program, transistorized machine consisting of the following integrated

units: High Speed Memory, Program Control, Console Panel and Power Supply.

The High Speed Memory is a random access, magnetic core device which provides

storage and work area for programs and data.

The memory capacity is either 10,000 (Model 303) or 20,000 (Model 304) alpha­

numeric characters. The Program Control executes the instructions of the

program stored in the High Speed Memory and performs the required accuracy

checks. The Console Panel provides for complete monitoring of the Computer

I-13

operation. Adequate indicators and controls are provided on the panel to

initiate normal computer operation and to facilitate program checkout and

maintenance.

2. Paper Tape Reader and Punch, Model 321 - Paper Tape input and output is

provided by the Paper Tape Reader and the Paper Tape Punch. The Paper Tape'

Reader provides £or the entry or 7-channel paper tape at a rate or 100 char­

acters per second. Accuracy or data on paper tape is assured by parity checks.

The Paper Tape Punch produces paper tape data from the Computer at 100 char­

acters per second. The accuracy or the output is assured by an echo check.

3. On-Line Printer, Model 333 - The On-Line Printer provides high-speed

printed output £or the RCA 301 System. The printer, operating completely

under program control, has a line capacity or 1000 lines per minute, and

paper can be advanced in excess or 70 lines per second. Variations in for­

mat, as well as complete editing, are under the control or the stored program.

Paper advance is independent or the normal data processing activity.

4. Card Punch, Model 334 - The Card Punch automatically translates RCA 301

characters from memory to 80-column card code and punches the information

into cards. The output rate is 100 cards per minute. The card punching

unit includes an automatic card reading station £or automatic accuracy checks.

Information is edited and re-arranged under program control.

5. Card Reader, Model 323 - The Card Reader reads information into memory

rrom 80-column card code. Cards are read at the rate or 600 cards per min­

ute. Reading and editing is under complete control or the stored program.

Two reading stations are provided £or automatic accuracy checks.

6. Tape Station, Model 581 - To provide data compatability with other RCA

Data Processing Systems, Tape Adapters can be added to the RCA 301 System.

The Tape Adapter permits the RCA 301 Computer to read rrom or write to a

Model 581 Tape Station. The 581 Tape Station reads or writes information

on magnetic tape at a density or 333 characters to the inch, while moving

I-14

tape at 100 inches per second.

7. Hi-Data Tape Group, Model 381 - The Hi-Data Tape Group is composed of a

cluster of six tape decks with a common set of control, power supply, and

switching circuits. Each tape deck responds to programmed instructions by·

reading and writing information on magnetic tape. Reading is performed in

either the forward or reverse direction. Data is recorded in seven channels,

with a density of 333 characters per inch. Tape speed is 30 inches per sec­

ond. Tape rewind at 90 inches per second is independent of the normal data

processing ability.

8. Record File, Model 361 - Record files, with a capacity of over 4.6 mil­

lion characters each, are available with each RCA 301 System. The Record

File contains 128 magnetic discs, and each side of one of these discs is

divided into two bands with each band containing ten cells. Each cell has

a storage capacity of 900 characters.

Data may be transferred between the core memory and the Record File. The

contents of as many as ten cells can be transferred with one instruction.

The transfer rate between the Record File and the High Speed Memory is 2500

characters per second.

9. Check Sorter-Reader, Model 101 - The Check Sorter-Reader processes docu­

ments at the maximum rate of 1560 per minute. Documents are sorted to one of

13 pockets. The Sorter-Reader can be operated in the sort (local) mode or in

the external mode controlled by the 301 Processor.

SUMMARY OF PERIPHERAL EQUIPMENT PERFORMANCE

Record File •••••••••.•.••••••. Storage of over 4.6 million alpha-numeric

characters, transfer rate of 2500 characters

per second.

Hi-Data Tape •••••••••••••••••• 333 characters per inch, tape speed of 30

inches per second.

I-15

581 Tape Station ••••••••••••••.•••••• 333 characters per inch, tape speed of
(with Tape Adapter)

100 inches per second.

Card Reader •••••••••••••••••••••••••• 600 cards per minute.

Card Punch •.•.•.•••.•...••.•.•.•.•.•• 100 cards per minute.

On-Line Printer •.•.•.•.•.•.•.•..•.•.• 1000 lines per minute, 120 characters

per line.

Paper Tape Reader ••.•••.••.•.•.•.•.•• 100 characters per second.

Paper Tape Punch •.••••.•.•.•.•.••.•.• 100 characters per second.

Check Sorter Reader •••••••.•.•.•.•.•• 1560 documents per minute.

E. TYPICAL SYSTEM APPLICATION

The flexibility of the RCA 301 System makes it ideal for a widely diversified

range of applications. To illustrate the efficiency and versatility of the

RCA 301, an example has been chosen of its application to common distribution

reports and the weekly payroll. Figure 5 illustrates the system configura­

tion for this application.

I-16

r-------------------------------~
~--....... ------------------,I • -~--- I

~::::i~~ ,1
CARD READER CARD PUNCH -------,I I

I I I I

HI-DATA
TAPE GROUP
(6 MAGNETIC

TAPES)

- I I I
~t-'--~ ON·--LIN~f I I I

PRINTER

COMPUTER
SIMULTANEOUS
MODE CONTROL

I
+
I
I
I
I
I
I
I

L---------------------~
-------NORMAL OPERATION -- - - - - SIMULTANEOUS OR PARALLEL OPERATION

Figure 5 RCA 301 System for Labor Distribution-Payroll Application

Inputs to the daily run are time-clock cards and labor tickets for straight

time or piece work. A report of labor distribution by department is prepared

for cost accounting as output.

As a by-product of the daily run, the input is prepared for the payroll and

stored within the 301 System in an optimum fashion. The weekly payroll run

produces the paycheck for each employee. It also creates a payroll register

and deduction register.

The daily input of clock cards, straight-time cards, and piece work cards is

I-17

read in batches and sorted within the high speed memory. (See Figure 6).

DAILY
CLOCK CARDS

STRAIGHT-TIME
LABOR CAllDS

PIECE-WORK
LABOR CARDS

CARD READER

RCA 301
SOllT BY DEPARTMENT

AND EMPLOY!E NUMBER

RECONCILE
LABOR TO

CLOCK CARPS

ACCUMULATE
TOTALS

COMPUTER

DAILY LABOR
DISTRIBUTION LIST

ON-LINE
PRINTER

Figure 6 Daily Labor Distribution to Departments, Using RCA 301 System

Off-line sorting equipment is not required. The data, sorted by department

and employee number, is sent to the Tape Station. This procedure is repeated

until the input data is exhausted. The.data stored on the Tape Station is

then transferred in sections to the core memory and merged in the required

sequence. A reconciliation of clock cards to labor cards is performed for

each employee. Concurrently, employee data is grouped and sent to the Tape

Station to be used as input for the weekly payroll. The department totals

are accumulated and labor distribution information edited and printed out.

I-18

The Payroll, which is prepared weekly, utilizes the data provided by the

daily labor distribution run (Figure 7). The RCA 30l's ability to store the

data in an expedient manner on the Tape Station requires only simple merging

in the high speed core memory.

The master employee file is run against the employee information as each

section is in high speed memory. At the same time, the payroll and deduction

registers are created on magnetic tape and the payroll checks are prepared on

the On-Line Printer. Eliminated in this phase is the necessity of running a

transaction tape against the master file tape. This means that full advan­

tage is taken of simultaneity. The payroll and deduction registers may be

printed after the checks.

This application shows the capabilities and power of the RCA 301 System. All

data manipulation, sorting, intermediate storage of data, processing, and

printing is accomplished within the System. System efficiency is reflected

in the time required to perform these operations. For a 1,000 employee firm,

each labor distribution function requires only one-half hour, and the weekly

payroll run takes less than 15 minutes.

I-19

PAYROLL
REGISTER

I-20

•
~ .(o) .m

~~~ .:;.~ 

l~"l 

.... 

:_:( Jl 
I'-" 'r-.'' (i 0 

_l __ -

i.-

PAYROLL 
REGISTER 

COMPUTER 

MASTER 
EMPLOYEE FILE 

~~ t~~ J') 1'-i~ I'-'' 

-
RCA 301 MERGES 5 GROUPS 

AND UPDATES PAYROLL 

-·- - ···-1---- f----4 

-1' t----- --~---... 
~II l-

,~ 

11~ •• \I • 1 1tr==D ~I~ 
• n \. -

PAYROLL 
CHECKS 

~ 

~~i 1rv~ (r. 1. 
-- _.I i 

-

I~ :c 
'"' 

"""' 

, 
~ lr1) m ;,~ L-D 
Jl 1 ~9 ~"J ·~ r-.1'' 

0 

........ 

DEDUCTION 
REGISTER 

Figure 7 Weekly Payroll Flow, Using RCA 301 System 

UPDATED MASTER 
EMPLOYEE FILE 

·~- '~ r r 
Ir.'. ' /~ ~f,~ IL-";1 (i~(i~ ~i (i I 

DEDUCTION 
REGISTER 



F. THE ROLE OF INSTRUCTIONS 

Nothing of significance can be accomplished in the 301 Computer unless it is 

done by instruction. The computer can only obey the 41 wired-in instructions 

that exist in the Program Control Unit. Basically speaking, the Computer 

executes only one instruction at a time; hence, every program must be solved 

step-by-step. 

A 301 instruction consists of ten characters in coded form which, when de­

coded, will dictate a specific course of action. If, for example, it was 

desired to add two given numbers, the computer must be told (1) the operation 

that is to be performed and (2) the number of digits contained in each oper­

and. The first character {Operation Code) of the instruction will indicate 

the type of operation. In the case of an Add instruction, this would be a 

"plus" symbol {+). The second character {N character) of the instruction 

will determine the number of digits contained in each operand. Therefore, 

when adding two five-digit numbers, the Operation Code sould be + and the N 

Character would be 5. It should be noted that the function of the N Charac­

ter is not the same for all instructions, e.g., in a Tape Write instruction 

it determines which tape station is to be utilized. 

Almost all data, as well as the program, are stored in the High Speed Memory 

{HSM). Every character contained in memory (including the characters that 

make up the instructions) has its own memory address. An address is simply 

four decimal digits which represent a location or a series of magnetic cores 

in memory. These cores can hold information in binary bit form. If it is 

desired to retrieve or insert information into these cores, they must be 

identified by an address. In a lOK memory, addresses range from 0000 to 

9999. In a 20K memory, addresses range from 0000 to I999, and in a 40K 

from 0000 to 2999. See page I-6 of the Programmers' Reference Manual. 

There are four basic groups of instructions, namely: 

a. Data Handling Instructions. 

b. Decision and Control Instructions. 

c. Arithmetic Instructions. 

d. Input/Output Instructions. 

I-21 



In an Add instruction, for example, the address of each operand must be 

specified. These two addresses are called the A Address and the B Address, 

respectively. The A Address will designate the location of the least sig­

nificant digit (LSD) of the augend and the sum. The B Address will designate 

the location of the LSD of the addend. 

All 301 instructions follow a similar instruction format of: 

where: 

0 N AAAA 

0 = Operation Code 

N = N Character 

BBBB 

AAAA = 4-digit A Address 

BBBB = 4-digit B Address 

The N character can be used for many different functions, depending on the 

instruction, such as specifying length of operands, specifying certain op­

tions, etc. 

A typical Add instruction, where it is desired to add two three-digit numbers 

would be as follows: 

+ 3 1002 2015 

This instruction states that we will add two operands consisting of three 

digits each. The first addition will take place with characters from each 

operand found at locations 1002 and 2015. The second addition will be upon 

characters found at locations 1001 and 2014 and the third addition will be 

upon characters found at locations 1000 and 2013. The result of each addi­

tion will be placed back in memory at locations 1002, 1001, and 1000. 

Memory contents are often illustrated as follows: 

00 01 02 03 12 13 14 15 

10 5 6 3 20 [ 8 1 3 8 

HSM Before Execution of Instruction 

I-22 



00 01 02 03 12 13 14 15 

10 7 0 1 2 I 20 ~l_a ______ 1 ______ 3 ______ a __ 

HSM After Execution of Instruction 

The two digits on the left of each box denote the first two digits of the 

address. The last two digits of each address are shown above the box. 

Within the box are the actual contents of memory. Thus, after executing 

the Add instruction, memory would contain the characters shown above. 

1. The Role of Status Levels 

The instruction itself is broken down into subdivisions called status levels. 

(See Figure 8). Each status level exists for seven microseconds. There are 

twenty-four status levels, each of which accomplishes one basic function 

(such as loading a register, accessing HSM, etc.). Each instruction is made 

up of a certain combination of status levels, in a certain order, to produce 

a desired result. A status level can be described as a gating level which 

opens paths in the Computer Logic for information flow. Usually a status 

level is named for the register with which it primarily works. For example, 

a Pl status level works with the P register; while an A3 status level works 

with the A register. Some status levels such as Sense Input-Output (SIO) are 

named after their function. 

2. The Role of Time Pulses 

The status level, in turn, is broken down into time pulses. In almost every 

synchronous machine, the memory cycle dictates the timing for internal opera­

tions. Since the 301 memory cycle consumes approximately seven microseconds, 

seven one-microsecond pulses called time pulses (TPO, TP1, TP2, TP3, TP4, 

TPS, TP6) comprise the basic timing of the Computer. Almost every function 

carried out in the 301 is done at a specific time pulse of a given status 

level, during a particular instruction. 

I-23 



I 
--i 

I 

STATUS 
LEVEL ~ ( 7).J.S) 

INSTRUCTION 

I I I I I I I I I I 
:,._TIME PULSE 
I (l.LlS) 

1 1 I 1 1 1 1 1 1 I I I I I I 

Figure 8 Timing Breakdown of a typical 301 Instruction 

An instruction is identified by its operation code. The operation code is 

the major control level which in most cases, exists for the entire execution 

of the instruction. It is the operation code which determines what status 

levels are necessary for carrying out the instruction, and it is the time 

pulses which determine when these status levels will occur. All the logic 

responsible for generating operation codes, status levels, and time pulses 

exists in the Program Control Unit. 

3. Processor Block Diagram 

A block diagram of the Basic Processor is shown in Figure 9. Note that a 

common bus, capable of transmitting four 301 characters in parallel, connects 

to all registers. Bus lines 2 and 3 each have seven isolated wires to handle 

seven bits per character, but Bus lines 0 and 1 have six and five wires, 

respectively, for Models 303A and 304A. Model 305 has seven wires for Bus 

line o. The bus lines which have less than seven wires are those used to 

handle addresses only. Most 301 addresses are four decimal digits and all 

decimal digits have no "one" bits in the 24 and 2 5 position (301 code}. 
4 4 5 The 2 bit in Model 304 and the 2 and 2 bit in Model 305 are used in the 

most significant digits of addresses over ten thousand. 

I-24 



H 
I 
N 
l/l 

ADDRESS 
GENERATOR 

p 
REGISTER 

1 1 ~ ~ 

A 
REGISTER 

1 1 1 ~ 

L.fA-8LJ 
l~I 

1i 
REGISTER 

'I 1 1 1 

DREG. 

;21 ~3 NOR N 

11 4 

NR I I ICOMP.f1 j 

aus o-3~2~i3~==l~~;ti::::~!~~t~~;~~!~j~=~E====::t=== BUSl=~~~~====~~~:::t::::::::~:::t~::3r:~::~:::::JL:::_~~~~~L.~~~~....&. BUS2 
BUS3 

MEMORY ~ ~ ~ ~ 
ADORE SS 

REGISTER I INTERCHANGE 

BUS 
ADDER _J 

MEMORY REGISTER 
REGENERATION 

EEO L .... ,, ... .,H RI ·~-::.~y rff"""""'"""''·· I ~ 

Figure 9 Processor Block Diagram 



Therefore, Bus 0 which carries the MSD characters of addresses needs six or 

seven wires {depending on the model) while Bus 1 needs only five wires - no 
4 5 wire necessary for 2 or 2 • 

In reality, there are two four-character buses in the 301. One is called 

the positive bus and the other the negative bus. Inverters separate the two 

buses such that any signal on one is carried on the other, but in opposite 

polarity {See Figure 10). 

6 OR 7 WIRES +-1'-"....,._,,._,._,__,,.._,,.._,,.._,__..,._..,._.,._.,._,._~~~-+-+-+ BUS 0 (POSITIVE) 

5 WIRES ....,,..........,.i.....-.._.__,.__,.__,.__,.__,.__,.--.--._..._.._.,.....,,.._..,....,.......,_,_9us I (POSITIVE) 

6 OR 7 
WIRES 

5 WIRES "'°""'..._,-...-.....-._,__,__,_""""°..,._+-+-.,_+-.~,...._r...-J-+-+-+-+ BUS I (NEGATIVE) 

7 WIRES ,.._..~i....,r;-+-+t1-_,_-+_,_~..,._+-+-+-+-.,.._,.....,~_,,._,,._,._,. BUS 2 (NEGATIVE) 

Figure 10 Positive and Negative Bus Lines 

A +6.5 volt signal on the positive bus indicates a "one" bit and a zero volt 

signal a "zero" bit. Conversely, on the negative bus a zero volt signal is 

a "one" bit and a +6.5 volt signal is a "zero" bit. TQe reason for a double 

set of bus lines is that the basic 301 AND gate requires low inputs to pro­

duce a high output. If "one" bits on the positive bus were required to prime 

the AND gates, the signals would all have to be inverted. Therefore, to 

I-26 



economize on hardware, two sets of bus lines exist; the positive bus to re­

ceive outputs from gates, and the negative bus to provide inputs to gates. 

4. Gating Information From Register To Register 

To illustrate transmission of data from one register to another, an example 

involving the N register and the D register will be used. (See Figure 11). 

iP45(N) '1I Al DSL.(N) . 

l 
I I 0 I 0 

s N--26-,_- S 5 R s N-24R s N-23 R S ~R s 
N-2 N-

I 0 I 0 I 0 I 0 I 0 I 
C) 0 c~ 0 l) -0 CJ" -0 i;,- """CJ" v 

-- -- -- - - -
__o_ _l 0 t. n _Q 

1 
\... 

Figure 11 Gating Out of N Register 

I 

N-21 R s 
0 I 

-a- "V 

6 

~ 

I 

N-20R 
0 

-a-

>- ( 
BUS 3 

POSITIVE) 

I-27 



I 
I I 

( I ) Jl BUS 3 - 2°(P) I I 
I I 

(I) n_ 
BUS 3-21(P) 

I 

(0) I 
BUS 3 - 22CP) I I 

I I 

( I ) Jl BUS 3 - 23(P) I 
(0) I BUS 3 - 24 CP) 

I 
I I 

( I ) JL BUS 3 - 25 (P) 
I I 
I I 

( I ) n_ 
BUS 3 - 26 CPl I I 

....,.I 2)'S i..-
I I 

POSI Tl VE BUS 

I 

BUS 3 - 20(N) ( I ) I 

I 

( I ) I BUS 3-21CN) I I 
I I 

(0) Jl BUS 3 - 22(N) 
I 

BUS 3 - 23 (N) ( I ) I 
I I 
I I 

(0) Jl BUS 3 - 24 (N} 
I 

BUS 3 - 25 (N) ( I ) I 
I 

{ I ) I BUS 3 - 26 {N) 
I I 

-.! 2 )(S i.--
I I 

NEGATIVE BUS 

Figure 12 Pulse Train for Dollar Symbol ($) 

I-28 



Assume that a $ is in the N register. Since the bit configuration for a $ 
6 5 3 1 0 . is 1 101 011 including parity, the N register 2 , 2 , 2 , 2 and 2 flip-

flops would all be set, while 24 and 2 2 would be reset. At TP4 time of an 

Al status level, during a Transfer Data by Symbol Left instruction (DSL), 

the upper leftmost AND gate would be primed and produce a high output. This 

output would exist for two microseconds (duration of TP4 and TPS) and after 

inversion would prime all of the AND gates shown below the N flip-flops. 

Any flip-flops in the set state would also be placing a low level on the 

aforementioned AND gates. Thus, for each flip-flop that is holding a one 

bit, its corresponding AND gate would be primed and produce a high onto the 

respecti e bus line. This high would be a two microsecond signal. For the 

character $, the pulse train would be as shown in Figure 12. 

While the character $ is on the bus during TP4 and TPS, the D3 register is 

prepared for receiving this character. At TP4 of an Al status level during 

a DSL instruction, the D3 register is reset and at TPS (See Figure 13) the 

character is gated into D3 from Bus 3 negative. It should be noted that 

whenever the 301 transfers data onto the bus, a two-microsecond gating pulse 

is the minimum used, and in some cases it is a 3 microsecond pulse. Gating 

from the bus into a register is usually done by a 1 microsecond pulse. 

I-29 



Al·DSL(N) 

TP5(N) 

eus 3 
NEGATIVE 

Figure 13 Gating Into the D3 Register 

5. The 301 Memory Cycle 

Being familiar with 301 instruction format, one can note that the instruction 

registers in the block-diagram are the Normal Operation Code Register (NOR), 

the N Register, and the A and B Registers. The other addressable register in 

the Basic Processor is the P register, which is used £or program control. The 

D register is used primarily £or temporary storage, while the NR register is 

only used during the repeat instruction. The address generator is responsible 

£or creating a special address whenever needed, such as in the STA process. 

The bus adder is used to increment or decrement addresses found in the Memory 

Address Register (MAR), and the interchange is a series 0£ AND gates and OR 

gates which govern the gating between the bus lines and the Memory Register 

(MR). Any character coming £ram memory or going to memory must pass through 

the MR. 

I-30 



The MAR and HSM as well as some other logic are located in that quarter 0£ 

rack 2 housing memory. Everything else on the block diagram can be found in 

the remaining three quarters 0£ rack 2 designated as the Program Control Unit. 

The £unction 0£ the MAR is to hold the address while it is decoded and the 

memory cores are accessed. It is the basic structure 0£ the 301 to access 

two locations, or a diad, £or each address sent to the MAR. A diad can be 

remembered as the even address on the left and the odd address on the right. 

The locations shown below are divided into diads. 

32 33 34 35 36 37 38 39 40 41 

84 

Effectively, the computer ignores the 2° bit 0£ the Least Significant Digit 

(LSD} 0£ an address when addressing memory. For example, in the address 

8437, the LSD is a seven or binary 000 111 excluding parity. !£ the 2° bit 

is ignored, the character could also be 000 110, which represents 6 to the 

301. Hence, the diad is composed of locations 8436 and 8437. 

Usually the status level alone is sufficient to request a memory cycle. 

Occasionally the operation code is also required. Nevertheless, the computer 

will not generate a memory cycle unless the Program Control Unit commands one. 

A signal known as command level is sent to memory logic at the beginning 0£ 

the status level which is to use memory, and when coupled with TPl, the 

command level begins the memory timing generator sequence. The memory timing 

generator produces a series 0£ control signals which carry out the memory 

cycle. These signals are not the same as TP 1 s, but are so regulated that 

the memory cycle will be completed by TP-6, when the status level is com­

pleted. The first phase 0£ the cycle is read-out, and the last phase is 

write-in (Regenerate}. Once a memory cycle is started, it is always carried 

out to completion. When a diad is read, the contents 0£ 14 cores are auto­

matically destroyed; the two characters found there are sent to the MR. 

However, these two characters must be gated into the MR or they will be lost 

completely. The reason £or the gating process is to permit the insertion 0£ 

I-31 



new information into the memory cores. Whatever exists in the MR during the 

write-in phase will be regenerated into the selected 14 cores. Hence, if 

both of the characters are permitted to reach the MR during read-out, then 

the same two characters will be regenerated and memory would be effectively 

unchanged. If, however, only one character is permitted to reach the MR 

during read-out, and a new character is inserted from the bus into the MR 

prior to write-in time, memory would contain one new character after regen­

eration. Two new characters can be written into a diad if the original con­

tents of the diad are not permitted to reach the MR and the new characters 

are inserted into the MR before write-in time. 

Obviously something must control the gating into the MR during read-out. 

Once again, the status level and the instruction make the primary decision 

as to whether or not a new character will be written into memory. Many times 

the computer simply wants to transfer information from memory to register and 

permits both characters during read-out. The other decision as to which 

character to permit of the two, if not both, is made by the address in the 

MAR. The address being odd or even specifies what character is gated from 

memory to the MR and also designates what position of the MR will receive the 

new character from the bus. 

Because of the timing generator in memory, all memory cycles perform read-out 

and regeneration at approximately the same time. Read-out occurs around TP2 

and TP3 of a status level and regeneration at about TP4 and TPS. The MAR is 

reset at every TPO and the MR at every TP1, in preparation for the new memory 

cycle. 

Assume that a B status level of a Transfer Data Left instruction is about to 

be executed. During this status level a character will be transferred from 

the 02 register to memory as specified by the B address. 

At TPO of the B status level the MAR is reset and at TPl the B address is 

gated into the MAR. Also at TPl the MR is reset. If the B address is 7103, 

the diad selected would be 7102 and 7103. Since the B status level is writ­

ing a new character to memory at the address in the MAR, only one character 

I-32 



would be read-out at TP21 into the MR. This character would come from 7102 

and would be placed in MRO because the MAR address is odd. The character 

from the 02 register would be on Bus 2 by TP2 time and would be gated into 

MRl at TP3 time through the interchange. Regeneration would occur at TP45 

time and the character that was held in 02 would now exist in memory at 7103, 

while 7102 would be unchanged. 

The discussion above is illustrated in Figure 14 by using X and Y as original 

contents of memory, and Z as the character in the D2 register. 

~33 



02 

MAR 

7 0 3 

BUS 2 

MAR ADDRESS EVEN -- MAR ADDRESS 0[ .--
TP3--

HIGH SPEED MEMORY 

02 03 
I- --1- -1 

71 I X I Y I 
I__ __!_ - _j 

MEMORY REGISTER 

MAR ADDRESS 
ODD . 

MAR ADDRESS 
EVEN 

MRO MRI 

x 

READ OUT ( z TP23) 

READ OUT CYCLE 
MAR 

71 I I 0 3 

r_ f_ ' f_ 

HIGH SPEED MEMORY MEMORY REGISTER 

02 03 MRO I MRI l_T ___ I 
I 

71 I X I c I I r L ,.... _J_ .-_j x I 
-4 ti .l 

REGENERATION (z TP 45) J 

WRITE IN CYCLE 

Figure 14 Typical Memory Cycle 

I-34 



G. STATICIZING 

Before discussing individual instructions, it should be pointed out that, 

although the actual instruction is stored in memory as part of a program, 

the computer must place the entire instruction in registers for execution. 

The process of bringing an instruction out of memory and distributing it to 

appropriate registers is known as staticizing. Each instruction in the pro­

gram must be staticized before the computer can execute it. The Operation 

Code is placed in the Normal Operation Register {NOR), the N Character in the 

N Register and the A and B addresses in the A and B Registers, respectively. 

Since an instruction consists of ten characters {an Operation Code, an N 

Character and two addresses of four characters each), ten locations in memory 

are needed to accommodate an instruction. Usually, the Operation Code is 

placed at an address ending in zero. If this is true of the first instruc­

tion in a program, all succeeding instructions will have their Operation 

Codes at an address etlding in zero. For example, an instruction might be 

placed in memory beginning at address 3000. The individual characters of 

this instruction would then have the addresses as shown: 

00 01 

30 I + 3 

OP N 
Code Char. 

02 

1 

03 

0 

A 
Address 

04 

0 

05 06 07 

2 2 0 

08 

1 

B 
Address 

09 

5 

A second instruction would start at address 3010 with the Operation Code in 

that location. A third instruction in this program would have its Operation 

Code in location 3020 and so on. 

A program can be placed anywhere in memory except between addresses 0000 and 

0225 which are reserved for certain operations. See page E-1 of Programmers' 

Reference Manual. 

In order to staticize an instruction, the computer must know the address of 

that instruction. In the 301, this function is controlled by the P Register. 

I-35 



The P Register must be supplied with the address of the first instruction in 

a program (the address of the first Operation Code). After being given an 

address, the P Register will proceed to increment this address during the 

process of staticizing and will thus locate or keep track of each instruction 

in the program. 

The 301 memory cycle reads two characters at a time from memory in seven 

microseconds. This pair of characters is called a diad. A diad consists of 

two consecutive memory locations with the even address on the left and the 

odd address on the right. (The computer actually ignores the 2° bit of the 

LSD of the address in the process of addressing memory.) Thus, to staticize 

an instruction, the computer must go through five memory cycles (two charac­

ters per cycle times five equals 10 characters). When staticizing an in­

struction, in order to keep track of the addresses of the individual diads, 

-the P Register must be incremented by two, five times. For this reason, the 

OP code must be in an even address; that is, the OP code and N count must be 

in the same diad. 

Thus, it can be stated that the purpose of the P Register is to hold the 

address of the next instruction to be executed. 

To clarify the concept of staticizing, the following illustration is given. 

After the program has been loaded into memory, from paper or magnetic tape 

(this is accomplished by an instruction manually set up on the console), the 

address of the first instruction in the program must be manually placed in 

the P Register. 

p 3 0 0 0 

Once the start button is depressed, the computer will gate the contents of 

the P Register to the MAR (memory Address Register). 

p 

MAR 

I-3' 



The MAR will hold the address while decoding logic selects the locations in 

memory. The output of the MAR also feeds the Bus Adder which modifies the 

address by +2. 

The diad which is addressed by the contents of the MAR is brought from memory 

to the MR (Memory Register). During this memory cycle, the diad will be re­

generated into the original locations in memory. 

00 01 02 03 04 05 06 07 08 09 

HSM 30 1 0 0 2 2 0 1 5 

MR 

The contents of the MR are then sent to their respective registers, the NOR 

and N. 

MR 

NOR 

Meanwhile, the Bus Adder has finished modifying the P Address by +2. The P 

Register is reset and the new address is gated back from the Bus Adder to the 

P Register. 

BUS ADDER 3000 + 2 = 3002 

p 3 0 0 2 

The P Register is now addressing the second diad of the instruction. A sim­

ilar process is repeated four more times to staticize the entire instruction. 

p 2 

MAR 2 

I-37 



00 01 02 03 04 05 06 07 08 09 

HSM 30 + 3 0 2 2 0 1 5 

MR 

A 

BUS ADDER 3002 + 2 = 3004 

p 

MAR 

00 01 02 03 04 05 06 07 08 09 

HSM 30 + 3 1 0 2 0 1 5 

MR 

A 1 0 

BUS ADDER 3004 + 2 = 3006 

: : : : 
p 

~! 
0 0 6 

Ii Ii Ii 
MAR 0 0 6 

I-38 



00 01 02 03 04 05 06 07 08 09 

HSM 30 + 3 1 0 0 2 1 5 

MR 

B 

BUS ADDER 3006 + 2 = 3008 

p 8 

MAR 8 

00 01 02 03 04 05 06 07 08 09 

HSM 30 + 3 1 0 0 2 2 0 1 5 

MR 

B 2 0 1 5 

BUS ADDER 3008 + 2 = 3010 

p 3 0 1 0 

Note that P is addressing the operation code of the second instruction in the 

program when staticizing is completed. Final register contents would be as 

follows: 

NOR 8 N A 1 0 0 2 B 2 0 1 5 

I-39 



1. Pl Thru PS Status Flow 

Staticizing is accomplished by five status levels, Pl through PS. Each one 

staticizes one diad or two characters of the instruction. Five of them, then, 

will staticize ten characters or the complete instruction. They are desig­

nated "P" because they work with the P Register. 

The following are charts that show what happens at each TP of the status 

levels, and the pertinent portions of the processor block diagram.. 

Pl 

TPOl P Address is sent to Bus. 

Memory Register is reset. Contents of Bus are sent to MAR and 

TPl the Bus Adder where 2 is added to the address. A command level 
is sent to memory and the memory timing sequence begins. The 
MAR address is decoded and the diad selected. 

TP2 P Register is reset. Read out from memory has begun. 

TP23 Both characters read out are permitted to reach the MR. The 
modified address in the Bus Adder is gated back to Bus. 

TP3 Read out is complete. The contents of the Bus are placed in the 
P register. 

TP4 The NOR and N registers are reset. 

TP4S6 The contents of MRO are gated thru the interchange onto Bus 2 and 
the contents of MRl onto Bus 3. 

TP4S6 Regeneration of the characters in the MR occurs. 

TPS The contents of Bus 2 are gated into the NOR and the contents of 
Bus 3 are gated into the N register. 

TP6 A P2 status level is automatically selected. Reset MAR. 

I-40 



TPOI 

BUS 
ADDER 

BA (t2l 

REGENERATION 
(::::: TP45) 

TP23 
TP456 

READ OUT (::::. TP23) 

Pl 

MRO MRI 

Figure 15 Pl Status Level 

TP456 
TP6 

Q 
SELECT 

P2 

The main purpose of the Pl status level, therefore, is to bring out the 

operation code and the N character, and place them in the NOR and N registers, 

respectively. Note that the address in P register is now 2 greater and that 

a new diad is to be addressed. 

The P2 status level automatically follows the Pl with the following events 

occurring. 

I-41 



P2 

TPO MAR is reset. 

TPOl P address is sent to Bus. 

MR is reset. Contents of Bus are sent to MAR and Bus Adder 
TPl where 2 is added. A Command Level is generated and sent to 

HSM. The MAR address is decoded and the diad is selected. 

TP2 P register is reset. Readout begins. 

TP23 Both characters readout are permitted to reach MR. The modified 
address in the Bus Adder is gated onto the Bus. 

TP3 Readout is complete. Contents of Bus are gated into P register. 

TP4 A register is reset. 

TP456 The contents of MRO are gated thru interchange onto Bus 0 and 
contents of MRl onto Bus 1. Regeneration takes place. 

TPS The contents of Bus 0 and Bus 1 are gated into A register. 

TP6 A P3 status level is automatically selected. 

I-42 



...------...... TP4 
A REGISTER 

TPOI 

----------~-------..;.;.;----...------T--T_P!l_~auso 
--1----.------.f.----tir--i------+---r""""----~::~ 

TP1_;.:::t:::;:::=;::::~-,-..&...--i.--t-----r--r----- al8 J 

MAR 

HIM 

TPZJ 
TP41il 

llUD OUT I:= TPUI 

... 

Figure 16 P2 Status Level 

TN 

Q 
111.ECT 

llll 

The function of the P2 status level then is to bring out the first two 

characters of the A address and place them in the A register. 

The P3 status level follows immediately and brings out the last two 

characters of the A address. Note that the A register is not reset 

at TP4 of P3 as in P2, since the computer would destroy the first two 

characters brought out if this were permitted. 

I-43 



HSM 

TPOI 

A REGISTER 

AO : Al ; A2 

BA l+2J 

REGENERATION 
( :::::> TP45) 

PERMIT 
BOTH 

TP23 

TP456 

READ OUT ( :::::> TP23) 

MRO MRI 

Figure 17 P3 Status Level 

TP6 

0 
SELECT 

P4 

The P4 and PS status levels bring out the B address and place it in the B 

register in the same general steps performed by Pl, P2 and P3. 

At the end of PS the P register would hold an address of ten greater than 

the address it started with at the beginning of Pl. This address would re­

main in the P register while the computer executed the current instruction 

just brought out. When the instruction was finished, the computer would 

automatically select a Pl status level and the process of staticizing would 

again take place bringing out the second instruction in the program. 

It should be noted that after a PS status level, the Computer would examine 

the operation code and select the first processing level. This is the first 

I-44 



status level involved with the actual processing of an instruction. 

Upon the completion of the instruction, the Pl status level is automatically 

selected and staticizing of the next instruction begins. The P Register at 

this time contains the address of the first diad of this instruction. 

TPOI 

8A(+2l 

REGENERATION 
(::::: TP451 

Pl!RIU 
BOTH 

READ OUT(::: TP231 

Figure 18 P4 Status Level 

MRI 

TP6 

0 
SELECT 

P5 

I-45 



PERMIT 
BOTH 

B REGISTER 

BO : Bl : 82 ; 83 

REGENERATION 
( ~ TP45) 

TP23 
TP456 

READ OUT I ::::::: TP23) 

MRO "911 

Figure 19 PS Status Level 

"'Q""" 
SELECT 
FIRST 

PROCESSING 
LEVEL 

By means to be explained in the next section, it is possible for the Console 

Operator to manually insert the characters of an instruction into the NOR, N, 

A and B Registers. The net result of this resembles that of staticizing, but 

since it is accomplished by different means, it is not to be confused with 

staticizing. 

H. 301 CONSOLE 

The 301 Processor Console is located on the front of Rack 2 or the PCU Rack. 

It contains the pushbuttons and indicators necessary to operate the 301 pro­

cessor. For the arrangement of the buttons, see the Programmers' Reference 

I-46 



Manual, Figure 6, on Page III-13. On Pages III-10 thru III-12, each push­

button and its use are listed. 

The console switches are two basic types: microswitches and strip switches. 

Some of the microswitches are momentary contact (activated only as long as 

the switch is held depressed); the others are alternate action switches, that 

is Press On, Press Off. Those in the latter category are: 

1. OCSP 6. WTAB 11. BCT 

2. FPLS 7. BAI 12. STLR 

3. ICSP 8. INT 13. HSMI 

4. RDM 9. ISIM 14. ALI 

s. WRM 10. SMDI 

(See Programmers' Reference Manual for Switch Function.) 

The upper center two rows of switches on the console are the register select 

switches. Each row of switches is called a "strip switch". The register 

select switches are series leaf-type contact switches that are mechanically 

interlocked, so that only one switch can be "set" at a time. The mechanism 

is such that depressing any given switch causes any other switch that is 

"set" in that row to be released. Viewing the console from the front, the 

rightmost buttons of the two upper center rows are reset buttons. They are 

associated with strip switches--depressing one of these reset switches re­

leases any other switch that may be set in its row. Both strip switches 

must be reset before the Processor can be started. 

I-47 



, ... 4a---------ONE COMPLETE STRIP SWITCH---------191~ 

p 

ENGRAVING DENOTES WHICH 
REGISTERS WILL BE SELECTED 
FOR DISPLAY WHEN THE 
SELECT SWITCH IS "sET" 

SPARE POSITION- DEPRE~SING 
WILL CAUSE ANY OTHER SET" 
SWITCH TO BE RELEASED, 
HOWEVER, IT WILL NOT CAUSE 
THE STRIP TO APPEAR RESET 

RESET- DEPRESSING CAUSES 
ANY OTHER SWITCH THAT MAY 
BE "sET" TO BE RELEASED. 
EFFECTS ONLY THOSE SWITCHES 
IN ITS ROW. 
BOTH RESET SWITCHES MUST 
BE "SET• (LIGHT ON IN SWITCH) 
BEFORE PROCESSOR CAN BE 
STARTED. 

.. ra---------ONE COMPLETE STRIP SWITCH--------.t~ 

Figure 20 Strip Switch 

On the right of the console (viewed from operator's side) are four rows of 

switches and lights. Each row within the block has eight positions. They 

are designated by the engraving on the rightmost button. 

BUS I 

BUS 2 

BUS·3 

BIT SIGNIFICANCE 

Figure 21 Bus Switches 

I-48 



The upper row of switches and indicator are connected to the Processor Bus ~. 

The character as displayed on the console is called the C~ character. The 

second row from the top is connected to Bus 1 and called the Cl character, 

and so on through the C3 character. The console switches for the C3 charac­

ter are connected to the Processor Bus 3 and through wiring unique to these 

switches to the N register. 

DISPLAYED REGISTER SELECTED 
IN 

CONSOLE p A B N~ 0 MR T SO,!Y. FO~ LOCATION s u v N M L 

CJI PllJ AllJ era NONE NONE NONE sra T{IJ NONE uii NONE NONE 

C1 Pl Al Bl NONE NONE NONE SI Tl NONE UI VI NONE 

C2 P2 A2 82 NOR 02 MRG 52 T2 SOR U2 
.. 

V2 FOR 

C3 P3 A3 83 N 03 MRI 53 T3 M U3 V3 L 

Figure 22 Bus Display Chart 

When a register is selected by the register select switches, the contents 

will be displayed in the C~ through the C3 console indicators as shown in 

Figure 22. 

The proper operating technique for the strip switches, is to reset them, 

each by its own reset button, between the selection of registers. For exam­

ple, if the operator wished to place or view information in both the A and B 

registers, the selection sequence should be: 

1 - Select A 1 Select B 

2 - Reset strip switch 2 - Reset strip switch 

3 - Select B OR 
3 Select A 

4 - Reset strip switch 4 Reset strip switch 

This technique will preclude the possibility of inadvertently gating the 

contents of one register to another. 

I-49 



Many lights on the console are lit by lamp driver circuits and not directly 

by the switches. The bus display lights, £or instance require lamp drivers. 

Switches are provided to place information on the buses, and lamp drivers 

formed to the buses connect back to the lights in the switches on the console. 

In other cases, the console provides display (lights) only without switches. 

Examples 0£ this are the error indicators to the left 0£ the console. It is 

desirable to have some means 0£ checking £or open lamp filaments in circuits 

of this type with no switch to cause a lamp to light. This need is fulfilled 

by a lamp check circuit. The lamp check circuit checks only those lamps in 

the error indicators. The FAL {Record File mode alarm) indicator is above 

the lamp check switch. 

1. Read From Memory Procedure 

The following procedure will enable you to read successive memory locations 

out 0£ memory at a diad rate. 

Procedure: 

1. Depress general reset. 

· 2. Select the "A" register. 

3. Set the required four character address, with correct 

parity, in C~, Cl, C2 and C3. 

4. Reset the Strip Switch. 

s. Set RDM switch. 

6. Depress START. 

7. Select MR to display the diad that was addressed in C2 and C3. 

8. To read the next diad, repeat steps 4, 6 and 7. 

The status-flow for Read From Memory is shown in Figure 23. 

I-50 



READ FROM MEMORY {RDM) 

TPOl A~ BUS 

BUS ~ MAR BA{+2) 
TPl Generate CL 

Permit Both 

TP2 Reset A 

TP23 BA ~ BUS 

TP3 BUS ~ A 

TP6 Inhibit Parity Checking on: NOR~ N; STL 

Figure 23 Read From Memory Status-Flow 

2. Write to Memory Procedure 

The following procedures will allow you to change information in memory or to 

insert new information in memory at a diad rate: 

Procedure: 

1. Depress general reset. 

2. Select the "A" register. 

3. Set the required four character address with correct parity 

in C0, c1, c2, and C3. 

4. Reset the strip switch. 

S. Select the MR register. 

6. Set the diad that is to be written in memory in C2 and C3 

with correct parity. 

7. Reset the strip switch. 

8. Set WRM switch. 

9. Depress START. 

10. To write to the next successive diad locations repeat 

steps s, 6, 7 and 9. 

I-51 



3. Write to Memory {WRM) 

TPOl A -+ BUS 

Inhibit Resetting MR 

TPl 
BUS -+ MAR BA(+2) 
Generate CL 
Inhibit Both 

TP2 Reset A 

TP23 BA -+ BUS 

TP3 BUS -+ A 

TP6 Inhibit Parity Checking ON: NOR, N, STL 

Figure 24 Write to Memory Status-Flow 

The two characters inserted in the MR during the write memory cycle are now 

regenerated into the memory at the address specified by the "A" register. 

The status-flow for this operation is shown in Figure 24. 

4. Manual° Staticizing 

To manually staticize an instruction, you must do what is normally done dur­

ing the Pl thru PS status levels. 

Procedure: 

I-52 

1. Press general reset. 

2. Select NOR/N (you will note that C3 is all lit. This is 

because the N register is down counter and must be "set" 

and then the unwanted bi ts "reset" out). 

3. Enter the OP code in C2 and the N count in C3 by resetting 

unwanted bits. Be sure C2 and C3 contain good parity. 

4. Reset the strip switch. 

5. Select the "A" register. 

6. Enter the required four digit address in C~, Cl, C2, and C3 

with good parity. 



7. Reset the strip switch. 

8. Select the "B" register. 

9. Enter the required four digit address in C0, Cl, C2, 

C3 with good parity. 

10. Reset the strip switch. 

11. Reset the status level register by pressing STL button. 

(Note General Reset put a Pl status level in the status 

level register.) 

12. Enter the first processing level of the instruction to be 

done in the status level register with good parity. (This 

information can be found on your code card or your status 

flow manual. ) 

13. Press the ICSP button. 

14. Press any other buttons necessary to do the instruction 

such as WTAB or ALI. 

15. Press START. 

If you make a mistake when setting information in a register, use the C0 

Reset button to reset the selected register, only. If you press General 

Reset, all the registers but the selected register will be reset. 

I. MEMORY DISPLAY PANEL (Figure 25) 

The memory display panel (MDP) is located on the wiring side (side "A") of 

the Processor rack. The display panel consists of 42 lights for the purpose 

of displaying the condition of numerous flip-flops. The upper four rows dis­

play the information in the memory addressing registers. Starting at the 

top and working down they are C0 through C3 or the MSD through the LSD of an 

address. The bit positions are arranged with 2° on the right and 2 6 on the 

left. The lower two rows of lights show the conditions (set or reset) of 

certain logic flip-flops. In all cases, the light is lit when the flip-flop 

is "set". 

I-53 



,--, 
0 10 100 · I 24 23 

NOT USED~ L: -. . 

010010000 
000 

I-54 

0\00!0000 
0 100:0000 L ___ _ 

8888888 
8888888 

Figure 25 Memory Display Panel 

CO (MAR 0) 

Cl (MAR I) 

C2 (MAR 2) 

C3(MAR3) 

LOGIC 
FLIP-FLOPS 



SECTION II 

DA.TA HANDLING INSTRUCTIONS 

TO THE STUDENT 

This lesson is designed to develop the student's understanding of the data 

handling instructions. Each instruction is first described in terms of its 

purpose and effect. Then the details of its execution are shown with the 

aid of a simplified block diagram of the computer and simplified status level 

timing charts. Finally, practice problems are provided to help the student 

gain skill in using the data handling instructions. 

A. The DATA HANDLING INSTRUCTIONS, INTRODUCTION 

The Data Handling instructions are eight in number and each performs the 

function that its name implies. These instructions will be involved with 

transferring data and locating specific characters in memory. The following 

is a list of the 301 instructions classified as Data Handling: 

Op. Code 

J 

M 

N 

# 

p 

K 

L 

A 

TRANSFER SYMBOL TO FILL 

TRANSFER DATA LEFT 

TRANSFER DATA RIGHT 

TRANSFER DATA BY SYMBOL LEFT 

TRANSFER DATA BY SYMBOL RIGHT 

LOCATE SYMBOL LEFT 

LOCATE SYMBOL RIGHT 

TRANSLATE BY TABLE 

B. J - TRANSFER SYMBOL TO FILL (SF) 

In order to make use of HSM for storage and as a work area, we must be able 

to insert into HSM the characters we wish to store and use. An instruction 

which may be used for inserting characters is the Transfer Symbol to Fill 

instruction. The Transfer Symbol to Fill instruction places a selected sym­

bol in each memory location between and including two given addresses. Dur­

ing staticizing, the operation code (J) is placed in the NOR register. The 

selected symbol is placed in the N register. The two given addresses are 

placed in the A and B registers. 

II-55 



SF operates from left to right in HSM starting with the A address and ter­

minating after the location addressed by B has been filled. The A address 

determines the location into which the N character is to be written during 

the current memory cycle. The A register is incremented by one during each 

memory cycle, which causes the instruction to operate from "left to right". 

When A-B equality is reached (i.e. when the A address = the B address) the 

instruction terminates. The SF instruction is useful for "filling" many 

consecutive locations in memory, or even all of memory, with a selected 

character. It may also be used to insert a selected character into one 

specific memory location. 

NOTE: For a brief summary of the operating characteristics, 

see page V-13 of the Programmer Reference Manual. 

1. Transfer Symbol to Fill Instruction Format 

Op. Code 

J 

N 

Selected Symbol 
(any 301 character) 

2. Instruction Execution 

Example: J@ 1001 1003 

A 

Leftmost location 
to receive selected 
symbol 

B 

Rightmost location 
to receive selected 
symbol 

00 01 02 03 04 05 00 01 02 03 04 05 

101 s I M p L E 101 s @ @ @ L I EJ 
HSM before instruction HSM after instruction 

execution execution 

PRACTICE PROBLEMS 

1. J * 1000 1002 

00 01 02 03 04 00 01 02 03 04 

101 R c A * * I 101 ... -------------

HSM Before HSM After 

II-56 



2. JE 2003 2003 

00 01 02 03 04 00 01 02 03 04 

2of R A c c 

HSM Before HSM After 

3. Show how the following program will affect memory. (The numbers 1000, 

1010, and 1020 are the a.ddresses of the instructions in memory.) 

1000 JS 3005 3006 

1010 JD 3002 3002 

1020 J* 3004 3006 

00 01 02 03 04 05 06 00 01 02 03 04 05 06 

E x p E R 

HSM Before HSM Final 

Because all 301 instructions are wired to operate in a certain manner, and 

because each instruction is executed while it is held in specific registers, 

there will exist an initial address and a final address for both the A and B 

Registers, at given times. Immediately after staticizing, the address in the 

A Register will be called A. (A initial) and the address in the B Register 
l. 

will be called B. (B initial). During the execution of the Symbol to Fill 
l. 

instruction, the B Address will remain the same while the A address is in-

cremented by one each time, thereby designating where the selected symbol 

(N character} will be placed in memory. Once the A Address equals the B 

Address, a f~ip-flop called ABE will become set. However, the symbol must 

still be placed in the last location (B Address) and during the final memory 

cycle, the A Address is counted up once more. Therefore, Af (A final} or the 

contents of the A Register, once the instruction has been completed, will be 

B. + 1. 
l. 

This is one location to the right of the initial B Address. The 

control flip-flop ABE is the deciding factor in terminating the instruction. 

II-57 



Throughout this manual, reference will be made to Ai' Af' Bi' and Bf because 

initial and final register contents play an important role in programming. 

It will become evident, as we discuss each instruction, that successive in­

structions in a program can be made dependent upon final register contents 

of preceding instructions. 

Also, it should be noted that, where HSM or Register contents are displayed, 

the symbol 0 will be substituted for a zero, when it is considered that it 

might be mistaken for the letter "o". 

Example: 

J * 1005 1009 

04 05 06 07 08 09 10 04 05 06 07 08 09 10 

10IA B c D E F G 10 I A * * * * * G 
4 • ' ' A. B. Bf Af 1 1 

HSM Before HSM After 

4. Write an instruction which would fill the last four locations of a lOK 

memory with zeros. 

s. Write an instruction to change memory as shown. Give A and B final 

31 32 33 34 35 36 37 31 32 33 34 35 36 37 

52 l~_E _____ x _____ A _____ M _____ P _____ L _____ E~ s2~IE _____ x _____ A_. ____ M ________________ __. 

HSM Before HSM After 

II-58 

I 



3. Machine Operation 

After staticizing, the Symbol to Fill instruction uses just one status level -

an A2. The selected symbol is placed in memory at the A address, and the 

address is incremented by one. The process continues until the A address is 

equal to the B address at which time the instruction terminates. The se­

quence of events for an A2 is: 

A2 

TPOl A address is gated onto Bus. 

Contents of Bus gated into MAR and sent to Bus Adder to be 

TPl 
modified by +l. Generate a command level. Decode MAR ad-
dress and select diad. Set ABE flip-flop if A register 
contents equal B register contents. 

TP23 Gate N character onto Bus 3. Permit one character opposite 
to that specified by MAR address, to be read out into MR. 

TP3 Gate contents of Bus 3 into MR as specified by MAR address. 

TP4 Reset A register. 

TP45 
Regenerate old and new character into selected diad. Gate 
modified Bus Adder address onto Bus. 

TPS Gate contents of Bus into A register. 

TP6 If ABE flip-flop is set, select Pl; if not set, select A2. 

II-59 



MAR 

HSM 

,__-r-==s:===-=-MAR ADDRESS EVEN 
MAR ADDRESS ODD 

MAR 
ADDRESS 

EVEN 

TP45 

READ OUT I z TPZ:S) 

MRO MRI 

N 
REG 

MAR 
ADOflESS 

000 

Figure 26 A2 of Symbol to Fill 

TP23 

TPI 

TP6 ... W .... ,, 
SELECT SELECT 

AZ Pl 

The phrase "generates a command level" at TPl means "initiate a memory cycle." 

If no command level is generated, the read-out-regenerate cycle involving 

HSM will not be performed. 

Note that the equality of addresses is checked at the beginning of A2, and 

not after modification. Therefore, when A-B equality is reached and the ABE 

flip-flop becomes set, the A address will be incremented by one once more. 

Hence, the final contents of the A register is one location greater than 

that in the B register. 

It should be pointed out that the ABE flip-flop is reset during PS of a 

Symbol to Fill instruction. 

II-60 



Notice that if the SF instruction is to terminate (i.e., AB equality has 

been reached), Pl is selected at TP6 of the last A2 status level. In fact, 

when any instruction terminates, Pl will be selected at TP6 of its last pro­

cessing status level. This selection of Pl is the factor which provides for 

sequential execution of the instructions in the order they are stored in 

memory. 

4. Programming Errors 

One programming mistake that can be made with the SF instruction is the re­

versing of the A and B addresses. The A address must identify the leftmost 

location to be filled and the B address the rightmost. If A is greater than 

B, A will count up for each location filled and move farther away from A-B 

equality. As soon as the upper limit of memory is reached, adding one more 

will revert the address back to all zeros and a WTT alarm will occur, pro­

vided WTAB is not set. If WTAB is set, the entire memory may be filled and 

the instruction will terminate on A-B equality. 

Example: 

J 0 1091 1090 

Locations 1091 through 9999 (lOK Memory) will be filled with zeros before a 

WTT alarm would occur (Assuming WTAB is not set). 

Since SF terminates on A-B equality, if for some reason the A-B equality 

circuit fails to set the ABE flip-flop, the instruction will continue to 

fill HSM with the N character until a WTT error occurs. If WTAB is depressed, 

not setting ABE will cause the instruction to fill all of HSM repeatedly -­

the computer will be "cycling" in a SF instruction. 

A common way for this error to occur is to staticize a non-numeric address 

such as ;000 in the B register. Since the A register will be counting numer­

ically during execution of the SF instruction, A-B equality will never be 

reached. However, notice that a simple parity error in the B register is 

not enough to cause this failure since the AB equality circuitry compares 

only the data bits, it does not examine the parity bits. Also notice that 

II-61 



not any non-numeric address will work.·.· For example, a "K" in B2 would appear 

as a "2" since B2 has no 2 5 flip-flop.; A $, however, would appear as a non­

numeric character in any position of the B register since the four low-order 

bits are "1011" which is greater than "1001 11 or nine, the largest numeric. 

PRACTICE PROBLEMS 

6. The WTAB button is depressed. The following instruction is 

inserted manually into a 303A processor (lOK}. 

J 0 00001 0000 

What are: A.= B.= Af= Bf= 
i i ~~~~- ---------- ----------

7. How many memory locations will be filled with O's in Problem 6? 

a. 10,000 

b. 1 

c. 10,001 

d. none 

a. How many A2 status levels will be performed in problem 6? 

a. 10,001 

b. 10,000 

c. 0 

d. 1 

9. Write an instruction to fill every location in a 20K memory with *'s. 

(Assume WTAB is depressed.) 

10. An operator attempts to manually insert O's in the first 300 HSM 

locations with a ''symbol fill" instruction (assume WTAB and !CSP 

is depressed). He enters J ~ l.'DR register, 0 ~ N register, 

II-62 

0000 ~A register, but he forgets to enter a B address, so the 

B register remains completely blank. What happens? 



a. total number of locations. filled --

b. does computer stop 

If so Af=~----------------~Bf =~----------------~ 

c. Any errors 

If so which? 

11. At TP4 time during the execution of the following instruction what 

will be the content of the MR? Complete "HSM After." 

J * 1002 1002 

00 01 02 03 04 00 01 02 03 04 

101 A B c D E 101 ______ _ 

HSM Before HSM After 

a. MR at TP4: 

b. At which TP time will the character "C" appear in the MR? 

12. At what TP time of which A2 status level during the execution of the 

following instruction will the "D" appear in the MR? Will it appear 

in MRO or MRl or neither? 

00 

10 I A 

J4 

01 

B 

1001 

02 . 03 

c D 

HSM Before 

1003 

04 00 01 02 03 04 

E 

HSM After 

II-63 



C. M - TRANSFBR DATA LEFT (DL) REPBATABLB 

N - TRANSFER DATA RIGHI' (DR) REPEATABLE 

The Transfer Data Left and ~ight instructions are used to transfer a number 

of characters from one group of consecutive locations in memory to another 

group of consecutive locations. The N character gives the number of charac­

ters to be transferred. The A address gives the starting location from which 

characters are to be taken. The B address gives the starting location into 

which the characters being moved are written. (Because of the regeneration 

portion of the memory cycle, the character "transferred" will also be re­

written into the location from which it was "taken.") 

The DL instruction works from left to right (incrementing both the A and B 

register by 1, each memory cycle). The DR instruction works from right to 

left (decrementing both the A and B registers by 1, each memory cycle). 

Each time a character is transferred the N count is reduced by one. 

Both instructions terminate upon reducing the N count to zero. If N is zero 

when the instruction is staticized, no characters are transferred; the next 

instruction will be staticized and executed (i.e., PS of DL or DR selects 

Pl to start staticizing the next instruction). The final addresses are: 

DL: Af= Address location one to the right of the last character 

transferred. 

B = Address location one to the right of the last destination 
f 

address. 

DR: Af= Address location one to the left of the last character 

transferred. 

Bf= Address location one to the left of the last destination 

address. 

These instructions are labeled "REPEATABLE" which means they may be used in 

conjunction with the repeat instruction which will be covered in the next 

lesson. 

II-64 

NOTE: The transfer data instructions are covered on pages V-9 

and V-10 of the Programmer's Reference Manual. 



1. Instruction Format 

Op. Code N A B 

Mor N 0-44 HSM Location of Destina ti on 
Characters First Character Location of 
Transferred to be transferred First Character 

2. Instruction Execution 

Example 1: 

N 3 2545 4763 

40 41 42 43 44 45 60 61 62 63 64 65 

251 3 0 1 c 0 47 lo A T A p 

f f 
A. B. 

1 1 

HSM Before 

40 41 42 43 44 45 60 61 62 63 64 65 

251 3 0 1 c 0 471 D c 0 p 

f ' Af Bf 

HSM After 

Example 2: 

M 2 3617 3619 

16 17 18 19 20 21 16 17 18 19 20 21 

36 I * D I A L * I 361 * D I D I * 
f f 1 f 
A. B. Af Bf 1 1 

HSM Before HSM After 

The question might arise as to the need for transfer instructions working 

in either direction {in the general transfer of characters, there is really 

II-65 



not much need). However, if it is desired to shift a certain number of 

characters in memory for positioning purposes, in one direction or the other, 

the two instructions, Mand N, are convenient. 

For example, assume that ten characters in memory between 4000 and 4009 are 

to be shifted two positions to the right. The instruction would be: 

N & 4009 4011 

Note that an M instruction could not be used because of the "overlapping'' of 

characters. 

The instruction, M & 4000 4002, would shift ten characters to the right 

but would wipe out all characters from 4002 to 4009 with the two characters 

in 4000 and 4001. 

Similarly, if it was desired to shift the original ten characters two posi­

tions to the left, an M instruction must be used 

M & 4000 3998 

The "overlapping" problem again inhibits using an N instruction in this case. 

II-66 



PRACTICE PROBLEMS 

1. Execute the following instruction and show final HSM contents. 

M 4 0212 0216 

10 11 12 13 14 15 16 17 18 19 20 21 22 

02 A 5 6 3 2 1 7 8 4 9 3 2 0 

HSM Before 

10 11 12 13 14 15 16 17 18 19 20 21 22 

02 

HSM After 

2. Execute the following instruction and show final HSM contents. 

M 2 1562 1561 

58 59 60 61 62 63 58 59 60 61 62 63 

15 LA B c D E F 15 

HSM Before HSM After 

3. Write an instruction which will transfer 31 characters from address 

5038 to address 7196 (working from right to left). 

4. Execute the following two instructions and show final HSM contents. 

N 4 3104 3105 

J * 3101 3101 

23 

6 

23 

00 01 02 03 04 05 06 00 01 02 03 04 05 06 

31 [ * c A s E * * 1311 

HSM Before HSM After 

II-67 



3. Machine Operation 

The Transfer Data Left instruction has two different status levels, an Al 

and a B. The Al status level brings out the character found at the A ad­

dress and stores it in the D2 register. In addition, the A address is 

incremented by one and sent back to the A register. The N register con­

tents are decreased by one. The B status level transfers the character 

from D2 to memory as addressed by B, then increases the B address by one 

and sends it back to the B register. If N is equal to zero, the instruc­

tion terminates by selecting a Pl. If N is not equal to zero, another Al 

status level is selected. The process is repeated until N equals zero. 

Note that A final will always be one location to the right of the last 

character transferred and B final one to the right of the last destina­

tion location. The DL instruction works from left to right with both 

addresses incrementing during execution. However, the DL instructions 

can be used to transfer characters from any HSM location to almost any 

other location if one bears the "overlap" problem in mind. For example: 

M2 1009 1006 or M2 1006 1009 are both legal operations, but with 

different end results. 

Al 

TPOl A address is gated onto Bus. 

Contents of Bus are sent to MAR and Bus Adder and one is added 
TPl to the address. Command Level is generated. MAR address is 

decoded and diad is selected. 

TP2 A register is reset. 

TP3 N-1 Bus -+ A 

TP23 Both characters are read out into MR. Contents of Bus Adder 
are gated onto Bus. 

TP4 D register is reset. 

TP45 Regeneration occurs and contents of MRO or MRl as determined by 
address in MAR are sent to Bus 2. 

TPS Contents of Bus 2 are gated into D2 register. 

TP6 B status level is automatically selected. 

II-68 



TPOI 

TRIGGIR 
NI-II 

TP4 

--~ ................................... ~~--------..,;.~ ..................................................... .,.;;;;;;..:,:;TPSBUSO 

REGENERATION 
I:::: Tft45l 

~RMIT 
BOTH 

RIAD OUT ( ::< TP23 l 

Figure 27 Al of Transfer Data Left 

MAR 
ADORESS 

000 

BUS I 
BUS 2 
BUS 3 

TP6 

Q 
SELECT 

B 

II-69 



TPOl 

TPl 

TP2 

TP3 

TP4 

TP45 

TPS 

TP6 

II-70 

B 

B address gated onto Bus. 

Contents of Bus to MAR and Bus Adder where one is added to 
address. Generate Command Level. Decode address and select 
di ad. 

Contents o.f 02 are gated onto Bus 2. Permit one character from 
opposite location, as addressed by MAR to reach MR during read 
out. 

Gate character from Bus 2 into MR as specified by address in MAR. 

Reset B register. 

Regenerate old and new character. Gate modified address from 
Bus Adder to Bus. 

Contents of Bus are gated into B register. 

If contents of N are equal to zero select Pl, if not equal to 
zero select 

MAR 

HSM 

Al. 

TPOI 

TP45 

MAR 
AOORESS 

EVEN 

READ OUT I~ TP231 

TP3 

MRO 

02 
REG 

MRI 

TP23 

Figure 28 B of Transfer Data Left 

~w~ 

SELECT SELECT 
Al Pl 



The Transfer Data Right instruction has two different status levels, an Al 

and a B. The Al status level brings out the character found at the A ad­

dress and stores it in the D2 register. The A address is decremented by 

one and sent back to the A register. The N register contents are also 

decreased by one. The B status level transfers the character from D2 to 

memory as addressed by B, then decreases the B address by one and sends 

it back to the B register. If N is equal to zero the instruction termi­

nates by selecting a Pl and if N is not zero another Al status level is 

selected. The process is repeated until N equals zero. 

Note that A final will always be one location to the left of the last 

character transferred and B final one to the left of the last destination 

location. 

The DR instruction works from right to left. That is, both addresses 

count down during execution. However, the Transfer Data Right can trans­

fer characters from any HSM location to almost any other location without 

regard to relative position of the addresses to one another. For example: 

N 2 1006 1009 or N 2 1009 1006 are both entirely legal operations, 

but with different end results of course. 

II-71 



TPOl 

TPl 

TP2 

TP23 

TP3 

TP4 

TP45 

TPS 

TP6 

II-72 

Al 

A address is gated onto Bus. 

Contents of Bus are sent to MAR and Bus Adder and one is sub-
tr acted from the address. Command Level is generated. MAR 
address is decoded and diad is selected. 

A register is reset. 

Both charac ter.s are read out into MR. Contents of Bus Adder 
are gated onto Bus. 

Contents of Bus are gated into A register. N is triggered down 
by one. 

D register is reset. 

Regeneration occurs and contents of MRO or MRl as determined by 
address in MAR are sent to Bus 2. 

Contents of Bus 2 are gated into 02 register. 

B status level is automatically selected. 

Tlt4 ---
Tl"OI 

IAl-11 

HIM 

MAD IUT I• ftllll 

'"' 

DI 
llEG. 

Figure 29 Al of Transfer Data Right 

6 
IG.ICT 

I 



TPOl 

TPl 

TP23 

TP3 

TP4 

TP45 

TPS 

TP6 

B 

B Address gated onto Bus. 

Contents of Bus to MAR and Bus Adder where one is subtracted 
from address. Generate Command Level. Decode address and 
select diad. 

Contents of 02 are gated onto Bus 2. Permit one character from 
opposite location, as addressed by MAR to reach MR during read 
out. 

Gate character from Bus 2 into MR as specified by address in MAR. 

Reset B Register 

Regenerate old and new character. Gate modified address from 
Bus Adder to Bus. 

Contents of Bus are 

If contents of N are 
zero select Al. 

TPOI 

gated into B register. 

equal to zero 

TP45 

MAR 
ADDRESS 

EVEN 

select Pl, if 

TP3 

D2 
REG 

TP23 

MAR 
ADDRESS 

ODO 

MRO MRI 

READ OUT ( ::i:: TP23l 

Figure 30 B of Transfer Data Right 

not equal to 

"~\r 
SELECT SELECT 

Al Pl 

II-73 



4. Programming Errors 

There are basically two ways that the M or N instructions may cause unsus­

pected trouble. One way is in transferring an overlapping field in one 

direction or the other. For example, assume one wishes to transfer five 

characters two positions to the right. 

10 11 12 13 14 15 16 10 11 12 13 14 15 

22 R I G H T -I 22[R I R I G H 

HSM Before HSM After 

The only single instruction which will accomplish this is a Transfer Data 

Right: 

N 5 2214 2216 

If a Transfer Data Left is used, the following would occur. 

M 5 2210 2212 

10 11 12 13 14 15 16 

221 R I R I R I R 

HSM After 

16 

T 

A similar problem occurs in shifting to the left. Therefore, the B address 

of an M or N instruction should not fall between the initial A address and 

A ± N(+ for Data Left, - for Data Right} where N is the N character. 

I 

The second method whereby the M or N instructions might not function properly 

is where an N character is used which does not exist in the N count. In this 

instance there is no alarm, but the number of characters that will be trans­

ferred will be a number which is an extension of the nearest lower N count. 

For example in the following instruction, the N character is an asterisk(*). 

M * 1000 3000 

The nearest lower N count character is R which represents 29. An * would 

transfer 32 characters since it is 3 characters away from R in the code. 

An S (legal N count for 32) would transfer the same number of characters. 

II-74 



It should be noted that if one forgets to use an N count character and in­

stead writes a two digit number for the N character, every character of the 

instruction as well as those in succeeding instructions will be shifted over 

one location to the right since a maximum of ten characters is permitted per 

instruction. 

For example: 

would be executed as: 

N 12 3046 5028 

N 1 2304 6502 

The operation code of the next instruction would be an 8. 

The correct instruction is: N B 3046 5028 

PRACTICE PROBLEMS 

5. Refer to the simplified status flow just presented and describe the 

differences between the Transfer Data Right and Transfer Data Left 

instructions. 

6. Perform the following instruction and give the required information. 

M 5 2250 2252 

50 51 52 53 54 55 56 so 51 52 53 54 55 56 

22 I E x A M p L E I 22 

HSM Before HSM After 

A = f B = f 

7. Execute: N 5 2254 2256 

50 51 52 53 54 55 56 so 51 52 53 54 55 56 

22 E x A M p L El 22 

Af = Bf= 

II-75 



8. Which instruction should you use to successfully move a block of six 

characters two positions to the right. 

9. Execute the following program and indicate the final HSM contents. 

1000 Jl 2004 2004 

1010 M2 2000 2005 

1020 Nl 2009 1031 

1030 N4 2008 2003 

00 01 02 03 04 05 06 07 08 09 

20 
.1 

A N T I * * 0 D A 2 

HSM Before 

00 01 02 03 04 05 06 07 08 09 

20 

HSM After 

10. Use either a DL or DR instruction to duplicate the results obtained 

by "J * 1001 1005." 

00 01 02 03 04 05 00 01 02 03 04 05 

10 * A B c D E 

10 '~--------' HSM Before HSM After 

II-76 



D. # - TRANSFER DATA BY SYMBOL LEFT ( DSL) REPEATABLE 

P - TRANSFER DATA BY SYMBOL RIGHT (DSR) REPEATABLE 

The DSL and DSR instructions are, like the IL and DR instructions, used to 

transfer a number of characters from one group of consecutive locations in 

memory to another group of consecutive locations. Also, like the DL and DR 

instructions, DSL and DSR use the A register to address the transfer location 

and the B register to address the destination location. However, unlike the 

IL and DR instructions, DSL and DSR continue to transfer characters until a 

selected character has been transferred. The selected character is the N 

character. DSL works from left to right, and DSR works from right to left. 

DSL and DSR store Af in a standard location called STA (Store A). STA con-

sists of memory locations 0212-0215 inclusive. Because we know A. (A initial) 
l. 

which is just the contents of the A register after staticizing, by consulting 

STA after execution, the number of characters transferred during execution 

can be determined. 

Again the word "repeatable" after DSL and DSR means that the instructions can 

be repeated using the Repeat instruction. 

NOTE: Pages V-11 and V-12 of the Programmer's Reference Manual give 

operations summaries. 

The final addresses are: 

1. 

DSL: Af = One location to right 

Bf = One location to right 

DSR: Af = One location to left 

Bf = One location to left 

Instruction Format 

Op. Code 

# or P 

N 

Selected Symbol 
on Which to Stop 
Transferring 

of 

of 

of 

of 

selected symbol in 

selected symbol in 

selected symbol in 

selected symbol in 

A 

HSM Location of 
First Character 
to be Transferred 

original area. 

destination area. 

original area. 

destination area. 

B 

Destination 
Location 
First Character 

II-77 



2. Instruction Execution 

Example #1: p@ 2003 '3005. 

00 01 02 03 04 01 02 03 04 05 

20 3 @ 7 8 D 30 IG 2 e B @ .I 

' f 
A. B. 

1 1 

HSM Before 

00 01 02 03 04 01 02 03 04 05 

20 I 3 

r 
@ 7 8 D I 30 IG 2 

r 
@ 7 8 

Af Bf 

HSM After 

Example #2: # * 4105 4108 

04 05 06 07 08 09 10 

41 s y M * * p L 

HSM Before 

04 05 06 07 08 09 10 

41 s y M * y M * 
HSM After 

Example #3: # # 5550 5553 

50 51 52 53 54 55 50 51 52 ·53 54 55 

55 le # D # E Fl 55 le # D e # F I 
' f t f 
A. B. Af Bf 1 1 

HSM Before HSM After 

Note that the selected symbol is itself the last character to be 

transferred. 

II-78 



PRACTICE PROBLEMS 

1. Using a DSR instruction and the following HSM contents, transfer the 

characters, * P Ro, to locations 4818, 4819, 4820, and 4821, 

respectively. 

10 11 12 13 14 15 16 17 18 19 20 21 

481 __ * ____ P ____ R ____ o ___ G _____ R ____ A ____ M ____ * ____ 1 ____ 2 ____ 3_..,. 

2. Execute the following instruction and show final HSM contents. 

# E 8826 8825 

25 26 27 28 29 30 31 25 26 27 28 29 30 31 

88 R E s u L T s 88 

HSM Before HSM After 

12 13 14 15 

02 

HSM After 

3. If the following instruction were attempted what would occur? 

p I 3564 3563 

60 61 62 63 64 65 66 

351 1 2 3 I 4 5 6 

HSM Before 

a. Use of DSL/DSR to Locate a Symbol in HSM 

The DSL and DSR instructions can be used to locate a specified character and 

II-79 



not change the contents o:f memory in the.process. 

NOTE: These instructions are the true locate symbol instructions. 

Assume a quantity o:f unknown length exists in memory between 1000 and 1005, 

and that the quantity will never exceed :five characters. The quantity will 

always, however, be preceded by an asterisk(*). I:f it is desired to locate 

the MSD o:f the quantity and not disrupt memory, the :following instruction 

will su:f:fice. 

Example #4: # * 1000 1000 

00 01 02 03 04 05 

10 I* x x x x x I 
T f 
A:f Af 

Example #5: * 1000 1000 

00 01 02 03 04 05 

10 Ix x * x x x 

r f 
A:f Af 

NOTE: In both of the above examples, Ai = Bi and Af = Bf. 

The only assumption needed is that the characters preceding the asterisk are 

not asterisks. 

The LSD of a quantity can similarly be located by using a P (DSR) instruction. 

II-80 



PRACTICE PROBLEMS 

4. Execute the following program and show final HSM contents. 

1000 J 0 3000 3006 

1010 p * 2005 3006 

1020 # * 3000 3000 

00 01 02 03 04 05 06 00 01 02 03 04 05 

20 I * 3 6 8 7 9 *I 30 I A B c D E F 

HSM Before 

00 01 02 03 04 05 06 00 01 02 03 04 05 

20 30 

HSM After 

What address would be in 0212 to 0215? 

12 13 14 15 

02 

s. Execute the following program and show final HSM contents. 

1000 p @ 3334 3335 

1010 N 4 0215 1025 

1020 # @ 3330 3330 

30 31 32 33 34 35 30 31 32 33 34 35 

IA 
..,., 

33 @ B @ c @ 33 

HSM Before HSM After 

06 

G 

06 

1 

II-81 



12 13 14 15 

02 

HSM After 

1 The Transfer Data Right instruction transfers the contents of STA to 

the locations which make up the A Address of the Transfer Data by 

Symbol Left instruction. 

3. Machine Operation 

Again only two basic status levels are used, an Al and aB. The function of 

the Al is to bring out the character as addressed by A and place it in the 

D2 register. The N character is gated into D3 and a comparison takes place 

between D2 and D3. Meanwhile the A address is incremented or decremented by 

one and sent back to the A register. The B status level transfers the char­

acter from D2 to memory at the B address and increments or decrements that 

address by one. The result is sent back to the B register. The comparator 

output is then examined. If the character transferred is equal to the N 

character (D2 = D3) the instruction terminates; if not the instruction con­

tinues by selecting another A1 status level. 

II-82 



TPOl 

TPl 

TP2 

TP23 

TP3 

TP4 

TP45 

TPS 

TP6 

Al 

Gate A address onto Bus. 

Contents of Bus sent to MAR and Bus Adder where one is added or 
subtracted from address. Command Level is generated and MAR 
address is decoded. 

A register is reset. 

Both characters are read out into the MR. The contents of Bus 
Adder are gated onto the Bus. 

The address on the Bus is sent back to the A register. 

The D register is reset. 

Regeneration occurs. Character as specified by address in MAR 
is gated onto Bus 2. Contents of N register gated onto Bus 3. 

Contents of Bus 2 gated into D2 and contents of Bus 3 gated into 
D3. 

Select B status 

MAR 

HSM 

level. 

PERMIT 
BOTH 

REGENERATION 
I::: TP4!1) 

N 
REG. 

MAR 
ADDRESS 

EVEN 

MAO 

READ OUT ( ::= TP23 I 

TP4!1 

D2 
REG. 

MRI 

..----->--TP4 

D3 
REG. 

MAR 
ADDRESS 

ODD 

R 

Q 
SELECT 

B 

Figure 31 Al of Transfer Data by Symbol Left or Right 

II-83 



TPOl 

TPl 

TP23 

TP3 

TP4 

TP45 

TPS 

TP6 

II-84 

B 

B address onto Bus. 

Contents of Bus to MAR and Bus Adder where on is added to or 
subtracted from the address. Command Level is generated and 
MAR address is decoded. 

The contents of D2 are gated onto Bus 2. One character is read 
out from the opposite location of the address in the MAR into 
the MR. 

Depending upon the MAR address, the character on Bus is gated 
into either MRO or MRl. 

B register is reset. 

Regeneration occurs. Contents of Bus 

Address on Bus gated into B register. 

If contents of D2 equal contents of D3 
select Al. 

TPOI 

MAR 

HSM MRO 

Adder gated onto Bus. 

select STA 1, if not 

MRI 

02•03 
D2SDi 

KLECT SELECT 
Al STA I 

Figure 32 B of Transfer Data by Symbol Left or Right 



a.) STA 1 and STA 2 

Termination for the DSL and DSR is slightly different than the previous in­

structions discussed. Two additional status levels called STA 1 and STA 2 

are executed when transferring is complete. These two status levels com­

prise the process known as Store A - storing the final A address in standard 

locations 0212 through 0215. The time pulse breakdown for the Al of a DSL 

is as follows. 

STA 1 and STA 2 were not used with DL and DR because with these instructions 

the N count is used to determine the number of characters moved, so given 

the initial A address and the N count, the programmer can easily determine 

A final. However, when using DSL or DSR, transfer continues until a selec­

ted symbol is encountered in the "A-field." The programmer may not know in 

advance where in HSM the termination symbol will be found, so the STA 1 and 

STA 2 are used to insert this information into a standard location (0212-

0215) so that the programmer will know how many characters were transferred, 

etc. 

II-85 



TPOl 

TPl 

TP23 

TP3 

TP45 

TP6 

II-86 

STA 1 

Generate address 0212 from address generator onto Bus. 

Contents of Bus to MAR. Generate command level and decode MAR 
address. 

Gate A address onto Bus. Inhibit both characters being read out 
from reaching MR. 

Gate contents of Bus 

Regenerate. 

Select STA 2. 

MAR 

HSM 

I I 
,-.J-, r-L-, 
j I I I 
1, } I I 
'r"' 'r ~ 

0 into MRO and Bus 

ADDRESS 
GENERATOR 

(0212 I 

TPOI 

REGENERATION 
( z TP451 

TP3 

: L-------------.J 
L __ -------------

1 into MRl. 

A REGISTER 

MRI 

. 
I 
I 
I 
I 
I 
I 

_J 

TP23 

Figure 33 STA 1 Status Level 

SELECT 
STA2 



TPOl 

TPl 

TP23 

TP3 

TP45 

TP6 

STA 2 

Generate 0214 onto Bus from Address Generator. 

Gate contents of Bus into MAR. Generate command level and 
decode MAR address. 

Gate A address onto Bus, Inhibit two characters being read 
from reaching MR. 

Gate contents of Bus 2 into MRO and contents of Bus 

Regenerate. 

Select Pl status level. 

ADDRESS 
GENERATOR 

(0214) 

TPOI 

TP3 

MAR 

HSM MRO 

REGENERATION 
(<::::" TP45) 

' 
1.J-1 ,--L1 : 
I I I I I 
l I I I I 
'1"" '1" I 

: L - - - - - - - - - - _J 

L---------------

A REGISTER 

AD : Al 

TP23 

~ 

I 

I 
- _J 

: A2 : A3 

TP3 

Figure 34 STA 2 Status Level 

3 into MRl. 

TP23 

BUS 0 
BUS I 
BUS 2 
BUS 3 

TP6 

Q 
SELECT 

Pl 

l 

II-87 



4. Programming Errors 

The DSL and DSR instructions may go awry if care isn't taken with the address. 

Transferring an overlapping field was described as a problem in the DL and 

DR instructions and this problem also exists in the DSL and DSR instruction. 

However, in the DSL and DSR instructions the end result is more serious in 

that the selected symbol(s) will be eliminated and the instruction will con­

tinue to transfer until a WTT alarm occurs. 

Example #6: # @ 7205 7207 

05 06 07 08 09 05 06 07 08 09 

12 l_A_·. ____ s _____ @ _____ c ____ o_.I 72 l_A_. ____ s _____ A _____ s _____ A__, 

HSM Before HSM After 

The characters A B are inserted in memory up through the highest address 

thereby wiping out any symbols. A WTT would occur when location 0000 was 

addressed if WTAB was not set. If WTAB is set, the computer would cycle 

through memory without terminating the instructions. 

Example #7: p $ 4325 4324 

21 22 23 24 25 21 22 23 24 25 

43 6 $ 5 $ 2 43 12 2 2 2 2 

"Twos" would be transferred to every location down to 0199 and a WTT alarm 

would occur. 

II-88 



PRACTICE PROBLEMS 

6. Write an instruction to move 30 characters from 1020-1049 to 5030-5059. 

7. Memory is first filled completely with *'s. Then a word of indeterminate 

length is written into HSM starting at 1000. 

Use one instruction to move the entire word to 5000. (1000 is the loca­

tion of the first letter of the word) How would you determine quickly 

how many letters the word contained? 

II-89 



8. With the WTAB button depressed, execute the following program: 

1000 J * 0000 0000 

9. 

1010 p * 0000 0000 

How can the DSR instruction in this program be used to determine the 

size of memory? 

Given initial HSM contents and the following program to be executed, 

what are final HSM cont en ts, A final, and the final contents of 0212-0215? 

1000 p * 2009 2009 

1010 M 4 0212 1032 

1020 N 4 0215 1039 

1030 J 0 2000 2009 

00 01 02 03 04 05 06 07 08 09 

20 I p A c E s * 0 N E s 

HSM Before 

II-90 



00 01 02 03 04 05 06 07 08 09 

20 

HSM After 

At end of execution: Af = 

Final Contents: 12 13 14 15 

o1 

10. With the Wl'AB button depressed, execute the following program and give 

the required information: 

1000 # * 2001 2000 

1010 p * 2009 2008 

1020 J * 0001 0000 

00 01 02 03 04 05 06 07 08 09 

20 · 1 p A c E s * 0 N E s 

HSM Before 

00 01 02 03 04 05 06 07 08 09 

20 

HSM After 

At end of execution: Af = 

Final Contents. 12 13 14 15 

02 

II .. 91 



E. K - LOCATE SYMBOL LEFT ( LSL) 

L - LOCATE SYMBOL RIGHT {LSR) 

These instructions search a designated area for a selected symbol. Both in­

structions terminate upon finding a non-selected symbol or upon searching the 

entire designated area (A-B Equality). The LSL instruction operates from 

left to right and the LSR instruction operates from right to left. The final 

contents of the A register are stored in STA during both instructions. The 

PRI's (Previous Result Indicators) are set during execution of the LSL and 

LSR with their indications as follows: 

PRN is set when the first character searched is not equal to contents of N. 

PRZ is set when all characters are equal to contents of N. 

PRP is set if a non-symbol is found in the specified HSM area after a 

character equal to the contents of N has been found. 

The PRI's are flip-flops which may be sensed (using the CTC instruction) 

during the execution of a program. Control is transferred to different 

points in the program depending upon which PRI is set. 

Final Register Contents: 

If all characters searched are equal to N 

B. 
l. 

= B. 
l. 

If a non-selected symbol is found 

LSL: Af = One location to left of non-selected symbol. Bf = Bi 

LSR: Af = One location right of non-selected symbol. Bf = Bi 

NOTE: See pages V-5 and V-7 of Programmers' Reference Manual for 

operations summary. 

1. Instruction Format 

Op. Code 

Kor L 

II-92 

N 

Selected 
Symbol 

A 

Leftmost Location 
to be Searched in K 
Instruction-Rightmost 
In L Instruction 

B 

Rightmost Location 
to be Searched in K 
Instruction-Leftmost 
in L instruction 



2. Instruction Execution 

Example #1: K 95 2300 2305 

00 01 02 03 04 05 06 07 

23 1¢ ¢ ¢ 95 3 4 5 ¢1 

' f f 
A. Af B. = B 

l. l. f 

HSM Before and After -- PRP would be set. 

Example #2: L * 7588 7583 

83 84 85 86 87 88 89 

75 I~ A * * * L * 
f f 

B - Bf A. Af .-
l. l. 

HSM Before and After -- PRN would be set. 

PRACTICE PROBLEMS 

1. If the following instruction were executed, what would locations 

0212-0215 hold, and what PRI would be set? 

L fl 3058 3055 

53 54 55 56 57 58 59 

30_,_0 ___ 0 ____ 0 ____ 2 ____ 3 ____ 0 ____ 0 __ 

HSM Before and After 

12 13 14 15 

02 

II-93 



2. What PR! would be set if the following instruction were executed? 

K A 6581 6583 

80 81 82 83 84 85 86 

65 _(_c _____ A _____ A _____ A _____ 7 _____ G _____ 6_, 

HSM Before 

PR! -

3. A quantity exists in memory between locations 4000 and 4007. The number 

of digits this quantity contains is unknown, but is is known that non­

significant zeros precede the most significant digit (MSD). 

4. 

Example: 

Non-significant 
zeros 

MSD 

oooxxxxx 

Quantity 

The total number of characters is always 8. Write an instruction which 

would locate the position one to the left of the MSD for any case. 

Execute the following program and show final HSM contents. 

5000 p * 2515 3439 

5010 K ¢ 3434 3439 

5020 N 4 0215 5039 

5030 J * 3434 3434 

10 11 12 13 14 15 34 35 36 37 38 39 

25 IA N * 1 2 31 34 ¢ ¢ ¢ 0 0 0 

HSM Before 

II-94 



10 11 12 13 14 15 34 35 36 37 38 39 

25 34 

HSM After 

3. Machine Operation 

In this section we will introduce a new format for describing the sequence 

of events during the execution of an instruction. This new format is less 

cluttered and will make it easier for the student to follow the "status flow" 

or sequence of status levels. For example, in the new format "A-+ BUS" will 

replace "The A address is gated onto the bus." "(D2=D3)" means "The charac­

ter in the D2 register is unequal to the character in the D3 register." 

Termination of the LSL/LSR instruction is a bit more complex than that of 

any previous instruction. There are three things to be done: (1) the appro­

priate PRI must be set, (2) the contents of the A register must be adjusted 

properly, and (3) the final contents of the A register must be stored. 

Notice that PRZ is set at TP2 of the PS status level which completes staticiz­

ing of the LSL/LSR instruction. If the instruction is completed without 

finding a non-selected character (i.e. terminates on A-B equality) PRZ re­

mains set. 

Consulting the status flow chart (Figure 35) we find that as long as neither 

A-B equality nor a non-selected character have been found, the instruction 

loops through Al and Xl status levels, performing one Al and one Xl for each 

character examined. The Al status level is used to bring the N character to 

D3 and the character addressed by the A register to D2 for comparison. The 

Xl status level is used to (a) set PRN if a non-compare is found in the first 

location checked, or to (b) set PRP is a non-compare is found in some suc­

ceeding location. 

II-95 



II-96 

TP2 
Set PRZ 
Set FD 

P5 

--------+---------------ii 
TP6 Reset ABE 

Al 

TPOl A BUS 

If LSL: BUS-+ MAR _.BA(+l) 
If LSR: BUS-+MAR~BA(-1) 

TPl Generate CL 
Permit Both 
If A=B: Set ABE 

TP2 Reset A 

TP23 BA-. BUS 

TP3 BUS~A 

TP4 Reset D. 

If MAR3-20(0): MR0~BUS2 
TP45 If MAR3-20(1): MR1-+-BUS2 

N BUS3 1----------------------·----t 
TP5 BUS2,...D2 

BUS3-+D3 

TP6 Select Xl 

TP4 

TP5 

Xl 

If FD(l). (D2=D3): Set PRN 
If FD(O). (D2=D3): Set PRP 

Reset FD 

TP6 
If (D2=D3)/ ABE(l): Select X2 
If (D2=D3). ABE(O}_: Select Al 

(D2=D3)/ ABE(l) r 
X2 

*END STAT 

(D2=D3). ABE(O) 

Figure 35 Al and Xl of LSL/LSR 



The method used to determine whether or not a character being examined is 

the first character examined by the instruction depends upon the setting of 

the FD (first digit) flip-flop at TP2 of PS during staticizing of the in­

struction. FD remains set until TPS of the first Xl status level when it 

is reset. Thus when checked at TP4 of an Xl when D2=D3 if FD is set it 

means "This is the first Xl status level since PS" indicating that the first 

character addressed is now being compared to the N character in the D register. 

From examining TP4 of the Xl status level we see that PRN is set if the first 

character is a non-selected character, and PRP is set if any succeeding char­

acter is a non-selected character. 

Finally, if a non-selected character is found or A-B equality is reached an 

X2 status level is selected at TP6 of the Xl. The X2 status level is used 

to modify the the A final address. Examining TPl of the X2 we see that if 

a non-selected character has been found, the A address is adjusted by two in 

a direction opposite to that of its movement during the execution of the Al 

status level. 

The address thus produced will be that of the last selected character to be 

examined, provided that at least the first character examined was a selected 

character. If the first character examined was a non-selected character, the 

final address will then be one to the left of this character for LSL or one 

to the right of the character for LSR. If no non-selected character is 

found, the adjustment produces an A final address which is that of the last 

character of the field, that is, the same as the B initial address. 

The X2 status level selects a STAl status level, which in turn automatically 

selects a STA2 status level. The STAl and STA2 store the newly adjusted A 

final address. 

II-97 



Xl 
J 
X2 

TPOl A BUS 

If LSL. (D2=D3): BUS-. MAR BA(-2) 

TPl If LSR. (D2=D3): BUS__.. MAR BA(+2) 
If LSL. (D2=D3): BUS~MAR BA(-1) 
If LSR. (D2=D3): BUS.... MAR BA(+l) 

TP2 Reset A 

TP23 BA_..BUS 

TP3 BUS-.A 

TP6 Select STAI 
i_ 

ST Al 

TPOl 0212~BUS 

BUS-. MAR 
TPl Generate CL 

Inhibit Both 

TP23 
AO ....... BUSO 
Al-..BUSl 

TP3 
BUSO-+.MRO 
BUSl--.MRl 

TP6 Select STA2 

I 
STA2 

TPOl 0214----BUS 

BUS_..MAR 
TPl Generate CL 

Inhibit Both 
-··· 

TP23 
A2_.,.BUS2 
A3-t--BUS3 

TP3 
BUS2-.-MRO 
BUS3 ----MRl 

TP6 Select Pl 

~ 
Pl 

Figure 36 X2 of LSL/LSR; STAI and STA2 

II-98 



4. Programming Errors 

In the LSL and LSR instructions memory is not changed, only examined, hence 

very little can go wrong with any combination that is written. However, it 

is possible to obtain incorrect PRI settings and final STA contents by re­

versing the A and B addresses. For example suppose the field to be examined 

exists between 1003 and 1008 but the instruction was written as: 

03 04 05 06 07 08 

10 3 6 5 

K - 1008 1003 

The final A address would be 1007 and PRN would be set while if the instruc­

tion were written correctly: 

K - 1003 1008 

The final A. address would be 1005 and PRP would be set. Note that although 

the field limits are misaddressed, the instruction can still terminate since 

a non-selected symbol as well as A - B equality halts the operation. 

PRACTICE PROBLEMS 

5. It has been found that the D2 register equals the D3 register and the 

processor has selected an X2 status level of an LSL instruction. What 

causes the selection of the X2 STL? 

II-99 



6. What is the purpose of the Xl of the LSL/LSR? The X2? 

7. A lOK HSM is first filled with 0's, and then a word of indeterminate 

length is inserted at an arbitrary location higher than 2000. You are asked 

to find: (a) the starting location of the word, and (b) the number of letters 

in the word. (The word will contain no numeric data.) How would you do it? 

II-100 



8. Execute the following program and show HSM final. 

1000 K* 2000 2004 

1010 M4 0212 1032 

1020 M4 0212 1036 

1030 JR 2000 3000 

00 01 02 03 04 

20 (.__* __ * __ c __ A __ *__, 
HSM Before 

What PRI will be set? 

00 01 02 03 04 

20 

HSM After 

~------------------~ 

9. The following instruction is manually inserted and executed. What are 

the HSM final contents? What is Af? Which PRI will be set? 

L* 3001 3000 

oo. 01 02 03 04 00 01 02 03 04 

30 I * A B c * 30 

HSM Before HSM After 

Af = Which PRI 

Is ABE set 

II-101 



10. What is HSM content after execution? 

1000 K* 5000 5005 

1010 M4 0212 1022 

1020 Ll 5002 5000 

1030 N4 0215 1045 

1040 J* 5004 5004 

00 01 02 03 04 05 00 01 02 03 04 05 

50 * * 1 2 3 *I 50 

HSM Before HSM After 

What PR! is set 12 13 14 15 

02 

HSM After 

F. A-TRANSLATE {TRA) Repeatable 

This instruction translates a specified number of characters in a designated 

area from one binary code to another by use of a translate table. The table 

can be stored anywhere within memory and must be previously inserted before 

the Translate instruction is executed. The characters which are to be trans­

lated are replaced by their equivalent from the table. The TRA instruction 

operates from left to right and does not go through STA. 

II-102 

NOTE: An operations summary of the Translate instruction may 

be found on Page V-3 of the Programmer's Manual. 

Af = One location to the right of last character translated. 

= B. 
]. 



1. Instruction Format 

Op. Code 

A 

N 

Number of 
Characters to 
be Translated 
(0-44) 

A 

Location of 
Leftmost Char­
acter to be 
Translated and 
its Result 

B 

Location of First 
Character of 
Translate Table. 
(B2B3 must be (00) 

NOTE: If N = ¢, no characters are translated and the next 

instruction in sequence is executed (i.e., PS of the 

TRA selects Pl). 

2. Instruction Execution 

The character to be translated is 

octal digits. The 2°, 2 1 , and 22 

inserted in the D3 register. The 

octal digit which is placed in the 

tions. The 2 3 , 2 4 , and 2 5 bits in 

thus forming two decimal numbers. 

Example: 

read out of memory and split 

bits form one digit and this 
23 

' 
24 

' and 2 5 bi ts for.m the 

D2 register in the 20 
' 

21 
' 

both D2 and D3 are left as 

Character to be translated: 

c = 0 1 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 

D2 initially D3 initially 

into two 

digit is 

second 

and 2 
2 

posi-

zero bits 

II-103 



The character C is split into 0 l O and O 1 1 and the bits are 

inserted into the 2°, 2 1 and 2 2 positions of D2 and D3 as follows: 

[o 0 0 0 1 0 0 0 1 1 

D2 after D3 after 

The octal numbers created from the splitting process are now the decimal 

numbers 2 and 3. 

The first two digits of the B Address a.re then combined with the contents 

of D2 and D3 to form an address which is addressing within the translate 

table. If the table starts at address 5500, then the address 5523 would 

be constructed in this example. At location 5523 should exist a combina­

tion of binary bits which represents the translated character for the 

letter C. This translated character is read from the table and written 

over the original letter C as addressed by A. The A Address is then in­

cremented by one and the next character is translated in a similar fashion. 

Translation continues until the N count is reduced to zero. 

Example: A 3 1000 2700 

00 01 02 03 21 22 23 24 

10 A B c D 271 - J K L 

A. 
1. 

HSM Before 

00 01 02 03 21 22 23 24 

10 I _ J K D 271 J K L 

Af Bf = 2700 

HSM After 

II-104 



In the above example, the 301 characters A, B and C were translated into 

501 code. Note that in locations 1000, 1001 and 1002, after the instruc­

tion has been executed, exists octal numbers 40, 41 and 42, respectively. 

Octal numbers 40, 41, and 42 are 501 characters A, B, and C. 

Translation from 301 to 501 or vice versa is not the only form of transla­

tion that can be done with the TRA instruction. On the contrary, any code 

can be translated to any other code. All that is required is the proper 

translate table. 

PRACTICE PROBLEMS 

1. Execute the following instruction and show final HSM contents. 

A 4 2010 4000 

08 09 10 11 12 13 14 15 16 

20 IA L K 0 M p * * * 

40 41 42 43 44 45 46 47 48 

40 IL A B 0 R * E T c 

HSM Before 

08 09 10 11 12 13 14 15 16 

20 

40 41 42 43 44 45 46 47 48 

40 

HSM After 

II-105 



2. Give the table addresses of the proper characters which are necessary 

to change memory by the instruction shown below. 

A 7 1452 3600 

50 51 52 53 54 55 56 57 58 

14[T __ T _____ R _____ A _____ N __ ~_s _____ L _____ z _____ T _____ E ___ 

HSM Before 

50 51 52 53 54 55 56 57 58 

14 [ __ T _____ R ______ o _____ P _____ r ______ c _____ A_. _____ L _____ * __ __ 

HSM After 

Table location should contain a 

Table location should contain a 

Table location should contain a 

Table location should contain a 

Table location should contain a 

Table location should contain a 

Table location should contain a 

Table location should contain a 

3. Machine Operation 

The translate instruction requires three status levels: an Al, or D, and 

an A2. The Al status level brings a character out of memory and puts the 

II-106 



2 3 , 2 4 , and 2 5 bits into the 2°, 2 1 , and 22 positions of 02 and the 2°, 

2 1 , and 22 positions of 03. 

The 0 status level gates the contents of 02 and 03 register (plus parity 

bits if needed) onto BUS 2 and BUS 3, and simultaneously gates the B 

register contents onto BUS O, BUS 1, BUS 2, and BUS 3 all at TPOl. 

Since B2 and 02 are both gated onto BUS 2 and B3 and 03 are both gated 

onto BUS 3, you might expect to find "garbage" on BUS 2 and BUS 3. But 

remember, B2 and B3 ~ both be equal to ZERO; and furthermore, ·the 

parity bits in B2 and B3 are both inhibited from reaching the buses. 

Therefore, no bits from B2 or B3 actually reach BUS 2 or BUS 3 (unless 

there is a programming error). So finally, BO, Bl, 02, and 03 are used 

to address memory. The character thus addressed is gated via BUS 3 into 

03. (See Figure 37, Al and D of TRA) 

The A2 status level again addresses the location where the character we 

are translating is located. (Notice that during the Al status level 

BA(+O) was used so the A address is the same now.) Then the character 

from 03 is written into this location in HSM. There are ways to leave 

the A2 status level: either REPl, Pl, or Al may be selected. REPl is 

used only if the translate instruction is in the field of a repeat in­

struction, which will be covered later. If the N count has not yet 

gone to ZERO, the next character must be translated, so an Al (of the 

translate instruction) is selected. If the N count has been exhausted 

(and the translate instruction is not being repeated using the repeat 

instruction) a Pl is selected to start staticizing the next instruction. 

II-107 



P5 

NZ NZ 

END STAT 

1 
Al 

TPOl A~BUS 

TPl 
BUS _..MAR BA(+O) 
Permit Both, Generate CL 

TP2 Reset A 

TP23 BA.....,.BUS 

TP3 BUS~A 

TP4 Reset D 

TP456 
If MAR3-20(0): MRO-.BUS3 
If MAR3-20(1): MRl -.BUS3 

TP5 
BUS3(23, 24, 25)-+D2(20, 21, 22) 
BUS3(2o, 21, 22) ~D3(2o, 21, 22) 

TP6 Select D 

1 
D 

D2~BUS2 

TPOl 
D3~BUS3 

(Create Correct Parity on BUS2 and BUS 3) 
B ~BUS (Inhibit B2, B3 Parity) 

TPl 
BUS_.,.MAR BA(+O) 
Permit Both, Generate CL 

TP4 Reset D 

TP456 
If MAR3-20(0): MRO-+BUS3 
If MAR3-20(1): MRl ..... BUS3 

· TP5 BUS3-.D3 

Pl TP6 Select A2 , 
A2 

Figure 37 Al and D of TRA 

11-108 



D 

1 
A2 

TPOl A-+BUS 

BUS~MAR BA(+l) 

TPl If MAR3-20(0): Permit Cl, Inhibit CO 
If MAR3-20(1): Permit CO, Inhibit Cl 
Generate CL 

TP23 D3~BUS3 

If MAR3-2 0(0): BUS3-MRO 
TP3 If MAR3-20(1): BUS3-MR1 

Trigger N(-1) 

TP4 Reset A 

TP45 BA__.BUS 

TP5. BUS~A 

If NZ. NRZ: Select REPl 
TP6 If NZ. NRZ: Select Pl 

If NZ: Select Al 

r NZ.NRZ 

' 
NZ.NRZ 

f 
NZ 

RE Pl Pl Al 

Figure 38 A2 of TRA 

4. Program.ming Errors 

Besides an incorrect table or an N character outside of the N count (des­

cribed in OL and DR instructions), the Translate instruction can be mis­

used by making the initial B2 and B3 characters something other than zero. 

During the process of creating the table address (0 status level) 02 and 

03 are gated onto Bus 2 and Bus 3 and the B address excluding B2 and B3 

parity is gated onto all four bus lines. Thus, if some bit combination 

existed in the last two characters of the B address originally, the vol­

tage levels would combine on BUS 2 and BUS 3 and probably create bad parity 

II-109 



which would produce a MAPE alarm. 

Example: A 2 1000 5502 

00 01 

10 M c 

Character M = (44) 8 = 1 100 100 

D2 and D3 would each create a decimal four. During the D status level, the 

B address 5502 is gated out onto the BUS and 44 is placed on BUS 2 and BUS 3. 

BUS 3 would receive the following: 

From D3 = 0000100 = 4 

From B3 = 0000010 = 2 

Result 

on Bus 3 = 0000110 = 6 with bad parity 

This would cause a MAPE alarm. 

It is possible that the end result would have good parity and no alarm would 

occur, however, the resulting table address may not be the correct one. 

Example: A 1 1000 5503 

00 

100 
From D3 = 0000100 = 4 

From B3 = 0000011 = 3 

NOTE Parity is inhibited 

Result on 

Bus 3 = 0000111 = 7 with good parity 

Constructed table address would be 5547 instead of 5544 as it should be. 

II-110 



PRACTICE PROBLEMS 

3. Describe the execution of the following instruction: 

A 1 3003 9803 

00 01 02 03 04 S3 S4 SS S6 S7 

30 1 ........ * _____ R _____ c ______ * _____ * __ _, 98 .... 1 _9 __ A_. __ s ___ c ___ n_ 

HSM Before 

00 01 02 03 04 S3 S4 SS S6 S7 

30 I 98 

HSM After 

Any alarm lights? 

4. In problem 3. the translate table started at 9800. Where did it end? 

Could we start a translate table at 4SSO? Explain your answers. 

II-111 



s. Given the following instruction and the contents of HSM after its execu-

tion, determine the initial HSM contents. 

AS 2055 5000 

55 56 57 58 59 30 31 32 33 34 

20 7 0 I 1 5 50 I 1 0 7 5 

HSM After 

55 56 57 58 59 30 31 32 33 34 

20 50 

HSM Before 

6. There is a character located in HSM at location 8919. Write a two-in­

struction program to determine whether the character is Group I, II, 

III, or IV and if: 

Group I - Place a "1" in location 4001 

Group II - Place a "2" in location 4002 

Group III - Place a 11 3 11 in location 4003 

Group IV - Place a 114 11 in location 4004 

HSM may be prepared in any way you wish before executing the two in­

structions, but be sure to mention these preparations in your answer. 

II-112 



7. During the D status level, which register receives the modified address 

from the Bus Adder? 

8. Show HSM final contents. 

A7 4520 4500 

20 21 22 23 24 25 26 20 21 22 23 24 25 26 

45 IE A B D c D E 45 

HSM Before HSM After 

II-113 



G. INDIRECT ADDRESSINJ 

Many times in programming it is necessary and/or advantageous to use the 

final register contents of some preceding instruction as the A or B address 

of another instruction. In previous problems a Transfer Data instruction 

has been used to perform this operation. There is another method, however, 

which in most cases involves fewer instructions and less computer time. 

This second method is called indirect addressing. 

An indirect address is not the ultimate address which will be used in execu­

tion of the instruction, but is instead the address of a storage location 

which will contain the ultimate or direct address. The computer will recog­

nize an indirect address by the presence of the 2 4 bit in the LSD. For 

example, the address 0215 is a direct address since the 2 4 bit is a zero 

in the number 5 (000101). On the other hand, 021E is an indirect address 

since the LSD does contain a 2 4 bit (E=OlOlOl). Note that the information 

bits, 2° through 23 , still represent a decimal 5. Therefore, an Eis a 5 

with a 24 bit. 

In order that the process of indirect addressing be carried out correctly, 

the indirect address must specify the rightmost diad of the storage locations 

housing the direct address. Thus, to use the contents of STA (1006) as the 

A Address of an M instruction, the instruction would be coded as follows: 

M 2 021E 2000 

12 13 14 15 

02 1 0 0 6 

In this example, the contents of memory locations 0214 and 0215 (rightmost 

diad) would be stored temporarily in the D Register. During this operation, 

the address 021E will be modified by -2. The A Register would then hold 

the address 021C, which specified the leftmost diad. The contents of this 

diad (1 and 0) are then read from memory and combined with the contents of 

the D register (0 and 6). Finally, all four characters are gated into the A 

II-114 



Register as the address 1006. The M instruction then would be executed as 

though it were written: 

M 2 1006 2000 

NOTE: - The same result could have been obtained using 021D, 

since the indirect address must initially specify the 

rightmost diad. 

An indirect address is not restricted to standard locations. One can in-

directly address any location in memory. Nor is the indirect address asso­

ciated with only the A Address of an instruction. The A Address, the B 

Address, or both can be indirect addresses. Also, an indirect address may 

specify the location of another indirect address. The computer will con­

tinue to bring out four new characters for every indirect address, until 

it finds an address which does not contain a 24 bit in the LSD. 

Example #1: P * 021H 021E 

Instruction Initially 

12 13 14 15 16 17 18 19 

02 1_·_3 ____ 0 _____ 1 _____ 8__. 02 4 9 5 2 

HSM Before and After Indirect Addressing 

p * 4852 3078 

Instruction Just Prior to Execution 

II-115 



Example #2: 

Assume the following instruction in memory starting at 1000 

Example #3: 

1000 J * 200H 200G 

04 05 06 07 08 09 

20 [ 9 7 6 4 5 3 

HSM Before and A£ter 

J * 6453 9764 

Instruction Just Prior to Execution 

30 

1000 M 2 lOlI lOlE 

1010 N 1 102I 102E 

1020 J * 103I 103E 

1030 0 2034 2032 

31 32 33 34 35 36 

20 ~[_A _____ B _____ c _____ o _____ E _____ F _____ G__. 

HSM Before Execution of Program 

Prior to execution of each instruction, the respective addresses shown 

below would be placed in the A and B Registers as: 

II-116 

30 

M 2 2032 2034 

N 1 2034 2032 

J * 2032 2034 

0 2034 2032 

31 32 33 34 35 36 

20 _[_A _____ B ______ * _____ * _____ * ______ o _____ G __ .... 

HSM After Execution of Program 



It should be noted that the original instruction is unchanged in memory, 

i.e., indirect addresses still exist in the memory. The instructions are 

brought out one at a time and modified in the registers during indirect 

addressing and then executed. 

1. Machine Operation 

The process of replacing an indirect address by the contents of the location 

addressed until there is no 2 4 bit in the LSD of the A or B addresses must 

all take place before execution of the instruction. Since this process, 

performed by the Ml, M2, M3, and M4 status levels, is completed before the 

first processing level (FPL) is selected, the process is considered part of 

staticizing. 

The Ml and M2 {Figure 39) status levels are used to replace the address in 

the A register with the contents of the location addressed. At TP6 of M2, 

if there is no longer a 24 bit in the LSD of the A address, either an M3 or 

the FPL is selected. An M3 is selected only if the LSD of the B address 

contains a 24 bit. In fact, if only the B address is indirect, the PS 

status level will select the M3 directly. M3 and M4 {Figure 40) bring the 

contents of the location addressed by the B register into the B register. 

When there is no longer a 24 bit in the LSD of the B address at TP6 of M4, 

the FPL is selected. 

Figure 41 shows the complete staticizing procedure. Notice that if an in­

struction which uses the N REGISTER as a counter or selector is staticized 

with N = o, Pl will be selected at TP6 of PS~ if the instruction has ~ 

indirect address. This may be expressed symbolically: NZ.RINZ.PS Pl. 

Figure 41 defines "RINZ" and also defines END STAT. 

II-117 



_)_ 
P5 
i 

Ml 

TPOl A_.,..BUS 

BUS~MAR BA(-2) 
TPl= Generate CL 

Permit Both 

TP2 Reset A 

TP23 BA~BUS 

TP3 BUS~A 

TP4 Reset D 

TP456 
MRO~BUS2 

MRl -+BUS3 

TP5 
BUS2~D2 

BUS3 ~D3 

TP6 Select M2 
.I. 

M2 

TPOl A...+BUS 

BUS_,..MAR BA(-2) 
TPl Generate CL 

Permit Both 

TP2 Reset A 

MRO~Buso 

TP45 
MRl~BUSl 

D2-+-BUS2 
D3~BUS3 

TP5 BUS~A 

If A3-24(1): Select Ml 
TP6 If A3-24(0). B3-24(1): Select M3 

If END STAT*: Select FPL 

A3-2 4(1) A3-24(0). B3-24(1) 
END 

r STAT r * 
M3 FPL 

*END STAT = A3-24(0). B3-24(0) 

Figure 39 Ml and M2 Status Levels 

II-118 



1 ~ Ml 
M3 

TPOl B~BUS 

BUS-+-MAR BA(-2) 
TPl Generate CL 

Permit Both 

TP2 Reset B 

TP23 BA-+-BUS 

TP3 BUS~B 

TP4 Reset D 

TP456 
MRO~BUS2 

MR1-+-BUS3 

TP5 
BUS2~D2 

BUS3~D3 

TP6 Select M4 
i. 

M4 

TPOl B--+BUS 

BUS-+MAR BA(-2) 
TPl Generate CL 

Permit Both 

TP2 Reset B 

MRO-+BUSO 

TP45 MRl-+-BUSl 
D2 --BUS2 
D3-.BUS3 

TP5 BUS-+B 

TP6 
If B3-24(1): Select M3 
If END STAT*: Select FPL 

B3-24(1) END ST 

' FPL 

*END STAT = B3-24(0) 

Figure 40 M3 and M4 Status Levels 

AT* 

II-119 

\ 
\ 



Pl 

(P)~OP & N 
P+2 

P2 

(P)~AO & Al 
P+2 

P3 

(P)--+ A2 & A3 
P+2 

P4 

(P)~BO & Bl 
P+2 

NZ.RINZ* 
j_ 

P5 
A3-24(1) 

(P)~B2 & B3 
A3-24(0). B3-24(1) 

P+2 

' A3-24 (0) j B3-24( 0) 
, 

..... Ml ..... M3 -
(A~D2 & D3 - (B)_.D2 & D3 r-4 -A-2 'tj< B-2 N 

I 

j_ M 
~ 

M2 - M4 0 
1---' -A3-24(1) (A)--+AO & Al 

~ 
(B)~BO & Bl B3-24(1 N 

I 
D2&D3~A2&A3 M D2&D3~B2&B3 < 

A3-24(0). B3-24(0) B3-24(0) 

' , , 
Select Pl End Stat. - Select FPL 

*RINZ = Any instruction that uses the N Register as a counter or selector (i. e. COM/DL/ 
DR/ADD/SUB/OR/AND/EXO/TRA/REG/CTC) 

Figure 41 Staticizing Block Diagram 

II-120 



2. Programming Errors 

The most common error in the use of indirect addressing results from an 

attempt to use as a final address four characters the leftmost of which is 

in an odd location. Notice that the Ml and M2 (or M3 and M4) status levels 

pull two diads out of HSM. Therefore, the final address must be the four 

characters of the two diads, the leftmost character of which is in an~ 

location. 

Example: K 1 400D 5500 is the instruction in HSM. 

00 01 02 03 04 05 06 07 08 

40 ~[-5 ____ 4 _____ 4 _____ 0 ____ 0 _____ 0 _____ 2 ____ 3 _____ 1~ 

The programmer may intend the address "4400" to replace the indirect A 

address, but actually the final A address just prior to execution will 

be "4000." An indirect address of 400D or 400E will bring the same two 

diads out of HSM, so, the address pulled out of HSM by an indirect address 

will always start at an even location. 

PRACTICE PROBLEMS 

1. Write a two-instruction program that is equivalent to the following 

four instruction program. 

1000 p * 2009 2009 

1010 M 4 0212 1032 

1020 N 4 0215 1039 

1030 J 0 2000 2009 

II-121 



2. Write a five-instruction program equivalent to the following three-in­

struction program. 

3. How many 

1000 K * 5000 5005 

1010 L 1 0210 5000 

1020 J * 021E 5004 

status levels are used to staticize the following instruction? 

M 4 502! 6000 

20 21 22 23 24 25 26 27 28 29 

50 I 2 1 5 5 0 0 5 0 2 E 

HSM Before 

What does the instruction in the registers look like just prior to 

execution? 

II-122 



4. How many status levels are used to staticize the following instruction? 

J * 2000 200H 

00 01 02 03 04 OS 06 07 08 09 

20 1 2 2 c 0 0 B * 

HSM Before 

What does the instruction in the registers look like just prior to 

execution. Describe the execution. 

II-123 



5. Show the HSM contents just prior to execution, and after execution: 

5020 4 5029 in problem three and 2000 4 2009 in problem four. 

6. At some location greater than 1000 in a lOK memory which has been 

cleared to ¢'s, an "X" has been placed. Write a program to fill 

HSM from 1000 to the "X" with *'s. Use indirect addressing. 

II-124 



7. Describe the staticizing of the following instruction. 

J 2 400V 400N 

00 01 02 03 04 05 06 

40 I 2 3 4 7 1 5 Al 

HSM 

II-125 



B. A block of information read into HSM from tape starts at location 2000 

and consists of four sub-blocks separated from each other by *· There 

is also a * at the end of the fourth sub-block. Write a program to 

transfer sub-block #1 to 5000, sub-block #2 to 6000, sub-block #3 to 

7000, and sub-block #4 to 8000. 

II-126 



ANSWERS TO PRACTICE PROBLEMS 

Pgs. 11-56, 57, 58, 62 

1. J * 1000 1002 

00 01 02 03 04 00 01 02 03 04 

10 I R c A * * 10 I* * * * * 

HSM Before HSM After 

2. JE 2003 2003 

00 01 02 03 04 00 01 02 03 04 

20 I R A c c * 20 J..,_R ____ A ______ c _____ E _____ * __ _ 

3. At end of first instruction: JS 3005 3006 

00 01 02 03 04 05 06 

30 

I * E x p E R T 

HSM Before 

00 01 02 03 04 05 06 

II-127 



4. 

s. 

7. 

At end of second instruction: JD 3002 3002 

00 01 02 03 04 05 06 00 01 02 03 04 05 06 

30 I * E x p E 5 5 30 [ * E D p E 5 5 

HSM Before HSM After 

At end of last instruction: J * 3004 3006 

00 01 02 03 04 05 06 00 01 02 03 04 05 06 

30 I * E D p E 5 sl 30 I * E D p * * 

Answer 

J 0 9996 9999 

J -

a. 

5235 5237 

Af=5238, Bf=5237 

10,000 locations will be filled. First 0001 if filled, then 0002 is 

filled, and so on until 9999 is filled. The next and last location 

to be filled in 0000 since for a lOK memory machine 9999 + 1 = 0000 

since 9999 is the largest number the A register can hold. When 0000 

is filled, A-B equality occurs and when ABE is checked at TP6 of 

this last A2 status level, a Pl status level is selected and the 

instruction terminates. Note, however, that at TP4-TP5 time of 

this last A2 status level, the A register had already been modified 

by +1, so the Af=OOOl. 

* 

8. 10,000. See explanation to No. 7. 

II-128 



9. There are three ways to approach this problem. The most straightforward 

method is to use the instruction: 

J * 0000 I 999 

Note on your 301 code card that I is equivalent to 19, so the instruction 

above will fill, starting at 0000, each location in memory through 19,999 

or every location in the 20K memory. 

A second method makes use of what you learned in problem number six and 

is a bit more elegant since it can be used to fill a memory of any size, 

even if this size is unknown to the operator. You could use the 

instruction: 

J * 0001 0000 

This will fill memory starting with 0001 to the "top" of memory (be it 

lOK, 20K, or 40K} and then "wrap-around" to fill 0000 as the last loca­

tion. ABE will be set while 0000 is being filled and the Af=OOOl. 

The third method is to use in the B address a non-numerical character 

such as II • 11 

' 

J * 0000 :000 for instance 

Write an instruction to fill every location in a 20K memory with *'s. 

(Assume WTAB is depressed.) 

Since the A register is augmented numerically, it will never hold a 

configuration such as ;000 so A-B equality will never be reached and 

the computer will continue wrapping around memory, filling every loca­

tion many times, looking for A-B equality. Since ABE is never set, 

the instruction will never terminate, and must be stopped by use of 

the OCSP button. 

Note that it makes no difference which A initial address we use since 

all memory will be filled many, many times before you can push OCSP. 

Also, note that any non-numeric character in any digit location of the 

B address will give the same result (provided that the B register sup­

plies all the needed bit positions in the chosen digit position -- care 

II-129 



must be exercised expecially in B1 and B2 ). 

10. a. Since the A-B equality circuitry doesn't look at the 2 6 bits, the 

0000 in the A register and the blank B register will set ABE. Thus, 

one location (0000) will be filled with¢. 

11. 

b. Af=OOOl, Bf=blank. Computer does stop. 

c. Since WTAB was depressed, there are no errors. If WTAB had not 

been depressed, a WTT error would have been generated. 

00 01 02 03 04 

10 I A B * D E 

a. MR at TP4: 

MRO MR1 

* D 

b. "C" will not appear in the MR. It is inhibited from reaching 

MRO so that the N character (*) can be gated in instead. 

12. The D will appear in MR1 during the second A2 status level--actually 

during the time that a "4" is being inserted into location 1002. It 

will appear at about TP23 time of the second status level and remain 

in the MR until the MR is reset at TP1 of the third A2 status level. 

(See page 2-1 of STATUS FLOW manual. This shows the functions per­

formed during every status level). 

II-130 



Pgs. II-67 & 75 

1. 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

02 IA 5 6 3 2 1 6 3 2 1 3 2 0 6 

HSM After 

2. 58 59 60 61 62 63 

15 IA B c E F F 

HSM After 

3. N/5038 7196 (or M/5008 7166) 

4. 00 01 02 03 04 05 06 

31 I * * c A s E * 
HSM After 

5. DL increments the A and B addresses; DR decrements them. 

6. 50 51 52 53 54 55 56 

22 E x E x E x E Af=2255, Bf=2257 

HSM After 

7. 50 51 52 53 54 55 56 

22 IE x E x A M p Af::::2249, Bf =2251 

II-131 



8. Transfer Data Right 

9. 00 01 02 03 04 05 06 07 08 09 

20 A N D A 1 A N D A 2 

HSM After 

10. MS 1000 1001 

00 01 02 03 04 05 

10 !~_* _____ * _____ * _____ * ______ * _____ *___. 

HSM After 

II-132 

Note that the 
instruction at 
1020 changes the 
instruction at 
1030 to read 
N2 3008 2003 be­
fore 1030 is 
staticized. 



Pgs. 11-79, 81, 89, 90, 91 

1. p * 4813 4821 

2. 25 26 27 28 29 30 31 12 13 14 15 

881 E E s u L T s I 0218 8 2 7 

HSM After HSM After 

3. The selected symbol (/) would be destroyed and HSM would be filled with 

4's down to 0199-WTT alarm. 

4. 00 01 02 03 04 05 06 00 01 02 03 04 05 06 

201 * 3 6 8 7 9 * 30 0 * 3 6 8 7 9 

12 13 14 15 

02 I 3 0 0 2 I 
HSM After 

5. 30 31 32 33 34 35 12 13 14 15 

331 B @ B @ @ c I 02 I 3 3 3 4 I 
HSM After 

6. M 11 1020 5030 or N" 1049 5059 

7. # * 1000 5000. To quickly determine how many letters the word contained, 

examine the A final address by selecting the A register. A - 1000 - the 

number of letters in the word +1. The "two extra" are due to the facts 

that an *, not a letter of the word was the last to be transferred, and 

even after this transfer the A register will have been incremented by 

one more. So the number of letters in the word + Af - 1001. 

II-133 



8. The DSR instruction will transfer the * from 0000 to 0000 and the A 

register will decrement by one going to the top of memory. Then by 

either examination of A final or of the contents of 0212-0215, memory 

size may be determined. 9999 -+ 303A, 1999 -+ 304A, 2999 -+ 305. Note 

that the instruction "Nl 0000 0000" will allow you to determine HSM 

size by examination of the A final. This is simpler for manual deter­

mination. But also notice that "N" doesn't store A final. So is HSM 

size is to be determined in a program, the "P" instruction will have to 

be used in order to store the top HSM address. 

9. 00 01 02 03 04 05 06 07 08 09 12 13 14 15 

20 p A c E * 0 N E s 02 2 0 0 4 

A HSM After Final 

Af = 2005 

The important points in this problem are: the fact that none of the 

instructions following the DSR affect the store A area; and the fact 

that the information in 0212 - 0215 is used to fill both the A and B 

addresses of the SF instruction. 

10. The instruction at 1010 will fill memory with "S's" and continue looping 

around HSM looking unsuccessfully for a * Thus Af will depend upon when 

the operator hits OCSP to terminate the cycling, and both locations 2000-

2009 and 0212-0215 will contain all "S's." 

II-134 



Pgs. II-93, 94, 99, 100, 101, 102 

1. 12 13 14 15 

02 3 0 5 8 PRP Set 

2. PRZ set 

3. K0 4000 4007 

4. 10 11 12 13 14 15 34 35 36 37 38 39 

25 I A N * 1 2 31 341 * * * 1 2 3 

HSM After 

5. Set a PRI, adjust Af' store Af. 

6. The Xl is used to set the PRI's; the X2 is used to adjust A final. 

7. One method is to use a LSL instruction to locate the last 0 before 

the word. Af + 1 = starting address of word. Then using Af + 1 

as your starting A address, do a DSL from Af + 1 to Af + 1. This 

will stop after finding the first 0 on the other side of the word. 

The final A address of the DSL minus one will be the address the 

last character of the word. 

8. 00 01 02 03 04 

20 * R c A * PRP will be set. 

HSM After 

II-135 



9. 

10. 

II-136 

00 01 02 03 04 

30 * A B c * Af = 3002. PRP is set. 

ABE is not set. 

Since the first character examined was a non-selected character, we 

would expect to set PRN. However, we inserted this instruction into 

the registers manually, so there was no PS status level to set the 

FD flip-flop. On a non-compare, PRN is set only if FD is set at 

TP4 of the Xl status level. Since in this case FD will not be set, 

PRP is set instead of PRN. 

00 01 02 03 04 05 12 13 14 15 

so I * * * * * * 02 5 0 0 2 

PRN is set (by the LSR at 1020). 



Pgs. II-105, 106, 111, 112, 113 

1. 

08 09 10 11 12 13 14 15 i6 40 41 42 43 44 45 46 47 48 

L B E R T * * * 140~ ._ ___ A __ B __ o __ R __ * __ E __ T ___ c~J 

HSM After 

2. Location 3621 contains 0 

Location 3645 contains p 

Location 3662 contains I 

Location 3643 contains c 

Location 3671 contains A 

Location 3663 contains L 

Location 3625 contains * 

Location contains 

3. 00 01 02 03 04 53 54 55 56 57 

30 I • R c D ·I 98 9 A B c D 

The B address must be 9800 not 9803. Because of this programming error, 

the D status level will address 9857 instead of 9854. Since parity will 

be correct, there will be no error lights. 

4. It ended at 9876. Actually the table could go to 9877, but = is the 301 

character with the highest binary bit value (octal 76). 77 is the largest 

octal number possible with six data bits so the table must stop at 9877. 

In fact it must start at XXOO and extend to XX77 due to the method used 

for translation, so you would not find a translate table starting at 4450. 

II-137 



5. 55 56 57 58 59 30 31 32 33 34 

20 l.__·~---+ _____ H _____ r ______ ;_.I 50 _, _1 ____ 1 _____ 0 ____ 1 _____ 5 __ 

HSM Before 

6. Prepare HSM as follows. Fill with: "0" from 4000 thru 4004 

"1" from 5000 thru 5017 

"2" from 5020 thru 5037 

"3" from 5040 thru 5057 

"4" from 5060 thru 5077 

Insert the following instructions at HSM locations shown: 

8900 Al 8919 5000 

8910 Ml 8919 400? 

The question mark in location 8919 indicates that this location 

contains the unknown character and was not changed when inserting 

the two instructions. The translate instruction will replace this 

unknown character with a 1, 2, 3, or 4 depending upon the group to 

which it belongs. Then the 1, 2, 3 or 4 will be written by the DL 

instruction to 4001, 4002, 4003 or 4004, respectively. 

7. The Bus Adder is not gated to the BUS during the D status level. 

8. 20 21 22 23 24 25 26 

45 D A B c c c c 

HSM After 

II-138 



Pgs. II-121 through 126 

1. 

2. 

1000 

1010 

1000 

1010 

1020 

1030 

1040 

3. 9. 

p * 
J 0 

K * 
M 4 

L 1 

N 4 

J * 

2009 

021E 

5000 

0212 

0000 

0215 

0000 

2009 

021E 

5005 

1022 

5000 

1045 

5004 

{Pl-PS, Ml, M2, Ml, M2). M 4 5500 6000 

4. Eleven status levels. When staticized, the instruction looks like thisi 

J * .1220 002@, where the B2 and B3 characters have had parity. How­

ever, since the B register doesn't check parity and is not used to ad­

dress memory during execution, no alarm occurs until a WTT at location 

0000. If WTAB is depressed, the instructioD will not terminate since 

"@"is not a BCD character and thus A-B equality will not be reached. 

5. In neither problem 3. nor problem 4. will the contents of HSM be altered 

by the indirect addressing procedure. In problem 4. all memory will be 

filled with *by execution of the instruction. 

6. 0900 K 0 1000 9999 

0919 J * 1000 021E 

II-139 



7. Pl-PS would be performed correctly. Ml selected. When the contents 

of the A register are used to address HSM during Ml, a MAPE will occur 

since the 2 5 bit of the "V" was dropped creating bad parity in A3 • 

8. 1000 # * 2000 5000 

1010 # * 021E 6000 

1020 # * 021E 7000 

1030 # * 021E 8000 

II-140 



SECTION III 

DECISION AND CONTROL INSTRUCTIONS 

A. DECISION AND CONTROL INSTRUCTIONS, INTRODUCTION 

The Decision and Control Instructions might be considered the heart of 

modern data processing machines. One instruction in particular, the Condi­

tional Transfer of Control (CTC), is responsible for making several differ­

ent types of decisions (one per instruction), and then directing the path 

the computer should take. It simulates human reasoning. A similar instruc­

tion within the group is the Input-Output Sense (IOS), which is involved with 

decisions about the peripheral equipment. The seven decision and control in­

structions are: 

OP Code 

v 
w 
y 

x 

R 

s 

B. V - STORE REGISTER (REG) 

Instruction 

STORE REGISTER 

CONDITIONAL TRANSFER OF CONTROL 

COMPARE LEFT 

TALLY 

HALT 

REPEAT 

INPUT-OUTPUT SENSE 

The REG instruction is used to transfer the contents of a selected register 

(P, A, B, S, or U) into four specified HSM locations. The P address trans­

ferred will be the address of the REG instruction plus lo. The A or B 

address stored is the A or B of the instruction immediately preceding the 

Store Register instruction. 

The A address of the REG instruction specifies the address of the right­

most diad where the four characters of the selected register are to be 

stored. The only exception is when the A register (A of the previous 

instruction) is to be stored. In this case, STAl and STA2 are used and 

A is stored in 0212-0215, the standard STA location. The last four charac­

ters of the REG instruction are not used unless the contents of the P regis 

ter are being stored. In this case, the B address of the REG instruction 

will be gated into the P register. The program will then continue by sta-

III-141 



ticizing and executing the instruction at the newly created P address. 

The N character determines which register will be stored. A list of N 

characters and their corresponding register is given under "Instruction 

Format." 

NOTE: Pages VII-3 and VII~4 of the Programmers' 

Reference Manual give an operations summary 

of the REG instruction. 

1. Instruction Format 

Op. Code 

v 

III-142 

N 

See Table 
Below 

A 

Address of Rightmost 
Diad to Receive Contents 
of P, B, S, or U Register. 
A Register Stored Auto­
matically in STA, if N=2. 

REGISTER 

TO BE STORED N CHARACTER 

p 

A 

B 

s 
u 

1 

2 

4 

8 

& 

B 

Ignored Unless 
Storing P Register. 
Address of next 
Instruction to be 
executed, if N=l 

= A. -2 if P, B, S, or U are stored; if A is stored, 
1 

Af of previous instruction. 

= Bi if P, S, or U are stored; if A or B, Bf of 

previous instruction. 



2. Instruction Execution 

Example 1: 

Assume B Register contains the address 2963 prior to executing the 

following instruction: 

v 4 3725 7186 

The B Register contents (2963) will be stored at address 3725 and the B 

Address of the instruction (7186) will be ignored. Memory after execution 

of the B instruction would be as follows: 

22 23 24 25 

37 2 9 6 3 

NOTE: If N = O, no register is stored and next 

instruction in sequence is executed. 

Had the A Address of the instruction been 3724, the same result would occur 

since this is the other half of the diad. A diad always consists of an 

even address on the left and an odd address on the right. If the A Address 

were 3723 initially, then the 6 and 3 would have been placed in locations 

3722 and 3723, respectively, and the 2 and 9 in locations 3720 and 3721, 

respectively. 

Example 2: v 1 2003 1030 

If the above instruction is located in memory, beginning at address 1000, 

the P Register would hold the address 1010 after staticizing. This store 

instruction specifies storing the P Register content's at address 2003 and 

transferring control to the B address 1030. Therefore, memory would hold 

the following after executing the instruction. 

00 01 02 03 

20 1 0 1 0 

III-143 



The contents of the B Register, 1030, would then be placed in the P Register. 

The address in the P Register is always that of the next instruction to be 

executed. Thus, the operation code of the next instruction to be executed 

is located at address 1030. 

Practice Problems: 

1. List the four memory locations which would receive the contents of the 

selected register in the following instruction. Assume the A Register 

holds 6034, prior to staticizing of this instruction. 

v 2 5061 3025 

a. HSM Location will contain 

b. HSM Location will contain 

c. HSM Location will contain 

d. HSM Location will contain 
~~~~~~~~-

2. If the Operation Code (V) of the following instruction is located at

address 7750 in memory, show the contents of memory between addresses

1032 and 1035 after execution of the instruction.

10

v 1 1035

32 33 34

8000

35

What would the P Register hold after execution of the above instruction?

p

3. Write an instruction to store the S Register contents in memory locations

5106, 5107, 5108, and 5109.

III-144

4. Execute the following program showing final HSM contents.

2000 N 1 7770 7772

2010 M 3 7766 7770

2020 v 2 0000 0000

2030 N 4 0215 2049

2040 J * 7766 0000

66 67 68 69 70 71 72 66 67 68 69 70 71 72

11 Is A M p L E *] 11 (

HSM BEFORE HSM AFTER

5. Execute the following program showing final HSM contents.

3000 # @ 8980 8988

3010 v 4 3039 0000

3020 M 4 0212 3032

3030 # @ 0000 0000

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

8910 N E @ T w 0 @ 1 2 3 4 5 6 7 8

HSM BEFORE

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

89

HSM AFTER

III-145

6. Execute the following program showing final HSM contents.

1000 N 3 6662 6666 3000 J * 6665 6665

1010 v 4 1039 0000 3010 v 1 0219 0000

1020 v 1 3019 3000

1030 N 2 6662 6666

60 61 62 63 64 65 66 60 61 62 63 64 65 66

66 [R c A 3 0 1 66

HSM BEFORE HSM AFTER

3. Machine Operation

The Store Register instruction uses two status levels for execution, either

an A2 and A4 or a STAl and STA2. During TP6 of PS, if the N character is a

"2" (indicating that the A Register is to be stored) a STAl is selected.

STAl and STA2 are then used to store the A Register.

If the N character is not a "2", an A2 will be selected. The A2 and A4

status levels are used to store the P, B, S, or U Register. The contents

of the selected register will be stored at the location specified by the A

address of the Store Register instruction.

The B address of the Store Register instruction is not used unless the P

Register is being stored. In this case, the contents of the B Register are

gated into the P Register at TPS of the A4 status level. Thus, the B

address of the Store P instruction indicates the address of the next in­

struction to be executed.

Remember, the purpose of the Store Register instruction is to store the

final register contents of the preceding instruction. Staticizing, however,

will destroy the A-final and B-final addresses of the previous instruction.

Therefore, something must be done during staticizing to preserve the A or B

address of a store A or store B instruction.

III-146

NZ
END STAT NA

"1

NA

' A2 LOGIC
LOCATION

TPOl A _.BUS 0554c2
BUS---.MAR --..BA(-2) 0674136

TPl Generate CL 067605
Inhibit Both {Z.~Z.

2
0573c2 If N2 0 (1): B--.Bus

TP23 If N2 (1) : P---.BUS 052401
If Ns4 s~BUS 252A8C4
If N2 (1) : u---..BUS

TP3 BUS2---.. MRO 0656CJ
BUS3---. MRl

TP4 Reset A 0556CJ

TP45 BA--. BUS 0672C5

TP5 BUS---.A 0556CJ

TP6 Select A4 (TO STL-PT) 0822B3

~
A4 ' LOGIC

LOCATION

TPOl A--.BUS 0554c2

BUS--.. MAR --.. BA (+O) {~~~~~

TPl Generate CL 067605
Inhibit Both {Z.{}

2
0573c2 If N2 0 (1) : B --.BUS

TP23 If N2 (1) : P--. BUS 052401
If NS: S--. BUS 252A8C4
If N24 (1): u--.aus

TP3
BUSO_.MRO

0657C4 BUSl_.. MRl

TP4 If N20(1) Reset p 052601

TP45 . If N20 (1) : B__.BUS 0573c5

TP5 IfN20(l): BUS -..P 052601 ,.--

TP6 Select Pl(TO STL-PT) 084A4C4

~
~

ST Al
Pl

Pl
-1Hi- Absence of Permit Both on 0677C6

-!HH!- Absence of BA +1, +2, -1, -2

Figure 42 A2 and A4 of a REG

III-147

Refer to Page 2-8, 2-9 amd 2-10 in the Status Flow Manual (Staticizing). At

TP4 of P2, the A Register is reset if "REG NA". "REG" means that a

Store Register instruction code is in the NOR register and 11NA" means that

a 2 1 bit is present in the N register indicating that the A Register is the

one whose contents are to be stored. If a Store A instruction is being sta­

ticized, the A register is not reset at TP4 of P2 and the new A address being

brought out of HSM is not gated into the A register at TPS of P2 and P3.

The B Register will be reset at TP4 of P4 if REG • (NA/N22). That is, the

B register will !!2,! be reset if either a store A or store B is being sta­

ticized. (N22 indicates a 22 bit is present in the N register.) Also, if

either a store A or store B is being staticized, the B address of the store

instruction is not gated to the B register at TPS of P4 and PS.

The question naturally arises: "Why is the Bf of the previous instruction

saved during a store A?" Assume that.you wanted to store both the A-final

and the B-final of the previous instruction. If you do a store B instruc­

tion and then a store A instruction, the A address stored will be the A

address (-2) used to store the B register contents. If, however, you do a

store A instruction and then a store B instruction, you will successfully

store Af and Bf of the instruction immediately preceding the two store in­

structions. This is possible only because the store A instruction saves

~ the Af and Bf of the previous instruction.

4. Programming Errors

The Store Register instruction can be used incorrectly thereby creating

strange results by having an N character other than those which are specified

or by storing certain constants in the B address of a VB or V & instruction.

If the N character is 2, 3, 6, 7 or any character with a 2 1 bit, the instruc­

tion will automatically go through STA with no alarms, since a 2 1 bit in the

N register automatically selects STAl. If, however, the combination is s,
9, A, D, Hor some other character which specifies more than one register

to be stored, the contents of the designated registers will all be gated

onto the Bus at the same time and more than likely bad parity will result

III-148

causing a MRPE alarm. The computer only examines the single bit of the N

character set aside for each register.

20 = p Register

21 = A Register

22 = B Register

23 = s Register

24 = u Register

A one bit in the respective position is sufficient to gate the contents of

that register onto the bus during an A4 status level. EXAMPLE: Register con­

tents prior to staticizing V instruction:

p A B
1020 2360 5143

Instruction at 1020 is V 5 7004 0000.

Register contents after staticizing V instruction:

p A B
1030 7004 5143

Since the N character is a 5 (000101 excluding parity) both the P and B

registers are specified to be stored. Therefore, during the A4 status level

addresses 1030 and 5143 are gated onto the Bus.

Bus 0 receives a 1(0000001) and a 5 (1000101) resulting in a 5 (1000101)

with good parity.

Bus 1 receives a 0 (1000000) and a 1 (0000001) resulting in a 1 (1000001)

with bad parity.

Bus 2 receives a 3 (1000011) and a 4 (0000100) resulting in a 7 (1000111)

with bad parity.

Bus 3 receives a O (1000000) and a 3 (1000011) resulting in a 3 (1000011)

with good parity.

III-149

The resulting address on the Bus is 5173 with bad parity in the Cl and C2

characters thus causing a MRPE during the A4 status level.

Care must be exercised in specifying the rightmost diad of the four loca­

tions which are to receive the contents of the designated register. For

example, assume one desires to store the contents of the B register in loca­

tions 1066, 1067, 106B, and 1069. The instruction must be:

v 4 l06B 0000

or

v 4 1069 0000

If the instruction is written using the A address 1066 or 1067; then loca­

tions 1064, 1065, 1066, and 1067 would receive the contents of B.

It should be noted that the B address is ignored in all cases of the Store

Register instruction except when N = 1. However, the B address is staticized

for N = B and N = &. Therefore, if constants are placed in memory in the

locations which make up the B address of a VB or V& instruction and a 24 bit

exists in the _LSD position, the computer will go through indirect addressing

possibly causing a MAPE or MRPE alarm. EXAMPLE:

v B 1032 -END

The above instruction would cause a MAPE alarm during indirect addressing

(Ml status level) because bad parity is created by the loss of the 2 5 bits

of the CO and C2 characters and the 2 4 bit of Cl while placing -END into

the B register.

A MRPE can also be generated by trying to store the contents of a non­

existing register. For instance, if a "VB" is attempted on a computer with

no Simultaneous Mode or a 11V&" is attempted on a computer with no File Mode,

nothing will be gated onto the BUS at TP23 time of the A2 status level, and

a MRPE will occur since no bits will be present in the MR.

However, attempting a "V9" on a computer with no Simultaneous Mode, will

cause a "Vl" to be performed. In the case, since the S Register is non-

III-150

existent, it will not be gating any information onto the BUS for comparison

with the P Register bits to create a MRPE.

PRACTICE PROBLEMS

7. Execute the following program and show the final HSM contents indicated,

1000

1010

1020

05 06 07 08 09 10

50 [1 2 3 4 5 6

HSM BEFORE

05 06 07 08 09 10

so

HSM AFTER

Vl

V2

V4

0218

0219

5009

1010

2250

1020

10 11 12 13 14 15 16 17 18 19 20

02 [A B C D E F G H I J K

HSM BEFORE

10 11 12 13 14 15 16 17 18 19 20

02

HSM AFTER

8. Execute the following program and show the final HSM contents.

1000 J* 2000 3000

1010 V4 0515 1010

1020 V2 0218 1000

10 11 12 13 14 15 16 10 11 12 13 14 15 16 17 18 19

os I 0 1 2 3 4 5 6 02 E F G H I J K L M N

HSM BEFORE HSM BEFORE

10 11 12 13 14 15 16 10 11 12 13 14 15 16 17 18 19

os j 02

HSM AFTER HSM AFTER

III-151

9. Describe execution of the following program. What will be stored and

where will it be stored? What is the P address after execution? Any

alarm lights?

1000

1010

M4

V3

2000

5025

3000

1030

10. Describe execution of the following program. What will be stored and

where will it be stored? What is the P address after execution? Any

alarm lights?

III-152

1000

1010

N2

vs
2001

0218

3000

0218

C. W - CONDITIONAL TRANSFER OF CONTROL (CTC)

The Conditional Transfer of Control instruction is the principal decision­

maker used by the 301. During the execution of a program, there will be

times when the next step will depend upon the outcome of a group of opera­

tions already performed. For instance, assume a certain number of orders

are to be processed. The total number of orders is stored as a two-digit

quantity in HSM. After processing an order, this two-digit quantity is

decremented by one, indicating that there is one less order still to be

processed. Now a decision based on the present state of the two digit

quantity must be made. (1) If the quantity is a non-zero positive number,

there are more orders still to be processed and control must be transferred

to the "top" of the program in order to repeat these operations on the next

order in line. (2) If the quantity is equal to zero, all orders have been

processed and control must be transferred to a termination routine. (3) If

the two-digit quantity is a negative number, a mistake has been made and

control is transferred to an error routine. (It is impossible to process

more orders than the number of orders available.) The CTC instruction could

be used to make the three-way decision described above.

The CTC instruction makes decisions by: (1) sensing certain levels which

indicate the present state of the processor and (2) transferring control

to either the next instruction in sequence, the instruction addressed by

A of the CTC, or the instruction addressed by B of the CTC. To transfer

control to the instruction addressed by A of the CTC means to insert the

A address of the CTC into the P register and select a Pl. In this case,

the next instruction executed would be the instruction whose P address is

the same as the A address of the CTC instruction.

The N character of the CTC instruction determines which indicator will be

sensed. The N codes and their corresponding indicators as well as the

conditions for selecting the A or B address for control transfer are listed

under "Instruction Format." If neither of the conditions necessary for

selecting the A or B address is met, the next instruction in normal sequence

will be staticized and executed. The instruction does not go through STA,

III-154

but does go through STP (STORE P) which is an abbreviation for storing the

P register contents in 0216 through 0219. This is done on transfer only

as a means of saving for future reference the location from which control

was transferred.

NOTE: Pages VII-5 and VII-6 of the Programmer's Reference

Manual give an operations summary of the CTC instruction.

1. Instruction Format

012. Code

w
N Sense

1 PRI' s

2 Overflow
Indicators

4 Simul-
taneous
Indicator

8 ED/EF Normal
Indicator

& Interrupt
Indicator

A B

Address of Next Address of Next
Instruction, if Instruction, If
One Set of Con- One Set of Condi-
ditions Described tions Described
Below is True. Below is True.

(minus)
ED/EF Simul­
taneous
Indicator

A Address

N = 1 and PRP is set.

N = 2 and First Overflow Indicator is set.

N = 4 and a Read instruction is in Simultaneous Mode.

N = 8 and the EF/ED Normal Indicator is set.

N = & and the Interrupt (INT) Indicator is set.

N = - and the EF/ED Simultaneous Indicator is set.

III-155

B Address

N = 1 and PRN is set.

N = 2 and neither Overflow Indicator is set.

N = 4 and Write instruction is in the Simultaneous Mode.

N = 8 and the EF/ED Normal Indicator is not set.

N = & and the Interrupt Indicator is not set.

N = - and the EF/ED Simultaneous Indicator is not set.

If N = 0, or N = 1 and PRZ is set, or N = 2 and 'Second Overflow Indicator

is set, or N = 4 and Simultaneous Mode is not busy, no transfer of control

takes place and the next instruction in sequence is executed.

Af =Ai and Bf= Bi.

2. Instruction Execution

Example:

Write an instruction that will transfer control to 3750 if PRP is set, or

3760 if PRN is set.

w 1 3750 3760

Practice Problems:

1. Write an instruction that will transfer control to address 5580 if

the INr button is not set or to address 4320 if INT is set.

2. Assume the following instruction exists in memory beginning at address

2000. If the First Overflow Indicator is set when this instruction is

executed, what will memory locations 0216 through 0219 containto show :

III-156

w

16

2

17

3120

18

2050

19

02 _[____ ___.

?

3. Write an instruction which will sense the ED/EF normal indicator.

When indicator is set, transfer control 4650; when not set, trans­

fer to 4630.

4. Execute the following program showing final HSM contents.

1500 K 0 6560 6566

1510 ·w 1 1530 1530

1520 J * 6566 6566

1530

1540

N

J

4

*
0215

6560

60 61 62 63 64 65 66

0 0 0 3 8

HSM BEFORE

a.) CTC Indicators

1549

0000

60 61 62 63 64 65 66

65(..__ -------

HSM AFTER

The N character of the CTC instruction determines which of six possible

indicators the instruction will sense. If the N = 0 no indicator will be

sensed and the next instruction in sequence is staticized and executed.

If N = 1, the PRI's will be sensed. There are eight 301 instructions

which set the PRI's as part of their normal operation. The student has

already studied two of these instructions; LSL and LSR. The other in­

structions which set the PRI's are: Compare Left, Logical "AND," And,

Subtract, Tape Read Forward Normal and Tape Read Reverse Normal. When

the CTC instruction is sensing the PRI's, a PRP will cause transfer of

control to the A address, a PRN will cause transfer to the B address, and

a PRZ will allow the next instruction in sequence to be staticized and

executed.

III-157

If N = 2, the Overflow Indicators will be sensed. The "Overflow Indicators"

are actually two flip-flops called SCAR 1 and SCAR 2 (SCAR = sum carry).

These flip-flops indicate that there is a carry present and will be mentioned

at greater length in the arithmetic instruction lesson. The lOK and 20K

30l's have only one SCAR slip-flop; only the 40K 301 has SCAR 2. If SCAR

{SCAR 1 in the 40K machine) is set, the CTC will transfer control to the A

address. If no overflow indicator is set, control is transferred to the B

address. If SCAR 2 is set (40K only), the next instruction in sequence will

be staticized and executed.

If N = 4, the Simultaneous Indicator is sensed. If a Simultaneous Read is

being executed, control will be transferred to the A address. I£ write in­

struction in the Simultaneous Mode is being executed, control will be trans­

ferred to the B address. If the Simultaneous Mode is unoccupied, the next

instruction in sequence will be staticized and executed.

NOTE: The Simultaneous Mode is used only for I/O Instructions.

If N = 8, control will be transferred to the A address if the ED/EF Normal

Indicator is set, or to the 3 address if the ED/EF Normal Indicator is not

set. ED and EF are 301 characters usually used to mark the end of a block,

or group of blocks, of data. ED stands for "End Date", EF for "End File."

If N = &, the Interrupt Indicator will be sensed. This indicator is con­

trolled by the Interrupt Button (INT) on the console. If this button is

lit, control will be transferred to the A address. If INT is not lit, con­

trol will be transferred to the B address.

If N = -, the ED/EF Simultaneous Indicator will be sensed. If ED or EF

had been read during the execution of a Simultaneous Instruction currently

beinQ executed, the CTC will transfer control to the A address. Otherwise,

control will be transferred to the B address.

3. Machine Operation

The Conditional Transfer of Control instruction uses two status levels, an

Xl and X2. These status levels are used to store the P address in stan­

dard location 0216-0219. The Xl stores the two most significant digits in

III-158

0216, 0217. The X2 stores the two least significant digits in 0218, 0219.

In addition, at TP4 of X2, the P register is reset and at TP5 the appropri­

ate address (A or B) is gated into the P register. Pl is selected at TP6

of X2.

The abbreviations used in X2 are:

SRB

SWB

NEDF

SEDF

- Simultaneous

- Simultaneous

- An ED or EF

- An ED or EF

a.) Non-Transfer of Control

Read Busy

Write Busy

sensed during

sensed during

a normal read instruction.

a simultaneous read instruction.

There are four instances where a Pl status level will be selected immediately

upon completion of staticizing the CTC instruction, These four are:

(1) When N = 0

(2) When N = 1 and PRZ is set

(3) When N = 2 and SCAR 2 is set (40K only)

(4) When N = 4 and neither a simultaneous read nor a simultaneous

write is being performed.

4. Programming Errors

In the CTC instruction, it is possible to use an N character which is not

one of the characters specified. Each of the bits 2°, 21 , 22 , 2 3 , 2 4 and

2 5 represent the testing of a given indicator or indicators. If a combina­

tion of these bits is used for the N character, more than one indicator

will be sensed.

Any N character of a CTC instruction, containing a 2° bit when PRZ is set,

a 2 1 bit when SCAR 2 is set, or a 22 bit when the Simultaneous Mode is

unoccupied (or not existing) will cause a Pl status level to be selected

immediately after staticizing, thus not permitting a transfer of control.

Any other combinations will select an Xl status level after staticizing

and then, depending upon the N character and the selected indicators, may

III-159

or may not attempt to gate both the A and B addresses onto the Bus at the

same time during the X2 status level. If both addresses are gated onto the

Bus, bad parity might result which would be gated into the P register. Dur­

ing the next Pl status level, bad parity would produce a MAPE alarm. How­

ever, good parity may result and the computer could jump to a completely

different address without any alarm occurring.

III-160

END STAT
NZ J r

(l)•PRZ(l)/N~'.2 2 (l)•SRB•SWB N -2 O (1) •PR Z (l) /N - '
') -- -···"·-··

~ '"' (l) • s rm • s w B ,
Xl

TPOl 0216~BUS

BUS--.MAR--.BA(+O)
TPl Generate CL

Inhibit Both

TP23 P~BUS

TP3
BUSO~MRO

BUSI ----MRI

TP6 Select X2 (TO STL-PT)

X2
TPOl 0218~BUS

BUS__.., MAR ----BA(+0)
TPl Generate CL

Inhibit Both

TP23 P--.BUS

TP3
BUS2--.MRO
BUS3~MR1

TP4 Reset P

If N2 g (l) • PRP (l) : A_.,..BUS
If N2 (l) • PRN (l) : B_..BUS
If N2 ~ (l) •SCAR (1) : A--.BUS
If N2 2 (l}•SCAR(O): B--...BUS
If N2 2 (l}•SRB(l): A_..Bus

TP45
Jf N2 (l) • SWB (1) : B--.Bus
If N2 3 (1) • NEDF (1): A--.BUS
If N2~(l}•NEDF(O}: B----.BUS
If N2 4 (l)•INT: A----.BUS
If N2 (l}•INT: B--.BUS
If N2~ (1) • SEDF (l): A--. BUS
If N2 (l}•SEDF(O}: B__.BUS

TP5 BUS----P

TP6 Select Pl(TO STL-PT)

,
Figure 43 Xl and X2 of a CTC

III-161

Example 1:

Assume PRP is set and INT is not set on the console when the following in­

struction is staticized.

w A 4210 4280

Since an A contains a 2° bit and a 24 bit, both the PRI's and the Interrupt

Button will be sensed. The Xl and X2 status levels are executed after sta­

ticizing and during X2, the PRI's and INT are examined. With PRP set and

N-2° a one bit, the A address is gated onto the Bus. Also with N-24 set and

INT not set, the B address is gated onto the bus. The Addresses 4210 and

4280 combine to create 4290 with bad parity in P2. Therefore, a MAPE alarm

would occur during the next Pl status level.

Example 2:

Assume the simultaneous mode is unoccupied when the following instruction

is attempted and SCAR (overflow) is set.

w 6 7350 7370

Since the N character is 6, the 22 and 2 1 flip-flops would be set in the N

register. The 22 indicates testing the Simultaneous Mode and because the

mode is unoccupied, a Pl status level is selected after staticizing and

SCAR is not tested. No transfer of control takes place and the next in­

struction in sequence is executed. No alarm would occur.

Practice Problems:

5. A CTC instruction always uses Xl and X2 status levels - True or False?

Explain your answer.

III-162

6. There is one ";" in HSM located somewhere between 2000 and 2999.

Write a program to search 2000 ~ 2999 for the

" . " ' with a "•" if INT on the console is set.

n •"
' and replace the

If INT is not set,

the program should replace the ";"with a "~". At the completion

of this program, transfer control to location 4000.

7. Write a program to fill 2050 through 2100 with "¢'s" and check to make

certain 2050 through 2100 all contain 11¢ 1 s 11 ; if not, repeat operation

until "O's" appear in these locations. When area is filled with "O's"

transfer control 3000.

8. Why are A3 and B3 of a CTC instruction usually "0's"?

9. Write a three-instruction program starting at 1000 to search 5000 thru

5999 inclusive for any character other then "*''· If the character at

5000 is something other than"*", transfer control to 1080. If there

is a character other than "*" in 5001 thru 5999 inclusive, transfer

control to 2020. If all Characters are "*'s" transfer to 3000.

III-163

10. An ED has just been sensed in the Simultaneous Mode. No I/O instruc­

tions have been performed in the normal mode. Describe the execution

of: W Q 1230 5300.

D. Y - COMPARE LEFT (COM)

In some cases during the execution of a program, the choice "what course of

action next" must be based on the contents of a particular location or loca­

tions in HSM. There is need for an instruction which will examine the con­

tents of a certain portion of memory and make a decision based on those con­

tents. "Compare Left" is such an instruction.

This instruction compares two given quantities or items and determines which

is the larger. The PRI's are set to indicate the result. Comparison begins

with the most significant digits and proceeds from left to right. The in­

struction terminates upon finding the first non-comparison or upon decreasing

the N Count to zero, if all characters are equal. PRZ is set initially and,

if still set after execution of the Compare, will indicate that the operands

are equal. PRP being set upon termination of the instruction signifies that

a positive result was obtained (first operand larger than second operand,

i.e., the operand addressed by A is larger than the operand addressed by B).

PRN being set indicates a negative result (first operand smaller than second

operand). This instruction does not go through STA or STP.

The COM instruction does not transfer control, but it does set the PRI to

indicate the results of its comparison. Thus it may be used in conjunction

with the CTC instruction (which can sense the PRI) to cause transfer of con­

trol. This transfer will then depend upon the contents of that part of

memory examined by the CCM instruction.

III-164

NOTE: Pages VII-7 and VII-8 of the Programmers' Reference Manual

give an operation summary of the COM instruction.

1. Instruction Format

Op. Code N A B

y Numbers of
Characters to be
Compared {0-44)

HSM Address
of Leftmost
Character c;:if
First Operand

HSM Address of
Leftmost Character
of Second Operand

Af = One location to the right of the last character

compared in the first operand.

Bf = One location to the right of the last character

compared in the second operand.

NOTE: If N = o, no characters are compared and the next

instruction in sequence is executed.

2. Instruction Execution

Example: y 5 1000 1006

00 01 02 03 04 05 06 07 08 09

10 I 3 2 6 4 8 * 3 2 7 5

f f ' 1'
A. Af B. Bf 1 1

PRN would be set upon completion of the above instruction.

Practice Problems

10

3

1. Write an instruction to compare two operands consisting of six

characters each. The LSD of one is at address 3150 and the LSD

of the other is at address 7582.

III-165

2. If the following instruction were executed, how many characters would

the computer actually compare?

y B 8000 8105

00 01 02 03 04 05 06 07

80 l 4 8 2 5 6 4 9 7

05 06 07 08 09 10 11 12

81 4 8 2 5 3 4 9 7

What PRI would be set upon termination?

PRI?

3. Write two instructions which will compare unknown items A and B, and

determine where to transfer control. If A is greater than B, transfer

to address 5500. If A is less than B, transfer to address 5550.

30 31 32 33 34 35 36

76 IA A A * B B B

4. Execute the following program showing final HSM contents.

6000 N 3 3032 3038

6010 # @ 3033 3030

6020 M 4 0212 6032

6030 y 2 0000 3037

6040 w 1 6060 6070

6050 v 1 0219 6070

6060 J 0 3037 3038

III-166

30 31 32 33 34 35 36 37 38

30 E A 3 @ B 4 A c 5

HSM BEFORE

30 31 32 33 34 35 36 37 38

30

HSM AFTER

5. Two unknown characters, X and Y, exist in memory at locations 1000 and

1001. Write a program to compare these characters and determine which

one is larger. Move the larger character to HSM location 1005. If

both characters are equal, place an "E" in location 1005. Use 2000

as the address of the first instruction in the program. Terminate

by transferring control to 3000.

6. What are the two situations which cause a Compare Left Instruction to

terminate?

7. How many status levels are used to staticize and execute the COM

Instruction of Problem #2?

III-167

3. Machine Operation

There are three basic status levels involved with the COM Instruction. An

Al status level brings out the character addressed by A and places it in D2.

N is triggered down by one and the A address is incremented by one. A "B"

status level brings out the character from the second operand as addressed

by B and places it in D3. The comparison takes place while B is incremented

by one and sent back to B. The third status level is an Xl which checks

the result of the comparison and sets the proper PRI. (Notice that the Xl

status level does not generate a command level). If the N Count is down to

zero or the comparison was unequal, the instruction terminates by selecting

a Pl status level. However, i£ N is not down to zero and the comparison

just completed was equal, another Al status level is selected. The sequence

of Al, B, Xl continues until a non-compare occurs or until N is reduced to

zero. It should be noted that PRZ is set during staticizing (PS) and will

remain set until an Xl resets it while setting PRP or PRN. Therefore, i£

all comparisons prove equal, PRZ will remain set throughout the entire in­

struction, while N is reduced to zero.

NOTE: In Figure 44, '' D2 > D3 11 means. 11D2 is greater than D3",

and "D2 < D3 11 means "D2 is less than D3".

4. Programming Errors

About the only misuse of the Compare Instruction that can occur, is using

an N character which is not part 0£ the N count. (This was described in

the DL and IR section of the previous lesson.) However, one must remember

that the initial A and B addresses must specify the location 0£ the MSD's

of the operands to be compared and not the LSD locations.

III-168

END STAT

NZ J * NZ , f
Al LOGIC

LOCATION
TPOl A _.BUS 0554c2

BUS----. MAR___.,. BA (+l) 0675C1
TPl Generate CL 0.676D5

Permit Both 0676D3
TP2 Reset A 0558C1
TP23 BA ~BUS 0672c4

TP3 BUS --.A 0558C1
Trigger N (-1) 0614D2

TP4 Reset 0 0588D2

TP45 If MAR3-2g (0) : MRO __.,.. BUS2 0653C3
If MAR3-2 (1): MRl __.,.. BUS2 0653C3

TP5 BUS2 _. 02 0588D2
TP6 Select B (TO STL-PT) 083c1

1
B LOGIC

LOCATION

TPOl B __.,.BUS 0574c1
BUS ~MAR ~BA(+l) 0675C1

.. TPl Generate CL 0676B2
Permit Both 0677D1

TP2 Reset B 0575c2
TP23 BA--. BUS 0673D1
TP_l BUS____. B 0575c2

TP45 If MAR3-2g(o): MRO_.., BUS3 0653C6
If MAR3-2 (1): MRl--. BUS3 0653C6

TP5 BUS3 --..03 0594D1
TP6 Select Xl (TO STL-PT) 0835c2

I
Xl LOGIC

LOCATION
If D2>D3: Set PRP 089A7D6

TP6 If 02<03: Set PRN 089A6D2
If NZ/ ID2=03): Select Pl(TO STL-PT) 084A6C1
If NZ• (02=03) : Select Al(TO STL-PT) 0827B2

NZ/(02=D3) ~ NZ• (02=03)
...... Pl

Figure 44 Al, B, and Xl of COM

III-169

Practice Problems

8. Write a program to compare the character in 1086 with the character in

5023. If the character in 1086 is the larger, transfer control to 2000.

If the character in 5023 is the larger, transfer control to 3000. If

rhw characters are equal, move the contents of 0532-0535 to 1066-1069.

9. There is a character, either Group 1 or Group 11, in location 5239. If

it is Group 1, write a "1" in location 5501. If it is Group 11 write

a 112 11 in location 5611. Terminate by transferring control to 3000.

(Start program at 1000). Use location 8000 for storage of the character

to be compared against the character in location 5239.

10. Locations 9000-9099 inclusive contain a mixture of numeric and alpha­

betic information. Write a program to replace each letter of the alpha­

bet between 9000-9099 with a 110 11 • The numeric data should not be

changed. Program starts at 1000. After all alphabetic characters have

been replaced with 110 11 , transfer control 2000.

III-170

B. X - TALLY (TA)

The Tally Instruction enables a certain portion of a program to be repeated

a specified number of times by transferring control to a specified location

a given number of times. The quantity which determines how many times this

transfer of control is to be made is called the "Tally Quantity". This

quantity can be as large as 99. Each time the transfer of control is made,

the Tally quantity is decremented by one. Exhausting the Tally quantity

terminates the effectiveness of the instruction and the instruction follow­

ing the Tally is staticized and executed. The Tally instruction goes through

STP when transfer of control is effected.

NOTE: Operation of the Tally Instruction is summarized on

Page VII-9 of the Programmers' Reference Manual.

1. Instruction Format

Op. Code N

x Ignored

III-172

A

HSM address of di~d
containing Tally
quantity.

B

IISr .. 1 Addr~s8 o.f next
instruction to be
executed if Tally
Quantity is not
exhau.sted.

The A address given the location of the Tally quantity in memory. Remember

that this consists of an even and odd location, the even location holding

the MSD.of the diad. The B address is the address to which control is

transferred, provided the contents of the diad addressed by A are not equal

to 00. The N character is ignored.

2. Instruction Execution

Example 1:

x 0 1005 3000

02 03 04 05 06

10 3 2 0 2 8

The above instruction will transfer control to address 3000 two times.

NOTE: If Tally Quantity is initially 00, no transfer
of control takes control.

Example 2:

1000

1010

1020

1030

J

N

x

*
K

0

0

1550

2300

1034

0002

1600

1600

1000

0000

The J and N instructions would be executed a total of three times in the

above program. Each instruction would be executed once initially and then

repeated twice, since the Tally quantity is 02.

If it is desired to perform a segment of a program the exact number of

times of the Tally quantity, two more instructions are needed. The follow­

ing is an example of this.

III-173

1000

1010

1020

1030

1040

1050

x
v
J

N

v

0

1

*
K

1

0

1054

0219

1550

2300

0219

0002

1020

1050

1600

1600

1000

0000

The third time the Tally instruction is staticized in this example, the

tally quantity will have been reduced to zero and the Store instruction

(1010} will be staticized. When the Store instruction is executed, control

will be transferred to 1050, which is a Halt instruction'. Thus, the J and

N instructions will be executed a total of two times.

Practice Problems

1. How many times will the computer transfer control to address 2000, if

the following instruction is executed?

x 9 1608 2000

05 06 07 08 09

16 8 5 6 3 4

2. Assume the following instruction is located in memory, beginning at

address 4240. What will locations 0216 through 0219 contain after this

instruction is executed?

x 5 3622 4250

20 21 22 23 16 17 18 19

36 1 0 2 02

III-174

3. Write an instruction which will loop back to address 2300 nine times.

Designate tally quantity in memory at 4620.

19 20 21 22

46

4. Execute the following program and show final HSM contents.

3300 M 1 3820 3821

3310 v 4 3309 0002

3320 x 0 3318 3300

3330 0 0000 0000

20 21 22 23 24 25 26 20 21 22 23 24 25 26

381 A * B * c * DI 381

HSM Before HSM After

5. Explain what the following program is doing {Note: X = unknown

character).

00 01 02 03 04 05 06

10 I A B c D E F x

2000 N 4 2019 2045

2010 y 1 1006 1000

2020 v 4 2019 0000

2030 w 1 2060 2060

2040 M 1 0000 1010

2050 v 1 0219 2070

2060 x 2072 2000

2070 0 0500 0000

III-175

3. Machine Operation

The Tally instruction uses five status levels during execution: Al, X3, A2,

Xl, and X2. The Al status level is used to gate the Tally Quantity (i.e.,

the contents of the diad addressed by the A register) into the D register •

. Notice that BA (+O) is used since we may want to address this same diad

again and again.

The X3 status level is used to decrement the Tally Quantity by one. The

bus adder circuitry is used to perform this function. At TPOl of the X3,

the standard address ge.nerator puts 0 1 s on BUS O and BUS 1 and D2 and 03

are gated onto BUS 2 and BUS 3, respectively. This pseudo-address is then

gated into the MAR where the bus adder will decrement it by one. Since the

X3 status level does not generate a memory cycle, the "address" in the MAR

will not be used to address memory. At TPS of X3, the decremented Tally

Quantity is gated into the D register. At TP6, the D register is checked

to see if it contains a count of 99. A count of 99 at this time would indi­

cate that there had been a count of 00 present at the beginning of the X3

status level. If D = 99, a Pl is selected and the instruction following

the tally will be executed. If D = 99, an A2 status level is selected in

order to transfer control.

The A2 status level is used to write the decremented Tally Quantity into

the diad in HSM addressed by the A register. The Xl and X2 status levels

are used to store the P register contents in 0216-0219 and to replace the

contents of P with the contents of B. Then a Pl status level is selected.

III-176

END STAT

I
Al

TPOl A _.BUS

Bus·---.MAR--.BA(+O)
TPl Generate CL

Permit Both

TP2 Reset A

TP23 BA--.BUS

TP3 BUS---.A

TP4 Reset D

TP45 MRO---.BUS2
MR1--.BUS3

TP5
BUS2--.D2
BUS3---.D3

TP6 Select X3

I
X3

(0) 10--. BUSO

TPOl
(0) 10--...BUSl

02---.BUS2
03-.BUS3

TPl BUS -.MAR--..BA(-1)

TPlt Reset 0

TPlt5 BA-+ BUS

TP5 BUS--.O

TP6 If' 0=99: Select Pl
If' 0=99: Select A2

0=99 0=99

, ,
Pl A2

Figure 45 Al and X3 of a Tally

III-177

X3

l
A2

TPOl A~BUS

BUS --..MAR ___.BA (+0)
TPl Generate CL

Inhibit Both

TP23 02 --...BUS2
03 __..eus3

TP3 BUS2--..MRO
eus3__..MR1

TP4 Reset A

TP45 BA--- BUS

TP5 BUS--A

TP6 Select Xl

I
Xl

TPOl 0216---.BUS

BUS---MAR
TPl Generate CL

Inhibit Both

TP23 p--..eus

TP3
BUSO ___..MRO
BUSl __..,.MRl

TP6 Select X2

I
X2

TPOl 0218~eus

eus---MAR
TPl Generate CL

Inhibit Both

TP23 P~BUS

TP3
eus2--..MR0
BUS3~MR1

TP4 Reset P

TP45 e--..eus

-~-
----: -

TP6 Select Pl

~
Pl

Figure 46 A2, Xl, and X2 of a Tally

III-178

4. Programming Errors

In the Tally instruction, some unusual things can occur if an incorrect

Tally Quantity is used. A Tally Quantity between 00 and 99 causes no prob­

lems but should certain zone bits occur in the tally diad, the computer will

malfunction due to the Bus Adder.

Any 2 5 bit in either character of the Tally Quantity will cause a DPE (D

register parity error).

The reason is that the Bus Adder does not provide for a 2 5 bit in either

character when subtracting one from the Tally Quantity (X3 status level).

If this bit exists, bad parity will be generated and a D register parity

error will result.

A 2 4 bit in the C2 character of a Tally Quantity will also generate a DPE,

since the Bus Adder does not provide for a 24 bit in C2.

However, because of the provision for indirect addressing, a 24 bit in C3

will be handled by the Bus Adder. This will cause erratic tallying and in­

termittent DPE's.

Care must be taken when addressing the Tally Quantity. Since the Tally

Quantity is always a diad, one might easily obtain a larger number than

desired for the Tally Quantity.

Example: x 0 1006 5000

04 05 06 07 08 09

10 5 0 2 0 0 2

The above instruction would transfer to address 5000 twenty times and not

two times. If it were desired to tally twice, the tally quantity should

be arranged as shown in diad 1008 and 1009.

III-179

Practice Problems

6. Write a program to move 600 characters from location 2000-2599 to

location 3000-3599. Use the Tally Instruction.

7. Describe the execution of the following program.

1000 J 1 2000 4000

1010 x 0 3031 1000

28 29 30 31 32 33 28 29 30 31

30 lo 1 2 3 4 5 30 I
HSM Before HSM After

8. Describe the execution of the following program.

1000

1010

1020

1030

J

J

x
x

0

1

0

0

2000

3001

1002

3000

3000

3099

1020

1000

32 33

9. What is the difference between a Tally instruction and a "Store P''?

10. Write a program that will translate 6000 characters from 3000-8999.

Program to start at location 1000 and table to start at location 2000

III-180

F. HALT (HLT)

In the programs you have been asked to write so far, and in the sample pro­

grams given, the problem of termination has been largely avoided. You have

been told to "transfer to 3000 to terminate" or the problem has been ignored

altogether. A brief example will illustrate the need for a means of termin­

ating.

1000

1010

J

M

@

&

5000

5000

5099

1020

During execution of the preceeding program, the SF instruction will fill

the indicated locations with "@" and the DL instruction will move ten "@"

to 1020-1029. The program will now read in memory:

1000

1010

1020

J

M

@

@

&

@

5000

5000

~@@

5099

1020

@@@@

At TP6 of the PS used to staticize the last two characters of the "instruc­

tion" in location 1020, no status level will be selected since it is not a

legal operation code. Thus, the computer will stop on an STLE with an

empty Status Level Register. If location 1020 had contained a legal opera­

tion code, a status level would have been selected and execution attempted

leading to any of a number of errors.

The Halt instruction is usually used to solve the problem of termination.

You have already seen this instruction used several times in the section

on the Tally Instruction. The Halt instruction is unique among RCA 301

instructions in that it has no first processing level.

NOTE: Page VII-10 of the.Programmers' Reference Manual

summarizes operation of the Halt Instruction.

1. Instruction Format

N Op. Code

(period) Ignored

A B

Ignored Ignored

III-181

Because everything except the operation code is ignored in the Halt

instruction, there are nine convenient locations which can be used for

storing constants. This procedure has been illustrated in previous prob­

lems of this lesson.

2. Instruction Operation

One useful technique is the use of numbers in the N character to indicate

which halt terminated processing. For instance, a 11 .1 11 {Halt 1) might indi­

cate normal termination; a ".2" {Halt 2) might be chosen in the event of a

machine or programming error.

Another useful feature of the Halt instruction is its ability to stop pro­

cessing while needed information is entered. {This feature is used exten­

sively by the Test and Maintenance routines). For instance, if Halt 4 is

followed by a Store A and Store B, information inserted manually into the

A and B registers while the computer is stopped at ".4" will be stored in

memory at the indicated locations.

Example:

1000

1010

1020

1030

v
v

4

2

4

5

0000

0000

1008

0000

0000

0000

0000

0000

If the P register is manually set to 1000 and "Start" is depressed, the ".4"

in location 1000 will be staticized and then the computer will stop. Now

the operator may insert characters into the A and B registers manually, say

111234" and 11 5678" into the B register. . "Start" is depressed a second time.

The 111234" will be written into memory at location 0212-0215. The "5678"

will be written into memory at 1006-1009. The computer will then stop on

".5".

III-182

NOTE: This method is somewhat limited by the fact that not

all characters can be inserted into certain digit

positions of the A and B register.

Practice Problems

1. Write a program to search 2000-3000 for O starting at 2000. If the

first character searched is not zero, transfer control to "Halt 1".

If the first character is zero but some character following the first

is not zero, transfer control to "Halt 2". If every character in

2000-3000 inclusive is zero, transfer control to "Halt 3','.

2. Write a program which can be used to store manually inserted numericaly

information in location 1054 - 1056 and 2132 - 2135.

3. Which Status Level is the First Processing Level used by the Halt

Instruction?
- --- ----- ·-- ·----------------- -·-----··· .. -~·-~-

3. Machine Operation

Now we must consider how the Halt instruction stops the computer. Remember

that the computer is started by pushing the START button. This action starts

the Timing Pulse Generator. It would seem logical that to stop the computer,

one must stop the TP Generator. This is exactly what the Halt Instruction

does.

If the Simultaneous Mode and Record File Mode are unoccupied when the Halt

instruction is staticized, completion of staticizing produces TPO•ST(P).

These signals stop the TP generator before Pl (which is the next status

level selected) can be executed. If either the Simultaneous Mode or the

Record File Mode is busy, the instruction in that mode is completed before

the processor stops. Remember, all 10 characters of the Halt instructions

will be staticized before the computer will stop.

III-183

4. Programming Errors

The Halt instruction appears to be very simple and, therefore, free of pro­

gramming problems since everything except the operation code is ignored.

However, if the A and B addresses are used for constants, characters con­

taining 24 bits may occupy the A3 position or the B3 position and produce

an indirect address. If the A address is indirect, nothing will occur re­

gardless of the B address. The computer will halt selecting a Pl status

level after a PS. (NOTE: An Ml and Pl are selected but "0Ring" the two

together produces a Pl.) Should an indirect address exist in B and not in

A, the computer will attempt to select both an M3 and a Pl status level and

produce an STLE (378 with bad parity).

Example 1:

0 301 TAPE

Since the B3 character is an E, the computer would attempt indirect address-

1 ing and would stop on an STLE alarm.

Example 2: • FIRST TAPE

In the above _example, both A and B appear as indirect addresses. However,

A is always handled first during indirect addressing, therefore, no alarms

occur and the computer stops having selected a Pl.

Practice Problems

4. Rewrite the program required in Practice Problem 5 of this lesson using

the Halt instruction. Do not use the REG instruction. (It is not

necessary to transfer control to 3000 to terminate).

s. P is set to 1000. What happens when Start is depressed? What happens

when Start is depressed a second time?

III-184

1000

1010

0

1

A

F

BAD

OR2

TIME

K>RE

G. R - REPEAT (RPT)

The Repeat instruction is used in conjunction with "Repeatable" instructions.

There are 12 Repeatable instructions in all; you have been introduced to 5:

TRA, DL, DR, DSL, and DSR. (The remaining seven are: EXO, AND, OR, ADD, and

SUB which are all arithmetic instructions, and RFN and RRN which are input

from tape instructions.) The Repeat instruction causes the next Repeatable

instruction in sequence to be executed the number of times specified by the

N charact8r of the Repeat. All non-repeatable instructions which occur be­

tween the Repeat and the next Repeatable instruction in sequence will also

be repeated. All these instructions which are repeated are referred to as

the "field" of the specific Repeat instruction. The A and B addresses of

the Repeat instruction are not used to address memory, but they have a very

important function. This function makes the Repeat instruction quite differ­

ent from the Tally instruction, which it so far seems to resemble closely.

If the A address is even (i.e., no 2° bit in A3), no A address of any suc­

ceeding instruction is staticized except the A address of the first instruc­

tion following the Repeat instruction. The A address of the first instruc­

tion following the Repeat will be staticized the first time it is to be

executed only. After this the A address will be used (in its incremented

or decremented form) as the A address of every instruction in the field of

the Repeat instruction until the repeat quantity is exhausted.

However, if the A address is odd (i.e., A3 has a 2° bit), each A address

will be staticized in the usual way. This even/odd convention holds for

the B address also. That is, if B of the Repeat is even, only the B address

of the instruction immediately following the Repeat will be staticized, and

it will be staticized the first time it is to be executed only. From then

on, the B of one execution will be the B of the next execution. If B of

the Repeat is odd, staticizing of the B address will proceed in a normal

fashion.

The Repeat instruction holds its N count in the NR Register. It is the

only instruction to use this register. The Repeat instruction uses a special

N count with a maximum count of 14. The Group 1 characters are the only le­

gal N characters for Repeat.

III-185

NOTE: Page F-1 0£ the Programmers' Workbook gives a table

0£ legal N characters £or Repeat.

The Repeat instruction uses a standard location £or storing the contents 0£

the P register: 0222-0225. Notice that this is a di££erent location from
.,

the STP location (0216-0219). The P address 0£ the instruction immediately

following the Repeat must be stored in a standard location because this is

the location to which control must be transferred after execution 0£ the Re­

peatable instruction as long as NR ~ o. This location must be di££erent

from STP, because an instruction which uses STP may be in the field 0£ the

Repeat. From the above, it becomes evident that a Repeatable instruction

is merely one which checks the contents 0£ NR at the end 0£ its execution

and i£ NR F 0 selects a status level which will start the transfer 0£ con­

trol to the address contained in 0222-0225.

NOTE: Page VII-11 0£ the Programmers' Reference Manual

summarizes the operation 0£ the Repeat instruction.

1. Instruction Format

Op. Code

R

N*

Number 0£ Times to
Repeat the Repeatable
Instruction (0-14)

A

Even-Do Not Staticize
A Address 0£ Instruc­
tion. Odd-Always
Staticize.

B

Even-Do Not Sta­
ticize B Address
0£ Instruction.
Odd-Always Staticize.

Those instructions which are repeatable are:

1. Data Left 6. Add

2. Data Right 7. Subtract

3. Transfer Data By Symbol Left 8. Tape Read Forward Normal

4. Trans£ er Data By Symbol Right 9. Tape Read Reverse Normal

5. Logical AND/OR/EXO 10. Translate

* NOTE: I£ N = o, no instruction will be repeated.

III-186

2. Instruction Operation

Example: R

M

2

3

0000

1000

0000

2000

This combination will transfer a total of nine consecutive characters

starting at address 1000 to the address beginning at 2000. Note that

the total number of times the repeatable instruction is executed is one

more than the N Character of the Repeat instruction. This is because the

repeatable instruction is executed once initially before the N Count is

reduced.

00 01 02 03 04 05 06 07 08 09

10 I R

I
E p E A T E x A

A.
1

00 01 02 03 04. 05 06 07 08 09

20 I* * J K 8 7 G H A * I r H.SM Before
B.

1

00 01 02 03 04 05 06 07 08 09

10 IR E p E A T E x Al

'f
Af

00 01 02 03 04 05 06 07 08 09

20 IR E p E A T E x *
t

HSM After
Bf

III-187

The characters "REP" would be transferred during the first execution of the

M. A final would be 1003. This would become A initial for the second exe­

cution of the M instruction. B final would be 2003 which would also be B

initial for the second execution. The M instruction would be repeated a

total of two times but executed a total of three times. The sequence of

its initial addresses after staticizing each time would be:

M

M

M

3

3

3

1000

1003

1006

2000

2003

2006

NR = 2

NR = 1

NR = 0

NOTE: - NR = N Count for Repeat Instruction.

Had the A and B addresses of the Repeat instruction been odd instead of

even, final HSM contents would be as follows:

00 01 02 03 04 05 06 07 08 09

10 [R E p E

f
A T E x Al

Af

00 01 02 03 04 05 06 07 08 09

20 IR E p K 8 7 G H A *I
f
Bf

In this case, the same three characters were transferred to the same three

addresses three times.

III-188

Had the A address been even and the B odd in the Repeat instruction, final

HSM contents would appear as follows:

00 01 02 03 04 05 06 07 08 09

10 I R E p E A T E x A

T
Af

00 01 02 03 04 05 06 07 08 09

20 I E x K 8 7 G H A *
f
Bf

Here all nine characters were placed in the same three locations 2000, 2001

and 2002, since A kept counting up but B was restaticized each time. The

final case of A initially odd and B even in the Repeat instruction gives a

HSM result as follows:

00 01 02 03 04 05 06 07 . 08 09

10 IR E p E A T E x A

f
Af

00 01 02 03 04 05 06 07 08 09

20 IR E p R E p R E p *
T
Bf

Practice Problems

1. Execute the following instructions and show final HSM contents.

R 1 5660 4753

p # 3006 4009

III-189

00 01 02 03 04 05 06 07 08

30 l 6 4 # 9 3 # p G H

01 02 03 04 05 06 07 08 09

40 I 2 3 8 G # x B A #

HSM Before

00 01 02 03 04 05 06 07 08

30 [

0 02 03 04 05 06 07 08 09

40

HSM After

2. Write two instructions which will transfer 132 characters from consecu-

tive locations starting at 1000 to consecutive locations starting at

2000 (left to right).

3. What would A final be after the # instruction has been executed for the

last time?

R 3

*

30 31 32

55 I A * B

Af

III-190

0000

5530

33

*

=

0000

5530

34 35

c *

36 37 38

D * E

4. Execute the following program and show final HSM contents.

3000 R

3010 M

3020 v
3030 x
3040

2

1

4

0

0

1005

4000

3015

3047

0000

2030

4001

0000

3000

0102

00 01 02 03 04 05 06 00 01 02 03 04 05 06

40 , __ A ____ B ____ c ____ o ____ E ____ F ____ G__.

HSM Before HSM After

5. Describe the execution of the following program and show final

HSM contents.

31 I

31

1000

1010

1020

1030

10

0

10

11

1

11

R

J

M

12

2

12

1

*
2

0

13

3

13

3113

3112

3110

0000

14

4

15

5

3115

3114

3116

0000

16

6

HSM Before

14 15 16

HSM After

17 18 19 20

7 8 9 &

17 18 19 20

III-191

3. Machine 0peration

The Repeat instruction utilizes four status levels: Xl, X2, REPl, and REP2.

The Xl and X2 status levels are used primarily to store the P address of the

instruction immediately following the Repeat in sequence. The Xl status

level has several other important functions. The standard address generator

is used to produce the conventional addresses 0222 for Xl and 0224 for X2.
0 1 2 3 6 .

At TP3 of Xl, the 2 , 2 , 2 , 2 , and 2 bits of the N character are gated

into the NR register (NR uses only Group 1 characters). At TP4 of the Xl,

the A and B addresses of the RPT are checked. If A is even, the INHA flip­

flop (Inhibit A) is set to prevent staticizing of the A address. If B is

even, the INHB flip-flop (Inhibit B) is set to prevent staticizing of the

B address. FREP (First Repeat) is also set at TP4 of Xl.

Now refer to pages 2-8, 2-9, and 2-10 of the Status Flow Manual (Staticizing).

Notice that at TP4 and TPS of P2 and P3~normal staticizing will occur if

INHA is not set or FREP is set. Also, at TP4 and TPS of P4 and PS_, normal

staticizing will occur if INHB is not set or FREP is set. FREP will be

reset at TP6 of the next PS executed, or after staticizing the instruction

immediately following the Repeat in sequence. This means that the instruc­

tion immediately following the Repeat when the A and/or B address of the

Repeat are/is even will be staticized normally the first time. After that

INHA and/or INHB will prevent staticizing of the ·associated register(s)

INHA and INHB will be reset at TP6 of the first PS after the NR count is

exhausted. This ca.n lead to trouble if a group of instructions are being

repeated with an odd A or B address in the Repeat.

Every instruction after the one immediately following the Repeat instruction

will be staticized when the NR count = ZERO. The problem will be mentioned

again under "Programming Errors".

The REP 1 Status Level is selected after execution of the £irst repeatable

instruction if NR ~ O. REPl and REP2 are used: (1) to read the stored P

address of the instruction immediately following the Repeat out of memory

and (2) to insert it into the P register. This transfers control for another

execution of the instruction(s) to be repeated. At TP2 of REPl, a parity

III-192

adjus1:ment for the NR character "to be" is made. At TP3 of REPl the NR

count is triggered down one and assumes its "good parity" condition. At

TP6 of REPl, NRPE {NR register parity error) is set and stops the computer

if the NR register contains bad parity. At TP6 of REP2 {which was automati­

cally selected by REPl) Pl is selected to start staticizing the instruction

immediately following the Repeat in sequence.

4. Programming Problems

One of the major sources of trouble with the Repeat instruction is follow­

ing the RPT with a non-repeatable instruction when the A or B address of

the Repeat is even.

The R instruction itself sets up initial conditions for repeating and is

normally executed just once. One of the functions of the Repeat is to

store the contents of the P register (address of next instruction in se­

quence) in standard locations 0222-0225. If the next instruction is a Re­

peatable instruction, it selects a REPl and REP2 status level upon comple­

tion. These two status levels count the NR register down one and bring out

the address stored in 0222-0225 to be placed in the P register.

III-193

END STAT

i_
Xl

TPOl 0222- BUS

eus-MAR
TPl Generate CL

Inhibit B.oth

TP2 Set NR

TP23 P-eus

euso- MRO
TP3 BUSl ,__....MIU

N-(20--;e.- 23s.26) _.NR

If A3-2~(0): Set INHA
TP4 I:f 83-2 (0): Set INHB

Set FREP

Select X2
If' PE: Set NRPE

l
X2

TPOl 0224 _..BUS

BUS__., MAR
TPl Generate CL

Inhibit Both

TP23 P-BUS

TP3 eus2..-. MRO
BUS3 _..,. MRl

TP6 Select Pl

I
STATICIZE"~

REP2 ~ Next Instruction in Sequence

l
EXECUTE~

Next Instruction in Sequence

~NRZ iNRZ
RE Pl Pl

Figure 47 Xl and X2 of a RPI'

*Note: It is assumed here that the "Next Instruction in Sequence" is
a repeatable instruction.

III-194

RE Pl
TPOl 022:..! _..,.BUS

BUS _..,.MAR
TPl Generate CL

Permit Both

TP2 If NR-20(l)/(21 (0)•22 (1»: Trigger NR-2b

TP3 Trigger NR(-1)

TP4 Reset P

TP45
MRO_.. BUSO
MRl_..,.BUSl

TP5
BUSO _,.PO
BUSl _..,.Pl

TP6 Select REP2
If PE: Set NRPE

REP2
TPOl 0224 _.,BUS

BUS~MAR

TPl Generate CL
Permit Both

TP45
MRO_..,.BUS2
MR1_.BUS3

TP5
BUS2_..,.P2
BUS3 ---.p3

TP6 Select Pl

,
Pl

Figure 48 REPl and REP2

III-195

Therefore, the next instruction to be executed should be the same instruc­

tion just completed which is the one immediately following the R instruc­

tion. The process of repeating continues until NR is decreased to zero.

If the instruction immediately following the R instruction is non-repeatable,

however, the computer will continue to execute instructions until a repeat­

able instruction is found. Then when REPl and REP2 bring out the pre-stored

address from 0222-0225 the computer goes back to the instruction immediately

following the R instruction. Therefore, a group of instructions can be

repeated.

Example:

5000

5010

5020

R

J

M

2

0

1

0001

3000

3000

0001

3050

3050

Symbol to Fill (J) is a non-repeatable instruction but DL (M) is Repeatable.

Both instructions will be executed a total of three times using the same

addresses each time. (The A and B addresses of the RPT are odd.) If the

A and/or B ad~ress(es) of the Repeat instruction were even, each instruc­

tion repeated would use the final address(es) of the preceeding instruction.

Example:

5000

5010

5020

R

J

M

2

0

1

0000

3000

3000

0001

3050

3050

When the J instruction is executed initially, the addresses used are those

read out of memory during staticizing. Af will be 3051. Since the A ad­

dress of the RPT is even, the A address of the DL instruction is not sta­

ticized (since INHA is set) and Ai will be 3051. Af of the DL is 3052.

Upon termination of the DL, REPl and REP2 would be selected and control

would be transferred to 5010 to do the SF a second time. Again, since INHA

is set, the A address of the J instruction is not staticized and 3052 is

used as A of the SF. Memory would then be filled to the top, A-B equality

III-196

could not be reached and a WTT would occur.

Example 2:

sooo
SOlO

S020

R

J

M

2

0

1

0001

3000

2000

0000

3000

0000

Again, the A and B addresses of the SF instruction are both staticized the

first time through, since FREP is set. However, FREP will be reset at TP6

of the PS used to staticize SF. Af of SF = 3001, Bf of SF = 3000. Since

the B address of the Repeat instruction is even: A. of the IL = 2000 and B.
1 1

of the DL = 3000. Control will now be transferred (by REPl and REP2) to

SOlO where A.= 3000 (A will be staticized), B. = 3000 {B will not be sta-
1 1

ticized). The NR count was decremented by 1 by REPl. The same process is

repeated again. However, the third time the SF instruction is staticized,

INHB will be reset at TP6 of PS since NR = 0 at this time. Thus, the third

time the DL instruction is staticized, the B address will be staticized also.

The computer will be stopped by a WTT or the DL tries to move a character

to 0000.

The conclusions are: (1) The Repeat instruction functions as it should if

a repeatable instruction is coded immediately following the R, (2) The Re­

peat instruction can be used to repeat a group of instructions if the A

and B addresses of the R instruction are odd, (3) Sharing of final addresses

occurs if the A or B of the Repeat is even and at least one non-repeatable

instruction exists between the Repeat and the Repeatable instruction. Sit­

uation (3) can rarely be used to advantage and should be avoided if at all

possible since it can cause errors.

Another common source of error is use of an improper N character. It is

possible to cause a NRPE if an incorrect N character is used in the Repeat

instruction. The N character should be one of those characters existing in
s 4

group 1 of the 301 code {00 for zone bits 2 and 2). If one of the char-

acters in groups II or III is used as the N character of an R instruction,

the zone bit {2S or 2 4) will be lost upon transfer into the NR register and

III-197

an NRPE will occur (Xl status level). The loss of the zone bits occurs be­

cause there is no 2 5 or 24 flip-flop in the NR register. If, however, a

character from code group IV (11 for zone bits 2 5 and 2 4) is used as the N

character, both zone bits are dropped and good parity is maintained. Never­

theless the computer can only repeat the decimal equivalent of the informa-

. b" 2° 21 22 23 d . . d b . tion its , , , and , thus no a vantage is gaine y using group IV

characters.

Another possible source of error is misuse of indirect addressing. If in­

direct addresses are used in the Repeat instruction, the addresses which

finally determine whether or not INHA and/or INHB will be set are the final

addresses after all indirect addresses have been replaced. Indirect address­

es in the field of the Repeat instruction can be responsible for mistakes

if either the A or B address of the RPT is even.

Practice Problems

6. List the Status Flow for the following program.

1000 R 1 0000 0001

1010 N 2 3000 4000

1020 0 0000 0000

(i.e., Pl, P2, P3, P4, Xl, X2)

What are Af and Bf before the halt?

7. List the Status Flow for the following programs

(a) (b)

1000 R 1 0001 0000 2000 R 0 0000 0000

1010 J * 2999 3000 2010 J * 3000 3000

1020 N 1 3000 4000 2020 N 1 3000 2999

What are Af and Bf in both cases?

III-198

8. Show HSM final and Af and Bf just before the "Halt" is staticized.

1000 R 1 0001 0000

1010 J 0 3989 3990

1020 J * 3988 3988

1030 p * 3990 3990

1040 0 0000 0000

85 86 87 88 89 90 91 92
85 86 87 88 89 90 91 92

39 I . 1 2 3 4 5 6 71 391

HSM Before HSM After Af ::::

Bf ::::

9. Write a three-instruction program including the Halt to perform the

same function as the following program:

1000 N 4 1055 0215

1010 M II 021E 3000

1020 v 2 0000 0000

1030 v 4 1018 0000

1040 x 0 1058 1010

1050 0 3001 0012

10. List the Status Flow of the following program.

1000 R 1 0000 0000

1010 v 1 0225 1030

1020 0 0000 0000

1030 M 1 3000 3000

Write an equivalent two-instruction (including HALT) program.

III-199

H. S - INPUT-OUI'PUTSENSE (IOS)

The Input-Output Sense instruction, like the CTC, is a decision making in­

struction. There are a number of differences between CTC and IOS, however.

The CTC senses indicators of internal states of operation; the IOS senses

indicators of the states of operation of peripheral devices. Since the

choice of indicators for the CTC may be covered entirely by the information

given by the N character, CTC is capable of transferring control to either

the A or B address. The IOS has to choose from a much larger number of in­

dicators, so more information is needed to determine which indicator is to

be sensed. The N Character determines first which device will be addressed.

AO is used to determine which indicator of the addressed device will be

sensed (Al, A2, and A3 are Ignored). Thus, control may be transferred only

·to the B address.

,The CTC can provide a three-way decision: Transfer control to the A address,

transfer control to the B address, or staticize and execute the next instruc­

tion in sequence. The IOS (since the A address is needed to determine

which indicator is to be sensed) can provide only a two-way decision: trans­

fer control to the B address, or staticize and execute the next instruction

in sequence. The IOS goes through STP on transfer of control only.

NOTE: The IOS instruction is covered in the Input-Output instruction

section of the Programmers' Reference Manual. Operations

summaries are given separately for each N character, i.e., a

different description for each device. See Sections VIII - XIV.

1. Instruction Format

Op. Code

s

III-200

N

Device to be

tested (See

Figure 49)

A

AO- Indicator to be

checked. Al, A2,

and A3 ignored.

(See Figure 50)

B

HSM Address of next

instruction to be

executed if the con­

dition or conditions

being tested are

present.

Device

Hi Data Tape Group

33 KC Adapter

66 KC Adapter

Dual Tape Channel (2 x 6)

Dual Tape Channel (2 x 12)

Paper Tape Reader

Paper Tape Punch

Card Reader or Read Unit of R-P

Card Punch or Punch Unit of R-P

On-Line Printer

Interrogating Typewriter

Record File

Record File Mode

N

Unit #1 Unit #2

1,2,3,4,5,6 A,B,C,D,E,F

J N

L p

1,2,3,4,5,6

123456 ABCDEF

8

9

(: :

)

7 G

u

R z

$. '

R Data Disc File Z

Fig. 49 IOS N Characters

III-201

DEVICE 'l" BIT IN NUMERIC TESTS

20
_E_C!U_ v __._

l Is the Ta_l)_e Station Ino_Q_erable?
21 2 Is the Ta_1>_e in Motion?

M~gnetic Tape 22 4 Has ETW been Sensed?

23 8 Is Ta_1>_e Positioned at BTC?
24 & Is Ta_Q_e Movin_g_ in Reverse?

.
Paper Tape Reader 20 l Is the Selected Device Ino_1>_erable?

or Punch 21 2 Is the Selected Device O_E_eratin_g_?

Card Reader Punch
20 l Is the Selected Device Inoperable? or
21 2 Is the Selected Device 0_E_ era ti nS_?
20 l Is the Printer Ino_Q_erable?

On Line Printer 21 2 Is a Line Being Printed?
2q & Is the Pa_E_er Advanci n_g_?
20 l Is the Typewrinter Inoperable?
21 2 Has a Read Parit_y_ Error Occurred?

Interro~ating
,...2 Has "Program Interrogate" been

Typewriter "" 4 received?

23 8 Has a Write Pari t:.Y_ Error occured?
2q & Has "Messa_g_e Erase" been received?
20 1 Is the Record File Inoperable?

Record File
·l
2 2 Is the Device Reading or Writin_g_?
22 4 Is a Record on the Turntable?

20 1 Is the Disc File Ino_E_erable?
21 2 Is the Device Busy?

Data Disc File 22 4 Is the Track Select Co"'!E_lete?

23 8 Has Incorrect Parity been Read?

Figure 50 A0 Character of IOS

III-203

2. Instruction Operation

Example: s 7 1000 3650

The above instruction is sensing the Printer for non-operability. If the

Printer is non-operable, the Computer will transfer control 3650. If the

Printer is operable, the Computer will execute the next ipstruction in

sequence.

Practice Problems

1. Write an instruction to sense for ETW on tape station B. If the Tape

Station is at ETW, transfer control to 2550.

2. Write an instruction to sense if the Card Reader (1st unit) is reading

any cards. If yes, transfer control to 7580.

3. Tape Station 5 is.rewinding to BTC, when the following instruction is

executed. What is the address of the next instruction to be executed?

(Assume the S instruction is in memory beginning at 1000).

s 5 AOOO 1030

Address of next instruction

(See notice on next page.)
4. If the following instructions are attempted, explain what would occur.

(Assume tape station 2 is rewinding).

1000

1010

s
v

2

1

8000

0219

1020

1000

--
1020 Remaining Portion of Program

III-204

Notice in Practice Problem #3 that two conditions are being sensed simul­

taneously since "A" contains both a 2 4 bit and a 2° bit. We shall see that

if any condition sensed is present, transfer of control to the B address

will take place.

3. Machine Operation

The IOS instruction uses three status levels: SIO, Xl, and X2. The SIO

(Sense Input-Output) status level is the foundation of the IOS instruction.

(Refer to Figure 52) Two flip-flops are used by the SIO to determine which

status level will be selected next: HO (Hold-Off) and JMP (Jump). Both

flip-flops are reset at TPOl of the SIO. If HO is in the set state at TP6

of the SIO, another SIO is automatically selected. If HO is not set, Xl

will be selected if JMP is set and Pl will be selected if JMP is not set.

TP2 and the first line of TP5 and TP6 refer to the Hi-Data Tape Station and

will be covered later. The JMP flip-flop will be set if the tested condi­

tion is present at TP5 of the SIO. Figure 51 gives an interpretation of

levels used in setting JMP.

DEVICE MOTION ETW BTC REVERSE
DENOTES DENOTES· DENOTES DENOTES

Any tape Tape movement Hi Data Tape movement ETW BTC
except Rwd.

reverse

33KC Tape Any tape ETW BTC Tape movement
movement reverse

66KC Tape Any tape ETW BTC Tape movement
movement reverse

Paper Tape Reader Reading NA tt NA .. NA*

Paper Tape Punch Punching NA. NA* I NA '4C

Printer Printing NA. NA * Paper
advancing

Reading Disc on NA Jli NA. Record File or Turntable Writing

Card Reader Reading NA fl NAM NA -
Card Punch Punching NA l(NA* NA •

Figure 51 Levels Used in Setting JMP During SIO

*NA = Not Applicable

in

in

in

III-205

··~

SIO

TP1 Reset HO
Reset JMP

TP2 If Hi Data TS• Unlike Add/Add Chg (1): Set HO
If HDB(O)•Unlike Add•HD WR RET(O): Set Add Chg~:-, N-TAR-l~

If N-TAR(1)·Unlike Add: Reset HDTAR-l~
If A0-20(1)·Inoperable: Set JMP

TP5 If A0-21 (1)•Motion: Set JMP
If Ao-22(1)·ETW: Set JMP
If Ao-24(1)•BTC: Set JMP
If A0-2 (1)•Reverse: Set JMP

If N-TAR(1) : N HDTAR·:~

TP6
If HO (1) : Select SIO
If HO (0) • JMP (1) : Select X1
If HO (0) • JMP (0) : Select P1

HO (0) • JMP (1) , HO (O) • JMP ()) ,
HO (1) X1 P1

Figure 52 SIO of an IOS

Notice that if any one of the tested conditions is present, JMP will be set

and if HO is not set, an Xl status level will be selected at TP6.

The Xl and X2 status levels are used to store the contents of the P register

and to gate the contents of the B register into P. Xl and X2 are used only

when the tested condition was found to be present and control is to be trans­

ferred to the B address.

III-206

SIO

l
11

TPOl 0216~Bus

TPl BUS -MAR ~BA(+O)
Generate CL, Inhibit Both

TP23 P __,.BUS

TP3 Buso--..MRo
BUSl~MRl

TP6 Select X2

I
12

TPOl 0218 ~BUS

TPl Bus- MAR--. BA(+O)
Generate CL, Inhibit Both

TP23 P Bus

TP3 BUS2~MRO
BUS3 _.MRl

TP4 Reset P

TP45 B _.,Bus

TP5 BUS ---.p

TP6 Select Pl

T P1

Figure 53 Xl and X2 of an !OS

There is one situation where the desired "sense" cannot be made immediately.

This involves the Hi-Data Tape Station. The Hi-Data has multiple tape trans­

ports (2-6) sharing a common set of logic. In order to address transport #3

after performing an instruction on transport #2, for example, the logic must

be "switched" from transport #2 to transport #3. Since relays are used to

switch the logic channels, this operation takes several milliseconds, which

is several thousand microseconds.

Now, if the programmer attempts to sense transport #4 to see if it is at

BTC just after performing a read from transport #1, the computer will have

III-207

to wait until the Logic "switch" is made before #4 can be sensed. The HO

flip-flop is used to keep the computer "waiting" until the switch has been

made. At TP2 of the SIO status level of the IOS instruction, HO is set if

a Hi-Data Transport is being addressed and if it is necessary to make an

address change or "switch." Notice that with HO set, TP6 of the SIO will

select another SIO status level. HO will continue to be set at TP2 of the

SIO until the address change has been completed. Thus the computer will

"cycle in SIO" until the logic switch is made.

The process of making this address change is also shown in the SIO chart

of Figure 52. The "HDB(O)" found at TP2 of the SIO means that the Hi-Data

Busy Flip-flop is not set. If HDB were set, it would indicate that one of

the Hi-Data transports is executing a simultaneous mode instruction. For

instance, "Unlike Add" means that the current N character which determines

the transport to be addressed is different from the character in the Tape

Address Register (TAR) which is the number of transport currently being

used. "HD WR RET (0)" means that no Hi-Data Write Return is present; i.e.,

a Hi-Data Write instruction is not engaged in the execution of an instruc­

tion, and an "address change" is called for to set the address change flip­

flop and the.N-TAR (N character to the Tape Address Register) flip-flop.

At TPS of the SIO if N-TAR is set and unlike addresses are present, the Hi­

Data Tape Address Register will be reset. At TP6 if N-TAR is set, the N

character is gated into the Hi-Data Tape Address Register. This action

will initiate the pulling of the relays necessary to "switch" the Hi-Data

Logic channels. 1-0 will continue to be set at TP2 until the Address Change

flip-flop is reset (actually llms, the amount of time the relays are allowed

to switch the Logic). Finally, when the address change is completed, HO is

not set, and depending upon the results of sensing the desired indicator,

either an Xl or a Pl is selected.

4. Programming Errors

The Input-Output Sense instruction can be coded incorrectly and thus pro­

duce difficulty.

III-208

Since the input-output tests are specified by the AO character bits, it is

possible to test for more than one condition with a single instruction.

However, only one "yes" reply to any given test will cause the computer to

jump to the B address.

Example: s 2 6000 2000

1 The AO character 6, is testing for tape in motion (2) and ETW having been

sensed (22). If the computer jumps to address 2000 because of a yes re­

sponse, the programmer would not know whether the response was from both

tests or only one; nor would he know which of the two produced the yes reply.

Example: s 3 HOOO 4000

Since the AO character is H, the tests to be performed are for tape moving

in reverse (24) and BTC (23). If it is desired to rewind a given tape but

it is not known whether or not the tape is at BTC, in the process of re­

winding, or positioned beyond BTC, the above instruction could ask two

questions at once. A "yes" reply would indicate that it is unnecessary to

rewind trunk 3 while a "no" response would indicate trunk 3 can be rewound.

(i.e., the tape on trunk 3 is positioned beyond BTC and is not moving in

reverse._)

The Al, A2 and A3 characters are ignored for most combinations of s. How­

ever, constants being stored in the A3 position will cause indirect address­

ing to occur if the 2 4 bit is a "one" bit. It is very possible that a MAPE

alarm or incorrect results may occur as a result of this indirect addressing.

Example: s 2 19DC 3000

The 301 would attempt indirect addressing in the above example and since the

2 4 bit of the A2 character is dropped in the A register, bad parity would

result and a MAPE alarm would occur during the Ml status level.

Example: s 2 194C 3000

The 301 would again attempt indirect addressing. This time indirect ad­

dressing would be successful, but the test performed would then depend upon

the new contents of AO which would be the MSD of the new address.

III-209

Practice Problems

s. What is the difference between these two programs?

(a) 1000

1010

s
s

2

2

4000

1000

2000

2000

(b) 1010 s 2 5000

6. What would be the state of the Hi-Data transport #3 if the instruction

at 1010 is executed immediately after the IOS instruction?

1000.

1010

s 3

0

.ooo
0000

2000

0000

7. Describe the purpose and execution of the following instruction?

s) 4000 2000

2000

8. Write a program to check for On-Line Printer Paper Advance. As long as

paper is advancing, keep checking. When advance is finished, transfer

control to 3000. Start the program at 1000.

III-210

9. Write an instruction at location 1000 to transfer to 3050 if the Paper

Tape Reader is inoperable. Otherwise, execute the instruction at 1010.

10. Write a program to determine whether or not Hi-Data transport #6 is in

rewind or at BTC. If it is, transfer to 3000. If not, transfer to 2000.

Start program at 1000.

III-211

ANSWERS TO PRACTICE PROBLEMS

Pgs. III-144, 145, 146, 151, and 152 I
1. 0212 will contain 6

0213 will contain 0

0214 will contain 3

0215 will contain 4

2. 32 33 34 35

1017 7 6 0 p [8 0 0 0

HSM AFTER

3. v 8 5108 0000 or v 8 5109 0000

4. 66 67 68 69 70 71 72

77 co:= * * * s A M

HSM AFTER

5. 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

891 0 N E @ T w 0 @ 0 N E @ T w 0 @

HSM AFTER

6. 60 61 62 63 64 65 66

66 l __ R __ c __ c __ A __ R __ * __ A_. -

HSM AFTER

7. 05 06 07 08 09 10 10 11 12 13 14 15 16 17 18 19 20

50 F~ ____ 1 ____ 0 ____ 1 ____ 0 ____ 6_, 02 ~'-A~ __ s ____ o ___ 2 ____ 1 ___ 6 ___ 1 ___ 0 ____ 1 ____ o ____ K_I
HSM AFTER HSM AFTER

III-212

a. 10 11 12 13 14 15 16, 10 11 12 13 14 15 16 17 18 19

o~ o 1 3 0 0 0 6102 [E F 0 5 1 3 K L M N l
HSM AFTER

9. Notice that there are two bits in the N character of the Store Register

instructions. There is a 2 1 bit' however, STAl will be selected and

"2004" will be stored in standard store A location 0212-0215. p is

1020 after execution.

10. Again there are two bits present in the N character of the Store Regis­

ter instructions. Since no 2 1 bit is present, an A2 will be selected.

However, the A2 will try to store both P and B. At TP3 a 1120 11 from

the P register and a "18 11 from the B register will both be gated into

the MR, giving bad parity in both MRO and MRl. The computer will stop

with a MRPE.

Pgs. III-156, 157, 162, 163, and 164

1. w & 4320 5580

2. 2010

3. w 8 4650 4630

4. 60 61 62 63 64 65 66

65 l'--*~~-*~~-*~~-*~~~3~~-8~~-5___,
s. False. There are four conditions when a Pl is selected by PS of

the CTC directly. These are listed in Section III, C, 3a -

Non-transfer of Control.

III-213

6. 1000

1010

1020

1030

1040

1050

1060

7. 1000

1010

1020

1030

K

w
J

v
J

v

J

K

w
v

&

1

0

1

0

0

1

1

2000

021E

1030

021E

0219

021E

0219

2050

2050

1000

0218

2000

0000

1050

021E

4000

021E

4000

2100

2100

1000

3000

1000 p 2999 2999

1010 L 021E 0000

1020 w & 1030 1050

or 1030 J 021E 021E

1040 v 1 0219 . 4000

1050 J 0 021E 021E

1060 v 1 0219 4000

8. A3 and B3 of a CTC instruction usually contains 11 0 11 because they

replace P addresses, and instructions usually start at a location

with 0 and an LSD.

9. 1000

1010

1020

K

w
v

*
1

1

5000

2020

0218

5999

1080

3000

10. "Q" is an illegal N character for the CTC instruction since it contains

two bits plus parity. Both the 2 5 bit and the 2 3 bit are present, so

both the Normal ED/EF Indicator and the Simultaneous ED/EF Indicator

will be sensed. In this cq.se, sensing the Normal Indicator will trans­

fer control to the B address and sensing the Simultaneous Indicator

will transfer control to the A address. So at TP45 of the X2 status

level, both the A and the B address will be gated into the P register.

The addresses "1230" and 11 5300" when OR'ed together produce the ad­

dress "5330" •· Control will be transferred to 5330 and since the newly

created address had good parity, no MA.PE will occur during staticizing.

III-214

Pgs. I~I-165, 166, 167, 170

1. y 6 3145 7577

2. 5 PRP

3. y 3 7630 7634

w 1 5500 5550

4. 30 31 32 33 34 35 36 37 38

30 I@ A 3 @ B 4 @ 0 0

5. 2000 y 1 1000 1001

2010 w 1 2040 2060

2020 J E 1005 1005

2030 v 1 0219 3000

2040 N 1 1000 1005

2050 v 1 0219 3000

2060 N 1 1001 1005

2070 v 1 0219 3000

6. Either (1) A-B equality or (2) a non-compare

7. Twenty

8. 1000 y 1 1086 5023

1010 w 1 2000 3000

11020 M 4 0532 1066 or N 4 0535 1069

III-215

9. Put a II) 1.f in location 8000 before execution.

1000 y 1 8000 5239

1010 w 1 1020 1040

1020 J 1 5501 5501

1030 v 1 0219 3000

1040 J 2 5611 5611

1050 v 1 0219 3000

10. 1000 M 4 1022 0212 1050 y 4 1022 1026

1010 y 1 021E 1026 1060 w 1 2000 1010

1020 v 2 9000 9099 1070 v 1 0219 1010

1030 w 1 1080 1040 1080 J 0 l02E 102E

1040 M 4 0212 1022 1090 v 1 0219 1040

Pgs. III-174, 175, 180

1. 34 times

2. 16 17 18 19

02 14 2 5 0 I
3. x 0 4620 2300

19 20 21 22

46 Ix 0 9 x

4. 20 21 22 23 24 25 26

381 A A A A c * DI
HSM AFTER

III-216

5. The program compares unknown character X with each of the six letters

A, B, C, D, E, and F. The letter which is found equal to X {if any)

is transferred to location 1010 and the computer stops. If X is not

equal to any of the six characters, the computer will stop upon ex­

haustion of the T~lly Quantity located in 2072.

6.

7.

30

1000

1010

1020

1030

1040

1050

28

1

29

1

M

M

v
v
x

30

1

4

II

2

4

0

0

31

*

1022

021E

2000

1019

1058

0000

32

1

0212

3000

0000

0000

1010

0019

33

1
*Could be one or zero, depending

on when looked at.

The SF instruction will continually replace the Tally Quantity with

11 11 11 • Thus, the program will never leave the loop created by the

Tally instruction.

8. The two SF instructions at 1000 and 1010 will perform correctly. The

Tally instruction at 1020 is designed to continue transferring control

to itself until the Tally Quantity is exhausted. However, the Tally

Quantity is, in this case the first two digits of the A address of the

SF instruction at 1000. So when the Tally in 1020 has reduced its

Tally Quantity to 1100 11 , the Tally in 1030 will transfer control to 1000

{Note: The Tally Quantity is in this case ''01".) The instruction in

1000 now reads: J 0 0000 3000. So, a WTT alarm will occur.

9. Tally will transfer control a certain number of times. "Store P"

always transfers control.

10. 1000

1010

1020

1030

1040

M

A

v
x
x

1022

021E

3000

1026

1028

0212

2000

9950

1010

1010

III-217

. Pgs. III-183 and 184 _ .. ___
1. 1000 K 0 2000 3000

1010 w l 1030 1040

1020 3 0000 0000

1030 2 0000 0000

1040 1 0000 0000

2. 1000 0 0000 0000 Manually insert numerical info in

1010 v 2 0000 0000
A and B register.

1020 v 4 2135 0000

1030 M 4 0212 1056

1040 1 0000 0000

3. The Halt instruction uses no First Processing Level.

4. 2000 y 1 1000 1001

2010 w 1 2040 2060

2020 J E 1005 1005

2030 0 0000 0000

2040 N 1 1000 1005

2050 0 0000 0000

2060 N 1 1001 1005

2070 0 0000 0000

5. The first time Start is depressed, the Halt instruction in 1000 is sta­

ticized. Since both A3 and B3 contain 24 bits, indirect addressing will

be attempted. In this case both Pl and Ml will be selected and "0Red"

together giving a result of Pl with good parity. So the Halt at 1000

will operate properly.

The second time Start is depressed, the Halt instruction in 1010 is sta­

ticized. Since only B3 contains a 2 4 bit this time, both a Pl and an

M3 will be selected. The result is a (37) 8 with bad parity. The computer

will stop with an STLE.

III-218

Pgs. III-189, 190, 191, 198, 199

1. 00 01 02 03 04 OS 06 07

30 6 4 # 9 3 # p G

HSM After

01 02 03 04 OS 06 07 08

40 I 2 3 8 G # x # 9

HSM After

2. One combination: R

M

2 0000

1000 =

3. SS38

4. 00 01 02 03 04 OS

08

H

09

3

06

4ol ... _A ___ E ___ E ___ E ___ E ___ F ___ G __ I

0000

2000

s. Since both the A and B addresses are odd, the SF and DL instructions

will each be executed twice using the addresses shown.

10 11 12 13 14 ls 16 17 18 19 20

31(0 1 * * * 5 0 1 8 9 &

6. Pl-PS, Xl, X2, Pl-PS, Al, B, Al, B, REPl, REP2, Pl-PS, Al, Bl, Al,

Bl, Pl-PS, HALT. Af = 2996, Bf = 3998.

III-219

7. (a) Pl-PS, Xl, X2, Pl-PS, A2, A2, Pl-PS, Al, B, REPl,. .RBP2.,

Pl-PS, A2, Pl-PS, Al, B

Af = 2999, Bf = 3999

(b) Pl-PS, Xl, X2, Pl-PS, A2, Pl-PS, Al, B,

Af = 2999, Bf = 2998

Notice in (b) that although INHA and INHB are set during Xl, they

will be reset during PS of the SF since the NR count = o.

8. 8S 86 87 88 89 90 91 92

39 _I _* ___ 1 ___ 2 ___ * ___ * ___ * ___ 6 ___ 1__.

9. 1000

1010

1020

R

M

B

II

0

0000

3001

0000

0000

3000

0000

Af 3989, B 3988.

10. Pl-PS, Xl, X2, Pl-PS, A2, A4, Pl-PS, Al, B, REPl, REP2, Pl-PS,

HALT*

1000

1010

III-220

M 1

0

0223

0000

1030

0000

Pgs. III-204, 210, 211

1. s B 4000 2550

2. s (2000 7580

3. 1030

4. Tape Station #2 is being sensed for BTC. If the Tape Station is still

rewinding, the answer is no and the next instruction in sequence is

executed. This instruction transfers control back to the Sense instruc­

tion. This little loop is continued until transport #2 reaches BTC.

Then the computer jumps to 1020 to resume execution of the program.

5. They both will have the same effect.

6. The. in AO of the IOS has a 24 ,,2~, 21 ; and 2° bit. If any of the con­

ditions specified by these bits is sensed, control will be transferred

to 2000. So transport #3 must be not: in reverse, at BTC, in motion,

or inoperable. Thus, #3 is operable, not at BTC, and tape is not moving.

7. This instruction is addressing card punch #1. The AO character contains

only a 2 2 bit. By consulting Table 8.2, we see that this will not per­

form a test, so it is impossible to set the JMP flip-flop. So, the next

instruction in sequence will be executed.

8. 1000 s 7 &000 1000

1010 v 1 0218 3000

9. 1000 s 8 1000 3050

10. 1000 s 6 2.000 2000 Is tape in motion?

1010 s 6 HOOO 3000 Is tape in reverse or at BTC?

1020 v 1 0219 2000

If transport #6 is in RWD, it will not be motion, but tape will be mov-

ing in reverse.

III-221

SECTION IV

ARITHMETIC INSTRUCTIONS

A. ARITHMETIC INSTRUCTIONS, INTRODUCTION

The Arithmetic Instructions, as their name implies, are used to perform

arithmetic operations. This group is composed of two decimal and three

binary bit instructions. The five Arithmetic instructions are:

Decimal
Operations

Binary Bit
Operations

Op. Code

+

Q

T

u

Instruction

ADD (ADD)

SUBTRACT (SUB)

LOGICAL OR (OR)

LOGICAL AND (AND)

EXCLUSIVE OR (EXO)

B. +/- ADD OR SUBTRACT (ADD OR SUB) Repeatable

The Add and Subtract instructions are the foundation of any mathematical

function performed by the 301. These instructions pe~form algebraic addi­

tion or _subtraction upon two equal length operands of up to 44 characters

each. Only one addition or subtraction is performed at a time. The result

is stored in memory in place of the augend or minuend (i.e. at the A ad­

dress). The instructions operate from right to left and terminate upon de­

creasing the N count to zero. The PRI's are used to indicate the sign of

the result. PRP is set if the sum or difference is positive; PRZ indicates

that the sum or difference is zero; and PRN indicates a negative sum or

difference. Neither the standard STA nor STP locations are used by the Add

or Subtract instruction.

NOTE: Pages VI-3 through VI-7 of the Programmers' Reference

Manual give operational outlines and cover exceptional

cases of the Add and Subtract instructions.

1. Instruction Format

Operation Code: +/-

N Character: Number of characters per operand (0-44 using N count)

IV-223

A Address:

B Address:

LSD location of 1st operand and result

LSD location of 2nd operand

NOTE: If N = O, no characters are added or subtracted. The

next instruction in sequence is executed.

The sign of each operand is incorporated in the 2 5 bit position of the LSD.

If the 2 5 bit of the LSD is a one, the entire operand is negative; if the

2 5 bit of the LSD is a zero, the entire operand is positive.

Example 1:

+ 2 4205 4208

04 05 06 07 08 04 05 06 07 08

42 4 K 3 9 1 42 [4 9 3 9 1

HSM Before HSM After

PRP is set.

The augend in the above example is 4K or a minus 42. The addend is a posi-

tive 91. Algebraic addition produces a positive result of 49 and PRP is

set. Note that the result (49) replaced the augend (4K}. If a carry is

generated on the last addition, the carry is incorporated as a one bit in

the 24 position of the MSD and the overflow indicator SCAR is set, however,

in this example, no carry is generated.

Example 2:

3 5102 5105

00 01 02 03 04 05 00 01 02 03 04 05

51 7 2 p 5 8 41 51 c 1 J 5 8 4

PRN is set.

In the above example, the minuend is 72P or a negative 727. The subtra­

hend is a positive 584 but due to the algebraic subtraction, the subtra-

IV-224

hend appears to be negative and the result is a negative 1311. This is

recorded as ClJ.

2. Instruction Execution

Example: + 3 4510 5620

04 05 06 07 08 09 10 17 18 19 20 21 22 23

45 14 6 7 5 3 8 91 56 4 9 5 3 6 2 7

f ' A. B.
1 1

HSM Before

04 05 06 07 08 09 10 17 18 19 20 21 22 23

451 4 6 7 5 c 4 2 56 [4 9 5 3 6 2 7

i T
Af Bf

HSM After

In this example, three additions were performed and the result-is "C42".

Note that a carry was produced from the addition of the most significant

digits. Since only three characters were specified for each operand, the

result must be three characters. Therefore, a carry, if it occurs, must

be incorporated in the MSD of the result. This is done by inserting a 1

in the 24 bit position. The actual result should be 1342 in this example,

but becomes C42 since a C is a. decimal three with a 1 in the 24 bit position.

It should also be noted that in this case both operands were positive,

thereby producing a positive result. Had the result been negative, the 2 5

bit in the LSD would have been a 1. A negative 1342 would be C4K, where K

is a decimal two with a 1 in the 2 5 bit position.

IV-225

Example: 3 3888 3892

85 86 87 88 89 90 91 92

38 3 7 4 6 2 8 1 p

" ' A. B.
l. l.

HSM Before

85 86 87 88 89 90 91 92

38 I 3 E 6 3 2 8 1 p

'f 'f
Af Bf

HSM After

In this example, a positive number, 746, is the minuend a.nd a. negative num­

ber, 817, is the subtrahend. Since the instruction is a. Subtract, the com­

puter effectively changes the sign of the subtrahend and a.dds. Thus, a

positive 746 a.nd a. positive 817 give a. result of 1563 or E63. This is a

positive result, which would set PRP.

4 4114 4119

10 11 12 13 14 15 16 17 18 19

41 7 2 6 8 9 4 5 2 1 3

'f 1'
A. B.

l. l.

HSM Before

10 11 12 13 14 15 16 17 18 19

41 I 7 2 5 2 M 4 5 2 1 3

1' .,
Af Bf

HSM After

IV-226

In this example, the subtrahend {+5213) is larger than the minuend {+2689).

Consequently, a negative result of 2524 is obtained, and PRN is set. The

negative 2524 is placed in memory as 252M.
PRACTICE PROBLEMS

Problem No. 1

Execute the following instruction and show final HSM contents. Which PRI

is set?

2 5652 5656

50 51 52 53 54 55 56 57

56 6 7 p 8 9 5 2 3

HSM Before

50 51 52 53 54 55 56 57

561

HSM AFTER

PRI?

Problem No. 2

Execute the following instruction and show final HSM contents.

3 2622 2628

20 21 22 23 24 25 26 27 28

26 8 6 5 1 3 2 5 6 2

HSM Before

20 21 22 23 24 25 26 27 28

261

HSM After

PRI?

IV-227

Problem No. 3

Execut,e the following instruction and show final HSM contents.

\
+ 4 2003 4008

00 01 02 03 04 05 06 07 08 09

20 Is 6 5 3 2 40 I 1 4 8 0 9

HSM Before

00 01 02 03 04 05 06 07 08 09

201 40 [
HSM After

PRI?

Problem No. 4

Execute the following instruction and show final HSM contents. Which PRI

becomes set?

+ 3 4862 2113

60 61 62 63 64 65 09 10 11 12 13 14

48 13 8 N 6 K 4] 21 I B 4 6 4 4 A

HSM Before

60 61 62 63 64 65 09 10 11 12 13 14

48 [21

HSM After

PRI?

, IV-228

Problem No. 5

Write an instruction which will add ten characters. The MSD of the Augend

is located at address 1003 and the MSD of the addend is at address 4632.

Problem No. 6

Execute the following instructions and show final HSM contents.

2500 K 0 3787 3793

2510 + 4 0215 2539

2520 J 0 3787 021E

2530 0 0000 0001

87 88 89 90 91 92 93 87 88 89 90 91 92 93

37 ~10~~0 ___ 0 _______ 2 ___ 6 ____ 1 __
371 --------

HSM Before HSM After

Problem No. 7

Two unknown operands exist in memory between 1000 and 1008, and 1010 and 1018.

Each consists of an unknown number of digits from one to eight preceded by an

@ symbol. Any characters to the left of the @ symbol will be insignificant

zeros. Write a program which will add these two variable length operands

and place the result in locations 1000 through 1008. Place an@ symbol one

location to the left of the MSD of the result. Use address 2000 as the

address of the initial instruction in your program. Show addresses of any

constants used.

Pr.oblem No. 8

1000 # 0 1200 1200

1010 1 0215 1035

1020 J @ 021E 021E

1030 0 0001 0000

What is the purpose of the program above? Will it work? Why?

IV-229.

3. Machine Operation

The Add and Subtract instructions use just four status levels for the addi­

tion or subtraction of two characters. A "B" status level brings out one

character and places it in 03; an Al status level brings out the other char­

acter and places it in D2; a D status level obtains the result by table look

up, and an A2 stores the result back in memory.

There are other status levels in the Add and Subtract instructions but they

are not part of the basic operation. The Xl and X2 status levels perform

preparatory steps such as setting and resetting certain flip-flops, and

storing the A address at standard locations 0206-0209. The storing of the

A address is done in case the computer must complement the answer. Comple­

mentation requires three additional status levels (A3, D, and A4) for each

digit of the result.

The actual process of addition or subtraction is done by "table look-up".

Prestored in memory, there is a sum table between 0000-0099 and a difference

table between 0100-0199.

After each LSD has been brought out and placed in D3 and D2 (B and Al status

levels, respectively) the signs are examined along with the operation codes.

If "like signs" are found, the address generator creates 00 on Bus 0 and

Bus 1, 02 is placed on Bus 2 and D3 during the D status level. For example

if 3 and 4 are the operands, the address 0034 is generated. At this address

is a 7 which is brought out (also during the D status level) and stored in

D3. (See Figure 54) The answer is then written back into memory at the A

address during an A2 status level.

If "unlike signs" are found, the digits 01 are generated and the computer

goes to the difference table for the result. Subtracting 5 from 8 would

generate the address 0185. At this location would be a 3, Note that the

computer can use the sum table or difference table for either an Add or Sub­

tract instruction.

Notice that the sign of the instruction (+ or -) as well as the signs of the

operands are considered in deciding whether these are "like" or "unlike".

IV-230

In fact the only time a "+" instruction will dif.fer from a "-" is in deciding

whether or not to set the "unlike" signs flip-flop. This flip-flop determines

whether the sum or the difference table will be accessed. (See ULS FF Fig. 5.)

Examples:

Add Instruction

Augend = 743
Addend = 752

Sum table is used with result
positive D95.

Subtract Instruction

Minuend = 95N
Subtrahend = 322

Sum table is used with result
negative B7P.

Add Instruction

Augend = 81L
Addend = 490

Difference table is used with
result negative 32L.

Subtract Instruction

Minuend = 705
Subtrahend = 699

Difference table is used with
result positive 0¢6.

IV-231

Augend (D
or

Minuend

2)

Augend or
Minuend (D

IV-232

2)

SUM TABLE HSM 0000-0099

:l
0 1 2 3 4 5 6 7 8 9 r-

000 0 1 2 3 4 5 6 7 8 9
001 1 2 3 4 5 6 7 8 9 &

002 2 3 4 5 6 7 8 9 & A

003 3 4 5 6 7 8 9 & A B

004 4 5 6 7 8 9 & A B c
005 5 6 7 8 9 & A B c D

006 6 7 8 9 & A B c D E

007 7 8 9 & A B c D E F

008 8 9 & A B c D E F G

009 9 & A B c D E F G H

'
DIFFERENCE TABLE HSM 0100 0199 -

0 1 2 3 4 5 6 7 8 9 -
010 0 I H G F E D c· B A

011 1 0 I H G F E D c B

012 2 1 0 I H G F E D c
013 3 2 1 0 I H G F E D

014 4 3 2 1 0 I H G F E

015 5 4 3 2 1 0 I H G F

016 6 5 4 3 2 1 0 I H G

017 7 6 5 4 3 2 1 0 I H

018 8 7 6 5 4 3 2 1 0 I

019 9 8 7 6 5 4 3 2 1 0

Figure 54 Sum and Difference Tables

A

s

ddend (D3)
or

ubtrahend

Addend or
Subtrahend (D3)

The 2 4 zone bit is used to recognize a carry or borrow during an arithmetic

operation. For example, assume that the characters 8 and R are being sub­

tracted. The subtrahend being negative would appear positive for algebraic

subtraction, and "like signs" would be recognized. The address 0089 would

be formed and at this address would be a 7 with a carry (24 bit or a G).

During the D status level, when the answer is brought out, the 24 bit is

examined and if it is a one bit, Sum Carry (SCAR) becomes set. SCAR sets

Initial Carry (!CAR) and before the next addition takes place D3 is triggered

up one, thus incorporating a carry.

The reader should note that in most cases the 2 4 zone bit is eliminated prior

to writing the answer back into memory.

The 24 bit is also used to execute a borrow by using the same steps. Assume

the minuend is 3K and the subtrahend is lM during a s~btract operation. The

K and M are brought out in D2 and D3, respectively, and unlike signs are

found. The address 0124 is generated during the D status level and at that

location is an 8 with a borrow (4 from 2 = 8 with borrow) or an H. SCAR is

set, and the first character of the result (8) is written back into memory

during the A2 status level. (Actually a Q is written to show the negative

sign of· the result.) The next series of status levels, B and Al, bring out

the 3 and 1. Since SCAR was set, !CAR becomes set and D3 is triggered up to

2. The address 0132 is generated during a D status level, and a 1 is brought

out of memory. Hence a borrow occurred in the same manner as a carry - the

difference being the table that was addressed.

The Rule is:

If a 2 4 bit comes from the Sum table it is recognized as a carry.

If a 2 4 bit comes from the Difference table, it is a borrow.

Since the computer cannot recognize the MSD's of the operands until it has

first processed the other characters, the machine must predict the sign of

the result during the first Al status level. It can be stated that the com­

puter will assume the sign of the character in D2 (the A operand) as the sign

of the result. Only in two instances will the computer be wrong:

IV-233

(1) When the subtrahend is larger than the minuend and the Difference Table

is being addressed; and (2) When a zero result is obtained and a negative

result is predicted •. For both of these cases, the computer must go through

complementation.

Figure 55 is a block diagram of an add or subtract not requiring complemen­

tation. Figure 56 is a simplified chart of the B and Al status levels; and

Figure 57, a simplified view of D and A2. Notice how a carry (or borrow) is

performed at TP4 of the Al. (Incrementing D3 will add one to a sum or sub­

tract one from a difference.) At TP6 of the Al status level, if an add

instruction is being executed and the signs of the addend and augend are

unlike, or a sub instruction is being executed and the signs of the subtra­

hend and minuhend are like, the ULS FF will be set. If ULS is set, the

difference table will be addressed during the D status level. ULS and other

important flip-flops are shown schematically in Figure 58.

IV-234

STAT.

'
XI

X2

~-

r-Alo B

Al

r_

0

....__,
A2

Ni!T
Pl

STORE A ADDRESS
AT 0206-0209
SET FO,Di!S,PRi!
RESET SCAR, ICAR, ULS

(8)....., 03, B-1---.. B

(A)_,.02 A-+0.....,A
N-1

CONSTRUCT TABLE ADDRESS
FROM ADO .. GEN., 02 8 D3.
PLACE RESULT IN D3

D3-..(A), A-I -.A

() : CONTENTS OF ME MORY AS
ADDRESSED BY

Figure 55 Basic Block Diagram of Add or Subtract

IV-235

B

TPOl B address onto Bus.

Contents of Bus to MAR. Generate Command Level and
TPl decode address in MAR. Modify address in Bus Adder

by minus one.

TP2 Reset B register.

TP23 Permit both characters being read to reach· MR.
Gate modified address from Bus Adder to Bus .•

TP3 Gate Bus contents into B.

TP4 Reset D register.

TP45 Regenerate diad. Gate MRO or MRl onto Bus 3 as
directed by MAR address.

TP5 Gate contents of Bus 3 into D3.

TP6 Select Al status level.

j_
Al

TPOl Gate A address onto Bus.

Contents of Bus to MAR and Bus Adder where modified by o.
TPl Generate a command level and decode MAR address. If SCAR

is set, set ICAR.

TP2 Reset A register. Reset SCAR.

TP23 Gate contents of Bus Adder onto Bus. Permit both
characters being read out to reach MR.

TP3 Gate contents of Bus to A register. Trigger N
down one.

TP4 If ICAR is set, trigger D3 up one.

TP45 Regenerate diad. Gate MRO or MRl onto Bus 2 as
directed by MAR address.

TP5 Gate contents of Bus 2 to D2. Reset ICAR.

If FD is set· and D2 25 .
- 1S set, set PRN. If' FD is set

and Add instruction has opposite signs in D2 and 03,
TP6 set Unlike Signs (T.LS). If FD is set and subtract in-

struction has same signs in D2 and D3, set T.LS. Select
D status level.

FIGURE 56 B AND Al OF ADD OR SUB

IV-236

D

Generate zero onto Bus o. If ULS is reset, generate zero onto
TPOl Bus 1. If ULS is set, generate 1 onto Bus 1. Gate 02 onto Bus 2

and 03 onto Bus 3.

TPl Gate address from Bus to MAR. Generate command level and
decode MAR address.

TP23 Permit both characters to be read out into MR.

TP4 Reset D register.

TP45 · If MAR address is even, gate MRO onto Bus 3; if odd, gate
MRl onto Bus 3. Regenerate diad.

TPS Gate contents of Bus 3 into 03.

If 03 24 . set, set SCAR; if not D.3Z or if D3 - 24 TP6 - J.S

is set, reset ozs. Select A2 status level.

j_
A2

TPOl Gate A address to Bus.

Contents of Bus to MAR and Bus Adder where one is subtracted.
TPl Generate command level and decode MAR address. If NZ, reset

03 - 24. If FD is set and PRN is set, set 03 - 25.

TP2 If DZS is reset and PRN is reset, set PRP. Reset FD.

TP23 Inhibit one character from reaching MR during read out as.
addressed by MAR. Gate D3 onto· Bus 3.

TP3 Gate contents of Bus 3 into MRO or MRl as directed by MAR
address.

TP4 Reset A register.

TP45 Regenerate diad. Gate address from Bus Adder onto Bus.

TPS Gate contents of Bus into A register.

TP6 If NZ select B status level. If NZ select Pl status level.

FIGURE 57 D and A2 of ADD or SUB

IV-237

D2-25 (1)

ADD 03-25(0)

X2

0-lS

SCAR(I)

TPI

ICAR

03-21 (0) D3-22(0)

D3-2°co> D3-23(0)

D3i!

IV-238

D2-25(0)
ADD D3-25(1)

TP4

Al
TP6

FIGURE 58

02-25 <01 D2-25 (1)

SUB D3-25!0) SUB D3-25 (I l

X2 TP4
X2 TP4

s
ULS PR!

Al TP2

s R s
SCAR PRN

Di!S(O) PRN(O)

X2 A2 TP2 TP2

FD PRP

FLIP-FLOPS

The following is an example of the status flow of an add instruction not

requiring complementation of the answer.

+ 2 1506 1509

04 05 06 07 08 09

15 6 4 M 3 2 9 I.
HSM Before

Pl PS

Xl

X2

B 9 -+ D3 , 1508 -+ B

Al M-+ D2, Set ULS, Set PRN, N-1 = 1

D Generate address 0149, E -+ 03, Set SCAR, Reset DZS

A2 Reset 03 - 24 , Set 03 - 2 5 , N-+ (A) 1505-+ A, Reset FD

B 2-+ 03, 1507-+ B

Al Set !CAR, Reset SCAR, 4-+ 02, Trigger 03 to 3, N-1 = 0

D Generate Address 0143, 1-+ 03

A2 1 -+ (A) , 1504 -+ A

Pl

04 05 06 07 08 09

15 6 1 N 3 2 9

HSM After

Figure 59 shows the complete block diagram of the status flow of add or

subtract. The right-hand branch is used to complement the answer when a

mistake is made in predicting the result.

Example: 2 1001 2001

00 01 00 01

10 ... I _2 ___ 3__. 20 ... [_s ___ 1~
HSM HSM

IV-239

Since the A operand (the minuend) of the instruction above is a positive

number, the processor assumes that the result will be positive. ULS is set

so the difference table is addressed. If you were to perform the subtrac­

tion:
23

- 51

100 must be subtracted from the result previously obtained which contains a

borrow. This is performed by the X3, X4, A3, D, and A4 status levels. The

EAC flip-flop will be set at the end of the last A2, if the result obtained

by that time must be complemented.

At TP6 of the A2 status level (Figure 63) EAC will be set if 11NZ·M". "NZ"

just means that all digits of the operands have been added or subtracted.

"M" is defined beneath the chart of the status level. There are 3 ways

to get "AA": (1) When a borrow was made while handling the MSD' s during a

"subtract" (i.e., ULS set) and the MSD of the minuend was equal to 9 or less

or the MSD of the subtrahend was greater than 9. (2) When a negative result

was predicted but a zero result was obtained, and the MSD of the minuend was

equal to 9 or less or the MSD of the subtrahend is greater than 9. (3) When

the difference· table is being used and the MSD of the minuend is 9 or less

and the MSD of the subtrahend is greater than 9.

If any of these conditions are present at TP6 of the last A2, EAC will be

set and X3 selected. The purpose of the X3 and X4 status levels is to re­

place the present contents of the A register with the address of the LSD of

the minuend (which is also the result). This is the A initial of the in­

struction which was stored in standard location 0206-0209 by Xl and X2 imme­

diately after staticizing. Now the process of complementing can begin.

In the example of 51 subtracted from 23, the answer was larger than it should

have been by the amount of the borrow (100). Subtracting 100 from 72 will

give the correct answer. This is the same as subtracting 72 from 100 and

making the result negative which is just what the computer does. During

the A3 status level, 112 11 , the LSD of the false answer, is sent to D3 and

a¢, representing the LSD of 11 100", is sent to D2. Table look-up is

IV-240

performed by the D status level. Notice that the difference table is still

being used since we are subtracting 72 from 100. During A4, a 2 5 bit is

added to the character from the table to make it negative and the final re­

sult ("Q") is written into memory as the new LSD. During the next A3, the

"G" is brought out of memory and put into D3 and a 9 is put into D2. Since

a borrow had to be made to subtract "2" from "0" during the first A3, the

112 11 was actually subtracted from 10; and

from 11 90". (i.e •'

(
(

91-
100 __. .t0o }

- 72 - 72 }

}

now the 11 70" must be subtracted

The D status level performs table look-up, and the A4 stores the result

("2") in memory. "LD" is now set because the MSD of the result contained

a 24 bit. This will always be the case when complementing is to be performed

since this 24 bit indicates a "borrow". (Note: No digits of the result ex­

cept the MSD or LSD may contain a 24 bit.) The final "difference" in our

example is then "2Q" which represents "-28".

Reviewing the example briefly:

A. 1123-51 11 gives a result of 11G2" after the last A2.

B.. Since a borrow was generated when subtracting the MSD 1 s of

the operands, complementation must be performed.

C. "72-100" = -28 = 112Q" is the final result after complementation

is complete.

IV-241

END STAT

-NZ NZ ,
Pl •

Xl
AO--- 0206
Al--- 0207

'- ' X2 X3
A2--... 0208 0206__.AO
A3__.. 0209 0207 ___...Al

,
'

~
B X4

(B)----.. 03 0208---... A2
B-1--- B 0209__,.A3

• ,_

Al A3
(A)....,..-+- D2, A+O--..A (A)_...D3 rir-

N-1---... N A+O __..,. A

, ,
D D

D2~D3__. D3 D2-D3~D3

t ' A2 A4
'---

03----- (A) D3----. (A)
1---

NZ
A-1----. A

NZ•EAC A-1-..... A
LD(O

N Z•EAC•NRz -NZ•EAC•NRZ LD(l)•NRZ LD(l)•NRZ , ,
' ' REPl Pl REPl Pl

FIGURE 59 COMPLETE BLOCK DIAGRAM OF ADD OR SUBTRACT

IV-242

BND STAT

---Xl

TPOl 0206-+ BUS
TPl BUS -+ MAR

Generate CL
Inhibit Both

TP23 AO -+ BUSO
Al -+ BUSl

TP3 BUSO -+ MRO
BUSl -+ MRl

TP6 Select X2

X2

TPOl 0208 -+ BUS

BUS -+ MAR
TPl Generate CL

Inhibit Both

TP2 Reset SCAR, TD9

TP23
A2 -+ BUS2
A3 -+ BUS3

TP3 BUS2 -+ MRO
BUS3 -+ MRl

TP4 Set FD, DZS, PRZ
Reset LD, EAC, ULS, IDA, D20F, D30F, EACC

TPS Reset !CAR
TP6 Select B

A2 ~ .. - B

TPOl B -+ BUS
BUS -+ MAR -+ BA(-1)

TPl Generate CL
Permit Both

TP2 Reset B
TP23 BA -+ BUS
TP3 BUS -+ B
TP4 Reset D

-""

TP45 I:f MAR 3-2~(0); MRO-+ BUS3
I:f MAR 3-2 (1); MRl -+ BUS3

TPS BUS3 -+ 03
_IE._6 Select Al

lAl

Figure 60 Detailed Status Flow (Xl, X2, B)

IV-243

B

l
Al

TPOl A -+ BUS

BUS -+ MAR -+ BA(+O)
TPl Generate CL

Permit.Both
If SCAR (1): Set !CAR

TP2 Reset A, TD9
Reset SCAR

TP23 BA -+ BUS

BUS -+ A

TP3 Trigger N(-1) 0 · 3
TD9 6 If ICAR(l)·D3-2 (l)·D3-2 (1): Set SCAR,

If ICAR(l)·D3-20(0}/D3-21 (l}•D3-22 (Ol: Trigger D3-2
TP4 If !CAR (1) : Trigger D3(+1)

TP45 If MAR3-2~(0}: MRO -+ BUS2
If MAR3-2 (1): MRl -+ BUS2

BUS2 -+ D2
TP5 Reset !CAR

l 3 If SCAR (1): Reset D3-2 , 2
4 4 ICAR If (NZ)•D2-2 (1)/03-2 (1): Set

If FD(O)•NZ·D2-24(1)/D3-24(1): Set ARIE
If FD(l}•D2-2§(1)/D3-24(1): Set ·IDA
If FD(l).D2-2 (1): Set PRN
If FD(l}•ADD•D2-25(1}·D3-25(0): Set ULS

5 5 Set ULS
TP6 If FD{l) ·ADD·D2-2 5 {0)•D3-2 5 (1):

If FD(l}·SUB:D2-25 (1)·D3-2 5 (1): Set TJLS
If FD(l)·SUB•D2-24 {0}·D3-24 (0}: Set ULS
If NZ•ULS(O)•D2-2 (l)•D3-2 (1): Set ARIE
If NZ·D3-24(1): Set D30F
If NZ D2-24 (1): Set D20F
Select D

- " D

*D20F/D30F = See Page IV-249

Figure 61 Detailed Status Flow (Al}

IV-244

Al

,,
0

(0) 10 -+ BUSO

If ULS(O): (O)lO-+ BUSl

TPOl
If ULS(l): (l)lO-+ BUSl

02 -+ BUS2
03 -+ BUS3

BUS -+ MAR -+ BA(+O)
TPl Generate CL

Permit Both

TP4 Reset O

TP45 If MAR 3-2g(O): MRO -+ BUS3
If MAR 3-2 (1): MRl -+ BUS3

TP5 BUS3 -+ D3

If EAC(O): Select A2
If EAC(l): Select A4

TP6 If 03-24(1): Set SCAR
If !CAR (1) ·D3-24 (lN)/NZ ·SCAR (lN) ·ULS (0): .'Set ARIE*
If 020F(O) ·030F(l)/020F(l) ·030F(O) /D3-24 (1N)/03Z:**

Reset OZS***

EAC (1) EAC (0)
,~

,
A4 A2

*ARIE - See Page IV-253

**03Z = indicates the decimal portion of the D3 register
(20 thru 23) contains zero (0000).

***DZS = See Page IV-249

Figure 62 Detailed Status Flow (D)

IV-245

D
i

A2

TPOl A -+ BUS

If SCAR (0) ·D20F (1) · D30F (0)/D20F (0) •D30F (1) : Set 03-2 4
If FO(l)·IOA(l)·SCAR(O): Set D3-24
If NZ. PRN (1) . DZS (1) : Set 03-24

4 If NZ•TD9(l)•D20F(O): Set 03-2
BUS-+ MAR-+ BA(-1)
Generate CL

4 TPl If NZ·IOA(ON)·TD9(0N): Reset D3-2
03-24 If NZ.ULS(l) .D20F(l) .D30F(O) .SCAR(IN) .TD9(0): Reset

If FD(l)•H{N~l): Set 03-25
Correct 03-2
If ULS(l) 0 SCAR(l) 0 D20F(O)·D30F(l)/DZS(l)·020F(0)·030F(l):

0 Set EACC**
If MAR-2 0 (0): Permit Cl, Inhibit co
If MAR-2 (1): Permit co, Inhibit Cl

If DZS(O) PRN(ON): Set PRP
NZ 0 ln~S(l) .D20F(l) .D30F(O) .D3-24 (0N): TP2 If ReseL SCAR, TD9

Reset FD
Reset IDA

TP23 D3 -+ BUS3
0

If MAR3-20 (0): BUS3 -+ MRO
If MAR3-2 (1): BUS3 -+ MRl

TP4 Reset A

TP45 BA -+ BUS

TPS BUS -+ A
-If NZ: Select B

If NZ·A,*: Select X3, Set EAC -TP6 If NZ•AA·NRZ: Select Pl ---If NZ 0 AA 0 NRZ:
.

Select REPl
If NZ·ULS(l) 0 03-24(1) ·D20F(l) ·D30F(O): Set SCAR

NZT NZ•AAT l NZ •AA•NRZ ~ ---= NZ •l'\A•NRZ

B X3 Pl REPl

*AA= ULS(l) ·SCAR(l)·D20F(l)·D30F(O) I DZS(l)·PRN(l)·D20F{l)·D30F(O) I
ULS(l)·D20F(O)·D30F(l}

**EACC = For explanation see Page 30.

(A2)

Figure 63 Detailed Status Flow

IV-246

l
!

1
!

i
I
i
'
i
' :
1
I
I

t
'

' :

'.

I

l

' ' " i
--1

........
t

i
l ·-·I

I

J
X3

TPOl 0206 ~BUS

BUS--.~IAH

TPl Generate CL
l'ermi t Bo t..h

TP4 Ht•Se t A

TPli5 MRO_.,BUSO
MH L --.uus I

TP5 1.rnso~Ao

BUSI. --.Al.

TP6 Select X4
:i:

X4
TPOl 0:208 _.,DIJS

BUS ~MAR
TPl Generate CL

PHrmit Both

TP2 Res Pt SCAR

TP4 Set FD, PRZ
Reset LD

TP456 MHO--.BUS2
MRI ..-.sus3

BUS::!--.A2
TP5 BUS3--.A3

Reset ICAR

TP6 Select A3
¥

A3 j..1--A4

TPOl A_.,DIJS

BUS~MAR~BA(+O)

TPI
Generate CL ..
Permit Both
If SCAR(!): Set !CAR

TP:.! Reset A
Reset SCAR

TP23 BA -.sns
TP3 BUS~A

TP4 Reset D

TP45 If MAR3-20(0): MRO__.BUS3
If MAR3-20(l): MR1_.BUS3

If ICAR(O): (0)10__.02
TP5 If ICAR(l): (9)10 02

BUS3 __.03

Select 0

TP6
If 03-24(1): Set LO
If FO(l)•OZS(0)•03-25(0): Set PRN
If FO(l)•OZS(0)•03-25(1): Set PRP

~
D

Figure 64 Detailed Status Flow (X3, X4, A3)

IV-247

IV-248

D.

A4

TPOl A-+ BUS

BUS -+ MAR -+ BA(-1)
Generate CL

03-2 6 If FD(l)•PRN(l): Set D3-2 5 and Tri2ger

TPl If LD(l)•EACC(l}•SCAR(O}: Set 03-2
If LD(l)•EACC(l)•SCAR(O): Reset 03-24
If MAR 3-2g(o): Permit Cl, Inhibit co
If MAR 3-2 (1): Permit CO, Inhibit Cl

TP2 Reset FD
If LD(l)·D3-24 (0): Reset SCAR

TP23 D3 -+ BUS3

If 0
MAR 3-20 (0): BUS3 -+ MRO TP3

If MAR 3-2 (1): BUS3 ... MRl

TP4 Reset A

TP45 BA-+ BUS

TP5 BUS-+ A

If LD(O): Select A3
' --TP6 If LD(l) NRZ: Select REPl

If LD(l) •NRZ: Select Pl

t LD(O) ,~LD(l) ·NRZ ;
LD(l) •NRZ

A3 REPl Pl

flOTES: • Sign is in 2 5 bit of LSD: 2 5 (0)--positive, 2 5 (1)--nega­
tive.

· Final carry is stored in 24 bit of MSD and SCAR is set.
• Operands must not contain a 24 bit in any position other

than the LSD or MSD. 4
• Indirect address is indicated by 2 (1) in LSD.
• Addresses should always be positive.
• If the sum of any MSD exceeds 19 (I), an Alarm Stop will

occur (excluding 305 Processor).

Figure 65 Detailed Status Flow (A4)

4. Special Flip-Flops

1. Overflow Indicators (D20F and D30F)

The purpose of these flip-flops is to indicate if either or both of the

operands contain a carry bit (24) in the most significant character position.

The condition of these flip-flops will be checked at various times and their

state will help determine the steps the processor will take in executing an

add/sub operation.

2. Decimal Zero Sum FF (DZS)

DZS will be in the set state at the completion of an add or subtract instruc­

tion, if the end result is zero.

DZS is set initially during the X2 status level. An attempt is made to Re­

set DZS during every D status level. If the character taken from the table

area of HSM is something other than zero, or if either (not both) of the

overflow indicators (D20F/D30F) is set, TP6 of the D status level during

which this occurred will cause DZS to be reset.

EACC: The "End Around Condition Carry" flip-flop is used in certain special

cases during an add or subtract to insert a 2 4 bit (carry or borrow) into the

most significant character of the result.

This can only occur when an answer must be complemented, and then only in

certain special cases. The following example will illustrate one of these

cases.

1. Augend = 05-

Addend = +I60
Decimal
Equivalent

-0050

(+)+1960

+1910

Correct Result

In this example, a -50 is being added to a +1960. Since the sign of the

augend is negative, PRN will be set. The signs are unlike. Therefore, ULS

will be set. This tells the processor to utilize the difference table during

execution of the add instruction.

IV-249

Starting with the least significant characters, the first address generated

The zero (0) in this loca-during the first "D" status level will be 0100.

tion will become the LSD of the result.

2. 05-

+160

0 LSD of Result

However, since the processor predicted a negative result, this must be indi­

cated in the LSD. During the first "A2" status level, the signal "FD•PRN"

will set the 2 5 bit in the LSD of the result. This changes the zero to a

minus.

3. 05-

+160

Set 2 5 Bit

During the second "D" status level the address 0156 will be generated. The l

in this location indicates a 9 with a borrow (2 4 bit).

4. 05-

+160

2 4 indicates I-
borrow

The 2 4 bit will cause the SCAR FF to become set. SCAR now indicates the

borrow.

-----During the second A2 status level the signal "NZ•lDA·TD9" will cause the

24 bit to be reset, changing the l to a 9.

5. 05-

+160

2 4 Bit Reset 9-

lV-250

We are now ready to process the most significant characters of the augend

and addend. During the third "B" status level, the I {MSD of addend) will

be placed in D3.

The third "Al" status level will place the MSD of the augend {O) in D2.

Since SCAR is set, ICAR will now also be set. (SCAR is then RESET.)

At TP3 of the "Al" STL, since ICAR is set and D3 contains an I, (9 with a

24 bit) SCAR and TD9 will be set. We must now incorporate the borrow from

the last subtraction by triggering D3 + 1. Before triggering, D3 contained

an I [01100l] (2); after triggering, D3 will contain a+ [011010] (2).

At TPS of the "Al" STL, since SCAR is set, D3 - 2 1 , 22 and 2 3 will be reset,

changing the character in D3 from a "+" to an "&". At TP6 of the Al STL,

the signal "NZ•D3-2411 will set the D30F FF. We will now go into the third

"D" status level generating the address 0100. The "0" in this location will

become the MSD of the result.

6. 05-

+I60

MSD of Result ~ 09-

At TPl of the third A2 STL, the signal "ULS•SCAR•D20F•D30F" will set the EACC

FF. The condition of EACC will be utilized at the end of the complementation

process.

During the third "A2" status level, the processor will realize that it has

made a mistake. It had assumed that the augend was the larger quantity and

had taken its sign as the sign of the result. However, at this point since

D20F is reset and D30F is set, the processor realizes that the addend was in

fact the larger quantity.

To correct for this error in judgment, the result must be lO's complemented

and the sign must be cha.nged. This is indicated by the signal "ULS·D20F•D30F"

setting the EAC {End Around Condition) FF. The processor must now complement

each character of the result (using the difference table) and restore the

IV-251

complemented answer in HSM.

NOTE: During the third "A2" status level, the signal

"NZ•TD9•D20F" caused the 24 bit in the MSD of

the result to be set.

7. 05-

+!60

Set 24 Bit~ &9-

During complementation, the processor has no way of knowing the number of

characters in the result since N is now zero. It will check each character

it complements looking for a 24 bit. When one is found, the processor knows

that it is complementing the MSD of the result.

The first status levels used during complementation are X3 and X4. These

are used to restore in the A address the location of the LSD of the result.

An "A3" status level is now executed. This will place the LSD of the result

(-) in D3, and since ICAR is reset, a zero (0) in D2. The signal "FD•DZS•D3-2 511

will set PRP·correcting the sign of the result. A "D" status level is now

executed generating the address 0100. The zero in this location becomes the

LSD of the complemented result.

8. & 9 - = Result

0 = Complement

The first 11A4" status level will place the zero into HSM.

The second 11A3" status level will place the second character of the result

(9) into D3 and a zero into D2.

The second "D" status level will generate the address 0109. The A in this

location (one with a borrow) will cause SCAR to set.

During the second 11A4" status level, since we are not on the last digit

(LD), the 24 bit will be reset and a (1) will be placed in HSM.

IV-252

9. & 9 - =Result

1 0 = Complement

During the third "A3" status level SCAR will set ICAR and the third character

of the result (&) will be placed in D3. Since D3-2 4 = 1, LD will be s·et

(last digit) ICAR being set will place a (9) in D2.

,The third "D" status level will generate the address 0190. The (9) in this

location will become the MSD of the complement result.

10. &

9

9

1

= Result

0 = Complement

However, we must first set the 24 bit. This will be accomplished during the

last "A4" status level by the signal "LD•EACC•SCAR".

11.

1

&

I

9

9

1

1

= Result

0 = Complement

O = Decimal Equivalent

The MSD (I) is now stored in HSM, and LD being set, tells the processor

that the complementation process is now complete.

5. Arithmetic Error (ARIE)

Listed below are the conditions that will generate an ARIE during the execu­

tion of an ADD or Subtract instruction.

1.
4 4 --(D2-2 /D3-2)•(FD•NZ) =ARIE

The only locations in an opera.nd where a 24 bit is allowed will be the LSD

(indirect address) and the MSD (carry). The presence of a 24 bit in any

character of either operand will generate an ARIE.

Example: 1 2 E 0 ARIE

+ 3 4 5 1

IV-253

2.
4 4

ULS •Al ·NZ• 02-2 • 02-2 = ARIE

Any time a summation operation is in progress (ULS), and the MSO of the

operands are being added (NZ), and both MSO's contain carry bits (02-24 •03-24)

an overflow will occur generating an ARIE.

Example:

3.

ARIE A 4 2 0
+ c 6 2 0

- 4 O·ULS•ICAR•03-2 =ARIE

!CAR will be set in this condition when "Al•NZ (02-24/03-24) 11 indicating that

we are processing the MSO's of the operands and either or both contain a

carry bit. If on the following "0" status level, while accessing the sum

table, a result with a carry bit (03-24) is extracted, an overflow will

occur generating an ARIE.

ARIE
!CAR I 2 0 0

+4 5 0 0

03-2 4 c 7 0 0

4. O• ULS •NZ• SCAR• !CAR • ARIE

This condition could occur while doing a summing operation (ULS) if the addi­

tion of the characters preceding the most significant characters of the two

op.er ands resulted in a carry. This carry would have to be incorporated into

the addition of the MSO's by triggering 03 + 1. If however, 03 contained

a 9 before triggering, it would be triggered to zero and SCAR would be set

indicating a carry.

If at this time, the MSO of either operand contains a carry bit (indicated

by !CAR being set), an ARIE will be generated (two carries out of the MSO

addition).

Example:

Set !CAR A 5 0 0
ARIE 0

Set SCAR TRIG + 1 9 5 0 0

0 0 0

t~ith a carry

IV-254

6. Programming Errors

Besides using an N character outside of the N count as described in the DL/DR

section, the Add and Subtract instructions have a few combinations that might

cause difficulties. All of the problems in Add and Subtract result from the

actual characters involved in the arithmetic operation and not from the in­

struction itself.

As stated in the 301 Programmer's Reference Manual, any character containing

a 24 bit in any position of the operand other than in the LSD or MSD posi­

tions causes an ARIE alarm. Also generating an ARIE is the addition of two

MSD's which contain 24 bits. Effectively the 24 bit in an MSD indicates an

overflow or carry. For example, the operand Gl3 represents 1713 because a G

is a seven with a 2 4 bit. Therefore, if two such characters are added (Sum

Table only) the result would be 20 or greater which effectively would require

a single character with a double carry. The largest number that can be

represented by one character is 19 or the letter I. Hence the addition of

two MSD's containing 24 bits causes an alarm.

If one MSD contains a 24 bit and an incoming carry along with the other MSD

produces a result greater than 19, an ARIE will occur.

Example:

Add Instruction

Augend = H257

Addend = 1923 =
18257

+1923

20180

An ARIE would be generated during the fourth D status level because 20 cannot

be represented by one character.

To eliminate either of the aforementioned problems, one can insert insignifi­

cant zeros into the operands before performing the addition.

Example:

18257 Add 5 characters

01923

20180

IV-255

The 2 5 bit in the least significant digit is recognized as a minus sign.

However, the 2 5 bit is ignored in any other character position and no alarms

occur as a result of it. The 2 4 bit is recognized and permitted in the LSD

position. The computer will assume an indirect address is being used as an

operand if a 24 bit is found in the LSD, hence a 2 4 bit is always inserted

into the LSD of the result if this occurs, even though the operands and re­

sult are greater or less than 4 characters.

Example 1:

Example 2:

Add Instruction

58¢32

4176F

9979H Result (No Alarm)

Add Instruction

2A

34

SE Result (No Alarm)

If, however, the computer must perform complementation when a 2 4 bit exists

in the LSD, an incorrect result will be obtained. This is true even in the

case of indirect addresses.

Subtract Instruction

328D

329¢

I99W

Minuend

Subtrahend

Result (Incorrect but no alarm)

Result should be ¢¢¢w.

Note that any resultant address, even if indirect, should not be negative.

Therefore, the number of occurrences of an incorrect result such as described

should be very few if any.

Since the Add and Subtract instructions use the characters of each operand

as part of an address during the D status levels, it is possible to generate

a MRPE alarm if illegal characters are used. All characters used in the

IV-256

operands of an Add or Subtract must have their 2° through 2 3 bit configura­

tion between binary 0000 and 1001. In other words, no characters other than

the decimal digits, letters of the alphabet, symbols &, minus sign, quotation

mark, and virgule (/) are permitted within either operand of a decimal opera­

tion.

Example: Add Instruction

Augend = 64*M

Addend = E32K

The character (*) will generate a MRPE and DPE because the address formed

would be 00*2 during the second D status level and no X drive line can be

selected. Therefore, nothing is read out of memory and bad parity is de­

tected in the Memory Register as well as the D register.

C. Logical Instructions (Q=OR) (T=-AND) (U=EXO) Repeatable

The logical instructions used in the 301, perform Boolean Algebra (AND, OR,

EXO) on each information bit (2o ~ 2 5) of each character in both operands.

The proper parity is also generated as a result of the operation.

Examples:

1. AND -

2. OR

7 (10)

9 (10)

Result ~

6 (10)

1 (10)

Result ~

3. EXCLUSIVE OR -

= 0 000111

= 1 001001

0 000001 =

= 1 000110

= 0 000001

0 000111 =

A = 1 010001

I = 0 011001

1 (10)

Result ~ 0 001000 :::

IV-257

NOTE: Pages VI-8 through VI-13 of the Programmers' Reference

Manual give operational outlines and some examples of

the "AND", "OR" and 11 EX011 instructions.

Since the logical instructions do not involve carries, their functions might·

be questioned. Because the 301 code uses zone bits to specify certain char­

acteristics in characters, the logical instructions serve a very useful pur­

pose in extracting or adding these zone bits without disturbing the infor­

mation bits. This process is known as "making". For example, to make a

quantity negative, all that need be done is to insert a 1 in the 2 5 bit

position of the LSD of that quantity. A logical OR instruction could be

used in this case. If a decimal 5 were OR'ed with a minus symbol, the re­

sult would be the letter N, which is a negative 5.

5 = 000101

100000

Result = 100101 = N = -5

To remove a given bit or bits, the Exclusive OR and Logical AND instructions

are used. For example, to remove the 2 5 bit from the letter N, thereby

producing the number 5, an Exclusive OR could be used.

Result

N = 100101

= 100000

= 000101 = 5

1. Instruction Format

IV-258

Operation Code: Q/T/U

N Character: Number of characters per operand (N count = 0-44)

A Address: LSD location of first operand and result

B Address: LSD location of second operand.

NOTE: If N=O, nothing is done and the next instruction

in sequence is executed.

Example 1:

DIRECTION OF OPERATION: Right to Left.

PRI's: The PRI's are set only in the Logical AND

instruction, where PRN indicates all resultant

bits are O's and PRP indicates at least one

resultant 1 bit.

Q 1 2016 2018

2015 2016 2017 2018
HSM Before

I I I I 0010011 I 1010001 1010010 1010100

(B) (D)

2015 2016 2017 2018
HSM After

1010001 I 0010110 I 0010011 I 1010100 I
{F)

In this example, the letter B was logically OR'ed with the letter D.

The result is an F.

Example·2:

u 4 1003 1008

00 01 02 03 04 05 06 07 08

10 I 8 6 J K B * u v 3

'
.,

A. B.
1 1

HSM Before

00 01 02 03 04 05 06 07 08

10 [M s D J B * u v 3

' Bf

HSM After

Af = 0999

IV-259

PRACTICE PROBLEMS

Problem No. 1

Execute the following instruction and show final HSM contents. What PR!

is set?

T 3 2105 2102

00 01 02 03 04 05

21 Is 6 A ::: G B

HSM Before

00 01 02 03 04 05

21

HSM After

PR!?

Problem No. 2

Execute the following instruction and show final HSM contents.

Q 4 2012 2013

08 09 10 11 12 13 14

20 I H p 7 6 * @ K

HSM Before

08 09 10 11 12 13 14

20 I
HSM After

Problem No. 3

Execute the following instructions and show final HSM contents.

u 2 4685 4682

80 81 82 83 84 85 86 87

461 1 2 3 4 5 s T u

HSM Before

IV-260

80 81 82 83 84 85 86 87

46

HSM After

Problem No. 4

00 01 02 03

10 Unknown Q

There is an unknown quantity (positive or negative) in HSM locations 1000 -->

1004. Write a program that will check to see if it is a negative quantity.

If it is, remove the negative indicator (2 5 bit) and halt. If it is a

positive quantity, just Halt.

Problem No. 5

1000 M = 1000 2000

How could you modify the DL instruction to move 45 characters?

2. Machine Operation

The logical instructions all use the same status levels and operate in much

the same manner, the main difference being the logical operation performed

on the two operands (AND, OR, EXO).

If an "AND" instruction is being staticized, PRN will initially be set

during PS.

The Al status level is used to access memory bringing out one character and

placing it in D2. The N count is also decremented by one.

IV-261

The B status also accesses memory bringing out the other character and plac­

.ing it in D3. The logic operation specified is now being performed on the

two characters in D2 and D3.

The A2 status level will take the logical result (LR) and store it back into·

memory at the original "A" address. If an "AND" instruction is being execu­

ted, and there is at least one 11 1 11 bit in the result, PRP will be set during

the A2 status level.

If the N count is not zero at this time, another Al status level is selected

and the entire cycle is repeated on the next two characters.

If however, NZ and NRZ (used in conjunction with the Repeat instruction) are

present, a Pl status level will be selected and the next instruction in se­

quence is executed.

In order to trace through the status flow, utilize the following example:

NOR N A B 01 02

T 1 1001 1002 10 9 8

NOTE: See Status Flow on pages 273 and 274.

The instruction will initially be staticized and, being an "AND" instruction,

PS •TP2 will set "PRN".

Since we have NZ, an Al status level is selected. The A address is gated to

the MAR (TPl) and used to address memory. You will note that the A address

will not be modified Rt this time, since the result must be placed back into

this location.

A read-type memory cycle is initiated (GEN CL·Permit both) and the original

address is gated back to the A register. The N count is then decremented by

a (TP3). The D register is reset (TP4) and the character in MRl (address

odd) is gated to Bus 2 (TP45). Bus 2 is then gated to D2 (TPS). TP6•Al will

select a B status level. At this time, the registers contain the following:

IV-262

NOR N A B D2 D3

T 0 1001 10021 9

During the B status level, the B address is gated to the MAR (TPl) and used

to address memory. The B address is modified (BA-1). A read-type memory

cycle is initiated (GEN•CL Permit Both) and the modified address (1001) is

gated back to the B register. The character in MRO (even location) is gated

to Bus 3 (TP45). TPS gates Bus 3 into D3. TP6•B will select an A2 status

level. At this time, the registers contain the following:

NOR N A B D2 D3

T 0 1001 10011 9 8

Since the 8 and 9 in D2 and DJ are being AND'ed, the LR (Logical Result)

would be = 8.

The A.2 status level will gate the original A address into the MAR (TPl). It

will now be modified (BA-1). A write-type memory cycle is now initiated

(address add - Permit CO, inhibit Cl).

The log1cal result (8) is gated to bus 2 (TP23) and then bus 2 is gated to

MRl (address add). The A register is reset, and since at least one "l" bit

is present in the result (8), PRP is now set (TP4·A2). During the regenera­

tion portion of the memory cycle (TP45), the LR (8) will be written into

location 1001. The modified A address is now gated back to the A register

(TPS). At TP6, since we have NZ·NRZ, indicating completion of the AND in­

struction, a Pl status level is selected. The final register contents are

as follows:

NOR N A B

0 j 1000

IV-263

Pl

IV-264

LOGICAL LNSTIHICTIONS (q 011) (T == ANO) (U = EXO)

,.,,._

P'.)•TP:.!

NZ

TPOl

TPl

TP2

TP23

TP3

TP4

TP45

TP5

TP6

TPOl

Tl>l

TP2

TP23

TP3

TP45

TP5

TP6

STAT

lf AND: Set PRN

NZ

, l
Al

A _..BUS

BUS -.MAR _.BA(+¢)
Generate CL
Permit Both

Reset A

BA__,.BUS

BUS__.A
Trigger N(-1)

Reset D

If MAR 3 - 2 g (0) : MRO BUS2
If MAR 3- 2 (l) : MR1 BUS2

BUS2 -.-02

Select B

B

B__.BUS

BUS _.MAR __.BA(-1)
Generate CL
Permit Both

Reset B

BA__.BUS

BUS B

If MAR 3- 2 g (0) : MRO--...BUS3
If MAR 3-2 (0) : MR1--.BUS3

BUS3__.D3

Select A2

LOG IC
LOG AT ION

089 A5D1

A2

LOG re
LOG AT ION

055 4D3
~~~H'° 

067 
067 

6D5 
6D3 

055 
067 
055 
061 
058 
065 
065 
058 
083 

LOG 
LOG 

057 
067 
067 
067 

8C1 
2c4 
8C1 
4D1 
8D2 
3c3 
3c3 
8D2 
8c1 

IC 
AT ION 

4c1 
5B6 
6B2 
7C5 

057 6C4 
2C1 
6C4 
3C6 
3c6 

067 
057 
065 
065 
059 4D2 
082 4B4 

' 
~HH~Absence of BA +1, BA +2, 

BA -1, BA -2 A2 

Figure 66 Logical Instruction Status Flow 



LCXiICAL INSTRUCTIONS (Cont'd.) 

Bl 
LOGIC 

A2 LOCATION 

TPOl A-+ BUS 055403 

BUS -+ MAR -+ BA(-1) 0675B5 

TPl Generate CL 067605 
If MAR 3-2g(o): Permit Cl, Inhibit co 0677C2 
If MAR 3-2 (1): Permit co, Inhibit Cl 0677C2 

If OR: D2/03 -+ BUS2 069201 
TP23 If AND: 02 • 03 -+ BUS2 069302 

If EXO: 02/03 • (02 •03) -+ BUS2 069301 

TP3 If MAR 3-2~(0): BUS2 -+ MRO 0655Cl 
If MAR 3-2 (1): BUS2 -+ MRl 0655Cl 

TP4 
Reset A_._ 0556C3 
IfANO•COZ: Set PRP 089A601 

TPS BUS -+ A 0556C3 

If NZ: Select Al 0827Cl 
TP6 If NZ NRZ: Select Pl 084A7C2 

If NZ NRA: Select REPl 084A7C2 

NZ NZ.NRZ NZoNRZ 
.~ , , 

Al Pl REPl 

IV-265 





ANSWERS TO PRACTICE PROBLEMS 

Pgs. IV-22 7, 228 ~ <229 

Problem #1 50 51 52 53 54 SS S6 57 

s6 [.__6----B~-R~--8----9--__ s ____ 2 ____ 3_. 

HSM After 

PRI PRN 

Problem #2 20 21 22 23 24 2S 26 27 28 

26 3 0 3 1 3 2 s 6 2 

Problem #3 

00 01 02 03 04 

20 [ & 1 3 3 2 

Problem #4 

60 61 62 63 64 6S 

4812 s 9 6 K 4 

HSM After 

PRI PRP 

OS 06 07 08 09 

40 I 1 4 8 0 9 

HSM After 

09 10 11 12 13 

21 Is 4 6 4 4 

HSM After 

PRI PRP 

Problem #S + & 1012 4641 

14 

A 

IV-267 



Problem #6 

87 88 89 90 91 92 93 

37 2 6 7 

Problem #7 One Possible Solution 

2000 K 0 1000 1008 

2010 + 4 0215 2099 

2020 J 0 1000 021E 

2030 K 0 1010 1018 

2040 + 4 0215 2099 

2050 J ¢ 1010 021E 

2060 + 8 1008 1018 

2070 K 0 1000 1008 

2080 J @ 021E 021E 

2090 0 0000 0001 

Problem #8 

The purpose of the program in Problem #8 is to search memory, (beginning 

at location 1200) for a location containing a zero. If a zero is found, 

STA will contain the HSM address of the location to the right of the 

zero. The program is then subtracting a constant of one (1) from the 

contents of STA to establish the exact location of the zero. An "at the 

rate of" symbol is then placed in this location. The program works, provided: 

1. That at least one zero will always be located somewhere in 

memory. This is because no provision has been made in the 

program to take care of the case where there are no zeros 

i..n memory. 

2. That the zero is never stored in a memory location ending in nine. 

Example: Let us assume that HSM location 1299 contains a zero. 

IV-268 



The contents of STA after completion of the "Transfer Data by Symbol" in­

struction would be: 

12 13 14 15 

02 1 3 0 0 

STA 

The "Sub" instruction will subtract the constant 11 1" in location 1035 from 

the 11 0 11 in location 0215. 

Result 

0 
- 1 

- 1 = J 

The contents of STA after completion of the "Sub" instruction will be: 

12 13 14 15 

02 1 3 0 J 

STA 

The "Symbol to Fill" instruction is then staticized; and during indirect 

addressing on A and B, the processor will attempt to place the contents of 

0215 (J) in A3 and 83 neither of which contain a 2 5 bit. Therefore, after 

staticizing, (the 2 5 bit having been dropped) A and B will contain: 

A·B 

1 3 0 1 

Bad Parity (1000001) 

During the first A2 status level of the "SF" instruction, when the "A" 

address is gated into the MAR, the processor will stop with a "MAPE". 

IV-269 



ANSWERS TO PRACTICE PROBLEMS 

Problem No. 1 Pgs. IV-260, 261 
00 01 02 03 04 05 

211 8 6 A y F & 

HSM After 

PRI PRP 

Problem No. 2 
08 09 10 11 12 13 14 

20 I H (57)8 (57)8 Ef * @ K 

NOTE: (57)8 does not correspond to any 301 character but 

will still be generated as such. 

Problem No. 3 
80 81 82 83 84 85 86 87 

471 1 2 3 4 7 I T ul 

Problem No. 4 

Possible Solution 

0300 T 1 0332 1003 

0310 w 1 0320 0330 

0320 u 1 1003 0336 

0330 0 -000 -000 
t t 

Minus Minus 

Problem No. 5 

By ORing the N char (=) at 1001 with a "1", generating an octal 77 (778 ). 

This would increase the N count by 1, from 44 to 45. 

IV-270 



SECTION V 

INPUT/OUTPUT INSTRUCTIONS 

A. INPUT-OUTPUT INSTRUCTIONS, INTRODUCTION 

The largest group of 301 instructions is the Input-Output group. Twenty­

one instructions perform all operations involved with the peripheral equip­

ment. All input-output equipment is tied in directly to the computer and 

must therefore receive commands and information from the computer. The 

following list comprises the Input-Output group. 

Op. Code 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

B 

c 
D 

D 

E 

F 

F 

G 

G 

H 

H 

I 

I 

* 
% 

Instruction 

CARD READ NORMAL 

CARD READ SIMULTANEOUS 

CARD PUNCH NORMAL 

CARD PUNCH SIMULTANEOUS 

TAPE READ FORWARD NORMAL 

TAPE READ FORWARD SIMULTANEOUS 

TAPE READ REVERSE NORMAL 

TAPE READ REVERSE SIMULTANEOUS 

TAPE WRITE NORMAL 

TAPE WRITE SIMULTANEOUS 

REWIND TO BTC 

PRINT AND PAPER ADVANCE NORMAL 

PRINT AND PAPER ADVANCE SIMULTANEOUS 

BAND SELECT NORMAL 

TRACK SELECT 

BAND SELECT RECORD FILE MODE 

BLOCK READ FROM RECORD NORMAL 

SECTOR READ DISC NORMAL 

BLOCK READ FROM RECORD SIMULTANEOUS 

SECTOR READ DISC SIMULTANEOUS 

BLOCK WRITE TO RECORD NORMAL 

SECTOR WRITE DISC NORMAL 

BLOCK WRITE TO RECORD SIMULTANEOUS 

SECTOR WRITE D.ISC SIMULTANEOUS 

RECORD FILE MODE READ 

RECORD FILE MODE WRITE 

V-271 



B. CARD READ NORMAL (¢) {CRN/BCRN) 

This instruction reads tqe contents of ~ punched EAM card in the 323 Card 

Reader and places the information into HSM. The word "Normal" indicates the 

mode in which the instruction is executed and will be described later in 

greater detail. 

There are two types of code which can be punched iri a 301 EAM {Electronic 

Accounting Machine) card. The more common of the two is the 301 Card Code 

which.uses one, two or three punches in a column to represent one 301 charac­

ter. 

/ 
y r 
x • 0 -Ir 

_._ 

2 j ( 

12 3 
} 

ROWS 4 j .-
5 ( 

6 • ) 
7 

8 

9 

\..' 2 3 4 5 6 7 
--~~~~~~~-) v 

BO COLUMNS 

Figure 67 EAM Card Format (301 Card Code) 

1. 301 Card Code 

Figure 67 illustrates a portion of a card which has been punched in 301 

Card Code. Note that there are 12 rows and 80 columns. Each column contains 

one 301 character, hence a maximum of 80 characters can be represented on 

V-272 



one card in 301 Card Code. The rows Y, X and 0 are special zone punches. 

No zone punch corresponds to Group I in 301 Machine Code (2 5 bit = O, 

24 bit= 0). A Y zone punch corresponds to Group II in 301 Machine Code 

(2 5 bit= O, 24 bit= 1), an X zone punch corresponds to Group III in Ma­

chine Code (2 5 bit = 1, 24 bit = 0) and a Ozone punch is equivalent to a 

character in Group IV (2 5 bit= 1, 24 bit= 1). All the decimal digits are 

represented by a single punch in the proper row 0 through 9. All the letters 

of the alphabet have a zone punch (Y, X or 0) in conjunction with a numeric 

punch. The special control symbols for the most part are represented by two 

or three punches. They are a combination of row 8 and some other numeric 

punch whose total will be the decimal equivalent of the binary bits 2° 2 3 , 

and a zone punch if necessary. For example, the 301 Machine Code for a 

period is 011011 (excluding parity). The zone bit 2 4 being a one, indicates 

the need for a Y zone punch. The remaining bits (20 - 2 3 ) add up to a deci­

mal 11 (8 + 3). Thus, a period would be represented by three punches in a 

column - a punch in each of the rows Y, 3 and 8. 

In Figure 67, columns 1 through 7 contain 6, M, ¢, B, *, SP and Z, respectively. 

Note that there are a few violations to the rule of zone punches, namely 

that a punch in row O, alone, is the character zero which has no zone bits 

and the character quotation marks is a punch in rows X and O. Also, the 

character +O is a punch in row Y and a punch in row O. A fourth exception 

to the rules presented is the space or underline character. This character 

is represented by no punches at all in a card column, although in Machine 

Code the character is a binary coded decimal 10 (001010). See column 6 of 

Figure 67. Any more than three punches in a column or any combination of 

punches which do not agree with the 301 Card Column causes a multipunch 

alarm. 

2. Straight Binary Machine Code 

The second type of code used on 301 EAM cards is the straight binary Machine 

Code. Since there are 12 rows, two six-bit characters can be represented in 

each of the 80 columns. Parity is not recorded and rows 9 through 4 are 

equivalent to the 2 5 through 2° bit, respectively, as are rows 3 through Y. 

V-273 



In Figure 68, the characters punched in the "A" half of the card columns 1 

through 4 are N, SP, B and $, respectively. The characters punched in the 

"B" half of the card columns 1 through 4 are 1, G, 0 and &, respectively. 

There are no exceptions in this type of recording. Wherever a hole is 

punched, a one bit is represented and no hole represents a zero. The binary 

Machine Code of six bits per character is represented exactly on the card. 

This type of code provides twice as many characters on a card (160) as the 

other type (Card Code). 

20 y 
/_. 

21 x -. .-
22 0 

8 3 
2 

L 

24 2 L 
._ 

I 

" 25 3 
------

20 4 
- _Jil_ 

I I' 

21 5 • J-1~ 22 6 
A 

23 7 
J 

-1• -IJ 
24 8 ii. 

iw-

25 9 •• I. 
--~ --ii.-

\...' 2 3 4 5 6 7 
---~~~~~~~~) v 

80 COLUMNS 

Figure 68 EAM Card Format, Straight Binary Machine Code 

3. The 323 Card Reader and Codes 

With the 323 Card Reader, the type of code being used on the cards read is 

indicated by the BCT (Bypass Card Translate) console button. If 301 Card 

Code is used, translation must be performed and the BCT button must not be 

set. If binary Machine Code is used, the BCT button must be set in order 

V-274 



to bypass card translation and permit each row to represent a bit position. 

Due to mechanical restrictions of the 323 Card Reader, the N character of 

the Card Read instruction is a code designating how many cards will be fed 

and read. Only one card is read for each instruction. However, if the N 

character is 4, it denotes continuous reading and cards will be fed at a 

specific rate. At the maximum reading rate of 600 cards per minute, there 

are three cards always moving on the transport. A Card Read instruction with 

a N character of 4 must be executed for every Card Read until the last two 

cards are about to be read. Card Read instructions with N = 2 and N = 1 are 

then executed to read the last two cards without feeding any additional 

cards. Obviously, this means that in order to use the 323 Card Reader at 

the maximum reading rate, either the exact number of cards to be read must 

be known or a special character must exist on the third from last card to 

indicate when the termination sequence should begin. If it is desired to 

read cards at a slower rate (200 cards per minute), a CRN instruction could 

be executed with an N character of 1 as many times as desired. This tech­

nique reads the same amount of information but at one third the rate. How­

ever, the 323 Reader was not designed to be used as a demand feed type reader 

in this manner and thus should be programmed at the maximum rate or by using 

alternate feed. 

Alternate feed is a means of picking every other card. This uses a special 

N character of M. Instead of three cards moving on the transport only two 

cards are moving. The reading rate of course is halved to 300 cards per 

minute, but the advantage is that processing time is gained between cards. 

At 600 cards a minute, there are 100 milliseconds (MSEC) between cards. 

Eighty msecs are consumed by the reading process leaving 20 msecs for pro­

cessing. A new card read instruction must come up before the 20 msecs have 

elapsed or information will be lost resulting in an alarm. The use of alter­

nate feed provides an additional 100 msecs before a new instruction must be 

executed. The termination sequence then requires execution of one instruc­

tion with an N character of 8 to read the last card without feeding any 

additional cards. 

V-275 



The Card Read Normal instruction does not go through STA and is not repeatable. 

N A B Op. Code 

0 
(ZERO) 

Code for number 
of cards to be 
read (see below 

Leftmost location 
to receive first 
character being 
read. 

Ignored 

N = 4 continuous reading at 600 cards per minute 

N = 2 used in terminating 600 card a minute sequence 

N = 1 used in terminating 600 card a minute sequence or single 
card feed (200 cards per minute). 

N = M alternate card reading at 300 cards per minute. 

N = 8 used in terminating 300 card a minute sequence. 

Once a terminating sequence has begun, it must be completed before a new 

sequence is started. 

Af = Ai + 80 If BCT wa.s not set or 

A. + 160 If BCT was set. 
1 

= A. 
1 

A. + 80 
1 

If BCT was not set or 

If BCT was set. 

Since a blank column on a card produces a space or underline in memory, there 

will always be 80 memory locations consumed per card if BCT is not set and 

160 memory locations if BCT is set. When cards are read with BCT, set, in­

formation in rows 9 through 4 is placed in the first 80 memory locations 

while information in rows 3 through Y will be placed in memory beginning at 

A. + 80. See Figure 70. 
1 

V-276 



Example: 1 3000 0000 

/ 
y 

x •• -.,-
0 ._ 

I I 

2 I 

12 3 
ROWS 4 _JI_ 

'" 5 ~ 
6 ...JL 

7 

8 • ,-
9 

\.1234567 
--~~~~~~~-----) v 

80 COLUMNS 

Columns 7 through 80 are blank 

Figure 70 EAM Card, 323 Card Reader Code 

If BCT were not set when the above instruction was executed, the following 

would exist in memory. 

00 01 02 

2 SP 

03 04 

D 

05 Locations 3006 through 
3079 would contain 
spaces (SP). 

V-277 



If BCT were set when the above operation was carried out, HSM would contain: 

00 01 02 03 04 05 Locations 3006 through 

Is } 
3079 would contain zeros. 

30 0 0 1 0 4 

80 81 82 83 84 85 Locations 3086 through 

~ 
3159 would contain zeros. 

30 2 & 0 1 4 4 

Example: 1000 0 4 2000 0080 

1010 + 4 1005 1009 

1020 x 0 1039 1000 

1030 0 2 lOOE 0022 Assume BCT not set. 

1040 v 2 0000 0000 

1050 0 1 021E 0000 

1060 0 0000 0000 

The above program would read in 25 cards at the maximum rate of 600 cards a 

minute. The ·contents of the entire 25 cards would be strung end to end in 

HSM beginning at 2000 and ending at 3999. 

Example: 1500 0 M 3000 0160 

1510 + 4 1505 1509 

1520 x 0 1539 1500 Assume BCT is set. 

1530 0 8 150E 0008 

1540 0 0000 0000 

The above program would r.ead in a total of 10 cards using alternate feed or 

the 300 card a minute rate. Information on each card would consume 160 lo-

cations since BCT was set and the data would be strung end to end in HSM 

between 3000 and 4599. 

V-278 



C. CARD READ SIMULTANEOUS (1) (CRS/BCRS} 

Three modes exist in the 301 System-Normal, Simultaneous and Record File. 

Each mode has specific instructions which can be executed only in that mode 

and the latter two modes are optional equipment. A complete set of registers 

exists for each mode: 

NOR 

SOR 

FOR 

N 

M 

L 

A 

s 
u 

B 

T 

v 

Normal 

Simultaneous 

Record File 

All instructions are staticized in the Normal mode and from there are trans­

ferred accordingly to the mode for which they were written. The Normal mode 

is all inclusive. That is, the Normal mode can carry out any internal opera­

tion such as Add or Subtract, Data Handling or Decision and Control, and it 

can control any~ of peripheral gear. The Simultaneous mode, on the other 

hand, can only carry out Input-Output instructions. It cannot perform in­

ternal operations. The Record File Mode is further restricted to operating 

four Record Files which are under its exclusive control. The File mode can 

not operate any other device nor can it perform any internal operations. 

Once an· instruction has been transferred to the Simultaneous or Record File 

mode, the Normal mode is free to staticize the next instruction in the pro­

gram. Thus, if programmed correctly, three separate instructions could be 

executed at the same time, time-sharing memory. In using this programming 

tool, one does not need to worry about the type of operations being carried 

out. The only restriction is that the same device cannot be controlled by 

two or three different instructions at the same time. If the device is busy 

or the mode is busy when the instruction is staticized, the computer will 

automatically hold off until they are free. Another point concerning simul­

taneity is that the programmer must take care not to attempt storing a final 

register setting before the completion of instruction execution in the Simul­

taneous or Record File mode. 

The Card Read Simultaneous instruction has the exact same format as the CRN 

except that the Operation Code is a 1 and the instruction is carried out in 

the Simultaneous Mode registers. 

V-279 



A. + 80 
1 

if BCT is not set 

A. + 160 is BCT is set 
1 

= A. if BCT is not set 
1 

A. + 80 is BCT is set 
1 

Page VIII-8 of the Progranuners' Reference Manual covers the CRS instruction 

for the 323 reader. 

D. CARD READ NORMAL (¢) (CRN} 

This instruction will read the contents of one EAM card on the 330 Card 

Reader-Punch into High Speed Memory. The same 301 system cannot contain 

a 323 Card Reader and a 330 Card Reader-Punch, therefore, no conflict 

arises from the use of the same operation code for both Card Read instruc­

tions. The 330 Card Read unit is a demand feed type mechanism which can 

read at a maximum rate of 800 cards a minute. Because of its technique in 

reading, it is not necessary to program the card rate by the N character as 

on the 323 operation. There is another instruction (IOC}, however, which 

is used in conjunction with the CRN in order to provide more processing time 

between cards. This will be explained shortly. 

The 330 CRN instruction also permits the N character to select the binary 

mode or translate mode (301 Card Code) for reading. (Kand 1, respectively). 

The BCT console button has no effect on this instruction. 

Op. Code 

¢ 

Af 

Bf 

V-280 

= 

= 

A. 
1 

A. 
1 

A. 
1 

A. 
1 

N 

K - Binary 
Mode 

A 

Left most location 
to receive the first 

1 - Translate 
Mode 

character read. 

+ 80 if translate mode is used. 

+ 160 if binary mode is used. 

if translate mode is used. 

+ 80 if binary mode is used. 

B 

Ignored 



Example: K 4207 0000 

Assume punches exist in rows 5 and¢ of column 1; row 9 of column 2; rows 8 

and 3 of column 3; and rows 7, 6, 2 and Y of column 4, The remaining columns 

are blank, 

Memory would contain the following after reading the card: 

07 08 09 10 

42 2 & 

Locations 4211 through 
4286 and 4291 through 

87 88 89 90 4366 would contain zeros. 

42 4 ¢ A t 
Af = 4367 Bf = 4287 

When the 330 reader unit is operating at maximum speed, only 10 milliseconds 

are available between cards for processing, During this time, another Card 

Read instruction (or an IOC instruction) must be executed if it is desired 

to maintain the 800 card a minute rate. If a Card Read instruction does not 

come up within the 10 millisecond period, an additional 25 msecs must elapse 

before the reader can accept the clutch command. (See timing chart) The 

clutch command must precede the process feed signal which occurs every 25 

msecs. Once a clutch command has been accepted, no more card feeds can 

occur until the read has been completed. 

The Read instruction itself, is not really needed until the card has moved 

under the brushes (about 21 ms. after clutch command is accepted). There­

fore, if a clutch command alone could be sent at the proper time, an addi­

tional 21 msecs could be gained before another Read instruction would be 

needed. This is one of the functions of the Input-Output Control (IOC) in­

struction which is known as Read Release. 

The Input-Output Control instruction is covered on page VIII-19 of the Pro­

grammers' Reference manual and has three primary functions. One of the 

V-281 



functions is Read Release which releases the computer of the obligation for 

a second read instruction to be staticized within 10 msecs after the first 

has finished. The IOC instruction can provide the clutch command necessary 

to feed a new card and thus give an additional 21 msecs or a total of 31 msecs. 

processing time between read instructions. (See timing chart). 

A second function of the IOC instruction is punch release which is the same 

concept as read release except that it is involved with the punch unit of 

the 330. And, finally, the third function is stacker select which enables 

the programmer to select one of two output hoppers for either the read unit 

or the punch unit. 

v-2a2 



~ (/) 

(/) 0 
0 L&J L&J (/) 
~ 0 L&J L&J ~I.I. lit! 

~ 
Q. i'.! 

L&J 
T C> 0 

0 I z <( 
ID I 0 ~ 

J. 
<( 

0 L&J 
ro 0:: 

(/) ROW 9 STROBED HERE, READ 
L&J • INSTR. IN BY HERE TO SUPPLY > 1-Z L&J 0 0 zo SERVICE 
:E~~E~ ~ 

0 0 e: L&J (/) iE 
CLUTCH TRIPS, ,., 0:: 0::0 III ,., 

I 
<( Q.Q. BEGINS CARO MOTION 

~ 
u ::r :E (IF COMMAND) 

~ ~ 
:::> 8 •NEXT CL COMM( FOR MAX RATE) 

~ 
....J 
u 

N IN BY HERE en 
:E 

~ 0 

ROW Y FINISHED HERE, RD INST. n 
0 NOT NECESSARY ANY MORE 
t\i 

T 

~ 
I 
I 

L&J 
u 

.L 
<( 

~ 
....J 
Q. 

en 
0 L&J 
~ :ie: 

j! 
0 C> O> 

T z 

f6 I 0 
<( 

I L&J 
..L 0:: 

~ 
f3 ROW 9 . STROBED HERE, READ 

> i-;z en ... INSTR. IN BY HERE TO SUPPLY 
0 O:EZQ L&J SERVICE 

2 0~1-o::c 
~ ~ 0:: L&J u; I- ~ 

<(l.L.O::O lb ,., 

I 
u a.a. CLUTCH TRIPS HER~ 

0 ::c ~ 
BEGINS CARD MOTi N 

~ § ~ (IF COMMANDS) 

u ... 0 u CLUTCH COMM IN BY HERE 
C\I 

~ 
C\I 

Figure 71 Timing Chart (330 Reader Unit) 

V-283 



There are five output hoppers on the 330 Card Reader-Punch as shown below. 

PUNCH 
STATION 

NP 4 ~2 NR 

READ 
STATION 

Figure 72 Front View of Output Hoppers 

The NR (Normal Read) and 1 hoppers are used only with the reader and the 

NP (Normal Punch) and 4 hoppers are used only with the punch unit. The 

center hopper (8/2) can be used by either the reader or the punch. If an 

IOC instruction selecting an output hopper does not follow the card read 

operation, then the card will automatically go to the NR hopper. Unfor­

tunately, if a reject card occurs during reading, it will also end up in 

the NR hopper. Thus, if the programmer desires to keep the reject cards 

separate from the rest, he must follow every card read with an IOC instruc­

tion and select hopper 1 or 2. 

A similar thing happens when the punch is used. If an IOC instruction does 

not follow the card punch operation, the card will end up in the NP hopper. 

Reject cards, likewise, are sent to NP during punching. Therefore, a pro­

grammer will normally follow a card read or card punch instruction with an 

IOC instruction to select the proper output hopper and also to exercise the 

option of read or punch release. 

V-284 



The IOC instruction format is: 

Op. Code N 

A3 Character 

1 

2 

3 

4 

5 

6 

7 

8 

9 

SP -

A B 

Ignored 

Ignored 

A.3 designates 
function 

(See Below) 

Function 

Select Reader Stacker No. 1 

Select Reader Stacker No. 2 

Select Punch Stacker No. 4 

Select Punch Stacker No. 8 

Read Release 

Punch Release 

Read Release and Select Stacker 

Read Release and Select Stacker 

Punch Release and Select Stacker 

Punch Release and Select Stacker 

No. 1 

No. 2 

No. 4 

No. 8 

The IOC instruction only needs to be initiated and the Processor becomes 

free to bring out a new instruction from the program. 

Example: 

1 

A. 
1 

2000 

0007 

0000 

0000 

V-285 



The prior combination would read in one card from the 330 Card Reader-Punch 

unit in the translate mode and locations 2000 -- 2079 would receive the data 

which existed on the card. As soon as the read finished, the IOC instruc­

tion would request a new card (read release) and permit the Processor to . 

continue on with the program, allowing about 31 msecs before a. second read 

instruction was necessary. 

NOTE: - If another read does not come up 

in time, a CIG alarm will occur. 

The IOC instruction would also select output hopper number 1, where the card 

which was read would be deposited. 

E. CARD READ SIMULTANEOUS (1) (CRS) 

This instruction has the exact same format as the CRN operation for the 330 

Card Reader-Punch except for the operation code and the fact that it is 

executed in the Simultaneous Mode. Page VIII-10 of the Programmers' Refer­

ence Manual covers the CRS instruction. 

= A. + 80 (translate mode) or A. + 160 (binary mode) 
1 1 

Tf = Ai (translate mode) or Ai + 80 (binary mode) 

F. CARD PUNCH NORMAL ( 2) ( CPN) 

This instruction enables the 334 Card Punch to punch 80 column cards from 

information contained in memory between the A and B addresses. The infor­

mation will be punched exclusively in 301 Card Code and will handle as many 

cards as are necessary at 80 characters per card. The CPN instruction oper­

ates from left to right, is not repeatable and does not go through STA. See 

page VIII-12 of the Programmers' Reference Manual. 

Op. Code 

2 

N 

Must be 
zero 

A 

Leftmost Character 
to be punched 

B 

Rightmost Character 
to be punched 

Af = One location to the right of the last character punched or B. + 1. 
1 

V-286 

= B. 
1 



Example 1: 
00 01 

2 0 1000 1006 
10 I c A 

One card would be punched as follows: 

/ 
y 

l ..-x 
0 

2 

12 3 
ROWS 4 

5 

:~ -.-
I' I' 

,-
. ( 

6 J 
7 

8 

9 

~ 
> I' -.- } 

\...1234567 J 
-'~~~~~~- ~~~~~~~--v 

80 COLUMNS 

Example 2: 

2 6320 6492 

02 03 04 05 

R D SP # 

06 07 

8 3 

Columns 8 through 
80 would be blank 

Af = 1007 

Bf = 1006 

The above instruction would punch out two full cards and the first 13 col­

umns of a third card with information which existed between locations 6320 

and 6492. A = 6493. 
f Bf = 6492. 

Due to the mechanics of the 334 Card Punch, the last card punched is not 

read checked nor placed in the output hopper until two additional "dummy" 

card punch instructions are executed. These two CPN instructions should 

both address a single "space" character with the A and B addresses equal. 

V-287 



Example 3: 
2 0 1478 1482 

78 79 80 81 82 83 2 0 1483 1483 

14 4 8 2 1 5 SP I 2 0 1483 1483 

The above instructions would punch one card, read check it and move it to 

the output hopper. 

G. · CARD PUNCH SIMULTANEOUS (3) (CPS) 

This instruction has the same format as CPN except the operation code is a 

3 and it is carried out in the Simultaneous Mode. The N character must be 

zero to properly address the 334 Card Punch. Page VII-16 of the Programmers' 

Reference Manual covers the CPS instruction for the 334 Card Punch. 

H. CARD PUNCH NORMAL ( 2) ( CPN) 

This instruction permits the Punch Unit of the 330 Card Reader-Punch to 

punch 80 column cards according to the information in memory between the 

A and B addresses. The N Character will designate whether punching will 

take place in the Binary mode or the Translate mode. The operation is not 

repeatable and does not go through STA. Page VIII-15 of the Programmers' 

Reference Manual covers the Card Punch Normal instruction for the 330 Card 

Reader-Punch. The same 301 system cannot contain a 330 Card Reader-Punch 

and a 334 Card Punch. 

Op. Code 

2 

N 

& - Binary 
Mode 

¢ - Translate 
Mode 

A 

Leftmost character 
to be punched 

B 

Rightmost character 
to be punched 

Af = One location to right of last character punched or Bi = 1 

= B. 
1 

When using the Binary mode of punching, the characters from Ai to Ai + 79 

V-288 



are punched in rows Y through 3 (Y = 2°, 3 = 2 5 ) while the characters in 

memory between Ai + 80 and Ai + 159 a:)'.'e punched in rows 4 through 9 (4 = 2°, 
5 9 = 2 ). Note that this is directly opposite to the Binary Read operation. 

Hence, if a card were to be duplicated using the Binary mode, the informa­

tion would be reversed. 

L 1 
~ 
~ 
~ 

---i ---

l j 

·U--------
~ U-+-------

INFORMATION READ INFORMATION PUNCHED 

Data read from the A half of the card on the left would end up punched on 

the X half of the card on the right. Data read from the B half of the card 

on the left would end up on the Y half of the ca.rd on the right. The pro­

grammer must also use a multiple of 160 characters when punching in the 

Binary mode. 

Example 1: 2 & 0700 0859 

00 01 02 03 04 80 81 82 83 84 

07 3 $ E x } 07 ~[_+ ____ v _____ 9 _____ M ____ > ___ } 

HSM Before and After 

V-289 



Locations 0705 to 0779 and 0785 to 0859 contain zeros. One card would be 

punched on the 330 Punch Unit as follows: 

20 y 

2' le 

22 0 

23 I 

24 2 

25 3 
- - -20-4-

2' 5 

22 6 

23 7 

24 8 

25 9 

Example 2: 

-

/ 

T 

~ 

-,.-

" " 
'I' 

\..' 2 3 4 5 6 7 

( 

} 
) 

.( 

---~~~~~~----) v 
80 COLUMNS 

Columns 6 
through 80 
would be blank 

Af = 0860 

Bf = 0859 

Eight full cards and column 1 of a ninth card would be punched in the trans­

late mode according to information in memory between 2100 and 2740. Each 

Card Punch instruction which uses the 330 Card Reader-Punch should be foll­

owed by an IOC instruction (see page VIII-19 of Programmers' Reference 

Manual) to select the desired output hopper as well as give the optional 

punch release. If the output hopper is not selected, the card will be 

placed in the NP hopper along with any reject cards. 

To move the last card to the output hopper (and also read check the card) 

one additional "dummy" punch instruction must be written. This instruction 

should have the A and B addresses equal with both addressing a non-punchable 

character such as a space (using the translate mode). 

V-290 



Example 3: 
2 0 3400 3479 

( 0003 0000 

2 0 3416 3416 {Assume location 3416 
contains a space.) 

The above group of instructions will punch one card in the Translate Mode, 

read-check it, and place the card in Output Hopper Number 4. 

When the 330 punch is operating at maximum speed, the punching rate is 250 

cards per minute. This gives approximately 22.5 msecs of processing time 

between cards. If the punch release option is used, an additional 37 mil­

liseconds of processing time could be gained. 

NOTE: If more than one card is punched 

by the same CPN instruction, the 

punch release feature and stacker 

select option only affects the 

last card of the series. 

I. CARD PUNCH SIMULTANEOUS ( 3) (CPS ) · 

This instruction has the same format as the CPN operation which uses the 

330 Card Reader Punch except that the operation code is a 3 and the in-

struction is carried out in the Simultaneous Mode. Page VIII-18 of the 

Programmers' Reference Manual covers the CPS instruction. 

Example Program 
Remarks 

1000 0 1 5080 0000 Read-in area 1 

1010 ( 0001 0000 Select read hopper 1 

1020 0 1 5000 0000 Read-in area 1 

1030 0001 0000 Select read hopper 1 

1040 w 4 1040 1040 Sense Simultaneous Mode 

1050 0003 0000 Select punch hopper 4 

1060 3 & 5000 5159 Punch out area 1 

1070 0 1 5240 0000 Read-in area 2 

1080 0001 0000 Select read hopper 1 

V-291 



Remarks 

1090 0 1 5160 0000 Read .. in area 2 

1100 0001 0000 Select read hopper 1 

1110 w 4 1110 1110 Sense Simultaneous Mode 

1120 ( 0003 0000 Select punch hopper 4 

1130 3 & 5160 5319 Punch out area 2 

1140 x 0 1175 1000 Tally back to read-in 1 

1150 2 0 1171 1171 Move last card out 

1160 ( 0003 0000 Select punch hopper 4 

1170 • SP 0004 0000 Halt 

The above program places the contents of 20 cards (which have been punched 

in 301 Card Code) on 10 cards in Binary code. To increase the total number 

of cards processed, one only need change the tally quantity at 1165. (Note 

for each single increment of this tally quantity, 4 additional cards will be 

read and processed). 

The program also exemplifies the use of the Simultaneous Mode by reading two 

cards in the Normal Mode and punching one in the Simultaneous. The reader 

will operate at about500 cards a minute and the punch at 250 cards a minute. 

Note that two separate read-in areas are used. While the punch is punching 

the contents of two previous cards which have been read, the reader reads 

two additional cards into a different area. (See timing chart on page 7-23). 

The read-in areas are: 

V-292 

5000 

51 
60 

Card 2 

Card 4 

50 50 
79 80 

Area 1 

52 52 
39 40 

Area 2 

Card 1 

Card 3 

51 
59 

53 
19 



Because the Binary Mode card format is reversed for read and punch opera­

tions, the first card read is placed in the last 80 memory locations of a 

given read-in area while the second card read goes into the first 80 memory 

locations. When the 160 locations are punched, the first 80 locations 

(Card No. 2) will end up in rows Y through 3 while the remaining 80 loca­

tions (Card No. 1) are punched in rows 4 through 9. The end result is that 

if the binary punched cards are read at a later date, the information comes 

into memory in the same sequence as that of successive card reads from the 

original 20 cards. 

It should be pointed out that the cards being read are directed to Hopper 

Number 1 and the cards being punched are directed to Hopper Number 4. The 

CTC sense of the Simultaneous Mode is to determine when the CPS instruction 

has finished and therefore when to select the punch output hopper. The 

initial execution of the CTC and IOC instructions at 1040 and 1050 have no 

function - they are only useful for subsequent times around. 

V-293 



<: 
I 
{\) 
IO 
ill> 

READER 
CLUTCH 
POINTS 

NORMAL 
MODE 

25MS - I 

I I I I I I . I I I l I I I I I I I I I I I I I I I I I I I 
I 
I 
I 

I I 
I I 
I 
~75MS---J 

: READ : READ l : READ : READ 

I 1 I I 2 I I 3 1 I 4 I I 

I 
I 
I 
l 
I 
I 
I 
I 

I READ 1 READ I 
I I I 
I S 1 I G I I 

READ t READ 

I 7 ! I 8 

SIMULTANEOUS 
MODE 

I 

I 

... 240 MS I -I 
I I I 

~UNCH I a 2 : l I PUNCH 3 a 4 : I PUNCH 

L r - _j I 

PUNCH IOC 

Figure 73 Timing Chart £or Example Program 

586 



J. REWIND TO BTC {;) (RWD) 

This instruction causes a specified magnetic tape to start rewinding. Once 

the instruction is executed, the rewinding becomes independent of the com­

puter, and another instruction can be executed. See page IX-13 of Program­

mers' Reference Manual. 

Op. Code N 

Identification 
of Tape Station 
A-F, 1-6, J or N, 
L or P 

A B 

Ignored Ignored 

K. TAPE READ FORWARD NORMAL (4) (RFN) Repeatable 

This instruction brings a series of characters, one at a time, from mag­

netic tape or punched paper tape into the HSM. Transfer from tape begins 

with the first character following a gap and ends when the next gap is 

sensed or the specified HSM area is filled. The instruction operates from 

left to right and goes through STA. The PRI's are set according to the 

following: 

PRP: The A and B Registers are equal before a gap has 

been found on tape. 

PRN: A gap has been found on tape and the A and B 

Registers are not equal. 

PRZ: At the time a gap has been found on tape, the 

A and B registers are equal. 

NOTE: If an EF or ED alone is read from magnetic 

tape, the ED/EF Normal Indicator is set. 

= One location to the right of the last character read into HSM. 

= B. 
1 

V-295 



Op. Code 

4 

N 

Identification 
Character of 
Device (see 
below) 

A 

HSM Address which 
will Receive First 
Character from 
Tape 

B 

HSM Address which 
will Receive Last 
Character from Tape 

Example: 

V-296 

N DEVICE 

1, 2, 3, 4, s, 6 Magnetic Tape 

A, B, c, D, E, F Magnetic Tape 

J 33KC Adapter (1st unit) 

N 33KC Adapter (2nd unit) 

8 Paper Tape Reader 

L 66KC Adapter (1st Unit) 

p 66KC Adapter (2nd Unit) 

See page IX-3 of Programmers' Reference Manual. 

4 2 3016 3023 

Tape On Tape Station 2 

Direction of 
tape movement 

l_~(G_a_P_> _____ EX __ A_M __ PLE_-_1 ______ <G_a_P_> _____ E_D _____ (_G_a_P_> ____ } 

~ 
Read•Write 
Head before 
instruction 
is executed 

t 
Position of Read-Write 
Head after instruction 
is executed 



14 15 16 17 18 19 20 21 22 23 24 

30 

HSM Before 

14 15 16 17 18 19 20 21 22 23 24 

30 ~[_0 ___ 0 ____ E ____ x ____ A ___ M ____ P ____ L ____ E _______ 0~ 
HSM After 

PRP would be set and Af would be 3024. 

L. TAPE READ FORWARD SIMULTANEOUS (5) (RFS} 

This instruction follows the same format as the RFN, except that the Opera­

tion Code is a 5 and the instruction is executed in the Simultaneous Mode. 

The RFS instruction does not go through STA and does not set the PRI's. 

If an ED or EF is read-in along from magnetic tape, the ED/EF simultaneous 

indicator is set. 

See page IX-6 of Programmers' Reference Manual. 

M. TAPE READ REVERSE NCRMAL (6) (RRN} Repeatable 

This instruction transfers a series of consecutive characters from magnetic 

tape or paper tape into the HSM. Transfer from tape begins with the first 

character following a gap, and ends when the next gap is sensed or the 

specified HSM area is filled. Though the tape moves in reverse, the charac­

ters will be placed in their proper relative positions within HSM. The in­

struction operates from right to left and goes through STA. The PRI's are 

also set as follows: 

PRP: 

PRN: 

PRZ: 

A Register equals B Register before gap is 

sensed on tape. 

Gap is found on tape before A and B Registers 

are equal. 

A Register equalled B Register at time gap 

was sensed on tape. 

V-297 



An ED or EF alone read in from magnetic tape sets the ED/EF Normal Indicator. 

Op. Code 

6 

Example: 

Af = Address of location one to the left of the last 

character read in. 

See page IX-7 of Programmers' Reference Manual. 

N 

Identification 
Character of Tape 
Station or Paper 
Tape Reader 

6 c 5790 5780 

A 

Address which will 
Receive First 
Character from Tape 

Tape on Tape Station C 

Direction of 
tape movement 

t (Gap) 

r 
Position of 
Read-Write 
Head after 
Instruction 

MAGNETIC-TAPE (Gap) 

Read-Write 
Head Initially 

80 81 82 83 84 85 86 87 88 89 90 

HSM Before 

80 81 82 83 84 85 86 87 88 89 90 

57 IG N E T I c T A p E 

HSM After 

PRP would be set and Af would be 5779. 

V-298 

B 

Address which 
will Receive 
Last Character 
from Tape 



Although the tape instructions terminate on A-B equality, even if a gap 

has not been sensed, the Tape Station itself continues to run until it 

finds a gap. The characters on tape which were not read into HSM still 

exist on tape. Because of this double method of terminating the read 

instructions, positioning tape without destroying memory is quite easy. 

For example, assume that the read-write head was positioned as shown below 

and it was desired to read Message No. 3 only from Tape Station 6. 

Tape on Tape Station 6 

(Gap} Mess.#1 (Gap} Mess.#2 (Gap} Mess .#3 

~ r 
Read-write Position of 
Head Head After 
Initially Instructions 

R 1 0001 0001 

4 6 1000 1000 

The above two instructions would read one character from message No. 1 

and one character from message No. 2 into the same HSM location (1000}. 

The read-write head would be in position to read Message No. 3, with only 

one location in memory having been disrupted. This technique is very de­

sirable for variable length messages. 

N. TAPE READ REVERSE SIMULTANEOUS (7} (RRS) 

This instruction has the same format as RRN except that the operation code 

is a 7 and the instruction is executed in the Simultaneous Mode. The RRS 

instruction does not go through STA and does not set the PRI's. The ED/EF 

Simultaneous Indicator will become set if an ED or EF is read in alone. 

See page IX-9 of Programmers' Reference Manual. 

V-299 



0. TAPE WRITE NORMAL ( 8) (TWN) 

This instruction'writes a specified number o:f characters from HSM to a desig­

nated Tape Station, Paper Tape Punch or Monitor Printer. The instruction 

operates from left to right and the tape moves forward. The TWN instruction 

does not go through STA and does not set the PRI's. Instruction terminates 

on A-B equality. See page IX-10 of Programmers' Reference Manual. 

Op. Code 

8 

V-300 

N 

Identification 
Character of 
Tape Station 
Paper Tape Punch 
or Monitor Printer 

N 

1, 2, 3, 4, s, 6 

A, B, c, D, E, F 

J 

N 

7 

9 

L 

p 

A 

Address of First 
Character to be 
Written 

DEVICE 

Magnetic Tape 

Magnetic Tape 

B 

Address of Last 
Character to be 
Written 

33KC Adapter (1st Unit) 

33KC Adapter (2nd Unit) 

Monitor Printer 

Paper Tape Punch 

66KC Adapter (1st Unit) 

66KC Adapter (2nd Unit) 

Af = Address of location one to the right of the last 

character written or punched. 



Example: 

8 2 3161 3165 

60 61 62 63 64 65 66 

31 I* w R I T E * 

Tape on Tape Station 2 

! (Gap) WRITE (Gap) ~ 
~ L Position of Read-Write 

Head Initially Head After 
Instruction 

The letters "WRITE" are placed on tape when the above instruction is 

executed. 

P. TAPE WRITE SIMULTANEOUS {9) {TWS) 

This instruction follows the same format.as the TWN instruction, except that 

the operation code is a 9 and the instruction is executed in the Simultaneous 

Mode. Page IX-12 of the Programmers' Reference Manual covers the TWS 

instruction. 

Q. PRINT AND PAPER ADVANCE NORMAL (B) (PAN) 

This instruction can cause the Line Printer to print 120* consecutive char­

acters (one line) from the contents of HSM, and/or advance paper for the 

next line of printing. The paper advance can be controlled by the instruc­

tion itself or by a paper tape loop on the printer. The instruction operates 

from left to right and does not go through STA. See page X-3 of Programmers' 

Reference Manual. 

Af = Address of location one to the right of the last character 
printed if printing is done, otherwise, it is A .• 

1 

B = B. with B set to zero. 
f 1 3 

*335 Printer normally prints 160 characters per line. 

V-301 



OE• Code N 

B Number of Lines 
(0-14) to Advance 
Paper if B3 equals 

2 5 (0) - Asychronous 

2 5 (1) - Synchronous 

24 (0) - 1st Unit 

2 4 (1) - 2nd Unit 

NOTE: N Count for PAN & PAS 
is shown on page X-3 
of Programmers' Refer­
ence Manual. 

A 

Ignored 

1 

Type of Paper Advance 

No Paper Advance 

Line Shift using N as count 

Vertical Tab (using paper 
t~e loo_E_}_ 

Page Change (using paper 
t~e loo_E_}_ 

B 

Address of Data to 
be Printed from HSM 
Excluding B3 

B0 - MSD of address 

B1 - If digit is even 
printing will occur. 
If odd - no printing. 

B2 - Always zero 

B3 - Indicates type of 
paper advance 

B3 

0 

1 

2 

3 

Two modes exist in the printer - synchronous and asychrounous. The synchro­

nous mode gives the fastest printing rate at 1000 lines per minute or 660 

lines per minute, but has only 47 printable characters. The non-synchro­

nous mode has 64 printable characters but prints at a slower rate or 790 or 

590 lines per minute. See Page II-3 of Programmers' Reference Manual for a 

list of printable characters in each mode. 

V-302 



Example 1: B 3 0000 3501 

In this example, no printing will occur since the B. character {5} is odd. 
l. 

Only Paper Advance will take place. Three lines of paper will be advanced 

on the 1st unit printer. 

Af = 0000 Bf = 3500 

Example 2: B 2 0000 7803 

7800 7801 1 
p 

~ 7917 7918 7919 

R t 

In this example, characters between locations 7800 through 7919 would be 

printed and paper would be advanced, using the paper tape loop, one page. 

Printing would occur in the asychronous mode on the 1st unit printer. 

Af = 7920 Bf = 7800 

R. PRINT AND PAPER ADVANCE SIMULTANEOUS {C} (PAS) 

This instruction follows the same format as the PAN instruction, except 

that the operation code is a C and the instruction is executed in the 

Simultaneous Mode. 

S. BAND SELECT NORMAL (D) (BSN) 

This instruction searches one Record File for a specific disc, places the 

disc with the correct side facing up on the turntable and electronically 

positions the read-write head over one of two bands. 

Before progressing further with the Band Select Normal instruction or any 

other Record File instruction, a general description of the device involved 

is necessary. 

V-303 



The Record File has a capacity of 128 discs which are coated with a substance 

similar to magnetic tape on both sides. Each surface of the disc is divided 

into two concentric spiral bands. Each band is divided into ten cells and 

each cell can hold a maximum of 900 characters recorded in serial fashion. 

A cell is defined as two revolutions of the disc (speed of disc is 300 rpm) 

and the revolutions are counted by a black dot passing before a photo-sensing 

diode. 

PLASTIC 
SPIRAL 
GROOVES 

BAND 0 

BAND I 

MAGNETIC 
SUBSTANCE 

Figure 74 Simplified Illustration of Disc on Record File 

The read-write head is connected to a stylus which tracks a plastic spiral 

groove in the center of th~ disc. As the disc revolves, the stylus moves 

toward the center pulling the read-write head with it. Thus the read-write 

head tracks the magnetic surface in relationship to the plastic spiral 

V-304 



grooves. Two read-write heads permit the tracking of two interwoven "bands." 

The Band Select instruction must determine which read-write head will be 

energized electronically. 

Since the capacity of one cell is 900 characters, one band (10 cells) can 

hold 9000 characters, and one disc (4 bands at 2 per side) can store 36000 

characters. Therefore, one Record File with 128 discs can hold approximately 

4.6 million characters. Two Record Files can be incorporated under control 

of the Normal and Simultaneous Modes and four additional Record Files can be 

included under control of a separate mode - the Record File Mode. Hence, 

six Record Files with a capacity of about 27.6 million characters could be 

controlled by one 301 Processor. 

Since it is necessary to locate a specific band on one of 128 records, some 

arrangement of identification is needed. With four bands per disc and 128 

discs in a file, there are 512 bands which must be identified. Addresses 

000 through 511 are used to identify these 512 bands. The breakdown of 

bands and their addresses is as follows: 

Disc No. 0 

Band No. OOO}Top Side 
Band No. 001 (zero side) 

Band No. 002}Reverse Side 
Band No. 003 (one side) 

Disc No. 1 

Band No. 004}Top Side 
Band No. 005 (zero side) 

Band No. 006}Reverse Side 
Band No. 007 (one side) 

The lowest band address on a record can be obtained by using the formula, 

4N, where N is the number of the record (0 through 127). For example, to 

determine the band addresses for disc number 15, the formula can be applied 

(4 x 15 = 60) to show that 060 and 061 are the band addresses for the zero 

side of the disc and 062 and 063 are the band addresses for the one side of 

the disc. Note that each side of a record contains an even and an odd num­

bered band and that the innermost band is the even numbered band. 

To determine the disc number, when the band address is known, the band 

address can be divided by four, e.g., 063 : 4 = 15. Note that any remainder 
• 

would indicate the side of disc and odd or even band. 

V-305 



From the above information, it can be seen that the Band Select instruction 

must include an address between 000 and 511. From this address, the Computer 

will locate the correct disc, determine which surface is required, place the 

disc on the turntable in proper position, and electronically select the even· 

or odd band on that side. 

Once a Band Select instruction has been initiated, a large portion of the 

operation performed is independent of the Computer. A Band Select is neces­

sary before every Read or Write instruction, unless it is known that the de­

sired band has already been selected. Once a Read or Write has been accom­

plished, the read-write head returns to the beginning of the band that was 

selected prior to the read or write operation. 

The BSN instruction does not go through STA and is covered on page XI-3 of 

the Programmers' Reference Manual. 

Af = 

Op. Code 

D 

V-306 

A. 
1. 

B. 
1. 

N 

See Below 

N Character 

25 23 
' ' 

22 
' 

2 4 (0) 

2 4 (1) 

2°(0) 

2°(1) 

A 

Ignored 

Bits 

21 

B 

B0 Ignored 

B1 , B2 , B3 - Band 

Address (000-511) 

Function 

Ignored 

Selects Unit 1 

Selects Unit 2 

Returns any disc on 
turntable to basket 

Uses disc already 
on turntable 



The N character 2° bit has the function of returning the disc presently on 

the turntable to the basket and searching for the correct disc which corres­

ponds to the B Address or leaving the present disc on the turntable and 

choosing the even or odd band. The object of this is to save time if ~he 

disc presently on the turntable is known to be the desired one. If N 2° is 

a zero bit, the disc currently on the turntable if any, will be returned to 

the cage and the search for the correct one will begin. If N 2° is a one 

bit, the current disc is left on the turntable and the odd or even band will 

be selected according to th~ address. 

Example: 

NOTE: If the disc on the turntable is the 

desired one but the desired band is 

on the opposite side of the disc, the 

N character 2° bit must be a zero in 

order that the disc will be flipped over. 

D 0 0000 0012 

The even band on the zero side of disc number 3 on the first unit is selected 

from the address 012. Because N 2° is a zero bit, any disc on the turntable 

prior to this instruction would be returned to the basket. 

T. BAND SELECT RECORD FILE MODE (E) (BSM) 

This instruction has the same format as the Band Select Norm.al instruction 

except that the N character will select one of four Record Files under con­

trol of the Record File Mode. The BSM instruction does not go through STA 

but is partially executed independent of the Computer once it is initiated. 

Page XI-5 of the Programmers' Reference Manual covers the Band Select Record 

File Mode instruction. 

V-307 



Op. Code 

E 

Example: 

N 

See Below 

N Character 

23 
' 

22 21 
' 

2 5 (0), 2 4 (0) 

2 5 (0), 2 4 (1) 

2 5 (1), 2 4 {0) 

2 5 (1), 24 (1) 

2° {O) 

2°(1) 

A 

Ignored 

Bits 

B 

B0 Ignored 

Bl' B2, B3 -

Band Address {000-511) 

Function 

Ignored 

Selects Unit 1 

Selects Unit 2 

Selects Unit 3 

Selects Unit 4 

Returns any disc on 
turntable to basket 

Uses disc already 
on turntable 

E II 0000 0104 

This instruction would select band 104 {first band on disc number 26) of 

Unit 4. Any disc presently on the turntable would be returned to the basket 

first. 

U. BLOCK READ FROM RECORD NORMAL {F} (BRN) 

This instruction reads from a selected band on a Record File {beginning with 

a specified cell} into high speed memory. From one to ten "blocks" of in­

formation can be read with one BRN instruction. A "block" is defined as the 

contents of one cell. This can be from one to 900 characters, but if less 

than 900, the block of characters must be terminated by an EB symbol {End 

of Block). The Read instruction will terminate a block of information by 

finding either an EB symbol or a 900 count as programmed. When the specified 

V-308 



number of blocks have been read (N = O), the instruction terminates. Block 

Read from Record Normal goes through STA and is covered on page XI-7 of the 

Programmers' Reference Manual. 

Op. Code 

F 

Example: 

= One location to the right of the last character read. 

= B. 
l. 

N A B 

Number of Blocks Location to 
Receive First 
Character of 
First Block 

See Below 
to be Read (From 
one to Ten with 
Zero Representing 
Ten) 2 4 (0) = Unit 1 
24(1) = Unit 2 

B0 - Ignored. 

B1 - Determines if disc remains on turntable after read. 

Disc is returned. 

Disc remains on turntable and read-write head is 

positioned back at the beginning of previously 

selected band. 

B2 - Specifies type of termination for each block. 

Block is terminated by 900 character count only. 

Block is terminated by either EB or 900 count. 

B3 - Addresses cell (0-9) from which to begin the read. 

NOTE: A Band Select instruction must 

have previously been executed. 

D 

F 

0 

4 

0000 

1000 

0002 

0105 

V-309 



The above combination of instructions would read the contents of cells s, 6, 

7 and 8 of band 002 on Unit 1 into memory beg_inning at 100,, The number of 

characters read in could vary since termination of a block could be by an EB 

symbol or by 900 count. The disc would be returned to the cage when reading 

was finished. 

V. BLOCK READ FROM RECORD SIMULTANEOUS (G) (BRS) 

This instruction has the same format as the Block Read from Record Normal 

except that the operation code is a G and the instruction is executed in 

the Simultaneous Mode. BRS does not go through STA and is covered on page 

XI-9 of the Programmers' Reference Manual. 

W. BLOCK WRITE TO RECORD NORMAL (H) (BWN) 

This instruction has a similar format to the Block Read from Record instruc­

tions except that writing is done rather than reading. From one to ten 

blocks of information can be written to a previously selected band. The 

blocks of information can be defined by EB symbols or 900 character count. 

If the number of blocks to be written exceeds the number of available cells 

remaining in the selected band, the excessive biocks of information will be 

lost. The BWN instruction does not go through STA and is covered on page 

X!-11 of the Programmers' Reference Manual. 

Af =One location to the right of the last character written. 

Op. Code 

H 

V-310 

B. 
1 

N 

Number of Blocks 
to be Written (From 
One to Ten with Zero 
Representing Ten) 

24 (0) = Unit 1 

24 (1) = Unit 2 

A 

Location of First 
Character to be 
Written 

B 

See Below 



Example: 

B0 - Ignored. 

B1 - Determines if disc remains on turntable after read. 

Disc returned to cage. 

= O - Disc remains on turntable and read-write head is 
positioned at beginning of previously selected band. 

B2 - Specifies type of termination of each block. 

B2 = 1 - 900 count only. 

EB or 900 count. 

B3 - Addresses first cell (0-9) to receive first block. 

D 0 0000 0116 

H 3 3100 0002 

00 01 02 03 04 05 06 07 08 09 

31 IF I L E EB 0 F ·E B EB I 

HSM Before and After 

In the above combination of instructions, band 116 of disc number 29 will 

be selected on Unit 1. The Write instruction will write out, "FILE EB" to 

cell 2 of band 116, "OF EB" to cell 3, and "EB" to cell 4 since three blocks 

must be written and each block can be terminated by an EB symbol or 900 

character count. The disc would remain on the turntable when writing is 

complete and the read-write head would be positioned at the beginning of 

band 116. A final would be 3109. 

X. BLOCK WRITE TO RECORD SIMULTANEOUS {I) (BWS) 

This instruction is identical to the BWN except the operation code is an I 

and the instruction is executed in the Simultaneous Mode. Page XI-13 of the 

V-311 



Programmers' Reference Manual covers the BWS instruction. 

Y. RECORD FILE MODE READ ( *) (RMR) 

This instruction has the same format as the Block Read from Record Normal 

except the instruction is executed in the Record File Mode and the N charac­

ter must specify one of four Record Files under control of.the Record File 

Mode. A Band Select Record File Mode (E) instruction must be used in con­

junction with this instruction rather than Barrl Select Normal (D). The RMR 

instruction does not go through STA and is covered on page XI-15 of the 

Programmers' Reference Manual. 

Op. Code 

* 

Uf (Same as AF in Normal Mode} = One location to right of last 

character read. 

Vf (Same as Bf in Normal Mode) = 

N 

Number of Blocks 
to be Read from One to 
Ten with Ten Specified 
by Zero. The Zone Bits 
Select the Unit as Shown 
Below. 

B. 
1 

A 

Location to 
Receive First 
Character of 
First Cell 

B 

See Below 

N Bits Select B0 - Ignored. 

25 (0) 24 (0) Unit 

2 5 (0) 2 4 (1) Unit 

25 (1) 24 (0) Unit 

25 (1) 24 (1) Unit 

V-312 

1 

2 

3 

4 

B1 - Determines if disc remains 
on turntable. 

Disc returned to cage. 

B1 = 0 - Disc remains on turntable. 

B2 - Specifies type of block termination. 

900 count only. 

EB or 900 count. 

B3 - Addresses cell (0-9) to be read. 



Example: E 

* 

& 

E 

0000 

1000 

0425 

0103 

The preceding pair of instructions would read the contents of cells 3, 4, 

5, 6 and 7 of band 425 on Unit 2 Record File (under control of the Record 

File Mode). The disc would be returned to the cage after the operation was 

complete. 

Z. RECORD FILE MODE WRITE (%) (RMW) 

This instruction functions similarly to the Block Write to Record Normal 

except the instruction is executed in the Record File Mode and the N charac­

ter must select one of four units to be used. The RMW does not go through 

STA and is covered in the Programmers' Reference Manual on page XI-17. 

Uf = One location to right of last character written. 

Op. Code 

% 

B. 
1 

N Bits 

2 5 (0) 

2 5 (0) 

2 5 (1) 

2 5 (1) 

N 

Number of Blocks 
to be Written from 
One to Ten with 
Ten Specified by 
Zero 

Select 

24 (0) Unit 1 

2 4 (1) Unit 2 

2 4 (0) Unit 3 

2 4 (1) Unit 4 

A 

Location of 
First Character 
to be Written 

B0 - Ignored. 

B 

See Below 

B1 - Determines if disc remains 
on turntable. 

Return disc to cage. 

Leave disc on turntable. 

B2 - Specifies type of block termination. 

900 count only. 

B2 = 0 - EB or 900 count. 

B3 - Addresses cell (0-9). 

V-313 



Example: E II 0000 0105 

% s 0302 0102 

00 01 02 03 04 05 06 07 08 09 10 11 

03 I R 
E c 0 R D .EB F I L E EB 

HSM Before and After 

Executing the above instructions would write out "CORD E8 11 to cell number 2 

and "FILEE" to cell number 3 on band 105 unit number 4 under the Record 
B 

File Mode control. The disc would be returned to the cage upon termination 

of the write instruction. U final would be 0312. 

V-314 



SECTION VI 

Flow Charting and Coding 

A. FLOW CHARTING AND CODING, INTRODUCTION 

The RCA 301 computer is essentially a machine designed to automatically 

process information for business, commercial and industrial organizations. 

Since the majority of business operations are straightforward and basic in 

nature, the interpretation and conversion of business routines and transac­

tions into machine language will be of primary concern to the programmer. 

A thorough understanding of flowcharting is not required to code short pro­

grams, but when a program reaches any significant length, flowcharting be­

comes a very effective tool, i.e., it allows the programmer to solve the 

general problem and isolate the details. The purpose of this section is 

to help the reader develop a technique for flowcharting and coding to pro­

duce a program. 

Most programmers maintain relatively standard flowcharting symbols. These 

symbols and their meaning are shown in Figure 75. 

Figure 76 shows the 301 Computer Program Record. A completed record will 

be illustrated later. 

Figure 77 shows the 301 Computer HSM Record. This is completed by the pro­

grammer and shows how the data pertaining to his program will be placed in 

memory. A completed 301 HSM Record will be shown later. 

VI-315 



< 

VI-316 

OPERATION 
IS WRITTEN 

IN THIS BOX 

-

( R.I. 
TRANS 

> 

DENOTES BEGINNING 
OF PROGRAM 

COMPUTER PROCESSING 
OPERATION 

DECISION BOX WHERE 
RESULT MAY CHOOSE 
PATH TO BE TAKEN 

CARD OPERATION 

MAGNETIC TAPE 
OPERATION 

PAPER TAPE 
OPERATION 

PRINT OUT 
SURPLUS 

0 

PRINTER 
OPERATION 

CONNECTOR 

~ END OF RUN 
OR PROGRAM 

COMPARISON 

INDICATES CONTENTS 
( ) OF 

EQUAL TO 

"# NOT EQUAL TO 

> GREATER THAN 

< LESS THAN 

> GREATER THAN 
OR EQUAL TO 

< LESS THAN OR 
EQUAL TO 

Figure 75 Flowchart Symbols 



TITLE 

CODER 

REMARKS 

.. 

301 COMPUTER PROGRAM RECORD 

8 FROM HSM OP N 

I~!~~~= LOCATION t--t--t-..--.-,-,--,+-..-~9~9-ll REMA.AK S 

DATE 

INDEX NO. 

BLOCK NO. 

CHART 
NO. 

l----t----+-+-+-+++-+-+-+-+-ll---------·-·---·---·--·--··-·-------1----1 
1-----+----·+-+-4-l--+-+-1-+--+---4- -11-----------·----·-· ---------·-·-------------+------! 

1-----+----+-+-+-+--t---jf..-l--+.-4--!--ll------·-----------------------4-----1 

l----t-----+--+--l--+--+·-+-+-!--+-+-··-11-------------------

f-----t----·t-++-+-+-l-l--+--+-+-1-------------·----··-- ·---·--·-·--......,1----4 

l-----+-----+-+-4-1--4--+-lf-.\.-..+.--+- ·-If--------------·------·-----

Figure 76 301 Computer Program Record 

301 COMPUTER HSM RECORD 

~·iJ•lf•!.L•• •!!. "!.]_•![ '!l .. iOfliT!2f1JTu tij 16f 11[ i:af19 20l27f22f2'T2' 2!12~ 2.~ 2!1_ 29 ~J1,1~1::B:u i_~-u~~u~::r JI. lt ~·~•iT•lfu •51•!.!U ~411 

~sQ:s!fs1 5' 55S.5751159 60 6";f&ij6iTG4 •'I •'I" •'I •If .. ,.l iiT' >r»T" 1~1~1~1!119 8~J!~_J_~} e !} a• ·~·~·.'.l"'l" ,OTg.7fg2fgJTg• g5[s~9~9_!.l_ll.? 

oo""fo ']" oif •!!.•• •!I "!1•:1 •!I .. 1~1~1~1~14 1:!1_1!f I~ 1:![19 20Ji•I•'I•'I" ·~·~·.'.l'"]" '°!• ;r •'I •'I .. •'f"I•'T•il" ~~··~iifu ·iT~47, .a'., 

so"Ts;rs;fs![ .. .!J: .. ]·21:~ .. ~·:I·~·;r .. ·~ ~. ;r .:;r •• 1il 1 "!I> :!11 ;r,.. 1tl.7~l 1tl 7~179 ..j .. [ .. l•.tl." 9~86.eU:e!IH 9fJ~t-;r,;r11;f11• ,;rgil:112Jn 1
" 

oo]"o;roif•!I•• •iI o61•R•8f .. 10f1-;-r12[1JT14 ,;r,;r ,;r ,-;r,, 20l2;-f22T2'1"2' "i2'.l21 2!.L" ~l1]~)~l· ·•r .;r l;-r .or .. .to1•~•il•!Iu ,;y ~·~ aj_ .. 

• .-y, ;r.;r '!I." •!L '"l·~ <!I•• ~·'I•iJ•iT•• •'f .. 1.;y .ar .. 10l1~72f1"ifu 1~11~,~1~1t e~e~ei"[eJTu •'f•iJ•iJ•.iJ: .. ""I•cI•iT• ;y,. .;r .. l•!.L•!L" 

~"To!:Toifo1_o• 0~0~01.o~Lot 1~1.:1_1:1_1!114 1~1~I>D>!I" 20~2• 2~~2!12!129 lOJ1~1~J:!Il• l~HjJ7fl&jn .t0l'i~T•.:11•Jfu •~46 •~.i!Iilt 

t---f-:c,.1-r-,-;r:i-::-,-;r.-,~:i--,.+-'11-r-'.!:J:T•-~r,.-!Jr•-,+-.. -~r.-:;i•,-~-,.-,-2I'•-1, 1-.:iJ.,• r-6~-,, -,:;r-,, r-6~-,, -.,+-,:;::r~, 71-,, -7~-,-,-;r.-,.+-,,.1-~T, -1.~.,--~~-r~1-,-ls-00·.-~_]-r,-,.,."-~-r,-,+,-~r,-~r,-~r,--;,1r,-l, l-,-;rr,-~r,-;rr·,-;-rr-,-I, t-,-;r'", -,~-r-,cj-i, -,.j:r.,+----
--

00101 oz o~o• 0~~01·0![09 @: 1:J1IT1lJ'1• 1:sJ1;J1:;-r1il19 ~~~~F~Li.~~-~;1Jil11, u J!>•1iln1i!J)9 6()~.J-~:~I.~l~~ 

~OTs1Ts2fs~s• s~~s1ls.!E~t.]6~6}16• 6TI_~~~!L6'l 1i)'1~1~_i::~I!!t~~T~-}:! .. ~!Ie~ a~11f.·11?J:a11·a9 90J~?...:-1?2l'~~!!l!.~ 

00Toi10ZT02I'" o~o!Io!Jo!fo\j 1~J>~I>~J>~J> .. 1~1!J:1!J:18f19 2;-f2-;-r~~~~~~~-,=~~~!-;i-~19 ~1~-;-r•2T•;Jo •il•~}n,'-'-~ 
s;rs~s2Ts~s• s~s!Js!Is!Js9 6~6~6il6il64 fi~fi6f&-;fa-;r6, 10F;-f1;-f1;i-u 1:_1.~~ ~_Jaila!Js• ~s6ia;Telfu ,;;-f,l",;j,-;f,, t:;[tiltiJ~!!h!.. 

o~o~o~o-~lo• o:J.0~0_108[09 10{1_~[12]1JT1• 1~16[17f18l19 20l21'f2;r2"i"[2• z~~~I~I~J.~~~~""'.tifl'f~l9 .cf•-~•il•il:u 4~•~·.:J.~o 
WTslfslfs~s• s~s!J:s!:(s!rss 6~6~62f6Jf&• 65[6fil"fi7ffi8J"fit 10F;r12T1lf1• 1~J..7~1:l1!.l..79 a~e~e~a:![a• e;fe6fe7Telf11 tojt~t2T9JTt• ,il,6[9i19tln ·--

oo:Jo ;r oi]"o:>lo• o~ oil o2Ioil"ot t"?I1!11~1!f1• ,sy 16f17}1![1t 20li'1»2J•iT." 2:J.2!I •'l •!I" ,.1,'l••T•'I" lsr ..-r .;i-.or" '°'"1•i}lJ:u ·'1•0:1':'1. aj .. 

s~s !Js;rs~l s• "i"l 17!: '"]" .. .. 1•71•2I•iT .. •Sf•'f .;r .-;r .. 10[1~1i}"iju 1~1!l 1±J.1!119 ac:J..111 J a2 j111\u •'f•'T•;-r•ili• 001• l•iJi JI .. ,51,i1!2~ 

oo]o'Toi"fo~o• ·.'I·~·'.I·'I·~ ,~1I,~,~,. 1~1~ I~ 1:!(19 20~1f2if2lf2• ''i''i"l '"..L" .. J•;'J:1iJ•~" l'[l6]•;:I~" ..o1•11•~•JTu •ST ~·?I 4111 t~ ··~ 

soJs ~s2[s!J: s• '.'!~sil:s~sifs_, sO"f6~~iJ6JTu •'T•'T •'f•8f69 10f11f12T7iTu 1:J.1~1~l_1IT 79 a~11 "1Te2\aJT a• •Sf•'T•'T•'T .. ,a1,iT,iT,iT, .. t5Jt~91 I 9~ 99 

Till Ee ------------BLOCK NO.c ---- INDEX NO.c ----PROGRAMME Re -----DA TE _____ PAGE__ OF_ 

Figure 77 301 Computer HSM Record 

VI-317 



In flowcharting, the steps the computer must take to solve this problem 

would begin with reading in a transaction and the first message on the mas­

ter file. The next step would be to compare the serial numbers to determine 

whether this particular item is being shipped or not. If the item is being 

shipped, the quantity on hand must be reduced and if the item is not being 

shipped, the quantity on hand should be unaltered. Thus, the beginning of 

the flowchart would be as follows: 

Read in 
Transaction 

Read in 
Master File -
Tape Station No. 1 

Compare Master Serial 
Number to Transaction 
Serial Number 

Figure 78 Start of Flowchart 

From the decision block, which compares the serial numbers, three paths must 

be provided. The three paths would correspond to: M=T (serial numbers 

equal): M <T (transaction serial number is greater than master serial num­

ber); and M>T (master serial number is greater than transaction serial num­

ber). Since all master items are in sequence according to their serial num­

bers and all transactions are in sequence according to their serial numbers, 

at no time should the master serial number be greater than the transaction 

serial number. If this happens, an error has occurred in the original sort­

ing of these items. Therefore, the program should provide for the recogni­

tion of this error. 

VI-318 



If the serial numbers are equal, the item must have been shipped and the 

quantity on hand must be updated. After updating the quantity on hand, the 

master item must be recorded on the new master tape. Having done this, the 

computer must bring in the next message from the original master (on Tape 

Station 1). The process of comparing serial numbers would again resume 

with the next transaction read in from paper tape. 

The third and final path provided (M <:'T) would signify that there is no 

transaction against this particular master. In other words no shipment of 

this item has been made, and the original master item must be recorded on 

the new master tape without any alterations. 

The transaction, which is still in memory, has not been matched with its 

master item. Thus, a new master item must be read in, and these serial 

numbers must be compared. The final flowchart with just the bare essentials 

would be as follows. 

READ IN 
TRANSACTION 

T 
SUBTRACT THE 
TRANSACTION QUANTITY 
FROM QUA~TITY ON HAND 

Figure 79 Simplified Flowchart 

VI-319 



Before coding the program, read-in areas for the master and transaction files 

must be determined. Since the master file item is a total of nine characters, 

nine memory locations would be required for the master read-in area. Assume 

this area to be locations 1000 through 1008. The transaction consists of 

nine characters, thus, locations 1010 through 1018 would suffice as the 

transaction read-in area. If the program exists in memory beginning at 

address 2000, the coding for the flowchart would be as follows: 

HSM LOCATION INSTRUCTION 

2000 4 8 1010 1018 Read-in Transaction 

2010 4 1 1000 1008 Read-in Master 

2020 y 4 1000 1010 M : T 

2030 w 1 2070 2080 Sense PRI' s PRP = M T 
PRN = M T 

2040 5 1008 1018 Subtract shipment quantity 
from quantity on hand 

2050 8 2 1000 1008 Write out new master 

2060 v 1 0219 2000 Transfer control to 2000 

2070 • 1 1111 0000 Error Stop 

2080 8 2 1000 1008 Write out new master 

2090 v 1 0219 2010 Transfer control to 2010 

From the coding of the flowchar-t, it can be seen that approximately one 

instruction exists for every block on the flowchart. It should also be 

noted that no provision was made to stop the computer by instruction (except 

for Error Stop). This means that the computer would continue to process in­

formation contained on the master file tape and paper tape until one or the 

other was depleted. This would cause an Alarm Stop, due to physical end of 

tape. Therefore, the program should contain instructions which will recog­

nize when the operation has been completed and stop the computer accordingly 

without alarms. 

VI-320 



B. ED, EF AND ETW ROUTINES 

Within the 301 System, certain control symbols exist. On magnetic tape two 

control symbols are used extensively. The EF symbol means end of file and 

will be placed on tape at the end of every distinct file of information, 

e.g., the master inventory file. This control symbol must be preceded and 

followed by a gap, and will constitute a message. All information on tape 

in the form of a file must be terminated by an EF symbol. The ED symbol 

means end of data and is placed on tape to specify the end of information 

or data on that particular reel. Thus, if a file extends beyond one reel 

of tape, there will be an ED at the end of the first reel and an EF followed 

by an ED on the last reel. Also, the ED symbol is preceded and followed by 

a gap and constitutes a message in itself. 

The 301 computer incorporates a single indicator for each mode. There is 

an ED/EF Normal indicator for the Normal Mode, and there is an ED/EF Simul­

taneous indicator for the Simultaneous Mode. These indicators will become 

set when an ED or EF is read in from magnetic tape. Writing out an ED or 

EF does not set the indicator. 

The fact, that an ED/EF control symbol will exist on tape, was not considered 

in the preceding inventory problem. Reading an ED or EF from paper tape does 

not set the ED/EF Indicator. Therefore, the check for these symbols must be 

by a compare against a constant if paper tape is used. Therefore, the flow­

chart must be ammended by incorporating ED/EF decision blocks as shown on 

the following page. 

VI-321 



VI-322 

R. I. 
Transaction 

Figure 80 Flowchart Incorporating ED/EF Check 



An ED/EF subroutine must be flowcharted from connectors D and E. A typical 

flowchart for this routine would be drawn as follows: 

NO NO 

YES 

Figure 81 Flowchart Showing ED/EF Subroutine 

This subroutine will determine whether the ED/EF indicator was set by (1) 

an ED symbol, (2) an EF symbol or (3) some character other than ED/EF. 

Upon sensing an ED control symbol, the tape on Tape Station No. 1 will be 

rewound, the operator will be instructed by the print-out to place a new 

master file tape on Tape Station No. 1, and the computer will halt. The 

T.C.B (transfer control to connector B) block allows the computer to resume 

its processing when the operator depresses the Start button. 

The presence of an EF on the master tape will indicate that the updating 

has been completed. An EF followed by an ED will be placed on the new mas­

ter file tape and both tapes will be rewound. 

VI-323 



Setting the ED/EF indicator, when neither an ED or EF control symbol exists, 

will cause an error stop. 

The operator must know why the computer stopped. If the machine stops on 

an ED, "Replenish Input" will be printed, but, if the ED/EF indicator is 

set by some condition other than an ED, the operator would have to examine 

the contents of the P Register and then refer to the program in order to 

determine whether the updating has been completed or an error halt occurred. 

To simplify the above procedure, the three halts involved can be coded. 

One method of coding the halts is by filling the N, A and B Registers with 

zeros or ones to indicate normal or error halts, respectively. The instruc­

tions would be coded as: 

0 

1 

0000 

1111 

0000 

1111 

Normal Halt 

Error Halt 

Using this method, if there is no print-out, the operator can select the N, 

A or B Register, on the console and determine the type of halt without re­

ferring to the program. 

There is a second method of coding halts, which is more inclusive, due to 

the fact that a program usually incorporates more than one normal halt and 

more than one error halt. Using the normal N Register count, 45 individual 

halts can be recognized without reference to the program. The ED/EF sub­

routine could be coded as: 

0 

1 

2 

0000 

0000 

0000 

0000 

0000 

0000 

Halt on ED 

End of Run 

Error Stop 

The operator can recognize a specific halt with this method and, since the 

A and B Registers are not coded, the respective HSM locations can be used 

as storage or work areas. This method of coding the halts also has an ad­

vantage in the case where the printer is inoperable and "Replenish Input" 

is not printed. ~he print instruction can actually be eliminated, but, 

normally, most programmers include it in their program as an "insurance 

VI-324 



policy." Another feature that should be included in the inventory problem 

is a means for checking the output tape to insure that information will not 

be lost because the new master file is too large to be recorded on one reel 

of tape. Sensing for ETW before every write-out will provide a solution to 

·this problem. ETW is an abbreviation for End of Tape Warning and when this 

condition is sensed an indicator is set, which effectively tells the computer 

that approximately 24 feet of usable tape is left on the reel. A subroutine 

should be flowcharted to sense for ElW as follows: 

FROM MAIN 
PROGRAM 

TO MAIN 
PROGRAM 

Figure 82 Flowchart Showing ETW Check 

v~-325 



When ETW is sensed, an ED will be written to the New Master on Tape Station 

No. 2, the tape will be rewound and a command for the operator (replenish 

output) will be printed. 

C. SWITCHES 

When one subroutine is to be used for two or more portions of a program, it 

becomes economical to incorporate a switch or variable connector. A switch 

is normally represented in a flowchart as: 

----tr 
Figure 83 Symbol for Software Switch 

From point A, the computer will take one of two paths - Al or A2. The 

switch is set previous to the time the computer will reach point A. Physic­

ally a switch is simply one instruction - A transfer of control instruction 

or, in the case of the 301, a Store Register instruction with the N Character 

equal to 1. This designates storing the P Register contents and transferring 

control the B Address. To set the switch, one merely needs to transfer a 

predetermined address into the locations which make up the B Address of the 

Store Register instruction. Once a program has been coded, the addresses 

which have been temporarily omitted can be included as constants of the pro­

gram. 

For example, if the same subroutine were needed for two different sections 

of the main program, a switch could be used to determine where to return 

after executing the subroutine. The following coded example should help 

clarify this switch concept. 

VI-326 



SET 
SWITCH A 

TO Al 

SET 
SWITCH A 

TO A2 

Figure 84 Example of Switch in 

1000 s 1 4000 3000 

1010 s 2 4000 3020 

1020 Continue Main Program 

D. CONSTANTS 

Flowcharting 

3000 

3010 

3020 

4000 

00 01 02 03 04 05 06 07 

03 1 0 1 0 1 0 2 0 

f T 
Al A2 

ETW SUBROUTINE 

N 4 0303 4009 

v 1 0219 3030 

N 4 0307 4009 

ETW Subroutine 

v 1 0219 Switch A 

VI-327 



Switch A is the B Address of the Store Register instruction at 4000. The 

instruction at 3000 sets Switch A to Al and the instruction at 3020 sets 

Switch A to A2. 

Switches do not have to be limited to two paths. On the contrary, a switch 

may incorporate any number of alternatives. Of course, an address must be 

stored for each alternative. 

E. HOUSEKEEPING 

Included in almost every flowchart, and consequently in every program, is a 

series of preparatory operations, such as clearing work areas, rewinding 

tapes, restoring tally quantities and setting switches to their initial posi­

tions. Normally these operations are included under one large block called 

"housekeeping." This is usually the first block after the start symbol, and 

it represents all miscellaneous operations which ensure proper execution of 

the program. 

The following pages illustrate a typical program. A banking problem is 

chosen which involves the need for producing an updated master account file 

for a given day\ transactions. The transactions will be in the form of 

checks or deposits. The master file is on magnetic tape and blocks are of 

variable format. See the flowchart of Figure 85 (4 shts). 

This flowchart illustrates the problem. Figure 86 presents the coded portion 

of the program and Figure 87, the 301 Computer HSM Record showing the infor­

mation as it will appear in memory. All of the locations necessary for the 

program starting at 1000 are not shown. The program occupies locations 1000 

through 2349. 

VI-328 



l 

3 

4 

l .,___ ........ 5 

6 

7 

2 

HOUSEKEEPING 

READ IN 
TODAY'S DATE 

READ IN 
TRANSACTION 

20 

YES SET SWITCH 
B 

TO Bl 

T 

Figure 85 (Sheet 1) Flowchart for Updating A 

21 

File 

VI-329 



VI-330 

ADD TRANS. 
QUANTITY TO 
TOTAL DEPOSITS 

22 

D 

9 
..-------...... TRANSFER ALL 

QUANTITIES TO 
BE UPDATED TO 
WORK AREA 

10 

11 

ADD ONE 
TO 

OTAL CHECK~ 
I2 

ADD TRANS. 
QUANTITY 
TO BOH 

SUBTRACT 
TRANS. QUANTITY 
FROM 

....._ __ ..,..... __ _, BOH 

2 
SET 

SWITCH 
PRN A TO A2 

SET 
SWITCH 
A TO Al 

15 ___ .L.._ __ _ 

SET UP 
MASTEH WRITE 

OUT AHEA 

16 READ IN 
TRANSACTION 

17._· --~---

SAVE A~ 

Figure 85 (Sheet 2) Flowchart for Updating a Blank File 



' 1t7 
.---------~ 

r 
) 

31 
COMl'li n: 

OVEHUHAFT 

SET Ill' 
.c.; l'A I E~1EN'I 
PHl\11 AHEA 

39 
SET SWITCH 

c 
TO Cl 

' INSEHI 
EIHWH COIW 
A IN MEMORY 

' ,,,,, :iUH CODE 

:;i IN ~1EMOHY 

'1 ') 

THi\,\,SFEH 

I HANS. IO 
I'! \Cit AHEA 

I N,':iEHT 
Ellli<JH CODE 

JN THA:'\S. 

PllNCll 
on THANS. 

') 1 

f' HIN I 01: I 

OVEIWHAFT 

i'HINI Olil 
-, Ii\ I K'IE01T 

SET l:P 
PHI NT 

AREA 

PHf NT OUT 
"REPLENISH 

OUTPUT" 

c.;F I SW ITCH 
A 

TO Al. 

37 

A LCI l XI F, 

\:EW UATE 

Figure 85 (Sheet 3) Flowchart for Updating a Bank File 

VI-331 



VI-332 

PRINT AREA 

OUT 
"REPLENISH 

INPUT'' 

59 

ERROR 
"-----~HALT 

73 74 

YES SET 

YE 

SWITCH 
C TO C2 

l 

SET SWTCH 
B TO 82 

72 

Figure 85 (Sheet 4} Flowchart for Updating a Bank File 



<: 
H 
I 
UJ 
UJ 
UJ 

"Xj 
I-'• 
IC s:: 
11 
Cl) 

co 

°' .......... 
CJ) 

::r' 
Cl) 
Cl) 
rt 

,_. 
'""' 

UJ 
0 ,_. 
() 
0 

] 
rt 
Cl) 
11 

~ 
0 

IC 
11 
Ill a 
~ 
Cl) 
() 
0 
11 
0.. 

TITLE 

CODER 

UPDATING A MASTER BANK ACCOUNT FILE 

REMARKS LOAD CONSTANTS IN AT 0635. LOAD PROGRAM AT 1000 

FROM 
HSM 

OP N A B 
INSTRUCTION 

LOCATION 
REMARKS 

LOCATION 0 1 2 3 4 s 6 7 8 9 

10 0 ; l 0 0 0 0 0 0 0 0 Rewind T.S. l 
1 ; A 0 0 0 0 0 0 0 0 Rewind T.S. 2 

2 N 4 0 6 7 7 l 6 7 9 Set switch A to Al 

3 J ¢ 0 3 0 0 0 5 4 9 Fill work area 

4 J @ 0 l2 3 0 0 5 3 0 Place @ s_y_mbol in BOHWA 
s J @ 0 5 3 7 0 5 3 7 II " " " TCWA 
6 J @ 0 5 4 8 0 5 4 8 II " " " TDWA 

7 4 8 0 3 9 4 0 3 9 9 Read in today's date 

8 4 8 0 3 7 0 0 3 8 4 II " transaction 

9 N 4 0 2 1 5 0 3 6 5 Save A~ 
.I. 

1790 11 0 J ¢ 0 3 0 0 0 3 6 0 Clear master R.I. area 
1 4 1 0 3 0 0 0 3 6 0 Read in master 

2 N 4 0 2 1 5 0 3 6 9 Save A.£.. 
3 4 0 ..2.. 6 _.2_ 0 6 6 9 Adj_ us t A-"""-2 ( -1) -

.I. 

1560 4 w 8 1 5 7 0 l 1 5 0 ED/EF? yes-20 no-8 
s y 4 0 ..2.. 0 1 0 _1 L 1 M:T (account numbers) 
6 w 1 2 0 7 0 1 6 7 0 PRI'S PRP-47 PRN-26 
7 p @ 0 3 6 I 0 3 9 3 Transfer statement date 
8 p @ 0 2 1 E 0 5 4 7 " total deposits--TDWA 
9 p @ 0 2 1 E 0 5 3 6 " II checks-TCWA 

DATE 

INDEX NO. 

BLOCK NO. 

PAGE 1 

CHART 
NO. 

l 

l 

l 

l 

l 

l 

l 

2 

3 

4 

5 

5 

6 

6 

7 

8 

8 

9 

9 

9 

OF 8 



<: 
H 
I w 
w 
ii:. 

':I) 
...... 

\Q 
~ 
Ii 
ro 
CXl 

°' ........ 
CJ) 
::i" 
ro 
ro 
rt 

N -
w 
0 ..... 
() 
0 
a 
] 
rt 
ro 
Ii 

"1j 
Ii 
0 
\Q 
Ii 
Ill 
a 
;:Cl 
ro 
('i 
0 
Ii 
0. 

TITLE 

CODER 

REMARKS 

FROM 
HSM OP 

INSTRUCTION 
LOCATION 

LOCATION 0 

_l2_ 0 _I>_ 

1 ....K 
2 

+ 

3 J 

4 K 

s + 

6 J 

7 K 

8 + 

9 J 

13 
0 -
l y 

2 w 
3 + 
4 p 

s -

1640 6 w 
7 N 

1660 8 # 

9 J 

N A 

1 2 3 4 s 

__@_ _Q_ 2 _l _E_ 

~- 0 5_ _3_ 8 

4 0 2 l 2 
0 0 2 l E 

0 0 5 3 l 

4 0 2 1 5 

it 0 2 1 E 

0 0 5 2 0 

4 0 2 1 5 

~ 0 2 1 E 

4 0 3 6 5 

1 0 3 6 E 

1 1 5 9 0 

2 0 2 2. 6 

@ 0 3 6 E 

8 0 5 2 9 

1 1 3 7 0 

4 0 6 7 '/ 
I 

@ 0 3 0 6 

0 0 2 1 E 

DATE 

INDEX NO. 

BLOCK NO. 

B CHART 
REMARKS NO. 

6 7 8 9 

0 _5_ 2 _9 _ Transfer ba 1 ance on hand--BOHWA _.2_ 

0 ..5.. 4 i Locate @ of TDWA _.2_ 

0 6 6 _..2_ Adj_ust A-""'-(+l) 9 .._ 

0 2 l E Mask out @ 9 

0 5 3 6 Locate @ of TCWA 9 

0 6 6 9 Adjust A_f(+l) 9 

0 2 l E Mask out @ 9 

0 5 2 9 Locate @ of BOHWA 9 

0 6 6 9 Adjust A_.t:_ ( +l) 9 

0 2 1 E Mask out @ _2_ 

0 6 6 9 Ad_j_ust A..£_1 of transaction (-1) 10 
L 

0 6 9 8 X:C 10 

2 1 6 0 PRI'S PRP-22 PRN-52 10 

0 _]_ 1 1 Add 00001 to total checks 11 

0 3 6 E Locate LSD of trans. quan t. 12 

0 2 1 E Subtract trans. qua;1 t. from BOH 12 

l 6 5 0 PRI'S PRP-14 PRN-25 13 

1 6 7 9 :.3e t switch A-Al 14 

0 3 0 6 Locate MSD of BOH in original R.I. area 15 

0 3 6 I Clear original read-in area 15 

PAGE 2 OF 8 



<: 
H 
I 
w 
w 
Vl 

~ ..... 
IC 
s:: 
11 
C1) 

CXl 

°' -en 
::r 
(I) 
C1) 
..+ 

w 

w 
0 ...... 

g 
.g 
..+ 
C1) 
11 

~ 
0 

IC 
11 
Ill s 
~ 
C1) 
0 
0 
11 
0.. 

TITLE 

CODER 

REMARKS 

FROM 
HSM 

INSTRUCTION 
LOCATION 

LOCATION 

ll 

15 

21_5_0 

ll40 

1320 

OP 

0 

0 ..N_ 

1 K 

2 
+ 

3 # 

4 v 
5 K 

6 + 

7 Jl 

8 v 
9 K 

0 + 

1 #_ 

2 v 
3 J 

4 4 

5 N 

6 w 

7 N 

8 v 
9 y 

N A 

1 2 3 4 5 

J±. _Q_ _2_ _l _5_ 

_..0_ 0 _5_ 2 0 

4 0 2 1 5 

@ 0 2 1 E 

4 1 4 7 9 

¢ 0 5 3 1 

4 0 2 1 '5 

@ 0 2 1 E 

4 1 5 1 9 

¢ 0 5 3 8 

4 0 2 1 5 

_@ 0 2 1 E 

4 1 1 1 _9 

~ 0 3 7 0 

8 0 3 7 0 

4 0 2 1 5 

8 2 3 4 0 

4 0 6 8 5 

1 0 2 1 _9 

1 0 _3_ 6 E 

B 

6 7 8 9 

1 4 _3_ _9_ 

0 _5_ 2 9 

0 6 6 9 
0 0 0 0 

0 0 0 0 

0 5 3 6 

0 6 6 _9_ 

0 0 0 0 

0 0 0 0 

0 5 4 7 

0 6 6 9 

0 0 0 0 

0 0 0 0 

0 3 8 4 

0 3 8 4 

0 3 6 5 

1 1 5 0 

2 2 _5_ _9_ 

2 1 8 0 

0 6 9 9 

REMARKS 

DATE 

INDEX NO. 

BLOCK NO. 

Transfer address of MSD of BOH -LBl of Jl 

Locate MSD of BOHWA 

Adjust A_,,,._(+l) 
-r 

Transfer new BOH--W.O. area 

Store B_£_-(B) of # 
-=-

Locate MSD of TCWA 

Adiust A~(+l) 
T 

Transfer new Tc---w.o. area 

Store B.&- -(B) of # ...,.,.. 
Locate MSD of TDWA 

Adjust AL(+l) 

Transfer new TD--W.O. area 

Store B~-< B) of 28 
"T" 

Clear transaction R.I. area 

R. I. trans. 

Save A-rl 

ED/EF? yes-66 no-8 

Set switch B---Bl 

T.C. to 53 

X:D 

PAGE 3 

CHART 
NO. 

1.2_ 

15 

15 

15 

15 

15 

15 

1_5_ 

15 

15 

15 

1.2_ 

15 

16 

16 

17 

18 

20 

21 

22 

OF 8 



<: 
H 
I 
ltJ 
ltJ 

°' 

..,, 
..... 
IQ 
s:: 
Ii 
Ill 

CXl 
Ct\ 

(/) 
!::l" 
Ill 
Ill 
<+ 

~ 

ltJ 
0 
~ 

() 
0 a 
'g 
<+ 
Ill 
Ii 

"'Cf 
Ii 
0 

IQ 
Ii 
lll a 
@' 
(') 
0 
Ii 
0.. 

TITLE 

CODER 

REMARKS 

FROM 
HSM 

INSTRUCTION LOCATION 
LOCATION 

l6_ 

1360 

1160 

1880 

~ 
11 

.l.9.. l.O. 

OP N 

0 1 

0 w l 
I p @ 

2 
+ 9 

3 + _2_ 

4 v l 

s N 4 

6 v l 

7 v l 

8 y 6 

9 w l 

0 v l 

JM 6 

2 v 4 

3 - 4 

4 s A 

s 8 A 

6 J 0 
7 J 0 

8 ..!. Ji 
9 v l 

A 

2 3 4 s 6 

2 l 6 0 2 

0 3 6 E 0 

0 5 4 7 0 

0 _2_ 2 ...2. 0 

0 2 l 9 l 

0 6 8 l l 

0 2 l 9 l 

0 2 l ...2. 0 

0 3 8 8 0 

l 7 l 0 l 

0 2 l ...2. l 

0 3 8 8 0 

0 3 6 9 0 

0 3 6 9 0 

4 0 0 0 l 

0 3 0 0 0 

0 5 2 0 0 

0 5 3 l 0 

_Q_ 3- ..3... La 0 

0 2 l L9 l 

B 

7 8 9 

l 6 0 

3 6 E 

2 l E 

2 l E 

3 6 0 

6 7 9 

3 8 0 

0 0 0 

3 9 4 

8 9 0 

8 ...2. 0 

0 0 0 

0 0 0 

6 6 9 

9 9 0 

3 6 I 

5 2 9 

5 3 6 

..2 4 2 

l 0 0 

REMARKS 

PRI'S _E~-52 
Locate trans. quanti t_y_ LSD 

Add quantity to TDWA 

" " to BOHWA 

T.c.-13 

Set switch A to A2 

T.c.-15 

Switch A 

Statement date: today's date 

PRI'S PRP-28 PRN-35 

T.C.-}_2_ 

DATE 

INDEX NO. 

BLOCK NO. 

CHART 
NO. 

22 

23 

23 

2 l1 

24 

25 

25 

26 

27 

27 

2_2 

Transfer new s ta tem<~n t da te-W. 0. area 28 --
Store B_£_ over A.£2 28 

er-

Modify A_£2(-l) 28 

Sense ETW y~·s-39 28 

Write out new master 29 -- --
Fill BOHWA with zeros 29 

--
" TCWA " " 29 

II TDWA " " 2_9_ 

T.C.--.5.. _3_0 

PAGE 4 OF 8 



<: 
H 
I 
w 
w 
'1 

":t:J 
I-'• 
lQ 
i:: 
I-! 
ro 
CXl 

°' ......... 
(/) 

g-
ro 
rt 

\J1 

w 
0 ..... 
() 
0 a 
] 
rt 
ro 
I-! 

~ 
0 

lQ 
I-! 
PJ a 
;;o 
ro 
() 
0 
I-! 
0. 

TITLE 

CODER 

REMARKS 

FROM 
HSM 

INSTRUCTION 
LOCATION 

LOCATION 

.l..8.. 

~ 

Tb';)U 

..l200 

19 

1_240 

OP 

0 

0 ...I. 

1 _R 

2 .ii.. 
3 v 
4 -
5 u 

6 c 

7 N 

8 v 
9 J 

0 R 

l # 

2 c 

3 y 

4 w 
5 + 

6 .Y 
7 

+ 
8 v 
9 N 

N A 

1 2 3 4 

_@_ _Q_ J±_ _Q_ 

_2_ _Q Q 0 

@ 0 _3_ 0 

4 1 8 5 

4 1 8 5 

1 0 0 0 

9 0 0 0 

4 0 6 7 

1 0 2 1 
' 

@ 0 4 0 

3 0 0 0 

@ 0 3 0 

_2_ 0 0 0 

2 0 3 9 

1 1 9 7 

4 0 3 9 

.l 0 2 1 

2 0 3 9 

1 0 2 1 

4 0 6 9 

B 

s 6 7 8 9 

_Q_ _Q_ _5_ _l 9 

Q 0 0 0 0 

1 0 4 4 0 

5 0 0 0 0 

5 0 6 7 3 

0 1 8 6 5 

kni 0 4 0 1 

7 1 6 7 9 

9 1 6 8 0 

0 0 5 1 9 
0 0 0 0 0 

1 0 4 4 0 

0 0 4 0 1 

0 0 7 0 1 

0 1 9 7 0 

1 0 7 0 5 

_9_ 1 '] 1 0 

1 0 2 1 1 

9 1 7 l 0 

3 2 0 6 9 

DATE 

INDEX NO. 

BLOCK NO. 

REMARKS 

Fill orint are..£ 

Transfer acct. no.__,_ name address and BOH 

Subtract 0002 from B_,c_ 

Mask out 2 5 bit 
~ 

Print out overdraft 

Set switch A to Al 

T.c.-27 

Fill print area 

Transfer acct. no., name, address, BOH and 

Total deposits 

Print out statement 

YR:l2 

PRI' S 

Add 0089 to YRMO 

T.C.-28 

Add 01 to MO 

T.C.-28 

Set switch C---Cl 

PAGE 5 

CHART 
NO. 

_3_1 

_3_1 

31 

31 

31 

31 

_2._2 

33 

34 

35 

35 

35 

36 

37 

37 

37 

_18 

37 

38 

39 

OF 8 



<: 
H 
I 
w 
w 
00 

"" ...... 
IQ 
s:: 
ti 
(t) 

00 

"' ..--... 
CJ) 
::;' 
(t) 
(t) 
rt 

"' 
w 
0 
...... 
() 
0 
a 
] 
rt 
(t) 
ti 

~ 
0 

IQ 
ti 
llJ 
a 
::0 
(t) 
() 
0 
ti 
0.. 

TITLE 

CODER 

REMARKS 

FROM 
HSM OP 

INSTRUCTION 
LOCATION 

LOCATION 0 

2!:iJill_ _2_Q_ 0 _8_ 

1 
__;_ 

2 J 

3 M 

4 B 

s .... 
6 v 

1160 7 J 

2170 8 J 

9 R 

0 
_2_1 p . 1 

N 
2 

+ 
3 N 

4 2 

s .JL 

11~0 
_l i_Qo_ 6 .J.. 

7 v 
-zq-zu 

8 y 1_5_80 
9 w 

N A 

1 2 3 4 s 

A .2. _Q_ -5. la 
A 0 0 0 0 

@ 0 4 0 0 

F 0 6 5 0 

9 0 0 0 0 

_Q_ 1 l _l i 

l 0 2 l 9 

A 0 6 _.2_ 4 
-

sp 0 5 5 0 

2 0 0 0 0 

@ 0 --1 6 E 

It 0 --1 6 .2 
4 0 6 2 3 

l 0 6 3 4 

l 0 5 5 0 

..1. D 2_ l_ _Cl 

..a _Q_ Ji .3.. Ji 
l 0 2 l _2_ 

l 0 _3_ 0 0 

l 2 2 6 0 

DATE 

INDEX NO. 

BLOCK NO. 

B CHART 
REMARKS NO. 

6 7 8 9 

2 0 -5. 8 w.o. ED-T. S .A. 41 

0 0 0 0 Rewind A 42 

0 _2_ l 9 Fill _Q_rint area 43 

0 4 5 0 Tran sf er "replenish output"-P.A. 43 

0 4 0 l Print out 44 

_Q Q EJ} E_E_ _Hali __ft__s_ 

0 0 0 0 Switch C 4..fi 

0 6 _.2_ 4 Insert error code A in constant location 42__ 

0 6 2 9 Fill punch area 48 

0 0 0 0 48 

0 .5.. 6 2- Transfer transaction to _Q_unch area 48 

6 0 3.. J:. Store B 48 
T 

0 6 6 9 Adj_ust B,(+l) 48 
-r 

0 6 3 c Insert error code in transaction 49 -
0 0 0 0 Punch out transaction 50 

_l _5_ .3.. 0 _r_ ._c_.._ - lit _21 

_Q ..fi l It Insert error code B in constant location _2_2 

2 I o 8 0 T.C.-1;8 52 

2 0 _2_ 8 Char: ED 53 

2 3 3 0 PRI'S PRP-59 PRN-error halt 65 53 

PAGE 6 OF 8 



<: 
H 
I 
w 
w 
IO 

"Ij ..... 
\Q 
i:: 
1-i 
co 
CXl 

°' ......... 
(/) 
::J" 
ct> 
co 
rt 

'-l 

w 
0 ..... 

g 
a 
] 
rt 
co 
1-i 

"U 
1-i 
0 

\Q 
1-i 
Pl a 
!:lj 
co 
0 
0 
1-i 
0.. 

TITLE 

CODER 

REMARKS 

FROM 
HSM 

INSTRUCTION 
LOCATION 

LOCATION 

22. 

21_2_0 

2.3-

2270 
.2l_9_0_ 

i~~g 

OP 

0 

0 

1 J 

2 M 

3 B 

4 

5 v 
6 y 

7 w 
8 8 

9 _8_ 

0 

1 

2 
0 

3 

4 s 
5 8 

6 J 

7 4 

8 N 

9 -

N A 

1 2 3 4 

i 0 0 0 

@ 0 4 0 

E .0 6 3 

9 0 0 0 

Q_ 2 2 2 

l 0 2 l 

l 0 3 0 

l 2 3 3 

A 2 0 5 

A 2 0 s 
A 0 0 0 

l 0 0 0 

0 0 0 0 

_l _Q_ _Q_ _Q 

A 4 0 0 

A 0 3_ 0 

¢ 0 3 0 

l 0 3 0 

4 0 2 l 

4 0 3 6 

B 

5 6 7 8 9 

0 0 0 0 0 

0 0 5 l 9 

5 0 4 5 0 

0 0 4 0 l 

2 0 0 0 0 

_2_ 0 0 0 0 

0 2 0 5 9 

0 2 3 3 0 

9 2 0 5 9 

8 2 0 s 8 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

Q 0 0 0 0 

0 2 4 3 0 

0 0 3 6 I 

0 0 3 6 0 

0 0 3 6 0 

5 0 _2_ 6 9 

19 0 6 6 9 

REMARKS 

Rewind l 

Clear _Qrint area 

Transfer "replenish input"--P.A. 

Print out 

H" l t. 

Switch B 

Char: EF 

DATE 

INDEX NO. 

BLOCK NO. 

FRI'S PRP-PRN-65 error halt 

w. 0. EF-A 

w. o. ED-A 

Rewind A 

II l 

E.O.R. 

Erro-~ l1al t 

Sense ETW on A _y_es-n 

Write out new master 

Clear R.I. area 

R. I. master 

Save A-"'-
-r 

Ad_just A_..,-( -1) 

PAGE 7 

CHART 
NO . 

54 

55 

55 

56 

S7 

_5_8 

59 

59 

60 

61 

62 

63 

64 

hS 

66 

67 

68 

68 

69 

69 

OF 8 



<: 
H 
I 
w 
~ 
0 

>x:i 
I-'• 

IQ 
s:: 
Ii 
co 
()) 
(J\ 

-(/) 
::l"' 
co 
co 
c+ 

()) 

w 
0 .... 
() 
0 

] 
c+ 
co 
Ii 

~ 
0 
IQ 
Ii 
lll s 
::0 
co 
8 
Ii 
p. 

TITLE 

CODER 

REMARKS 

FROM HSM 
INSTRUCTION LOCATION 

LOCATION 

24 

2340 

OP N 

0 1 2 3 

0 w 8 2 4 
1 N 4 0 6 
2 v l 0 2 

3 N 4 0 6 

.. v l 0 2 

5 

6 

7 

8 

9 

0 

1 

2 

3 

.. 
5 

6 

7 

8 

9 

A B 

.. 5 6 7 8 

l 0 2 3 4 

8 9 2 2 5 

l 9 2 l 8 

9 7 2 0 6 

l 9 2 0 0 

9 

0 ED/EF? _yes-.1_1 

9 Set switch B-B2 

0 T.c.-53 

9 Set switch C--C2 

0 T.c.--111 

REMARKS 

no-66 

DATE 

INDEX NO. 

BLOCK NO. 

PAGE 8 OF 8 

CHART 
NO. 

_20 

71 

72 

73 

74 



<: 
H 
I w 

iJ:>. 
1--' 

"%) ..... 
IQ 
i:: 
l't 
ro 
CXl 
'-l 

w 
0 
1--' 

() 
0 

] 
rt 
ro 
l't 

ffi 
~ 

::0 
ro 
0 
0 
l't 
0. 

r,ftj) 
I,~ 

03 00Jo1Jo2lo1o• 

03 sois1Is2lsU:s• 

04 
oc:J.01102Jo3Jo• 

04 sols1l52l s1l s• 

05 00Jo1lo2l oll o• 

05 5ojs1l52l 531 s• 

06 0010 •102103104 

06 sols•ls2ls3l_s4 
R E P L E 

07 oolo1Jo2Jol'o• 
I 2 0 0 8 

07 sojs1ls2ls3l_s4 

08 00:01:02101:0• 

08 sojs1ls2Js3l_s• 

09 oolo 1J 021031_0• 

09 sojs1js2jslls• 

10 00Jo1lo2lo3lo• .._ 

10 sols1Js2J 53J s• 

II 
oo !01Jo2Jo:ijo• 

II 
sols1ls2Js3Js• 

12 oo Jo 1Jo2lo3Jo• 

12 so1s1js21s154 

osj_o6l 01l o'!l_o9 101111211311• 

ssI s~ sir s8l s9 60j 6t_162j6lj64 
~ jAfl 

osI 061oj_08I 09 IOI 11112113114 

5sl s615tl s8l s9 6016 '16iJ 6tl 64 

osl 061o1o8l09 1~ 1 1 1211 1 1 • 

ssj_ s6J s:J. saj_ 59 6~61621616• 

051_ 061011oaj_09 10J11J12111u 

551561s1sej_59 6016:1_6216316• 
N I SH - 0 U T P U 
osJ 06101J ot[ 09 •ol •!1•21131•• 
9 0 0 0 0 0 I 

ssl s6l s1l sel sg 6°.l 6:1_62163164 

osl 06101Jo8109 101 11l 12l 13l 1• 

s5J aj s1 s8J s9 60j61j6216316• 

oslo6l 01l oel 09 1011111211311• 

ss1 s61 s1 sa1 s9 6or 6116zJ 6316• 

osj o6J o1oej09 1~ 1 1 1 ~1.'1 1 • 

ssj s6157l sa l s9 60161J62163I6• 

o106101109j 09 1oI_ 11l 12Jul1• 

ssr saJs7J sais9 &0j61j62luJu 

osj_o6 p1 Joajo9 10111J 121 nJt• 
ssj S& j s1j sajs9 &0l&1l&2lnlu 

UPDATING A MASTER BANK 

301 COMPUTER HSM RECORD 

1sl1~11l1~19 20 l2tJ22l 2312• 2sl26l 21128129 30 J liJ 32133 34 35136137138139 "°l •1l•2l 0 l .. •sI46147l 48149 
MASTER READ IN AREA 

65166l 67J 6el 69 10J11J 12j 73j74 1sI16J11J18J19 80l81I82I 83 84 8~ 86} 871e8Le9 9oj91j92j9lj9• 95j96j97j9sj 99 
l At 2 ff-TRANSAC~ ION READ IN AREA4 j STATEl ENT DATEj T ~DAY'S DATE 

1sl16_I11l1~19 20121122J23J24 2sj26j 21j 28j 29 30 jl1j l2Jn 1• 35[ 36137} 38_I39 40I.,l•2Ju1u •51•61471481 •9 

6Sl 66167J 6aj_ 69 10J11I12l73I1• 1sJ16J11l 19179 90}8;:1:82183 84 8~86I e11sel_89 9ol91l92l93l9• 9tl96l91198l 99 
PRINT OU AREA 

1sl 16-l 11l 1aj_ 19 2012112212312• 2sl 26l 2128129 3013 ij 32133 34 l:J. 36131 L 38 J19 40I4•l•2l•ll .. 4s:I 46I •11 ~ •9 
BO HWA ..al @J TCWA -+@l .. TOWA _@_ 

65166167168169 10J1iJ12l13l1• 1sl 16l 11l 18l19 9oj9ij92l 81 84 8~86181Js8J B9 90}91}92191}9• 9519619719-iI 99 
CARD p~ "4CH AREA 

1s1•6111l19l19 20 J21J2212l12• 2sJ 26l 21l 2!L 29 30131Jl2j 33 34 35136j 37j 38 j 39 40J •'I•2J41lu •SI 461 •1I ~ •9 
Bfl ~ R E P L E N I S H _ I N P U T 

6sl 66l 61 l 6ej_ 69 1ol11l12l13l_1• 1sl11J 11l 18l 19 9ol91letle3 84 e~e6l e1 l eal 89 90191J92I93I9• 9sI96191J9aI99 
T 0 0 0 I 0 0 0 2 I 6 8 0 I 8 0 0 I I 0 0 2 3 4 0 I 7 5 0 2 3 5 0 CD 

1sJ16l11Jt8J19 2012112212312• 2sJ 26121J zeJ 29 lo} 31132} 33 34 3~36137138139 40J •1J42Julu •sl •6 l uJ 481 •9 

6sj_ 66l 6716ej_69 10 l11l12lnl1• 1sl16l11l 18l19 8ol81l 82l93 84 8:J. 86l81j8aj_89 9019119219119• 9sI96I97198I99 

1sj_16l11l19l19 20 l 2tJ 22l23I 24 2sJ26l21l 2eJ 29 30}31132133 34 l:J.36137138139 40l•1l•2lul•• •sl 46 l uJ 48149 

6516tl 6716tl69 10J1.tJ.12lnl1• 1sj 16J 11l 79J 19 8o18tJ.82183 a• a~86j81188I89 90}1119219~9• 9sl96I91I9al 99 

1sJ 1~11 l1el19 2012112212312• 2sl 26J21128J 29 3013'132133 34 ls!. 36137138139 40J•1l•2IuI•• •sl •6I•1I 481 •9 

65}66} 67} 68}69 70 J11J12JnI,. 15l16l11L1al19 8oj91j82J83 84 e sj_ s6J e 1 J eeJ.e9 90 J.9119219319• 9sI96I97I98I 99 

1sl 16l 11L1ej 19 20J21J22j23J2• 2sj 26J 21J2'129 30J31l32Jn 1• lsl 36137138139 40J•1J•2luJ•• •sj •61471481 •9 

6sJ 661671681&9 70111I12JnJ1• 15l16.L11l1el19 eo Je1la2JS3 84 8sj86J87188189 9o191J921nlu 9519619719~ 99 

1sJ 16J 11J 1ej_ 19 20 l21J22l23l_2• 2sl 26 J 21 I 28129 30 I )II 32133 34 3~361371lliJ39 40 l•1l•2lu l•• •s146J471481 •9 
PROGRAM 

65j 6&j67j 68j69 70 J?1 l12lnJ1• 75J1&J11J78I 79 eola1Ja2Ju a• eij_e6J87 Jael89 90 l 91192193194 9519619719-199 

1sJ 16J11J 1!J:1t 20 Iz1J22J212• 2sj 26J 21j 29j 29 30j31j32_l33 34 3~ 36137138139 40J ••l •tloJ •• oJ 46J uJ 48} 49 

&SJ: 66167168}69 10 J11J12Jnl1• 75l1&l11J1aJ79 eolat_lulu a• e~e61871ae189 90J91J9~93Ju 95196197198199 

TITLE: ACCOUNT FILE BLOCK NO.: INDEX NO.: PROGRAMMER: DATE PAGL.!_OF ...!__ 





SECTION VII 

Processor Logic Descriptions 

A. PROCESSOR LffiIC DESCRIPTIONS, INI'RODU:TION 

Various portions of logic in the Basic Processor will now be discussed in 

detail with reference to the Engineering Logic Diagrams. The logic blocks 

to be covered in sequence are: 

A. Time Pulse Generator 

B. Status Level Generation and Selection 

C. NOR and Operation Decode Matrix 

D. N Register 

E. Addressable Registers 

F. Bus Adder 

G. MR and Interchange 

H. NR Register 

I. D Register 

J. D Comparator 

K. Standard Address Generator 

B. TIME PULSE GENERATOR (Engineering Diagram 3506929, Training No. 079). 

The 301 Time Pulse Generator under control of a one-megacycle oscillator 

produces seven sequential one-microsecond pulses, TPO, TPl, TP2, TP3, TP4, 

TPS, and TP6. One cycle of time pulses is equivalent to the time of one 

301 memory cycle, or one status level. The Time Pulse generator also pro­

duces combination pulses by means of OR gates such as TPOl, TP123, etc. 

Normally these combination pulses exist for the duration of the individual 

time pulses which produce them. 

1. Detailed Logic 

Pushing the START button on the console sets Flip-flop 0797Cl, which in turn 

produces a low output to pin 10 of AND Gate 0797C3. If the Start Inhibit 

ST INH(P) level is not present, a high output will result from that AND 

Gate. ST INH exists if any select switch is set on the console. The output 

from 0797C3 will set the Delayed Start (DELST) Flip-flop and also produce, 

through a pulse chopping network, a one-microsecond pulse labeled Start 

Reset, ST RES(P) ST RES (P} then sets the TPOl Flip-flop and initiates TPOl. 

VII-343 



ST RES(P) also sets the DPO Flip-flop and resets the DP6 Flip-flop. These 

DP or Delayed Pulse Flip-flops act as intermediate stages between time pulses, 

and ensure that the time pulses will occur in sequence, rather than simul­

taneously with every low oscillator pulse. 

Once the DELST Flip-flop is set, a low is present on pin 16 of AND Gate 

079782. A second low on pin 12 of that AND Gate will occur when the START 

button is released and Flip-flop 079783 becomes reset. The output of AND 

Gate 079782 will not be high, however, until a third low is present on pin 15. 

This low will be obtained from the oscillator which produces a one-megacycle 

output, as long as power is supplied to the system (See Figure 88). All 

three lows being present on 079782 will reset the Stop Flip-flop. The re-

set output of the Stop Flip-flop then provides a prime to AND Gate 0796Dl 

(pin 18). The other low to that AND Gate (pin 17) will not occur until AND 

Gate 079784 receives a high input pulse from the oscillator. Thus, when 

AND Gate 0796Dl receives its two lows, it will produce a high output which 

will reset the DELST Flip-flop and also prime pin 9 of AND Gate 0796D4. 

Once the DELST Flip-flop becomes reset, AND Gate 079784 will be continually 

inhibited and its output always low. This low output in turn will provide 

a constant prime to 0796Dl which was previously dependent upon the oscillator 

pulse. Note that STOP becoming reset inhibits generation of another series 

of time pulses by applying a high to pin 19 of Flip-flop 0797Cl (set output). 

AND Gate 0796D4 is the key to starting the series of time pulses. In its 

present state, 0796D4 simply needs a low pulse from the oscillator, to pro­

duce a high output. If termination conditions exist, ST(P) (Stop) will be 

present (originates on Training Drawing 078, A-7). This level will inhibit 

the production of TPl and all succeeding time pulses. If ST(P} goes high 

after TPl is initiated, it can do nothing until TPl is about to occur again. 

Therefore, the computer will always finish generating time pulses through TPO 

before stopping. 

VII-344 



-j I- 0 5USEC 
OSCILLATOR 
AFTER 
INYUTU -
079702 

+65 Wt.TS 
0 VOLTS 

- 0 l VOLTS 

079601 - - - - - - - - -

079604 - - - - - - - - -

DPO( I I - - - - - - - - - - - -

TPl(N I 

DPI( I I 

TP2(NJ ----------------

DP2( I I 

TP3(N I 

DP3( I I - - - - - - - -

TP4( N I - - - - - - - - - - - - - - - - - - - -

DP4( 11 

TP5(N I 

DP5( I I 

TP61N I 

DP6I I I --------- ------------------- -- "t-----------
1 I 

------------------------------~~--_-_-_-_-_-_-_-_-_-_-_ 
START BUTTON START IUTTON . 

TPO(NJ 

PUSHED RELEASED 

Figure 88 301 Time Pulse Generation Timing Chart 

VII-345 



As soon as 0796D4 has a high output, the TPl Flip-flop becomes set and TPl {N) 

is produced. One-half microsecond later, when the oscillator pulse goes high, 

two lows will be present on AND Gate 0796C4, and the DPO Flip-flop will be­

come reset and DPl will become set. The DPl Flip-flop being set, provides a 

prime to AND Gate 0795Dl. On the next low oscillator pulse, TPl will become 

reset and TP2 will become set. Thus, Time Pulse 1 existed for one micro­

second and upon its termination, Time Pulse 2 began. 

All the remaining time pulses are produced similarly. First the TP Flip­

flop is set, then the DP Flip-flop is set. The DP Flip-flop then provides 

a prime for resetting the first TP Flip~flop, and at the same time sets the 

succeeding TP Flip-flop. 

Once TP6 becomes set, DP6 will receive a setting pulse on the next high 

oscillator pulse {DPS being reset at the same time). The low output now 

present from the set side of DP6 will, when coupled with a low oscillator 

pulse, reset TP6 and set TPO which is the last time pulse in the series. 

Once again when the oscillator pulse goes high, DPO will become set and if 

ST(P) is present, nothing else will occur since {TPO • ST) {P) would have 

set the Stop Flip-flop, and TPl will not be produced because (ST(P) inhibits 

AND Gate 0796D5. AND Gate 0796Dl will also be inhibited since STOP {ON) 

will now be high. 

Combination time pulses exist for as long as the title designates. For 

example, TP23 will commence at TP2 and terminate at the end of TP3 (a 

total of two microseconds). The problem arising from the possibility of 

spikes or divisions between time pulses is overcome by using the DP Flip­

flops as additional primes to the OR Gates producing the combination time 

pulses (note OR Gate 079 4B3 and Figure 88). Thus, if a slight division 

occurs between TP2 and TP3, the combination TP23 will be unaffected. 

One additional small point concerning the Time Pulse Generator is that the 

START light on the Console will be lit when the STOP Flip-flop is set (area 

7B). In other words, the light under the start button will be out when the 

computer is running. 

VII-346 



C. STATUS LEVEL GEN.FRATI ON AND SELECTION 

In the 301 System, a status level is a level which exists for seven micro­

seconds and is one of three major factors in computer operation, the other 

two major factors being operation codes and time pulses. Each status level 

performs a specific function or functions. 

Generation of status levels is somewhat dependent upon the time pulses, in 

that TR:> begins a status level and TP6 ends a status level, under normal 

computer operation. 

Detailed Logic 

Logically speaking, there are two ways of producing a status level. The 

first is by means of console buttons, which can manually set up a status 

level in the Status Level Flip-flops. The second way (which is the standard 

method) is by producing a SELECT level which sets Pretransition Flip-flops 

whose outputs, in turn, set the Status Level Flip-flops. In either case, 

the ultimate objective is to set a specific bit configuration into a series 

of six Flip-flops known as the Status Level (STL) Flip-flops on drawing 

3506931, area B (Trng. No. 081). The outputs of these Flip-flops are then 

decoded into what is known as a Status Level. 

Drawing No. 8617058 (Trng. No. 001) is the Console Wiring Diagram. In area 

B3 through BS exists the Console STL switches 2°, 2 1 , 2 2 , 2 3 , 2 4 and parity 

2 6 • By depressing any of these switches, the corresponding STL 2x (P) sig­

nals will be generated. These signals directly set the STL Flip-flops in 

the Status Level Generator. (Dwg. No. 3506931, Trng. No. 081). Note also 

that the Reset Status Level button (RES STL) on the Console produces a 

positive signal which when present resets the same STL Flip-flops. 

As soon as a bit configuration exists in the STL Flip-flops, a Status Level 

will be generated, provided the Normal Gate (N3) Flip-flop is set. If in 

the set condition, the NG Flip-flop basically states that an STL is desired 

for the Processor's Normal Mode. Dwg. No. 3506925 (Trng. No. 076) 

VII-347 



On drawing 3506931 (081) in areas A3 and AS exist two octal decoders. The 

first octal decoder (area A3) produces one of eight levels by examining the 

outputs of the 2°, 21 and 22 Flip-flops. The binary configuration in these 

three Flip-flops is converted into one octal level called STL - 8o - O(N} 

through STL - 80 - 7(N). The other octal decoder in area AS produces one 

of four levels, by examining the contents of STL 2 3 and STL 24 Flip-flops. 

The outputs from the second decoder are labeled STL - 81 - O(N) through 

STL - 81 - 3(N). Keep in mind that only one STL - 80 level and only one 

STL - 81 level will exist for any given bit configuration in the STL Flip­

flops. (Also note that Ki is a necessary prime on the 81 decoder.) 

The STL - 80 and STL - 8 1 levels are then sent to Print No. 8617030 (Trng. 

No. 080) where they are coupled on AND Gates to produce the actual status 

levels. For example, assume that an operator at the Console first depressed 
3 2 0 1 

RES STL and then depressed STL 2 , 2 , and 2 • If NG were set, STL - 8 -
0 

l(N) and STL - 8 - S(N} would be generated (octal 15). Gate B-0803C3 on 

Print (Trng. No. B-080) would be primed and an SIO status level would exist. 

If the General Reset (GEN RES} button is depressed on the Console, a Pl 

status level (octal 31) is automatically set up in the STL Flip-flops. 

(See Print No. 8617058, Console Wiring Diagram, area B4 and BS.) 

The octal configurations for the 24 Processor Status Levels are: 

Octal Octal Octal 
STL Code STL Code STL Code 

Al 03 X4 14 REPl 24 

A2 04 SIO 15 REP2 2S 

A3 OS B 16 M4 27 

A4 06 M3 17 Pl 31 

Ml 10 M2 20 P2 32 

Xl 11 D 21 P3 33 

X2 12 ST Al 22 P4 34 

X3 13 STA2 23 PS 35 

VII-348 



The second means of status level generation is slightly more complicated 

and involves selection of a status level prior to generation. The Computer's 

very first status level must be supplied manually from the Console. Normally 

if a program exists in memory and is to be executed, the first status level 

is a Pl. 

Once the first status level is executed, succeeding status levels are auto­

matically selected and generated. 

A Pl status level generates SEL P2 on DWg. No. 8617034 (Trng. No. A-084) 

area A3. This level, in turn, ~s taken to Dwg. No. 3S06931 (Trng. No. 081) 

and primes OR Gates 081406, 081SD3, and 0816C4. At TPS time, AND Gate 318Dl 

will produce a resetting pulse, if the Normal Gate is set and Console Button 

Status Level Repeat (STLR) is not depressed. Note that this resetting pulse 

occurs at TPS of the Pl status level, and resets only the Pretransition 

(STL-PT) Flip-flop and not the STL Flip-flops. Therefore, at TP6 when the 

P2 status level (octal 32 is inserted in the Pretransition Flip-flops, the 

Pl status level is still being carried out. At TPO a signal known as Gate 

Normal Pretransition (Gate N-PT) is generated, Dwg. No. 3S0692S (Trng. No. 

076) area AS. The contents of the STL-PT Flip-flops are gated into the STL 

Flip-flops on Dwg. 081, area BB. Immediately, the STL Flip-flop contents 

are decoded, and a P2 status level begins. 

Subsequent status levels P3, P4 and PS are similarly produced by first gener­

ating an SEL level (to set the Pretransition Flip-flops) and then gating 

the new status level into the STL Flip-flops at TPO time, with the Gate N-PT 

signal. 

After staticizing, a level known as END STAT is generated, and this together 

with the instruction operation code generates a Select (SEL) level for the 

First Processing Level. (The first status level involved with the actual 

processing of the instruction.) For example, END STAT and SF (Symbol to 

Fill) on Gate 0824B2 Dwg. No. 3S06932 (Trng. No. 082) produces SEL A2. Thus 

the FPL for a Symbol to Fill is an A2 (octal 04) status level. 

VII-349 



At the end of the First Processing Level, the Computer will automatically 

select the next status level, depending upon the following factors: 

(1) OPERATION CODE 

( 2 ) CURRENT STATUS LEVEL 

(3) MISCELLANEOUS CONTROL SIGNAL 

In the case of the Symbol to Fill instruction, the next status level after 

an A2 could be another A2 or a Pl, depending upon the ABE Flip-flop. Dwg. 

No. 3506932 (Trng, No. 082), Gate 0823B2 shows the selection of another A2 

if ABE is reset, while Gate 346B3, on Dwg. No, 3506934 (Trng, No. A-084), 

selects a Pl if ABE is set. 

A Print breakdown for the SEL levels: 

(082) Produces SEL •••• Al, A2, A3, A4, SIO 

(083) Produces SEL •••• B, D, Xl, X2, X3, X4 

(084) Produces SEL .... STAl, STA2, REPl, REP2, Pl, P2, P3, P4, 
PS, Ml, M2, M3, M4 

Figure 89 illustrates the selection and generation of status levels. 

The development of Gate N-PT and NG is very involved, especially for input­

output gear and simultaneity. However, for normal processing one can state 

that Pre-Normal Request (P-NRQ) is always set except for an input-output 

instruction Dwg, No, 3506925 (Trng. No, 076) therefore, Normal Request 

(NRQ) will become set at every TP6, With NRQ set and again under normal 

conditions, GATE N-PT will be developed at TPO; NG will receive a 2-micro­

second setting pulse at that time as well. 

Odd parity is maintained in the STL Flip-flops to ensure proper status 

level generation. If more than one SEL level is generated or none at all, 

a Status Level Error (STLE) will probably occur. In area D2 on Dwg, No. 

3506931 (Trng. No, 081) exists the STL parity checker, If bad parity is 

found in the STL Flip-flops, STLE (N) is generated which is sent to the 

Alarm Stop logic on Dwg. No. 3506927 (Trng. No. 077) area 4C. 

VII-350 



OP. CODE---. ---OP. CODE 

ENO STAT STL 

NG(I) 

STLR 

SEL STL 

TP6 

STL 
PRE-TRANSITION 

FLIP-FLOPS 
0 

NG(I) 
TPS 

____ ___. _______ GATE __ ~ 

N-PT 

s R 
STL 

FLIP-FLOPS 

OCTAL OCTAL 
DECODER DECODER 

24,23 22, 21,2° 

STL-81 STL-80 

STL 

Figure 89 Status Level Selection and Generation 

GEN RES 

S R 
P-NRQ 

0 

TP6 

TP5 

S R 
NRQ 

0 

TPO TPOI 

s R 

NG 

0 

VII-351 



One final point on status level generation is that if the Console Button 

STLR is depressed, the machine will cycle in the status level which is cur­

rently being executed. Setting STLR inhibits changing the STL-PT Flip-flop 

contents and the Computer cannot recognize any SEL levels. Therefore, the 

Computer keeps repeating the status level in the STL - PT Flip-flops. 

Besides generating status levels, the 301 decodes the contents of the STL-PT 

Flip-flops to generate a "PT" level. These PT levels are generated across 

the top of Dw"g. No. 3506930 (Trng. No. A-080) and have two advantages over 

normal status levels. First they exist one time pulse sooner (at TP6) and 

secondly some PT levels are developed -to cover a number of status levels, 

such as P-PT. The level P-PT will exist for any P status level, Pl, P2, P3, 

P4, or PS. This combination level is advantageous for gating into and out 

of the P register, since all five status levels use P. 

D. NOR AND OPERATION DECODE MATRIX 

The Normal Operation Code Register (NOR) exists on Dwg. No. 3506912 (Trng. 

No. 062) and is composed of seven flip-flops. All flip-flops connect only 

to Bus 2 positive and negative. The only way to gate the contents from the 

NOR to the Bus· is by selection from the Console (NOR/N SEL). The instruc­

tion operation code is gated into the NOR at TP5 of a Pl status level and 

remains there until the next Pl of a new instruction. 

The Operation code used throughout the computer logic comes from a decoding 

matrix which connects to the NOR. Drawing No. 3506938 (Trng. No. 088) con­

tains a series of AND Gates across the top of the print, which examine the 
5 4 3 

outputs of the NOR Flip-flops. The. 2 , 2 , 2 outputs produce one of eight 

octal levels labeled CO through C7, while the 22 , 2 1 and 2° outputs produce 

one of eight octal levels labeled DO through D7. The C and D levels are 

then combined on an AND Gate on dwgs. 3506938 (088) or 3506937 (087} to 

produce the operation code. 

For example, assume a J (Symbol to Fill} is gated into the NOR. The 301 bit 
5 4 3 configuration for a J is 100 001, excluding parity. Since the 2 , 2 , and 2 

VII-352 



bits are 100, respectively, AND Gate 088 7D3 Dwg. No. 3506938 (Trng. No. 088) 

is primed and generates the level C4. Gate 088202 on the same drawing is 

also primed by the combination of bits in the 2 2 , 2 1 , 2° Flip-flops (001), 

and produces the level Dl. The two levels C4 and Dl are then combined on 

Gate 0876B1 Dwg. No. 3506937 (Trng. No. 087) and the output is SF(N) for 

Symbol to Fill. 

On Dwg. No. 3506937 (Trng. No. 087), the reader should note that input-output 

instructions always develop the normal operation code. For example, a 5 

instruction which is a Tape Read Forward Simultaneous, produces a CO and DS 

combination on AND Gate 087301 •. But the output of this AND Gate generates 

the operation code Read Forward Normal (RFN) just as the 4 instruction does. 

The reason for this is that if the Simultaneous Mode Inhibit (SMDI) Console 

Button is set and a simultaneous instruction is staticized, the instruction 

will be carried out in the normal mode. If SMDI is not set, the instruction 

is transferred to the simultaneous mode where the simultaneous operation 

code is developed. Therefore, the normal mode generates a normal operation 

code for every simultaneous instruction just in case the SMDI button is set. 

E. N REGISTER 

The main function of the N register on Dwg. No. 3506911 (Trng. No. 061) is 

to hold the N character of each instruction. However, depending upon the 

operation code, the N register can be used as a counter, storage device or 

selector. Because of its counting function, the N register is composed of 

seven triggerable flip-flops, set up to count down. In other words, if a 

flip-flop changes from the reset state to the set state, the following stage 

will be triggered. Therefore, the normal means of inserting a character into 

a register by resetting all stages first and setting those which should con­

tain one bits, cannot be used in the case of the N register. The reason is, 

whichever stages went from reset to set would trigger the succeeding stages 

and the original character would become altered. Thus, when a new character 

is to be placed in the N register from Bus 3, all stages are first set, then 

those stages that should hold zero bits are reset. 

VII-353 



Gate 0613Cl at TP4 of a Pl is responsible for setting all stages of the N 

register while inverter 064C2 receives the signal which gates into N at TP 5, 

of Pl status level from Bus 3. 

signals). 

{Note that zeros on Bus 3 {N) are positive 

The N register is used as a counter in two different ways, One way is as 

a straight binary down-counter, while the other way is in effect as a binary 

coded decimal type down-counter, The Print and Paper Advance instruction 

used the N register as a straight binary down counter during the Xl status 

level {Gate 0614C6), However, all of the instructions which use the N count 

are listed as inputs to OR Gate 0614D2; and the N count is a form of binary 

coded decimal. The output of 0614D2 goes to two places - one being the same 

path as the Print and Paper Advance to trigger the 2° stage and the other 

path leads to AND Gate 0614A3, which is involved with adjusting the N count, 

When an N count of 30, 20 or 10 is reached in the N register, the computer 

must produce an N count of 29, 19 or 9, respectively, with one trigger pulse. 

However, the N count for 30, for example, is binary 110000 (301 Character 

Quotation Marks) and a trigger pulse will create 101111, which is not the 

character representing the N count of 29. Hence, an adjustment is necessary. 

0 1 2 3 AND Gate 061483 is fully primed when N-2 , N-2 , N-2 , and N-2 are all re-

set. The output of 061483, in turn, primes Gate 0614A3 and at TP2 is an 

instruction using the N count is being executed, the N Count Adjust Flip-flop 

(NCA) will become set, At TP3, the N register is triggered down, and with 
2 NCA set, Gate 0615Dl at TP4 will generate an output which resets the 2 and 

1 2 stages. Thus if N was triggered from 110000 to 101111 during an instruc-

tion which was using the N count, NCA would have become set and the end re­

sult would be 101001, or the proper combination for an N count of 29. Note 

that dropping two bits does not change parity. 

The ultimate goal in using N as a down-counter is to reach a zero count. 

AND Gates 061483 and 0615Al detect when all stages of N are reset; they in 

turn generate the level N Equals Zero (NZ). 

VII-354 



Parity correction takes place when N is used as a counter. Gates 0618Cl, 

0618C2, 0618C3 and 0618C4 handle the correction of parity if an output 

exists from Gate 0618C4. Note that correction occurs one time pulse prior 

to the triggering down. In area D2 exists a parity checker which checks 

parity at all times in the N register. However, bad parity must exist at 

TP6 time, to stop the Computer on an alarm. 

area 6D.) 

(Dwg. No. 3506927 (Trng. No. 077) 

When N is used for temporary storage, no triggering occurs. In area 2C of 

Dwg. No. 3506971 (Trng. No. 061) are the three gates which permit gating 

the N character onto Bus 3, and ·listed on two of these gates are the instruc­

tions which use N for temporary storage: Symbol to Fill on Gate 0612C2; 

Locate Symbol Left/Right on Gate 0613C3; and Transfer Data by Symbol Left/ 

Right on Gate 0613C3. 

The N register is used as a selector in several instructions and for the 

majority of those, the individual flip-flop outputs are examined. In two 

instances, there are special levels generated. One of these is the level 

NA which is produced if the 2 1 Flip-flop is set (area A4). The primary 

function of NA is during a Store Register instruction when N = 2, denoting 

the storage of the A register contents in STA. During a Store Register in­

struction, NA selects the STAl status level after END STAT. 

The other special selection level is NS in area B4. NS is generated when 

N = 8 or when the 23 Flip-flop is set. Again the NS level is used during 

the Store Register instruction, for storing the contents bf the S register. 

The S register, however, exists in the simultaneous mode. Therefore, if 

the Console Button SMDI is depressed, all simultaneous instructions will be 

executed in the normal mode, and the S register will not be used. Since the 

S register corresponds to the A register in the normal mode, the level NA 

will be generated when N = 8 and SMDI is set. 

VII-355 



F. ADDRESSABLE REGISTERS 

In the 301 Processor itself, there are three addressable registers; namely 

the P register, the A register, and the B register. Each register has the 

function of holding an address, therefore, it is capable of storing four 

characters. All three registers connect to the common Bus and each one can 

gate its contents onto the Bus, as well as receive characters from the Bus. 

1. P Register 

The function of the P register is for program control, or, to hold the ad­

dress of the next instruction to be ~xecuted. The logic of the P register 

exists on Dwg. No. 3506901 (Trng. No. 051) and is composed of 21 Flip-flops. 

For the lOK and 20K Processor there should never be a 2 5 bit in any character 

of any normal address. Nor should the 24 bit exist in the Pl, P2, or P3 

characters. The 2 4 bit is necessary in PO, however, for addresses over 10 

thouse1.nd. Therefore, the P register contains six flip-flops for the PO 

character, and five for each of the characters Pl, P2, and P3. To gate into 

or out of the P register, or to reset the P register, a control level must 

be generated on Dwg. No. 3506902 (Trng. No. 052). Bus to Pis generated in 

area A6, Reset P (RES P} is generated in area AS and P to Bus is generated 

in area, during a specific status level and time pulse. 

2. A Register 

The function of the A register is to hold the A address of each instruction 

during the execution of that instruction. Dwg. No. 3506904 (Trng. No. 054) 

contains the 22 flip-flops which make up the A register. The one additional 

flip-flop that is found in the A register and not in the P register is the 

A3 character 24 bit. This flip-flop is necessary to handle indirect addresses. 

Just as with the P register, the A register is controlled by three basic 

levels which are Bus to A, Reset A, and A to Bus. Dwg. No. 3506905 (Trng. 

No. 055) contains the A register controls. (See areas A6 and A4) 

VII-356 



3. B Register 

The function of the B register is to hold the B address of each instruction. 
4 Like the A register, B is composed of 22 flip-flops with a 2 stage in B3, 

to handle indirect addresses. Also similar to the A and B registers, the 

logic which controls the B register exists on Dwg. No. 3506906 (Trng. No. 057). 

One difference is that the resetting level is split up for the Print and 

Paper Advance instruction where it is desired to reset B3 alone. 

A7, AS, A4 and A2 for the control levels on Dwg. No. 057.) 

(See areas 

Note that no parity checkers exist for the addressable registers. It is 

therefore possible to gate into a register, drop one or more bits and never 

detect the loss. This is only true, however, if the address never reaches 

the MAR to address memory since a parity checker does exist in the MAR, The 

majority of instructions do address memory with the A and B addresses at 

one time or another. 

G. BUS ADDER 

The purpose of the Bus Adder is to modify four given characters by plus one, 

minus one, plus two, or minus two. In some instances no modification at all 

takes place. The four characters to be modified must come from the MAR and 

in all but one case, represent an address. The only exception is in a TALLY 

instruction in which case the Bus Adder is used to reduce the tally quantity. 

The Bus Adder is divided into four stages - CO, Cl, C2 and C3 - which corres­

pond to the characters in the MAR. The outputs from the MAR are taken direct­

ly from the set and reset sides of the flip-flops, and are fed to the Bus 

Adder by bits. The Bus Adder provides for information bits (2°, 2 1 , 22 , and 

2 3 ) in all four stages but only makes provision for a 2 4 bit in the C3 and 

CO stages. No provision is made for a 2 5 bit in any stage. 

To perform any modification, the Bus Adder needs control levels which are 

shown on Dwg. No. 3506917 (Trng. No. 067). These control levels consist of 

modifying levels BA(-1), BA(+l), BA(-2) and BA(+2) as well as the gate-out 

levels BAOl-Bus and BA23-Bus. The Modifying levels are used for internal 

VII-357 



operation and the gate-out levels are used to place the modified result on 

the bus at a specific time. The original modifying levels (BA{-1), etc., 

are used only in the C3 stage of the Bus Adder {Dwg. No. 3506923) {Trng. No. 

073). These levels will then give rise to carry and borrow levels, which 

will become modifying levels for subsequent stages. The Bus Adder and con­

necting logic is shown in Figure 90. 

The most complicated stage in the Bus Adder is the C3 state since the 

majority of modifications will affect only the least significant digit of 

an address. However, all stages of the Bus Adder have a great deal in 

common. Each stage generates carry and borrow levels abbreviated CAR and 

BOR. These two levels signify a decimal carry or decimal borrow to the 

succeeding stage. They also are involved in converting the binary output 

of the adder into decimal form for each stage when the result is gated onto 

the Bus lines. 

VII-358 



<: 
H 
H 
I 
w 
\Jl 

'° 

MAR 0 
6 FF'S 

BUS ADDER 
co 

STAGE 

CAR I 
BOR I 

MAR I 
5 FF's 

BUS ADDER 
Cl 

STAGE 

MAR 2 
·6 FF's 

BUS ADDER 
C2 

STAGE 

MAR 3 
7 FF'S 

BUS ADDER 
' C3 
STAGE 

CARQ/BORO CAR l/BOR I CAR 2/BOR 2 CAR 3/BOR 3 

BAI-, r OP. CODE· STL 

OP. CODE· STL 

TP23 

OP. CODE· STL 

TP45 

. ; I J :~~ ~ 
-----------------------------------------"---------------~----- BUS 3 

Figure 90 301 Bus Adder 



For the C3 stage on Dwg. No. 3506923 (Trng. No. 073) in area D2 and 03 

exist the gates which give rise to the CAR 3 and BOR 3 levels. Basically 

speaking, Gate 0732Cl will produce a carry to the C2 stage when adding a 

one to a decimal nine and Gate 0732C3 will generate a carry when adding two 

to eight or nine. AND Gate 0732C5 causes a borrow from the C2 stage when 

subtracting one from zero, while Gate 0731Cl produces BOR 3 when two is sub­

tracted from zero or one. Producing CAR 3. or BOR 3 also generates the com­

bination level CAR 3/BOR 3. 

Because the C3 stage is somewhat more involved, a portion of the C2 stage 

will be extracted in order to explain-how binary addition and subtraction 

is performed. The C2 stage is on Dwg. No. 3506922 (Trng. No. 072). 

VII-360 

CAR 3 (N) 
MAR2-20!1N) 

MAR 2-21 ION)----~ 

MAR 2 -21.llN) 

TO 22 STAGE 
GATES 225C2 
AND 224CI 

RESULT 
GOING TO BUS 2-21 LINE 

BOR 3(Nl 
MAR 2-20 (ON) 

Figure 91 Logic Extract From Bus Adder C2 Stage 



AND Gate 4C2 will produce a high output if the 2° bit of the C2 character 

is a one and a decimal carry was generated from the C3 stage. AND Gate 4C3 

will produce a high output if the 2° bit of C2 is a zero and a decimal bor­

row was generated from the C3 stage. Note that regardless of the incoming 

bit for the 2 1 stage of C2, if a carry or borrow is generated from the 2° 
1 stage of C2 (high output from 4C4), the result for the 2 stage will be the 

complement of the bit coming 

. 2 1 b" Incoming it 
20 Modification (From 

Resulting 2 1 bit 

Effectively then, the output 

or borrow exists from the 2° 

in. 

0 1 0 1 
bit) +l +l -1 -1 

1 0 1 0 

of 4C4, if high, states that an interbit carry 
1 stage to the 2 stage of the C2 character. 

Therefore, depending upon the state of the 2 1 Flip-flop the complement will 

be generated onto Bus 2-21 line at gate-out time. (Bear in mind that the 

decimal conversion is ignored for the present.) 

For example, if the 21 bit is a one and the output of Gate 4C4 is high, 

Gates 4Bl and 4B2 would both be inhibited, and no positive pulse is gated 

onto Bus 2-21 line when gate-out occurs. (This represents a zero bit re­

sult). If the 2 1 bit is a zero, initially, Gate 4B2 will be primed to 

generate a one bit onto Bus 2-2 1 when the result is gated out. 

On the other hand, if the output of 4C4 is low, this indicates no carry or 

borrow from .the 2° stage, hence no change in the 21 output. That is, if 

the 21 is a one, Gate 4Bl will produce a high output at gate-out time to 

generate a one on Bus 2 and if the 2 1 bit is a zero neither 4B2 nor 4Bl 

will be primed, thus no one bit is generated on Bus 2. 

The output from 4C4 also is used to determine whether or not a carry or 
1 2 

borrow is generated from the 2 stage to the 2 stage (Gates 0725C2 and 

0724Cl on Dwg. No. 072). 

Examination of the logic of the Bus Adder C3 stage on Dwg. No. 073 reveals 

a similar composite of gates, such as those used in the C2 stage. A slight 

VII-361 



difference exists in the fact that the original modifying levels (BA+l etc.) 

are used and also that the 2 1 logic must handle the addition and subtraction 

of 2. 

The 2° bit is complemented if the output from Gate 0733Bl is a low, denoting 

modification by +l or -1. If the output from 0733Bl is high, the 2° bit is 

gated unchanged onto Bus 3-2° line. 

Adding or subtracting two is done by priming Gate 234Bl with the levels 

BA(+2) and BA(-2) to act as a carry and a borrow, respectively, for the 2 1 

bit. 

The second function of the CAR and BOR levels other than acting as decimal 

carries and borrows between the four stages CO, Cl, C2, and C3; is that 

they convert the output of the Bus Adder into decimal notation. 

Note that adding one to a decimal nine as the C3 character, would generate 

CAR 3. Binary addition would be as follows for the 2° through 2 3 bits. 

C3 Character = 
Modified by = 
Result 

1001 = 9 
+0001 = +l 
1010 "("Binary Coded Decimal 10) 

The result should be zero for the C3 stage therefore CAR 3 must inhibit the 

output gates for the 2 3 and 2 1 bits to produce 0000 on the Bus. (See Gates 

6B2, 6B3, 3B3 and 3B4, on Trng. No. 073). 

Adding two to a nine or eight causes the generation of CAR 3. Binary bit 

addition is: 

C3 Char. 
Modified by 
Re~:ul t 

1001 = 9 
+0010 = 2 

1011 

1000 = 8 
+0010 = 2 

1010 

Once again, the CAR 3 level inhibits the output from the 2 3 and 21 stages 

since a one (0001) is desired when adding 2 to 9 and a zero (0000) is de­

sired when adding 2 to 8. 

VII-362 



BOR 3 is generated when one is subtracted from zero or two is subtracted 

from zero or one. Binary subtraction would be: 

C3 Char. 0000 = 0 C3 Char. 0000 = 0 C3 Char. 0001 = 
Modified by -0001 = -1 Modified by 0010 = -2 Modified by 0010·= 
Result 1111 Result 1110 Result ITIT 

Since the results should be nine, eight and nine respectively, BOR 3 
1 2 

inhibits the 2 and 2 stage outputs. (See Gates 5B2, 5B3, 4B3 and 4B4, 

on T ·ng. Dwg. 073). 

1 
-2 

The 2 5 bit is not provided for·in any stage of the Bus Adder and the 2 4 bit 

is simply gated out unchanged for the C3 stage (Gates 073781 and 073782). 

The presence of a 24 bit in the output of the C3 stage would signify an 

indirect address under normal conditions. However, the 2 4 bit for stages 

C2 and Cl is not permitted. The 24 bit is permitted for the CO stage, to 

represent addresses over ten thousand. 

Each stage generates its own parity as needed by examining the original 

character and the modification level for that stage. 

Depending upon the model, the CO stage of the Bus Adder (Dwg. No. 3506920) 

will generate addresses over ten thousand or inhibit the generation of such 

addresses by the presence of three +6.5 volt levels on Gates 070684, 0706B3, 

0706C2 and 0707C3. In all cases, the Bus Adder will always keep within the 

limits of the memory. For example, adding one to 9999 in a lOK system pro­

duces 0000, while in a 20K system &000 will be produced. Likewise, adding 

one to I999 in a 20K system will produce 0000. Subtracting one from 0000 

gives a result of 9999 for the lOK system and I999 for the 20K system. 

H. MEMORY REGISTER AND INTERCHANGE 

The 14 flip-flops which make up the Memory Register are shown on Dwg. 

Nos. 3506913 (Trng. No. 063) and 3506914 (Trng. No. 064). 

The MR is divided into two sections, MRO and MRl, to correspond to the two 

characters in a diad which are labeled CO and Cl. The MRO portion of the 

VII-363 



Memory Register connects to Bus lines o, 2 and 3 while the MRl portion con­

nects to Bus lines 1, 2 and 3. The control levels which set up the paths 

for information flow between the Bus and the MR come from a series of gates 

known as the interchange on Dwg. No. 3506915 (Trng. No. 065). Also shown on 

Dwg. 065 are the reset levels for the MR (area A2) and the two parity check­

ers (area D5). 

At the bottom of Dwg. Nos. 063 and 064 are shown the light drivers for the 

common display lights on the Console. Any voltage levels on the four Bus 

lines will light the corresponding lights on the Console. Thus if it is 

desired to view the contents of the particular register, the proper select 

switch is set and the contents of the selected register are gated onto the 

Bus where they light their respective lights. 

The P, A and B registers use all four Bus lines, but the MR and D register 

use only Bus 2 and Bus 3, to display their contents. The NOR contents are 

shown by way of Bus 2 and the N register contents are shown by way of Bus 3. 

The select switch, when set, not only gates out of the selected register 

onto the Bus but also permits gating in from the Bus. Hence to insert new 

information into a register, bits are inserted on the Bus while the select 

switch is set. The common display lights on the Console are also momentary 

contact switches. On Dwg. Nos. 063 and 064, the signals generated by these 

switches are shown as inputs to the AND Gates below the MR Flip-flop; 

(CO - 2° SET(N) on Gate 064782 etc.). Depressing the proper Console switches 

produces momentary voltages on the corresponding bus lines. These voltage 

(bits) are then gated into the flip-flops of the selected register. When 

the Console switches are released, the lights will remain lit for those 

flip-flops which were set, since the select switch is still gating out of 

the selected register. If a flip-flop does not become set, the light on the 

Console will be lit only for the duration of the time that the momentary 

contact switch is making contact. 

I • NR REGISTER 

The N for Repeat register, abbreviated NR, exists on Dwg. No. 3506916 (Trng. 

VII-364 



No. 066). The NR register is only used during the Repeat instruction 

to hold the count of the number of times to repeat. Five triggerable flip­

flops, including parity, comprise a down counter. Since the register is set 

up to count down, all stages must be set first (TP2 of an Xl status level 

of a Repeat instruction Gate 0663Cl) and those stages which are to hold 

zeros will be reset according to the contents of the N register (TP3 of 

Xl RPT - Gate 066501). Note that only the 2°, 2 1 , 22 and 2 3 bits are gated 

into the NR from the N register and that if the 24 or 25 bits exist in N, 

they will be dropped upon transfer into the NR. Thus, if one bit is dropped, 

bad parity will result and an NRPE will be generated from the parity checker, 

in area B3. If both the 2 5 and.24 bits are dropped, the parity remains good 

and no alarm occurs. 

The NR is triggered down at TP3 of an REPl status level and parity is 

corrected each time. The end result is to trigger down to zero, and Gate 

0664Bl will produce NRZ {NR equals zero) when this occurs. 

The three flip-flops on the right-hand side of the print {INHA, INHB and 

FREP) are used during the repeating process. 

J. 0 REGISTER 

The 0 register can hold one or two characters for temproary storage. One 

half of o, called 02, connects to Bus 2 and the other half of o, called 03, 

connects to Bus 3. The 02 portion of the register is shown Dwg. No. 3506908 

(Trng. No. 058) while the 03 portion exi.sts on Dwg. No. 3506909 (Trng. No. 

059). 

The D2 register is composed of seven normal flip-flops whose outputs can be 

gated only onto Bus 2 (P). Information is normally inserted into 02 from 

Bus 2 (N), however, during the Translate instruction, bits from Bus 3 (N) 

2 5 , 2 4 and 2 3 lines can be gated into 02 2 2 , 2 1 and 2°, respectively. 

(Gates 0583Bl, 0583B2, and 0582B2) The parity checker for 02 exists in 

area 03. Parity is checked on D2 only during certain status levels of cer­

tain instructions. Gates 058401 and 058302 are mainly responsible for deter­

mining when parity should be checked. If bad parity is found, a low will 

VII-365 



exist from the output of the D2 parity checker and Gate 0583D6 will set the 

DPE Flip-flop in area AB. 

The .03 register is composed of five triggerable flip-flops (2°, 21 , 2~ 23 , 
6 . 5 4 

and 2) and two normal flip-flops (2 and 2 ). The triggerable flip-flops 

constitute an up-counter which is used during the Add and Subtract instruc­

tions. Otherwise D3 is used as a storage register for one character. The 

D3 register can only be accessed from Bus 3 whether it is during gating in 

or gating out. Parity is also checked on D3 during certain instructions; 

its parity checker exists on Dwg. No. 3506906, area D2. 

On Dwg. No. 3506910 (Trng. No. 060) a number of controls exist which affect 

the D3 register. The majority of these control levels are for the Add and 

Subtract instructions. 

K • D COMPARATOR 

The purpose of the D Register Comparator is to compare the contents of the 

D2 register to those of the D3 register, and to produce an appropriate level 

(D2 > D3, D2 < D3, or D2 = D3). Since no time pulses or instructions gate 

the comparator logic, one of the three output levels should exist at all 

times. If no output level exists, a Comparator Error {COME) will be gener­

ated. 

On Dwg. No. 3506918 (Trng. No. 068), the outputs of both the D2 Register and 

the D3 register flip-flops are compared directly to one another, bit by bit. 

In the series of AND Gates in area D (3, 4, 5, 6 and 7) exact equality is 

sought. 

Both bits must be present or absent for a given position in D2 and D3 to 

produce a desired output. All outputs culminate on AND Gate 0682Bl. If 

six lows are present, the level D2 = D3 is generated (area A2). If six lows 

are not present, then obviously one register's contents are greater than 

the other's. Allowance had been made to make use of what equalities were 

found, if not all six. The series of AND Gates in area B (5, 6 and 7) 

check all possibilities of D2 being greater than D3. First, the most sig-

VII-366 



nificant bits are compared on AND Gate 0687Bl. If D2 2 5 is present and D3 

2 5 is not, a high output is produced, which will generate the level D2 > D3, 

area A7. If the 2 5 bits from D2 and D3 are the same, AND Gate 0687B2 com-

pares the 2 4 bits and so on. Any high output from this series of AND Gates 

will produce the level D2 > D3. 

In area B (2, 3 and 4), bit-by-bit comparison is made to determine if 

D2 < D3. Any equalities found through the first series of AND Gates in 

area D (3, 4, 5, 6 and 7) are used as inputs to these gates. 

If no final result is obtained or if more than one result is obtained, 

the error level COME(N} is produced from Gate 0686A3. AND Gate 0686Al 

checks for the level D2 > D3 existing and the other two levels not existing. 

If this is ture, COME(N} will be high, and therefore does not indicate an 

error. AND Gate 0686A2 checks for D2 < D3 existing with the other levels 

absent. AND Gate 0684Al checks for D2 = D3 existing, but not the other two 

levels. The reader should note that each of these three gates, 0686Al, 

0686A2 and 0684Al, must be inhibited if COME(N} is low. Only in case no 

output levels are produced from the comparator, or more than one level is 

produced, will this condition be brought about. 

L. STANDARD ADDRESS GENERATOR 

The Standard Address Generator is found on Dwgs. 074 and A074. All 3 models 

of the 301 Processor utilize this generator. The function of this generator 

is to generate bits on the bus which will constitute an address or a portion 

of an address. This will depend upon the status level and the instruction. 

For example, during the STAl status level when the AO and Al characters of 

the A address are to be stored in memory, the address 0212 is generated 

(Dwg. No. 3506029 1 area C2) and the level STAl - PT(P) primes Gates 293Al, 

295A2, 297Dl, 297Al, and 298Al. The outputs of these gates at TPOl time 
l 0 6 

produce positive voltage signals on Bus 3 - 2 , Bus 2 - 2 , and Bus O - 2 • 

On all other lines of the Bus there are effectively zero bits. Therefore 

the bit configuration for each Bus line, at TPOl of STA 1, would be: 

VII-367 



Bus 
0 0 0 0 0 0 

Bus 1 [o 0 0 0 0 1 0 

26 25 24 23 22 21 20 

Bus 21.__o __ o_. __ o __ o __ o __ o __ ._1_ 

26 25 24 23 22 21 20 

Bus 3 ... I _0 __ 0 __ 0 __ 0 __ 0 __ 1 __ 0 __ 

This represents the numbers 0212 respectively. 

The only difference between the Model 303A Generator and the Model 304A 

Generator is in the Xl or Yl status level of a Print and Paper Advance In­

struction. The PAN/PAS instructions use a table look-up technique to obtain 

the 301 Character Code of the character appearing on the drum about to be 

printed. In a lOK System this table ranges from 9900 to 9977, but in a 20K 

system the table exists between I900 and I977. Therefore, during the Xl/Yl 

status level of a PAN/PAS instruction, the 303A Model generates 99 onto Bus 0 

and Bus 1, respectively. (Gates B0746Al, 6A2, 6A3, 5Al, 5A3, 4A2). The 304A 

Model generates I9 on Bus 0 and Bus 1, respectively, during the same status 

levels (Gates B0746Al, 6A2, 6A3, 5Al, 5A2, 5A3). 

1. Signals Generating Complete Addresses 
Numbers 

Generated 

s - (0278) 

s - (0280) 

Bus (P) 

Bus (P) 

.......................................... 

.......................................... 
CPN/BCPN (N} • Xl-PT/X3-PT (P} o ••••••••••••••••••••••••••••••••• 

0202 

0204 

0202 

CPN/BCPN (N} • X2-PT/X4-PT (P} ••••.••.••••••••...•••.••••••.•••• 0204 

Add/Sub (N} • Xl-PT/X3-PT (P) ••••••• , •.• , .•..•.• , •....••••••..•• 0206 

Add/Sub (N} • X2-PT/X4-PT (P) ••.•.•••••.••.•.••••.•..•.••...••.• 0208 

STA, 1 - Pr'. • . . • . . . . • . . . . . . • . . . . • • • . . . . . . . . • . . . . . . . • . . . . . . . . . . . . . 0212 

STA 2 - PT • •••••.........•.•...........•. • . . • . . • • . . • . . . . • . . . . • . • • 0214 

Xl - PT (N} • CTC/TA/IOS (P) ••..••.•••.•••..••...•....•..•.••.•• 0216 

X2 - PT (N} • CTC/TA/IOS (P) •..••••.•.••.•......••.•••••••.••.•• 0218 

VII-368 



Signals Generating Complete Addresses (cont'd) 
Numbers 

Generated 

(Xl-PT) (N) • RPT (N) / REP 1-PT (P) •..•••••.••••••••••••••• 0222 

(X2-PT) (N) • RPI' (N) / REP 2-PI' (P) •••••••••••.•••••••••••• 0224 

2. Signals Generating Part of Addresses Bus 0 and Bus 1 

ULS (lN) • Add/Sub (N) • D-Pr (N) ••.•••••••••••••••.••••••.••.•.•• -l-­

ULS (ON) • Add/Sub (N) • D-PI' (N) ••.•••••••••••••••••.•••••.••••.• -0--

X3 - PT • TA ( N) • • • . • . • • . . . • • • • • • • • . • . • . • • • . . • . . • . • • • . • . • . . . • . • •• 00- -

D - Pr • (Add/Sub) (N) ••. •.••• : •••.•.•...•.•.•.•.•••.•••...•.••• • o---
Xl - Pr • PAN' (P) {303A.) •• •••••••.••.••••••••.•••.•..••.••••••.•• 99--

Xl - Pr • PAS (P) (303A) •.•••••.•••••••• , .••..••••.•.••••..•••••• 99--

Xl - Pr • PAN (P) (304A) ••...•.•••.••....•....•••..•..•.•.••..••. 19-­

Xl - PT • PAS (P) (304A.) •• .•••.••....••.••...••.•••••.••••••..••• I9--

M. STOP ALARM LOGIC 

The Stop Alarm Logic exists on two prints within the Processor; Dwg. Nos 

3506927 .(Trng. No. 077) and 3506928 (078) • 

The function of the Stop Alarm Logic is to stop the Computer upon: (1) a 

Halt instruction, (2) a Console button manual stop or (3) an alarm. To 

accomplish this, the level ST{P) must be generated to inhibit the Time Pulse 

Generator from functioning, and to set the Stop Flip-flop {Trng. Dwg. 079, 

area B7). ST(P) is generated from Gate 0786Bl on Dwg. No. 078 in one of two 

ways: if the Manual Stop (MSP) Flip-flop is set which covers functions (1) 

and (2) above, or if Error Stop {ERSP) is generated which covers function (3). 

A Halt instruction can only stop the Computer after the instruction has been 

completely staticized, i.e., at the end of the PS status level. In area C-7, 

HLT(P), the operation code, energizes OR Gate 078701 and only if Pl-PT is 

present can an output be obtained from AND Gate 0787Cl. The presence of Pl-Pr 

denotes that staticizing has been completed. This output from 0787Cl will 

in turn generate the level MSTP which means machine stop. The level MSTP 

VII-369 



alone cannot stop the Computer. A check must first be made on the other 

modes - Simultaneous and Record File. Only if these modes are not busy or 

an alarm exists in them, will the level MSTP be permitted to halt the Com­

puter {AND Gate 0786C1). Once this check has been made, MSTP will set the 

MSP Flip-flop at TP6, thereby producing ST(P). 

Two other manual stops which produce the level MSTP are Console buttons 

FPLS and ICSP. 

FPLS stands for First Processing Level Stop and will stop the Computer after 

staticizing and indirect addressing ar~ complete. ICSP means Instruction 

Complete Stop and will stop the Computer once Pl - PT is generated, i.e., 

the present instruction has been completed and the next instruction is ready 

to be staticized. 

Three other Console buttons which set MSP but do not generate the level 

MSTP are OCSP, RDM and WRM. All three buttons stop the Computer after one 

series of time pulses without checking other modes. Thus, these buttons 

could be called immediate stops. In fact, One Cycle Stop (OCSP) is used as 

an emergency stop button since it stops the computer at the end of the next 

status level. Read From Memory {RDM) and Write to Memory (WRM) are not 

used to stop the Computer normally, but do permit only one series of time 

pulses to occur. 

All modes of stopping the Computer by setting MSP also permit the Computer 

to be started again by simply depressing the start button (ST RES, Dwg. No. 

079). Error stops, however, will constantly produce ST{P} as long as the 

alarm is present. Thus, if the Computer stops on an alarm, it cannot be 

started again until the alarm is reset. 

There are two general types of alarms; namely, immediately stop alarms and 

delayed stop alarms. The immediate stop alarms are Memory Address Register 

Parity Error (MAPE) and Memory Register Parity Error (MRPE). These alarms 

will stop the Computer regardless of what is occurring in other modes. 

However, a certain restriction does exist. These alarms must occur when 

Memory is in use, since the Command Level Flip-flop provides a necessary 

VII-370 



prime (area B-2) in stopping the Computer. Either one of these alarms will 

then stop the Computer upon the next TPO. 

The delayed stop alarms are all of the remaining alarms in the Computer. 

Each mode (Normal, Simultaneous and Record File) has characteristic alarms, 

but no one alarm will stop the machine until the other two modes are free, 

unless an alarm also exists in those modes. Immediate stop alarms, MAPE and 

MRPE, are involved with a portion of the Computer which is common to all 

three modes. If the Memory Address Register or Memory Register contai~s 

bad parity, the Computer must stop immediately, since all three modes are 

effectively tied up. However, i·f only a register parity error or user 

equipment error occurs in one mode, the other two modes are still free to 

carry on and will until they finish their operation or until they, too, 

develop an alarm. 

AND Gate 0785Cl will produce an output if a Normal Mode error exists, AND 

Gate 0784C2 will produce an output if a Simultaneous Mode error exists and 

AND Gate 0783C4 will produce an output if a Record File Mode error exists. 

In addition, if a Simultaneous alarm occurs, the SAL light becomes lit on 

the Console. This is to indicate that a peripheral device alarm (OR Gate 

0785D4) or the Status Level Error (STLE) occurred in the Simultaneous Mode 

and not in the Normal Mode or Record File Mode. On the other hand, the FAL 

light becomes lit for a Record File alarm to distinguish the fact that the 

Record File Mode caused the peripheral equipment alarm, and not the Normal 

or Simultaneous Mode. And if neither SAL nor FAL are lit, the error occurred 

in the Normal Mode. With the exception of MAPE and MRPE, the alarm flip­

flops and associated lights are shown on (Trng. Dwg. No. 077) •. 

Any mode alarm, except MAPE and MRPE, must check the other modes first before 

stopping the Computer by way of OR Gate 0783CS on Dwg. No. 078. It is pos­

sible to inhibit alarm stops by the Console Button Alarm Inhibit (ALI) on 

Gate 078581. However, in the case of most alarms, the ALI button does not 

inhibit the Alarm light from becoming lit but only inhibits stopping the 

Computer. 

VII-371 





Rell Information 
Systems 


