
I ._.
I

'

[28]

FINAL TECHNICAL REPORT PFTR-1027-76-8
August 1976

STUDY AND DEVELOPMENT OF TECHNIQUES FOR
AUTOMATIC CONTROL OF REMOTE MANIPULATORS

Efra im Shaket
Antonio Leal

Prepared For:

Jet Propulsion Laboratory
4800 Oak Grove Drive

Pasadena, California 91103

PERCEPTRONICS
6271 VARIEL AVENUE• WOODLAND HILLS• CALIFORNIA 91364 •PHONE (213) 884-7470

FINAL TECHNICAL REPORT PFTR-1027-76-8
August 1976

STUDY AND DEVELOPMENT OF TECHNIQUES FOR
AUTOMATIC CONTROL OF REMOTE MANIPULATORS

Efra im Sha ket
Antonio Lea 1

Prepared For:

Jet Propu 1 s ion Laboratory
4800 Oak Grove Drive

Pasadena, California 91103

PERCEPTRONICS
6271 VARIEL AVENUE• WOODLAND HILLS• CALIFORNIA 91364• PHONE (213) 884-7470

I
I
I
1
I
l
I
il
J
I
'1·.
I •

1
i
I
I
l
I,
l
1:
I
I

TABLE OF CONTENTS

Page

1. INTRODUCTION AND BACKGROUND 1-1

1. 1 General 1-1
1. 2 State Space Models 1-3
1. 3 Theorem Proving 1-4
1.4 Search in Abstraction Space 1-5
1.5 Planning and the Procedural Net 1-5
1. 6 Sensor Utilization 1-6

2. SYSTEM OVERVIEW 2-1

2. 1 Global System Organization 2-1
2.2 Low Level Control 2-3
2.3 Planning and Execution Control 2-3
2.4 Fuzzy Language Translator 2-6

3. PLANNING 3-1

3. 1 The Procedural Net 3-1
·3.2 The Structure of a Node 3-1
3.3 The Planning Language Interpreter Algorithm 3-4
3.4 Context Dependency 3-10
3.5 Backward Planning 3-10
3.6 Forward Planning 3-11
3.7 Operator/User Interaction 3-14

4. EXECUTION 4-1

4. 1 Execution Control 4-1
4.2 Sensor-Controlled Primitive Actions 4-1
4.3 Primitive Action Syntax 4-4
4.4 Wider Scope Conditions 4-5
4.5 Transfer of Control Between Planning and Execution 4-7

4. 5. 1 Plan-Time Execution 4-7
4.5.2 Execution-Time Planning 4-7

4.6 Execution-Time Branching 4-9
4.7 A Sample Scenario 4-11

5. WORLD MODEL 5-1

5. l Typical Tasks 5-1
5.2 Space 5-1

i

5.3 Objects

5.3.1 Shape
5.3.2 Location
5.3.3 Orientation
5.3.4 Physical Features

5.4 Changes to the World Model

6. ROBUST MANIPULATOR COMMAND LANGUAGE

7. SUMMARY ANO FUTURE DEVELOPMENTS

8. REFERENCES

APPENDIX: PROCEDURAL NET EXPANSION EXAMPLE

ii

5-2

5-2
5-5
5-5
5-5

5-6

6-1

7-1

8-1

A-1

i'f
!.·'i

Ii,

T
.i. ,
' 1
j

1
,j

]

' .l

]

1
:I
l
1
1
I
I
I:
1
1
I
I
I • .

• 1

r

LIST OF FIGURES

Figures Page

1. Manipulator Hand with Sensors 1-2
2. System Block Diagram 2-2
3. Low Level Subsystem 2-4
4. Planning and Execution Controller 2-5
5. Fuzzy Language Translator 2-7
6. A Procedural Net 3-2
7. Detailed Structure of a Node 3-3
8. The Expansion of the Node 11 Transfer 11 3-6
9. Breadth-First Order of Node Expansion 3-7

10. Expansion Algorithm Control Loop 3-8
11. Node Expansion Algorithm 3-9
12. Backward Planning 3-12
13. The Net at Node Determination Time 3-13
14. Failure Message Tracing 3-15
15. The TOTE Loop 4-2
16. Condition Monitors 4-6
17. Planning-Time Execution 4-8

18. Execution-Time Planning 4-10
19. The Space Tesselation 5-3
20. A Minimally Enclosed Object 5-4
21. Updating the World Model 5-7

iii

1. INTRODUCTION AND BACKGROUND

1.1 General

This is the final report on an overall conceptual design for an
autonomous control system of remote manipulators which utilizes feedback.
The system consists of a description of the high-level capabilities of
a model from which design algorithms can be constructed. For the current
remote manipulator system, the design goal is:

To perform simple remote manipulation tasks in a partially
unknown environment without human assistance.

The autonomous capability is achieved through au~omatic planning
and locally controlled execution of the plans. The operator gives his
commands in high level task-oriented terms. The system transforms these
commands into a plan -- a sequence of detailed low-level commands. It
uses built-in procedural knowledge of the problem domain and an internal
model of the current state of the world. The plans include mechanisms to
control execution using information collected from input sensors. They
are also capable of recovering from execution problems by building
alternative subplans. The following are samples of primitive commands
into which a high-level operator command is transformed:

· (1) Open and close jaws.·
(2) Control each link of the manipulator.
(3) Orient hand position by wrist movement.
(4) Move hand to a predesignated position (coordinate in 3-space).

Figure 1 shows a typical manipulator configuration with four proximity
sensors capable of detecting nearby objects.

1-1

...

FIGURE 1. MANIPULATOR HAND WITH SENSORS

1-2

In addition, information can be obtained that specifies the current state
of the arm and hand. For example, the following information will be
considered to be available at any time:

(1) Current location, speed, and force in each link.
(2) The global current location of the hand.
(3) Hand orientation (including twist).
(4) Current values of all sensor readings.
(5) Inward force being applied to jaws.
(6) Vector of forces at the wrist.

The data processing requirements of the final system will be limited to
the memory and processing capability found on current mini-computers. That
is, the algorithms wi 11 eventually be 1 oca l ly imp 1 emented.

1.2 State Space Models

Most of the problem solving systems developed by research in
Artificial Intelligence (AI) are based on some variation of the state
space model. A problem presented in this formalization consists of an
initial state, a set of possible subsequent states, and a set of possible
actions, together with a specification of how the various states can be
produced from each other by different actions. A solution to a state
space problem is any sequence of actions that leads from the initial state
to the desired "goal" state and avoids undesired states (Nilsson, 1971).

Essentially, the algorithms devised to solve problems formulated in
the state space model are graph searching algorithms. By representing the
state space model as a graph with states as nodes and actions as arcs, the
algorithms can expand the nodes of the graph in some order by applying
all applicable operators to each node in turn. When a goal node is
encountered, the path to it from the starting state is retraced and is given

1-3

as the solution. The order of node_ expansion in these systems is determined
by increasingly complex heuristic methods, such as static state evaluation
functions, dynamic ordering, various pruning methods, or combinations of
these.

The search space formulation for any significant part of a real
world problem proves to be much too large for a successful application of
these problem solving approaches. This weakness can be attributed to the
required uniform application of operators to states thus limiting the
number of operators that can be considered at each step to a very small number.
Furthermore, the problem specific information -- the heuristics -- is
incidental to the underlying blind search mechanism. Additional problems
with the model are the discrete nature of the modeling of world states
and time, and its incapability to consider events influenced by decisions
done by processes outside the searching algorithm.

1.3 Theorem Proving Methods

Building on an analogy between the processes of proving theorems
and problem solving, later systems tried to use automatic resolution
algorithms to solve problems. In these systems the world model is
represented as a set of well formed formulas (wffs) of the first order
predicate calculus. Operators are defined in terms of preconditions which
must be satisfied in a given world model for the operator to be applicable
there, as well as a set of 11 add 11 and "delete" wffs which specify the
changes to the world model accomplished by applying the operator. STRIPS.
(Fikes, 1971) is the best known system employing this formulation. It
uses means-ends analysis as in GPS (Ernst and Newell, 1969) to find which
operators are relevant to reducing the "difference" between the current
world model and the desired goal. It uses resolution theorem proving to
test the applicability of the relevant operators in a given world model.

l-4

Experience with STRIPS has shown that although a powerful heuristic
had been added to the search procedure, the system is bogged down by the
resolution proof algorithm when it is applied to the large unstructured
set of wffs representing a world model. The system was not successful in
finding a solution composite operator when more than about ten steps were
needed in the solution. Also, the solution time was an exponential function

of the length of the solution path.

1.4 Search in Abstraction Space

A later version of this approach, ABSTRIPS (Sacerdoti 1973)
has achieved a significant reduction in the amount of search performed by
the system by conducting the search in a hierarchy of problem spaces at
various levels of abstractions. A very crude interpretation of the concept
of "levels of abstraction" is adopted here. The preconditions of the
various operators are sorted and taged according to an estimate of their
importance. Starting at a high level of abstraction, only the most
important preconditions are considered by the search algorithm. Thus, the
amount of detail that the system has t_o consider is reduced considerably and
it can find a sequence of important subgoals leading from the starting
state to the goal. Subsequently, the system searches for paths between
these "island state~" considering the operators in more and more detail.
ABSTRIPS was successful in finding solution paths containing up to two hundred
steps and the search effort increased much slower as a function of solution
length.

1.5 Planning and the Procedural Net

The problem solving systems discussed above employ some general
mechanism which is applied uniformly to a formulation of domain specific
information. This generality is paid for by reducing the complexity of

1-5

the problems that such a system can solve. Still, a substantial amount
of domain-specific information has to be incorporated into the states,
the operators and the relations between them. Rather than add domain­
specific information as an afterthought, Finkel, et al (1974} adopted a more
direct programming approach. His system, called AL, is a programming
system for developing specifications of tasks for industrial manipulators.

An interesting planning mechanism was proposed by Sacerdoti (1975)
who used a construct which is called a procedural net. The system was
developed as a mechanism to give advice to a human apprentice. The
procedural net is a hierarchically organized combination of data structures
and procedures from which step-by-step directions to accomplish a given
task can be easily extracted. The net can generate the instructions at
various levels of detail depending on the sophistication of the apprentice.
It has the capability of controlling the execution of a plan and recovering
from errors.

1.6 Sensor Utilization

A significant part of Artificial Intelligence research on sensory
input has concentrated on visual sensors, that is, sensing the environment
by some form of television camera and using the acquired information to
construct an internal symbolic model of the scene. This approach involves
scene analysis techniques and complex algorithms for machine perception.
Furthermore, the more successful systems to date achieved reasonable success
only in a scene which included polyhedron objects where clear edges are
used as clues for segmenting the scene into separate objects. Analysis.
of real image data achieved much less success (Shirai 1975) with well lit
complex objects and (Zucker 1975) describing region growing. This can
be attributed to the lack of appropriate mechanisms to represent a real
scene which usually includes irregular objects. Although ultimately
functionally optimum, as it provides a gross view plus local details of the

1-6

environment, visual perception is premature both theoretically and practically
since it requires complicated hardware as well as complex software structure.

Direct sensing of the environment by a manipulator through some
set.of sensors, and using this information in a local execution control
program, offers a more immediate and practical solution to the problem of
utilizing sensory information for the control of motion in a real environment.
With only local sensory infonnation, however, such as tactile, force, or
proximity, the manipulator can obtain data for an internal model when planning
global manipulations.

An analogy is commonly drawn between the data associated with a
program in a computing system and the data obtained by sensors in the real
environment of a manipulator control system. There are, however, significant
differences which impose substantial changes in attitude and organization
on the system which interprets.and uses the sensor data. Program data is
defined by the programmer and is available in simple known structures {such
as vectors, arrays or 1 ists) to best suit the algorithm which uses it. The
amount of data that is generated or obtained by a program is determined by

how much is needed and can be used. In most cases all the data needed for
a program is accessible (within the access structure of the programming
language). When an instruction is given in a programming language, its
correct, well-defined execution is assumed. With sensory data, on the
other hand, only the superficial aspects of the data are known in advance.
It is highly redundant and contains hidden complex structures. These are
not immediately apparent in the local sensory level -- the perception
process must impose a global structure on the observational data to render
it meaningful. The amount of data obtainable from a real scene by various
sensor aparatus is prohibitive. Data reduction is mandatory and the important
issues are what information is relevant, where it can be obtained, and how
it should be used, all within the resources available. The sensory apparatus
available to the system can never be complete or perfectly accurate. The

1-7

world picture so obtained must always be a distorted partial truth.
Consequently, the sensory information must be considered suspicious until
properly verified by several sources. On the output side, a control
command cannot be assumed executed until some evidence is available to
verify it.

The system described in this report, which uses sensory information
to control the motions of the manipulator, is an initial attempt to address
these issues. The mechanism proposed is an application of the 11 TOTE 11

(Test-Operate-Test-Exit) unit developed by Miller, et al (1960). This type
of loop control will be described in detail in a subsequent section.

2. SYSTEM OVERVIEW

2.1 Global System Organization

The essential function of the system, as can be seen in the block
diagram in Figure 2, is to transform task oriented commands given by
the operator into an explicit, detailed command sequence compatible with
the manipulator hardware. The information transmitted between the blocks
can be viewed as a hierarchy of languages with an appropriate processor
translating from one stage to the next. Going from left to right in the
figure, the languages become more specific and detailed. Each processor
considers its input as commands from its predecessor, using problem-domain
knowledge from the world model to construct expressions in a lower level
language. These, in turn~ are commands for the next stage. The three
blocks in the figure essentially perform the following functions. The
fuzzy language translator accepts high level commands in a fuzzy, task
oriented user-compatible command language. The planner and goal oriented
execution controller performs planning and transforms a general, high level
command, using the specific state of the environment, into a detailed
sequence of specific commands for the manipulator. The low level controller
utilizes the information from various sensors to control the execution of
the detailed plans generated for it.

The world model contains procedural information required at the
various translation levels. To aid in translati_ng fuzzy commands to
semantic structures, the world model contains information about the specific
information necessary to instantiate an incomplete command. It also contains
procedures for filling in missing information according to the current and
expected state of the environment. For translating from semantic structures
to primitive commands, the world model has a collection of hierarchial skeletal
plans which embody the domain specific planning knowledge. These procedures
are used in expanding a high level command into a detailed plan. Finally,

2-1

N
I

N

Fuzzy
Language

Translator

Semantic
Structures

Reports

Commands

Goal-Oriented
Execution

Controller

World
Model

Primitive
Commands

Reports

FIGURE 2. SYSTEM BLOCK DIAGRAM

Actions
Low Environment Level

Controller Sensory
Input

it contains an explicit updated model of the world which is maintained
while the manipulator actions are taking place. It is capable of monitoring
continuous processes in the environment which change without the manipulator's
initiation or outside of the immediate scope of its sensors.

2.2 Low Level Control

The low level subsystem in Figure 3 is organized around primitive
control commands which contain two parts: {a) an incremental command (with
parameters) and {b) termination and continuation conditions. When a command
is given to the 11 Move Increment Calculator 11 , an incremental command for the
manipulator links is generated. The "Arm Monitor" compares the signals going
outward to the manipulator with the position and speed sensors at the links
and keeps track of the manipulator current position. "Pending Sensory Conditions 11

contains various monitors, established globally or with the current primitive
command, that watch for particular events in the world model, problems in
the manipulator motions, or particular patterns in the sensory information.
When such an event occurs, an interrupt is issued to stop the incremental
motion and to the 11 Execution Control" {Figure 2) which wi 11 decide on
the next move. Finkel (1974) controlled primitive commands with similar
sensory dependent termination conditions.

2.3 Planning and Execution Control

This subsystem {Figure 4) contains two interpreters: one for generating
plans from the given commands and the other for monitoring the execution of
these plans. Plans are expressed in the system as a hierarchical collection
of skeleton plans in a special programming language. The primitives of
this language are operators and processes useful in developing a detailed
plan from a high level command.

The planning interpreter, (Planner), accepts commands either from
the operator or from semantic structures from the fuzzy language translator.

2-3

N
I

..i::.

Control
Commands

Established
Condit ions

Interrupts

Move
Increment

Calculator

Interrupts

Pending
Sensory

Conditions

World
Model

Manipulator
Si nals

Arm
Monitor

Manipulator
Motions

Data

Data
Organizer
(Pattern

Classifier)

FIGURE 3. LOW LEVEL SUBSYSTEM

Environment

N
I

(J1

Semantic
Structures

Problem Reports

Planner

Execute

Ready
World Plan
Model Skeletons

Control Commands and
---------,Establish Conditions

Execution
Control

Interrupts

FIGURE 4. PLANNING AND EXECUTION CONTROLLER

Guided by the domain-specific knowledge contained in the hierarcy of the
skeleton plan, it constructs the procedural net corresponding to the
given command. The procedural net is a combination of the data and procedures
that is expanded 11 top-down 11 in a breadth first order and represents in a
hierarchical manner the sequence of actions that must take place in order
to accomplish the high level command in the current setting. The procedural
net, when developed down to primitive actions, is given to the 11 Execution
Control" for execution.

The interaction between the Planner and the Execution Controller is
two-directional to allow for two capabilities: (l) plan-time execution --
a surveillance motion which is actually carri~d out during planning to obtain
crucial information needed for the planning process and (2) execution-
time planning -- actually interrupting the execution to perform required
planning.

2.4 Fuzzy Language Translator

This subsystem (see Figure 5) provides natural communication with
the user. It accepts as input fuzzy instructions in a language compatible
with the user. It contains morphonic, syntactic, and semantic knowledge
about the problem domain in general and the specific state of the current
environment to properly interpret the user's instructions. Semantic structures
are produced which are commands compatible with the planner. This subsystem
is similar to the system described by Winograd (1972) modified to handle
the fuzzy concepts common in natural lnaguage. The Answer/Inquiry Generator
provides communication in the opposite direction, to ask the user for
clarifications of ambiguous commands to produce answers to his inquiries
about the state of the world or any internal state of the system.

2-6

N
I

....i

Morphemic
Analysis

Syntactic
Analysis

Dictionary

Syntactic
Structure

Rejects

Answer/
Inquiry

Generator

Fuzzy
Semantic
Analysis

Semantic
Structures

'--"2"-------J Prob l em Reports

World
Model

FIGURE 5. FUZZY LANGUAGE TRANSLATOR

3. PLANNING

3.1 The Procedural Net

The planning process is accomplished by building a structure called
a "procedural net 11 {Sacerdoti, 1975) for each high level command given.
Each node in the net represents a step in the plan at some level of
abstraction. The net development begins at the top with a simple node
indicating the operator's command at the highest level of abstraction. This
task is then broken down into a sequence of subtasks and is represented as
a connected chain of nodes at the next lower level of the net. Each 11 son 11

node is connected to its "father" node by an arc in the net. Further, the
time sequence of subtask execution is reflected in the links connecting the
sons in a linear chain. These time-links are maintained as the net is
being developed and always exists at the lowest level of abstraction
developed so far. Consequently, if the planning process is halted at any
time, a complete plan will exist for accomplishing the original task at some
level of abstraction. The planning process is carried on until the bottom
nodes in the net all represent primitive commands executable directly by the
teleoperator. A procedural net is illustrated schematically in Figure 6.

3.2 The Structure of a Node

Since each node represents a step in the plan at some level of
abstraction, it has a goal -- or statement of intention. It can thus stand
alone as a task unit. It is connected by double-linked lists to its
"relatives": (l) its "father" (the node in the hierarchy of which it is a
part}, (2) its previous and next "brothers" {empty if it is a first or last
son), and (3) its sequence of "sons" {the detailed expansion of its own
definition).

A node has additional information that is vital to successful planning
(see Figure 7). This information is stored at the node along with the links
to adjacent nodes. A node has:

3-1

One Level
of

Abstraction

Begin · · ..,.
Execution

/The Initial Co111Tiand

FI GU RE 6. A PROCEDURAL NET

3-2

_, ... End
Execut

Predecessor
Node

Father

\...---~ ... Successor
Node

FIGURE 7. DETAILED STRUCTURE OF A NODE

3-3

Name
Goal
Planning Language Program
Execution Language Program
Parameter List
Changes to the World
Feature List

(1) a name which is either specified by the user or implied,

(2) a goal stated in terms of a subtask,

(3) a planning language procedure that is a program for producing
the next generation of the node,

(4) an execution language procedure which is executed when the
plan is carried out (lowest level only},

(5) a parameter list which is acted upon by the node,

(6) a list of changes to the world model (a procedure that modifies
the world model data base), and

(7) a feature list which summarizes information about the particular
action the node represents.

3.3 The Planning Language Interpreter Algorithm

The interpreter has a set of ready-made programs which represent the
planning semantics of the problem domain. Statements in the language can
generate nodes in the procedural net, test conditions in the real world,
and compare features of nodes in the net. The interpreter develops each
node one level down at each step. That is, it generates all the sons of
a node and puts them at the end of an "OPEN" queue to be interpreted at
a later time. The basic operator which generates a node is PLAN which has
the following syntax:

PLAN

END

NAME (ARGUMENTS)
GOAL STATEMENT
SUBPLANS
EXECUTION EXPRESSION
WORLD MODEL CHANGES
FEATURES

3-4

For example, a typical sample plan for a "transfer" command is:

PLAN TRANSFER (OBJl LOCl LOC2)
~ GOAL (QUOTE TRANSFER OBJECT)

END

PLAN (PICKUP (OBJ}) ·
PLAN (CARRY (LOCATION OBJ (OBJ)) LOC2)
PLAN (PUTDOWN (OBJ))
WMSETLOC (OBJ, LOC2) (i.e. world model, set location of

OBJ TO LOC2)
FEATURES(..•)

When this program (which is associated with the node "transfer") is interpreted,
each PLAN operator within the definition establishes a new sibling node
(subplan) putting the appropriate call in the program slot. The sequencing
time-links are also established at this time. (See Figure 8)

The node expansion algorithm establishes new nodes in a 11 breadth­
first11 order. That is, all nodes at one level are created before any nodes
at lower levels. Figure 9 shows an example of node expansion using breadth­
first ordering. The nodes in the example are numbered in the order of
generation. "Expanding" a node means interpreting the plan language
expressions associated with the definition of the node and creating all "sons".
As each node in a given abstraction level is expanded, all nodes in the
succeeding level are created. Then, these are expanded, etc. Finally, the
lowest level is reached and the net is complete. The time-links are kept
up-to-date during node expansion.

The flowcharts in Figures 10 and 11 describe the detailed algorithm
of node expansion. Figure 10 shows the control loop that expands one node
at a time. The expansion mechanism requires the maintenance of a 11 first-in­
first-out11 node stack in order to monitor the order of expansion. It is
initialized with the given command node. During the operation of the
algorithm, the node being expanded is found at the top of the stack. This
basic algorithm generates a flat tree procedural net with a linearly-linked

3-5

Predecessor
Node

Predecessor
Node

Pickup

Father

Transfer

Carry

Successor
Node

Putdown

FIGURE 8. THE EXPANSION OF THE NODE 11 TRANSFER 11 ·

3-6

FIGURE 9. BREADTH-FIRST ORDER OF NODE EXPANSION

3-7

No

Begin

·Initialize
Procedural

Net

Expand Node
at Top of

Stack

Pop Node
from Top of

Stack

Yes

End

FIGURE 10. EXPANSION ALGORITHM CONTROL LOOP

3-8

RETURN

Time-Link
Son to Node
at Bottom
of Stack

Yes

No

EXPAND

No

Create Next Son
and Link to

Father

Indicate
"First Son" or

"Last Son"

Place Son

Yes
Time-Link Son

to Predecessor
of Node at

Top of Stack

, _____::.,.._,......, on Bottom
of Stack

Time-Link Son
Yes to Successor

of Node at
Top of Stack

FIGURE 11. NODE EXPANSION ALGORITHM
3-9

execution sequence at the bottom. A detailed example of the algorithm can
be found in the Appendix.

3.4 Context Dependency

Developing the procedural net in a breadth-first order, so that each
node is expanded to several nodes, is equivalent to a context-free generative
grammar where the decision as to which expansion to choose depends on the
state of the world. In the proposed system it is possible to add a flexible
facility for context dependency. A set of pointers (and operators to move
them up and down the net) must be available so that predicates relating to
conditions of different nodes in the tree can be evaluated and used for
planning. The availability of all of the information in the procedural net
and the possibility of conditioning the expansion of a given node on the
contents of any node in the net, make the planning procedure more general
and powerful. For example, the following expression shows how different nodes
can be created depending on a given condition.

IF HEAVY (OBJ) THEN PLAN (PUSH (OBJ, LOCl, LOC2))
ELSE PLAN (TRANSFER {OBJ, LOCl, LOC2))

The expansion thus depends on the properties of the object associated with
one of the planning variables.

3.5 Backward Planning

An additional dimension of flexibility which can be called "backward
planning" can be added to the system if the operations of deletion and
insertion into the net are available. Using predicates that evaluate conditions
on the net or in the world model, any previously created subtree can be changed
based on current knowledge.

3-10

Figure 12 shows an example of backward planning. One of the sons
of node P is deleted by planning expressions at node S. Typical operations
that can be performed include deletion, insertion, interchange of subtrees,
copying features from one node to another, etc. This is called backward
planning because the active node modifies the structure of nodes already on
the net. Since more information is available at a later time, it can be
used to modify previously constructed plans.

3.6 Forward Planning

In many cases, planning decisions must be temporarily deferred
until information is available at a lower level. This can be accomplished
by 11 forward planning" which allows conditional expressions to be stored at
nodes not yet interpreted. Thus, the particular conceptual step associated
with a single node need not be determined until the last moment before
interpretation. For example,

PLAN (IF HEAVY (OBJ) THEN PUSH (OBJ, LOCl, LOC2)
ELSE TRANSFER (OBJ, LOCl, LOC2))

As shown above, the decision to PUSH or TRANSFER is made after
one complete additional net level has been constructed thus providing
information required for the decision. Notice that, contrary to the
expression shown for backward planning, the conditional statement is inside
the scope of the PLAN statement. The net structure would appear as shown
in Figure 13.

This can be accomplished by storing the expansion expression at
the node itself. Later, as the node is about to be expanded, its definition
(and name) can be determined based on new information.

3-11

FIGURE 12. BACKWARD PLANNING

3-12

w
I
w

20

Normal Expansion

30

~Node Concept Determined
During Expansion of Node 1 6

Forward Planning

~ Node Concept Determined
Just Before Expansion
of Node 3

FIGURE 13. THE NET AT NODE DETERMINATION TIME

3.7 Operator/User Interaction

When the planning is stuck or an action fails to accomplish the
11 promised 11 changes to the world, a message is sent to the operator. The
hierarchical organization of the net and the declaration of purpose at each
node are very helpful in .making these messages easy to generate and meaningful
to the operator. When a failure occurs, a message is constructed from the
path from the failure node in the hierarchy to the top-most node (see
Figure 14). Further dialogue can clarify the relations between these nodes
and the global plan.

3-14

ancestry
path of
failure
point

FIGURE 14. FAILURE MESSAGE TRACING

3-15

messages

4. EXECUTION

4. l Execution Control

The planning process -- developing the procedural net -- proceeds
as described in the previous section until the net is fully expanded, that
is, when all the nodes at the bottom level of the net contain only execution­
time commands. In this final form, a continuous chain of time links is threaded
from the START indicator through all primitive actions at the bottom of the
procedural net in order of their planned execution to the terminating END
indicator.

The EXECUTION control interpreter accepts such a fu.l ly developed
procedural net as input and proceeds, following the time sequencing links,
to interpret the execution language expressions associated with each node.
There are three types of expressions:

1. Sensor-controlled primitive actions
2. Execution-time planning expressions
3. Execution-time branching expressions.

Each of these expression types serves a special function in the execution
sequence.

4.2 Sensor-Controlled Primitive Actions

The basic mechanism by which the system can control manipulator
actions using sensory information is the TOTE loop, which stands for
Test Operate Test Exit. (See Figure 15) The operation or action to be
performed is defined as incremental actions executed from the current state
of the manipulator. For example, a CLOSEGRIP command would cause the gripper

4-1

Operate

Yes

Enter
No Exit

FIGURE 15. THE TOTE LOOP

4-2

to be closed some incremental distance from its current position. Similarly,
MOVE {X,Y,Z) would cause an incremental move of the manipulator in the
direction of the vector X,Y,Z.

The test block represents any one of a variety of conditions that
may cause the termination of the execution of a TOTE loop. For any given
action there will be a collection of pending conditions controlling its
termination, each with a varying scope of influence. Consequently, the
conditions are not organized in a simple loop mechanism as shown above. As
shown in Figure 3, the block diagram of the Low Level Control subsystem, the
Execution Control interpreter accepts procedural net plans as input. It
establishes at each step in the plan the appropriate set of condition
monitors for this step. It then issues a command to the block which
calculates the actual move with the proper set of parameters and initiates
the manipulator motion. This motion continues in incremental steps until
one or more of the pending conditions generates an interrupt. Execution
Control will then exit from the current expression, terminate the motion,
and proceed to the next step. Notice that the conditions that are monitored
in the "Pending Conditions" block may have several origins:

1. a pattern in the sensory information,

2. a pattern in the manipulator position,

3. a relation or event in the world model which is continuously
updated,

4. a time related condition,

5. a combination of these.

The Execution controller repeats these steps for each node in the procedural
net time sequence until the END node is encountered.

4-3

4.3 Primitive Action Syntax

A condition which controls a given action may cause one of several
types of exits from the execution loop. These types are indicated by
special key words whose meaning is explained below. The content of an
execution node in the procedural net would thus have the form of a multiple
exit branching point. The following are typical examples of execution
condition control statements.

IF-FAIL expression

WHILE condition IF-FAIL expression

UNTIL condition THEN expression

DEFAULT-END condition THEN expression

The various key words cause the following type of exits.

a. UNTIL condition THEN expression

This is the intended exit from the action. When the
condition is satisfied, the manipulator is at the desired
position. In the THEN clause, the functions which would
make the proper changes in the world model are indicated or
possibly some other actions needed before the next manipulator
motion is initiated.

b. WHILE condition IF-FAIL expression

These conditions must hold true throughout the duration of
this primitive action. For example, when transferring an
object from point A to point B, the object must be sensed
between the grippers during the entire motion. If this
condition fails before the normal termination condition is
satisfied, the IF-FAIL expression will be executed.

4-4

c. IF-FAIL expression

This branch is taken if the manipulator fails to execute
the command given to it, that is, the position monitor did
not record the proper change in the links' positions.
The expression is defined as the series of actions that will
be taken to overcome the problem.

d. DEFAULT-END aondition THEN e:x:pression

This branch holds a default test to avoid an infinite loop
on the. incremental action or possible damage to the manipulator
itself. For example, if a grasp action closes the gripper
without touching any object (i.e., the UNTIL condition is not
satisfied but the WHILE condition is) the action must be
terminated and an alternative plan developed.

4.4 Wider Scope Conditions

In the discussion above, all the four types of termination conditions
were associated with a single primitive tip node in the procedural net. In
general, the hierarchical organization of the procedural net can be
utilized to allow execution-time conditions to be associated with any node
in the hierarchy. The monitor controlling the condition associated with
such a high-level node would survive during the execution of all its
descendents. That is, the high level node would have a 11 scope11 of operation.
Each node in the net which is a first descendent or a last descendent already
has an indicator to that effect (see net expansion algorithm). When the
execution controller enters a tip node that is a first descendent, it will
climb the "father links", establish all the conditional monitors it encounters
until it reaches the first node which is not a first son. This is shown in
Figure 16. Similarly, when a last descendent node is encountered, a climb
on the "father links" will reveal which condition monitors should be deactivated.

4-5

0
0

Condition
Monitors

Established
at A

a first descendent node

a last descendent node

A ----------~-------- B
Scope of

Node X

FIGURE 16. CONDITION MONITORS

4-6

Condition
Monitors

Terminated
at B

end

Extending this capability to the limit,conditions associated with the top
node in the net and their corresponding monitors are alive globally and are
always there to guard against global damages. For example, such a monitor
may watch for any motion which reaches the limit of the manipulator's
extension capabilities.

4.5 Transfer of Control Between Planning and Execution

The relation between planning and execution is not a simple one-way
transfer of control. On one hand, it may happen that some information
needed for planning is not currently available and can be obtained only
by plan-time actions. On the other hand, it is not possible to plan
ahead for all eventualities either because some of the possibilities are
very rare and the planning effort is not justified, or because not enough
information is available at planning time and details of the situation are
needed to plan that specific action. In such cases, it is possible to
resort both to planning during execution and to execution during planning.

4.5.1 Plan-Time Execution. If an item of information is needed that
cannot be found in either the procedural net or the world model data base.
planning can be suspended in order to initiate execution of a reconnaissance
task. This capability allows a recursive activation of the entire system
which constitutes planning, action execution, and information storage.
{See Figure 17) When control is returned to the planning phase of the
original task, the required information should be in the world model data
base.

4.5.2 Execution Time Planning.
planning to the execution phase.

In some cases, it is necessary to defer
It may happen that information available

only at execution time is required to generate a plan, or that sequence
of actions is such a rare case that the effort of expanding a plan for
it is not justified at the initial planning phase. For example, during

4-7

initial command

procedural net

FIGURE 17. PLANNING-TIME EXECUTION

4-8

·a task of carrying an object, a WHILE condition may test if the carried
object is still between the grippers. If it fails, planning is initiated
for a PICKUP.

MOVE {OBJ)

WHILE HOLDING IF-FAIL PLAN PICKUP

The PICKUP plan will use information available in the current state of
the world and at the time the object was dropped. An expression at a
tip node may actually call the entire planner system into action. The
manipulative action will be halted during this planning phase and resumed
afterwards. Figure 18 shows this process schematically.

4.6 Execution Time Branching

In some cases, decisions cannot be made at planning time because
the choice of action to be taken depends on the outcome of an execution-time
test. For example, in the plan to pick up a tool, like a screwdriver, a
different approach trajectory must be taken depending on whether the tool
is lying flat on a surface, or is standing vertically in a tool box .. This
fact is not always known in advance.

Adding this capability of deferring decisions to execution time
enhances the flexibility of the planning system. Corresponding changes
would be made to the procedural net and its expansion algorithm. For example,
in the procedural net described in Section 3, each node had one sequence of
time-linked sons. With the execution-time branching option, a node may
have several alternative sequences of descendents. The proper alternative
sequence is chosen during execution. The procedural net can be visualized
as having a "flat bottom" rather than a single thread of time links.

4-9

,·Suspended Plan Node

FIGURE 18. EXECUTION-TIME PLANNING

4-10

4.7 A Sample Scenario

The following is an example of the sequence of events that will take
place when the autonomous control system accepts a command such as:

Put Rock #12 on the shelf.

This is a high-level task-oriented instruction. The language translator
will first transform it into a semantic structure. This structure will be
input to the planner as the top node of the procedural net. The planner
will develop a detailed plan to execute the command by expanding the
procedural net as appropriate for the current state of the world. The
completed procedural net is then given to the execution controller which
follows the bottom links in the net, using sensory information to decide on
substep terminations. When the plan ends, a completion message is sent to
the operator ••

If any problem arises during planning or execution, the system can
conmunicate to the operator, by extracting information from the procedural
net, the exact place in the plan the problem arose. It can also indicate
what condition failed to be fulfilled thus aiding in solving the problem.
The corrective command given by the operator replaces the problematic part
of the plan and the process can resume as above. In most cases, however,
the system will contain enough specific knowledge to overcome small problems
without the operator's help.

4-11

5. WORLD MODEL

5.1 Typical Tasks

The world model, updated and maintained by the system itself, is
largely determined by the type of tasks that the system is expected to
perform. The scope of tasks addressed here may be called "pick up and transfer
tasks". In this general class we have the following examples:

Transfer objects from one location to another.
Put one object on top of anothe~ .
Pour liquid from a small containe~
Insert a stick into a hole.
Grasp and lift objects of various shapes.

In performing such tasks, the control language must be capable of specifying
(1) restrictions on trajectories, (2) approach paths to a peculiarly shaped
object, and (3) constraints on the orientation of the transferred object.
The world model must include enough information to plan the appropriate
trajectories that avoid known obstacles and to modify the trajectory if
an unexpected obstacle is sensed. As an example, a simple world model is
adopted which includes a description of the space that can be reached by the
manipulator and a representation of objects with the information relevant
for the tasks intended. The planning mechanism would be able to extract
specific items of data from this structured world model.

5.2 Space

In planning the trajectories in the working space, answers are
required for the following types of questions:

5-1

Is there an object at location (X,Y,Z)?
Which object is at (X, Y ,Z}?
Can the manipulator reach (X,Y,Z)?
What is a safe trajectory above all objects?

To answer these and other such questions, the working space is divided into
a convenient tesselation to supply operators with information for retrieval,
deletion, and insertion (see Figure 19). The following functions are typical
of those necessary to interact with the world model data base.

predicates: IS-OBJ-AT (Location)
ARM-REACH (Location)

retrieval functions: WHICH-OBJ (Location)

SAFE-TRAJEC (Ll,L2)

Is object at a given location?
Can the arm reach a given

location?

Which object is at a given
location?

Safe trajectory from Ll to L2?

change: SET-EMPTY (Location) Set given location empty.
SET-OCCUP (Location,obj) Set given location with object.

5. 3 Objects

The information retained about objects pertain to the typical tasks:
object pickup and transfer. Thus, there is no need in the first approximation
for a comprehensive object description. It should be sufficient to store
only the dimensions of the minimal box which can enclose the object, even
if the object itself is irregular (See Figure 20). The features associated
with each object in the world model and the corresponding retrieval
operators are described in the following sections.

5.3.1 Shape. Defined as the dimensions of the enclosing box in order of
decreasing lengths: length, width, depth. Operations that retrieve such
information are:

5-2

y x

FIGURE 19. THE SPACE TESSELATION

5-3

·'-

Depth

FIGURE 20. A MINIMALLY ENCLOSED OBJECT

5-4

LENGTH (obj)
WIDTH (obj)
DEPTH (obj)
SHAPE (obj)

5.3.2 Location. The position of the center of the enclosing box in
the coordinate system;

LOCATION (obj)

It may also be necessary to know the space (i.e. tessellation cubes) that
an object occupies so that his neighbors may be identified.

OCCUPY (obj)

5.3.3 Orientation. The orientation of the axis of the enclosing box
relative to the coordinate system. This information is needed to plan an
approach path for grasping the object.

ORIENTATION (obj)

5.3.4 Physical Features. Various other physical features are useful in
planning transfer of objects:

WEIGHT (obj)
BALANCE (obj)
SURFACE (obj)
PLIABLE (obj)
BREAKABLE (obj)
ELASTIC (obj)

- to decide whether to lift or push the object
- to identify problems of weight distribution
- smooth, rough, irregular, etc.
- hard-to-soft in several degrees.
- breakable - to exercise special care
- elastic-to-plastic

5-5

5.4 Changes to the World Model

When planning a sequence of actions that change some aspects of
the real world, specific changes must be taken into account even during
the construction of subsequent steps of the plan. Since most of the world
model is not changed during any of the actions that take place, it is quite
wasteful to duplicate the whole model after every action. The approach
taken by Sacerdoti (1975) is adopted which keeps a simple world model visible
at all steps (nodes) and only masks aspects which are changed. Thus,. the
system will retrieve the latest values assigned to those particular facts.

Figure 21 shows how facts about the world are accessed from the
current ·world model. The small bl.ocks represent individual changes to
particular facts and are 11 seen11 from the world model at time tc. Every
change 11masks 11 the previous value of that fact. From the current world
model (tc) the latest values of the facts are always available.

At planning time, changes are hypothetical; at execution time,
changes are actual. The hypothetical changes are assumed to have been
accomplished when developing nodes further in the plan and are used to
specify the later states of the world. During action-time, these hypothetical
changes can be used as tests for the success of a step. The state of the
world is compared with the hypothetical one when the execution control
finishes a particular node. When they are similar the action goes to the
next node, and if not, a corrective action can be taken.

5-6

initial
world
model

current
world
model

o--- ------- --.--
~-. ________ ... _ --- - -- ------- ---------

a..------------------

_.. - - --- ---- ------- --- --- -- ------- ---- -----

o -- ------ -- -- - -----

0 - -- -- ---- ---- -.... -- - - -- - --- -- -

FIGURE 21. UPDATING THE WORLD MODEL

5-7

6. ROBUST MANIPULATOR COMMAND LANGUAGE

The ease and efficiency of communication between the human user and
a manipulator control system can be enhanced if the commands are given in
a robust command language. 11 Robustness 11 is the capacity of a system to
accomplish its intended task when its input is inaccurate, unreliable, or
incomplete. A control system demonstrates robustness if it is able,
without external program modification, to adjust to vague instructions or
to a slightly perturbed environment. Such a system will usually exhibit
graceful degradation of performance as the actual situation encountered
gets more dissimilar to the expected input.

The technical approach to achieve this behavior is based on the
theory of fuzzy sets (Zadeh 1965; Kaufman 1975) which can be used as a
mathematical theory for modeling vague concepts as are commonly found in
natural language. Fuzzy sets were advantageously applied to robot planning
(Goguen 1974), to language conceptual sets (Zadeh 1965), to algorithms
(Zadeh 1968}, and many other aspects of concept formation~ manipulation,
and utilization. Recently, Shaket (1976) used fuzzy sets to model the
semantics of object classes and relations of a limited English-like language
in a manner which is convenient for reference. The system accepts instructions
in the form of simple indicative sentences and responds by indicating the
intended reference object. The system demonstrates robustness in the sense
that small changes in the instruction or in the state of the world do not
disturb it. A sample command in a robust manipulator command language would
be:

PUT THE BIG BAR AT THE CENTER OF THE VEHICLE.
'"- " -----.-------vb/noun group prep./group indicating location

The term BAR is not a label of a particular object but refers to a
fuzzy class of objects. In a particular setting, however, the interpreting

6-1

system would be able to resolve the expression "THE BIG BAR" into a
reference to a specific object in the scene. Notice that such a reference
mechanism does not require that the user know precisely size, shape or
location of the intended objects. Furthermore, such robust reference would
be functioning properly even if the scene is slightly changed. There may
be several additional small objects nearby. Additionally, a semantically
oriented planning system would know that in order to put an object somewhere,
that object must be picked up first, and would add the appropriate steps
into the plan it generates. Such a robust command language facilitates the
man-machine interaction in several major ways:

a. The user is relieved from the burden of remembering the
specific label or exact features of every object in the
scene. He can make the reference in a flexible and efficient
natural-language-like manner, which will be resolved by the
system to a specific reference.

b. The system is organized around semantic programs rather
than being syntactically oriented, and would not balk at
small syntactic errors. This may be called "syntactic
robustness".

c. The system embodies considerable semantic information of the
problem domain. Thus it can supply different items of
information that are required to perform a command successfully,
but were not specifically given in it.

6-2

7. SUMMARY AND FUTURE DEVELOPMENTS

An overall design and basic algorithms have been described for an
autonomous control system for remote manipulators which utilize sensory
feedback. The important points in the system's organization are:

1. Hierarchical, recursive organization of specific
knowledge about planning and execution in a particular
problem domain. This allows easy definition and use
of task-oriented constructs rather than dealing with
detailed chains of primitive manipulator operations.

2. Plan Structures, in the form of procedural nets, are
explicitly available for analysis and manipulation throughout
both the planning and execution phases. This contrasts
with other systems where the planning information is
hidden unaccessibly in the control structure of the
planning algorithm.

3. The procedural net is a combination of data and procedures
in a special language. This language has primitives useful
in planning and the flexibility of an interpreted execution.
The procedures that develop the net (construct, modify, or
delete subplans) can guide themselves according to four kinds
of data:

a. general information about the problem domain,
b. specific information in the updated world model,
c. planning information contained in the procedural net, and
d. missing information obtained by plan-time execution of

surveillance motions.

7-1

4. The procedural net is interpretively expanded in a breadth
first order. At every point in the expansion, the whole
plan at every higher level of detail is available for
interrogation. Thus, both backward and forward planriing become
possible.

5. The procedural net allows parallel processes to proceed
concurrently and to defer decisions until execution time.
A specific path of action will be decided according to
the results of tests performed on the real world when the
plan is carried out.

6. Plan execution is done interpretively by following the time
sequencing links in the procedural net.

7. Each primitive action is incremental and is controlled by
sensory information in a TOTE loop (Test-Operate-Test-Exit).
The tests are continuously monitored by a pool of conditions
which evaluate both sensory information and a dynamically
modified world model.

8. When problems or rare conditions occur, planning can be
initiated during execution to develop a correcting plan.
After this diversive plan is executed, the original task
can be resumed.

The conceptual design presented in this report is a first step
toward a compact working system. Three phases for further development
are suggested:

7-2

Phase l. Theoretical development and high-level language
implementation of the planning language, execution language, and world
representation. Demonstration of performance on a simulated manipulator.

Requirements:
l man/year
Large computer (POP 10)
One of the recent AI languages (QLISP)
100 K+ memory

Phase 2. Problem specific development. Programming problem­
specific knowledge as related to a specific manipulator in a given set of
tasks. Testing autonomous operation in a real environment.

Requirements:
2 man/years
minicomputer with real time interfaces
64 K memory

Phase 3. Implementation. Compression of computer programs to
space-worthiness.

Requirements:
l man/year
minicomputer and manipulator
32 K memory

7-3

8. REFERENCES

Ernst, G.W. and Newell, A. GPS: A Case Study in Generality and Problem
Solving. Academic Press, 1969.

Fikes, R.E. and Nilsson, N.J. STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving. Artificial Intelligence. 1971,
2: 189-208.

Fikes, R. E., et al. Learning and Executing Generalized Robot Plans.
Artificial Intelligence, 1972, l:251-288.

Finkel, R., et al. AL, A Programming System for Automation. Stanford
Artificial Intelligence Project, Memo No. 243, November 1974.

Goguen, J.A., Zadeh, L.A., et al, ed. "On Fuzzy Robot Planning", Fuzzy Sets
and their Applications to Cognitive and Decision Processes, Academic Press
Inc., New York, 1975, pp. 429-447.

Hendrix, G.G. Modeling Simultaneous Actions and Continuous Processes.
Artificial Intelligence, 1973, _1:145-180.

Kaufman, A. Introduction to the Theory of Fuzzy Subsets. Academic Press
(New York) 1975.

Kuipers, B.J. A Frame for Frames. Representation and Understanding, Studies·
in Cognitive Science, D.G. Bobrow and A. Collins (Eds.), Academic Press, 1975.

Miller, G.A., Galanter, E. and Pribarm, K.H. Plans and Structures of Behavior.
Holt, Rinehard and Winston, Inc. (New York) 1960.

Nilsson, N. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill,
1971.

Sacerdoti, E.D. A Structure for Plans and Behavior. SRI Artificial Intelligence
Center, Technical Note 109, 1975.

Sacerdoti, E.D. Planning in a Hierarchy of Abstraction Species. Third
International Joint Conference on AI, 1973, pp 412-422.

Shaket, E. Fuzzy Semantics for a Natural-Like Language Defined Over a World
of Blocks. University of California at Los Angeles, Artificial Intelligence
Memo No. 4, 1976.

Shirai, Y. Edge Finding, Segmentation of Edges and Recognition of Complex
Objects. Fourth International Joint Conference on Artificial Intelligence,
September 1975.

8-1

Winograd, T. Understanding Natural Language. Academic Press {New York)
1972.

Zadeh, L.A. Fuzzy Sets. Information and Control, 1965, 8:338-353.

Zadeh, L.A. Fuzzy Algorithms. Information and Control, February 1968,
12: 94-102.

Zucker, S.W. Region Growing: Childhood and Adolesence. Univ. of Maryland,
Comp. Science Technical Report TR-370, April 1975.

8-2

APPENDIX: PROCEDURAL NET EXPANSION EXAMPLE

The following example will illustrate the detailed operation of the
node expansion algorithm as shown in Figures 10 and 11. Assume that the
user has given a high-level command which, when expanded completely, will
decompose into the following procedural net representation.

Assume further that the algorithm has already expanded the initial command
{node l) for one complete layer. The current net, therefore, appears as
follows along with the contents of the node stack.

A-1

2

3

4

Since node l has just been completely expanded and popped from the
top of the stack, the algorithm now calls for the expansion of node 2 (see
Figure 10). The steps of the algorithm will be followed showing the progress
toward completion.

l. Expand node 2 (top of stack).

2. Create first son (node 5).

2

3

4

3. Since node 5 is a first son, time-link it to the predecessor of the node at
the top of the stack (start).

---.i>-~

A-2

2

3

4

4. Place son on the bottom of the stack.

5. Create the next son of node 2 (node 6) noting that it is the last son.

--->=-~

6. Time-link node 6 to the node at the bottom of the stack (node 5)

A-3

2

3

4

5

2

3

4

5

7. Place son (node 6) on bottom of stack.

8. Time-link son to successor of node at the top of the stack (node 3).

2

3

4

5

6

9. Exit to outer loop; pop top of stack; expand next node (node 3). Notice
that at this point, a complete plan exists in the net for accomplishing
the initial command. This property is always true at the end of each
node expansion cycle.

10. Node 3 has no sons.

11. Exit to outer loop; pop top of stack; expand node 4.

A-4

12. Create first son (node 7) of node 4.

4

-->--~~ 5

6

13. Time-link son to predecessor of node at top of stack (node 3).

14. Place son on bottom of stack.

A-5

4

5

6

7

15. Create last son of node 4 (node 8).

16. Time-link node 8 to node 7.

17. Place son on bottom of stack.

A-6

4

--_...;;>-~ 5

4

5
__ ...;:.,.::i..- G&J 6

7

8

6

7

18. Time-link son (node 8) to successor of node at top of stack (end).

19. Since nodes 5 through 8 have no sons (by assumption), the stack will be
popped until it is empty. This completes the procedural net expansion.

A-7

