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1. INTRODUCTION AND BACKGROUND 

1.1 General 

This is the final report on an overall conceptual design for an 
autonomous control system of remote manipulators which utilizes feedback. 
The system consists of a description of the high-level capabilities of 
a model from which design algorithms can be constructed. For the current 
remote manipulator system, the design goal is: 

To perform simple remote manipulation tasks in a partially 
unknown environment without human assistance. 

The autonomous capability is achieved through au~omatic planning 
and locally controlled execution of the plans. The operator gives his 
commands in high level task-oriented terms. The system transforms these 
commands into a plan -- a sequence of detailed low-level commands. It 
uses built-in procedural knowledge of the problem domain and an internal 
model of the current state of the world. The plans include mechanisms to 
control execution using information collected from input sensors. They 
are also capable of recovering from execution problems by building 
alternative subplans. The following are samples of primitive commands 
into which a high-level operator command is transformed: 

· (1) Open and close jaws.· 
(2) Control each link of the manipulator. 
(3) Orient hand position by wrist movement. 
(4) Move hand to a predesignated position (coordinate in 3-space). 

Figure 1 shows a typical manipulator configuration with four proximity 
sensors capable of detecting nearby objects. 
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FIGURE 1. MANIPULATOR HAND WITH SENSORS 
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In addition, information can be obtained that specifies the current state 
of the arm and hand. For example, the following information will be 
considered to be available at any time: 

(1) Current location, speed, and force in each link. 
(2) The global current location of the hand. 
(3) Hand orientation (including twist). 
(4) Current values of all sensor readings. 
(5) Inward force being applied to jaws. 
(6) Vector of forces at the wrist. 

The data processing requirements of the final system will be limited to 
the memory and processing capability found on current mini-computers. That 
is, the algorithms wi 11 eventually be 1 oca l ly imp 1 emented. 

1.2 State Space Models 

Most of the problem solving systems developed by research in 
Artificial Intelligence (AI) are based on some variation of the state 
space model. A problem presented in this formalization consists of an 
initial state, a set of possible subsequent states, and a set of possible 
actions, together with a specification of how the various states can be 
produced from each other by different actions. A solution to a state 
space problem is any sequence of actions that leads from the initial state 
to the desired "goal" state and avoids undesired states (Nilsson, 1971). 

Essentially, the algorithms devised to solve problems formulated in 
the state space model are graph searching algorithms. By representing the 
state space model as a graph with states as nodes and actions as arcs, the 
algorithms can expand the nodes of the graph in some order by applying 
all applicable operators to each node in turn. When a goal node is 
encountered, the path to it from the starting state is retraced and is given 
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as the solution. The order of node_ expansion in these systems is determined 
by increasingly complex heuristic methods, such as static state evaluation 
functions, dynamic ordering, various pruning methods, or combinations of 
these. 

The search space formulation for any significant part of a real 
world problem proves to be much too large for a successful application of 
these problem solving approaches. This weakness can be attributed to the 
required uniform application of operators to states thus limiting the 
number of operators that can be considered at each step to a very small number. 
Furthermore, the problem specific information -- the heuristics -- is 
incidental to the underlying blind search mechanism. Additional problems 
with the model are the discrete nature of the modeling of world states 
and time, and its incapability to consider events influenced by decisions 
done by processes outside the searching algorithm. 

1.3 Theorem Proving Methods 

Building on an analogy between the processes of proving theorems 
and problem solving, later systems tried to use automatic resolution 
algorithms to solve problems. In these systems the world model is 
represented as a set of well formed formulas (wffs) of the first order 
predicate calculus. Operators are defined in terms of preconditions which 
must be satisfied in a given world model for the operator to be applicable 
there, as well as a set of 11 add 11 and "delete" wffs which specify the 
changes to the world model accomplished by applying the operator. STRIPS. 
(Fikes, 1971) is the best known system employing this formulation. It 
uses means-ends analysis as in GPS (Ernst and Newell, 1969) to find which 
operators are relevant to reducing the "difference" between the current 
world model and the desired goal. It uses resolution theorem proving to 
test the applicability of the relevant operators in a given world model. 
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Experience with STRIPS has shown that although a powerful heuristic 
had been added to the search procedure, the system is bogged down by the 
resolution proof algorithm when it is applied to the large unstructured 
set of wffs representing a world model. The system was not successful in 
finding a solution composite operator when more than about ten steps were 
needed in the solution. Also, the solution time was an exponential function 

of the length of the solution path. 

1.4 Search in Abstraction Space 

A later version of this approach, ABSTRIPS (Sacerdoti 1973) 
has achieved a significant reduction in the amount of search performed by 
the system by conducting the search in a hierarchy of problem spaces at 
various levels of abstractions. A very crude interpretation of the concept 
of "levels of abstraction" is adopted here. The preconditions of the 
various operators are sorted and taged according to an estimate of their 
importance. Starting at a high level of abstraction, only the most 
important preconditions are considered by the search algorithm. Thus, the 
amount of detail that the system has t_o consider is reduced considerably and 
it can find a sequence of important subgoals leading from the starting 
state to the goal. Subsequently, the system searches for paths between 
these "island state~" considering the operators in more and more detail. 
ABSTRIPS was successful in finding solution paths containing up to two hundred 
steps and the search effort increased much slower as a function of solution 
length. 

1.5 Planning and the Procedural Net 

The problem solving systems discussed above employ some general 
mechanism which is applied uniformly to a formulation of domain specific 
information. This generality is paid for by reducing the complexity of 
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the problems that such a system can solve. Still, a substantial amount 
of domain-specific information has to be incorporated into the states, 
the operators and the relations between them. Rather than add domain­
specific information as an afterthought, Finkel, et al (1974} adopted a more 
direct programming approach. His system, called AL, is a programming 
system for developing specifications of tasks for industrial manipulators. 

An interesting planning mechanism was proposed by Sacerdoti (1975) 
who used a construct which is called a procedural net. The system was 
developed as a mechanism to give advice to a human apprentice. The 
procedural net is a hierarchically organized combination of data structures 
and procedures from which step-by-step directions to accomplish a given 
task can be easily extracted. The net can generate the instructions at 
various levels of detail depending on the sophistication of the apprentice. 
It has the capability of controlling the execution of a plan and recovering 
from errors. 

1.6 Sensor Utilization 

A significant part of Artificial Intelligence research on sensory 
input has concentrated on visual sensors, that is, sensing the environment 
by some form of television camera and using the acquired information to 
construct an internal symbolic model of the scene. This approach involves 
scene analysis techniques and complex algorithms for machine perception. 
Furthermore, the more successful systems to date achieved reasonable success 
only in a scene which included polyhedron objects where clear edges are 
used as clues for segmenting the scene into separate objects. Analysis. 
of real image data achieved much less success (Shirai 1975) with well lit 
complex objects and (Zucker 1975) describing region growing. This can 
be attributed to the lack of appropriate mechanisms to represent a real 
scene which usually includes irregular objects. Although ultimately 
functionally optimum, as it provides a gross view plus local details of the 
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environment, visual perception is premature both theoretically and practically 
since it requires complicated hardware as well as complex software structure. 

Direct sensing of the environment by a manipulator through some 
set.of sensors, and using this information in a local execution control 
program, offers a more immediate and practical solution to the problem of 
utilizing sensory information for the control of motion in a real environment. 
With only local sensory infonnation, however, such as tactile, force, or 
proximity, the manipulator can obtain data for an internal model when planning 
global manipulations. 

An analogy is commonly drawn between the data associated with a 
program in a computing system and the data obtained by sensors in the real 
environment of a manipulator control system. There are, however, significant 
differences which impose substantial changes in attitude and organization 
on the system which interprets.and uses the sensor data. Program data is 
defined by the programmer and is available in simple known structures {such 
as vectors, arrays or 1 ists) to best suit the algorithm which uses it. The 
amount of data that is generated or obtained by a program is determined by 

how much is needed and can be used. In most cases all the data needed for 
a program is accessible (within the access structure of the programming 
language). When an instruction is given in a programming language, its 
correct, well-defined execution is assumed. With sensory data, on the 
other hand, only the superficial aspects of the data are known in advance. 
It is highly redundant and contains hidden complex structures. These are 
not immediately apparent in the local sensory level -- the perception 
process must impose a global structure on the observational data to render 
it meaningful. The amount of data obtainable from a real scene by various 
sensor aparatus is prohibitive. Data reduction is mandatory and the important 
issues are what information is relevant, where it can be obtained, and how 
it should be used, all within the resources available. The sensory apparatus 
available to the system can never be complete or perfectly accurate. The 
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world picture so obtained must always be a distorted partial truth. 
Consequently, the sensory information must be considered suspicious until 
properly verified by several sources. On the output side, a control 
command cannot be assumed executed until some evidence is available to 
verify it. 

The system described in this report, which uses sensory information 
to control the motions of the manipulator, is an initial attempt to address 
these issues. The mechanism proposed is an application of the 11 TOTE 11 

(Test-Operate-Test-Exit) unit developed by Miller, et al (1960). This type 
of loop control will be described in detail in a subsequent section. 



2. SYSTEM OVERVIEW 

2.1 Global System Organization 

The essential function of the system, as can be seen in the block 
diagram in Figure 2, is to transform task oriented commands given by 
the operator into an explicit, detailed command sequence compatible with 
the manipulator hardware. The information transmitted between the blocks 
can be viewed as a hierarchy of languages with an appropriate processor 
translating from one stage to the next. Going from left to right in the 
figure, the languages become more specific and detailed. Each processor 
considers its input as commands from its predecessor, using problem-domain 
knowledge from the world model to construct expressions in a lower level 
language. These, in turn~ are commands for the next stage. The three 
blocks in the figure essentially perform the following functions. The 
fuzzy language translator accepts high level commands in a fuzzy, task 
oriented user-compatible command language. The planner and goal oriented 
execution controller performs planning and transforms a general, high level 
command, using the specific state of the environment, into a detailed 
sequence of specific commands for the manipulator. The low level controller 
utilizes the information from various sensors to control the execution of 
the detailed plans generated for it. 

The world model contains procedural information required at the 
various translation levels. To aid in translati_ng fuzzy commands to 
semantic structures, the world model contains information about the specific 
information necessary to instantiate an incomplete command. It also contains 
procedures for filling in missing information according to the current and 
expected state of the environment. For translating from semantic structures 
to primitive commands, the world model has a collection of hierarchial skeletal 
plans which embody the domain specific planning knowledge. These procedures 
are used in expanding a high level command into a detailed plan. Finally, 
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it contains an explicit updated model of the world which is maintained 
while the manipulator actions are taking place. It is capable of monitoring 
continuous processes in the environment which change without the manipulator's 
initiation or outside of the immediate scope of its sensors. 

2.2 Low Level Control 

The low level subsystem in Figure 3 is organized around primitive 
control commands which contain two parts: {a) an incremental command (with 
parameters) and {b) termination and continuation conditions. When a command 
is given to the 11 Move Increment Calculator 11 , an incremental command for the 
manipulator links is generated. The "Arm Monitor" compares the signals going 
outward to the manipulator with the position and speed sensors at the links 
and keeps track of the manipulator current position. "Pending Sensory Conditions 11 

contains various monitors, established globally or with the current primitive 
command, that watch for particular events in the world model, problems in 
the manipulator motions, or particular patterns in the sensory information. 
When such an event occurs, an interrupt is issued to stop the incremental 
motion and to the 11 Execution Control" {Figure 2) which wi 11 decide on 
the next move. Finkel (1974) controlled primitive commands with similar 
sensory dependent termination conditions. 

2.3 Planning and Execution Control 

This subsystem {Figure 4) contains two interpreters: one for generating 
plans from the given commands and the other for monitoring the execution of 
these plans. Plans are expressed in the system as a hierarchical collection 
of skeleton plans in a special programming language. The primitives of 
this language are operators and processes useful in developing a detailed 
plan from a high level command. 

The planning interpreter, (Planner), accepts commands either from 
the operator or from semantic structures from the fuzzy language translator. 
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Guided by the domain-specific knowledge contained in the hierarcy of the 
skeleton plan, it constructs the procedural net corresponding to the 
given command. The procedural net is a combination of the data and procedures 
that is expanded 11 top-down 11 in a breadth first order and represents in a 
hierarchical manner the sequence of actions that must take place in order 
to accomplish the high level command in the current setting. The procedural 
net, when developed down to primitive actions, is given to the 11 Execution 
Control" for execution. 

The interaction between the Planner and the Execution Controller is 
two-directional to allow for two capabilities: (l) plan-time execution --
a surveillance motion which is actually carri~d out during planning to obtain 
crucial information needed for the planning process and (2) execution-
time planning -- actually interrupting the execution to perform required 
planning. 

2.4 Fuzzy Language Translator 

This subsystem (see Figure 5) provides natural communication with 
the user. It accepts as input fuzzy instructions in a language compatible 
with the user. It contains morphonic, syntactic, and semantic knowledge 
about the problem domain in general and the specific state of the current 
environment to properly interpret the user's instructions. Semantic structures 
are produced which are commands compatible with the planner. This subsystem 
is similar to the system described by Winograd ( 1972) modified to handle 
the fuzzy concepts common in natural lnaguage. The Answer/Inquiry Generator 
provides communication in the opposite direction, to ask the user for 
clarifications of ambiguous commands to produce answers to his inquiries 
about the state of the world or any internal state of the system. 
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3. PLANNING 

3.1 The Procedural Net 

The planning process is accomplished by building a structure called 
a "procedural net 11 {Sacerdoti, 1975) for each high level command given. 
Each node in the net represents a step in the plan at some level of 
abstraction. The net development begins at the top with a simple node 
indicating the operator's command at the highest level of abstraction. This 
task is then broken down into a sequence of subtasks and is represented as 
a connected chain of nodes at the next lower level of the net. Each 11 son 11 

node is connected to its "father" node by an arc in the net. Further, the 
time sequence of subtask execution is reflected in the links connecting the 
sons in a linear chain. These time-links are maintained as the net is 
being developed and always exists at the lowest level of abstraction 
developed so far. Consequently, if the planning process is halted at any 
time, a complete plan will exist for accomplishing the original task at some 
level of abstraction. The planning process is carried on until the bottom 
nodes in the net all represent primitive commands executable directly by the 
teleoperator. A procedural net is illustrated schematically in Figure 6. 

3.2 The Structure of a Node 

Since each node represents a step in the plan at some level of 
abstraction, it has a goal -- or statement of intention. It can thus stand 
alone as a task unit. It is connected by double-linked lists to its 
"relatives": (l) its "father" (the node in the hierarchy of which it is a 
part}, (2) its previous and next "brothers" {empty if it is a first or last 
son), and (3) its sequence of "sons" {the detailed expansion of its own 
definition). 

A node has additional information that is vital to successful planning 
(see Figure 7). This information is stored at the node along with the links 
to adjacent nodes. A node has: 
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(1) a name which is either specified by the user or implied, 

(2) a goal stated in terms of a subtask, 

(3) a planning language procedure that is a program for producing 
the next generation of the node, 

(4) an execution language procedure which is executed when the 
plan is carried out (lowest level only}, 

(5) a parameter list which is acted upon by the node, 

(6) a list of changes to the world model (a procedure that modifies 
the world model data base), and 

(7) a feature list which summarizes information about the particular 
action the node represents. 

3.3 The Planning Language Interpreter Algorithm 

The interpreter has a set of ready-made programs which represent the 
planning semantics of the problem domain. Statements in the language can 
generate nodes in the procedural net, test conditions in the real world, 
and compare features of nodes in the net. The interpreter develops each 
node one level down at each step. That is, it generates all the sons of 
a node and puts them at the end of an "OPEN" queue to be interpreted at 
a later time. The basic operator which generates a node is PLAN which has 
the following syntax: 

PLAN 

END 

NAME (ARGUMENTS) 
GOAL STATEMENT 
SUBPLANS 
EXECUTION EXPRESSION 
WORLD MODEL CHANGES 
FEATURES 
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For example, a typical sample plan for a "transfer" command is: 

PLAN TRANSFER (OBJl LOCl LOC2) 
~ GOAL (QUOTE TRANSFER OBJECT) 

END 

PLAN (PICKUP (OBJ}) · 
PLAN (CARRY (LOCATION OBJ (OBJ)) LOC2) 
PLAN (PUTDOWN (OBJ)) 
WMSETLOC (OBJ, LOC2) (i.e. world model, set location of 

OBJ TO LOC2) 
FEATURES( ..• ) 

When this program (which is associated with the node "transfer") is interpreted, 
each PLAN operator within the definition establishes a new sibling node 
(subplan) putting the appropriate call in the program slot. The sequencing 
time-links are also established at this time. (See Figure 8) 

The node expansion algorithm establishes new nodes in a 11 breadth­
first11 order. That is, all nodes at one level are created before any nodes 
at lower levels. Figure 9 shows an example of node expansion using breadth­
first ordering. The nodes in the example are numbered in the order of 
generation. "Expanding" a node means interpreting the plan language 
expressions associated with the definition of the node and creating all "sons". 
As each node in a given abstraction level is expanded, all nodes in the 
succeeding level are created. Then, these are expanded, etc. Finally, the 
lowest level is reached and the net is complete. The time-links are kept 
up-to-date during node expansion. 

The flowcharts in Figures 10 and 11 describe the detailed algorithm 
of node expansion. Figure 10 shows the control loop that expands one node 
at a time. The expansion mechanism requires the maintenance of a 11 first-in­
first-out11 node stack in order to monitor the order of expansion. It is 
initialized with the given command node. During the operation of the 
algorithm, the node being expanded is found at the top of the stack. This 
basic algorithm generates a flat tree procedural net with a linearly-linked 
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execution sequence at the bottom. A detailed example of the algorithm can 
be found in the Appendix. 

3.4 Context Dependency 

Developing the procedural net in a breadth-first order, so that each 
node is expanded to several nodes, is equivalent to a context-free generative 
grammar where the decision as to which expansion to choose depends on the 
state of the world. In the proposed system it is possible to add a flexible 
facility for context dependency. A set of pointers (and operators to move 
them up and down the net) must be available so that predicates relating to 
conditions of different nodes in the tree can be evaluated and used for 
planning. The availability of all of the information in the procedural net 
and the possibility of conditioning the expansion of a given node on the 
contents of any node in the net, make the planning procedure more general 
and powerful. For example, the following expression shows how different nodes 
can be created depending on a given condition. 

IF HEAVY (OBJ) THEN PLAN (PUSH (OBJ, LOCl, LOC2)) 
ELSE PLAN (TRANSFER {OBJ, LOCl, LOC2)) 

The expansion thus depends on the properties of the object associated with 
one of the planning variables. 

3.5 Backward Planning 

An additional dimension of flexibility which can be called "backward 
planning" can be added to the system if the operations of deletion and 
insertion into the net are available. Using predicates that evaluate conditions 
on the net or in the world model, any previously created subtree can be changed 
based on current knowledge. 
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Figure 12 shows an example of backward planning. One of the sons 
of node P is deleted by planning expressions at node S. Typical operations 
that can be performed include deletion, insertion, interchange of subtrees, 
copying features from one node to another, etc. This is called backward 
planning because the active node modifies the structure of nodes already on 
the net. Since more information is available at a later time, it can be 
used to modify previously constructed plans. 

3.6 Forward Planning 

In many cases, planning decisions must be temporarily deferred 
until information is available at a lower level. This can be accomplished 
by 11 forward planning" which allows conditional expressions to be stored at 
nodes not yet interpreted. Thus, the particular conceptual step associated 
with a single node need not be determined until the last moment before 
interpretation. For example, 

PLAN (IF HEAVY (OBJ) THEN PUSH (OBJ, LOCl, LOC2) 
ELSE TRANSFER (OBJ, LOCl, LOC2)) 

As shown above, the decision to PUSH or TRANSFER is made after 
one complete additional net level has been constructed thus providing 
information required for the decision. Notice that, contrary to the 
expression shown for backward planning, the conditional statement is inside 
the scope of the PLAN statement. The net structure would appear as shown 
in Figure 13. 

This can be accomplished by storing the expansion expression at 
the node itself. Later, as the node is about to be expanded, its definition 
(and name) can be determined based on new information. 
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FIGURE 12. BACKWARD PLANNING 
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3.7 Operator/User Interaction 

When the planning is stuck or an action fails to accomplish the 
11 promised 11 changes to the world, a message is sent to the operator. The 
hierarchical organization of the net and the declaration of purpose at each 
node are very helpful in .making these messages easy to generate and meaningful 
to the operator. When a failure occurs, a message is constructed from the 
path from the failure node in the hierarchy to the top-most node (see 
Figure 14). Further dialogue can clarify the relations between these nodes 
and the global plan. 
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4. EXECUTION 

4. l Execution Control 

The planning process -- developing the procedural net -- proceeds 
as described in the previous section until the net is fully expanded, that 
is, when all the nodes at the bottom level of the net contain only execution­
time commands. In this final form, a continuous chain of time links is threaded 
from the START indicator through all primitive actions at the bottom of the 
procedural net in order of their planned execution to the terminating END 
indicator. 

The EXECUTION control interpreter accepts such a fu.l ly developed 
procedural net as input and proceeds, following the time sequencing links, 
to interpret the execution language expressions associated with each node. 
There are three types of expressions: 

1. Sensor-controlled primitive actions 
2. Execution-time planning expressions 
3. Execution-time branching expressions. 

Each of these expression types serves a special function in the execution 
sequence. 

4.2 Sensor-Controlled Primitive Actions 

The basic mechanism by which the system can control manipulator 
actions using sensory information is the TOTE loop, which stands for 
Test Operate Test Exit. (See Figure 15) The operation or action to be 
performed is defined as incremental actions executed from the current state 
of the manipulator. For example, a CLOSEGRIP command would cause the gripper 
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to be closed some incremental distance from its current position. Similarly, 
MOVE {X,Y,Z) would cause an incremental move of the manipulator in the 
direction of the vector X,Y,Z. 

The test block represents any one of a variety of conditions that 
may cause the termination of the execution of a TOTE loop. For any given 
action there will be a collection of pending conditions controlling its 
termination, each with a varying scope of influence. Consequently, the 
conditions are not organized in a simple loop mechanism as shown above. As 
shown in Figure 3, the block diagram of the Low Level Control subsystem, the 
Execution Control interpreter accepts procedural net plans as input. It 
establishes at each step in the plan the appropriate set of condition 
monitors for this step. It then issues a command to the block which 
calculates the actual move with the proper set of parameters and initiates 
the manipulator motion. This motion continues in incremental steps until 
one or more of the pending conditions generates an interrupt. Execution 
Control will then exit from the current expression, terminate the motion, 
and proceed to the next step. Notice that the conditions that are monitored 
in the "Pending Conditions" block may have several origins: 

1. a pattern in the sensory information, 

2. a pattern in the manipulator position, 

3. a relation or event in the world model which is continuously 
updated, 

4. a time related condition, 

5. a combination of these. 

The Execution controller repeats these steps for each node in the procedural 
net time sequence until the END node is encountered. 
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4.3 Primitive Action Syntax 

A condition which controls a given action may cause one of several 
types of exits from the execution loop. These types are indicated by 
special key words whose meaning is explained below. The content of an 
execution node in the procedural net would thus have the form of a multiple 
exit branching point. The following are typical examples of execution 
condition control statements. 

IF-FAIL expression 

WHILE condition IF-FAIL expression 

UNTIL condition THEN expression 

DEFAULT-END condition THEN expression 

The various key words cause the following type of exits. 

a. UNTIL condition THEN expression 

This is the intended exit from the action. When the 
condition is satisfied, the manipulator is at the desired 
position. In the THEN clause, the functions which would 
make the proper changes in the world model are indicated or 
possibly some other actions needed before the next manipulator 
motion is initiated. 

b. WHILE condition IF-FAIL expression 

These conditions must hold true throughout the duration of 
this primitive action. For example, when transferring an 
object from point A to point B, the object must be sensed 
between the grippers during the entire motion. If this 
condition fails before the normal termination condition is 
satisfied, the IF-FAIL expression will be executed. 
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c. IF-FAIL expression 

This branch is taken if the manipulator fails to execute 
the command given to it, that is, the position monitor did 
not record the proper change in the links' positions. 
The expression is defined as the series of actions that will 
be taken to overcome the problem. 

d. DEFAULT-END aondition THEN e:x:pression 

This branch holds a default test to avoid an infinite loop 
on the. incremental action or possible damage to the manipulator 
itself. For example, if a grasp action closes the gripper 
without touching any object (i.e., the UNTIL condition is not 
satisfied but the WHILE condition is) the action must be 
terminated and an alternative plan developed. 

4.4 Wider Scope Conditions 

In the discussion above, all the four types of termination conditions 
were associated with a single primitive tip node in the procedural net. In 
general, the hierarchical organization of the procedural net can be 
utilized to allow execution-time conditions to be associated with any node 
in the hierarchy. The monitor controlling the condition associated with 
such a high-level node would survive during the execution of all its 
descendents. That is, the high level node would have a 11 scope11 of operation. 
Each node in the net which is a first descendent or a last descendent already 
has an indicator to that effect (see net expansion algorithm). When the 
execution controller enters a tip node that is a first descendent, it will 
climb the "father links", establish all the conditional monitors it encounters 
until it reaches the first node which is not a first son. This is shown in 
Figure 16. Similarly, when a last descendent node is encountered, a climb 
on the "father links" will reveal which condition monitors should be deactivated. 
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Extending this capability to the limit,conditions associated with the top 
node in the net and their corresponding monitors are alive globally and are 
always there to guard against global damages. For example, such a monitor 
may watch for any motion which reaches the limit of the manipulator's 
extension capabilities. 

4.5 Transfer of Control Between Planning and Execution 

The relation between planning and execution is not a simple one-way 
transfer of control. On one hand, it may happen that some information 
needed for planning is not currently available and can be obtained only 
by plan-time actions. On the other hand, it is not possible to plan 
ahead for all eventualities either because some of the possibilities are 
very rare and the planning effort is not justified, or because not enough 
information is available at planning time and details of the situation are 
needed to plan that specific action. In such cases, it is possible to 
resort both to planning during execution and to execution during planning. 

4.5.1 Plan-Time Execution. If an item of information is needed that 
cannot be found in either the procedural net or the world model data base. 
planning can be suspended in order to initiate execution of a reconnaissance 
task. This capability allows a recursive activation of the entire system 
which constitutes planning, action execution, and information storage. 
{See Figure 17) When control is returned to the planning phase of the 
original task, the required information should be in the world model data 
base. 

4.5.2 Execution Time Planning. 
planning to the execution phase. 

In some cases, it is necessary to defer 
It may happen that information available 

only at execution time is required to generate a plan, or that sequence 
of actions is such a rare case that the effort of expanding a plan for 
it is not justified at the initial planning phase. For example, during 
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·a task of carrying an object, a WHILE condition may test if the carried 
object is still between the grippers. If it fails, planning is initiated 
for a PICKUP. 

MOVE {OBJ) 

WHILE HOLDING IF-FAIL PLAN PICKUP 

The PICKUP plan will use information available in the current state of 
the world and at the time the object was dropped. An expression at a 
tip node may actually call the entire planner system into action. The 
manipulative action will be halted during this planning phase and resumed 
afterwards. Figure 18 shows this process schematically. 

4.6 Execution Time Branching 

In some cases, decisions cannot be made at planning time because 
the choice of action to be taken depends on the outcome of an execution-time 
test. For example, in the plan to pick up a tool, like a screwdriver, a 
different approach trajectory must be taken depending on whether the tool 
is lying flat on a surface, or is standing vertically in a tool box .. This 
fact is not always known in advance. 

Adding this capability of deferring decisions to execution time 
enhances the flexibility of the planning system. Corresponding changes 
would be made to the procedural net and its expansion algorithm. For example, 
in the procedural net described in Section 3, each node had one sequence of 
time-linked sons. With the execution-time branching option, a node may 
have several alternative sequences of descendents. The proper alternative 
sequence is chosen during execution. The procedural net can be visualized 
as having a "flat bottom" rather than a single thread of time links. 
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4.7 A Sample Scenario 

The following is an example of the sequence of events that will take 
place when the autonomous control system accepts a command such as: 

Put Rock #12 on the shelf. 

This is a high-level task-oriented instruction. The language translator 
will first transform it into a semantic structure. This structure will be 
input to the planner as the top node of the procedural net. The planner 
will develop a detailed plan to execute the command by expanding the 
procedural net as appropriate for the current state of the world. The 
completed procedural net is then given to the execution controller which 
follows the bottom links in the net, using sensory information to decide on 
substep terminations. When the plan ends, a completion message is sent to 
the operator •• 

If any problem arises during planning or execution, the system can 
conmunicate to the operator, by extracting information from the procedural 
net, the exact place in the plan the problem arose. It can also indicate 
what condition failed to be fulfilled thus aiding in solving the problem. 
The corrective command given by the operator replaces the problematic part 
of the plan and the process can resume as above. In most cases, however, 
the system will contain enough specific knowledge to overcome small problems 
without the operator's help. 
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5. WORLD MODEL 

5.1 Typical Tasks 

The world model, updated and maintained by the system itself, is 
largely determined by the type of tasks that the system is expected to 
perform. The scope of tasks addressed here may be called "pick up and transfer 
tasks". In this general class we have the following examples: 

Transfer objects from one location to another. 
Put one object on top of anothe~ . 
Pour liquid from a small containe~ 
Insert a stick into a hole. 
Grasp and lift objects of various shapes. 

In performing such tasks, the control language must be capable of specifying 
(1) restrictions on trajectories, (2) approach paths to a peculiarly shaped 
object, and (3) constraints on the orientation of the transferred object. 
The world model must include enough information to plan the appropriate 
trajectories that avoid known obstacles and to modify the trajectory if 
an unexpected obstacle is sensed. As an example, a simple world model is 
adopted which includes a description of the space that can be reached by the 
manipulator and a representation of objects with the information relevant 
for the tasks intended. The planning mechanism would be able to extract 
specific items of data from this structured world model. 

5.2 Space 

In planning the trajectories in the working space, answers are 
required for the following types of questions: 
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Is there an object at location (X,Y,Z)? 
Which object is at (X, Y ,Z}? 
Can the manipulator reach (X,Y,Z)? 
What is a safe trajectory above all objects? 

To answer these and other such questions, the working space is divided into 
a convenient tesselation to supply operators with information for retrieval, 
deletion, and insertion (see Figure 19). The following functions are typical 
of those necessary to interact with the world model data base. 

predicates: IS-OBJ-AT (Location) 
ARM-REACH (Location) 

retrieval functions: WHICH-OBJ (Location) 

SAFE-TRAJEC (Ll,L2) 

Is object at a given location? 
Can the arm reach a given 

location? 

Which object is at a given 
location? 

Safe trajectory from Ll to L2? 

change: SET-EMPTY (Location) Set given location empty. 
SET-OCCUP (Location,obj) Set given location with object. 

5. 3 Objects 

The information retained about objects pertain to the typical tasks: 
object pickup and transfer. Thus, there is no need in the first approximation 
for a comprehensive object description. It should be sufficient to store 
only the dimensions of the minimal box which can enclose the object, even 
if the object itself is irregular (See Figure 20). The features associated 
with each object in the world model and the corresponding retrieval 
operators are described in the following sections. 

5.3.1 Shape. Defined as the dimensions of the enclosing box in order of 
decreasing lengths: length, width, depth. Operations that retrieve such 
information are: 
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LENGTH (obj) 
WIDTH (obj) 
DEPTH (obj) 
SHAPE (obj) 

5.3.2 Location. The position of the center of the enclosing box in 
the coordinate system; 

LOCATION (obj) 

It may also be necessary to know the space (i.e. tessellation cubes) that 
an object occupies so that his neighbors may be identified. 

OCCUPY (obj ) 

5.3.3 Orientation. The orientation of the axis of the enclosing box 
relative to the coordinate system. This information is needed to plan an 
approach path for grasping the object. 

ORIENTATION (obj) 

5.3.4 Physical Features. Various other physical features are useful in 
planning transfer of objects: 

WEIGHT (obj) 
BALANCE (obj) 
SURFACE (obj) 
PLIABLE (obj) 
BREAKABLE (obj) 
ELASTIC (obj) 

- to decide whether to lift or push the object 
- to identify problems of weight distribution 
- smooth, rough, irregular, etc. 
- hard-to-soft in several degrees. 
- breakable - to exercise special care 
- elastic-to-plastic 
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5.4 Changes to the World Model 

When planning a sequence of actions that change some aspects of 
the real world, specific changes must be taken into account even during 
the construction of subsequent steps of the plan. Since most of the world 
model is not changed during any of the actions that take place, it is quite 
wasteful to duplicate the whole model after every action. The approach 
taken by Sacerdoti (1975) is adopted which keeps a simple world model visible 
at all steps (nodes) and only masks aspects which are changed. Thus,. the 
system will retrieve the latest values assigned to those particular facts. 

Figure 21 shows how facts about the world are accessed from the 
current ·world model. The small bl.ocks represent individual changes to 
particular facts and are 11 seen11 from the world model at time tc. Every 
change 11masks 11 the previous value of that fact. From the current world 
model (tc) the latest values of the facts are always available. 

At planning time, changes are hypothetical; at execution time, 
changes are actual. The hypothetical changes are assumed to have been 
accomplished when developing nodes further in the plan and are used to 
specify the later states of the world. During action-time, these hypothetical 
changes can be used as tests for the success of a step. The state of the 
world is compared with the hypothetical one when the execution control 
finishes a particular node. When they are similar the action goes to the 
next node, and if not, a corrective action can be taken. 

5-6 



initial 
world 
model 

current 
world 
model 

o--- ------- --.--
~-. ________ ... _ --- - -- ------- ---------

a..------------------

_.. - - --- ---- ------- --- --- -- ------- ---- -----

o .... -- ------ -- -- - -----

0 - -- -- ---- ---- -.... -- - - -- - --- -- -

FIGURE 21. UPDATING THE WORLD MODEL 

5-7 



6. ROBUST MANIPULATOR COMMAND LANGUAGE 

The ease and efficiency of communication between the human user and 
a manipulator control system can be enhanced if the commands are given in 
a robust command language. 11 Robustness 11 is the capacity of a system to 
accomplish its intended task when its input is inaccurate, unreliable, or 
incomplete. A control system demonstrates robustness if it is able, 
without external program modification, to adjust to vague instructions or 
to a slightly perturbed environment. Such a system will usually exhibit 
graceful degradation of performance as the actual situation encountered 
gets more dissimilar to the expected input. 

The technical approach to achieve this behavior is based on the 
theory of fuzzy sets (Zadeh 1965; Kaufman 1975) which can be used as a 
mathematical theory for modeling vague concepts as are commonly found in 
natural language. Fuzzy sets were advantageously applied to robot planning 
(Goguen 1974), to language conceptual sets (Zadeh 1965), to algorithms 
(Zadeh 1968}, and many other aspects of concept formation~ manipulation, 
and utilization. Recently, Shaket (1976) used fuzzy sets to model the 
semantics of object classes and relations of a limited English-like language 
in a manner which is convenient for reference. The system accepts instructions 
in the form of simple indicative sentences and responds by indicating the 
intended reference object. The system demonstrates robustness in the sense 
that small changes in the instruction or in the state of the world do not 
disturb it. A sample command in a robust manipulator command language would 
be: 

PUT THE BIG BAR AT THE CENTER OF THE VEHICLE. 
'"- ...... " -----.-------vb/noun group prep./group indicating location 

The term BAR is not a label of a particular object but refers to a 
fuzzy class of objects. In a particular setting, however, the interpreting 
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system would be able to resolve the expression "THE BIG BAR" into a 
reference to a specific object in the scene. Notice that such a reference 
mechanism does not require that the user know precisely size, shape or 
location of the intended objects. Furthermore, such robust reference would 
be functioning properly even if the scene is slightly changed. There may 
be several additional small objects nearby. Additionally, a semantically 
oriented planning system would know that in order to put an object somewhere, 
that object must be picked up first, and would add the appropriate steps 
into the plan it generates. Such a robust command language facilitates the 
man-machine interaction in several major ways: 

a. The user is relieved from the burden of remembering the 
specific label or exact features of every object in the 
scene. He can make the reference in a flexible and efficient 
natural-language-like manner, which will be resolved by the 
system to a specific reference. 

b. The system is organized around semantic programs rather 
than being syntactically oriented, and would not balk at 
small syntactic errors. This may be called "syntactic 
robustness". 

c. The system embodies considerable semantic information of the 
problem domain. Thus it can supply different items of 
information that are required to perform a command successfully, 
but were not specifically given in it. 
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7. SUMMARY AND FUTURE DEVELOPMENTS 

An overall design and basic algorithms have been described for an 
autonomous control system for remote manipulators which utilize sensory 
feedback. The important points in the system's organization are: 

1. Hierarchical, recursive organization of specific 
knowledge about planning and execution in a particular 
problem domain. This allows easy definition and use 
of task-oriented constructs rather than dealing with 
detailed chains of primitive manipulator operations. 

2. Plan Structures, in the form of procedural nets, are 
explicitly available for analysis and manipulation throughout 
both the planning and execution phases. This contrasts 
with other systems where the planning information is 
hidden unaccessibly in the control structure of the 
planning algorithm. 

3. The procedural net is a combination of data and procedures 
in a special language. This language has primitives useful 
in planning and the flexibility of an interpreted execution. 
The procedures that develop the net (construct, modify, or 
delete subplans) can guide themselves according to four kinds 
of data: 

a. general information about the problem domain, 
b. specific information in the updated world model, 
c. planning information contained in the procedural net, and 
d. missing information obtained by plan-time execution of 

surveillance motions. 
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4. The procedural net is interpretively expanded in a breadth 
first order. At every point in the expansion, the whole 
plan at every higher level of detail is available for 
interrogation. Thus, both backward and forward planriing become 
possible. 

5. The procedural net allows parallel processes to proceed 
concurrently and to defer decisions until execution time. 
A specific path of action will be decided according to 
the results of tests performed on the real world when the 
plan is carried out. 

6. Plan execution is done interpretively by following the time 
sequencing links in the procedural net. 

7. Each primitive action is incremental and is controlled by 
sensory information in a TOTE loop (Test-Operate-Test-Exit). 
The tests are continuously monitored by a pool of conditions 
which evaluate both sensory information and a dynamically 
modified world model. 

8. When problems or rare conditions occur, planning can be 
initiated during execution to develop a correcting plan. 
After this diversive plan is executed, the original task 
can be resumed. 

The conceptual design presented in this report is a first step 
toward a compact working system. Three phases for further development 
are suggested: 

7-2 



Phase l. Theoretical development and high-level language 
implementation of the planning language, execution language, and world 
representation. Demonstration of performance on a simulated manipulator. 

Requirements: 
l man/year 
Large computer (POP 10) 
One of the recent AI languages (QLISP) 
100 K+ memory 

Phase 2. Problem specific development. Programming problem­
specific knowledge as related to a specific manipulator in a given set of 
tasks. Testing autonomous operation in a real environment. 

Requirements: 
2 man/years 
minicomputer with real time interfaces 
64 K memory 

Phase 3. Implementation. Compression of computer programs to 
space-worthiness. 

Requirements: 
l man/year 
minicomputer and manipulator 
32 K memory 
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APPENDIX: PROCEDURAL NET EXPANSION EXAMPLE 

The following example will illustrate the detailed operation of the 
node expansion algorithm as shown in Figures 10 and 11. Assume that the 
user has given a high-level command which, when expanded completely, will 
decompose into the following procedural net representation. 

Assume further that the algorithm has already expanded the initial command 
{node l) for one complete layer. The current net, therefore, appears as 
follows along with the contents of the node stack. 
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Since node l has just been completely expanded and popped from the 
top of the stack, the algorithm now calls for the expansion of node 2 (see 
Figure 10). The steps of the algorithm will be followed showing the progress 
toward completion. 

l. Expand node 2 (top of stack). 

2. Create first son (node 5). 

2 

3 

4 

3. Since node 5 is a first son, time-link it to the predecessor of the node at 
the top of the stack (start). 

---.i>-~ 
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4. Place son on the bottom of the stack. 

5. Create the next son of node 2 (node 6) noting that it is the last son. 

--->=-~ 

6. Time-link node 6 to the node at the bottom of the stack (node 5) 
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7. Place son (node 6) on bottom of stack. 

8. Time-link son to successor of node at the top of the stack (node 3). 

2 

3 

4 

5 

6 

9. Exit to outer loop; pop top of stack; expand next node (node 3). Notice 
that at this point, a complete plan exists in the net for accomplishing 
the initial command. This property is always true at the end of each 
node expansion cycle. 

10. Node 3 has no sons. 

11. Exit to outer loop; pop top of stack; expand node 4. 
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12. Create first son (node 7) of node 4. 

4 

-->--~~ 5 

6 

13. Time-link son to predecessor of node at top of stack (node 3). 

14. Place son on bottom of stack. 
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15. Create last son of node 4 (node 8). 

16. Time-link node 8 to node 7. 

17. Place son on bottom of stack. 

A-6 
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18. Time-link son (node 8) to successor of node at top of stack (end). 

19. Since nodes 5 through 8 have no sons (by assumption), the stack will be 
popped until it is empty. This completes the procedural net expansion. 
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