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PREFACE 

Simulators are employed to train military personnel in a wide range 
of combat-related skills, from the performance of simple procedural tasks 
to the execution of complex interactive missions. A primary design goal 
in the specification of simulator equipment is a sufficient degree of 
functional fidelity to allow a high degree of transfer of training to 
manifest itself in the later performance of the operational task. 

For the training of simpler, procedural tasks an acceptable level of 
fidelity can be achieved by creating a simulation of the operational 
equipment. However, when tasks with a high cognitive component are 
simulated, such as those associated with tactical performance, it becomes 
necessary to simulate the external environment under which the operational 
mission is carried out. 

In the context of tactics training, the most important aspect of the 
combat environment is the adversary. Current tactics simulators, such as 
the Submarine Combat Systems Trainers (21A37 series), have an adversary 
which is controlled by an instructor during training exercises. This 
approach has several shortcomings, among them: 1) the instructor is a 
valuable resource who should be used more effectively in other functions, 
such as monitoring the performance of the trainees, 2) the tactical 
abilities of instructors vary widely, 3) it is very difficult for an 
instructor to maneuver multiple adversaries, and 4) since the instructor 
has the advantage of knowing exactly what own ship is doing, it is 
difficult for him to maneuver the target(s) in a realistic fashion. 

One approach to unburdening the instructor and, at the same time, 
creating adversary targets with a higher degree of fidelity lies in auto­
mating the maneuvering of the targets. The computer modeling of physical 
systems is a cornerstone of training simulation. Many of the same 
techniques can be applied to modeling an adversary. However, the modeling 
of intelligent behavior appears to be a much more complex problem. 

The objective of the current study was to survey a spectrum of 
modeling techniques and isolate several candidates which could be applied 
to the problem. These candidate techniques were then further analyzed 
and evaluated against certain training criteria. , Recommendations are 
made concerning each modeling approach. 
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SECTION I 

INTRODUCTION 

This final report provides a presentation and evaluation of several 
alternative models potentially useful as an intelligent opponent model. 
These models are intended to be used to simulate realistically the tacti­
cal behavior of enemy submarines within the Navy Submarine Combat System 
Trainers (SCST). 

The objectives of the program are to: 

a. Analyze the requirements of Navy submarine tactical trainers 
with respect to the tactical behavior of simulated enemy submarines. 

b. Identify the knowledgeable opponent model algorithms and tech­
niques applicable to submarine tactics. 

c. Evaluate each model to assess its tactical maneuvering capabil­
ities, trainability, software requirements, trainee performance measure­
ment, and required research and development. 

This report covers all these three objectives and specifically 
includes, with minor changes, the two quarterly reports that cover 
objectives (a) and (b). It goes beyond these reports in providing a 
detailed evaluation of each model, a compatibility analysis of each model 
for some of the specific decision tasks needed in the submarine combat 
mission, and a recommendation for an overall, best model. 

BACKGROUND 

Current Navy submarine tactical simulators provide enemy submarine 
maneuver capability in the form of either (1) pre-determined maneuver 
patterns or (2) controlled tactics performed by human operators. These 
forms of tactical control are inadequate for modern Naval training 
objectives. 11 Canned 11 maneuver patterns are not responsive to friendly 
submarine tactics performed by the student trainee and present an unreal­
istic environment. Further, the student may learn the pre-determined 
enemy tactical patterns with continued simulator experience, thus 
invalidating performance measures. On the other hand, the human control­
ler1 s main function is to monitor the trainee and evaluate his performance. 
This function permits little time to maneuver enemy submarines in response 
to the trainees• tactics. The problem is compounded when multiple 
targets are involved. Asssigning a full-time controller to each target 
is prohibitively expensive in terms of manpower requirements. Further, 
the target behavior resulting from a human controller will not exhibit 
the consistency necessary to train students on all types of tactical 
maneuvers he may encounter. 

7 
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A computer-driven 11 knowledgeable opponent" submarine model will 
alleviate many of the problems inherent in pre-determined or human­
driven models in the following ways (Ahlers, 1978): 

a. Provides Action Feedback for Trainee's Inputs. The trainee 
will receive 11 operationally valid" feedback rather than abstract perform­
ance measures which are not presented in real time. The feedback in the 
form of target responses, will be displayed on the trainee's primary 
display. Thus, no time-sharing between task and performance displays 
would be necessary; full attention could be directed to the task display. 

b. Provides an Optimum Model for the Trainee to Emulate. This is 
particularly important for individualized instruction as it allows the 
trainee to 11 discover 11 effective tactics. 

c. Provides Infinite Variety of Tactical Configurations. Since the 
target will be responsive to the trainee's tactics and will be maneuvered 
differently as learning takes place, broad experience in unique situations 
will be provided. 

d. Provides an Equally Matched Opponent at any Level of Trainee's 
Expertise. By varying the responsiveness and the appropriateness of its 
maneuvers, the target can be modified to remain challenging, but beatable, 
for a trainee at any level of proficiency. The complexity of the target 
could range from a straight-running target, for use in early training, to 
a highly sophisticated opponent with optimum sensor information for use 
with highly experienced approach officers. 

e. Enhances Intrinsic Motivational Properties of the Training Task. 
Training scenarios will become true 11 one-on-one 11 contests, and the 
possibility of defeat will encourage the trainee to attend to the task 
and maintain interest in it. 

f. Enhances Evaluation of the Trainee's Mastery of the Task. 
Certain aspects of the knowledgeable opponent model may be exploited to 
provide measures of the trainee's performance. For example, the length 
of time the opponent maintains a tactical advantage is expected to 
decrease as the trainee gains tactical knowledge and experience. 

g. Allows Training Exercises to Reach a Legitimate Conclusion. 
The knowledgeable opponent wi 11 win when it achieves a s i gni fi cant tact­
ical advantage. A 11 canned 11 target cannot win, it can only lose. 

8 
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SECTION II 

DECISION ENVIRONMENT 

Before requirements for a knowledgeable opponent model can be identi­
fied, the decision environment for the model must be established. Since 
the opponent model represents the rational actions of an enemy submarine 
commanding officer (CO), a general description of his thought processes 
and decision options is necessary. Figure 1 shows, in flowchart form, 
some of the major decisions that an opposing submarine commanding officer 
must consider. This flowchart was obtained through the cooperation of 
the tactical instructors at the SCST facility in San Diego, California. 

The first contact a submarine has with a possible enemy submarine 
is via acoustic sensors. These sensors are "passive" since they only 
listen for sounds and emit no signals of their own. "Active" sensors 
(sonar) emit signals and listen for their echos. When a sound source is 
determined to be a possible enemy submarine, a decision must be made as 
to its threat. If it is determined to be threatening due to its location, 
a decision is made to evade counter-detection, or to close and investigate 
with the possibility of attacking. 

Once the distance between the submarines is close, it is very likely 
that the enemy has counter-detected, and therefore, active sensors may 
be used for more accurate information. Such sensors are not used early 
since this would immediately alert the opposing submarine. Active sensors 
are available in various types, and the specific one chosen depends on 
factors such as ocean temperature, carrents, range, etc. 

If the new information confirms the presence of a submarine, tactical 
maneuvers begin. These maneuvers are to: (1) track the opposing sub­
marine's movements, (2) position the possible attack, and (3) prepare to 
evade or escape enemy attack, if necessary. If there is no war in 
progress, only tracking is considered. However, if a wartime situation 
exists, a weapon (torpedo) is launched when the range is sufficiently 
close. After the launching of a weapon, the submarine commander must 
decide whether to evade a possible counter-attack or, if the attack was 
unsuccessful, to attack again. 

The types of situations described above are typical of the high­
level decisions a submarine commander must make. Therefore, a knowledge­
able opponent model should be able to choose among similar types of 
alternatives at the proper times. These include not only decisions 
concerning strategy such as evasion, sensor resources, attack methods, 
weapons choice, etc., but also tactical maneuvers involving course, 
speed, depth, etc. 

9 
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SECTION III 

REQUIREMENTS ANALYSIS 

Requirements of the model refer to those model characteristics 
associated with the training objectives, training facility, and submarine 
behavior which are necessary for realistic training exercises. The 
opponent model should be compatible with the following requirements. 

MODEL STRATEGIES 

General submarine strategies employed by the model will be deter­
mined by the instructional objectives. The following are three typical 
training objectives that would warrant different strategies: 

a. Battle Stations. A wartime encounter between the friendly sub­
marine and one or more hostile opponent submarines where torpedo attack 
is possible. 

b. Surveillance. A wartime encounter between the friendly submarine 
and one or more hostile opponent submarines where information gathering, 
and not attacking, is the mission. 

c. KILO. A peacetime encounter between a friendly submarine and a 
non-hostile opponent submarine where observation and tracking are the 
primary objectives. 

These strategies determine the general behavioral characteristics 
of the opponent submarine which will govern and control the manuever 
tactics. 

PRE-CONTACT TACTICS 

Pre-contact tactics are determined by the particular engagement 
scenario being exercised. Since pre-contact tactics do not depend on 
the movement or responses of the friendly submarine, they can be pre­
defined according to established and accepted tactical doctrines and 
practices. Pre-contact behavior will include tactics implementing the 
following mission activities: 

a. Barrier Patrol Search. This mission is a submarine search pat­
tern along barriers such as coastlines, shipping lanes, known submarine 
routes, etc. 

b. Broad-Area Patrol. Patrolling a large expanse of ocean for 
enemy submarines requires different tactical maneuvers, as well as speci­
fic sensor types. 

c. Choke-Point Narrow Pass. Patrolling a narrow undersea pass 
demands different and more specialized tactics than monitoring a broad 
area. 

11 
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d. Transient Movement. During a transient movement mission, the 
submarine is assumed to be traveling from one location to another for some 
specific purpose. Pursuing a straight line course is not the best way to 
avoid detection; thus, various tactical maneuvers must be simulated. 

CONTACT TACTICS 

Tactics for submarine maneuvers during contact with enemy submarines 
must be compatible with existing tactical doctrine. The decisions to be 
made at each point are the course (0° - 3590), speed (knots), and depth 
(feet). The objectives which determine the values of these parameters 
are: 

a. Manuevers to fix the location of the friendly submarine. 

b •. Maneuvers to gain attack position. 

c. Maneuvers to evade opponent attack. 

d. Maneuvers to evade contact. 

The tactics doctrine that fulfills the above objectives can be found 
in Navy tactics manuals. 

RELATED DECISIONS 

Many decisions not directly connected with tactical maneuvers are 
vital to a complete model. The three parameters described in the previous 
section are enough to specify particular maneuver tactics. However, many 
other related decisions must be made. The model must be able to make the 
following decisions at the proper time during the simulation. The model 
must decide: 

a. The probability of a contact based on passive sensors. 

b. Whether a contact represents a possible thr~at. 

c. Whether to approach the contact or evade. 

d. Whether to stay passive or use active sonar. 

e. Which weapon to fire and when. 

f. Whether or not the submarine is within the weapon range. 

g. Whether or not the opponent ship has fired a weapon. 

h. Whether or not to use decoys. 

i. Whether to run or hide in deep water while evading contact. 

12 
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FEATURES NOT INCLUDED 

The knowledgeable opponent model will not be required to support the 
following simulation features: 

a. Surface Ship and Periscope Contact. Since almost all training 
exercises deal with submarine-to-submarine encounters, the SCST instruc­
tors felt that simulation of either surface ship contact or periscope 
contact should not be necessary. 

b. Sonar and Acoustic Equipment Performance Variations. During 
simulation exercises, the performance of the acoustic equipment aboard 
the friendly submarines is sometimes degraded for training purposes. It 
will not be necessary for the model to operate under such conditions. 

d. Multiple Submarine Strategies. Since the radio silence will 
usually be maintained between submarines during wartime, coordinated 
strategies are not a necessary requirement. Each enemy submarine can 
possess its own independent knowledge opponent model with provisions only 
for collision avoidance and mutual attack avoidance. 

TRAINING REQUIREMENTS 

The model must be compatible with current SCST training objectives. 
Independent of the specific features of the model are considerations and 
characteristics that are required for the training objectives of the SCST 
to be met. 

a. Training Management. The model must perform adequately enough 
so that the training instructors will actually be relieved of their 
responsibilities for scenario management. 

b. Model Override. The instructors must be able to take control of 
the opponent submarine at any time and maneuver it as they are currently 
able to do. 

c. Performance Measurement. The tactics and behavior of the enemy 
submarine must be conducive to the collection of meaningful student per­
formance evaluation data. 

d. Modification Ease. The model must be designed so that tactical 
and behavioral changes are not only easy to make but can also be made in 
real time by the instructors during a simulation exercise. 

e. Real-World Fidelity. Real-world fidelity should be maintained 
as much as possible. This requirement was considered to be more important 
than fidelity to training objectives by the interviewed submarine trainer 
instructors. The apparent reason for this preference is that the train­
ing objectives are under the control of the training facility and can be 
modified easily. However, if the real-world fidelity is sacrificed for 
training objectives, modification is considerably more difficult. It is 
not clear that real-world fidelity and training objectives fidelity are 

13 
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incompatible; however, priority should be given to making the model as 
close to actual circumstances as possible. 

14 
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SECTION IV 

MODELS DESCRIPTION 

This chapter presents an overview and some details of four types of 
decision models which are potentially appropriate for simulating an intel­
ligent opponent within the SCSTs. Considering variations of each model, 
and the possibility of combining models, many useful combinations can be 
derived to represent the intelligent opponent. 

Since the opponent and friend have essentially the same decision 
structure, the same model which is developed for the opponent can also 
model the friend. This brings up a number of interesting and useful 
possibilities: 

a. Play one model against the other. By doing this, it will be 
easier to debug the software. Also, it is possible to develop a set of 
perfonnance baselines which can be used for further model development and 
to develop evaluation guidelines. 

b. The opponent model easily contains a model of the friend. Fur­
ther levels of recursion are possible. For example, the friend can be 
aided by an opponent model which contains a friend model. 

c. Different models can play each other to evaluate which model is 
best. 

d. Different parameter values can be set for each model and the 
models can play each other in order to evaluate the effectiveness of various 
strageties and various assumptions regarding opponent capabilities. 

It should be emphasized that when the same model is used for several 
purposes, different behavior can be created by varying model parameters, 
even the same model will display different behavior patterns in slightly 
different circumstances. Furthermore, some of the model behavior will be 
generated randomly (e.g., the specifics of an evasion maneuver), thus 
defying the student from capturing a standard response. 

POTENTIAL MODELS 

From an analysis of the requirements of the knowledgeable opponent 
model and from an analysis of existing simulation and modeling techniques, 
four major approaches have been identified which show potential for model 
implementation. These approaches are: 

a. Elicited probability approach. 

b. Adaptive decision modeling approach. 

15 
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c. Heuristic search approach. 

d. Production rules approach. 

The elicited probability approach to scenario generation is a 
derivative of the Bayesian analysis. It essentially selects randomly 
among the alternative actions available at each point, but the probability 
of selecting each alternative is elicited from experts to resemble actual 
behavior. 

The adaptive decision model is based on the adaptive linear pattern 
recognizer. The model 11 learns 11 the proper choices it has to make by 
following those made by an expert--a trainer. It then uses the trained 
parameters to make the right choices even in situations which are 
dissimilar to those under which it was originally trained. 

In the heuristic search approach, the problem domain is represented 
as a network of 11 states 11 each representing a specific tactical situation. 
The objective of the CO is to reach some desired goal (mission), which is 
al so a state in the 11 state space. 11 

From the state he is in, the CO wi 11 perform a 11Look ahead 11 search 
to identify which alternative action open to him will bring him closer to 
the goal state. This goal directed behavior is continued even if the 
state is changed by external events or actions of the adversary, thus 
depicting intelligent behavior. 

In the production rule approach, the expertise of the problem domain 
is represented as 11condition--action 11 chunks. A control mechanism acti­
vates the relevant productions and generates a chain of actions that would 
lead from the current situation to the desired goal. 

It is clear that these models are quite different from each other. 
The rest of this chapter will describe them in detail and specify the 
advantages and disadvantages of each for our purpose--the modelling of an 
intelligent opponent. 

THE ELICITED PROBABILITY APPROACH 

INTRODUCTION. The elicited probability approach to scenario generation 
and opponent simulation uses an incremental, descrete description of~he 
tactical scenario. This description has the form of a state vector Z . 
The vector is made up of components each representing the state of some 
tactical aspect of the situation at a given instant t, thus: 

(1) 

In the tactical submarine simulation the components of the state. vector 
may be: 

16 
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zl = "How deep is the water 11 (2) 

z2 = 11 How far is friend" 

Z3 = 11 How many friend 1 s subs are in the area 11 

The value of a component of the state vector is one of the possible 
answers to these questions. Thus z1 can be, at a given time t either 
"deep, 11 11medium 11 or "shallow." The value of Z2 may be either 11 undetected, 11 

11 far, 11 "within passive listening range, 11 "within active sonar range 11 or 
11within torpedo range. 11 The composition of the state vector is determined 
by elicitation from experts. The number of discrete values which each 
component can assume need not be large, it is only determined by what 
makes a tactical difference. If the tactics of the simulated opponent 
would be different in "shallow" waters than that in 11medium 11 or in 11 deep 11 

waters, then only these three discrete values are needed in the tactical 
simulation. Other components of the state vector may have more or less 
numerous discrete values, again depending on how many are relevant tacti­
cally. These discrete values are used in the intelligent part of the 
simulation--the part that chooses and changes tactical maneuvers. The 
part that generates the actual display is incremental and thus can generate 
continuous motions. 

Figure 2 depicts the basic operation and main blocks of the simulation 
system. The system goes repeatedly through the following cycle; it starts 
from the current state vector zt and calculates the state of the world at 
the next time interval zt+I. The calculation is done in two steps. First, 
a probability matrix is used to determine, from the current state of the 
world, what are the tactics that should be performed. Then, the tactics 
chosen are used to ..!f~~sform the current state vector to the vector of the 
next time interval Z . This new vector might include an incremental 
change in location: vx, VY, a change in direction: ve, or a firing of a 
torpedo which is another component of the state vector. The same new 
vector is now used also to generate the new outputs that will produce the 
new display for the user (interfaces with the current system). 

The new value of the state vector zt+l is now fed back to the 
starting point where it is used as the current state vector for the next 
time interval. Thus, the total process progresses cyclically through this 
sequence of steps. 

UPDATING THE STATE VECTOR. The actual calculation of the changes of the 
state vector is somewhat more complex than what was described above. The 
complexity is necessary to provide some randomness in the simulated 
behavior to prevent the trainee from learning a prerecorded scenario. 
The randomness is generated from probability information elicited from 
experts, and thus the behavior produced would be typical and similar to 
an opponent commander behavior but would still be unpredictable in its 
details. 
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Figure 3 shows in more detail the specific steps that are taken 
in calculating the state vector at time t+l from Z at time t. The current 
state vector z.t is used to select, by combining conditional probabilities, 
the tactics to be applied. Let us define the terms more precisely before 
using them. Let us call the vector of all the tactics that are performed 
at time t by: 

(3) 

T1 might be 11 turn right 10°, 11 T2 might be 11 decrease depth to periscope 
l~vel. 11 More than one activity can take place at the same time, so that 
the vector format is needed to combine the effect of all in each time 
interval. To determine which tactics should be setected in the next 
interval a conditional probability is needed: P(T !"Z ). This conditional 
~obability answers the following q#{stiQ_~: gi-¥tn the current situation 
Z what tactics should be applied--T • Z and T are vectors with many 
elements and that makes the conditional probability a matrix of the form: 

P(Tt+l 1-zt) = { p(T~+l I zJ)} i ,j ( 4) 

In every row i, which corresponds to a tactics Ti, the entri'es indicatet 
the conditional probability of selecting these tactics given that the Z. 
component of the state vector is present. For instance, one entry might 
be the answer to: t1hat is the probability, given that friend is "in 
torpedo range 11 that the tactics 11 shoot a torpedo 11 be applied. There are 
two problems with this approach. One is the independence of the state t 
vector ilements, i.e., whether the conditional probE_~ility of a tactics Ti 

· given Z· is independent of the other components of Z . The other problem 
is mean~ngfulness to the expert. For example, a question like: What is 
the probability of choosing a 11 zigzag maneuver to the right 11 given "enemy 

·sub is nuclear?" Posing the question the other way around should prove 
much more meaningful: Given a tactics T1 what set of events would cause 
you to choose it? The natural question ~o an expert is the conditional 
probability matrix: 

(5) 

This matrix of probabilities is obtained from experts in submarine tactics. 
The expert estimates can be based upon experience, upon real world 
measurements, upon theoretical models, etc. It is also possible to 
determine the conditional probabilities by collecting statistics during 
an actual training session in which the instructors are controlling 
opponent actions. 

To calculate the conditional probability in (4) from the estimated 
conditional probability given in (5) the following formula has to be 
used: 

(6) 
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This fonnula, basic in Bayes probability theory, combines the conditional 
probabilities P(Z ITj) to give P(Tj!zt). 

Two additional vectors of a priori probabilities, also ~stimated by 
experts, are required. The components of the first vector, PT, are the 
a priori probabilities that each state transfonnation operator will be 
selected. They are represented thusly: 

(7) 

The components of the second vector, l'z, are the a priori probabilities 
of the occurrence of each state component of the Z vector. They are 
represented as follows: 

(8) 

The a priori probabilities don't have to be estimated with great 
precision because, as the scenario unfolds, they ~ave less and less 
effect over the behavior of the scenario. 

If we assume independence of the impact of the different components 
of the state vector then: 

n 
P(7tlTJ.) = rr p(z{Jr.) (9) 

i=l J 

Thus, equation (6) becomes 
t p(T.) rr p(z.IT.) 

J . l J 
p(Tjrzt) = __ ,___, __ 

rr p{z~) 
When equation (10) is implemented, the p(Tjl"Zt) are 
denominator in (10) is not needed. 

( 10) 

normalized; thus, the 

Table 1 is a partial example of the probabilities as they are 
elicited from the experts and aftt~ thty are used in formula 10 to obtain 
the conditional probabilities P(Ti 11Z;)· The left most column shows the 
components of the state vector ano the values that they can assume. 
The list of useful tactics are indicated on the top. The first column of 
numbers and the first row indicate the a priori probability of each state 
vector component value and each tactics. The body of the table contains 
the conditional probabilities. Looking at the second row of numbers, the 
probability of friend being undetected is 0.9 if the tactics is 11 proceed 11 

but it is 0.0 if the tactics is 11 run. 11 This makes sense; because if 
friend is undetected, there is no reason to choose 11 run. 11 Naturally, each 
row sums up to 1 because if that particular state variable is present, it 
must have some succeeding action, even if it is only 11 proceed. 11 

The assumption that the variables which comprise the state vector 
are independent is a crucial one. The most practical way to meet this 
condition is to take care to define the state vector such that it is 
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TABLE 1. MANEUVER SELECTION MATRIX 

State Hide Run Proceed Zigzag Attack 
-~---·-· ------

A Priori 0.05 0.1 0.7 0.05 0.1 
Probability 

How Far Is Friend: Undetected 0.60 0.05 0.0 0.9 0.05 1).0 
Very Near 0.15 0.1 0.1 0.1 0.3 0.4 
Near 0.15 0.2 0.15 0.05 0.3 0.3 
Medium 0.05 0.3 0.20 0.15 0.15 0.2 
Far 0.05 0.25 0.20 0.25 0.25 0.1 

Has Friend Detected: Yes 0.15 0.2 0.1 0.1 0.3 0.3 
Possible 0.15 0.20 0.20 0.2 0.25 0.15 
No 0.70 0.10 0.15 0.45 0.15 0.15 

War State: War 0.01 0.1 0.1 0.5 0.2 0.1 
Peace 0.99 0.1 0.1 0.7 0.1 o.o 

Water Depth: Shallow 0.1 0.3 0.1 0.3 0.1 0.2 
Normal 0.5 0.1 0.2 0.3 0.2 0.2 
Deep 0.4 0.1 0.25 0.3 0.2 0.15 
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independent. If there are dependencies in the state vector, they may 
not noticeably affect the behavior of the scenario (e.g., environment, 
opponent's actions). This can be tested by using the model to generate 
behavior which is viewed by the person from whom the probabilities were 
elicited. If the behavior is not as desired, the elicited probability 
values can be fine-tuned until the proper behavior is obtained. 

One technique of handling dependencies in the state vector is to 
also elicit the covariance matrix representing the correlation among 
state variables. This matrix can then be used in one of two methods: 

a. The problem is transformed into a domain where independence 
holds (by proper selection of independent tactically significant state 
vector components). 

b. The covariance matrices are used to derive weights to compensate 
for dependence. 

Both methods have several disadvantages: 

a. The covariance matrices are dependent on the order of processing 
state variables; a different covariance matrix must be used for each 
order. 

b. The covariance matrices involve either asking people to estimate 
means and standard deviations, or polling a group of experts and collecting 
these statistics. 

c. When the probabilities are subjectively determined (by elicita­
tion), the precision of the problem is such that the covariance matrices 
may be meaningless. 

In general, the complexity of using the covariance matrices seems to 
exceed that justified by meaning and relevance. 

Another method of handling dependencies in the state vector is to 
construct a new set of variables based on permutations of some of the 
dependent variables. This approach is simple, but leads to a rapid 
increase in the size of the state vector. 

Going back to Figure 3, formula 10 is used to obtain, from the current 
state vector, the tactic's probability vector (TPV): 

P(Tt+l) = [P(Tf+1), P(T~+l), ... , P(T~+l)] (11) 

This vector indicates the probability of selecting tactics Tj in the 
current tactical situation. The next step is to select the tactics to be 
actually applied. This can be done in several ways: 

a. Select the tactics with the highest probability. 
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b. Select all the tactics with probability higher than some thresh­
old level. 

c. Select the tactics randomly but in such a way th~!i the probability 
to select a particular tactics is proportional to its P(Tj ). (This is 
the "Monte Carlo" method.) 

After the tactic (or combination of tactics) is selected, the next 
step is to actually perform the tactics. In terms of the model, we will 
apply a transformation T1+1 to the current state vector to obtain the 
new one: 

zt+l = [Tt+l] -zt ( [r] a matrix) (12) 

There are virtually no restrictions on the kinds of state transforma­
tion operators which can be defined. A transformation operator may 
affect a single state variable and generate a constant output. It may 
also affect a large number of state variables and make use of a complex 
decision strategy to determine their values. The transformation operator 
may even determine the value of a variable for several subsequent time 
cycles. 

A transformation operator may make use of subsets of zt which were 
not used in selecting the operator. An operator may also make internal 
use of Bayesian aggregati~ns based upon additional conditional probability 
matrices and subsets of Z • Thus, hierarchies of transformation operators 
can be established. 

Each transformation operator affects a set of one or more state 
variables. The operators, in turn, are grouped according to which set 
of variables they affect. These sets of variables must be disjoint 
because, after a single operator is selected from each set, the selected 
operators are assumed to be invoked simultaneously. If the sets of vari­
ables are not disjoint, the order in which the selected operators are 
actually invoked will affect the value of the transformed state vector. 
However, non-disjoint sets of variables can be handled by establishing a 
hierarchy of operators within a "higher level" operator. 

The selection of one state transformation operator from each operator 
set is made by means of a Monte Carlo selection procedure. The probabili­
ties of occurrence of each operator in the set are normalized to obtain 
a discrete cumulative distribution function. A uniformly distributed 
pseudorandom number in the range [0,1] is then generated and its position 
in the distribution function is used to select the operator. Alternatively, 
the operator with the highest probability could be selected. 

In some experimental applications, it may be useful or necessary to 
kno~+rhetprobability that a state variable will have a particular value, 
p(zk !Z ). By restricting the kinds of allowable state transformation 
operators to those that generate a constant (and unique) result, it is 
possible to obtain these probabilities directly from the scenario genera­
t~+l If state transformation operator, Tj, outputs the same value for 
zk whenever it is invoked, and only Tj outputs that value, then 
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p(z~+1rzt) = p(Tjrzt) (13) 

If more complex transformation operators are used, p(zt+lrzt) becomes 
more difficult to compute. A value can always be obtained, however, by 
making statistical measurements of the behavior of the scenario generator. 

The current state vector, zt. is transformed into zt+l by the 
(assumed) simultaneous invocation of all of the selected state transforma­
tion operators. If the state vector is properly designed, it is possible 
to use the Bayesian/Monte Carlo selection mechanism to choose all of 
these operators. However, in many instances it may be more convenient 
to use "external" mechanisms to select transformation operators forcer­
tain subsets of the state vector. These externally con;tolled state 
vector subsets will be collectively referred to as the E subvector (see 
Figure 3). Examples of externally controlled state variables would in­
clude clock-driven variables such as day and night, high and low tides, 
and events which occur on a fixed schedule. 

PROBABILITY ELICITATION. Previous research has shown that human experts 
are good at estimating conditional probabilities, but poor at aggregating 
them (e.g., Edwards, 1962). Accordingly, the present scenario generator 
uses conditional probabilities elicited from experts and aggregates them 
automatically. First, expert inputs are used to: 

a. Describe the environment to be modeled in terms of relevant 
state variables. 

b. Determine which variables are externally controlled and which 
are controlled by the Bayesian model. 

c. Define all of the transformations which change the state varia­
bles. 

Then, the expert is queried in detail to: 

d. Estimate the a priori probabilities and the individual condi­
tional probability which consitute the entire matrix. 

The method of elicitation is simply to interview the expert and ask him 
the probabilities. Bond and Rigney (1966) were able to elicit almost 
650 conditional probabilities associated with electronic troubleshooting 
in one hour using a simple questionnaire. 

The process of probability elicitation is an iterative one which 
allows the expert to refine his estimates. That is, once the initial 
estimates are made, test scenarios are generated which allow the expert 
to see the consequences of his estimates. He is then asked to modify his 
estimates to make them more consistent with the desired behavior of the 
scenario generator. 
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ELICITED PROBABILITY APPROACH - SUMMARY. 

Advantages 

a. Simplicity; easy to develop, maintain, implement. 

b. Generates a probabilistic opponent and environment. 

c. Weights representing behavior are easy to elicit and to alter. 

d. State oriented; easy to switch between manual and automatic 
operation. 

Disadvantages 

a. It is difficult to alter structural aspects due to the need to 
avoid dependencies in the state vector. 

b. Difficult to insert logical statements to control the scenario. 

c. The application of state transformation operators may be order 
dependent. 

d. It is difficult to isolate the particular entry in the trans­
formation matrix that caused some behavior and to give it a tactical 
interpretation. 

THE ADAPTIVE DECISION MODELING APPROACH 

INTRODUCTION. The adaptive decision approach to generating knowledgeable. 
opponent behavior--which uses pattern recognition--is based on learning 
opponent decision modeling and utility theory. In the present application, 
all of the relevant information for selecting the opponent's next action 
is irranediately available at the time it's needed, The model, which is 
first adapted to choices made by an expert, is then used to calculate 
the value of each alternative, and the alternative with the highest value 
is chosen for actual execution by the system. 

ADAPTIVE DECISION MODELING. Work on adaptive decision-making is derived 
from the areas of behavioral decision research and AI experience with 
learning networks. The unique aspect of this approach is the capability 
to adjust model parameters on-line and change decision strategy accordingly. 
In essence, the learning system attempts to identify the decision process 
of the human operation on-line by (a) successive observation of his 
actions, and (b) establishment of an interim relationship between the 
input data set and the output decision (the model). Learning in this 
context refers to a training process for adjusting model parameters 
according to a criteria function. The object is to improve model per­
formance as a function of experience, or to match the model characteris­
tics to that of the operator. 
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Learning techniques have been used to model the decision strategy 
and to identify the sources of cognitive constraints on the human 
operator performing a dynamic prediction task (Rouse, 1972). Another 
example of an adaptive model of the human operator through real time 
parameter tracing has been reported by Gilstad and Fu (1970). Linear 
and piecewise-linear discriminant functions were used to classify 
system gains, errors and error rate. The decision boundaries for 
classification were determined through a process on on-line learning, 
observing operator performance and parameter adjustment. The specific 
model used was applicable only to very limited tasks, and merely 
illustrated the feasibility of the technique. 

A unique advantage of using a learning system lies in its capability 
to act as a pattern classification mechanism. As such, it can be used 
to identify biases in operator decision policy as a response to classes 
or patterns in the input data (Tversky, et al, 1972). In conventional 
Bayesian technique, the pattern of events is decomposed into elementary 
data points. With the assumption of independence, the elementary data 
points are aggregated to revise the hypothesis. Effects of the data 
pattern do not bear on the decision. 

In dynamic decision making, however, the temporal and spatial nature 
of the data are highly significant. Since decision data appear as a 
pattern of individual events, it is reasonable to assume that the subject 
responds to the pattern as well as to the individual value. In fact, the 
pattern may contain the greater amount of information. Classification of 
input patterns by the learning mechanism can be accomplished by programmed 
cognizance of such data features as: data with non-independent events, 
data with correlated events, data with events which continuously vary 
with time, the number of elements of decision data and the rate of change 
in the data points. 

THE MAU MODEL. Multi-attribute decision analysis is the most widely used 
approach for making evaluations involving multiple criteria. MAU methods 
decompose the complex overall evaluation problem into more manageable sub­
problems of scaling, weighting, and combining criteria. In doing so, 
the MAU methods provide a rich framework for analysis, discussion, and 
feedback. This "divide and conquer" approach to evaluation involves 
defining the problem, identifying relevant dimensions of value, scaling 
and weighting the dimensions, and finally aggregating the dimensions into 
a single figure of merit for the system. 

The power of the multi-attribute approach lies in its level of 
analysis and flexibility. Sensitivity analyses of the level and weight 
of each dimension can provide indications of what aspects to concentrate 
tests on, or what system elements to modify. Flexibility is present, 
since criteria can be added or deleted as necessary. Also, the weights 
and levels can be quickly adjusted according to new functional require­
ments and capabilities. 

In the MAU model, the consequences of every action are considered to 
be decomposable according to a single common set of attributers. The 
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model computes an aggregate multi-attribute utility (MAU) as a weighted 
sum of each consequence attribute level (Ai) multiplied by the importance 
or utility of the attribute (Wi). The calculated MAU of each action is 
used as the selection criterion: 

where 

MAU. = the 
J 

W; = the 

Aik = the 

aggregate 

MAU. =I w.A.k 
J i 1 1 

utility of option j 

importance weight of attribute i ' 

level of attribute i for action k. 

(14) 

and 

Figure 4 shows the major components of the MAU model in block dia­
gram form. Possible actions are parameterized in terms of attribute 
levels. The MAU calculator uses as inputs (1) the attribute levels of 
the given action, and (2) a vector of "attribute weights" which have 
been dynamically estimated for a given operator by an adaptive model. 

Calculation of the multi-attribute utility for each action is 
central to the operation of the model. The MAU calculation is shown in 
Figure 5. The dot-product of the attribute level vector and the attri­
bute weight vector provides the aggregate MAU value. The attributes are 
scaled so that each attribute level ranges from O to 1. Further, the 
orientation is arranged such that each attribute contributes positively 
to the overall aggregate MAU. That is, holding all other attribute 
levels constant, an increase in any attribute level increases the MAU. 

ATTRIBUTE CHOICE. The determination of attributes to include in the 
decision model is probably of greater importance than the accurate assess­
ment of the importance weights (Dawes, 1975). The following list of 
desirable characteristics for the attributes expands on Raiffa's (1969) 
recommendations of attribute independence, set completeness, and minimum 
di mens iona l ity: 

a. Accessible. The levels of each factor should be easily and 
accurately measurable. 

b. Conditionally Monotonic. The factor level should be monotonic 
with the criterion (preference) regardless of the constant values of 
other factors. 

c. Value Independent. The level of one attribute should not depend 
on the levels of the other attributes. This is to some extent a conse­
quence of recommendation b. 

d. Complete. The set of attributes should present the operator's 
behavior as completely as possible. 
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e. Meaningful. The attributes should be reliable and should demon­
strate construct validity. Feedback based on the model attributes should 
be understandable to the operator. 

For the most part, these recommendations result in an attribute set 
that is measurable, predictive, and in accord with the axioms of utility 
theory. The recommendations also imply a limitation on the number of 
possible attributes. The requirements of independence and meaningfulness 
render any large set of attributes unrealizable, because of the cognitive 
limitations of the human operator. 

ADVANTAGES OF THE MULTI-ATTRIBUTE UTILITY MODEL. The multi-attribute 
information utility model presented here is characterized by several 
attractive features. These features, itemized below, offer substantial 
advantage over the EU decision model. The advantages arise out of the 
theoretical structure of the model, especially its decomposition property, 
and have all been empirically demonstrated to some degree in ongoing 
Perceptronics programs (Samet, Weltman, and Davis, 1976; Steeb, Chen and 
Freedy, 1977). 

a. Generality. The adaptive, multi-attribute model for information 
selection holds a considerable amount of generality. It can be applied 
in situations where diagnostic actions can be decomposed into a small set 
of manageable, quantifiable attributes which have two critical characteris­
tics. First, they must be logically related to the situation-specific 
demands. That is, their relevance to specific situations must be known. 
Second, they must directly impact upon a decision maker's choices among 
competing options. A number of military decision-making environments have 
already been demonstrated to fit this paradigm (e.g., Coats and Mccourt, 
1976; Hayes, 1964; McKendry, Enderwick and Harrison, 1971; Samet, 1975). 

b. Parsimony. The model is parsimonious; it need only assess an 
operator's weights for a limited number of information dimensions or 
attributes. Besides significantly minimizing the model's computational 
needs and software complexity, this feature reflects findings of psycholo­
gical experiments (e.g., Hayes, 1964; Slovic, 1975; Wright, 1974) and is 
in agreement with contemporary decision theory (e.g., Tversky and 
Kahneman, 1974), all of which suggest that a decision maker can only per­
form weighting and aggregation on a relatively small number of the 
important dimensions in the decision task. Also, when decisions are based 
on a manageable number of information dimensions, they are easier to 
communicate and rationalize--especially in group decision-making situations 
(Gardiner and Edwards, 1975). In complex situations, therefore, the re­
duction in the number of model parameters in the proposed MAU model as 
compared to the expected utility model are of major importance. 

c. Robustness. Like other linear composition models, the multi­
attribute decision model is robust; that is, its performance is not 
significantly degraded by small perturbations in the model's parameters 
(Dawes and Corrigan, 1974). Such robustness probably contributes to the 
finding that multi-attribute utility assessment techniques have proven, 
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in certain instances, to be more reliable and valid than direct assess­
ment procedures {Newman, 1975; Samet, 1976}. 

d. Speed of Adaptation. The adaptive model adjusts all parameters 
with each incorrectly predicted trainer decision {i.e., action selection). 
Thus, weights for a specific attribute can be obtained rapidly during 
sessions in which the trainer performs the simulated CO decisions. 

e. Flexibility. The multi-attribute utility model is inherently 
flexible. If accurate prediction of action selection is not sufficient 
(i.e., if attribute weights cannot be trained to stable values), addi­
tional features or attributes can be added and inappropriate ones deleted. 
The response to dynamic changes in conditions is similarly flexible. In 
instances where conditions change rapidly and radically, new sets of 
weights trained for the new conditions can be substituted. Such weight 
vectors could be prepared ahead of time by training them either in actual 
operational situations or in step-through simulations. 

UTILITY ESTIMATOR. The dynamic utility estimation technique is based on 
a trainable pattern classifier. Figure 5 illustrates the mechanism. As 
the operator performs the task, the on-line utility estimator observes his 
choice among the available actions at each point in the sequence and views 
his decision-making as a process of classifying patterns consisting of 
varying attribute levels. The utility estimator attempts to classify 
the attribute patterns by means of a linear evaluation (discriminant) 
function. These classifications are compared with the operator's choices. 
Whenever they are incorrect, an adaptive, error-correction training 
algorithm is used to adjust the utilities. A comprehensive discussion of 
this technique can be found in Freedy, Davis, Steeb, Samet, and Gardiner 
(1976). 

TRAINING ALGORITHM. On each trial, the model uses the previous utility 
weights (W1) for each attribute (i) to compute the multi-attribute 
utilities lMAUk) for each action (k). Thus, 

where 

MAUk = L Wi Aik 
i=l 

W. is the weight of the attribute, and 
1 

(15) 

Aik is the level of the ;th attribute associated with action k. 

The model predicts that the operator will always prefer the action 
with the maximum MAU value. If the prediction is correct (i.e., the 
operator chooses the action with the highest MAU), no adjustments are made 
to the utility weights. However, if the operator chooses an action having 
a lower MAU value, the algorithm goes into action and applies the error 
correction training formula. In this manner, the utility estimator 
"tracks" the operator's decision-making strategy and learns his utilities 
or weights for the attributes. The training rule used to adjust the 
weights associated with each of the attributes is illustrated in Figure 5. 
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Actual in-task training appears feasible using pattern recognition 
techniques. Instead of batch processing, the pattern recognition methods 
refine the model decision-by-decision. Briefly, the technique considers 
the decision maker to respond to the characteristics of the various 
alternatives as patterns, classifying them according to preference. A 
linear discriminant function is used to predict this ordinal response 
behavior, and when amiss, is adjusted using error correcting procedures. 
This use of pattern recognition as a method for estimation of decision 
model parameters was apparently first suggested by Slagle (1971). He 
made the key observation that the process of expected utility maximiza­
tion involved a linear evaluation function that could be learned from a 
person's choices. 

The suggested technique was soon applied by Freedy, Weisbrod, and 
Weltman (1973) to the modeling of decision behavior in a simulated intel­
ligence gathering context. Freedy and his associates assumed the deci­
sion maker to maximize expected ut·ility on each decision. They assigned 
a distinct utility, U(xik), to each possible combination of action and 
outcome, as shown in the decision tree in Figure 6. The probabilities 
of occurrence of each outcome j given each action k were determined using 
Bayesian techniques. These patterns of probability were used as inputs 
to the estimation program (Figure 7). The expected utility of each 
action Ak was then calculated by forming the dot product of the input pro­
bability vector and the respective utility vector. This operation is 
equivalent to the expected utility calculation: 

EU(Ak) = ~P(xjk). U(xjk) 
J 

(16) 

The classification weight vector Wjk in the pattern recognition pro­
gram acts as the utility U(xjk). The alternative Ak having the maximum 
expected utility is selected by the model and compared with the decision 
maker's choice. If a discrepancy is observed an adjustment is made, as 
shown in Figure 5. The adjustment moves the utility vectors of the 
chosen, and predicted, actions (We and W , respectively)·in the direction 
minimizing the prediction error. The ad~ustment consists of the following: 

where 

w .. = w - d p c c p 

WP = WP + d . pc 

W~ is the new vector of weights [W{x1c)' W{x2c)] for action c 

w~ is the previous weight vector for action c c 

d is the correction increment 

(17) 

(18) 

pi is the probability vector describing the distribution of outcomes 

[Plk' P2k' ... , Pnk] resulting from action k 
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UTILITY 

OUTCOME 1 u ( a1 , o,) 

ACTION 1 OUTCOME 2 u ( a1 , 02) 
• • • • UT OME m u(a1 , om) ,,, 

ACTION 2 

• .... 
• • OUTCOME u(an, op) • • • • OUTCOME +l •• ACTION n • • • • 

OUTCOME o+n •• 

Figure 6. Decision Tree of Utility Estimation 
Developed by Freedy et al. 
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Attribute Model 
Alternative Pattern Weights Evaluation 

Al - [Pll,P21' · · ·' p nl] wll EU(A1) 

w21 

MAX 

Adjustment 

Operator Choice Model Choice 
Comparator 

Figure 7. Structure of Utility Estimation Program of Freedy et al. (1973) 
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The model is an adaptation of the R-category linear machine (Nilsson, 
1965). The pattern classifier receives patterns of descriptive data (out­
come probabilities) and responds with a decision to classify each of the 
patterns in one of R categories (actions). The classification is made on 
the basis of R linear discriminant functions, each of which corresponds 
to one of the R categories. The discriminant functions are of the form: 

gi(x) = Wi · x for i=l, 2, ... , R ( 19) 

where x is the pattern vector and Wi is the weight vector. The pattern 
classifier computes the value of each discriminant function and selects the 
category i such that 

g.(x) > g.(x) 
l J 

(20) 

for all j=l, 2, ... , R; i~j 

A geometric interpretation of the R-category linear machine is shown 
in Figure 8 (Nilsson, 1965). Decisions involving two possible consequences, 
x1 and x?' are evaluated according to three discriminant functions G1 (~), 
G2 (~), a:nd G3 (~). The lines of intersection between the discriminant 
hyperplanes are the points of indifference between actions. Mappings of 
these lines of intersection to the attribute plane are shown in the figure. 
The resulting regions R1, R2, and R3 correspond to the actions maximizing 
the (expected utility) evaluation function. 

The R-category technique becomes somewhat cumbersome if a large number 
of actions are possible or if the decision circumstances change rapidly. 
This problem is a result of the assignment of a distinct, holistic utility 
to each tip of the decision tree. The number of model parameters thus 
increases rapidly with an increase in the number of actjons possible. Also, 
the only weight vectors adjusted in a given decision are those corresponding 
to the model-predicted and the actually chosen actions. This partial 
adjustment makes the system somewhat unresponsive to change. 

A natural extension of Freedy's approach is to adapt the single dis­
criminant, multi-attribute approach to the modeling of objective choice 
behavior. Each possible outcome of a decision can be associated with a 
set of attributes or objectives of the decision maker. An importance 
weight vector defined over the various attributes can then be adjusted to 
predict behavior. The mechanism is simply that of a threshold. The 
adjustment rule following an incorrect prediction is given in equation 21 
with the parameter d controlling the sensitivity of the correction. A 
large d will cause a fast adjustment but may result in overshoot and 
oscilitions and a small d will cause slow adaption. 

w~ = w + d(x - x ) . c p (21) 
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G(X) 

CONSEQUENCE x, 

Figure 8. Geometric Interpretation of R-Category Linear Machine 
(Adapted from Nilsson, 1965) 
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where 

w .. is the updated weighting vector 

w is the previous weighting vector 

xp is the attribute pattern of the model-predicted choice 

XC is the attribute pattern of the decision maker's choice 

d is the adjustment factor. 

A possible advantage of the pattern recognition technique over many of 
the other forms of estimation is its flexibility of adjustment. Several 
types of error correction are possible for the adjustment rule, each with a 
different combination of speed, stability, and complexity. The three prin­
ciple forms are the fixed increment rule, the absolute correc;tion rule, and 
the fractional correction rule. These differ solely in their formulation 
of the adjustment factor din Equation 21. 

The fixed increment rule simply assigns a non-zero constant to d. Thus 
the movement of the weight vector is a constant proportion of the difference 
in the predicted and chosen patterns. The correction may not be sufficient 
to avoid subsequent error:5" with the same pattern, but the process is 
eventually convergent (Duda and Hart, 1973). The fixed increment rule has 
the advantages of simplicity and relative insensitivity to inconsistent 
behavior. 

A more rapid but also more potentially unstable rule is the absolute 
correction rule. This method sets d to be the smallest integer at which 
the error of the pattern is corrected. In the decision modeling situation, 
this becomes: 

d - smallest integer> jk · (xc - xp)I 

(xc - xp) xc - xp) 

(22) 

in which 

xc is the attribute level vector of the operator selected choice 

xp is the attribute vector of the predicted choice 
\ 

The fractional correction rule is similar to the absolute rule but 
is typically less extreme. The fractional rule moves the weight point some 
fraction of the above distance: 

(23) 

where A is a constant 0 < A > 2. 
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All three of the adjustment rules have been proven convergent with 
linearly separable patterns {Nilsson, 1965). The speed of convergence is 
normally fastest with the absolute rule. This is illustrated for an 
example series of adjustments in Figure 9. The set of four numbered lines 
in the figure are a sequence of patterns. These patterns are shown as 
hyperplanes in a 2-dimensional weight space. Each hyperplane represents 
the difference between two multi-attribute vectors. The operator choice 
is shown by the direction of the arrow at each pattern. The absolute 
rule, {the triangles in the figure) achieves correct prediction 
after four observations, while the fixed rule (the circles) requires five. 
Unfortunately, the absolute rule is expected to be less forgiving of 
inconsistent behavior than the fixed or fractional rules. This is because 
of the large responses the absolute rule makes to operator inconsistencies. 
The fixed and fractional rules may exhibit a greater tendency to smooth or 
average the behavior. 

AN EXAMPLE. For an example of how the adaptive decision analysis approach 
is applied, consider the select maneuver decision. Assume it has already 
been decided that the goal of the maneuver should be to evade. 

Assume that the following alternative evasive maneuvers are available: 

a. Sink to the bottom and hide. 

b. Run (full speed in straight line). 

c. Sink to bottom and deploy decoy. 

d. Run in a zigzag pattern. 

e. Run and deploy decoy. 

The following attributes could be used: 

Information Gain. This represents the expected information gained by 
friend about the opponent as a result of the action being considered. This 
is dependent on the probability {assessed by opponent) that friend has 
already detected him. Thus, if friend already has a lot of information 
there's not much information left to be gained. 

Deception. This is the expected amount of false information gained as a 
result of decoying. This may be situation dependent. In the example, 
releasing a decoy would have greater deception value if the sub is resting 
on the bottom, than if it is going full speed ahead. Also, if you haven't 
yet been detected, deploying a decoy will give away the fact that you are 
in the area. 

Vulnerability. This attribute represents your vulnerability to being hit 
if you are detected. The attribute levels for vulnerability should be 
subjectively estimated and defined in advance for each alternative. 
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INITIAL WEIGHT POINTS .. 

-
~ ABSOLUTE CORRECTION RULE 

(!) FIXED CORRECTION RULE 

Figure 9. Comparison of Behavior of Convergence Rules 
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Cost. This is the direct cost of the alternative. Cost may also be used 
as a gross resource depletion attribute. 

Effect on Mission Objective. This attribute should be redefined with 
subjective weights. 

Table 2 gives an example of the MAU approach to optimal action 
selection. Each column represents one alternative action that the CO can 
choose in the tactical situation. Each row represents one of the key 
attributes by which each action is evaluated. The values in the table 
are predetermined or calculated from the features of the tactical situation. 
In the example given, the tactical situation is the following: 

a. The opponent is 80 percent sure friend has not detected him (thus 
the "run" alternatives may cause high information gain). 

b. The deception effect of a decoy is higher if chosen with a "sink" 
rather than 11 run 11 alternative. 

c. Cost includes fuel, weapons and decoy expenses, and are .1, .4, 
.6, .5 and .8, respectively. 

The first column gives the utility value associated with each attri­
bute by a trainer. These values are the result of the adaptive training 
algorithm. They are positive for good attributes (for the opponent 
objectives) and negative for bad ones. The MAU processor will select the 
alternative action that would have the highest combined value. This is 
done by a weighted sum of utilities times the attribute level. These 
values are calculated and rank ordered at the bottom of the table. Alter­
native #1 turns out to have the highest value and it is the one the system 
will select. In a different tactical situation the attribute levels of the 
various options may be different (e.g., friend has detected the opponent) 
causing another action option to come up on top and that action would be 
the one the opponent model would select to activate the simulated opponent 
on the screen. 

THE HEURISTIC SEARCH APPROACH 

STATE SPACE MODEL. The overall objective of knowledgeable opponent 
scenario generation is to provide a realistic simulation of an active enemy. 
The enemy would react to events and actions taken by the friendly forces 
and choose a course of action that would lead to the achievement of some 
enemy goal, whic.h usually means a bad outcome for the friendly forces. The 
heuristic search approach provides such a mechanism. 

In the underlying model, which is called the "state space" model, the 
problem domain (such as underwater warfare) is expressed in terms of 
11 states, 11 which are complete descriptions of the tactical situations as 
they exist at some particular instant of time (Nilsson, 1971). An "action" 
is a transformation which, when applicable, converts one state into 
another. Thus, a sequence of actions ("plan" or "allocation") converts 
some initial state into a final, or goal, state. The enemy submarine 
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TABLE 2. ATTRIBUTE LEVELS, VALUES, AND EXPECTED VALUES 
FOR EXAMPLE SCENARIO 

Attribute Utility Sink to Run Sink and Run in 
bottom & deploy zig zag 
hide decoy pattern 

Information 
Gain -1.0 0.0 0.7 0.5 0.8 

Deception +0.5 0.3 0.0 0.8 o.o 
Vulnerability -0.8 1.0 0.5 1.0 0.2 

Cost -0.2 o.o 0.5 0.9 0.6 

Effect on 
Mission 
Objective +0.2 -0.9 1.0 -1.0 0.7 

MAU Value 
of Choice 0.0 -0.47 -1.16 -0.98 -1.18 

Rank Order 1 4 3 5 
Best worst 
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commander asks the questions, "What sequence of actions can transform the 
current state into a goal state which satisfies my overall objectives?" 
In other words, "How do I get from where I am to where I want to go?" 
Before a system can perform properly, it must know what actions are 
available, under what circumstances they can be applied, what their effects 
are, and what possible states can arise from their use. 

BASIC SEARCH TECHNIQUES. The most basic search techniques are systematic 
expansions of the state space. Starting from the start node (labeled l in 
Figure 10--the current state), the search algorithm expands all its 
possible successive nodes. When a goal node is encountered, the path from 
the initial node to that goal node is the solution sought. In the ASW 
case, it is the strategy, or sequence of actions, the commander has to 
take to reach his objective. 

Figure 10 shows the most elementary algorithms--the "breadth-first" 
and the 11 depth-fi rst 11 algorithms, respectively. In the 11 breadth-fi rst 11 

algorithm, each node is expanded completely--all its 11 sons 11 identified-­
before the next is started. This method is guaranteed to find the shortest 
path from the start to the goal nodes. The numbers in Figure 10 indicate 
the order of node expansion. 

In the 11 depth-first 11 algorithm, each alternative line of inquiry is 
sought to the fullest depth before other alternatives are evaluated. When 
such a search fails, the algorithm tries the next deepest possibility. 
Figure 10 also shows the order of node expansion in this algorithm. The 
depth first algorithm does not guarantee the shortest path to a goal if more 
than one goal node exists. 

These search methods are 11 blind 11 methods because they develop systema­
tically every node in the state space without using any information which 
may be known in advance about the particular problem domain or the parti­
cular knowledge found in the nodes that has already been expanded to guide 
the search process. The heuristic search approach is the class of algorithms 
that uses such domain specific knowledge to guide the search. 

HEURISTIC SEARCH METHODS. Heuristic search methods try to utilize any 
information known about the problem domain to guide the search for a solu­
tion in the state space. The added information helps avoid the combinatorial 
explosion of computer resources (time and memory) needed for the basic 
search techniques. Figure 11 illustrates the basic idea of the heuristic 
search approach by comparing it to depth first and breadth first searches. 
The contours of node expansion are directed toward the goals Gl and G2, in 
contrast to the blind search algorithm. Applying a heuristic search usually 
leads to the discovery of optimal or suboptimal solutions in cases that 
would be too big to handle by standard techniques. Many achievements of 
heuristic search are known. For example, 

a. Computer Aided Design (Powers, 1973; Hagendorf et al, 1975). 

b. Test Sequence Generation for Detection of Failures in Clockmode 
Sequential Circuits (Hill and Huey), 1977. 
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Figure 10. Breadth and Depth-First Expansion Order 
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DEPTH FIRST SEARCH 

SEARCH TREE LIMIT 

Gl , G2 GOAL NODES 

Figure 11. Expansion Contours of Depth-First Breadth-First 
and Heuristic Search Methods 
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c. Edge and Contour Detection (Martelli, 1976}. 

d. Chromosome Matching (Montanari, 1970}. 

e. Organic Chemical Synthesis (Sridharan, 1973}. 

f. Ballistic Missile Defense (Leal, 1977}. 

g. Discovery of Mathematical Concepts (Lenat, 1978). 

The heuristic information can be contained in different parts of the 
search algorithm. If r is the function that generates node successors and 
f (n} is an estimate of the promise of node n to be on the path to a goal 
node, then the heuristic information may be contained in either of them. 
Using knowledge in r, the search algorithm would generate first the more 
probable successors of a node. On the other hand, using knowledge in f (~) 
the most promising nodes would be selected for subsequent development 
in the face of less promising ones. · 

THE MINIMAX AND ~s ALGORITHMS. Two algorithms which have particular appli­
cability to the case of military confrontation are the minimax and the «S 
algorithms. The minimax is applicable in zero-sum adversary confrontations 
where what is good for one side is bad for the other. When developing the 
state space of such a problem, the prudent decision maker has to assume 
that, when given the choice, the enemy would select the alternative which 
is the most damaging to the decision maker"s own objectives·. When expanding 
the search space for this problem, as shown in Figure 12, the commander 
first determines all the alternatives available to him. This is the maxi­
mizing level because at this level the commander has the choice, and he 
will obviously choose the alternative that maximizes his measure of success. 
The next level is the set of responses available to the enemy for each of 
the commander's choices. Here the enemy will make the choice, and he will 
choose the worst alternative (from the commanderts point of vie\'J). Thus, 
this layer is called the minimizing level. The maximizing and minimizing 
of layers continues downward in the tree until the allocated computing 
resources are used up. At that point, the static value of each tip node 
is evaluated. The value of a tip node is a measure of how "good" is the 
state represented by the node from the commander point of view. If the 
layer of nodes just above the tip nodes is a "maximizing" layer, each node 
in.it assumes the maximal value of its "children" nodes (and vice versa 
fora minimizing layer). These "backed-up" values propagate upward in the 
state space tree until they reach the top layer. The minimaxed values 
that reached the layer just under the current state (the root of the tree) 
are the basis of the commander's choice among the alternative actions 
available to him. This "minimaxing" algorithm is repeated for every 
decision the simulated commander has to make; thus, it takes into account 
the dynamics of the situation, and it finds the best tactical move fore­
seeing the best choice of the enemy. In this algorithm, the heuristic' 
information is contained in the tip node evaluation function f (n) in 
the previous section. 
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ORIGINIAL SITUATION 

MOVES AVAILABLE TO SIMULATED COMMANDER 

NEW SITUATIONS 

RESPONSES AVAILABLE TO ENEMY 

NEW SITUATIONS 

MAXIMIZING LEVEL 

MAXIMIZING LEVEL 

MINIMIZING LEVEL 

Figure 12. The Minimax Algorithm Tree Development 
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The alpha-beta algorithm is an improved version of the basic minimax 
algorithm. The alpha-beta algorithm is a systematic method to reduce the 
number of nodes that have to be evaluated and even makes it unnecessary to 
expand complete branches of the state space tree. It can be shown that 
although the algorithm allows a large part of the search tree to be com­
pletely ignored, it will not lose any solution that the basic minimax 
algorithm would find. 

The alpha-beta algorithm starts with a depth-first expansion of the 
tree down to some level n (see Figure 13). When the depth limit is reached, 
the tip nodes are evaluated and temporary values are backed-up in the tree. 
The alpha-beta technique takes advantage of these preliminary values. 
Consider, in Figure 13, the maximizing node A in the tree after nodes 4-9 
have been developed below it. A has been assigned a temporary value of 
0.2 {propagated from node 5). B, which is a minimizing node, has been 
assigned a temporary value of 0.1 (propagated from node 9). 

At this time, there is no point developing any other successor to the 
node B (such as C) because, since it is a minimizing node, the best value 
B can get is 0.1 or lower, and node A, being a maximizing node, will always 
select 0.2 over 0.1. This argument is the 11alpha 11 half of the alpha-beta 
pruning. The empty nodes in Figure 13 show all the subtrees that will be 
pruned off and the order of node generation. In fact, the empty nodes need 
not be generated at all. 

The 11 beta 11 half operates in precisely the reverse for nodes in the 
minimum layers. By using the alpha-beta algorithm, the tree can be explored 
approximately twice as deep as a simple minimax algorithm, while expanding 
the same number of nodes. The algorithm is somewhat slower, inasmuch as 
it has to do the bookkeeping for the temporary alpha and beta values. The 
alpha-beta algorithm is a very promising potential opponent model. 

ADVANTAGES 

a. Heuristic search techniques have a wide range applicability, as 
can be seen from the examples mentioned above. 

b. The underlying structure (state-space, AND/OR graphs) is very 
general and fits naturally all problems of a combinational nature and all 
hierarchical problems which can be decomposed into goals and subgoals 
(this includes decision trees). 

c. General theoretical results are available. 

d. It is universally accepted that heuristics are crucial to cope 
with intractable problems. 

SCOPE AND LIMITATIONS 

a. Heuristic search techniques are designed for problems of a parti­
cular nature only, with well-defined states, subgoals or subproblems. 
Problems with a continuous nature, for instance planning in a continuum, 
cannot be solved via heuristic search. 
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Figure 13. Example of Alpha-Beta Pruning 
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b. The use of heuristic search itself poses a problem. The more 
specific a heuristic function~ the more efficient it is in guiding the 
search. How well designed and problem-specific heuristics are will there­
fore determine their efficiency. 

c. Heuristic search might be subject to catastrophes (if no solution 
is found after the computational resources are exhausted or an insuffi­
ciently good solution is found). 

PRODUCTION RULES APPROACH 

OVERVIEW. Production rule systems represent another successful approach 
for knowledge representation and deductive mechanisms. This approach is 
similar to the heuristic search approach in that it uses a modification of 
the state space model as the underlying conceptualization (see definition 
in the section on heuristic search). The technique of representing the 
knowledge is different, however, and so is the mechanism which finds the 
path from the current state to the goal state. The problem specific know-
1 edge (heuristics) is packaged in production-rule systems as small modular 
11chunks 11 called productions. 

A ~roduction is a rule which consists of a situation-recognition 
part an an action part. Thus a production is a 11 situation--action 11 pair 
in which the left side is a list of things to watch for in the description 
of the current state of the world, and the right side is the list of things 
to do in that case. 

In the case of submarine warfare, a production that guides the 
commander's actions may be something like: 

If 

AND 

Enemy dominates area 

Enemy has not yet detected you 

You are out of his torpedo range 

You are in very shallow water 

Then 

Escape by sinking to bottom in silence 

The effect of such a production is to respond to the situation when 
a 11 the aspects combined by the AND are present and change the current 
action from whatever it was before to ESCAPE. 

In addition to the large set of such productions, the production 
rule system contains a triggering mechanism that uniformly checks all the 
productions that apply in a given situation (by testing for truth of the 
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left hand side of each production) and applies those that are applicable-­
causing the situation to change. 

The main advantages of the production rule approach are the ease and 
modularity of the knowledge representation. Consequently, it is easy to 
elicit information from experts without requiring that they be programmers. 
In fact, many training manuals are written already in "production rule style." 
Furthermore, the information is incremental; thus it is easily modified, 
updated and expanded into new areas of expertise. It is also usually 
argued by production rule proponents that this form of knowledge representa­
tion is highly compatible with human cognition, making it a very useful and 
powerful training tool. For example, suppose an opponent commander model is 
built as a production rule system. It becomes very easy to communicate 
with the system and ask "Why have you done that?" meaning what aspects of 
the situation or what actions of the trainee caused some unexpected response 
of the simulated enemy commander. 

The trainee can discover specifically where he went wrong, and he can 
start in mid action and try other alternatives. At the same time, this is 
also a powerful debugging tool allowing experts to tune the system by 
following its reasoning process and identifying the specific cause for a 
mistaken conclusion which led to an unreasonable response. 

THE PRODUCTIONS. As AND/OR graphs (a graph with nodes combined by logical 
AND or OR functions), production systems are composed of two parts: the 
set of productions and a mechanism to find a solution in a given situation. 
We will discuss first a graphic representation of the productions them­
selves. A simple production specifies a single conclusion which follows 
from the simultaneous satisfaction of the situation recognition conditions. 
Any particular conclusion may spring from any production. The conclusion 
specified in a production follows from the AND or "conjunction" of the facts 
specified in the premise recog.nition part. A conclusion reached by more 
than one production is said to be the OR or "disjunction" of those pro­
ductions. Depicting these relationships graphically produces an AND/OR 
graph. Figure 14 shows an AND/OR graph which reaches from base tactical 
facts (Fi) on the left, through the different productions (Pj), to a con­
clusion or an act to be taken, on the right side of the figure. Any 
collection of productions implies such a graph. In Figure 14 we used the 
set of submarine warfare productions given in Figure 15. These productions 
should be taken as an example of the capabilities of this approach. 

The arrangement of nodes in this graph focuses on how the conclusion 
can be reached by various combinations of basic facts. As with ordinary 
AND/OR trees, a conclusion is verified if it is possible to connect it with 
basic facts through a set of satisfied AND/OR nodes. Different sets of 
facts can be used to reach a given conclusion by selecting different 
branches at OR nodes. 

Sometimes it is useful to look at the implied graph to get a better 
feel for the problem space, noting whether the reasoning is likely to be 
broad and shallow, narrow and deep, or broad and deep. Again, however, 
caution is in order. When used prominently in discussions of goals and 
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Figure 14. And/Or Graph 
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fl 
IF 

OR 

Location near enemy shore 

3 or more enemy ships in the area 

Anti sub ship in area 

Nuclear enemy sub 

THEN 

ENEMY DOMINATES SCENE 

P2, P3 

IF 

AND 

SELF WITHIN SENSOR RANGE 

ENEMY CHANGED COURSE 

THEN 

SELF DETECTED 

ELSE 

NOT DETECTED 

P4 

IF 

AND 

SELF on passive mission 

SELF not detected 

Enemy dominates area 

THEN 

ESCAPE 

PS 

IF 

AND 

ESCAPE 

SELF in deep water 

THEN 

Sink deep and run 

P6 

IF 

AND 

ESCAPE 

Self in shallow water 

THEN 

Sink to bottom in silence 

P7 

IF 

AND 

ESCAPE 

SELF in Islandic area 

THEN 

Hide behind and island 

PB, P9 

IF 

OR 

AND 

One enemy sub in area 

Self in deep water 

Enemy sub of same type 

AND 

THEN 

Enemy surface ship alone 

NO ASW in air 

SELF dominate 

Figure 15. Production Rule Example 
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subgoals, and/or graph representations tend to make control look like a 
search problem with the various search ideas becoming applicable. This 
position has its good and bad features. One bad feature is that it can 
create a tendency to waste time with an existing problem space rather than 
to make a better space, where less search, if any, would be needed. 

THE CONTROL MECHANISM. The control mechanism which utilizes the set of 
productions takes a collection of known facts about the situation and makes 
new conclusions according to productions that are satisfied by the initial 
facts. In operation, the user would first gather up all facts available 
and present them to the system. The control mechanism will then scan the 
production list for a production which has a matching situation part, i.e., 
all the premises in the left hand side are satisfied. This production will 
be activated and its action side will change the facts known about the 
situation. In the example given, if Pl was activated, it adds the con­
clusion that the "enemy dominates the area" to the situation description. 

Reasoning from base facts to a conclusion rarely entails using only 
a single step, however. More often, intermediate facts are generated and 
used, making the reasoning process more complicated and powerful. One 
consequence is that the individual productions involved can be small, 
easily understood, easily used, and easily created. Also notice that the 
intermediate facts added by the lower level productions are tactical facts 
meaningful to the military users of the system, resulting in many benefits. 
Using this approach, a simulated submarine commander can produce a chain 
of conclusions leading to intelligent tactical actions, even as a trainee 
corrmander makes his actions dynamically. 

In the event many productions have premises or situation specifica­
tions that are satisfied simultaneously, there must be some way of deciding 
among them. Here are some of the popular methods: 

a. All productions are arranged in one long list. The first matching 
production is the one used. The others are ignored. 

b. The matching production with the toughest requirements is the 
one used, where "toughest" means the longest list of constraining premises 
or situation elements. 

c. The matching production most recently used is used again. 

d. Some aspects of the total situation are considered more important. 
Productions matching high priority situation elements are privileged. 

So far, the deduction oriented production system is assumed to work 
from known facts to new, deduced facts. Running this way, a system is 
said to exhibit "forward chaining .• " But "backward chaining" is also 
possible, for the production system user can hypothesize a conclusion or 
a desired final state and use the productions to work backward toward an 
enumeration of the facts that would support the hypothesis. For example, 
(see Figure 14) in the case of a submarine commander, the system can start 
from the mission, e.g., attack enemy sub. Then chaining backward from 
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(PlO), it will conclude that it has to achieve self-dominance. This can 
be achieved by confronting an enemy surface ship (P9) or an enemy sub of 
the same type in deep water (PB). Thus, by a small change of orientation, 
the same set of productions was used backwards. Knowing that a deduction­
oriented production system can run forward or backward, which is better? 
The question is decided by the purpose of the reasoning and by the shape 
of the problem space. Certainly, if the goal is to discover all that can 
be deduced from a given set of facts, then the production system must run 
forward. The production system can run forward from all premise elements 
as long as suitable productions exist. Using sensory systems to supply more 
facts is necessary only when no productions apply, and no conclusion has 
been reached. On the other hand, if the purpose is to verify or deny a 
particular conclusion, or reach a desired situation through a sequence of 
actions, then the production system is probably best run backward from that 
conclusion. Avoiding needless fact accumulation is one result obtained; 
indeed, no irrelevant facts need be checked at all. 

Deciding whether forward chaining or backward chaining is better 
depends, in part, on the shape of the space. Figure 16 illustrates this 
by way of two symmetric situations. All possible states are represented 
along with the operations that can change on e state into a neighbor. In 
the first situation shown, forward chaining is better because there is a 
general fan-in from the typical initial states toward the typical goal 
states. It is hard to get into a dead end. In the second situation, the 
shape favors backward chaining since there is fan out. 

ADVANTAGES. Proponents of production rule systems usually cite one or 
more of the following advantages: 

a. Production systems provide a powerful model of the basic human 
problem solving mechanisms. This results in easy expert elicitation, user 
communication at the comfortable level of military tactical concepts and 
terms, easy trouble-shooting, and good training capability. 

b. System states are meaningful to users, debuggers, etc.; thus an 
evaluation can be made on the tactical level rather than in the computer 
implementation level. 

c. Production systems enforce a homogeneous representation of know­
ledge, effectively separating the static data representation from the uni­
formly applied evaluation mechanism. 

d. The control mechanism is simple and explicit on what to do next, 
is clear from the current state what productions are available. 

e. Production systems allow incremental growth through the addition 
of individual productions and without changes necessary to any others. 

f. Production systems allow unplanneq but useful, interactions 
which are not possible with control structures in which all procedural 
interactions are determined beforehand. A piece of knowledge, or a com­
bination of such, can be applied whenever appropriate, not just whenever a 
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programmer predicts it can be appropriate. This can lead to highly intel-
1 igent performance by systems with a surprisingly small (several hundreds) 
set of productions. 

g. Providing explanation capability to the system is natural to 
implement. When some decision is made, the system can present the sequence 
of productions that led to that conclusion, thus affording its 11 reasoning 11 

about the situation. 

h. The production rule approach is as general as any other method 
based on the state space model. 

i. Productions can be quantified with probability information leading 
to applicability in decision making and risk evaluation. 

DISADVANTAGES. Some of the advantages of the production rule approach can 
become disadvantages if care is not exercized in the design process: 

a. Maintaining focus of attention: It would seem that PR systems 
allow knowledge to be tossed into the system homogeneously and incrementally 
without worry about relating new knowledge quanta to old. Thus, by relin­
quishing control, such system a 11 ow unimportant productions to usurp 
center stage from more important productions, leading the process astray. 

b. Size problems: One particular problem is that production systems 
may break down in the amount of knowledge is too large, or when the number 
of productions grows beyond reasonable bounds. The advantage of not needing 
to worry about the interactions among the productions can become the dis­
advantage of not being able to influence the interactions among the larger 
number of productions. 

The possible solution, of course, is to partition the facts and 
the productions into subsystems such that at any time only a manageable 
number are under consideration. Within each subsystem, some productions 
may be devoted to arranging transfer of information or attention to another 
subsystem. Curiously, some users of Hewitt's ACTORS language produce pro­
grams that have a strong resemblance to systems of communicating produc­
tion subsystems. 

This solution, however, goes against one of the main advantages 
of production rule systems, namely, modularity and independent control. 
If control guiding productions are added, we again have the problem of 
explicitly directing where control should go. 

c. Global effects: It is awkward to represent global effects using 
PR approach. Here, again, the modularity of the productions requires 
that if some global effects (such as weather in ASW) take part in many 
productions, it is necessary to duplicate the whole set of productions 
which behave differently for each different weather state. 
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SECTION V 

MODEL EVALUATION 

EVALUATION ATTRIBUTES 

The attributes for evaluating different opponent models are described 
below. These attributes are divided into three categories: 

a. Modeling Attributes. 

b. Development Attributes. 

c. Performance Attributes. 

MODELING ATTRIBUTES 

a. Flexibility for Modeling Different Opponents. How easy it is to 
change the opponent's appearance of tactical behavior such as smart/dumb, 
aggressive/defensive, cautious/risky, type of simulated sub, and mission 
type. 

b. Ability to Model Subjective Operator Decision Criteria. How well 
the model deals with subjectivity. Can the model make use of the oper­
ator1 s internal preference-~value structure? 

c. Modeling Continuous Behavior. Continuous behavior means that 
the parameters representing the behavior (sub x, y location) can vary in 
infinitesimal increments rather than between a few discrete alternatives. 

d. Modeling the Flow of Control. (Representing in a flexible man­
ner the sequence of processing.) Processing may be a decision--selecting 
among alternatives or assessing a situation, or it may be an action. The 
flow of control may further be parallel or sequential, instantaneous or 
protracted, synchronous or a synchronous, and event driven versus schedule 
driven. 

e. Modeling AND and OR Conditions. Can the model represent compli­
cated, logically structured criteria (i.e., a set of conditions linked 
by AND's and OR 1 s) for making a decision. 

· f. Modeling Probabilities. The capability of the model to respond 
to probabilistic inputs and to give probabilistic outputs (or make a 
Monte Carlo selection of outputs). 

g. Conciseness of Representation. The quantity of parameters, data, 
or code needed to represent a particular behavior. 

h. Adaptiveness. Can the model modify automatically its own para­
meters in response to external events. The training is done on-line, in 
task and in real time. 
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i. Dependencies Among Input Variables. The difficulty of applying 
the model when dependent relationships among the input variables exist. 

j. Auxilliary Payoffs. This represents extra features available 
with the particular modeling approach. Examples are: ability to explain 
decision selections, ability to output relative desirability of the 
alternatives, performance measures, etc. 

DEVELOPMENT ATTRIBUTES 

a. Scenario Set-Up Time. This is the time and effort required to 
specify a new scenario or enemy behavior. This function is done by the 
instructor ahead of the training session. 

b. Required Development and Implementation Time and Cost. This 
includes the time spent by analysts, the amount of research required, the 
required size and complexity of the software, ease of debugging, computer 
resources required, etc. 

c. Required Integration Time and Cost. The difficulty of integrat­
ing the new software into the current SCST software systems. 

d. Vulnerability to Increase in the Size of the State Space. This 
represents the degree to which development, implementation, and modeling 
difficulty increases with the size of the state space. More vulnerability 
means that the complexity increases more rapidly than the increase in 
state space size. Vulnerability carries the risk of the problem 11 blowing 
up 11 or becoming intractable. 

PERFORMANCE ATTRIBUTES 

a. Instructor Time Needed for Operation. The amount of effort and 
interaction required of the instructor during operation. Hopefully, the 
instructor's burden would be decreased rather than increased. 

b. Instructor Control. This represents problems of synchronizing 
the model to allow smooth transitions from instructor control to model 
control and vice versa. 

c. Required Computer Resources. Run time and memory requirements 
during model operation. 

d. Trainee Evaluation and Performance Measurement. This represents 
the degree to which trainee performance measures are naturally and readily 
available from the model. 

e. Real World Fidelity. The degree to which the model reflects 
real world behavior patterns. 
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EVALUATION BY MODELING ATTRIBUTES 

a. Flexibility of Modeling Different Opponents. In evaluating 
flexibility we are not considering the number of parameters that have 
to be adjusted to bring about a particular behavior--because any pre­
defined set can be brought in from back-up memory in essentially the 
same speed. Rather, we are concerned with how easy it is to obtain the 
parameters and identify the parameters that have to be replaced. This 
related to the consideration of how transparent the representation is 
with respect to knowing what behavior a particular parameter creates 
and vice versa. The Adaptive Decision approach is the easiest in that 
a particular behavior can be generated automatically by training the 
system on samples of the desired behavior. However, this approach is 
not transparent unless all the attributes used are explicitly meaningful 
to the decision maker. The production rules approach offers the great­
est transparency and clarity becuase particular behaviors are generated 
in a few localized productions and they are stated there in (almost) 
plain language rather than a collection of numbers. The Elicited Prob­
ability approach is non-automatic (the conditional probabilities, etc • ., 
have to be elicited explicitly from experts) and it is also less trans­
parent than the Adaptive Decision Analysis approach because more para­
meters are needed to represent a given behavior. With the Heuristic 
Search approach, the heuristic, pruning and generating functions can be 
changed, but the changes necessary to obtain a particular behavior are 
not immediately drivable from it. The rank order (starting with the most 
flexible and transparent approach) is: 

(1) Production Rules. 

(2) Adaptive Decision Analysis. 

(3} Elicited Probability. 

(4) Heuristic Search. 

b. Ability to Model Subjective Decision Criteria. The Adaptive 
Decision Analysis Model was developed specifically to handle subjective 
criteria and even can capture them automatically through training. With 
the Elicited Probability approach, subjective weights could be applied 
to the output but more research would have to be done to find a way to 
obtain them by automatic training. The Production Rules approach can 
capture subjective decision criteria of experts by embedding them in the 
productions themselves, but as with the Elicited Probability approach 
it takes a deliberate effort. The Heuristic Search approach cannot 
represent subjective criteria directly. The rank order, starting with 
the approach with the greatest ability for modeling subjective criteria 
is: 

(1) Adaptive Decision Analysis. 

(2) Elicited Probability. 
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(3) Production Rules. 

(4) Heuristic Search. 

c. Modeling Continuous Behavior. All of the approaches select 
discrete alternatives as their output; however, this decision making 
function can be separated from the actual calculation of the continuous 
variables. Thus, the decision model will select among several functions 
that will perfonn the actual trajectory calculation. Adaptive Decision 
modeling is the only approach which accepts continuous criteria as an 
input. The Elicited Probability and Adaptive Decision approaches give a 
value associated with the output which is continuously variable. Heur­
istic Search involves a traverse through a tree of discrete nodes. The 
criteria for selecting a node may be continuous but based on the state 
at the parent node which is a unique node. Production Rules combine 
discretely defined logical statements to select discrete outcomes. The 
ranking of the four approaches (best first) for this attribute are as 
follows: 

(1) Adaptive Decision Analysis. 

(2) Elicited Probability. 

(3) Heuristic Search .. 

(4) Production Rule. 

d. Modeling the Flow of Control. Traditionally, the flow of control 
in a simulation program was imbedded in the control structure of the 
implementation language. This method is always available as a last resort. 
By including a network of states in the production rule system the control 
flow can be made explicit. This avoids dependency on hard coded logic and 
makes the flow of control flexible, visible, and easy to modify. In the 
Heuristic Search approach the flow of control is rigidly built into the 
state space and the evaluation function, making changes more awkward. The 
Elicited Probability approach represents flow of control indirectly in 
that the behavior created has an orderly sequence. The Adaptive Decision 
Analysis addresses mainly the actual decision points and the flow of 
control has to be provided by external mechanisms. In rank order, start­
ing from the most explicit and flexible flow of control is: 

(1) Production Rules. 

(2) Heuristic Search. 

(3) Elicited Probability. 

(4) Adaptive Decision Analysis. 

e. Modeling AND and OR Conditions. Only the Production Rules 
approach explicitly models AND and OR input conditions. In order to 
model AND and OR conditions with the Elicited Probability approach, it 
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is necessary to define an input state which is determined from logical 
conditions. Thus the AND 1 s and OR 1 s tend to be hard coded into the 
program which generates the input state. This may complicate the dep­
endency problem. The Adaptive Decision Analysis approach has similar 
but more severe problems in dealing with AND and OR conditions. With 
heuristic search there would be a separate node for every possible comb­
ination of AND and OR conditions. One way to include AND and OR condi­
tions would be to use a Production Rule approach to select from the 
other three approaches as sub-models (e.g., combine approaches). The 
rank order of the approaches is: 

(1) Production Rules. 

(2) Elicited Probabilities (distand second). 

(3) Adaptive Decision Analysis. 

(4) Heuristic Search. 

f. Modeling Probabilities. The Elicited Probability approach 
generates probabilistic outputs and considers the probabilities of the 
input states, but explicit probabilities as input state variables are 
not modeled. With the Adaptive Decision Analysis approach, explicit 
probabilities as inputs can be handled, but the outputs are not prob­
abilistic. With Production Rules, a probability may be associated with 
the output, input probabilities can be handled as with the Elicited 
Probability approach described above. Heuristic Search cannot handle 
probabilities directly. With the approaches which do not explicitly 
use probabilistic inputs, it is still possible to implicitly represent 
probabilistic inputs by expanding states into sub-states which have a 
probability as part of the state definition or breaking the probabilistic 
variables into several discrete ranges. This is clumsy, however, because 
it increases the size of the state space. The rank order of how well the 
four approaches model probabilities is: 

(1) Adaptive Decision Analysis. 

(2) Elicited Probability. 

{3) Production Rules. 

(4) Heuristic Search. 

g. Conciseness of Representation. In a sense this is relative to 
the application. Each model could be the most concise for modeling a 
problem ideally suited for that approach. As a general measure of 
conciseness we can consider the number of parameters needed to represent 
behavior. Here, conciseness should not be confused with precision. We 
assume the more concise model has fewer parameters. The Adaptive Decision 
Analysis model represents behavior with only four to seven attribute 
weights, and it is necessary to calculate the same number of attribute 
levels for each action alternative. The Elicited Probability approach 
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has a column of elicited probabilities for each alternative. The number 
of states considered in making a decsion. The Production Rule approach 
uses one or more logical structures for each action alternative. The 
truth or falsity of each operand must be evaluated. Heuristic Search 
has nodes corresponding to the number of possible combinations of input 
states. A Heuristic function and a pruning function must also be evalu­
ated. The rank order of the approaches (most concise first) are as 
follows: 

(1) Adaptive Decision Analysis. 

(2) Elicited Probability. 

(3) Production Rules. 

(4) Heuristic Search. 

h. Adaptiveness. Only the Adaptive Decision Analysis approach is 
adaptive in real time. 

i. Dependencies of Input States. The Elicited Probability and 
Adaptive Decision Analysis approaches both assume independent input 
states. In both cases it is common practice to assume independence as 
a working assumption even when it is not strictly true. The methods of 
overcoming this problem are basically the same in both cases. The 
Production Rule and Heuristic Search techniques don't make an independent 
assumption and are therefore not affected by this problem. The rank 
order (most favorable first) of this attribute is: 

(1) Production Rules and Heuristic Search. 

(2) Elicited Probability and Adaptive Decision Analysis. 

j. Auxiliary Payoffs. The auxiliary payoffs for each approach 
are as follows: 

(1) Production Rules. Ability to explain reasoning leading to 
the selected action alternatives. Similarity of the representation to 
the human thought process. 

(2) Adaptive Decision Analysis. Relative desirability of 
alternatives is available. A good collection of performance measures 
have been developed to go with this approach. 

(3) Elicited Probabilities. A simulated intelligence expert 
·can readily be made. 

(4) Heuristic Search. This approach mo~t directly simulates 
the process of "thinking ahead" or contemplating a sequence of possible 
moves and counter moves. 
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The rank order depends upon what auxiliary payoffs are appropriate 
for the particular application of the number of auxiliary payoffs avail­
able (largest number first): 

(1) Adaptive Decision Modeling. 

(2) Elicited Probability. 

(3) Production Rules. 

(4) Heuristic Search. 

EVALUATION BY DEVELOPMENT ATTRIBUTES 

a. Scenario Set-Up Time. With the Adaptive Decision Analysis 
approach, the instructor would act out the desired scenario in an opera­
tional setting and the behavior would be learned by the model. It may 
take a while for the model to converge, and consistent behavior is 
required for the model to train. Compared to other methods the time 
would be spent doing the normal task rather than struggeling with concepts 
which may be unnatural. The Elicited Probability approach requires that 
the instructor estimate a number of probabilities, view the resultant 
behavior, and make fine tuning changes. The Production Rules approach 
requires the specification of new or modified production relevant to the 
new behavior. The Heuristic Search approach requires changes to the 
heuristic function and possibly the node definition. This may be very 
difficult. The rank order (starting with the shortest time) is: 

(1) Adaptive Decision Analysis. 

(2) Production Rules. 

(3) Elicited Probability. 

(4) Heuristic Search. 

b. Required Development and Implementation Time and Cost. This is 
a very difficult attribute to estimate. Each approach has aspects which 
are easy and those which are hard. The following rank order (quickest 
and cheapest first) is biased by previous experience Perceptronics has 
had with these models: 

(1) Elicited Probability. 

(2) Production Rules. 

(3) Adaptive Decision Analysis. 

(4) Heuristic Search. 

c. Required Integration Time and Cost. Since integration difficulty 
is dependent on the amount of interfacing with the existing system, and 
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the amount of interfacing is dependent on inputs, outputs, and data areas 
needed (which are roughly the same for all approaches}, there is no basis 
at present for rating one approach above any other. 

d. Vulnerability to Increase in Size of the State Space. The 
Adaptive Decision modeling approach is the least vulnerable to increase 
in the size of the state space. This is because a small number of 
attributes are used and their number does not increase. The only effect 
an increase in the size of the state space has is to make it more involved 
to calculate the attribute levels. 

The Elicited Probability approach could also stay the same size as 
the state space size increases; however, it would probably be a practical 
necessity to increase the number of parameters or to put more model levels 
in the hierarchy. 

The Production Rules and Heuristic Search approaches are potentially 
extremely vulnerable to increase in the size of the state space. In 
the case of the Production Rules approach, the number of additional 
Production Rules needed is likely to increase faster than the size of the 
state space. Heuristic Search is the most vulnerable, since its complexity 
increases as a combinatorial function of the size of the state space. 

Here is the rank order (best first): 

(1) Adaptive Decision Modeling. 

(2) Elicited Probability. 

(3) Production Rules. 

(4) Heuristic Search. 

EVALUATION BY PERFORMANCE ATTRIBUTES 

a. Instructor Time Needed for Operation. Most of the factors 
affecting this are probably independent of the model itself except for 
those things discussed earlier under 11 Instructor time needed to set up 
problem scenario. 11 There should probably be some interface programs 
which help transfer information and control from the instructor to the 
models, and information back to the instructor from the models. 

b. Instructor Control. When the instructor assumes control from 
the model and vice versa, steps must be taken to insure smooth transitions. 
This means that all of the state variables needed by the models must be 
maintained. Also, the state changes created by the models must be up­
dated in the existing software. Furthennore, when control is returned 
from the instructor to the automatic opponent, the specifics of the 
opponent state must be provided. This attribute is nearly independent 
of the model approach; however, in general there is greater difficulty 
with a more complicated model. 
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c. Required Computer Resources. Computer resources are a function 
of how detailed each decision is modeled. In general, the rank order 
(best first) is as follows: 

(1) Adaptive Decision Analysis. 

(2) Elicited Probability. 

(3) Production Rules. 

(4) Heuristic Search. 

d. Capability for Including Performance Measures and Evaluation. A 
lot of development has gone into performance measures with the Adaptive 
Decision Analysis approach. Performance measures haven't been developed 
with the other approaches. 

In the applications where performance measures have been developed 
the adaptive model was used to model the trainee, whereas, in the present 
application it is the instructor who is adaptively modeled. The power 
of the performance measures is derived from the adaptive model of the 
trainee. The reason for this is that the model of the trainee represents 
the current state of knowledge and ski 11 of the trainee and performance 
measures are based on an analysis of model parameters. The performance 
measures made possible by modeling the trainee include the following: 

(1) Decision consistency. 

(2) Comparision of trainee values with expert values. 

(3) Use of the trainee values to drive a simulation to compare 
the behavior created by the trainee's values to behavior created by other 
sets of values. 

(4) Use the trainee values as they are to characterize the 
trainee. 

In addition to performance measures based on adaptively modeling the 
trainee, the following measures have been developed: 

(1) Evaluate trainee's skill at purchasing information. 

(2) Compare the trainee's decision with the decision the expert 
would make (as indicated by an expert model with corresponding values). 

(3) Measure decision time. 

(4) Define a way to score the task elements such that a score 
results from each session (this measure is more powerful when used with 
an adaptive trainee model). 

(5) Compile statistics on the trainee's frequency of making 
various decisions and compare these with expert statistics. 
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As envisioned previously, the adaptivity is used to model the instruct­
or acting as the opponent--the trainee was not modeled. However, if good 
performance measures are important, it would be good to model the trainee 
as well. The algorithms to do this would be available in the software 
since they would have been developed to model the instructor. Much of 
the interfacing to model the traineee must also be done anyway. The main 
complication in adding the vapability to also model the trainee is the 
fact that to be valid the attribute levels should be displayed to the 
trainee. This changes the task as it appears to the trainee. 

e. Real World Fidelity. Each model has the highest real world 
fidelity when applied in an area most suited for it. 

Table 3 summarizes all the conclusions of this chapter in table 
form. 
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TABLE 3. MODEL EVALUATION BY DIFFERENT CRITERIA 

---------------------------~---.,----------,-----,---------:-----:------, 

-·--------t--~ ____ _,_ ____ ,.._ ___ ·-·---+----~---+------lf-----+----1----1 
Production 
Rules 3 4 3 3 4 3 24 

----·----1------1-----1------t-··---+----f------l----+----1-----+---+----l 
Adaptive 
Decision 
Model 

2 4 3 2 17 

·------~-----~----+-----1----+----1-----r----+-----1------1-----+--~ 

Heuristic 
Search 4 4 3 2 4 4 4 4 4 34 

. ______ ,_.....___·---------~--·~--·---~-----~·-··--~----~---~--- --'-----+----! 
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TABLE 3 (CONTINUED). MODEL EVALUATION BY DIFFERENT CRITERIA 
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SECTION VI 

MODEL EVALUATION FOR SPECIFIC DECISIONS 

In the preceeding section each of the models were evaluated by a list 
of general attributes. In this section, we will present several specific 
decisions that a submarine CO has to perform and discuss the applicability 
of each model. It has to be kept in mind, however, that each decision 
does not stand alone and the control process that determines what has to 
be considered next, and what are the action options available there, is 
as important as the making of the decision itself. 

For each of the decisions described below a simple description of 
the decision is given and then the various approaches are rank ordered 
according to their suitability. 

CONTACT DECISION 

This is a protracted decision which dramatically influences the CO 
behavior. It has to be continued even after a positive contact is made 
to maintain the contact and to retract the 11 contact made 11 decision if new 
evidence indicate that the intitial decision was erroneous. rime enters 
the decision in that the probability of positive contact increases if a 
noise is repeated or is detected over a longer period. Additional 
considerations are the level of background sea noises at the given weather, 
the closeness to enemy sea operations, previous intelligence information, 
etc. 

Some of these decision variables are intended to the model and some 
are inputs generated by the friend or the sea. The external signals have 
to be preprocessed and transformed into a variable acceptable by the 
decision model. A probabilistic output is desirable. A recommended rank 
order of the approaches is the following: 

a. Elicited Probability. This model takes the available apriori 
probabilities and can update them incrementally as new evidence comes 
in. The output is compared to a threshold to decide whether to declare 
11 contact 11 or not. The conditional probabilities in the transformation 
matrix represent an opponent's ability to diagnose noises and aggregate 
clues. These probabilities can be changed to simulate different opponent 
skill levels and even level of conservatism. Furthermore, a threshold 
change can be a simple mechanism to adjust the opponent's conservatism. 

b. Adaptive Decision Analysis. The input consists of attributes of 
the noise state scaled such that a high attribute level means 11 contact. 11 

An expert's weights for each attribute are learned. An expected value 
is computed which represents the likelihood of contact. Contact is 
declared when this value exceeds a pre-set threshold. 
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c. Production Rules. The various considerations suggesting a contact 
can be incorporated into ascending states. Productions triggered by noise 
type and level can 11 vote 11 to move the state to one of increased probability 
of contact. 

d. Heuristic Search. The only way heuristic would be appropriate 
is if the order of different noises was the predominate identifying 
characteristic. 

THREAT DECISION 

The threat decision is more an interpretation of external events than 
a classification of fixed patterns. It considers the mission, state of 
war, location relative to enemy, noises detected and number location and 
motions of potential threat. A simple breakdown of the different consider­
ations follows: 

~ National it~ Location Maneuver Etc. 

Nothing Friendly Near home Indifferent 

Whale Neutral Open sea Moving away 

Decoy Unfriendly/peace Near enemy Moving toward · 

Surface ship Unfriendly/war Positioning for attack 

Nuclear sub etc. 

a. Elicited Probabilities. This approach has the flexibility to 
include all of the above factors. The apriori probabilities of the various 
output conditions (e.g., nature of the threat) can be biased according to 
the intelligence information which exists. The monitor's probability 
information is discretized and made part of the input state. 

b. Production Rules. Because of the large number of contributing 
factors involved in this decision the Production Rules can be used to 
make an orderly decision. Each production handles a set of factors which 
lead to a meaningful conclusion, the conclusion can make other factors 
more relevant and new productions are triggered, etc. In general, the 
Production Rule approach is advantageous for formulating tactical assess­
ment when interpretive consideration is dominate. 

c. Adaptive Decision Analysis. With this approach a discriminant 
function is used for each possible interpretation. The model can handle 
naturally more than one plausible interpretation concurrently. The 
continuous time effect is.awkward to represent as are apriori probabilities 
such as those derived from intelligence information. 

d. Heuristic Search. In a situation where it is necessary to evalu­
ate a sequence of moves and counter moves in order to determine whether a 
threat exists the Heuristic Search approach can be used. In this case a 
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threat is a state that can lead to a set of tenninal nodes which include 
some that are detrimental to the opponent. In other cases where "look 
ahead" is not relevant to the threat evaluation, the method would not be 
appropriate. 

MANEUVER SELECTION DECISION 

The select maneuver decision is made under several different circum­
stances such as evade, attack, track, approach, etc. Each of these 
circumstances has a set of relevant maneuvers, one of which has to be 
selected. The selecting mechansim can be similar but with a different 
set of parameters. The details of the trajectory implementing the 
maneuver is perfonned by a lower level subroutine that is separate from 
the select decision. Such a subroutine can use a Monte Carlo method to 
specify the parameters of the trajectory guided by the intended objective 
of the maneuver. 

a. Adaptive Decision Analysis. With this approach the relative 
desirability of each possible maneuver is computed. There is one 
discriminant function for each maneuver and a set of attributes across 
all maneuvers. This decision was used in Section IV to illustrate the 
Adaptive Decision approach. 

. b. Production Rules. Production Rules are excellent for imposing 
logical criteria on the maneuver selection decision. Probabilities can 
be attached to the Production Rules, but this increases their number. 

c. Elicited Probabilities. By interpreting probabilities as 
relative desirability this model can be used to select maneuvers. Each 
contributing factor considered increases or decreases the desirability 
of the candidate maneuvers. The algorithm aggregates the individual 
desirabilities and the highest one is selected. The particulars of the 
trajectory are then calculated. This approach is able to handle situations 
where there may be a large number of possible maneuvers and many decision 
criteria. 

d. Heuristic Search. This approach is not of use unless maneuver 
selection appears in the context of a series of maneuvers alternately 
selected by both sides. 
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