IBM Confidential Restricted.

IBM CONFIDENTIAL-RESTRICTED

DO NOT COPY

FUNCTIONAL SPECIFICATION
December 1, 1983
E.C.# A07313

P.N.

6030439

DO NOT COPY

IBM Confidential Restricted.

IBM CONFIDENTIAL-RESTRICTED

DO NOT COPY

FUNCTIONAL SPECIFICATION
December 1, 1983
E.C.# A07313

P.N.

6080439

DO NOT cCOPY

IBM Confidential Restricted. DO NOT COPY

ROMP Functional Specification
December 1, 1983

This document contains information of a proprietary nature
and is classified IBM CONFIDENTIAL-RESTRICTED and may not be
reproduced. No information contained herein shall be
divulged to persons other than IBM employees authorized by
the nature of their duties to receive such information.

Copy Assigned to

I certify that the attached document has been disposed of by
established IBM Confidential security procedures.

Signature Date

When you receive an updated level of this document, you are
required to return only this cover page to the address shown
below.

Tom Whiteside
F61/045
Austin, Tx
T.L. 678-9791

Document Printed July 25, 1984

COPY

ROMP Functional Specification

Document Number 6080439

December 1, 1983

Tom Whiteside

IBM Entry Systems Division
Dept. F61 Bldg. 045

11400 Burnet Road

Austin, TX 78758

Tie Line 678-9232

IBM Confidential Restricted. DO NOT COPY

COPY

ROMP Functional Specification

Document Number 6080439

December 1, 1983

Tom Whiteside

IBM Entry Systems Division
Dept. F61 Bldg. 045

11400 Burnet Road

Austin, TX 78758

Tie Line 678-9232

IBM Confidential Restricted. DO NOT COPY

IBM Confidential Restricted. DO NOT COPY

CONTENTS

Introduction+ « ¢ + + 4 o o 4 e o e e e .
Document Overview B T
ROMP Objectives e e e e e e e e e e e e e e e e
ROMP Processor Highlights e e e e e e e e e e e
Programming Support Overview

.

o b e e el b b
.
o0 P WN - o

.

.

. Hardware Documentation Overview e e e e e e e e
. Signal Naming Conventions B T T
2.0 System Organization And Control e e e e e e e e
2.1 Main Storage . . .+ ¢ ¢ o 4 o e e e e e e e e e o
2.2 Storage Channel P
2.3 Programmed I/0 o . o o o e e . . .
2.4 Processor e e e e e e e e e e e e e e e e e e e
2.5 Processor States o 0 o 0 0 e e e
2.5.1 Executing, Wait, Check Stop, and Stopped State
2.5.2 Problem and Supervisor States e e e e e e e .
2.6 General-Purpose Registers e e e e e e e e e e e
2.7 System Control Registers « . « + . .
2.7.1 Counter Source, Counter, and Timer Status . .
2.7.2 Multiplier Quotient e e e e e e e e e e e e
2.7.3 Machine Check Status and Program Check Status
2.7.4 Interrupt Request Buffer « . « + . &
2.7.5 Instruction Address Register
2.7.6 Interrupt Control Status
2.7.7 Condition Status o . o o . . .
2.8 System Timer Facility e e e e e e e e e e e e e
2.8.1 Counter e e e e e e e e e e e e e e e e e e
2.8.2 Counter Source ¢ ¢ ¢ ¢ o« e o e e . .
2.8.3 Timer Status ¢ 4 o o e e e e e e e
2.8.4 Programming Note: System Timer Operation . . .
2.9 Interrupts . . . ¢ ¢ ¢ ¢ i 4 e e e e e e e e e e .
2.9.1 Processor Priority ¢ . ¢ o o o o . .o .
2.9.1.1 Interrupt Request Priority
2.9.1.2 Interrupt Priority Assignment e e e e e s
2.9.2 Point of Interrupt < . ¢ o o . . .
2.9.3 Error Handling ¢« « ¢ ¢ ¢ o o o o o « &
2.9.4 Program Status L o . 0 e e ..
2.9.4.1 O0ld/New Program Status Pairs
2.9.4.2 Location of Old/New Program Status Pairs .
2.9.5 System Control Registers
2.9.5.1 Interrupt Request Buffer
2.9.5.2 Interrupt Control Status
2.9.6 Occurrence of Interrupts ¢ « ¢ ¢ .+
2.9.7 Programming Note: Interrupt Facility
2.9.8 Programming Notes: Interrupt Servicing
3.0 Instruction Set e e e e e e e e e e e e e e e e
3.1 General Description e e e e e e e e e e e e e e
3.2 Storage ACCESS . « o o ¢« o« o o s e o 4 e e e e e .
3.2.1 Load Instructions e e e e e e e e e e e e e

Contents

W W e e

W O NNNNN OO,

NN RN RN NN RNRNRN R R R b e e b b bt b bt bt b bl bl bt bl
W NN HKFOOOOWVWWWWOONOGOD LWL O PPWWNNNDNMDNDNW

26
26
30
31

i

IBM Confidential Restricted. DO NOT COPY

Count Leading Zeroes Instruction
LI - T
Shift Algebraic Right Instructions . . .
Shift Right Instructions
Shift Left Instructions e e e e e e s e
System Control e e e e e e e e e e e e e

w
N

N
» .

.

.

O WV Y

w
.
(=2

10.1 Move To And From SCR Instructions . . .
10.2 Clear And Set SCR Bit Instructions . .
.10.3 Load Program Status Instruction
10.4 MWait Instruction e e e e e e e e e e e
10.5 Supervisor Call Instructien
Input/Output e e e e e e e e e e e e e e e

.

3.2.2 Test and Set Instruction

3.2.3 Store Instructions ¢ o . . o . .
3.3 Address Computation e e e e e e e e e e e e
3.4 Branching e e e e e e e e e e e e e e e e

3.4.1 Branch And Link Instructions

3.4.2 Conditional Branches
3.5 Traps et e e e e e e e e e e e e e e e
3.6 Moves and Inserts e e e e e e e e e e e e

3.6.1 Move Character Instructions e e e e e

3.6.2 Move To And From Test Bit Instructions .
3.7 Arithmetic ¢ +« ¢ ¢ ¢« v e e e s e

2.7.1 Add Instructions o . .

2.7.2 Absolute Instruction

3.7.3 Complement Instructions e e e e e e e s

3.7.4 Compare Instructions

3.7.5 Extend Sign Instruction e e e e e e e

3.7.6 Subtract Instructions e e e e e e e e

3.7.7 Divide And Multiply Step Instructions .
2.8 Logical Operations« .+ + « « . .

3.8.1 Clear And Set Bit Instructions

3.8.2 AND Instructiens « . « .+ .

3.8.3 OR Instructions e e e e e e e e e e e

3.8.4 Exclusive OR Instructions e e e e e e

3.8.5

9 h

3 1

3 2

3 3

1

3

3

3

3

3

1

(S

4.0 INPUT/OUTPUT Facility e s e e e e e e e e e
4.1 I/0 Capability . . . « ¢ ¢ ¢« ¢« ¢« « o « o« « .
4.1.1 Programmed I/0 « + o « & + o .
4.1.2 Privileged I/0 Device Connection
4.1.3 1I/0 Interrupt Requests
5.0 ROMP Storage Channel
5.1 General Description s e e e e e e e e e e .
5.2 Storage Channel Definition
5.2.1 Address And Data Bus
5.2.2 Tag Bus e e e e e e e e e e e e e e e
5.2.3 Control Signals e e e e e e e e e e e
5.2.4 Address Extension Bus e e e e e e e e .
5.2.5 RSC Clocks . . « ¢ ¢« ¢ ¢« o o o o o o o &
5.3 RSC Signal Definitions
5.3.1 Address/Data Bus Definition e e e s e
5.3.2 Tag Bus Definition
5.3.3 Address Extension Bus Definition

Contents

34
34
37
40
42
44
49
51
51
53
56
57
59
59
60
62
63
65
69
69
71
72
73
75
76
76
77
80
83
83
84
85
86
87
88

90
90
S0
90
S1

92
92
95
95
95
95
96
96
97
97
98
99

iii

IBM Confidential Restricted. DO NOT COPY

5.3.4 Storage Channel Clocking
5.4 Bus Operation e s e e e e e e e e e e e e e
5.4.1 Data Alignment ¢ & ¢« ¢ ¢ o + . .
5.4.2 Bus Arbitration e e e e e e e e e e e e
5.4.3 Read Request ¢« ¢« ¢ ¢« « ¢« ¢ o o &
5.4.4 MWrite Request e e e e e e e e e e e e e
5.4.5 Error Handling « « + « « « « .« .
5.4.6 Idle Mode e e e e e e e e e e e e e e e s
5.4.7 Reset B T T T T P
5.4.8 1Illegal ACKD/NAKD Responses e e e e e e
5.4.9 Engineering Note: ROMP Response To Illegal

ACKD/NAKD Responses e e e s e e e e e e e e e
5.4.10 Heold Time-0Out Counter
5.4.11 Storage Protection and Address Translation

5.5 Storage Channel I/0 Pin Summary e e e e e e e

.

5.5.1 Storage Channel I/0 Pin Summary for Processor
5.5.2 Storage Channel Pin Summary for a Typical RSC

Component e e e e e e e e e e e e e e e e e e
5.6 ROMP Storage Channel Timing Relationships ..

6.0 Initialization « « « « « 4 o 4 4 . .
6.1 Power-on Reset o ¢« « & o o o o .o .
6.1.1 Processor and System Reset
6.1.2 Register Initialization And Diagnostics .
6.1.3 Fail Pin State o+ o o o o o o .
6.2 Program Initialization « + . . .
6.2.1 1Initial Program Load+ . .
6.2.2 IAR Load ¢ ¢ ¢ ¢ ¢ 4 e o e e e e
6.2.3 Engineering Notes: Initialization
7. Reliability, Availability, and Serviceability
7. RAS Facilities . . . « . . ¢ o ¢« o o o o « + &
7

0

1

.2 System Error Detection and Reporting
7 Internal Diagnostics
7

Machine=Check Errors ¢« ¢« « « « + .

2.1
2.2
7.2.2.1 Machine~Check Error Handling
7.2.2.2 Machine~Check Status
7.2.3 Engineering Note: RSC Retry e e e e e e .
7.2.4 Program-Check Errors
7.2.4.1 Program-Check Error Handling
7.2.4.2 Program-Check Status
7.2.4.3 Programming Note: Instruction Restart
7.2.5 Simultaneous Program Check and Machine Check
Errors . o ¢ ¢ o o b e e e e e e e e e e e e e e
7.3 Multiple Occurrence of Errors e e e e e e e e
8.0 Multiprocessor System e e e e e e e e e e e
8.1 General Description e e e e e e e e e e e e
8.2 Test & Set Instruction Operation
8.3 Multiprocessor System Interconnection e e

9.0 Storage Controller Functions
9.1 Storage Protect and Address Translation Overview
9.2 Storage Protect D

Contents

-

-

-

100
101
101
102
103
105
106
107
107
107

108
108
109
110
110

111
111

117
117
117
118
118
118
119
119
119

121
121
121
121
121
122
122
123
124
124
125
126

128
129

130
130
130
130

134

136
137

iv

9.3

10.0
10.1
10.2

11.0
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12

12.0
12.1

12.

1

1

1

1

1

1

1

12.

12.

12,

12,

1

1

1

1

1

1

1

1

1

1

12.
12.2
12.3

13.0
13.1
13.2
13.3
13.4
13.5

IBM Confidential Restricted. DO NOT COPY

Address Translation e e e e e e e e e e e e e

Processor Support Functions
Front Panel Support ¢« .« ¢ ¢« « ¢« ¢« ¢« o &
Support Processor Facilities « e e e e e e e

Performance . . . « ¢ ¢ o« « ¢« e o o « 2 o o e
Branch Hold—=off + ¢ ¢ ¢ o« ¢« ¢ o o o« «
Branch and Execute Hold-off
Load Instruction Hold-off ¢ « « .
I/0 Read Hold=0ff . . . ¢ ¢ ¢« ¢ ¢ « ¢ o« « &« o =«
Storage Protect And Address Translation Hold-Off
Tag Heold=-0ffs « ¢« « « & ¢« ¢« o & o« o « .

Interrupts e e e e e e e e e e e e e e e e e s
System Timer e e e e e e e e e e e e e e e e e
Bus Capacity e e e e e e e e e e e e e e e e
Selection of Processor Cycle Time v e e e e e
Progrém Performance e e e e e e e e e e e e
Performance Measurement e s e e e e e e e e e
Hardware Description e e e e e e e e e e e e
Romp Chip Interfaces e e e e e e e e e e e e

1.1 ROMP Storage Channel e e e e e e e e e e
2.1.1.1 RSC Address and Data Bus e e e e e e

2.1.1.2 RSC Tag Bus « « ¢ ¢ + « o« o « &
2.1.1.3 RSC Address Extension Bus
2.1.1.4 Exception ¢ ¢ ¢ ¢ o o o o o
2.1.1.5 RSC Acknowledge and Not Acknowledge . .
2.1.1.6 RSC Arbitration o « « o &

2.1.1.7 Hold RSC e e e e e e e e e e e e e e
1.2 Clocks e e e e e e e e e e e e e e e e e e
1.3 Power .« . ¢ ¢« 4 ¢ 0 v e e e e e e e s e e .
1.4 Interrupt Inputs e e e e e e e e e e e e e
1.5 ROMP Centrols ¢« « ¢ « ¢ o « &+ o« &
2.1.5.1 IPL Ready . . . ¢« « ¢ ¢« o ¢ o o o« o « &
2.1.5.2 IPL Complete s e e e e e e e e e e e s
2.1.5.3 Fail e e e e e e e e e e e e e e e e
2.1.5.4 Instruction Complete e e e e e e e e s
2.1.5.5 Sync e e e e e e e e e e e e e e e e
2.1.5.6 Stop e e e e e e e e e e e e e e e e

2.1.5.7 Timer Clock « ¢« & ¢ « o o o « &
2.1.5.8 Hait e e e e e e e e e e e e e e e e
2.1.5.9 Chip In Place ¢ ¢« « o o o o o &
2.1.5.10 Scan Gate e e e e e e e e e e e e e
1.6 Scan Inputs and Scan Outputs e e e e e e s
ROMP Chip Pin Assignment e e e e e e e e e e
Processor Signal Description e e e e e e e e
Appendi x e e e e e e e e e e e e e e e e e e

Instruction Index By Mnemonic
Instruction Index by Op Code e e e e e e e e e
Privileged Instructions « . . .
Illegal Branch With Execute Subject Instructions
ROMP System Support Software e e e e e e e e

Contents

140

142
142
142

144
144
146
146
147
148
149
149
149
150
150
151
153

159
159
160
161l
162
l62
163
163
163
166
166
166
167
168
l68
168
168
169
169
169
169
170
170
170
170
171
172

176
176
179
182
183
184

13.5.1
13.5.2
13.5.3
12.5.4
13.5.5
13.5.6
13.5.7
13.5.8
13.5.9
12.5.10
13.5.11
12.5.12
13.5.13
13.5.14
13.6 ROMP
12.6.1
13.6.2
12.6.3
12.6.4

Contents

IBM Confidential Restricted. DO NOT COPY

PL.8 Compiler
PASCAL Compiler
C Compiler e e e e e e e e e
ROMP Development System
PL.8 Source Level Debugger .

.

-

.

PL.8 Machine-Level Program Analysis Tool

PL.8 Source And Design Code Formatter

PL.8 Macro Pre-processor . e .
ROMP Assembler e e e e e e e e
ROMP Simulater
Program Binder For ROMP . ..
ROMP Hardware Development System
Program Development Library (PDL
RTIMER Simulator
System Hardware References . .
ROMP Engineering Specification
ROMP Scan String Definitien . .
Support Processor Interface . .

ROMP AC Hardware Characterization Plan

-

)

.

-

-

-

.

-

.

-

-

Interface

-

.

-

184
184
185
185
185
185
186
186
186
187
187
187
187
188
188
188
188
138
189

IBM Confidential Restricted. DO NOT COPY

LIST OF ILLUSTRATIONS
Figure 1. ROMP System C e e e e e e e e e e e e e e
Figure 2. Data Units in Main Storage
Figure 3. General Purpose Registers c e e e e e e e
Figure 4. System Control Registers
Figure 5. 0Old/New Program Status Pair e e e e e e e
Figure 6. Program Status Save Area
Figure 7. Instruction Formats e s e e e e e e e e e
Figure 8. RSC Transfers e e e e e e e e e e e e e e
Figure 9. Typical RSC Configuration e e e e e e e e
Figure 10. Tag Definition « . « . o . .
Figure 11. RSC Clock Timing « « « « « & « .
Figure 12. Bus Arbitration Timing
Figure 13. Read Request + « « o ¢« + « &
Figure 14. HWrite Request e e e e e e e e e e e e e e
Figure 15. Signal Definitions . . e e e e e e e e e
Figure 16. RSC Cycles One Through Three c e e e e e e
Figure 17. RSC Cycles Four Through Six e e e e e e e
Figure 18. RSC Cycles Seven Through Nine o e e e e s
Figure 19. RSC Cycles Ten Through Twelve e e e e e e
Figure 20. Program Check Errors With Storage Protect And
Address Translation Disabled
Figure 21. Program Check Errors With Storage Protect Or
Address Translation Enabled e e e e e e e
Figure 22. Multi-Processor Connection Via Common Storage
Figure 23. Multi-Processor Connection Via Bus Coupler
Figure 24. Multi-Processor Connection Via Communications
Link . . « « o o o o 0 e e e e e e e e e
Figure 25. Storage Controller Timing With Fast Storage
Figure 26. Storage Controller Timing With Slow Storage
Figure 27. Storage Controller Timing With ECC
Figure 28. Typical Storage Protect Assignments . e e
Figure 29. Storage Controller Timing With Address
Translation D T
Figure 30. Fetch Timing For New Instruction Stream
Following A Successful Branch S TR
Figure 31. Load Instruction Timing C e e e e e e e e
Figure 32. Load and Store Instruction Timing With
Storage Protect or Address Translation
Enabled D
Figure 33. ROMP Module Signals e e e e e e e e e e e
Figure 34. RSC Transfers e e e e e e e e e e e e e e e
Figure 35. Typical RSC Configuration e e e e e e e e
Figure 36. Clock Timing . . . « « « « ¢ « « « o o o « &
Figure 37. ROMP Module Footprint (Bottom View) .« o e

List of Illustrations

. 6
10
11
24
25
29
93
94

lo00

101

103

104

106

112

113

114

115

116

127

128
132
132

133
134
135
136
139

141

145
147

148
160
162
165
167
171

vii

IBM Confidential Restricted. DO NOT COPY

1.0 INTRODUCTION

1.1 DOCUMENT OVERVIEW

This document is the functional specification for the ROMP
processor. Information pertaining to the ROMP processor’'s
organization, its instruction set, its I/0 capabilities, and its
RAS facilities are contained in this document. Other documents
are listed in the Appendix wWhich provide additional detailed
hardware and software information.

1.2 ROMP OBJECTIVES

1. Provide an architected address space of 32-bits. (Choice of
24-bit or 32-bit addressing mode).

2. Provide high performance with fast or slow storage (three MIPS
typical with 200 nsec storage).

3. Provide the capability for dynamic address translation.

4. Provide system integrity through the use of storage protect
and problem/supervisor states.

5. Provide an efficient target for the PL.8 Compiler.
6. Low power dissipation.

7. Improved debug facilities for IBM products.

1.2 ROMP PROCESSOR HIGHLIGHTS

The ROMP processor architecture provides comprehensive facilities
for support of many different IBM products. The highlights of the
ROMP processor are described here.

The ROMP processor provides 32-bit storage addresses which permits
up to 4.3 gigabytes of main storage to be directly accessed. Both
instructions and data are contained in main storage.

The address of data in main storage is computed from two values, a
base and a displacement, at the time the data 1is accessed. When
data s arranged in blocks, a single base register permits
accessing the entire block. Base/displacement addressing allows
address field abbreviation 1in instructions. A base register

Introduction 1

IBM Confidential Restricted. DO NOT COPY

permits the instructions which access the data in main storage to
be independent of the location of the data.

The processor provides sixteen 32-bit general purpose registers,
which are not part of main storage. All arithmetic and logical
functions are performed on the general purpose registers which may
also function as base registers for base/displacement addressing.
The only data operations provided on main storage are loading of
data from main sterage into a general purpose register and storing
of data into main storage from a general purpose register.

The processor also provides sixteen 32-bit system control
registers. The system control registers contain the current
status of the system. All system control registers may be

inspected by the program, and several also can be explicitly
modified by the program.

The instruction set includes instructions for accessing storage,
arithmetic and logical computations, program and system control
including branching, and input/output. An instruction 1is either
two or four bytes in length. The instruction set has been
tailored for performance, storage efficiency and function, and has
been demonstrated to give high performance 1in spite of its
simplicity.

The ROMP processor supports dynamic address translation in the
storage controller. This feature allows a large virtual address
space to be mapped into smaller physical address space. R OMP
provides an exact interrupt mechanism that allows the processor
state to be saved when a storage exception condition occurs. The
processor state can then be reloaded after the exception has been
handled, and execution of the program continued.

ROMP provides a supervisor state in which all instructions are
valid, and a problem state in which only instructions that cannot
be used to affect system integrity are valid. ROMP also provides
a storage protect mechanism +that allows address checking to be
implemented in the storage controller. These two features insure
that system integrity can be maintained at all times.

The ROMP processor provides a priority interrupt structure. An
interrupt at a high priority level preempts ongoing activity at a
lower priority 1level. When an interrupt occurs, only the basic
preocessor status is changed. This primitive status switching
permits the flexible programming of dispatching mechanisms.

Two levels of input/output support are provided. For 1low
performance data transfer, programmed I/0 (PIO) is synchronous to
the issuing program. For high performance data transfer, direct
memory access (DMA) permits transferring of data asynchronously to
the program.

The ROMP processor implements a high-performance, 32-bit storage
channel called the ROMP Storage Channel (RSC). The RSC supports

Introduction 2

IBM Confidential Restricted. DO NOT COPY
the high data rate needed for instruction execution, and can also
be used for high-speed 1/0 devices.
The ROMP processor provides facilities for logging errors in the

system. The 1logged information can be used as a basis for
isolation of a failing component.

1.4 PROGRAMMING SUPPORT OVERVIEW

The ROMP processor was designed to be an efficient target for the
PL.8 high~level language. PL.8 is a derivative of PL/I and has
been demonstrated to be well suited to systems programming needs.
The compiler for PL.8 uses program flow optimization techniques
which produce efficient code in terms of both storage and
performance. The high~level language provides improved programmer
productivity, quality of code, and migratability of code. It is
expected that all but a small percentage of the code for ROMP
processors wWill be written in PL.8.

Other programming aids include an assembly language simulator, a
ROMP assembler, and linkage editor which assist the programmer in
checking and documenting programs, in controlling address
assignment, in segmenting a program, in data and symbol
definition, in generating macro instructions, and in controlling
the assembler itself.

"ROMP System Support Software™ on page 184 contains a summary of
support software status and lists available documentation.

1.5 HARDWARE DOCUMENTATION OVERVIEW

The ROMP Functional Specification is designed to provide an
architectural description of the ROMP processor, and the ROMP
Storage Channel. 1In addition, it is intended to provide a general
description of how the ROMP processor can be employed in various
system configurations, and to provide references to additional
documentation concerning the detailed electrical and environmental
characteristics of the ROMP chip, the ordering of internal
registers in the ROMP processor, and a suggested support processor
interface definition. The various documents describing these
detailed aspects of the ROMP processor are included in "ROMP
System Hardware References™ on page 188.

Introduction s

IBM Confidential Restricted. DO NOT COPY

1.6 SIGNAL NAMING CONVENTIONS

The terms active and inactive are used throughout this document to
describe the state of various signals. All signal names (i.e.
+DALOO0, +EXCEPTION, -REQIO, etc.) are preceded by a + or -. If
the signal name is preceded by a +, an active state is a voltage
level of +2.4 volts or greater, and an inactive state is a voltage
level of +0.8 volts or less. If the sighal name is preceded by a
-, an active state is a voltage level of +0.8 volts or less, and
an inactive state is a voltage level of +2.4 volts or greater.

Introduction &4

IBM Confidential Restricted. DO NOT COPY

2.0 SYSTEM ORGANIZATION AND CONTROL

A ROMP system consists functionally of - a ROMP , main storage, a
bus converter, input/output devices, and possibly a direct memory
access (DMA) controller, depending upon I/0 device requirements.
RSC devices may reference storage without processor involvement.
This structure shown in Figure 1.

2.1 MAIN STORAGE

The ROMP system provides directly addressable main storage for
data and instructions. The data units in main storage are shoun
in Figure 2 on page 6.

Up to 4.3 gigabytes of main 'storage may be directly addressed.
Main storage 1is organized as a sequence of 32-bit words, each
consisting of four &-bit bytes. Bytes 1in main storage are
consecutively numbered, left to right, starting with zero. Each
number is considered the address of the corresponding byte. All
addresses are computed as byte addresses. The address of a word
has zeros in the two low-order bits. The address of a halfuword
has one zere 1in the low-order bit. Instructions must be located
on halfword boundaries.

All storage effective addresses (base address plus displacement)
are computed as 32-bit quantities. HWrap around is allowed and
occurs on a 32-bit basis, i.e., main storage addressing wraps
around from the architectural maximum byte address of
4,294,967,295 to address 0. This implementation of ROMP supports
both 24-bit and 32-bit addressing. Systems which do not require
virtual addressing can select the 24-bit addressing mode where the
high-order byte of the 32-bit effective address is checked to be
zero. A non-zero high—order byte in the effective address will
cause a program check condition. Virtual address systems can
select the 32-bit addressing mode which disables checking of the
upper-byte.

System Organization And Control 5

IBM Confidential Restricted. DO NOT COPY

Main Special
Storage High Speed ROMP
Device

ROMP Storage Channel

Bus
Converter
I/0 Bus
DMA
I/0 Device I/0 Device Contreller
Figure 1. ROMP System
0 8 16 24 31 Bits
0 1 2 3 Characters/Bytes
UPPER HALF LOWER HALF Half Weords
0 Register Image
Word

Figure 2. Data Units in Main Storage

System Organization And Control

IBM Confidential Restricted. DO NOT COPY

2.2 STORAGE CHANNEL

ROMP's storage channel provides a 32-bit plus four parity bits
wide synchronous bus which cycles at twice the processor cycle
rate. The purpose of the channel 1is to enhance processor
performance by having a bus dedicated to processeor and storage
transfers. All data and addresses transferred on the channel are

multiplexed on the 32 address/data lines. An optional address
extension bus consisting of & address lines plus parity is
provided for systems using 32-bit addressing. Devices connected

to the storage channel are identified by a five-bit tag identifier
that devices put on the storage channel simultaneously wWith their
request,. Arbitration is accomplished by using a linear
arbitration mechanism with devices connected in a daisy chain.
For more information see "ROMP Storage Channel™ on page 92.

2.3 PROGRAMMED 1/0

Programmed I/0 is allowed by the wuse of the Input/Output Read
(IOR) and Input/Output HWrite (IOW) instructions. With these
instructions, I/0 devices can be read or uWwritten synchronously
Wwith program execution (see "Input/Output™ on page 33).

2.4 PROCESSOR

The processor contains the sequencing and processing controls for
instruction execution, interrupt action, the system timer and
other control related functions.

Instructions are grouped into ten classes: storage access,
address computation, branching, traps, moves and inserts,
arithmetic, 1logical operations, shifts, system control, and
input/ocutput. A separate sub-section is devoted to each

instruction class in "Instruction Set”™ on page 26.

2.5 PROCESSOR STATES

2.5.1 Executing Wait _Check Stop _and Stopped State

Four states of the processor are defined: executing state, wait
state, check stop state, and stopped state.

System Organization And Control 7

IBM Confidential Restricted. DO NOT COPY

The processor 1is in the executing state when it is executing
instructions. In the executing state, instruction fetching and
execution proceeds in the specified manner. Interrupts may occur
between instructions as specified in "Interrupts™ on page 17.

After the processor has executed the Wait instruction it is in the
wait state. No other instructions are fetched or executed while
the processor is in the wait state. The processor leaves the wait
state and enters the executing state when an interrupt for which
the processor 1is enabled occurs (see "Interrupts™ on page 17).
The instruction address in the old program status for the priority
level associated wWwith the interrupt contains the address of the
instruction immediately following the Wait instruction. The I/0
pin ~HWAIT is active when the processor is in the wait state.

When the processor is in the check stop state, no instructions are
executed, interrupts do not occur, and system interface operations
may be suspended. The processor enters the check stop state when
one of the following occurs:

1. An error is detected during power-on diagnostics.

2. A machine check error is detected and the Check Stop Mask is
zero.

3. A program check or machine check error is detected and the
processor is servicing a machine check error.

4. A program check error 1is detected and the processor is
servicing a program check error.

The check stop condition is cleared during a power—-on reset. The
processor machine check is described in "Machine-Check Errors™ on
page 121, and the program check 1is described in "Program-Check
Errors™ on page 124.

The stopped state is entered as a result of operator action from a
control panel. Operator initiated load, display, and stepping
functions occur in the stopped state as described in "Processor
Support Functions™ on page 142.

2.5.2 Problem and Supervisor States

The selection between problem and supervisor state determines
whether the full set of instructions is wvalid. 1In supervisor
state, all instructions are valid. In problem state, only
instructions that cannot be used to affect system integrity are
valid. The instructions that are not valid in problem state are
called privileged instructions; they include those which inspect
or modify any system control registers (except the Condition
Status or Multiplier Quotient registers), the Load Program Status

System Organization And Control 8

IBM Confidential Restricted. DO NOT COPY

instruction, and the Wait instruction. A privileged instruction
encountered in the problem state constitutes a privileged
instruction exception and causes a program check. "Privileged
Instructions™ on page 182 lists the privileged instructions.

The processor 1is in problem state when bit 21 of the Interrupt

Contrel Status (ICS) is a one. The processer is in supervisor
state when bit 21 of the ICS is a zero.

2.6 GENERAL-PURPOSE REGISTERS

The processor provides sixteen 32-bit general purpose registers
(GPRs). All manipulation of data is performed in the GPRs.

Each GPR consists of an upper and lower half of sixteen bits each.
The GPR may be partitioned into four eight-bit characters, C0, C1,
C2, and C3. The general purpose register organization is shown in
Figure 3 on page 10.

To aveid the destruction of operands in certain operations, some
instructions cause the result of the operation to be placed in the
twin of one of the GPR operands. The register twin of a given GPR
has the name, in binary, of the given GPR with the low-order bit
inverted. Thus the twin of GPR 5 (binary 0101) is GPR & (binary
0100), and the twin of GPR 14 (binary 1110) is GPR 15 (binary
1111>. A register and its twin are referred to as a pair.

For computation purposes, the content of a GPR is treated as
either a signed algebraic quantity, an unsignhed positive quantity,
or an unstructured 1logical gquantity. In a GPR, an algebraic
quantity is represented by 32 bits in two's complement form.

2.7 SYSTEM CONTROL REGISTERS

Sixteen 32-bit system control registers (SCR) exist in the
processor. An entire SCR or fields wWithin an SCR are assigned to
particular facilities in the system such as interrupt, processor,
and system timer. The register organization for SCRs is shown in
Figure 4. Some SCRs and SCR fields are reserved and are not
assigned to any system facility. The source bits are ignored on
an attempt to set the reserved bits of an SCR. MWhen the reserved
bits of an SCR are fetched, the resulting values are
unpredictable.

System Organization And Control 9

IBM Confidential Restricted. DO NOT COPY

1 Pair

3 Pair

5 Pair

7 Pair

9 Pair

10

11 Pair

12

13 Pair

14

15 Pair

31

Register

Upper Half

Lower Half

co

Cl

c2

c3

Figure 3. General Purpose Registers

16

24

31

Word
Register Half

Character/Byte

System Organization And Control

10

IBM Confidential Restricted. DO NOT COPY

Reserved SCR O
Reserved SCR 1
Reserved SCR 2
Reserved SCR 3
Reserved SCR 4
Reserved SCR 5
Counter Source SCR 6
Counter SCR 7
Reserved TS SCR 8
Reserved SCR 9
Multiplier Quotient SCR 10
Reserved MCS PCS SCR 11
Reserved IRB SCR 12
IAR SCR 13
Reserved ICS SCR 14
Reserved Cs SCR 15
0 8 16 24 31
COUS = Counter Source
COU = Counter
TS = Timer Status
MQ = Multiplier Quotient
MCS = Machine Check Status
PCS = Program Check Status
IRB = Interrupt Request Buffer
IAR = Instruction Address Register
ICS = Interrupt Contrel Status
CS = Condition Status
Figure 4. System Control Registers
System Organization And Control 11

IBM Confidential Restricted. DO NOT COPY

2.7.1 Counter Source Counter _and Timer Status

The Counter Source (COUS, SCR 6), Counter (COU, SCR 7), and Timer
Status (TS, SCR 8) are necessary for the system timer operation
and are described in "System Timer Facility"™ on page l4.

2.7.2 Multiplier Quotient

SCR 10 . is referred to as the Multiplier Quotient (MQ). The MQ
provides a GPR extension to accommodate the product for the
Multiply Step instruction and the dividend for the Divide Step
instruction (see "Divide And Multiply Step Instructions™ on page
65).

2.7.3 Machine Check Status and Program Check Status

Bits 16-23 of SCR 11 are referred to as the Machine Check Status
(MCS) and bits 24-31 are referred to as the Program Check Status
(PCS). These two fields are used for error identification and are
described 1in detail 1in "Machine~Check Errors™ on page 121 and
"Program—-Check Errors™ on page 124.

2.7.4 Interrupt Request Buffer

Bits 16-31 of SCR 12 are referred to as the Interrupt Request
Buffer (IRB). The 1Interrupt Request Buffer allows interrupt
requests to be generated under program control. For more detailed
information refer to "Interrupt Request Buffer™ on page 21.

2.7.5 Instruction Address Register

SCR 13 is referred to as the Instruction Address Register (IAR).
The Instruction Address Register is a 32-bit register which
contains the address of the next instruction to be executed.
Since all instructions 1lie on halfword boundaries, the low-order
bit (bit 31) of the Instruction Address Register 1is zero.
Accesses for instructions may require the fetching of a word, a
halfword, or the low-order halfword of a word followed by the
high-order halfword of the next consecutive word in main storage.

System Organization And Control 12

IBM Confidential Restricted. DO NOT COPY

Logically, during the executien of an instruction, the content of
the Instruction Address Register is incremented by the length of
the current instruction. Should this instruction be a successful
branch/ jump instruction, the content of the Instruction Address
Register 1is changed to the address of the branch/jump target
instruction. The IAR contains the address of the next instruction
when the IAR is saved as part of the program status and when a
system contrel instruction to read the IAR is executed.

2.7.6 Interrupt Control Status

Bits 16-31 of SCR 14 are referred to as the Interrupt Control
Status (ICS). The 1ICS contains the Parity Error Retry Interrupt
Enable bit, Storage Protect bit, Problem State bit, Translate Mode
bit, Interrupt Mask, Check Stop Mask, Register Set Number, and the
Processor Pricerity. The ICS is described in "Interrupt Control
Status™ on page 21.

2.7.7 Condition Status

Bits 16-31 of SCR 15 are referred to as the Condition Status (CS).
The Condition Status contains information about the results of
certain operations and provides a mechanism for decision making.
The Condition Status is defined as follows:

Bits 16-23 Reserved

Bit 24 Permanent Zero (P2)
Bit 25 Less Than (LT)

Bit 26 Equal (EQ)

Bit 27 Greater Than (GT)
Bit 28 Carry Zero (CO0)

Bit 29 Reserved

Bit 20 Overflow (0OV)

Bit 31 Test Bit (TB)

Bit 24 of the Condition Status is the Permanent Zero bit (PZ). It
is set to zero whenever the Condition Status is loaded, and it
cannot be set to one. 1Its presence provides for a guaranteed
branch or jump by use of a branch on not condition bit or jump on
not condition bit instruction specifying the Permanent Zero bit.

Bit 25 of the Condition Status is the Less Than bit (LT). This
bit is set teo one during logical, shift, and certain arithmetic
instructions if the result is negative or if the high-order bit of
the result is one; otherwise it is set to zero. It 1is also set
during compare instructions to indicate the relative algebraic
magnitudes of the comparands.

System Organization And Control 13

IBM Confidential Restricted. DO NOT COPY

Bit 26 of the Condition Status is the Equal bit (EQ). This bit is
set to one during 1leogical, shift, and certain arithmetic
instructions if all bits of the result are zeros; otherwise it is
set to =zero. It is also set during compare instructions if the
comparands are equal.

Bit 27 of the Condition Status is the Greater Than bit (GT). This
bit is set to one during 1logical, shift, and certain arithmetic
instructions if the sign bit of the result is zero and the result
is nonzero; otherwise it is set to =zero. It is also set during
compare instructions to indicate the +true relative algebraic
magnitudes of the comparands.

Bit 28 of the Condition Status is the Carry Zero bit (C0). This
bit is set to one during certain arithmetic instructions if the
operation generates a carry out of bit position zero; otherwise it
is set to zero.

Bit 29 of the Condition Status is a reserved bit.

Bit 30 of the Condition Status is the Overflow bit (OV). It is
set to one during certain arithmetic instructions if the signed
result of the operation cannot be represented in 32 bits;
otherwise it is set to zero.

Bit 31 of the Condition Status is the Test bit (TB). It is set by
the move to test bit instructions, where a specified bit of the
half of a register is moved to the test bit. It is also affected
by instructions which load or directly alter the Condition Status
register.

All bits of the Condition Status, except the Permanent Zero bit,
can be set through use of the move to SCR instructions.

A four-bit field in the conditional branch instructions specifies
the Condition Status bit to be tested. A zero in the four-bit
field of a branch instruction specifies bit 16 of the Condition
Status, a one specifies bit 17 of the Condition Status, and so on.
A three-bit field in the conditional jump instructions specifies
the Condition Status bit to be tested. A zero in this three-bit
field specifies bit 24, a one specifies bit 25, and so on.

2.8 SYSTEM TIMER FACILITY

Many applications require a knowledge of real time for such
functions as system counting, time slicing, time stamping,
interval timing, and timing the producfivity of operations. These
functions can be provided using the system timer facility.

System Organization And Control 14

IBM Confidential Restricted. DO NOT COPY

For some devices, the device requirements may be such that
additional timers are needed in the adapter. A more sophisticated
timer can be provided as an I/0 device if needed.

System timer wupdating occurs at the frequency of the «clock
connected to the timer clock I/0 pin.

This section describes the system timer facility and its
operation. o

2.8.1 Counter

SCR 7 is referred to as the Counter (COU) and is a thirty-two-bit
count-~douwn counter. The Counter is decremented from an external
source connected to the 1I/0 pin ~TIMER CLOCK. The counter is
updated on an inactive +to active +transition of -TIMER CLOCK.
Processor instruction execution is suspended during the counter
update. When the Counter is decremented from 1 to 0, the value
contained in the Counter Source is loaded inte the Counter and the
alarm action is initiated. This action 1is such that normal
operations Will continue by the time the next count pulse arrives.
The alarm action is to set a bit in the IRB whose priority level
corresponds to the Timer Interrupt Priority in SCR 8, if the timer
is enabled. The alarm also sets the Interrupt Status bit to one,
and updates the Timer Status. The contents of the Counter Source
are not altered.

2.8.2 Counter Source

The Counter Source (COUS), SCR 6, consists of the thirty—-two-bit
value that is automatically loaded into the Counter when an alarm
occurs.

2.8.3 Timer Status

The Timer Status (TS), bits 24-31 of SCR 8, is defined as follows:

Bit 24 Reserved.

Bit 25 Enable. MWhen zero, no interrupts are created. This
does not start or stop the counter, but
enables/disables the setting of IRB bits. At

power—on reset, this bit is zero.

System Organization And Control 15

IBM Confidential Restricted. DO NOT COPY

Bit 26 Interrupt Status. When one, an alarm has occurred.
This bit 1is set only if an alarm has occurred, and
the Enable bit 1is set to one. This bit 1is reset by
software when. the counter is serviced. Software can
reset this bit by executing a Clear SCR Bit (CLRSB)
instruction.

Bit 27 Overflow. MWhen one, more than one alarm has occurred
before the Interrupt Status bit has been reset. This
bit is also reset by software when the counter is

serviced.
Bit 28 Reserved
3
Bits 29-31 Timer Interrupt Priority. A timer alarm causes the

setting of an IRB bit corresponding to the priority
level specified by this field if the timer is
enabled.

2.8.4 Programming Note: System Timer Operation

To provide an interval timer, the Counter is directly loaded wWith
a value corresponding to the amount of time until the interval is
to expire.

To provide a fixed interval interrupt, an appropriate value is
loaded into the Counter Source and then not changed. For example,
if the Counter Source was loaded with 5 (X'05"), and a 1
millisecond timer clock was used, the processor would be
interrupted every 5 milliseconds; if it was loaded with 250
(X'FA'), the processor uwould be interrupted every one-fourth
second. Software could then update internal storage locations and
provide time~of-day in whatever format desired.

Note that loading the Counter Source does not alter the value in
the Counter. As a result, the interrupt interval corresponding to
the value loaded into the Counter Source will not begin until the
Counter is decremented from 1 to 0, and the new Counter Source is
loaded into the counter. To synchronize the Counter with a new
Counter Source, both the Counter Source and the Counter must be
loaded with the new Counter Source value.

Multiple simultaneous timings can be handled using the system
timer as a resource. The Counter is loaded from a queue whose
entries are calculated to be the "time™ from the completion of the
previous entry wuntil the time for the entry in question to be
completed.

The external clock allows the system timer to be used to count
external events and can notify the program when a specific count

System Organization And Control 16

IBM Confidential Restricted. DO NOT COPY

arrives, This source need not provide a regular, clock-=like
signal; it can be either a regular or irregular source.

The value loaded into the Timer Interrupt Priority (TS, bits
29-31) must be greater than or equal to zero (000) and less than
or equal to six (110). These are the only values for which a
corresponding IRB exists. A value of seven (111) in the Timer
Interrupt Priority will cause no bit in the IRB to be set when a
timer interrupt occurs.

2.9 INTERRUPTS

The Interrupt facility permits the processor to change its status
at the request of some other system component or due to processor
conditions established by the program. Interrupt processing
consists of saving the current program status and establishing the
program status for servicing the interrupt. Interrupts only occur
on instruction boundaries, but some instruction sequences are not
interruptible. A Load Program Status (LPS) instruction is
provided for software to return from an interrupt. Execution of a
LPS instruction restores the IAR, the CS, and the 1ICS to the
values that existed when the interrupt occurred (see "Load Program
Status Instruction™ on page 85).

The processor may also change its status as a result of error
conditions within the processor or a system component. Error
processing consists of saving the current program status and
establishing the program status for servicing the error. Errors
are grouped into two classes: Machine check errors and program
check errors. These errors are discussed in detail in
"Reliability, Availability, and Serviceability”™ on page 121.

The interrupt facility 1is a priority-based mechanism. This
permits the servicing of higher priority functions to take
precedence over the servicing of lower functions.

Interrupt sources consist of the seven external interrupt inputs
(-REQIO-6), software interrupts posted via setting of bits in the
IRB, and error conditions (either the ~TRAP input, or internal
errors) detected during system operation. The seven external
interrupt inputs and software setting of IRB interrupt request
bits are treated in the same manner by ROMP The interrupt request
level is compared to the current processor priority specified by
bits in the ICS. If the interrupt request represents a higher
priority than the current processor priority, and interrupts are
enabled by the Interrupt Mask in the ICS, then the interrupt is
taken.

Taking an interrupt consists of saving the current processor

status in the old PSW corresponding to the level of the interrupt
request, and loading a new processor status from the new PSH

System Organization And Control 17

IBM Confidential Restricted. DO NOT COPY

corresponding to the level of the interrupt request. Saving of
the current processor status requires saving the address of the
instruction, the condition status, and the ICS when the interrupt
occurred. Loading of the new processor status requires loading
the new IAR (containing the address of the interrupt service
routine) and the new ICS from the new PSW. Saving of the current
processor status and loading of the new processor status s
performed automatically by ROMP hardware. Note that none of the
GPRs are automatically saved by hardware. Software is responsible
for saving any GPRs modified by the interrupt service routine.
Once the interrupt has been serviced, execution of the old program
can be resumed by loading the old program status word via an LPS
instruction. This will restore the IAR, the CS, and the 1ICS to
the values that existed when the interrupt occurred.

In addition to the seven interrupt levels, the detection of error
conditions can cause interrupts to the Program Check and Machine
Check interrupt levels. Interrupts +to the Program Check level
consists of errors which are most probably due to software errors
(i.e. detection of an invalid op-code, addressing error,
detection of a privileged instruction exception, etc.).
Interrupts to the Machine Check level consists of errors which are
most probably due to hardware errors (i.e. RSC parity errors, and
RSC timeouts). 1In addition, an external input (-TRAP) can be used
by system components to cause a machine check interrupt.
"Machine~Check Errors" on page 121 and "Program-Check Errors™ on
page 124. describe Machine Check and Program Check interrupts.

2.9.1 Processor Priority

Under normal system conditions, the processor executes
instructions at a level of priority referred to as the Processor
Priority. The Processor Priority may assume one of eight levels
as specified by a three~bit field 1in the ICS. Priorities for the
eight levels are represented by the following inequality:

Priority of Level 0 > Priority of Level 1 >...> Priority of Level 7

The Processor Priority may be changed either by an interrupt or by
an instruction which modifies the Processor Priority. There are
two sources of interrupts: an interrupt condition signaled via the
Interrupt Request Buffer, or an interrupt condition signaled by
some system component via the seven interrupt request inputs
(-REQIO~6).

The processor may also execute instructions at twe levels which
are not accessible via the interrupt facility. These levels are
provided for the reporting and servicing of machine check and
program check error conditions as discussed in "Machine~Check

System Organization And Control 18

IBM Confidential Restricted. DO NOT COPY

Error Handling™ on page 122 and "Program—-Check Error Handling™ on
page 124.

2.9.1.1 Interrupt Request Priority

Interrupt requests occur on one of seven priority levels.
Priorities for the seven levels are represented by the following
inequality:

Priority of level 0 > Priority of Level 1 >...> Priority of Level 6

The processor may execute instructions with a processor priority
of 7, but no interrupt requests with a priority of seven can
occur.

2.9.1.2 Interrupt Priority Assignment

A bit being set to one in the Interrupt Request Buffer causes an
interrupt request to the level corresponding to that bit. Timer
interrupts cause an interrupt request (via the IRB) to the level
specified in the Timer Status. A system component causes an
interrupt request at a level determined by the attachment of its
Interrupt Request line (-REQIO through 6) to the processor.

2.9.2 Point of Interrupt

Interrupts only occur on instruction boundaries. Furthermore,
interrupts are prevented from occurring within certain instruction
sequences. A branch with execute instruction and its subject

instruction are uninterruptable.
Thus, a branch with execute and 1its subject instruction is

considered to be a unit, and interrupts only occur before or after
the unit is executed (refer to "Instruction Set™ on page 26).

2.9.3 Error Handling

If the processor is executing an error routine as a result of a
machine check or program check error condition, all interrupt
requests from system components and interrupts signaled via the
IRB remain pending.

System Organization And Control 19

IBM Confidential Restricted. DO NOT COPY

2.9.4 Program Status

The state of the processor is called the program status. The
program status consists of the contents of the following system
control registers: the Instruction Address Register, the

Condition Status, and the Interrupt Control Status.

Upon interrupt the current program status is automatically saved

in the old program status 1location. The program status for
servicing the interrupt 1is leocaded from the new program status
location, wWith the exception of the Condition Status. The

Condition Status is not changed by loading the new program status.

2.9.4.1 O0ld/New Program Status Pairs

An old/new program status pair consists of eight bytes of old
program status and eight bytes of new program status. When an
interrupt occurs, the old/new program status pair is specified by
the priority level of the interrupt.

2.9.4.2 Location of DOld/New Program Status Pairs

The program status save area in main storage contains ten old/new
program status pairs. Two old/new program status pairs are for
machine check and program check error handling, one old/new
program status pair 1is wused for the Supervisor Call (SVO)
instruction, and the remaining seven are for interrupt servicing.
The structure of an old/new program status pair is shown in
Figure 5 on page 24. Note that the SVC old/new program status pair
contains a sixteen-bit SVC interrupt code which is generated by
execution of the sSve instruction (See "Supervisor Call
Instruction™ on page 387). Figure 6 on page 25 shows the
organization of the program status save area in main storage. The
l6-byte old/new program status pairs are located in consecutive
main storage locations. The program status save area is located
at addresses X'100' thru X'19F'. Address translation is disabled
for storing of the old program status and loading of the new
program status.

2.9.5 System Control Reqisters

Two fields are provided within the system control registers to
support the interrupt facility. They are the Interrupt Request
Buffer and the Interrupt Control Status.

System Organization And Contreol 20

0

IBM Confidential Restricted. DO NOT COPY

2.9.5.1 Interrupt Request Buffer

The Interrupt Request Buffer (IRB) is a l6-bit field in SCR 12 and
has the following format:

Bit 16 Interrupt Request Level 0
Bit 17 Interrupt Request Level 1
Bit 18 Interrupt Request Level 2
Bit 19 Interrupt Request Level 3
Bit 20 Interrupt Request Level 4
Bit 21 Interrupt Request Level 5
Bit 22 Interrupt Request Level 6

Bits 23-31 Reserved

The IRB provides the capability of generating interrupt requests
under software control. Setting an IRB bit to one causes an
interrupt request to the 1level corresponding to that bit. The
interrupt request remains active wuntil the bit 1is cleared by
software.

If bit 25 of SCR 8 is one (enabled), a timer alarm caused by the
Counter being decremented from 1 to 0 sets a bit in the IRB, which

generates an interrupt request. The bit in the IRB which is set
is determined by the Timer Interrupt Priority in the Timer Status.

2.9.5.2 Interrupt Control Status

The Interrupt Control Status (ICS) 1is a 16-bit field in SCR 14
Wwith the following format:

Bits 16-18 Reserved

Bit 19 Parity Error Retry Interrupt Enable
Bit 20 Storage Protect

Bit 21 Problem State

Bit 22 Translate Mode

Bit 23 Interrupt Mask

Bit 24 Check Stop Mask

Bits 25-27 Register Set Number

Bit 28 Reserved

Bits 29-31 Processor Priority

A value of one 1in the Parity Error Retry Interrupt Enable bit
enables interrupts when a ROMP Storage Channel (RSC) retry
successfully completes a processor generated transfer that was
previously unsuccessful due to detection of a parity error. A
successful parity error retry interrupt will cause a level 0
interrupt by setting the Interrupt Request Level 0 bit (bit 16) in
the Interrupt Request Buffer. The RSC Check bit (bit 16) in the
Machine Check Status will be set to indicate the cause of the
interrupt.

System Organization And Control 21

IBM Confidential Restricted. DO NOT COPY

A value of one in the Storage Protect bit enables address checking
in the storage controller. Use of Storage Protect is described in
"Storage Protect™ on page 137.

A value of one in the Problem State bit places the processor in
problem state; a value of zero places the processor in supervisor
state.

A wvalue of one in the Translate Mode bit enables address
translation in the storage controller. Use of Translate Mode is
described in "Address Translation™ on page 140.

A value of one in the Interrupt Mask inhibits all system
component, timer, and software interrupts on all levels. An
interrupt which is inhibited remains pending.

A value of one in the Check Stop Mask prevents the processor from
entering the Check Stop state upon the detection of a machine
check error.

The three~bit encoded Register Set Number allows one of eight
register sets to be specified as the active register set. The
current ROMP design implements one of the eight register sets.
Bits 25-27 are ignored in this implementation.

The three-bit encoded Processor Priority indicates the current

processor priority level. Interrupt requests with priorities
lower than or equal to the current processor priority are ignored.

2.9.6 Occurrence of Interrupts

An interrupt occurs due to a bit in the IRB being equal to one if
the Processor Priority is lower than the priority corresponding to
that bit of the IRB, the Interrupt Mask 1is zero, and ho system
component is signaling an interrupt request on a higher level than
that signaled via the IRB.

An interrupt occurs due to a system component interrupt request if
the Processor Priority 1is lower than that of the interrupt
request, the Interrupt Mask is zero, and the IRB is not signaling
an interrupt request on a higher level than that signaled by the
system component.

2.9.7 Programming Note: Interrupt Facility

The interrupt facility contains features which, if used
improperly, may force the processor into an infinite hardware

System Organization And Control 22

IBM Confidential Restricted. DO NOT COPY

loop. When the processor 1loads the new program status for
servicing an interrupt, it loads the Processor Priority from the
ICS in the new program status location. The value 1in the
Processor Priority in the new program status is completely under
software control. This processor priority which is loaded must
not be 1lower than the priority of the interrupt request which
caused the interrupt, if the Interrupt Mask in the new program
status is zero, the same interrupt request will immediately cause
ancother interrupt. Multiple interrupts would continue to occur
until a system component signals an interrupt request on a higher
level, or a power-on reset occurs.

2.9.8 Progqramming Notes: Interrupt Servicing

The program should issue an IOW instruction to signal the device
that the interrupt request is being serviced, and to reset the
interrupt request bit in the device status.

1. The program should clear the interrupt request of the
interrupting device as soon as possible after the point of
interrupt. This allows the processor to determine the
priority of the next highest interrupt request.

2. A Load Program Status (LPS) instruction is provided for
software to return from an interrupt (see "Load Program Status
Instruction™ on page 85). The effective address of the LPS
instruction points to the Program status to which contrel is
being returned. Normally contrel will be returned to the
previously active program whose program status is located in
the old program status associated with the interrupt being
serviced.

System Organization And Control 23

IBM Confidential Restricted. DO NOT COPY

Old IAR

0ld ICS Old Cs

Old Program Status

New IAR

New ICS Reserved

New Program Status

New IAR

New ICS SVC Interrupt Code

0 16 31

SVC New Program Status

IAR = Instruction Address Register
ICS = Interrupt Control Status
CS = Condition Status

SVC = Supervisor Call

Note: Reserved bits in the old program status are set to unpredictable
values. Reserved bits in the new program status are ignored.

Figure 5. 0ld/New Program Status Pair

System Organization And Control 24

IBM Confidential Restricted. DO NOT COPY

Address X'100" OLD/NEW PS PAIR O

Address X'110°" OLD/NEW PS PAIR 1

Address X'120° OLD/NEW PS PAIR 2

Address X'1307 OLD/NEW PS PAIR 3

Addrass X'1407 | oLb/NEW PS PAIR &

Address X'150°7 OLD/NEW PS PAIR 5

Address X'160’ OLD/NEW PS PAIR 6

Address X'1707 MACHINE CHECK OLD/NEW PS PAIR
Address X'180° PROGRAM CHECK OLD/NEW PS PAIR
Address X'1907 SVC OLD/NEW PS PAIR

Main Storage Addresses X'100' Through X'19F'

Note: Each PS pair requires 16 bytes.

Figure 6. Program Status Save Area

System Organization And Control

IBM Confidential Restricted. DO NOT COPY

3.0 INSTRUCTION SET

3.1 GENERAL DESCRIPTION

Instructions are grouped into ten classes: storage access, address
computation, branching, +traps, moves and inserts, arithmetic,
logical operations, shifts, system control, and input/output. A
separate section is devoted to each instruction class. Each
instruction is specified in terms of mnemonic, operation code (op
code), length, and functional description.

Unassigned op codes are reserved for future wuse. If these
reserved op codes are encountered by the processor, a program
check error occurs. For more detailed information, see

"Program—~Check Errors™ on page 124.

The ROMP processor does not support dynamic instruction
modification. Any attempt by software to moedify an instruction
may result in unpredictable operation.

ROMP provides a supervisor state in which all instructions are
valid, and problem state in which only instructions that cannot be
used to affect system integrity are valid. The instructions that
are not valid in problem state are called privileged instructions.
A privileged instruction encountered in the problem state
constitutes a privileged instruction exception and causes a
program check.

The following notation is used to describe each instruction:

GPR General Purpose Register (The word register is also
used to to denote a GPR)

SCR System Control Register

IAR Instruction Address Register
IRB Interrupt Request Buffer

MCS Machine Check Status

PCS Program Check Status

Ccs Condition Status

ICS Interrupt Contrel Status

Instruction Set 26

IBM Confidential Restricted. DO NOT COPY

RA,RB or RC These abbreviations denote fields in the instruction
which specify GPRs.

SRB This denotes a field 1in the instruction which
specifies an SCR.

I This denotes a field of immediate data 1in the
instruction.

N This denotes a Condition Status bit number.

JI This denotes an eight-bit relative branch
displacement in the JI format instructions.

BI This denotes a 20-bit relative branch displacement
in the BI format instructions.

BA This denotes a 24-bit absolute branch address.

0/ (RC) This indicates the value 0 if RC is specified as 0,
else the content of register RC. (i.e. if the RC
field is specified as 0, a value of zero is used for
the computation, if the RC field 1is not 0, the
content of the specified register 1is used for the
computation.) Register 0 can not be used as the RC

register.
o[n] This indicates a field of zeroes, n bits wide.
/7 Two parallel bars are used to indicate a

concatenation of the two fields specified on either
side of the bars.

(RC) A register specification enclosed in parentheses
indicates the content of the specified register.

The seven instruction formats (JI, X, D-Short, R, BI, BA and D)
are shown in Figure 7. Instructions are either two or four bytes
in length. The first four, five or eight bits of an instruction
are referred to as the operation code (op code). The JI format

has a five bit op code. The X and D-Short formats both have
four-bit op codes. The R, BI, BA and D formats all have eight-bit
op codes. Instructions of formats JI, X, D-Short and R are all

two bytes long. Instructions of formats BI, BA and D are all four
bytes long.

The RA, RB and RC fields specify GPRs. The SRB field specifies an
SCR. The I field specifies a displacement of a storage address or
an immediate value. The N field specifies a Condition Status bit.
Relative branch displacements JI and BI are both signed binary
numbers in two's complement form, while BA designates an absolute
branch address

Instruction Set 27

IBM Confidential Restricted. DO NOT COPY

Some R format instructions have an SRB, I, or N field instead of
an RB or RC field.

For X, D=-=Short, and D format instructions which refer to main
storage or system components, the address is calculated according

to the following formulas:

X Format (RB) + O0/(RC)
D-Short Format 0/(RC) + 0[28])//1
0/(RC) + 0[27]//71//0[1]
0/(RCY + 0[26]1//71//70[2]
D Format 0/(RC) + 0[16]//1
0/(RC) + Sign Extended I

Where 0/(RC) indicates the value 0 if RC is specified as 0, and
the value of the content of the general purpose register if RC is
specified as nonzero.

Instruction Set 28

IBM Confidential Restricted. DO NOT

corPY

JI Format

opP N JI

X Format

op RA RB RC

[} 4 8 12 15

D-Short Format

op I RB RC
0 a 8 12 15
R Format
op RB RC
o 8 12 15
BI Format
op RB BI
0 8 12 31
BA Format
op BA
0 8 31
D Format
op RB RC I
0 8 12 16 31

Figure 7. Instruction Formats

Instruction Set

29

IBM Confidential Restricted. DO NOT COPY

3.2 STORAGE ACCESS

Main storage is organized as a sequence of eight-bit bytes with a
maximum capacity of 4,294,967,296 bytes. All storage effective
addresses (base address plus displacement) are computed as 32-bit
quantities. MWrap around is allowed and occurs on a 32-bit basis,
i.e., main storage addressing wraps around from the architectural
maximum byte address of 4,294,967,295 to address 0. This
implementation of ROMP supports both 24-bit and 32-bit addressing.
In 24~bit addressing mode, the high order &8 bits of the 32-bit
effective address is checked to be zero. A non-zero high order
byte in the effective address will result in a program check. If
less than the maximum amount of main storage is installed, an
attempt to wutilize a byte from a non-existent main storage
location will result in a program check.

All storage accesses are for a byte or multiples thereof.
Instructions are provided to load or store a single character, a
halfword, or a word into a general-purpose register. Storage
accesses for halfwords and words ignore the low-order bit or pair
of bits, respectively, of the effective address. The address of a
halfword or wWord in main storage 1is the address of its leftmost
byte. The Condition Status 1is not changed by any of these
instructions.

A storage access to an invalid storage location will set the data
address exception bit in the program check status and result in a
program check. Refer to "Program-Check Errors™ on page 124 for a
description of the program check status.

All storage access instructions are non-privileged.
Engineering Note: Data Alignment

Data alignment for halfword and fullword accesses is normally
provided in the storage controller by ignoring the low-order
address bit for halfword accesses and the two low-order bits for
fullword accesses. The effective storage address computed by ROMP
for halfword and fullword data accesses is not aligned (i.e. the
storage address is the byte address of the leftmost byte of the
halfword or fullword). This allows a storage controller to
support unaligned halfword and fullword accesses, if required in a
particular system.

Instruction Set 320

IBM Confidential Restricted. DO NOT COPY

3.2.1 Load Instructions

Load Character Short D-Short Format

LCS RB, I(RC)

Character C3 of register RB is replaced. by the character of
storage addressed by 0/(RC) + 0[28]//I. Character CO through C2 of
register RB are set to zeroes.

Load Character D Format

LC RB, I(RC)

CE RB RC I

Character C3 of register RB is replaced by the character of
storage addressed by 0/(RC) plus the sign extended I-field.
Character CO0 through C2 of register RB are set to zeroces.

Load Half Algebraic Short D-Short Format

LHAS RB, I(RC)

0 4 8 12 15

The lower half of register RB is replaced by the halfuword of
storage addressed by 0/(RC)+0[27]//1//0[1]. The sign bit of the
addressed halfword is extended through the upper half of register
RB.

Instruction Set 31

IBM Confidential Restricted. DO NOT COPY

Load Half Algebraic _D Format

LHA RB, I(RO)

CA RB RC I

The 1lower half of register RB is replaced by the halfword of
storage addressed by 0/(RC) plus the sign extended I-field. The
sign bit of the addressed halfword is extended through the upper
half of register RB.

Load Half Short R Format

LHS RB, O0(RC)

EB RB RC

0 8 12 18

The lower half of register RB is replaced by the halfword of
storage addressed by the content of register RC. The upper half
of register RB is set to zero.

Load Half D Format

LH RB, I(RC)

DA RB RC I

The 1lower half of register RB is replaced by the halfword of
storage addressed by 0/(RC) plus the sign extended I-field. The
upper half of register RB is set to zeroces.

Instruction Set 32

IBM Confidential Restricted. DO NOT COPY

Load Short D-Short Format

LS RB, I(RC)

o 4 8 12 15

The content of register RB is replaced by the word in storage
addressed by 0/(RC) + 0[26]1//1//0[2].

Load D Format

L RB, I(RD

CcD RB RC I

The content of register RB is replaced by the word in storage
addressed by 0/(RC) plus the sign extended I-field.

Load Multiple D Format

LM RB, I(RC)

(032 RB RC I

The content of registers RB through 15 are replaced, respectively,
by the consecutive wWwords in storage beginning at the address given
by 0/(RC) plus the sign extended I-field.

Instruction Set 33

IBM Confidential Restricted. DO NOT COPY

3.2.2 Test and Set Instruction

Test _and Set Half D Format

TSH RB, I(RO)

CF RB RC I

o
The 1lower half of register RB is replaced by the halfword of
storage addressed by 0/(RC) plus the sign extended I-field. The
upper half of register RB is set to zeroes. Immediately following
the read operation, the storage wunit will write all 1's 1in the
high order byte of the selected halfword without permitting any
other storage operations between the read and the uwrite. The
low~order byte of the selected halfword is left unaltered.

3.2.3 Store Instructions

Store Character Short D-Short Format

STCS RB, I(RD)

[4 8 12 15

The character of storage addressed by 0/(RC) 4+ 0[28]//1 s
replaced by character C3 of register RB.

Instruction Set 34

IBM Confidential Restricted. DO NOT COPY

Store Character _D Format

STC RB, I(RD)

DE RB RC I

The character of storage addressed by 0/(RC) plus the sign
extended I-field is replaced by character C2 of register RB.

Store Half Short D-Short Format

STHS RB, I(RC)

The halfword of storage addressed by 0/(RC) + 0[27]//1//0[1] is
replaced by the lower half of register RB.

Store Half D Format

STH RB, I(RC)

DC RB RC I

The halfword of storage addressed by 0/(RC) plus the sign extended
I-field is replaced by the lower half of register RB.

Instruction Set 35

IBM Confidential Restricted. DO NOT COPY

Store Short D-Short Format

STS RB, I(RD)

] 4 8 12 15

The word of storage addressed by O0/(RC) 4 0[26])//1//70[2] s

replaced by the content of register RB.

Store _D Format

ST RB, I(ROC)

DD RB RC I

The word in storage addressed by 0/(RC) plus the
I-field is replaced by the content of register RB.

Store Multiple D Format

STM RB, TI(RO)

D9 RB RC I

sign extended

The consecutive wWords in storage beginning at the address given by

0/(RC) plus the sign extended I-field are replaced,
by the content of registers RB through 15.

Instruction Set

respectively,

36

IBM Confidential Restricted. DO NOT COPY

3.3 ADDRESS COMPUTATION

The address computation instructions operate only on the contents
of the general purpose registers. No storage references for
operands occur. The resultant values are not inspected for:
address exceptions. The Condition Status is not changed by any of
these instructions.

All address computation instructions are non-privileged.

Compute Address Lower Half D Format

CAL RB, I(RC)

Cc8 RB RC I

The address specified by O0/(RC) plus the sign extended I-field
replaces the content of register RB.

Compute Address Lower Half 16-Bit D Format

CAL16 RB, I(RO)

c2 RB RC I

The 16-bit address specified by 0/(RC)>[16:31] 4+ I replaces the
content of register RB[16:31], and 0/(RC)>[0:15] replaces the
content of register RB[0:15].

Programming Note:

This instruction 1is provided to assist in simulation of 16-bit
architectures.

Instruction Set 37

IBM Confidential Restricted. DO NOT COPY

Compute Address Upper Half D Format

CAU RB, I(RD)

D8 RB RC I

The address specified by 0/(RC) + I//0[16] replaces the content of
register RB.

Compute Address Short X Format

CAS RA,RB,RC

] 4 8 12 15

The address specified by (RB) + 0/(RC) replaces the content of
register RA.

Compute Address 16-Bit R Format

CAlé6 RB, RC

F3 RB RC

The 16-bit address specified by (RB)[16:31] 4+ (RC)[16:31] replaces
the content of register RB[16:31], and (RC)[0:15] replaces the
content of register RB[0:15].

Programming Note:

This instruction 1is provided to assist in simulation of 16-bit
architectures.

Instruction Set 38

i)

IBM Confidential Restricted. DO NOT COPY

Increment R Format

INC RB, I

91 RB I

[8 12 15

The field I, extended on the left with 28 zeroces, is added to the
content of register RB and the result placed into register RB.

Decrement _R Format

DEC RB, I

93 RB I

o 8 12 15

The field I, extended on the left with 28 zeroes, is subtracted
from the content of register RB and the result placed into the
register RB.

Load Immediate Short R Format

LIS RB, I

A4 RB I

[8 12 15

The content of register RB is replaced by field I, extended on the
left with 28 zeroes.

Instruction Set 39

IBM Confidential Restricted. DO NOT COPY

3.4 BRANCHING

The normal sequential execution of instructions may be changed by
the use of the branch instructions. These instructions permit
subroutine linkage, decision making, and loop control, and provide
several different target addressing forms.

For every branch instruction, except jumps, there 1is a
corresponding branch with execute instructions. The instruction
immediately following a branch with execute is called the subject
instruction, and it is executed regardless of the branch decision,
as if it preceded the branch. However, the subject instruction
cannot affect the branch decision. Any Conditien Status changes
caused by the subject instruction occur after the branch decision
has been made.

Subroutine linkage is provided by the branch and linkage
instructions: BALA, BALAX, BALI, BALR, and BALRX. These
instructions cause a branch to a new instruction sequence but
preserve a return address in an implicitly or explicitly
designated general purpose register. For the nonexecute forms of
the instructions, the return address is the updated instruction
address, which 1is the address of the halfuword immediately
following the branch and 1link instruction in storage. For the
execute forms of the instructions, the return address is the
address of the halfword which is four bytes beyond the end of the
branch and link with execute instruction, i.e., it is the updated
instruction address plus four. This allows four bytes following
the branch and link with execute for the subject instruction. If
the subject instruction requires only two bytes, the two remaining
bytes are ignored.

Decision making and loop control are provided by the conditional
branch and conditional jump instructions: BB, BBX, BBR, BBRX,
BNB, BNBX, BNBR, BNBRX, JB, and JNB. For the conditional branch
instructions, the branch decision is based on any specified state
of any bit of the Condition Status. 1In these instructions, the
value of N specifies the Condition Status bit with CS bit 16
specified by a value of 0, CS bit 17 by a value of 1, and so
forth. For the conditional jump instructions the branch is based
on any specified state of the rightmost eight bits (bits 24-31) of
the Condition Status. In this case, the value of the N field of
the jump instruction specifies the Condition Status bit with CS
bit 24 specified by a value of 0, CS bit 25 by a value of 1, and
so forth. For conditional branch instructions, the branch
decision is based on any specified state of the rightmost sixteen
bits (bits 16-31) of the Condition Status. 1In this case, the
value of the N field specifies which Condition Status bit is used
for the branch decision, with CS bit 16 specified by a value of 0,
CS bit 17 specified by a value of 1, and so forth. If a reserved
bit in the Condition Status (bits 16-23) is specified, the branch
decision is unpredictable.

Instruction Set 40

IBM Confidential Restricted. DO NOT COPY

The branch instructions provide three different branch target
addressing forms: absolute, absolute immediate, and relative
immediate. The instructions BALR, BALRX, BBR, BBRX, BNBR, and
BNBRX are absolute instructions and specify as an operand a
register which contains the 24-bit branch target address. The
instructions BALA and BALAX are absolute immediate instructions,
where the full 24-bit branch target address is contained in the
instruction. The instructien BALI, BALIX, JB, BB, BBX, JNB, BNB,
and BNBX are relative immediate instructions; each contains an
immediate field which is sign extended, logically shifted left one
bit, and added to the address of the branch instruction in order
to calculate the branch target address. The jump instructions (JB
and JNB) contain an eight-bit immediate field which allows a jump
range of =127 to +128 halfwords from the jump instruction. The
branch instructions BALI, BALIX, BB and BBX contain a 20-bit
immediate field which allows a branch range of -524,286 to
+524,289 halfwords from the branch instruction.

The branch wWith execute instruction and its subject instruction
are considered to be a single instruction. Thus, interrupts are
not honored between the execution of the branch with execute
instruction and the execution of its subject instruction.

Certain instructions are not allowed to be the subject of a branch
with execute instruction. Since the branch with execute
instructions change the normal sequential execution of
instructions, the subject instruction cannot be an instruction
which alse changes the instruction sequencing, or the processor
may be put in an unpredictable state. Thus, all branches, jumps,
traps, Load Program Status, Supervisor Call, and HWait instructions
cannot be subject instructions. Software 1is responsible for
insuring that these instructions do not occur as the subject of a
branch with execute instruction. No harduware is provided teo
detect these illegal branch with execute subject instructions.
"Illegal Branch With Execute Subject Instructions™ on page 1383
lists the illegal branch wWwith execute subject instructions.

Also, note that, in the case of branch and 1link with execute
instructions, the register containing the return address is
available to the subject instruction; hence the subject
instruction must be constructed so as not to modify the return
address unintentionally. Finally, if the subject instruction is a
Move From SCR, where the SCR is the IAR, (move from SCR 13), the
results of the move are unpredictable.

All branch and jump instructiens are non-privileged.

Instruction Set 41

IBM Confidential Restricted. DO NOT COPY

3.4.1 Branch And Link Instructions

Branch and Link Absolute BA Format

BALA BA

8A BA

The content of register 15 is replaced by the updated instruction
address, and the updated instructien address is replaced by the
field BA, With its rightmost bit forced to zero.

Branch and Link Absolute with Execute BA Format

BALAX BA

8B BA

The content of register 15 is replaced by the updated instruction
address incremented by four, and the updated instruction address
is replaced by the field BA with its rightmost bit forced to zero.
The instruction immediately following the branch instruction is
executed before the target instruction is executed.

Branch and Link Immediate BI Format

BALI RB,BI

3C RB BI

The content of register RB is replaced by the updated instruction
address. The updated instruction address is replaced by the field

Instruction Set 42

IBM Confidential Restricted. DO NOT COPY

BI, sign extended and shifted left one bit, added to the branch
instruction address.

Branch and Link Immediate with Execute BI Format

BALIX RB,BI

8D RB BI

The content of register RB is replaced by the updated instruction
address incremented by four. The updated instruction address is
replaced by the field BI, sign extended and shifted left one bit,
added to the branch instruction address. The instruction
immediately following the branch instruction is executed before
the target instruction is executed.

Branch and Link R Format

BALR RB, RC

EC RB RC

1] 8 12 15

The content of register RB is replaced by the updated instruction
address. The updated instruction address 1is replaced by the
content of register RC with the rightmost bit forced to zero.

Instruction Set 43

IBM Confidential Restricted. DO NOT COPY

Branch and Link with Execute R Format

BALRX RB, RC

ED RB RC

0 8 12 158

The content of register RB is replaced by the updated instruction
address incremented by four, and the updated instruction address
is replaced by the content of register RC with the rightmost bit
forced to zero. The instruction immediately following the branch
instruction is executed before the target instruction is executed.

3.4.2 Conditional Branches

Jump on Condition Bit _JI Format

If the Condition Status bit specified by N is one, the updated
instruction address is replaced by the field JI, sign extended and
shifted left one bit, added to the branch instruction address. 1If
the specified Condition Status bit is zero, the updated
instruction address is unaltered. The field N references only the
rightmost eight bits of the Condition Status (bits 24-31).

Instruction Set 44

IBM Confidential Restricted. DO NOT COPY

Branch on Condition Bit Immediate BI Format

BB N, BI

8E N BI

If the Condition Status bit specified by N is one, the updated
instruction address is replaced by the field BI, sign extended and
shifted left one bit, added to the branch instruction address. If
the specified Condition Status bit is zero, the updated
instruction address is unaltered.

Branch on Condition Bit Immediate with Execute BI Format

8F N BI

If the Condition Status bit specified by N is one, the updated
instruction address is replaced by the field BI, sign extended and
shifted left one bit, added to the branch instruction address.
The instruction immediately following the branch instruction is
executed before the target instruction is executed. If the
specified Condition Status bit is zero, the updated instruction
address is unaltered, and the subject instruction is executed in a
normal manner.

Instruction Set 45

IBM Confidential Restricted. DO NOT COPY

Branch on Condition Bit R Format

EE N RC

If the Condition Status bit specified by N is one, the updated
instruction address is replaced by the content of register RC wWith
the rightmost bit forced to =zero. If the specified Condition
Status bit is zero, the updated instruction address is unaltered.

Branch on Condition Bit with Execute R Format

BBRX N,RC

EF N RC

[8 12 15

If the Condition Status bit specified by N is one, the updated
instruction address is replaced by the content of register RC with
the rightmost bit forced to zero. The instruction immediately
following the branch instruction 1is executed before the target
instruction is executed. If the specified Condition Status bit is
zero, the wupdated instruction address 1is wunaltered, and the
subject instruction is executed in a normal manner.

Jump on Not Condition Bit _JI Format

JNB N, JI

If the Condition Status bit specified by N is zere, the updated
instruction address is replaced by the field JI, sign extended and
shifted left one bit, added to the branch instruction address. 1If

Instruction Set 46

IBM Confidential Restricted. DO NOT COPY

the specified Condition Status bit is one, the updated instruction
address is unaltered. The field N references only the rightmost
eight bits of the Condition Status (bits 24-31).

Branch on Not Condition Bit Immediate Bl Format

BNB N, BI

88 N BI

If the Condition Status bit specified by N is zero. the updated
instruction address is replaced by the field BI, sign extended and
shifted left one bit, added to the branch instruction address. If
the specified Condition Status bit is one, the updated instruction
address is unaltered.

Branch _on Not Condition Bit Immediate with Execute BI Format

BNBX N, BI

89 N BI

If the Condition Status bit specified by N is zero, the updated
instruction address is replaced by the field BI, sign extended and
shifted left one bit, added to the branch instruction address.
The instruction immediately following the branch instruction is
executed before the target instruction 1is executed. If the
specified Condition Status bit 1is one, the updated instruction
address is unaltered, and the subject instruction is executed in a

normal manner.

Instruction Set 47

IBM Confidential Restricted. DO NOT COPY

Branch on Not Condition Bit R Format

BNBR N, RC

If the. Condition Status bit specified by N is Zero, The updated
instruction address is replaced by the content of register RC with
the rightmost bit forced to zero. If the specified Condition
Status bit is one, the updated instruction address is unaltered.

Branch on Not Condition Bit with Execute R Format

BNBRX N, RC

ES N RC

o 8 12 15

If the Condition Status bit specified by N is zero, the updated
instruction address is replaced by the content of register RC with
the rightmost bit forced to zero. The instruction immediately
following the branch instruction is executed before the target
instruction is executed. If the specified Condition Status bit is
one, the updated instruction address is unaltered, and the subject
instruction is executed in a normal manner.

Instruction Set 48

IBM Confidential Restricted. DO NOT COPY

3.5 TRAPS

The trap instructions are provided to test for a specified set of
conditions. If the conditions tested by a trap instruction are
met, the program trap bit of the Program Check Status is set to
one and a program check occurs. If the tested conditions are not
met, instruction execution <continues wWith the next sequential
instruction.

The comparisons are preformed on operands which are treated as
32-bit unsigned integers (logical dquantities). The Condition

Status is not changed by any of these instructions.

All trap instructions are non-privileged.

Trap On Condition Immediate D Format

TI COND,RC,I

cc OJL]JE|G RC I

If any of the trap conditions specified by bits 9-11 are met by
comparing the content of register RC with the value of the sign
extended I-field, the trap bit of the PC register is set, and a
program check occurs.

Trap conditions are selected by bits 9-11 as defined below.

Bit 9 Trap if register RC is less than the value of the
sign extended I-field. The trap 1is enabled if the
bit is one and disabled if zero.

Bit 10 Trap if register RC is equal to the value of the
sign extended I-field. The trap 1is enabled if the
bit is one and disabled if zero.

Bit 11 Trap if register RC is greater than the value of
the sign extended I-field. The trap is enabled if
the bit is a one and disabled if zero.

Instruction Set 49

IBM Confidential Restricted. DO NOT COPY

Trap if Reqister Greater Than or Equal R Format

TGTE RB, RC

BD RB RC

4] 8 12 15

If the content of register RB is greater than or equal to the
content of register RC, the Trap bit of the PCS 1is set, and a
program check occurs.

Trap if Reqister Less Than R Format

TLT RB, RC

BE RB RC

o 8 12 15

If the content of register RB is less than the content of register
RC, the Trap bit of the PCS is set, and a program check occurs.

Instruction Set 50

IBM Confidential Restricted. DO NOT COPY

3.6 MOVES AND INSERTS

This group of instructions is concerned with the movement of data
between general-purpose registers, and between a general-purpose
register and the Test Bit of the Condition Status. Except when
data is moved into the Test Bit, none of these instructions alter
the Condition Status.

o
All move and insert instructions are non-privileged.

3.6.1 Move Character Instructions

Move Character Z2eroc From Three _R Format

MCO03 RB, RC

F9 RB RC

0 8 12 15

Character CO0 of register RB 1is replaced by character €3 of
register RC.

Move Character One From Three _R Format

MC13 RB, RC

FA RB RC

o 8 12 15

Character Cl1 if register RB 1is replaced by character C3 of the
register RC.

Instruction Set 51

IBM Confidential Restricted. DO

Move Character Two From Three R Format

MC23 RB, RC

FB RB RC

0 8 12 15

Character C2 of register RB 1is replaced
registger RC.

Move Character Three From Three _R Format

MC33 RB, RC

FC RB RC

[8 12 15

Character C3 of register RB 1is replaced
register RC.

Move Character Three From Zero _R Format

MC30 RB, RC

FD RB RC

[8 12 15

Character C3 of register RB 1is replaced
register RC.

Instruction Set

NOT COPY

by character

by character

by character

c3

c3

co

of

of

of

52

IBM Confidential Restricted. DO NOT COPY

Move Character Three From One R Format

MC31 RB, RC

FE RB RC

[8 12 15

Character C3 of register RB 1is replaced by character Cl1 of
register RC.

Move Character Three From Two R Format

MC32 RB, RC

FF RB RC

0o 8 12 18

Character C3 of register RB is replaced by character C2 of
register RC.

3.6.2 Move To And From Test Bit Instructions

Move From Test Bit R Format

MFTB RB, RC

BC RB RC

] 8 12 15

The bit of register RB specified by the value of bits 27-31 of
register RC is set to the value of the Condition Status Test Bit.

Instruction Set 53

IBM Confidential Restricted. DO NOT COPY

Move From Test Bit Immediate Lower Half R Format

MFTBIL RB, 1

9D RB I

4] 8 12 15

The bit of the lower half of register RB specified by I is set to
the value of the Condition Status Test Bit.

Move From Test Bit Immediate Upper Half R Format

MFTBIU RB, I

SC RB I

o 8 12 15

The bit of the upper half of register RB specified by I is set to
the value of the Condition Status Test Bit.

Move to Test Bit R Format

MTTB RB, RC

BF RB RC

(] 8 12 15

The Condition Status Test Bit is set to the value of the bit of
register RB specified by the value of bits 27-31 of register RC.

Instruction Set 54

IBM Confidential Restricted. DO NOT COPY

Move to Test Bit Immediate Lower Half R Format

MTTBIL RB, I

9F RB I

[8 12 18

The Condition Status Test Bit is set to the value of
the lower half of register RB specified by I.

Move To Test Bit Immediate Upper Half R Format

MTTBIU RB, I

9E RB I

[8 12 15

The Condition Status Test Bit is set to the value of
the upper half of register RB specified by I.

Instruction Set

the bit

the bit

in

in

55

IBM Confidential Restricted. DO NOT COPY

3.7 ARITHMETIC

The arithmetic operations treat the general purpose registers as
32 bit quantities in two's complement representation. Each of
these instructions affects certain bits in the Condition Status
field. However, the bits which are set, and the manner in which
they are set, may vary according to the instruction which s
executed.

The LT bit is set by all instructions except Multiply Step, Divide
Step, and compares to indicate the sign of the result. That is,
the LT bit is set to one if the sign bit of the result 1is one.
The arithmetic compare instructions set this bit to one if the
algebraic magnitude of a given comparand is less than the
algebraic magnitude of the other. The leogical compare
instructions set this bit to one 1if the unsigned magnitude of a
given comparand is less than the unsigned magnitude of the other.
The instructions Multiply Step and Divide Step do not affect this
bit.

The EQ bit is set by all instructions except Multiply Step and
Divide Step if the result is a field of 32 zeroes, or, in the case
of the compare instructions, if the two comparands are equal. The
Multiply Step and Divide Step instructions do not affect this bit.

The GT bit is set by all instructions except Multiply Step, Divide
Step, and compares to indicate the sign of a non-zero result; it
is set to one if the sign bit of a non-zero result is zero. The
arithmetic compare instructions set this bit if the algebraic
magnitude of a given comparand is greater than the algebraic
magnitude of the other. The logical compare instructions set this
bit to one if the unsigned magnitude of a given comparand is
greater than the wunsigned magnitude of the other. The
instructions Multiply Step and Divide Step do not affect this bit.

The CO0 bit in the Condition Status is set by all instructions
except compares, Extend Sign, Divide Step, and Multiply Step to
reflect the carry out of bit position zero. The Extend Sign
instruction does not affect CO, and the Multiply Step and Divide
Step instructions set CO0 according to certain multiply and divide
conditions. Add operations set CO to one if a carry occurs and to
zero if no carry occurs. Subtract operations set CO0 to zero if a
borrow occurs and to one if neo borrow occurs.

The OV bit is set by all instructions except Extend Sign, Multiply
Step, and Divide Step, and compares to indicate arithmetic
overflow, i.e., it is set to one when the signed result of an
operation cannot be represented by 32 bits. The Extend Sign and
Multiply Step instructions do not affect this bit, and the Divide
Step instruction sets it according to a divide condition.

The extended operations incorporate the state of the CO0 bit into
the result. The extended add instructions, AE and AEI, cause the

Instruction Set 56

IBM Confidential Restricted. DO NOT COPY

value of the CO0 bit to be added to the sum of the two operands.
In the extended subtract instruction, SE, the value of the first
operand is added to the ones complement of the secend operand, and
to this result is added the value of CO0 bit.

All arithmetic instructions are non-privileged.

3.7.1 Add Instructions

Add R Format

A RB,RC

El RB RC

[} 8 12 18

The contents of registers RB and RC are added and the result
placed into register RB. Condition Status bits LT, EQ, GT, CO and
0V are affected.

Add Extended R Format

AE RB,RC

Fl RB RC

0 8 12 15

The content of register RB, the Content of register RC, and the
value of Condition Status bit CO0 are summed and the result placed
into register RB. Condition Status bits LT, EQ, GT, C0, and OV
are affected.

Programming Note:

This allows multiple precision addition.

Instruction Set 57

IBM Confidential Restricted. DO NOT COPY

Add Extend Immediate D Format

AEI RB,RC,I

D1 RB RC I

The field I, sign extended, the content of register RC, and the
value of Condition Status bit C0 are summed and the result placed
in register RB. Condition Status bits LT, EQ, GT, CO0, and OV are
affected.

Programming Note:

This allows multiple precision addition.

Add Immediate D Format

AI RB,RC,I

Ccl RB RC I

The field I, sign extended, is added to the content of register RC
and the result placed in register RB. Condition Status bits LT,
EQ, GT, CO0, and OV are affected.

Add Immediate Short R Format

AIS RB,I

90 RB I

[8 12 15

The field I, extended on the left with twenty-eight zeroces is
added to the content of register RB and the result placed in

Instruction Set 58

register RB.

affected.

3.7.2

IBM Confidential Restricted.

Condition Status

Absolute Instruction

Absolute

R Format

ABS RB,RC

EO

RB

RC

The content

the content of register RC.
Normally,
according to

and 0OV are
GT are set

of register RB is
Condition

12

15

affected.

to

contains the

equivalent positive number,
equal to the content of register RC,
LT and OV are set to one.

3.7.3

on

e

maximum negative

Complement Instructions

One's Complement R Format
ONEC RB,RC
Fé& RB RC
0 12 15

DO NOT COPY

EQ,

GT,

C0 and

replaced by the absolute
Status bits LT,
only Condition Status
result.
for

OV are

value of
ER,
bits EQ or
If register RC
which there
then the content of register RB is set
and the Condition Status bits

GT, CO

is no

The content of register RB are replaced by the one's complement of

the content of register RC.

are affected.

Instruction Set

Condition

Status bits LT,

EQ,

and GT

59

IBM Confidential Restricted. DO NOT COPY

Two's Complement R Format

TWGC RB,RC

E4 RB RC

4] 8 12 158

The content of register RB are replaced by the two's complement of
the content of register RC. Condition Status bits LT, EQ, GT, CO,
and OV are affected.

3.7.4 Compare Instructions

Compare _R Format

c RB,RC

B4 RB RC

(1] 8 12 15

The contents of registers RB and RC, both treated as 32-bit signed
algebraic quantities, are compared. Condition Status bits LT, ERQ
and GT are affected. Condition Status bits LT and GT are set
according to the true relative algebraic magnitudes of the
contents of registers RB and RC; that is, LT is set if the content
of register RB is algebraically less than the content of register
RC, and GT is set if the content of register RB is algebraically
greater than the content of register RC. Condition Status bit EQ
is set if the content of register RB equals the content of
register RC.

Instruction Set 60

IBM Confidential Restricted. DO NOT COPY

Compare Immediate Short R Format

CIs RB,I

94 RB I

0 8 12 15

The content of register RB is compared to the field I extended on
the left with twenty-eight zeroes. Condition Status bits LT, EQ,
and GT are affected. Condition Status bits LT and GT are set
according to the true algebraic magnitudes of register RB and
field I. The LT bit is set if the content of register RB is
algebraically less than the field I extended on the left with
twenty-eight 2zeroes, and the GT bit is set if the content of
register RB is greater than the field I extended on the left with
tuwenty—-eight zeroces. The EQ bit is set if the content of register
RB equals the field I extended on the 1left with twenty-eight
zeroes.

Compare Immediate D Format

CI RC,1I

D4 0 RC I

The content of register RC is compared to field I, sign extended.
Condition Status bits LT, EQ, and GT are affected. Condition
Status bits LT and GT are set according to the true relative
algebraic magnitudes of register RC and field I. The LT bit is
set if the content register RC 1is algebraically 1less than the
field I sign extended, and the GT bit is set if the content of
register RC is greater than the field I sign extended. The EQ bit
is set 1if the content of register RC equals the field I, sign
extended.

Instruction Set 61

IBM Confidential Restricted. DO NOT COPY

Compare Logical _R Format

CL RB,RC

B3 RB RC

] 8 12 15

The contents of registers RB and RC, both treated as 32-bit
unsigned quantities, are compared. Condition Status bits LT, EQ
and GT are affected. Condition Status bits LT and GT are set
according to the vrelative unsigned magnitudes of the contents of
registers RB and RC; that is, LT is set if the content of register
RB is logically less than the content of register RC, and GT is
set if the content of register RB is logically greater than the
content of register RC. Condition Status bit EQ is set if the
content of register RB equals the content of register RC.

Compare Loqgical Immediate D Format

CLI RC,I

D3] RC I

The content of register RC is compared to the field I, sign
extended. Condition Status bits LT, EQ and GT are affected.
Condition Status bits LT and GT are set according to the relative
unsigned magnitudes of register RC and field I sign extended. The
LT bit is set if the content of register RC is logically less than
the field I sign extended and the GT bit is set if the register RC
is greater than the field I sign extended. The EQ bit is set if
the content of register RC equals the field I sign extended.

3.7.5 Extend Sign Instruction

Instruction Set 62

IBM Confidential Restricted. DO NOT COPY

Extend Sign R Format

EXTS RB,RC

Bl RB RC

] 8 12 15

The content of the lower half of register RB is replaced by the
lower half of register RC. Bits 0-15 of register RB are set equal
to bit 16. Condition Status bits LT, EQ and GT are affected.

3.7.6 Subtract Instructions

Subtract R Format

S RB,RC

E2 RB RC

o 8 12 15

The content of register RC 1is subtracted from the content of
register RB and the result placed into register RB. Condition
Status bits LT, EQ, GT, CO and OV are affected.

Subtract From _R Format

SF RB,RC

B2 RB RC

(] 8 12 15

Instruction Set 63

IBM Confidential Restricted. DO NOT COPY

The content of register RB 1is subtracted from the content of
register RC and the result placed 1in register RB. Condition
Status bits LT, EQ, GT, CO0 and OV are affected.

Subtract Extended R Format

SE RB,RC

F2 RB RC

] 8 iz 15

The one's complement of the content of register RC is added to the
content of register RB, to which result is added the value of
Condition Status bit CO. The result is placed in register RB.
Condition Status bits LT, EQ, GT, CO and 0OV are affected.

Programming Note:

This allows multiple precision subtraction.

Subtract From Immediate D Format

SFI RB,RC,I

D2 RB RC I

The content eof register RB is replaced by the content of register
RC subtracted from the field I, sign extended. The Condition
Status bits LT, EQ, GT, CO and OV are affected.

Instruction Set 64

IBM Confidential Restricted. DO NOT COPY

Subtract Immediate Short R Format

SIs RB,I

92 RB I

The content of register RB is replaced by the field I subtracted
from the content of register RB. For the subtraction, field I is
extended on the left with 28 zeroes. Condition Status bits LT, EQ,
GT, CO0, and OV are affected.

3.7.7 Divide And Multiply Step Instructions

Divide Step R Format

D RB,RC

B6 RB RC

[8 12 15

The content of register RC is added to or subtracted from
(RBY//(bit 0 of MQ) depending on whether the signs of registers RB
and RC disagree or agree. The 32 rightmost bits of the sum
replace the content of register RB. The MQ is shifted 1left one
position and bit 31 of the MQ is set to one if and only if the
sign of the 33-bit result equals the sign of register RC.
Condition Status bit CO0 is set to one if the sign of the 33 bit
result equals the sign of the content of register RC, and bit 0OV
is set to one if the sign of the 33-bit result equals the sign of
the content of register RB.

Programming Note: Divide Step
The Divide Step instruction can be used to construct algorithms
for dividing one number by another. The following example

describes an algorithm for dividing a 32-bit dividend by a 32-bit
divisor. The operands are in two's complement representation.

Instruction Set 65

IBM Confidential Restricted. DO NOT COPY

Example: Divide X by Y giving quotient Q and remainder R where X,
Y, B and R are 32-bit numbers and Y is not equal to zero, plus
one, or minus one.

Initial Conditions: Set general-purpose register RB to the
propagated sign of X (zero if X is non-~negative, minus one if X is
negative). This can be accomplished by loading RB with X and
executing a SARI16 RB, 15 instruction. Load Y into
geheral-purpose register RC. Load X into MQ.

Algorithm: 1Issue the Divide Step instruction with operands RB and
RC thirty-two times. If at this point the signs of RB and RC
differ, add the content of RC to the content of RB replacing the
content of RB. After this test and possible modification of RB,
RB contains the preliminary remainder. The MQ contains the 32
rightmost bits of the preliminary dquotient. The final quotient
and remainder are either equal to the preliminary quotient and
remainder or are found by adding one to the preliminary quotient
and subtracting the divisor, RC, from the preliminary remainder.

Proof: The Divide Step instruction supports a non-restoring
division algorithm. Divisien is accomplished by repetitive
subtraction. The first time, only the sign of the dividend

extended to an appropriate width participates in the subtraction.
On each subsequent repetition an additional dividend bit s
included to the right of the result of the previous repetition;
this has the effect of halving the divisor.

Because the division inveolves binary numbers, the divisor can be
subtracted from the current minuend either one or zero times. If
it is one, the appropriate quotient bit is one. If it 1is zero,
the quotient bit is zero; however the subtraction has already been
performed. Instead of adding the divisor back at this point, half
the divisor is added at the next repetition, since the result of
subtracting the divisor and adding half the divisor is the same as
subtracting half the divisor,

When all dividend bits have been used, if the signs of the divisor
and remainder differ, restoration must be done for the last step,
and so the divisor 1is added back into the remainder without
changing the quotient. This produces the preliminary quotient and
remainder.

The actual algorithm depends on the signs of the divisor and the
dividend at each step. These signs also determine whether the
initial step is addition or subtraction.

The above algorithm can be modified for dividing a 64~bit dividend
contained in RB//MQ. If the initial wvalue of (RB)//(bit 0 of MQ)
exceeds the divisor in magnitude, then divide overflow will occur.
This condition can be determined by testing for 0V=z1l after
execution of the first Divide Step instruction.

Instruction Set 66

IBM Confidential Restricted. DO NOT COPY

Multiply Step R Format

M RB,RC

Eé6 RB RC

0 8 12 15

The incomplete product of the content of register RC and bits 30
and 31 of the MR register are formed in (RB)>//MQ. A 34-bit sum is
formed in accordance with the table belou. The MR is
algebraically shifted right two positions with the two rightmost
bits of the sum replacing bits 0 and 1 of the MQ. The content of
register RB is replaced by the 32 leftmost bits of the sum.
Condition Status bit C0 is set to the complement of bit 30 of the
MQ before the shift.

Condition Status

Bit CO MQ Bit 30 MQ Bit 31 Algebraic Sum
0 0 0 (RB) + (RO)
0 0 1 (RB) + 2%(RC)
0 1 0 (RB) =~ (RC)
0 1 1 (RB) + O
1 0 0 (RBY + 0
1 0 1 (RB) + (RC)
1 1 0 (RB) =~ 2%(RC)
1 1 1 (RB) -~ (RC)

Programming Note: Multiply Step

The Multiply Step instructions can be used to construct algorithms

for multiplying two numbers together. The following example
describes an algorithm for multiplying a 32-bit multiplicand by a
l6-bit multiplier. The operands are in two's complement

representation.

Example: Multiply X by Y giving Z where X is a 32-bit number and Y
is a l6-bit number.

Initial Conditions: Load X into general-purpose register RC; load
Y into the MQ, set the content of general-purpose register RB to
zero; set Condition Status bit CO0 to one. RB and CO can be
initialized simultaneously by executing a $ RB,RB instruction.

Algorithm: Issue the Multiply Step instruction with operands RB
and RC eight times.

Instruction Set 67

IBM Confidential Restricted. DO NOT COPY

Result: The 16 rightmost bits of the product Z are in the MQ; the
32 leftmost bits are in register RB.

Proof: The 16-bit multiplier Y can be expressed as the sum of 16
terms of the form:

i
y 2 where y equals 0 or 1 and i = 0,1,2...15
i

or eight terms of the form:

(y + 2%y) % 4
2j 2i+]

where y and y equal 0 or 1 and i = 0,1...,7.
2i 2i+1

The Multiply Step instruction accumulates a partial sum in
register RB and the leftmost bits of the MR; a Condition Status
bit CO0 equal to zero indicates a carry. The instruction provides
four cases for the parenthesized factor when there is no carry
into the term and four cases when there is a carry, as follows:

Yy + 2%y
2i 2i+1 Carry Value
] No (RB)
1 No (RB)+(RC)
2 No (RB)+4%(RCY=2%(RC)
3 No (RB)+4%(RCI~(RC)
0 Yes (RB)+(RC)
1 Yes (RB)Y+2%(RC)
2 Yes (RB)+4%(RC)~(RC)
3 Yes (RB)+4%(RC)

In the parenthesized factor, y2i is the value of MR bit 31 and
y2i+l is the value of MR bit 30. Whenever MQ bit 30 is one, the
term 4x%(RC) appears. This is a carry into the next partial sum.

The Multiply Step instruction places the rightmost two bits of the
partial sum in vacated MQ bits (bits 0 and 1). . This provides the
4i factor since it has the effect of multiplying the remaining
bits of the multiplier by four.

Instruction Set 68

IBM Confidential Restricted. DO NOT COPY

3.8 LOGICAL OPERATIONS

The legical operations treat the contents of the general-purpose
registers as 32-bit unsigned integers with the exception of the
instruction Count Leading Zeroes (CLZ), which is applied to the
lower half of a register. All logical operations except CLZ set
Condition Status bits LT, EQ and GT according to the algebraic
value expressed in two's complement representation. If the result
is a negative value, LT is set to one; if it is zero, EQ is set to
one; 1if it is positive and not =zero, GT 1is set to one. The
Condition Status 1is unaffected by the Count Leading Zeroes
instruction.

All logical instructions are non-privileged.

3.8.1 Clear And Set Bit Instructions

Clear Bit Lower Half R Format

CLRBL RB,I

99 RB I

o 8 12 15

A bit in the 1lower half of register RB is set to zero, where the
bit is specified by the immediate field I. Condition Status bits
LT, EQ, and GT are affected.

Clear Bit Upper Half R Format

CLRBU RB,I

98 RB I

0 8 12 15

Instruction Set 69

IBM Confidential Restricted. DO NOT COPY

A bit in the wupper half of register RB is set to zero, where the
bit is specified by the immediate field I. Condition Status bits
LT, EQ, and GT are affected.

Set Bit Lower Half R Format

SETBL RB,I

9B RB I

o - 8 12 15

A bit in the lower half of register RB is set to one, where the
bit is specified by the immediate field I. Condition Status bits
LT, EQ and GT are affected.

Set Bit Upper Half R Format

SETBU RB, I

SA RB I

o 8 12 15

A bit in the upper half of register RB is set to one, where the
bit is specified by the immediate field I. Condition Status bits
LT, EQ and GT are affected.

Instruction Set 70

IBM Confidential Restricted. DO NOT COPY

3.8.2 AND Instructions

AND R Format

N RB,RC

E5 RB RC

[8 12 15

The AND of +the contents of registers RB and RC replaces the
content of the register specified by RB. Condition Status bits
LT, EQ and GT are affected.

AND Immediate Lower Half Extended Zeroes _D Format

NILZ RB,RC,I

C5 RB RC I

The AND of the I field extended on the left With sixteen zeroes
and the content of register RC replaces the content of register
RB. Condition Status bits LT, EQ and GT are affected.

AND Immediate Lower Half Extended Ones D Format

NILO RB,RC,I

Cé RB RC I

The AND of the I field extended on the left with sixteen ones and
the content of register RC replaces the content of register RB.
Condition Status bits LT, EQ and GT are affected.

Instruction Set 71

IBM Confidential Restricted. DO NOT COPY

AND Immediate Upper Half Extended Zeroes _D Format

NIUZ RB,RC,I
D5 RB RC I
° 8 12 16 31

The AND of the I field extended on the right with sixteen zeroes
and the content of register RC replaces the content of register
RB. Condition Status bits LT, EQ and GT are affected.

AND Immediate Upper Half Extended Ones _D Format

NIUO RB,RC,I

Dé RB RC I

The AND of the I field extended on the right with sixteen ones and
the content of register RC replaces the content of register RB.
Condition Status bits LT, EQ and GT are affected.

3.8.3 OR Instructions

OR _R_Format

0 RB,RC

E3 RB RC

o 8 12 15

The OR of the contents of registers RB and RC replaces the content
of register RB. Condition Status bits LT, EQ and GT are affected.

Instruction Set 72

IBM Confidential Restricted. DO NOT COPY

OR_Immediate Lower D Format

OIL RB,RC,I

C4 RB RC I

The OR of the I field extended on the left with sixteen zeroes and
the content of register RC replaces the content of register RB.
Condition Status bit s LT, EQ and GT are affected.

OR Immediate Upper _D Format

01U RB,RC, I

c3 RB RC I

The OR of the I field extended on the right with sixteen zeroces
and the content of register RC replaces the content of register
RB. Condition Status bits LT, EQ and GT are affected.

3.8.4 Exclusive OR Instructions

Exclusive OR R Format

X RB, RC

E7 RB RC

[} 8 12 15

Instruction Set 73

IBM Confidential Restricted. DO NOT COPY

The EXCLUSIVE OR of the contents of registers RB and RC replaces
the content of register RB. Condition Status bits LT, EQ and GT
are affected.

Exclusive OR Immediate Lower Half D Format

XIL RB,RC,I

c7 RB RC I

The EXCLUSIVE OR of the I field extended on the left with sixteen
zeroes and the content of register RC replaces the content of
register RB. Condition Status bits LT, EQ and GT are affected.

Exclusive OR Immediate Upper Half D Format

XIU RB,RC, I

D7 RB RC I

The EXCLUSIVE OR of the I field extended on the right with sixteen
zeroes and the content of register RC replaces the content of
register RB. Condition Status bits LT, EQ and GT are affected.

Instruction Set 74

o)

IBM Confidential Restricted. DO NOT COPY

2.8.5 Count Leading Zeroes Instruction

Count Leading Zeroes R Format

cLZz RB,RC
F5 RB RC
)) 8 12 15
The content of register RB is replaced by the binary

representation of the number of leading zerces in the lower half
of register RC (i.e., the number of zeroces to the left of the
leftmost one bit in the lower half of register RC).

Programming Note:

If the lower half of register RC is equal to zero, the content of
register RB is replaced by the binary representation of sixteen.

Instruction Set 75

IBM Confidential Restricted. DO NOT COPY

3.9 SHIFTS

Shift instructions operate on either the content of a register or
a register half. Immediate form shifts specify a shift amount of
0 to 31 bits to the left or right based on the wvalue of the
immediate field. Indirect shifts specify a shift amount of 0 to
63 bits to the left or right based on the low-order six bits of
register RC. A shift amount greater than 31 bits results in a
32-bit shift. All shifts set the Condition Status bits LT, EQ and
GT according to the resultant algebraic value returned to the
register. All instructions except the shift algebraic right
instructions supply zeroes to the vacated bit positions.

All shift instructions are non-privileged.

3.9.1 Shift Algebraic Right Instructions

Shift Algebraic Right R Format

SAR RB,RC

BO RB RC

] 8 12 15

The content of register RB is shifted right the number of bit
positions specified by bits 26-31 of register RC. Bits equal to
the original sign bit (bit 0) are supplied to the vacated
high~order positions. Condition Status bits LT, ER and GT are
affected.

Instruction Set 76

IBM Confidential Restricted. DO NOT COPY

Shift Algebraic Right Immediate _R Format

SARI RB,1I

AD RB I

The content of register RB is shifted right the number of bit
pesitions specified by the field I. Bits equal to the original
sign bit (bit 0) are supplied to the vacated high-order positions.
Condition Status bits LT, EQ and GT are affected.

Shift Algebraic Right Immediate Plus Sixteen _R Format

SARI16 RB,I

Al RB I

[8 12 15

The content of the register RB is shifted right the number of bit
positions specified by the field I plus sixteen. Bits equal to
the original sign bit (bit 0) are supplied te the vacated
high-order positions. Condition Status bits LT, EQ and GT are
affected.

3.9.2 Shift Right Instructions

Shift Right _R_Format

SR RB,RC

B8 RB RC

0 8 12 15

Instruction Set 77

IBM Confidential Restricted. DO NOT COPY

The content of register RB is shifted right the number of bit
positions specified by bits 26-31 of register RC. Zeroces are
supplied to the vacated high-order positions. Condition Status
bits LT, EQ and GT are affected.

Shift Right Immediate _R Format

SRI RB,I

A3 RB I

0 8 12 18

The content of register RB is shifted right the number of bit
positions specified by the field I. Zeroes are supplied to the
vacated high~order positions. Condition Status bits LT, EQ and GT
are affected.

Shift Right Immediate Plus Sixteen R Format

SRIlé RB,1

A9 RB I

] 8 12 18

The content of register RB is shifted right the number of bit
positions specified by the field I plus sixteen. Zeroces are
supplied to the vacated high-order positions. Condition Status
bits LT, EQ and GT are affected.

Instruction Set 78

IBM Confidential Restricted. DO NOT COPY

Shift Right Paired R Format

SRP RB,RC

BS RB RC

0 8 12 15

The content of the register RB shifted right the number of bit
positions specified by bits 26-~31 of register RC with zeroes
suppl{ed to the vacated high-order positions is placed in the twin
register RB. The content of register RB 1is not affected.
Condition Status bits LT, EQ and GT are affected.

Shift Right Paired Immediate R Format

SRPI RB,I

AC RB I

(1] 8 12 15

The content of register RB shifted right the number of bit
positions specified by the field I with zeroes supplied to the
vacated high-order positions is placed in the twin register RB.
The content of register RB is not affected. Condition Status bits
LT, EQ and GT are affected.

Shift Right Paired Immediate Plus Sixteen _R Format

SRPIlé6 RB,I

AD RB I

[8 12 15

The content of register RB shifted right the number of bit
positions specified by the field I plus sixteen with =zeroes
supplied to the vacated high~order positions is placed in the twin

Instruction Set 79

IBM Confidential Restricted. DO NOT COPY

of register RB. The content of register RB 1is not affected.
Condition Status bits LT, EQ and GT are affected.

3.9.3 Shift Left Instructions

Shift Left R Format

SL RB,RC

BA RB RC

o 8 12 15

The content of register RB is shifted 1left the number of bit
positions specified by bits 26~31 of register RC. Zeroes are
supplied to the vacated low-order positions. Condition Status
bits LT, EQ and GT are affected.

Shift Left Immediate _R Format

SLI RB,I

AA RB I

0 8 12 158

The content of the register RB is shifted left the number of bit
positions specified by the field I. Zeroes are supplied to the
vacated low-order positions. Condition Status bits LT, EQ and GT
are affected.

Instruction Set 80

IBM Confidential Restricted. DO NOT COPY

Shift Left Immediate Plus Sixteen R Format

SLIlé RB,1

AB RB I

o 8 12 15

The content of register RB is shifted 1left the number of bit
positions specified by the field I plus sixteen. Zeroes are
supplied to the vacated low-order positions. Condition Status
bits LT, EQ and GT are affected.

Shift Left Paired R Format

SLP RB,RC

BB RB RC

0 8 12 15

The content of register RB shifted 1left the number of bit
positions specified by bits 26-31 of register RC with zeroces
supplied to the vacated low order positions is placed in the twin
of register RB. The content of register RB 1is not affected.
Condition Status bits LT, EQ and BT are affected.

Shift Left Paired Immediate R Format

SLPI RB,I

AE RB I

[8 12 15

The content of register RB shifted 1left the number of bit
positions specified by the field I with zeroces supplied to the
vacated low order positions is placed 1in the twin of register RB.
The content of register RB is not affected. Condition Status bits
LT, EQ and GT are affected.

Instruction Set 81

IBM Confidential Restricted. DO NOT COPY

Shift Left Paired Immediate Plus Sixteen R Format

SLPIlé RB,I

AF RB I

[8 12 15

The content of the register RB shifted left the number of bit
positions specified by the field I plus sixteen with zeroes
supplied to the vacated low order positions is placed in the twin
of register RB. The content of register RB is not affected.
Condition Status bits LT, EQ and GT are affected.

Instruction Set 82

IBM Confidential Restricted. DO NOT COPY

3.10 SYSTEM CONTROL

The system control instructions provide a means of examining and
manipulating the state of certain processor facilities. This is
done through two sub-classes of instructions. The first sub-class
operates on the contents of the system control registers. These
instructions allow the reading or writing of any SCR or the
setting or clearing of any of the low-order 16 bits of the SCR. A
second sub-class of instructions within this class provides the
necessary software interface to the interrupt facility described
in "Interrupts™ on page 17.

The instructions which deal wWith the SCRs provide a general
capability of operating on any of the SCRs. However, because of
the definition of certain SCRs, not every operation on an SCR
gives a predictable result. Moreover, bits 1in any SCR which have
been specified as reserved bits cannot be used in a predictable
manner. These exceptional cases are specified along with the
instruction definitions. Finally, all SCRs except the ICS (SCR 14)
are dynamically changed by the processor, often asynchronously to
instruction sequencing. Hence, a read of an SCR following a write
will not necessarily get the same data which was written.

Only certain system control instructions are non-privileged. The
non-privileged instructiens are MTS, MFS, SETSB, and CLRSB when
the SCR reference by these instructions is the MQ or CS, and the
SVC instruction An attempt to execute any other system ceontrol
instruction in problem state will cause the privileged instruction
exception bit in the program check status to be set and a program
check to occur. Refer to "Program-Check Errors™ on page 124 for a
description of the program check status.

3.10.1 Move To And From SCR Instructions

Move to SCR R Format

MTS SRB,RC

B5 SRB| RC

4] 8 12 15

The content of system control register SRB is replaced by the
content of register RC. Any reserved bits in the specified SCR

Instruction Set 83

IBM Confidential Restricted. DO NOT COPY

are not set to predictable values. If the specified SCR is the
IAR (SCR 13), the results of this instruction are unpredictable.

Move from SCR R Format

MFS SRB,RC

96 SRB| RC

0 8 12 15

The content of register RC is replaced by the content of system
control register SRB. The bits of register RC corresponding to
reserved bits of the specified SCR are set to unpredictable
values. If the specified SCR is the IAR (SCR 13), the value which
is loaded into register RC is the address of the instruction
immediately following the MFS instruction in main storage.

3.10.2 Clear And Set SCR Bit Instructions

Clear SCR Bit R Format

CLRSB SRB,I

95 SRB| I

1] 8 12 15

A bit in the 1lower half of system control register SRB is set to
zero, uwhere the bit is selected by the immediate field I. 1If the
selected bit of the SCR is a reserved bit, it 1is not set to a
predictable value. If the specified SCR is the IAR (SCR 13), the
results of this instruction are unpredictable.

Instruction Set 84

IBM Confidential Restricted. DO NOT COPY

Set SCR Bit R Format

SETSB SRB, I

97 SRB| I

o 8 12 15

A bit in the lower half of system contreol register SRB is set to
one, where the bit 1is selected by the immediate field I. 1If the
selected bit of the SCR is a reserved bit, it 1is not set to a
predictable value. If the specified SCR is the IAR (SCR 13). The
results of this instruction were unpredictable.

3.10.32 Load Program Status Instruction

Load Program Status _D Format

LPS T, I(RC)

Do 0|0|0}T RC 1

The content of the IAR (SCR 13) 1is replaced by the word in main
storage addressed by 0/(RC) plus the sign extended I-field. The
content of the ICS (SCR 14) is replaced by the content of the main
storage halfword addressed by 0/(RC) plus the sign extended
I-field plus four. The content of the CS (SCR 15) is replaced by
the content of the main storage halfuword addressed by 0/(RC) plus
the sign extended I-field plus six. Any reserved bits in the SCRs
are set to wunpredictable values. If the processor is on the
Machine Check 1level (see "Machine-Check Error Handling” on page
122) when the LPS is executed, the content of the MCS 1is set to
zero. If +the processor is on the Program Check 1level (see
"Program-Check Error Handling”™ on page 124) when the LPS s
executed, the content of the PCS is set to zero.

If bit 11 of this instruction 1is a one, interrupts remain pending
until the target instruction of the LPS instruction has been

Instruction Set 85

IBM Confidential Restricted. DO NOT COPY

executed. If bit 11 is zero, interrupts may occur after the LPS
instruction is executed. ‘

Programming Note:
The LPS instructions may be used to return from an interrupt.

The LPS instruction may also be wused to trace instruction
execution. This is accomplished by setting a bit in the IRB to
generate an interrupt request before executing the LPS
instruction. The bit which 1is set should have a corresponding
interrupt request priority greater than the processor priority
which is loaded by the LPS instruction. If the Interrupt Mask
which is loaded by the LPS 1is zero, and if bit 11 of the LPS
instruction is a one, an interrupt will occur after the target
instruction of the LPS has been executed.

3.10.4 MWait Instruction

Wait R Format

WAIT

FO 0]

o 8 12 15

The processor is placed in the wait state. When the processor is
in the wait state it does not execute any instructions nor make
any storage accesses. The processor is removed from the wait
state through the occurrence of an interrupt, error, or power-on
reset.

Instruction Set 86

IBM Confidential Restricted. DO NOT COPY

3.10.5 Supervisor Call Instruction

Supervisor Call D Format

svce I(RC)

o

co 0 RC I

The content of the TAR (SCR 13) 1is stored into the word in main
storage beginning at address X'190'. The content of the ICS (SCR
14) 1is stored into the halfword in main storage beginning at
address X'194'. The content of the CS (SCR 15) is stored into the
halfword in main storage beginning at address X'196°'. The
low-order 1l6-bits of the 32-bit sum O0/(RC) + 0[16]//1 is stored
into the halfword in main storage beginning at address X'19E'.

The content of the IAR (SCR 13) 1is replaced by the word in main
storage beginning at address X'198'. The content of the ICS (SCR
14) is replaced by the content of the halfword in main storage
beginning at address X'19C'. Any reserved bits in the IAR and the
ICS are set to unpredictable values.

Instruction Set 87

IBM Confidential Restricted. DO NOT COPY

3.11 INPUT/OUTPUT

Programmed I/0 (PIO) instructions are used to transfer data
between the general-purpose registers and system components.

All 1I/0 addresses are considered to be device addresses. The
upper byte of the 1I/0 address is checked to be zero. A non-zero
high order byte in the I/0 address will cause a program check.

All PIO instructions are non-privileged. Each I/0 device
determines whether it is a privileged or non-privileged device.
Privileged I/0 devices accept I/0 commands from the processor only
when the processor is in supervisor state. An attempt to access a
priviieged I1/0 device from problem state will cause the Data
Address Exception bit in the Program Check Status to be set and a
program check to occur. See "Privileged I/0 Device Connection™ on
page 90 for a description of privileged I/0 device connectien, and
"Program-Check Status™ on page 125 for a description of the
Program Check Status.

Input/Output Read _D Format

IOR RB,I(RC)

cB RB RC I

The content of register RB is replaced by data transferred from
the 1I/0 device selected by the effective address 0/(RC) +
ol161//1. Bits &8-31 of the 32-bit effective address are
interpreted as the I/0 device address. Bits 0-7 of the effective
address must be zero.

Instruction Set 88

Input/

IBM Confidential Restricted. DO NOT COPY

Qutput Write D Format

IOKW

RB, I(RC)

DB

RB RC I

The content of register RB is transferred to the I/0 device
selected by the effective address 0/(RC) + 0[16]1//1. Bits 8-31 of

the 32

~bit effective address are interpreted as the 1I/0 device

address. Bits 0-7 of the effective address must be =zero.

Instruction Set 89

IBM Confidential Restricted. DO NOT COPY

4.0 INPUT/OUTPUT FACILITY

4.1 1/0 CAPABILITY

The ROMP system provides two capabilities for controlling 1I/0
operations: programmed I/0 (PI0O), and I/0 interrupts.

4.1.1 Proqrammed 1/0

Two programmed I/0 (PID) instructions (IOR and IOW) provide I/0
operations which are synchronous to the pregram. For each PIO
instruction executed, a 24~bit I/0 address field is sent to an I/0
device and data 1is transferred between the 1I/0 Device and a
general purpose register. The PIO instructions are defined in
"Input/Output™ on page 388.

4.1.2 Privileged I/0 Device Connection

The ROMP architecture allows the system designer to determine
whether each I/0 device is privileged or non-privileged.
Privileged 1/0 devices can be accessed only by programs executing
in supervisor state. An attempt to access a privileged 1/0 device
from problem state will cause the Data Address Exception bit in
the Program Check Status to be set and a program check to occur.

The determination of privileged or non-privileged mode can be made
in each device by selectively including the problem state signal
from the processor in the decode logic wused to accept an 1I/0
command. Each 1/0 device wWill normally contain address decode
logic which 1is used to determine if a particular I/0 command is
directed to the device. A device can be made privileged by
including the ROMP Storage Channel (RSC) problem state signal
(DALO6) in the address decode logic. This wWwill allow the device
to accept 1I/0 commands only if the processor is in supervisor
state. An attempt to access the I/0 device from problem state
Wwill cause the command to not be recognized by the I/0 device. If
the I/0 command is not recognized, no ACK/NAK response will be
generated. This will cause the Data Address Exception bit in the
Program Check Status to be set and a program check to occur.

INPUT/OUTPUT Facility 90

IBM Confidential Restricted. DO NOT COPY

4.1.3 1/0 Interrupt Requests

I/0 interrupt requests report asynchronous events. Each interrupt
request is assigned one of seven priority levels. Processor legic
allows I/0 interrupts (unless masked) on a priority basis. The
interrupt facility is described in "Interrupts™ on page 17.

INPUT/OUTPUT Facility 91

IBM Confidential Restricted. DO NOT COPY

5.0 ROMP STORAGE CHANNEL

5.1 GENERAL DESCRIPTION

The ROMP Storage Channel (RSC) is a high-bandwidth synchronous bus
designed to interconnect a ROMP, a storage unit, and one or more
RSC devices. It supports a 32-bit data transfer and a 24-bit
(optionally 32-~bit) address. Read operations on the RSC consist
of two uncoupled transfers, a request and a reply, which allows
multiple operations to overlap. This feature, combined with
several features in the ROMP data flow, allows high processor
performance with relatively slow storage through interleaving
technigques.

The main elements of the RSC are a 32-bit (plus & parity)
multiplexed Data/Address bus and a 5-bit (plus 1 parity) Tag bus.
The Data/Address bus contains either 32-bits of data or a 24-bit
address plus a byte of control information. The Tag bus contains
codes which 1link replies to requests. An optieonal Address
Extension bus provides 8 high-order address bits which extend the
address to 32 bits. In addition, there are several miscellaneous
handshaking, control, and clock lines.

The RSC runs synchreonously with ROMP, wWwith two RSC cycles per
ROMP cycle. The first RSC cycle 1is always used to transmit
addresses, and the second is used for data. There are three types
of RSC transfers:

l. A read request where one device on the RSC is requesting data

from another device. A read request consists of a single
address cycle. Note that a read request always results in a
reply.

2. A write request where one device on the RSC is writing data to
another device. A uWrite request consists of an address cycle
plus the following data cycle.

3. A reply where one device is sending data to another device
that previously requested a read. A reply consists of a

single data cycle.

These requests are shown in Figure 8.

ROMP Storage Channel 92

IBM Confidential Restricted. DO NOT COPY

Figure

| <-rRsC CYCLE->|<-RSC CYCLE->]

Read Request I Address I

Write Request | Address | Data |

Reply | Data I
8. RSC Transfers

The RSC
RSC and
requests
requests

Control

for requ
Arbitrat
request

also wit
be dais
arbiter.

A typica
94.

architecture allows any device to assume control of the
issue requests. In a typical system, ROMP would issue
to storage or RSC devices, and RSC devices would issue
to storage and each other.

of the RSC is determined by twe arbitration systems, one
ests (Address Grant) and one for replies (Data Grant).
ion is for a period of two RSC cycles, wWith reply and
arbitration being overlapped in time with each other, and
h bus transfers. The arbitration systems are defined to
y=-chained, but it is possible to implement a radial

1 RSC system configuration is shown in Figure 9 on page

ROMP Storage Channel 93

IBM Confidential Restricted. DO NOT

cory

1
36—Adr/Data ADDRGRTI | —
6-Tag v vV Vv
4—Ack/Nak L L |
l-Exception H L
47 RSC Device
—6—~Clock
ADDRGRTO DATAGRTO
' V V DATAGRTI
1 |
H L
RSC Device
ADDRGRTO [———————-——
v Vv
L1
H L
Storage
Controller
—— | ——— | =9—Adr. Ext—|—
ADDRGRTI l DATAGRTI
v v
l]
Instruction
Execution DATAGRTO
Unit
\
]
Instruction
cLocK L] prefetch
GENERATOR Unit
ROMP CHIP
Figure 9. Typical RSC Configuration
ROMP Storage Channel 94

IBM Confidential Restricted. DO NOT COPY

5.2 STORAGE CHANNEL DEFINITION

The ROMP Storage Channel (RSC) consists of B7 standard lines, plus
9 address extension lines, divided into five functional groups.
This section provides an overview of each of these five functional
groups. Subsequent sections provide a detailed description of
each functional group.

5.2.1 Address And Data Bus

The first group of signals is the address/data bus. There are 36
bi-directional lines 1in the bus (32 data bits plus four parity
bits). The address/data bus 1is defined in "Address/Data Bus
Definition™ on page $7.

5.2.2 Taq Bus

The second group of signals is the tag bus. There are six bi-
directional lines in this group (five tag bits plus one tag parity
bit). Whenever a request is placed on the RSC, a unique code (a
'tag'), which identifies the source of the request, 1is placed on
the tag bus. This tag 1is used as a return address for a reply
generated in response to the request. The current bus definition
uses three tags for special functions (one for channel reset, one
for idle condition, and one for write data). The remaining twenty
nine are available as return addresses. ROMP uses ten of these,
leaving nineteen available for use by RSC devices. The tag bus is
defined in "Tag Bus Definition”™ on page 98.

5.2.3 Control Signals

The third group of signals is the storage channel controls. ACKA,
ACKD, NAKA and NAKD are generated in response to transfers on the
bus to indicate whether the transfer was successful. ACKA and
NAKA are responses to the address transfer and occur during the
data cycle which immediately follows the address transfer. ACKD
and NAKD are responses to the data transfer cycle and occur during
the address cycle which immediately follows the data transfer.
These lines are negative true signals, and the processor drives
them to the high (inactive) level eveEy other bus cycle. A pullup
resistor maintains the inactive level if no system component is
attempting to pull the lines 1low. The four possible combinations
of ACK and NAK indicate whether the transfer was successful or
whether an error occurred according to the following table.

ROMP Storage Channel S8

IBM Confidential Restricted. DO NOT COPY

ACKA NAKA

or ACKD or NAKD Definition

Inactive Inactive No Device Responded
Inactive Active Device Busy, Retry Transfer
Active Inactive Transfer Successful

Active Active Parity Error

Address Grant and Data Grant are groups of signals that are used
to arbitrate among devices on the RSC for use of the bus. Address
Grant is used to arbitrate for an address cycle and the next data
cycle. Data CGrant is used to arbitrate for a data cycle. Address
Grant and Data Grant are serially connected between devices,
starting wWith the highest priority device and ending with the
lowest priority device so that only one device at a time may
originate a transfer on the bus. This means that the address
grant input (ADDRGRTI) of a given device in the priority chain is
connected to the address grant output (ADDRGRTO) of the next
higher priority device. Similarly, the data grant input
(DATAGRTI) of one device 1is connected to the data grant output
(DATAGRTO) of the next higher priority device. The lowest order
DATAGRTO output is sent te all devices in the Address Grant chain,
and serves to prevent them from using a data cycle needed for a
reply. See "Bus Arbitration™ on page 102 for more information.

HOLD is wused in systems which have devices on the RSC that can
interfere wWith ROMP access of the RSC. See "Hold Time-Out
Counter™ on page 108 for more information.

EXCEPTION is used in systems which implement storage protection or

address translation. See "Storage Protection and Address
Translation™ on page 109 for more information.

5.2.4 Address Extension Bus

The fourth group of lines provide 8 bits of address extension plus
parity for 32-bit addressing. These lines can be used in virtual
address systems where a 32-bit address is desired. Use of these
lines is described in "Address Extension Bus Definition™ on page
99.

5.2.5 RSC Clocks

The fifth functional group of signals consist of six clocks which
control the RSC. See "Storage Channel Clocking™ on page 100 for

ROMP Storage Channel 96

IBM Confidential Restricted. DO NOT COPY

more information.

5.3 RSC SIGNAL DEFINITIONS

5.3.1 Address/Data Bus Definition

The address/data bus lines (DAL) provide 24 bits of address and 8
bits or control information during an address cycle, and 32 bits
of daka during a data cycle. An additional eight address bits are
available on the Address Extension Bus during an address cycle for
systems which use 32-bit addressing.

During an " address cycle, the address/data bus is defined as
follows:

DALOO Function

Inactive Storage Access

Active Programmed I/0

DALO1 Function

Inactive Read

Active Write

DALO2 DALO3 Operand Lenqgth

Inactive Inactive One Byte

Inactive Active Two Bytes

Active Inactive Four Bytes

Active Active TWwo Byte Test and Set

DALO4 . Function

Inactive Storage Protection Disabled
Active Storage Protection Enabled
DALO5 Function

Inactive Address Translation Disabled
Active Address Translation Enabled
DALO6 Function

Inactive Supervisor State

Active Problem State

DALO7 Reserved

DALGOS8 Address Bit 0 (MSB)

DAL09 Address Bit 1

DAL10 Address Bit 2

DAL11 Address Bit 3

DAL12 Address Bit 4

ROMP Storage Channel 97

IBM Confidential Restricted. DO NOT COPY

DAL13 Address Bit 5
DAL14 Address Bit 6
DAL15 Address Bit 7
DAL1S Address Bit 8
DAL17 Address Bit 9
DAL1S Address Bit 10
DAL19 Address Bit 11
DAL20 Address Bit 12
DAL21 Address Bit 13
DAL22 Address Bit 14
DAL23 Address Bit 15
DAL24 Address Bit 16
DAL25 Address Bit 17
DAL26 Address Bit 18
DAL27 Address Bit 19
DAL238 Address Bit 20
DAL29 Address Bit 21
DAL30 v Address Bit 22
DALZ1 Address Bit 23 (LSB)

During a data transfer, 32 bits are transferred simultaneously,
with DALOO being the most significant bit and DAL31 being the
least significant bit.

5.3.2 Taq Bus Definition

Devices generating requests on the RSC are identified by the code
they put on the Tag bus (5 bits plus parity). Whenever a device
places a read or write request on the RSC, it places its five-bit
code on the Tag bus along with the address on the Address/Data bus
to indicate the reply destination. The tag code is saved by the
accessed device and placed on the Tag bus with the reply.

The Tag bus is normally used during address cycles to indicate the
source of requests, and during data cycles to specify the
destination of replies. The Write Data tag is placed on the bus
during the data portion of a write request. This tag
distinguishes a Write Data parcel from a Reply.

TWwo other special purpose tags are the Reset tag and the Idle Mode
tag. The Reset tag, which is wvalid only during data cycles, is
utilized to reset devices on the RSC. It is placed on the RSC by
ROMP after Power On Reset, and 1in certain error conditions. The
Idle Mode tag is wused on either the address or data cycle to
indicate a channel idle condition. It 1is placed on the bus
whenever a device contrels the bus for a cycle but has no valid
parcel to transmit.

Two tags (11110 and 11111) are reserved for use by a co-processor
and can not be wused by other RSC devices. Devices on the RSC

ROMP Storage Channel 98

IBM Confidential Restricted. DO NOT COPY

which provide certain protection or checking functions (i.e.
storage controllers) treat these tags the same as ROMP tags. This
allows a co~processor to have the same access authority as ROMP.

Figure 10 on page 100 summarizes the tag codes. A 0 is an
inactive logic level and a 1 1is an active logic level. An X
indicates a don't care state.

5.23.3 Address Extension Bus Definition

The Address Extension Bus provides an additional & bits of address

extension,

plus parity, for systems wusing 32-bit addressing.

During a request for data by a device, the address extension bus
is defined as follows:

Signal Name Function

ADREXTO Address Extension Bit 0 (MSB)
ADREXT1 Address Extension Bit 1
ADREXTZ2 Address Extension Bit 2
ADREXT3 Address Extension Bit 3
ADREXT4 Address Extension Bit 4
ADREXTS Address Extension Bit 5
ADREXTS6 Address Extension Bit 6
ADREXT7 Address Extension Bit 7 (LSB)
ADREXTP 0dd Parity on ADREXTO-ADREXT7

During a data transfer, the address extension bus is defined as

follows:

ADREXTO
Inactive
Active

ADREXT1
Inactive

Active
ADREXT2
thru
ADREXT7?7

ADREXTP

The address
for use in

Eunction
Select 32-bit addressing mode
Select 24-bit addressing mode

Function

Invalid parity on ADREXTO thru
ADREXT7 on previous address cycle
Valid parity on ADREXTO thru
ADREXT7 on previous address cycle

Reserved

Reserved

extension bus provides an additional 8 address bits
virtual address systems where a 32-bit address is

desired. These lines are required only in systems that implement
32-bit addressing. If a system implements only 24-bit addressing,
the address extension bus signal ADREXTO and ADREXT1 must be tied

ROMP Storage

Channel 99

IBM Confidential Restricted. DO NOT COPY

Tag Bits
01234 Operation

000O0O Idle Mode

00001 Reset (See "Reset™ on page 107)
000160 Write Data

00011 Available for Other Devices
0010X Available for Other Devices
0011X Processor Data Read/Write
01 X XX Processor Instruction Fetch
1 0000

thru

11101 Available For Other Devices
1111 Reserved For Co-Processor

Figure 10. Tag Definition

active through a pullup resistor. ADREXT0 1is wused to enable
checking of the upper address byte to insure that it is zero. A
non-zero high-order address byte wWill cause a program check as
described in "Storage Access™ on page 30. ADREXT1l 1is used to
report parity errors on the address extension bus during the
previous address cycle.

Systems which implement 32-bit addressing will drive ADREXTO
inactive during data cycles, to indicate 32-bit addressing is
being used. These systems must also check parity on the address
extension bus, and use ADREXT1 during data cycles to report parity
checking results from the previous address cycle. This parity
error signal is ORed with the RSC NAKA signal by the processor to
determine if any parity errors occurred during an address cycle
transfer.

The address extension bus provides extension of storage addresses
to 32-bits. All I/0 addresses remain 24-bits. The upper-byte of
the 32-bit I/0 address is checked to insure that it is zero. A
non-zero high-order 1/0 address byte will cause a program check in
both 24~bit and 32-bit addressing mode.

5.3.4 Storage Channel Clocking

ROMP operates wWith four clocks (-T0, =T1, -T2, =T3) which are
generated external to the processor chip. ROMP, storage, and any
other devices on the storage channel must use these clocks to
control channel transfers. The trailing edge of Tl is wused to
latch up the state of the RSC for address cycles, while the

ROMP Storage Channel 100

IBM Confidential Restricted. DO NOT COPY

trailing edge of T3 1is used to latch up the RSC for data cycles.
In addition, an ADDRESS CLOCK (+AC) and DATA CLOCK (+DC) are
provided to enable the tri-state drivers attached to the RSC. The
purpose of these clocks 1is to minimize the possibility of two
devices on the bus simultaneously attempting to drive the bus to
opposite polarities (because of skew problems). AC rises at the
trailing edge of TO0 and falls at the leading edge of T2
(nominally). DC rises at the trailing edge of T2 and falls at the
leading edge of T0. The absence of DC on any data cycle indicates
that ROMP will enter the stopped state on the next address cycle.
While ROMP 1is in the stopped state, both AC and DC vremain
inactive. When this condition occurs, the bus contains invalid
information, and no device should attempt to use the bus. The
presence of DC on any cycle indicates that ROMP will not be in the
stopped state on the next cycle. DC can be 1latched on the
trailing edge of T3, and AC can be latched on the trailing edge of
Tl.

Figure 11 shows the timing for RSC clocks.

| < ROMP CYCLE > |

+AC | L

+DC l L——

Figure 11. RSC Clock Timing

5.4 BUS OPERATION

ROMP Storage Channel 101

IBM Confidential Restricted., DO NOT COPY

5.4.1 Data Alignment

Replies to storage read requests are always 32-bits aligned on
word (32-bit) boundaries. The 1low order two address bits are
ignored. The maximum data transfer length on the RSC is 32 bits.

A storage wuWrite request must have its data portion properly
aligned. For a 32-bit write, the most significant bit is placed
on DALOO and the least significant bit is placed on DAL31. For
halfword and byte wuwrites, the data to be written must be aligned
as shown in the table below:

Transfer Tvype Two Low-0Order Bits Data Position
Halfword 154 DALOO~-DAL15
1X DAL16~-DAL31
Byte 00 DALOO~-DALO7
01 DAL03-DAL1S
10 DAL16-DAL23
11 DAL24~-DAL31

I/0 addresses are considered to be device addresses, not byte
addresses. The associated data transfers are 32-bits.

5.4.2 Bus Arbitration

The RSC arbitration mechanism consists of twe linear-priority
daisy~chains, the Address Grant chain and the Data Grant chain.
Arbitration on the Address Grant chain takes place from the start
of TO to the end of T3. Arbitration on the Data Grant chain is
from the start of T2 to the end of T1. Devices which issue
requests participate in address arbitration, and devices which
issue replies participate in data arbitration. Figure 12 on page
102 shows the timing for address and data cycle arbitration.

Each device which participates in address arbitration has a pair
of pins, ADDRGRTI and ADDRGRTO which are connected in series with
the other devices in that chain. An inactive ADDRGRTI forces an
inactive ADDRGRTD. The highest priority device on the chain has
its ADDRGRTI pin tied active. ROMP is by definition the lowest
priority device on the chain, and does not have an ADDRGRTO. Each
device also monitors the lowest order output of the Data Grant
chain. A device which needs to transmit a request sets its
ADDRGRTO inactive after the start of T0. 1If at the end of T3 it
has an active ADDRGRTI, it assumes control of the RSC the
following cycle. Successful arbitration for the address cycle
also implies responsibility +for the data cycle, wunless the
low-order DATAGRTO signal is inactive, which implies that some

ROMP Storage Channel lo2

IBM Confidential Restricted. DO NOT COPY

device has requested use of the data cycle for a reply. If the
data cycle is obtained for a read request, an IDLE packet should
be issued. A wWrite request may have its data portion preempted by
a reply. This is necessary to avoid lockup conditions, and should
cause a retry.

Devices which issue replies each have a DATAGRTI pin and a
DATAGRTO pin. An inactive DATAGRTI will force an inactive
DATAGRTO. These devices are chained, with ROMP supplying the input
to the top of the <chain. This allows ROMP to utilize the data
cycle to issue a reset packet. A device which needs to send a
reply forces its DATAGRTO inactive at the beginning of T2. If its
DATAGRTI is active at the end of the next T1, then it assumes
control of the RSC for the following data cycle, and transmits its
reply. The 1low end of the chain 1is sent to all devices which
perform address arbitration.

The low-order DATAGRTO may be used in another way. Because this
line indicates whether a reply is being requested, if inactive it
indicates that a WRITE DATA parcel is not being transmitted. This
can be wused by RSC receive logic to provide an early indication
that a write data cycle has been preempted by a reply.

T0 Tl T2 T3 TO Tl T2 T3
l]] |]]] ! |
I I I T] I] I 1
Processor Cycle Processor Cycle
|
I~ T 1
Address Arbitration
|]
]]
Addr. Cycle Data Cycle
| I 4
r 1
Data Arbitration
[r |
Data Cycle

Figure 12. Bus Arbitration Timing

ROMP Storage Channel 103

IBM Confidential Restricted. DO NOT COPY

5.4.3 Read Request

A device which reads data from storage arbitrates for the bus as
described 1in "Bus Arbitration™ on page 102 wusing the ADDRGRT
chain. At the leading edge of T0, the device places the address
packet and its TAG ID on the bus and releases control of its
outgoing ADDRGRT line. The device may also begin arbitration for
the next address cycle if necessary. Storage latches the address
and length information and the TAG on the trailing edge of Tl.
The device then releases the address/data bus and the tag bus.
Storage examines the TAG to determine whether it 1is a wvalid
request. If it is valid, storage proceeds to access the array and
to arbitrate for a reply transfer using the DATAGRT chain. During
T2 and T3 storage holds its ACKA signal active to indicate that it

accepted the read request. If storage is busy and cannot accept
the request it activates NAKA, and the device must retry the
request. If storage detects a parity error on incoming

information, it activates both ACKA and NAKA. The requesting
device may retry the request or signal an error condition. At the
leading edge of the next T0, storage releases the ACKA and NAKA
lines, and the processor drives it to an inactive level. MWhen the
access is complete, and arbitration for a data bus cycle is
successful, storage places its reply data on the address/data bus
and the TAG ID on the TAG bus. The device latches the reply data
and the TAG and takes appropriate action. Figure 13 shows the
timing of a steorage read request.

ROMP Storage Channel 104

IBM Confidential Restricted. DO NOT COPY

T0 T1 T2 T3 TO Tl T2 T3 Tl T2 T3

| |] | | | ! !]]]
= i I I i I I I I T 1

Processor Calculates Addr

Address Cycle Arbitration

| |
I T

Address To Storage

| |
] i

ACKA NAKA
—

l
I
Storage Access

Data Cycle Arbitration

—

Storage Reply

Figure 13. Read Request

5.4.4 Write Recuest

Writes to storage require two bus cycles, the first being an
address cycle and the second being the very next data cycle. The
device which is to do the write must arbitrate for both the
address cycle and the data cycle by using the ADDRGRT and DATAGRT
arbitration chains. If the device has successfully arbitrated for
the address cycle and the data cycle is also available, the write
operation can be -placed on the bus. During the address cycle the
device places the write address and length information on the
data/address bus, and the write address tag on the tag bus. The
ADDRGRT output is released at the beginning of the address cycle
if the device does not need the next address cycle for another
transfer. Storage will latch the address and tag information at
the trailing edge of Tl, and respond with an ACKA signal. If
storage is busy, it will instead respond with a NAKA. 1In the case
of a parity error storage will activate both ACKA and NAKA (see
Figure 14). During the data cycle, the device which is doing the
write places the data on the bus and the write tag on the tag bus.
Storage latches the data on the trailing edge of T3 and checks
parity on the data. 1If an error is detected, storage activates

ROMP Storage Channel 105

IBM Confidential Restricted. DO NOT COPY

ACKD and NAKD and the device may retry the transfer. Both the
address and the data must be re-transmitted, even 1if only one
error occurred.

T0 Tl T2 T3 T0 Tl T2 T3 TO Tl T2

l |] |] |] | ! 1]
r I i I I] i I I T

Processor Calculates Addr

| |
I L

Address Cycle Arbitration

|]
I L

Data Cycle Arbitration

]
I i

Address Data

To Storage To Storage

|]]
I I |

ACKA NAKA

ACKD NAKD

Figure 14. MWrite Request

5.4.5 Error Handling

When a device detects a parity error on the incoming data or
address, it activates the ACKA and NAKA or ACKD and NAKD lines
(whichever are appropriate) which causes the sending device to
retry the transfer. A solid error will cause an endless retry
condition so a timeout mechanism in the processor causes a machine
check. See "Machine-Check Errors™ on page 121 for more
information.

If no device responds to a bus request generated by ROMP, the
transfer will be tried two more times and 1if no response is
detected, the transfer will be cancelled and bit 29 or bit 30
(whichever is appropriate) will be set in the PCS (See
"Program-Check Errors™ on page 124) and a program check will
occur.

ROMP Storage Channel lo06

IBM Confidential Restricted. DO NOT COPY

5.4.6 1Idle Mode

Any device which gains control of the RSC but has no valid parcel
to transmit must send an IDLE packet. An idle packet has a tag
field of all zeros, and the address/data bus is unpredictable.

5.4.7 Reset

The RESET packet is a broadcast command sent by ROMP during a data
cycle after a processor reset or after the processor detects a
machine check condition (other than a machine check caused by the
~TRAP input) and the check stop mask is a one. In the case of a
machine check, the processor will reset certain registers and
attempt to save the program status into main storage (beginning at
address X'170"). In order to accomplish this , all outstanding
storage references must be cleared. ROMP will gain control of the
RSC during the data cycle by pulling DATAGRTO inactive and sending
a RESET packet out on the TAG bus on the next data cycle.
Whenever any device on the RSC detects a reset tag during the data
cycle it must clear out any pending operations.

The following rules must be followed during the two cycles
following a RESET packet to insure that the RSC remains properly
defined:

1. Any device which was arbitrating for the address cycle
following the RESET packet should place its request on the RSC
during the address cycle. This request should be ignored by
all devices. In addition, the transmitting device should
expect no response to the request, and should reset the
request thereafter.

2. Any data cycle arbitration taking place may complete.
However, no device should transmit during the data cycle
following a RESET packet, regardless of the results of the
data cycle arbitration or any data cycle transmission implied
by the address cycle arbitration. ROMP will always place an
idle packet on the RSC during this data cycle.

3. Address cycle arbitration is cancelled after the RESET packet
is received.

5.4.8 Illeqal ACKD/NAKD Responses

Certain ACKD/NAKD responses are illegal, and are treated as error
conditions by the device attempting the transfer. These illegal

ROMP Storage Channel 107

IBM Confidential Restricted. DO NOT COPY

responses to a data cycle transfer are defined below.

1. Responding busy te a reply. Devices on the RSC can not
respond busy (ACKD inactive, NAKD active) to a reply. A busy
response to a reply is treated as an error condition by the
sending device. Error reporting and recovery by the sending
device is design-dependent.

2. Responding busy to the data cycle of a store when the address

cycle request of the store was accepted. Devices on the RSC
can not respond busy to the data cycle of a store when the
address cycle request was accepted. This response is treated

as an error condition by the sending device. Error reporting
and recovery by the sending device is design~dependent.

5.4.9 Enqineering Note: ROMP Response To Illeqal ACKD/NAKD
Responses

Busy responses to replies do not apply to ROMP, since ROMP can not
generate replies. If ROMP receives a busy response to the data
cycle of a store, when the address cycle request of the store was
accepted, the store operation will be retried a minimum of 128
times. If the device fails to accept the store, the store is
terminated, and a machine check interrupt occurs. The RSC Timeout
bit (bit 21) in the MCS is set to one.

5.4.10 Hold Time-0Out Counter

The HOLD signal is used by devices on the RSC that can potentially
interfere with ROMP access of the RSC. Devices on the RSC can
prevent ROMP from accessing the RSC, thereby causing a machine
check error due to the unavailability of the RSC. ROMP utilizes
an internal time-out counter to detect the wunavailability of the
RSC. This counter is started when ROMP begins waiting for data or
instructions from storage. The time-out counter is incremented by
one during each cycle that ROMP is waiting, and is reset to zero
when the reply is received. If this counter reaches a count of
128, a machine-check occurs.

If there are other devices on the RSC (DMA controllers, bus
converters, etc.) they can activate the HOLD 1line to cause
incrementing of the time-out counter to be inhibited while they
are accessing storage on the RSC. The time out counter is not
incremented while the HOLD line is active.

This signal is typically used by devices that are monopolizing the

RSC for long periods of time, such as a DMA controller
transferring many bytes of data in burst mode.

ROMP Storage Channel 108

IBM Confidential Restricted. DO NOT COPY

5.4.11 Storaqe Protection and Address Translation

ROMP provides a means of implementing storage protection and/or
address translation. A detailed discussion of these subjects is
contained in "Storage Controller Functions™ on page 134. MWhenever
a device (either ROMP or any I/0 device on the RSC) generates a
storage reference, an address is sent out on the RSC. The address
is contained in DALO08 through DAL31l. Control information is
contained in DALOO through DALO6. If DALO4 1is a one (active),
storage protection is enabled. If DALOS is a one (active),
address translation is enabled. The actual storage protection and
address translation hardware (if any) exists external to the
processor. Assuming that protection or translation is installed,
the storage controller does the necessary checking, and provides
the appropriate response when a reply is generated. In the case
of a read access, storage will generate a reply to the original
requestor. When no exception condition exists, data is placed on
the bus, the tag ID of the requestor is placed on the tag bus, and
+EXCEPTION 1is driven to a zero (inactive). If an exception
condition exists, the reply is generated in a similar manner,
except +EXCEPTION is set to a one (active) and the data which is
placed on the bus is hot used but must have good parity.

Whenever a write access 1is attempted and storage protection or
address translation is enabled, a reply must be generated to the
original requestor, just as was done for a read access. The tag
bus will contain the tag ID associated with the write address of
the original requestor. The +EXCEPTION 1line will be driven
inactive when no exception exists, and will be driven active when
an exception does exist. 1In either case, the content of the data
bus is unimportant, but must have good parity.

For systems which do not implement storage protection or virtual
addressing, the +EXCEPTION line is not required. However,
+EXCEPTION can still be wused with replies to ROMP to report
addressing exceptions. If ROMP receives a reply with +EXCEPTION
active, and address translate and storage protect are disabled,
then a program check occurs. PCS bits 25 (program check with
unknouwn origin) and 30 (data address exception) are set. If the
+EXCEPTION 1line is not wused, the input to ROMP must be tied
inactive.

When storage accesses are generated by ROMP, DALO6 will be active
if the processor is in problem state and inactive if in supervisor
state. This bit may be used to enhance the storage protection
scheme by providing different types of access authority, such as
read/write, read only, or execute only. See "Storage Controller
Functions™ on page 134 for additional information.

ROMP Storage Channel 109

Only
addr

IBM Confidential Restricted.

storage
ess

accesses
translation;

DO NOT

can
i.e.,

invoelve storage p
all programmed 1I/0

generate real addresses.

COPY

rotection
(PIO)

5.5 STORAGE _CHANNEL I/0 PIN SUMMARY
5.5.1 Storaqe Channel 1/0 Pin Summary for Processor
Signal Number of
Name Function 1/0 Pins
+DALOO Addr/Data 32
Thru Bus
+DAL31
+DALPO Odd Parity on DALOO-DALO7 1
+DALP1 Odd Parity on DALO&-DALI1S 1
+DALP2 Odd Parity on DAL16-DAL23 1
+DALP3 Odd Parity on DAL24-DAL31 1
+TAGO Device ID 5
Thru
+TAG4
+TAGP Odd Parity on TAGO-TAG4 1
-NAKA, —-NAKD Transfer Rejected 2
~ACKA, —ACKD Transfer Acknowledged 2
+ADDRGRTI Address Cycle Grant In 1
+DATAGRTI Data Cycle Grant In 1
+DATAGRTO Data Cycle Grant Out 1
-HOLD Hold Time-0Out Counter 1
+EXCEPTION Address or Protection Exception 1
+AC Address Cycle Clock 1
+DC Data Cycle Clock 1
-T0, -T1
-T2, -T3 System Clocks 4
Standard Total 57

ROMP Storage Channel

and/or
accesses

IBM Confidential Restricted. DO NOT COPY

+ADREXTO Address Extension b3
Thru Bus

+ADREXT?

+ADREXTP Odd Parity on ADREXTO 1

thru ADREXT7?7

Total With Address Extension 66

5.5.2 Storage Channel Pin Summary for a Typical RSC Component

Signal Number of
Name Function 1/0 Pins
+ADDRGRTO Address Cycle Grant Out 1
+SYSTEM POR 1

Processor Signals Previously Defined 57

Total 59
Storage units on the RSC do not require the Address Grant input or

generate the corresponding output since storage does not transmit
addresses.

5.6 ROMP STORAGE CHANNEL TIMING RELATIONSHIPS

The timing relationships in this section show a sample ROMP
instruction sequence, assuming interleaved storage and tuwo cycle
storage access (or address translation with one cycle storage
access). Figure 15 on page 112 defines the symbols and names used
in Figure 16 on page 113 through Figure 19 on page 1l1l6.

As shown in Figure 16 on page 113, the first request (REQl, having
a tag of six) is placed on the RSC during the the address cycle of
the second ROMP cycle. Storage accepts the request, as indicated
by —ACKA being active, and —-NAKA being inactive in the following
data cycle. Two cycles later, on the data cycle of the fourth
ROMP cycle (see Figure 17 on page 114) storage replies with REP1
which is accepted by ROMP (as indicated by —ACKD being active, and
-NAKD being inactive in the following address cycle). Storage

ROMP Storage Channel 111

IBM Confidential Restricted. DO NOT COPY

————— High
Low
HHHHH High Impedance
{z==> Bus is valid
REQn nth RSC request
REPnN Reply to nth request
+EXCP +EXCEPTION
+DAL Data/Address Lines
+DATAGRTI Data Grant in to ROMP

Figure 15. Signal Definitions

arbitration for a reply is indicated by the +DATAGRTI input to
ROMP going inactive in the cycle preceding the reply.

Note that the replies are coupled to the requests as described in
"ROMP Storage Channel™ on page 92 (i.e. REQl has a tag of six and
REP1 has a tag of six). Given that there are 5 tag lines, a
maximum of 32 requests can be outstanding at any one time.

An interleaved storage configuration allows ROMP to transfer most
requests across the channel on consecutive cycles. This allows the
next three requests (REQ2, REQ3, REQ4) to be accepted by storage
during ROMP cycles 7, &, and 9 see (Figure 18 on page 115).
Storage replies to the requests during the data cycle of ROMP
cycles 9, 10, and 11. REQS (see Figure 19 on page 116) s
attempted during the tenth ROMP cycle, but is not accepted because
storage responded busy (as indicated by —ACKA being inactive, and
-NAKA being active during the following data cycle). This request
is retried on the next available address cycle and 1is accepted.
Note that the +DATAGRTI input te ROMP 1is driven inactive by
storage in the cycle preceding each storage reply.

ROMP Storage Channel 112

ROMP 1 2 3
Cycle

Addr. Data A D A D

Cycle Cycle

REQ1

-T0 I T I mmmmmmmmemmame e, _
-T1 - — ST T S E——— . -
-T2 e mimmmmmmmmeim e e e e e R
-T3 I mememmeimeym st sy e
+AC ey — ey o ———
+DC e e ———— oy
B -1 o S e e o o o o o o mmmmmmem——
=NAKA mamma e ———— oy o 3 ey e ey e e g ey)
~ACKD ——— - e ——— - e -
~NAKD - - e ey e ey g
+EXCP HHH
+TAGP m==HHHH==~==HHHHHaa===HHHHH-mmmm HHHHH-==~-HHHHH=—=~-HHHHH=====H
+TAGO HHHH HHHHH HHHHH HHHHH HHHHH HHHHH_____H
+TAG1 HHHH HHHHH HHHHH HHHHH HHHHH HHHHH_____ H
+TAG2 HHHH HHHHH_____ HHHHH=~==-==HHHHH HHHHH HHHHH______H
+TAG3 HHHH HHHHH___ HHHHH—=--=-HHHHH HHHHH HHHHH_____ H
+TAG4 HHHH HHHHH HHHHH HHHHH HHHHH HHHHH_____ H
+DAL ==>HHHH<===>HHHHH<===>HHHHH<===>HHHHH<===>HHHHH<===>HHHHH<L===>H
+DATAGRTI mmmm—m—mmmas—esamae D e e

IBM Confidential Restricted. DO NOT COPY

Figure 16. RSC Cycles One Through Three

ROMP Storage Channel 113

IBM Confidential Restricted. DO NOT COPY

R OMP 4 5 6
Cycle

Addr. Data A D A D

Cycle Cycle

REP1

-T1 ——— T T e o e ——————
-T2 - ~ - o i -
~T3 ——— - I e S
+AC —— e —— -
+DC B e s o ey ——— ——————
=~ACKA s e e e oy o g e e e ey ey e e e - o
~NAKA —m-] - ~ - - -
—ACKD e e e e e B I o e e -
-NAKD - —m - - —mmm e o e e -
+EXCP’ HHHHHHHHHHHHHHHHH____ HHH
+TAGP ==-HHHH~-~~-HHHHH-~~~~HHHHH~~~=~~HHHHH---=-HHHHH===~~HHHHH=~=~~H
+TAGO HHHH HHHHH HHHHH HHHHH HHHHH HHHHH_____H
+TAG1 HHHH HHHHH HHHHH HHHHH HHHHH HHHHH_____ H
+TAG2 HHHH HHHHH=-=-~HHHHH______ HHHHH HHHHH HHHHH______ H
+TAG3 HHHH HHHHH-—--~HHHHH_____ HHHHH HHHHH HHHHH______H
+TAG4 HHHH HHHHH HHHHH HHHHH HHHHH HHHHH_____ H
+DAL ==>HHHH<===>HHHHH<===>HHHHHL===>HHHHH<===>HHHHH<===>HHHHH<===>H
+DATAGRTI =~~~ —;scs—sssosas—oaseaeses R e o o o e

Figure 17. RSC Cycles Four Through Six

ROMP Storage Channel 114

IBM Confidential Restricted. DO NOT COPY

ROMP 7 8 S
Cycle

Addr. Data A D A D

Cycle Cycle

REQ2 REQ3 REQ4 REP2
-T0 S T T e .
-T1 mmmmem e -~ - o mmmmmm e
-T2, e mmemem e —— . -
-T3 M mmmmmmm e e immm——_____mmm
+AC s —————— ——me——
+DC e ——— e -
—~ACKA e e rmmmmm——— .
~NAKA R e e et e o e o g g e e g e oy Y
~ACKD e e o o e m g e g ey Y ey e) e e e e e T e T
-NAKD B e e e o e e e i e T e T e S e e e T e e T TP e e e e T Tt

+EXCP HHH H

+TAGP ~=--HHHH HHHHH-—~=-HHHHH HHHHH-~~~-HHHHH=~>~-~HHHHH H
+TAGO HHHH HHHHH HHHHH HHHHH HHHHH HHHHH H
+TAGL HHHH-==--HHHHH HHHHH=----HHHHH HHHHH==~=~~~HHHHH=-=~~-H

+TAG2 HHHH=-—~~-HHHHH HHHHH==-==HHHHH HHHHH==-==~HHHHH==~~<H

+TAG3 HHHH HHHHH____ HHHHH-==-~HHHHH______ HHHHH-==—-HHHHH______H
+TAGS __ HHHH==<~<HHHHH HHHHH HHHHH____ HHHHH-~=--HHHHH==-~=H
+DAL ==>HHHH<===>HHHHH<===>HHHHH<===>HHHHH<===>HHHHH<===>HHHHH<===>H
+DATAGRTI R o o o o o e 1 —————

Figure 18. RSC Cycles Seven Through Nine

ROMP Storage Channel 115

ROMP
Cycle

+AC

+DC

—ACKA
—-NAKA
—ACKD
—-NAKD
+EXCP
+TAGP
+TAGO
+TAG1
+TAG2
+TAG3
+TAG4

+DAL

IBM Confidential Restricted. DO NOT COPY

10 11 12

Addr. Data A D A D
Cycle Cycle

REQ5 REP3 REQS REP4 REQ®6

- Rl b b b B T L b L L b o e b e S b b b D L B B B S B) 11— =y oy gy ey ey oy g ey ey ey ey ey)

—— —— —— pre—
b b e b B B} gy ey S g)) g Sy oy ey ey ey ey ey oy oy e ey ey g g oy g g oy ey oy ey ey oy Yy Sy vy ey ey
oy ey ey gy oy ey ey oy o ey ey ey ey ey ey g ey g g ey ey =y oy ey ey g g g ey e ey ey e g g g g g oy gy ey ey oy

) g ey g g Y ey e vy ey oy g ey ey g g ey g ey g) ey g g ey ey g) Yy =) ey ey g ey g g 2y ey g oy —rrey

o -y ey ey sy ey oy ey ey ey — ey

e — e R bl T T B e

N T T S S T T Y T T e e ey J Y) g ey ey) ey ey ey ey ey ey 1= i e e e e e e e L Ee e e T B]
——

g ey ey g ey g i g g e g g ey ey e ey g e g g e S g) oy ey ey)]) o e)) oy S ey ey e ey g -
[ER— (SR

ey -y 1 g g ey e ey oy oy ey g g oy oy ey oy - Yooy g oy 1=- ey e ey ey -y

o ey g g g ey g g g ey g ey oy V- ey ey ey ey ey ey ey) ey g e g e g e iy gy) e)))y oy g) ey oy oy

HHHHHHHHHHHHHH HHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHH

HHHH HHHHH HHHHH HHHHH HHHHH-~=-~HHHHH H

==-HHHH~~~~~HHHHH~-~~-HHHHH-~~--HHHHH~-~~-HHHHH HHHHH H

HHHH HHHHH<==~--HHHHH HHHHH-==<-HHHHH HHHHH H

===-HHHH HHHHH HHHHH HHHHH=-~=~HHHHH~==<-~HHHHH H

==>HHHH<===>HHHHH<L===>HHHHH<===>HHHHH< ===>HHHHH< ===>HHHHH<===>H

+DATAGRTI) g oy Y g ey ey g ey ey ey g oy Sy ey

Figure 19. RSC Cycles Ten Through Tuwelve

ROMP Storage Channel 116

IBM Confidential Restricted. DO NOT COPY

6.0 INITIALIZATION

Initialization consists of a power-on reset (POR) sequence and
initial program load (IPL). POR places the processor and system
devices in a known state. IPL causes loading of program into main
storage and program execution to begin.

6.1 POWER-ON RESET

When pouwer is applied to the ROMP system, a POR signal is applied
in order to bring the system to a defined state. POR consists of
the following series of functions:

1. Processor and System Reset

2. Register Initialization

3. FAIL Pin State (active or inactive)

6.1.1 Processor and System Reset

Processor reset is accomplished by using the system POR signal to
drive the +SCAN GATE input active. Since ROMP is initialized by
resetting all internal latches, all scan inputs (~SCANIO through
-SCANI&) must be held inactive while +SCAN GATE is active. MWhile
+SCAN GATE 1is active, and all scan inputs are inactive, a
sufficient number of system clock cycles must occur to reset all
internal latches. The specific number of clock cycles required is
defined in the ROMP E-Spec (see "ROMP Engineering Specification™
on page 188).

After a sufficient number of clock cycles have occurred, +SCAN
GATE can be driven inactive, and ROMP will be in a reset state.
While +SCAN GATE 1is active, all scan-inputs to ROMP must be held
inactive. Failure to hold all scan-inputs inactive will cause
unpredictable results.

Processor reset consists of the following operations:

1. The execution of any current processing state is terminated.

2. Any 1/0 interrupt requests are cleared.

3. Any machine check and program check conditions are cleared.

Initialization 117

IBM Confidential Restricted. DO NOT COPY
4. If the processor is in the check stop state, the check stop
condition is cleared.
Any system devices attached to the processor are initialized as

required. This can be performed by connecting the individual
device reset lines to the system POR signal.

6.1.2 Reqgister Initialization And Diaqgnostics

The register initialization function places the processor
registers in a defined state. The register initialization routine
includes diagnostics which check a major portion of the control
and data paths needed for instruction execution. No ROMP Storage
Channel (RSC) functions are checked. No other system components
are tested by the internal diagnostics. Initialization consists
of the following operations:

1. The contents of all general purpose registers are set to zero.
If any bit of any GPR is stuck—at-zero or stuck-at-one,
register initialization does not complete successfully.

2. All defined system control register (SCR) bits are set to zero
except the following:

a. The Processor Priority, bits 29-31 of SCR 14 is set to 7.

b. The Interrupt Mask, bit 23 of SCR 14, is set to one
(disabled).

6.1.3 Fail Pin State

POR initializes the I/0 pin —-FAIL to an active state. 1If an error
is detected during the register initialization microcode routine,
the processor enters the check stop state (see "Executing, Hait,
Check Stop, and Stopped State™ on page 7) and the -FAIL pin
remains active. If no errors are detected during register
initialization, the I/0 pin =FAIL is brought inactive at the
completion of register initialization. This pin can be sensed by
an external device to detect processor failure.

Initialization 118

IBM Confidential Restricted. DO NOT COPY

6.2 PROGRAM INITIALIZATION

Once POR is completed, the processor 1is in a state waiting to
begin instruction execution. This state is indicated by the I/0
pin (=IPL READY) going active. The processor will not 1load the
IAR or begin instruction execution wuntil it receives a signal
(~IPL COMPLETE) indicating that storage has been loaded or that
storage loading is not required for the system configuration.

6.2.1 Initial Program Load

This step is optional and required only when the system contains
no ROS and initial programs are loaded into RAM from an I/0 device
on the RSC.

When the POR sequence 1is completed, the I/0 pin -IPL READY is
brought active by the processor to indicate that the processor is
ready either for storage to be 1loaded or to begin program
execution. If an 1I/0 device is used to load programs, it senses
this 1line and transfers instructions to main storage via DMA
operations. Once the device has completed loading main storage,
the processor 1I/0 pin —-IPL COMPLETE is brought active by the IPL
device to cause an IAR load to occur. =IPL READY is brought
inactive by the processor one cycle after ~IPL COMPLETE goes
active. ~IPL COMPLETE is then ignored by the processor until the
next POR sequence occurs.

6.2.2 IAR Load

The initial IAR load occurs when the -IPL COMPLETE line is brought
active after POR. MWhen this pin is brought active, the 1IAR is
from location 00000000 in main storage. Program execution then
begins from the address loaded into the IAR.

6.2.3 Enqgineering Notes: Initialization

l. Power-on reset leaves the contents of main storage in an
unpredictable state except for the 1locations which are
initialized by the initial program load function.

2. If ROS is wused to contain initial programs, the processor
signal —-IPL COMPLETE can be connected to —-IPL READY, or tied
active to cause the IAR load to occur automatically when POR
is completed.

Initialization 119

IBM Confidential Restricted. DO NOT COPY

It is not required that storage be implemented at location
00000000, but storage must respond to this address, and it
must reply with an initial IAR for the processor. This may be
done by mapping the address 00000000 to a predefined storage
location, or by providing a hardware register which responds

to this address.

Initialization 120

IBM Confidential Restricted. DO NOT COPY

7.0 RELIABILITY _AVAILABILITY _AND SERVICEABILITY

7.1 RAS FACILITIES

RAS Facilities provide for:

1. Detection of processor errors.
2. Detection and isolation of program-related errors.

3. Decreased exposure to data loss and error situations.

7.2 SYSTEM ERROR DETECTION AND REPORTING

7.2.1 Internal Diagnostics

The processor executes an internal microcode routine to perform
register initialization when a processor reset occurs. Successful
completion of the register initialization routine provides
reasonable confidence that the processor is functional for
instruction execution. The internal microcode diagnostic does not
verify any RSC functions, or other system components.

The I/0 pin —FAIL is initialized to an active state during POR.
If no errors are detected during register initialization , -FAIL
is brought inactive. If an error is detected, the processor
enters the Check Stop state and =FAIL remains active. This
ensures that a failure condition will be indicated if the
processor is unable to execute the register initialization
microcode.

7.2.2 Machine-Check Errors

Machine~check errors are those errors which are most probably
caused by hardware malfunctions.

Reliability, Availability, and Serviceability 121

IBM Confidential Restricted. DO NOT COPY

7.2.2.1 Machine~Check Error Handling

Upeon the detection of a machine~check error cendition, other than
an 1/0 trap, all current ©processor activity is halted, regardless
of that activity. If the detected error 1is an 1I/0 trap, the
processor will complete its current activity before servicing the
error. I/0 traps are reported by activating the ~TRAP input. The
processor then takes one of two courses of action, depending on
the value contained in the Check Stop Mask.

If the Check Stop Mask has a value of zero, the processor enters
the Check Stop state when any machine check error is detected
(including an error reported by -~TRAP). This preserves the state

of internal processor latches for inspection by a support
processor. Refer to "Support Processor Facilities™ on page 142
for a description of support processor functions. The 1I/0 pin

-FAIL is brought active to indicate a failure.

If the Check Stop Mask has a value of one, and a machine check
error is detected, other than one caused by the ~TRAP interrupt
input, a reset packet wWwill be sent on the RSC to clear any
pending RSC operations. If the machine check interrupt is caused
by the —-TRAP interrupt input, no reset packet Will be sent on the
RSC. 1If the Check Stop Mask has a value of one, the processor
saves the current program status in the old program status
location in the Machine Check O0ld/New PS pair (beginning at
location X'170'). The program status for servicing the error is
then loaded from the new program status location, wWith the
exception of the Condition Status, and the processor attempts to
continue execution.

The machine check routine must execute a Load Program Status (LPS)
instruction to return from the machine check error.

7.2.2.2 Machine-Check Status

The Machine-Check Status (MCS) provides a means for reporting
hardware malfunctions. Information is provided to assist an error
servicing routine in determining the type and source of the error.

The MCS is an eight-bit field in system control register 11. Upon
the detection of a machine check error, appropriate bits of the
MCS are set to ones (except for the Parity Check bit (bit 18)
which is set whenever the processor receives a reply with invalid
data parity).

The MCS is defined as follows:

Reliability, Availability, and Serviceability 122

IBM Confidential Restricted. DO NOT COPY

Bit 16 RSC Check. Set to one when a device on the RSC detects
invalid parity on a processor-generated transfer over an
abnormally large number of retries. This bit 1is also
set when the processor generates an interrupt to report
an RSC retry which successfully corrected a parity error
(See "Interrupt Control Status™ on page 21).

Bit 17 Reserved.
0
Bit 18 Parity Check. Set to one whenever the processor
receives a reply on the RSC with invalid data parity.
This bit is set whether or not a machine check occurs.

Bit 19 Instruction Timeout. Set to one when the processor
fails to receive an expected reply to an instruction
fetch.

Bit 20 Data Timeout. Set to one when the processor fails to

receive an expected reply to a data fetch.

Bit 21 RSC Timeout. Set to one whenever the processor has been
unable to transfer a request on the RSC over an
abnormally large number of cycles, and no parity errors
have been signalled. The request may be unsuccessful
due to busy responses or unsuccessful arbitration.

Bit 22 I1/0 Trap. Set to one when an I/0 device signals a trap
condition.

Bit 23 Reserved.

The MCS is cleared when a Load Program Status (LPS) instruction is
executed to return from the Machine Check level.

The MCS provides a summary of processor conditions which are
present when a machine check error is detected. Thus, it s
possible that multiple bits of the MCS are set upon detection of
an error. For example, if bits 16,19, and 20 of the MCS are set,
the processor failed to receive a reply to both an instruction and
data fetch. In addition, a device on the RSC detected invalid
parity on a processor-generated request. In this case, invalid
parity on the request prevented the processor from successfully
transferring both instruction and data requests.

7.2.3 Enqgineering Note: RSC Retry

Transfers from the processor to other system components on the RSC
are automatically retried by the processor, if the first transfer

Reliability, Availability, and Serviceability 123

IBM Confidential Restricted. DO NOT COPY

attempt fails. The number of retries are dependent on the
response to the first transfer attempt, and the processor
implementation. This implementation retries failing transfers

based on the response from the first transfer attempt as defined
below:

1. No device on the RSC responds (no ACKA or NAKA) to a processor
generated instruction or data fetch. The processor retries
the transfer twice. If no device responds to the two retries,
the transfer attempt 1is terminated, and a program check
interrupt occurs. The Instruction Address Exception bit (bit
29) or the Data Address Exception bit (bit 30) in the PCS is
spt to one (based on whether the failing request was an
instruction or data fetch) to indicate the type of transfer.

2. A device on the RSC responds busy (NAKA, but no ACKA) to a
processor generated instruction or data fetch. The processor
retries the transfer a minimum of 128 times. If the device
fails to accept the transfer, the transfer attempt is
terminated, and a machine check interrupt occurs. The RSC
Timeout bit (bit 21) in the MCS is set to one.

3. A device on the RSC responds with a parity error indication
(ACKA and NAKA) to a processor generated instruction or data
fetch. The processor retries the transfer a minimum of 128
times. If the device fails to accept the transfer, the
transfer attempt is terminated, and a machine check interrupt
occurs. The RSC Check bit (bit 16) in the MCS is set to one.

7.2.4 Program-=Check Errors

Program-check errors are those errors which are most probably
caused by software errors.

7.2.4.1 Program-Check Error Handling

Upon the detection of a program check error condition, the
processor completes its current activity <(instruction, timer,
etc.), unless that activity caused the program-check condition.
The processor then saves the current program status in the old
program status location 1in the Program Check Old/New PS$S pair
(beginning at location X'180'). The program status for servicing
the error is loaded from the new program status leocation, with the
exception of the Condition Status.

The program check routine must execute a Load Program Status (LPS)
instruction to return from the program check error.

Reliability, Availability, and Serviceability 124

IBM Confidential Restricted. DO NOT COPY

7.2.4.2 Program-Check Status

The Program-Check Status (PCS) provides a means for reporting
certain programming errors. Reported program check errors include
attempted execution of an unassigned or unimplemented operation
code, the attempted execution of a privileged instruction with the
Problem State bit (bit 21 of SCR 14) being a one, an improper data
cendition which is detected by the execution of a trap
instruction, and attempted access of an invalid storage location.

The PCS is an eight-bit field in system control register 11. Upon
the detection of a program check error, all bits of the PCS are
set to =zeros. The appropriate bits of the PCS are then set to
ones.

The PCS is defined as follows:

Bit 24 Program check with known origin. Set to one when a
program check occurs and the location of the causing
instruction is determinable from the IAR in the old
program status.

Bit 25 Program check with unknown origin. Set to one when a
program check occurs and the location of the causing
instruction is not determinable from the IAR in the old
program status.

Bit 26 Program Trap. Set to one when a trap exception
condition is generated by a trap instructioen.

Bit 27 Privileged Instruction Exception. Set to one when the
processor attempts to execute a privileged instruction
and the Problem State Bit (bit 21 of SCR 1l4) is a one.

Bit 28 Illegal Operation Code. Set to one when the attempted
execution of an unassigned or unimplemented operation
code is detected.

Bit 29 Instruction Address Exception. Set to one when no
device on the RSC responds to a processor instruction
fetch request, or when a reply to an instruction fetch
is accompanied by an invalid address indication.

Bit 30 Data Address Exception. Set to one when no device on
the RSC responds to a processor data request, or when a
device on the RSC responds to a data request with an
invalid address indication. This bit is also set when
an access to a privileged I/0 device is attempted from
problem state.

Bit 31 Reserved.

Reliability, Availability, and Serviceability 125

IBM Confidential Restricted. DO NOT COPY

The PCS is cleared when a Load Program Status (LPS) instruction is
executed to return from the Program Check level.

The detection of a program trap condition set both bits 24 and 26
to ones. The IAR in the old program status contains the address
of the trap instruction.

The detection of a privileged instruction exception sets bits 24
and 27 to ones. The IAR in the old program status contains the
address of the privileged instructions. If the privileged
instruction is the subject of a branch with execute, the IAR in
the old program status contains the address of the branch with
execute instruction.

The detection of an illegal operation code sets both bits 24 and
28 to ones. The IAR in the old program status contains the
address of the illegal operation. If the illegal operation is the
subject of a branch with execute, the IAR in the old program
status contains the address of the branch with execute
instruction.

If a data address exception occurs, bit 30 of the PCS is set to
one, and either bit 24 or 25 is set to one to indicate the meaning
of the IAR in the old program status. If bit 24 is set to one,
the IAR in the old program status contains the address of the
instruction which attempted to access the invalid storage
location. If the subject instruction of a branch with execute
attempts to access an invalid storage location, the IAR in the old
program status contains the address of the branch with execute
instruction. If bit 25 of the PCS is set to one, the IAR in the
old program status contains the address of +the instruction which
was executing when the data address exception was detected. If
this 1instruction required +the data which was accessed at the
invalid address, it did not complete successfully.

Figure 20 on page 127 provides a summary of program check errors
when address translation and storage protect are disabled.
Figure 21 on page 1238 provides a summary of preogram check errors
when address translation or storage protect is enabled.

7.2.4.3 Programming Note: Instruction Restart

If address translation or storage protect 1is enabled and a data
address exception occurs, the IAR in the old program status word
always points to an instruction which can be restarted once the
exception conditions are reseclved. In most cases, attempted
execution of the instruction causing the data address exception
has no effect on the values contained in the general purpose
registers (GPRs), system control registers (SCRs), or data in

Reliability, Availability, and Serviceability 126

IBM Confidential Restricted. DO NOT COPY

storage. However, in the case of Load Multiple and Store
Multiple, it 1is possible for several of the loads or stores to
occur before the exception is detected. The processor does not
restore all GPRs or storage to the state which existed prior teo
attempted execution of the instruction causing the data address
exception. However, if a Load Multiple causes an exception, the
Load Multiple base address register (RC) will be restored to its
original value so that the Load Multiple instruction can be
restarted.

PCS Bits
Program Check Error 24125(126|127128129|30{31
l. Invalid instruction address. 1] 0 of o] 0of 1| O} O
2. Invalid data address. 0 1} of 0y Of Of 1| ©
3. Successful trap instruction. 1] 0} 1}y 0 Of Of 0| O
4. Privileged instruction exception. 1] 0of o} 1] of 0| O O
5. Illegal op-—code. 1] of 0f 0] 1} 0] O] O

Figure 20. Program Check Errors With Storage Protect And
Address Translation Disabled

Reliability, Availability, and Serviceability 127

IBM Confidential Restricted. DO NOT COPY

PCS Bits
Program Check Error 24(125(26(27|28]29|30]|31
l. Invalid instruction address. 1f of of oy O 1| Of O
2. Invalid data address. 1| of of 0o of Oof 1| ©
3. Successful trap instruction. 1 0 1} 6f O} O] O O
4. Privileged instruction exception. 1) of oy 1| 0f of of ©
5. Illegal op-—code. 1| of of oy 1| 0} of O

Figure 21. Program Check Errors With Storage Protect Or
Address Translation Enabled

7.2.5 Simultaneous Proqram Check and Machine Check Errors

Certain hardware error conditions can result in both a program
check and a machine check error, as the result of a single
request. For example, a storage controller may generate both an
exception reply and activate the ~TRAP input to report an
uncorrectable storage error (uncorrectable ECC error or parity
error). The exception reply causes a program check, and the —-TRAP
causes a machine check. The exception reply 1is necessary to
prevent the processor from using bad data from the request, and
~TRAP is required to report hardware errors at the machine check
interrupt level. If a machine check and program check error occur
simultaneously, the processor will perform both a program check
PSW swap, and then a machine check PSW swap. In order to
guarantee that both the program check and machine check interrupts
are properly handled, system devices using both an exception reply
and =TRAP must report both. errors simultaneously. Devices should
activate -TRAP when the error is detected, and send an exception
indication Wwith the reply.

Once the program check and machine check PSW swaps are completed
by the processor, the machine check interrupt handler will be
executed. The machine check and program check interrupt handlers
must be properly designed to handle this multiple error condition.
The machine check interrupt handler can determine the reason for
the interrupt by examining status bits in the MCS and status

Reliability, Availability, and Serviceability 128

IBM Confidential Restricted. DO NOT COPY

register(s) in each system component. Once the source of the
error has been isolated and 1logged, the machine check interrupt
handler can complete, and should execute an LPS instruction to
return from the machine check interrupt. Executing an LPS on the
machine check level will clear all bits 1in the MCS, and return to
the next highest priority level. 1In this case, a program check
interrupt is pending so the machine check interrupt handler will
return to the program check interrupt handler.

System software -must be constructed so that there 1is sufficient
information available to the program check interrupt handler to
determine that the program check interrupt was due to the machine
check. error that was previously handled. If the machine check
interrupt handler performed all of the steps necessary to service
the error, then the program check interrupt handler should simply
execute an LPS instruction to return from the program check level.
Executing the LPS on the program check level will clear all bits
in the PCS, and return to the routine that was executing when the
error was detected.

Note that in this case, a single error causes both a machine check
and a program check interrupt, and that both interrupts must be
processed. The machine check interrupt handler will always be
executed first, and will return to the program check interrupt
handler by executing an LPS instruction. Once the program check
interrupt handler completes, it returns to the routine where the
error was detected by executing an LPS. Executing an LPS from the
machine check level terminates processing on the machine check
level, clears all bits in the MCS, and returns to the next highest
priority interrupt. Executing an LPS from the program check level
terminates processing on the program check level, clears all bits
in the PCS, and returns to the next highest priority interrupt.

7.3 MULTIPLE OCCURRENCE OF ERRORS

The processor wWill enter the Check-Stop state, regardless of the
value in the Check Stop Mask, under the following conditions:

l. The processor is servicing a machine-check error, and another
machine-check error is detected.

2. The processor 1is servicing a machine-check error, and a
program—-check error is detected.

3. The processor is servicing a program—check error, and another
program—check error is detected.

If the processor 1is servicing a program-check error and a

machine-check error 1is detected, the machine-check error is
handled as outlined in "Machine-Check Error Handling™ on page 122.

Reliability, Availability, and Serviceability 129

IBM Confidential Restricted. DO NOT COPY

8.0 MULTIPROCESSOR SYSTEM

8.1 GENERAL DESCRIPTION

The ROMP processor and RSC contain features which support a multi-
processor configuration. A TEST & SET instruction allows control
of shareable resources and the RSC, operating with a packet-switch
protocol, allows commands and data to be directed throughout the
system.

8.2 TEST & SET INSTRUCTION OPERATION

The Test & Set instruction, from the processors standpoint 1is a

LOAD instruction with a special function code. This code
instructs the storage wunit to immediately follow the read
operation with a byte write of all ones. The contents of the

specified location are loaded into the specified register and the
high-order byte in storage is set to all ones with the low-order
byte wunaltered. If a processor or task chooses to identify
jtself, it can then write a descriptive code in the low-byte,
knowing it has control of that halfword as well as the resource
under contention. When completed with the resource, the processor
can then clear this halfword to again make the resource available.

8.3 MULTIPROCESSOR SYSTEM INTERCONNECTION

If two processors are connected to the same storage channel,
performance wWill be 1less than that achievable with two single
processors due to storage interference. Each processor should be
able to use a large share of the available storage bandwidth and
each would spend considerable time waiting if both were connected
to the same storage channel. To more effectively use each
processor, each should have its own private storage for most

instructions and data. Each private storage contains
instructions, data and separate PSW areas for interrupt and
exception conditions. However, teo effectively coordinate
activities, both processors must be able to exchange commands and
data. This can be done by a multi-port memory that can be
accessed by each processor, a bus coupler, or a communications
channel.

For the multi-port memory, a portion of the address space is
shared by more than one processor. This is shown in Figure 22 on
page 132.

Multiprocessor System 130

IBM Confidential Restricted. DO NOT COPY

A bus coupler can be used to isclate one processor memory system
from another as shown in Figure 23 on page 132. Each device on
the storage channel is assigned a tag or source address. The
processor may generate a READ command for an address, known by the
coupler to exist on another channel The coupler accepts the
command, saves the tag, and retransmits the command on the other
bus with a coupler tag. The storage wunit will send data to the
coupler, which the coupler will then send to the processor wWith
the original tag.

In isolated systems, a communications technique may prove to be
the best solution when multiple processors are required (See
Figure 24 on page 133). This method uses formatted and addressed
packets. Processor A formats and addresses a block of commands or
data in its memory. It then instructs the communications adapter
to transmit the block of data to another system. The receiving
adapter need only recognize the destination code and store the
data in the predefined input buffer for us by processor b. Both
processors are then interrupted; one being notified that data has
been received, and one that data has been sent.

Multiprocessor System 121

IBM Confidential Restricted. DO NOT COPY

RSC RSC
ROMP ROMP
Bus Bus
Converter Converter
8]
Shared
DFU Storage DFU
Storage Storage

Figure 22. Multi-Processor Connection Via Common Storage

RSC RSC
ROMP ROMP
Bus Bus
Converter Converter
Bus
DFU Coupler DFU
Storage Storage

Figure 23. Multi-Processor Connection Via Bus Coupler

Multiprocessor System 132

IBM Confidential Restricted. DO NOT COPY

RSC
ROMP
A
Bus
Converter
" Commo
(&)
Storage
RSC
R OMP
B
Bus
Converter
Commo
Storage

Figure 24. Multi-Processor Connection Via Communications Link

Multiprocessor System 1332

IBM Confidential Restricted. DO NOT COPY

9.0 STORAGE CONTROLLER FUNCTIONS

This section 1is intended to illustrate the range of storage
controller options which can be implemented in a ROMP system.

In any ROMP system, the processor, and possibly other devices will
be requesting storage operations. These requests will be examined
by one or more storage controllers and either accepted or not
accepted (this is indicated by the ACK,NAK handshaking lines one
RSC cycle after the request). A request will be accepted if the
storage controller is available, and the address associated with
the request is a valid address. Instruction fetches and loads
require that the storage controller generate a reply at some later
time. The reply contains the requested data and the tag which was
sent with the request, indicating the destination of the reply.
The reply can occur on any cycle after the request was received.
The RSC can be utilized by other devices while a request is being
processed by the storage controller. ROMP takes advantage of this
by attempting to overlap storage accesses with instruction
execution.

A simple ROMP system might contain a single storage controller and
a single storage array. When a storage request arrives from the
RSC, the storage controller would perform the required access,
and if necessary, generate a reply on the RSC. Requests arriving
before the storage array was free would receive a BUSY response.
Figure 25 and Figure 26 shows the approximate timing for this type
of controller. Figure 25 shows the timing for fast storage, and
Figure 26shows the timing for slower storage. Note that Figure 25
shows the best possible performance, where the storage access time
is equal to the processor cycle time.

RSC CYCLES A | b A | o A | b A
RSC | adr 1 | | adr 2 | rep 1 | adr 3 | rep 2 |
RESPONSE | ok | | ok | | ok |
STG CYCLES | read1 | read 2 | read 3

Figure 25. Storage Controller Timing With Fast Storage

Storage Controller Functions 134

IBM Confidential Restricted. DO NOT COPY

RSC CYCLES A | b A | b A | b A
RSC | adr 1 | | adr 2 | | adr 2 | rep 1 |
RESPONSE | ox | | Busy | | ok |
STG CYCLES | read 1 | read 2

Figure 26. Storage Controller Timing With Slow Storage

The storage controller can also control multiple arrays. One
reason for this might be to mix storage technologies (for example,
ROS and RAM), or to control two interleaved arrays. An
interleaved storage system utilizes one array for all even word
addresses, and a second independent array for all odd word
addresses. An interleaved storage system can provide an increase
in the available storage bandwidth since the storage controller
can overlap accesses of interleaved arrays. This will result in
improved processor performance since a large percentage of
processor generated storage references are for sequential word
addresses.

Multiple storage controllers can also be wused, where each
controller has one or more storage arrays. This type of system
allows each controller and storage array to operate independently
of the other storage controllers. The design of the individual
controllers is also simplified if each controls only one array.

It is important to note that the RSC design allows additional
pipelined stages to be placed in series with the storage access
stage, that do not reduce the bandwidth for instruction
prefetches. However, these stages do increase the latency for
non-—-overlapped accesses such as the first instruction fetch
following a successful branch, and all data accesses. The ability
to add such a stage can be beneficial when designing a storage
controller employing error correcting codes (ECC). ECC delays are
usually added in series With the array access time, and frequently
increases storage access time. In a ROMP system, a possible
alternative is to provide a separate pipelined stage to perform
ECC checking. Depending on the amount of time required to perform
the ECC check, it might be advantageous to overlap the ECC check
with the next storage cycle, and delay the reply by a full RSC
cycle. Figure 27 shows the timing for this type of ECC checking.

Storage Controller Functions 135

IBM Confidential Restricted. DO NOT COPY

RSC CYCLES A | b A | b A | A
RSC | adr 1 | | aar 2 | | adr 3 | rep 1 | adr 4 |
RESPONSE | ok | | ok | | ok |

ECC CHECK | | ECC 1 | ECC 2

STG ACCESS | read1 | read 2 | read 3

Figure 27. Storage Controller Timing With ECC

9.1 STORAGE PROTECT AND ADDRESS TRANSLATION OVERVIEW

ROMP supports both storage protect and address translation
functions in the storage controller. These functions are enabled
by contreol bits in the Interrupt Control Status (ICS) register.
When bit 20 in the ICS is set to one, storage protect is enabled.
When bit 22 1is set to one, address translation 1is enabled. MWhen
either of these functions is enabled, ROMP is placed in an exact
interrupt mode, which allows any instruction which causes an
exception to be restarted after the exception has been handled.
The state of 1ICS bits 20 and 22 is available on RSC lines DALO4
and DALO05, respectively. The actual storage protect or address
translation hardware exists in the steorage controller, and the
particular implementation is system dependent. Required
initialization of the storage protect or address translation
hardware must be performed by system software before storage
protect or address translation is enabled.

Assuming that protection or translation hardware is installed, the
storage controller does the nhecessary checking, and provides the
appropriate response when a reply is generated. 1In the case of a
read access, storage Will generate a reply to the original
requestor. When no exception condition exists, data is placed on
the addr/data bus, the tag ID of +the requestor is placed on the
tag bus, and +EXCEPTION is driven inactive. If an exception
condition exists, the reply is generated in a similar manner,
except +EXCEPTION is driven active and the data which is placed on
the bus is not used, but must have good parity.

Whenever a wWrite access 1is attempted and storage protect or
address translation is enabled, a reply must be generated to the

Storage Controller Functions 136

IBM Confidential Restricted. DO NOT COPY

original requestor, Jjust as was done for a read access. This
reply is required in order to determine whether or not the store
operation caused an exception. The tag bus will contain the tag
ID associated wWith the write address of the original requestor.
The +EXCEPTION line will be driven inactive when no exception
exists, and will be driven active when an exception does exist.
In either case, the content of the data bus is unimportant, but
must have good parity.

For systems which do not implement storage protection or virtual
addressing, the EXCEPTION 1line 1is not required. However,
EXCEPTION can still be used wWwith replies to ROMP to report
addressing exceptions. If ROMP receives a reply with +EXCEPTION
active, and address translate and storage protect are disabled,
then a program check occurs. PCS bits 25 (program check with
unknown origin) and 30 (data address exception) are set. If the
EXCEPTION line 1is not used, the input to ROMP must be tied low
Cinactive).

When storage accesses are generated by ROMP , the RSC line DALOSG
will be a one (active) if the processor is in problem state and a
zero (inactive) if in supervisor state. This bit may be used to
enhance the storage protection scheme by providing different types
of access authority, such as read/write, read only, or execute
only.

9.2 STORAGE PROTECT

Storage protect provides controlled access to selected storage
areas. Normally, each area (or block) is designated as execute
only, read only, read/write, or no access allowed for a particular
task. This requires associating the required access authority
with each block of storage, and verifying that each storage
request has the correct access authority.

The access authority is normally contained in a separate array in
the storage controller that is accessed based on the address of
the request. For a protect scheme wWith fixed size blocks of
storage, the high-order address bits are used to access the
protect array and the low-order address bits are ignored. The
number of low-order address bits ignored is determined by the
block size.

Information contained in the protect array 1is used by the storage
controller to determine if each access 1is permitted. This
information would normally indicate which RSC signals should be
checked, and the state of these lines for a legal access.

Sufficient information is provided on the RSC to identify each

type of storage operation. The RSC tag lines provide the ability
to determine if a particular request is for a processor

Storage Controller Functions 137

IBM Confidential Restricted. DO NOT COPY

instruction or data fetch, or whether the request is from another
device on the RSC (bus converter, DMA controller, etc). The
high-order byte of the RSC addr/data bus provides additional
control information to determine if the request is a read or
write, whether it is a storage access or a PI0O access, and whether
the processor is in problem or supervisor state. A detailed
description of these signals is given in "RSC Signal Definitions"™
on page 97.

Typically, it might be desired to define a storage area that is
read/write from the system control program (SCP) and is execute
enly for user programs. The storage controller can provide this
checking by examining the state of the problem/supervisor line on
the RSC (DALO06) and the tag lines to determine if a request is
being made from problem or supervisor state, and whether or not it
is an instruction fetch. If the processor is in supervisor state,
any access wWould be permitted, and 1if in problem state, only
instruction fetches would be permitted to the given storage area.

If a storage area is designated as read/write from the SCP and no
access allowed from problem state, the storage controller would
only need to examine the state of the problem/supervisor line to
determine whether or not an access 1is permitted. 1In this case,
the state of the tag lines is a don't care.

Note that separate storage areas can be designated for each type
of device that can access storage. For example, selected storage
areas can be designated as valid only for processor operations, at
the same time other areas are valid only for DMA transfers.
Figure 28 shows a typical storage address assignment.

A typical storage protect scheme requires access of control
information from an array to determine if each access is allowed.
Normally, this informatioen 1is centained in a separate array, and
is accessed based on the request address by the storage controller
to determine if each access is 1legal. The access of this control
information can normally occur in parallel Wwith the data access.
For write operations, this contreol information must be examined
prior to the data access, in order to prevent illegal write
operations from altering data in storage. For non-write accesses,
the storage protect information can be examined after the data
access is complete, to determine the state of the EXCEPTION line
for the reply. Data read from storage can be returned to the
processor if there 1is an exceptien, since ROMP does not use this
data if EXCEPTION is active.

Once the exceptien indication is received by ROMP , execution of
the current instruction is terminated, and any general purpose
registers (GPRs) which were altered by partial execution of the
instruction, and would prevent the instruction from being
restartable, are restored. A program-check then occurs which
causes appropriate bits in the program check status (PCS) register
to be set based on the type of exception. Refer to "Program-Check
Errors™ on page 124 for a description of the PCS.

Storage Controller Functions 138

IBM Confidential Restricted.

Control
initialized
execution.

task can access, and
read/write, etc). The
mapped and initialized
the I/0 address space,

by the

information in
processor,
Initialization defines

the storage

before a

the type of access
storage protect array
by store instructions,
and initialized by PIO

protect array
particular task
each area

DO NOT COPY

is normally
begins
that a particular
permitted (execute,
can be either memory
or can be defined in

Wwrite instructions.

Address Space

System Control
Program

(SCP)

DMA Buffer

Area

User 1 Program

User 2 Program

Shared data
for user 1
and 2

Figure 28.

Access Permitted

Read/Hrite from supervisor
state only.

Read/write by DMA device
and SCP.

Read/uwrite by SCP.

Execute only by user 1.

Read/write by SCP.
Execute only by user 2.

Read/write by SCP
user 1 and user 2.

Typical Storage Protect Assignments

9.3

ADDRESS TRANSLATION

ROMP supports address translation functions which allow mapping of

a virtual

processor address to
address translation hardware exists
the particular implementation is

in

Storage Contreller Functions

a physical storage
the storage controller and
system dependent.

address. The

This hardware

129

IBM Confidential Restricted. DO NOT COPY

converts a virtual address from ROMP , or other system components,
into a physical address which is used to access storage.

If an exception is detected by storage during execution of an
instruction, the EXCEPTION line is brought active for the reply
from storage, which causes a program-check condition to occur.
Once the exception indication is received by ROMP , execution of
the current instruction is terminated, and any general purpose
registers (GPRs) which were altered by partial execution of the
instruction, and would prevent the instruction from being
restartable, are restored. A program~check then occurs which
causes appropriate bits in the program check status (PCS) register
to be set based on the type of exception. Refer to "Program-Check
Status™ on page 125 for a description of the PCS.

An exception handler can then be executed to determine the type of
exception, and can take the appropriate action te eliminate the
exception. This routine can examine bits in the PCS to determine
if the exception was the result of an instruction fetch or data
reference. If the exception resulted from an instruction fetch,
the IAR in the old program check (PC) PSW will contain the address

of the instruction causing the exception. In this case, the
instruction address 1is also the storage address causing the
exception. If the exception resulted from a 1load or store

operation, the IAR in the old PC PSW will ceontain the address of
the load or store instruction, not the storage address causing the
exception. Hardware can be provided in the storage controller to
maintain the storage address causing the exception, or software
can determine the address by examining the instruction pointed to
by the IAR in the old PSW. If harduware is provided in the storage
controller, the storage address causing the exception can be made
available to the processor via a PIOD register in the storage
controller.

A separate pipelined stage can be added in the storage contreller
to perform address translation. This allows storage array access
to be overlapped with the next address translation. A design such
as this prevents the address translation time from being directly
added to the storage access time. Figure 29 shows how address
translation and storage array access can be overlapped.

Storage Controller Functions 140

IBM Confidential Restricted. DO NOT COPY

RSC CYCLES A | o A | b A | o A

RSC | adr 1 | | adr 2 | | adr 2 | rep 1 | adr 4 |
RESPONSE | ok | | ok | | ok | |
ADDR XLATE | ¢ xlate 1 | xlate 2 | xlate 3 |
STG ACCESS | read 1 | read 2 |

Figure 29. Storage Controller Timing With Address Translation

Storage Controller Functions 141

IBM Confidential Restricted. DO NOT COPY

10.0 PROCESSOR SUPPORT FUNCTIONS

10.1 FRONT PANEL SUPPORT

ROMP provides internal hardware to support basic front panel
functions in a normal system environment. This hardware supports
processor reset and IPL operations and provides an output to
indicate processor failure. Reset and IPL can be performed
automatically when power is applied to the system, or can be
performed manually via front panel switches. Processor failure is
indicated by an I/0 pin (-FAIL) which can be connected to a front
panel failure indicator. "Internal Diagnostics™ on page 121
describes operation of the failure signal.

10.2 SUPPORT PROCESSOR FACILITIES

ROMP is an LSSD design processor which allows contents of the
internal latches to be examined and altered by use of the LSSD
scan feature. In addition, internal support logic is provided for
sync and stop-on-address functions.

Internal address compare logic consists of a 32-bit
address—compare register, address source select latch, and a
stop—-on—-address enable latch. The address—compare register is

used to held the desired sync or stop address. The source select
latch selects either an IAR address or microstore address. If the
stop-on-address latch is set, the processor is forced into a
stopped state when an address compare occurs. An I/0 pin (-SYNC)
is provided for use as a trigger source when wusing the sync
function to examine RSC or other processor activity.

For system or program debug, a support processor such as a PC,
PT-2, or a Series/l can be connected to a ROMP system to allow
examination of internal ROMP registers. The support processor
would use the LSSD scan-in and scan-out capability to examine and

alter internal processor registers and control latches. In
addition, the address compare 1logic can be controlled by the
support processor for sync or stop-on-address functions. A

detailed description of the LSSD scan-strings and a suggested
support processor interface can be found in documents listed in
"ROMP System Hardware References™ on page 188.

The particular functions provided by the support processor are

defined by the program written for the support processor, but
should include the following functions:

Processor Support Functions 142

IBM Confidential Restricted. DO NOT COPY

Reset. It should be possible to reset ROMP from the support
processor. Reset places the ROMP system 1in a known state.
This function can be implemented by ORing an output from the
support processor wWwith the ROMP system reset signal.

IPL. After ROMP has been reset, it begins register
initialization. At the completion of register initialization,
ROMP activates ~IPL READY. This signal can be detected by the
support processor, which can take one of several courses of
action. The support processor can place ROMP in the stopped
state, which allows the contents of scan strings, registers,
and main storage to be displayed and altered as explained
below. Also, the support processor can emulate an IPL device,
loading main storage and activating -IPL COMPLETE when the
load is complete. Finally, the support processor can allow
the ROMP system to complete IPL as it normally would.

Start/Stop/Step. These functions allow operation of the ROMP

processor to be controlled. Start would enable processor
execution to begin with the current IAR value. Stop halts
processor execution. Step allows single stepping of

instruction execution while the processor is in the stopped
state. These functions can be implemented by interfacing the
support processor wWwith the ROMP clock generation circuitry.

Address Compare. This function allows entry of a desired
compare address, selection of compare on IAR wvalue or

microstore address, and enable of stop-on-address. The
support processor would load the compare address register with
the desired address via the LSSD scan-in input. IAR or

microstore address is selected by scanning the desired value
into the select 1latch and stop-on-address is enabled by
scanning the stop latch to an enabled state.

Display/Alter GPRs and SCRs. This function allows the support
processor to read and write any GPR or SCR. These functions
would be implemented by manipulation of the appropriate
control and data registers via the scan~in and scan-out paths.

Display/Alter Main Storage. This function allows the support
processor to 1load, read and modify main storage locations.
The function can be implemented by scanning the desired
address and data into the serial interface provided 1in the
storage controller.

Display/Alter ROMP Data and Control Registers. This function
allows internal data and control registers to be examined and
altered. This Ffunction can be implemented by wusing the
support processor to scan-out the data and control latch
contents for display. The scanned-out can then be altered, if
desired, and scanned-in to set a contreol or data latch to a
desired value.

Processor Support Functions 143

IBM Confidential Restricted. DO NOT COPY

11.0 PERFORMANCE

ROMP performance can be evaluated by computing instruction
execution times based on the figures shown in Table 13.1 and by
including any hold-off time for instruction or data fetches. A
hold-off condition in the processor Will occur whenever a
successful branch is taken and the instruction buffer must start
fetching a new instruction stream from storage, or whenever an
instruction references a register which has not yet been loaded as
the result of a load instruction. Any processor activity such as
interrupts or system timer service must be included in performance
computations since they require execution of microcode routines.
Performance limitations due to the RSC bandwidth must be evaluated
where RSC utilization is high.

The term "storage access time"™ used in this section is the amount
of time required by the storage contreller to reply +to an
instruction or data fetch. This +time includes driver delays from
the storage contreoller to the storage array, the array access
time, receiver delays from the array to the storage controller,
and any ECC delays, if present. The storage access time is always
an integer multiple of the processor cycle time due to the
synchronous nature of the ROMP Storage Channel. See "Selection of
Processor Cycle Time"™ on page 150 for further information on
storage access time versus processor cycle time.

The term "RSC cycle time"™ used in this section is the packet time
on the RSC. This time is always one-half of the processor cycle
time. For example, a 300 nsec processor cycle results in a 150
nsec RSC cycle time, and a 200 nsec processeor cycle results in a
100 nsec RSC cycle time.

For the purpose of discussion in this section, the ROMP cycle time
is assumed to be 300 nsec. The actual cycle time is system
dependent.

This section 1is intended +to provide an overview of the various
factors invelved in ROMP performance. However, due to the large
number of possible system configurations, it is difficult to
obtain detailed performance estimates for a given system without
use of a simulator. Detailed performance analysis for a given
system configuration with the anticipated instruction mix should
be done wusing the simulator described in "RTIMER Simulator™ on
page 188.

11.1 BRANCH HOLD-OFF

The ROMP design utilizes an instruction prefetch buffer to reduce
apparent instruction fetch time. In normal operation, the

Performance 146

IBM Confidential Restricted. DO NOT COPY

instruction buffer prefetches instructions prior to their
execution so the effective fetch time during execution is zero.
However, whenever a branch instruction s successful, the

instruction buffer must fetch a new instruction stream and the
processor is forced into a hold-off state until a new instruction
is available for execution. The length of time the processor is
in a hold-off state depends on the RSC cycle time and on the
storage access time. Figure 30 shows the timing for instruction
fetches.

The hold-off time for the start of a new instruction stream to
begin execution is given by the following equation:

Twait= 2%RSC Cycle Time + Storage Access Time + 1 Processor Cycle Time

I-Buffer
Branch Instr. Read New I-Stream
Execution Hold-0Off Heold—-0ff (Hold-0Off) Execution
Processor I ! F* { I {
New I-Stream New I-Stream
Fetch Reply

RSC F____.4

Storage
Access
Storage I 1

Figure 30. Fetch Timing For New Instruction Stream Fellowing
A Successful Branch

For an RSC and ROMP design with a 150nsec RSC cycle time and a
300nsec ROMP cycle time, the hold-off time is given by:

Twait = 600nsec + Storage Access Time

For a typical system with 300nsec access time storage, the wait
time would be 900nsec or three processor cycles. This hold-off
time must be added to the execution time for each branch, if it is
successful.

Performance 145

IBM Confidential Restricted. DO NOT COPY

11.2 BRANCH AND EXECUTE HOLD-OFF

The ROMP instruction set includes branch and execute instructions
which allow a subject instruction to be executed while the target
instruction 1is being fetched. In this case, the time until
execution of the target instruction begins is the greater of the
time required for execution of the subject instruction or the time
required for the new instruction stream to become available for
execution. If execution of the subject instruction 1is complete
before the target instruction is available for execution, the
processor enters a hold-off state wuntil the target instruction is
available. Subject instruction execution times can be computed
from Takle 13.1 and hold-off time for the target instruction is
defined in "Branch Hold-off"™ on page 144.

11.3 LOAD INSTRUCTION HOLD-OFF

The ROMP design allows instruction execution to continue in
parallel with the loading of a register, provided the subsequent
instructions do not reference an unloaded register when storage
protect and address translation are disabled. Heold-offs that occur
as a result of storage protect and address translation are
described in "Storage Protect And Address Translation Hold-Off"
Execution of a load instruction causes a tag to be allocated for
the given register and a request to storage for the given data.
Instructions following the load instruction can be executed while
the storage access and writing of the registers occur, provided
the subsequent instructions do not reference an unloaded register.
Figure 31 shows the timing for a load register operation.

Execution/

Load Instr. Execution/ Execution/ Register Execution
Execution Hold-0ff Hold-0ff Write Using Register
| ! |] 1
Processor | 1 1 T 1 }
Data Data
Request Reply

RSC —]

Storage I i

Figure 31. Load Instruction Timing

Performance 146

IBM Confidential Restricted. DO NOT COPY

The actual time required for completion of a load instruction is
given by the following equation:

Tload = 2% RSC Cycle Time + Storage Access Time + 1 Processor Cycle

For an RSC and ROMP design with a 150 nsec RSC cycle time and a
300nsec ROMP cycle time, the load time is:

Tload = 600 nsec + Storage Access Time

For a typical system with 300 nsec access time storage, the lead
time would be 900 nsec or three processor cycles. Instruction
execution can continue 1in parallel with the 1load operation
provided the subsequent instructions do not reference an unloaded
register. If a subsequent instruction references an unloaded
register, the processor is forced into a hold-off state until the
load operation is completed.

11.4 1/0 READ HOLD-OFF

Execution of an I/0 read instruction causes a tag to be allocated
for the given register and a RSC command to the 1I/0 device to be
generated. Hold-off conditions previously described for a load
register operation also apply to 1I/0 read operations. Previous
timing diagrams and equations for determining register load times
can be used for I/0 read operations by substituting the I/0 device
response time for storage access time. No additional hold-offs
occur when storage protect or address translation is enabled,
since all I/0 addresses are real.

11.5 STORAGE PROTECT AND ADDRESS TRANSLATION HOLD-OFF

When storage protect or address translation is enabled, additional
held-offs occur after each load or store operation. In this mode,
subsequent instructions are not executed wuntil the storage
controller responds to the lead or store operation. Operation of
the storage controller in storage protect or address translate
mode is described in "Storage Controller Functions™ on page 134.
Figure 32 shows the timing for load and store operations when
storage protect or address translation 1is enabled. Note that the
storage controller must also respond to write operations in this
mode. Data returned by the storage controller for a write
operation is not wused by the processor; only the tag information

Performance 147

IBM Confidential Restricted. DO NOT COPY

and state of the EXCEPTION line is used to determine the outcome
of the write operation.

Load/Store Register Execution
Execution Hold-Off Hold-Dff Write Continues
| |
Processor | l t 4 } }
Data Data
Request Reply

RSC —
EXCEPTION }_______l

Address Translation
and Storage Access
Storage l {

Figure 32. Load and Store Instruction Timing With Storage
Protect or Address Translation Enabled

Performance degradation occurs since subsequent instruction
execution is halted during a load operation regardless of whether
or not subsequent instructions reference the register. Hold-offs
noW also occur after write operations wuntil the the status of the
write operation 1is reported by the storage controller. No
additional hold-~offs occur after 1I/0 reads, since all 1/0
addresses are real. Prefetching occurs as it normally would, with
no additional hold-offs between prefetches.

Performance can be evaluated by including these additional
hold-off times and the increased storage access time due to
address translation in performance calculations. Note that as the
storage array access time increases, the overhead of storage
protect or address translation becomes a smaller portion of the
overall storage access time, hence there is a smaller percentage
degradation in system performance.

11.6 TAG HOLD-OFFS

ROMP provides tuwo register tags which are allocated for all
storage read operations, all 1I/0 reads, and storage write

Performance 148

IBM Confidential Restricted. DO NOT COPY

operations when address translation or storage protection is
enabled. This permits two of these operations to be to be in
progress at any time. If an attempt is made to execute an
instruction and there are already two allocated tags, ROMP s
forced into a hold-off state until a tag becomes available. A tag
becomes available in the register write cycle (See Figure 31).

For example, if an instruction sequence includes three successive
load operations, the first two 1loads are executed with no
hold-offs, and the third must wait for the first load to complete.
In a system with 300 nsec storage, there would be a hold-off of
two cycles before the third load instruction would execute. The
two cycle hold-off occurs since a tag is not available until three
cycles after execution of a leoad instruction, and only one cycle
has elapsed since execution of the first load operation.

11.7 INTERRUPTS

Interrupts cause execution of a microcode routine which performs a
program status exchange. The execution time for this routine must
be included when performance calculations are made invelving
interrupts. Table 13.1 lists the number of cycles required for
execution of the microcoede interrupt routine.

11.8 SYSTEM TIMER

The system timer is serviced by a microcode routine which updates
and sets the required timer status bits for each clock input to
the timer. The execution time for this routine must be included
when performance calculations are made invelving system timer
operation. Table 13.1 lists the number of cycles required for
execution of the microcode system timer routine.

Performance 149

IBM Confidential Restricted. DO NOT COPY

11.9 BUS CAPACITY

A limiting factor in processor performance is the bandwidth of the
storage channel. The RSC is designed to provide sufficient
bandwidth for both processor and DMA activity without limiting
processor performance. However, 1if +there are high speed DMA
devices on the RSC; a point can be reached where DMA activity
saturates the RSC whigh will result in degraded processor
performance.

An RSC design with a 150 nsec bus cycle time provides a maximum
bus bandwidth of 13.3 M bytes/sec (4 bytes every 300 nsec) which
can be achieved with 200 nsec cycle time storage. A typical
execution rate of two MIPS requires approximately a &8 M byte/sec
data rate for the processor which 1leaves approximately 5 M
bytes/sec for other RSC devices As RSC device activity increases,
processor performance will be degraded slightly due to
interference between the processor and devices. As the total RSC
utilization approaches 100%, processor performance will degrade so
that close to the 12.3 M byte/sec RSC capacity is maintained.
Actual bus capacity required for a given program can be estimated
as described in the following section.

11.10 SELECTION OF PROCESSOR CYCLE TIME

The processor cycle time can be adjusted in order to maximize the

available storage bandwidth. Since the RSC is a synchronous
channel, storage accesses always require an integer number of
processor cycles. If the storage array access time 1is not an

integer multiple of the processor cycle, there Will be a delay
between the time that data is available in the storage contreoller,
and when the data can be returned +to ROMP via the RSC. This delay
can be eliminated by selecting the processor cycle time so that
storage access time is an integer multiple of the processor cycle
time. In many systems, the overall system performance will be
limited by the available storage bandwidth, and not by the
processor cycle time. In this case, the overall system
performance can actually be improved by increasing the processor
cycle time, so that the storage access time is an integer multiple
of the processor cycle time.

Consider a system with a 250 nsec processor cycle time and 600
nsec access time storage. Since the storage controller can only
reply every every 250 nsec, and data is not good wuntil 600 nsec,
the actual access time will be 750 nsec. This results in a
storage bandwidth of 5.33 M bytes/sec (4 bytes every 750 nsec).
If the processor cycle time is increased to 300 nsec, the access
time will become 600 nsec, giving a bandwidth of 6.67 M bytes/sec.
In this case, increasing the processor cycle time by 50 nsec has

Performance 150

IBM Confidential Restricted. DO NOT COPY

increased the available storage bandwidth by approximately 25
percent.

11.11 PROGRAM PERFORMANCE

The required execution time for a given program can be estimated
by summing the number of cycles required for each instruction
executed by the program and by adding this number to any hold-off
condition times that occur during program execution. The hold-off
times are determined by events described in "Branch Hold-off" on
page n144 through "Bus Capacity™ on page 150. The number of cycles
required for execution of each instruction is 1listed in Table
13.1.

Once execution time is determined, it 1is then possible to
determine the RSC utilization for the program. This is done by
computing the total number of bytes during program execution and
dividing by the execution time of the program. The number of
bytes required during execution of the program is the sum of the
number of instruction bytes fetched, the number of data bytes
referenced, and the number of bytes wasted by the instruction
prefetch buffer for successful branches. The number of
instruction bytes fetched c¢an be computed by multiplying the
number of instructions executed by the average instruction length.
For typical programs, the average instruction length is
approximately 2.4 bytes. The number of data references includes
all leoad and store operations and each operation requires a & byte
transfer. Since the instruction prefetch buffer contains
instructions ahead of the execution stream, successful branches
Wwill result in some of the instructions 1in the buffer being
wasted. These instructions have already been fetched from storage
and must be included in bus performance computations. The current
ROMP design includes 16 byte instruction prefetch buffer and
performance estimates generally assume approximately 8 bytes are
wasted for each successful branch.

Consider evaluation of a program with the following
characteristics:

400 Instructions executed

600 processor cycles required for program execution

60 hold-off cycles (successful branches, data references,
100 data references (loads and stores)

30 successful branches

For a 300 nsec processor cycle, this program uould execute 1in
(600+60 cycles) X 300 nsec/cycle or approximately 200 usec. The
MIP rate would be 400 instructions divided by 200 usec or 2 MIPS.
Note that any processor cycles required for interrupt, or system

Performance 151

etc)

IBM Confidential Restricted. DO NOT COPY

timer servicing would be added to the 600 preocessor cycles
required for program execution.

Bus utilization would be computed as follouws:

400 instructions %2.4 bytes/instruction 960 Bytes
100 data references x4 bytes/reference 400
30 successful branches %8 bytes/branch wasted 240

Total 1600 Bytes
1600 Bytes
Required banduwidth: = 8.0 MBytes/Sec
200 usec

A minimum storage bandwidth of 8 M bytes/sec is required for this
program to execute in the previously computed 200 usec. As
storage access time 1is increased, execution time for the program
Wwill increase in a nonlinear manner, and total storage utilization
will approach 100%.

In cases where the actual storage capacity is less than that
required to support a given execution rate, the actual execution
rate can be estimated by assuming full wutilization of the
available storage bandwidth. Using data from the above example
and assuming non interleaved SUNSET memory with a 1200 nsec cycle
time, estimated program performance can be computed as follows:

4 Bytes
Storage Capacity: = 3.33 M Bytes/Sec
1200 nsec
1600 Bytes
Estimated Execution Time: = 480 usec

3.33 M Bytes/Sec

400 Instructions
MIP Rate: = 0.83 MIPS
480 usec

Note that the actual execution rate will be slightly 1lower than
the computed value since additional hold-off cycles will occur for
successful branches and load operations due to the longer storage
access time. Also, note that as storage utilization approaches

Performance 152

IBM Confidential Restricted. DO NOT COPY

100%, less instruction prefetching will be possible which will
result in fewer bytes being wasted for successful branches.

11.12 PERFORMANCE MEASUREMENT

ROMP provides an I/0 pin (~INST CMPLT) to indicate completion of
instruction execution. A transition from inactive to active
occurs when execution of an instruction 1is completed. The
frequency of the signal at this pin represents instruction
execution rate. For example, a frequency of 500 Khz represents
0.5 MIPS, 1 MHz represents 1 MIP, and 2 MHz represents 2 MIPS.

Performance 153

IBM Confidential Restricted. DO NOT COPY

TABLE 13.1

INSTRUCTION EXECUTION TIMES

Execution

MNEMONIC OP-CODE_ INSTRUCTION Cvcles
A El ADD 1
ABS EO ABSOLUTE 2
AE Fl ADD EXTENDED 1
AEI Dl ADD EXTENDED IMMEDIATE 1
Al Cl ADD IMMEDIATE 1
AIS 90 ADD IMMEDIATE SHORT 1
BALA 8A BRANCH AND LINK ABSOLUTE 3 +1 Storage
BALAX 8B BRANCH AND LINK ABSOLUTE WITH
EXECUTE 3 +1 Storage
BALI &C BRANCH AND LINK IMMEDIATE 3 +1 Storage
BALIX 8D BRANCH AND LINK IMMEDIATE WITH
EXECUTE 3 +1 Storage
BALR EC BRANCH AND LINK 3 +1 Storage
BALRX ED BRANCH AND LINK WITH EXECUTE 3 +1 Storage
BB 8E BRANCH ON CONDITION BIT IMMEDIATE
Unsuccessful 1
Successful 3 +1 Storage
BBR EE BRANCH ON CONDITION BIT
Unsuccessful 1
Successful 3 +1 Storage
BBRX EF BRANCH ON CONDITION BIT WITH EXECUTE
Unsuccessful 1
Successful 3 +1 Storage
BBX 8F BRANCH ON CONDITION BIT IMMEDIATE
WITH EXECUTE
Unsuccessful 1
Successful 3 +1 Storage
BNB 88 BRANCH ON NOT CONDITION BIT
IMMEDIATE
Unsuccessful 1
Successful 3 +1 Storage
BNBR E8 BRANCH ON NOT CONDITION BIT
Unsuccessful 1
Successful 3 +1 Storage
BNBRX E9 BRANCH ON NOT CONDITION BIT
WITH EXECUTE
Unsuccessful 1
Successful 3 +1 Storage
BNBX 89 BRANCH ON NOT CONDITION BIT
IMMEDIATE WITH EXECUTE
Unsuccessful 1
Successful 3 +1 Storage
c B4 COMP ARE 1
CAL c8 COMPUTE ADDRESS LOWER 1
CAL1lé6 c8 COMPUTE ADDRESS LOWER HALF 16-BIT 1
CAS 6 COMPUTE ADDRESS SHORT 1
CAU D8 COMPUTE ADDRESS UPPER 1
CAlé6 F3 COMPUTE ADDRESS 16-BIT 1
Performance 154

CI
CIS
CL
CLI
CLRBL
CLRBU
CLRSB
CcLZ

DEC
EXTS
INC
IOR
IOW
JB

JNB

L

LC
LCS
LH
LHA
LHAS
LHS
LIS
LM
LPS
LS

M
MC03
MC13
MC23
MC33
MC30
MC31
MC32
MF$S
MFTB
MFTBIL

MFTBIU
MTS
MTTB
MTTBIL

MTTBIU

N
NILO

Performance

IBM Confidential Restricted.

DO NOT COPY

D& COMPARE IMMEDIATE
94 COMPARE IMMEDIATE SHORT
B3 COMPARE LOGICAL
D3 COMPARE LOGICAL IMMEDIATE
99 CLEAR BIT LOWER HALF
98 CLEAR BIT UPPER HALF
95 CLEAR SCR BIT
F5 COUNT LEADING ZEROS
B6 DIVIDE STEP
93 DECREMENT
Bl EXTEND SIGN
951 INCREMENT
cB INPUT/0OUTPUT READ
DB INPUT/OUTPUT WRITE
08-0F JUMP ON CONDITION BIT
Unsuccessful
Successful
00-07 JUMP ON NOT CONDITION BIT
Unsuccessful
Successful
CDh LOAD
CE LOAD CHARACTER
4 LOAD CHARACTER SHORT
DA LOAD HALF
CA LOAD HALF ALGEBRAIC
5 LOAD HALF ALGEBRAIC SHORT
EB LOAD HALF SHORT
A& LOAD IMMEDIATE SHORT
ce LOAD MULTIPLE
DO LOAD PROGRAM STATUS
7 LOAD SHORT
E6 MULTIPLY STEP
F9 MOVE CHARACTER ZERO FROM THREE
FA MOVE CHARACTER ONE FROM THREE
FB MOVE CHARACTER TWO FROM THREE
FC MOVE CHARACTER THREE FROM THREE
FD MOVE CHARACTER THREE FROM ZERO
FE MOVE CHARACTER THREE FROM ONE
FF MOVE CHARACTER THREE FROM TWO
96 MOVE FROM SCR
BC MOVE FROM TEST BIT
SD MOVE FROM TEST BIT IMMEDIATE
LOWER HALF
9C MOVE FROM TEST BIT IMMEDIATE
UPPER HALF
B5 MOVE TO SCR
BF MOVE TO TEST BIT
9F MOVE TO TEST BIT IMMEDIATE
LOWER HALF
9E MOVE TO TEST BIT IMMEDIATE
UPPER HALF
E5 AND
cé AND IMMEDIATE LOWER HALF

EXTENDED ONES

N = - = N D e e e e S

1

3

I R e R e = " e

1

+1 Storage

+1 Storage

See Note 2
6+ 4 Storage

o o I = I R R T A -

155

NILZ

NIUO

NIUZ

0

OIL
OIU
ONEC

S

SAR
SARI
SARI1é

SE
SETBL
SETBU
SETSB
SF
SF1
SIS
SL
SLI
SLIlé
SLP
SLPI
SLPIlé

SR

SRI
SRI1é
SRP
SRPI
SRPIl6

ST
STC
STCS
STH
STHS
STM
STS
sve
TGTE

TI

TLT

Performance

IBM Confidential Restricted. DO NOT COPY

C5

Dé

D5

E3
c4
c3
Fé
E2
BO
AD
Al

F2
9B
9A
97
B2
D2
92
BA
AA
AB
BB
AE
AF

B8
A8
AS
B9
AC
AD

DD
DE

bC

D9

co
BD

cc

BE

AND IMMEDIATE LOWER HALF
EXTENDED ZEROS

AND IMMEDIATE UPPER HALF
EXTENDED ONES

AND IMMEDIATE UPPER HALF
EXTENDED ZEROS

OR

OR IMMEDIATE LOWER HALF
OR IMMEDIATE UPPER HALF
ONE'S COMPLEMENT
SUBTRACT

SHIFT ALGEBRAIC RIGHT
SHIFT ALGEBRAIC RIGHT IMMEDIATE
SHIFT ALGEBRAIC RIGHT IMMEDIATE
PLUS SIXTEEN

SUBTRACT EXTENDED

SET BIT LOWER HALF

SET BIT UPPER HALF

SET SCR BIT

SUBTRACT FROM

SUBTRACT FROM IMMEDIATE
SUBTRACT FROM SHORT
SHIFT LEFT

SHIFT LEFT IMMEDIATE

SHIFT LEFT IMMEDIATE PLUS SIXTEEN

SHIFT LEFT PAIRED

SHIFT LEFT PAIRED IMMEDIATE
SHIFT LEFT PAIRED IMMEDIATE
PLUS SIXTEEN

SHIFT RIGHT

SHIFT RIGHT IMMEDIATE

SHIFT RIGHT IMMEDIATE PLUS SIXTEEN

SHIFT RIGHT PAIRED

SHIFT RIGHT PAIRED IMMEDIATE

SHIFT RIGHT PAIRED IMMEDIATE

PLUS SIXTEEN

STORE

STORE CHARACTER

STORE CHARACTER SHORT

STORE HALF

STORE HALF SHORT

STORE MULTIPLE

STORE SHORT

SUPERVISOR CALL

TRAP IF REGISTER GREATER THAN

OR EQUAL
Unsuccessful
Successful

TRAP ON CONDITION IMMEDIATE
Unsuccessful
Successful

TRAP IF REGISTER LESS THAN
Unsuccessful
Successful

L e R I = = T i > T T~ I ST) L R - ™

L R S

N NDNNN-

See Note 2

2
11

+2 Storage

+2 Storage

+2 Storage

+2 Storage

156

IBM Confidential Restricted. DO NOT COPY

TSH CF TEST AND SET HALF 1
TWOC E4 TWOS COMPLEMENT 1
WAIT FO WAIT 1
X E7 EXCLUSIVE OR 1
XIL c7 EXCLUSIVE OR IMMEDIATE LOWER HALF 1
XIU D7 EXCLUSIVE OR IMMEDIATE UPPER HALF 1
INTERRUPT 3

+2 Storage

SYSTEM TIMER UPDATE 3

Notes:

Storage is storage access time as defined in "Performance™
on page l44.

Execution cycles for Load Multiple (LM) and Store Multiple
(STM) can be computed by the following equatiens. R is the
number of registers to be loaded or stored, Tacc 1is the
storage access time, Tcyc is the storage cycle time, and
Tprocessor is the processor cycle time. Tacc and Tcyc are
expressed as an integer multiple of the processor cycle.
For example, a 250 nsec processor cycle with a storage
access time of 500 nsec and a storage cycle time of 900
nsec, Tacc equals 2 and Tcyc equals 4. See "Performance”
on page 144 for a definition of storage access time.

Lead Multiple execution cycles for 2-way interleaved
storage where Tacc is any value, or fast non-interleaved
storage where Tacc <= Tprocessor is given by the following
equation. Tcyc is assumed to be less than or equal to two
times Tacc. If Tacc < Tprocessor, use 1 for Tacc in the
fellowing equation.

Execution cycles = 3 + R + (Tacc % K1)
K1 equals Integer[(R-1)/2] if address translation and
storage protect are disabled. K1 equals Integer[(R+1)/2]

if address translation or storage protect is enabled.

Load Multiple execution cycles with slow non-interleaved
storage where Tacc > Tprocessor @

Execution cycles = 3 + R + (Tacc % K2)
K2 equals R-1 if address translation and storage protect
are disabled. K2 equals R+l if address translation or
storage protect is enabled.
Store Multiple execution cycles for non-interleaved storage
where Tcyc <= 2xTprocessor, or 2-way interleaved storage

where Tcyc <= 4xTprocessor:

Execution cycles = K3 + (2 % R)

Performance 157

IBM Confidential Restricted. DO NOT COPY

K3 equals 1 if address translation and storage protect are
disabled. K3 equals 2 if address translation or storage
protect is enabled.

Store Multiple execution cycles for non-interleaved storage
where Tcyc > 2xTprocessor:

Execution cycles = K3 + (2 ¥ R) If R <= 2

Execution cycles K32 + (2 % R) + (Tcyec ¥ (R - 2)) If R

Store Multiple execution cycles for 2-way interleaved
storage where Tcyc > 4%Tprocessor:

K3 + (2 % R) If R <= 3

Execution cycles

1"

K3 + (2 % R) + ((Tcyc % (R - 4))
If R odd and R > 3

Execution cycles

K3 + (2 % R) + ((Tcyc = 2) % (R - 3))
If R even and R > 3

Execution cycles

Performance 158

>

IBM Confidential Restricted. DO NOT COPY

12.0 HARDWARE DESCRIPTION

This section describes the hardware interfaces to the ROMP chip,
and provides a brief overview of the various interfaces.
References are provided to previous sections which describe these
interfaces in detail. A detailed specification of the voltage
level and timing requirements for each interface is provided in
the ROMP Engineering Specification.

12.1 ROMP CHIP INTERFACES

There are five groups of interface signals to the ROMP chip. They
are the ROMP Storage Channel (RSC), the system clocks, power, the
interrupt inputs, and ROMP controls. Each of these interface
signals (as shown in Figure 33), is described in "ROMP Storage
Channel”™ on page 160 through "ROMP Controls™ on page 163.

Harduware Description 159

IBM Confidential Restricted. DO NOT COPY

RSC INTERRUPT INPUTS
+DALO0-31,DALP0—-3 <=36=> {===7=== —REQIO0-6/~SCANIO~—4
+TAGO~4, TAGP <=z===z=z6====> < ~TRAP
+ADREXTO0,]1 <==z=z===2====
+ADREXT2~-7,P <{=z==7=z====z ROMP CONTROLS
+EXCEPTION > > —IPL READY
—ACKA < > < —IPL COMPLETE
~NAKA < > > —FAIL/+SCANOO
~ACKD < > > —INST CMPLT/+SCANO2
—-NAKD < > > —=SYNC/+SCANO1
bDATAGRTI > > —STOP/+SCANO4
+DATAGRTO/+SCAND3 < < —~TIMER CLOCK
+ADDRGRTI > R OMP > —~WAIT
—-HOLD RSC > > —CHIP IN PLACE

' < +SCAN GATE

CLOCKS
—~T0 >
~T1 >
-T2 >
-T3 >
—~T3RF >
+AC >
+DC >
—W >
—R >

POWER
+5 VOLTS >
GND >
+3.4 VOLTS >
+3.4 VREF >
+3.4 VREG <
—-VSUB <

Figure 33. ROMP Module Signals

12.1.1 ROMP Storage Channel

This section is intended to provide a brief overview of the RSC,
and is not intended to provide a detailed explanation of the RSC
operation. For a detailed description of the RSC, refer to "ROMP
Storage Channel™ on page 92

The ROMP Storage Channel (RSC) is a high~bandwidth synchronous bus
designed to interconnect a ROMP , a storage unit, and one or more

Hardware Description 160

IBM Confidential Restricted. DO NOT COPY

RSC devices. It supports a 32-bit data transfer and a 32-bit
address (The basic RSC supports a 24-bit address, with an address

extension bus for 32-bit addressing). Read operations on the RSC
consist of two uncoupled transfers, a request and a reply, which
allows multiple operations to overlap. This feature, combined

with several features in the ROMP data flow, allows high processor
performance with relatively slow storage through interleaving
techniques.

The main elements of the RSC are a 32-bit (plus & parity)
multiplexed Data/Address bus and a 5-bit (plus 1 parity) Tag bus.
The Data/Address bus contains either 32-bits of data or a 24-bit
address plus a byte of control information. The Tag bus contains
codes which link replies to requests. An Address Extension bus
provides & high-~order address bits which extend the address to 32
bits. In addition, there are several miscellaneous handshaking,
control, and clock lines.

The RSC runs synchronously with ROMP , with two RSC cycles per
ROMP cycle. The first RSC cycle is always used to transmit
addresses, and the second is used for data. There are three types
of RSC transfers, called packets. A read request 1is a single
address cycle, a wWrite request 1is an address cycle plus the
following data cycle, and a reply is a single data cycle. These
requests are shown in Figure 34.

The RSC architecture allows any device to assume control of the
RSC and issue requests. 1In a typical system, ROMP would issue
requests to storage or other RSC devices, and RSC devices would
issue requests to storage and each other.

Control of the RSC is determined by two arbitration systems, one
for requests (Address Grant) and one for replies (Data Grant).
Arbitration is for a period of two RSC cycles, with reply and
request arbitration being overlapped in time with each other, and

also with bus transfers. The arbitration systems are defined to
be daisy-chained, but it 1is possible to implement a radial
arbiter.

12.1.1.1 RSC Address and Data Bus

The RSC provides a 32-bit multiplexed address and data bus with
byte parity. During an address cycle, +DAL0O0 through +DALO07
provide control information, and +DAL0&8 through +DAL321 provide a
24-bit address. Parity bits +DALPO0 through +DALP3 provide odd
parity for the control byte (+DALO0 through +DALO07) and the three
address bytes (+DAL08 through +DAL15, +DAL16 through +DAL23, and
+DAL24 through +DAL31). During - a data cycle, +DAL00 through
+DAL31 provide 32 bits of data. Parity bits +DALPO through +DALP3

Hardware Description 161

IBM Confidential Restricted. DO NOT COPY

| <~RSC CYCLE->|<-RSC CYCLE->|

Read Request I Address]
Write Request | Address I Data I
Reply | Data |

Figure 34. RSC Transfers

provide odd parity for for the four data bytes. See "Address/Data
Bus Definition™ on page 97 for more information.

12.1.1.2 RSC Tag Bus

The RSC provides a 5-bit tag bus which identifies the source of
requests for transfers on the RSC. This 5-bit bus consists of
+TAGO0 through +TAG4. O0dd parity 1is provided on the tag bus by
+TAGP. See "Tag Bus Definition™ on page 98 for more information.

12.1.1.3 RSC Address Extension Bus

The address extension bus provides an additional eight address
bits for ROMP systems implementing 32-bit addressing. The
high-order address byte of the 32-bit address, is placed on the
address extension bus +ADREXTO through +ADREXT7 during an address
cycle. The three low-order address bytes are on the RSC address
and data bus (+DALO08 through +DAL31) during an address cycle. O0Odd
parity is provided on the address extensien bus by +ADREXTP.

During a data cycle, +ADREXTO0 and +ADREXT1 are used as control
inputs to ROMP Systems which implement 32-bit addressing will
drive +ADREXTO inactive during data cycles, indicating that 32-bit
addressing is being used. These systems must also provide parity
checking of the address extension bus for each address cycle. If a
parity error is detected on the address extension bus for a given
address cycle, +ADREXT1 is driven inactive during the following
data cycle to indicate a parity error. If no parity error is
detected, +ADREXTl is driven active during the data cycle to
indicate good parity. See "Address Extension Bus Definition™ on
page 99 for more information.

Hardware Description 162

IBM Confidential Restricted. DO NOT COPY

12.1.1.4 Exception

The state of <+EXCEPTION during a reply, indicates whether the
requested operation was valid. If +EXCEPTION is active during a
reply, the request which produced the reply was invalid. If
+EXCEPTION is inactive during the reply, the requested operation
completed successfully. If +EXCEPTION is active during a reply to
ROMP , a program check interrupt will result. For more information
on +EXCEPTION see "Storage Protection and Address Translation™ on
page 109.

12.1.1.5 RSC Acknowledge and Not Acknowmledge

Four control lines are used to indicate the results of transfers
from one device to another on the RSC. Two lines (-ACKA and
-NAKA) are wused to indicate the results of address cycle
transfers, and two other lines (—-ACKD and —-NAKD) are used to
indicate the results of data cycle transfers. The four
combinations of —-ACKA/-ACKD and —-NAKA/-NAKD are defined below:

ACKA/ NAKA/

ACKD NAKD Meaning

Inactive Inactive No Device Responded
Inactive Active Device Busy, Retry Transfer
Active Inactive Transfer Successful

Active Active Parity Error

See "Storage Channel I/0 Pin Summary™ on page 110 for more
information on the acknowledge (~ACKA/-ACKD) and not acknowledge
(~NAKA/-NAKD) handshake lines.

12.1.1.6 RSC Arbitration

Address Grant and Data Grant are groups of signals that are used
to arbitrate among the devices on the RSC for wuse of the bus.
Address Grant 1is used to arbitrate for an address cycle and the
next data cycle. Data Grant is used to arbitrate for a data cycle.
Address Grant and Data Grant are serially connected between
devices, starting with the highest priority device and ending with
the lowest priority device so that only one device at a time may
originate transfer on the bus. This means that the Address Grant
input (ADDRGRTI) of a given device 1in the priority chain 1is
connected to the Address Grant output (ADDRGRTO) of the next
higher priority device. Similarly, the Data Grant input
(DATAGRTI) of one device 1is connected to the Data Grant output
(DATAGRTO) of the next higher priority device. The lowest order
DATAGRTO output (other than ROMP) is sent to all devices in the

Hardware Description 163

IBM Confidential Restricted. DO NOT COPY

Address Grant chain, and serves to keep them from using a data
cycle needed for a reply. See "Bus Arbitration™ on page 102 for
more information on RSC arbitration. Figure 35 shows a typical
connection of devices on the RSC.

Hardware Description 164

IBM Confidential Restricted. DO NOT COPY

1

36—-Adr/Data ADDRGRTI r*r—_________
6—Tag Vv vV V
4—Ack/Nak | -
l-Exception HL
47 RSC Device
—6—Clock
ADDRGRTO DATAGRTO
—
v V V DATAGRTI
] [
HL
RSC Device
ADDRGRTO [(——————————
vV V
]
H L
Storage
Controller
——— | —— | —=9—Adr. Ext—|——
ADDRGRTI l DATAGRTI
v v
|]
Instruction
Execution DATAGRTO
Unit
Vv
]
Instruction
CLOCK L] Prefetch
GENERATOR Unit
ROMP CHIP

Figure 35. Typical RSC Configuration

Hardware Description 165

IBM Confidential Restricted. DO NOT COPY
12.1.1.7 Hold RSC

The -—HOLD RSC input to ROMP is wused te inhibit the timeout
counter. The —HOLD RSC input is driven active by any device which
can interfere with ROMP access to the RSC for an extended perieod
of time. See "Hold Time-~0Out Counter”™ on page 108 for more
information.

12.1.2 Clocks

ROMP requires a four phase clock (-T06, -T1, -T2, -T3), and two
register file clocks (~W, =R), all of which are generated external
to the processor chip. In addition, an ADDRESS CLOCK (+AC) and
DATA CLOCK (+DC) are provided to enable the RSC tri-state drivers.
ROMP , storage, and any other device on the RSC must use these
clocks teo control channel transfers. The timing relationships of
these clocks are shown in Figure 36 on page 167. A detailed timing
diagram for these clocks can be found in the ROMP Engineering
Specification (ROMP E~SPEC). See T™"ROMP Engineering Specification”
on page 188 for a reference to the ROMP E-SPEC.

12.1.3 Pouwer

Power requirements for ROMP include a +5 volt supply, a +3.4 volt
supply and a -3 volt supply (for substrate bias). Only a +5 volt
supply is required to the card, all other voltages are derived
from the +5 volt supply.

The +3.4 volt supply is derived from the +5 volt supply via an
on-chip voltage regulator. The regulator requires an on card PNP
darlington power transistor to supply the 1load current. The
regulator functionally consists of a reference generator, an error
amplifier and a driver. +3.4 VREF is connected to the collector of
the power transistor and 1is compared to the output of the
reference generator to obtain an error signal. This error signal
(after biasing in the driver section) provides the regulation for
the base of the power transistor and is represented in Figure 12.1
as +3.4 VREG. The emitter of the power transistor is connected to
the +5 volt supply and the collector 1is used as the +3.4 volt

supply.

The substrate bias supply is also derived from the B-volt supply
via an on-chip charge pump circuit, requiring no external
components. The substrate voltage (-VSUB) is made available
external to the chip.

Hardware Description 166

IBM Confidential Restricted. DO NOT COPY

| < ROMP CYCLE >|

~T1 I l

+AC I l

+DC I L———

Figure 36. Clock Timing

12.1.4 Interrupt Inputs

The interrupt request inputs (~REQI 0-6) to ROMP permit the
processor to change its status at the request of other system
components. Each of the seven inputs defines a unique priority
level, such that REQIO is the highest priority interrupt, and
REQI6 is the lowest priority interrupt. If more than one interrupt
line is active, the lower priority interrupt is ignored until the
higher priority interrupt has been serviced. For more information
on interrupts and interrupt handling, see "Interrupts™ on page 17.

The ~TRAP input to ROMP 1is used by an 1I/0 device to indicate a
hardware error. Activating -TRAP causes a machine-check interrupt
as described in "Machine-Check Error Handling" on page 122 and
causes bit 22 of the the Machine Check Status (MCS) to be set to
one by ROMP.

The interrupt request inputs (-REQI 0-6) are level sensitive, and
should be driven active and held active by external devices until
the interrupt request is serviced. The =~TRAP input 1is edge
sensitive, and should be driven active for one ROMP cycle.
Devices activating the ~TRAP input should deactivate —-TRAP as soon
as possible to allow reporting of subsequent machine check errors.

Hardware Description 167

IBM Confidential Restricted. DO NOT COPY

Note that activating the ~TRAP input causes a machine check
interrupt, and that a subsequent transition of the -TRAP input to
an active state while on the machine check level will cause a
check stop.

12.1.5 ROMP Controls

This section describes the various control signals used by the
ROMP processor.

12.1.5.1 IPL Ready

The -IPL READY output is driven active by ROMP after successful
completion of the internal microcode diagnostic. The =IPL READY
output can be sensed by an IPL device (disk, diskette, etc.) to
indicate that storage can be loaded by the device. -IPL READY is
brought inactive one c¢ycle after -IPL COMPLETE 1is activated. For
more information see "Initial Program Load"™ on page 119.

12.1.5.2 IPL Complete

The -IPL COMPLETE input to ROMP is activated by the IPL device
after loading of storage is complete and causes an IAR 1load to
occur (see "IAR Load" on page 119) which then causes program
execution to begin. ~IPL READY is 1is brought inactive one cycle
after ~IPL COMPLETE is activated. For more information see
"Initial Program Load” on page 119.

Systems which do not use an IPL device (i.e. those which contain
IPL code in ROS) can tie ~IPL COMPLETE active.

12.1.5.3 Fail

The —-FAIL output indicates ROMP has entered the check stop state
due to either a failure detected during the internal microcode
diagnostic routine at IPL time, or due to a system error which was
detected after IPL. The —-FAIL output from ROMP is initialized to
an active state by power-on reset. If an error is detected during
the internal microcoede diagnostic routine, ROMP enters the check
stop state (see "Executing, HWait, Check Stop, and Stopped State”
on page 7) and the ~FAIL pin remains active. 1If no errors are

Hardware Description 168

IBM Confidential Restricted. DO NOT COPY

detected during the microcode diagnostic, the ~FAIL pin is driven
inactive. If ROMP enters the check stop state due to a system
error at any time after IPL, the —FAIL output will go active. The
~FAIL output <can be sensed by an external device to detect
processor failure.

12.1.5.4 Instruction Complete

The —INST CMPLT output from ROMP indicates that an instruction has
completed execution. A transition from inactive to active occurs
whenexecution of an instruction is completed. The frequency of
this signal represents instruction execution rate (i.e. 1Mhz
represents 1 MIP, 2.5Mhz represents 2.5 MIPs).

12.1.5.5 Sync

The =SYNC output from ROMP is used as a trigger source by a
support processor when using the sync function. See '"Processor
Suppeort Functions™ on page 142 for more information on support
preocessor functions supported by ROMP ’

12.1.5.6 Stop

The -STOP output from ROMP is driven active when ROMP is in the
stopped state (see "Executing, MWait, Check Stop, and Stopped
State™ on page 7). The ROMP clock generator stops the ROMP clocks
when =STOP is active.

12.1.5.7 Timer Clock

The -TIMER CLOCK input to ROMP is connected to an external clock
and is used to decrement an internal 32-bit counter (see "System
Timer Facility™ on page 14). Note that since microcode is used to
update the timer, the timer clock frequency should be much slower
than the CPU clock rate. A reasonable -TIMER CLOCK frequency is 1
Khz.

Hardware Description 169

IBM Confidential Restricted. DO NOT COPY

12.1.5.8 Hait

The —~WAIT output from ROMP is driven active when ROMP is in the
wait state. ROMP enters the wait state by executing a WAIT
instruction. ROMP may be removed from the wait state only through
the occurrence of an interrupt, error, or power-on reset.

12.1.5.9 Chip In Place

The ~CHIP IN PLACE input 1is used for second level testing to
disable all ROMP off chip drivers (0CDs). When —-CHIP 1IN PLACE is
active, all 0OCDs are placed in a high impedance state.

12.1.5.10 Scan Gate

The +SCAN GATE input is wused for Level Sensitive Scan Design
(LSSD) testing. MWhen +SCAN GATE is active, data 1is clocked into
the internal ROMP registers from the scan inputs. Data from the
internal scan strings is available at the scan outputs. When ROMP
is reset, the +SCAN GATE input is activated and used to scan a
known state into internal ROMP registers. Note that during reset,
+SCAN GATE must be held active long enough to guarantee that all
internal registers have been initialized. The minimum time that
+SCAN GATE must be active to reset ROMP is defined in "ROMP
Engineering Specification™ on page 1388.

12.1.6 Scan Inputs and Scan Outputs

The scan inputs are used to scan data into the the five LSSD scan

strings in ROMP . These inputs are used for ROMP module testing
and for access of internal ROMP registers by a support processor.
The five scan string inputs are =SCANIO-4. The five scan outputs

(+SCANOO-4) are wused to scan data out of the internal ROMP
registers. The five scan inputs (~SCANIO-4) and five scan outputs
(+SCANDO-4) are multiplexed with system signals. The selection
between normal system signals and scan inputs and scan outputs is
determined by the state of +SCAN GATE. When +SCAN GATE s
inactive, the multiplexed pins function as normal system signals.
When +SCAN GATE is active, these pins function as scan inputs and
scan outputs. A detailed definition of the scan strings 1is
contained in "ROMP Scan String Definition™ on page 188.

Hardware Description 170

IBM Confidential Restricted. DO NOT COPY

12.2 ROMP CHIP PIN ASSIGNMENT

Figure 37 shows the ROMP module footprint. Pin assignment for the
ROMP chip is given in "Processor Signal Description™ on page 172.

A B c D E F G H J K L M
11
2]
3
4|
5
6
7|
&
9|
10|
11|
1z2)
131
14

Figure 37. ROMP Module Footprint (Bottom View)

Hardware Description 171

IBM Confidential Restricted. DO NOT COPY

12.3 PROCESSOR SIGNAL DESCRIPTION

Signal Name Direction Driver Tvpe Pin Number

ROMP Storage Channel:

+DALOO B TS Cclo
+DALO1 B TS Alz
+DALO2 B TS DoS
+DALO3 B TS B13
+DALO4 B TS cos
+DALOS B TS AD8
+DALO6 B TS B0S
+DALO07 B TS cos
+DALO08 B TS BO6
+DALOS B T8 A06
+DAL1C B T8 D08
+DAL11 B TS Bll
+DAL12 B TS Fl1l
+DAL13 B TS Gl2
+DAL14 B TS L14
+DAL15 B TS J12
+DAL16 B TS AD5
+DAL17 B T8 EO06
+DAL18 B T8 EO8
+DAL19 B TS AloO
+DAL20 B T8 Fl2
+DAL21 B TS Gll
+DAL22 B TS G13
+DAL23 B T8 J1l4
+DAL24 B TS E13
+DALZ25 B TS El4
+DALZ26 B TS Gléa
+DAL27 B TS J13
+DAL28 B TS D11
+DAL2S B T8 Cclz
+DAL30 B TS Fl0
+DAL31 B TS El2
+DALPO B TS Blé4
+DALP1 B TS Clé4
+DALP2 B TS D13
+DALP3 B TS D14
+TAGO B TS LO4
+TAG1 B T8 NO2
+TAG2 B T8 LO3
+TAG3 B TS Loz
+TAG4S B TS HOo1l
+TAGP B TS M04&
—-ACKA B TS FOl
~ACKD B TS Go2
~NAKA B TS Go3
~NAKD B TS P03
ADDRGRTI I - M13
DATAGRTI 1 - J11

Hardware Description 172

IBM Confidential Restricted. DO NOT COPY

+DATAGRTO
-HOLD RSC
+EXCEPTION
+AC
+DC

- O - O

ROMP Storage Channel

+ADREXTO
+ADREXT1
+ADREXT2
+ADREXT3
+ADREXT4
+ADREXTS
+ADREXT6
+ADREXT?7
+ADREXTP

Clock Inputs:
~T0

~T1

-T2

~-T3

-T3RF

-W

-R

Contrel Signals:

~IPL READY
~IPL COMPLETE
-FAIL

—~INST CMPLT
-SYNC

-STOP

-TIMER CLOCK
~HWAIT

O O e 0O0OO0OO0OO0ODOD0DO®W®

O-w00O0O0®™wOo

Address Extension:
TS
TS
TS
TS
TS
TS
TS
TS
TS

TS

T8
TS
T8
T8

TS

External Interrupt Inputs:

-REQIO
~REQIl
-REQIZ2
~REQI3
~-REQI4
-REQI5
-REQIS6
-TRAP

I

L B B I B B I]

Scan Path and Controls:

(See note 1)
-SCANIO
-SCANI1
-SCANI2
-SCANI3
-SCANI&
+SCANOO

Hardware Description

O W

Fo2
P05
Joz
L1z
K13

A04
B0o4
D05
Coa
A02
co3
D04
B0z
D03

N1lé4
P10
POS
L10
P13
P11
N12

D02
Po6
col
F03
Fo&4
DO1
P04
GOl

NO3
M03
K04
Mo2
Lol
Ko2
Kol
M1l4

NO3
M03
K04
M02
LO1
col

173

-

IBM Confidential Restricted. DO NOT COPY

+SCANO1
+SCANO2
+SCANO3
+SCANO4
+SCAN GAT
~CHIP IN

Power Con
+3.4VCKT1
+3.4VCKT2
+3.4VCKT3
+3.4V0CD1
+3.4V0CD2
+3.4V0CD3
+3.4V0CD4
+3.4V0CD5
+3.4V0CD6
+5VCKT1
+5VCKT2
+BVCKT3
+5VCKT4
+5VCKT5S
+5V0CD1
+5Y0CD2
GNDCKT1
GNDCKT2
GNDCKT3
GNDCKT4
GNDCKT5
GNDOCD1
GNDOCD2
GNDOCD3
GNDOCD4
GNDOCD5
GNDOCD6
~-3VSUB
+3.4VREG
+3.4VREF

Notes:

Hardware Descr

T8 Fo4
T8 F03
Fo2
TS Dol
- L11
- P08

E
PLACE

- - 0000
—
(12}

nections:
D06
LO9
MO5
EO05
EO07
F09
G1l0
H04
Lo7
J1lo
K05
LO8
MO6
Jo&
E09
FO05
K09
K10
L0O5
M08
Jo3
D07
EO4
El0
G04
H10
Lo6
Ho3
K03
HO02

Bidirectional
Input

= Output

S Tristate

AP = Active Pullup

- O~ W
T un

Previously defined pins are used for scan-in and
scan-out wWwhile the processor is in scan mode.
These pins function only as scan—-in and scan-out
while SCAN GATE is active. Use of these pins is
summarized below.

iption 174

IBM Confidential

Pin

Restricted. DO NOT COPY

System Function

Scan_ Function

NO3
M03
K04
M02
Lol
co1
FO4
F03
Fo2
Dol

Hardware Description

~REQIO
~-REQI1
-REQIZ2
-REQI3
-REQI4
~FAIL

~SYNC

~INST CMPLT
+DATAGRTO
~-STOP

~SCANIO
~SCANTI1
~SCANTI2
-SCANI3
~SCANI4
+SCANOO
+SCANO1
+SCANO2
+SCANOD3
+SCANO4

175

IBM Confidential Restricted. DO NOT COPY

13.0 APPENDIX

13.1 INSTRUCTION INDEX BY MNEMONIC

MNEMONIC OP-~CODE FORMAT PAGE INSTRUCTION

A El (R) 57 ADD

ABS EO (R) 59 ABSOLUTE

AE Fl (R) 57 ADD EXTENDED

AEI D1 D) 58 ADD EXTENDED IMMEDIATE

Al Cl (D) 58 ADD IMMEDIATE

AIS 90 (R) B8 ADD IMMEDIATE SHORT

BALA 8A (BA) 42 BRANCH AND LINK ABSOLUTE

BALAX 8B (BA) 42 BRANCH AND LINK ABSOLUTE WITH EXECUTE

BALI &C (BI) 42 BRANCH AND LINK IMMEDIATE

BALIX &D (BI) 43 BRANCH AND LINK IMMEDIATE WITH
EXECUTE

BALR EC (R) 43 BRANCH AND LINK

BALRX ED (R) 44 BRANCH AND LINK WITH EXECUTE

BB 8E (BI) 45 BRANCH ON CONDITION BIT IMMEDIATE

BBR EE (R) 46 BRANCH ON CONDITION BIT

BBRX EF (R) 46 BRANCH ON CONDITION BIT WITH EXECUTE

BBX 8F (BI) 45 BRANCH ON CONDITION BIT IMMEDIATE
WITH EXECUTE

BNB 88 (BI) 47 BRANCH ON NOT CONDITION BIT IMMEDIATE

BNBR E8 (R) 48 BRANCH ON NOT CONDITION BIT

BNBRX E9 (R) 48 BRANCH ON NOT CONDITION BIT WITH
EXECUTE

BNBX 89 (BI) 47 BRANCH ON NOT CONDITION BIT IMMEDIATE
WITH EXECUTE

c B4 (R) 60 COMP ARE

CAL c8 (D) 37 COMPUTE ADDRESS LOWER HALF

CAL16 c2 (D) 37 COMPUTE ADDRESS LOWER HALF 16-BIT

CAS 6 xX) 38 COMPUTE ADDRESS SHORT

CAU D8 (D) 38 COMPUTE ADDRESS UPPER HALF

CAls F3 (R) 38 COMPUTE ADDRESS 16-BIT

CI D4 (D) 61 COMPARE IMMEDIATE

CIs 94 (R) 61 COMPARE IMMEDIATE SHORT

CL B3 (R) 62 COMPARE LOGICAL

CLI D3 (D) 62 COMPARE LOGICAL IMMEDIATE

CLRBL 99 (R) 69 CLEAR BIT LOWER HALF

CLRBU 98 (R) 69 CLEAR BIT UPPER HALF

CLRSB 95 (R) 84 CLEAR SCR BIT

cLzZ F5 (R) 75 COUNT LEADING ZEROS

D B6 (R) 65 DIVIDE STEP

DEC 93 (R) 39 DECREMENT

EXTS Bl (R) 63 EXTEND SIGN

INC 91 (R) 39 INCREMENT

IOR CB (D) 88 INPUT/OUTPUT READ

I0W DB (D) 89 INPUT/OUTPUT WRITE

JB 08-0F (JI) 44 JUMP ON CONDITION BIT

Appendix 176

JNB
L

LC
LCS
LH
LHA
LHAS
LHS
LIS
LM
LPS
LS

M
MC03
MC13
MC23
MC23
MC30
MC31
MC32
MF$S
MFTB
MFTBIL

MFTBIU

MTS
MTTB
MTTBIL

MTTBIU

NILO
NILZ
NIUO
NIUZ

()

OIL
oIu
ONEC

]

SAR
SARI
SARIl6

SE

SETBL
SETBU
SETSB

Appendix

IBM Confidential Restricted. DO NOT COPY

00~07
CD
CE

DA
CA

EB
A4
co
Do

E6
F9
FA
FB
FC
FD
FE
FF
96
BC
9D

9C

B5S
BF
9F

SE

E5
cé

C5

D6

D5

E3
ca
c3
Fa
E2
BO
AQ
Al

F2
9B
S9A
97

(4>
(D)
(D)
(D$)
(D)
(D
(DS)
(R)
(R)
(D)
(D)
(DS)
(R)
(R)
(R)
(R)
(R)
(R)
(R)
(R)
(R)
(R)
(R)

(R)

(R)
(R)
(R)

(R)

(R)
(D)

(D)
D)
D)

(R)
(D)
(D)
(R)
(R)
(R)
(R)
(R)

(R)
(R)
(R
(R)

46
33
31
31
32
32
31
32
39
33
85
33
67
51
51
52
52
52
53
53
84
53
54

54

83
54
55

55

71
71

71

72

72

72
73
73
59
63
76
77
77

64
70
70
85

JUMP ON NOT CONDITION BIT

LOAD

LOAD CHARACTER

LOAD CHARACTER SHORT

LOAD HALF

LOAD HALF ALGEBRAIC

LOAD HALF ALGEBRAIC SHORT

LOAD HALF SHORT

LOAD IMMEDIATE SHORT

LOAD MULTIPLE

LOAD PROGRAM STATUS

LOAD SHORT

MULTIPLY STEP

MOVE CHARACTER ZERO FROM THREE
MOVE CHARACTER ONE FROM THREE
MOVE CHARACTER TWO FROM THREE
MOVE CHARACTER THREE FROM THREE
MOVE CHARACTER THREE FROM ZERO
MOVE CHARACTER THREE FROM ONE
MOVE CHARACTER THREE FROM TWO
MOVE FROM SCR

MOVE FROM TEST BIT

MOVE FROM TEST BIT IMMEDIATE LOWER
HALF

MOVE FROM TEST BIT IMMEDIATE UPPER
HALF

MOVE TO SCR

MOVE TO TEST BIT

MOVE TO TEST BIT IMMEDIATE LOWER
HALF

MOVE TO TEST BIT IMMEDIATE UPPER
HALF

AND

AND IMMEDIATE LOWER HALF EXTENDED
ONES

AND IMMEDIATE LOWER HALF EXTENDED
ZEROES

AND IMMEDIATE UPPER HALF EXTENDED
ONES

AND IMMEDIATE UPPER HALF EXTENDED
ZERODES

OR

OR IMMEDIATE LOWER HALF

OR IMMEDIATE UPPER HALF

ONE'S COMPLEMENT

SUBTRACT

SHIFT ALGEBRAIC RIGHT

SHIFT ALGEBRAIC RIGHT IMMEDIATE
SHIFT ALGEBRAIC RIGHT IMMEDIATE
PLUS SIXTEEN

SUBTRACT EXTENDED

SET BIT LOWER HALF

SET BIT UPPER HALF

SET SCR BIT

177

SF

SFI
SIS

SL

SLI
SLI1é
SLP
SLPI
SLPI16

SR

SR1
SRIl6
SR,
SRPI
SRPI1é6

ST
STC
STCS
STH
STHS
STM
STS
sve
TGTE

TI
TLT
TSH
TWOC
WAIT

XIL
XIU

Appendix

IBM Confidential Restricted. DO NOT COPY

B2
D2
92
BA
AA
AB
BB
AE
AF

B8
A8
A9
B9
AC
AD

DD
DE

DC

D9

co
BD

cc
BE
CF
E4
Fo
E7
c7
D7

(R)
(D)
(R
(R)
(R)
(R)
(R)
(R)
(R)

(R)
(R)
(R)
(R)
(R)
(R)

(D)
(D)
(DS)
(D)
(DS)
(D)
(DS)
(D)
(R)

(D)
(R)
(D)
(R)
(R)
(R
(@)}
(D)

63
64
65
80
80
81
81
81
82

77
78
78
79
79
79

TGTE

49
50
34
60
86
73
74
74

SUBTRACT FROM

SUBTRACT FROM IMMEDIATE

SUBTRACT IMMEDIATE SHORT

SHIFT LEFT

SHIFT LEFT IMMEDIATE

SHIFT LEFT IMMEDIATE PLUS SIXTEEN
SHIFT LEFT PAIRED

SHIFT LEFT PAIRED IMMEDIATE

SHIFT LEFT PAIRED IMMEDIATE PLUS
SIXTEEN

SHIFT RIGHT

SHIFT RIGHT IMMEDIATE

SHIFT RIGHT IMMEDIATE PLUS SIXTEEN
SHIFT RIGHT PAIRED

SHIFT RIGHT PAIRED IMMEDIATE
SHIFT RIGHT PAIRED IMMEDIATE PLUS
SIXTEEN

STORE

STORE CHARACTER

STORE CHARACTER SHORT

STORE HALF

STORE HALF SHORT

STORE MULTIPLE

STORE SHORT

SUPERVISOR CALL

TRAP IF REGISTER GREATER THAN OR
EQUAL

TRAP ON CONDITION IMMEDIATE

TRAP IF REGISTER LESS THAN

TEST AND SET HALF

TWOS COMPLEMENT

WAIT

EXCLUSIVE OR

EXCLUSIVE OR IMMEDIATE LOWER HALF
EXCLUSIVE OR IMMEDIATE UPPER HALF

178

13.2 INSTRUCTION INDEX BY OP CODE

IBM Confidential Restricted. DO NOT COPY

OP-CODE MNEMONIC FORMAT PAGE INSTRUCTION

00-07 JNB JI) 46 JUMP ON NOT CONDITION BIT

08-0F JB (JI) 44 JUMP ON CONDITION BIT

1 STCS (DS) 34 STORE CHARACTER SHORT

2 STHS (DS) 35 STORE HALF SHORT

3 STS (DS) 36 STORE SHORT

4 LCS (DS) 31 LOAD CHARACTER SHORT

5 LHAS (DS) 31 LOAD HALF ALGEBRAIC SHORT

6 CAS xX) 38 COMPUTE ADDRESS SHORT

7 LS (DS) 33 LOAD SHORT

80-87 RESERVED

88 BNB (BI) 47 BRANCH ON NOT CONDITION BIT
IMMEDIATE .

89 BNBX (BI) 47 BRANCH ON NOT CONDITION BIT
IMMEDIATE WITH EXECUTE

8A BALA (BA) 42 BRANCH AND LINK ABSOLUTE

3B BALAX (BA) 42 BRANCH AND LINK ABSOLUTE
WITH EXECUTE

acC BALI (BI) 42 BRANCH AND LINK IMMEDIATE

&D BALIX (BI) 43 BRANCH AND LINK IMMEDIATE
WITH EXECUTE

8E BB (BI) 45 BRANCH ON CONDITION BIT IMMEDIATE

8F BBX (BI) 45 BRANCH ON CONDITION BIT IMMEDIATE
WITH EXECUTE

90 AIS (R) 58 ADD IMMEDIATE SHORT

91 INC (R) 39 INCREMENT

92 SIS (R) 65 SUBTRACT IMMEDIATE SHORT

93 DEC (R) 39 DECREMENT

94 CIs (R) 61 COMPARE IMMEDIATE SHORT

95 CLRSB (R) 84 CLEAR SCR BIT

96 MF$S (R) 84 MOVE FROM SCR

97 SETSB (R) 85 SET SCR BIT

98 CLRBU (R) 69 CLEAR BIT UPPER HALF

99 CLRBL (R) 69 CLEAR BIT LOWER HALF

9A SETBU (R) 70 SET BIT UPPER HALF

9B SETBL (R) 70 SET BIT LOWER HALF

SC MFTBIU (R) 53 MOVE FROM TEST BIT IMMEDIATE
UPPER HALF

9D MFTBIL (R) 54 MOVE FROM TEST BIT IMMEDIATE
LOWER HALF

SE MTTBIU (R) 55 MOVE TO TEST BIT IMMEDIATE
UPPER HALF

9F MTTBIL (R) 55 MOVE TO TEST BIT IMMEDIATE
LOWER HALF

A SARI (R) 77 SHIFT ALGEBRAIC RIGHT IMMEDIATE

Al SARI1S6 (R) 77 SHIFT ALGEBRAIC RIGHT IMMEDIATE
PLUS SIXTEEN

A2,A3 RESERVED

Ab LIS (R) 329 LOAD IMMEDIATE SHORT

A5-A7 RESERVED

Appendix

179

A8
AS
AA
AB
AC
AD

AE
AF

BO
Bl
B2
B3
B4
B5S
Bé
B7
B3
B9
BA
BB
BC
BD
BE
BF
co
Cl
c2
c3
C4
Cc5

Cé

c7
cs
c9
CA
CB
ccC
CD
CE
CF
Do
D1
D2
D3
D4
D5

D6

D7

Appendix

IBM Confidential Restricted.

SRI
SRI1l6
SLI
SLIlé6
SRPI
SRPI1é6

SLPI
SLPI1é

SAR
EXTS
SF
CL

c
MTS
D
RESERVED
SR
SRP
SL
SLP
MFTB
TGTE
TLT
MTTB
sve
Al
CAL1lS6
OIU
OIL
NILZ

NILO

XIL
CAL
LM
LHA
IOR
TI
L
LC
TSH
LPS
AEI
SFI
CLI
CI
NIUZ

NIUO

XIU

(R)
(R)
(R)
(R)
(R)
(R)

(R)
(R)

(R)
(R)
(R)
(R)
(R)
(R)
(R)

(R)
(R)
(R)
(R)
(R)
(R)
(R)
(R)
(D)
(D)
(D)
(D)
(D)
D)

(D)

(@1D]
(D)
(D)
(D)
(D)
(D)
(D)
(D)
(@]
(D)
(D)
(D)
(D)
(D)
(D)

(D)

(D)

78
78
30
81
79
79

81
82

76
63
63
62
60
33
65

77
79
80
81
53
50
50
54
87
58
37
73
73
71

71

74
37
33
32
838
49
33
31
34
85
58
64
62
61
72

72

74

DO NOT COPY

SHIFT RIGHT IMMEDIATE

SHIFT RIGHT IMMEDIATE PLUS SIXTEEN
SHIFT LEFT IMMEDIATE

SHIFT LEFT IMMEDIATE PLUS SIXTEEN
SHIFT RIGHT PAIRED IMMEDIATE
SHIFT RIGHT PAIRED IMMEDIATE

PLUS SIXTEEN

SHIFT LEFT PAIRED IMMEDIATE

SHIFT LEFT PAIRED IMMEDIATE

PLUS SIXTEEN

SHIFT ALGEBRAIC RIGHT

EXTEND SIGN

SUBTRACT FROM

COMPARE LOGICAL

COMP ARE

MOVE TO SCR

DIVIDE STEP

SHIFT RIGHT

SHIFT RIGHT PAIRED

SHIFT LEFT

SHIFT LEFT PAIRED

MOVE FROM TEST BIT

TRAP IF GREATER THAN OR EQUAL
TRAP IF LESS THAN

MOVE TO TEST BIT

SUPERVISOR CALL

ADD IMMEDIATE

COMPUTE ADDRESS LOWER HALF 16-BIT
OR IMMEDIATE UPPER HALF

OR IMMEDIATE LOWER HALF

AND IMMEDIATE LOWER HALF EXTENDED
ZEROES

AND IMMEDIATE LOWER HALF EXTENDED
ONES

EXCLUSIVE OR IMMEDIATE LOWER HALF
COMPUTE ADDRESS LOWER HALF

LOAD MULTIPLE

LOAD HALF ALGEBRAIC

INPUT/OUTPUT READ

TRAP ON CONDITION IMMEDIATE

LOAD

LOAD CHARACTER

TEST AND SET HALF

LOAD PROGRAM STATUS

ADD EXTENDED IMMEDIATE

SUBTRACT FROM IMMEDIATE

COMPARE LOGICAL IMMEDIATE

COMPARE IMMEDIATE

AND IMMEDIATE UPPER HALF EXTENDED
ZEROES

AND IMMEDIATE UPPER HALF EXTENDED
ONES

EXCLUSIVE OR IMMEDIATE UPPER HALF

180

D8
D9
DA
DB
DC
DD
DE
DF
EO
El
E2
E3
E4
EB
Eé
E7
E8
E9

EA
EB
EC
ED
EE
EF
Fo
F1
F2
F3
Fé
F5
F6—F8
Fo
FA
FB
FC
FD
FE
FF

Appendi x

IBM Confidential Restricted. DO NOT COPY

CAU

STM

LH

IOKW

STH

ST

STC
RESERVED
ABS

BNBR
BNBRX

RESERVED
LHS

BALR
BALRX
BBR

BBRX
WAIT

AE

SE

CAlé
ONEC

CLz
RESERVED
MCO03
MC13
MC23
MC33
MC30
MC31
MC32

(D)
(D)
(D)
(D)
(D)
(D)
(D)

(R)
(R)
(R)
(RD
(R)
(R)
(R)
(R)
(R)
(R)

(R)
(R)
(R)
(R)
(R)
(R)
(R)
(R)
(R)
(R)
(R)

(R)
(R)
(R)
(R)
(R)
(R)
(R)

38
36
32
89
35
36
35

59
57
63
72
60
71
67
73
48
48

32
43
44
46
46
86
57
64
38
59
75

51
51
52
52
52
53
53

COMPUTE ADDRESS UPPER HALF
STORE MULTIPLE

LOAD HALF

INPUT/OUTPUT WRITE

STORE HALF

STORE

STORE CHARACTER

ABSOLUTE

ADD

SUBTRACT

OR

TWOS COMPLEMENT

AND

MULTIPLY STEP

EXCLUSIVE OR

BRANCH ON NOT CONDITION BIT
BRANCH ON NOT CONDITION BIT WITH
EXECUTE

LOAD HALF SHORT

BRANCH AND LINK

BRANCH AND LINK WITH EXECUTE
BRANCH ON CONDITION BIT
BRANCH ON CONDITION BIT WITH EXECUTE
WATIT

ADD EXTENDED

SUBTRACT EXTENDED

COMPUTE ADDRESS 16-BIT

ONES COMPLEMENT

COUNT LEADING ZEROS

MOVE CHARACTER ZERO FROM THREE
MOVE CHARACTER ONE FROM THREE
MOVE CHARACTER TWO FROM THREE
MOVE CHARACTER THREE FROM THREE
MOVE CHARACTER THREE FROM ZERO
MOVE CHARACTER THREE FROM ONE
MOVE CHARACTER THREE FROM THO

181

IBM Confidential Restricted.

13.3 PRIVILEGED INSTRUCTIONS

DO NOT COPY

MNEMONIC OP-CODE FORMAT PAGE INSTRUCTION

CLRSB 95 (R) 84 CLEAR SCR BIT

LPS DO (D) 85 LOAD PROGRAM STATUS
MF$S 96 (R) 34 MOVE FROM SCR

MTS B5S (R) 83 MOVE TO SCR

SETSB 97 (R) 85 SET SCR BIT

WAIT FO (R) 86 WAIT

Notes: 1. Clear SCR Bit (CLRSB), Move From SCR (MFS), Move

Appendix

To SCR (MTS), and Set

SCR Bit (SETSB) are

privileged if the referenced SCR is the Counter

Source (SCR 6), Counter

(SCR7), Timer Status

(SCR8), Machine Check Status (SCR 11), Program

Check Status (SCR 11),

Interrupt Request Buffer

(SCR 12), Instruction Address Register (SCR 13), or
the Interrupt Control Status (SCR 14). Clear SCR

Bit (CLRSB), Move From

SCR (MFS), Move To SCR

(MTS), and Set SCR Bit (SETSB) are non-privileged
if the referenced SCR 1is the Multiplier Quotient
(SCR 10), or the Condition Status (SCR 15).

182

-

13.4

IBM Confidential Restricted. DO NOT COPY

ILLEGAL BRANCH WITH EXECUTE SUBJECT INSTRUCTIONS

AND LINK ABSOLUTE WITH EXECUTE

IMMEDIATE

WITH EXECUTE
IMMEDIATE

BIT IMMEDIATE
BIT
BIT WITH

BIT IMMEDIATE

MNEMONIC OP-CODE FORMAT PAGE INSTRUCTION
BALA 8A (BA) 42 BRANCH AND LINK ABSOLUTE
BALAX 8B (BA) 42 BRANCH
BALI 8C (BI) 42 BRANCH AND LINK IMMEDIATE
BALIX 8D (BI) 43 BRANCH AND LINK IMMEDIATE WITH
EXECUTE
BALR EC (R) 43 BRANCH AND LINK
BALRX ED (R) 44 BRANCH AND LINK WITH EXECUTE
BB. 8E (BI) 45 BRANCH ON CONDITION BIT
BBR EE (R) 46 BRANCH ON CONDITION BIT
BBRX EF (R) 46 BRANCH ON CONDITION BIT
BBX &F (BI) 45 BRANCH ON CONDITION BIT
WITH EXECUTE
BNB 88 (BI) 47 BRANCH ON NOT COMDITION
BNBR E8 (R) 48 BRANCH ON NOT CONDITION
BNBRX ES (R) 48 BRANCH ON NOT CONDITION
EXECUTE
BNBX 89 (BI) 47 BRANCH ON NOT CONDITION
WITH EXECUTE
JB 08-0F (JI) 44 JUMP ON CONDITION BIT
JNB 00-07 JI) 46 JUMP ON NOT CONDITION BIT
LPS Do (D 85 LOAD PROGRAM STATUS
sve co (D) 87 SUPERVISOR CALL
TGTE BD (R) 50 TRAP IF REGISTER GREATER THAN OR
EQUAL
TI cc (D) 49 TRAP ON CONDITION IMMEDIATE
TLT BE (R) 50 TRAP IF REGISTER LESS THAN
WAIT FO (R) 86 WAIT

Appendix

183

IBM Confidential Restricted. DO NOT COPY

13.5 ROMP_SYSTEM SUPPORT SOFTWARE

This section gives a brief description of the system support
software for ROMP and the documentation available. Documentation
described in this section can be obtained from Susan Strachan,
Dept. 540, Bldg. 045, Austin, TX.

13.5.1 PL.8 Compiler

The PL.3 compiler is an optimizing compiler for a PL/I variant--a
full high-level language designed to be suitable for both general
applications and systems programming. Many inherently inefficient
constructions of the PL/I language have been eliminated or
modified so that the language can be compiled to efficient object

code. The compiler incorporates state-of-the-art graph-flow
analysis techniques which have not heretofore been implemented in
a compiler. The compiler is very effective--it generates code

which is only about 10% larger than well-tuned assembly code for
sizeable modules. The compiler is at release-level reliability.

Documentation:
Online SCRIPT file PLBREF -—~ PL.8 Language Reference Manual
Online SCRIPT file PL8GUIDE ~~ PL.8 CMS User's Guide

Online SCRIPT file PLBLANG -- PL.8 Language Specifications
Online SCRIPT file PL8BNF —— PL.8 BNF Syntax Diagrams

13.5.2 PASCAL Compiler

The PASCAL compiler offers an alternative high-level language for
the application programmer. The language’s flexible data
structures and well structured program control make PASCAL a very
pouwerful tool suitable for most applications. The language was
implemented according to PASCAL: USER MANUAL AND REPORT by Niklaus
Wirth and Kathleen Jensen (Springer-Verlag: New York, 1974) wWith
extensions to allow separate module compilation and 1linkage
similar to that of PASCALVS.

The PASCAL compiler is the existing PL.8 compiler with a separate
front end, thus it also produces efficient object code. This also
allows free intermixing of PL.8 and PASCAL programs with shared
support routines.

Documentation:

Online SCRIPT file PASCAL8 -~ Pascal Language Reference Manual

Appendix 184

IBM Confidential Restricted. DO NOT COPY

13.5.3 C Compiler

The C compiler is in development and should be available 2Q84.
The 1language is based on the C language described in “The C
Programming Language™ by Brian W. Kernighan and Dennis M. Ritchie.

12.5.4 ROMP_ Development System

Most of the ROMP software tools can run on ROMP/ROSETTA based
harduare. The CPR operating system provides a multi-tasking,
multiple virtual address space, programming environment with a
VM/370 CMS-like file system and application environment. Support
tools include the PL.8 compiler, the binder, and symbolic
debugger. An editor, an EXEC interpreter, and file system
utilities (erase, copy, rename, etc.) are alse provided.

Documentation:

Online SCRIPT file RDSGUIDE —- ROMP Development System Users Guide

13.5.5 PL.8 Source Level Debugger

The source level debugger allows a programmer to debug PL.8 code
at the source level. The debugger supports stop on a PL.8
statement, statement single step, variable inspection, and
altering of variables. The debugger runs on CMS and CPR.

Documentation:

Online SCRIPT file PL8DEBUG -~ PL.8 Source Level Debugger
Documentation

13.5.6 PL.8 Machine-Level Program Analysis Tool

This program works in conjunction with the PL.8 Source Level
Debugger and provides the following functions:

. Supplies low level machine dependent debugging mechanisms to
the Source Level Debugger.

L3 Provides a consistent command environment for the end user
debugging at a lower level.

Documentation:

Appendix 185

IBM Confidential Restricted. DO NOT COPY

Online SCRIPT file DEBUGM —— PL.8 Machine Level Program Analysis
Tool

13.5.7 PL.8 Source And Design Code Formatter

This is a collectien of programs to support system design and
software development. The following functions are currently
supported or under development:

1. Source code formatting.

2. Design code specification.

3. Design code extractor.

4. A STARCHART generator.

E. XEDIT macros that provide templates for PL.8 language
constructs.

Online documentation will be available.

13.5.8 PL.8 Macro Pre—processor

The PL.8 Macro Pre-processor (PL.8MP) provides the compile-time
macro capabilities of the PL/S III compiler macro pre-processor.
One extension made allows INCLUDE statements within macro
definitions. The macro pre-processor also supports a format
option that re-formats a PL.8 file to a PL/S III form.

Documentation:

Online SCRIPT file PL8MP —- Differences between PL.8MP and PL/S
111
Online SCRIPT file PL8MPLR -- PL.8MP Language Reference Manual

12.5.9 ROMP Assembler

The ROMP Assembler is a full macro assembler for ROMP based on the
HSK Assembler. It is a cross—assembler which runs on VM/370.

Documentation:

Printed Manual - ROMP Assembler Language Manual

Appendi x 186

IBM Confidential Restricted. DO NOT COPY

13.5.10 ROMP Simulator

The ROMP Simulator is a high performance simulator that runs on
VM/370.

Documentation:

Online SCRIPT file RSIMINT —- Method of simulator operation.
CONSOLE RSIM --Self Documented EXEC that provides the user
interface.

3
123.5.11 Program Binder For ROMP

The binder takes program text files as produced by the assemblers
and compilers and binds them together into one or more programs.
These output programs can then be loaded by a suitable relocatable
loader. The Binder insures that parameters and arguments of
external procedures have been declared the same.

Documentation:

Online SCRIPT file TOCBIND —— Description of the ROMP binder.

13.5.12 ROMP Hardware Development System

The Hardware Development System runs on the Series 1 or IBM PC and
provides an interface to ROMP via the LSSD scan strings. This
software provides the functions described in "Support Processor
Facilities™ on page 142. In addition to the software for the
Series 1 or IBM PC, interface 1logic is provided for connection to
the ROMP scan strings. Information on the Hardware Development
System can be obtained from: Tom MWhiteside, Dept. F61, Bldg. 045,
Austin, TX.

12.5.13 Program Development Library (PDL) Interface

Interface EXECs which integrate the PL.8 compiler, ROMP assembler,
and binder into the PDL library system are described in the online
file: PDLPL8 SCRIPT.

Appendix 187

IBM Confidential Restricted. DO NOT COPY

13.5.14 RTIMER Simulator

The RTIMER Simulator provides performance analysis of specific
ROMP system configurations, using specific instruction sequences.
Input to the RTIMER Simulatoer consists of a definition of the
system configuration (ROMP <cycle time, storage organization,
storage speed, etc.) and a user supplied trace tape of
instructions to be executed. The trace tape is produced by the
ROMP Simulator. Output from the RTIMER Simulator 1lists the
overall performance and detailed analysis of operations during
each simulation cycle.

13.6 ROMP SYSTEM HARDWARE REFERENCES

This section gives a brief description of the various harduware
support documents available describing the ROMP hardware
characteristics and interfaces.

13.6.1 ROMP Enqineering Specification

The electrical and environmental characteristics are described in
the ROMP ENGINEERING SPECIFICATION (ROMP E-SPEC). The ROMP E-SPEC
can be obtained from: Pete Mc Cormick, Dept. N55 Bldg. 967-2,
Burlington, VT.

13.6.2 ROMP Scan String Definition

The ROMP scan strings are defined in the ROMP Scan String
Document, which can be obtained from: Mike Johnson, Dept. F60,
Bldg 045, Austin, TX.

13.6.3 Support Processor Interface

The Support Processor Interface document defines a suggested
standard interface between ROMP and a support processor, and can
be obtained from: Tom Whiteside, Dept. F60, Bldg 045, Austin, TX.

Appendix 188

IBM Confidential Restricted. DO NOT COPY

13.6.4 ROMP AC Hardware Characterization Plan

This document describes the test strategy and detailed test plan
leading to ROMP qualification (T2). In addition, this document
contains various sections which describe the internal operation of
ROMP. Copies of the ROMP AC Hardware Characterization Plan can be
obtained from: Kanti Shah, Dept. Fé60, Bldg 045, Austin, TX.

Appendi x 189

IBM Confidential Restricted. DO NOT COPY

End Of
Document

Appendix 190

	00001
	00002
	00003
	00004
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190

