
IBM Confidential Restricted. DO NOT COPY

IBM CONFIDENTIAL-RESTRICTED DO NOT COPY

•••••••••••• • ••••••• • • • •••••••••••
• • • • • • • • • •
• • • • • • • • • •
• • • • • • Iii • • •
•••••••••••a • • • • • ••••••11•••••
• • • • • • •
• • • • • • •
• • • • • • •
• • •••••••• • • •

FUNCTIONAL SPECIFICATION
December l ' 1983

E.C.# A07313
p. N. 6080439

IBM Confidential Restricted. DO NOT COPY

IBM CONFIDENTIAL-RESTRICTED DO NOT COPY

•••••••••••• •••••••• • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
•••••••••••• • • • • • • •••••••••••
• • • • • • •
• • • • • • •
• • • • • • •
• • •••••••• • • •

FUNCTIONAL SPECIFICATION
December 1, 1983

E.C.# A07313
P.N. 6080439

IBM Confidential Restricted. DO NOT COPY

ROMP Functional Specification
December 1, 1983

This document contains information of a proprietary nature
and is classified IBM CONFIDENTIAL-RESTRICTED and may not be
reproduced. No information contained herein shall be
divulged to persons other than IBM employees authorized by
the nature of their duties to receive such information.

Copy Assigned to

I certify that the attached document has been disposed of by
established IBM Confidential security procedures.

Signature Date

When you receive an updated level of this document, you are
required to return only this cover page to the address shown
below.

Tom Whiteside
F61/045
Austin, Tx
T. L. 678-9791

Document Printed July 25, 1984

COPY

ROMP Functional Specification

Document Number 6080439

December 1, 1933

Tom Whiteside

IBM Entry Systems Division
Dept. F61 Bldg. 045

11400 Burnet Road
Austin, TX 78758

Tie Line 678-9232

IBM Confidential Restricted. DO NOT COPY

D COPY

ROMP Functional Specification

Document Number 6080439

December 1, 1983

Tom Whiteside

IBM Entry Systems Division
Dept. F61 Bldg. 045

11400 Burnet Road
Austin, TX 78758

Tie Line 678-9232

IBM Confidential Restricted. DO NOT COPY

IBM Confidential Restricted. DO NOT COPY

CONTENTS

l. 0
1.1
1. 2
1.3
1.4
1.5
1. 6

Introduction l
Document Overview
ROMP Objectives
ROMP Processor Highlights
Programming Support Overview
Hardware Documentation Overview
Signal Naming Conventions •••.

2.0 System Organization And Control
2.1 Main Storage • • • • • • ••••••••
2.2 Storage Channel

. . l
. l
• 1

. 3
• 3
. 4

• • 5
. 5
• 7
• 7 2.3 Programmed I/O •.•.

2.4 Processor • • • 7

2.5 Processor States
2.5.l Executing, Wait, Check Stop, and Stopped State
2.5.2 Problem and Supervisor States

• 7
7

• 8
2.6 General-Purpose Registers • . • • . • • • • • • 9
2.7 System Control Registers • . • • . . • • . • • 9

2.7.l Counter Source, Counter, and Timer Status 12
2.7.2 Multiplier Quotient • • • . • . • • . • 12
2.7.3 Machine Check Status and Program Check Status 12
2.7.4 Interrupt Request Buffer 12
2.7.5 Instruction Address Register •••••
2.7.6 Interrupt Control Status
2.7.7 Condition Status ••••

2.8 System Timer Facility
2.8.l Counter ••.•
2.8.2 Counter Source
2.8.3 Timer Status
2.8.4 Programming Note: System Timer Operation

2.9 Interrupts • • • • • • •.••
2.9.l Processor Priority •••••••

2.9.l.l Interrupt Request Priority
2.9.l.2 Interrupt Priority Assignment

2.9.2 Point of Interrupt • • • • • ••••••••
2.9.3 Error Handling •••••••
2.9.4 Program Status ...••••••

2.9.4.l Old/New Program Status Pairs
2.9.4.2 Location of Old/New Program Status Pairs

2.9.5 System Control Registers
2.9.5.l Interrupt Request Buffer
2.9.5.2 Interrupt Control Status

2.9.6 Occurrence of Interrupts ••••
2.9.7 Programming Note: Interrupt Facility
2.9.8 Programming Notes: Interrupt Servicing

3.0 Instruction Set
3.1 General Description
3.2 Storage Access ••••

3.2.l Load Instructions

Contents

12
13
13
14
15
15
15
16
17
18
19
19
19
19
20
20
20
20
21
21
22
22
23

26
26
30
31

;;

IBM Confidential Restricted. DO NOT COPY

3.2.2 Test and Set Instruction
3.2.3 Store Instructions

3.3 Address Computation
3.4 Branching ••.•••

3.4.1 Branch And Link Instructions
3.4.2 Conditional Branches ••••

3.5 Traps ••••••....
3.6 Moves and Inserts ••••

3.6.1 Move Character Instructions ••••
3.6.2 Move To And From Test Bit Instructions

3.7 Arithmetic ••.•••..••••
3.7.l Add Instructions ••..
3.7.2 Absolute Instruction
3.7.3 Complement Instructions
3.7.4 Compare Instructions
3.7.5 Extend Sign Instruction
3.7.6 Subtract Instructions •••••
3.7.7 Divide And Multiply Step Instructions

3.8 Logical Operations .••••••.••••
3.8.l Clear And Set Bit Instructions ••••
3.8.2 AND Instructions
3.8.3
3.8.4

OR Instructions
Exclusive OR Instructions

3.8.5 Count Leading Zeroes Instruction
3.9 Shifts ••••••••••••••••

3.9.l Shift Algebraic Right Instructions
3.9.2 Shift Right Instructions
3.9.3 Shift Left Instructions

3.10 System Control .•••••
3.10.l Move To And From SCR Instructions
3.10.2 Clear And Set SCR Bit Instructions
3.10.3 Load Program Status Instruction ••••
3.10.4 Wait Instruction •••.••••••••
3.10.5 Supervisor Call Instruction ••••

3.11 Input/Output ••••

4.0 INPUT/OUTPUT Facility
4.1 I/O Capability ••••

4.1.1 Programmed I/O ••••••••
4.1.2 Privileged I/O Device Connection ••••
4.1.3 I/O Interrupt Requests

5.0 ROMP Storage Channel • • • • • • • . • • •••
5.1 General Description • • • • • • • • • . •••
5.2 Storage Channel Definition ••••.••••

5.2.l Address And Data Bus .•••
5.2.2 Tag Bus • • • • • .••
5.2.3 Control Signals
5.2.4 Address Extension Bus
5.2.5 RSC Clocks

5.3 RSC
5. 3. 1
5.3.2
5.3.3

Contents

Signal Definitions
Address/Data Bus Definition
Tag Bus Definition •••••
Address Extension Bus Definition

34
34
37
40
42
44
49
51
51
53
56
57
59
59
60
62
63
65
69
69
71
72
73
75
76
76
77
80
83
83
84
85
86
87
88

90
90
90
90
91

92
92
95
95
95
95
96
96
97
97
98
99

i i i

5.3.4
5.4 Bus

5.4.l
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6

IBM Confidential Restricted. DO NOT COPY

Storage Channel Clocking
Operation
Data Alignment
Bus Arbitration
Read Request
Write Request
Error Handling
Idle Mode .•••

5.4.7 Reset •Q·.

5.4.8 Illegal ACKD/NAKD Responses
5.4.9 Engineering Note: ROMP Response To Illegal

100
• 101

• • • 101
102

• • • 1 03
• 105
. 106

107
• 107

107

ACKD/NAKD Responses •••••••••••••••• 108
5.4.10 Hold Time-Out Counter ••••.••.•••• 108
5.4.11 Storage Protection and Address Translation • 109

5.5 Storage Channel I/O Pin Summary •••••.••. 110
5.5.1 Storage Channel I/O Pin Summary for Processor
5.5.2 Storage Channel Pin Summary for a Typical RSC

110

Component • • . . . • • • • • . • . • • 111
5.6 ROMP Storage Channel Timing Relationships . 111

6.0 Initialization
6.1 Power-on Reset

6.1.l Processor and System Reset
6.1.2 Register Initialization And Diagnostics
6.1.3 Fail Pin State •••.

6.2 Program Initialization •••••
6.2.l Initial Program Load
6.2.2 IAR Load .••••
6.2.3 Engineering Notes: Initialization

• 117
117

• 117
118

• 118
• 118

• • • 119
• • 119

• • • 119

7.0 Reliability, Availability, and Serviceability •• 121
7.1 RAS Facilities ••••••••••.••••••• 121
7.2 System Error Detection and Reporting •• 121

7.2.l Internal Diagnostics • • . • • • • 121
7.2.2 Machine-Check Errors • • • • • • • • 121

7.2.2.l Machine-Check Error Handling ••••••• 122
7.2.2.2 Machine-Check Status • • • • • • •• 122

7.2.3 Engineering Note: RSC Retry •••••• 123
7.2.4 Program-Check Errors • • • • • ••••• 124

7.2.4.1 Program-Check Error Handling ••.•••• 124
7.2.4.2 Program-Check Status • • • • • • 125
7.2.4.3 Programming Note: Instruction Restart •• 126

7.2.5 Simultaneous Program Check and Machine Check
Errors • • • • • • • • • • • •

7.3 Multiple Occurrence of Errors

8.0 Multiprocessor System
8. 1
8.2

General Description •.•••.
Test & Set Instruction Operation

• 128
• • 129

• • • 130
130

• • 130
8.3 Multiprocessor System Interconnection 130

9.0 Storage Controller Functions • • • • • 134
9.1 Storage Protect and Address Translation Overview 136
9.2 Storage Protect . • • . • • • . . • • . . • • • 137

Contents iv

IBM Confidential Restricted. DO NOT COPY

9.3

10.0
10.l
10.2

Address Translation

Processor Support Functions
Front Panel Support •••••
Support Processor Facilities

11.0 Performance
11.l Branch Hold-off

Branch and Execute Hold-off
Load Instruction Hold-off
I/O Read Hold-Off . • • • •

140

• 142
•• 142
.• 142

••• 144
144

• 146
• 146

• ••• 147

11. 2
11. 3
11. 4
11.5
11. 6
11. 7
11. 8
11. 9
11. l 0
11. l l
11. 12

Storage Protect And Address Translation Hold-Off 148
Tag Hold-Offs . • • . . . • • . • • 149
t,rterrupts • • • • . . • • • • • 149
System Timer • • • • • •• 149
Bus Capacity • • 150
Selection of Processor Cycle Time
Program Performance
Performance Measurement

12.0 Hardware Description
12.l Romp Chip Interfaces

12.1.l ROMP Storage Channel
12.l.l.l RSC Address and Data Bus
12.l.l.2 RSC Tag Bus ..•.
12.1.l.3 RSC Address Extension Bus

• 150
151

• 153

• 159
• 159

. • • 16 0
• • • • 161
• • • • 162

• 162
12.l.l.4 Exception • • . . • • • • • • . • • 163
12.l.l.5 RSC Acknowledge and Not Acknowledge • 163
12.l.l.6 RSC Arbitration • • • • • • • 163
12.l.l.7 Hold RSC • • • • • • • • • • •• 166

12 .1. 2 Clocks
12.l.3 Power •••.••
12.l.4 Interrupt Inputs
12.l.5 ROMP Controls

12.1.5.l IPL Ready
12.1.5.2 IPL Complete
12.1.5.3 Fail ••••
12.1.5.4 Instruction Complete ••••
12.1.5.5 Sync ••••••••••••.
12.1.5.6 Stop • • • • . ••••
12.1.5.7 Timer Clock •••••
l 2 . l . 5 • 8 Wai t • • • • • • • • •
12.1.5.9 Chip In Place ••••
12.1.5.10 Scan Gate

12.l.6 Scan Inputs and Scan Outputs
12.2 ROMP Chip Pin Assignment
12.3 Processor Signal Description

13.0 Appendix •.••••
13.l Instruction Index By Mnemonic ••••
13.2 Instruction Index by Op Code

•• 166
166
167

• • • • 168
• • • • 168
• • • • 168

• • 168
• 169

• • • 169
• 169
• 169

• • • • 170
• • • • 170

• • • 170
• 170

• • 171
• 172

• • • • 176
• •• 176

• 179
13.3 Privileged Instructions •• 182
13.4 Illegal Branch With Execute Subject Instructions 183
13.5 ROMP System Support Software . • • . . • • • . • 184

Contents v

IBM Confidential Restricted. DO NOT COPY

13.5.1 PL.8 Compiler
13.5.2 PASCAL Compiler
13.5.3 C Compiler ••••
13.5.4 ROMP Development System
13.5.5
13.5.6
13.5.7
13.5.8
13.5.9
13.5.10
13.5.11
13.5.12
13.5.13
13.5.14

PL.8 Source Level Debugger
PL.8 Machine-Level Program Analysis Tool
PL.8 Source And Design Code Formatter
PL.8 Macro Pre-processor
ROMP Assembler •..•

ROMP Simulator ••••
Program Binder For ROMP
ROMP Hardware Development System
Program Development Library <PDL>
RTIMER Simulator ..••••

Interface

184
184

• 185
185
185
185
186

• 186
• 186

187
• 187

187
187

• 188
13.6 ROMP System Hardware References 188

13.6.l ROMP Engineering Specification • • • • 188
13.6.2 ROMP Scan String Definition • • • • 188
13.6.3 Support Processor Interface ••• 188
13.6.4 ROMP AC Hardware Characterization Plan 189

Contents vi

IBM Confidential Restricted. DO NOT COPY

LIST OF ILLUSTRATIONS

Figure 1. ROMP System 6
Figure 2. Data Units in Main Storage 6
Figure 3. General Purpose Registers 10
Figure 4. System Control Registers 11
Figure 5. Old/New Program Status Pair 24
Figure 6. Program Status Save Area 25
Figure 7. Instruction Formats 29
Figure 8. RSC Transfers 93
Figure 9. Typical RSC Configuration 94
Figure 10. Tag Definition 100
Figure 11. RSC Clock Timing . 101
Figure 12. Bus Arbitration Timing . 103
Figure 13. Read Request 104
Figure 14. Write Request 106
Figure 15. Signal Definitions . 112
Figure 16. RSC Cycles One Through Three . . . 113
Figure 17. RSC Cycles Four Through Six . . 114
Figllre 18. RSC Cycles Seven Through Nine . . . 115
Figure 19. RSC Cycles Ten Through Twelve . . . 116
Figure 20. Program Check Errors With Storage Protect And

Address Translation Disabled 127
Figure 21. Program Check Errors With Storage Protect Or

Address Translation Enabled 128
Figure 22. Multi-Processor Connection Via Common Storage 132
Figure 23. Multi-Processor Connection Via Bus Coupler 132
Figure 24. Multi-Processor Connection Via Communications

Link . 133
Figure 25. Storage Controller Timing With Fast Storage 134
Figure 26. Storage Controller Timing With Slow Storage 135
Figure 27. Storage Controller Timing With ECC 136
Figure 28. Typical Storage Protect Assignments 139
Figure 29. Storage Controller Timing With Address

Translation 141
Figure 30. Fetch Timing For New Instruction Stream

Following A Successful Branch . 145
Figure 31. Load Instruction Timing 147
Figure 32. Load and Store Instruction Timing With

Storage Protect or Address Translation
Enabled 148

Figure 33. ROMP Module Signals 160
Figure 34. RSC Transfers 162
Figure 35. Typical RSC Configuration 165
Figure 36. Clock Timing 167
Figure 37. ROMP Module Footprint <Bottom View> . 171

List of Illustrations vi i

IBM Confidential Restricted. DO NOT COPY

1.0 INTRODUCTION

1.1 DOCUMENT OVERVIEW

This document is the functional specification for the ROMP
processor. Information pertaining to the ROMP processor's
organization, its instruction set, its I/O capabilities, and its
RAS facilities are contained in this document. Other documents
are listed in the Appendix which provide additional detailed
hardware and software information.

1.2 ROMP OBJECTIVES

1. Provide an architected address space of 32-bits.
24-bit or 32-bit addressing mode).

<Choice of

2. Provide high performance with fast or slow storage <three MIPS
typical with 200 nsec storage>.

3. Provide the capability for dynamic address translation.

4. Provide system integrity through the use of storage protect
and problem/supervisor states.

5. Provide an efficient target for the PL.8 Compiler.

6. Low power dissipation.

7. Improved debug facilities for IBM products.

1.3 ROMP PROCESSOR HIGHLIGHTS

The ROMP processor architecture provides comprehensive facilities
for support of many different IBM products. The highlights of the
ROMP processor are described here.

The ROMP processor provides 32-bit storage addresses which permits
up to 4.3 gigabytes of main storage to be directly accessed. Both
instructions and data are contained in main storage.

The address of data in main storage is computed from two values, a
base and a displacement, at the time the data is accessed. When
data is arranged in blocks, a single base register permits
accessing the entire block. Base/displacement addressing allows
address field abbreviation in instructions. A base register

Introduction l

IBM Confidential Restricted. DO NOT COPY

permits the instructions which access the data in main storage to
be independent of the location of the data.

The processor provides sixteen 32-bit general purpose registers,
which are not part of main storage. All arithmetic and logical
functions are performed on the general purpose registers which may
also function as base registers for base/displacement addressing.
The only data operations provided on main storage are loading of
data from main storage into a general purpose register and storing
of data into main storage from a general purpose register.

The processor also provides sixteen 32-bit system control
registers. The system control registers contain the current
status of the system. All system control registers may be
inspected by the program, and several also can be explicitly
modified by the program.

The instruction set includes instructions for accessing storage,
arithmetic and logical computations, program and system control
including branching, and input/output. An instruction is either
two or four bytes in length. The instruction set has been
tailored for performance, storage efficiency and function, and has
been demonstrated to give high performance in spite of its
simplicity.

The ROMP processor supports dynamic address translation in the
storage controller. This feature allows a large virtual address
space to be mapped into smaller physical address space. ROMP
provides an exact interrupt mechanism that allows the processor
state to be saved when a storage exception condition occurs. The
processor state can then be reloaded after the exception has been
handled, and execution of the program continued.

ROMP provides a supervisor state in which all instructions are
valid, and a problem state in which only instructions that cannot
be used to affect system integrity are valid. ROMP also provides
a storage protect mechanism that allows address checking to be
implemented in the storage controller. These two features insure
that system integrity can be maintained at all times.

The ROMP processor provides a priority interrupt structure. An
interrupt at a high priority level preempts ongoing activity at a
lower priority level. When an interrupt occurs, only the basic
processor status is changed. This primitive status switching
permits the flexible programming of dispatching mechanisms.

Two levels of input/output support are provided. For low
performance data transfer, programmed I/O <PIO> is synchronous to
the issuing program. For high performance data transfer, direct
memory access <DMA> permits transferring of data asynchronously to
the program.

The ROMP processor implements a high-performance, 32-bit storage
channel called the ROMP Storage Channel <RSC>. The RSC supports

Introduction 2

IBM Confidential Restricted. DO NOT COPY

the high data rate needed for instruction execution, and can also
be used for high-speed I/O devices.

The ROMP processor provides facilities for logging errors in the
system. The logged information can be used as a basis for
isolation of a failing component.

1.4 PROGRAMMING SUPPORT OVERVIEW

The ROMP processor was designed to be an efficient target for the
PL.8 high-level language. PL.8 is a derivative of PL/I and has
been demonstrated to be well suited to systems programming needs.
The compiler for PL.8 uses program flow optimization techniques
which produce efficient code in terms of both storage and
performance. The high-level language provides improved programmer
productivity, quality of code, and migratability of code. It is
expected that all but a small percentage of the code for ROMP
processors will be written in PL.8.

Other programming aids include an assembly language simulator, a
ROMP assembler, and linkage editor which assist the programmer in
checking and documenting programs, in controlling address
assignment, in segmenting a program, in data and symbol
definition, in generating macro instructions, and in controlling
the assembler itself.

"ROMP System Support Software" on page 184 contains a summary of
support software status and lists available documentation.

1.5 HARDWARE DOCUMENTATION OVERVIEW

The ROMP Functional Specification is designed to provide an
architectural description of the ROMP processor, and the ROMP
Storage Channel. In addition, it is intended to provide a general
description of how the ROMP processor can be employed in various
system configurations, and to provide references to additional
documentation concerning the detailed electrical and environmental
characteristics of the ROMP chip, the ordering of internal
registers in the ROMP processor, and a suggested support processor
interface definition. The various documents describing these
detailed aspects of the ROMP processor are included in "ROMP
System Hardware References" on page 188.

Introduction 3

IBM Confidential Restricted. DO NOT COPY

1.6 SIGNAL NAMING CONVENTIONS

The terms active and inactive are used throughout this document to
describe the state of various signals. All signal names <i.e.
+DALOO, +EXCEPTION, -REQIO, etc.) are preceded by a+ or If
the signal name is preceded by a +, an active state is a voltage
level of +2.4 volts or greater, and an inactive state is a voltage
level of +0.8 volts or less. If the signal name is preceded by a
-, an active state is a voltage level of +0.8 volts or less, and
an inactive state is a voltage level of +2.4 volts or greater.

Introduction 4

IBM Confidential Restricted. DO NOT COPY

2.0 SYSTEM ORGANIZATION AND CONTROL

A ROMP system consists functionally of a ROMP , main storage, a
bus converter, input/output devices, and possibly a direct memory
access CDMA> controller, depending upon I/O device requirements.
RSC devices may reference storage without processor involvement.
This structure shown in Figure 1.

2.1 MAIN STORAGE

The ROMP system provides directly addressable main storage for
data and instructions.
in Figure 2 on page 6.

The data units in main storage are shown

Up to 4.3 gigabytes of main storage may be directly addressed.
Main storage is organized as a sequence of 32-bit words, each
consisting of four 8-bit bytes. Bytes in main storage are
consecutively numbered, left to right, starting with zero. Each
number is considered the address of the corresponding byte. All
addresses are computed as byte addresses. The address of a word
has zeros in the two low-order bits. The address of a halfword
has one zero in the low-order bit. Instructions must be located
on halfword boundaries.

All storage effective addresses Cbase address plus displacement>
are computed as 32-bit quantities. Wrap around is allowed and
occurs on a 32-bit basis, i.e., main storage addressing wraps
around from the architectural maximum byte address of
4,294,967,295 to address O. This implementation of ROMP supports
both 24-bit and 32-bit addressing. Systems which do not require
virtual addressing can select the 24-bit addressing mode where the
high-order byte of the 32-bit effective address is checked to be
zero. A non-zero high-order byte in the effective address will
cause a program check condition. Virtual address systems can
select the 32-bit addressing mode which disables checking of the
upper-byte.

System Organization And Control 5

IBM Confidential Restricted. DO NOT COPY

Main Special
Storage High Speed ROMP

Device

_,

ROMP Storage Channel

Bus
Converter

I/O Bus

DMA
I/O Device I/O Device Controller

Figure 1. ROMP System

0 8 16 24 31 Bits

0 I l 2 I 3 Characters/Bytes

UPPER HALF LOWER HALF Half Words

0 Register Image

Word

Figure 2. Data Units in Main Storage

System Organization And Control 6

IBM Confidential Restricted. DO NOT COPY

2.2 STORAGE CHANNEL

ROMP's storage channel provides a 32-bit plus four parity bits
wide synchronous bus which cycles at twice the processor cycle
rate. The purpose of the channel is to enhance processor
performance by having a bus dedicated to processor and storage
transfers. All data and addresses transferred on the channel are
multiplexed on the 32 address/data lines. An optional address
extension bus consisting of 8 address lines plus parity is
provided for systems using 32-bit addressing. Devices connected
to the storage channel are identified by a five-bit tag identifier
that devices put on the storage channel simultaneously with their
requesb· Arbitration is accomplished by using a linear
arbitration mechanism with devices connected in a daisy chain.
For more information see "ROMP Storage Channel" on page 92.

2.3 PROGRAMMED I/O

Programmed I/O is allowed by the use of the Input/Output Read
CIOR> and Input/Output Write CIOW> instructions. With these
instructions, I/O devices can be read or written synchronously
with program execution Csee "Input/Output" on page 88>.

2.4 PROCESSOR

The processor contains the sequencing and processing controls for
instruction execution, interrupt action, the system timer and
other control related functions.

Instructions are grouped into ten classes: storage access,
address computation, branching, traps, moves and inserts,
arithmetic, logical operations, shifts, system control, and
input/output. A separate sub-section is devoted to each
instruction class in "Instruction Set" on page 26.

2.5 PROCESSOR STATES

2.5.l Executing ..J::ill..i.i Check Stop and Stopped State

Four states of the processor are defined:
state, check stop state, and stopped state.

System Organization And Control

executing state, wait

7

IBM Confidential Restricted. DO NOT COPY

The processor is in the executing state when it is executing
instructions. In the executing state, instruction fetching and
execution proceeds in the specified manner. Interrupts may occur
between instructions as specified in "Interrupts" on page 17.

After the processor has executed the Wait instruction it is in the
wait state. No other instructions are fetched or executed while
the processor is in the wait state. The processor leaves the wait
state and enters the executing state when an interrupt for which
the processor is enabled occurs <see "Interrupts" on page 17).
The instruction address in the old program status for the priority
level associated with the interrupt contains the address of the
instruction immediately following the Wait instruction. The I/O
pin -WAIT is active when the processor is in the wait state.

When the processor is in the check stop state, no instructions are
executed, interrupts do not occur, and system interface operations
may be suspended. The processor enters the check stop state when
one of the following occurs:

1. An error is detected during power-on diagnostics.

2. A machine check error is detected and the Check Stop Mask is
zero.

3. A program check or machine check error is detected and the
processor is servicing a machine check error.

4. A program check error is detected and the processor is
servicing a program check error.

The check stop condition is cleared during a power-on reset. The
processor machine check is described in "Machine-Check Errors" on
page 121, and the program check is described in "Program-Check
Errors" on page 124.

The stopped state is entered as a result of operator action from a
control panel. Operator initiated load, display, and stepping
functions occur in the stopped state as described in "Processor
Support Functions" on page 142.

2.5.2 Problem and Supervisor States

The selection between problem and supervisor state determines
whether the full set of instructions is valid. In supervisor
state, all instructions are valid. In problem state, only
instructions that cannot be used to affect system integrity are
valid. The instructions that are not valid in problem state are
called privileged instructions; they include those which inspect
or modify any system control registers <except the Condition
Status or Multiplier Quotient registers>, the Load Program Status

System Organization And Control 8

instruction,
encountered
instruction
Instructions"

IBM Confidential Restricted. DO NOT COPY

and the Wait instruction. A privileged instruction
in the problem state constitutes a privileged
exception and causes a program check. "Privileged

on page 182 lists the privileged instructions.

The processor is in problem state when bit 21 of the Interrupt
Control Status <ICS> is a one. The processor is in supervisor
state when bit 21 of the ICS is a zero.

2.6 GENERAL-PURPOSE REGISTERS

The processor provides sixteen 32-bit general purpose registers
<GPRs>. All manipulation of data is performed in the GPRs.

Each GPR consists of an upper and lower half of sixteen bits each.
The GPR may be partitioned into four eight-bit characters, CO, Cl,
C2, and C3. The general purpose register organization is shown in
Figure 3 on page 10.

To avoid the destruction of operands in certain operations, some
instructions cause the result of the operation to be placed in the
twin of one of the GPR operands. The register twin of a given GPR
has the name, in binary, of the given GPR with the low-order bit
inverted. Thus the twin of GPR 5 (binary 0101> is GPR 4 (binary
0100>, and the twin of GPR 14 (binary 1110) is GPR 15 <binary
1111>. A register and its twin are referred to as a pair.

For computation purposes, the content of a GPR is treated as
either a signed algebraic quantity, an unsigned positive quantity,
or an unstructured logical quantity. In a GPR, an algebraic
quantity is represented by 32 bits in two's complement form.

2.7 SYSTEM CONTROL.REGISTERS

Sixteen 32-bit system control registers <SCR> exist in the
processor. An entire SCR or fields within an SCR are assigned to
particular facilities in the system such as interrupt, processor,
and system timer. The register organization for SCRs is shown in
Figure 4. Some SCRs and SCR fields are reserved and are not
assigned to any system facility. The source bits are ignored on
an attempt to set the reserved bits of an SCR. When the reserved
bits of an SCR are fetched, the resulting values are
unpredictable.

System Organization And Control

IBM Confidential Restricted. DO NOT COPY

0

Register

Upper Half Lower Half

co l Cl C2 I C3

0 8 16 24

Figure 3. General Purpose Registers

System Organization And Control

31

31

0

l Pair

2

3 Pair

4

s Pair

6

7 Pair

8

9 Pair

10

11 Pair

12

13 Pair

14

15 Pair

Word

Register Half

Character/Byte

10

IBM Confidential Restricted. DO NOT COPY

Reserved SCR 0

Reserved SCR l

Reserved SCR 2

Reserved SCR 3

Reserved SCR 4

Reserved SCR 5

Counter Source SCR 6

Counter SCR 7

Reserved I TS SCR 8

Reserved SCR 9

Multiplier Quotient SCR 10

Reserved MCS l PCS SCR 11

Reserved IRB SCR 12

IAR SCR 13

Reserved ICS SCR 14

Reserved cs SCR 15

0 8 16 24 31

co us = Counter Source
cou = Counter
TS = Timer Status
MQ = Multiplier Quotient
MCS = Machine Check Status
PCS = Program Check Status
IRB = Interrupt Request Buffer
IAR = Instruction Address Register
ICS = Interrupt Control Status
cs = Condition Status

Figure 4. System Control Registers

System Organization And Control 11

IBM Confidential Restricted. DO NOT COPY

2.7.1 Counter Source Counter and Timer Status

The Counter Source CCOUS, SCR 6), Counter CCOU, SCR 7>, and Timer
Status CTS, SCR 8) are necessary for the system timer operation
and are described in "System Timer Facility" on page 14.

2.7.2 Multiplier Quotient

SCR 10 is referred to as the Multiplier Quotient CMQ>. The MQ
provides a GPR extension to accommodate the product for the
Multiply Step instruction and the dividend for the Divide Step
instruction Csee "Divide And Multiply Step Instructions" on page
65).

2.7.3 Muchine Check Stntus and Program Check Status

Bits 16-23 of SCR 11 are referred to as the Machine Check Status
<MCS> and bits 24-31 are referred to as the Program Check Status
<PCS>. These two fields are used for error identification and are
described in detail in "Machine-Check Errors" on page 121 and
"Program-Check Errors" on page 124.

2.7.4 Interrupt Reguest Buffer

Bits 16-31 of SCR 12 are referred to
Buffer <IRB>. The Interrupt Request

as the
Buffer

Interrupt Request
allows interrupt

requests to be generated under program control. For more detailed
information refer to "Interrupt Request Buffer" on page 21.

2.7.5 Instruction Address Register

SCR 13 is referred to as the Instruction Address Register <IAR>.
The Instruction Address Register is a 32-bit register which
contains the address of the next instruction to be executed.
Since all instructions lie on halfword boundaries, the low-order
bit Cbit 31) of the Instruction Address Register is zero.
Accesses for instructions may require the fetching of a word, a
halfword, or the low-order halfword of a word followed by the
high-order halfword of the next consecutive word in main storage.

System Organization And Control 12

IBM Confidential Restricted. DO NOT COPY

Logically, during the execution of an instruction, the content of
the Instruction Address Register is incremented by the length of
the current instruction. Should this instruction be a successful
branch/jump instruction, the content of the Instruction Address
Register is changed to the address of the branch/jump target
instruction. The IAR contains the address of the next instruction
when the IAR is saved as part of the program status and when a
system control instruction to read the IAR is executed.

2.7.6 Interrupt Control Status

Bits 16-31 of SCR 14 are referred to as the Interrupt Control
Status <ICS). The ICS contains the Parity Error Retry Interrupt
Enable bit, Storage Protect bit, Problem State bit, Translate Mode
bit, Interrupt Mask, Check Stop Mask, Register Set Number, and the
Processor Priority. The ICS is described in "Interrupt Control
Status" on page 21.

2.7.7 Condition Status

Bits 16-31 of SCR 15 are referred to as the Condition Status <CS).
The Condition Status contains information about the results of
certain operations and provides a mechanism for decision making.
The Condition Status is defined as follows:

Bits 16-23 Reserved
Bit 24 Permanent Zero <PZ>
Bit 25 Less Than <LT>
Bit 26 Equal <EQ>
Bit 27 Greater Than <GT>
Bit 28 Carry Zero <CO)
Bit 29 Reserved
Bit 30 Overflow COV)
Bit 31 Test Bit <TB>

Bit 24 of the Condition Status is the Permanent Zero bit <PZ>. It
is set to zero whenever the Condition Status is loaded, and it
cannot be set to one. Its presence provides for a guaranteed
branch or jump by use of a branch on not condition bit or jump on
not condition bit instruction specifying the Permanent Zero bit.

Bit 25 of the Condition Status is the Less Than bit <LT>. This
bit is set to one during logical, shift, and certain arithmetic
instructions if the result is negative or if the high-order bit of
the result is one; otherwise it is set to zero. It is also set
during compare instructions to indicate the relative algebraic
magnitudes of the comparands.

System Organization And Control 13

IBM Confidential Restricted. DO NOT COPY

Bit 26 of the Condition Status is the Equal bit <EQ>. This bit is
set to one during logical, shift, and certain arithmetic
instructions if all bits of the result are zeros; otherwise it is
set to zero. It is also set during compare instructions if the
comparands are equal.

Bit 27 of the Condition Status is the Greater Than bit <GT>. This
bit is set to one during logical,
instructions if the sign bit of the
is nonzero; otherwise it is set to
compare instructions to indicate
magnitudes of the comparands.

shift, and
result is
zero. It

the true

certain arithmetic
zero and the result
is also set during
relative algebraic

Bit 28 of the Condition Status is the Carry Zero bit <CO>. This
bit is set to one during certain arithmetic instructions if the
operation generates a carry out of bit position zero; otherwise it
is set to zero.

Bit 29 of the Condition Status is a reserved bit.

Bit 30 of the Condition Status is the Overflow bit COV>. It is
set to one during certain arithmetic instructions if
result of the operation cannot be represented in
otherwise it is set to zero.

the signed
32 bits;

Bit 31 of the Condition Status is the Test bit <TB>. It is set by
the move to test bit instructions, where a specified bit of the
half of a register is moved to the test bit. It is also affected
by instructions which load or directly alter the Condition Status
register.

All bits of the Condition Status, except the Permanent Zero bit,
can be set through use of the move to SCR instructions.

A four-bit field in the conditional branch instructions specifies
the Condition Status bit to be tested. A zero in the four-bit
field of a branch instruction specifies bit 16 of the Condition
Status, a one specifies bit 17 of the Condition Status, and so on.
A three-bit field in the conditional jump instructions specifies
the Condition Status bit to be tested. A zero in this three-bit
field specifies bit 24, a one specifies bit 25, and so on.

2.8 SYSTEM TIMER FACILITY

Many applications require a knowledge of real time for such
-functions as system counting, time slicing, time stamping,
interval timing, and timing the productivity of operations. These
functions can be provided using the system timer facility.

System Organization And Control 14

IBM Confidential Restricted. DO NOT COPY

For some devices, the device requirements may be such that
additional timers are needed in the adapter. A more sophisticated
timer can be provided as an I/O device if needed.

System timer updating occurs at the frequency of the clock
connected to the timer clock I/O pin.

This section describes
operation.

the system timer facility and its

c

2.8.l Counter

SCR 7 is referred to as the Counter CCOU) and is a thirty-two-bit
count-down counter. The Counter is decremented from an external
source connected to the I/O pin -TIMER CLOCK. The counter is
updated on an inactive to active transition of -TIMER CLOCK.
Processor instruction execution is suspended during the counter
update. When the Counter is decremented from l to O, the value
contained in the Counter Source is loaded into the Counter and the
alarm action is initiated. This action is such that normal
operations will continue by the time the next count pulse arrives.
The alarm action is to set a bit in the IRB whose priority level
corresponds to the Timer Interrupt Priority in SCR 8, if the timer
is enabled. The alarm also sets the Interrupt Status bit to one,
and updates the Timer Status. The contents of the Counter Source
are not altered.

2.8.2 Counter Source

The Counter Source <COUS>, SCR 6, consists of the thirty-two-bit
value that is automatically loaded into the Counter when an alarm
occurs.

2.8.3 Timer Status

The Timer Status CTS>, bits 24-31 of SCR 8, is defined as follows:

Bit 24 Reserved.

Bit 25 Enable. When zero, no interrupts are created.
does not start or stop the counter,
enables/disables the setting of IRB bits.
power-on reset, this bit is zero.

System Organization And Control

This
but

At

15

Bit 26

Bit 27

Bit 28

0
Bits 29-31

IBM Confidential Restricted. DO NOT COPY

Interrupt Status. When one, an alarm has occurred.
This bit is set only if an alarm has occurred, and
the Enable bit is set to one. This bit is reset by
software when the counter is serviced. Software can
reset this bit by executing a Clear SCR Bit CCLRSB>
instruction.

Overflow. When one, more than one alarm has occurred
before the Interrupt Status bit has been reset. This
bit is also reset by software when the counter is
serviced.

Reserved

Timer Interrupt Priority. A timer alarm causes the
setting of an IRB bit corresponding to the priority
level specified by this field if the timer is
enabled.

2.8.4 Programming Note: System Timer Operation

To provide an interval timer, the Counter is directly loaded with
a value corresponding to the amount of time until the interval is
to expire.

To provide a fixed interval interrupt, an appropriate value is
loaded into the Counter Source and then not changed. For example,
if the Counter Source was loaded with 5 CX'05'>, and a 1
millisecond timer clock was used, the processor would be
interrupted every 5 milliseconds; if it was loaded with 250
CX'FA'>, the processor would be interrupted every one-fourth
second. Software could then update internal storage locations and
provide time-of-day in whatever format desired.

Note that loading the Counter Source does not alter the value in
the Counter. As a result, the interrupt interval corresponding to
the value loaded into the Counter Source will not begin until the
Counter is decremented from l to O, and the new Counter Source is
loaded into the counter. To synchronize the Counter with a new
Counter Source, both the Counter Source and the Counter must be
loaded with the new Counter Source value.

Multiple simultaneous timings can be handled using the system
timer as a resource. The Counter is loaded from a queue whose
entries are calculated to be the "time" from the completion of the
previous entry until the time for the entry in question to be
completed.

The external clock allows the system timer to be used to count
external events and can notify the program when a specific count

System Organization And Control 16

IBM Confidential Restricted. DO NOT COPY

arrives. This source need not provide a regular, clock-like
signal; it can be either a regular or irregular source.

The value loaded into the Timer Interrupt Priority (.TS, bit~

29-31> must be greater than or equal to zero <000) and less than
or equal to six <110). These are the only values for which a
corresponding IRB exists. A value of seven <111> in the Timer
Interrupt Priority will cause no bit in the IRB to be set when a
timer interrupt occurs.

2.9 INTERRUPTS

The Interrupt facility permits the processor to change its status
at the request of some other system component or due to processor
conditions established by the program. Interrupt processing
consists of saving the current program status and establishing the
program status for servicing the interrupt. Interrupts only occur
on instruction boundaries, but some instruction sequences are not
interruptible. A Load Program Status <LPS> instruction is
provided for software to return from an interrupt. Execution of a
LPS instruction restores the IAR, the CS, and the ICS to the
values that existed when the interrupt occurred <see "Load Program
Status Instruction" on page 85).

The processor may also change its status as a result of error
conditions within the processor or a system component. Error
processing consists of saving the current program status and
establishing the program status for servicing the error. Errors
are grouped into two classes: Machine check errors and program
check errors. These errors are discussed in detail in
"Reliability, Availability, and Serviceability" on page 121.

The interrupt
permits the

facility
servicing

is
of

a priority-based
higher priority

mechanism.
functions to

precedence over the servicing of lower functions.

This
take

Interrupt sources consist of the seven external interrupt inputs
<-REQI0-6>, software interrupts posted via setting of bits in the
IRB, and error conditions <either the -TRAP input, or internal
errors> detected during system operation. The seven external
interrupt inputs and software setting of IRB interrupt request
bits are treated in the same manner by ROMP The interrupt request
level is compared to the current processor priority specified by
bits in the ICS. If the interrupt request represents a higher
priority than the current processor priority, and interrupts are
enabled by the Interrupt Mask in the ICS, then the interrupt is
taken.

Taking an interrupt consists of saving the current processor
status in the old PSW corresponding to the level of the interrupt
request, and loading a new processor status from the new PSW

System Organization And Control 17

IBM Confidential Restricted. DO NOT COPY

corresponding to the level of the interrupt request. Saving of
the current processor status requires saving the address of the
instruction, the condition status, and the res when the interrupt
occurred. Loading of the new processor status requires loading
the new IAR <containing the address of the interrupt service
routine> and the new ICS from the new PSW. Saving of the current
processor status and loading of the new processor status is
performed automatically by ROMP hardware. Note that none of the
GPRs are automatically saved by hardware. Software is responsible
for saving any GPRs modified by the interrupt service routine.
Once the interrupt has been serviced, execution of the old program
can be resumed by loading the old program status word via an LPS
instruction. This will restore the IAR, the CS, and the ICS to
the values that existed when the interrupt occurred.

In addition to the seven interrupt levels, the detection of error
conditions can cause interrupts to the Program Check and Machine
Check interrupt levels. Interrupts to the Program Check level
consists of errors which are most probably due to software errors
<i.e. detection of an invalid op-code, addressing error,
detection of a privileged instruction exception, etc.).
Interrupts to the Machine Check level consists of errors which are
most probably due to hardware errors <i.e. RSC parity errors, and
RSC timeouts>. In addition, an external input <-TRAP> can be used
by system components to cause a machine check interrupt.
"Machine-Check Errors" on page 121 and "Program-Check Errors" on
page 124. describe Machine Check and Program Check interrupts.

2.9.l Processor Priority

Under normal system conditions, the processor executes
instructions at a level of priority referred to as the Processor
Priority. The Processor Priority may assume one of eight levels
as specified by a three-bit field in the ICS. Priorities for the
eight levels are represented by the following inequality:

Priority of Level 0 >Priority of Level l > ••• >Priority of Level 7

The Processor Priority may be changed either by an interrupt or by
an instruction which modifies the Processor Priority. There are
two sources of interrupts: an interrupt condition signaled via the
Interrupt Request Buffer, or an interrupt condition signaled by
some system component via the seven interrupt request inputs
<-REQI0-6>.

The processor may also execute instructions at two levels which
are not accessible via the interrupt facility. These levels are
provided for the reporting and servicing of machine check and
program check error conditions as discussed in "Machine-Check

System Organization And Control 18

IBM Confidential Restricted. DO NOT COPY

Error Handling" on page 122 and "Program-Check Error Handling" on
page 124.

2.9.1.l Interrupt Request Priority

Interrupt requests occur on
Priorities for the seven levels
inequality:

one of seven priority levels.
are represented by the following

Priority of level 0 >Priority of Level l > ..• >Priority of Level 6

The processor may execute instructions with a processor priority
of 7, but no interrupt requests with a priority of seven can
occur.

2.9.l.2 Interrupt Priority Assignment

A bit being set to one in the Interrupt Request Buffer causes an
interrupt request to the level corresponding to that bit. Timer
interrupts cause an interrupt request <via the IRB> to the level
specified. in the Timer Status. A system component causes an
interrupt request at a level determined by the attachment of its
Interrupt Request line C-REQIO through 6) to the processor.

2.9.2 Point of Interrupt

Interrupts only occur on instruction boundaries. Furthermore,
interrupts are prevented from occurring within certain instruction
sequences. A branch with execute instruction and its subject
instruction are uninterruptable.

Thus, a branch with execute and its subject instruction is
considered to be a unit, and interrupts only occur before or after
the unit is executed (refer to "Instruction Set" on page 26).

2.9.3 Error Handling

If the processor is executing an error routine as a result of a
machine check or program check error condition, all interrupt
requests from system components and interrupts signaled via the
IRB remain pending.

System Organization And Control 19

IBM Confidential Restricted. DO NOT COPY

2.9.4 Program Status

The state of the processor is called the program status. The
program status consists of the contents of the following system
control registers: the Instruction Address Register, the
Condition Status, and the Interrupt Control Status.

Upon interrupt the current program status is automatically saved
in the old program status location. The program status for
servicing the interrupt is loaded from the new program status
location, with the exception of the Condition Status. The
Condition Status is not changed by loading the new program status.

2.9.4.l Old/New Program Status Pairs

An old/new program status pair consists of eight bytes of old
program status and eight bytes of new program status. When an
interrupt occurs, the old/new program status pair is specified by
the priority level of the interrupt.

2.9.4.2 Location of Old/New Program Status Pairs

The program status save area in main storage contains ten old/new
program status pairs. Two old/new program status pairs are for
machine check and program check error handling, one old/new
program status pair is used for the Supervisor Call <SVC)
instruction, and the remaining seven are for interrupt servicing.
The structure of an old/new program status pair is shown in
Figure 5 on page 24. Note that the SVC old/new program status pair
contains a sixteen-bit SVC interrupt code which is generated by
execution of the SVC instruction <See "Supervisor Call
Instruction" on page 87>. Figure 6 on page 25 shows the
organization of the program status save area in main storage. The
16-byte old/new program status pairs are located in consecutive
main storage locations. The program status save area is located
at addresses X'lOO' thru X'l9F'. Address translation is disabled
for storing of the old program status and loading of the new
program status.

2.9.5 System Control Registers

Two fields are provided within
support the interrupt facility.
Buffer and the Interrupt Control

System Organization And Control

the
They

system control registers to
are the Interrupt Request

Status.

20

o IBM Confidential Restricted. DO NOT COPY

2.9.5.l Interrupt Request Buffer

The Interrupt Request Buffer (IR B > is a 16-bit field in SCR 12 and
has the following format:

Bit 16 Interrupt Request Level 0
Bit 17 Interrupt Request Level l
Bit 18 Interrupt Request Level 2
Bit 19 Interrupt Request Level 3
Bit 20 Interrupt Request Level 4
Bit 21 Interrupt Request Level 5
Bit 22 Interrupt Request Level 6
Bits 23-31 Reserved

The IRB provides the capability of generating interrupt requests
under software control. Setting an IRB bit to one causes an
interrupt request to the level corresponding to that bit. The
interrupt request remains active until the bit is cleared by
software.

If bit 25 of SCR 8 is one <enabled>, a timer alarm caused by the
Counter being decremented from l to 0 sets a bit in the IRB, which
generates an interrupt request. The bit in the IRB which is set
is determined by the Timer Interrupt Priority in the Timer Status.

2.9.5.2 Interrupt Control Status

The Interrupt Control Status CICS> is a 16-bit field in SCR 14
with the following format:

Bits 16-18 Reserved
Bit 19 Parity Error Retry Interrupt Enable
Bit 20 Storage Protect
Bit 21 Problem State
Bit 22 Translate Mode
Bit 23 Interrupt Mask
Bit 24 Check Stop Mask
Bits 25-27 Register Set Number
Bit 28 Reserved
Bits 29-31 Processor Priority

A value of one in the Parity Error Retry Interrupt Enable bit
enables interrupts when a ROMP Storage Channel <RSC> retry
successfully completes a processor generated transfer that was
previously unsuccessful due to detection of a parity error. A
successful parity error retry interrupt will cause a level 0
interrupt by setting the Interrupt Request Level 0 bit Cbit 16) in
the Interrupt Request Buffer. The RSC Check bit Cbit 16) in the
Machine Check Status will be set to indicate the cause of the
interrupt.

System Organization And Control 21

IBM Confidential Restricted. DO NOT COPY

A value of one in the Storage Protect bit enables address checking
in the storage controller. Use of Storage Protect is described in
"Storage Protect" on page 137.

A value of one in the Problem State bit places the processor in
problem state; a value of zero places the processor in supervisor
state.

A value of one in the Translate Mode bit enables address
translation in the storage controller. Use of Translate Mode is
described in "Address Translation" on page 140.

A value of one in the Interrupt Mask
component, timer, and software interrupts
interrupt which is inhibited remains pending.

inhibits
on all

all system
levels. An

A value of one in the Check Stop Mask prevents the processor from
entering the Check Stop state upon the detection of a machine
check error.

The three-bit encoded Register Set Number allows one of eight
register sets to be specified as the active register set. The
current ROMP design implements one of the eight register sets.
Bits 25-27 are ignored in this implementation.

The three-bit encoded Processor Priority indicates the current
processor priority level. Interrupt requests with priorities
lower than or equal to the current processor priority are ignored.

2.9.6 Occurrence of Interrupts

An interrupt occurs due to a bit in the IRB being equal to one if
the Processor Priority is lower than the priority corresponding to
that bit of the IRB, the Interrupt Mask is zero, and no system
component is signaling an interrupt request on a higher level than
that signaled via the IRB.

An interrupt occurs due to a system component interrupt request if
the Processor Priority is lower than that of the interrupt
request, the Interrupt Mask is zero, and the IRB is not signaling
an interrupt request on a higher level than that signaled by the
system component.

2.9.7 Programming Note: Interrupt Facility

The interrupt facility contains
improperly, may force the processor

System Organization And Control

features which,
into an infinite

if used
hardware

22

IBM Confidential Restricted. DO NOT COPY

loop. When the processor loads the new program status for
servicing an interrupt, it loads the Processor Priority from the
ICS in the new program status location. The value in the
Processor Priority in the new program status is completely under
software control. This processor priority which is loaded must
not be lower than the priority of the interrupt request which
caused the interrupt, if the Interrupt Mask in the new program
status is zero, the same interrupt request will immediately cause
another interrupt. Multiple interrupts would continue to occur
until a system component signals an interrupt request on a higher
level, or a power-on reset occurs.

2.9.8 Programming Notes: Interrupt Servicing

The program should issue an IOW instruction to
that the interrupt request is being serviced,
interrupt request bit in the device status.

signal the device
and to reset the

l. The program should clear the interrupt request of the
interrupting device as soon as possible after the point of
interrupt. This allows the processor to determine the
priority of the next highest interrupt request.

2. A Load Program Status <LPS> instruction is provided for
software to return from an interrupt <see "Load Program Status
Instruction" on page 85). The effective address of the LPS
instruction points to the Program status to which control is
being returned. Normally control will be returned to the
previously active program whose program status is located in
the old program status associated with the interrupt being
serviced.

System Organization And Control 23

IBM Confidential Restricted. DO NOT COPY

01 d IAR

Old ICS Old CS

0 16 31

Old Pfogram Status

New IAR

New ICS Reserved

0 16 31

New Program Status

New IAR

New ICS lsvc Interrupt Code

0 16 31

SVC New Program Status

IAR = Instruction Address Register
I CS = Interrupt Control Status
cs = Condition Status
SVC = Supervisor Call

Note: Reserved bits in the old program status are set to unpredictable
values. Reserved bits in the new program status are ignored.

Figure 5. Old/New Program Status Pair

System Organization And Control 24

IBM Confidential Restricted. DO NOT COPY

Address X'l00' OLD/NEW PS PAIR 0

Address X'llO' OLD/NEW PS PAIR l

Address X'l20' OLD/NEW PS PAIR 2

Address X'l30' OLD/NEW PS PAIR 3

Addr5ss X'l40' OLD/NEW PS PAIR 4

Address x' 15 0' OLD/NEW PS PAIR 5

Address X'l60' OLD/NEW PS PAIR 6

Address X'l70' MACHINE CHECK OLD/NEW PS PAIR

Address X'l80' PROGRAM CHECK OLD/NEW PS PAIR

Address X'l90' SVC OLD/NEW PS PAIR

Main Storage Addresses X'l00' Through X'l9F'

Note: Each PS pair requires 16 bytes.

Figure 6. Program Status Save Area

System Organization And Control 25

IBM Confidential Restricted. DO NOT COPY

3.0 INSTRUCTION SET

3.1 GENERAL DESCRIPTION

Instructions are grouped into ten classes: storage access, address
computation, branching, traps, moves and inserts, arithmetic,
logical operations, shifts, system control, and input/output. A
separate section is devoted to each instruction class. Each
instruction is specified in terms of mnemonic, operation code <op
code>, length, and functional description.

Unassigned op codes are reserved for future use. If these
reserved op codes are encountered by the processor, a program
check error occurs. For more detailed information, see
"Program-Check Errors" on page 124.

The ROMP processor does not support dynamic instruction
modification. Any attempt by software to modify an instruction
may result in unpredictable operation.

ROMP provides a supervisor state in which all instructions are
valid, and problem state in which only instructions that cannot be
used to affect system integrity are valid. The instructions that
are not valid in problem state are called privileged instructions.
A privileged instruction encountered in the problem state
constitutes a privileged instruction exception and causes a
program check.

The following notation is used to describe each instruction:

GPR

SCR

IAR

IRB

MCS

PCS

cs

res

General Purpose Register <The word register is also
used to to denote a GPR>

System Control Register

Instruction Address Register

Interrupt Request Buffer

Machine Check Status

Program Check Status

Condition Status

Interrupt Control Status

Instruction Set 26

RA,RB or RC

SRB

I

N

JI

BI

BA

Ol<RC>

O[n]

II

<RC>

IBM Confidential Restricted. DO NOT COPY

These abbreviations denote fields in the instruction
which specify GPRs.

This denotes a field in the instruction which
specifies an SCR.

This denotes a field of immediate data in the
instruction.

This denotes a Condition Status bit number.

This denotes an eight-bit relative
displacement in the JI format instructions.

branch

This denotes a 20-bit relative branch displacement
in the BI format instructions.

This denotes a 24-bit absolute branch address.

This indicates the value 0 if
else the content of register

RC is specified as 0,
RC. Ci.e. if the RC

field is specified as 0, a value of
the computation, if the RC field
content of the specified register
computation.) Register 0 can not
register.

zero is used for
is not O, the

is used for the
be used as the RC

This indicates a field of zeroes, n bits wide.

Two parallel bars are
concatenation of the two
side of the bars.

used to indicate a
fields specified on either

A register specification enclosed in parentheses
indicates the content of the specified register.

The seven instruction formats <JI, X, D-Short, R, BI, BA and D>
are shown in Figure 7. Instructions are either two or four bytes
in length. The first four, five or eight bits of an instruction
are referred to as the operation code Cop code). The JI format
has a five bit op code. The X and D-Short formats both have
four-bit op codes. The R, BI, BA and D formats all have eight-bit
op codes. Instructions of formats JI, X, D-Short and R are all
two bytes long. Instructions of formats BI, BA and D are all four
bytes long.

The RA, RB and RC fields specify GPRs. The SRB field specifies an
SCR. The I field specifies a displacement of a storage address or
an immediate value. The N field specifies a Condition Status bit.
Relative branch displacements JI and BI are both signed binary
numbers in two's complement form, while BA designates an absolute
branch address

Instruction Set 27

IBM Confidential Restricted. DO NOT COPY

Some R format instructions have an SRB, I, or N field instead of
an RB or RC field.

For X, D-Short, and D format instructions which refer to main
storage or system components, the address is calculated according
to the following formulas:

X Format <RB) + 0/ <RC>
D-Short Format 0/(RC> + 0[28]//I

0/(RC> + 0[27]//I//O[l]
0/CRC) + 0[26]//I//0[2]

D Format O/CRC> + 0[16]//I
O/CRC> + Sign Extended I

Where O/CRC> indicates the value 0 if RC is specified as O, and
the value of the content of the general purpose register if RC is
specified as nonzero.

Instruction Set 28

IBM Con~idential Restricted. DO NOT COPY

JI Format

I OP
I

N
I

JI

0 5 8 15

x Format

OP I RA I RB RC

0 4 8 12 15

D-Short Format

I
OP II I

RB
I

RC

0 4 8 12 15

R Format

OP RB RC

0 8 12 15

BI Format

OP RB BI

0 8 12 31

BA Format

OP BA

0 8 31

D Format

OP RB RC I

0 8 12 16 31

Figure 7. Instruction Formats

Instruction Set 29

IBM Confidential Restricted. DO NOT COPY

3.2 STORAGE ACCESS

Main storage is organized as a sequence of eight-bit bytes with a
maximum capacity of 4,294,967,296 bytes. All storage effective
addresses <base address plus displacement) are computed as 32-bit
quantities. Wrap around is allowed and occurs on a 32-bit basis,
i.e., main storage addressing wraps around from the architectural
maximum byte address of 4,294,967,295 to address O. This
implementation of ROMP supports both 24-bit and 32-bit addressing.
In 24-bit addressing mode, the high order 8 bits of the 32-bit
effective address is checked to be zero. A non-zero high order
byte in the effective address will result in a program check. If
less than the maximum amount of main storage is installed, an
attempt to utilize a byte from a non-existent main storage
location will result in a program check.

All storage accesses are for a byte or multiples thereof.
Instructions are provided to load or store a single character, a
halfword, or a word into a general-purpose register. Storage
accesses for halfwords and words ignore the low-order bit or pair
of bits, respectively, of the effective address. The address of a
halfword or word in main storage is the address of its leftmost
byte. The Condition Status is not changed by any of these
instructions.

A storage access to an invalid storage location will set the data
address exception bit in the program check status and result in a
program check. Refer to "Program-Check Errors" on page 124 for a
description of the program check status.

All storage access instructions are non-privileged.

Engineering Note: Data Alignment

Data alignment for halfword and fullword accesses is normally
provided in the storage controller by ignoring the low-order
address bit for halfword accesses and the two low-order bits for
fullword accesses. The effective storage address computed by ROMP
for halfword and fullword data accesses is not aligned <i.e. the
storage address is the byte address of the leftmost byte of the
halfword or fullword>. This allows a storage controller to
support unaligned halfword and fullword accesses, if required in a
particular system.

Instruction Set 30

IBM Confidential Restricted. DO NOT COPY

3.2.1 Load Instructions

Load Character Short D-Short Format

LCS RB, I CRC)

4 I RB RC

0 4 8 12 15

Character C3 of register RB is replaced by the character of
storage addressed by 0/(RC> + 0[28]//I. Character CO through C2 of
register RB are set to zeroes.

Load Character D Format

LC RB, I CRC>

CE RB RC I

0 8 1 2 1 6 31

Character C3 of register RB is replaced by the character of
storage addressed by 0/(RC) plus the sign extended I-field.
Character CO through C2 of register RB are set to zeroes.

Load Half Algebraic Short D-Short Format

LHAS RB, I<RC>

5 I RB RC

0 4 8 12 15

The lower half of register RB is replaced by the halfword of
storage addressed by 0/(RC>+0[27]//I//O[l]. The sign bit of the
addressed halfword is extended through the upper half of register
RB.

Instruction Set 31

IBM Confidential Restricted. DO NOT COPY

Load Half Algebraic D Format

LHA RB, I<RC>

CA RB RC I

0 a 12 16 3 l

The lower half of register RB is replaced by the halfword of
storage addressed by O/CRC> plus the sign extended I-field. The
sign bit of the addressed halfword is extended through the upper
half of register RB.

Load Half Short R Format

LHS RB, O<RC>

EB RB RC

0 8 l :2 15

The lower half of register RB is replaced by
storage addressed by the content of register RC.
of register RB is set to zero.

the halfword of
The upper half

Load Half D Format

LH RB, I<RC>

DA RB RC

0 a 12 16

The lower half of register
storage addressed by 0/(RC>
upper half of register RB is

Instruction Set

I

31

RB is replaced by the halfword of
plus the sign extended I-field. The
set to zeroes.

32

IBM Confidential Restricted. DO NOT COPY

Load Short D-Short Format

LS RB, I<RC>

7 I RB RC
0

0 4 8 12 15

The content of register RB is replaced by the word in storage
addressed by Ol<RC) + 0[26]//I//0[2].

~ D Format

L RB, ICRC>

CD RB RC I

0 8 12 16 31

The content of register RB is replaced by the word in storage
addressed by O/CRC> plus the sign extended I-field.

Load Multiple D Format

LM RB, I<RC>

C9 RB RC I

0 8 12 16 31

The content of registers RB through 15 are replaced, respectively,
by the consecutive words in storage beginning at the address given
by O/CRC> plus the sign extended I-field.

Instruction Set 33

IBM Confidential Restricted. DO NOT COPY

3.2.2 Test and Set Instruction

Test and Set Half D Format

TSH RB, I<RC>

CF

0

n
L>

RB RC

12 16

I

3 1

The lower half of register RB is replaced by the halfword of
storage addressed by Ol<RC> plus the sign extended I-field. The
upper half of register RB is set to zeroes. Immediately following
the read operation, the storage unit will write all l's in the
high order byte of the selected halfword without permitting any
other storage operations between the read and the write. The
low-order byte of the selected halfword is left unaltered.

3.2.3 Store Instructions

Store Character Short D-Short Format

STCS RB, I<RC)

1 I RB RC

0 4 8 12 15

The character of storage addressed by 0/(RC) + 0[28)//I is
replaced by character C3 of register RB.

Instruction Set 34

IBM Confidential Restricted. DD NOT COPY

Store Character D Format

STC RB, I<RC>

DE RB RC I

0 8 12 l 6 31

The character of storage addressed by O/<RC) plus the sign
extended I-field is replaced by character C3 of register RB.

Store Half Short D-Short Format

STHS RB, ICRC>

2 I RB RC

0 4 8 12 15

The halfword of storage addressed by 0/(RC> + 0[27]//I//O[l] is
replaced by the lower half of register RB.

Store Half D Format

STH RB, I<RC>

DC RB RC I

0 8 l 2 16 31

The halfword of storage addressed by 0/(RC> plus the sign extended
I-field is replaced by the lower half of register RB.

Instruction Set 35

IBM Confidential Restricted. DO NOT COPY

Store Short D-Short Format

STS RB, I<RC>

3 I RB RC

0 4 8 12 l.S

The word of storage addressed by O/CRC) + 0[26]//I//0[2] is
replaced by the content of register RB.

Store D Form21t

ST RB, ICRC)

DD RB RC I

0 8 l 2 16 3 l

The word in storage addressed by O/CRC) plus the sign extended
I-field is replaced by the content of register RB.

Store Multiple D Format

STM RB, ICRC)

D9 RB RC I

0 8 l 2 16 31

The consecutive words in storage beginning at the address given by
O/CRC) plus the sign extended I-field are replaced, respectively,
by the content of registers RB through 15.

Instruction Set 36

IBM Confidential Restricted. DO NOT COPY

3.3 ADDRESS COMPUTATION

The address computation instructions operate only on the contents
of the general purpose registers. No storage references for
operands occur. The resultant values are not inspected for·
address exceptions. The Condition Status is not changed by any of
these instructions.

All address computation instructions are non-privileged.

Compute Address Lower Half D Format

CAL RB, I<RC)

cs RB RC I

0 8 12 16 31

The address specified by 0/(RC) plus the sign extended I-field
replaces the content of register RB.

Compute Address Lower Half 16-Bit D Format

CAL16 RB, ICRC>

C2 RB RC I

0 8 12 16 31

The 16-bit address specified by O/CRC)[l6:31] + I replaces the
content of register RB[l6:31], and O/.CRC>[O:l5] replaces the
content of register RB[O:l5].

Programming Note:

This instruction is provided to assist in simulation of 16-bit
architectures.

Instruction Set 37

IBM Confidential Restricted. DO NOT COPY

Compute Address Upper Half D Format

CAU RB, I<RC>

DS RB RC I

0 8 12 16 3 l

The address specified by O/<RC> + I//0[16] replaces the content of
register RB.

Compute Address Short X Format

CAS RA,RB,RC

6 RA RB RC

0 4 8 12 15

The address specified by <RB> + Ol<RC> replaces the content of
register RA.

Compute Address 16-Bit R Format

CA16 RB, RC

F3 RB RC

0 8 12 15

The 16-bit address specified by CRB>[l6:31] + CRC>[l6:31] replaces
the content of register RB[l6:31], and CRC>[O:l5] replaces the
content of register RB[O:l5].

Programming Note:

This instruction is provided to assist in simulation of 16-bit
architectures.

Instruction Set 38

l' IBM Confidential Restricted. DO NOT COPY

Increment R Format

INC RB, I

91 RB I

0 8 12 15

The field I, extended on the left with 28 zeroes, is added to the
content of register RB and the result placed into register RB.

Decrement R Format

DEC RB, I

93 RB I

0 8 12 15

The field I, extended on the left with 28 zeroes, is subtracted
from the content of register RB and the result placed into the
register RB.

Load Immediate Short R Format

LIS RB, I

A4 RB I

0 8 12 15

The content of register RB is replaced by field I, extended on the
left with 28 zeroes.

Instruction Set 39

IBM Confidential Restricted. DO NOT COPY

3.4 BRANCHING

The normal sequential execution of instructions may be changed by
the use of the branch instructions. These instructions permit
subroutine linkage, decision making, and loop control, and provide
several different target addressing forms.

For every branch instruction, except jumps, there is a
corresponding branch with execute instructions. The instruction
immediately following a branch with execute is called the subject
instruction, and it is executed regardless of the branch decision,
as if it preceded the branch. However, the subject instruction
cannot affect the branch decision. Any Condition Status changes
caused by the subject instruction occur after the branch decision
has been made.

Subroutine linkage is provided by the branch and linkage
instructions: BALA, BALAX, BALI, BALR, and BALRX. These
instructions cause a branch to a new instruction sequence but
preserve a return address in an implicitly or explicitly
designated general purpose register. For the nonexecute forms of
the instructions, the return address is the updated instruction
address, which is the address of the halfword immediately
following the branch and link instruction in storage. For the
execute forms of the instructions, the return address is the
address of the halfword which is four bytes beyond the end of the
branch and link with execute instruction, i.e., it is the updated
instruction address plus four. This allows four bytes following
the branch and link with execute for the subject instruction. If
the subject instruction requires only two bytes, the two remaining
bytes are ignored.

Decision making and loop control are provided by the conditional
branch and conditional jump instructions: BB, BBX, BBR, BBRX,
BNB, BNBX, BNBR, BNBRX, JB, and JNB. For the conditional branch
instructions, the branch decision is based on any specified state
of any bit of the Condition Status. In these instructions, the
value of N specifies the Condition Status bit with CS bit 16
specified by a value of O, CS bit 17 by a value of 1, and so
forth. For the conditional jump instructions the branch is based
on any specified state of the rightmost eight bits (bits 24-31> of
the Condition Status. In this case, the value of the N field of
the jump instruction specifies the Condition Status bit with CS
bit 24 specified by a value of O, CS bit 25 by a value of l, and
so forth. For conditional branch instructions, the branch
decision is based on any specified state of the rightmost sixteen
bits <bits 16-31) of the Condition Status. In this case, the
value of the N field specifies which Condition Status bit is used
for the branch decision, with CS bit 16 specified by a value of O,
CS bit 17 specified by a value of 1, and so forth. If a reserved
bit in the Condition Status <bits 16-23) is specified, the branch
decision is unpredictable.

Instruction Set 40

IBM Confidential Restricted. DO NOT COPY

The branch instructions provide three different branch target
addressing forms: absolute, absolute immediate, and relative
immediate. The instructions BALR, BALRX, BBR, BBRX, BNBR, and
BNBRX are absolute instructions and specify as an operand a
register which contains the 24-bit branch target address. The
instructions BALA and BALAX are absolute immediate instructions,
where the full 24-bit branch target address is contained in the
instruction. The instruction BALI, BALIX, JB, BB, BBX, JNB, BNB,
and BNBX are relative immediate instructions; each contains an
immediate field which is sign extended, logically shifted left one
bit, and added to the address of the branch instruction in order
to calculate the branch target address. The jump instructions <JB
and JNBJ contain an eight-bit immediate field which allows a jump
range of -127 to +128 halfwords from the jump instruction. The
branch instructions BALI, BALIX, BB and BBX contain a 20-bit
immediate field which allows a branch range of -524,286 to
+524,289 halfwords from the branch instruction.

The branch with execute instruction and its
are considered to be a single instruction.
not honored between the execution of the

subject instruction
Thus, interrupts are
branch with execute

instruction and the execution of its subject instruction.

Certain instructions are not allowed to be the subject of a branch
with execute instruction. Since the branch with execute
instructions change the normal sequential execution of
instructions, the subject instruction cannot be an instruction
which also changes the instruction sequencing, or the processor
may be put in an unpredictable state. Thus, all branches, jumps,
traps, Load Program Status, Supervisor Call, and Wait instructions
cannot be subject instructions. Software is responsible for
insuring that these instructions do not occur as the subject of a
branch with execute instruction. No hardware is provided to
detect these illegal branch with execute subject instructions.
"Illegal Branch With Execute Subject Instructions" on page 183
lists the illegal branch with execute subject instructions.

Also, note that, in the case of branch and link with execute
instructions, the register containing the return address is
available to the subject instruction; hence the subject
instruction must be constructed so as not to modify the return
address unintentionally. Finally, if the subject instruction is a
Move From SCR, where the SCR is the IAR, <move from SCR 13>, the
results of the move are unpredictable.

All branch and jump instructions are non-privileged.

Instruction Set 41

IBM Confidential Restricted. DO NOT COPY

3.4.1 Branch And Link Instructions

Branch and Link Absolute BA Format

BALA BA

0

SA BA

0 8 3 l

The content of register 15 is replaced by the updated instruction
address, and the updated instruction address is replaced by the
field BA, with its rightmost bit forced to zero.

Branch and Link Absolute with Execute BA Format

BA LAX BA

SB BA

0 8 3 l

The content of register 15 is replaced by the updated instruction
address incremented by four, and the updated instruction address
is replaced by the field BA with its rightmost bit forced to zero.
The instruction immediately following the branch instruction is
executed before the target instruction is executed.

Branch and Link Immediate BI Format

BALI RB,BI

SC RB BI

0 8 l 2 3 l

The content of register RB is replaced by the updated instruction
address. The updated instruction address is replaced by the field

Instruction Set 42

IBM Confidential Restricted. DO NOT COPY

BI, sign extended and shifted left one bit, added to the branch
instruction address.

Branch and Link Immediate with Execute BI Format

BALIX RB,BI

8D RB BI

0 8 12 3 l
0

The content of register RB is replaced by the updated instruction
address incremented by four. The updated instruction address is
replaced by the field BI, sign extended and shifted left one bit,
added to the branch instruction address. The instruction
immediately following the branch instruction is executed before
the target instruction is executed.

Branch and Link R Format

BALR RB, RC

EC RB RC

0 8 12 15

The content of register RB is replaced by the updated instruction
address. The updated instruction address is replaced by the
content of register RC with the rightmost bit forced to zero.

Instruction Set 43

IBM Confidential Restricted. DO NOT COPY

Branch and Link with Execute R Format

BAL RX RB, RC

ED RB RC

0 8 12 15

The content of register RB is replaced by the updated instruction
address incremented by four, and the updated instruction address
is replaced by the content of register RC with the rightmost bit
forced to zero. The instruction immediately following the branch
instruction is executed before the target instruction is executed.

3.4.2 Conditional Branches

Jump on Condition Bit JI Format

JB N,JI

0 Iii N JI

0 4 5 8 15

If the Condition Status bit specified by N is one, the updated
instruction address is replaced by the field JI, sign extended and
shifted left one bit, added to the branch instruction address. If
the specified Condition Status bit is zero, the updated
instruction address is unaltered. The field N references only the
rightmost eight bits of the Condition Status <bits 24-31).

Instruction Set 44

IBM Confidential Restricted. DO NOT COPY

Branch on Condition Bit Immediate BI Format

BB N, BI

8E N BI

0 8 l 2 31

If the Condition Status bit specified by N is one, the updated
instruction address is replaced by the field BI, sign extended and
shifted left one bit, added to the branch instruction address. If
the specified Condition Status bit is zero, the updated
instruction address is unaltered.

Branch on Condition Bit Immediate with Execute BI Format

BBX N,BI

8F N BI

0 8 12 31

If the Condition Status bit specified by N is one, the updated
instruction address is replaced by the field BI, sign extended and
shifted left one bit, added to the branch instruction address.
The instruction immediately following the branch instruction is
executed before the target instruction is executed. If the
specified Condition Status bit is zero, the updated instruction
address is unaltered, and the subject instruction is executed in a
normal manner.

Instruction Set 45

IBM Confidential Restricted. DO NOT COPY

Branch on Condition Bit R Format

BBR N,RC

EE N RC

0 8]. 2]. 5

If the Condition Status bit specified by N is one, the updated
instruction address is replaced by the content of register RC with
the rightmost bit forced to zero. If the specified Condition
Status bit is zero, the updated instruction address is unaltered.

Branch on Condition Bit with Execute R Format

BBRX N,RC

EF N RC

0 8 J..2]. 5

If the Condition Status bit specified by N is one, the updated
instruction address is replaced by the content of register RC with
the rightmost bit forced to zero. The instruction immediately
following the branch instruction is executed before the target
instruction is executed. If the specified Condition Status bit is
zero, the updated instruction address is unaltered, and the
subject instruction is executed in a normal manner.

Jump on Not Condition Bit JI Format

JNB N, JI

0 JI

0 4 5 8]. 5

If the Condition Status bit specified by N is zero,
instruction address is replaced by the field JI, sign
shifted left one bit, added to the branch instruction

Instruction Set

the updated
extended and
address. If

46

IBM Confidential Restricted. DO NOT COPY

the specified Condition Status bit is one, the updated instruction
address is unaltered. The field N references only the rightmost
eight bits of the Condition Status <bits 24-31>.

Branch on Not Condition Bit Immediate BI Format

BNB N, BI

88 N BI

0 a 12 31

If the Condition Status bit specified by N is zero. the updated
instruction address is replaced by the field BI, sign extended and
shifted left one bit, added to the branch instruction address. If
the specified Condition Status bit is one, the updated instruction
address is unaltered.

Branch on Not Condition Bit Immediate with Execute BI Format

BNBX N, BI

89 N BI

0 8 12 31

If the Condition Status bit specified by N is zero, the updated
instruction address is replaced by the field BI, sign extended and
shifted left one bit, added to the branch instruction address.
The instruction immediately following the branch instruction is
executed before the target instruction is executed. If the
specified Condition Status bit is one, the updated instruction
address is unaltered, and the subject instruction is executed in a
normal manner.

Instruction Set 47

IBM Coniidential Restricted. DO NOT COPY

Branch on Not Condition Bit R Format

BNBR N, RC

ES N RC

0 8 12 15

If the Condition Status bit speciiied by N is Zero, The updated
instruction address is replaced by the content of register RC with
the rightmost bit iorced to zero. Ii the speciiied Condition
Status bit is one, the updated instruction address is unaltered.

Branch on Not Condition Bit with Execute R Format

BNBRX N, RC

E9 N RC

0 8 12 15

Ii the Condition Status bit speciiied by N is zero, the updated
instruction address is replaced by the content of register RC with
the rightmost bit iorced to zero. The instruction immediately
following the branch instruction is executed beiore the target
instruction is executed. Ii the speciiied Condition Status bit is
one, the updated instruction address is unaltered, and the subject
instruction is executed in a normal manner.

Instruction Set 48

IBM Confidential Restricted. DO NOT COPY

3.5 TRAPS

The trap instructions are provided to test for a specified set of
conditions. If the conditions tested by a trap instruction are
met, the program trap bit of the Program Check Status is set to
one and a program check occurs. If the tested conditions are not
met, instruction execution continues with the next sequential
instruction.

The comparisons are preformed on operands which are treated as
32-bit unsigned integers <logical quantities). The Condition
Status is not changed by any of these instructions.

All trap instructions are non-privileged.

Trap On Condition Immediate D Format

TI COND,RC,I

cc RC I

0 a 12 16 3 1

If any of the trap conditions specified by bits 9-11 are met by
comparing the content of register RC with the value of the sign
extended I-field, the trap bit of the PC register is set, and a
program check occurs.

Trap conditions are selected by bits 9-11 as defined below.

Bit 9 Trap if register RC is less than the value of the
sign extended I-field. The trap is enabled if the
bit is one and disabled if zero.

Bit 10 Trap if register RC is equal to the value of the
sign extended I-field. The trap is enabled if the
bit is one and disabled if zero.

Bit 11 Trap if register RC is greater than the value of
the sign extended I-field. The trap is enabled if
the bit is a one and disabled if zero.

Instruction Set 49

IBM Confidential Restricted. DO NOT COPY

Trap if Register Greater Than or Egual R Format

TGTE RB, RC

BD RB RC

0 8 12 15

If the content of register RB is greater than or equal to the
content of register RC, the Trap bit of the PCS is set, and a
program check occurs.

Trap if Register Less Than R Format

TLT RB, RC

BE RB RC

0 8 1 2 15

If the content of register RB is less than the content of register
RC, the Trap bit of the PCS is set, and a program check occurs.

Instruction Set 50

IBM Confidential Restricted. DO NOT COPY

3.6 MOVES AND INSERTS

This group of instructions is concerned with the movement of data
between general-purpose registers, and between a general-purpose
register and the Test Bit of the Condition Status. Except when
data is moved into the Test Bit, none of these instructions alter
the Condition Status.

0

All move and insert instructions are non-privileged.

3.6.l Move Character Instructions

Move Character Zero From Three R Format

MC03 RB, RC

F9 RB RC

0 8 12 15

Character CO of register RB is replaced by character C3 of
register RC.

Move Character One From Three R Format

MC13 RB, RC

FA RB RC

0 8 12 15

Character Cl if register RB is replaced by character C3 of the
register RC.

Instruction Set 51

IBM Confidential Restricted. DO NOT COPY

Move Character Two From Three R Format

MC23 RB, RC

FB RB RC

0 8 12 15

Character C2 of register RB is replaced by character C3 of
regis\'j!r RC.

Move Character Three From Three R Format

MC33 RB, RC

FC RB RC

0 8 12 15

Character C3 of register RB is replaced by character C3 of
register RC.

Move Character Three From Zero R Format

MC30 RB, RC

FD RB RC

0 8 12 15

Character C3 of register RB is replaced by character CO of
register RC.

Instruction Set 52

IBM Confidential Restricted. DO NOT COPY

Move Character Three From One R Format

MC31 RB, RC

FE RB RC

0 8 12 15

Character C3 of register RB is replaced by character Cl of
register RC.

Move Character Three From Two R Format

MC32 RB, RC

FF RB RC

0 8 12 15

Character C3 of register RB is replaced by character C2 of
register RC.

3.6.2 Move To And From Test Bit Instructions

Move From Test Bit R Format

MFTB RB, RC

BC RB RC

0 8 12 15

The bit of register RB specified by the value of bits 27-31 of
register RC is set to the value of the Condition Status Test Bit.

Instruction Set 53

IBM Confidential Restricted. DO NOT COPY

Move From Test Bit Immediate Lower Half R Format

MFTBIL RB, I

90 RB I

0 8 12 15

The bit of the lower half of register RB specified by I is set to
the value of the Condition Status Test Bit.

Move From Test Bit Immediate Upper Half R Format

MFTBIU RB, I

9C RB I

0 8 1 2 15

The bit of the upper half of register RB specified by I is set to
the value of the Condition Status Test Bit.

Move to Test Bit R Format

MTTB RB, RC

BF RB RC

0 8 1 2 15

The Condition Status Test Bit is set to the value of the bit of
register RB specified by the value of bits 27-31 of register RC.

Instruction Set 54

IBM Confidential Restricted. DO NOT COPY

Move to Test Bit Immediate Lower Half R Format

MTTBIL RB, I

9F RB I

0 8 12 lS

The Condition Status Test Bit is set to the value of the bit in
the lower half of register RB specified by I.

Move To Test Bit Immediate Upper Half R Format

MTTBIU RB, I

9E RB I

0 8 12 lS

The Condition Status Test Bit is set to the value of the bit in
the upper half of register RB specified by I.

Instruction Set 55

IBM Confidential Restricted. DO NOT COPY

3.7 ARITHMETIC

The arithmetic operations treat the general purpose registers as
32 bit quantities in two's complement representation. Each of
these instructions affects certain bits in the Condition Status
field. However, the bits which are set, and the manner in which
they are set, may vary according to the instruction which is
executed.

The LT bit is set by all instructions except Multiply Step, Divide
Step, and compares to indicate the sign of the result. That is,
the LT bit is set to one if the sign bit of the result is one.
The arithmetic compare instructions set this bit to one if the
algebraic magnitude of a given comparand is less than the
algebraic magnitude of the other. The logical compare
instructions set this bit to one if the unsigned magnitude . of a
given comparand is less than the unsigned magnitude of the other.
The instructions Multiply Step and Divide Step do not affect this
bit.

The EQ bit is set by all instructions except Multiply Step and
Divide Step if the result is a field of 32 zeroes, or, in the case
of the compare instructions, if the two comparands are equal. The
Multiply Step and Divide Step instructions do not affect this bit.

The GT bit is set by all instructions except Multiply Step, Divide
Step, and compares to indicate the sign of a non-zero result; it
is set to one if the sign bit of a non-zero result is zero. The
arithmetic compare instructions set this bit if the algebraic
magnitude of a given comparand is greater than the algebraic
magnitude of the other. The logical compare instructions set this
bit to one if the unsigned magnitude of a given comparand is
greater than the unsigned magnitude of the other. The
instructions Multiply Step and Divide Step do not affect this bit.

The CO bit in the Condition Status is set by all instructions
except compares, Extend Sign, Divide Step, and Multiply Step to
reflect the carry out of bit position zero. The Extend Sign
instruction does not affect CO, and the Multiply Step and Divide
Step instructions set CO according to certain multiply and divide
conditions. Add operations set CO to one if a carry occurs and to
zero if no carry occurs. Subtract operations set CO to zero if a
borrow occurs and to one if no borrow occurs.

The OV bit is set by all instructions except Extend Sign, Multiply
Step, and Divide Step, and compares to indicate arithmetic
overflow, i.e., it is set to one when the signed result of an
operation cannot be represented by 32 bits. The Extend Sign and
Multiply Step instructions do not affect this bit, and the Divide
Step instruction sets it according to a divide condition.

The extended operations incorporate the state of the CO bit into
the result. The extended add instructions, AE and AEI, cause the

Instruction Set 56

D IBM Confidential Restricted. DO NOT COPY

value of the CO bit to be added to the sum of the two operands.
In the extended subtract instruction, SE, the value of the first
operand is added to the ones complement of the second operand, and
to this result is added the value of CO bit.

All arithmetic instructions are non-privileged.

3.7.1 Add Instructions

Add R Format

A RB,RC

El RB RC

0 8 12 15

The contents of registers RB and RC are added and the result
placed into register RB. Condition Status bits LT, EQ, GT, CO and
OV are affected.

Add Extended R Format

AE RB,RC

Fl RB RC

0 8 12 15

The content of register RB, the Content of register RC, and the
value of Condition Status bit CO are summed and the result placed
into register RB. Condition Status bits LT, EQ, GT, CO, and OV
are affected.

Programming Note:

This allows multiple precision addition.

Instruction Set 57

IBM Confidential Restricted. DO NOT COPY

Add Extend Immediate D Format

AEI RB,RC,I

Dl RB RC I

0 8 l 2 l 6 31

The field I, sign extended, the content of register RC, and the
value of Condition Status bit CO are summed and the result placed
in register RB. Condition Status bits LT, EQ, GT, CO, and OV are
affected.

Programming Note:

This allows multiple precision addition.

Add Immediate D Format

AI RB,RC,I

Cl RB RC I

0 8 12 l 6 31

The field I, sign extended, is added to the content of register RC
and the result placed in register RB. Condition Status bits LT,
EQ, GT, CO, and OV are affected.

Add Immediate Short R Format

AIS RB,I

90 RB I

0 8 12 15

The field I,
added to the

extended on the left with twenty-eight zeroes
content of register RB and the result placed

Instruction Set

is
in

SS

IBM Confidential Restricted. DO NOT COPY

reg;ster RB.
affected.

Condit;on Status b;ts LT, EQ, GT, CO and OV are

3.7.2 Absolute Instruct;on

Absolute R Format

ABS RB,RC

EO RB RC

0 8 12 15

The content of reg;ster RB ;s replaced by the absolute value of
the content of register RC. Cond;t;on Status bits LT, EQ, GT, CO
and OV are affected. Normally, only Cond;t;on Status b;ts EQ or
GT are set to one accord;ng to the result. If register RC
contains the max;mum negat;ve number, for wh;ch there ;s no
equ;valent pos;tive number, then the content of reg;ster RB ;s set
equal to the content of register RC, and the Condition Status bits
LT and OV are set to one.

3.7.3 Complement Instruct;ons

One's Complement R Format

ONEC RB,RC

F4 RB RC

0 8 12 15

The content of register RB are replaced by the one's complement of
the content of register RC. Condition Status bits LT, EQ, and GT
are affected.

Instruct;on Set 59

IBM Confidential Restricted. DO NOT COPY

Two's Complement R Format

TWOC RB,RC

0

E4 RB RC

0 8 12 15

The content of register RB are replaced by the two's complement of
the content of register RC. Condition Status bits LT, EQ, GT, CO,
and OV are affected.

3.7.4 Compare Instructions

Compare R Format

C RB,RC

B4 RB RC

0 8 12 15

The contents of registers RB and RC, both treated as 32-bit signed
algebraic quantities, are compared. Condition Status bits LT, EQ
and GT are affected. Condition Status bits LT and GT are set
according to the true relative algebraic magnitudes of the
contents of registers RB and RC; that is, LT is set if the content
of register RB is algebraically less than the content of register
RC, and GT is set if the content of register RB is algebraically
greater than the content of register RC. Condition Status bit EQ
is set if the content of register RB equals the content of
register RC.

Instruction Set 60

IBM Confidential Restricted. DO NOT COPY

Compare Immediate Short R Format

CIS RB,I

94 RB I

0 8 12 15

The content of register RB is compared to the field I extended on
the 1£-(:ft with twenty-eight zeroes. Condition Status bits LT, EQ,
and GT are affected. Condition Status bits LT and GT are set
according to the true algebraic magnitudes of register RB and
field I. The LT bit is set if the content of register RB is
algebraically less than the field I extended on the left with
twenty-eight zeroes, and the GT bit is set if the content of
register RB is greater than the field I extended on the left with
twenty-eight zeroes. The EQ bit is set if the content of register
RB equals the field I extended on the left with twenty-eight
zeroes.

Compare Immediate D Format

CI RC, I

D4 0 RC I

0 8 12 1 6 31

The content of register RC is compared to field I, sign extended.
Condition Status bits LT, EQ, and GT are affected. Condition
Status bits LT and GT are set according to the true relative
algebraic magnitudes of register RC and field I. The LT bit is
set if the content register RC is algebraically less than the
field I sign extended, and the GT bit is set if the content of
register RC is greater than the field I sign extended. The EQ bit
is set if the content of register RC equals the field I, sign
extended.

Instruction Set 61

IBM Confidential Restricted. DO NOT COPY

Compare Logical R Format

CL RB,RC

B3 RB RC

0 8 12 15

The contents of registers RB and RC, both treated as 32-bit
unsigned quantities, are compared. Condition Status bits LT, EQ
and GT are affected. Condition Status bits LT and GT are set
according to the relative unsigned magnitudes of the contents of
registers RB and RC; that is, LT is set if the content of register
RB is logically less than the content of register RC, and GT is
set if the content of register RB is logically greater than the
content of register RC. Condition Status bit EQ is set if the
content of register RB equals the content of register RC.

Compare Logical Immediate D Format

CLI RC,I

03 0 RC I

0 8 12 16 31

The content of register RC is compared to the field I, sign
extended. Condition Status bits LT, EQ and GT are affected.
Condition Status bits LT and GT are set according to the relative
unsigned magnitudes of register RC and field I sign extended. The
LT bit is set if the content of register RC is logically less than
the field I sign extended and the GT bit is set if the register RC
is greater than the field I sign extended. The EQ bit is set if
the content of register RC equals the field I sign extended.

3.7.5 Extend Sign Instruction

Instruction Set 62

IBM Confidential Restricted. DO NOT COPY

Extend Sign R Format

EXTS RB,RC

Bl RB RC

0 8 1 2 15

The content of the lower half of register RB is replaced by the
lower half of register RC. Bits 0-15 of register RB are set equal
to bit 16. Condition Status bits LT, EQ and GT are affected.

3.7.6 Subtract Instructions

Subtract R Format

S RB,RC

E2 RB RC

0 8 1 2 15

The content of register RC is subtracted from
register RB and the result placed into register
Status bits LT, EQ, GT, CO and OV are affected.

Subtract From R Format

SF RB,RC

B2 RB RC

0 8 1 2 15

Instruction Set

the content of
RB. Condition

63

IBM Confidential Restricted. DO NOT COPY

The content of register RB is subtracted from the content of
register RC and the result placed in register RB. Condition
Status bits LT, EQ, GT, CO and OV are affected.

Subtract Extended R Format

SE RB,RC

F2 RB RC

0 8 12 15

The one's complement of the content of register RC is added to the
content of register RB, to which result is added the value of
Condition Status bit CO. The result is placed in register RB.
Condition Status bits LT, EQ, GT, CO and OV are affected.

Programming Note:

This allows multiple precision subtraction.

Subtract From Immediate D Format

SFI RB,RC,I

D2 RB RC I

0 8 12 16 3 l

The content of register RB is replaced by the content of register
RC subtracted from the field I, sign extended. The Condition
Status bits LT, EQ, GT, CO and OV are affected.

Instruction Set 64

IBM Confidential Restricted. DO NOT COPY

Subtract Immediate Short R Format

SIS RB,I

92 RB I

0 8 12 15

The content of register RB is replaced by the field I subtracted
from the content of register RB. For the subtraction, field I is
extended on the left with 28 zeroes. Condition Status bits LT, EQ,
GT, CO, and OV are affected.

3.7.7 Divide And Multiply Step Instructions

Divide Step R Format

D RB,RC

B6 RB RC

0 8 12 15

The content of register RC is added to or subtracted from
<RB)//(bit 0 of MQ> depending on whether the signs of registers RB
and RC disagree or agree. The 32 rightmost bits of the sum
replace the content of register RB. The MQ is shifted left one
position and bit 31 of the MQ is set to one if and only if the
sign of the 33-bit result equals the sign of register RC.
Condition Status bit CO is set to one if the sign of the 33 bit
result equals the sign of the content of register RC, and bit OV
is set to one if the sign of the 33-bit result equals the sign of
the content of register RB.

Programming Note: Divide Step

The Divide Step instruction can be used to construct algorithms
for dividing one number by another. The following example
describes an algorithm for dividing a 32-bit dividend by a 32-bit
divisor. The operands are in two's complement representation.

Instruction Set 65

IBM Confidential Restricted. DO NOT COPY

Example: Divide X by Y giving quotient Q and remainder R where X,
Y, Q and R are 32-bit numbers and Y is not equal to zero, plus
one, or minus one.

Initial Conditions: Set general-purpose register RB to the
propagated sign of x <zero if x is non-negative, minus one if x is
negative). This can be accomplished by loading RB with x and
executing a SARI16 RB, 15 instruction. Load y into
general-purpose register RC. Locid X into MQ.

Algorithm: Issue the Divide Step instruction
RC thirty-two times. If at this point the
differ, add the content of RC to the content
content of RB. After this test and possible
RB contains the preliminary remainder. The
rightmost bits of the preliminary quotient.

with operands RB and
signs of RB and RC
of RB replacing the
modification of RB,
MQ contains the 32
The final quotient

and remainder are either equal to the preliminary quotient and
remainder or are found by adding one to the preliminary quotient
and subtracting the divisor, RC, from the preliminary remainder.
Proof: The Divide Step instruction supports a non-restoring
division algorithm. Division is accomplished by repetitive
subtraction. The first time, only the sign of the dividend
extended to an appropriate width participates in the subtraction.
On each subsequent repetition an additional dividend bit is
included to the right of the result of the previous repetition;
this has the effect of halving the divisor.

Because the division involves binary numbers, the divisor can be
subtracted from the current minuend either one or zero times. If
it is one, the appropriate quotient bit is one. If it is zero,
the quotient bit is zero; however the subtraction has already been
performed. Instead of adding the divisor back at this point, half
the divisor is added at the next repetition, since the result of
subtracting the divisor and adding half the divisor is the same as
subtracting half the divisor.

When all dividend bits have been used, if the signs of the divisor
and remainder differ, restoration must be done for the last step,
and so the divisor is added back into the remainder without
changing the quotient. This produces the preliminary quotient and
remainder.

The actual algorithm depends on the signs of the divisor and the
dividend at each step. These signs also determine whether the
initial step is addition or subtraction.

The above algorithm can be modified for dividing a 64-bit dividend
contained in RB//MQ. If the initial value of CRB)//(bit 0 of MQ)
exceeds the divisor in magnitude, then divide overflow
This condition can be determined by testing for
execution of the first Divide Step instruction.

Instruction Set

will
OV=l

occur.
after

66

IBM Confidential Restricted. DO NOT COPY

Multiply Step R Format

M RB,RC

E6 RB RC

0 8 l 2 ls

The incomplete product of the content of register RC and bits 30
and 31 of the MQ register are formed in <RB>l/MQ. A 34-bit sum is
formed in accordance with the table below. The MQ is
algebraically shifted right two positions with the two rightmost
bits of the sum replacing bits 0 and 1 of the MQ. The content of
register RB is replaced by the 32 leftmost bits of the sum.
Condition Status bit CO is set to the complement of bit 30 of the
MQ before the shift.

Condition Status
Bit co MQ Bit 30 MQ Bit 31 Algebraic Sum

0 0 0 <RB> + <RC>
0 0 1 <RB) + 2:if<RC>
0 l 0 <RB> - <RC>
0 l l <RB> + 0
l 0 0 CR B > + 0
l 0 1 <RB) + <RC>
l l 0 <RB) - 2*CRC>
1 l 1 <RB) - <RC>

Programming Note: Multiply Step

The Multiply Step instructions can be used to construct algorithms
for multiplying two numbers together. The following example
describes an algorithm for multiplying a 32-bit multiplicand by a
16-bit multiplier. The operands are in two's complement
representation.

Example: Multiply X by Y giving Z where X is a 32-bit number and Y
is a 16-bit number.

Initial Conditions: Load X into general-purpose register RC; load
Y into the MQ, set the content of general-purpose register RB to
zero; set Condition Status bit CO to one. RB and CO can be
initialized simultaneously by executing a S RB,RB instruction.

Algorithm: Issue the Multiply Step instruction with operands RB
and RC eight times.

Instruction Set 67

IBM Confidential Restricted. DO NOT COPY

Result: The 16 rightmost bits of the product Z are in the MQ; the
32 leftmost bits are in register RB.

Proof: The 16-bit multiplier Y can be expressed as the sum of 16
terms of the form:

y 2 where y equals 0 or 1 and

or eight terms of the form:

<y + 2*Y * 4

where

2i 2i+l

y and y
2i

equal 0 or l and
2i+l

: 0,1,2 ... 15

= 0,1 ... ,7.

The Multiply Step instruction accumulates a partial sum in
register RB and the leftmost bits of the MQ; a Condition Status
bit CO equal to zero indicates a carry. The instruction provides
four cases for the parenthesized factor when there is no carry
into the term and four cases when there is a carry, as follows:

y + 2*Y
£.L

0

1
2
3
0

l
2
3

ll+L Carry

No
No
No
No
Yes
Yes
Yes
Yes

<RB)

<RB>+<RC>
<RB>+4*<RC>-2*<RC>
CRB>+4*<RC>-<RC>
CRB>+CRC>
<RB>+2*<RC>
(RB >+4*< RC>-< RC>
CRB>+4*<RC>

In the parenthesized factor, y2i is the value of MQ bit 31 and
y2i+l is the value of MQ bit 30. Whenever MQ bit 30 is one, the
term 4*CRC> appears. This is a carry into the next partial sum.

The Multiply Step instruction places
partial sum in vacated MQ bits <bits
4i factor since it has the effect
bits of the multiplier by four.

Instruction Set

the rightmost two bits of the
0 and l>. This provides the

of multiplying the remaining

68

IBM Confidential Restricted. DO NOT COPY

3.8 LOGICAL OPERATIONS

The logical operations treat the contents of the general-purpose
registers as 32-bit unsigned integers with the exception of the
instruction Count Leading Zeroes <CLZ>, which is applied to the
lower half of a register. All logical operations except CLZ set
Condition Status bits LT, EQ and GT according to the algebraic
value expressed in two's ~omplement representation. If the result
is a negative value, LT is set to one; if it is zero, EQ is set to
one; if it is positive and not zero, GT is set to one. The
Condition Status is unaffected by the Count Leading Zeroes
instruction.

All logical instructions are non-privileged.

3.8.1 Clear And Set Bit Instructions

Clear Bit Lower Hulf R Format

CLRBL RB,I

99 RB I

0 8 12 15

A bit in the lower half of register RB is set to zero, where the
bit is specified by the immediate field I. Condition Status bits
LT, EQ, and GT are affected.

Clear Bit Upper Half R Format

CLRBU RB,I

98 RB I

0 8 12 15

Instruction Set 69

IBM Confidential Restricted. DO NOT COPY

A bit in the upper half of register RB is set to zero, where the
bit is specified by the immediate field I. Condition Status bits
LT, EQ, and GT are affected.

Set Bit Lower Half R Format

SETBL RB,I

9B RB I

0 8 12 15

A bit in the lower half of register RB is set to one, where the
bit is specified by the immediate field I. Condition Status bits
LT, EQ and GT are affected.

Set Bit Upper Half R Format

SETBU RB,I

9A RB I

0 8 12 15

A bit in the upper half of register RB is set to one, where the
bit is specified by the immediate field I. Condition Status bits
LT, EQ and GT are affected.

Instruction Set 70

IBM Confidential Restricted. DO NOT COPY

3.8.2 AND Instructions

AND R Format

N RB,RC

ES RB RC

0 8 12 lS

The AND of the contents of registers RB and RC replaces the
content of the register specified by RB. Condition Status bits
LT, EQ and GT are affected.

AND Immediate Lower Half Extended Zeroes D Format

MILZ RB,RC,I

cs RB RC I

0 8 l 2 l 6 3 l

The AND of the I field extended on the left with sixteen zeroes
and the content of register RC replaces the content of register
RB. Condition Status bits LT, EQ and GT are affected.

AND Immediate Lower Half Extended Ones D Format

NILO RB, RC, I

C6 RB RC I

0 8 12 l 6 3 l

The AND of the I field extended on the left with sixteen ones and
the content of register RC replaces the content of register RB.
Condition Status bits LT, EQ and GT are affected.

Instruction Set 71

IBM Confidential Restricted. DO NOT COPY

AND Immediate Upper Half Extended Zeroes D Format

NIUZ RB, RC, I

DS RB RC I

0 8 12 16 31

The AND of the I field extended on the right with sixteen zeroes
and the content of register RC replaces the content of register
RB. Condition Status bits LT, EQ and GT are affected.

AND Immediate Upper Half Extended Ones D Format

NIUO RB,RC,I

D6 RB RC I

0 8 12 16 31

The AND of the I field extended on the right with sixteen ones and
the content of register RC replaces the content of register RB.
Condition Status bits LT, EQ and GT are affected.

3.8.3 OR Instructions

OR R Format

0 RB,RC

E3 RB RC

0 8 12 lS

The OR of the contents of registers RB and RC replaces the content
of register RB. Condition Status bits LT, EQ and GT are affected.

Instruction Set 72

IBM Confidential Restricted. DO NOT COPY

OR Immediate Lower D Format

OIL RB,RC,I

C4 RB RC I

0 8 12 16 3 1

The OR of the I field extended on the left with sixteen zeroes and
the content of register RC replaces the content of register RB.
Condition Status bit s LT, EQ and GT are affected.

OR Immediate Upper D Format

QIU RB,RC,I

C3 RB RC I

0 8]. 2 16 31

The OR of the I field extended on the right with sixteen zeroes
and the content of register RC replaces the content of register
RB. Condition Status bits LT, EQ and GT are affected.

3.8.4 Exclusive OR Instructions

Exclusive OR R Format

X RB, RC

E7 RB RC

0 8 12 lS

Instruction Set 73

IBM Confidential Restricted. DO NOT COPY

The EXCLUSIVE OR
the content of
are affected.

of the contents of registers RB and RC replaces
register RB. Condition Status bits LT, EQ and GT

Exclusive OR Immediate Lower Half D Format

XIL RB,RC,I

C7 RB RC I

0 8 12 16 31

The EXCLUSIVE OR of the I field extended on the left with sixteen
zeroes and the content of register RC replaces the content of
register RB. Condition Status bits LT, EQ and GT are affected.

Exclusive OR Immediate Upper Half D Format

XIU RB,RC,I

07 RB RC

0 8 12 16

The EXCLUSIVE OR of the
zeroes and the content
register RB. Condition

Instruction Set

I

31

I field extended on the right with sixteen
of register RC replaces the content of

Status bits LT, EQ and GT are affected.

74

o IBM Confidential Restricted. DO NOT COPY

3.8.5 Count Leading Zeroes Instruction

Count Leading Zeroes R Format

CLZ RB,RC

F5 RB RC

0 8 12 15

The content of register RB is replaced by the binary
representation of the number of leading zeroes in the lower half
of register RC <i.e., the number of zeroes to the left of the
leftmost one bit in the lower half of register RC) •

Programming Note:

If the lower half of register RC is equal to zero, the content of
register RB is replaced by the binary representation of sixteen.

Instruction Set 75

IBM Confidential Restricted. DO NOT COPY

3.9 SHIFTS

Shift instructions operate on either the content of a register or
a register half. Immediate form shifts specify a shift amount of
0 to 31 bits to the left or right based on the value of the
immediate field. Indirect shifts specify a shift amount of 0 to
63 bits to the left or right based on the low-order six bits of
register RC. A shift amount greater than 31 bits results in a
32-bit shift. All shifts set the Condition Status bits LT, EQ and
GT according to the resultant algebraic value returned to the
register. All instructions except the shift algebraic right
instructions supply zeroes to the vacated bit positions.

All shift instructions are non-privileged.

3.9.l Shift Algebraic Right Instructions

Shift Algebraic Right R Form~t

SAR RB,RC

BO RB RC

0 8 12 15

The content of register RB is shifted right the number of bit
positions specified by bits 26-31 of register RC. Bits equal to
the original sign bit (bit 0) are supplied to the vacated
high-order positions. Condition Status bits LT, EQ and GT are
affected.

Instruction Set 76

IBM Confidential Restricted. DO NOT COPY

Shift Algebraic Right Immediate R Format

SARI RB,I

AO RB I

0 8 12 15

The content of register RB is shifted right the number of bit
positions specified by the field I. Bits equal to the original
sign bit (bit 0) are supplied to the vacated high-order positions.
Condition Status bits LT, EQ and GT are affected.

Shift Algebraic Right Immediate Plus Sixteen R Format

SARI16 RB,I

Al RB I

0 8 12 15

The content of the register RB is
positions specified by the field
the original sign bit (bit O>
high-order positions. Condition
affected.

3.9.2 Shift Right Instructions

Shift Right R Format

SR RB,RC

BS RB RC

0 8 12 15

Instruction Set

shifted right the number of bit
I plus sixteen. Bits equal to
are supplied to the vacated

Status bits LT, EQ and GT are

77

IBM Confidential Restricted. DO NOT COPY

The content of register RB is shifted right
positions specified by bits 26-31 of register
supplied to the vacated high-order positions.
bits LT, EQ and GT are affected.

Shift Right Immedinte R ~ormat

SRI RB,I

A8 RB I

0 8 12 15

the number of bit
RC. Zeroes are
Condition Status

The content of register RB is shifted right the number of bit
positions specified by the field I. Zeroes are supplied to the
vacated high-order positions. Condition Status bits LT, EQ and GT
are affected.

Shift Right Immediate Plus Sixteen R Format

SRI16 RB,I

A9 RB I

0 8 12 15

The content of register RB is shifted right the number of bit
positions specified by the field I plus sixteen. Zeroes are
supplied to the vacated high-order positions. Condition Status
bits LT, EQ and GT are affected.

Instruction Set 78

IBM Confidential Restricted. DO NOT COPY

Shift Right Paired R Format

SRP RB,RC

B9 RB RC

0 8 12 15

The content of the register RB shifted right the number of bit
positbons specified by bits 26-31 of register RC with zeroes
supplied to the vacated high-order positions is placed in the twin
register RB. The content of register RB is not affected.
Condition Status bits LT, EQ and GT are affected.

Shift Right Paired Immediate R Format

SRPI RB,I

AC RB I

0 8 12 15

The content of register RB shifted right the number of bit
positions specified by the field I with zeroes supplied to the
vacated high-order positions is placed in the twin register RB.
The content of register RB is not affected. Condition Status bits
LT, EQ and GT are affected.

Shift Right Paired Immediate Plus Sixteen R Format

SRPI16 RB, I

AD RB I

0 8 12 15

The content of register RB shifted right the number of bit
positions specified by the field I plus sixteen with zeroes
supplied to the vacated high-order positions is placed in the twin

Instruction Set 79

IBM Confidential Restricted. DO NOT COPY

of register RB. The content of register RB is not affected.
Condition Status bits LT, EQ and GT are affected.

3.9.3 Shift Left Instructions

Shift Left R Format

SL RB,RC

BA RB RC

0 8 12 lS

The content of register RB is shifted left the number of bit
positions specified by bits 26-31 of register RC. Zeroes are
supplied to the vacated low-order positions. Condition Status
bits LT, EQ and GT are affected.

Shift Left Immediate R Format

SLI RB,I

AA RB I

0 8 12 lS

The content of the register RB is shifted left the number of bit
positions specified by the field I. Zeroes are supplied to the
vacated low-order positions. Condition Status bits LT, EQ and GT
are affected.

Instruction Set 80

IBM Confidential Restricted. DO NOT COPY

Shift Left Immediate Plus Sixteen R Format

SLI16 RB,I

AB RB I

0 8 12 15

The content of register RB is shifted left the number of bit
positions specified by the field I plus sixteen. Zeroes are
supplied to the vacated low-order positions. Condition Status
bits LT, EQ and GT are affected.

Shift Left Paired R Format

SLP RB,RC

BB RB RC

0 8 12 15

The content of register RB shifted left the number of bit
positions specified by bits 26-31 of register RC with zeroes
supplied to the vacated low order positions is placed in the twin
of register RB. The content of register RB is not affected.
Condition Status bits LT, EQ and GT are affected.

Shift Left Paired Immediate R Format

SLPI RB,I

AE RB I

0 8 12 15

The content of register RB shifted left the number of bit
positions specified by the field I with zeroes supplied to the
vacated low order positions is placed in the twin of register RB.
The content of register RB is not affected. Condition Status bits
LT, EQ and GT are affected.

Instruction Set 81

IBM Confidential Restricted. DO NOT COPY

Shift Left Paired Immediate Plus Sixteen R Format

SLPI16 RB,I

AF RB I

0 8 12 15

The content of the register RB shifted left the number of bit
positions specified by the field I plus sixteen with zeroes
supplied to the vacated low order positions is placed in the twin
of register RB. The content of register RB is not affected.
Condition Status bits LT, EQ and GT are affected.

Instruction Set 82

IBM Confidential Restricted. DO NOT COPY

3.10 SYSTEM CONTROL

The system control instructions provide a means of examining and
manipulating the state of certain processor facilities. This is
done through two sub-classes of instructions. The first sub-class
operates on the contents of the system control registers. These
instructions allow the reading or writing of any SCR or the
setting or clearing of any of the low-order 16 bits of the SCR. A
second sub-class of instructions within this class provides the
necessary software interface to the interrupt facility described
in "Interrupts" on page 17.

The instructions which deal with the SCRs provide a general
capability of operating on any of the SCRs. However, because of
the definition of certain SCRs, not every operation on an SCR
gives a predictable result. Moreover, bits in any SCR whic~ have
been specified as reserved bits cannot be used in a predictable
manner. These exceptional cases are specified along with the
instruction definitions. Finally, all SCRs except the ICS <SCR 14>
are dynamically changed by the processor, often asynchronously to
instruction sequencing. Hence, a read of an SCR following a write
will not necessarily get the same data which was written.

Only certain system control instructions are non-privileged. The
non-privileged instructions are MTS, MFS, SETSB, and CLRSB when
the SCR reference by these instructions is the MQ or CS, and the
SVC instruction An attempt to execute any other system control
instruction in problem state will cause the privileged instruction
exception bit in the program check status to be set and a program
check to occur. Refer to "Program-Check Errors" on page 124 for a
description of the program check status.

3.10.1 Move To And From SCR Instructions

Move to SCR R Format

MTS SRB,RC

85 SRBI RC

0 8 12 15

The content of system control register SRB is replaced by the
content of register RC. Any reserved bits in the specified SCR

Instruction Set 83

IBM Confidential Restricted. DO NOT COPY

are not set to predictable values. If the specified SCR is the
IAR <SCR 13), the results of this instruction are unpredictable.

Move from SCR R Format

MFS SRB,RC

96 SRBI RC

0 8 12 15

The content of register RC is replaced by the content of system
control register SRB. The bits of register RC corresponding to
reserved bits of the specified SCR are set to unpredictable
values. If the specified SCR is the IAR <SCR 13>, the value which
is loaded into register RC is the address of the instruction
immediately following the MFS instruction in main storage.

3.10.2 Clear And Set SCR Bit Instructions

Clear SCR Bit R Format

CLRSB SRB,I

95 SRBI I

0 8 12 lS

A bit in the lower half of system control register SRB is set to
zero, where the bit is selected by the immediate field I. If the
selected bit of the SCR is a reserved bit, it is not set to a
predictable value. If the specified SCR is the IAR CSCR 13), the
results of this instruction are unpredictable.

Instruction Set 84

IBM Confidential Restricted. DO NOT COPY

Set SCR Bit R Format

SETSB SRB,I

97 SRB I I
() 8 12 15

A bit in the lower half of system control register SRB is set to
one, where the bit is selected by the immediate field I. If the
selected bit of the SCR is a reserved bit, it is not set to a
predictable value. If the specified SCR is the IAR <SCR 13>. The
results of this instruction were unpredictable.

3.10.3 Load Program Status Instruction

Load Program Status D Format

LPS T, I<RC>

DO I

() 8 12 l 6 3 l

The content of the IAR <SCR 13) is replaced by the word in main
storage addressed by O/CRC> plus the sign extended I-field. The
content of the ICS <SCR 14> is replaced by the content of the main
storage halfword addressed by O/CRC> plus the sign extended
I-field plus four. The content of the CS <SCR 15> is replaced by
the content of the main storage halfword addressed by O/CRC> plus
the sign extended I-field plus six. Any reserved bits in the SCRs
are set to unpredictable values. If the processor is on the
Machine Check level <see "Machine-Check Error Handling" on page
122> when the LPS is executed, the content of the MCS is set to
zero. If the processor is on the Program Check level <see
"Program-Check Error Handling" on page 124) when the LPS is
executed, the content of the PCS is set to zero.

If bit 11 of this instruction is a one, interrupts remain pending
until the target instruction of the LPS instruction has been

Instruction Set 85

IBM Confidential Restricted. DO NOT COPY

executed. If bit 11 is zero, interrupts may occur after the LPS
instruction is executed.

Programming Note:

The LPS instructions may be used to return from an interrupt.

The LPS instruction may also be used to trace instruction
execution. This is accomplished by setting a bit in the IRB to
generate an interrupt request before executing the LPS
instruction. The bit which is set should have a corresponding
interrupt request priority greater than the processor priority
which is loaded by the LPS instruction. If the Interrupt Mask
which is loaded by the LPS is zero, and if bit 11 of the LPS
instruction is a one, an interrupt will occur after the target
instruction of the LPS has been executed.

3.10.4 Wait Instruction

Wait R Format

WAIT

FO 0 0

0 a 12 15

The processor is placed in the wait state. When the processor is
in the wait state it does not execute any instructions nor make
any storage accesses. The processor is removed from the wait
state through the occurrence of an interrupt, error, or power-on
reset.

Instruction Set 86

IBM Confidential Restricted. DO NOT COPY

3.10.5 Supervisor Call Instruction

Supervisor Call D Format

SVC ICRC>

co 0 RC I

0 a 12 16 31

The content of the IAR <SCR 13) is stored into the word in main
storage beginning at address X'l90'. The content of the ICS <SCR
14) is stored into the halfword in main storage beginning at
address X'l94'. The content of the CS CSCR 15> is stored into the
halfword in main storage beginning at address X'l96'. The
low-order 16-bits of the 32-bit sum 0/(RC> + 0[16]//I is stored
into the halfword in main storage beginning at address X'19E'.

The content of the IAR CSCR 13) is replaced by the word in main
storage beginning at address X'l9S'. The content of the ICS (SCR
14> is replaced by the content of the halfword in main storage
beginning at address X'l9C'. Any reserved bits in the IAR and the
ICS are set to unpredictable values.

Instruction Set S7

IBM Confidential Restricted. DO NOT COPY

3.11 INPUT/OUTPUT

Programmed I/O CPIO> instructions are used to transfer data
between the general-purpose registers and system components.

All I/O addresses
upper byte of the
high order byte in

are considered to be device addresses. The
I/O address is checked to be zero. A non-zero
the I/O address will cause a program check.

All PIO instructions are non-privileged. Each I/O device
determines whether it is a privileged or non-privileged device.
Privileged I/O devices accept I/O commands from the processor only
when the processor is in supervisor state. An attempt to access a
privileged I/O device from problem state will cause the Data
Address Exception bit in the Program Check Status to be set and a
program check to occur. See "Privileged I/O Device Connection" on
page 90 for a description of privileged I/O device connection, and
"Program-Check Status" on page 125 for a description of the
Program Check Status.

Input/Output Read D Format

I OR RB , I (RC)

CB RB RC I

0 8 12 1 6 31

The content of register RB is replaced by data transferred from
the I/O device selected by the effective address O/CRC> +
0[16]//I. Bits 8-31 of the 32-bit effective address are
interpreted as the I/O device address. Bits 0-7 of the effective
address must be zero.

Instruction Set 88

IBM Confidential Restricted. DO NOT COPY

Input/Output Write D Format

I OW RB , I (R C)

DB RB RC I

0 8 l 2 l 6 3 l

The content of register RB is transferred to the I/O device
selected by the effective address O/CRC> + 0[16)//I. Bits S-31 of
the 32-bit effective address are interpreted as the I/O device
address. Bits 0-7 of the effective address must be zero.

Instruction Set 89

IBM Confidential Restricted. DO NOT COPY

4.0 INPUT/OUTPUT FACILITY

4.1 I/O CAPABILITY

The ROMP system provides two capabilities for controlling I/O
operations: programmed I/O <PIO>. and I/O interrupts.

4.1.l Programmed I/O

Two programmed I/O <PIO> instructions <IOR and IOW> provide I/O
operations which are synchronous to the program. For each PIO
instruction executed, a 24-bit I/O address field is sent to an I/O
device and data is transferred between the I/O Device and a
general purpose register. The PIO instructions are defined in
"Input/Output" on page 88.

4.1.2 Privileged I/O Device Connection

The ROMP architecture allows the system designer to determine
whether each I/O device is privileged or non-privileged.
Privileged I/O devices can be accessed only by programs executing
in supervisor state. An attempt to access a privileged I/O device
from problem state will cause the Data Address Exception bit in
the Program Check Status to be set and a program check to occur.

The determination of privileged or non-privileged mode can be made
in each device by selectively including the problem state signal
from the processor in the decode logic used to accept an I/O
command. Each I/O device will normally contain address decode
logic which is used to determine if a particular I/O command is
directed to the device. A device can be made privileged by
including the ROMP Storage Channel <RSC> problem state signal
<DAL06> in the address decode logic. This will allow the device
to accept I/O commands only if the processor is in supervisqr
state. An attempt to access the I/O device from problem state
will cause the command to not be recognized by the I/O device. If
the I/O command is not recognized, no ACK/NAK response will be
generated. This will cause the Data Address Exception bit in the
Program Check Status to be set and a program check to occur.

INPUT/OUTPUT Facility 90

IBM Confidential Restricted. DO NOT COPY

4.1.3 I/O Interrupt Reguests

I/O interrupt requests report asynchronous events. Each interrupt
request is assigned one of seven priority levels. Processor logic
allows I/O interrupts <unless masked) on a priority basis. The
interrupt facility is described in "Interrupts" on page 17.

INPUT/OUTPUT Facility 91

IBM Confidential Restricted. DO NOT COPY

5.0 ROMP STORAGE CHANNEL

5.1 GENERAL DESCRIPTION

The ROMP Storage Channel <RSC> is a high-bandwidth synchronous bus
designed to interconnect a ROMP, a storage unit, and one or more
RSC devices. It supports a 32-bit data transfer and a 24-bit
<optionally 32-bit> address. Read operations on the RSC consist
of two uncoupled transfers, a request and a reply, which allows
multiple operations to overlap. This feature, combined with
several features in the ROMP data flow, allows high processor
performance with relatively slow storage through interleaving
techniques.

The main elements of the RSC are a 32-bit <plus 4 parity>
multiplexed Data/Address bus and a 5-bit <plus 1 parity> Tag bus.
The Data/Address bus contains either 32-bits of data or a 24-bit
address plus a byte of control information. The Tag bus contains
codes which link replies to requests. An optional Address
Extension bus provides 8 high-order address bits which extend the
address to 32 bits. In addition, there are several miscellaneous
handshaking, control, and clock lines.

The RSC runs synchronously with ROMP, with two RSC cycles per
ROMP cycle. The first RSC cycle is always used to transmit
addresses, and the second is used for data. There are three types
of RSC transfers:

1. A read request where one device on the RSC is requesting data
from another device. A read request consists of a single
address cycle. Note that a read request always results in a
reply.

2. A write request where one device on the RSC is writing data to
another device. A write request consists of an address cycle
plus the following data cycle.

3. A reply where one device is sending
that previously requested a read.
single data cycle.

These requests are shown in Figure 8.

data to
A reply

another device
consists of a

ROMP Storage Channel 92

D IBM Confidential Restricted. DO NOT COPY

Read Request

Write Request

l<------ROMP CYCLE--------->!

l<-RSC CYCLE->l<-RSC CYCLE->!

Address

Address Data

Reply Data

Figure 8. RSC Transfers

The RSC architecture allows any device to assume control of the
RSC and issue requests. In a typical system, ROMP would issue
requests to storage or RSC devices, and RSC devices would issue
requests to storage and each other.

Control of the RSC is determined by two arbitration systems, one
for requests <Address Grant> and one for replies CData Grant).
Arbitration is for a period of two RSC cycles, with reply and
request arbitration being overlapped in time with each other, and
also with bus transfers. The arbitration systems are defined to
be daisy-chained, but it is possible to implement a radial
arbiter.

A typical RSC system configuration is shown in Figure 9 on page
94.

ROMP Storage Channel 93

IBM Confidential Restricted. DO NOT COPY

36-Adr/Data
6-Tag
4-Ack/Nak
1-Exception

4 7
.-6-Clock

ADDRGRTO

ADDRGRTO

v v
I I I

H L
RSC Device

DAT

r
v v v
_l _l _l

H L
RSC Device

v v

H L
Storage

Controller

D

AGRTO

ATAGRTI

---- -9-Adr. Ext-

ADDRGRTI DATAGRTI

r---v v
I lznstruct ion

Execution DATAGRTO

CLOCK
GENERATOR

Unit

v

Instruction
Pref etch
Unit

ROMP CHIP

Figure 9. Typical RSC Configuration

ROMP Storage Channel 94

IBM Confidential Restricted. DO NOT COPY

5.2 STORAGE CHANNEL DEFINITION

The ROMP Storage Channel <RSC> consists of 57 standard lines, plus
9 address extension lines, divided into five functional groups.
This section provides an overview of each of these five functional
groups. Subsequent sections provide a detailed description of
each functional group.

5.2.l Address And Data Bus

The first group of signals is
bi-directional lines in the
bits>. The address/data bus
Definition" on page 97.

5.2.2 Tag Bus

the address/data bus. There are 36
bus <32 data bits plus four parity

is defined in "Address/Data Bus

The second group of signals is the tag bus. There are six bi­
directional lines in this group (five tag bits plus one tag parity
bit>. Whenever a request is placed on the RSC, a unique code <a
'tag'>, which identifies the source of the request, is placed on
the tag bus. This tag is used as a return address for a reply
generated in response to the request. The current bus definition
uses three tags for special functions <one for channel reset, one
for idle condition, and one for write data>. The remaining twenty
nine are available as return addresses. ROMP uses ten of these,
leaving nineteen available for use by RSC devices. The tag bus is
defined in "Tag Bus Definition" on page 98.

5.2.3 Control Signals

The third group of signals is the storage channel controls. ACKA,
ACKD, NAKA and NAKD are generated in response to transfers on the
bus to indicate whether the transfer was successful. ACKA and
NAKA are responses to the address transfer and occur during the
data cycle which immediately follows the address transfer. ACKD
and NAKD are responses to the data transfer cycle and occur during
the address cycle which immediately follows the data transfer.
These lines are negative true signals, and the processor drives
them to the high <inactive> level every other bus cycle. A pullup
resistor maintains the inactive level if no system component is
attempting to pull the lines low. The four possible combinations
of ACK and NAK indicate whether the transfer was successful or
whether an error occurred according to the following table.

ROMP Storage Channel 95

IBM Confidential Restricted. DO NOT COPY

ACKA NAKA
or ACKD or NAKD Definition

Inactive Inactive No Device Responded
Inactive Active Device Busy, Retry Transfer
Active Inactive Transfer Successful
Active Act iv~ Parity Error

Address Grant and Data Grant are groups of signals that are used
to arbitrate among devices on the RSC for use of the bus. Address
Grant is used to arbitrate for an address cycle and the next data
cycle. Data Grant is used to arbitrate for a data cycle. Address
Grant and Data Grant are serially connected between devices,
starting with the highest priority device and ending with the
lowest priority device so that only one device at a time may
originate a transfer on the bus. This means that the address
grant input CADDRGRTI> of a given device in the priority chain is
connected to the address grant output CADDRGRTO> of the next
higher priority device. Similarly, the data grant input
<DATAGRTI> of one device is connected to the data grant output
<DATAGRTO> of the next higher priority device. The lowest order
DATAGRTO output is sent to all devices in the Address Grant chain,
and serves to prevent them from using a data cycle needed for a
reply. See "Bus Arbitration" on page 102 for more information.

HOLD is used in systems which have devices on the RSC that can
interfere with ROMP access of the RSC. See "Hold Time-Out
Counter" on page 108 for more information.

EXCEPTION is used in systems which implement storage protection or
address translation. See "Storage Protection and Address
Translation" on page 109 for more information.

5.2.4 Address Extension Bus

The fourth group of lines provide 8 bits of address extension plus
parity for 32-bit addressing. These lines can be used in virtual
address systems where a 32-bit address is desired. Use of these
lines is described in "Address Extension Bus Definition" on page
99.

5.2.5 RSC Clocks

The fifth functional group of signals consist of six clocks which
control the RSC. See "Storage Channel Clocking" on page 100 for

ROMP Storage Channel 96

IBM Confidential Restricted. DO NOT COPY

more information.

5.3 RSC SIGNAL DEFINITIONS

5.3.1 Address/Data Bus Definition

The address/data bus lines CDAL> provide 24 bits of address and 8
bits or control information during an address cycle, and 32 bits
of da~a during a data cycle. An additional eight address bits are
available on the Address Extension Bus during an address cycle for
systems which use 32-bit addressing.

During an address cycle, the address/data bus is defined as
follows:

DALOO
Inactive
Active

DALOl
Inactive
Active

DAL02
Inactive
Inactive
Active
Active

DAL04
Inactive
Active

DAL05
Inactive
Active

DAL06
Inactive
Active

DAL07

DAL08
DAL09
DALlO
DALll
DAL12

DAL03
Inactive
Active
Inactive
Active

ROMP Storage Channel

Function
Storage Access
Programmed I/O

Function
Read
Write

Operi'lnd Length
One Byte
Two Bytes
Four Bytes
Two Byte Test and Set

Function
Storage Protection Disabled
Storage Protection Enabled

Function
Address Translation Disabled
Address Translation Enabled

Function
Supervisor State
Problem State

Reserved

Address Bit 0 CMSB>
Address Bit l
Address Bit 2
Address Bit 3

Address Bit 4

97

IBM Confidential Restricted. DO NOT COPY

DAL13 Address Bit 5
DAL14 Address Bit 6
DAL15 Address Bit 7
DAL16 Address Bit 8
DAL17 Address Bit 9
DAL18 Address Bit 10
DAL19 Address Bit 11
DAL20 Address Bit 12
DAL21 Address Bit 13
DAL22 Address Bit 14
DAL23 Address Bit 15
DAL24 Address Bit 16
DAL25 Address Bit 17
DAL26 Address Bit 18
DAL27 Address Bit 19
DAL28 Address Bit 20
DAL29 Address Bit 21
DAL30 Address Bit 22
DAL31 Address Bit 23 CLSB>

During a data transfer, 32 bi ts are transferred simultaneously,
with DALOO being the most significant bit and DAL31 being the
least significant bit.

5.3.2 Tag Bus Definition

Devices generating requests on the RSC are identified by the code
they put on the Tag bus C5 bits plus parity>. Whenever a device
places a read or write request on the RSC, it places its five-bit
code on the Tag bus along with the address on the Address/Data bus
to indicate the reply destination. The tag code is saved by the
accessed device and placed on the Tag bus with the reply.

The Tag bus is normally used during address cycles to indicate the
source of requests, and during data cycles to specify the
destination of replies. The Write Data tag is placed on the bus
during the data portion of a write request. This tag
distinguishes a Write Data parcel from a Reply.

Two other special purpose tags are the Reset tag and the Idle Mode
tag. The Reset tag, which is valid only during data cycles, is
utilized to reset devices on the RSC. It is placed on the RSC by
ROMP after Power On Reset, and in certain error conditions. The
Idle Mode tag is used on either the address or data cycle to
indicate a channel idle condition. It is placed on the bus
whenever a device controls the bus for a cycle but has no valid
parcel to transmit.

Two tags CllllO and 11111) are reserved for use by a co-processor
and can not be used by other RSC devices. Devices on the RSC

ROMP Storage Channel 98

IBM Confidential Restricted. DO NOT COPY

which provide certain protection or checking functions <i.e.
storage controllers) treat these tags the same as ROMP tags. This
allows a co-processor to have the same access authority as ROMP.

Figure 10 on page 100 summarizes
inactive logic level and a l is an
indicates a don't care state.

the tag codes.
active logic

A 0 is
level. An

an
x

5.3.3 Address Extension Bus Definition

The Address Extension Bus provides an additional 8 bits of address
extension, plus parity, for systems using 32-bit addressing.
During a request for data by a device, the address extension bus
is defined as follows:

Signal Name Function

ADREXTO Address Extension Bit 0 <MSB)
ADREXTl Address Extension Bit l
ADREXT2 Address Extension Bit 2
ADREXT3 Address Extension Bit 3
ADREXT4 Address Extension Bit 4
ADREXT5 Address Extension Bit 5
ADREXT6 Address Extension Bit 6
ADREXT7 Address Extension Bit 7 <LSB>
ADREXTP Odd Parity on ADREXTO-ADREXT7

During a data transfer, the address extension bus is defined as
follows:

ADREXTO
Inactive
Active

ADREXTl
Inactive

Active

ADREXT2
thru
ADREXT7

ADREXTP

Function
Select 32-bit addressing mode
Select 24-bit addressing mode

Function
Invalid parity on ADREXTO thru
ADREXT7 on previous address cycle
Valid parity on ADREXTO thru
ADREXT7 on previous address cycle

Reserved

Reserved

The address extension bus provides an additional 8 address bits
for use in virtual address systems where a 32-bit address is
desired. These lines are required only in systems that implement
32-bit addressing. If a system implements only 24-bit addressing,
the address extension bus signal ADREXTO and ADREXTl must be tied

ROMP Storage Channel 99

IBM Confidential Restricted. DO NOT COPY

Tag Bits

!!!AL Operation

0 0 0 0 0 Idle Mode
0 0 0 0 l Reset <See "Reset" on page 107)
0 0 0 l 0 Write Data
0 0 0 l 1 Available for Other Devices
0 0 l 0 x Available for Other Devices
0 0 l l x Processor Data Read/Write
0 l x x x Processor Instruction Fetch
l 0 0 0 0
thru
l l l 0 l Available For Other Devices
l l l l x Reserved For Co-Processor

Figure 10. Tag Definition

active through a pullup resistor. ADREXTO is used to enable
checking of the upper address byte to insure that it is zero. A
non-zero high-order address byte will cause a program check as
described in "Storage Access" on page 30. ADREXTl is used to
report parity errors on the address extension bus during the
previous address cycle.

Systems which implement 32-bit addressing will drive ADREXTO
inactive during data cycles, to indicate 32-bit addressing is
being used. These systems must also check parity on the address
extension bus, and use ADREXTl during data cycles to report parity
checking results from the previous address cycle. This parity
error signal is ORed with the RSC NAKA signal by the processor to
determine if any parity errors occurred during an address cycle
transfer.

The address extension bus provides extension of storage addresses
to 32-bits. All I/O addresses remain 24-bits. The upper-byte of
the 32-bit I/O address is checked to insure that it is zero. A
non-zero high-order I/O address byte will cause a program check in
both 24-bit and 32-bit addressing mode.

5.3.4 Storage Channel Clocking

ROMP operates with four clocks <-TO, -Tl, -T2, -T3> which are
generated external to the processor chip. ROMP, storage, and any
other devices on the storage channel must use these clocks to
control channel transfers. The trailing edge of Tl is used to
latch up the state of the RSC for address cycles, while the

ROMP Storage Channel 100

IBM Confidential Restricted. DO NOT COPY

trailing edge of T3 is used to latch up the RSC for data cycles.
In addition, an ADDRESS CLOCK C+AC> and DATA CLOCK C+DC> are
provided to enable the tri-state drivers attached to the RSC. The
purpose of these clocks is to minimize the possibility of two
devices on the bus simultaneously attempting to drive the bus to
opposite polarities (because of skew problems>. AC rises at the
trailing edge of TO and falls at the leading edge of T2
<nominally>. DC rises at the trailing edge of T2 and falls at the
leading edge of TO. The absence of DC on any data cycle indicates
that ROMP will enter the stopped state on the next address cycle.
While ROMP is in the stopped state, both AC and DC remain
inactive. When this condition occurs, the bus contains invalid
information, and no device should attempt to use the bus. The
presence of DC on any cycle indicates that ROMP will not be in the
stopped state on the next cycle. DC can be latched on the
trailing edge of T3, and AC can be latched on the trailing edge of
Tl.

Figure 11 shows the timing for RSC clocks.

I <--------ROMP CYCLE--------> I
-TO I L
-Tl

-T2

-T3

+AC

+DC

Figure 11. RSC Clock Timing

5.4 BUS OPERATION

ROMP Storage Channel l 01

IBM Confidential Restricted. DO NOT COPY

5.4.1 Data Alignment

Replies to storage read requests are always 32-bits aligned on
word (32-bit> boundaries. The low order two address bits are
ignored. The maximum data transfer length on the RSC is 32 bits.

A storage
aligned.
on DALOO

write request must have its data portion properly
For a 32-bit write, the most significant bit is placed
and the least significant bit is placed on DAL31. For

and byte writes, the data to be written must be aligned
in the table below:

halfword
as shown

Transfer T~ee Two Low-Order Bits Data Position
Halfword ox DALOO-DAL15

lX DAL16-DAL31

Byte 00 DALOO-DAL07
01 DAL08-DAL15
10 DAL16-DAL23
11 DAL24-DAL31

I/O addresses are considered to be device addresses, not byte
addresses. The associated data transfers are 32-bits.

5.4.2 Bus Arbitration

The RSC arbitration mechanism consists of two linear-priority
daisy-chains, the Address Grant chain and the Data Grant chain.
Arbitration on the Address Grant chain takes place from the start
of TO to the end of T3. Arbitration on the Data Grant chain is
from the start of T2 to the end of Tl. Devices which issue
requests participate in address arbitration, and devices which
issue replies participate in data arbitration. Figure 12 on page
103 shows the timing for address and data cycle arbitration.

Each device which participates in address arbitration has a pair
of pins, ADDRGRTI and ADDRGRTO which are connected in series with
the other devices in that chain. An inactive ADDRGRTI forces an
inactive ADDRGRTO. The highest priority device on the chain has
its ADDRGRTI pin tied active. ROMP is by definition the lowest
priority device on the chain, and does not have an ADDRGRTO. Each
device also monitors the lowest order output of the Data Grant
chain. A device which needs to transmit a request sets its
ADDRGRTO inactive after the start of TO. If at the end of T3 it
has an active ADDRGRTI, it assumes control of the RSC the
following cycle. Successful arbitration for the address cycle
also implies responsibility for the data cycle, unless the
low-order DATAGRTO signal is inactive, which implies that some

ROMP Storage Channel 102

IBM Confidential Restricted. DO NOT COPY

device has requested use of the data cycle for a reply. If the
data cycle is obtained for a read request, an IDLE packet should
be issued. A write request may have its data portion preempted by
a reply. This is necessary to avoid lockup conditions, and should
cause a retry.

Devices which issue replies each have a DATAGRTI pin and a
DATAGRTO pin. An inactive DATAGRTI will force an inactive
DATAGRTO. These devices are chained, with ROMP supplying the input
to the top of the chain. This allows ROMP to utilize the data
cycle to issue a reset packet. A device which needs to send a
reply forces its DATAGRTO inactive at the beginning of T2. If its
DATAGRTI is active at the end of the next Tl, then it assumes
control of the RSC for the following data cycle, and transmits its
reply. The low end of the chain is sent to all devices which
perform address arbitration.

The low-order DATAGRTO may be used in another way. Because this
line indicates whether a reply is being requested, if inactive it
indicates that a WRITE DATA parcel is not being transmitted. This
can be used by RSC receive logic to provide an early indication
that a write data cycle has been preempted by a reply.

TO Tl T2 T3 TO Tl T2 T3

Processor Cycle Processor Cycle

Address Arbitration

Addr. Cycle Data Cycle

I I - - ~

Data Arbitration

Data Cycle

I

Figure 12. Bus Arbitration Timing

ROMP Storage Channel 103

IBM Confidential Restricted. DO NOT COPY

5.4.3 Read Reguest

A device which reads data from storage arbitrates for the bus as
described in "Bus Arbitration" on page 102 using the ADDRGRT
chain. At the leading edge of TO, the device places the address
packet and its TAG ID on the bus and releases control of its
outgoing ADDRGRT line. The device may also begin arbitration for
the next address cycle if necessary. Storage latches the address
and length information and the TAG on the trailing edge of Tl.
The device then releases the address/data bus and the tag bus.
Storage examines the TAG to determine whether it is a valid
request. If it is valid, storage proceeds to access the array and
to arbitrate for a reply transfer using the DATAGRT chain. During
T2 and T3 storage holds its ACKA signal active to indicate that it
accepted the read request. If storage is busy and cannot accept
the request it activates NAKA, and the device must retry the
request. If storage detects a parity error on incoming
information, it activates both ACKA and NAKA. The requesting
device may retry the request or signal an error condition. At the
leading edge of the next TO, storage releases the ACKA and NAKA
lines, and the processor drives it to an inactive level. When the
access is complete, and arbitration for a data bus cycle is
successful, storage places its reply data on the address/data bus
and the TAG ID on the TAG bus. The device latches the reply data
and the TAG and takes appropriate action. Figure 13 shows the
timing of a storage read request.

ROMP Storage Channel 104

IBM Confidential Restricted. DO NOT COPY

TO Tl T2 T3 TO Tl T2 T3 Tl T2 T3

I
Processor Calculates Addr

Address Cycle Arbitration

Address To Storage

I I
ACKA NAKA

Storage Access

Data Cycle Arbitration

I
Storage Reply

I I

Figure 13. Read Request

5.4.4 Write Reauest

Writes to storage require two bus cycles, the first being an
address cycle and the second being the very next data cycle. The
device which is to do the write must arbitrate for both the
address cycle and the data cycle by using the ADDRGRT and DATAGRT
arbitration chains. If the device has successfully arbitrated for
the address cycle and the data cycle is also available, the write
operation can be placed on the bus. During the address cycle the
device places the write address and length information on the
data/address bus, and the write address tag on the tag bus. The
ADDRGRT output is released at the beginning of the address cycle
if the device does not need the next address cycle for another
transfer. Storage will latch the address and tag information at
the trailing edge of Tl, and respond with an ACKA signal. If
storage is busy, it will instead respond with a NAKA. In the case
of a parity error storage will activate both ACKA and NAKA <see
Figure 14). During the data cycle, the device which is doing the
write places the data on the bus and the write tag on the tag bus.
Storage latches the data on the trailing edge of T3 and checks
parity on the data. If an error is detected, storage activates

ROMP Storage Channel l 05

IBM Confidential Restricted. DO NOT COPY

ACKD and NAKD and the device may retry the transfer. Both the
address and the data must be re-transmitted, even if only one
error occurred.

TO Tl T2 T3 TO Tl T2 T3 TO Tl T2

Processor Calculates Addr

A~dress Cycle Arbitration

Data Cycle Arbitration

Address Data
To Storage To Storage

ACKA NAKA

ACKD NAKD

Figure 14. Write Request

5.4.5 Error Handling

When a device detects a parity error on the incoming data or
address, it activates the ACKA and NAKA or ACKD and NAKD lines
<whichever are appropriate> which causes the sending device to
retry the transfer. A solid error wi 11 cause an endless retry
condition so a timeout mechanism in the processor causes a machine
check. See "Machine-Check Errors" on page 121 for more
information.

If no device responds to a bus request generated by ROMP, the
transfer will be tried two more times and if no response is
detected, the transfer will be cancelled and bit 29 or bit 30
<whichever is appropriate> will be set in the PCS <See
"Program-Check Errors" on page 124> and a program check will
occur.

ROMP Storage Channel 106

IBM Confidential Restricted. DO NOT COPY

5.4.6 Idle Mode

Any device which gains control of the RSC but has no valid parcel
An idle packet has a tag
bus is unpredictable.

to transmit must send an IDLE packet.
field of all zeros, and the address/data

5.4.7 Reset

The RESET packet is a broadcast command sent by ROMP during a data
cycle after a processor reset or after the processor detects a
machine check condition Cother than a machine check caused by the
-TRAP input> and the check stop mask is a one. In the case of a
machine check, the processor will reset certain registers. and
attempt to save the program status into main storage (beginning at
address X'l70'J. In order to accomplish this , all outstanding
storage references must be cleared. ROMP will gain control of the
RSC during the data cycle by pulling DATAGRTO inactive and sending
a RESET packet out on the TAG bus on the next data cycle.
Whenever any device on the RSC detects a reset tag during the data
cycle it must clear out any pending operations.

The following rules must be followed during the two cycles
following a RESET packet to insure that the RSC remains properly
defined:

l. Any device which was arbitrating for the address cycle
following the RESET packet should place its request on the RSC
during the address cycle. This request should be ignored by
all devices. In addition, the transmitting device should
expect no response to the request, and should reset the
request thereafter.

2. Any data cycle arbitration taking place may complete.
However, no device should transmit during the data cycle
following a RESET packet, regardless of the results of the
data cycle arbitration or any data cycle transmission implied
by the address cycle arbitration. ROMP will always place an
idle packet on the RSC during this data cycle.

3. Address cycle arbitration is cancelled after the RESET packet
is received.

5.4.8 Illegal ACKD/NAKD Responses

Certain ACKD/NAKD responses are illegal, and are treated as error
conditions by the device attempting the transfer. These illegal

ROMP Storage Channel 107

IBM Confidential Restricted. DO NOT COPY

responses to a data cycle transfer are defined below.

l. Responding busy to a reply. Devices on the RSC can not
respond busy <ACKD inactive, NAKD active> to a reply. A busy
response to a reply is treated as an error condition by the
sending device. Error reporting and recovery by the sending
device is design-dependent.

2. Responding busy to the data cycle of a store when the address
cycle request of the store was accepted. Devices on the RSC
can not respond busy to the data cycle of a store when the
address cycle request was accepted. This response is treated
as an error condition by the sending device. Error reporting
and recovery by the sending device is design-dependent.

5.4.9 Engineering Note: ROMP Response To Illegal ACKD/NAKD
Responses

Busy responses to replies do not apply to ROMP, since ROMP can not
generate replies. If ROMP receives a busy response to the data
cycle of a store, when the address cycle request of the store was
accepted, the store operation will be retried a minimum of 128
times. If the device fails to accept the store, the store is
terminated, and a machine check interrupt occurs. The RSC Timeout
b;t <bit 21> in the MCS is set to one.

5.4.10 Hold Time-Out Counter

The HOLD signal is used by devices on the RSC that can potentially
interfere with ROMP access of the RSC. Devices on the RSC can
prevent ROMP from accessing the RSC, thereby causing a machine
check error due to the unavailability of the RSC. ROMP utilizes
an internal time-out counter to detect the unavailability of the
RSC. This counter is started when ROMP begins waiting for data or
instructions from storage. The time-out counter is incremented by
one during each cycle that ROMP is waiting, and is reset to zero
when the reply is received. If this counter reaches a count of
128, a machine-check occurs.

If there are other devices on the RSC CDMA controllers, bus
converters, etc.) they can activate the HOLD line to cause
incrementing of the time-out counter to be inhibited while they
are accessing storage on the RSC. The time out counter is not
incremented while the HOLD line is active.

This signal is typically used by devices that are monopolizing the
RSC for long periods of time, such as a OMA controller
transferring many bytes of data in burst mode.

ROMP Storage Channel 108

IBM Confidential Restricted. DO NOT COPY

5.4.11 Storage Protection and Address Translation

ROMP provides a means of implementing storage protection and/or
address translation. A detailed discussion of these subjects is
contained in "Storage Controller Functions" on page 134. Whenever
a device (either ROMP or any I/O device on the RSC> generates a
storage reference, an address is sent out on the RSC. The address
is contained in DALOS through DAL31. Control information is
contained in DALOO through DAL06. If DAL04 is a one <active>,
storage protection is enabled. If DAL05 is a one <active>,
address translation is enabled. The actual storage protection and
address translation hardware <if any> exists external to the
processor. Assuming that protection or translation is installed,
the storage controller does the necessary checking, and provides
the appropriate response when a reply is generated. In the case
of a read access, storage will generate a reply to the original
requestor. When no exception condition exists, data is placed on
the bus, the tag ID of the requestor is placed on the tag bus, and
+EXCEPTION is driven to a zero (inactive>. If an exception
condition exists, the reply is generated in a similar manner,
except +EXCEPTION is set to a one <active> and the data which is
placed on the bus is not used but must have good parity.

Whenever a write access is attempted and storage protection or
address translation is enabled, a reply must be generated to the
original requestor, just as was done for a read access. The tag
bus will contain the tag ID associated with the write address of
the original requestor. The +EXCEPTION line will be driven
inactive when no exception exists, and will be driven active when
an exception does exist. In either case, the content of the data
bus is unimportant, but must have good parity.

For systems which do not implement storage protection or virtual
addressing, the +EXCEPTION line is not required. However,
+EXCEPTION can still be used with replies to ROMP to report
addressing exceptions. If ROMP receives a reply with +EXCEPTION
active, and address translate and storage protect are disabled,
then a program check occurs. PCS bits 25 <program check with
unknown origin> and 30 <data address exception> are set. If the
+EXCEPTION line is not used, the input to ROMP must be tied
inactive.

When storage accesses are generated by ROMP, DAL06 will be active
if the processor is in problem state and inactive if in supervisor
state. This bit may be used to enhance the storage protection
scheme by providing different types of access authority, such as
read/write, read only, or execute only. See "Storage Controller
Functions" on page 134 for additional information.

ROMP Storage Channel 109

IBM Confidential Restricted. DD NOT COPY

Only storage accesses can involve storage protection and/or
address translation; i.e., all programmed I/O CPIO> accesses
generate real addresses.

5.5 STORAGE CHANNEL I/D PIN SUMMARY

5.5.l Storage Channel I/D Pin Summary for Processor

Signal
Name

+DALOO
Thru
+DAL31

+DALPO
+DALPl
+DALP2
+DALP3

+TAGO
Thru
+TAG4

Function

Addr/Data
Bus

Odd Parity
Odd Parity
Odd Parity
Odd Parity

Device ID

on DALOO-DAL07
on DAL 03-DALlS
on DAL16-DAL23
on DAL24-DAL31

+TAGP Odd Parity on TAGO-TAG4

-NAKA, -NAKD Transfer Rejected

-ACKA, -ACKD Transfer Acknowledged

+ADDRGRTI Address Cycle Grant In

+DATAGRTI Data Cycle Grant In

+DATAGRTO Data Cycle Grant Out

-HOLD Hold Time-Out Counter

+EXCEPTION Address or Protection Exception

+AC Address Cycle Clock

+DC Data Cycle Clock

-TO, -Tl
-T2, -T3 System Clocks

Standard Total

ROMP Storage Channel

Number of
I/O Pins

32

l
l
l
l

5

l

2

2

l

l

l

1

1

l

1

4

57

110

IBM Confidential Restricted. DO NOT COPY

+ADREXTO Address Extension 8

Thru Bus
+ADREXT7

+ADREXTP Odd Parity on ADREXTO
thru ADREXT7

1

Total With Address Extension 66

5.5.2 Storage Channel Pin Summary for a Typical RSC Component

Signal
Name Function

Number of
I/O Pins

+ADDRGRTO Address Cycle Grant Out 1

+SYSTEM POR 1

Processor Signals Previously Defined 57

Total 59

Storage units on the RSC do not require the Address Grant input or
generate the corresponding output since storage does not transmit
addresses.

5.6 ROMP STORAGE CHANNEL TIMING RELATIONSHIPS

The timing relationships in this section show a sample ROMP
instruction sequence, assuming interleaved storage and two cycle
storage access <or address translation with one cycle storage
access>. Figure 15 on page 112 defines the symbols and names used
in Figure 16 on page 113 through Figure 19 on page 116.

As shown in Figure 16 on page 113, the first request <REQl, having
a tag of six> is placed on the RSC during the the address cycle of
the second ROMP cycle. Storage accepts the request, as indicated
by -ACKA being active, and -NAKA being inactive in the following
data cycle. Two cycles later, on the data cycle of the fourth
ROMP cycle (see Figure 17 on page 114> storage replies with REPl
which is accepted by ROMP Cas indicated by -ACKD being active, and
-NAKD being inactive in the following address cycle). Storage

ROMP Storage Channel 111

IBM Confidential Restricted. DO NOT COPY

-.-.-1-.-. High

Low ---
HHHHH High Impedance

<===> Bus is valid

REQn nth RSC request

REPn Reply to nth request

+EXCP +EXCEPTION

+DAL Data/Address Lines

+DATAGR TI Data Grant in to ROMP

Figure 15. Signal Definitions

arbitration for a reply is indicated by the +DATAGRTI input to
ROMP going inactive in the cycle preceding the reply.

Note that the replies are coupled to the requests as described in
"ROMP Storage Channel" on page 92 Ci .e. REQl has a tag of six and
REPl has a tag of six). Given that there are 5 tag lines, a
maximum of 32 requests can be outstanding at any one time.

An interleaved storage configuration allows ROMP to transfer most
requests across the channel on consecutive cycles. This allows the
next three requests CREQ2, REQ3, REQ4> to be accepted by storage
during ROMP cycles 7, 8, and 9 see <Figure 18 on page 115>.
Storage replies to the requests during the data cycle of ROMP
cycles 9, 10, and 11. REQ5 <see Figure 19 on page 116) is
attempted during the tenth ROMP cycle, but is not accepted because
storage responded busy Cas indicated by -ACKA being inactive, and
-NAKA being active during the following data cycle). This request
is retried on the next available address cycle and is accepted.
Note that the +DATAGRTI input to ROMP is driven inactive by
storage in the cycle preceding each storage reply.

ROMP Storage Channel 112

ROMP
Cycle

-TO

-Tl

-T2

-T3

+AC

+DC

-ACKA

-NAKA

-ACKD

-NAKD

+EXCP

+TAGP

+TAGO

+TAGl

+TAG2

+TAG3

+TAG4

+DAL

IBM Confidential Restricted. DO NOT COPY

l 2 3

Addr. Data A D A D
Cycle Cycle

REQl

.... ___,.., -. _,.., ___,,, _

....... .., ___,...,,..., ___ .., -.,..,,, ___,

- __________,..., __________, ________ _
___________ -. __________,-. __________ ... -., __

HHH

..., HHHH HHHHH HHHHH,HHHHH HHHHH HHHHH H

_HHHH_HHHHH __ HHHHH __ HHHHH_HHHHH __ HHHHH __ H

HHHH __ HHHHH __ HHHHH __ HHHHH __ HHHHH __ HHHHH __ H

HHHH __ HHHHH __ HHHHH HHHHH H HH HH __ HHHHH __ H

HHHH __ HHHHH __ HHHHH HHHHH __ HHHHH __ HHHHH __ H

_HHHH __ HHHHH __ HHHHH_HHHHH __ HHHHH __ HHHHH __ H

::>HHHH<:::>HHHHH<===>HHHHH<:::>HHHHH<:::>HHHHH<===>HHHHH<:::>H

+DATAGRTI,....,...,..,..,,,..,..,..,,,..,,,...,,..,,_,,...,...,,.., ________ _

Figure 16. RSC Cycles One Through Three

ROMP Storage Channel 113

ROMP
Cycle

-TO

-Tl

-T2

-T3

+AC

+DC

-ACKA

-NAKA

-ACKD

-NAKD

+EXCP.

+TAGP

+TAGO

+TAGl

+TAG2

+TAG3

+TAG4

+DAL

IBM Confidential Restricted. DO NOT COPY

4 5 6

Addr. Data A D A D
Cycle Cycle

RE Pl

.... ___ ..,...,...,,..,...,...,,..., _,..,..,..., ___, .. ___ ..,,,_,,_

........ ...,,..., ___ ...,..,...,...,...,, ___ ... ___,

.... ...,..,_,...,...,...,...,..,...,..,...,..,...,..., ____ ...,..,...,..,...,..,..,...,,..,...,,..., ___,,..., ___ _ -............... __________ __________ ________ _
___________ ..,..., __________, __________, __

HHHHHHHHHHHHHHHHH ____ HHH

............ HHHH-.-.-.-.-.HHHHH-.-.-.-.-.HHHHH-.-.-.-.-.HHHHH-.-.-.-.-.HHHHH-.-.-.-.-.HHHHH-.-.-.-.-.H

HHHH ____ HHHHH ____ HHHHH ____ HHHHH ____ HHHHH HHHHH __ H

_H HHH_HH HHH ____ HHHHH ___ HHHHH ___ HHH H H __ HHHHH ___ H

_HHHH __ H HHHH-.-.-.-.-.HH HHH __ HH HHH ___ HHH H H __ HHH H H __ H

_HHHH __ H H H HH-.-.-.-.-.HHHHH ___ HHH HH ___ HHH HH HHHHH __ H

HHHH ____ HHHHH ___ HHHHH ___ HHHHH ____ HHHHH HHHHH __ H

==>HHHH<===>HHHHH<===>HHHHH<:::>HHHHH<===>HHHHH<===>HHHHH<===>H

+DATAGRTI __________,,...,...,..,...,...,,...,,...,,..,...,...,..,...,...,,,

Figure 17. RSC Cycles Four Through Six

ROMP Storage Channel 114

ROMP
Cycle

-TO

-Tl

-T3

+AC

+DC

-ACKA

-NAKA

-ACKD

-NAKD

+EXCP

+TAGP

+TAGO

+TAGl

+TAG2

+TAG3

+TAG4

+DAL

IBM Confidential Restricted. DO NOT COPY

7 8 9

Addr. Data A D A I!
Cycle Cycle

REQ2 REQ3 REQ4 REP2

.... ___ ..,,,_,..,...,...,...,,, ___ ..,...,...,...,..,...,...,...,, _,..., ___ ..,..,..,..,,..,..,,.., _

...., ___,..,,, ___,..,...,, .. ___ ...,...,..,_,..,,..,,,

____,...., __________ __________ ________ _
___________,.., __________,.., __________,_

..,...,..,,..,..,...,...,...,..,...,...,...,,_, ____ ..,..,...,..,...,...,...,,..,..,,..., ____,...,...,...,...,..,...,...,_,...,...,...,..., ____

HHH ____ H

...,...,...,HHHH ____ HHHHH...,...,...,...,...,HHHHH ______ HHHHH...,...,...,...,...,HHHHH-.-.-. -.HHHHH _____ H

_HHHH __ HHHHH __ HHHHH_HHHHH __ HHHHH __ HHHHH __ H

HHHH,HHHHH ______ HHHHH,HHHHH ___ HHHHH,...,...,...,HHHHH...,...,,...,H

HHHH...,...,...,...,...,HHHHH ____ HHHHH...,...,,...,HHHHH _____ HHHHH...,...,...,...,...,HHHHH...,...,...,...,...,H

H H H H __ H H H H H __ H H H H H...,...,...,...,...,H H H H H HHHHH...,...,...,...,...,HHHHH ___ H

HHHH...,...,...,...,...,HHHHH ______ HHHHH ____ HHHHH ____ HHHHH-....,...,...,...,HHHHH,...,...,...,H

==>HHHH<===>HHHHH<===>HHHHH<===>HHHHH<===>HHHHH<===>HHHHH<===>H

+DAT AGR TI,..,..,..,..,,,..,,_,...,...,..,...,...,...,..,,,...,..,..,,._. _______________,..., __

Figure 18. RSC Cycles Seven Through Nina

ROMP Storage Channel 115

ROMP
Cycle

-TO

-Tl

-T2

-T3

+AC

+DC

-ACKA

-NAKA

-ACKD

-NAKD

+EXCP

+TAGP

+TAGO

+TAGl

+TAG2

+TAG3

+TAG4

+DAL

IBM Confidential Restricted. DO NOT COPY

10 11 12

Addr. Data A D A D
Cycle Cycle

REQS REP3 REQS REP4 REQ6

..,...,..,...,...,..., ___,...,...,, _..., ___ ...,..,...,...,...,..,..,...,...,...,..,,...,..,.., ___,,...,,,..,,...,

____ ..,...,,.., __________ ...,...,,...,..., __________,_,, ________ _
___________ ...,...,..,..., __________ ..., _,...,....,_, ___________ ...,...,..,...,_,....,_

..,...,...,..,..,...,...,..,..,...,.....,..,..,,..,, _,..,...,...,...,...,..,..,..,....,...,..,...,..,...,...,..., ____,..,...,..,,...,,..,...,...,...,

...,...,...,...,....,...,....,..,...,...,...,...,..,...,...,...,..., ____ ...,..,...,...,...,...,..,...,...,..,....,,,...,...,..,...,..,...,_,...,...,_,...,..,...,..,_...,...,..,..., ____ ...

..,....,...,...,...,...,.., ____ ...,...,...,..,,..,...,..,...,..,..., ____ ...,...,,,..,...,,...,...,...,....,.., ____ ...,..,...,...,...,...,,...,...,...,

__ HHHHHHHHHHHHHH ___ HHHHHHHHHHHHHHH ____ HHHHHHHHHHHHHHHHHHHHH

__ HHHH-.-.-.-.-.HHHHH ____ HHHHH-.-.-.-.-.HHHHH-.-.-.-.-.HHHHH-.-.-.-.-.HHHHH-.-.-.-.-.H

_HHHH ___ H H H H H ___ HH H H H_H H H H H __ H HH H H...,...,..,...,...,H H H H H ___ H

...,...,...,H H H H...,...,.,..,...,HH H H H..,..,...,...,...,HHHH H-.-.-.-.-.HH H HH-.-.-.-.-.H H H H H ____ H H H H H ____ H

.,..,..,HHHH-.-.-.-.-.HHHHH-.-.-.-.-.HHHHH-.-.-.-.-.HHHHH-.-.-.-.-.HHHHH ___ HHHHH ___ H

HHHH ___ HHHHH-.-.-.-.-.HHHHH ___ HHHHH-.-.-.-.-.HHHHH ___ HHHHH ___ H

-.-.-.HHHH ___ HHHHH HHHHH ___ HHHHH-.-.-.-.-.HHHHH-.-.-.-.-.HHHHH ____ H

::>HHHH<===>HHHHH<:::>HHHHH<:::>HHHHH<===>HHHHH<===>HHHHH<:::>H

+DATAGRTI ________________________ ...,...,...,...,...,..,...,...,..,...,...,...,...,...,..,...,...,...,..,.., _____ _

Figure 19. RSC Cycles Ten Through Twelve

ROMP Storage Channel 116

IBM Confidential Restricted. DO NOT COPY

6.0 INITIALIZATION

Initialization consists of a power-on reset <POR> sequence and
initial program load <IPL>. POR places the processor and system
devices in a known state. IPL causes loading of program into main
storage and program execution to begin.

6.l POWER-ON RESET

When power is applied to the ROMP system, a POR signal is applied
in order to bring the system to a defined state. POR consists of
the following series of functions:

l. Processor and System Reset

2. Register Initialization

3. FAIL Pin State <active or inactive)

6.l.l Processor and System Reset

Processor reset is accomplished by using the system POR signal to
drive the +SCAN GATE input active. Since ROMP is initialized by
resetting all internal latches, all scan inputs <-SCANIO through
-SCANI4) must be held inactive while +SCAN GATE is active. While
+SCAN GATE is active, and all scan inputs are inactive, a
sufficient number of system clock cycles must occur to reset all
internal latches. The specific number of clock cycles required is
defined in the ROMP E-Spec <see "ROMP Engineering Specification"
on page 188>.

After a sufficient number of clock cycles have occurred, +SCAN
GATE can be driven inactive, and ROMP will be in a reset state.
While +SCAN GATE is active, all scan-inputs to ROMP must be held
inactive. Failure to hold all scan-inputs inactive will cause
unpredictable results.

Processor reset consists of the following operations:

l. The execution of any current processing state is terminated.

2. Any 1/0 interrupt requests are cleared.

3. Any machine check and program check conditions are cleared.

Initialization 117

IBM Confidential Restricted. DO NOT COPY

4. If the processor is in the check stop state, the check stop
condition is cleared.

Any system devices attached to the processor are
required. This can be performed by connecting
device reset lines to the system POR signal.

6.1.2 Register Initialization And Diagnostics

initialized as
the individual

The register initialization function places the processor
registers in a defined state. The register initialization routine
includes diagnostics which check a major portion of the control
and data paths needed for instruction execution. No ROMP Storage
Channel <RSC> functions are checked. No other system components
are tested by the internal diagnostics.
of the following operations:

Initialization consists

1. The contents of all general purpose registers are set to zero.
If any bit of any GPR is stuck-at-zero or stuck-at-one,
register initialization does not complete successfully.

2. All defined system control register <SCR> bits are set to zero
except the following:

a. The Processor Priority, bits 29-31 of SCR 14 is set to 7.

b. The Interrupt Mask, bit 23 of SCR 14, is set to one
(disabled>.

6.1.3 Fail Pin State

POR initializes the I/O pin -FAIL to an active state. If an error
is detected during the register initialization microcode routine,
the processor enters the check stop state <see "Executing, Wait,
Check Stop, and Stopped State" on page 7> and the -FAIL pin
remains active. If no errors are detected during register
initialization, the I/O pin -FAIL is brought inactive at the
completion of register initialization. This pin can be sensed by
an external device to detect processor failure.

118

IBM Confidential Restricted. DO NOT COPY

6.2 PROGRAM INITIALIZATION

Once POR is completed, the processor is in a state waiting to
begin instruction execution. This state is indicated by the I/O
pin <-IPL READY> going active. The processor will not load the
IAR or begin instruction execution until it receives a signal
<-IPL COMPLETE> indicating that storage has been loaded or that
storage loading is not required for the system configuration.

6.2.1 Initial Program Load

This step is optional and required only when the system contains
no ROS and initial programs are loaded into RAM from an I/O device
on the RSC.

When the POR sequence is completed, the I/O pin -IPL READY is
brought active by the processor to indicate that the processor is
ready either for storage to be loaded or to begin program
execution. If an I/O device is used to load programs, it senses
this line and transfers instructions to main storage via DMA
operations. Once the device has completed loading main storage,
the processor I/O pin -IPL COMPLETE is brought active by the IPL
device to cause an IAR load to occur. -IPL READY is brought
inactive by the processor one cycle after -IPL COMPLETE goes
active. -IPL COMPLETE is then ignored by the processor until the
next POR sequence occurs.

6.2.2 IAR Load

The initial IAR load occurs when the -IPL COMPLETE line is brought
active after POR. When this pin is brought active, the IAR is
from location 00000000 in main storage. Program execution then
begins from the address loaded into the IAR.

6.2.3 Engineering Notes: Initialization

l. Power-on reset leaves the contents of main storage in an
unpredictable state except for the locations which are
initialized by the initial program load function.

2. If ROS is used to contain initial programs, the processor
signal -IPL COMPLETE can be connected to -IPL READY, or tied
active to cause the IAR load to occur automatically when POR
is completed.

Initialization 119

IBM Confidential Restricted. DO NOT COPY

3. It is not required that storage be implemented at location
00000000, but storage must respond to this address, and it
must reply with an initial IAR for the processor. This may be
done by mapping the address 00000000 to a predefined storage
location, or by providing a hardware register which responds
to this address.

Initialization 120

IBM Confidential Restricted. DO NOT COPY

7.0 RELIABILITY AVAILABILITY AND SERVICEABILITY

7.1 RAS FACILITIES

RAS Facilities provide for:

l. Detection of processor errors.

2. Detection and isolation of program-related errors.

3. Decreased exposure to data loss and error situations.

7.2 SYSTEM ERROR DETECTION AND REPORTING

7.2.l Internal Diagnostics

The processor executes an internal microcode routine to perform
register initialization when a processor reset occurs. Successful
completion of the register initialization routine provides
reasonable confidence that the processor is functional for
instruction execution. The internal microcode diagnostic does not
verify any RSC functions, or other system components.

The I/O pin -FAIL is initialized to an active state during POR.
If no errors are detected during register initialization , -FAIL
is brought inactive. If an error is detected, the processor
enters the Check Stop state and -FAIL remains active. This
ensures that a failure condition will be indicated if the
processor is unable to execute the register initialization
microcode.

7.2.2 Machine-Check Errors

Machine-check errors are those errors which are most probably
caused by hardware malfunctions.

Reliability, Availability, and Serviceability 121

IBM Confidential Restricted. DO NOT COPY

7.2.2.1 Machine-Check Error Handling

Upon the detection of a machine-check error condition, other than
an I/O trap, all current processor activity is halted, regardless
of that activity. If the detected error is an I/O trap, the
processor will complete its current activity before servicing the
error. I/O traps are reported by activating the -TRAP input. The
processor then takes one of two courses of action, depending on
the value contained in the Check Stop Mask.

If the Check Stop Mask has a value of zero, the processor enters
the Check Stop state when any machine check error is detected
(including an error reported by -TRAP>. This preserves the state
of internal processor latches for inspection by a support
processor. Refer to "Support Processor Facilities" on page 142
for a description of support processor functions. The I/0 pin
-FAIL is brought active to indicate a failure.

If the Check Stop Mask has a value of one, and a machine check
error is detected, other than one caused by the -TRAP interrupt
input, a reset packet will be sent on the RSC to clear any
pending RSC operations. If the machine check interrupt is caused
by the -TRAP interrupt input, no reset packet will be sent on the
RSC. If the Check Stop Mask has a value of one, the processor
saves the current program status in the old program status
location in the Machine Check Old/New PS pair (beginning at
location X'l70'). The program status for servicing the error is
then loaded from the new program status location, with the
exception of the Condition Status, and the processor attempts to
continue execution.

The machine check routine must execute a Load Program Status <LPS>
instruction to return from the machine check error.

7.2.2.2 Machine-Check Status

The Machine-Check Status <MCS> provides a means for reporting
hardware malfunctions. Information is provided to assist an error
servicing routine in determining the type and source of the error.

system control register 11. Upon
error, appropriate bits of the
the Parity Check bit (bit 18)

receives a reply with invalid

The MCS is an eight-bit field in
the detection of a machine check
MCS are set to ones <except for
which is set whenever the processor
data parity>.

The MCS is defined as follows:

Reliability, Availability, and Serviceability 122

Bit 17

Bit 18

Bit 19

Bit 20

Bit 21

Bit 22

Bit 23

IBM Confidential Restricted. DO NOT COPY

RSC Check. Set to one when a device on the RSC detects
invalid parity on a processor-generated transfer over an
abnormally large number of retries. This bit is also
set when the processor generates an interrupt to report
an RSC retry which successfully corrected a parity error
(See "Interrupt Control Status" on page 21>.

Reserved.

0

Parity Check. Set to one whenever the processor
receives a reply on the RSC with invalid data parity.
This bit is set whether or not a machine check occurs.

Instruction Timeout. Set to one when the processor
fails to receive an expected reply to an instruction
fetch.

Data Timeout. Set to one when the processor fails to
receive an expected reply to a data fetch.

RSC Timeout. Set to one whenever the processor has been
unable to transfer a request on the RSC over an
abnormally large number of cycles, and no parity errors
have been signalled. The request may be unsuccessful
due to busy responses or unsuccessful arbitration.

I/O Trap. Set to one when an I/O device signals a trap
condition.

Reserved.

The MCS is cleared when a Load Program Status <LPS) instruction is
executed to return from the Machine Check level.

The MCS provides a summary of processor conditions which are
present when a machine check error is detected. Thus, it is
possible that multiple bits of the MCS are set upon detection of
an error. For example, if bits 16,19, and 20 of the MCS are set,
the processor failed to receive a reply to both an instruction and
data fetch. In addition, a device on the RSC detected invalid
parity on a processor-generated request. In this case, invalid
parity on the request prevented the processor from successfully
transferring both instruction and data requests.

7.2.3 Engineering Note: RSC Retry

Transfers from the processor to other system components on the RSC
are automatically retried by the processor, if the first transfer

Reliability, Availability, and Serviceability 123

IBM Confidential Restricted. DO NOT COPY

attempt fails. The number of retries are
response to the first transfer attempt,
implementation. This implementation retries
based on the response from the first transfer
below:

dependent on the
and the processor
failing transfers
attempt as defined

1. No device on the RSC responds <no ACKA or NAKA> to a processor
generated instruction or data fetch. The processor retries
the transfer twice. If no device responds to the two retries,
the transfer attempt is terminated, and a program check
interrupt occurs. The Instruction Address Exception bit (bit
29) or the Data Address Exception bit <bit 30) in the PCS is
S(j?t to one (based on whether the failing request was an
instruction or data fetch) to indicate the type of transfer.

2. A device on the RSC responds busy <NAKA, but no ACKA> to a
processor generated instruction or data fetch. The processor
retries the transfer a minimum of 128 times. If the device
fails to accept the transfer, the transfer attempt is
terminated, and a machine check interrupt occurs. The RSC
Timeout bit <bit 21) in the MCS is set to one.

3. A device on the RSC responds with a parity error indication
<ACKA and NAKA> to a processor generated instruction or data
fetch. The processor retries the transfer a minimum of 128
ti mes. If the device fails to accept the transfer, the
transfer attempt is terminated, and a machine check interrupt
occurs. The RSC Check bit (bit 16) in the MCS is set to one.

7.2.4 Program-Check Errors

Program-check errors are those errors which are most probably
caused by software errors.

7.2.4.l Program-Check Error Handling

Upon the detection of a program check error condition, the
processor completes its current activity (instruction, timer,
etc.), unless that activity caused the program-check condition.
The processor then saves the current program status in the old
program status location in the Program Check Old/New PS pair
<beginning at location X'l80'). The program status for servicing
the error is loaded from the new program status location, with the
exception of the Condition Status.

The program check routine must execute a Load Program Status <LPS>
instruction to return from the program check error.

Reliability, Availability, and Serviceability 124

IBM Confidential Restricted. DO NOT COPY

7.2.4.2 Program-Check Status

The Program-Check Status <PCS> provides a means for reporting
certain programming errors. Reported program check errors include
attempted execution of an unassigned or unimplemented operation
code, the attempted execution of a privileged instruction with the
Problem State bit <bit 21 of SCR 14> being a one, an improper data
condition which is detected by the execution of a trap
instruction, and attempted access of an invalid storage location.

The PCS is an eight-bit field in system control register 11. Upon
the detection of a program check error, all bits of the PCS are
set to zeros. The appropriate bits of the PCS are then set to
ones.

The PCS is defined as follows:

Bit 26

Bit 27

Bit 28

Bit 29

Bit 30

Bit 31

Program check with known origin. Set to one when a
program check occurs and the location of the causing
instruction is determinable from the IAR in the old
program status.

Program check with unknown origin. Set to one when a
program check occurs and the location of the causing
instruction is not determinable from the IAR in the old
program status.

Program Trap. Set to one when a trap exception
condition is generated by a trap instruction.

Privileged Instruction Exception. Set to one when the
processor attempts to execute a privileged instruction
and the Problem State Bit <bit 21 of SCR 14> is a one.

Illegal Operation Code. Set to one when the attempted
execution of an unassigned or unimplemented operation
code is detected.

Instruction Address Exception. Set to one when no
device on the RSC responds to a processor instruction
fetch request, or when a reply to an instruction fetch
is accompanied by an invalid address indication.

Data Address Exception. Set to one when no device on
the RSC responds to a processor data request, or when a
device on the RSC responds to a data request with an
invalid address indication. This bit is also set when
an access to a privileged I/O device is attempted from
problem state.

Reserved.

Reliability, Availability, and Serviceability 125

IBM Confidential Restricted. DO NOT COPY

The PCS is cleared when a Load Program Status <LPS> instruction is
executed to return from the Program Check level.

The detection of a program trap condition set both bits 24 and 26
to ones. The IAR in the old program status contains the address
of the trap instruction.

The detection of a privileged instruction exception sets bits 24
and 27 to ones. The IAR in the old program status contains the
address of the privileged instructions. If the privileged
instruction is the subject of a branch with execute, the IAR in
the old program status contains the address of the branch with
execute instruction.

The detection of an illegal operation code sets both bits 24 and
28 to ones. The IAR in the old program status contains the
address of the illegal operation. If the illegal operation is the
subject of a branch with execute, the IAR in the old program
status contains the address of the branch with execute
instruction.

If a data address exception occurs, bit 30 of the PCS is set to
one, and either bit 24 or 25 is set to one to indicate the meaning
of the IAR in the old program status. If bit 24 is set to one,
the IAR in the old program status contains the address of the
instruction which attempted to access the invalid storage
location. If the subject instruction of a branch with execute
attempts to access an invalid storage location, the IAR in the old
program status contains the address of the branch with execute
instruction. If bit 25 of the PCS is set to one, the IAR in the
old program status contains the address of the instruction which
was executing when the data address exception was detected. If
this instruction required the data which was accessed at the
invalid address, it did not complete successfully.

Figure 20 on page 127 provides a summary of program check errors
when address translation and storage protect are disabled.
Figure 21 on page 128 provides a summary of program check errors
when address translation or storage protect is enabled.

7.2.4.3 Programming Note: Instruction Restart

If address translation or storage protect is enabled and a data
address exception occurs, the IAR in the old program status word
always points to an instruction which can be restarted once the
exception conditions are resolved. In most cases, attempted
execution of the instruction causing the data address exception
has no effect on the values contained in the general purpose
registers <GPRs>, system control registers <SCRs), or data in

Reliability, Availability, and Serviceability 126

IBM Confidential Restricted. DO NOT COPY

storage. However, in the case of Load Multiple and Store
Multiple, it is possible for several of the loads or stores to
occur before the exception is detected. The processor does not
restore all GPRs or storage to the state which existed prior to
attempted execution of the instruction causing the data address
exception. However, if a Load Multiple causes an exception, the
Load Multiple base address register <RC> will be restored to its
original value so that the Load Multiple instruction can be
restarted.

PCS Bits
Program Check Error 24 25 26 27 28

l. Invalid instruction address. l 0 0 0 0

2. Invalid data address. 0 l 0 0 0

3. Successful trap instruction. 1 0 1 0 0

4. Privileged instruction exception. l 0 0 1 0

5. Illegal op-code. 1 0 0 0 1

Figure 20. Program Check Errors With Storage Protect And
Address Translation Disabled

29

l

0

0

0

0

Reliability, Availability, and Serviceability 127

30 31

0 0

·t---1

1 0

0 0

0 0

0 0

IBM Confidential Restricted. DO NOT COPY

PCS Bits
Program Check Error 24 25 26 27 28

1. Invalid instruction address. 1 0 0 0 0

2. Invalid data address. 1 0 0 0 0

3. Successful trap instruction. l 0 l 0 0

4. Privileged instruction exception. l 0 0 1 0

5. Illegal op-code. l 0 0 0 l

Figure 21. Program Check Errors With Storage Protect Or
Address Translation Enabled

7.2.5 Simultaneous Program Check and Machine Check Errors

29

1

0

0

0

0

Certain hardware error conditions can result in both a program
check and a machine check error, as the result of a single
request. For example, a storage controller may generate both an
exception reply and activate the -TRAP input to report an
uncorrectable storage error (uncorrectable ECC error or parity
error). The exception reply causes a program check, and the -TRAP
causes a machine check. The exception reply is necessary to
prevent the processor from using bad data from the request, and
-TRAP is required to report hardware errors at the machine check
interrupt level. If a machine check and program check error occur
simultaneously, the processor will perform both a program check
PSW swap, and then a machine check PSW swap. In order to
guarantee that both the program check and machine check interrupts
are properly handled, system devices using both an exception reply
and -TRAP must report both errors simultaneously. Devices should
activate -TRAP when the error is detected, and send an exception
indication with the reply.

Once the program check and machine check PSW swaps are completed
by the processor, the machine check interrupt handler will be
executed. The machine check and program check interrupt handlers
must be properly designed to handle this multiple error condition.
The machine check interrupt handler can determine the reason for
the interrupt by examining status bits in the MCS and status

Reliability, Availability, and Serviceability 128

30 31

0 0

1 0

0 0

0 0

0 0

D IBM Confidential Restricted. DO NOT COPY

register<s> in each system component. Once the source of the
error has been isolated and logged, the machine check interrupt
handler can complete, and should execute an LPS instruction to
return from the machine check interrupt. Executing an LPS on the
machine check level will clear all bits in the MCS, and return to
the next highest priority level. In this case, a program check
interrupt is pending so the machine check interrupt handler will
return to the program check interrupt handler.

System software must be constructed so that there is sufficient
information available to the program check interrupt handler to
determine that the program check interrupt was due to the machine
check error that was previously handled. If the machine check
interrupt handler performed all of the steps necessary to service
the error, then the program check interrupt handler should simply
execute an LPS instruction to return from the program check level.
Executing the LPS on the program check level will clear all bits
in the PCS, and return to the routine that was executing when the
error was detected.

Note that in this case, a single error causes both a machine check
and a program check interrupt, and that both interrupts must be
processed. The machine check interrupt handler will always be
executed first, and will return to the program check interrupt
handler by executing an LPS instruction. Once the program check
interrupt handler completes, it returns to the routine where the
error was detected by executing an LPS. Executing an LPS from the
machine check level terminates processing on the machine check
level, clears all bits in the MCS, and returns to the next highest
priority interrupt. Executing an LPS from the program check level
terminates processing on the program check level, clears all bits
in the PCS, and returns to the next highest priority interrupt.

7.3 MULTIPLE OCCURRENCE OF ERRORS

The processor will enter the Check-Stop state, regardless of the
value in the Check Stop Mask, under the following conditions:

1. The processor is servicing a machine-check error, and another
machine-check error is detected.

2. The processor is
program-check error

servicing a
is detected.

machine-check error, and a

3. The processor is servicing a program-check error, and another
program-check error is detected.

If the processor is servicing a program-check error and a
machine-check error is detected, the machine-check error is
handled as outlined in "Machine-Check Error Handling" on page 122.

Reliability, Availability, and Serviceability 129

IBM Confidential Restricted. DO NOT COPY

8.0 MULTIPROCESSOR SYSTEM

8.1 GENERAL DESCRIPTION

The ROMP processor and RSC contain features which support a multi­
processor configuration. A TEST & SET instruction allows control
of shareable resources and the RSC, operating with a packet-switch
protocol, allows commands and data to be directed throughout the
system.

8.2 TEST & SET INSTRUCTION OPERATION

The Test & Set instruction, from the processors standpoint is a
LOAD instruction with a special function code. This code
instructs the storage unit to immediately follow the read
operation with a byte write of all ones. The contents of the
specified location are loaded into the specified register and the
high-order byte in storage is set to all ones with the low-order
byte unaltered. If a processor or task chooses to identify
itself, it can then write a descriptive code in the low-byte,
knowing it has control of that halfword as well as the resource
under contention. When completed with the resource, the processor
can then clear this halfword to again make the resource available.

8.3 MULTIPROCESSOR SYSTEM INTERCONNECTION

If two processors are connected to the same storage channel,
performance will be less than that achievable with two single
processors due to storage interference. Each processor should be
able to use a large share of the available storage bandwidth and
each would spend considerable time waiting if both were connected
to the same storage channel. To more effectively use each
processor, each should have its own private storage for most
instructions and data. Each private storage contains
instructions, data and separate PSW areas for interrupt and
exception conditions. However, to effectively coordinate
activities, both processors must be able to exchange commands and
data. This can be done by a multi-port memory that can be
accessed by each processor, a bus coupler, or a communications
channel.

For the multi-port memory, a portion of the address space is
shared by more than one processor. This is shown in Figure 22 on
page 132.

Multiprocessor System 130

IBM Confidential Restricted. DO NOT COPY

A bus coupler can be used to isolate one processor memory system
from another as shown in Figure 23 on page 132. Each device on
the storage channel is assigned a tag or source address. The
processor may generate a READ command for an address, known by the
coupler to exist on another channel The coupler accepts the
command, saves the tag, and retransmits the command on the other
bus with a coupler tag. The storage unit will send data to the
coupler, which the coupler will then send to the processor with
the original tag.

In isolated systems, a communications technique may prove to be
the best solution when multiple processors are required <See
Figure 24 on page 133>. This method uses formatted and addressed
packets. Processor A formats and addresses a block of commands or
data in its memory. It then instructs the communications adapter
to transmit the block of data to another system. The receiving
adapter need only recognize the destination code and store the
data in the predefined input buffer for us by processor b. Both
processors are then interrupted; one being notified that data has
been received, and one that data has been sent.

Multiprocessor System 131

IBM Confidential Restricted. DO NOT COPY

RSC RSC

ROMP ROMP

Bus Bus
Converter Converter

0

Shared
DFU Storage DFU

Storage Storage

Figure 22. Multi-Processor Connection Via Common Storage

RSC RSC

ROMP ROMP

Bus Bus
Converter Converter

Bus
DFU Coupler DFU

Storage Storage

Figure 23. Multi-Processor Connection Via Bus Coupler

Multiprocessor System 132

IBM Confidential Restricted. DO NOT COPY

RSC

ROMP
A

Bus
Converter

0 Commo

Storage

RSC

ROMP
B

Bus
Converter

Commo

Storage

Figure 24. Multi-Processor Connection Via Communications Link

Multiprocessor System 133

IBM Confidential Restricted. DO NOT COPY

9.0 STORAGE CONTROLLER FUNCTIONS

This section is intended to illustrate the range of storage
controller options which can be implemented in a ROMP system.

In any ROMP system, the processor, and possibly other devices will
be requesting storage operations. These requests will be examined
by one or more storage controllers and either accepted or not
accepted <this is indicated by the ACK,NAK handshaking lines one
RSC cycle after the request>. A request will be accepted if the
storage controller is available, and the address associated with
the request is a valid address. Instruction fetches and loads
require that the storage controller generate a reply at some later
time. The reply contains the requested data and the tag which was
sent with the request, indicating the destination of the reply.
The reply can occur on any cycle after the request was received.
The RSC can be utilized by other devices while a request is being
processed by the storage controller. ROMP takes advantage of this
by attempting to overlap storage accesses with instruction
execution.

A simple ROMP system might contain a single storage controller and
a single storage array. When a storage request arrives from the
RSC, the storage controller would perform the required access,
and if necessary, generate a reply on the RSC. Requests arriving
before the storage array was free would receive a BUSY response.
Figure 25 and Figure 26 shows the approximate timing for this type
of controller. Figure 25 shows the timing for fast storage, and
Figure 26shows the timing for slower storage. Note that Figure 25
shows the best possible performance, where the storage access time
is equal to the processor cycle time.

RSC CYCLES A D A D A D

RSC adr l adr 2 rep 1 adr 3 rep 2

RESPONSE OK OK OK

A

STG CYCLES read 1 read 2 read 3

Figure 25. Storage Controller Timing With Fast Storage

Storage Controller Functions 134

IBM Confidential Restricted. DO NOT COPY

RSC CYCLES A D A D A D A

RSC adr 1 adr 2 adr 2 rep 1

RESPONSE OK BUSY OK

STG CYCLES read 1 read 2

Figure 26. Storage Controller Timing With Slow Storage

The storage controller can also control multiple arrays. One
reason for this might be to mix storage technologies (for example,
ROS and RAM>, or to control two interleaved arrays. An
interleaved storage system utilizes one array for all even word
addresses, and a second independent array for all odd word
addresses. An interleaved storage system can provide an increase
in the available storage bandwidth since the storage controller
can overlap accesses of interleaved arrays. This will result in
improved processor performance since a large percentage of
processor generated storage references are for sequential word
addresses.

Multiple storage controllers can also be used, where each
controller has one or more storage arrays. This type of system
allows each controller and storage array to operate independently
of the other storage controllers. The design of the individual
controllers is also simplified if each controls only one array.

It is important to note that the RSC design allows additional
pipelined stages to be placed in series with the storage access
stage, that do not reduce the bandwidth for instruction
prefetches. However, these stages do increase the latency for
non-overlapped accesses such as the first instruction fetch
following a successful branch, and all data accesses. The ability
to add such a stage can be beneficial when designing a storage
controller employing error correcting codes <ECC>. ECC delays are
usually added in series with the array access time, and frequently
increases storage access time. In a ROMP system, a possible
alternative is to provide a separate pipelined stage to perform
ECC checking. Depending on the amount of time required to perform
the ECC check, it might be advantageous to overlap the ECC check
with the next storage cycle, and delay the reply by a full RSC
cycle. Figure 27 shows the timing for this type of ECC checking.

Storage Controller Functions 135

IBM Confidential Restricted. DO NOT COPY

RSC CYCLES A D A D A D A

RSC adr 1 adr 2 adr 3 rep 1 adr 4

RESPONSE OK OK OK

ECC CHECK ECC 1 ECC 2

STG ACCESS read 1 read 2 read 3

Figure 27. Storage Controller Timing With ECC

9.1 STORAGE PROTECT AND ADDRESS TRANSLATION OVERVIEW

ROMP supports both storage protect and address translation
functions in the storage controller. These functions are enabled
by control bits in the Interrupt Control Status <ICS> register.
When bit 20 in the ICS is set to one, storage protect is enabled.
When bit 22 is set to one, address translation is enabled. When
either of these functions is enabled, ROMP is placed in an exact
interrupt mode, which allows any instruction which causes an
exception to be restarted after the exception has been handled.
The state of ICS bits 20 and 22 is available on RSC lines DAL04
and DAL05, respectively. The actual storage protect or address
translation hardware exists in the storage controller, and the
particular implementation is system dependent. Required
initialization of the storage protect or address translation
hardware must be performed by system software before storage
protect or address translation is enabled.

Assuming that protection or translation hardware is installed, the
storage controller does the necessary checking, and provides the
appropriate response when a reply is generated. In the case of a
read access, storage will generate a reply to the original
requestor. When no exception condition exists, data is placed on
the addr/data bus, the tag ID of the requestor is placed on the
tag bus, and +EXCEPTION is driven inactive. If an exception
condition exists, the reply is generated in a similar manner,
except +EXCEPTION is driven active and the data which is placed on
the bus is not used, but must have good parity.

Whenever a write access is attempted and storage protect or
address translation is enabled, a reply must be generated to the

Storage Controller Functions 136

IBM Confidential Restricted. DO NOT COPY

original requestor, just as was done for a read access. This
reply is required in order to determine whether or not the store
operation caused an exception. The tag bus will contain the tag
ID associated with the write address of the original requestor.
The +EXCEPTION line will be driven inactive when no exception
exists, and will be driven active when an exception does exist.
In either case, the content of the data bus is unimportant, but
must have good parity.

For systems which do not implement storage protection or virtual
addressing, the EXCEPTION line is not required. However,
EXCEPTION can still be used with replies to ROMP to report
addressing exceptions. If ROMP receives a reply with +EXCEPTION
active, and address translate and storage protect are disabled,
then a program check occurs. PCS bits 25 <program check with
unknown origin) and 30 (data address exception) are set. If the
EXCEPTION line is not used, the input to ROMP must be tied low
<inactive>.

When storage accesses are generated by ROMP , the RSC line DAL06
will be a one <active> if the processor is in problem state and a
zero (inactive> if in supervisor state. This bit may be used to
enhance the storage protection scheme by providing different types
of access authority, such as read/write,
only.

read only, or execute

9.2 STORAGE PROTECT

Storage protect provides controlled access to selected storage
areas. Normally, each area <or block> is designated as execute
only, read only, read/write, or no access allowed for a particular
task. This requires associating the required access authority
with each block of storage, and verifying that each storage
request has the correct access authority.

The access authority is normally contained in a separate array in
the storage controller that is accessed based on the address of
the request. For a protect scheme with fixed size blocks of
storage, the high-order address bits are used to access the
protect array and the low-order address bits are ignored. The
number of low-order address bits ignored is determined by the
block size.

Information contained in the protect
controller to determine if each
information would normally indicate
checked, and the state of these lines

Sufficient information is provided
type of storage operation. The RSC

array is used by the storage
access is permitted. This
which RSC signals should be

for a legal access.

on the RSC to identify each
tag lines provide the ability

to determine if a particular request is for a processor

Storage Controller Functions 137

IBM Confidential Restricted. DO NOT COPY

instruction or data fetch, or whether the request is from another
device on the RSC (bus converter, DMA controller, etc>. The
high-order byte of the RSC addr/data bus provides additional
control information to determine if the request is a read or
write, whether it is a storage access or a PIO access, and whether
the processor is in problem or supervisor state. A detailed
description of these signals is given in "RSC Signal Definitions"
on page 97.

Typically, it might be desired to define a storage area that is
read/write from the system control program <SCP> and is execute
only for user programs. The storage controller can provide this
checking by examining the state of the problem/supervisor line on
the RSC CDAL06> and the tag lines to determine if a request is
being made from problem or supervisor state, and whether or not it
is an instruction fetch. If the processor is in supervisor state,
any access would be permitted, and if in problem state, only
instruction fetches would be permitted to the given storage area.

If a storage area is designated as read/write from the SCP and no
access allowed from problem state, the storage controller would
only need to examine the state of the problem/supervisor line to
determine whether or not an access is permitted. In this case,
the state of the tag lines is a don't care.

Note that separate storage areas can be designated for each type
of device that can access storage. For example, selected storage
areas can be designated as valid only for processor operations, at
the same time other areas are valid only for DMA transfers.
Figure 28 shows a typical storage address assignment.

A typical storage protect scheme requires access of control
information from an array to determine if each access is allowed.
Normally, this information is contained in a separate array, and
is accessed based on the request address by the storage controller
to determine if each access is legal. The access of this control
information can normally occur in parallel with the data access.
For write operations, this control information must be examined
prior to the data access, in order to prevent illegal write
operations from altering data in storage. For non-write accesses,
the storage protect information can be examined after the data
access is complete, to determine the state of the EXCEPTION line
for the reply. Data read from storage can be returned to the
processor if there is an exception, since ROMP does not use this
data if EXCEPTION is active.

Once the exception indication is received by ROMP , execution of
the current instruction is terminated, and any general purpose
registers (GPRs> which were altered by partial execution of the
instruction, and would prevent the instruction from being
restartable, are restored. A program-check then occurs which
causes appropriate bits in the program check status <PCS> register
to be set based on the type of exception. Refer to "Program-Check
Errors" on page 124 for a description of the PCS.

Storage Controller Functions 138

IBM Confidential Restricted. DO NOT COPY

Control information in the storage protect array is normally
initialized by the processor, before a particular task begins
execution. Initialization defines each area that a particular
task can access, and the type of access permitted <execute,
read/write, etc>. The storage protect array can be either memory
mapped and initialized by store instructions, or can be defined in
the I/O address space, and initialized by PIO write instructions.

Address Space

System Control
Program

CSCP>

DMA Buffer
Area

User l Program

User 2 Program

Shared data
for user l

and 2

Access Permitted

Read/Write from supervisor
state only.

Read/write by DMA device
and SCP.

Read/write by SCP.
Execute only by user 1.

Read/write by SCP.
Execute only by user 2.

Read/write by SCP
user 1 and user 2.

Figure 28. Typical Storage Protect Assignments

9.3 ADDRESS TRANSLATION

ROMP supports address translation functions which allow mapping of
a virtual processor address to a physical storage address. The
address translation hardware exists in the storage controller and
the particular implementation is system dependent. This hardware

Storage Controller Functions 139

IBM Confidential Restricted. DO NOT COPY

converts a virtual address from ROMP , or other system components,
into a physical address which is used to access storage.

If an exception is detected by storage during execution of an
instruction, the EXCEPTION line is brought active for the reply
from storage, which causes a program-check condition to occur.
Once the exception indication is received by ROMP , execution of
the current instruction is terminated, and any general purpose
registers <GPRs> which were altered by partial execution of the
instruction, and would prevent the instruction from being
restartable, are restored. A program-check then occurs which
causes appropriate bits in the program check status <PCS> register
to be set based on the type of exception. Refer to "Program-Check
Status" on page 125 for a description of the PCS.

An exception handler can then be executed to determine the type of
exception, and can take the appropriate action to elimin~te the
exception. This routine can examine bits in the PCS to determine
if the exception was the result of an instruction fetch or data
reference. If the exception resulted from an instruction fetch,
the IAR in the old program check <PC> PSW will contain the address
of the instruction causing the exception. In this case, the
instruction address is also the storage address causing the
exception. If the exception resulted from a load or store
operation, the IAR in the old PC PSW will contain the address of
the load or store instruction, not the storage address causing the
exception. Hardware can be provided in the storage controller to
maintain the storage address causing the exception, or software
can determine the address by examining the instruction pointed to
by the IAR in the old PSW. If hardware is provided in the storage
controller, the storage address causing the exception can be made
available to the processor via a PIO register in the storage
controller.

A separate pipelined stage can be added in the storage controller
to perform address translation. This allows storage array access
to be overlapped with the next address translation. A design such
as this prevents the address translation time from being directly
added to the storage access time. Figure 29 shows how address
translation and storage array access can be overlapped.

Storage Controller Functions 140

IBM Confidential Restricted. DO NOT COPY

RSC CYCLES A D A D A D A

RSC adr l adr 2 adr 3 rep l adr 4

RESPONSE OK OK OK

ADDR XL ATE I 0 xlate l xlate 2 xlate 3

STG ACCESS read l read 2

Figure 29. Storage Controller Timing With Address Translation

Storage Controller Functions 141

IBM Confidential Restricted. DO NOT COPY

10.0 PROCESSOR SUPPORT FUNCTIONS

10.l FRONT PANEL SUPPORT

ROMP provides internal hardware to support basic front panel
functions in a normal system environment. This hardware supports
processor reset and IPL operations and provides an output to
indicate processor failure. Reset and IPL can be performed
automatically when power is applied to the system, or can be
performed manually via front panel switches. Processor failure is
indi~pted by an I/O pin <-FAIL> which can be connected to a front
panel failure indicator. "Internal Diagnostics" on page 121
describes operation of the failure signal.

10.2 SUPPORT PROCESSOR FACILITIES

ROMP is an LSSD design processor which allows contents of the
internal latches to be examined and altered by use of the LSSD
scan feature. In addition, internal support logic is provided for
sync and stop-on-address functions.

Internal address compare logic consists of a 32-bit
address-compare register, address source select latch, and a
stop-on-address enable latch. The address-compare register is
used to hold the desired sync or stop address. The source select
latch selects either an IAR address or microstore address. If the
stop-on-address latch is set, the processor is forced into a
stopped state when an address compare occurs. An I/O pin <-SYNC>
is provided for use as a trigger source when using the sync
function to examine RSC or other processor activity.

For system or program debug, a support
PT-2, or a Series/l can be connected to

processor such as a PC,
a ROMP system to allow

examination of internal ROMP registers. The support processor
would use the LSSD scan-in and scan-out capability to examine and
alter internal processor registers and control latches. In
addition, the address compare logic can be controlled by the
support processor for sync or stop-on-address functions. A
detailed description of the LSSD scan-strings and a suggested
support processor interface can be found in documents listed in
"ROMP System Hardware References" on page 188.

The particular functions provided by the support processor are
defined by the program written for the support processor, but
should include the following functions:

Processor Support Functions 142

l.

2.

IBM Confidential Restricted. DO NOT COPY

Reset. It should be possible to reset ROMP from the support
places the ROMP system in a known state.
be implemented by ORing an output from the

processor. Reset
This function can
support processor with the ROMP system reset signal.

IPL. After ROMP
initialization. At
ROMP activates -IPL

has been reset, it begins register
the completion of register initialization,
READY. This signal can be detected by the

support processor, which can take one of several courses of
action. The support processor can place ROMP in the stopped
state, which allows the contents of scan strings, registers,
and main storage to be displayed and altered as explained
below. Also, the support processor can emulate an IPL device,
loading main storage and activating -IPL COMPLETE when the
load is complete. Finally, the support processor can allow
the ROMP system to complete IPL as it normally would.

3. Start/Stop/Step. These functions allow operation of the ROMP
processor to be controlled. Start would enable processor
execution to begin with the current IAR value. Stop halts
processor execution. Step allows single stepping of
instruction execution while the processor is in the stopped
state. These functions can be implemented by interfacing the
support processor with the ROMP clock generation circuitry.

4. Address Compare. This function allows entry of a desired
compare address, selection of compare on IAR value or
microstore address, and enable of stop-on-address. The
support processor would load the compare address register with
the desired address via the LSSD scan-in input. IAR or
microstore address is selected by scanning the desired value
into the select latch and stop-on-address is enabled by
scanning the stop latch to an enabled state.

5. Display/Alter GPRs and SCRs. This function allows the support
processor to read and write any GPR or SCR. These functions
would be implemented by manipulation of the appropriate
control and data registers via the scan-in and scan-out paths.

6. Display/Alter Main Storage. This function allows the support
processor to load, read and modify main storage locations.
The function can be implemented by scanning the desired
address and data into the serial interface provided in the
storage controller.

7. Display/Alter ROMP Data and Control Registers. This function
allows internal data and control registers to be examined and
altered. This function can be implemented by using the
support processor to scan-out the data and control latch
contents for display. The scanned-out can then be altered, if
desired, and scanned-in to set a control or data latch to a
desired value.

Processor Support Functions 143

IBM Confidential Restricted. DO NOT COPY

11.0 PERFORMANCE

ROMP performance can be evaluated by computing instruction
execution times based on the figures shown in Table 13.l and by
including any hold-off time for instruction or data fetches. A
hold-off condition in the processor will occur whenever a
successful branch is taken and the instruction buffer must start
fetching a new instruction stream from storage, or whenever an
instruction references a register which has not yet been loaded as
the result of a load instruction. Any processor activity such as
interrupts or system timer service must be included in performance
computations since they require execution of microcode routines.
Performance limitations due to the RSC bandwidth must be evaluated
where RSC utilization is high.

The term "storage access time" used in this section is the amount
of time required by the storage controller to reply to an
instruction or data fetch. This time includes driver delays from
the storage controller to the storage array, the array access
time, receiver delays from the array to the storage controller,
and any ECC delays, if present. The storage access time is always
an integer multiple of the processor cycle time due to the
synchronous nature of the ROMP Storage Channel. See "Selection of
Processor Cycle Time" on page 150 for further information on
storage access time versus processor cycle time.

The term "RSC cycle time" used in this section is the packet time
on the RSC. This time is always one-half of the processor cycle
time. For example, a 300 nsec processor cycle results in a 150
nsec RSC cycle time, and a 200 nsec processor cycle results in a
100 nsec RSC cycle time.

For the purpose of discussion in this section, the ROMP cycle time
is assumed to be 300 nsec. The actual cycle time is system
dependent.

This section is intended to provide an overview of the various
factors involved in ROMP performance. However, due to the large
number of possible system configurations, it is difficult to
obtain detailed performance estimates for a given system without
use of a simulator. Detailed performance analysis for a given
system configuration with the anticipated instruction mix should
be done using the simulator described in "RTIMER Simulator" on
page 188.

11.l BRANCH HOLD-OFF

The ROMP design utilizes an
apparent instruction fetch

Performance

instruction prefetch buffer to reduce
time. In normal operation, the

144

instruction
execution so

IBM Confidential Restricted. DO NOT COPY

buffer pref etches instructions prior to their
the effective fetch time during execution is zero.

However, whenever a branch instruction is successful, the
instruction buffer must fetch a new instruction stream and the
processor is forced into a hold-off state until a new instruction
is available for execution. The length of time the processor is
in a hold-off state depends on the RSC cycle time and on the
storage access time. Figure 30 shows the timing for instruction
fetches.

The hold-off time for the start of a new instruction stream to
begin execution is given by the following equation:

Twait= 2*RSC Cycle Time+ Storage Access Time+ l Processor Cycle Time

I-Buffer
Branch Instr. Read New I-Stream
Execution Hold-Off Hold-Off <Hold-Off) Execution

Processor

RSC

Storage

New I-Stream
Fetch

I I
Storage
Access

New I-Stream
Reply

I I

Figure 30. Fetch Timing For New Instruction Stream Following
A Successful Branch

For an RSC and ROMP design with a lSOnsec RSC cycle time and a
300nsec ROMP cycle time, the hold-off time is given by:

Twait = 600nsec + Storage Access Time

For a typical system with 300nsec access time storage, the wait
time would be 900nsec or three processor cycles. This hold-off
time must be added to the execution time for each branch, if it is
successful.

Performance 145

IBM Confidential Restricted. DO NOT COPY

11.2 BRANCH AND EXECUTE HOLD-OFF

The ROMP instruction set includes branch and execute instructions
which allow a subject instruction to be executed while the target
instruction is being fetched. In this case, the time until
execution of the target instruction begins is the greater of the
time required for execution of the subject instruction or the time
required for the new instruction stream to become available for
execution. If execution of the subject instruction is complete
before the target instruction is available for execution, the
processor enters a hold-off state until the target instruction is
available. Subject instruction execution times can be computed
from Table 13.l and hold-off time for the target instruction is
defined in "Branch Hold-off" on page 144.

11.3 LOAD INSTRUCTION HOLD-OFF

The ROMP design
parallel with the

allows instruction execution to continue in
loading of a register, provided the subsequent

instructions do not reference an unloaded register when storage
protect and address translation are disabled. Hold-offs that occur
as a result of storage protect and address translation are
described in "Storage Protect And Address Translation Hold-Off"
Execution of a load instruction causes a tag to be allocated for
the given register and a request to storage for the given data.
Instructions following the load instruction can be executed while
the storage access and writing of the registers occur, provided
the subsequent instructions do not reference an unloaded register.
Figure 31 shows the timing for a load register operation.

Processor

RSC

Storage

Figure 31.

Performance

Load Instr.
Execution

Execution/
Hold-Off

Data
Request

I I

Execution/
Execution/ Register
Hold-Off Write

Data
Reply

I I
Storage
Access

Load Instruction Timing

Execution
Using Register

146

IBM Confidential Restricted. DO NOT COPY

The actual time required for completion of a load instruction is
given by the following equation:

Tload = 2* RSC Cycle Time + Storage Access Time + l Processor Cycle

For an RSC and ROMP design with a 150 nsec RSC cycle time and a
300nsec ROMP cycle time, the load time is:

Tload = 600 nsec + Storage Access Time

For a typical system with 300 nsec access time storage, the load
time would be 900 nsec or three processor cycles. Instruction
execution can continue in parallel with the load operation
provided the subsequent instructions do not reference an unloaded
register. If a subsequent instruction references an unloaded
register, the processor is forced into a hold-off state until the
load operation is completed.

11.4 I/O READ HOLD-OFF

Execution of an I/O read instruction causes a tag to be allocated
for the given register and a RSC command to the I/O device to be
generated. Hold-off conditions previously described for a load
register operation also apply to I/O read operations. Previous
timing diagrams and equations for determining register load times
can be used for I/O read operations by substituting the I/O device
response time for storage access time. No additional hold-offs
occur when storage protect or address translation is enabled,
since all I/O addresses are real.

11.5 STORAGE PROTECT AND ADDRESS TRANSLATION HOLD-OFF

When storage protect or address translation is enabled, additional
hold-offs occur after each load or store operation. In this mode,
subsequent instructions are not executed until the storage
controller responds to the load or store operation. Operation of
the storage controller in storage protect or address translate
mode is described in "Storage Controller Functions" on page 134.
Figure 32 shows the timing for load and store operations when
storage protect or address translation is enabled. Note that the
storage controller must also respond to
mode. Data returned by the storage
operation is not used by the processor;

Performance

write operations in this
controller for a write
only the tag information

147

IBM Confidential Restricted. DO NOT COPY

and state of the EXCEPTION line is used to determine the outcome
of the write operation.

Processor

RSC

EXCEPTION

Storage

Load/Store
Execution Hold-Off

Data
Request

I I

Hold-Off

Data
Reply

I I

Address Translation
and Storage Access

I I

Execution
Continues

Figure 32. Load and Store Instruction Timing With Storage
Protect or Address Translation Enabled

Performance degradation occurs since subsequent instruction
execution is halted during a load operation regardless of whether
or not subsequent instructions reference the register. Hold-offs
now also occur after write operations until the the status of the
write operation is reported by the storage controller. No
additional hold-offs occur after I/O reads, since all I/O
addresses are real. Prefetching occurs as it normally would, with
no additional hold-offs between prefetches.

Performance can be evaluated by including these additional
hold-off times and the increased storage access time due to
address translation in performance calculations. Note that as the
storage array access time increases, the overhead of storage
protect or address translation becomes a smaller portion of the
overall storage access time, hence there is a smaller percentage
degradation in system performance.

11.6 TAG HOLD-OFFS

ROMP provides two register tags which are allocated for all
storage read operations, all I/O reads, and storage write

Performance 148

IBM Confidential Restricted. DO NOT COPY

operations when address translation or storage protection is
enabled. This permits two of these operations to be to be in
progress at any time. If an attempt is made to execute an
instruction and there are already two allocated tags, ROMP is
forced into a hold-off state until a tag becomes available. A tag
becomes available in the register write cycle <See Figure 31).

For example, if an instruction sequence includes three successive
load operations, the first two loads are executed with no
hold-offs, and the third must wait for the first load to complete.
In a system with 300 nsec storage, there would be a hold-off of
two cycles before the third load instruction would execute. The
two cycle hold-off occurs since a tag is not available until three
cycles after execution of a load instruction, and only one cycle
has elapsed since execution of the first load operation.

11.7 INTERRUPTS

Interrupts cause execution of a microcode routine which performs a
program status exchange. The execution time for this routine must
be included when performance calculations are made involving
interrupts. Table 13.l lists the number of cycles required for
execution of the microcode interrupt routine.

11.8 SYSTEM TIMER

The system timer is serviced by a microcode routine which updates
and sets the required timer status bits for each clock input to
the timer. The execution time for this routine must be included
when performance calculations are made involving system timer
operation. Table 13.l lists the number of cycles required for
execution of the microcode system timer routine.

Performance 149

IBM Confidential Restricted. DO NOT COPY

11.9 BUS CAPACITY

A limiting factor in processor performance is the bandwidth of the
storage channel. The RSC is designed to provide sufficient
bandwidth for both processor and DMA activity without limiting
processor performance. However, if there are high speed DMA
devices on the RSC; a point can be reached where DMA activity
saturates the RSC whi~h will result in degraded processor
performance.

An RSC design with a 150 nsec bus cycle time provides a maximum
bus bandwidth of 13.3 M bytes/sec C4 bytes every 300 nsec> which
can be achieved with 300 nsec cycle time storage. A typical
execution rate of two MIPS requires approximately a 8 M byte/sec
data rate for the processor which leaves approximately 5 M
bytes/sec for other RSC devices As RSC device activity increases,
processor performance will be degraded slightly due to
interference between the processor and devices. As the total RSC
utilization approaches 100%, processor performance will degrade so
that close to the 13.3 M byte/sec RSC capacity is maintained.
Actual bus capacity required for a given program can be estimated
as described in the following section.

11.10 SELECTION OF PROCESSOR CYCLE TIME

The processor cycle time can be adjusted in order to maximize the
available storage bandwidth. Since the RSC is a synchronous
channel, storage accesses always require an integer number of
processor cycles. If the storage array access time is not an
integer multiple of the processor cycle, there will be a delay
between the time that data is available in the storage controller,
and when the data can be returned to ROMP via the RSC. This delay
can be eliminated by selecting the processor cycle time so that
storage access time is an integer multiple of the processor cycle
time. In many systems, the overall system performance will be
limited by the available storage bandwidth, and not by the
processor cycle time. In this case, the overall system
performance can actually be improved by increasing the processor
cycle time, so that the storage access time is an integer multiple
of the processor cycle time.

Consider a system with a 250 nsec processor cycle time and 600
nsec access time storage. Since the storage controller can only
reply every every 250 nsec, and data is not good until 600 nsec,
the actual access time will be 750 nsec. This results in a
storage bandwidth of 5.33 M bytes/sec (4 bytes every 750 nsec).
If the processor cycle time is increased to 300 nsec, the access
time will become 600 nsec, giving a bandwidth of 6.67 M bytes/sec.
In this case, increasing the processor cycle time by SO nsec has

Performance 150

IBM Confidential Restricted. DO NOT COPY

increased the available storage bandwidth by approximately 25
percent.

11.11 PROGRAM PERFORMANCE

The required execution time for a given program can be estimated
by summing the number of cycles required for each instruction
executed by the program and by adding this number to any hold-off
condition times that occur during program execution. The hold-off
times are determined by events described in "Branch Hold-off" on
page 0144 through "Bus Capacity" on page 150. The number of cycles
required for execution of each instruction is listed in Table
13.l.

Once execution time is determined, it is then possible to
determine the RSC utilization for the program. This is done by
computing the total number of bytes during program execution and
dividing by the execution time of the program. The number of
bytes required during execution of the program is the sum of the
number of instruction bytes fetched, the number of data bytes
referenced, and the number of bytes wasted by the instruction
prefetch buffer for successful branches. The number of
instruction bytes fetched can be computed by multiplying the
number of instructions executed by the average instruction length.
For typical programs, the average instruction length is
approximately 2.4 bytes. The number of data references includes
all load and store operations and each operation requires a 4 byte
transfer. Since the instruction prefetch buffer contains
instructions ahead of the execution stream, successful branches
will result in some of the instructions in the buffer being
wasted. These instructions have already been fetched from storage
and must be included in bus performance computations. The current
ROMP design includes 16 byte instruction prefetch buffer and
performance estimates generally assume approximately 8 bytes are
wasted for each successful branch.

Consider evaluation of a program with the following
characteristics:

400 Instructions executed
600 processor cycles required for program execution

60 hold-off cycles <successful branches, data references, etc>
100 data references (loads and stores>

30 successful branches

For a 300 nsec processor cycle, this program would execute in
(600+60 cycles> X 300 nsec/cycle or approximately 200 usec. The
MIP rate would be 400 instructions divided by 200 usec or 2 MIPS.
Note that any processor cycles required for interrupt, or system

Performance 151

IBM Confidential Restricted. DO NOT COPY

timer servicing would be added to the 600 processor cycles
required for program execution.

Bus utilization would be computed as follows:

400
100

30

instructions *2.4 bytes/instruction
data references *4 bytes/reference
successful branches *8 bytes/branch wasted

Total

1600 Bytes

960 Bytes
400
240

1600 Bytes

Required bandwidth: = 8.0 MBytes/Sec
200 usec

A minimum storage bandwidth of 8 M bytes/sec is required for this
program to execute in the previously computed 200 usec. As
storage access time is increased, execution time for the program
will increase in a nonlinear manner, and total storage utilization
will approach 100%.

In cases where th~ actual storage capacity is less than that
required to support a given execution rate, the actual execution
rate can be estimated by assuming full utilization of the
available storage bandwidth. Using data from the above example
and assuming non interleaved SUNSET memory with a 1200 nsec cycle
time, estimated program performance can be computed as follows:

4 Bytes
Storage Capacity: = 3.33 M Bytes/Sec

1200 nsec

1600 Bytes
Estimated Execution Time: = 480 usec

3.33 M Bytes/Sec

400 Instructions
MIP Rate: : 0.83 MIPS

480 usec

Note that the actual execution rate will be slightly lower than
the computed value since additional hold-off cycles w~ll occur for
successful branches and load operations due to the longer storage
access time. Also, note that as storage utilization approaches

Performance 152

IBM Confidential Restricted. DO NOT COPY

100%, less instruction prefetching will be possible which will
result in fewer bytes being wasted for successful branches.

11.12 PERFORMANCE MEASUREMENT

ROMP provides an I/O pin <-INST CMPLT> to indicate completion of
instruction execution. A transition from inactive to active
occurs when execution of an instruction is completed. The
frequency of the signal at this pin represents instruction
execution rate. For example, a frequency of 500 Khz represents
0.5 MIPS, l MHz represents l MIP, and 2 MHz represents 2 MIPS.

Performance 153

MNEMONIC
A
ABS
AE
AEI
AI
AIS
BALA
BA LAX

BALI
BALIX

BALR
BAL RX
BB

BBR

BBRX

BBX

BNB

BNBR

BNBRX

BNBX

c
CAL
CAL16
CAS
CAU
CA16

Performance

IBM Confidential Restricted. DO NOT COPY

TABLE 13.l

INSTRUCTION EXECUTION TIMES

OP-CODE
El
EO
Fl
Dl
Cl
90
SA
SB

SC
SD

EC
ED
SE

EE

INSTRUCTION
ADD
ABSOLUTE
ADD EXTENDED
ADD EXTENDED IMMEDIATE
ADD IMMEDIATE
ADD IMMEDIATE SHORT
BRANCH AND LINK ABSOLUTE
BRANCH AND LINK ABSOLUTE WITH
EXECUTE
BRANCH AND LINK IMMEDIATE
BRANCH AND LINK IMMEDIATE WITH
EXECUTE
BRANCH AND LINK
BRANCH AND LINK WITH EXECUTE
BRANCH ON CONDITION BIT IMMEDIATE

Unsuccessful
Successful

BRANCH ON CONDITION BIT
Unsuccessful

Execution
Cycles
l
2
l
l
1
l
3 +l Storage

3 +l Storage
3 +l Storage

3 +l Storage
3 +l Storage
3 +l Storage

l
3 +l Storage

l
Successful 3 +l Storage

EF

SF

88

ES

E9

S9

B4
cs
cs
6
DS
F3

BRANCH ON CONDITION BIT WITH EXECUTE
Unsuccessful 1
Successful

BRANCH ON CONDITION BIT IMMEDIATE
WITH EXECUTE

Unsuccessful
Successful

BRANCH ON NOT CONDITION BIT
IMMEDIATE

Unsuccessful
Successful

BRANCH ON NOT CONDITION BIT
Unsuccessful
Successful

BRANCH ON NOT CONDITION BIT
WITH EXECUTE

Unsuccessful
Successful

BRANCH ON NOT CONDITION BIT
IMMEDIATE WITH EXECUTE

Unsuccessful
Successful

COMPARE
COMPUTE ADDRESS LOWER
COMPUTE ADDRESS LOWER HALF 16-BIT
COMPUTE ADDRESS SHORT
COMPUTE ADDRESS UPPER
COMPUTE ADDRESS 16-BIT

3 +l Storage

l
3 +l Storage

l
3 +l Storage

1
3 +l Storage

1
3 +l Storage

1
3 +l Storage
l
l
l
l
l
l

154

CI
CIS
CL
CLI
CLRBL
CLRBU
CLRSB
CLZ
D
DEC
EXTS
INC
IOR
IOW
JB

JNB

L
LC
LCS
LH
LHA
LHAS
LHS
LIS
LM
LPS
LS
M
MC03
MC13
MC23
MC33
MC30
MC31
MC32
MFS
MFTB
MFTBIL

MFTBIU

MTS
MTTB
MT TB IL

MTTBIU

N
NILO

Performance

IBM Confidential Restricted. DO NOT COPY

D4
94
B3
D3
99
98
95
FS
B6
93
Bl
91
CB
DB
08-0F

00-07

CD
CE
4
DA
CA
5
EB
A4

C9
DO
7
E6
F9
FA
FB
FC
FD
FE
FF
96
BC
9D

9C

BS
BF
9F

9E

ES
C6

COMPARE IMMEDIATE
COMPARE IMMEDIATE SHORT
COMPARE LOGICAL
COMPARE LOGICAL IMMEDIATE
CLEAR BIT LOWER HALF
CLEAR BIT UPPER HALF
CLEAR SCR BIT
COUNT LEADING ZEROS
DIVIDE STEP
DECREMENT
EXTEND SIGN
INCREMENT
INPUT/OUTPUT READ
INPUT/OUTPUT WRITE
JUMP ON CONDITION BIT

Unsuccessful
Successful

JUMP ON NOT CONDITION BIT
Unsuccessful
Successful

LOAD
LOAD CHARACTER
LOAD CHARACTER SHORT
LOAD HALF
LOAD HALF ALGEBRAIC
LOAD HALF ALGEBRAIC SHORT
LOAD HALF SHORT
LOAD IMMEDIATE SHORT
LOAD MULTIPLE
LOAD PROGRAM STATUS
LOAD SHORT
MULTIPLY STEP
MOVE CHARACTER ZERO FROM THREE
MOVE CHARACTER ONE FROM THREE
MOVE CHARACTER TWO FROM THREE
MOVE CHARACTER THREE FROM THREE
MOVE CHARACTER THREE FROM ZERO
MOVE CHARACTER THREE FROM ONE
MOVE CHARACTER THREE FROM TWO
MOVE FROM SCR
MOVE FROM TEST BIT
MOVE FROM TEST BIT IMMEDIATE
LOWER HALF
MOVE FROM TEST BIT IMMEDIATE
UPPER HALF
MOVE TO SCR
MOVE TO TEST BIT
MOVE TO TEST BIT IMMEDIATE
LOWER HALF
MOVE TO TEST BIT IMMEDIATE
UPPER HALF
AND
AND IMMEDIATE LOWER HALF
EXTENDED ONES

l
l
l
l
l
l
4
1
3
l
1
1
1
2

1
3 +l Storage

l
3 +l Storage
1
1
1
1

1
1
1

1
See Note 2
6+ 4 Storage
1
4
1
1
1
l
l
l
1
2
l

1

1
3
1

1

l
1

1

155

NILZ

NIUO

NIUZ

0
OIL
OIU
ONEC
s
SAR
SARI
SAR Il6

SE
SETBL
SET BU
SET SB
SF
SFI
SIS
SL
SLI
SLI16
SLP
SLPI
SLPI16

SR
SRI
SRI16
SRP
SRPI
SRPI16

ST
STC
STCS
STH

STHS
STM
STS
SVC
TGTE

TI

TLT

Performance

IBM Confidential Restricted. DO NOT COPY

cs

D6

DS

E3
C4
C3
F4

E2
BO
AO
Al

F2
9B

9A
97
B2

D2
92
BA
AA
AB
BB

AE
AF

B8
A8
A9
B9

AC
AD

DD
DE
l
DC
2
D9
3
co
BD

cc

BE

AND IMMEDIATE LOWER HALF
EXTENDED ZEROS
AND IMMEDIATE UPPER HALF
EXTENDED ONES
AND IMMEDIATE UPPER HALF
EXTENDED ZEROS
OR
OR IMMEDIATE LOWER HALF
OR IMMEDIATE UPPER HALF
ONE'S COMPLEMENT
SUBTRACT
SHIFT ALGEBRAIC RIGHT
SHIFT ALGEBRAIC RIGHT IMMEDIATE
SHIFT ALGEBRAIC RIGHT IMMEDIATE
PLUS SIXTEEN
SUBTRACT EXTENDED
SET BIT LOWER HALF
SET BIT UPPER HALF
SET SCR BIT
SUBTRACT FROM
SUBTRACT FROM IMMEDIATE
SUBTRACT FROM SHORT
SHIFT LEFT
SHIFT LEFT IMMEDIATE
SHIFT LEFT IMMEDIATE PLUS SIXTEEN
SHIFT LEFT PAIRED
SHIFT LEFT PAIRED IMMEDIATE
SHIFT LEFT PAIRED IMMEDIATE
PLUS SIXTEEN
SHIFT RIGHT
SHIFT RIGHT IMMEDIATE
SHIFT RIGHT IMMEDIATE PLUS SIXTEEN
SHIFT RIGHT PAIRED
SHIFT RIGHT PAIRED IMMEDIATE
SHIFT RIGHT PAIRED IMMEDIATE
PLUS SIXTEEN
STORE
STORE CHARACTER
STORE CHARACTER SHORT
STORE HALF
STORE HALF SHORT
STORE MULTIPLE
STORE SHORT
SUPERVISOR CALL
TRAP IF REGISTER GREATER THAN
OR EQUAL

Unsuccessful
Successful

TRAP ON CONDITION IMMEDIATE
Unsuccessful
Successful

TRAP IF REGISTER LESS THAN
Unsuccessful
Successful

1

1

1
1

l
l
l
l
1
l

1
1
l
l
4
l
l
l
l
l
1
l
1

l
l
1
1
l
1

1
2
2
2
2
2
See Note 2
2
11 +2 Storage

2
10 +2 Storage

2
10 +2 Storage

2
10 +2 Storage

156

IBM Confidential Restricted. DO NOT COPY

TSH CF TEST AND SET HALF l
TWOC E4 TWOS COMPLEMENT l
WAIT FO WAIT l
x E7 EXCLUSIVE OR 1
XIL C7 EXCLUSIVE OR IMMEDIATE LOWER HALF l
XIU D7 EXCLUSIVE OR IMMEDIATE UPPER HALF l
INTERRUPT 8 +2 Storage
SYSTEM TIMER UPDATE 3

Notes:

l. Storage is storage access time as defined in "Performance"
on page 144.

2. Execution cycles for Load Multiple <LM> and Store Multiple
CSTM> can be computed by the following equations. R is the
number of registers to be loaded or stored, Tacc is the
storage access time, Tcyc is the storage cycle time, and
Tprocessor is the processor cycle time. Tacc and Tcyc are
expressed as an integer multiple of the processor cycle.
For example, a 250 nsec processor cycle with a storage
access time of 500 nsec and a storage cycle time of 900
nsec, Tacc equals 2 and Tcyc equals 4. See "Performance"
on page 144 for a definition of storage access time.

Load Multiple execution cycles for 2-way interleaved
storage where Tacc is any value, or fast non-interleaved
storage where Tacc <= Tprocessor is given by the following
equation. Tcyc is assumed to be less than or equal to two
times Tacc. If Tacc < Tprocessor, use l for Tacc in the
following equation.

Execution cycles = 3 + R + <Tacc * Kl>

Kl equals Integer[<R-1>12] if address translation and
storage protect are disabled. Kl equals Integer[<R+l>/2]
if address translation or storage protect is enabled.

Load Multiple execution cycles with slow non-interleaved
storage where Tacc > Tprocessor

Execution cycles = 3 + R + CTacc * K2)

K2 equals R-1 if address translation and storage protect
are disabled. K2 equals R+l if address translation or
storage protect is enabled.

Store Multiple execution cycles for non-interleaved storage
where Tcyc <= 2*Tprocessor, or 2-way interleaved storage
where Tcyc <= 4*Tprocessor:

Execution cycles = K3 + <2 * R>

Performance 157

IBM Confidential Restricted. DO NOT COPY

K3 equals 1 if address translation and storage protect are
disabled. K3 equals 2 if address translation or storage
protect is enabled.

Store Multiple execution cycles for non-interleaved storage
where Tcyc > 2*Tprocessor:

Execution cycles = K3 + <2 * R> If R <= 2

Execution cycles = K3 + C2 * R> + CTcyc * CR - 2>> If R > 2

Store Multiple execution cycles for 2-way interleaved
storage where Tcyc > 4*Tprocessor:

Execution cycles = K3 + C2 * R> If R <= 3

Execution cycles= K3 + C2 * R> + CCTcyc * CR~ 4>>
If R odd and R > 3

Execution cycles = K3 + (2 * R> + CCTcyc - 2> * CR - 3))
If R even and R > 3

Performance 158

IBM Confidential Restricted. DO NOT COPY

12.0 HARDWARE DESCRIPTION

This section describes the hardware interfaces to the ROMP chip,
and provides a brief overview of the various interfaces.
References are provided to previous sections which describe these
interfaces in detail. A detailed specification of the voltage
level and timing requir~ments for each interface is provided in
the ROMP Engineering Specification.

12.l ROMP CHIP INTERFACES

There are five groups of interface signals to the ROMP chip. They
are the ROMP Storage Channel <RSC), the system clocks, power, the
interrupt inputs, and ROMP controls. Each of these interface
signals <as shown in Figure 33>, is described in "ROMP Storage
Channel" on page 160 through "ROMP Controls" on page 168.

Hardware Description 159

IBM Confidential Restricted. DO NOT COPY

RSC
+DAL00-31,DALP0-3 <:36:>
+TAG0-4,TAGP <====6====>
+ADREXTO,l <======2====>
+ADREXT2-7,P <====7=====
+EXCEPTION >
-ACKA < >
-NAKA < >
-ACKD < >
-NAKD < >
tPATAGRTI >
+DATAGRTO/+SCAN03 <---
+ADDRGRTI >
-HOLD RSC >

CLOCKS
-TO >
-Tl >
-T2 >
-T3 >
-T3RF >
+AC >
+DC >
-W >
-R >

POWER
+S VOLTS >
GND >
+3.4 VOLTS >
+3.4 VREF >
+3.4 VREG <
-VSUB <

Figure 33. ROMP Module Signals

12.l.l ROMP Storage Channel

INTERRUPT INPUTS
<===7=== -REQI0-6/-SCANI0-4
< -TRAP

ROMP CONTROLS
> -IPL READY

< -IPL COMPLETE
> -FAIL/+SCANOO
> -INST CMPLT/+SCAN02
> -SYNC/+SCAHOl
> -STOP/+SCAN04

< -TIMER CLOCK
ROMP > -WAIT

> -CHIP IN PLACE
< +SCAN GATE

This section is intended to provide a brief overview of the RSC,
and is not intended to provide a detailed explanation of the RSC
operation. For a detailed description of the RSC, refer to "ROMP
Storage Channel" on page 92

The ROMP Storage Channel <RSC> is a high-bandwidth synchronous bus
designed to interconnect a ROMP , a storage unit, and one or more

Hardware Description 160

IBM Confidential Restricted. DO NOT COPY

RSC devices. It supports a 32-bit data transfer and a 32-bit
address <The basic RSC supports a 24-bit address, with an address
extension bus for 32-bit addressing>. Read operations on the RSC
consist of two uncoupled transfers, a request and a reply, which
allows multiple operations to overlap. This feature, combined
with several features in the ROMP data flow, allows high processor
performance with relatively slow storage through interleaving
techniques.

The main elements of the RSC are a 32-bit <plus 4 parity>
multiplexed Data/Address bus and a 5-bit Cplus l parity> Tag bus.
The Data/Address bus contains either 32-bits of data or a 24-bit
address plus a byte of control information. The Tag bus contains
codes which link replies to requests. An Address Extension bus
provides 8 high-order address bits which extend the address to 32
bits. In addition, there are several miscellaneous handshaking,
control, and clock lines.

The RSC runs synchronously with ROMP , with two RSC cycles per
ROMP cycle. The first RSC cycle is always used to transmit
addresses, and the second is used for data. There are three types
of RSC transfers, called packets. A read request is a single
address cycle, a write request is an address cycle plus the
following data cycle, and a reply is a single data cycle. These
requests are shown in Figure 34.

The RSC architecture allows any device to assume control of the
RSC and issue requests. In a typical system, ROMP would issue
requests to storage or other RSC devices, and RSC devices would
issue requests to storage and each other.

Control of the RSC is determined by two arbitration systems, one
for requests <Address Grant> and one for replies <Data Grant>.
Arbitration is for a period of two RSC cycles, with reply and
request arbitration being overlapped in time with each other, and
also with bus transfers. The arbitration systems are defined to
be daisy-chained, but it is possible to implement a radial
arbiter.

12.l.l.l RSC Address and Data Bus

The RSC provides a 32-bit multiplexed address and data bus with
byte parity. During an address cycle, +DALOO through +DAL07
provide control information, and +DAL08 through +DAL31 provide a
24-bit address. Parity bits +DALPO through +DALP3 provide odd
parity for the control byte <+DALOO through +DAL07) and the three
address bytes <+DAL08 through +DAL15, +DAL16 through +DAL23, and
+DAL24 through +DAL31). During a data cycle, +DALOO through
+DAL31 provide 32 bits of data. Parity bits +DALPO through +DALP3

Hardware Description 161

IBM Conf;dent;a1 Restricted. DO NOT COPY

Read Request

Wr;te Request

!<-------ROMP CYCLE-------->!

l<-RSC CYCLE->l<-RSC CYCLE->!

Address

Address Data

Reply Data

Figure 34. RSC Transfers

prov;de odd parity for for the four data bytes. See "Address/Data
Bus Definition" on page 97 for more information.

12.1.1.2 RSC Tag Bus

The RSC prov;des a 5-b;t tag bus wh;ch identifies the source of
requests for transfers on the RSC. This 5-b;t bus consists of
+TAGO through +TAG4. Odd par;ty is provided on the tag bus by
+TAGP. See "Tag Bus Def;nition" on page 98 for more information.

12.1.1.3 RSC Address Extension Bus

The address extens;on bus prov;des an addit;onal e;ght address
b;ts for ROMP systems implementing 32-bit addressing. The
h;gh-order address byte of the 32-bit address, is placed on the
address extens;on bus +ADREXTO through +ADREXT7 dur;ng an address
cycle. The three low-order address bytes are on the RSC address
and data bus C+DAL08 through +DAL31) during an address cycle. Odd
par;ty ;s prov;ded on the address extens;on bus by +ADREXTP.

Dur;ng a data cycle, +ADREXTO and +ADREXTl are used as control
inputs to ROMP Systems which ;mplement 32-bit addressing w;11
dr;ve +ADREXTO ;nact;ve dur;ng data cycles, ;ndicat;ng that 32-b;t
address;ng ;s be;ng used. These systems must also provide par;ty
check;ng of the address extens;on bus for each address cycle. If a
par;ty error ;s detected on the address extens;on bus for a g;ven
address cycle, +ADREXTl is dr;ven ;nactive during the following
data cycle to indicate a parity error. If no parity error is
detected, +ADREXTl is driven active during the data cycle to
;ndicate good par;ty. See "Address Extension Bus Def;nition" on
page 99 for more information.

Hardware Description 162

IBM Confidential Restricted. DO NOT COPY

12.1.1.4 Exception

The state of +EXCEPTION during a reply, indicates whether the
requested operation was valid. If +EXCEPTION is active during a
reply, the request which produced the reply was invalid. I~

+EXCEPTION is inactive during the reply, the requested operation
completed successfully. If +EXCEPTION is active during a reply to
ROMP , a program check interrupt will result. For more information
on +EXCEPTION see "Storage Protection and Address Translation" on
page 109.

12.1.1.5 RSC Acknowledge and Not Acknowledge

Four control lines are used to indicate the results of transfers
from one device to another on the RSC. Two lines <-ACKA and
-NAKA> are used to indicate the results of address cycle
transfers, and two other lines <-ACKD and -NAKD> are used to
indicate the results of data cycle transfers. The four
combinations of -ACKA/-ACKD and -NAKA/-NAKD are defined below:

ACKA/ NAKAI
ACKD NAKD Meaning
Inactive Inactive No Device Responded
Inactive Active Device Busy, Retry Transfer
Active Inactive Transfer Successful
Active Active Parity Error

See "Storage Channel I/O Pin Summary" on page 110 for more
information on the acknowledge <-ACKA/-ACKD> and not acknowledge
<-NAKA/-NAKD> handshake lines.

12.1.1.6 RSC Arbitration

Address Grant and Data Grant are groups of signals that are used
to arbitrate among the devices on the RSC for use of the bus.
Address Grant is used to arbitrate for an address cycle and the
next data cycle. Data Grant is used to arbitrate for a data cycle.
Address Grant and Data Grant are serially connected between
devices, starting with the highest priority device and ending with
the lowest priority device so that only one device at a time may
originate transfer on the bus. This means that the Address Grant
input <ADDRGRTI> of a given device in the priority chain is
connected to the Address Grant output <ADDRGRTO> of the next
higher priority device. Similarly, the Data Grant input
<DATAGRTI> of one device is connected to the Data Grant output
<DATAGRTO> of the next higher priority device. The lowest order
DATAGRTO output <other than ROMP > is sent to all devices in the

Hardware Description 163

IBM Confidential Restricted. DO NOT COPY

Address Grant chain, and serves to keep them from using a data
cycle needed for a reply. See "Bus Arbitration" on page 102 for
more information on RSC arbitration. Figure 35 shows a typical
connection of devices on the RSC.

Hardware Description 164

IBM Confidential Restricted. DO NOT COPY

36 Ad /D t - r a a I
6-Tag v v v
4-Acl</Nal< l J_ J_

1-Exception H L
.-----47 RSC Device

,-6-Cl ocl<

ADDRGRTO DATAGRTO

r
v v v DATAGRTI
J .l .1

H L
RSC Device

ADDRGRTO

r
v v
J_ J_

H L
1--- Storage

1---' Controller

-- -9-Adr. Ext- 1---

ADDRGRTI DATAGRTI

~v v J_ J

nstruction t--
Execution DAT AGRTO

1--r- Unit

T
v
J_

'--- Instruction
CLOCK L Pref etch

GENERATOR Unit

ROMP CHIP

Figure 35. Typical RSC Configuration

Hardware Description 165

IBM Confidential Restricted. DO NOT COPY

12.l.l.7 Hold RSC

The -HOLD RSC input to ROMP is used to inhibit the timeout
counter. The -HOLD RSC input is driven active by any device which
can interfere with ROMP access to the RSC for an extended period
of time. See "Hold Time-Out Counter" on page 108 for more
information.

12.1.2 Clocks

ROMP requires a four phase clock <-TO, -Tl, -T2, -T3>, and two
register file clocks <-W, -R>, all of which are generated external
to the processor chip. In addition, an ADDRESS CLOCK <+AC> and
DATA CLOCK <+DC> are provided to enable the RSC tri-state drivers.
ROMP , storage, and any other device bn the RSC must use these
clocks to control channel transfers. The timing relationships of
these clocks are shown in Figure 36 on page 167. A detailed timing
diagram for these clocks can be found in the ROMP Engineering
Specification <ROMP E-SPEC>. See "ROMP Engineering Specification"
on page 188 for a reference to the ROMP E-SPEC.

12.l.3 Power

Power requirements for ROMP include a +5 volt supply, a +3.4 volt
supply and a -3 volt supply (for substrate bias>. Only a +S volt
supply is required to the card, all other voltages are ~erived
from the +5 volt supply.

The +3.4 volt supply is derived from the +5 volt supply via an
on-chip voltage regulator. The regulator requires an on card PNP
darlington power transistor to supply the load current. The
regulator functionally consists of a reference generator, an error
amplifier and a driver. +3.4 VREF is connected to the collector of
the power transistor and is compared to the output of the
reference generator to obtain an error signal. This error signal
(after biasing in the driver section> provides the regulation for
the base of the power transistor and is represented in Figure 12.l
as +3.4 VREG. The emitter of the power transistor is connected to
the +S volt supply and the collector is used as the +3.4 volt
supply.

The substrate bias supply is also derived from the 5-volt supply
via an on-chip charge pump circuit, requiring no external
components. The substrate voltage <-VSUB> is made available
external to the chip.

Hardware Description 166

IBM Confidential Restricted. DO NOT COPY

I< ROMP CYCLE >I
-TO -i L
-Tl

-T2

-T3 _J I

+AC

+DC

-W

-R

Figure 36. Clock Timing

12.1.4 Interrupt Inputs

The interrupt request inputs <-REQI 0-6> to ROMP permit the
processor to change its status at the request of other system
components. Each of the seven inputs defines a unique priority
level, such that REQIO is the highest priority interrupt, and
REQI6 is the lowest priority interrupt. If more than one interrupt
line is active, the lower priority interrupt is ignored until the
higher priority interrupt has been serviced. For more information
on interrupts and interrupt handling, see "Interrupts" on page 17.

The -TRAP input to ROMP is used by an I/O device to indicate a
hardware error. Activating -TRAP causes a machine-check interrupt
as described in "Machine-Check Error Handling" on page 122 and
causes bit 22 of the the Machine Check Status <MCS) to be set to
one by ROMP.

The interrupt request inputs <-REQI 0-6> are level sensitive, and
should be driven active and held active by external devices until
the interrupt request is serviced. The -TRAP input is edge
sensitive, and should be driven active for one ROMP cycle.
Devices activating the -TRAP input should deactivate -TRAP as soon
as possible to allow reporting of subsequent machine check errors.

Hardware Description 167

IBM Confidential Restricted. DO NOT COPY

Note that activating the -TRAP input causes a machine check
interrupt, and that a subsequent transition of the -TRAP input to
an active state while on the machine check level will cause a
check stop.

12.1.5 ROMP Controls

0

This section describes the various control signals used by the
ROMP processor.

12.l.5.l IPL Ready

The -IPL READY output is driven active by ROMP after successful
completion of the internal microcode diagnostic. The -IPL READY
output can be sensed by an IPL device <disk, diskette, etc.) to
indicate that storage can be loaded by the device. -IPL READY is
brought inactive one cycle after -IPL COMPLETE is activated. For
more information see "Initial Program Load" on page 119.

12.1.5.2 IPL Complete

The -IPL COMPLETE input to ROMP is activated by the IPL device
after loading of storage is complete and causes an IAR load to
occur (see "IAR Load" on page 119) which then causes program
execution to begin. -IPL READY is is brought inactive one cycle
after -IPL COMPLETE is activated. For more information see
"Initial Program Load" on page 119.

Systems which do not use an IPL device <i.e. those which contain
IPL code in ROS> can tie -IPL COMPLETE active.

12.1.5.3 Fail

The -FAIL output indicates ROMP has entered the check stop state
due to either a failure detected during the internal microcode
diagnostic routine at IPL time, or due to a system error which was
detected after IPL. The -FAIL output from ROMP is initialized to
an active state by power-on reset. If an error is detected during
the internal microcode diagnostic routine, ROMP enters the check
stop state <see "Executing, Wait, Check Stop, and Stopped State"
on page 7) and the -FAIL pin remains active. If no errors are

Hardware Description 168

IBM Confidential Restricted. DO NOT COPY

detected during the microcode diagnostic, the -FAIL pin is driven
inactive. If ROMP enters the check stop state due to a system
error at any time after IPL, the -FAIL output will go active. The
-FAIL output can be sensed by an external device to detect
processor failure.

12.1.5.4 Instruction Complete

The -INST CMPLT output from ROMP indicates that an instruction has
completed execution. A transition from inactive to
when 0execution of an instruction is completed. The
this signal represents instruction execution rate
represents 1 MIP, 2.5Mhz represents 2.5 MIPs).

12.1.5.5 Sync

active occurs
frequency of

<i.e. lMhz

The -SYNC output from ROMP is used as a trigger source by a
support processor when using the sync function. See "Processor
Support Functions" on page 142 for more information on support
processor functions supported by ROMP

12.1.5.6 Stop

The -STOP output from ROMP is driven active when ROMP is in the
stopped state <see "Executing, Wait, Check Stop, and Stopped
State" on page 7>. The ROMP clock generator stops the ROMP clocks
when -STOP is active.

12.1.5.7 Timer Clock

The -TIMER CLOCK input to ROMP is connected to an external clock
and is used to decrement an internal 32-bit counter (see "System
Timer Facility" on page 14). Note that since microcode is used to
update the timer, the timer clock frequency should be much slower
than the CPU clock rate. A reasonable -TIMER CLOCK frequency is l
Khz.

Hardware Description 169

IBM Confidential Restricted. DO NOT COPY

12.1.5.8 Wait

The -WAIT output from ROMP is driven
wait state. ROMP enters the wait
instruction. ROMP may be removed from

active when ROMP is in the
state by executing a WAIT

the wait state only through
the occurrence of an interrupt, error, or power-on reset.

12.1.5.9 Chip In Place

The -CHIP IN PLACE input is used for second level testing to
disable all ROMP off chip drivers <OCDs>. When -CHIP IN PLACE is
active, all OCDs are placed in a high impedance state.

12.1.5.10 Scan Gate

The +SCAN GATE input is used for Level Sensitive Scan Design
<LSSD> testing. When +SCAN GATE is active, data is clocked into
the internal ROMP registers from the scan inputs. Data from the
internal scan strings is available at the scan outputs. When ROMP
is reset, the +SCAN GATE input is activated and used to scan a
known state into internal ROMP registers. Note that during reset,
+SCAN GATE must be held active long enough to guarantee that all
internal registers have been initialized. The minimum time that
+SCAN GATE must be active to reset ROMP is defined in "ROMP
Engineering Specification" on page 188.

12.1.6 Scan Inputs and Scan Outputs

The scan inputs are used to scan data into the the five LSSD scan
strings in ROMP These inputs are used for ROMP module testing
and for access of internal ROMP registers by a support processor.
The five scan string inputs are -SCANI0-4. The five scan outputs
<+SCAN00-4> are used to scan data out of the internal ROMP
registers. The five scan inputs <-SCANI0-4> and five scan outputs
<+SCAN00-4) are multiplexed with system signals. The selection
between normal system signals and scan inputs and scan outputs is
determined by the state of +SCAN GATE. When +SCAN GATE is
inactive, the multiplexed pins function as normal system signals.
When +SCAN GATE is active, these pins function as scan inputs and
scan outputs. A detailed definition of the scan strings is
contained in "ROMP Scan String Definition" on page 188.

Hardware Description 170

IBM Conf;dential Restricted. DO NOT COPY

12.2 ROMP CHIP PIN ASSIGNMENT

Figure 37 shows the ROMP module footprint. Pin assignment for the
ROMP chip ;s g;ven in "Processor Signal Descr;ption" on page 172.

A B c D E F G H J K L M

l

2

3

4

s

6

7

8

9

10

11

12

13

14

Figure 37. ROMP Module Footprint CBottom View>

Hardware Descript;on 171

N p

IBM Confidential Restricted. DO NOT COPY

12.3 PROCESSOR SIGNAL DESCRIPTION

Signal Name Direction Driver Type Pin Number

ROMP Storage Channel:
+DALOO B TS ClO
+DALOl B TS Al2
+DAL02 B TS D09
+DAL03 B TS 813
+DAL04 B TS C06
+DAL OS B TS AOS
+DAL06 B TS BOS
+DAL07 B TS cos
+DAL OS B TS 806
+DAL09 B TS A06
+DALlO B TS DOS
+DALll B TS Bll
+DAL12 B TS Fll
+DAL13 B TS Gl2
+DAL14 B TS Ll4
+DAL15 B TS Jl2
+DAL16 B TS AOS
+DAL17 B TS E06
+DALlS B TS EOS
+DAL19 B TS AlO
+DAL20 B TS Fl2
+DAL21 B TS Gll
+DAL22 B TS Gl3
+DAL23 B TS Jl4
+DAL24 B TS El3
+DAL25 B TS El4
+DAL26 B TS Gl4
+DAL27 B TS Jl3
+DAL2S B TS Dll
+DAL29 B TS Cl2
+DAL30 B TS FlO
+DAL31 B TS El2
+DALPO B TS 814
+DALPl B TS Cl4
+DALP2 B TS Dl3
+DALP3 B TS Dl4
+TAGO B TS L04
+TAGl B TS N02
+TAG2 B TS L03
+TAG3 B TS L02
+TAG4 B TS HOl
+TAGP B TS M04
-ACKA B TS FOl
-ACKD B TS G02
-NAKA B TS G03
-NAKD B TS P03
ADDRGRTI I Ml3
DATAGRTI I Jll

Hardware Description 172

IBM Confidential Restricted. DO NOT COPY

+DATAGRTO
-HOLD RSC
+EXCEPTION
+AC
+DC

0
I
I
I
I

AP

ROMP Storage Channel Address Extension:
+ADREXTO B TS
+ADREXTl
+ADREXT2
+ADREXT3
+ADREXT4
+ADREXTS
+ADREXT6
+ADREXT7
+ADREXTP

Clock Inputs:
-TO
-Tl
-T2
-T3
-T3RF
-W
-R

Control Signals:
-IPL READY
-IPL COMPLETE
-FAIL
-INST CMPL T
-SYNC
-STOP
-TIMER CLOCK
-WAIT

B
0
0
0

0
0
0
0

I
I
I
I
I
I
I

0
I
0
0
0
0
I
0

External Interrupt Inputs:
-REQIO I
-REQil
-REQI2
-REQI3
-REQI4
-REQIS
-REQI6
-TRAP

I
I
I
I
I
I
I

Scan Path and Controls:
<See note l>

-SCANIO I
-SCANil
-SCANI2
-SCANI3
-SCANI4
+SCANOO

Hardware Description

I
I
I
I
0

TS
TS
TS
TS
TS
TS
TS
TS

TS

TS
TS
TS
TS

TS

TS

F02
POS
J02
Ll2
Kl3

A04
B04
DOS
C04
A02
C03
D04
B02
D03

Nl4
PlO
p 09

LlO
Pl3
Pll
Nl2

D02
p 06
COl
F03
F04
DOl
P04
GOl

N03
M03
K04
M02
LOl
K02
KOl
Ml4

N03
M03
K04
M02
LOl
COl

173

~ IBM Confidential Restricted. DO NOT COPY

+SCANOl 0
+SCAN02 0
+SCAN03 0
+SCAN04 0
+SCAN GATE I
-CHIP IN PLACE I

Power Connections:
+3. 4VCKTl
+3.4VCKT2
+3.4VCKT3
+3.4VOCD1
+3.4VOCD2
+3.4VOCD3
+3.4VOCD4
+3.4VOCDS
+3.4VOCD6
+SVCKTl
+SVCKT2
+5VCKT3
+5VCKT4
+5VCKT5
+5VOCD1
+5VOCD2
GNDCKTl
GNDCKT2
GNDCKT3
GNDCKT4
GNDCKT5
GNDOCDl
GNDOCD2
GNDOCD3
GNDOCD4
GNDOCOS
GNDOCD6
-3VSUB
+3.4VREG
+3.4VREF

Notes: B = Bidirectional
I = Input
0 = Output
TS = Tristate
AP = Active Pullup

TS
TS
TS
TS

F04
F03
F02
DOl
Lll
POS

D06
L09
MOS
EOS
E07
F09
GlO
H04
L07
JlO
KOS
LOS
M06
J04
E09
FOS
K09
KlO
LOS
M08
J03
D07
E04
ElO
G04
HlO
L06
H03
K03
H02

l. Previously defined pins are used for scan-in and
scan-out while the processor is in scan mode.
These pins function only as scan-in and scan-out
while SCAN GATE is active. Use of these pins is
summarized below.

Hardware Description 174

IBM Confidential Restricted. DO NOT COPY

lirL S}:'.stem Function Scan Function
N03 -REQIO -SCANIO
M03 -REQil -SCANil
K04 -REQI2 -SCANI2
M02 -REQI3 -SCANI3
L 01 -REQI4 -SCANI4
COl -FAIL +SCANOO
F04 -SYNC +SCANOl
F03 -INST CMPLT +SCAN02
F02 +DATAGRTO +SCAN03
DOl -STOP +SCAN04

Hardware Description 175

IBM Confidential Restricted. DO HOT COPY

13.0 APPENDIX

13.l INSTRUCTION INDEX BY MNEMONIC

MNEMONIC OP-CODE

A El
ABS EO
AE Fl
AEI Dl
AI Cl
AIS 90
BALA 8A
BAL AX 8B
BAL I 8C
BAL IX 8D

BALR
BAL RX
BB
BBR
BBRX
BBX

BNB
BNBR
BNBRX

BNBX

c
CAL
CAL16
CAS
CAU
CA16
CI
CIS
CL
CLI
CLRBL
CLRBU
CLRSB
CLZ
D
DEC
EXTS
INC
IOR
IOW
JB

Appendix

EC
ED
8E
EE
EF
8F

88
E8
E9

89

B4
C8
C2

6
D8
F3
D4
94
B3
D3
99
98
95
F5
B6
93
Bl
91
CB
DB
08-0F

FORMAT

< R >
< R >
< R >
< D >
<D>
< R)
<BA)
<BA>
<BI)
<BI>

< R)

< R >
<BI>
< R >
< R)
<BI>

<BI>
< R >
< R >

<BI>

< R)

(D >

< D >
<X>
< D>
< R)
CD)
CR)

< R >
CD>
< R >
(R)

CR>
(R)
(R)

< R >
(R >
CR)

CD>
CD>

CJ I>

PAGE

57
59
57
58
58
58
42
42
42
43

43
44
45
46
46
45

47
48
48

47

60
37
37
38
38
38
61
61
62
62
69
69
84
75
65
39
63
39
88
89
44

INSTRUCTION

ADD
ABSOLUTE
ADD EXTENDED
ADD EXTENDED IMMEDIATE
ADD IMMEDIATE
ADD IMMEDIATE SHORT
BRANCH AND LINK ABSOLUTE
BRANCH AND LINK ABSOLUTE WITH EXECUTE
BRANCH AND LINK IMMEDIATE
BRANCH AND LINK IMMEDIATE WITH
EXECUTE
BRANCH AND LINK
BRANCH AND LINK WITH EXECUTE
BRANCH ON CONDITION BIT IMMEDIATE
BRANCH ON CONDITION BIT
BRANCH ON CONDITION BIT WITH EXECUTE
BRANCH ON CONDITION BIT IMMEDIATE
WITH EXECUTE
BRANCH ON NOT CONDITION BIT IMMEDIATE
BRANCH ON NOT CONDITION BIT
BRANCH ON NOT CONDITION BIT WITH
EXECUTE
BRANCH ON NOT CONDITION BIT IMMEDIATE
WITH EXECUTE
COMPARE
COMPUTE ADDRESS LOWER HALF
COMPUTE ADDRESS LOWER HALF 16-BIT
COMPUTE ADDRESS SHORT
COMPUTE ADDRESS UPPER HALF
COMPUTE ADDRESS 16-BIT
COMPARE IMMEDIATE
COMPARE IMMEDIATE SHORT
COMPARE LOGICAL
COMPARE LOGICAL IMMEDIATE
CLEAR BIT LOWER HALF
CLEAR BIT UPPER HALF
CLEAR SCR BIT
COUNT LEADING ZEROS
DIVIDE STEP
DECREMENT
EXTEND SIGN
INCREMENT
INPUT/OUTPUT READ
INPUT/OUTPUT WRITE
JUMP ON CONDITION BIT

176

JNB
L
LC
LCS
LH
LHA
LHAS
LHS
LIS
LM
LPS
LS
M
MC03
MC13
MC23
MC33
MC30
MC31
MC32
MFS
MFTB
MFTBIL

MFTBIU

MTS
MTTB
MTTBIL

MTTBIU

N
NILO

NILZ

NIUO

NIUZ

a
OIL
QIU

ONEC
s
SAR
SARI
SARI16

SE
SET BL
SETBU
SETSB

Appendix

IBM Confidential Restricted. DO NOT COPY

00-07
CD
CE
4
DA
CA
5
EB
A4

C9
DO
7
E6
F9
FA
FB
FC
FD
FE
FF
96
BC
9D

9C

B5
BF
9F

9E

E5
C6

C5

D6

D5

E3
C4
C3
F4
E2
BO
AO
Al

F2
9B

9A
97

<JI)
CD)
(D)

<DS)

<D>
<D>
<DS)

< R)

< R)
(D)

CD)
<DS>
< R)
CR)
(R)

(R)
CR)

CR)

CR)
CR)
CR)
CR)
CR)

(R >

CR)
CR)

CR >

CR>

CR)

CD>

CD)

CD>

(D)

CR)
CD)
CD)

< R >
CR >
CR)

CR >
CR)

CR)

< R >
< R >
(R)

46
33
31
31
32
32
31
32
39
33
85
33
67
51
51
52
52
52
53
53
84
53
54

54

83
54
55

55

71
71

71

72

72

72
73
73
59
63
76
77
77

64
70
70
85

JUMP ON NOT CONDITION BIT
LOAD
LOAD CHARACTER
LOAD CHARACTER SHORT
LOAD HALF
LOAD HALF ALGEBRAIC
LOAD HALF ALGEBRAIC SHORT
LOAD HALF SHORT
LOAD IMMEDIATE SHORT
LOAD MULTIPLE
LOAD PROGRAM STATUS
LOAD SHORT
MULTIPLY STEP
MOVE CHARACTER ZERO FROM THREE
MOVE CHARACTER ONE FROM THREE
MOVE CHARACTER TWO FROM THREE
MOVE CHARACTER THREE FROM THREE
MOVE CHARACTER THREE FROM ZERO
MOVE CHARACTER THREE FROM ONE
MOVE CHARACTER THREE FROM TWO
MOVE FROM SCR
MOVE FROM TEST BIT
MOVE FROM TEST BIT IMMEDIATE LOWER
HALF
MOVE FROM TEST BIT IMMEDIATE UPPER
HALF
MOVE TO SCR
MOVE TO TEST BIT
MOVE TO TEST BIT IMMEDIATE LOWER
HALF
MOVE TO TEST BIT IMMEDIATE UPPER
HALF
AND
AND IMMEDIATE LOWER HALF EXTENDED
ONES
AND IMMEDIATE LOWER HALF EXTENDED
ZEROES
AND IMMEDIATE UPPER HALF EXTENDED
ONES
AND IMMEDIATE UPPER HALF EXTENDED
ZEROES
OR
OR IMMEDIATE LOWER HALF
OR IMMEDIATE UPPER HALF
ONE'S COMPLEMENT
SUBTRACT
SHIFT ALGEBRAIC RIGHT
SHIFT ALGEBRAIC RIGHT IMMEDIATE
SHIFT ALGEBRAIC RIGHT IMMEDIATE
PLUS SIXTEEN
SUBTRACT EXTENDED
SET BIT LOWER HALF
SET BIT UPPER HALF
SET SCR BIT

177

IBM Confidential Restricted. DO NOT COPY

SF B2 CR> 63 SUBTRACT FROM
SFI D2 CD> 64 SUBTRACT FROM IMMEDIATE
SIS 92 CR> 65 SUBTRACT IMMEDIATE SHORT
SL BA (R > 80 SHIFT LEFT
SLI AA < R > 80 SHIFT LEFT IMMEDIATE
SLI16 AB CR> 81 SHIFT LEFT IMMEDIATE PLUS SIXTEEN
SLP BB CR> 81 SHIFT LEFT PAIRED
SLPI AE (R > 81 SHIFT LEFT PAIRED IMMEDIATE
SLPI16 AF CR) 82 SHIFT LEFT PAIRED IMMEDIATE PLUS

SIXTEEN
SR BS CR) 77 SHIFT RIGHT
SRI AS (R > 78 SHIFT RIGHT IMMEDIATE
SR Il6 A9 CR > 78 SHIFT RIGHT IMMEDIATE PLUS SIXTEEN
SRj> B9 (R) 79 SHIFT RIGHT PAIRED
SRPI AC CR) 79 SHIFT RIGHT PAIRED IMMEDIATE
SRPI16 AD (R) 79 SHIFT RIGHT PAIRED IMMEDIATE PLUS

SIXTEEN
ST DD CD> 36 STORE
STC DE CD> 35 STORE CHARACTER
STCS l CDS> 34 STORE CHARACTER SHORT
STH DC CD) 35 STORE HALF
STHS 2 CDS) 35 STORE HALF SHORT
STM D9 CD> 36 STORE MULTIPLE
STS 3 CDS> 36 STORE SHORT
SVC co CD> 87 SUPERVISOR CALL
TGTE BD (R) TGTE TRAP IF REGISTER GREATER THAN OR

EQUAL
TI cc CD) 49 TRAP ON CONDITION IMMEDIATE
TL T BE CR> 50 TRAP IF REGISTER LESS THAN
TSH CF CD) 34 TEST AND SET HALF
TWOC E4 CR> 60 TWOS COMPLEMENT
WAIT FO CR> 86 WAIT
x E7 CR > 73 EXCLUSIVE OR
XIL C7 CD> 74 EXCLUSIVE OR IMMEDIATE LOWER HALF
XIU D7 (D) 74 EXCLUSIVE OR IMMEDIATE UPPER HALF

Appendix 178

IBM Confidential Restricted. DO NOT COPY

13.2 INSTRUCTION INDEX BY OP CODE

OP-CODE

00-07
08-0F
l
2
3
4
5
6
7
80-87
88

89

8A
8B

8C
8D

8E

8F

90
91
92
93
94
95
96
97
98
99
9A

9B

9C

9D

9E

9F

AO
Al

A2,A3
A4

A5-A7

Appendix

MNEMONIC FORMAT

JNB <JI>
JB <JI)
STCS CDS>
STHS CDS>
STS CDS>
LCS CDS>
LHAS CDS>
CAS CX>
LS CDS)
RESERVED
BNB

BNBX

BALA
BA LAX

BALI
BAL IX

BB
BBX

AIS
INC
SIS
DEC
CIS
CLRSB
MFS
SETSB
CLRBU
CLRBL
SET BU
SETBL
MFTBIU

MFTBIL

MTTBIU

MTTBIL

<BI>

<BI)

<BA>
<BA>

<BI>
<BI>

<BI>
<BI>

< R >
(R)

CR>
< R >
CR>
CR>
< R >
CR)
< R >
< R >
CR>
< R >
< R >

CR>

< R)

< R)

SARI <R>
SARI16 <R>

RESERVED
LIS <R>
RESERVED

46
44
34
35
36
31
31
38
33

47

47

42
42

42
43

45
45

58
39
65
39
61
84
84
85
69
69
70
70
53

54

55

55

77
77

39

INSTRUCTION

JUMP ON NOT CONDITION BIT
JUMP ON CONDITION BIT
STORE CHARACTER SHORT
STORE HALF SHORT
STORE SHORT
LOAD CHARACTER SHORT
LOAD HALF ALGEBRAIC SHORT
COMPUTE ADDRESS SHORT
LOAD SHORT

BRANCH ON NOT CONDITION BIT
IMMEDIATE
BRANCH ON NOT CONDITION BIT
IMMEDIATE WITH EXECUTE
BRANCH AND LINK ABSOLUTE
BRANCH AND LINK ABSOLUTE
WITH EXECUTE
BRANCH AND LINK IMMEDIATE
BRANCH AND LINK IMMEDIATE
WITH EXECUTE
BRANCH ON CONDITION BIT IMMEDIATE
BRANCH ON CONDITION BIT IMMEDIATE
WITH EXECUTE
ADD IMMEDIATE SHORT
INCREMENT
SUBTRACT IMMEDIATE SHORT
DECREMENT
COMPARE IMMEDIATE SHORT
CLEAR SCR BIT
MOVE FROM SCR
SET SCR BIT
CLEAR BIT UPPER HALF
CLEAR BIT LOWER HALF
SET BIT UPPER HALF
SET BIT LOWER HALF
MOVE FROM TEST BIT IMMEDIATE
UPPER HALF
MOVE FROM TEST BIT IMMEDIATE
LOWER HALF
MOVE TO TEST BIT IMMEDIATE
UPPER HALF
MOVE TO TEST BIT IMMEDIATE
LOWER HALF
SHIFT ALGEBRAIC RIGHT IMMEDIATE
SHIFT ALGEBRAIC RIGHT IMMEDIATE
PLUS SIXTEEN

LOAD IMMEDIATE SHORT

179

AS
A9

AA
AB
AC
AD

AE
AF

BO
Bl
B2

B3

B4

BS
B6
B7
BS
B9
BA
BB
BC
BD
BE
BF
co
Cl
C2
C3
C4
cs

C6

C7
cs
C9
CA
CB
cc
CD
CE
CF
DO
Dl
D2
D3
D4
DS

D6

D7

Appendix

IBM Confidential Restricted. DO NOT COPY

SRI
SRI16
SLI
SLI16
SRPI
SRPI16

SLPI
SLP Il6

(R)

< R)

< R)
CR)
CR>
< R >

< R >
(R)

SAR (R >
EXTS <R>
SF < R >
CL < R >
C <R>
MTS < R >
D <R>
RESERVED
SR < R >
SRP <R>
SL CR>
SLP CR>
MFTB CR>
TGTE CR>
TLT CR>
MTTB CR>
SVC CD>
AI <D>
CAL16 <D>
OIU < D>
OIL <D>
NILZ <D>

NILO <D>

XIL CD>
CAL <D>
LM <D>
LHA <D>
I OR < D>
TI CD)
L CD)
LC CD>
TSH CD>
LPS <D>
AEI <D>
SFI <D>
CLI CD)
CI CD>
NIUZ CD>

NIUO CD)

XIU CD)

78
7S
80
81
79
79

81
82

76
63
63
62
60
83
6S

77
79
80
81
S3
50
50
54
87
58
37
73

73
71

71

74
37
33
32
88
49
33

31
34

8S
58
64
62
61
72

72

74

SHIFT RIGHT IMMEDIATE
SHIFT RIGHT IMMEDIATE PLUS SIXTEEN
SHIFT LEFT IMMEDIATE
SHIFT LEFT IMMEDIATE PLUS SIXTEEN
SHIFT RIGHT PAIRED IMMEDIATE
SHIFT RIGHT PAIRED IMMEDIATE
PLUS SIXTEEN
SHIFT LEFT PAIRED IMMEDIATE
SHIFT LEFT PAIRED IMMEDIATE
PLUS SIXTEEN
SHIFT ALGEBRAIC RIGHT
EXTEND SIGN
SUBTRACT FROM
COMPARE LOGICAL
COMPARE
MOVE TO SCR
DIVIDE STEP

SHIFT RIGHT
SHIFT RIGHT PAIRED
SHIFT LEFT
SHIFT LEFT PAIRED
MOVE FROM TEST BIT
TRAP IF GREATER THAN OR EQUAL
TRAP IF LESS THAN
MOVE TO TEST BIT
SUPERVISOR CALL
ADD IMMEDIATE
COMPUTE ADDRESS LOWER HALF 16-BIT
OR IMMEDIATE UPPER HALF
OR IMMEDIATE LOWER HALF
AND IMMEDIATE LOWER HALF EXTENDED
ZEROES
AND IMMEDIATE LOWER HALF EXTENDED
ONES
EXCLUSIVE OR IMMEDIATE LOWER HALF
COMPUTE ADDRESS LOWER HALF
LOAD MULTIPLE
LOAD HALF ALGEBRAIC
INPUT/OUTPUT READ
TRAP ON CONDITION IMMEDIATE
LOAD
LOAD CHARACTER
TEST AND SET HALF
LOAD PROGRAM STATUS
ADD EXTENDED IMMEDIATE
SUBTRACT FROM IMMEDIATE
COMPARE LOGICAL IMMEDIATE
COMPARE IMMEDIATE
AND IMMEDIATE UPPER HALF EXTENDED
ZEROES
AND IMMEDIATE UPPER HALF EXTENDED
ONES
EXCLUSIVE OR IMMEDIATE UPPER HALF

180

D8
D9

DA
DB
DC
DD

DE
DF
EO
El
E2
E3
E4
E5

E6
E7
E8
E9

EA
EB
EC
ED
EE

EF
FO
Fl
F2
F3
F4
F5
F6-F8
F9
FA
FB
FC
FD
FE
FF

Appendix

IBM Coniidential Restricted. DO NOT COPY

CAU
STM
LH
IOW
STH

ST
STC
RESERVED
ABS
A
s
0
TWOC
N
M

x
BNBR
BNBRX

RESERVED
LHS
BALR
BAL RX
BBR
BBRX
WAIT
AE
SE
CA16
ONEC
CLZ
RESERVED
MC03
MC13
MC23
MC33
MC30
MC31
MC32

CD>
CD>
(D)

CD>
CD>
CD>
< D >

< R >
CR >
CR)
CR>
< R >
< R >
< R >
(R)

CR)
CR)

CR>
CR)

CR)
< R >
CR)
CR)
CR)

CR>
CR)
CR>

< R >

CR)
< R)

< R >
< R)

CR>
CR>
< R)

38
36
32
89
35
36
35

59
57
63
72
60
71
67
73
48
48

32
43
44

46
46
86
57
64
38
59
75

51
51
52
52
52
53
53

COMPUTE ADDRESS UPPER HALF
STORE MULTIPLE
LOAD HALF
INPUT/OUTPUT WRITE
STORE HALF
STORE
STORE CHARACTER

ABSOLUTE
ADD
SUBTRACT
OR
TWOS COMPLEMENT
AND
MULTIPLY STEP
EXCLUSIVE OR
BRANCH ON NOT CONDITION BIT
BRANCH ON NOT CONDITION BIT WITH
EXECUTE

LOAD HALF SHORT
BRANCH AND LINK
BRANCH AND LINK WITH EXECUTE
BRANCH ON CONDITION BIT
BRANCH ON CONDITION BIT WITH EXECUTE
WAIT
ADD EXTENDED
SUBTRACT EXTENDED
COMPUTE ADDRESS 16-BIT
ONES COMPLEMENT
COUNT LEADING ZEROS

MOVE CHARACTER ZERO FROM THREE
MOVE CHARACTER ONE FROM THREE
MOVE CHARACTER TWO FROM THREE
MOVE CHARACTER THREE FROM THREE
MOVE CHARACTER THREE FROM ZERO
MOVE CHARACTER THREE FROM ONE
MOVE CHARACTER THREE FROM TWO

181

IBM Confidential Restricted. DO NOT COPY

13.3 PRIVILEGED INSTRUCTIONS

MNEMONIC OP-CODE FORMAT PAGE INSTRUCTION

CLRSB 95 (R > 84 CLEAR SCR BIT
LPS 00 CD> 85 LOAD PROGRAM STATUS
MFS 96 CR > 84 MOVE FROM SCR
MTS BS CR> 83 MOVE TO SCR
SETSB 97 CR> 85 SET SCR BIT
WAIT FO <R) 86 WAIT

Notes: 1. Clear SCR Bit CCLRSB>, Move From SCR CMFS>, Move
To SCR <MTS), and Set SCR Bit <SETSB> are
privileged if the referenced SCR is the Counter
Source CSCR 6), Counter CSCR7), Timer Status
CSCRS>, Machine Check Status CSCR 11), Program
Check Status CSCR 11), Interrupt Request Buffer
CSCR 12), Instruction Address Register <SCR 13), or
the Interrupt Control Status CSCR 14). Clear SCR
Bit CCLRSB>, Move From SCR CMFS>, Move To SCR
CMTS>, and Set SCR Bit CSETSB> are non-privileged
if the referenced SCR is the Multiplier Quotient
CSCR 10), or the Condition Status CSCR 15).

Appendix 182

NOTE

1

1
1
1

o IBM Confidential Restricted. DO NOT COPY

13.4 ILLEGAL BRANCH WITH EXECUTE SUBJECT INSTRUCTIONS

MNEMONIC OP-CODE

BALA 8A
BA LAX 8B
BALI 8C
BALIX 8D

BALR
BAL RX
BB
BBR
BBRX
BBX

BNB
BNBR
BNBRX

BNBX

JB
JNB
LPS
SVC
TGTE

TI
TL T
WAIT

Appendix

EC
ED
8E
EE
EF
8F

88
E8
E9

89

08-0F
00-07
DO
co
BD

cc
BE
FO

FORMAT

<BA>
<BA>
<BI>
<BI>

CR>
< R >
<BI>
< R >
<R>
<BI>

<BI>
< R >
CR >

CBI>

<JI)
<JI>
CD>
< D >
CR>

< D)

< R)

< R >

PAGE

42
42
42
43

43
44
45
46
46
45

47
48
48

47

44
46
85
87
50

49
50
86

INSTRUCTION

BRANCH AND LINK ABSOLUTE
BRANCH AND LINK ABSOLUTE WITH EXECUTE
BRANCH AND LINK IMMEDIATE
BRANCH AND LINK IMMEDIATE WITH
EXECUTE
BRANCH AND LINK
BRANCH AND LINK WITH EXECUTE
BRANCH ON CONDITION BIT IMMEDIATE
BRANCH ON CONDITION BIT
BRANCH ON CONDITION BIT WITH EXECUTE
BRANCH ON CONDITION BIT IMMEDIATE
WITH EXECUTE
BRANCH ON NOT CONDITION BIT IMMEDIATE
BRANCH ON NOT CONDITION BIT
BRANCH ON NOT CONDITION BIT WITH
EXECUTE
BRANCH ON NOT CONDITION BIT IMMEDIATE
WITH EXECUTE
JUMP ON CONDITION BIT
JUMP ON NOT CONDITION BIT
LOAD PROGRAM STATUS
SUPERVISOR CALL
TRAP IF REGISTER GREATER THAN OR
EQUAL
TRAP ON CONDITION IMMEDIATE
TRAP IF REGISTER LESS THAN
WAIT

183

IBM Confidential Restricted. DO NOT COPY

13.5 ROMP SYSTEM SUPPORT SOFTWARE

This section gives a brief description of the system support
software for ROMP and the documentation available. Documentation
described in this section can be obtained from Susan Strachan,
Dept. 540, Bldg. 045, Austin, TX.

13.5.l PL.8 Compiler

The PL.8 compiler is an optimizing compiler for a PL/I variant--a
full high-level language designed to be suitable for both general
applications and systems programming. Many inherently inefficient
constructions of the PL/I language have been eliminated or
modified so that the language can be compiled to efficient object
code. The compiler incorporates state-of-the-art graph-flow
analysis techniques which have not heretofore been implemented in
a compiler. The compiler is very effective--it generates code
which is only about 10% larger than well-tuned assembly code for
sizeable modules. The compiler is at release-level reliability.

Documentation:

Online SCRIPT file PL8REF -- PL.8 Language Reference Manual
Online SCRIPT f i 1 e PL8GUIDE -- PL. 8 CMS User's Guide
Online SCRIPT file PL8LANG -- PL.8 Language Specifications
Online SCRIPT file PL8BNF -- PL.8 BNF Syntax Diagrams

13.5.2 PASCAL Compiler

The PASCAL compiler offers an alternative high-level language for
the application programmer. The language's flexible data
structures and well structured program control make PASCAL a very
powerful tool suitable for most applications. The language was
implemented according to PASCAL: USER MANUAL AND REPORT by Niklaus
Wirth and Kathleen Jensen <Springer-Verlag: New York, 1974) with
extensions to allow separate module compilation and linkage
similar to that of PASCALVS.

The PASCAL compiler is the existing PL.8 compiler with a separate
front end, thus it also produces efficient object code. This also
allows free intermixing of PL.8 and PASCAL programs with shared
support routines.

Documentation:

Online SCRIPT file PASCALS -- Pascal Language Reference Manual

Appendix 184

IBM Confidential Restricted. DO NOT COPY

13.5.3 C Compiler

The C compiler is in development and should be available 2QS4.
The language is based on the C language described in "The C
Programming Language" by Brian W. Kernighan and Dennis M. Ritchie.

13.5.4 ROMP Development System

Most of the ROMP software tools can run on ROMP/ROSETTA based
hardware. The CPR operating system provides a multi-tasking,
multiple virtual address space, programming environment with a
VM/370 CMS-like file system and application environment. Support
tools include the PL.S compiler, the binder, and symbolic
debugger. An editor, an EXEC interpreter, and file system
utilities <erase, copy, rename, etc.) are also provided.

Documentation:

Online SCRIPT file RDSGUIDE -- ROMP Development System Users Guide

13.5.5 PL.S Source Level Debugger

The source level debugger allows a programmer to debug PL.S code
at the source level. The debugger supports stop on a PL.S
statement, statement single step, variable inspection, and
altering of variables. The debugger runs on CMS and CPR.

Documentation:

Online SCRIPT file PL8DEBUG
Documentation

PL.S Source Level Debugger

13.5.6 PL.S Machine-Level Program Analysis Tool

This program works in conjunction with the PL.S Source Level
Debugger and provides the following functions:

• Supplies low level machine dependent debugging mechanisms to
the Source Level Debugger.

• Provides a consistent command environment for the end user
debugging at a lower level.

Documentation:

Appendix 185

IBM Confidential Restricted. DO NOT COPY

Online SCRIPT file DEBUGM -- PL.S Machine Level Program Analysis
Tool

13.5.7 PL.8 Source And Design Code Formatter

This is a collection of Rrograms to support system design and
software development. The following functions are currently
supported or under development:

1. Source code formatting.

2. Design code specification.

3. Design code extractor.

4. A STAR CHART generator.

5. XEDIT macros that provide templates for PL.S language
constructs.

Online documentation will be available.

13.5.8 PL.8 Macro Pre-processor

The PL.8 Macro Pre-processor <PL.SMP> provides the compile-time
macro capabilities of the PL/S III compiler macro pre-processor.
One extension made allows INCLUDE statements within macro
definitions. The macro pre-processor also supports a format
option that re-formats a PL.8 file to a PL/S III form.

Documentation:

Online SCRIPT file PLSMP -- Differences between PL.8MP and PL/S
I II
Online SCRIPT file PLSMPLR -- PL.8MP Language Reference Manual

13.5.9 ROMP Assembler

The ROMP Assembler is a full macro assembler for ROMP based on the
HSK Assembler. It is a cross-assembler which runs on VM/370.

Documentation:

Printed Manual - ROMP Assembler Language Manual

Appendix 186

IBM Confidential Restricted. DO NOT COPY

13.5.10 ROMP Simulator

The ROMP Simulator is a high performance simulator that runs on
VM/370.

Documentation:

Online SCRIPT file RSIMINT -- Method of simulator operation.
CONSOLE RSIM --Self Documented EXEC that provides the user
interface.

0
13.5.11 Program Binder For ROMP

The binder takes program text files as produced by the assemblers
and compilers and binds them together into one or more programs.
These output programs can then be loaded by a suitable relocatable
loader. The Binder insures that parameters and arguments of
external procedures have been declared the same.

Documentation:

Online SCRIPT file TOCBIND -- Description of the ROMP binder.

13.5.12 ROMP Hardware Development System

The Hardware Development System runs on the Series l or IBM PC and
provides an interface to ROMP via the LSSD scan strings. This
software provides the functions described in "Support Processor
Facilities" on page 142. In addition to the software for the
Series l or IBM PC, interface logic is provided for connection to
the ROMP scan strings. Information on the Hardware Development
System can be obtained from: Tom Whiteside, Dept. F61, Bldg. 045,
Austin, TX.

13.5.13 Program Development Library <PDL) Interface

Interface EXECs which integrate the PL.S compiler, ROMP assembler,
and binder into the PDL library system are described in the online
file: PDLPLS SCRIPT.

Appendix 187

IBM Confidential Restricted. DO NOT COPY

13.5.14 RTIMER Simulator

The RTIMER Simulator provides performance analysis of specific
ROMP system configurations, using specific instruction sequences.
Input to the RTIMER Simulator consists of a definition of the
system configuration <ROMP cycle time, storage organization,
storage speed, etc.) and a user supplied trace tape of
instructions to be executed. The trace tape is produced by the
ROMP Simulator. Output from the RTIMER Simulator lists the
overall performance and detailed analysis of operations during
each simulation cycle.

13.6 ROMP SYSTEM HARDWARE REFERENCES

This section gives a brief description of the various hardware
support documents available describing the ROMP hardware
characteristics and interfaces.

13.6.l ROMP Engineering Specification

The electrical and environmental characteristics are described in
the ROMP ENGINEERING SPECIFICATION <ROMP E-SPEC>. The ROMP E-SPEC
can be obtained from: Pete Mc Cormick, Dept. N55 Bldg. 967-2,
Burlington, VT.

13.6.2 ROMP Scan String Definition

The ROMP scan strings
Document, which can be
Bldg 045, Austin, TX.

are defined in the ROMP
obtained from: Mike Johnson,

13.6.3 Support Processor Interface

Scan String
Dept. F60,

The Support Processor Interface document defines a suggested
standard interface between ROMP and a support processor, and can
be obtained from: Tom Whiteside, Dept. F60, Bldg 045, Austin, TX.

Appendix 188

IBM Confidential Restricted. DO NOT COPY

13.6.4 ROMP AC Hardware Characterization Plan

This document describes the test strategy and detailed test plan
leading to ROMP qualification <T2). In addition, this document
contains various sections which describe the internal operation of
ROMP. Copies of the ROMP AC Hardware Characterization Plan can be
obtained from: Kanti Shah, Dept. F60, Bldg 045, Austin, TX.

Appendix 189

Appendix

IBM Confidential Restricted. DO NOT COPY

End Of
Document

190

	00001
	00002
	00003
	00004
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190

