C

Program Product

Licensed Material — Property of IBM
LY20-8032-3
File No. $370-22

VS APL Program Logic

Program Number 5748-AP1

Release 4

Licensed Métérial——Property of IBM

This - publication was produced using the
IBM Document Composition Facility
(program number 5768-XX9)
and the master was printed on the
IBM 3800 Printing Subsystem.

Fourth Edition (August 1981)
This is @8 major revision of, and makes obsolete, LY20-8032-2.

This edition applies to Release 4 of VS APL, Program Product
5748-APl, and to any subsequent releases until otherwise
indicated in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of
Amendments" following the preface. Because the technical changes
in this edition are extensive and difficult to localize, they
are not marked by vertical bars in the left margin.

Changes are periodically made to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable
and current.

It is possible that this material may contain raference to, or.
information about, IBM products (machines and programs),
programming, or services that are not announced in your country.
Such references or information must not be construed to mean
that IBM intends to announce such IBM products, programming, or
services in your country.

Publications are not stocked at the address given below:;
requests for IBM publications should be made to vour IBM
Eepresentative or to the IBM branch office serving your

ocality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.0. Box 50020, Programming
Publishing, San Jose, California, U.5.A. 95150. IBM may use or
distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

© Copvright International Business Machines Corporation 1976,
1981

PREFACE

This book contains information for programming support .
representatives and system programmers who maintain VS APL. When
used with VS APL source-program listings, it enables them to
undirstand the internal operation of VS APL and to maintain the
system.

The book is divided into six sections:

. "Section 1. Introduction,” is an overview of the VS APL
program product.

° "Section 2. Method of Operation," contains Hierarchy Input
Process Output (HIPO) diagrams that describe the functions
performed.

° "Section 3. Program Organization,”" lists the entry points to
routines in alphabetic order. It contains, for each entry
point, a description of the function of its routine, the
name of the module in which it is contained, the names of
entry points from which it is called, and the names of entry
points that it calls.

° "Section 4. Directory,” lists the entry points in alphabetic
order with the names of their containing modules and the
number of the HIPO diagram referring to that module, if any.
It also contains the same information in alphabetic order by
module name.

. "Section 5. Data Areas," describes the VS APL workspace and
the functions performed by the VS APL interpreter, and shous
the formats of control blocks.

° "Section 6. Diagnostic Aids," describes serviceability aids
and other lnformatlon helpful in reading the program
listings, and in detectlng, tracing, and documenting
problems in VS APL

PREREQUISITE KNOWLEDGE

The prerequisite knowledge for using this publication is a basic
understanding of VS APL concepts and other related information
found in the VS APL General Information, VS APL for CICS/VS:
Jerminal User's Guide, VS APL for CIS: Jerminal User's Guide, Vs
APL for 1S0: Termi er's Guide, and VS _APL for VSPC:

Terminal User's Guide.

PREREQUISITE PUBLICATIONS
° VS APL General Information, GH20-9064
e VS APL- for CICS/VS: Terminal User's Guide, SH20-9167
° VS APL for CMS: Terminal User's GQide; SH20-9067

° VS_APL_ for TS0: Terminal User's Guide, SH20-9180
e VS APL for VSPC: Terminal User's Guide, SH20-9066
e VS TSID Guide and Reference, SH20-9107

Licensed Materlal——Property of IBM
‘Preface- 1{ii

RELATED PUBLICATIONS

VM/370: Planning and System Generation Guide, GC20-1801

05/VS2 System Programming Library: System Generation
Reference, GC26-3792

Customer Information Control Systems/Virtual Storaﬁe

(CICS/VS) Version 1, Relea 5 Genera formation,
GC33-0066

Customer Information Control System/Virtual Storage

(CICS/VS) Version 1, Release 5 Application Programmer's
Reference Manual, GC33-0077

Customer Information Control stem/Virtual Storage
(CICS/YS) Version 1, Release 5 Problem Determination Guide,
SC33-0089

VS _APL for CICS/VS: Installation Reference Material,
SH20-9181

VS APL for CICS/VS: iting Auxiliary Processors, SH20-9168
VS APl for CMS: Installation Reference Material, SH20-9132
IBM Virtual Machine/System Product logic and Problem

Determination Guide

Vol.l: Control Program (CP), LY20-0892
Vol.2: Conversational Monitor System (CMS)}, LY20-0893

VS APL for CMS and TSO: Writing Auxiliesry Processors,
SH20-9068

VS APL for TSO0: Installation Reference Material, SH20-91383
0S/VS2_TSO Terminal User's Guide, GC28-0645

VS _Personal Computing (VSPC) for 0S/VS _and DOS/VS: General
Information, GH20-9070

0S/VS1 and 0S/VS2 MVS VS Personal Computing (VSPC) Logic,
LY20-8072

DOS/VS VS Personal Computing (VSPC) lLogic, LY20-8039

VS APl for VSPC: Installation Reference Material, SH20-918¢
VS Personal Computing (VSPC): Writing Processors, SH20-9074

IBM Virtual Machine Facility/370: CP Command Reference for
General Users, GC20-1820

A Guide to Wrjting a Terminal Monitor and Program Command
Processor, GC28-0648 ’

ossv em Programmin ibrary: Supervisor, 6C28-0628

IBM System/370 Principles of Operation, GA22-7000

Licensed Material-—Property of IBM
VS APL Program Logic

iv

J

SUMMARY OF AMENDMENTS

RELEASE &, AUGUST 1981

VS APL SESSION

MANAGER

Neuw Programming Feature

The VS APL Session Manager component of the program product is
now available under CICS/VS.

AUXILIARY PROCESSORS

Kew Programmihg Feature

VSAM Auxiliary

MAINTENANCE

New auxiliary'processors have been added to VS APL under CICS/VS
and VSPC as follows:

AP 120: VS APL Session Manager Command, for CICS/VS
AP 126: GDDM, for CICS/VS and VSPC

Processor Enhancements

The functions of AP 123 are now available under CICS/VS and
VSPC.

As reflected in the Table of Contents, the Data Areas section
has been restructured for ease of use as follows: Interpreter
Data Areas, Executor Data Areas and Control Block Formats. Under
Control Block Formats, data areas (and the system components
which employ them) are ordered alphabetically.

RELEASE 4, MARCH 1981

VS APL UNDER TSO

NeW Programming Feature

VS APL SESSION

VS APL under TS50 (Time Sharing Option) is now included in the
program product. Information about VS APL under TS0 has been
added to this book.

MANAGER

New Programming Feature

The VS APL session manager is a new component of the program
product, and is available for users under CMS and TS0O. It
provides a set of commands by which the user may control the VS
APL session, produces a record of the session (called a "session
log"), and enables the user to scroll through the session log. A
Method of Operation diagram has been added for it.

Licensed Material——Proberty of IBM
Summary of Amendments v

AUXILIARY PROCESSORS

New Programming Feature

VSAM Auxiliary

New auxiliary processors have been added to APL under CMS and
T50. The lists of auxiliary processors and the Method of

Operation diagrams have been amended to reflect these additions.

The new processors are:

AP 120: VS APL Session Manager Command, for CMS and TS0
AP 121: APL Data File, for CMS
AP 126: GDDM, for CMS and TSO

Processor Enhancemants

AP 123 will now support the following functions under CMS and
150:

Record Search by generic key

Record search by key greater than or equal to
Access to relative record data sets

Direct access to entry-sequenced data sets
Direct query for record identification
Alternate indexing with duplicate key support
Reusable files

Documentation Change

WORKSPACES

The names of several auxiliary processors have been changed to
reflect more clearly their functions as well as to provide
consistency among subsystems. The following table gives the old

and new names of each renamed auxiliary processor, by subsystem.

Subsystem 0ld Name New Name

CICS/VS APL Format APL Data File
Command CICS/VS Command
Main Storage Access Storage Display

CMS CMS Stack Input Alternate Input
CMS FILEDEF I/0 QS AM
CMS VSAM VSAM

VSPC APL Format APL Data File
EBCDIC Format EBCDIC Data File
Workspace Access Storage Display

References to "distributed workspaces" have been changed to
"workspaces," to avoid any confusion with the concept of
distributed systems.

specification Change

Several new workspaces have been added to VS APL, and some
previously provided workspaces have been removed. The list of
workspaces provided has been revised accordingly.

Licensed Material—Property of IBM
vi VS APL Program Logic

J

C

RELEAS AUGUST 1978

VS APL SUPPORT

FOR CICS

Under Release 3 of VS APL, support is now provided for the
CICS/D0OS/VS and CICS/0S/VS (VS1 and MVS) environments (in
addition to the CMS and VSPC environments) as follows:

° CICS executor provides environment-dependent services for
interpreter/translator.

. CICS shared storage manager (an integral component of CICS)
manages communication between interpreter/translator and
auxiliary processors.

U Extension of current auxiliary processor (command auxiliary
processor, VSAM/ISAM file auxiliary processor, APL format
auxiliary processor, and the full screen manager auxiliary
processor) support to CICS.

o Addition of four new auxiliary processors (main storage
access auxiliary processor, DL/I access auxiliary processor,
transient data auxiliary processor, and the alternate input
auxiliary processor) for the CICS environment.

° Addition of a new CICS APL library service program
facilitates conversion of libraries and functions.

° Addition of three new distributed workspaces (DL/1 support
workspace, file support worksrace, and an administrative
workspace) for the CICS environment.

RELEASE 2, SEPTEMBER 1976

VSAM SUPPORT UNDER CHS

DOS/VS SUPPORT

VS APL ASSIST

MAINTENANCE

Under Release 2 of VS APL, support is now provided for VSAM when
using CMS auxiliary processors.

FOR VSPC

New modules have been acdded to allow VSPC to run under DOS/VS.
These new modules are similar in function to those for 0S/VS
VSPC. Modules in 0S/VS are prefixed by the letters APLO; the new
D0OS/VS modules are prefixed by the letters APLD. Thus, unless
explicitly indicated otherwise, modules indicated in this
publication as beginning with APLO should be interpreted as if
they began with APLD when working with VSPC under DOS/VS.

The "Diagnostic Aids" section explains how to handle possible
problems with the VS APL Assist.

A number of technical errors have been corrected in this
edition. The "Program Organization” and the "Data Areas"
sections have been updated considerably.

Licensed Material—Property of IBM
Summary of Amendments vii

section 1. Introduction e e o o 4 4 o s e 4 e s

\

(LI

\

VS APL Processor Overview
VS APL Component Functlons
VS APL Environment . .
Purpose and Function of the VS APL Processor
Translator e e e e e .
Interpreter
Executor . .
Cross-System Executor Servrces
VS APL Session Manager .. .
CMS/TS0O Shared Storage Manager
CICS/VS Shared Storage Manager
Auxiliary Processors . .
APL Service Program lerary
Workspaces . . e e .
Workspace lerarles

HUHUHUHNWHFROODOVOVOPRAUTUIL D WUN

Physical Characteristics of the VS APL Processor 1
Object Modules e e e e e e e e e e e 1
Load Modules 1
Flow of Control 1

Operational Cons1derat1ons 1
Data Set Information 1
Installation . 1
Control Informatlon 1

System Configuration 1
Processors e 1
Access Nathods e 14
Terminals e e e e e e e e e e e e e e e e 14
Supervisor Serv1ce Calls c e e e e e e e e e e e e e e 14

Error Handling . e e e e e 15
Customer Informatlon Control Svstem (CICS/VS) e e e e 15
Conversational Monitor System (CMS) .. e e e e e . 15
Time Sharing Option (TS0) e e e e e e e e e e e e e e 15
VS Personal Computing (VSPC) e e e e e e e e e e e e e 16

Component and Module Naming Conventions e e e e e e e e e 16

sccticon 2. athod of Om=ration e e s e s s e e e e e se s 18

Diagram 0.0= VS APL Processor Overview e e e e e e e e e 22

Diagram 1.1: Communication with VSPC . e e e e e e 24

Diagram 1.1.1: Shared Variable Processing (VSPC) e e e e e 27

Diagram 1.2: Communication with CMS . e e e e 32

Diagram 1.2.1: Shared Storage Manager (CMS and TSO) « e e 36

Diagram 1.2.2: Auxiliary Processors (CMS) . N 39

Diagram 1.3: Communication with CICS/VS e e e e e %3

Diagram 1.3.1: Shared Storage Manager (CICS/VS) e e e e e 46

Diagram 1.3.2: Auxiliary Processors (CICS/VS) e e e e e e %8

Diagram 1.4: Communication with TS0 e e e e e e e e e e e 50

Diagram 1.64.1: Auxiliary Processors (TS0) . . 53

Diagram 2.0: Input Recognition, Translation, and Routlng . 57

Diagram 3.0: Function Definition and Edit e e e e e e e e 59

Diagram 3.1: Function Editing e e e e e e e e e e 61

Diagram 3.2: Function Definition e e e e e e e e e e e e e 64

Diagram 4¢.0: Statement Execution e e e e e e e 67

Diagram 4¢.1: Statement Scan, Syntax Ana1y51s, and Execution 69

Diagram ¢.1.1: Function Call and Function Exit Processing 76

Diagram 6¢.1.2: Branch Processing e e e e e e e 77

Diagram ¢.1.3: Primitive Function Process1ng e e e e e e 80

Diagram ¢.1.4: Miscellaneous Processing e e e e e e e e e e 84

Diagram ¢.1.5: Shared Object Processing C e e e e e e e e 87

Diagram ¢.2: Return Code Processing e e e e e e e e e e e e 91

Diagram 5.0: System Command Execution e e e e e e e e e e e 94

Diagram 6.0 Workspace Conversion e e e e e e e 96

Diagram 7.0 CICS/VS Library Service Program - ... 101

Diagram 8.2: VS APL Session Manager Executor Scheduler . . 104

Diagram 8.2.1: VS APL Session Manager Executor Processor 106

Diagram 8.3.1: Common Auxiliary Processor Services Under

CMS and TSO e e e e e e e e e . . 108

Licensed Material—Property of IBM
Contents ix

Diagram 8.3.2: Common Auxiliary Processor Services Under
CICS/VS e D B
Diagram 8.4.1: VS APL Session Manager Auxiliary Processor

for CICS/VS, CMS, and TSO .o .. 113
Diagram 8.4.2: GDDM Auxiliary Processor for CICS/VS CMS.

and TS0 .« . 115
Diagram 8.4. 3 VS APL Data Flle Aux111ary Processor for

CMS/TSO e e e e I
section 3. Program Organization e 4 e s o s s e 8 e s e« o 119
section 4. Directory - e o« « « o 207

Entry Points and Module Names Sorted by Entry Polnts . ow .. 207
Entry Points and Module Names Sorted by Module Names 213

section 5. Data Areas e e s s s 8 8 s 8 8 s s s s s s e s« 219
Interpreter Data Areas -
VS APL Workspace e e et e e s e e e e e e e e e e e e e .. 219

Buffer . e e e e e e e e e e e e e e e e e ..o 220
Executor Tran51ent Area e e e s e e e e e e e e e e e e .. 220
Translator Transient Area e e e e e e e e e e e e e e e .. 220
Program Check On-Vectors e e e e e e e e e e e e e e ..o 220
Saved Workspaces e e e e e e e e e e e e e e e e e e e .22
Workspace Relocation e e h e e e e e e e e e e e e ..o 221
Interpreter Transient Area - |
Current Operator e e e e e e e e e e e e e e e e e e e.o222
Argument Blocks 4
Result Block . et e e e e e e e e e e e . 222
Exarch/Appendage Communlcatlon -4
Interpreter/Translator Communication e e e e e e 223
Address Table A
Internal and External Names e
Permanent and Temporary Objects A
Immediate and Remote Objects e e e e e e e e e e e e .. 226
Syntax Classes C et e e s e e e s e e e e e e e e e e . . 225
Primary Descriptor 4
Address Table Sections e e e e e e e e e e e e e e .. 227
Address Table Management e e e e e e e e e e e e e .. 228
Operation Stack e e e e e e e e e e .. 229
Source of Operation Stack Entrles C e e e e e e e e e e . 229
Use of the Operation Stack c e e e e e e e e e e e e .. 230
Items on the Operation Stack . B
Operation Stack Management c e e e e e e e e e e e e e . 239
Free Space e e e e e e e e e e e e .. 240
Format of Blocks 1n Free Space e e e e e e e e e e e . . 260
Free Space Management C e e e e e e e e e e e e e e . 247

R1I3 Stack . . v i i v i i e et et e e e e e e e e e e e . 248
VSPC Workspace e e et e e e e e e e e e e e e e e e e e .. 248

Executor Data Areas e e e et e e e e e e e e e e e e .. 2099
CMS Executor Global Table e e e e e e e e e e e e e e .. 249
TS50 Executor Global Table . e e e e e e e e e e e e e .. 2689
VS APL Executor Stack for CICS e v e e e .. 249
CICS/VS Executor Data Area Interrelationshlps e« o« o« . . 251
VS APL Common Executor Stack e e e e e e« « « « « . . 253

Control Block Formats .. e e e e e e e e e e e e e e e . . 254
APC (XSYS, AP) e .. 255
APFT (VSPC) f e e e e h e e e et e e e e e e e e e e e e e 257
APM (CICS, XSYS)] Y4
ATW (CICS, AP) e ettt e e e e e e e e e e e e e e e e e . 263
BND (XSYS, AP) C e v e e e e e e e e e e e e e e e e e e .. 265
CIT (CICS, SERV) e e e e e e e e e e e e e e e e e e e . 267
CMSGL (CMS, XSYS, AP) et e e e e e e e e e e e e e e e .. 269
DESC (CICS, XSYS, AP) 21
DIB (CICS, XSYS) e e e e e e e e e e e e e e e e e e e .. 287
DIR (CICS, SERV) e e e e e e e e e e e e e e e e e e .. 289
DMP (CICS, XSYS, AP) A 2 |

DRB (TS0, XSYS) 4
ECA (VSPC) . e e e e e e e e e e e e e e e e e e .. 295
FAB (CICS, XSYS, AP) e e e e e e e e e e e e e e e e e .. 298
FB (CONV, NTRP) T - 1) |
FEB (CICS, SERV) T 1 34
FFLD (VSPC) . e 1
FHED (CONV, NTRP) T 1

Licensed Material—Property of IBM
X VS APL Program Logic

FSP (CICS, SERV) e e e
GBL (CICS, XSYS, AP) ..
GDC (VSPC, XSYS, AP) ..
GDM (XSYS, AP) e e e e
LSC (CICS, SERV) e e e
MAI (XSYS, AP) e e e
OPS (CICS, AP) e e e
PCV (ALL)Y "~
PRD (XSYS, AP) o« e e e e e
PRM (CICS, XSYS, AP) .« e
PRO (CICS, SERV) ..

PTH (ALL) e e e e
PTK (CICS, XSYS, AP)
PTX (ALL) e e e

o o o
.

SCV (ALL) . R
SGN (CICS, XSYS, AP) .
SHVAB (XSYS) . . .

STK (CICS, XSYS, AP)
TBL (VSPC, AP) . e
TCD (CICS, AP) . e .
TRD (XSYS, AP) e e e e e
TRQ (CICS, XSYS)
TSOGL (TS0, XSYS, AP)

VCT (ALL) o s . .
VRD (XSYS, AP) .
WSM C(ALL) o v e e .
WSX (ALL) « e e e

o o o o o

« .

e o o o

« e

section 6. Diagnostic Aids

Component Linkage Conventions

1. VS APL Tnterpreter Linksge
Register Usage e e e
Save Areas e e e e e e
Calling Macros

.
e o o o o o

.
e ¢ o o o o o o o o

° s e

« o e

e o o o o o

2. APL Library Service Program Llnkage

Register Usage e e e
Save Areas

.

.

.
.
e ¢ o ¢ o o o o o

. .

« e e

3. Nonstandard Llnkage to and utthln Exarch

Register Usage e e
Save Areas e e e e e e e
Calling Macros .

4. CMS/TS0 Executor Llnkage
Register Usage .
Save Areas

* e

.

.

Calling Macros (CMS and TSO)

5. VSPC Executor Linkage . .
Register Usage . e
Save Areas . .

Calling Macros (VSPC)

6. CICS/VS Executor Linkage
Register Usage e e e e e
Save Areas e e e e e e
Calling Macros .

7. Service Request Calls (CICS/VS CMS.

Register Usage « e e e
Save Areas c e e e e .
Calling Macros

Values, Parameterap and Return Codes ?or

Requests
8. Conversion Program Llnkage
Save Areas c e e e e e

Calling Macros

.
.
* e .
e e
* e

9. CMS/TS0 Shared Storage Manager

Save Areas .

10. CICS/VS Shared Storage Manager

Register Usage e e e
Save Areas .

11. Common Executor Llnkage
Register Usage “ e e e e
Save Areas e e v e e e
Calling Macros .

Diagnosing Errors c o s o o

« e e

.

e e o o o o o o o
e o o o

150,

e e o o o e o o o o 0
.
o s o o e

]
.
L

e o o o o o o

e e o o ¢ o o o o

.
. .
.

or VSPC)

e e e e e

Service

.
e s« o e o
.

e e o o ¢ o o o o
.

o e 0 o o o

e e o o o o

e o o o o o

e o o o o o o

e 4 e e o o o o o o o o

310
311
314
317
319
320
322
323
326
325
329
332
334
342
345
348
349
351
352
353
355
356
358
387
389
390
394

395
395
397
397
397
397
401
401
401
401
401
401
402
403
403
404
406
405
405
406
406
407
407
407
408
416
416
416
417

417
428
428
428
431
431
432
432
432
432
433
433
433

637

Licensed Material——Property of IBM
Contents

i

Error Message to Module Cross-Reference Information

UGH Codes .

Abnormal Termvnatlon and Dumps Under Common Servvces or APS

Program Checks and Dumps under CICS/VS e e e e e e e

Dumps e e e e . .

APLU Dumps with CICS/VS Abnormal Termlnatlon Codes
APLU Dumps with a NXIT Dump Code . e .

APLU Dumps with an EXEC Dump Code e e v e e e

APLU Dumps with an NTRP Dump Code . . e

APLU Dumps with a REGS Dump Code . .

APLU Dumps with a Knnn Dump Code « v e

APLU Dumps with an nnnS Dump Code . .

Other Dump Codes . e e e e e e e e e e
CICS/7VS Trace Informat1on e e e e e

Program Checks and Dumps under CMS
During Initialization of the VS APL Processor
Contents of the Dump . .
Additional Information for Program Check
After Initialization . . e
System Error in the Interpreter or Translator .
Program Check in the Executor . .
Program Interrupt in the Shared Storage Manager or
Auxiliary Processor v e e e e s
Abnormal Termination in the Executor
Program Check Loop in the VS APL Processor
How to Produce a Dump e e e e e e e e
Full System Dump
Snapshot Workspace Dump
Sample Prompting Sequence .
How to Interpret the Terminal Mlnl-Dump
How to Determine the Type of VS APL Svstem Error . .
How to Interpret the Snapshot Workspace Dump Produced at
the Printer . .
Where to Find Informatlon ln the Snapshot Norkspace
Dump and the Mini-Dump e e e e e e e e
Program Checks and Dumps under TSO .
Abnormal Termination/System Error/Program Check under VSPC
VS APL Microcode Assist . C e e e e e . v e e e e
DEBUG Operand of the APL Command .
Information Needed for Problem Determ1natvon and DIBQHOSIS

Index e s 4 e v e s e s @ s s e 4 e s s s e e s s e e s e s

Licensed Material—Property of IBM

xii

VS APL Program Logic

437
450
454
455
455
457
457
457
457
457
458
458
458
459
469
469
469
470
470
470
470

471
471
471
471
472
472
473
474
474

475

475
475
475
476
476
%76

478

FIGURES

Figure 1. VS APL Processor Communication Overview e e s 12
Figure 2. O0Object Module Component Name Identification .. 1?7
Figure 3. Table of Components e 19
Figure 4. Graphic Symbols Used in Method of Dperatlon

Diagrams . e e e e e e . e e e e e 21
Figure 5. VS APL Norkspace O
Figure 6. Format of Immediate ObJect e e e e e e e e e .. 226
Figure 7. Syntax Classes . . e e e e e e e e e e e e . . 225
Figure 8. Primary Descriptors 226
Figure 9. Combination of Syntax Classes and Prlmary

Descriptor Bits . e e e e e e e e e e .. 226
Figure 10. A Chain of Available Names e e e e e e e e e .. 229
Figure 11. The Operation Stack . e e e e e e e .. . 230
Figure 12. Tokens on the Operation Stack e e e e e e e ..o 231
Figure 13. General Literal Descriptor Format e e e e e . 232
Figure 14. Scalar Literal Descriptor Format - ¥4
Figure 15. Short Literal Descriptor Format e e e e e e . . 233
Figure 16. Operator Bit Meanings e e e« . . 236
Figure 17. Operator Hexadecimal Representatlons e« « . . 235
Figure 18. Separator Hexadecimal Representations v v . . . 236
Figure 19. Fast Branch Special Operator Format e o . . 237
Figure 20. Secondary Decode Special Operator Format ... 237
Figure 21 Function Control Block (FCB) Format e v 238
Figure 22 Operation Stack Levels e e e e . .. 239
Figure 23. Suspended Function Stop Nord Format e 240
Figure 24. DN-Word Bit Meanings e e e e . .. 261
Figure 25. Active Block Descriptor Conventlons e e e . . . 262
Figure 26. Active Block Format of Variables e e e e e . . . 262
Figure 27. A Synonym Chain e e e e e e e e e e e e e e e .. 264
Figure 28. Function Header . e e e e . . . 266
Figure 29. Format and Content of a Stack Entry . . . 251
Figure 30. CICS/VS Executor Data Area Interrelat1onshlps 252
Figure 31. Component Linkage Conventions e e e e e e e . . 395
Figure 32. VS APL Processor Register Usage e e e e e e e . 397
Figure 33. APLCALL and APLEXIT: Generated Code v e e e . . 399
Figure 34. APLENTRY: Generated Code 6090
Figure 35. APL Library Service Program Reglster Usage . . 601
Figure 36. Nonstandard Exarch Register Usage e v e e . .. 601
Figure 37. APLXCALL: Generated Code . e e e e e - ... 602
Figure 38. APLXNTRY: Generated Code . .. 602
Figure 39. Executor Linkage Register Usage (CMS or TSO) 403
Figure 40. APLCENTR: Generated Code Q04
Figure 41. APLCCALL: Generated Code e e e e e e e e 4 e . . 605
Figure 42. APLCEXIT: Generated Code . « <« . . . 605
Figure 43. Executor Linkage Reqister Usage (VSPC) 605
Figure 44. APLPENTR: Generated Code . . e e+« . . . 605
Figure 45. APLPEXIT: Generated Code e e e e 4 . . . 807
Figure 46. Executor Register Usage (CICS/VS) 607
Figure 47. APLKSTAK and APLKPROC: Generated Code for

External Routines . . . « o« .« . 609
Figure 48. APLKPOP: Generated Code . . 409
Figure 49. APLKPROC: Generated Code for Internal Poutlnes 410
Figure 50. APLSVYCC: Generated Code .. P 3 ¥4
Figure 51. Conversion Program Register Usage v e e e . . . 628
Figure 52.. ACENTRY: Generated Code et e e e e e s e e e .. 429
Figure 53. ACENTRY2: Generatnd Code e e e e e e e e e e e . 629
Figure 54. ACCALL: Generated Code C e e e e e e e e e . . . 630
Figure 55. ACEXIT: Generated Code . . 430
Figure 56. Sharad Storage Manager and Auxlltary Processor

Register Usage . e e - .. . 63)
Figure 57. Shared Storage Manager Reglster Usage e e . . . 632
Figure 58. APLCALLS: Generated Code %14
Figure 59. APLXEND: Generated Code e e e e e e 4 e e e . . . 435
Figure 60. APLXPROC: Generated Code N e e e e s s e . . 836
Figure 61 Message Identifiers and Sources e e e e e e . . 637
Figure 62. Message-to-Module Cross-Reference e h e e e . 638
Figure 63. Hexadecimal UGH Codes et e e e e e e s 4 . . . 651

Licensed Material—Property of IBM
Figures xiii

Figure 66.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.

Abends Intentionally Generated by VS APL

Common Dump Services Dumps and Issuing Modulés‘

Codes from DFHDC or DFHPC

Format of CICS/VS Trace Table e e e
VS APL Abend Codes e . e e e .
Sample Prompting Sequence v e e e
VS APL Processor System Errors e e e

Licensed Material—Property of IBM

Xiv

VS APL Program Logic

454
455
458
659
470
473
474

SECTION 1.

INTRODUCTION

The ¥S APL processor is an interactive program product that runs
under the following systems:

. Customer Information Control System (CICS/VS)

Ll Conversational Monitor System (CMS)

. Time Sharing Option (TS0)

. Virtual Storage Personal Computing System (VSPC)

VS APL analyzes, stores, and executes source statements written

in the VS APL language. In addition, it provides a facility for
converting various workspaces to VS APL format.

Vs APL PROCESSOR OVERVIEW

The VS APL processor consists of the following components:
. The translator
o The interpreter: exarch and appendage routines

o Four executors—VS APL CICSs/VS, VS APL CMS, VS APL 7SO, and
VS APL VSPC

. The CMS/TS0 shared storaga manager
. The CICS5/VS shared storage manager
J Auxiliary processors

U The APL Service Program Library

U Workspaces

U llorkspace libraries
U Cross-system executor services
. VS APL session manager

VS APL Component Functions

The translator analyzes VS APL source statements entered at the
terminal, and translates them into internal codes, either
building them into defined functions for later execution or
passing them immediately to the interpreter for execution.

The interpreter, comprising exarch and appendage routines,
scans, analyzes, and execcutes tokenized statements. Exarch is
available either as microcode or as assembler language modules.
Appendage routines, available only as assembler language
modules, run in conjunction with exarch.

The executor handles initialization of VS APL, and receives
control from, and returns control to CICS/VS, CMS, TSO, or VSPC.
It also issues supervisor service requests to CICS5/VS, CMS, TSO,
or VSPC as required by the VS APL processor and handles
asynchronous events such as proaram checks, attention, and other
interrupts.

Licensed Material—Property of IBM
Section 1. Introduction -1

The shared storage manager builds control blocks, sets shared
memory, and issues syastem service requests in association with
the shared variable facility of VS APL.

The auxiliary processors provide functions outside of the APL
workspace environment by communication with the operating system
access methods. :

The conversion programs convert APL/360, APL/CMS, and APL Shared
Variable (APLSV) workspacas to the VS APL format as required by
CICSsvVS, CMS, TS0, or VSPC.

In addition to these general conversion utilities, a
CICS/VS=-only library service program uses conversion output to
import the converted workspaces from APLSY, APL/CMS, or APL/360
to VS APL format; a TS50 internal APL file service program
manages the import and export of APL objcct files to and from
the APL user's TS50 system; and a TS50 converted workspace import
program processes output from APL converted programs, and
imports loadable workspaces for TS50.

Certain workspaces are provided with VS5 APL to aid the user in
migration from APL/360, to help him in learning V5 APL, and to
do certain commonly-needed functions. They are tools to assist
users in the use of VS APL.

The cross-system executor services represent a set of components
which provides equivalent services to the CMS, TS0, or CICS/VS
executor.

The VS APL session manager {(optionally available to the APL
user) provides comman session support, for use with terminals of
the IBM 3270 Information Display System under CMS, TS0, or
CICS/VS.

VS APL Environmant

UMDER CICS/VS: VS APL runs as a series of CICS/VS transactions.
The following is a list of transactions by transaction ID.

o APL Specifies the APL user sigri-on transaction
o APLU Specifies the user session transaction
o APLL Specifies the library access transaction

o APLT Specifies the non-GDDM terminal I/0 transaction

° APLH Specifies the hardcopy processing transaction

U APLO Specifies the auxiliary processor 100 transaction
° APLX Specifies the GDDM terminal I/0 transaction

Note that although these default transaction IDs are used
throughout this book, an installation can define different

transaction IDs.

UHUDER CMS: The VS APL translator, interpreter, executor, and
shared storage manager run as a CMS module.

UNDER TS0O: The VS APL translator, interpreter, and executor run
as a TS0 command processor.

UNDER VSPC: The VS APL translator, interpreter, and executor run
a5 a VSPC foreground processor.

Licensed Material—Property of IBM

2

VS APL Program Logic

C

PURPOSE_AND FUNCTION OF THE VS APL PROCESSOR

Translator

Interprefer

The translator receives VS APL source statements as input,
directs system commands to the proper routines, converts VS APL
source statements to internal codes (tokens), and builds VS APL
functions as required. The functions of the translator are to:
] Initialize the user's workspace

U Receive terminal input and determine its type and
destination within the processor

° Prepare VS APL statements for execution

° Isolate and execute system commands

. Perform sequencing and control functions for the processor

The translator is divided into the following modules:

. Initialize workspace: APLITINI

° Input/output: APLITINP

° System commands: APLITCMC, APLITCMD, APLITCME, APLITCMF,
zgt%}ggg: APLITCMI, AFLITCML, APLITCMS, APLITCMT, APLITCPI,

L Statement conversion: APLITFUN, APLITIDS, APLITLXS,
APLITNCV, APLITPRL.

. Function definition: APLITFDC, APLITFDE, APLITFDN, APLITFDO,
APLITHDR.

. Execution control: APLITERR, APLITEX.

° Subroutines: APLITFCH, APLITSUB, APLITUSG.

° Message text and default workspace values: APLITMSG
. Mark end of load module: APLITIHI

i Copyright statement: APLCOIBM

The interpreter receives tokenized VS APL statements as input.
Its functions are to:

° Seceivg control from the translator; return control when
input is exhausted or when a translator service is required

J Scan, analyze, and execute tokenized statements
o Format terminal output; request executor output

o Communicate with the shared storage manager when a shared
variable is encountered

The interpreter is divided into the following modules:
. Exarch: APLIECMX, APLIEFCH, APLIEFNMM, APLIEIDX, APLIEMND,

APLIEPSI, APLIEREV, APLIERHO, APLIESCA, APLIESPA, APLIETAK,
APLIEXAR, APLIEXFR.

Licensed Material—Property of IBM
Section 1. Introduction -3

Executor

Appendage Routines:

APLIAENC,
APLIAPRD,
APLIASHY,
APLIATSP.

APLIAFOR,
APLIAQFN,
APLIASYV,

APLIACHK,
APLIAGFM,
APLIARED,
APLIATAK,

APLIACIR,
APLIAGOU,
APLIAROT,
APLIATBC,

APLIADEC,
APLIAGRD,
APLIASCN,
APLIATRN,

APLIADOM,
APLIANAMNM,
APLIASHF,
APLIATRS,

The executor is used for communication between the VS APL

processor and the CICS/VS,
services include terminal
libraries.
from one another,
processor
functions.

The

CMS,

1750,

or VSPC system.
input and output and access to

Such

individual executor module configurations differ

15 operating,
These are:

depending on the system under which the

but all four executors perform similar

Establish the VS APL processor environment

Manage asynchronous events;

from the terminal

Execute VS APL processor service requests,

terminal I/0 requests

executors

CICS/VS:

APLKASTB,
APLFXIIM,
APLKLIBF,
APLKMSCB,
APLKTRQO,

CMS:
APLSCTIO,
APLSCSVI,

780:
APLYUEXC,
APLYUMSC,
APLYUSHS,
APLYUTYP,

VSPC:
APLPAPGD,
APLPMISC,

APLSCERR,

APLYUCMD,

APLPAPAB,

for example,

attention signal

are divided into the following modules:

APLKADEF,
APLKDOPS,
APLKIFIX,
APLKLIBG,
APLKSSVP,
APLKTSRY,

APLSCDAC,
APLSCTBL,

APLYUHSH,
APLYUMSG,
APLYUSHV,
APLYUUSR,

APLPCOAP,
APLPSERR,

cross-system Executor services

APLSCFXI,

APLYUDOC,

APLPAPCD,

APLKADSP,
APLKEHCP,
APLKISVI,
APLKLIBU,
APLKSSUB,
APLKVOPS

APLSCSSI,
APLSCTYP,

APLYUIIM,
APLYUOPT,
APLYUSSH,
APLYUTBL

APLPCOEX,
APLPSHVR,

APLSCINI,

APLYUDPY,

APLXAGBL,
APLKEMGR,
APLKLIBA,
APLKLIBY,
APLKTCTL,

APLSCMSG,
APLSCDPY

APLYUINI,
APLYUPFK,
APLYUSVI,

APLPAPFS APLPAPGB,

APLPCTBL,
APLPTYIO

APLSCLIB,

APLYUERR,

APLKAHST,
APLKLIBR,
APLKLIBB,
APLKLTASB,
APLKTRAN,

AFLSCMSC,

APLYULIB,
APLYURVC,
APLYUTIO,

APLPFXIM,

These services comprise the following components:

including

APLKASON,
APLKAMIX,
APLKLIBC,
APLKMSCA,
APLKTREQ,

APLSCOPY,

APLSCSHVY,

APLYUFXI,

APLYULNE,
APLYUSCN,
APLYUTRN,

APLPAPGC,

APLPLIBS,

GDDM Interface Services (GDDX)—provides a set of services
for communication with the Graphic Data Display Manager

(GDDM) when it
the following modules:

APLXGCAT (common),

(CICS/VS),
(CICS/VS),

APLXGKT (CICS/VS),

APLXGKRR (CICS-/VS),

is used in the session.
APLXGCOM (common),
APLXGS (CMS),

APLXGY (TS0),

APLXGKR (CICS/VS),
and APLXGKON (CICS/VS).

GDDX is made up of
APLXGCHC (common),
APLXGKU
APLXGKRQ

Main.Storage Services—provides the calling routine with a
system-independent
FREEMAIN services.

APLXMYSG (TS0),

APLXMSSG (CMS),

interface for reaquesting GETMAIN and
There are three separate modules:
and APLXMKSG (CICS/VS).

Stack Management Services—provides a cross-module workstack
facility which performs register saving and supplies

module-level work areas.

Licensed Material—Property of IBM
4 VS APL Program Logic

The module

is APLXSTAK.

VS APL Session

CMS/TSO Shared

* APL Print Services—provides APL print (open, write, and
close) support for CMS/TS0, and acts as an APL print support
interface for CICS/VS. There are three separate modules:
APLXPK (CICS/VS), APLXPS (CMS), and APLXPY (TS0).

o File System Services—processes file processing requests for
the auxiliary processor AP 121 and the scrolling code in the
executor. There are three separate modules: APLXFYFL (TS0),
APLXFSFL (CMS), and APLXFKFL (CICS/VS).

° Common AP Services—provides a set of services between an
auxiliary processor and the shared storage manager with a
system-independent interface. There are four modules: APLXAC
EgMS/TSO). APLXAK (CICS/VS), APLXASD (CMS) and APLXAYD

S0).

U Wait-Post Services—provides wait-post services to CMS and
TS0 executor tasks, and acts as a system-independent
interface to CICS/VS executor processes. There are three
separate entry points: APLXWYWP (TS0), APLXWSWP (CMS), and
APLXWKWP (CICS/VS).

° Abend Services—allows CMS, TS0, and CICS/VS tasks to
attempt to recover from abends and program checks. There are
three separate entry points: APLXBYAB (T7S50), APLXBSAB (CMS),
and APLXBKAB (CICS/VS).

L Dump Services—provides for caller-selected areas of storage
to be printed to a particular destination in a CMS, TS0, or
CICS/VS environment. There are two separate entry points:
APLXDUMP (CMS and TS0) and APLXDKMP (CICS/VS).

° Translation Services—provides various supported translation

services, as well as descriptions of request blocks for
translation. The module is APLXTRAN.

U Conversion Services—provides data type conversions for
numeric objects. The module is APLXVERS.

Manager

The VS APL session manager comprises the following executable
modules which are used to process terminal tables requests from

the CICS/VS, CMS, or TS50 executor, or from an auxiliary
processor:

APLACCBE, APLACDSL, APLACHLP, APLACNDP, APLACMSG, APLACMDX,
APLACOPY, APLACPRM, APLACPRO, APLACQRY, APLACQUE, APLACRDA,
APLACRSA, APLACSF, APLACXCM, APLADMSG, APLADTTM, APLAK, APLAKP,
APLALINE, APLAS, APLASA, APLASP, APLAUSRX, APLAY, APLAYA, APLAYP

Storage Manager

For VS APL under CMS and TS50, the shared storage manager is
logically a part of the respective executor. (In the case of VS
APL under VSPC, it forms an integral component of VSPC.) The
shared storage manager's principal function is to manage
communication between the interpreter/translator and the
auxiliary processors. The tasks performed are:

o Initialization for shared variable processing
» Processing of shared variable commands
U Termination of processing when the shared variable facility

is no longer required

Licensed Material-—Property of IBM
Section 1. 1Introduction 5

A common set of shared storage manager modules is employed for

the CMS and 7SO0 executors.

* APLSHACC, APLSHBPB, APLSHBVB, APLSHCPY, APLSHGEY, APLSHOFR,
APLSHPUT, APLSHQUE, APLSHREF, APLSHRET, APLSHSOF, APLSHSON,
APLSHSPC, APLSHSRD, APLSHSUB

CICS/VS Shared Storace Manager

The shared storage manager for the CICS/VS executor
is composed of two modules.

a part of the executor. It

* APLKSSUB, APLKSSVP

Auxiliary Processors

is logically

Auxiliary processors are non—-APL programs that operate outside

the APL environment.

The auxiliary processor concept provides a

method of extending the capability of the APL environment.

UMDER CICS/VS:
management services for APL files,
data bases;
sarvices,
in CICS/VS transient data destinations,
or statement,
display facilities,

display certain areas of main storage,

Auxiliary processors provide selacted data
VSAM and ISAM files,
allow a user to request a subset of CICS/VS

and DL/1

read/wurite date
specify an APL command

provide for application control of the IBM 3270
and to display alphameric and agranhic data

(including color and extended highlighting) via the graphic date

display manager (GDDM).
Auxiliary
Frocessors

AP 100 (CICS/VS Command)

AP
AP
AP
AP
AP

102
120
121

(Storage Display)

(VS APL Session Manager Command)
(APL Data File)

123 (VSAM)
124

125

(Full Screen Management)

AP (DL/I)

AP 126
132

139

(GDDM)
AP
AP

(Transient Data)

(Alternate Input)

Licensed Material—Property of IBM
6 VS APL Program Logic

These auxiliary processors are:

Hodules

APL10OK,
APL100OKO

APL1O2K
APL120
APL121K
APL123K
APL124K,

APL100KY,

APL124KQ

APL125K.
APL125K0

APL126,
APL132K
APL139K

APL125KD,

APL126T

UNDER CMS: Auxiliary processors provide selected data management
services for CMS files, VSAM files, and 0S5 files supported by
QSAM. They also allow an APL application to specify terminal
input data, to pass commands to CP or CMS, to specify an APL
command or an APL statement that will be executed when terminal
input is next requested, and to display alphameric and graphic
data (including color and extended highlighting) via the graphic
data display manager (GDDM). These auxiliary processors are:

Auxiliary

Processors Modules
AP 100 (CMS Command) APL100
AP 101 (Alternate Input) APL101
AP 110 (CMS File) APL110
AP 111 (QSAM) APL111
AP 120 (VS APL Session Manager Command) APL12C
AP 121 (APL Data File) APL121
AP 123 (VSAM) APL123
AP 126 (GDDM) APL126

UNDER TSO: Auxiliary processors provide selected data management
services for VSAM files, 0S files supported by Q5AM, and
unkeyed, relative record, fixed-length files supported by BDAM.
Thay also allow an APL application to specify an APL command or
an APL statement that will be executed when terminal input is
next requested, to issue TS0 interactive commands, and to
display alphameric and graphic data (including color and
extended highlighting) via the graphic data display manager
(GDDPM). These auxiliary processors ara:

Auxiliary

Processors Modules

AP 100 (TS0 Command) APLYUL00

AP 101 (Alternate Input) APLYU101

AP 102 (Storage Display) APLYUl02

AP 111 (QSAM) APLYU1ll

AP 120 (VS APL Session Manager) APL120

AP 121 (APL Data File) APL121

AP 123 (VSAM) APL123

AP 126 (GDDM) APL126, APL126T

AP 210 (BDAM) APLYU210

Licensed Material—Property of IBM
Section 1. Introduction 7

UNDER VSPC: Auxiliary processors provide selected data
management services for VSPC library files and VSAM files
maintained by the operating system, and provide for application

control of the IBM 3270 display facilities.

Under VSPC, the

auxiliary processors are contained within the executor, and

operate through modules APLPAPAB, APLPAPCD,

APLPAPFS, APLPAPGB,

APLPAPGC, APLPAPGD, APLPCOAP, and APLP126T. The auxiliary

processors are:

- Auxiliary
Frocessaors
AP 100 (VSPC Command)
AP 101 (Alternate Input)
AP 102 (Storage Display)
AP 121 (APL Data File)
AP 122 (EBCDIC Data File)
AP 123 (VSaAM)
AP 124 (Full Screen Management)
AP 126 (GDDM)

APL Service Program Likrary

Hodules
APLPAPAB
APLPAPAB
APLPAPAB
APLPAPAB,
APLPAPAB,
APLPAPAB,
APLPAPAB,
APLPAPAB,

APLPAPGC,
APLP126T

APLPAPCD
APLPAPCD
APLPAPCD
APLPAPFS

APLPAPGB,
APLPAPGD,

THE CONVERSION PROGRAMS: These members of the service program
library construct VS APL workspaces from APL/360,
APL/7CMS dump tapes for CICS/VS, CMS, TSO or VSPC.
provide user profile and directory information for VSPC.

The configuration of the conversion programs

APLCDISP,

* ctis (APL/360 and APLSV): APLCCULL,

APLCGRUP, APLCIBNM, APLCINIT, APLCLEAR,
APLCRPRT, APLCSAVE, APLCSHIP, APLCSPIE,

APLCHIXSP, APLCUSFHN.
* cHs (ATL/CNS): APLQDISP, APLQFUNC,

APLQINIT, APLQLEAR, APLQMISC, APLQPAPRN,

APLQYARB, APLQWKSP, APLQSPIE.

4 CICS/VS, TS0, VvsPC (05,vSl and 0S/VS2):
APLODISP, APLOFUNC, APLOGRUP, APLOIBLM,
APLOMISC, APLOPARM, APLORPRT, APLOSAVE,
APLOSFIE, APLOTBCD, APLOTIDY, APLOVARB,

. CICs,svs (DOS/s/VS): APLDCULL, APLDDIRE,
APLDGRUP, APLDIBNM, APLDINIT, APLDLEAR,
APLDRPRT, APLDSAVE, APLDSHIP, APLDSLST,

APLQGRUP,

APLDTBCD, APLDVARB, APLDWKSP, APLDWSFN.

APLSY, and
They also

is as follows:

APLCFUNC,
APLCMISC, APLCPARM,
APLCTBCD, APLCVARB,

AFLQIBNM,
APLQRPRT, APLQSAVE,

APLOCULL, APLODIRE,
APLOINIT, APLOLEAR,
APLOSHIP, APLOSLST,
APLOWKSP, APLOUSFN.

APLDDISP, APLDFUNC,
APLDMISC, APLDPARM,
APLDSPIE, APLDTIDY,

In addition to the above modules, each version of the conversion

program also contains these translator and

APLIEREV, APLIESPA, APLITFDC, APLITHDR,
APLITNCV and APLCOIBM.

APLITIDS,

interpreter modules:

APLITLXS,

When used with CICS/VS, TS0, or VSPC, the conversion program
runs in the batch environment of the host operating system

it runs as a serarate
program invoked from a CMS EXEC procedure and under control of

(0S/vsS1, 0Ss/vS2, or DOS/VS). Under CMS.
the CMS nucleus.

Licensed Material—Property of IBM
8 VS APL Program Logic

Korkspaces

OTHER SERVICE PROGRAMS: Other members of the service program
library are the following:

FOR CICS/VS: An APL library service program imports and exports
workspace and auxiliary processor 121 files, copies APL user
libraries and initializes APL data sets during CICS/VS
installation. This program comprises the following modules:

APLKDALD, APLKDAUT, APLKDCMD, APLKDCPY, APLKDDNS, APLKDDSI,
APLKDDSO, APLKDEXP, APLKDIMP, APLKDINT, APLKDLBI, APLKDLBO,
APLKD!1SG, APLKDPIN, APLKDSPG, APLKDTPO, APLKDTRM, APLKDSCN,
APLKDEXC, APLKDFMT, APLKVALD, APLKVCMD, APLKVOPI, APLKVDSI,
APLVDSO, APLKVEXP, APLKVIMP, APLKVINT, APLKVLBI, APLKVLBOQ,
APLKVMSG, APLKVPIN, APLKVSPG, APLKVTPO, APLKVTRM, APLKVSCN,
APLKVEXC, APLKVFMT

FOR TSO: A workspace manages importing {addition) and exporting
(off loading) of APL objects to and from the APL user's library
under T50. The workspace, WSINF0O, contains additional
information on this workspaca.

In addition to the workspace, there is an APL TS50 converted
workspace import program uwhich processes output from APL
converted programs and imports loadable workspaces for the TS0
system. This single load module is invoked as a batch job; its
name is APLYUCNV.

The environment for VS APL is established by an area of storage
called a workspace. The size of the workspace is determined by
the installation and the limits of the host system (CICS/VS,
CMS, TS0, or VSPC). The workspace contains the user's programs,
the values of variables, the user status, and the current input
to or output from the interpreter. The workspace, therefore, is
the means of communication between the executor, the translator,
and the interpreter.

UWorkspace Libraries

Three libraries of workspaces are provided with VS/APL, as
follows:

° Library 1: (workspaces of general usefulness for all
systems)

- WSINFO—summary of all workspaces.
° Library 2: (auxiliary processor workspaces)
® Library 314159: (special workspaces—CICS/VS only)

- ADMIN—monitors and controls use of the APL system under
CICS/VS, and maintains the APL directory.

Each of these workspaces has three functions or variables that
describe what it contains and how it is used. They are:

° ABSTRACT—brief description of workspace contents.
® DESCRIBE-what the workspace contains, ir detail.

® HOW—hgow to use the workspace.

Licensed Material—Property of IBM
Section 1. Introduction 9

PHYSICAL CHARACTERISTICS OF THE VS APL PROCESSOR

Object Modules

The VS APL processor is distributed in the form of separate
object modules as described under "Purpose and Function of the
VS APL Processor” in this section.

Load Modules

UNDER CICS/VS: VS APL (except for the library service and

conversion programs) is stored in the CICS/VS load library as a
set of independent load modules. Each load module is identified
to CICS/VS by an entry in the CICS/VS processing program table

(PPT).

The following load modules are built from multiple source

modules:

APLINTRP

APLKADSP

APLKASON
APLKLIBG
APLKEHCP

APLKTCTL
APLKSPRG

APLXGKT
APL100K
APL120
APL124K
APL125K
APL126
APLKASTB

Li
10 VS APL Program Logic

contains the interpreter modules (APLIxxxx),
APLFXIIM and APLCOIBM

contains the CICS/VS executor modules APLKAMIX,
APLASCHD APLKADSP, APLKIFIX, APLKLIBC, APLKLIBU,
APLKMSCA, APLKMSCB, APLKISVI, APLXGCHC, APLXGCOM,
APLXGKON, APLACRCP, APLACCBE, APLACDSL, APLCCHLP,
APLACMDX, APLACMSG, APLACNDP, APLACOPY, APLACPRM,
APLACPRO, APLACQRY, APLACQUE, APLACRDA, APLACRSA,
APLACSF, APLACXCM, APLADMSG, APLADTTM, APLAK,
APLAKP, APLALINE and APLAUSRX

contains APLKMIX and APLKASON
contains APLKLIBA, APLKLIBG, APLKLIBV and APLKLTAB

contains APLKEHCP and APLKTRAN (also included in the
APLKASTB load module)

contains APLKTCTL and APLKTCWR

contains the library service program modules listed
under the section entitled "Purpose and Function of
the VS APL Processor.”" HNote that modules beginning
with APLKY are in a load module for 0S5/VS only, and
that modules beginning with APLKD are in a load
module for DOS/VS only.

contains APLXGKT and APLAKP

contains APL100K and APL10OKU

contains APL120, APLASCHD, APLAK and APLAKP
contains APL124K and APL124KO

contains APL125K and APL125KD (or APL125KV)
contains APL126, APL126T

contains APLKASTB, APLKAGBL, APLKDOPS (or APLKVOPS),
APLKEMGR, APLKLIBB, APLKLIBR, APLKLIBF, APLKSSUB,
APLKSSVP, APLKTRAN, APLKTREQ, APLKTRQO, APLKTSRY,
APLXAK, APLXDKMP, APLXFKFL, APLXMKSG, APLXSTAK,

APLXTRAN, APLXVERS, APLXGKU, APLXPK, APLASCHD,
APLAKP, APLXGKRQ, APLXGKR, and APLXGKRR

censed Material—Property of 1BM

All other modules are stored as separate load modules (APLKADEF,
APLKAHST, APL100KO, APL102K, APL121K, APL123K, APL132K, APL139K,
and APLKPARM).

UNDER CMS: The executor, translator, interpreter, and shared
storage manager object modules are link-edited and loaded as one
load module (VSAPL). Optionally, auxiliary processors may also
be included in this load module. A second load module (startup
module APL) is generated for discontiguous segment
determination.

The conversion program object modules are link-edited and loaded
as one load module for each of the conversion programs. The load
module names are: APLCVCMS (convert APL/360 and APLSV workspaces
under CMS), APLCVRPQ (convert APL/CM3 workspaces under CMS),
APLCVOS (convert APL/360 and APLSY weorkspaces under 0S/VS1 or
05/VS2), and APLDVDOS (convert APL/360 and AFLSV workspaces
under DOS/VS).

UNDER TS0: The executor, translator, interpreter, and shared
storage manager object modules arz link-edited and loaded as one
load module with the name VSAFL.

UNDER VSPC: The executor (which includes the auxiliary
processors), translator, and interpreter object modules are
link-edited and loaded as one load module.

Flow of Control

Flow of control among VS APL modules is determined by the VS APL
scurce statements received at tha terminal or contained within
the workspace as function definitions that are to be executed.

The major flow of communication betueen components is shown in

Figure 1. The flow of communication to the auxiliary processors
and shared storage manager is not applicable. Undar VSPC, where
the auxiliary processors are contained within the executor, the
shared storage manager is a component of the host system (VYSPC).

Licensed Material—Property of IBM
Section 1. Introduction 11

Service
Programs

| J

Host .
System

Session
Manager

A

Executor <t

Auxiliary
Processors

Y

Translator

Appendages

A

I'xarch

Figure 1.

Microcode

VS APL Processor Communication Overview

Shared
Storage
Munager

Licensed Material—Property of IBM

12 VS APL

Program Logic

OPERATIONAL CONSIDERATIONS

bata set Information

Installation

IMN CICS/VS: For DQS/VS, the executor modules reside in the
system or private core image library: for 03/YS1l. they rezidea in
LINKLIB or in a CICS/VS load libary: for DS5/7VY52, thoy rexside in
LPALIB or in a CICS/VS load libary. User workspaces reside in
the APLLIB VSAM entry sequenced data set for DOS/YS. 0S/VS51., and
0sS/zvs2.

IN CMS: In CMS, VS APL modules, files, and workspaces exist as
individual files on YM mini-disks. If VS AFL is used in a
discontiguous shared secgment (DCSS), then the module images also
resicde in the (P system storage.

IN TSDO: Load modules can reside in LPALIB or in another load
libary. User workspaces reside in sequential (B5AM) cnata sots.

IN VSPC: The processor rasides in the VS system library;: in
057VS1 1t resides on the SYS1.LIHKLIB librery; in 05/VYS2 it
rasides in the SYS1.LFALIB library. User uorkspaces reside on
the SYSLIB2 VSAM entry seauenced data set (0S/VS) and 05/VS2).

VS APL under CMS, CICS/VS, TS0, or VYSPFC is installed by standard
cperating system installation tools. These are S!P (for CS/VS
systems), MSHP (for DOS5/VS systems), and PLC (for CNS systems).

control Information

SYSTEH CONFIGURATINN

UNRER CICS/VS: The YS AFL processer is started either from a
terminal or from anothoer transoction.

UYDER CV3: The YS AFL processor is entered by moans of & command
given from the terminal or from on EXEC procedure. The APL
initialization routine, after analyzing the comtand parc-ctars,
uses a CMS EXEC calied APLEXIT to estoblicsh the APL envircnmeant,
APLEX1T EXEC i5 invoked again at termination.

UMDER TSO: The VS APL processor is started by a TS0 coruand
procassaor invoked by entering its name (APL) throuch the
terminal or frem a CLIST.

UNDER VSPC: The VS APL processor is started at user logon time
by the YSPC online progrem if the user's profile specifies YS
APL, or by the "ENTER AFL"™ command issued at a later time during
the user's session,

Processors

UNDER CICS/VS: VS APL operates on all compatible processors
supported by CILS/YS undar DOS/YS, 05/7VS1, or IYS,

UMDER CNS: VS APL operates on all compatible processors
supported by CMS under the Virtual Machine Facilitys/370
(Vi1r370).

UMDER TS0: VS APL operates on all compmatible processors
supportac by TSO under the MVUS operating aystem,

UNHDER VIPC: VS APL orerates on all comratible processors
supparted by VSPC undsr 0S5/YS1 or MVS,

Licensed Material—Property of IBM
Saztion 1. Introduc+tion 13

Access Methods

UNDER CICS/VS: VSAM and SAM are the only required access
methods, although access to ISAM files through the CICS/VS
interface is also supported. VSAM requirements include control
interval processing as well as essentially all of the VSAM
support available under CICS/VS.

UNDER CMS: The standard CMS file access macros are used to
access CMS files. Access to VS5AM is also supported. For a

description of these macros see IBM Virtual Machine
Facilitys/370: CP Command Refarence for General Users.

UNDER T7S50: VS APL employs BSAM, BPAM, VSAM, QSAM, and BDAM files
for APL applications.

UNDER VSPC: VS APL uses the YSPC library management function,
based on the Virtual Storage Access Method (VSAM), for all
library support. It supports all DASD devices supported by VSAM.
Auxiliary processors may also provide other access method
support.

Terminals

Refer to the following manuals for a description of the
terminals supported under VS APL:

® VS APL for CICS/VS: Terminal User's Guide

° VS APL for CMS: Termipal User's Guide

° VS APL_ for TS0: Terminal User's Guide

o VS APL for VSPC: Terminal User's Guide

supervisor service Calls

UNDER CICS/VS: Most APL supervisor services are requested
through CICS/VS interfaces. VSAM control interval processing is
performed using operating system services directly. In some
cases, VS APL uses CICS/VS control blocks and macros that are
not a part of the CICS/VS external interface.

UNDER CMS: The VS APL executor routines issue CP and CMS
commands; CMS macros, such as DMSFREE and DMSFRET; and simulated
0S macros, such as WAIT, POST, STIMER, and STAX. The executor
also makes use of some CMS routines whose address constants are
found in the CMS NUCON macro. Hexadecimal location 440 in the
CMS NUCON macro is reserved for a pointer to the VS APL global
table (GLBLTABL).

UNDER T50: VS APL makes use of the services described in A Guide
to Writing a Terminal Monitor and Program Command Processor. The
primary TS0 services used are DAIR and TGET/TPUT. MVS operating

system services are 8lso used.

UNDER VSPC: VS APL makes use of the service calls provided
through the defined foraground interface to VSPC. These calls
are described in "Method of Operations" (Diagram 1.1:
"Communication with VSPC"),

censed Material—Property of IBM

Li
14 VS APL Program logic

C

ERROR_HANDLING

customer Information Centrol System (CICS/VS)

conversational

UNDER CICS/VS: The integrity of the VS APL user's variables and
functions is protected by the VS APL executor itself. Errors of
a single user or program errors within a processor cannot
interfere with another user. VS APL executor and interpreter
routines operate in problem program state.

VS APL under CICS/VS provides an internal dump facility for the
user's workspace and the areas assecciated with it. A dump is
requested automatically by the VS APL processor to provide
information about certain types of processor-related system
errors.

VS APL under CICS/VS intercepts both processor pace faults and
program checks. Program checks are passcd back to the processor
to take appropriate action and to issue appropriate diagnostic
and error messages.

Monitor system (CHS)

UMNDER Ci'S: The integrity of VS APL is protected by the Virtual
Machine Facilitys370 (VM/7370), CMS, and the VS APL executor
routines. VI/370 ensures that no errors of a single user and no
errors of the VS APL interpreter or executor routines can affect
any other user.

VS APL executor and interpreter routines crerate in the virtual
supervisor state. The executor routines providae their cun
storaae protection as well as data protecticn for
non—interpreter routines. Fragran checks are intercepted by the
VS AFL executor routines and passed back to the intorpreter
through the definaed interface. This allows the interpreter to
issue appropriate diagnostic and error messages.

VS APL executor routines check VM/7370 system messagaes and return
codes after issuing system service requests.

A STAE exit is provided to allow dumping of storage for problem
detarmination. The STAE exit stops the virtual machine so that
tha user con enter CP commands to display storage and help
isolaote problems.

For noncatastrorhic errors, diagnostic information is printed at
the user's terminal and the active workspace is cleared.

Time Sharing Option (TS0)

UNTER T50: The integrity of VS APL is protected by both the
Multiple Virtual Storage (MVS) and the VS APL executor routines.
MVS ensures thot no errors of a sinzle user and no errors of the
VS APL interpreter or executor routines can affect any other
user.

VS AFL emplcys ESTAE, SPIE, and ATTACH uith the ESTAI option to
gain control when MVS detects an error. In addition, the
auxiliary processors set up the DCB ABREND exits. Program checks
are intercented by the VS APL executor routines and passed back
to the interpreter through the defined interface; this allous
the interpreter to issue appropriate diagnostic and error
messages.

The basic thrust of error recovery in VS APL under TS0 is to get
the active workspmace saved in the CONTIMNUE uorkspace, and to
cause TS0 to reinvoke a clean copy of V5 APL which will in turn
reload the CONTINUE workspace and continua processing. Thore are
tuo principal kinds of abends: 1) X22 and X3E abends brought
about by operator cancel, timing, TCAM error, etc. In these

Licensad Material—Property of IBM
Section 1. Introduction 15

instances, the CONTINUE workspace is saved nor@allv; 2) all
other abends constitute error situations in which the CONTINUE
workspace is marked nonloadable.

VS Personal Computing (VSPC)

L
i

i
6

UNDER VSPC: The integrity of the VS APL user's variables and
functions is protected by VSPC itself. Errors of a single user
or program errors wWwithin a processor cannot interfere with
another user.

VSPC provides an internal dump facility for the user's workspace
and the areas associated with it. A dump is requested
automatically by the VS APL processor to provide information
about certain types of processor-related system errors.

VSPC intercepts both processor page faults and program checks.
Program checks are passed back to the processor through the
daefined intarface to allow the processor to take appropriate
action and issue appropriate diagnostic and error messages.

COMPONENT AND MODULE NAMING CONVENTIOMS

Object modules are identified by 5~ to 8-character names that
describe them by component and function.

Object module names, except for the shared storage manager,
conform to the following convention:

. A 3-character prefix of: APL

® Followed by a component identification, described in
Figure 2.

. Followed by an abbreviation identifying the function of the
module.

Entry point names conform to the same convention as module .
names, except that, in some cases, the 3-character 'APL' prefix
is omitted.

The conversion modules for D0OS/VS differ from those for 0S/VS.
These modules are functionally the same, but the DOS/VS modules
are designed to interface with D0S5/VS and the 05/VS modules with
0S/VS. The 05/VS modules begin with the characters APLO; the
DOS/VS modules begin with the characters APLD. To avoid
unnecessary repetition in this publication, only the 05/VS names
are used in this publication wherever possible. Unless
explicitly noted otherwise, substitute the prefix APLD for APLO
when using this publication for DOS/VS VS APL.

censed Material—Property of IBM
VS APL Program Logic

J

Identification corponent

A Session Manager

c Conversion Program (CMS and TSO0—APL/360 and APLSV
workspaces)

D Conversion Program (D0OS/VS)
Interpreter

IA Appendage Routines

IE Exarch

K Executor (CICS/VS) with shared storage manager, and
library service program

KD DOS/7VS system-dependent code (CICS5/VS DOS/VS)

KV 05/VS system-dependent code (CIC5/VS 0S/VS)

0 Conversion Program (05/VS1 and 0S5/VS52)

P Executor (VSPC) with auxiliary processors

Processor Number (nnn) Auxiliary Processors (CMS and TS0)

Processor Number (nnn Auxiliary Processors (CICS/VS)
folloiied by K)

Processor Number (nnn) Auxiliary Processors (Common)

Q Conversion Program (CMS—APL/CMS workspaces)
SC Executor (CMS)
SH CMS and TS0 shared storage manager
X Common Services
XA Common AP Services
XB Common Abend Services
XD Common Dump Services
XF File System Services
XG GDDM Interface Services
XM Main Storage Services
XP APL Print Services
XS Stack Management Services
XT Translate Services
XV Conversion Services
XW Wait Post Services
YU Executor (T7S0)

Figure 2. Object Module Component Name Identification

Licensed Material—Property of IBM
Section 1. Introduction 17

SECTION 2.

METHOD OF OPERATION

In this section, Hierarchy Input Processing Qutput (HIPO)
diagrams are used to describe the functions of VS APL.

HIPO is a method for graphically describing the internal
functions of a program without regard for the way in which the
functions are implemented or for the physical orgcanization of
the program. A HIPO package contains a visual table of
componants and a set of method of operation diagrams
illustrating the functions of a program, in this case, the VS
APL processor. The visual table of components (see Figure 3)
shows tha contents of each diagram and how it is related to the
other diagrams in the set. The graphic symbols used in Melnod of
Operation diagrams are identified in Figure %. The method of
operation diagroms are grouped by function.

The mothod of operation diagrams themselves are divided into
four distinct arzas of information: input, process, output, and
extended description (diagram notes). The input information, on
the left sicde of the diagram, describes the input to the process
cr function being described. The process information, the
central portion of the diacram, describes prccesses that make up
the function. The output information, on the right side of the
diagram, illustrates the output Trom the process. The extended
description information following the diagram is used to provide
additional detail or to outline how the furction uas
irplemented. This section also contains references to the module
that performs all or part of the function involved, and any
refarences within the remainder of this publication where
additional information ray be found.

Licensed Material—Property of IBM
i8 VS APL Program Logic

(-_ 0.0: VS APL Processor Overvieuw
1.0%: Host System Communication
1.1: Communication with VSPC
1.1.1: Shared Variable Processing (VSPC)
1.2: Communication with CMS
1.2.1: Shared Storage Manager (CMS and T7S0)
1.2.2: Auxiliary Processors (CMS)
1.3: Communication with CICS/VS
1.3.1: Shared Storage Manager (CICS/VS)
1.3.2: Auxiliary Processors (CICS/VS)
1.4: Communication with TSO
‘;' 1.4.1: Auxiliary Processors (TS0)
1.4.2%: Shared Storage Manager (T50) (see Diagram 1.2.1)
2.0: Input Recognition, Translation, and Routing
3.0: Function Definition and Editing
3.1 Function Editing
3.2: Function Definition
(.r 4.0: Statement Execution
4.1: Statement Scan, Syntax Analysis, and Execution
4.1.1: Function Call and Function Exit Processing
4.1.2: Branch Processing
4.1.3: Primitive Function Processing
4.1.4: Miscellaneous Processing
4.1.5: Shared Object Processing
L 4.2: Return Code Processing
5.0: System Command Execution
6.0: Workspace Conversion
*¥ No diagram is provided for this componant.

Figure 3 (Part 1 of 2). Table of Components

Licensed Material—Property of IBM
Section 2. Method of Operation 19

7.0: CICS/VS Library Service Program
8.0%: Host-Independent Executor Services
8.1%: APL GDDM Interface Services Subcomponent (GDDX)
8.2: VS APL Session Manager Executor Scheduler
8.2.1: VS APL Session Manager Executor Processor
8.3%: Common Auxiliary Processor Services
8.3.1: Common Auxiliary Processor Services linder CM5 & TS0
8.3.2: Common Auxiliary Processor Services Under CICS/VS
8.4%: Common Auxiliary Processors

8.4.1: VS APL Session Manager Command auxiliary processor
for CICSs/VS, CMS, and TS0

8.4.2: GDDM Auxiliary Processor for CICS/VS, CMS, and 7SO

8.4.3: APL Data File Auxiliary Processor for CMS and 750

8.4.4%: VS5AM Auxiliary Processor (see Diagram 1.2.2 or 1.4.2)
¥ No diagram is provided for this componant.

Figure 3 (Part 2 of 2). TJable of Components

Licensed Material—Property of IBM
20 VS APL Program Logic

Data Reference, Movement, or Modification
Control Flow

Terminal

Disk

—>
>
/_
N

Listing or Document

Card Deck

Off-chart Connector for a Change of Control Flow
to Diagram 2.0

Shared Storage Manager (CMS and TSO)

‘ Change of Control Flow to and from “Communication
1.2.1 from CMS” for a Specific Function Detailed on Diagram 1.2.1

Figure 4. Graphic Symbols Used in Method of Operation Diagrams

Licensed Material—Property of IBM
Section 2. Method of Operation 21

I

AGRAM 0.0: VS APL PROCESSOR OVERVIE

Lrom CICS/VS, CMS, TSO, or VS

— |

Workspace

>

>

Library

Source Workspaces

J>

> ¢. Execute system

1. Initialize workspace.

1.1,

1.2

2. Recognize and route
input state ments.

0 2.0

a. Define and edit

VS APL functions. —

< 3.0

b. Execute VS APL

expressions. [

4.0

—]

Workspace

commands. —

“ 5.0

JOFF or CONTINUE
command:

To CICS/VS, CMS,

TSO, or VSPC

3. Convert VS APL

Library

workspaces. [

6.C

V.S APL Workspaces

Licensed Material—Property of IBM
VS APL Program Logic

22

Notes for Diaaram 0.0
EXECUTOR

1.

When control is received from the
host system (VSPC, CICSs/VS, TS0,
or CMS) the workspace is
initialized.

TRANSLATOR

2.

Input is received from the
terminal. The contents of the
input line and the status of the
workspace determine the
destination of the line.
[Executor]

a. If the first nonblank
character in the line is a
del, or if the workspace is
in function edit status, the
line is routed to the
function definition and edit
routines.

b. If the workspace is not in
function edit status, and the
first nonblank character of
the line is neither a del nor
a right parenthesis, the line
is routed to the statement
execution routines. .
[Interpreter]

c. If the uorkspace is not in
function edit status, and the
first nonblank character of
the line is a right
parenthesis, the line is
routed to the command
processor routines.

The above process is continued
until an)OFF or)CONTINUE
command is input. The control is
returned to the host system.

The conversion program, run as a
batch job, converts source
workspaces (APL/360, APLSV, or
APL/CMS) to VS APL workspaces.

Licensed Material—Property of IBM
Saection 2. Method of Operation 23

AGRA H MMUNICATION WITH VSPC

From VSPC
Register |
1. Initialize PTH and
workspace fields. | > Register 11
PTC
PFCRQCOND
H
FTCASYN(T
PTHYYCOD
PTCWSPAD
T PTHSRCOD
- PTHQVAR
Workspace
PTHWIDTH
s [— =
PTHACONO
SFN
PTHASYNC
PTHUSTAT
SRN PTHMICRO
ECA
WSM
[wsv] e
I —
Register 1
' I _> 2. Handle asynchronous
- events, as follows: [

- PTC I PTH
PTCRQCOD a. Attention | PTHATTN
PTCASYNC ' | PTHDATTN

- b. Double attention [
PTCWSPAD _ | | PTHFOFF
c. Force off [I] PTHCURSR
PTCWSPAD

_— d. Cancel output [PTHNOOUT

D | WSH
WSH - From APLFXIIM e. Program check [> :]

WSM
Register 0 —:> WSMPCPSW
ADDR L > 3. Handle service WSMREGSV
requests. [
WSMSURGS
a. Non shared variable requests
WSM
Execution Routines :> WSMREGSV
— WSMNSI
Register 1 WSMASYNC
APLIXIIM . b. Shared variables WSH
Address : :">
o .
Processing PTH
PTC

Licensed Material—Property of IBM
246 VS APL Program Logic

Notes for Diagram 1.1
APLPCOEX

1.

For initialization, the executor
receives a default size workspace
from VSPC. The length is
indicated in PTCWSLEN and pointed
to by PTCWSPAD. The executor
takes the top 2K bytes for its
own use and always informs the
interpreter that the workspace is
after this 2K byte area.
[APLPCENT]

The executor, within the 2K byte
block, sets fields in the
executor control area (ECA); that
is, it initializes the ECADUMP
field to 0, sets the ECASTAT
field to indicate that the
executor has been called, sets
the ECAPTC field to the address
of the PTC area, and initializes
ECAMICRO for microcode assist.

The executor then initializes
fields of the PTH and sets the
WSMPTHPT field to the address of
the PTH., It initializes
WSMPCPSW=0. It then places the
service request YYON in PTHYYCOD
and passes control to the
interpreter at its entry point
APLIINIT.

For asynchronous event handling,
the exccutor receives an
indication from VSPC, determines
the type of event, and processes
it as follows:

a. Attention—sets PTHATTN on,
except if already on, then
sets PTHDATTN on, sets type
element to zero position,
PTHCURSR field to 0, and

"WSHPFLGL.WSHPATN to 1. Sets
WSMASYNC fields
correspondingly and returns
to VSPC to be dispatched at
the point of interrupt.

b. Double attention—sets type
element to =zz2ro position,
PTHATTN.PTHDATTN bits to 1,
WSHPFLGL .WSHPDATN bit to 1,
and PTHCURSR field to 0. Sets
WSMASYNC fields
correspondingly and returns
to VSPC to be dispatched at
the point of interrupt.

c. Force off—sets PTHFOFF bit
to 1 for logoff by the
interpreter and sets
WSHPFLGL .WSHPSTRM to 1. Sets
WSMASYNC fields
correspondingly and returns
to VSPC to be dispatched at
the point of interrupt.

d. Cancel output—sets PTHNOOUT
on, sets WSMSASYNC fields,
PTHCURSR field to 0, and
returns to VSPC to be
redispatched at the point of
interrupt, with
WSHPFLG1.WSHPCNCL=1.

e. Program check—saves
registers in WSMSURGS field
and PSK in KSHPSWSV field.
For interpreter program
check, registers and the PSW
are moved from the WSHREGSV
and WSHPSWSV fields,
respectively, to the WSMREGSV
and WSMPCPSW fields,
respectively. The program
check is acknowledged
(LISHPFLGL .WSHPPCHK=1), the
YYPRGX command is simulated,
and control is passed to the
APLIINIT routine (the
interpreter). (See Diagram
2.0: "Input Recognition,
Translation, and Routing.")
For microcode assist
initialization error, when
microcode is not installed,
the program check is
acknowledged, the PTHMICRO
bit is set, and control is
returned to VSPC for
redispatch at the point of
interrupt. For executor
program checks or program
check loops in the
interpreter, messages are
issued, a dump is taken, and
the ENDR error exit is
taken.

APLPFXIM

3.

Section 2.

For service requests,
addressability to the PTH, WSH,
SFN, and ECA is set up by backing
up 2K bytes from the address of
the WSM. The interpreter's
registers are saved (except for
YYDUMP request), the address of
the next sequential instruction
is saved in WSMNSI, and the
request code is entered in the
PTHYYCOD field. Control is then
passed to the appropriate request
handling routine. [APLFXIIM]

The execution routine returns
with the service request return
code set in PTHSRCOD. Control is
passed to the interpreter at its
entry point, APLIINIT, where the
interpreter's environment is
restored and control is returned
to the instruction following the
service request.

For a description of the service
request codes and the names of
the VSPC executor routines that
handle them, see "Values,
Parameters, and Return Codes for

Licensed Material—Property of IBM
Method of Operation 25

Service Requests™ under "Service

‘Request Calls™ in "Section 6.

Diagnostic Aids.™

For shared variable processing,
control is passed to APLPSHVR to
route the request to the VSPC

Licensed Material—Property of IBM

26

VS APL Program Logic

shared storage manager or to the
internal auxiliary processors.
(See Diagram 1.1.1: "Shared
Variable Processing (VSPC)."™)

DIAGRAM 1.1.1: SHARED VARIABLE PROCESSING (VSPC)

Frem Duagram 1.0

WSMSVLRQ
||-(-\~ | 1. It signon, issue VSPC

servive request. [> WSHPARMI1
2. I signoft”

APFT a Terminate connections a8 IYYRCY
;__J.___ with internal auxiliary I;__]

Processors,

b, Issuc VSPC service
request. L

WSMSVLRQ

‘v

It query. issue VSPC

service request. [—> WsHPARMI
|S('\' ! I> 4. For other requests:
APFT a. It partner is not un i PRIV
[l | - internal auxiliary [—-—]
processor. issue VSPC

service request, [

WSMSVLRQ

b, It retraction, issue VSPC
service request. [

. It ofter, build APFT entry
and issue VSPC service [___'__ APFT

. If ser access control. WSMSVLRQ
update SCV. SCV
WSMSVLRQ
SOV =T e. It specify. reference, or
|—__J copy. transfer data
wSM between file and
M_ . workspace for file-
handling auxiliary
APFT processors. For FSM

and GDDM auxiliary
processors, data is
— transferred between
"[Lh""‘_'___l—_— the workspace and the
For FSM only AP’s work area. [:> WSMSVLRQ

FSM work area]

WSM

o Diagram 1.1 :
. > |Iiuffer I

APFT

S = E—

[

:> [1.0 butfer |

For FSM only

VI FSM work area I

For GDDM only

- GDC work area

Licensed Material—Property of IBM
Section 2. Method of Operation 27

Notes for Diagram 1.1.1

Return and reason codes for each
requast are passed to the interpreter
in PTHSRCOD.

APLPSHVR

1.

For sign-on, the user's ID,
shared variable quota, and space
quota are placed in the PCV. A
VSPC service request SSON is
issued. [PCSONJ

APLPAPAB

2.

For sign-off, each active APFT
entry is cleared. If the VSAM
file is open, a VSPC service
request VCLOSE is issued. If FSM
was active, a TFSCRN EXIT request
is issued. If GDDM was active,
GDDMSOFF is called. [APLPAPSF]

APLPSHVR

The user's ID is placed in the PCV,
and a VSPC service request SSOF is
issued. [PCSOFF]

APLPSHVR

3.

For a query, the user's ID is
placed in the SCV, and a VSPC
service request SQRY is issued.
[PCSQUERY]

APLPSHVR

4.

For set access control, copy,
reference, retract, or specify,
the APFT entries are searched to
determine if the partner is an
internal auxiliary processor (one
distributed as part of VS APL).
[INTAPCHK]

For offer, SCVPART in the SCV is
checked to determine if the offer
is to an internal auxiliary
processor. [PCSOFFER]

8. If the partner is not an
internal auxiliary procassor,
the user's ID is placed in

the SCV, and the appropriate

VSPC service request is
issued. [PCSACC, PCSCOPY,
PCSREF, PCSRET, PCSSPEC,
PCSOFFER]

APLPAPAB

b. Retraction when partner is an
internal auxiliary processor.
If varlable CTL: 1If file is
open, a VSPC service request
VCLOSE or DCLOSE is issued;
for FSM muxilisry processor,
a TFSCRN EXIT is issued; for
GDDM auxiliary processor,
GDDMCRET is called, and if no
more paths remain, then

Licensed Material—Property of IBM

28

VS APL Program Logic

GDDMSOFF is also called.

An SCV is built, including
flag SCVFDOFR, which
indicates that both partners
have retracted, and a VSPC
service request SRET is
issued. The APFT entry is
updated if the other variable
for a connection is active;
the entry is cleared if it is
not. [APLPAPRT]

APLPAPAB

c. Offer to internal auxiliary
processor. The APFT entries
are scarched to determine if
this is a new connection or
the second variable for an
existing connection.
Accordingly, a new APFT entry
is built, or the existing
APFT entry is modified. For
offers to the FSM internal
auxiliary processor, only one
connection is allowed at any
one time. For offers to the
GDDM internal auxiliary
processor, a maximum of seven
connections are allowed at
any one time. In addition,
concurrent sharing with the
FSM and GDDM internal
auxiliary processors is not
allowed. An SCV is built,
including flag SCVFDOFR,
which indicates that both
partners have offered, and a
VSPC service request SOFR is
issued. [APLPAPQOF]

For the VSPC command and
alternate input auxiliary
processors, the initial value
of the variable (if any) is
checked and the return code
is set in the APFT (in case
the user references the
variable).

APLPAPAB

d. Set access control when
partner is an internal
auxiliary processor. SCVACV
in the SCV is set to binary
*1111°'. [APLPAPAC]

APLPAPAB

e. Copy when partner is an
internal auxiliary processor.
The return and reason codes
that indicate that the latest
value is in the workspace are
placed in PTHSRCOD.
[APLPAPPR]

Reference or specify when
partner is an internal
auxiliary processor (finite
state machine logic, driven

by APFIFO action stack in
APFT): If an interlock
exists, a VSPC service
request TWAIT is issued.
[APLPAPPR]

User specifies the CTL: When
partner is file~-handling
auxiliary processor, and the
VSPC file is open for
sequential input, then if the
value is null, a VSPC service
request DCLOSE is issued;
otherwise, the value is
ignored. [APUSCTL]

If the APFIFQ action stack in
the APFT contains a pending
"AP references CTL" action
(the usual case), the finite
state machine logic in
APLPAPPR will proceed to call
the APARCTL subroutine
immediately after the APUSCTL
subroutine. The APARCTL
subroutine contains the
entire processing logic of
the VSPC command, alternate
input, and storage display
auxiliary processors. For the
VSPC command auxiliary
processor, the VSPC service
request WCMD is issued; for
the alternate input and
storage display auxiliary
processors, the processing
consists of analyzing the
request in the user's
variable and then copying
data from one place to
another within the workspace.
For the other internal
auxiliary processors, the
APARCTL subroutine analyzes
the user's request and calls
the appropriate routine to
process it. Routines in
module APLPAPCD are called to
handle requests for the APL
data file, EBCDIC data file
and VSAM auxiliary
processors. Routines in
module APLPAPFS are called to
handle requests for the FSM
auxiliary processor. The
routine GDDMRCTL in module
APLPAPGC is called to handle
requests for the GDDM
auxiliary processor.

APLPAPCD

User specifies CTL and VSPC
file is open for sequential
output. If the value is null,
a VSPC service request DCLOSE
is issued. Otherwise, data is
transferred from the
workspace to the I/0 buffer,
and a VSPC service request
DWRITE is issued. [PWRITE]

User specifies CTL and the
VSPC file is open for direct
input or update. If the value
is null, VSPC service request
DCLOSE is issued; otherwise,
the value is examined to
determine whether the request
is to read or write. [APIO0]

If the request is to read, a
VSPC service request DREAD
for specified record is
issued. Data is left in I/0
buffer until the user
references DAT. [PRDDBIR]

If request is to write, datea
is transferred from the
workspace to the I/0 buffer,
and a VSPC service request
DWRITE for a specified record
is issued. [PWRITE]

User specifies CTL and the
VSPC file is not open. An
appropriate VSPC service
request corresponding to the
user's request is issued.
[APCREATE, APFILSIE, AFSHARE,
APPASSWD, APOPEN, APDROP]

User specifies CTL and
partner is VSAM file
auxiliary processor. An
appropriate VSFC service
request corresponding to the
user's request is issued. If
the request is to write, data
is first transferred from the
workspace to the I/0 buffer.
If the reauesst is to reod,
the data is left in the I/0
buffer until the user
references DAT. [APVIO]

User references CTL and the
VSPC file is open for
sequential input. VSPC
service raequest DREAD is
issued, and dota is
transferred from the 1I/0
buffer to the workspace.
[PRDSEQ]

APLPAPFS

User specifies CTL and
partner is FSM auxiliary
processor. If not already
obtained in previous
connections, FSM auxiliary
processor obtains storage out
of user's VSPC workspace
quota, size depending on
number and characteristics of
FSM fields defined, for use
as FSM work area. [FSMFORMT]

If user issues request to
read from display screen,
VSPC TSFSM READ service
request is issued. For read
and read-format requests,

Licensed Material—Property of IBM
Section 2. Method of Operation 29

data is transferred to
workspace when user next
references DAT. [FSMREAD,
FSMGET, FSMRFORM]

If user issues a request to
write to display screen, data
is transferred to FSM work
area and VSPC TSFSM WRITE
service request is issued.
[FSMWRITE]

If user issues a request to
format, modify field
characteristics, modify field
intensity, set cursor
position, or sound alarm, the
request data is recorded in
FSM work area to be
communicated to VSPC at the
next display screen read or
write request. [FSIFORMT,
FSITSTYPE, FSMMINT, FSMSETC,
FSMBUZZ]

If request is to make hard
copy of display screen dota,
VSPC TSFSM. PAGE service
request is issued. [FSMHCOPY]

APLPAPGC

If this is the first
invocation of GDCMRCTL for
this poth (connection via a
CTL-DAT pair), the GDDXINIT
routine in module APLPAPGD is
called to initialize the
path.

If DAT variable was specified
by the user, it is
referenced; the CTL variable.
The CTL variable specified by
the user is analyzed, and the
appropriate series of GDDM
requests are built. The GDDX
routine in module APLPAPGD is
called to issue each GDDM
request that is built. The
output parameters from all
the GDDM requests are
accumulated and formatted
into numeric and character
output buffers, which are
later transferred into the
user's workspace by the
GDDMSCTL and GDDMSDAT
routines (in module
APLPAPGB), respectively.
Certain GDDM auxiliary
processor requests are
internal to the auxiliary
processor and do not involve
issuing @ GDDM request; these
internal requests are handled
entirely within the GDDMRCTL
routine. [GDDMRCTL]

Licensed Material—Property of IBM
VS APL Program Logic

APLPAPGD

A path control block index is
allocated. If this is the
first path to be allocated,
GDDM is initialized by
issuing SPINIT and FSQERR
requests to GDDM via the VSPC
service request TGDDM.
[GDDXINIT]

Request built by the caller
is analyzed for "pass
through" or "special case"
processing. Special
processing is performed for
page, query error, and
hardcopy requests. If the
request built by the caller
requires a "page select”
operation, then a GDDM FSPSEL
request is chained to the
front of the caller's
request. The VSPC service
request TGDDM is issued to
pass the required request(s)
to GDDM, and the VSPC return
and reason codes are analyzed
and converted to standard
GDDM return and reason codes.
[GDDX]

APLPAPAB

User references CTL (all
other cases). Return and
reason codes from prior
request are transferred to
the workspace. For GDDi1
auxiliary processor the
GDDMSCTL routine 1s called if
return code vector buffer
exists. [APURCTL]

User specifies DAT. Event is
recorded in APFT entry. HNo
further action is taken until
the user issues a write
request. [APUSDAT]

User references DAT. Data
from prior read request is
transferred from the I/0
buffer or FSM work area to
the workspace. For GDDM
auxiliary processor, the
GDDMSDAT routine is called.
[APURDAT]

APLPAFGB

CTL variable data in the GDDM
numeric output buffer is copied
into the user's workspace and is
converted to VS APL "variable
descriptor™ format in the
process. The GDDM numeric output
buffer is deallocated. [GDDMSCTL]

DAT variable data in the GDDM
character output buffer is copied
into the user's workspace and is
converted to VS APL "variable
descriptor” format in the
process. The GDDM character
output buffer is deallocated.

[GDDMSDAT]

Licensed Material—Property of IBM
Section 2. Method of Operation 31

DIAGRAM 1.2: COMMUNICATYON WITH CMS

From OCMS

)

I

LIB Tabie

Addresses

1. Load APL.

2. Initishze lor
communicition with
CMS, as follows:

a. Build executor

global table, [

b. Acguire workspace

GLBLTABL

Global Table

storage. |

>! Workspace '

Adltention
Handler

I'rogrim Chevk
Handler

> c. Build library table. [

d. Initialize executor

Library Table in
Storage

[Y

services L

Continue WS

ABI'ND {landler —>

. Initialize for
asynchronous events

o

> r. Start VS APL

Vi SPIHE eait

r

PERTERM

PrHYYCOD

interpreter [

To hngrpete:
3. Handle asynchronous
events. as follows:

Via S1AN

r

PERTI'RM

> a. Program

interrupl

To Interpicin

PTHASYNC Via STAL enit

r

Irom interpreter

¥

YYCODY

Workspace

PARMO

> b. Attention signul

[CMS o RRTS

c. Abnonma!
termination
[ONIS

4. Handle service

requests. |

a. Nonshared
variable requests.

0 Execution Routines

"b. Shured variables

Shared Storage Manager

1.2.1

TeInrerpreter

Licensed Material—Property of IBM
32 VS APL Program Logic

FTHSRCOD

GLBLTABL

I

Global Table

Address of
Execution
Routine

Workspace

WSMRFEGSV
WSMNSI
PERTERM
PTHY YCOD
PTHSRCOD

Notes for Diagram 1.2
APLSCINI

1.

A;fempt to locate a VM DCSS for
APL.

If a suitable DCSS is found, load
it using Diagnose 64, and
transfer to it.

If DCSS is not to be used, then
perform a LOADMOD VSAPL and
transfer to it.

APLSCINI

2.

The initialization process
(module APLSCINI) performs the
following functions at VS APL
startup:

a. Gets space for and
initializes the executor
global table. This table
(mapped by the APLCMSGL
macro) contains the PERTERM
terminal buffers and key
switches and pointers. It is
always pointed to from
location X'440' (GLBLTABL).

Scans the startup parameter
list. Loads text files for
any auxiliary processors.

After the parameter list is
scanned, the APLEXIT user
EXEC is invoked to establish
the VM environment.

Sets STAE and STAX exits.

b. Allocates space for shared
memory, auxiliary processor
work areas (512 bytes per
auxiliary processor), and the
"workspace. Gives back free
space to CMS.

c. Reads the library table file
(APLIBTAB APLIBTAB) and
builds the incore library
table.

Determines if VS APL
microcode assist is to be
used.

Calls the shared storage
manager to initialize any
auxiliary processors.

Initializes pointers and keys
in the incore workspace.

d. Initializes executor services
for the stack manager, the
file_subsystem, and the
session manager.

Determines if the CONTINUE
workspace is to be
auto~-loaded.

Determines if terminal is
display or typewriter and
initializes accordingly.

e. Sets SPIE exit.

Places service request YYON
in PTHYYCOD and passes
control to SCAPL. From there,
control is passed to the
interpreter at its entry
point APLIINIT.

APLSCERR, APLSCTYP

3.

Asynchronous handling applies to
program checks, attention exits,
and abends.

Program checks (SPIE exit):
[SCSPIE]

These are handled in module
APLSCERR, routine SCSPIE (except
during VS APL startup, when it is
handled by routine SPIEXIT in
module APLSCINI).

Routine SCSPIE does the
following:

L Saves the program check
registers and PSW in WSMSURGS
and WSMSUPSHW (in the
workspace).

° If the program check occurred
in supervisor code, prints
messages 56315, 56331, S6341,
$6351, and abnormally
terminates VS APL with the
user code 1xx, where xx is
the program check code in
decimal.

o If the program check occurred
in the shared storage manager
or an auxiliary processor,
prints message APL1141 and
handles the check as an
interpreter program check.

. If the program check occurred
in the interpreter, checks to
see if the interpreter is in
a program check loop (prints
message APL1061I and ABEND if
so). If not in & loop, moves
the registers from WSMSURGS
to WSMREGSY and the PSW from
WSMSUPSW to WSMPCPSW and
WSMNSI.

Licensed Material—Property of IBM
Section 2.

Method of Operation 33

If a program check loop occurs,
the registers and the PSW for the
next-to-last program check will
be in WSMREGSY and WSMPCPSW/NSI
and the registers and PSW for the
last fatal program check will be
in WSMSURGS and WSMSUPSHW.

Attention exits (STAX exit):

The STAC exit is in APLXGCAT.
APLXGCAT saves information about
the attention and transfers
control to the address in
PTXATTN. This will point either
to 2 session manager routine or
to SCATTN.

Asynchronous interrupts for the
active workspace are handled by
routine SCATTN in module
APLSCTYP, which does the

following:

. Sets attention bit(s) in the
PERTERM.

. If attention is pressed

during wait for message
response, completion of time
delay, or shared variable
request, posts an ECB.

. If attention is pressed
during terminal output and/or
function execution, returns
the print element to position

. Returns to point of
interrupt.

Abends (STAE exit):

There are two types of STAE
exits., The subsystem STAE exit
is established by processors
calling APLXBSXT (in APLSCSVI).
When a subsequent abend occurs,
the subsystem exit (BSXTSTXE)
schedules a retry routine and
then passes control to it with
g;ggnostic information in the

If no exit has been requested,
message APLS620E is issued, and
the processor is marked
nondispatchable.

These are handled in module
APLSCERR by routine SCSTAE, which
does the following:

a. Prints messages S644E and
5632D.

b. Address stops the virtual
machine to allow the user to
dump storage and do problem

Licensed Material—Property of IBM

VS APL Program Logic

determination in CP mode. At
the time of the address stop,
the following information is
relevant:

Reg. Contents

R2 Contains the address of
the 104-byte STAE work
area.

R8 Contains the ABEND
code.

R10 Contains the address of
the VS APL supervisor
global table.

R11 Contains the address of
the VS APL incore
workspace slot. (If the
ABEND code is 1xx, then
the workspace has tha
program-check PSW and
registers.)

APLSCFXI

4.

Service request handling:®
[routine APLFXIIM]

Service requests allow the
interpreter to interact with its
environment (for example, type a
line, load a wnrkspace). Any
module in the interpreter may
issue a service request. The
linkage is:

L R1,=V(APLFXIIM)
BALR RO,R1
DC AL2(YYCODE)

Routine APLFXIIM is in executor
module APLSCFXI. It does the
following for every service
request:

a. Saves the general registers
in WSMREGSY (except for
YYDUMP, for which we want to
preserve the contents of
WSMREGSV), the floating
registers in WSMREGFO, F2,
F4, Fé, and the address of
the caller's resume point
(RO+2) in WSMNSI. (All WSM
fields are in the workspace.)

b. Changes the protect key in
the PSHW from X'D' (the
interpreter protect key) to
X'E' (the executor keyl.

Changes the storage key of
the first 4K bytes of the
workspace from key X'D' to
X'E' so the executor can
store data therea.

Adds the processor time used
by the interpreter to an
accumulated-processor-time
field (CMSCPUAC) for the
quad~Al system variable.

Stores the YYCODE (which
determines the type of
request) in the PERTERM
(field PTHYYCOD).

Looks up the request type in
YYTABL (module APLSCFXI) and
gets the address of the
execution routine.

Calls the execution routine
to execute the service
request. The execution
routinea will return with the
service request return code
set in PTHSRCOD.

Updates the WSMASYNC bits in
the workspace to reflect the
latest status of asynchronous
events (for example,
attention).

Changes the storage key of
the first 4K bytes of tha
workspace from X'E' back to
X'D' gso the interpreter can
store data there.

Sets the current time in
CMSHOLDT so that processor
time for the interpreter can
be accumulated for quad-Al.

j. Goes back to interpreter in
PSW key X'D' at its entry
point, APLIINIT. There, the
interpreter's environment is
restored, and control is
returned to the instruction
following the service
request.

For a description of the service
request codes and the names of
the CMS executor routines that
handle them, see "Values,
Parameters, and Return Codes for
Service Requests" under "Service
Request Calls"™ in "Section 6.
Diagnostic Aids."”

For shared variable processing,
control is passed to ASVPSRVC and
then to ASVPSERV to route the
request to the appropriate
routine in the shared storage
manager. (See Diagram 1.2.1:
"Shared Storage Manager.") After
control returns to ASVPSERV, each
auxiliary processor whose wait
has been satisfied receives
control. Control is then returned
to the interpreter.

Licensed Material—Property of IBM
Section 2. Method of Operation 35

DIAGRAM 1.2.1: SHARED STORAGE MANAGE

I'rom ASVPSLERV (CMS): Diagram 1.2

or APLYUSERV (TSO): Diagram 1.4

CMS AND TS0)

Register 0 l

PCV

| From ASVPSERYV

Diagram 1.2

Register 0

S

>
-

SCv

’-—‘ SCVVALUE F

|

VAB

| VABDATA }

-
>
-

SCV

;

Initialize for shared

variable processing. [

. Process shared variable

commands as follows:

PARSON

Register 2

a. Accesscontrol

b. Offer shared

VAB

variahle.

> VABPID)

c. Shared variable

VABACYV
VABACVI
VABFLAGS
VABECEI
VABDATA
VABDSIZE
VABNAMEL

VABNAME

specification r

d. Shared variable

VAB

reference [

e. Query shared

SGV

variable status. [

> f. Retract shared

variable.

Update value of

shared variable. |

SCv

. Terminate shared

SM

variable processing. —

Licensed Material—Property of IBM

36 VS APL Program Logic

PARSON

Notes for Diagram 1.2.1

Return codes from each step are
passed in registers 15 and 0.

APLSHGET

1.

This function occurs as a result
of an explicit request for the
shared variable processor or
implicit request through a shared
variable command. Space is
obtained from shared memory for
the processor control block.
[PRB]

APLSHBPB

The PRBID, PRBSPACQ, PRBVARSQ,
and PRBECB fields of the PRB are
set with data from the processor
control vector. [PCV]

APLSHSON

The count of processors using the
shared variable facility is
updated in the PARSON field of
the sihared memory data area.

2. Shared variable commands are
processed as follows:
APLSHSRD

a. Access control [[JSVC]. The
address of the field in the
VAB data area that
corresponds to the SCV fields
of the offered shared
variable is returned in
register 2.

APLSHACC

The ACV, VABACVY, and SCVACVY
fields of the VAB area are
-set to allow access control.

APLSHGET

b. Offer [[SV0]. Space is
obtained from shared memory
for the variable control
block. {[VAB]

APLSHBVB

Fields of the VAB are set for
initial offer.

APLSHOFR

For counter offer or genaral
offer, the fields are
updated.

c. Specification of a shared
variable. A new value for a
shared variable is processed
as follows:

APLSHSRD

The address of the VAB field
corresponding to the SCV
fields of the shared variable
is returned in register 2.

APLSHPUT

Space used by the previous
value is freed.

APLSHGET

Space required for the new
value is acquired.

APLSCSVI (CMS), APLSHSPC,
APLYUSVI (TSO)

The new value is entered in
the VABDATA field of the VAB.
If necessary, the shared
variable partner is posted.

APLSHSRD

d. Reference. The address of-the
VAB field corresponding to
the SCV fields of the shared
variable is returned in
register 2.

APLSHREF

The latest value of the
variable is moved from shared
memory to the buffer.

APLSCSVI (CMS), APLYUSVI
(Ts0)

If necessary, the shared
variable partner 1s posted.

The storage block for the
data is freed if both
partners of the shared
variable have obtained the
data.

e. Query [0 SVQ). For request for
partner identification and
offer numbers or for variable
names and offer numbers, a
list is constructed in the
buffer whose address is in
the SCVVALUE field. For
request for single variable,
information is entered in the
SCV fields.

APLSHSRD

f. Retract. The address of the
VAB field corresponding to
the SCV fields of the shared
variable is returned in
register 2.

Licensed Material—Property of IBM
Section 2. Method of Operation 37

APLSHRET

SCVFLAGS are updated to
reflect the degree of
coupling.

APLSHSUB

VAB and PRB fields are
updated to reflect
retraction.

APLSHPST

If necessary, the shared
variable partner is posted.

APLSHPUT

Shared memory used by the VAB
is returned.

APLSHSRD

3.

The address of the VAB field
corresponding to the SCV fields
of the shared variable is
returned in register 2.

Licensed Material—Property of IBM

38

VS APL Program Logic

APLSHCPY

The value of the data is moved
from shared memory to the buffer
whose address is in SCVVALUE.

For logoff from the shared
variable processor, processing
occurs, as follows:

APLSHSOF

The number of processors in the
PARSON field of shared memory is
decremented.

APLSHSUB

Each variable offered by the
processor is retracted.

APLSHPUT

Shared memory used by the PCV
block is released.

<

DIAGRAM 1.2.2: AUXILIARY PROCESSORS (CMS)

C

1 rom Diagram 1.21
s PONT macro

)

. Initialize control blocks and
sign on 1o shaied storage

manager. Loter wait state, | __:>

o > 2 bor POV ECB. process

shared variable. Perform
eperations specilic o the SVPECBL.
particular auxiliary processor. [

PCV

SCV

. For SCV ECB. examine post
code and take action
appropriate to the particular SCv

auxiliary processor. | j I

(\

Return

Licensed Material—Property of IBM
Section 2. Method of Operation 39

Notes for Diagram 1.2.2
1. Inititalization

Initialization is performed as
follows: The process control vector
is completely filled in. The SCVID
and SCVECB fields of the shared
control vectors are filled in. The
addresses of the ECBs are placed in
SVPECBL. The PCV ECBSW switch is set
in SVPECBL to identify the PCVY ECB.
The auxiliary processor signs on to
the shared storage manager.

The auxiliary processor waits for an
ECB to be posted. [WAITI]

APL100: CMS COMMMAND
2. For PCV ECB

When control is returned from the
wait state and the PCV ECB is posted,
the following occurs:

An SCV is assigned to be used by the
shared variable. [SCVLOOP]

A query is issued to find the
variable's name. [DOCQUERY]

A counter-offer is issued to complete
the sharing of the variable.
[QUERYSUB]

The variable is referenced.
[GETNXVAR]

The type of command to be executed
(CP or CMS) is determined. [REFOK]

The auxiliary processor waits for an
ECB to be posted. [WAIT]

3. For SCV ECB

When control is returned from the
wait state and an SCV ECB is posted,
the post code is examined. [CHKPSTCD]

Processing then occurs as follows:

If the partner referenced the
variable, the return code is
speci fied. [RCODE]

If the partner set the access control
vector, this avent is ignored.
[CLRPSTCD]

If the partner retracted the
variable, the variable is retracted
and the SCV is made available for
another variable. [RETRACT]

If the partner specified the
variable, the variable is referenced
and the command is executed.
{GETNXVAR, TRANZCOD]

The return code is specified. [RCODE]

Licensed Material—Property of IBM
40 VS APL Program Logic

The auxiliary processor waits for an
ECB to be posted. [WAIT]

APL101: ALTERNATE INPUTY
2. For PCV ECB

When control is returned from the
wait and the PCV ECB is posted,
processing occurs as follows:

An SCV is assigned to be used by the
shared variable. [SCVLOOP]

A query is issued to find the
variable's name. [DOQUERY]

A counter-offer to complete the
sharing of the variable is issued.
[QUERYSUB]

The variable is referenced.
[GETNXVAR]

The stacking and conversion options
are determined. [REFOK]

The auxiliary processor waits for an
ECB to be posted. [WAIT]

3. For SCV ECB

When control is returned from the
wait state and an SCV ECB is posted,
the post code is examined. [CHKPSTCD]

Processing occurs as follows:

If the partner referenced the
variable, the return code is
specified. [(RCODE]

If the partner set the access control
vector, this event is ignored.
[CLRPSTCD]

If the partner retracted the
variable, the variable is retracted
and the SCV is made available for
another variable. [RETRACT]

If the partner specified the
variable, it is referenced and
converted. The line is stacked
according to the options determined
in step 2 above. [GETNXVAR]

The return code is specified. [RCODE]

The auxiliary processor waits for an
ECB to be posted. [WAIT]

APL110: CMS FILE

2. For PCV ECB

When control is returned from the
wait and the PCVECB is posted,
processing occurs as follows:

An SCV is assigned to be used by the
shared variable. [SCVLOOP]

<

A query is issued to find the
variable's name. [DOQUERY]

A counter-offer to complete the
sharing of the variable is issued.
[QUERYSUB]

The variable is referenced.
[GETNXVAR]

The conversion option is determined,
and the file name is placed in the
FSCB. [INIT]

Whether the file exists or not is
determined, and the rest of the FSCB
is filled in. [TRYFILE]

The auxiliary processor waits for an
ECB to be posted. [WAIT] 3. For SCV
ECB

When control is returned from the
wait and an SCV ECB is posted, the
post code is examined. [CHKPSTCD]

Processing continues as follows:

If the partner referenced the data
variable, the file is read and the
data converted according to the
options determined in step 2 above.
[PARTREF]

The converted data is then specified.
[SPEC11

If the partner referenced the control
variable, the return code from the
last operation involving the data
variable, the read-pointer, the
write-pointer, and the number of
records to be processed are specified
as a 4-element integer vector.
[RCODE]

If the partner set the access control
vector, this event is ignored.
[CLRPSTCD]

If the partner retracted the
variable, the file is closed, the
variable is retracted, and the SCV is
made available for another variable.
[RETRACT]

If the partner specified the data
variable, it is referenced and
converted according to the options
determined in step 2 above.
[GETNXVAR, CONVERT] ’

The converted data is then written to
the CMS file. [WRITE1l]

If the partner specified the control
variable, the read and write pointers
and number of records to be processed
are altered as specified. [SETCTL]

The auxiliary processor waits for an
ECB to be posted. [WAIT]

APL111: QSAM
2. For PCV ECB

When control is returned from the
wait and the PCV ECB is posted,
processing occurs as follouws:

An SCV is assigned to be used by the
shared variable. [SCVLOOP]

A query is issued to find the
variable's name. [DOQUERY]

A counter-offer to complete the
sharing of the variable is issued.
[QUERYSUB]

The variable is referenced.
[GETNXVAR]

The conversion option is determined
and the file name is placed in the
DCB. [CHKPARM]

The auxiliary processor waits for an
ECB to be posted. [WAIT]

3. For SCV ECB

When control is returned from the
wait and an SCV ECB is posted, the
post code is examined. [CHKPSTCD]

Processing continues as follows:

If the partner referenced the data
variable, the file is read and the
data converted according to the
options determined in step 2 above.
[PARTREF]

The converted data is then specified.
[SPECL]

If the partner referenced the control
variable, the return code from the
last operation involving the data
variable is specified. [RETNCODE]

If the partner set the access control
vector, this event is ignored.
[CLRPSTCD]

If the partner retracted the
variable, the file is closed, the
variable is retracted, and the SCV is
made available for another variable.
[RETRACT]

If the partner specified the data
variable, it is referenced and
converted according to the options
determined in step 2 above.
[GETNXVAR, CONVERT]

The converted data is then written to
the 05 file. [WRITE]

If the partner specified the control
variable, it is referenced and
ignored. [CLRPSTCD]

Licensed Material—Property of IBM
Section 2. Method of Operation 41

The auxiliary processor waits: for an
ECB to be posted. [WAIT]

APL123: VSAM
2. For PCV ECB

When control is returned from the
wait and the PCV ECB is posted,
processing occurs as follows:

An S5CV is associated with the
variable. [SCVLOOP]

A query is issued to find the
variable's name. [DOQUERY]

If the name does not begin with CTL
or DAT or if it is greater than 11l
characters or if the name is already
shared, the offer is not accepted.

A counter-offer to complete the
sharing of the variable is issued.
[INIT]

After a counter-offer, the auxiliary
processor waits. [WAIT]

3. For SCV ECB

When control is returned from the
mwait and an SCV ECB is posted, the
post code is examined. [CHKPSTCD]

Processing continues as follows:

If the partner retracted the
variable, the sharing of the variable
is terminated, the file is closed (if
it was opened), and the SCV is made

Licensed Material—Property of IBM
42 VS APL Program Logic

available for another variable.
Processing of any outstanding offer
is attempted. [RETRACT]

If the partner specified the control
variable, an appropriate action is
performed: :

a. For an OPEN request, the file
is opened if available but
not opened if already open.
[VOPEN]

b. For & CLOSE request, the file
is closed. [VCLS]

c. For READ, the file is read,
and the data is specified
into the DAT variable.
[FILREAD]

d. For WRITE, the DAT variable
is referenced, and its data
written to the file.
[FILWRITE]

e. For ERASE and POSITION, the
appropriate action is taken.
[LVERASE, VPOS]

f. For KEYFEEDBACK, the key of
the record last processed is
specified in the DAT
variable. [KEYFDBK]

The control variable is
specified with a 2-element
return code for all
operations.

DIAGRAM 1.3: COMMUNICATION WITH CICS/VS

vomcics (I

Sign-on message and 1. Sign user on to system. | > User perterm and sign-on

directory record table

Workspace containing

=]

. Handle requests from the

YY code interpreter. [Workspace, user perterm,
terminal input and output
3. Handle input when terminal
is in listen state.
User perterm [4. Sign user off system. [Directory record and

sign-on table

P Return

Licensed Material—Property of IBM
Section 2. Method of Operation %3

Notes for Diagram 1.3

APLKASON, APLKAGBL, APLKLIBB

1.

APLKASON calls APLKAGBL which
determines whether the global
table is active and, if not,
loads the global modules and
calls APLKLIBB to initialize the
library control blocks.

Using the sign-on message as
input, APLKASON initializes a
perterm for the user.

Using the user profile directory
record as input, APLKASON then
performs user and terminal
verification, attaches the user
task (APLKADSP), and exits.
Output is the user perterm (PTH,
PTX, PTK, and PRO control
blocks).

APLKADSP, APLKIFIX

APLKADSP sets up the user task
environment, including APLKWNAIT
and APLKEXIT macro services and
dependent process control.
APLKADSP then starts the
interpreter process by calling
APLKIFIX, which sets up the
interpreter interface and calls
APLASCHD and APLKLIBC.

APLASCHD

Initializes the terminal.

APLKIFIX

2.

Accepts requests from the
interpreter in the form of YY
codes passed in the workspace
and, based on the type of
request, routes control as
follows:

Module Entry Point(s) Function
APLASCHD T7TYO, TYI, TY0OI Terminal
Services
for I/0
APLKISVI SON, SOFFER, Shared
SRET, SRQUERY, variable
SACC, SSPEC, services
SREF, SCOPY,
SOFF
APLKLIBU COPI, COPO, Library
CorPZ, LOAD, services

COPA, SAVE,

DrROP, LIB,
CLEAR, WSID,
PASS

Licensed Material—Property of IBM

44

VS APL Program Logic

Module Entry Point(s) Function

APLKMSCA TIME, QAI, Time and
DELAY, DUMP, error

SYSER, CMD services
APLKMSCB QZ, ATOFF, Miscella-
TABS) NIDTH, neous .
MBL, TRAN, local and
QUOTA, OFF unsup-
ported
services

APLASCHD
Performs terminal I/0.
APLXEMGR, APLKEHCP

The destination manager. Provides
an interface to CICS transient
data and to 3270 printer
terminals.

APLKLIBU, APLKLIBF, APLKLIBG,
APLKLIBV, APLKLIBA, APLKLIBB,
APLKLIBR

The library manager. Provides
access to VS APL workspaces and
files, all of which are stored in
the APL library. In performing
these operations, these modules
call on CICS file services and
DOS/VS or 05/VS VSAM services.

APLKISVI, APLKSSVP, APLKSSUB,
APLKADEF

The shared storage manager and
the interpreter interface to the
shared storage manager. Provides
communication between auxiliary
processors and APL users and
manages the use of shared memory.

APLKMSCA, APLKMSCB

Performs miscellaneous services
for the interpreter. In
performing these services, the
CICS dump services and global
task timer services may be
called.

APLKDOPS, APLXVOPS, APLKASTB

Performs services dependent on
use of the operating system.
Modules APLKDOPS (for DOS/VS) and
APLKVOPS (for 0S5/VS) provide VSAM
macros, handling of VSAM and ISAM
return codes, and timer support
for time slicing. APLKASTB
provides support for DOS/VS page
fault overlap conditions.

Note: The following information
applies to both steps 1 and 2 of
diagram 1.3.

APLKLIBO, APLKLIBV, APLKLIBA

Services a library request made
by APLXLIBF or APLKLIBU. These
modules execute as separate
CICS/VS tasks started by
APLKASTB. APLKLIBG gains control
first, and performs most of the
services for APLKLIBU. For
APLKLIBF services, it calls
APLKLIBV. Either APLKLIBG or
APLKLIBV may call APLKLIBA to
allocate or deallocate space in
the library.

APLKASON, APLKTCTL, APLKTCHR, APLXGKT

3.

APLKASON is initiated as a
sign-on attention transaction if
the user sends input when the
terminal is in listen state (in
other words, when APL has more
work to do for the user, but no
terminal read or write operations
are outstanding).

If the APL user. is already signed
on, APLKASON give control to the
APLXGKT if GDDM is being used,
control is given to APLKTCTL.

APLXLIBC, APLASCHD, APLXMSCB

%.

Section 2.

APLXMSCB controls sign-off
processing, calling on library
and session manager termination
routines to assist in sign-off
processing. APLKLIBC cleans up
the workspace storage and
APLASCHD initiates session
manager and terminal cleanup as
gegcribed in diagrams 8.1 and

APLKIFIX, APLKADSP, APLKAGBL

When APLKIFIX receives control
from APLKMSCB after a YYOFF
request, it exits to APLKADSP;
APLKADSP then terminates any
processing being done by
dependent auxiliary processors,
deletes the user's sign on entry
from the sign on table, and, if
no other users are signed on to
the system, causes the global
task to terminate processing
(unless independent auxiliary
processors are still using the
shared storage manager).

Licensed Material—Property of IBM
Method of Operation 45

NAGE ICS/VS)

GRA 3.1: SHARED STORAG
I'rom VS APL CICS/VS
Iaecutor
APLKASTB
R
T
GBL
APLKADSP
APLKISVI
R1 '!
[>
PCV
ISVI
R1

SCVVALUE

B
BUFFER

1. Initialize for Shared Variable

12

~

Manager.

. Clear shared memory.

Terminate shared variable
processing.

. Perform a) SIGNON and b)

SIGNOFF.

. Process shared variable

processing.

a) Set Access Control

b) Retract shared variable
¢) OFFER

d) COPY

e) QUERY

f) REFERENCE

g) SPECIFICATION

Shared
Memory

>

f

Return

‘

Return

>

f

Return

—

| Return

Licensed Material—Property of IBM
VS APL Program Logic

46

>

Notes for Diagram 1.3.1

The return code and the reason code
are passed in R15 and in RO. For
tasks 2, 3, and 4 on entry, R0 has
the request code.

APLKSSUB

1. Obtains space for and initializes
the shared memory (SM). The
CICS/VS service DFHSC TYPE =
GETMAIN, CLASS = PROGRAM is
emploved to derive the storage.
[APLKSINI]

APLKSSVP

2. Storage used by the shared
variable processor (S5M) is
released and shared variable
processing is terminated.
[APLKSSR]

APLKSSVP [APLKSSR]

3. Options when the terminal is in
listen state:

a. SIGN-ON: A processor control
block (PERPROC) is obtained
from SM for the user. The
user ID, shared variable
number quota, and space quota
are placed in the PERPROC.

b. SIGN-OFF: All of this user's
shared variables are
retracted, and PERPROC is
released.

APLKSSVP [APLKSSR]

4. Options when the user signs off
the system:

a. SET ACCESS CONTROL: The
access control vector (ACV)
for a shared variable is
altered. The effective ACV is
returned.

b. RETRACT: Retracts the sharing
of a single variable. If the
partner has already
retracted, the PERSHARE for
this variable is released.

c. OFFER: Offers to share a
single variable with another
processor. If it is not a
counter-offer, a share entry
(PERSHARE) for this variable
is obtained from the SM.

d. COPY: Copies the latest value
of a shared variable. The
access state of the variable
is not changed.

e. QUERY: Obtains information
about shared data items.

f. REFERENCE: References the
latest value of a shared
variable.

g. SPECIFICATION: Specifies a
new value for a shared
variable.

Licensed Material—Property of IBM
Section 2. Method of Operation 47

AGRAM 1.3.2: AUXILYARY PROCESSORS (CICS/VS)

I-'rom

module APLKADSP - Perlorm the services associated with

M E—
work area

one of the lollowing auxiliary
processors (Al’s):

~ 1. CICS/VS Command
2. Storage Display

3. VS APL Session Manager
Command

4. APL Data File

. VSAM

I

6. Full Screen Management
7. DL
8. GDDM

9. Transient Data

~ 10. Alternate Input

P Return

Licensed Mataerial—Property of IBM

%8

VS APL Program Logic

Notes for Diagram 1.3.2

APL100K, APL100XO

1. APLI100K issues CICS/VS commands,
and attaches APL100KO, which
starts CICS/VS transactions.

AP102K

2. Displays storage for the user.

AP120

3. See Notes for Diagram 8.6.1.

APL121K

4. Creates, writes, updates, reads,
and/or deletes APL object files.
Uses library services (part of
the CICS/VS executor) to access
the APL library.

APL123K

5. Using CICS/VS file services,
reads from and writes to VSAM and
ISAM data sets.

APL126K

6. Permits APL functions to format

and control the user display
terminal. Calls the terminal

manager (part of the CICS/VS
executor) to provide physical
terminal services.

APL102K
7. Displays storage for the user.
APL 125K

8. Provides an interface to CICS
DL/I services for the CIC3S/VS
user.

APL126
9. See Notes for Diagram 8.4.2.
APL132K

10. Accesses CICS/VS transient data,
including both intrapartition and
extrapartition destinations (for
example, sequential devices).
Communicates with transient
destinations through the
destination manager (part of the
CICS/VS executor).

APL139X

11. Passes user-supplied data from
the shared storage manager to the
session manager.

Licensed Material—Property of IBM
Section 2. Method of Operation %9

b AM

MV'S Catalog

Addresses

—

6: COMMUNICATION WITH TSO

From TSO

e

1. Initialize for communication
with TSO. as follows:

a. Build executor

global table

> b. Build MVS catalog list.

Attention
Handler

Program check
Handler

c. Acquire workspace

> MVS (Catalog list
in Storage

storage. [

ABEND Handler|

Continue WS

—> d. Initialize for

asynchronous events

> e Start VS APL

-

Via SPII exit

¥

interpreter |

To Interpreter
2. Handle asynchronous events.
as follows:

eneral Registers

PERTERM

> a. Program interrupt

Via STAX
exit

¥

To Interpreter

PTHASYNC

Via STAL exit

¥

I'rom Interpreter

¥

> b. Attention signal
To TSO via BR14

c. Abnormal teimination

To TSO

YYCODL
Workspace

PARMO

> 3. Handle service

d ddd

requests. |

a. Non shared variable
requests

Execution Routines

b. Shared variables and
session nianager

« Shared Storage Manager

1.2.

To Interpreter

Licensed Material—Property of IBM
50 VS APL Program Logic

GLBLTABL

Global Table

PERTERM

PTHYYCOD
PTHSRCOD

JSTBL

Global Table

Address of
Execution
Routine

Workspace

WSMREGSV
WSMINSI
PERTERM
PTHYYCOD
PTHSRCOD

Notes for Diagram 1.4
APLYUINI

.
Y

The initialization process
(module APLYUINI) performs the
following functions at VS APL
startup:

Gets space for and initializes
the executor global table. This
table (mapped by the APLTSOGL
macro) contains the PERTERM,
terminal buffers, switches and
pointers. It is always pointed to
from all VS APL tasks from each
task's TCBFSA field.

Scans the invocation parameters
and sets session values. Loads
any auxiliary processor modules.

Allocates space for shared
memory, auxiliary processor work
areas (512 bytes per auxiliary
pracessor), and the workspace.
Gives back FREESIZE amount to
TSO. .

Determines if VS APL microcode
assist is to be used.

Calls the shared storage manager
to initialize any auxiliary
processors, including the session
manager task and the GDDM task.

Initializes pointers and keys in
the incore workspace.

Determines if the CONTINUE
workspace is to be auto-loaded.

Determines if terminal is display
(with or without session manager)
or typewriter and initializes
accordingly.

Sets SPIE, STAE, STAX (attention)
exits.

Places service request YYON in
PTHYYCOD and passes control to
SCAPL. From there, control is
passed to the interpreter at its
entry point APLIINIT.

APLYUERR

2.

Asynchronous handling applies to
program checks, attention exits,
and abends.

Program checks (SPIE exit):
[SCSPIE}

These are handled in module
APLYUERR, routine SCSPIE (except
during VS APL startup, when it is
handled by routine SPIEXIT in
module APLYUINI),.

Routine SCSPIE does the
following:

Saves the program check registers
and PSW in WSMSURGS and WSHMSUPSW
(in the workspace).

If the program check occurred in
supervisor code, prints messages
APL102I, APL104I, APL10OS5I,
APL106I, and abnormally
terminates VS APL with the user
code 1lxx, where xx is the program
check code in decimal.

If the program check occurred in
the shared storage manager or an
auxiliary processor, prints
message APL114I and handles the
check as an interpreter program
check.

If the program check occurred in
the interpreter, checks to see if
the interpreter is in a program
check loop and prints message
APL101I and ABEND if in a loop.
If not in a loop, moves the
registers from WSMSURGS to
WSMREGSY and the PSW from
WSMSUPSW to WSMPCPSW and WSMNSI.

If a program check loop occurs,
the registers and the PSW for the
next-to-last program check will
be in WSMREGSV and WSMPCPSW/NSI,
and the registers and PSY for the
last fatal program check will be
in WSMSURGS and WSMSUPSW.

Attention exits (S5TAX exit):
[SCATTN]

These are handled by routine
SCATTN in module APLYUERR, which
does the following:

Sets attention bit(s) in the
PERTERM,

If the attention is pressed while
an auxiliary processor is
executing, the auxiliary
processor is terminated. (The
purpose is to break endless or
uncontrolled loops.)

If the attention is pressed while
auxiliary processors and VS APL
are in deadlock, the deadlock is
broken. (An auxiliary processor
has issued a wait without first
posting any other auxiliary
processor or VS APL for work.)

Returns to point of interrupt.
Abends (STAE exit): [SCSTAE]
These are handled in module

APLYUERR by routine SCSTAE, which
does the following:

Licensed Material—Property of IBM
Section 2. Method of Operation 51

° Prints messagaes APL115I and
APL103D.

e Attempts to save a CONTINUE
workspace.

° Terminates VS APL.

APLYUFXI

3.

Service request handling:
[routine APLFXIIM]

Service requests allow the
interpreter to interact with its
environment (for example, type a
line, load a workspace). Any
module in the interpreter may
issue a service request. The
linkage is:

L R1l,=V(APLFXIIM)
BALR RO,R1
DC AL2(YYCODE)

Routine APLFXIIM is in executor
module APLYUFXI. It does the
following for every service
request: '

° Saves the general registers
in LISMREGSV (except for
YYDUMP, uwhich preserves the
contents of WSMREGSV), the
floating registers in
WSMREGF0, F2, F4, F6, and the
address of the caller's
resume point (R0+2) in
WSMNSI. (All WSM fields are
in the workspace.)

° Adds the processor time used
by the interpreter to an
accumulated-time field
(CMSCPUAC) for the quad-Al
system variable.

] Stores the YYCODE (which
" determines the type of
request) in the PERTERM
(field PTHYYCOD).

° Looks up the request type in
YYTABL (module APLYUFXI) and
gets the address of the
exacution routinae.

Licensed Mataerial—Proparty of IBM

52

VS APL Program Logic

° Calls the execution routine
to execute the service
request. The execution
routine will return with the
service request return code
set in PTHSRCOD.

° Updates the WSMASYNC bits in
the workspace to reflect the
latest status of asynchronous
events (for example,
attention).

° Sets the current time in
CMSHOLDT so that processor
time for the interpreter can
be accumulated for quad-AIl.

° Goes back to interpreter in
PSW key X'D' at its entry
point, APLIINIT. There, the
interpreter's environment is
restored and control is
returned to the instruction
following the service
request.

For a description of the service
request codes and the names of
the TS0 executor routines that
handle them, see "Values,
Parameters, and Return Codes for
Service Requests" under "Service
Request Calls" in "Section 6.
Diagnostic Aids."

For shared variable processing,
control is passed to APLYURVC and
then to ASVPSERV to route the
request to the appropriate
routine in the shared storage
manager. See Diagram 1.2.1:
"Shared Storage Manager (CMS and
T50)." After control returns to
ASVPSERYV, each auxiliary
processor whose wait has been
satisfied receives control.
Control is then returned to the
interpreter.

<

<

GRAM 1.%4.1: AUXILIARY PROCESSORS (TSO

I'rom Diagram 1.2.1
via ASVPOST macro

)

1. Initialize control blocks and
sign on to shared storage

manager. Enter wait state. | >

ECB | > 2. For PCV ECB, process shared
variable. Perform operations -
specific to the particular SVPECBL

auxiliary processor. | l:__:]

3. For SCV ECB, examine post
code and take action
appropriate to the sCcv

particular auxiliary processor. [>{

i

Return

Licensed Material—Property of IBM
Section 2. Method of Operation .53

Notes for Diagram 1.4.1

1. Initialize

Initialization is performed as
follows: The process control vector
is completely filled in. The SCVID
and SCVECB fields of the shared
control vectors are filled in. The
addresses of the ECBs are placed in
SVPECBL. The PCV ECBSW switch is set
in SVPECBL to identify the PCV ECB.
The suxiliary processor signs on to
the shared storage manager.

The suxiliary processor waits for an
ECB to be posted. [WAIT]

APLYU100: TSO COMMAND
2. For PCV ECB

When control is returned from the
wait state and the PCV ECB is posted,
the following occurs:

An SCV is assigned to be used by the
shared variable. [SCVLOOP]

A gquery is issued to find the
variable's name. [DOQUERY]}

A counter-offer is issued to complete
the sharing of the variable.
[QUERYSUB]

The variable is referenced.
[GETNXVAR]

The type of command to be executed
(TS0) is determined. [APLYUCMD]

After verifying the command, a call
is made to CMDAPO (entry point in
APLYUUSR) to confirm authority for
user to execute command.

The TS0 command is ATTACHed.

The auxiliary processor waits for an
ECB to be posted. [WAIT]

3. For SCV ECB

When control is returned from the
wait state and an SCV ECB is posted,
the post code is examined. [CHKPSTCD]

Processing then occurs as follows:

If the partner referenced the
variable, the return code is
specified. [RCODE]

If the partner set the access control
vector this event is ignored.
[CLRPSTCD]

If the partner retracted the
variable, the variable is retracted
and the SCV is made available for
another varisble. [RETRACT]

Licensed Material—Property of IBM
54 VS APL Program Logic

If the partner specified the
variable, the variable is referenced
and the command is executed.
[GETNXVAR, TRANZCOD]

The return code is specified. [RCODE]

The auxiliary processor waits for an
ECB to be posted. [WAIT)

APLYUL101: ALTERNATE INPUT
2. For PCV ECB

When control is returned from the
wait and the PCV ECB is posted,
processing occurs as follous:

An SCV is assigned to be used by the
shared variable. [SCVLOOP]

A query is issued to find the
variable's name. [DOQUERY]

A counter-offer to complete the
sharing of the variable is issued.
[{QUERYSUB]

The variable is referenced.
[GETNXVAR]

The stacking and conversion options
are determined. [REFOK]

The auxiliary processor waits for an
ECB to be posted. [WAIT]

When control is returned from the
watrt state and an SCV ECB is posted,
the post code is examined. [CHKPSTCLC]

Processing occurs as follows:

If the partner referenced the
variable, the return code is
specified. [RCODE]

If the partner set the access control
vector, this event is ignored.
[CLRPSTCD]

If the partner retracted the
variable, the variable is retracted
and the SCV is made available for
another variable. [RETRACT]

If the partner specified the
variable, it is referenced and
converted. The line is stacked
according to the options determined
in step 2 above. [GETNXVAR]

The return code is specified. [RCODE)

The auxiliary processor waits for an
ECB to be posted. [WAIT])

If remaining items are in the stack,
a GETMAIN is issued followed by
invocation of the STACK macro for TS0
execution after APL has completed
sign-off processing.

APLYU102: STORAGE DISPLAY
2. For PCV ECB

When control is returned from the
wait state and the PCV ECB is posted,
the following occurs:

If PCVESOFF was posted, APL102 signs
off. [SIGN-OFF]

If SCVEOFFR was posted, then an offer
is processed as follows: [OFFER]

If there is no free SCV, then
APL102 returns to the wait state.

If the offered name is not of the
form DAT... or CTL..., the offer
is ignored. [REFUSE]

If the offered name is of the
form CTL..., the access control
is set. If the offered name is of
the form DAT..., processing
continues with the next step.

If a match to the offered name
exists, tha pair of variables
(DAT... and CTL...) are
cross-connected. [CHKPAIRI]

If this is a CTL... variable, its
initial value is referenced. If
the reference is successful, the
variable is processed at SPECO1
as if a partner had been
specified. [OFFEROK]

Following this, APL102 returns to the
wait state.

3. For SCV ECB

When control is returned from the
wait state and an SCV ECB is posted,
the following occurs:

If fhe partner is retracted, the
current variable is retracted.
[RETRACT]

If the partner is spacified,
processing takes place as
follows: [SPECIFY]

If the variable is of the
form DAT..., it is ignored
and APL102 raturns to the
wait state.

If the variable is of the
form CTL..., it is checked to
see if it is paired, its
value is referenced, and the
main storage display is
processed as requested.
Storage display data is
returned in DAT by the
routine RETDATA.

Finally, a return code is set in
CTL and SSM is called to specify
CTL and DAT.

If the partner is referenced,
processing occurs as follows:
[REFER]

If CTL is referenced, the
last return code is given.
[REFER1]

If DAT is referenced, the
return code is set to 5 (DAT
referenced out of sequence).
[REFER1]

The return code is specified and
APL102 returns to the wait state.

APLYUl1l1ll: QSAM
2. For PCV SCB

When control is returned from the
wait and the PCV ECB is posted,
processing occurs as follows:

An SCV is assigned to be used by the
shared variable. [SCVLOOP]

A query is issued to find the
variable's name. [DOQUERY]

A counter-offer to complete the
sharing of the variable is issued.
[QUERYSUB]

The variable is referenced.
[GETNXVAR]

The conversion option is determined
and the file name is placed in the
DCB. [CHKPARM]

The auxiliary processor waits for an
ECB to be posted. [WAIT]

3. For SCV ECB

When control is returned from the
wait and an SCV ECB is posted, the
post code is examined. [CHKPSTCD]

Processing continues as follous:

If the partner referenced the data
variable, the file is read and the
data converted according to the
options determined in step 2 above.
[PARTREF]

The converted data is then specified.
[SPEC1]

If the partner referenced the control
variable, the return code from the
last operation involving the data
variable is spaecified. [RETNCODE]

If the partner set the access control
vectaor, this event is ignored.
[CLRPSTCD]

Licensed Material—Property of IBMM
Section 2. Method of Operation . 55

If the partner retracted the
variable, the file is closed, the
variable is retracted, and the SCV is
made available for another variable.
[RETRACT]

If the parther specified the data
variable, it is referenced and
converted according to the options
determined in step 2 above.
[GETNXVAR, CONVERT]

The converted data is then written to
the 05 file. [WRITE]

If the partner specified the control
variable, it is referenced and
ignored. [CLRPSTCDI]

The auxiliary processor waits for an
ECB to be posted. [WAIT]

APLYU210: BDAM FILES

2. For PCV ECB

When control is returned from the
wait and the PCV ECB is posted,
processing occurs as follows:

An SCV is assigned to be used by the
shared variable. [SCVLOOP]

A query is issued to find the
variable's name. [DOQUERY]

A counter-offer to complete the
sharing of the variable is issued.
[QUERYSUB]

The variable is referenced. [GETNX1]
The conversion option is determined,
and the file name is placed in a DCB.
[GETDCB1

The auxiliary processor wWwaits for an
ECB to be posted. [WAITI]

3. For SCV ECB

Licensed Material—Property of IBM
56 VS APL Program Logic

When control is returned from the
wait and an SCV ECB is posted, the
post code is examined. [CHKPSTCD]

Processing continues as follows:

If the partner referenced the dats
variable, the file is read and the
data converted according to the
options determined in step 2 above.
[PARTREF]

The converted data is then specified.
{SPEC1]

If the partner referenced the control
variable, the return code from the
last operation involving the data
variable, the read-pointer, the
write-pointer, and the number of
records to be processed are specified
as a 4-element integer vector.
[RETNCODE]

If the partner set the access control
vector, this event is ignored.
[CLRPSTCD]

If the partner retracted the
variable, the file is closed, the
variable is retracted, and the SCV is
made available for another variable.
[RETRACT]

If the partner specified the date
variable, it is referenced and
converted according to the options
determined in step 2 above.
[GETNXVAR, CONVERT]

The converted data is then written to
the BDAM file. [WRITE]

The auxiliary processor waits for an
ECB to be posted. [WAIT]

APL123: VSAM

See Diagram 1.2.2. The same code is
used for CMS and TSO0.

J

DIAGRAM 2.0: INPUT RECOGNITIO TRANSLATION, AND ROUTING

From Diagrams 1.1, 3.0, 4.0, 5.0

[

1. Process special
conditions.

2. Output prompt and
obtain terminal input. @

WSMBUFE

I [> 3. Analyze input and

routce to appropriate
routine:

“ Function Edit
3.0

Statement
Execution

t

4.0

Command
Y rorces .
Processor 5.0

¢

Licensed Material—Property of IBM
Section 2. Method of Operation 57

Notes for Diagram 2.0
APLITINP

1.

Before terminal input is
requested, special conditions are
checked for and processed as
follows: [ITINPUT]

If workspace is newly loaded and
quad-LX is not null, the
statement "execute quad-LX" is
placed in WSMBUFF. Control is
passed to the. statement execution
routine. [DOQLX]

If force-off (PTHFOFF=1), &
continue command is placed in
WSMBUFF and control is passed to
the command processor. [ITFORCOF]

If the user's keyboard is
normally locked, the YYRWAIT
service request is issued.
[DOWAITD]

If attention or cancel-output is
pending (PTHATTN=1, PTHDATTN=1,
or PTHNOOUT=1), the YYATOFF
service request is issued before
terminal input is obtained.
[DOATTN]

APLITINP

2.

The user prompt is output, and
input is obtained as follows:
[GETINP]

If workspace is in function
definition mode (FDOPEN=1), a
bracketed line number is built in
WSMBUFF. The YYTY0l service
request is issued to output the
prompt and obtain input.

If workspace is in quad-prime
input mode (STQPBIT=1), WSMBUFF
is filled with blanks up to the
position indicated by PTHCURSR.
The YYTYI service request is
issued to obtain input.

If workspace is in quad-input
mode (STQBIT=1), a quad, colon,
and new line character are placed
in WSMBUFF. The YYTYD service
request is issued to output the
prompt.

In all other cases, asnd following
the output of the quad-input
prompt, six blanks are placed in
WSMBUFF. The YYTYO0I service
request is issued to output the
prompt and obtain input.

Licensed Material—Property of IBM

58

VS APL Program Logic

APLITINP

3.

The result of the YYTYI or YYTYOI
is analyzed and processed as
follows: [CHKINPUT]

If input exceeded size of
WSMBUFF, SPACE NOT AVAILABLE
message is output, and processing
is resumed at step 1. [ITTYIZ]

If entry error, ENTRY ERROR
message is output. Then YYTYOI is
issued to output the line up to
the point of error and obtain
input. Processing is resumed at
step 3. [ITTYIZ]

If input is 0-U-T, an interrupt
exit is taken. [ITTYIZ]

If any other error return from
service request, a system error
exit is taken. [ITTYIZ]

If quad-prime input, control is
returned to caller with input
length in register 7.

If input is null or all blanks,
processing is resumed at step 1.

If in function definition mode or
if first non-blank is a del, the
function edit and definition
routine is called. (See Diagram
3.0: "Function Definition and
Edit.")

If the first non-blank is a right
parenthesis, command processor is
called. (See Diagram 5.0: "“System
Command Execution.™)

If input is a comment, processing
is resumed at step 1.

For &ll other cases, ITEMPFUN is
called to build an immediate
execution temporary function
whose single statement is the
tokenized input line. See Diagram
3.2, step 2, for a description of
tokenizing. The internal name of
the function is returned in
register 4. If quad-input,
control is returned to the
caller; otherwise, the statement
execution routine is called. (See
Diagram 4.0: Statement
Execution.)

Note that function definition and
edit, statement execution
routine, and command processor
(Diagrams 3.0, 4.0, and 5.0) are
called as subroutines. When they
return control, processing is
resumed at step 1.

IAGRAM 3.0: FUNCTION DEFINITION AND EDIT

(From Diagram 2.0

WSMBUII:
Input Line
WSMEDxxx 1. Receive new function
Function Edit deﬁni“o;\ or edit WSMFDx XX
lob. existing function
Globals definition Function Edit
- Glohals

. “ Function Editing
L 3.1

IFrom Diagrams
3.1.4.1.3, 5.0

« g

Workspace
FBLIST
(Argument List to > Build i | tok
TR . : ens
l-un‘u.u_m. ul u_uernd ° . n Internal Text of
Definition) for defined function. [Function

k “ Function Definition

3.2

To Caller

Licensed Material—Property of IBM
Section 2. Method of Operation 59

Notes for Diagram 3.0
APLITFDO

1.

Li
60

When a request to edit a function
is received, the function-open
routine receives a
character-string beginning with a
del or pdel character. [ITFDOPEN,
ITLINEO]

The routine validates the
request; and if it is valid, puts
the user's workspace in edit mode
by setting a flag in WSMFDTOG,
and a prompt-line number value in
WSMFDLIN., If the function is a
new one, APLITHDR is called to
check its syntax. The header line
is saved in character form.

APLITINP

While in edit mode, the user is
prompted with a bracketed
line-number. [ITINPUT]

APLITFDE

Once in definition mode,
subsequent input strings are
passed to the function edit
routine. It performs the

icensed Material—Property of IBM

VS APL Program Logic

requested action and, assuming
the definition is still open,
sets a new value in WSMFDLIN.
[ITFDEDIT]

APLITFDC

New or replaced statements are
saved in character form. If the
edit request calls for closing
the definition, the function
close routine builds the internal
text of the function and takes
the user workspace out of edit
mode. [ITFDCLOS]

APLITHDR

2.

The function definition process
is generalized so it may be
called from function edit, from
the COPY system command, or from
the quad-FX appendage routine.

Line 0 of the function is
converted to internal form by
APLITHDR. Each body line is
tokenized by module APLITLXS.
Module APLITFDC gets space for
the function object and builds a
tail entry for each statement in
it.

DIAGRAM 3.1:

FUNCTION EDITING

From Diugram 3.0

>

1. Validate function
header line and open

WwWSM

the definition. [

WSMIED

Decision

Rules

WSMFDHED

Lines

2. Process edit mode

input. as follows:

a. AdJd new function

WSMEDTOG

WSMIEDL I,
WHEMEDSCT
WSMIDLMX
WSMIEIDHED
WSMEDT AL

I'DVECTOR

line |

> .

b. Display lines.[

c. Delete aline.

J. Modify existing

line,

S|

WSMFDTOG

[]

WSMFDHED

g

lpl VS APL Source
Line

J’ VS8 APL Source
Line

] VS APL Source
Line

> 3. Close definition. |

New Definition

-

Licensed Material—Property of IBM

Section 2.

Method of Oparation

61

Notes for Diagram 3.1

1. The content of tha header line
examined:

APLITFDO

The syntax is chacked; the
function name is isolated and

converted to the internal nama.

[ITFDOPEN, ITLINEO]
If the name is not globally

is

defined, it is processed as a new
definition: the line-zero syntax

is checked (and rejected with
DEFN ERROR if erroneous); the

text of the line is saved in an

FDVECTOR object; FDNEWFUN and

FDOPEN are set in WSMFDTOG; and

the edit globals are set to their
initiasl values. For an existing,
unlocked function, the definition

is opened by setting FDOPEN in

the WSMFDT0G flag to 1, and the

edit globals to the values of the

existing definition.

2. The function being edited
consists of a set of specially
formatted character vectors

(FDVECTORS) in a chain whose head

is named in the WSMFDHED field
and whose tail is named in the

WSMFDTAL field. Each input line

is passed to APLITFDE in WSMBUFF,

exactly as it appears at the
terminal; that is, the prompt
line-number forms part of the
input.

APLITFDE

The input is scanned and each
component of the edit syntax

(bracketed line numbers, quad or
delta symbols, closing del) noted
in the EDSCANO]l byte of DECISION,
a field in the R13 stack used by

APLITFDE. [ITFDEDIT] If a new

statement 15 encountered, it is

collected and stored in an
FDVECTOR. [ITFDNWLN, APLITFDN]

The presence of a label is noted

and all names used are entered
the symbol table. [ITSTSRCH]

DECISION now contains a value

in

between 0 and 63, indicating the

action to be taken.
APLITFDE

a. A new line is added, as

follows: If the linae number

to be processed is higher
than the line number in
WSMFDLMX, the new line is
entered at the.end of. the
chain. [ITFDEDIT]

Licensed Material—Property of IBM
62 VS APL Program Logic

APLITHDR

If the line number is zero
(header line), the header
syntax is validated, previous
header line is deleted, and
the new line inserted.
[ITLINEO]

APLITPRL

b. Function lines indicated by
the user are displayed. If
the function being edited
exists only as an internal
function object and not in
display format, the ITPRLINE
routine is called to put the
lines in the display buffer.
In this case, the line
numbers exist only as
integers. [RULEQ91]

If the function is in display
format, the text vectors are
moved to the buffer from the
beginning number indicated
until a line number excaeding
the end number is found.
[R9A}

c. The indicated line is
deleted. [RULE10]

d. The line is modified, as
follows: The specified line
is found and displayed.
Blanks are displayed to
position the cursor as
requested; the edit mask is
saved; and the edited line
built in the buffer.
Backspaces are built to
position the cursor to the
first inserted blank (if
any). Buffer contents are
then displayed and the input,
overstruck on the display, is
obtained. The new line is
then processed as in step b
above.

APLITFDC

3.

If the edit request calls for
closing the definition, the
function close routine builds the
internal text of the function and
removes the workspace from edit
mode. [ITFDCLOS, CL2]

Internal text is built, as
follows: The FBLIST parameter
block is prepared and each line
is passed to the function
definition routines (see Diagram
3.2 "Function Definition"). The
WSMFDHED field contains the name
of the function header text
vector (FDVECTOR DSECT), and each
line has the name of the next
line. The last step of function

definition returns a temporary
internal name of the new function
object. Note that text vectors
are not deleted until the
function has been completely
created. [CL4A)

Changing line 0 of a suspended
function or any part of a pendant
function causes damage to the
operation stack. In either case,
a message is issued. Any existing
function definition corresponding

to the edited one, is freed. The
new function object is assigned a
permanent name. [CL4B]

The temporary address table entry
is copied to the permanent one
named by WSMFDOLD; the object
DN-word is updated; and the
temporary entry is freed. Edit
mode is ended; all text vectors
are freed and the WSMFDTOG flag
is set to zero. :

Licensed Material—Propverty of IBM
Section 2. Method of Operation 63

IAGRAM 3.2t FUNCTION DEFINITIO

I'rom Disgram 3.0

BLIST 1. Process header line of
(Argument function by building FBDNWORD
List to lunction a function header.
Definition)
Header
Information
FBSRCE
[2. Process each line of
the function body, as
follows:
., FBTHISLB
a. I[dentify lexical]
b. Translate quad FBUILD
names. [> []
c. Convert numeric
input.
d. Convert names. Output Lines
FBUILD .
I 3. Complete the Register 4
function object. | >
FBDNWORD
New Address Table
Entry
CHEDDN]

Licensed Material—Propeaerty of IBM
64 °~ VS APL Program Logic

Notes for Diagram 3.2
APLITHDR

1.

Input is in or pointed.to by the
FBLIST DSECT prepared by the
caller and addressed by register
2. The value in FBUILD is used to
set the DN-word address of the
function. The internal names for
"function-name," "result," and
"arguments"” are entered in the
function header. [ITLINEO]

The number of internal names
found determines the function
syntax. The FBSYNT field is set
to the values of the SBITFUNO,
SBITFUN1, and SBITFUN2,
respectively. [HDOVER]

APLITHDR

Local variable names are
converted [ITSTRCH, APLITIDS] and
are appended to the function
header. [LOCALOOP]

Operation stack space required to
call the function is computed and
entered in the function header.
The offset from the beginning of
the function to the first label
position is set in the FBLBLOFF
field. [LABELS]

Four bytes are reserved for each
label that will be encountered
later, as given in FLABELS.
[DONE]

The end-of-locals mark is X'0002"'
or any halfword whose low-order
bits are set to 10. If errors are
found, register 0 is set to an
abnormal termination code, and
the ERRQOR!l exit to the caller is
taken. [DEFNERR]

The FBUILD and FBUILDL fields are
set to reflect the space used by
the header. [DONE]

APLITFDC, APLITLXS

2.

As input, register 2 contains the
address of the FBLIST DSECT
prepared by the caller and
updated as in step 1 above.
[ITFDCLOS, ITOKENIZ]

The string addressed by the
FBSRCE field is examined and
identified as either: identifier,
numeric scalar, numeric vector,
character scalar, character
vector, primitive operator, or
label. [SCAN]

These are processed as follows:

Identifier: an initial alphabetic
signals a name. The symbol table
is searched and an internal name
is returned as follows: [IDENT]

Internal names are found by the
symbol table search: the ITBLDID
routine isolates the name string,
calculates its length, and enters
these in the WSMNEWID field.

.{ITBLDIDI

APLITIDS

Initial hashing to the symbol
table index [WSMSYMX] combines
the first 8 bytes of the name,
its length value, and some prime

.numbers to get an index between

zero and the value in the
WSMSYMBL field. [ITSTSRCH]

Each symbol table entry is a pair
of adjacent address table
entries, one for the name of an
object, the other for its current
value. The symbol table is
searched for a match to the name
in the WSMNEWID field. If a match
is found, the internal name of
this entry is returned via
register 4. If a match is not
found and the caller wants the
name entered in the table
(WSMISC.STCREATE=1), the
namestring is put in the free
space as a character vector. If
WSMISC.STCREATE=0, a code of 0 is
returned. If entry of the
namestring causes the symbol
table to become full, or, if
there is not enough space in the
workspace for the character
vector containing the namestring,
an arror code is returned (that
is, register 0 is set to ABSTFU
or ABWSFU).

Initial T or S causes a test for
the diagnostic trace and stop
vectors. [SDLETA, TDELTAl

APLITIDS

If an initial quad starts a
distinguished name (shared
variable or primitive system
function, APLITLXS), the
character part of the name is
entered in the WSMNEWID field and
the APLITQVB table is searched
for a match. [ITBLDQD]

Internal names corresponding to
system variables and operation
tokens corresponding to primitive
system functions (as defined in
the APLIOPERC macro), are
returned in register 4.

Licensed Material—Property of IBM
Section 2. Method of Operation 65

Li
66

APLITLXS

A quad symbol not beginning a
distinguished name is treated as
a primitive. [QUAD]

APLITNCV

Numeric scalar: An initial
numeric signals the start of a
numeric literal. The literal is
scannaed and converted to internal
form by the numeric input
conversion routine. The routine
has three entry points: ITININT
for conversion from typed integer
constant; ITFDCVT for conversion
of a typed line number from a
function definition; ITNUMCVT for
conversion of numeric constant
character strings. Each entry
point sets the LWSMNCVSKW switch to
indicate the kind of output
needed, that is, integer or
floating point. [ITNUMCVT]

APLITLXS

If the absolute value of the
literal exceeds 65K bytes or is
real, a general scalar is built
consisting of a halfword header
followed by the value. [SCALAR,
SSCALI, SSCALF])

Small integer values are encoded
as immodiate scalars in the
format of an address-table
immediate value. [S16BIT]

Numeric VYector: When a nhumeric is
followed by another numeric, a
vector numeric literal is built.

The first integer is examined for
size: for 1 or 0, a boolean
vaector is begun. For greater than
l, an integer vector is begun.
[VECTOR3,VECTOR)]

For floating-roint, a floating
point vector is begun. Successive
integers are converted to
internal format o&s with a numeric
scalar provided that they are of
the same type as the initial one.
[STORE]

If a value appears that requires
more space than the previous
ones, all values are converted to
the larger sizae. [VTEST, CVT1]

Note: An invalid numaric literal
(ITNUMCVT returns
WSMNCVSNWN.NCVFAIL) causes the

censed Material—Property of IBM

VS APL Program Logic

statement to be encoded as an
ili~-formed line. Numeric literals
that are larger than 7E75
(ITNUMCVT returns
HSHNCVSW.NCVOFLOW or
W3MHCVSW.NCVUFLOW) are specially
encoded to cause a VALUE ERROR at
execution. [NERROR]

Character scalar and character
vactor: An initial quotation mark
denotes a character literal.
[CHARLIT]

The null character is replaced by
the internal name for a constant
null string. [CEND]

For a l-byte character scalar, an
immaediate character literal is
built. [CEND2]

Primitive operators:! Primitive
operators are replaced by their
internal codes found by indexing
into the OPTAB table, using the
graphic byte value. [PRIMITIVE]

Tests are made for correct use of
the branch arrow and for
balancing of parentheses and
brackets. [G0T0, LBRACKET,
RBRACKET, LPAREN, RPAREN]

Labels: lihen a colon is found,
the namae preceding it is put in
the FBTHISLB field for later
movement to the header line.
{COLON]

The.line is then inverted so that
it can be scanned right to left
for execution. [ENDLIME]

The FBUILD and FBUILDL fields are
updated to reflect the space
usaed. [EXTTR2]

APLITFDC

3.

Finally, the FHEDT field of
FHEDDN is set to the displacement
from the beginning of the
function of each end-of-statement
token of each line of the
function. [ITCLOSET]

APLIESPA

Buplicate local variable names
are marked., Space is obtained for
the FBUILD and FBDNLORD fields
and a temporary name for the
function is created. [IESFIND)

[%.0: STATEM X

From Diagram 2.0

Register 4 b

> 1. Set up immediate
execution temporary
function and

operation stack. [> WSMFUNCT

]

WSMNXINS

[]

WSMTSADR

I

Function Oquct

2. Scan statement,
analyze syntax, and
execute function.

Statement scan,

“ syntax analysis,
and execution

4.1
WSMABTYP
| | > 3. Process return codes
from execution
routines.
Return code
0 processing
4.2

Licensed Material—Property of IBM
Saection 2. Method of Operation 67

APLITEX
Notes for Diagram 4.0

1. The name of the immediate

execution temporary function is

placed in field WSMFUNCT. The
address of the €first token is

placed in WSMNXINS. A null token
is placed on the operation stack,
and WSMTSADR is set so that the

null is the top token. [ITEXECUT]

2. Control is passed to the
interprater for statement scan
syntax analysis and execution.

Licensed Material—Property of IBM
68 VS APL Program Logic

The interpreter processas the
function and any invoked
functions, statement by
statement. Control remains in the
interpreter until a translator
service is required. {(See Diagram
4.1.)

The saervice indicated by the
return code in WSMABTYP is
provided {(see Diagram 4.23).
Control then is either returned
to ITINPUT to obtain terminal
input or again passed to the
interpreter to resume statement
execution. {(See Diagram 4.1.)

<

DIAGRAM 4§.1: STATEMENT SCAN, SYNTAX ANALYSIS, AND EXECUTION

IFrom Diagrgm 4.0
k R13 Stack

1. Save translator's

environment. T >

Build opceration stack
for VS APL statement,
as follows:

> a. Deterinine class of

next input token.

5]

WSMNXINS

b. Enter token and
necessary
information on WSMTSADR
operation stack. |

OPSTACK
3. Execute VS APL Token
statement, as follows:

T > a. Examine two top

tokens on
OPSTACK operation stack
and identify
syntax class for
Token each.

Token
WSMTSADR

Prior Token

b. Take required
action using syntax
decision table.

Function Call and

Exit
X 4.1.1
Branching
4.1.2
Primitive

Function 413

M i-scellangé.l‘.xs

Processing 414

Shared O'Bj:ecvzt
Processing 4.1.5

tt 1t ¢4

4. Continue statement
scan until translator
service is required.

4.2

Licensed Material—Property of IBM
Section 2. Method of Operation 69

Notes for Diagram 4.1 d.
APLIEXAR

1.

Save translator's environment:
The translator's on-vector and
registers 12 through 15 are saved
in the R13 stack. (See "R13
Stack™ in "Section 5. Data
Areas".) The syntax of the top
token on the operation stack
determines the processing that is
to occur. If the token is null,
statement scan occurs (step 2).
For other cases, syntax analysis
occurs using the top two tokens
on the operation stack (step 3).
[IEXARCH]

Reentry conditions to the
interpreter are as follows:

a. An escape exit for an
ill-formed line, an error
exit, or a "nothing to do"
exit to the translator was
taken and terminal input was
obtained. The top token on e.
the operation stack is a null
token. The WSMNXINS field
contains the address of the
first token of an
immediate-execution temporary
function whose body is the
tokenized terminal input.

b. A stop, trace, print, or
attention exit to the
translator was taken at the
end of the prior statement;
or an escape exit for f.
assignment to a trace or stop
vector wwas taken and the next
token was E0S. The top token
on the operation stack is a
null token. The WSMNXINS
field contains the address of 2.

A branch in a quad-input or
execute temporary function
caused exit to the
translator. For quad-input:
The translator took an error
exit and reentry is as in a
above. For execute, the
branch is to be evaluated in
the context of the pendant
function. At exit, the
operation stack was: EOS,
fast or normal branch
operator (the argument of a
normal branch), null, FCB for
execute temporary function,
prior token(s), FCB for
pendant function. The
operation stack is now:
normal branch, argument of
branch, prior token (null),
FCB for pendant (now current)
function. The WSMHXINS field
contains the address of the
token following the execute
token in the calling
function. [EO0S]

Assignment to a trace or stop
vector caused exit and the
next token is not E0S. The
operation stack was: escape
token, left arrow, right
argument, prior token. The
operation stack is now: right
argument, prior token. The
WSMNXINS field contains the
address of the token
following the escape token in
the current function.

Initial entry from the
translator is as in step a
above.

APLIESCA
Build operation stack for VS APL

.the first token of the next statement:
statement in the current
function. a. The token whose address is in

c. The end of the only statement
of & quad-input or execute
temporary function caused
exit to the translator,
because the trace bit is
always set . to 1 in the EOS
token of these functions. At
exit, the operation stack
was: EO0S, result of
quad—-input or execute, null, b.
function call block (FCB) for
temporary function, prior
token. The operation stack is
now! result, prior token. The
WSMNXINS field contains the
address of the token
following the quad or execute
in the calling (now current)
function. ’ .

L;censed Material—Property of IBM
7

VS APL Program Logic

the WSMNXINS field is
identified as one of the
following: internal name,
operator or separator,
literal, fast branch, escape
special operator, indirect
special operator, comment, or
system function. [IESCANG,
ACTIONO]

The token is entered on the
operation stack, that is, it
is placed in the word whose
address is in WSMTSALCR. (See
"Oporation Stack”™ in "Section
5. Data Areas".) Entering
takes place as follows:

J

Internal name: The name is
placed in the right half of
the stack word. The syntax
and primary descriptor from
the address table are placed
in the left half. [ACTO]

Operator or separator: The
token is put on the operation
stack duplicated in the left
and right halves of the stack
word. If the operator is
overstruck with a hyphen, the
operator index value of 0 is
placed in the fourth byte of
the stack word. [ACTO11

Literal: For 16-bit literal,
the token is put on the stack
as a stack immediate
variable. For other literals,
a temporary internal name and
a block of free space are
obtained; the descriptor and
value are put in the block:;
and the internal name is put
on the stack with the syntax
of a temporary remote
variable. [ACTOLIT]

Fast branch: The token and
the following token
(end-of-statement) are put on
the stack and the branch
processing routine is called.
(See Diagram 4.1.2: "Branch
Processing.”) [ACTOSP]

Escape special operator: This
token indicates an ill-formed
line or assignment to a stop
or trace vector. The token is
put on the operation stack as
a stack immediate variable.
An escape exit to the
translator is taken.

LACTOSP21]

Indirect special operator:
This operator is used in
embedded VS APL functions.
The next token containing the
internal name of a primitive
operator is obtained. The
operator is then obtained
from the address table, and
put on the stack duplicated
in the left and right halvesg
of the stack word. [ACTOSP3]

Commant: The WSMNXINS fiaeld

is set to the address of the
token following the comment.
Statemant scan is resumad at
step 2a. [ACTOSP5]

System function: The token is
put on the stack in the right
half of the word. The quad-gq
operator is put in the left
half¥ of the word. [ACTOSP61]

APLIESCA
3.

Execute VS APL statement:

The WSMNXINS field is set to
the address of the token
following the one processed.
The WSMTSADR field is
decremented by four. The
token just entered on the
operation stack now becomes
the top token or the current
token. [DECIDE!

The action to be done is
selected according to the
syntax class of the two top
tokens on the operation
stack. [DECIDEZ2]

Syntax class codes are as
follows:

Code Meaning

00 ~N oo U N NN O

O W > v

o

Null

Operator
Variable

Dyadic function

Right parenthesis or
bracket

Left parenthesis or bracket
Semicolon
Assignment (left arrow)

Right operator index
bracket

Niladic function

End of statement (EQ0S)
Monadic function

Shared object (quad,
quote-quad, system
variable, shared variable)
Not used

Not used

System object (group,
printname)

The syntax decision table which
follows is used to determine the
appropriate action.

Licensed Material—Property of IBM

Section 2. Method of Operation 71

Current Token
A

34 5678 9YABCDEF

Syntax
Class”
Codes
(0 |
P 1f1
r
i 211
o
r<3l
T)4a(1
o
kst
e
"le)1
\7 1

1
1

o101 111510111111

24174 44 4184 4191 11

101 8160 9 11051 111
51171 11 1181 119111
01014141 1 5 1 1111 11
6 1’171 1 1 1181 1191 11
010141411 51 1111 11

71131 11111115111

Explanation: The actions
symbolized by the action codes
are as follows:

Codea Action

Continue statement scan.
[IESCANG, ACTIONO]

Syntax error. Exit to
translator. [IESCANG,
ACTION1]

Do dyadic operation (see
Diagram 4.1.3: "Primitive
Function Processing”).
[IESCANG, IEDYADI]

If the prior token is a
slash or backslash, do
reduction or scan operation
(see Diagram 4.1.3:
"Primitive Function
Processing”). For other
cases, do Action 4.
[IESCANG, ACTION3]

If the current token is a
period, do inner or outer
product opaeration; for
other cases do monadic
operation (see Diagram
4.1.3: "Primitive Function
Processing”). [IESCANG,
ACTIONA]

Do function call (see
Diagram 4¢.1.1: "Function
Call and Function Exit
Processing™). [IEFUNN]

Do subscripting operation
(see Diagram 4.1.4:
"Miscellaneous
Processing™). [IEINDD]

‘Licensed Material—Property of IBM
72 VS APL Program Logic

10

11

12

13

14 -

Do assignment (see Diagram
4.1.4: "Miscellancous
Processing”). [IESCANG,
ACTION7]

If current token is left
bracket, continue statement
scan. If current token is
left parenthesis, operation
stack is: left parenthesis,
variable (result of
parenthesized expression),
right parenthesis, prior
token. Modify operation
stack so that it is:
variable, prior token.
Select next action (see
step 3b above). [IESCANG,
ACTIONB]

Change syntax class of
current token from 8
(operator index bracket) to
% (right bracket). Then do
Action 16. [IESCANG,
ACTION9]

Process end of statement
(see Diagram 4%.1.4:
"Miscellaneous
Processing”). [IESCANG,
ACTION1O]

Do shared object reference
(see Diagram 4.1.5: "Shared
Object Processing”).
[IESCANG, ACTION11]

Operation stack is:
operator, left bracket,
variable (operator index),
right bracket, prior token.
Get value of operator index
and put it in fourth byte
of stack word containing
operator; set explicit
indexed operator bits
(OPHASIND and OPEXIND).
Modify operation stack so
that it is: operator, prior
token. Continue statement
scan. [IESCANG, ACTION121]

Operation stack is: right
separator, left arrow. Set
SSASGN bit to 1 in right
separator to indicate
subscripted assignment.
Then do Action 17.
[LIESCANG, ACTION131]

- Opeération stack is:

semicolon ‘or left bracket,
semicolon or right bracket.
Modi fy operation stack so
that it is: semicolon or
left bracket, empty
subscript marker, semicolon
or right bracket. Continue
statement scan. [IESCANG,
ACTION14]

<

»

15 Do shared object
specification (see Diagram
4.1.5: "Shared Object
Processing"). [IESCANG,
ACTIONL15]

Note: Actions 16 through 19 are
done when the current and prior
tokens are such that there may be
a named permanent variable on the
operation stack that has not vet
been evaluated. Before it is
evaluated, a new value may be
assigned to the name. To provide
consistent right-to-left
execution, the value of a named
variable when it is encountered
in the statement scan must be
preserved. If the variable in
question is temporary or stack
immediate, nothing is done. In
any other case, a copy or synonym
of the value with a temporary
internal name is made; the
permanent name on the stack is
replaced with the temporary name.

16 Copy prior token (see note
above). Then continue
statement scan. [IESCANG,
ACTION161

17 Copy third token (see note
abovel). Then continue
statement scan. [IESCANG,
ACTION171

18 Copy third token (see note
above). Then do function
call. [IESCANG, ACTION18]

19 If current token is other
than quad, do Action 11.
For other cases, copy third
token (see note above).
Then do Action 11.
[IESCANG, ACTION191

Continue statement scan until
translator service is required.

All actions described above
eventually terminate in one of
three ways:

With a return to the translator
for one of the following reasons:
an error is discovered; stop,
trace, print, or attention
service is required; or the
operation stack is exhausted. The
reason code is passed in field
WSMABTYP (see Diagram 4¢.2).

With control passed to
IESCANG-ACTIONO to continue
statement scan (step 2).

With control passed to

IESCANG-DECIDE2 to do syntax
analysis (step 3).

Licensed Material—Property of IBM

Section 2. Method of Operation 73

DIAGRA .

WSMTSADR

F

c

(4] ALL AND FUNCTION E

From Diagram 4.1

PROCESSING

1.

OPSTACK

Prior Token

Called Function
Object

WSMFUNCT

Calling Function
Object

| WSMNXINS

Address Table

WSMTSADR

. OPSTACK

Null Token

FCB

Prior Token

Address Table

U

At function call,
process as follows:

> 2. Copy function

arguments.

> b. Build function call

block (FCB) on
operation stack
and shadow local
variables,
arguments, and

labels. r

. Begin execution of

called function.

From Diagram 4.1.2

2. At function exit,
process as follows:

a. Give result a new

temporary name.

. Activate shadowed

result, arguments,

locals, and labels. [~

Restore pointers

to calling function. |

WSMTSADR

I

OPSTACK

Null Token

FCB

Prior Token

WSMFUNCT

L

Called Function
Object

WSMNXINS —-]

1

Address Table

. Enter result on

operation stack. [

. Resume execution

of calling function,

Licensed Material—Proparty of IBM
74 V5 APL Program Logic

Address Table

WSMFUNCT

Calling Function
Object

WSMNXINS

WSMTSADR

> OPSTACK

Result

Prior Token

C

Notes for Diagram 4.1.1

1. At function call, the operation
stack is in one of the following
conditions:

Left argument, dyadic function,
right argument, prior token.

Monadic function, right argument,
prior token.

Niladic function, prior token.

APLIEFNM

a.

A copy is made of the
arguments, giving them
temporary internal names.
This is done so that
references to the arguments
within the function are to
their local values and not to
their global values. [IEFUNN,
FUNN1]

A function call block (FCB)
is built on the operation
stack overlaying the input
tokens. The space required
for the FCB is obtained from
the FHEDK field in the called
function header. The FCB is
built as follows:

The internal name of the
calling function is obtained
from the WSMFUNCT field and
entered in the FCB; the
internal name of the called
function is entered in the
WSMFUNCT field. U[FUNN31

The offset to the next token
in the calling function is
computed and entered in the

_FCB. [FUNN3]

The active referent of each
variable named in the
function header (that is,
FHEDZ through FHEDLOCLn
fields) is shadowed (that is,
the global value is saved in
the FCB, and an initial local
value is assigned). Shadowing
occurs as follows [FCLOOP]:

The internal name and address
table entry are entered in
the FCB. '

The internal name in the
value block and any
associated synonym blocks are
changed to that of the
address table entry saved in
the FCB.

For system variables, the
no-value and implicit-error
bits (ATIMNOVL and ATIMERR)

in the address table entry
are set to 1. For quad-I10 and
quad-CT system variable, the
implicit-error bits (SWQIGIMP
and SWQCTIMP) in WSMASYNC are
set to 1. For quad-HT system
variables, null tab settings
are sent to the executor.

For labels, the statement
number is entered in the
address table entry with a
syntax descriptor of X'2F1ll'
(indicating a read-only
variable with immediate
integer value).

For all other local names,
X'2700 0000' (indicating a
variable with no value) is
entered in the address table
entry.

Translator flags, obtained
from the FHEDBITS field, and
the length of the FCB, are
entered in the FCB. [FUNN41

Function arguments are
activated by changing their
address table entries from
"no value”" to the specified
values using the copies
described in step a above.
The temporary names of the
copies are discarded. [FUNN5]

A null token is entered on
the operation stack, and the
WSMTSADR field is set to make
the null the top token on the
operation stack. [FUNN61

The WSMNXINS field is set to
the address of the first
token of statement 1 of the
called function. [FUNN6]

Execution of the function is
begun as follows:

If the stop bit (EOSTPBIT) is
not set for statement 1,
control is passed to IESCANG,
ACTIONC to resume statement
scan. [FUNNXITI

APLIESCA

If the stop bit is set, the
WSMNXINS field is set to the
address of the E0S token of
statement 0. The EGCS token is
placed on the stack, and the
WSMTSADR field is set to make
the EO0S the top token on the
operation stack. A "stop"
exit to the translator is
taken. [IESCANG, ENTRY12]

Licensed Material—Property of IBM
Section 2. Method of Operation 75

APLIEFNN

2.

Function exit processing is as
follows:

If the function has a result,
the result is given 2 new
temporary internal nama, and
its real address table entry
is set to "no value.” This is
done so that the shadowed
referent can be activated
without destroying the
result. [IEUNFN, UNFN]

The shadowed referent of each
local variable named in the
function call block (FCB) is
activated. [UNLOOP]

Processing occurs as follows:

For a system variable: the
TAUNSHAD routine is called to
unshadow the system variable.
[Called by IASHRPST]

For a shared variable: the
IARTRACT routine is called to
retract the shared variable.
[Called by IASHRPST]

For a remote value: the value
block is freed.

The address table entry saved
in the FCB is reentered in
the address table. The
internal name is reentered in
the value block and in any
associated synonym blocks.

Licensed Material—Property of IBM
VS APL Program Logic

76

The calling function is set
as the current function by
moving 1ts internal name from
the FCB to the WSMFUNCT
field. [UNFN3]

If the WSMFUNCT field
indicates that damage has
been done to the calling
function, an SI DAMAGE error
exit to the translator is
taken. For other cases, the
input pointer is set to the
address of the token
following the function call
by obtaining the offset to
the next token from the FCB,
computing the address of the
token, and entering the
address in the WSMNXINS
field. [UNFN4]

The function result is placed
on the operation stack
following the token that
preceded the FCB. The
WSMTSADR field is set to make
the function result the top
token on the operation stack.
If the function has no
result, the constant WSMNOVAL
(variable with no value) is
used as the result. [UNFN5]

Execution of the calling
function is resumed with a
syntax analysis of the result
and prior token. [IESCANG,
ENTRY11]

J

<

J

DIAGRAM

WSMTSADR

From Diagram 4.1

1.2: BRANCH PROCESSING

)

_ OPSTACK

Null

Stop Word or

WSMFUNCT

> 1. Locate target

WSMTSADR

statement number. [

Current
Function

WSMTSADR

OPSTACK

Stop Word

F

Suspended
Function

2. Determine which
function contains the

OPSTACK

Null

Stop Word or
FCB

WSMFUNCT

target statement. |

3. Exit function if target
statement is outside
its range.

4. Resume statement
scan with target

Current
Function Object

WSMNXINS

statement, [

> I

Licensed Material—Property of IBM
Section 2.

Method of Operation 77

Notes for Diagram 4.1.2
APLIEFNM

1.

For permanent functions with
trace requested (OPTEMPGO=0 and
EOSTRBIT=1) or quad-input or
execute temporary functions
(OPTEMPGO=1 and EOSTRBIT=1),
control is passed to the
translator, where all processing
occurs. [IEGOGOMN, PRINTJ]

Target statement is determined,
as follows:

For fast branch operator:
Operation stack consists of these
tokens: E0S, operator, null, stop
word, or beginning of function
call block (FCB). Target
statement number is bits 1
through 11 of the branch
operator. The WSMTSADR field is
set to make the null the top
token on the operation stack.
[LIEGOGOSC]

For normal branch operator:
Operation stack consists of EOS,
operator, right argument, null,
stop word or beginning of FCB.
Processing is as follows:

For permanent function with null

argument: End-of-statement

zroce?sing occurs (see Diagram
.1.4).

For immediate-execution temporary
function with user-coded branch
(OPTEMPGO=1 and EOSTRBIT=0) with
null argument: The suspended
function statement number in the
stop word is the target statement
number. [GOGOMN32

For.all other cases: The target
statement number is the first or
only element of the argument.
LGOGOMN4G]

If the argument is temporary, its
internal name and block of free
space are freed. [GOGOMNS5]

The WSMTSADR field is set to make
the null token the top token on
the operation stack. [GOGOMNG6]

The internal name of .the current
function is obtained from the
WSMFUNCT field, and the current
function is located. If it is a
permanent function, it contains
the target statement. If it is an
immediate execution temporary
function, the function that
contains the target statement is
located as follows:

Licensed Material—Property of IBM

78

VS APL Program Logic

The temporary internal name of
the immediate-execution temporary
function and its block of free
space are freed. [G0GO]

If there is no suspended function
(that is, the stop uword indicates
the end of stack condition),
control is returned to the
translator. [NORMEX]

If there is a suspended function
but it is damaged (indicated as
such by the stop word), the SI
DAMAGE error exit is taken.
{GOTOEX]

If there is a suspended function
(not damaged), the internal name
of the suspended function is
obtained from the stop word and
entered in the WSMFUNCT field;
the suspended function is now the
current function. The stop word
is replaced with a null token,
and the WSMTSADR field is set to
make the null the top token on
the operation stack. [G0GOI]

If the target statement is not
within the range of statements in
the current function, processing
is as follows:

If there is no pendant function
(operation stack item preceding
the null token is a stop word),
control is returned to the
translator. [NORMEX]

If there is a pendant function
(operation stack item preceding
the null token is the beginning
of a function call block),
control is passed to the function
exit routine (see Diagram 4.1.1:
"Function Call and Function Exit
Processing"). [G0G04%]

If the target statement number is
greater than 0 and no greater
than the number of statements in
the current function, processing
is as follows:

APLIESCA

If stop has been reaquested
(ECSTPBIT=1), the WSMNXINS field
is set to the address of the
end-of-statement (E0S) token of
the statement preceding the
target statement. The EGS token
is put on the operation stack,
and the WSMTSADR field is set to
make the E0S5 the top token on the
operation stack. Control is
passed to the translator via the
stop aexit. [IESCANG, ENTRY121

APLIEFNM

If attention has been signalled,
the WSMNXINS field is set to the
address of the E0S token of the
statement preceding the target
statement. Control is passed to
the translator via the attention
exit. [ATTNEX]

For other cases, the WSMNXINS
field is set to the address of
the first token of the target
statement. Control is passed to
IESCANG, ACTIONO to resume
statement scan. [GOGOXIT]

Licensed Material—Property of IBM
Section 2. Method of Operation 79

DIAGRAM 6.1.3:

From Diagram 4.1

PRIMITIVE FUNCTION PROCESSING

WSMTSADR

OPSTACK

1. Sct up argument(s)
and operator
according to type of
function:

o

Operator

Right Argument

I'rior Token

WSMTSADR

OPSTACK

> a. Monadic functions I

P

> b. Dyadic functions

Left Argument

Operator

Right Argument

Prior Token

WSMTSADR

OPSTACK

-

¢. Reduction and

Operator |

Operator 2

Right Argument

P’rior Token

WSMTSADR

OPSTACK

sean [

-

> d. Inner and outer

Left Argument

Catenated
Operators

Right Argument

Prior F'oken

WSMLGETY

I

WSMRGETYV

WSMOPWD l

L —

WSMRSULT

I

product [

t~

Exccute primitive

TS T R P T | R [!

function. T

3. Process result.

[

4. Free arguments.

5. Resume statement scan.

Licensed Material—Property of IBM

80 V5 APL Program Logic

WSMRGETV

WSMOPWD

1

WSMLGETV
WSMRGETV

WSMOPWD

WSMRGETV

WSMLGETV

WSMOPWD

WSMLGETV
WSMRGETV
WSMOPWD

WSMRSULT

WSMTSADR

OPSTACK

Prior Token

Notes for Diagram 4.1.3
APLIESCA, APLIEMND

1.

The argument(s) and operator are
processed as follows according to
the type of primitive function:

Monadic functions: The right
argument entry is obtained from
the operation stack, and the
JEGETV routine is called to set
up the right argument block
(WSMRGETV) for data fetching. The
primitive function (operator) is
obtained from the operation stack
and placed in field WSMOPWD.
{IEMONAD]

Dyadic functions: The left
argument entry is obtained from
the operation stack, and the
IEGETV routine is called to set
up the left argument block
(WSMLGETV) for data fetching. The
right argument and operator are
processed as described above.
{IEDYADI] :

Reduction and scan functions: The
right argument is processed as
described above. The reduction or
scan operator (0P2) is obtained
from the operation stack and
placed in field WSMOPWD. The
primitive function (OPl) is
obtained from the operation stack
and placed in the left argument
block. [IESCANG, ACTION3]

Inner and outer product
operations: The operators are
catenated into one word on the
operation stack. For inner
product, the stack word contains
(in bytes): dot (period), dot,
OPl, 0OP2. For outer product the
stack word contains: dot, jot
(small circle), 0P2, 0P2. Then
statement scan and execution
continue until the operation
stack contains: left argument,
catenated operators, right
argument. These are then
processed as described above for
routine IEDYAD. [IESCANG,
ACTIONS]

Control is passed to some routine
(see below) to perform the
function. In general, an opqrator
routine computes the shape and
size of the result, obtains a
temporary internal name and a
block of free space, builds the
result, enters the syntax and
internal name of the result in
the WSMRSULT field, and passes
control to a result-processing
routine (see step 3). Exceptions
to this are:

Normal branch operator: exit to
routine IEGOGOMN; see Diagram
4.1.2.

Operations that are completed by
subscripting: ¢B, 8B, and A®B,
when B is an array; and A$B, when
A is scalar are performed as BIR]
where R is a subscript list built
by the operator routine. In these
cases, the routine builds a
subscript list in free space, and
enters its descriptor and
internal name in the right
argument block.

Operations that return a function
as the result: the result of the
execute operation is a temporary
niladic function whose body is
the tokenized right argument. The
result of certain cases of encode
and decode is a dyadic embedded
VS APL function. (See "Operation
Stack" in "Section 5. Data
Areas”".) The result of certain
cases of scan is a monadic
embedded VS APL function.

The processing of all monadic
functions begins in routine
IEMONAD. The monadic functions
and the routines that perform
them are:

Function Routine

+B TEMONAD, PLUS

-B TEMONAD, NEG; performed
as 0-B

xB IEMONAD, SIG

+B IEMONAD, RECIP;
performed as 1+ B

LB IEMONAD, FLCL

[B TIEMONAD, FLCL

*B IEMONAD, EXP; performed
as e¥B

@B IEMONAD, EXP; performed
as eeB

IB IEMONAD, MAG

!B IEMONAD, FACT

’B IEMONAD, ROLL

on IEMONAD, PI; performed
as pixB

~B IEMONAD, NOT; performed
as 0O~B

pR IEMONAD, SIZE

Licensed Material—Property of IBM
Section 2. Method of Operation 81

Function Routine

B TIEMONAD, RAVEL

18 IEMONAD, IOTA

4B IAGRADE

4 IAGRADE

o8 IEMONAD, REV;

edn IAREVARY if argument is
an array

STH IAMTRAN

@n IAMDOM

eB TAEXECTE

L IAMFORM

OxxB (System functions):
TIADSHARE

The processing of all dyadic
functions begins in routine
IEDYAD. The dyadic functions and
the routines that perform them
are:

All dyadic scalar operations:
(+-x#| L [*®| lOAVANwM<E>2=2): |EDYB

Function Routine

A?B TADEAL

ApB IERSHP

A,B IECOMMA

AlB IEEPSIOT

A€B IEEPSIOT

AtB IETKDP; IATKDP if A is
nonscalar

AVB IETKDP; IATKDP if A is
nonscalar

A/B IECMEX

A\B IECMEX

AdB IAROTA

ARB IADTRAN

AlB IADECODE

ATB IAENCODE

Alls IADDOM

ATB IADFORM

A0xxB - (System functions):
IADSHARE

Licensed Material—Property of IBM

VS APL Program Logic

The composite functions and the
routines that perform them are:

Function Routine

op/ i3 IAREDU
np\n IASCAN
Ao .opB IEDYB

The outer product function is
executed in one of two wavs
according to the shape of the
arguments. If either argument is
scalar, the function is done as
an ordinary dyadic scalar
function. Otheruwise, the function
is done as a series of dyadic
scalar functions using the right
argument and successive elements
of the left argument for each
iteration. The latter case is
identified by bit OPISMIX = 1 in
WSMOPKWD.

A opl.op2 B IAIPROD

The inner product function is
executed in one of two ways
according to the shape of the
arguments. If one argument is a
vector and the other is an array,
or if both arguments are arrays,
the function is done by routine
JAIPROD. Otherwise the function
is done in two steps. First the
dyadic scalar function A op2 B is
performed by routine IEDYB. Then
the opl reduction of the result
is performed by routine IAREDU.

Processing of the result varies
according to its type. Exarch
operator routines pass control
directly to the appropriate
result-processing routine.
Appendage operator routines set
WSMAFLG2 to indicate exceptional
result types, and then return
control to their calling routine
(IEMONAD; IEDYAD; or IESCANG,
ACTION3). Control is then passed
to the appropriate
result-processing routine.

Various types of results are
processed as follows:

Dperation is to be completed by
subscripting
(WSMAFLG2=AFLG2MOR+AFLG2TSP):
exit to subscripting routine
IEINDB (see Diagram 6.1.4).

Result is a niladic function
(syntax class is 9): The syntax
and internal name are transferred
from WSMRSULT to the operation
stack, replacing the right
argument entry, and the WSMTSADR
field is sat to make it the top

J

token on the operation stack.
Exit to function call routine
(see Diagram 6.1.1). [I1ESCANG,
ENTRY5A]

Result is a monadic function
(syntax class is B): The syntax
and internal name are transferrad
from WSMRSULT to the operation
stack, replacing the operator
entry, and the WSMTSADR field is
set to make it the top token on
the operation stack. Exit to
function call routine (see
Diagram 4.1.1). [IESCANG,
ENTRYS5A]

Result is a dyadic function
(syntax class is 3): The syntax
and internal name are transferred
from WSMRSULT to the operation
stack replacing the operator
entry. Exit to function call
routine (see Diagram 4.1.1).
[IESCANG, ENTRY2B]

Result equals right argument
(WSMAFLG2=AFLG2MOR+AFLG2RT): If
the right argument is an address
table immediate value, it is
placed on the operation stack as
a stack immediate value. If the
right argument is a remote valua,
it is marked as permanaent, and
the operation stack is left as
is. [IESCANG, ENTRY?9]

Result is & logical or integer
scalar returned in register 2 by
exarch operator routines: If the
result is logical or a small
intager, it is placed on the
operation stack as a stack
immediate value, replacing the
right argumant entry. If the
result is a large integer, a
temporary internal name and a

block of free space are obtained;
the value block is filled in; tha
syntax and internal name are
placed on the operation stack
replacing the right argument
entry. L[IESCANG, ENTRY3 or
ENTRY6]

Result is a real scalar returned
in floating-point register & by
exarch operator routines: a
temporary internal name and a
block of free space are obtained;
the value block is filled in; the
syntax and internal name are
placed on the operation stack
replacing the right argument
entry. [IESCANG, ENTRY% or
ENTRY7]

Result is a variable whose name
or value is returned in field
WSMRSULT: the syntax and internal
name or immediate value are,
placed on the operation stack
replacing the right argument
entry. [IESCANG, ENTRYZ2 or
ENTRYS5]

For all cases in which the result
is a variable, the WSMTSADR field
is set to make the result entry
the top token on the operation
stack. [IESCANG, PUSHDOWN]

If the operation was dyadic and
tha left argument is temporary,
its internal name and value block
are freed. If the right argument
is temporary, its internal name
and value block are freed.
[IESCANG, LFREE]

Control is passed to routine

TESCANG, ACTIONO to resume
statement scan.

Licensed Material—Property of 1BM

Section 2. Method of Operation 83

DIAGRAM 4.1.4: MISCELLANEOUS PROCESSING

I'rom Diagram 4.1

WSMTSADR

1. Process subscripting
as follows:

I _ OPSTACK

t

> a. Sct up arguments

WSMLGETV

and subscripts. [

b. Process subscripted
reference as
follows:

WSMRGETV

2ZBLOCK

WSMTSADR
OPSTACK

WSMLGETYV

E’ Left Argument |
WSMRGETV
WSMLGETV

> Build result. —

Do syntax analysis.

¢. Process subscripted
assignment as
follows:

WSMRGETYV
q Subscripts |
ZZBLOCK

WSMTSADR

OPSTACK

> Modify luft

> ey
=
Lo
s
s

Left Argument

argument.

Check for
end-of-
statement.

2. Provess assignment
as follows:

Left Argument

Left Arrow

Right"Argument

From Diagram 4.1

WSMNXINS

.

> a. Assign value of

right argument to

> WSMTSADR

Right Bracket

Left Arrow

:> OPSTACK
Right Argument

left argument. r

b. Do end-of-
statement
processing or
resume statement

—
L.eft Argument

WSMTSADR

OPSTACK

svan. [

3. Process end-of-
statement as
follows:

I EOS Token]—I

> a. Exit to translator

WSMASYNC

I e

WSMTSADR

l‘ OPSTACK

if service required.

b. Else resume

Right Argument

WSMTSADR

L |

OPSTACK

statement scan. |

Null Token

g

Licensed Material—Property of IBM

84 VS APL Program Logic

C

Notes for Diagram 4.1.6
APLIEIDX

1.

The subscripting routine is
called either to do ordinary
subscripting or to complete a
transpose or rotate operation.

a. The arguments are set up as
follows for each case:

For ordinary subscripting:

The operation stack contains
the left argument followed by
one or more subscripts. Each
subscript is either a stack
immediate value, the syntax
and internal name of a remote
value, or an empty subscript
marker (indicating that all
elements of the corresponding
left argument dimension are
selected).

The left argument entry is
obtained from the operation
stack, and the IEGETV routine
is called to set up the left
argument block (WSMLGETV) for
fetching of data. [IEINDD,
SECTION1]

If the left argument is a
vector, there can be only one
subscript. The subscript
entry is obtained from the
operation stack, and the
IEGETV routine is called to
set up the right argument
block (WSMRGETV) for fetching
of subscript data. If the
subscript is an empty
subscript marker, a temporary
internal name and a block of
free space are obtained, and
a subscript in the form of an
arithmetic progression (AP)
vector is built. [IEINDD,
SECTIONG]

If the left argument is an
array, there is one subscript
for each of its dimensions. A
temporary internal name and a
block of free space for a
subscript list are obtained:;
the right argument block
(LISMRGETV) is set up to
address it. Each subscript
entry is obtained from the
operation stack, and the
appropriate data is placed in
the subscript list. The
format of the subscript list
is described in the listing
of routine IEINDD. [IEINDD,
SECTIQON2 and SECTION3]

If the operation is a
subscripted assignment, the
operation stack also contains

a right argument. Its entry
is obtained, and the IEGETV
routine is called to set up
an argument block (ZZBLOCK)
for fetching of data.
[IEINDD, SECTIONS]

For subscripted assignment,
the left and right arguments
must be the same data type;
the left argument must not be
a synonym or arithmetic
progression (AP) vector. If
necessary, a copy of the left
or right argument is made
with the elements converted
to the required data type.
[IEINDD, SECTIONG1

For completion of transpose
or rotate:

The transpose or rotate
operator routine has built a
subscript list and placed its
internal name in the right
argument block (see Diagram
$.1.3 step 2). The IEGETV
routine is called to set up
WSMRGETVY for fetching of
subscript data. The left
argument entry is obtained
from the operation stack, and
the IEGETV routine is called
to set up the left argument
block (WSMLGETV) for fetching
of data. [IEINDB1

Subscripted reference is
processed as follows:

A temporary internal name and
a block of free space for the
result are obtained. The name
is placed in WSMRSULT.
[IEINDD, SECTIONS]

The result is built by
fetching elements of the left
argument a8s indicated by the
subscript(s) and placing them
in the result block. [IEINDD,
SECTION9 and SECT101

APLIESCA

The syntax and name of the
result are transferred from
WSMRSULT to the operation
stack, replacing the right
bracket entry. The WSMTSADR
field is set to make the
resulting entry the top token
on the operation stack.
[IESCANG, ENTRY10]

Control is passed to IESCANG,
DECIDE2 to do syntax analysis
using the result and the
prior token. [IESCANG,
ENTRY10B]

Licensed Material—Property of IBM
Section 2. Method of Operation 85

APLIEIDX

c. Subscripted assignment is
procaessad as follows:

Element,s of the left
argument as indicated by the
subscript(s), are replaced by
successive elements of the
right argument. [IEINDD,
SECTION9 and SECT10]

If the left argument is a
shared or system variable,
control is passed to the
IASHRPST routine. The
remainder of the processing
is described in Diagram
4.1.5, step 3. [IEINDD, EXITI]

APLIESCA

The WSMTSADR field is set so
that the right bracket is the
top token on the operation
stack. The result of the
subscriptaed assignment is the
right argument, not the
modified left argument. A
check is made for end of
statement as described in
step 2b below. [IESCANG,
ENTRY10B3

2. Assignment is processed as
follows:

a. For assignment, left and
right arguments are examined:
If the left argument is
temporary, a SYNTAX ERROR
exit is taken. If it is
read-only (a label), a DOMAIN
ERROR exit is taken. If the
left argument has a remote
value, the space for its
value block is freed.

- [IESCANG, ACTION?7I

The value of the right
argument is assigned to the
left argument, as follows:

If the left and right value
blocks are the same size and
neither argument is a
synonym, the right block is
copied into the left block.
[ACTION71

If the right argument has an
immediate value, an address
table immediate value is

Licensed Material—Proparty of IBM
86 VS APL Program Logic

3.

built for the left argument.
[ACT7C]

For other cases, & copy or
synonym of the right argument
is made and is given the
internal name of the left
argument. [ACT7E)

b. If the next input token is
EO0S, control is passed to the
end-of-statement processing
routine.

For other cases the WSMTSADR
field is set so that the
right argument is the top
token on the operation stack.
Control is passed to IESCANG,
ACTIONO to resume statement
scan. [ACT7X]

End-of-statement processing
occurs as follows:

a. An exit to the translator is
taken if any of the following
conditions are true:

Trace is requested; in EOS
token, EOSTRBIT=1. [IESCANG,
ENTRY8 or ACTIONI1O]

Stop is requested; in EOS
token, ECSTPBIT=1. [IESCANG,
ENTRY8 or ACTION101]

There is something to be
printed; on the operation
stack, the token preceding
the EDS is a variable that is
not the result of the
assignment. [IESCANG,
ACTION1O]

The user has signalled
attention; in WSMASYNC,
SWATTN or SWDATTN=1.
[IESCANG, ACT10Al

b. For other cases, the WSMTSADR
fiald is set so that the null
token that precedes the EOS
token or the result of
assignment is the top token
on the operation stack.
Control is passed to IESCANG,
ACTIONO to resume statement
scan. [IESCANG, ACT10C]

JAGRAM #.1.5:¢

HARED OBJECT PROCESSING

From Diagram 4.1

.

WSMTSADR

Process shared object
reference as follows:

_ OPSTACK

a. Obtain current]
value of shared WSMRSULT
Shared Object ohject. T
Prior Tuken b. Enter result on WSMTSADR

operation stack. ~

c. Do syntax analysis. OPSTACK

!

WSMTSADR

=7
OPSTACK

—

[1¥)

Process shared ohject
specitication as
follows:

Result

Prior Tuken

4. Assign value of
right argument to
shared object. [

Shared Ohject

Left Arrow

Shared Object

WSMTSADR

i

Right Argument

b. Do end-of-
stalement
processing or
resume statement
scan.

OPSTACK

il

Right Argument
or

3. Process shared object

subscripted
specification as WSMTSADR
follows:
WSMTSADR]
> a. Obtain current OPSTACK
value of shared -
OPSTACK object and enter e
result an aperation Left Argument
stack. [_'_ Left Bracket
Shared Object
Left Bracket b.])o'subsuiptcd
- - assignment, r
Subscripts
Right Bracket c. Process new value WSMLGETV
Left Arrow ol shared object. ::I
Right Argument
d. Do ¢nd-ot- ‘ : [r
statement Shared Object
processing or WSMTSADR
resume statement
scan. |
Diagram 4.1.4
or OPSTACK

Diagram 4.1

Right Argument

Licensed Material—Property of IBM
Saction 2. Method of Operation 87

Notes for Diagram 4.1.5

APLIESCA

1. Processing for the shared object
reference is as follows:

The token for the shared
object is obtained from the
operation stack, and entered
in the left argument block
(WSMLGETV). [IESCANG,
ACTION11]

APLIATRN

The type of shared object is
determined by the IAQUADS
routine, and processed as
follows:

For quad: The ITINPUT routine
is called to obtain input
from the terminal. The
ITEMPFUN routine is then
called to build a temporary
niladic function in free
space; the body of the
function is the tokenized
terminal input. The syntax
and internal name of the
function are then entered in
the WSMRSULT field. [IAQUADS,
CALLIN]

For quote—-quad: the ITINPUT
routine is called to obtain
terminal input. If the input
is null, the syntax and
internal name of the null
character vector (WSMNULCH)
are entered in the WSMRSULT
field. If the input is
scalar, it is entered in the
WSMRSULT field as a stack
immediate value. For other
input, a temporary internal

" name and a block of free

space are obtained, the input
is entered in the block as a
character vector, and its
syntax and internal name are
entered in the WSMRSULT
field. [IAQUADS,QUADP]

APLIASYV

For system variable: The
value of the variable is
either computed (quad-WA and
quad~LC), obtained from the
executor (quad-AI and
quad-TS), or obtained from
the variable's address table
entry or value block (all
other system variables). If
the value is logical or a
small integer scalar, it is
entered in the WSMRSULT field
as a stack immediate valua.
For other cases, a temporary
internal name and block of

Licensed Material—Property of IBM
88 VS APL Program Logic

frea space are obtained. The
current value of the system
variable is entered in the
block, and its syntax and
internal name are entered in
the WSMRSULT field.
[IASYSREF] :

APLIASHV

For sharad variable: The
YYSREF service request is
issued to transmit the
current value of the shared
variable from shared memory
to the unallocated block. A
temporary internal name is
obtained and given to the neuw
value block. The IACHK
routine is called to validate
the data. The internal name
of the new value block is
entered in the variable's
share-ID block. The old value
and its internal name are
freed. The syntax and
internal name of the new
value block are entered in
the WSMRSULT field. [IASCOPY]

APLIESCA

b.

The syntax and internal name
or immediate value of the
result is obtained from the
WSMRSULT field and entered in
the operation stack in place
of the shared object entry.
[IESCANG, ACT11lC]

c. Control is passed to IESCANG,
DECIDE2 for syntax analysis
using the result and prior
token.

APLIESCA

2. Processing for shared object
specification is as follows:

a.

The entries for the shared
object and right argument are
obtained from the operation
stack and entered in the left
and right argument blocks
(WSMLGETV and WSMRGETV).
[IESCANG, ACTION15]

The type of shared object is
determined by the IAQDSPEC
routine, and processed as
follows:

APLIATRN

Quad or quote-quad: the
IAGOUT routine is called to
transmit the value of the
right argument to the
terminal. [IAQDSPEC,
CALLGOUT]

APLIASYV

System variable: For a
read-only system variable,
the specification is ignored.
For other cases, the right
argument value is entered in
the system variable's address
table entry or value block.
If the value is invalid, the
implicit error bit (ATIMERR)
is set to 1 in the system
variable's address table
antry. If the system variable
is quad-PW or quad-HT, tha
new value (if it is valid) is
transmitted to the executor.
[IASYSPEC]

APLIASHV

Shared variable: A temporary
internal name and block of
free space are obtained and
the right argument is copied.
The internal name is entered
in the WSMRSULT field. The
YYSSPEC service request is
issued to transmit the new
value to shared memory. The
internal name of the new
value block is entered in the
shared variable's share-1D
block. The old value block
and its internal name are
freed. [IASHSPEC]

APLIESCA

b.

If the next input token is
EQS, control is passed to the
end-of-statement processing
routine (see Diagram 4.1.4%).
For any other case, the
WSMTSADR field is set so that
the right argument is the top
token on the operation stack.
Control is passed to IESCANG,
ACTIONO to resume statement
scan. [IESCANG, ACT7X]

Processing for shared object
subscripted specification is as
follows:

The token for the shared
object is obtained from the
operation stack and entered
in the left argument block
(WSMLGETV). In the right
bracket token, the SHRASGN
bit is set to 1 to indicate
subscripted assignment to a
system or shared variable.
[IESCANG, ACTION11]

APLIATRN

The type of shared object is
determined by the IAQUADSA
routinhe, and tha current
value is obtained as follows:

APLIASYV

System variable: For system
variables with an immediate
valua, a RANK error exit is
taken. For read-only system
variables, a copy of the:
variable's current value is
made; the syntax and internal
name of the copy is placed in
the WSMRSULT field. For other
cases, the syntax and
internal name of the
variable's value block are
entered in the WSMRSULT
field. [IASYSREF]

APLIASHV

Shared variable: The current
value of the shared variable
is obtained as described in

la above. [IASCOPY]

APLIESCA

The result is processed as
described in step lb above.
Then control is passed to

IESCANG, DECIDE2 for syntax
analysis. [IESCANG, ACT1l1cC]

Since the current token on
the operation stack is naw an
ordinary variable, and the
prior token is a left
bracket, the subscripting
routine (IEINDD) is called.
(The subscripted assignmeéent
is done as described in
Diagram 6.1.4%4, step 1). At
completion, WSMLGETV contains
the internal name of the:
shared object's new value;
that is, its current value as
modified by subscripting.

The type of shared object is
determined by the IASHRPST
routine, and the new value is
processed as follows:

APLIASYV

System variable: For
read-only system variables,
the new value and its
internal name are freed. For
quad-HT, the new value (if it
is valid) is transmitted to
the executor. For other
cases, no processing of thae
new value is needed.
[IASYSPST?

APLIASHV

Shared variable: The YYSPEC
service request is issued to
transmit the new value t
shared memory. [IASHSPEC

Licensed Material—Property of IBM
Section 2. Method of Operation 89

APLIESCA

The WSMTSADR field is set so
that the right bracket is the
top token on the operation
stack. [IESCANG, ENTRY10B1

If the next input token is
EO0S, control is passed to the
end of the statement

Licensed Material—Property of IBM

90

VS APL Program Logic

processing routine (see
Diagram 4.1.4).

For other cases, the WSMTSADR
field is set so that the
right argument is the top
token on the operation stack.
Control is passed to IESCANG,
ACTIONO to resume statement
scan. [IESCANG, ACT7X1

DIAGRAM 4.2: RETURN CODE PROCESSING

L From Dagram 4.1

WSMNXINS

1. Normal end [

Fmpty Value

WSMABTYP

U

WSMFUNCT

- — > 1. Faecution error [> Lirror Messuge I
WSMNXINS

|

|

WSMTSADR

" OPSTACK

Il

Abnormal
Termination
Code

-\
3. Print or trace > Trace U

‘ 4 E . If diagnostic trace
WS . Escape token > or stop: "SYNTAX
SMTSADR [or DOMAIN
LERROR' message

OPSTACK

WSMNXINS

i
~

" S. Stop o altention | > If stop
OPSTACK

Line Number

Function Name

6. Fnd ot quad input or WSMNXINS

execule evaluation [>|

If execute without
value

WSMABTYP

ﬂ

Licensed Material—Property of IBM
Section 2. Method of Operation 91

Notes for Diagram 4.2
APLITEX

1.

At normal end, the null token is
deleted, and the temporary
function is fread. (ITEXECUT,
EXNORM]

If the statement that was
executed was a branch o line
zero and the operation stack was
empty, the temporary function is
erased before control returns to
this routine. On exit from this
module, the WSMNXINS and WSMFUNCT
fields are set to empty values.

APLITERR

2.

Execution error is signalled by
an abnormal termination code
greater than the value of ABESCA.
Error processing occurs in a
loop. Each time that the calling
function is5 made the active
function, processing returns to
step a below. Termination
conditions are: An unlocked
function is found and suspended;
an end-of-stack condition is met;
a quad-temporary is found and
execution is restarted.
Ordinarily, control passes to the
ITERRORS routine, where
processing is as follows:

a. The operation stack contains
entries representing the
state of the expression being
evaluated when the error
occurred. These include:
primitive functions,
temporary results,
separators, subscript lists,
etc. Each operation stack
entry is deleted and remote

- temporary variables are
freed, until a suspended
function or end-of-stack
condition, or a function call
block (FCB) is met. The FCB
is for the function named in
the WSMFUNCT field; suspended
functions and end-of-stack
conditions indicate that the
function named in the
WSMFUNCT field is an
immediate execution function.
[ITERRORS, ERLOOP1]

b. Subsequent processing depends
on the type of the active
function: If the active
function is locked, the error
indicated as RANK, VALUE,
etc. in the WSMABTYP field is
changed to a DOMAIN ERRGOR.
[ERLOCK]

The caller of this function
is made active; the FCB for
the function is deleted from

Licensed Material—Property of IBM

92

VS APL Program Logic

the operation stack by the
IESUNFUN routine.

Note: The calling function
may be damaged (that is,
erased, or modified by an
edit command). Damage to a
function is discovered during
type determination. The
function is then treated as
locked and the error is
changed to SI DAMAGE.

If the function is an execute
temporary function, the
temporary function is freed,
and the trouble report
(prefixed by the execute
symbol) is displayed.
[EREXEC]

The IESUNFUN routine is
called to delete the function
call block of this function
and the caller of the deleted
function is made the active
function.

If the function is a quad
temporary function, the error
message is displaved, the
temporary function is freed,
and its caller is made active
(see step b abovel. The
WSMNXINS field is decremented
by two so that it addresses
the quad token for
reexecution and the
interpreter is recalled.

If the active function is
defined and not locked, the
errcr message is displayed
and the function is
suspended. [ERNOLOCK]

If the function is an
immediate exacution function,
the error message is
displayed and the temporary
function is freed. [ERIMEX]

If the caller of the ITERRORS
routine is a system command
processcr (see Diagram 1.1)
requesting an interrupt after
a save command during
quad-input, control is
returned to the system
command processer. [(EXIT]

If the caller of the ITERRORS
routine is the ITEXECUT
routine, and the error is not
such as to reinvoke a quad
function, registers 13 and 14
are set to the bottom of the
R13 stack. [EXIT] Control is
passed to the input routine.
[ITINPUT]

If the error occurred in
quad-input, control is
returned to the caller
(ITEXECUT) to reinvoke the
interpreter. (EXITI

APLITERR, APLITSUB

3.

If the line is to be traced, the
ITPRFNLN routine is called to
enter the function name and line
number in the buffer. If the line
is a branch statement, a
right-arrow graphic is entered in
the buffer. [ITPRFNLN]

APLITEX

For end-of-line printing, or for
tracing, the value on top of the
operation stack is passed to
IAGOUT to be formatted and placed
in the buffer (to follow the
trace output, if any).

If an attention signal is
received, part of the display may
be built but printing does not
occur,

The escape token signals either
an ill-formed line or the
assignment to a trace or stop
vector. The escape token is in
the right half of the word at the
top of the operation stack. If
its high-order byte contains
zero, this signals the head of an
ill-formed line. The WSMNXINS
field contains the address of the
error code [ABSYNT or ABDOMA],
followed by the text of the line.
The ITERRORS routine is called to
display a SYNTAX or DOMAIN ERROR
message. [ITEXECUT, ESCAPE]

If the escape token signals a
diagnostic trace or stop vector,
processing is done by the TSTEST
routine as follows:

&. The ITFETCH routine is called
to validate the value given
and to procure its elemaents.
{TSBOTH]

b. For each integer value, a
trace or stop bit is set in
the named function.

APLITEX

5.

For attention signal only,
processing is as follows:®

The buffer is cleared. If the
current function is locked,
execution continues. (A locked

‘function is never suspended.)

CATTN1I

If the function is an
immediate-execution function, the
function is freed and the
ITEXECUT routine returns to its
caller. ;

If the current function is a
temporary function built from a
quad-input statement or the
execute primitive, processing
occurs as in step 6. '

For the defined, unlocked
function, processing occurs as
for stop, described below.:
[CATTPERMI '

For stop or attention, the
function is suspended. That is,
the number of the next line to be
executed, the name of the
function, and a bit to indicate
that the function is not damaged,
are placed on the operation stack
(in place of the initial null and
adjacent to the FCB for this
function). Control is then
returned to the caller. [STOPPI]

The temporary function created
from quad-input or the argument
of execute is deleted from the
operation stack. The value
resulting from its evaluation is
placed on top of the operation
stack and the calling function is
made the active one. [UNQUEX]

If there was no value, the
position in the calling function
is checked: If at end of line,
execution continues; if not,
ITERRORS is called to cause a
VALUE error. In any case, if the
calling function is at
end-of-statement, a test is made
for the presence of conditions 1
through 5.

Note: Any combination of
conditions 1 through 6 can occur
together, or recursively. When
all conditions have been cleared,
one of three cases obtains:
Execution is over; control is
returned to ITINPUT to pronpt the
user; an aerror exists, ITERRORS
is called to handle it; execution
continues, and IEXARCH is called
to resume execution.

Licensed Material—Property of IBM
Section 2. Method of Operation 93

DIAGRAM 5,0: SYSTEM COMMAND EXECUTION

From Diagram 2.0

Register PT

Register CT

Length of
Command Text

WSMBUFF

Command
Text

Workspace
Storage

WKSP Files

{.

Process VS APL

system commands. [

Communication with System

...... VSPC Diagram 1.1
...... CMS Diagram 1.2
...... CICS/VS Diagram 1.3
...... TSO Diagram 1.4

Licensed Material—Property of IBM
VS APL Program Logic

9%

Workspace

PDSD

WSMCMFLG

WSMPARMI

WSMPARM2

Register PT

Parameter List is
Command Text

Register CT

Length of
Parameter List

Error Message

Report

Notes for Diagram 5.0
APLITCHMD

1.

The type of command is determined
and tha corresponding verb is
located in the VERBTABL table.
The command syntax is analyzed
and execution parameters are
built. Control is passed to a
routine (see below) to execute
the command. [ITSYSCMD]

Thae commands and the routines
that execute them are listed
below. For commands that affect
the system outside the active
workspace, service request calls
to the executor are issued by the
routinas.

command Routine
CLEAR ITCMCLEA
CONTINUE ITCMCONT
CcoPY ITCMCOPY
DROP ITCMDROP
ERASE ITCMERAS
FNS ITCMFNS
GROUP ITCMGROU
GRP ITCMGRP

Command Routine
GRPS ITCMGRPS
LIB ITCMLIB
LOAD ITCMLOAD
MSG ITCMMSG
OFF ITCMOFF
0PR ITCMOPR
PCOPY ITCMPCOP
QUOTA ITCMQUCT
SAVE ITCMSAVE
SI ITCMSI
SINL ITCMSINL
STACK ITCMSTAC
SYMBOLS ITCMSYMB
VARS ITCMVARS
WSID ITCMWSID
WSSIZE ITCMWSSI

Any other syntactically-valid
command will bae passed to
ITCMCMD.

Licensed Material—Property of IBM

Section 2. Method of Operation 95

DIAGRAM 6.0: WORKSPACE CONVERSION

From CMS or VSI'C

VSPC

: Storage
Al'L/360, APLSYV

Directory or
Warkspaces: or

1. Initialize. T

PRPQ Workspace

\ 1
CMS

—

Dump Tape :

(3]

Gel directory
inlormation.

> a. Reconstruct APL/360

VS APL
Workspace

:> CNVTFLAG
_'> SELIST

List of Workspaces
to he Converted

XM6WsS

APl /360

directory. [

Directory

XM6WS (PRPQ WS) b. Build abbreviated

directory. T

XM6WS

T [ArLs300. APLSYV
Directory or
Workspaces: or
PRPQ Workspaces

3. Reconsiruct APL/300

o workspace. T
SELINT

4. Construct VS APL
waorkspace:

a. Initialize

workspace. T

b. Convert workspace

XM6 Workspace

DIRSLOT

Short Directory

VSwS

contents. r

VS APL
Workspuce

Detault Profile 3. Write output as
Information . .

tollows:
DIRSLOT

T > a. User profile
information for

VSPC user. T

PRPQ Import Tape

ArL/360 .
Workspace > b. fjon\‘cnud
’ revtory

informaton for

VSPC. ™~

VSPC Copy Tape

CMS Adisk

[s1 151 l > o VSAPL
workspace.

Licensed Material—Property of IBM
96 VS APL Program Logic

Notes for Diagram 6.0
APLCINIT (CMS), APLOINIT (VSPC)

The three versions of the VS APL
conversion program described are:

° CMS under CMS, conversion from
APL/360 or APLSV to VS APL.

. VSPC under 0S/VS or DOS/VS,
conversion from APL/360 or APLSV
to VS APL.

.. PRPQ under CMS, conversion from
APL/CMS (PRPQ) to VS APL.

1. CNVTFLAG consists of bits that
are set to indicate options
specified in the convert command
(CMS) or specified by convert
command cards (VSPC). The SELIST
is built from select parameters
(APLCPARM, APLOPARM). Then
:torage is obtained (by GETMAINS)

or:

a. The APL/360 or APLSV
workspace or directory

b. The VS APL workspace
c. The display buffer

The tape label and first data
record on the tape are read to
caompute buffer size. The tape is
then repositioned to the first
data record. Also, the printer
data set is opened. The XM6WS
pointer is set to point to the
start of the APL/360 workspace.
The VSWS pointer is set to point
to the start of the VS APL
workspace. The BUFFSTRT pointer
is set to point to the display
buffer.

2. The input tape is now read,
workspace by workspace. However,
there are two tyvpes of workspaces
that are very similar in
structure: directories and
workspaces proper. If there are
directories on the tape, they all
praecede the workspaces proper.
There may be any number from 0 to
n of directories. Therefore, the
directory (if any) is read and
reconstructed from its condensed
tape form into the APL/360 slots
(APLCINIT and APLOINIT).

If APLCINIT or APLOINIT
identifies this workspace as a
directory, it calls APLCDIRE or
APLODIRE to process it. In CMS,
APLCDIRE is a dummy routine which
prints the message "DIRECTORY" at
the terminal. In VSPC, APLODIRE
extracts .data from each PERLIB of
interest, and saves the extracts
in DIRSLOT. It is saved until the

.workspace and account to which it

pertains is finally found, later
on the tape. If full conversion,
extracts from all PERLIBs are
saved. If select conversion, only
those PERLIBs pertaining to
vorkspace and accounts in SELIST
are saved. If resume conversion,
only those of PERLIBs pertaining
to the workspace at which
conversion is to resume, and all
following workspaces are saved.

DIRSLOT holds extracts for up to
400 accounts (there is one PERLIB
per account). If there are more
accounts, DIRSLOT overflows; it
is written as a block to a
temporary data set (APLDIRE) to
make the slot available for 400
more accounts. Tha first word in
DIRSLOT is a high water mark
pointer which points to the next
available position for an
extracted PERLIB. The data
extracted is:

APL/360 library (account number)
PASSWORD

WORKSPACE QUOTA

SHARED VARIABLE QUOTA (if any)
MAX TIME BETWEEN INTERACTIONS

If the account is empty (no
workspace for this library), the
PERLIB 1s ignored. Later, when a
workspace proper is converted,
these saved extracts will be used
to create the VSPC user profile
record and directory entry
record.

Eventually, APLCINIT or APLOINIT
reconstructs the first of the
workspaces. When this happens,
there are no more directories
because a directory cannot follow
a workspace on a VS APL dump
tape. Upon i1dentifying the
workspace as a workspace,
APLCINIT or APLOINIT calls
APLCCULL (CMS) or APLOCULL (VSPC)
to determine if the uworkspace
should be converted. APLCCULL or
APLOCULL chacks (if salect
conversion) if the workspace is
in SELIST. If not and if select
conversion, the workspace is
ignored and APLCINIT or APLOINIT
gets the next workspace. APLCCULL
and APLOCULL also validate the
library number and workspace
name. If VSPC, and either is
invalid and not renamed in
SELIST, the workspace is
rejected. If CI1S and either is
invalid, APLCCULL or APLOCULL
requasts a new number and/or a
new workspace name from the

Licensed Material—Property of IBM
Section 2. Method of Operation 97

terminal. If resume conversion,
workspaces are ignored until the
one specified in the resume
command is encountered.
Thereafter, conversion reverts to
full conversion logic. If the
workspace passes culling, control
is returned to APLCINIT or
APLOINIT, which calls APLCWKSP
(CMS) or APLOWKSP (VSPC) to
manage workspace conversion.

Construct VS APL workspace:

The VS APL slot is
initialized. This is a clear
workspace (APLCLEAR,
APLOLEAR, or APLQLEAR) with
the workspace environment
converted by CLEAR. APLCWKSP,
APLOWKSP, or APLQWKSP then
calls APLCIBNM, APLOIBNM, or
APLQIBNM to provide a unique
name for the IBEAM simulator
function which may have to be
added to tha workspace as a
result of idiom conversions.
Then APLCWKSP, APLOWKSP, or
APLQWKSP unshadows global
names so that each active
symbol table or address table
entry points to its most
global value (if any).

At this point, conversion of
workspace objects begins. For
the rest of this workspace,
APLCWKSP, APLOWKSP, or
APLQWKSP is driven by the
symbol table or address table
through which it loops
looking for variables,
groups, and functions which
have values. APLCVARB (CMS),
APLOVARB (VSPC), or APLQVARB
(PRPQ) is called to validate
and convert variables.
APLCGRUP (CMS), APLOGRUP
(VSPC), or APLQGRUP (PRPQ) is
called to convert groups. The
converted objects (variables,
groups) are entered into the
¥S APL workspace symbol table
by APLITIDS. Space for the
objects in the sink workspace
free space is obtained by
calling APLIESPA. These are
VS APL interpreter routines
borrowed by conversion and
require VS APL linkage
(APLCALL, APLEXIT macros).

Upon encountering a function
in the symbol table, WKSP
calls APLCFUNC (CMS),
APLOFUNC (VSPC), or APLQFUNC
(PRPQ) to manage the
conversion of the function.
It is here that idiom
{context) conversion takes
place.

Licensed Material—Property of IBM

VS APL Program Logic

Functions are converted line
by line from internal tokens
to display format by
APLCDISP, APLODISP, or
APLQDISP. First, FUNC calls
DISP to display the header
line. Syntax errors are not
tolerated here; if any are
found, the function is
ignored. If no errors are
found in the header, FUNC
calls VS APL interpreter
routine APLITHDR to tokenize
the function header into the
VS APL workspace. Also,
APLITHDR enters the name of
the function into the VS APL
symbol table along with any
declared locals, results, and
arguments. Then FUNC calls
DISP to display and make
idiom conversions for each
line. DISP returns with a
summary of idioms found which
FUNC places in the summary
table with the function line
number to which it pertains.
FUNC enters each displayed
(converted) line into VS APL
by calling APLITLXS. Finally,
all function lines are
processed; FUNC formalizes
the converted function by
calling APLITFDC. Then FUNC
analyzes the summary table,
calling APLCRPRT (CMS),
APLORPRT (VSPC), or APLQRPRT
(PRPQ) to print a summary of
idioms found and the lines in
which the idioms occurred.
There is no printing if no
idioms occurred. The summary
table is reset for the next
function, and control is
returned to WKSP for the next
object.

FUNC does not go through this
process, however, for
identifiable workspace
functions: ORIGIN, SETLINK,
SETFUZZ, WIDTH, DELAY, and
DIGITS (from distributed
library 1 in XM6). If FUNC
detects a locked, two-line
function, it calls APLCWSFN
(CMS) or APLOWSFN (VSPC)
only. This routine checks the
function bit by bit for a
match with one of the WSFNS
functions listed above. If it
does not match, control is
returned to FUNC, which
processes the function in the
normal way. If it does match,
WSFN returns to FUNC with a
"hit" raeturn code and a
pointer to a function that is
the VS APL equivalent. FUNC
then calls APLCSHIP (CMS and
PRPQ) or APLOSHIP (VSPC) to
process the substitute. SHIP
enters the substitute by

A.

calling in turn APLITHDR,
APLITLXS, and APLITFDC. FUNC
then prints the message
"REPLACED™ on the conversion
report via RPRT. Eventually,
WKSP exhausts the XM6 symbol
table. At this point, WKSP
adds the IBEAM simulator
function to the VS APL
workspace if appropriate. It
does this by calling APLCSHIP
or APLOSHIP with a pointer to
the VS APL definition of the
simulator function. APLCSHIP,
or APLOSHIP enters the
simulator in the same way it
entered the workspace
functions. Conversion of the
workspace is now completed.
WKSP then calls APLCSAVE
(CMS), APLOSAVE (VSPC), or
APLQSAVE (PRPQ) to write out
the converted workspace.

In CMS, APLCSAVE writes the VS
APL workspace to the user's
A-disk and calls RPRT to print
the CMS file identification of
workspace. In VSPC, saving is
more complex. If the workspace is
the first encountered in an
account (THIS LIBNO # LASTLIBNO),
SAVE creates a user profile
record which it writes to tape
(APLOUT). To do this, it
retrieves the extracted PERLIB
from DIRSLOT by calling GETDIRE
in APLODIRE. If there were no
directories, SAVE uses default
values to create the user
profile. This logic occurs only
for the first workspace
encountered in each library. For
all workspaces, SAVE creates and
writes to tape a VSPC directory
entry record describing the
workspace. Finally, SAVE writes
the workspace on APLOUT as 16K
byte control intervals as if the
workspace were a member of a VSAM
data set. Control then returns to
WKSP, which returns control to
INIT to get the next workspace.
PRPQ APLQSAVE writes the
workspace either to VSPC input
tape or to the user's CMS A-disk.

CMS and vVsPC

Tape structure. An example of tape
structure is shown below: .

a. Tape label, one or two
80-byte records.

First record is optional VOL1
record

Second (or first if no VOL1)
is HDR1 record; contains
record size in bytes 57, 58.

APL LIBRARY DUMP
APL SVS LIBRARIES RECORD SIZE
LAl S 21 57 58

b. Data: directories and
workspaces, variable length
records. Each directory or
*wrkspacet

144 bytes from
workspace (or
directory)
origin through
SV1.

l1st record

of variable
length from
PARREL through
m-entries to
beginning of
free space.
Last record may
be padded with
a few bytes of
free space if
too short for a
tape record.

n records

of variable
length from top
of execution
stack (low
core) through

n records

bottom (hi
core) of R13
stack.

Sequence is: directory 0
through directory n followed
by workspaces in directory
and PERLIB order (entry
sequence, not collating
sequence). In APL/360 tapes,
workspaces are in PERSAVEW
order; that is, entry
sequenced.

c. Trailer label

EOF1 if end of file
EOV1 if end of volume
m columns 1 through %

APLQINIT (PRPQ)

1.

APLFLAGS consists of bits
describing conversion options.
These bits are set by APLQPARM
from execution parameters and
terminal input.

APLQINIT establishes the first
values for most other modules.
APLQINIT takes all of virtual

storage with the CMS macro

Licensed Material—Property of IBM
Section 2.

Method of Operation 99

DMSFREE. Conversion cancels if
there is not at least 64K bytes
available, APLQINIT then returns
to CMS, 16K bytes at the low end
and 16K bytes at the high end of
the area taken. This is to
provide CMS with free space for
implicit GETMAINs and DMSFREEs.
The remaining storage is then
allocated for the VS APL
workspace and the APL/CMS (PRPQ)
workspace. The display buffer
comprises the PRPQ R13 stack and
the VS APL WSMBUFF.

2. No directory for PRPQ.

3. APLQINIT builds APL/CMS (PRPQ)
workspaces in the PRPQ slot from
a CMS dump tape input. On the
tape, the workspaces are
compacted, thus they have to be
properly constructed in storage.
Also, internal workspace pointers
are relocated. If the option is
resume, APLQINIT checks the
fileid for a match with the
resume point fileid and bypasses
further processing of this
workspace if there is no match.
When the match is found, APLQINIT
processes that workspace and all
subsequent workspaces on the
input tape.

4, Same as numbers 4 and 5 for CMS
and VSPC.

A
CMS dump tape structure for APL/CMS

(PRPQ) workspaces 805-byte physical
records as shown belou.

Prefix Data 800 Bytes
- Records
1 ton-I
02 CMS 40
- b1
L C
Prefix File Record 800 Bytes
ecord n
02 CMS N [64Bytes ., ,| FilelD | |

" w18 Bytes ——»

Licensed Material—Property of IBM
100 VS APL Program Logic

However, the data portion represents
logical disk records as shown below.

Work |LengthjLength
23 | space | Thru | SVI. oL =

££ | HDR B)"txes Length| MX [to End[UnusedH ‘80
AL L

A

82 Bytes >

1. One or more logical records
containing workspace from origin
to beginning of free space.

2. One or more logical records
containing end of free space to
end of R13 stack as shoun in the
example that follows.

[| A | MW | SMU | 00 <800
'Y \
5 FRE}
MX)
| 4 \ L2 »
P—uu(—-—r—uu.\ 0% %04 BOS 805

P+ (MSPremn
L1 s Maltwor] fengtho ol hagnal recdd in bytes
L o Maltward ketigih oof logpoal teaad i hyles

J

IAG 0: ICS/VS LIBRARY SERVICE PROGRA

e I
Operdting System I. Initialize global communication
area (SPG) and open system
data sets. | > Register 11 points to the SPG

System input _> 2. Read control statements.
data sct

3. Analyze control statements.

4. Open the input and outpul
data sets required to process
each control statement.

OSorAPL ::> 5. Process the control statement
DATA SIT

(AUTH. FORMAT COPY,
IMPORT, or EXPORT).

6. When all control statements
have been processed, close
all data sets. Return

Licensed Material—Property of IBM
Section 2. Method of Operation 101

Notes for Diagram 7.0

The APL library service program runs
as a batch job, separate from the VS
APL online subsystem. The library
management commands are control
statements for the service program.
These commands are COPY, EXPORT,
IMPORT, FORMAT, AUTH, and
ENVIRONMENT. The commands are
contained in the SYSIN data set.

The service program executor module,
APLKVEXC, is the first-level module.
It controls the execution of the
second-level subroutines: APLKVINT
and APLKVTRM, which initialize and
terminate each service program
request, and APLKVCMD, which analyzes
each control statement request.
Another set of second-level routines
actually process the control
statements. Input and output are done
by a set of third-level modules
called by the second-level routines.

The message processor module,
APLKVMSG, urites output to SYSPRINT
in response to calls from all three
module levels. Communication among
the service program modules is made
using a global work area, the SPG. It
is addressed using register 11.

The APL data sets used by the service
program are either the APL directory
data set, a key-sequenced VSAM data
set, or the APL library
(entry-sequenced VSAM data set that
contains the library data).

APLKVEXC

1. Initializes the SPG and calls
ALKVPIN to read the JCL input
parameters and open the required
data sets.

2. Reads and scans the next control
statement and moves it to the
buffer in the SPG. Calls APLKVMSG
to print the control statement
(passwords are converted to
blanks). If the control statement
is continued, the remaining data
is read, a card image at a time,
and printed. Continuation marks
are removed, and a complete
statement is prepared in the
buffer. [READCOMM]

APLKVCMD

3. This module contains the syntax
tables defining the valid control
statements. When called by
APLKVEXC, it calls APLKVSCN.
AFLKVSCN processes the control
statement against the tables in
APLKVCMD and returns the encoded
control statement in SPGPARMA. A

ensed Material—Property of IBM

Lic
102 VS APL Program Logic

code representing the control
statement type is placed in
SPGCOMM.

APLKVINT

4.

APLKVEXC passes input to this
routine in the SPGPARMA and
SPGOPENA fields. This routine
checks for invalid data set names
in a TO or FROM operand.

This routine then completes DCBs
with default values for
parameters not specified by the
user's JCL, and an end-of-data
exit address. Initialization
procedures, by control statement,
follow:

o AUTH - none

° COPY - Open the data sets
named TO0 and FROM operands.
If TO and FROM aren't both
named, open APLLIB and
APLDIR. If the COPY statement
is to the APL library, open
the APL library for output.

. FORMAT - Ensure that the APL
directory and library data
sets are open.

o EXPORT - Open the output data
set and ensure that the APL
library is present.

. IMPORT - Open the input data
set, and open the APL library
for output.

APLKVEXC calls the second-level
modules that follow to process
the control statements. Note that
IMPORT accesses an 0S data set as
input; EXPORT produces one as
output. COPY can accept
COPY-produced sequential data
sets in lieu of an APL input
library; COPY can produce an 0S5
output data sat.

APLKVAUT - AUTH Control Statement

If user level authorization is
requested, reads the user profile
from the APL library. Compares
the password passed with the AUTH
control statement with the user
log-on password. The user's
identification from the AUTH
control statement is saved in the
SPGUSID fiaeld. If system level
authorization is requested,
checks the password against that
in APLKPASS (APL directory update
password). The privilege level of
APL library access is saved in
SPG-PRIVA.

APLKVFMT - FORMAT Control
Statement

Requires complete library level
authority over the APL library
and an unformatted library.
Formats the APL library data set
into 4K blocks. Builds a free
space profile and writes it to
the APL directory. If USERS is
requested on the FORMAT control
statement, writes the user
profiles for libraries 1, 2, and
314159.

APLKVCPY - COPY control Statement

Requires a system level authority
over libraries being accessed
when a range of libraries are to
be copied. Searches the input
library or FROM data set over a
range of one or more user
identifications, calling APLKVLBI
for I/0. For each user profile
read, either ignores (for the
REMOVE option) or writes profile
to output library or TO data set
calling APLKVLBO or APLKVTPO for
I/0. If copying to the APL
library, calls APLKVALD to
allocate space for the files. For
each user written library,
inspects directory records for
all files owned and writes files
matching the TYPE attribute.

APKLVEXP = EXPORT Control
Statement

Calls APLKVLBI to read directory
entry from input data set. Calls
APLKVLBI to read each control
interval of the member from the
APL library and calls APLKVDSO to
deblock and write the contents of
the control intervals to the
operating system data set.

APLKVIMP - IMPORT Control
sStatement

Checks input parameters for
consistency. Calls APLKVLBI to
read the library profile of the
library being imported to. Calls
APLKVALD to allocate space for
the file. Creates a new directory
entry and calls APLKVLBO to write
the entry to the output library.
Calls APLKVDSI to read the input
data set being imported and block
its records into a control
interval. Calls APLKVLBO to write
each control interval to the APL
library.

APLKVTRM

6.

Section 2.

Checks the SPGOPEND field to
determine whether there are opeaen
0S data sets. If so, issues a
CLOSE macro instruction to close
the data sets whose D(CBs are
identified in the SPGRDDCB and
SPGWQDCBH.

Licensed Material—Property of IBM
Method of Operation 103

DIAGRAY 8.2: VS APL SESSION MANAGER EXECUTOR SCHEDULER

Erom CICS/VS, CMS, or TSO
evecutor or AP 120

I-or subroutine call during normal
task entry. call the appropriate
module to:

1. Display un error message

2. Suart a VS APL session DSM

manager session f >,—_:l

3. Prompt for password

4. End a VS APL session
manager session

h

Get a line of input for the WSM

interpreter I > |
WSM
[BE=———""> Writealinc ol vuput from

the interpreter

. Write a line and ger a line of

output

Rewurn

~. Execure a command

Licensed Material—Property of IBM
104 VS APL Program Logic

Notes for Dfagram 8.2 . .-
APLASCHD

1.

The purpose is to request the VS
APL session manager to display an
error message for an abending
executor, an auxiliary processor,
or for any other reason. It also
waits for the message to be
displayed before returning.
CAPLAERRM]

Tells the VS APL session manager
to start the session, then waits
for the session to start before
returning. [APLAINIT]

Requests that the VS APL session
manager prompt the user for a
password. [APLAPASS]

Shuts down the session, waits,
then returns. [APLATERM]

Tells the VS APL session manager
to put a line of text in the WSM.
[APLATYI]

Tells the VS APL session manager
to take a line of text from the
WSM. L[APLATYO])

Tells the VS APL session manager
to write a line of output from
the WSM, get a line of input from
the terminal, and put it in the
WSM. [APLATYOI]

A text string is passed as an
argument, and the entry point
tells the VS APL manager session
manager to process this string as
a VS APL session manager command.
CAPLAXCMD]

Licensed Material—Property of IBM

Section 2. Method of Operation 105

DIAGRAM 8.2.1: VS APL SESSION MANAGER EXECUTOR PROCESSOR

From CICS/VS, CMS
or TSO initialization

bl Process VS APL Session

Manager request. -

1. Take the request off the
DSM request chain.

2. Call the appropriate module to:
A. prompt for input.
B. queue input lines.
C. execute a command.
D. redefine the display screen.

E. redefine the line column or
user specified field.

F. refresh the display input area.

G. add a line to the display
input area.

H. display a message.

I. update the session Jog.

Return

Licensed Material—Property of IBM
106 VS APL Program Logic ’

Notes for Diagram 8.2.1

APLACRCP

1. Takes a single request off the
DSM chain and calls
APLACPRO to process it.

APLACPRO

2. Determines the type of request
and calls one of the modules
listed below to process it.
APLACPRM
a. Prompts user for input.

APLACQUE

b. Queues and dequeues a series

of commands or input
lines.

APLACXCM

c. Verifies the syntax of a

command passed by APLACPRO,

and, if valid, tries to
execute it. If the command
is invalid, it returns a
message.

APLACNDP

d. Defines the position and size
of the V5 APL session manager
display in the user's screen.

APLACRSA

e. Defines or redefines the line
column and user-specifiable
area when the display size or
position has changed, or
there has been an error
message for some session
manager error.

APLACPRDA

f. Redefines condition of
display input area after the
user has changed the display
column or line setting, or
the setting of the display
command.

APLACDSL

g. Either is called repeatedly
by APLACRDA to define each
line of the display area, or
is called by APLACPRO to add
a single line to the display
area.

APLADMSG

h. Displays an informational or
error message.

APLACSF

i. Maintains the session log.

Licensed Material—Property of IBM
Section 2. Method of Operation 107

DIAGRAM 8.3.1: COMMON AUXILIARY PROCESSOR SERVICES UNDER CMS AND TSO

I'rom APL 20,
APLI2I,
APL126

ASO

Workspace

ANC(CMS, TSO)

APC

. Initialize anchor block. |

. Process AUTHCHECK. COPY'.

. Validate invocation

parameter list and get
storage. if necessary.

ANC

. Establish abend exit

outine.

4. Initialize PCV and sign

on to shared storage
manager in CMS or TSO.

. Get storage tor Al control

area and initialize that arca.

. Issue a wait 10 the shared

storage manager and interpret
the event that satisfied the
wail,

a. o POV LCRL determine whether
this 15 o sign-otp or an offer and
take the necessary aetion.

h. T'or SCVLECR, examine the
post cede and take the necessury
action.

GET. o PUT.

If the request is ABORT,
determine which option to
usc and process it. Then
call the retract exit routine
in the auxiliary processor.

. Process ABLND.

Return to Caller's
Offer kxit Rouline

APC

—A]

Return to Caller

Cull Caller's Retract
Exit Routine

Cull AP’s Abend
Exit Routine

APC

.

Licensed Material—Property of IBM

108 VS APL Program Logic

>]

¢

Notes for Diagram 8.3.1

APLXASD(CMS}, APLXAYDI(TSO)

1.

In CMS, APLXASD scans the
invocation parameter list until
the end-of-list marker is
reached. The DMSFREE macro is
invoked to obtain storage. The
parameter is copied to the new
storage, and a pointer to the
storage is returned to APLXAC.
The back size of storage obtained
is also passed to APLXAC.
[APLXAINP]

APLXAMSG routes messages from
APLXAC to the terminal.

In TS0, APLXAYD picks up the
parameter count from the
parameter list, invokes macro
GETMAIN, and moves these
parameters to the new storage. A
pointer to the storage and the
back size of storage obtained are
passed to APLXAC. [APLXAINP]

APLXAMSG routes messages from
APLXAC to the terminzl.

APLXAC(CNS/TSO)

2.

Every auxiliary processor has an
anchor block known as ANC. This
contains information passed by
the auxiliary processor ax
sign~on, as well as additional
data needed by APLXAC.

APLXAC(CHS/TSO)

3.

Calls APLXBEND to estsblish an
abend exit for these modules.

APLXAC(CHS/TSO)

4.

PCV. is a process control vector.
APLXAC sets fields, as requested,
in the auxiliary processor
sign~on reaguest block for CMS and
750. It then issues a sign-on to
the shared storage manager (SSM).
If the sign-on fails. the
auxiliary processor is
terminated.

APLXAC(CNMS/TSO)

5.

GETMAIN is invoked for the
auxiliary processor control area.
This area will contain the ECB
list, the SCV ECBs, and the SCVs.
The SCV is the shared control
vector; there is one SCV per
shared variable.

The addresses of ECBs are now put
in the address list. In each SCV
is placed the address of the
corresponding ECB. In each ECB is
placed the index to the SCV list
of the corresponding ECB.

APLXAC(CHS/TS0)

6.

Passes the address of thae ECB
list. When the woit is soatisfied,
one of two events can take place:

a. PCY ECB has been vosted,.

Determine if sign-off request
or offer is received. If
sign-off reaquest, free the
storace, retract any shared
variables (calling *h2
auxiliary processor retract
exit fer eaczh set of
variables), and issue a
sign-off to thae shared
storage manager.

If offer is received, and it
was thn primary variable,
counter-offer that variabhle,
and initiote an ofTer for
each rmenber o7 the shared .
variable set. Get stcrage for
an APC and s2t the
arpropriate fields. Transfer
contre:. to the auxiliary
processor's offer exit
routine.

b. If SCVY ECB has been posted,
one of twuo events can take
place:

The user has retracted a
variable. I this i1s a
primary variable, retract the
set of variables, and call
the auxiliary processor
retraoct exit routina. If it
is not the primary variable,
ignore it.

Or if the interlock is
broken, shared storase is nou
available, or the user has
specified a value, taxe
appropriate action;
otherwise, ignore and
continue to wait.

APLXAC(CMS/TSO)

7.

There are five available service
requests:?

AUTHCHECK: Set zero return and
reason codes.

COPY: Issue a CCPY request for
the variable to the sharad
storace manager. If there is a
temporary reject cendition. enter
a wait state and try the COPY
again if the AP has so requested.
If the translate option is set,
translate character datas.

Licensed Material—Property of IBM
Section 2.

Method of Operation 109

L
1

i
1

GET: Issue a reference for tha
variable to the shared storage

manager, and proceed as for COPY.

PUT: If the translate option is
set, translate character data.
Issue a specification to the
shared storage manager. If there
is a temporary reject condition,
enter a wait state and try the
reference again if the AP has so
requested.

ABORT: There are two

options—abort and abort all. For

abort, retract the set of

variables, pass control to the
invoking auxiliary processor's
retract exit routine, and free

censed Material—Property of IBM
0 VS APL Program Logic

the storage for this set of
variables.

For abort all, pass control to
the invoking auxiliary
processor's retract exit routine,
once for each set of variables,
to retract all sets; then issue a
sign-off to the shared storage
manager (CMS or T750).

I¥ an abend occurs in the
auxiliary processor, restore the
processor's registers and call
the processor's abend exit, if
there is one. Then retract the
variables in the set and enter a
wait state.

GR 8.3.2: COMMON AUXILIARY PROCESSOR SERVICES UNDER CICS/VS

From APL120. APL126

ASO
SCv

. Validate offered variables.

. Get storage for AP work area,

shared variable work area,
and APC, and initialize SCVs,
ANK, and APC.

. Establish abend exit.

. Counter offer primary

variable and initiate offer for .
i . . Return to Caller’s
remaining variables. Offer Exit Routine

APC

>]

. Process AUTHCHECK,

COPY, GET, or PUT.

Return to Caller

APC

r

-]

If request is ABORT,
determine which option to
use and process it. Then call
the retract exit routine in the
auxiliary processor.

abend exit routine in the
auxiliary processor.

Call AP’s Retract
Exit Routine

. Process abend. Then call the

Call AP's Abend
I : i Routine

APC

[~}

>]

Licensed Material—Property of IBM

Section 2.

Method of Operation 111

Notes for Diagram 8.3.2

APL
1.

APL

2.

APL
3.

XAK(CICS/VS)

Validate that the shared variable
offered is a valid primary
variable as defined by the AP in
the AP sign-on block (ASQ0). If
not, do not counter-offer, but
return.

XAK(CICS/VS)

Every auxiliary processor has an
anchor block known as an ANC.
This contains the address of the
auxiliary processor sign-on
block, as well as additional data
needed by APLXAK. Every set of
shared variables has an
associated APC employed as a
communications block between the
AP and common auxiliary processor
services.

XAK(CICS/VS)

Calls APLXBEND to establish an
abend exit.

APLXAK({CICS/VS)

4.

Counter offer, through the shared
storage manager, the primary
variable, and initiate an offer
for each member of the shared
variable set.

Transfer control to the auxiliary
processor's offer exit routine.

APLXAK(CICS/VS)

5.

Lic
112

There are five available service
requests:

AUTHCHECK: Issue an AUTHCHECK to
the shared storage manager.

ensed Material—Property of IBM
VS APL Program Logic

COPY: Issue a COPY request for
the variable to the shared
storage manager. If there is a
temporary reject condition, enter
a wait state and try the COPY
again if the AP has so requested.
If the translate option is set,
translate character data.

GET: Issue a reference for the
variable to the shared storage
manager, and proceed as for COPY.

PUT: If the translate option is
set, translate character data.
Issue a specification to the
shared storage manager. If there
is a temporary reject condition,
enter a wait state and try the
PUT again if the AP has so
requested.

ABORT: There are two options:
abort and abort &all. For abort,
retract the set of variables,
pass control to the invoking
auxiliary processor's retract
exit routine, and free the
storage for this set of
variables.

For abort all, pass control to
the invoking auxiliary
processor's retract exit routine,
once for each set of variables,
to retract all sets.

If an abend occurs in the
auxiliary processor, restore the
processor's registers and call
the processor's abend exit, if
there is one. Then retract the
variables in the set and enter a
wait state. .

J

DIAGRAM B.64.1: VS APL SESSION MANAGER AUXYLIARY PROCESSOR FOR CICSs/VS, CMS, AND
Is0

From APLKADSP
APLYUSVI
APLSCSVI

WORK AREA

Ijl, Bytes [‘> 1. Sign on to shared storage
manager through common

auxiliarv processor
iar P ASO
| =

2. Aslong as the VS APL
session manager is active,
receive the request through
common auxiliary processor APC
services, and pass it to L D
VS APL session manager
executor scheduler for CPB

3. Do cleanup for this variable

4. Enter abend exit routine for
error recovery

a

Return

Licensed Material—Property of IBM
Section 2. Method of Operation 113

Notes for Diagram 8.6.1
APL120
1.

L
1

ic
14

Invokes common auxiliary
processor services (CAPS) to
issue a sign-on to shared storage
manager. Control is returned to
one of three entry points:
OFF1206, RET120, ABE120. [APL1201]

A variable has baeen successfully
offered and counter-offered.
Local initialization (via main
storage services) is done, and
the CTL variable is referenced
through common auxiliary
processor services. If the
partner specified CTL with a VS
APL session manager request, the
request is passed to the session
manager for execution, using the
CPB request block.

ensed Material—Property of IBM
VS APL Program Logic

The CTL variable is specified
with a 2-element return code. Any
text produced as a result of the
execution of the request is
returned as a character matrix in
the DAT variable. [0FF121]

Control returns here from common
suxiliary processor services if
the partner has retracted the
variable. Necessary cleanup is
performed for this variable
instance. [RET120]

This is the entry point for the
occurrence of an abend. Dump
services is called to dump the
local work sreas and registers.
All variables shared with this
auxiliary processor are retracted
and control returns to common
auxiliary processor services.
[ABE1201

6.2t GDDM_AUXILIARY PROCESSOR FO

I'rom APLYUSVI
APLSCSVI
APLKADSP

APC

1. Issue a sign on to common auxiliary

ICS/VS, CM N)

ASO

processor services. [

t9

. Establish addressability to storage
and code.

a) If first offer. initialize the
AP communication area.

b) Issue a GET to common auxiliary

processor services for the control

variable. [

(93

. If first reference, call APLXGDDM
to initialize a path for the set of

GDM

shared variables. (

4. Interpret the request and perform
appropriate action.

5. Issue 2 PUT to common auxiliary
processor services for the DAT
variable to return all character

data to the user. [

6. Issue a PUT to common auxiliary
processor services to return the
return code vector and any
numeric data in the control

variable. [

7. Repeat steps 2b-6 until the set
of variables is retracted.

8. If a retract or signoff request has

occurred, free storage and terminate
the path to GDDX.

Licensed Material—Property of IBM

Section 2.

Method of Operation 115

Notes for Diagram 8.4.2

APL126 (CICS/VS,
1.

CHS, and T750)
Creates a sign-on block and calls
APLXAC (CM5/TS0) or APLXAK
(CICS/VS) to establish the
environment, and sign-on to the
shared storage manager (S55M).

APL126 [OFF125]

2.

Li
11

This entry point is entered when
a control variable has been
offered by a user. The address of
the auxiliary processor work area
is in the APC, and is used to
establish the addressability for
APL126.

a. The GDM request block is for
requesting services to GDDM.
This block is built by
analyzing an entry in the
GDDM call table. The
auxiliary processor
communication area is
initialized to contain the
number of active paths to
GNNX.

b. Issues a GET to common
auxiliary processor services
(CAPS) to wait for the first
user request.

There is a single path for each
pair of shared variables. This
call to APLXGDDX establishes a
rath, and returns a unique path
ID to APL126.

There are three categories of
requests:

censed Material—Property of IBM

6

VS APL Program Logic

~d

a. AP Control Request: Request
to the auxiliary processor to
either establish an
environment, or perform
functions exclusive of GDDM.

b. Zero Request:
in no action.

No-ops result

c¢. Normal GDDM Request: Passed
to GDDM, in some cases with
special processing first.

Any character returned by GDDM is
put into vector form in the DAT
variable, and translated, as
determined by the user.

The CTL variable returned is in
vector form, with the first
element representing the highest
severity of any error incurred in
the processing string.

This 1is followed by a
four-element return code and eny
numeric data for each request in
the string.

tontinue to perform tasks 2b
through 6 until the user retracts
or signs off, or an abnormal
termination occurs.

APL126 [RET126]

8.

Control s passed to this label
vithen a shared variable set is
retracted by common auxiliary
processor services (CAPS). Frees
storage associated with this
shared variable pair, and calls
APLXGDDX to terminate this path,
and returns to common auxiliary
processor services (CAPS).

AGRAM 6,33 APL DA LE AUXILIARY OCESSOR R _CMS/ .

From APLYUSVI
APLSCSVI

WORK AREA ASO

_ '_':> 1. Sign on to shared storage C >|:

manager through common
auxiliary processor services.

2. Initialize control blocks. issue [>:|

GET to common auxiliary
processor services and call
appropriate subroutine to
process request, and pass

control to file services to FAB

process file i >]

3. Close the file and release
buffers.

4. In case of abend, take dump
and retract shared variables.

Licensed Material—Property of IBM
Section 2. Method of Operation 117

Notes for Diagram 8.%.3
APL121

1.

Lic
118

Invokes common auxiliary
processor services (CAPS) to
issue a signh-on to the shared
storage manager. Control will
return to one of three entry
points: OFF121X, RET121X,
ABE121X. [APL121X]

Control comes here from common
auxiliary processor services when
a shared variable has been
successfully offered and
counter-offered. Local
initialization is done, and the
CTL variable is referenced
through common auxiliary
processor services. If the
" partner specified CTL with a
request, the appropriate action
is executed. The FAB control
block is used in communicating
with file services. [0FF121X]

For the sequential read request;
the file is opened, each record
is read sequentially and
specified in the CTL variable.
[SRFILE]

For the sequential write request,
the file is opened, the CTL
variable is continuously
referenced and written into the
file. [SWFILE]

For the create request, a new
file is created if it doesn't
already exist. [CFILE]

For a drop request, the specified
file is deleted. [DFILE]

ensed Material—Property of IBM
VS APL Program Logic .

For the file size change request,

the size is changed according to
the specified value. [FSFILE]

For the direct update request,
the file is opened for direct
processing, the DAT variable is
referenced, and the corresponding
record is updated. [DIRUPRD]

For the direct read request, the
file is opened for direct
processing, the record is read,
and specified in the DAT
variable. [DIRUPRD]

For the change share status
request, an error is returned in
CMS/TSO. [SHFILE]

For the password change request,
an error is returned in CM5/750.
[PFILE]

The control variable is specified
with a l-element return code for
all operations.

If the partner retracted the
variable, control comes from
common auxiliary processor
services to this entry point
where the file is closed and
buffers are released. [RET121X]

This entry point is invoked by
common auxiliary processor
services if an abend occurs. A
dump is then taken and all shared
variable instances of this
auxiliary processor are
retracted. [ABE121X]

SECTION 3. PROGRAM ORGANIZATION

Entry points are listed in alphabetic
order in this section.

FOR DOS/VS: The conversion modules
for DOS/VS differ from those for
057VS. The modules are functionally
the same, but the D0S/VS modules are
designed to interface with DOS/VS and
the 05/7VS modules with 05/VS. For
CMS, the 05/VS modules begin with the
characters APLO; the DOS/VS modules
begin with the characters APLD. For
CICSs/VS, the 05/VS modules begin with
the characters APLKV; the DOS/VS
modules begin with the characters
APLKD. To avoid unnecessary
repetition in this publication, only
the 05/VS names are used in this
publication wherever possible.

APCREATE
Module: APLPAPCD
Called By: APLPAPPR

Description: Executes service request
to internal auxiliary processors
AP}ZI and AP122 to create a VSPC
file.

Exit: Returns; ERSAVEAR (Error),
ERENDEX (Error)

APDFN
Module: APLPAPCD
Called By: APCREATE, APDROP,

APFILSIZ, APSHARE, APPASSWD, APOPEN,
APVIO

Description: Converts file
identification in service requests to
internal auxiliary procaessors to VSPC
standard file name.

Exit: Returns; ERSAVEAR (Error)

APDROP

Module: APLPAPCD

Called By: APLPAPPR

Description: Executes service request
to internal auxiliary processors
AP121 and AP122 to drop a VSPC file.

Calls: APDFN, ERMSGRTN

Exit: Returns; ERSAVEAR (Error),
ERENDEX (Error)

APFILSIZ

Module: APLPAPCD

Called By: APLPAPPR

Description: Executes service request
to internal auxiliary processors

APl121 and AP122 to change the size of
a VSPC file.

Calls: APDFN, ERMSGRTN

Exit: Returns; ERSAVEAR (Error),
ERENDEX (Error)

APIO

Module: APLPAPCD

Called By: APLPAPPR

Description: Validates request to
internal auxiliary processors AP121
and AP122 to read or update a VSPC
file directly.

Exit: Returns; ERSAVEAR (Error)

APL
Module: APL

Called By: CMS

Description: Locates VS APL under
CHMS.

Exit: To APL DCSS or module VSAPL

APL

Module: APLYUINI

Cnlled By: Operating system (initial
entry)

Description: Initializes V5 APL under
TS0.

Calls: APLAINIT, APLXDUOP, APLXGYON,

APLYUFX1, APLYULNE, APLYUTIO,
APLYUUSR, SCCONT, SCSUPINI

Licensed Material—Property of IBM

Section 3. Program Organization 119

Exit: Returns

APLACCBE
Module: APLACCBE

Called By: APLACPRM, APLACQRY,
APLACRDA, APLACRSA

Description: Converts a binary number
to EBCDIC.

Exit: Returns

APLACDSL
Module: APLACDSL
Called By: APLACPRO, APLACRDA

Description: Displays a single line
on the screen.

Calls: Macro APLXG -

Exit: Returns

APLACHLP
Module: APLACHLP

Called By: APLACXCM

Description: Exacutes tha APL session
manager HELP command.

Calls: APLACMSG.
Exit: Returns

APLACMDF
Module: APLACNDP

Called By: APLACPRM, APLACPRO, and
APLADMSG

Description: Part of the session
manager new display position routina.
It updates the contents of the
command field, and saves a copy of
the contents in DSMCMTXT,

Calls: APLACREA, APLACRDA, APLADMSG.
Macro APLXG

Exit: Returns

APLACMDX
Module: APLACMDX

censed Material—Property of IBM

Li
120 VS APL Program Logic

Called By: APLACXCM

Description: Contains a default exit
that approves all commands passed to
the APL session manager.

Calls: Macro APLPATCH
Exit: Returns

APLACMER
Module: APLACQRY

Called By: APLACPRO, APLACOPY, and
APLACXCHM

Description: Part of the session

manager command query module. For a
given error number, it inserts the
message, return code, and return
status into the CPB, and, if
appropriate displays the error
messagae and command on the session
manager screen.

Calls: APLADMSG, APLADSON
Exit: Returns

APLACNDP
Module: APLACNDP

Called By: APLACRPO, APLACXCM,
APLADMSG

Description: Part of the session

manager new display routine. Defines
the APL session manager display at a
new position on the screen.

Calls: APLXG

Exit: Returns

APLACOPL

Module: APLACOPY

Called By: APLACPRO

Description: Copies a single line to
the copy destination when continuous
copy of the session log is on. Called
every time, a new line is added to
the session log while copy is on.

Calls: APLACMER, APLADMSG. Macro
APLXG

APLACOPY
Modula: APLACOPY

Called By: APLACXCM

Descgription: Processes the 'COPY'
session manager command.

Calls: APLACMER, APLACMSG, APLACSF,
APLADMSG, APLAMODE, APLAUCAE,
APLAUNCO. Macro APLXG

APLACPRM
Module: APLACPRM

Called By: APLACPRO when the VS APL
session manager requires to get input
from the terminal.

Description: This module performs a
read from the terminal and enters the
running mode. It then restores the
screen, if necessary, and, based on
user action, stacks input for APL and
the VS5 APL session manager command
processor.

Calls: APLACCBE, APLACMSG, APLACQUE,
APLACSF, APLXGDDM, APLACMDF,
APLACRSA, APLADSON. Macro APLXG

Exit: Returns

APLACFRO
Module: APLACPRO
Called Bvy: APLACRCP

Description: Processes a request from
the TS0, CMS, or CICS/VS executor or
from any auxiliary processor, calls
APLACXCM when a VS5 APL session
managar command is to be executed,
and calls APLACPRM whenever input is
needed from the terminal.

Calls: APLACDSL, APLADTTM, APLACMSG,
APLACNDP, APLACPRM, APLACOPL,
APLADSON, APLAMODE, APLAUALT,
APLAUATN, APLACQUE, APLACRDA,
APLACRSA, APLACSF, APLACXCHM,
APLADMSG, AFLAUSRX. Macro APLXG

Exit: Returns

APLACQRY

Module: APLACQRY

Called By: APLACXCM

Description: Part of session manager
command query module. Formats the
message returned to a query command.
Calls: APLACCBE, APLACMSG, APLACQRY,

APLAUPRO, APLXGDDX, APLADMSG,
APLADSON. Macro APLXG

Exit: Returns

APLACQUE
Module: APLACQUE

Called Bv: APLACPRO, APLACPRM,
APLACXCM

Description: Maintains queues of
character strings for the APL session
manager, and performs the create,
add, remove, purge, and delete
functiuns on the queue.

Exit: Returns

APLACRCP
Module: APLACRCP
Called By: VS APL dispatcher

Description: This is the main entry
point in the VS5 APL session manager
request chain processor which runs as
the top routine in a process separate
from the TS0, CMS, or CICS5/VS
executor and frm the AP120. The
processor functions by removing
requests, one at a time, from the VS
APL session manager request chain,
and passing them to APLACPRO. It
posts the requestor whan each request
is completed, and then waits until
the chain is empty for a new request
to be generated. It also contains an
abend exit for the task.

alls: Main storage services. Macro
PLACPRO
t

A
Exit: Returns

APLACRDA
Module: APLACRDA

Called By: APLACNDP, APLACPRO,
APLACXCM, AFPLALINE

Description: Refreshes the APL data
area on the screen.

Calls: APLACCBE, APLACDSL, APLACMSG,
APLACSF. Macro APLXG
Ex

it: Returns

APLACRSA
Module: APLACRSA

Licensed Material—Property of IBM

Section 3. Program Organization 121

Called By: APLACNDP, APLACPRM

Description: Defines the line,
status, and USA fields on the APL

session manager screen.

Calls: APLACCBE, APLACMSG. Macro
APLXG

Exit: Returns

APLACSF
Module: APLACSF

Called By: APLACPRO, APLACPRM,
APLACRDA, APLACXCM

Description: Maintains the APL

session manager's session log.
Calls: Files and maintains via VCT.
Exit: Returns. Macros APLPATCH,

APLSFID, APLXDMP, APLXEND, APLXFAB,
APLXMAI,

APLACXCHM

Module: APLACXCM

Called By: APLACPRO

Description: Executes APL session

manager commands.

Calls: APLACHLP, APLACMDX, APLACMSG,
APLACNDP, APLACQRY, APLACRDA,
APLACSF, APLAUPRO, APLACMER,
APLACOPY, APLACQUE, APLADSMG,
APLADSON, APLALINE, APLAMODE,
APLAPAGE. Macro APLXG

Exit: Returns

APLAD
Module: APLAD
Called By: APLYUSVI

Description: Signs on to the shared
storage manager and initiates a
session manager task.

Calls: APLACRCP

Exit: The subtask terminates when a
sign-off is requested.

APLADMSG
Module: APLADMSG

Licensed Material—Property of IBM
122 VS APL Program Logic

Called By: APLACPRO, APLACNDP,
APLACQRM, APLACXCM

Description: Displays an APL saession
manager error or informational
message.

Calls: APLACNDP, APLACMDF, APLACPRM.
Macro APLXG

Exit: Returns

APLADSON
Module: APLACRDA

Called By: APLACPRO, APLACOPY, and
APLACXCHM

Description: Part of the session
manager module to refresh the
display/input area. It turns the
display on, and moves the data area
to the latest (new) line as part of
the process.

Calls: APLACDSL, APLACSF. Macro
APLXG

Exit: Returns

APLADTTM
Module: APLADTTM

Called By: APLACPRO

Description: Formats an elapsed time
in APL standard format.

Exit: Returns

APLAERRM
Module: APLASCHD

Called By: TSD, CMS, or CICS/VS
executor or by AP120.

Description: Requests VS APL session
manager processing subcomponent to
display an error message.

Exit: Returns

APLAESTK
Module: APLAESTK

Called By: APLKIFIX, APLSCFXI,
APLYUFXI1

Description: Sets up the executor
stack for the APL se@ssion manager and
makes whatever calls are necessary to

stacked protocol entry points.
Calls: APLATYI, APLATYQ, APLATYOI.
Exit: Returns

APLAINIT
Mogdule: APLASCHD

Called By: TS0, CMS, or CICS/VS
executor

Description: Requests VS APL session
manager processing subcomponent to
perform initialization processing.

Exit: Returns

APLALINE
Module: APLALINE

Called By: APLACXCM

Description: Part of the session
manager line and page commands

module. It executes a line command.
Calls: APLACMER, APLACRDA, APLACSF

Exit: Returns

APLAMODE
Module: APLACNDP

Called By: APLACOPY, APLACPRO,
APLACXCM

Description: Part of the session

manager new display position routine.

It moves the cursor to the mode
field, updates the mode, and forces
the display of updated fields.
Calls: Macro APLXG

Exit: Returns

APLAPAGE

Module: APLALINE

Called By: APLACXCM

Description: Part of the session
manager line and page commands. It
executes a page command.

Calls: APLACMER, APLACRDA, APLACSF
Exit: Returhs '

APLAPASS
Module: APLASCHD

Called By: TS50, CMS, or CICS/VS
executor or by AP120.

Description: Requests VS APL session
manager processing subcomponent to
prompt for a password.

Exit: Returns

APLATERM

Module: APLASCHD

Called By: TS0, CMS, or CICS/VS
executor

Description: Requests VS APL session
manager processing subcomponent to
terminate session.

Exit: Returns

APLATYI
Module: APLASCHD

Called By: TS0, CMS, or CICS/VS
executor

Description: Requests VS APL session
manager processing subcomponent to
perform a TYI.

Exit: Returns

APLATYO
Module: APLASCHD

Called By: TS0, CMS, or CICS/VS
exacutor

Description: Requests VS APL session
manager processing subcomponent to
perform a TYO.

Exit: Returns

AFLATYOIX
Module: APLASCHD

Called By: TS50, CMS, or CICS/VS
executor)

Description: Requests VS APL session
manager processing subcomponent to
perform a TYOI.

Licensed Material—Property of IBM

Section 3. Program Organization 123

Exit: Returns

APLAUALT
Module: APLASA
Called By: APLACPRO

Description: Returns a line of
alternate input if it exists, or
purges the alternate input stack.

Calls: NUCON (CMS nucleus). Macros
APLXPROC, APLDEFN, APLPATCH, NUCON,
RDTERM, APLXSTK

Exit: Returns

APLAUALT
Module: APLAYA

Callaed By: APLACPRO

Description: Returns a line of
alternate input if it exists, or
purges the alternate input stack.

Calls: Macros APLXPROC, APLDEFN,
APLPATCH

Exit: Returns

APLAUALT
Module: APLAK

Called By: APLACPRD (common session
manager module)

Description: Part of the session
manager CICS/VS-dependent, SP-entry,
routines. It is called by the
session manager to determine if the
subsystem has any alternate input
available. Alternate input may be
generated by the input invocation
option or by AP139.

Exit: Returns

APLAUATN)
Module: APLAKP (CICS/VS)
Called By: APLXGKT

Description: Main and only entry
point to the session manager
system—~dependent, non-stack-processor
entry, CICS/VS routines. It handles
asynchronous terminal activity by
analyzing the asynchronous input to
determine if it is a "real”™ attention
or an asynchronous input to the

Licensed Material—Property of IBM
124 VS APL Program Logic

session manager.

Exit: Returns

APLAUATN
Module: APLASP (CMS)

Called By: APLXGKT

Description: Main and only entry
point to the session manager
system-dependent, non-stack-processor
entry, CICS5/VS routines. It handles
asynchronous terminal activity by
analyzing the asynchronous input to
determine if it is a "real"™ attention
or an asynchronous input to the
session manager.

Exit: Returns

APLAUATN
Module: APLAYP (TS0)

Called By: APLXGKT

Description: Main and only entry
point to the session manager
system-dependent, non-stack-processor
entry, CIC5/VS routines. It handles
asynchronous terminal activity by
analyzing the asynchronous input to
determine if it is a "real"” attention
or an asynchronous input to the
session manager.

Exit: Returns

APLAUCAE
Module: APLAK (CICS/VS)

Called By: APLACOPY (session manager
command module)

Description: Part of the session
manager CICS/VS-dependent, stack
processor-entry, routines. It is
called by the session menager to
determine if using a copy ID wouid
destroy data in any copy files which
had previously been created within
the same ID.

Exit: Returns

APLAUCAE
Module: APLAS (CMS)

Called By: APLACOPY (session manager
command module)

Desgription: Part of the session
manager CICS/VS-dependent, stack
‘processor-entry, routines. It is
called by the session manager to
determine if using a copy ID would
destroy data in any copy files which
had previously been created within
the same ID.

Exit: Returns

APLAUCAE
Module: APLAY (T7S0)

Called By: APLACOPY (session manager
command module)

Description: Part of the session
manager CICS/VS-dependent, stack
processor-entry, routines. It is
called by the session manager to
determine if using a copy 1D would
destroy data in any copy files which
had previously been created within
the same ID.

Exit: Returns

APLAUNCO
Module: APLAK (CICS/VS)

Called By: APLACOPY

Descriptign: Part of the session

manager CICS/VS-dependent, SP-entry,

routines. It is called by the session

manger to determine if the subsystem

:gpports opening the same ID multiple
imes.

Exit: Raturns

APLAUNCO

Module: APLAS (CMS)

Coalled By: APLACOPY

Description: Part of the session

manager CICS/VS-dependent, SP-entry.

routines. It is called by the session

manger to determine if the subsystem

:gpports opening the same ID multiple
imes.

Exit: Returns

APLAUNCO
Module: APLAY (TSD)
Called By: APLACOPY

Descriptigon: Part of the session

manager CICS/VS—-dependent, SP-entry,

routines. It is called by the session

manger to determine if the subsystem

:gpports opening the same ID multiple
imes.

Exit: Returns

APLAUPRO
Module: APLAS
Called By: APLACXCM, APLACQRM

Description: Opens a file and writes
or reads records for an APL session
manager profile (CMS only).

Calls: APLSCOPT. Macros FSOPEN,
FSCLOSE, FSREAD, FSWRITE, FSSTATE

Exit: Returns

APLAUPRO
Module: APLAY
Called By: APLACXCM

Description: Opens a file and uwrites
or reads records for an APL session
manager profile (TS0 only).

Calls: APLYUUSR, APLYDAIR. Macros:
OPEN, PUT, CLOSE, GET

Exit: Returns
APLAUPRO
Module: APLAK (CICS/VS)

Called By: APLACQRY (common session
manager module), APLACXCM (common
session manager module which calls
APLACQRY)

Description: Part of the session
manager CICS/VS-dependent stack
processor-entry, routines. It
provides session manager support
(open a file, read records from a
file, close a file). These actions
are passed via the PRB (profile
request) control block.

Calls: APLXFKFL
Exit: Returns

APLAUSRX
Module: APLAUSRX
Called By: APLACPRO

Licensed Material—Property of IBM

Saction 3. Program Organization 125

Descriptijon: Contains a user
authorization exit to allow optional
rejection of tha use of the session
manager for some users.

Exit: Returns

APLAXCMD
Module: APLASCHD

Called By: AP120

Description: Requaests the VS APL
session manager to process a text
string as a command.

Exit: Returns

APLFXIIM
Module: APLKIFIX
Called By: APLFXIIM

Description: Part of the interpreter
interface provided by the CICS/VS
executor. Serves as an entry point
from the interpreter to the executor
to handle service requests.

Calls: Entry points KRSTEX, KCQZ,
APLKFDPY, KCATOFF, KCTIME, KCQAI,
KCDELAY, KCTABS, KCWIDTH, KCMBL,
KCTRAN, KCOPI, KCOPO, KCOPZ, KCDUMP,
KFOFF, KCSYSER, KCQUOTA, KLOAD,
KCOPA, KSAVE, KDROP, KLIB, KCLEAR,
KWSID, KPASS, APLKISVI. Macros
APLKHIST, DFHKC, APLKWAIT, DFHTR

Exit: KTOINTER, KADSP8.

APLFXIIM
Module: APLPFXIM
Called By: Many interpreter and

translator routines

Description: Sole entry point from

interpreter to VSPC exaecutor; saves
interpreter's environment and calls
routine to handle service request.

Calls: PC(...): routines

Exit: APLIINIT

APLFXIIM
Module: APLSCFXI

Called By: Many interpreter and
translator routines

Licensed Material—Property of IBM
126 VS APL Program Logic

Description: Sole entry point from
interpreter to CMS executor; saves
interpreter’'s environment and calls
routine to handle service request.

Calls: SC(...): routines
Exjt: APLIINIT

APLFXIIM
Module: APLYUFXI

Called By: VS APL interpreter, shared
storage manager (SSM)

pPescription: Executes a service
request for the VS APL interpreter or
shared storage manager (SSM). Its
main tasks are 1) preserve the
caller's environment, 2) determine
the type of request by table lookup,
3) call supervisor routine that
handles service request, and %)
aluways return control to APLIINIT in
interprater (T7S0).

Calls: Service Request Execution
Routine

Exit: Returns to APLIINIT in module
APLITINI of interpreter

APLFXIINM
Module: APLYUIIM

Called By: Many interpreter and
translator routines.

Description: This is the TS0/VSPC
executor call switch. It intercepts
all calls from the VS APL interpreter
and routes control to either the TS0
or VSPC executor. This module is used
only when VS APL/TS0 and VS APL/VSPC
have been link-edited into a single
load modula.

Calls: APLVSPC, APLTSO

Exit: Control passed to the
appropriate executor

APLFXIIN
Modulg: APLFXIIM
Called By: Many interpreter and

translator routines.

Description: In a CICS/VS
environment, APLFXIIM intercepts
executor calls from the interpreter,
and passes them to the CICS/VS which
is pointed to by PTHPARML.

Exit: Returns

APLIINIT

Module: APLITINI
Called By: APLPCENT, APLFXIIM

Description: Sole entry point to
interpreter from executor; receives
control after executor has handled
service request; restores
interpreter's environment including
changes resulting from workspace
relocation.

Calls: APLFXIIM, ITLIBMSG, IATABREF,
IASVOFF, ITSHV

Exit: If sign-on, APLFXIIM with
YYCLEAR service request or ITCMLOAD;
if load or clear, ITINPINI; if copy
source, ITCMCOPO; if error, ITSYSERR;
also to next instruction after
service request (address in WSMNSI).

APLKADEF
Module: APLKADEF

Called By: Entry points APLKEMGR,
APLKSSR

Description: Part of the CICS/VS
executor. Determines if the user of
the auxiliary processor is authorized
to access the named resource in the
requested fashion.

Exit: Returns

APLKADSP
Module: APLKADSP
Called By: Entry point APLKASON

Description: Part of the CICS/VS
executor. Controls the user task.

Calls: Entry points APLKIFON, KADSPS8,
KYYOFF, APLACRCP, APLKISVE, APLACRCP,
APLXGKON, KMARCO. CICS/VS macros
DFHKC (WAIT), DFHSC (GETMAIN), DFHPC
(SETXIT), APLKSON, APLKSOF

Exit: DFHPC (RETURN)

APLKAGBL
Module: APLKAGBL

Called By: Entry points APLKASON,
KABOOTS _

Description: Part of the CICS/VS
executor. Initializes and shuts down
the global table.

Calls: Entry points APLKLIBI,
APLKLIBT, KINIEX, APLKSSMR, KDPFAB,
KAPFXIT. Macros APLKTOFF. - CICS/VS
macros DFHPC (LOAD, DELETE), DFHKC
(ENQDEQ)

Exit: DFHPC (RETURN)

APLKAHST
Module: APLKAHST

Called By: APLKHST macro

Description: Part of the CICS/VS
executor. Records a histogram event.

Exit: Returns

APLKAMIX
Module: APLKAMIX

Called By: CICS/VS. Used when
APLKASON attaches APLU task.

Description: Provides a CICS/VS mixed
mode (command level/macro level)
environment. It may be employed as
the primary entry point for any
CICS/VS task.

Calls: Entry point APLKMIX in
APLKADSP.

Exit: Returns

APLKASON
Module: ALPKASON
Called By: CICS/VS

Description: Part of the sign-on
process performed by the CICS/VS
executor. Initiates a user APL
session.

Calls: Entry points APLKADSP,
APLKAGBL, APLKAGBL, APLKLIBR. Macros
APLKT (TRAN). CICS/VS macros DFHKC
(ATTACH, WAIT), DFHPC (RETURN, ABEND,
LOAD, XCTL, SETXIT), DFHDC, DFHIC
(GET, GETIME), DFHSC (GETMAIN), DFHTC
(PUT, GET), DFHFC (RELEASE)

Exit: DFHPC (RETURN) to APLKTCTL, or
to APLXGKT.

Licensed Material—Property of IBM

Section 3. Program Organization 127

APLKEHCP

Module: APLKEHCP
Called By: Entry point APLKEMGR via
CICS/VS macro DFHIC (PUT)

Description: Part of the destination
management services provided by the
CICS/VS executor. Provides support
for the 3270 printer.

Calls: Entry point KTRTRAN. CICS/VS
macros DFHSC (GETMAIN, FREEMAIN),
DFHPC (RETURN, ABEMD, SETXIT, LOAD),
DFHIC (GET), DFHTC (PUT)

Exit: DFHPC (RETURN)

APLKEMGR

Module: APLKEMGR

Called By: Entry points APLXGKU,
KTSLINE, APL132K, KTRHC

Description: Part of the destination
ranagemeont services provided by the
CICS5/VS executor. This 15 the initial
entry pcint for all destination
management service requests. Based on
request, routes control to the
appropriate service routine.

Calls: Entry points APLKEHCP,
APLKADEF, KETWRITE. Macros APLKT
(TRAN). CICS/VS macres DFHPC (LOAD),

DFHIC (PUT), DFHKC (ENQ, DEQ), DFHSC
(GETMAIN, FREEMAIN), DFHTC (LOCATE),
DFHTD (PUT, GET, LOCATE)

Exit: Returns

APLXIFQN
Mocdule: APLKIFIX
Called BY: Ertry point APLKADSP

Description: Part of the interpreter
interface provided by the CICS/VS
executor. Sets up a stack for the
interpreter interface modules to use
and an abend exit for the user
transaction.

¢ Entry points APLKLUIT,

. Macros APLKIST, APLKEXIT,
APLKMAIN (GET). CICS/VS macros DFHPC
(ABEND)

Exit: KTOINTER, caller (error)

APLKISVI

Module: APLKISVI

Licensad Material—Property of IBM
128 VS APL Program Logic

Description: Part of the CICS/VS
executor shared storage manager
interface. Executes the following
YYCODE service requests: YYSACC (set
access control vector); YYSCIOY
(copy); YYSOFF (sign off); YYSOFFER
(offer); YYSON (sign on); YYSQUERY
(query); YYSREF (reference); YYSRET
(retract); YYSSPCE (specification).

Calls: Entry point KADEPON. Macros
APLKSSMR, APLKWAIT, APLKMAIN

Exit: Returns

APLKLIBF

Module: APLKLIBF

Called By: Entry points APL121K,
APLXFKFL

Description: Part of the library

management services provided by the
CICS/VS executor. Manages the data to
and from cdata buffers for internal
APL files under execution of the user
task.

Calls: Entry point APLKLIBR. Macros
APLKEXIT, APLKHIST, APLKG (LIBSERV,
TYPE=WLIB, WDIR, UDIR, RLIB, CFILE,
DFILE, UFILE) APLKWAIT

Exit: Returns

APLKLIBG
Module: APLKLIBG
Called By: Entry point LIBSTART

Description: Part of the library
management services provided by the
CICS/VS executor. Routes control to
the appropriate subroutine for all
synchronous I/0 library requests.

Calls: Entry points KGWDIR, KGUDIR,
KGLOAD, KGSAVE, KGDROP, KGCFILE,
KGDFILE, KGRLIE, KGUFILE, XGWLIB.
CICS/VS macros DFHPC (SETXIT, RETURN,
ABEND), DFHKC (ENQ, DEQ, WAIT)

Exit: Returns

APLKLIBI
Module: APLKLIBB
Called By: Entry point APLKAGBL

Description: Part of the library
management services provided by the
CICS/VS executor. Prepares the APL
library data set for processing,
defines storage for and loads the

<

<

<

free space bit maps from the library,
and initializes the global table
fields owned by the library.

galls: Entry points KLGET, KLOPEN.
CICS/VS macros DFHOC (CLOSE), DFHFC
(GET, RELEASE), DFHSC (GETMAIN)

Exit: Returns

APLKLIBR
Module: APLKLIBR

Called By: APLKLIBU, APLKASON,
APLKLIBF and APLKLIBG (all via
GBLRDIR)

.Description: Main and only entry
point to the CICS/VS APL library
services-read directory. It performs
the synchronous 170 to read a record
from the APL directory.

Calls: Macro DFHFC
Exit: Returns

APLKLIBR
Module: APLKLIBG
Called By: Entry points APLKASON,

APLKLIBF..KCOPA. KLOAD, KGCFILE
Description: Part of the library

management services provided by the
CICS/VS executor. Reads an APL
directory record from the APL
directory data set.

Calls: CICS/VS macro DFHFC (GET)
Exit: Returns

APLKLIBY

Module: APLKLIBB

Called By: Entry point APLKAGBL
Description: Part of the library

management services provided by the
CICS/VS executor. Closes the APL
library data set for APL processing
and reopens it as a CICS/VS data set.

Calls: Entry point KLCLOS. CICS/VS
macro DFHOC (OPEN)

Exit: Returns

APLKLUIT
Module: APLXLIBC

Called By: Entry point APLKIFON
Description: Part of the library

management services provided by the
CICS/VS executor. Provides the user
with workspace when he initially
signs on. Defines the initial
workspace and reads the HI message
records from the APL directory.
Requests by a call to entry point
KYYTYOI that the HI message records
by displayed.

Calls: Entry points APLKSPEN,
APLXERRM, KYXTYOI. Macros APLKEXIT,
APLKPROC, APLKPOP. CICS/VS macro
DFHSC (GETMAIN)

Exit: Returns

APLKLUTM

Module: APLKLIBC

Called By: Entry point KFOFF
Description: Part of the library
management services provided by the
CICS/VS executor. Returns workspace
storage to CICS/VS uhen the user logs
off APL.

Calls: Macro APLKEXIT. CICS/VS macro
DFHSC (FREEMAIN)

Exit: Returns

APLKPFAP

Module: APLKASTB

Called By: DOS/VS page supervisor
Description: Part of the CICS/VS
executor. For D0OS/VS only. Allous
overlap of page faults that occur
during execution of the interpreter.

Exit: APLKPFOH

APLKPFOH

Module: APLKASTB

Called By: Entry point APLKPFAP
Description: Part of the CICS/VS
executor. For DOS/VS only, puts the

current user into a wait state so
CICS/VS can dispatch other users.

Licensed Material—Property of IBM

Section 3. Program Organization 129

Callg: Entry points KRSTEX, KSETEX.
CICS/7VS macro DFHKC (WAIT)

Exit: To interpreter at point of page
fault

APLKSPRG

Modula: APLKVEXC

Called By: The operating system.
(This is the service program's entry
point. It is specified on the EXEC
statement.)

Description: Part of the APL library
service program for CICS/VS. Drives
the utility. Does initialization;
calls KSPPIN to open the print and
reader data sets; reads a command.
calls KSPCMD to analyze it; calls
KSPINT to open the KSPINT to open the
necessary data sets; calls the proper
command processor (KSPAUT, KSPCPY,
KSPFMT, KSPIMP, OR KSPEXP); and calls
KSPTRM to close the unique data sets
associated with the command. This
process is repeated until there is no
more data. It then closes the system
data sets.

Calls: Entry points KSPAUT, KSPCMD,
KSPCPY, KSPDOS, KSPEXP, KSPIMP,
KSPINT, KSPMSG, KSPPIN, KSPTRM,
KSPFMT. 0S macros GET, PUT, CLOSE,
FREEMAIN. DOS macros CLOSE, EXCP,
PUT, WAIT, FREEVIS

Exit: Returns

APLKSSR
Module: APLKSSVP

Called By: Entry point BOOTSTR Macros
APLKSON, APLKSOF, APLKREF, APLKSPC,
APLKCPY, APLKQRY, APLKOFR, APLKRET,
APLKACHK, APLKACC

Description: Part of the CICS/VS

shared storage manager. Handles all
shared variable requests issued by
“module APLKISVI and the auxiliary
processors.

Calls: Entry points APLKADEF,
KCASE2Q, KCASE3Q, KCLEANUP, KFREESP,
KGCOL, KGETSPAC, KIDSETUP, KPOSTWAI,

KPPSEARC, KPROCOFF, KRETSUB, KSEIZE,
KSINGAL

Exit: Returns

APLKSSUB
Module: APLKSSUB

Licensed Material—Property of IBM
130 VS APL Program Logic

Called By: Entry point KABOOTS

Doscription: Part of the CICS/VS
shared storage manager. Obtains space
for and initializes the shared
memory.

Calls: CICS/VS macro DFHSC (GETMAIN)

Exit: Returns

APLKTCTL

Module: APLKTCTL
Called By: CICS/VS macros DFHIC

(INITIATE) or DFHPC (XCTL)
Description: Part of the terminal

management services provided by the
CICS/VS executor. Handles terminal
input operations and routes output
operations to module APLKTCWR. Runs
under the terminal transaction, a
separate transaction from the APL
user transaction. Processes requests
originally initiated by the APLKTERM
macro (type-requests of READ, WRITE,
or RESTORE) issued in the APL user
transaction. Also handles any input
received when no APLKTERM request is
being processed (when the terminal is
in listen state).

Calls: Entry point APLKTCNR. Macros
APLKT (LOCREQ, FINDF, TRAN),
APLKTRCE, APLKHIST. CICS/VS macros
DFHPC (RETURN), DFHTC (READ, WRITE),
DFHSC (GETMAIN), DFHPC (SETXIT,

ABEND, RETURN, LOAD)
Exit: DFHPC (RETURN)

APLKTCUR

Module: APLKTCWR

Called By: APLKTCTL

Description: Part of the terminal

managaement services provided by the
CICS/VS executor. Handles terminal
output operations. Runs under the
terminal transaction, a separate
transaction from the APL user
transaction.

Calls: Macros APLKT (TRAN), APLKTRCE.
CICS/VS macros DFHSC (GETMAIN,
FREEMAIN), DFHTC (WRITE)

Exit: APLKPOP

APLPAPAC
Modula: APLPAPAB

Called By: PCSACC

Description: Sets access control
vector for a variable shared with an
internal auxiliary processor.

Exit: Returns; ERSAVEAR (Error)

APLPAPOF
Module: APLPAPAB

Called By: PCSOFFER

Description: Processes offer to share
a variable with an internal auxiliary
processor.

Calls: ERMSGRTN
Exit: Returns; ERSAVEAR (Error)

APLPAPPR

Module: APLPAPAB

Called By: PCSCOPY, PCSREF, PCSSPEC
Description: Procasses copy.

reference, and specification of a
variable shared with an internal
auxiliary processor.

Calls: APCREATE, APDROP, APFILSIZ,
APIO, APOPEN, APPASSWD, APSHARE,
APVIO, PRDDIR, PRDSEQ, PWRITE,
ERMSGRTN, FSMFORMT, FSMWRITE,
FSMREAD, FSMGET, FSMFORM, FSMSETC,
FSMBUZZ FSMSUB3, FSMMTYPE, FSMMINT,
FSMHCOPY, GDDMRCTL, GDDMSCTL,
GDDMSDAT

Exit: Returns; ERSAVEAR (Error),
ERENDEX (Error)

APLPAPRT

Modula: APLPAPAB

Called By: PCSRET

Description: Processes retraction of
a variable shared with internal
auxiliary processor.

Calls: ERMSGRTN, GDDMCRET, GDDMSOFF

Exit: Returns; ERSAVEAR (Error),
ERENDEX (Error)

APLPAPSF
Module: APLPAPAB

Called By: PCSOFF
Description: Retracts variables

shared with internal auxiliary
processors when user signs off.

Calls: ERMSGRTN, GDDMSOFF

xit: Returns; ERSAVEAR (Error),
ERENDEX (Error)

APLPCENT
Module: APLPCOEX
Called By: VSPC Foreground Interface

Description: Serves as the sole antry
point from VSPC to VS APL; checks for
purpose of entry: for initialization,
initializes control areas and VS APL
workspace area; for asynchronous
event, checks attentions, cancel
output, program checks, forceoffs,
line drop, and other termination
situations.

Calls: ERTIMDAT
Exit: APLIINIT with a YYON service

request (initialization); returns to
VSPC (asynchronous events).

APLPCOAP
Module: APLPCOAP
Called By: VSPC executor modules

APLSHVR and APLPAPAB reference this
module

Descgription: List of auxiliary
processors, relating the VSPC
identification number to its
corresponding VS AFL VSPC
auxiliary-processor name. Contains no
executable code.

APLSCSSI
Module: APLSCSSI

Called By: CMS (original entry)

Description: This module executes in
the CMS transient area. It locates
the proper VS APL processing module
and passes control to it.

Calls: Macros DMSEXS, DMSKEY, DIAG,
FSSTATE, WRTERM, LINEDIT, NUCON,
REGEQU, APLPATCH

Exjt: Either to a shared segment or
to the disk-resident VSAPL module.

Licansed Material—Proparty of IBM

Section 3. Program Organization 131

APLSHACC
Module: APLSHACC

Called By: ASVPSERV

Description® Resets access control
vector for one partner; creates new
combined access control vector for
both partners. .
Calls: APLSHSRD, APLSHPST

Exit: Returns

APLSHBPB

Module: APLSHBPB

Called By: APLSHSON

Description: Constructs processor
block in shared memory when a
processor signs on to the shared
variable processor.

Calls: APLSHGET

Exit: Returns

APLSHBVE

Module: APLSHBVB

Called By: APLSHOFR

Description: Constructs variable
block in shared memory when a neuw
variable is successfully offered to
the shared variable processor.
Calls: APLSHGET

Exit: Returns

APLSHCPY
Module: APLSHCPY
Called By: ASVPSERV

Description: Provides latest value of

a shared variable regardlaess of the
current access state.

Calls: APLSHPUT, APLSHSRD
Exit: Returns

APLSHGET
Module: APLSHGET

ensed Material—Property of IBM

Lic
132 VS APL Program Logic

Called By: APLSHBPB, APLSHBVB,
APLSHOFR

Description: Gets a block of virtual)

storage frcm shared memory.

Callsg: APLSHPUT
Exit: Returns

APLSHDFR
Module: APLSHOFR
Called By: ASVPSERV

Description: Processes a request to

share a single variable; finds VAB
for offer and fills other partner;
constructs new VAB for new offer.

Calls: APLSHBVB, APLSHGET, APLSHSRD,
APLSHPST
Exit: Returns J

APLSHPST
Module: APLSCSVI
Called By: APLSHREF, APLSHACC,

APLSHOFR, APLSHSPC, APLSHSUB,
APLSHFUT

Description: Posts ECB for auxiliary
vrocessor associated with shared

variable.

Exit: Returns

APLSHPUT

Module: APLSHPUT

Called By: APLSHCPY, APLSHREF,

APLSHSOF, APLSHSPC, APLSHSUB,
APLSHGET

Description: Returns block of virtual J
storage to shared memory; fills area

with zeros.

Calls: APLSHPST

Exit: Returns

APLSHQUE

Module: APLSHQRE

Called By: ASVPSERV

Description: Provides information

about a shared variable; fills in
fields of SCV.

Exit: Returns

APLSHREF
Modyle: APLSHREF

Called By: ASVPSERV

Description® Provides latest value of
a shared variable if not interlocked;
moves value to buffer whose address
is in SCVVALUE.

Callsg: APLSHSRD, APLSHPST, APLSHPUT

Exit: Returns

APLSHRET

Module: APLSHRET

Called By: ASVPSERV

Description: Terminates offer of
shared variable by calling processor
of variable described in SCV.

Calls: APLSHSRD, APLSHSUB

Exit: Returns

APLSHSOF

Module: APLSHSOF

Called By: ASVPSERV

Description: Disconnects processor
from shared variable processor;
retracts all variables offered under
processor's 1ID.

Calls: APLSHPUY, APLSHSUB

Exjt: Returns

APLSHSON
Module: APLSHSON
Called By: ASVPSERV

Description: Connects a procaessor to
the shared variable processor.

Calls: APLSHBPB
Exit: Returns

APLSHSPC
Module: APLSHSPC

Called By: ASVPSERV

Description: Specifies a new value
for a shared variable or informs
caller that value specified by a

. partner is waiting.

Ca115= APLSHPUT, APLSHSRD, APLSHPST
Exit: Returns

APLSHSRD

Module: APLSHSRD

Called By: APLSHCPY, APLSHRET,
APLSHSPC, APLSHREF, APLSHACC,
APLSHOFR

Description: Searches index block for
variable block with offer number
equal to offer number in SCV; returns
with pointer to block or error
indication.

Exit: Returns

APLSHSUB
Module: APLSHSUB
Called By: APLSHRET, APLSHSOF

Description: Terminates an offer for
calling routine of a variable.

Calls: APLSHPUT, APLSHPST
Exit: Returns

APLXACSO

Module: APLXAC

Called By: APL120, APL121, APL126
Description: Establishes the
environment for the AP and sign-on to
the shared storage manager (CMS/TS0).
Calls: Main storage management
services, shared storage manager, and
abend exit services. Macros: APLXSON,
APLXMAIN, APLXADUM, APLXSFRE

Exit: Calls the offer exit return in
the auxiliary processor.

APLXACSV
Module: APLXAC (CMS)
Called By: APL120, APL121, APL126

Licensad Material—Property of IBM

Section 3. Program Organization 133

Description: Provides the services
GET, PUT, COPY, AUTHCHECK, and ABORT
between an auxiliary processor and
the shared storage manager.

Calls: Main storage management
sarvices, shared storage manager, and
abend exit services. Macros APLXMAIN,
APLXSON

Exit: Returns

APLXACSV
Module: APLXAC (TSO)
Called By: APL120, APL121, APL126

cription: Provides the services
GET, PUT, COPY, AUTHCHECK, and ABORT
between an auxiliary procassor and
the shared storage manager.

Calls: Main storage management
services, shared storage manager, and
abend exit services. Macros APLXMAIN,
APLXSON

Exit: Returns

APLXAKSO

Module: APLXAK
Called Bv: APL120, APL126

Description: Establishes the
environment for the AP (CICS/VS).

Calls: Main storage management
services, shared storage manager,
abend exit services, and dump
services, session manager message
services and stack services.

Exit: Calls the offer exit return in
the auxiliary processor.

APLXAKSV

Module: APLXAK
called By: APL120, APL126

Descriptigon: Part of common AP
services for CIC5/VS. It provides the
following services between an
auxiliary processor and the shared
storage manager in the CICS/VS
environment: GET (reference the data
that the user has specified in a
shared variable), PUT (specify the
data from the auxiliary processor
buffer to shared sotrage), COPY
(obtain the latest value of a shared
variable without altering the setting
of the current accass state),

censed Material—Property of IBM

Li
134 VS APL Program Logic

AUTHCHECK (search the authorization
table to locate the authorization
code associated with the resource
named, and ABORT (retract the
variables in this set and pass
control to the auxiliary processor's
retract exit routine.

Calls: Main storage services, shared
storage manager, ABEND exit services,
dump services, session manager
message routine, and stack management
services. Macros APLKACHK, APLXMAIN,
APLXBXIT, APLXDUMP, APLKOFR, APLKCPY,
APLKREF, APLKSPC, APLKWAIT, APLKSCZ,
APLXSTK

Exit: Returns

APLXAINP

Module: APLXASD (CMS)
Called By: APLXAC
Description: Analyzes input

parameters for common AP services.

Calls: APLXMSSG (CMS) Macro APLDEFN
Exit: Returns

APLXAINP
Module: APLXAYD (TSO)
Called By: APLXAC

iption: Analyzes input

parameters for common AP services.
Calls: APLXMYSG (TS0) Macros APLXMAIN
Exit: Returns

APLXAMSG
Module: APLXASD (CMS)
Called By: APLXAC

s n: Displays messages for
common AP servicas.

Calls: APLYULNE Macros APLXEDIT,
APLXSTK, APLXMAIN, APLXAFRE

Exit: Returns

APLXAMSG
Module: APLXAYD (TS0)
Called Bv: APLXAC

Description: Displays messages for
common AP services.

Calls: APLERRM, (TS0) Macros
APLKEDIT, APLXSTK, APLXMAIN, APLXAFRE

Exit: Returns

APLXBACK
Module: APLXSTAK

Called By: All stack processor entry
points

Description: Returns to caller of SP
module.

Calls: Common main storage services

Exit: Returns to instruction
following call in calling program

APLXBSAB
Module: APLSCSVI
Called By: Various executor routines.

Description: Provides
system—independent interface for
abend services to the CMS aexecutor
and auxiliary processors.

Calls: Macro ABEND
Exit: Abnormal termination

APLXBSXT

Module: APLSCSVI

Called §¥= Many executor routines.
Description: Provides an abend exit

service through a system-independent
interface.

Calls: Macro STAE

APLXBYAB
Module: APLYUSVI

Called By: Various executor routines
and auxiliary processors

Description: The caller requests that
a particular abend be issued on his
behalf by placing a binary abend code
in register 1. This routine provides
an abend request service through a
system-independent interface (T7S0).

Calls: Macro ABEND
Exit: Abnormal termination

APLXBYXT
Mcdule: APLYUSVI

Called By: Various executor routines
and auxiliary processors

Description: The caller requests that
a particular routine be given control
when an abend occurs. This routine
provides an abend exit service
through a system-independent
interface; it also contains the ESTAE
exit and retry routines (TS0).

Calls: Macros APLPTRGT, APLXXPTX,
‘APLTSOGL, ESTAE, IHASDNA, SETRP

Exit: Returns

APLXCALL

Module: APLXSTAK

Called By: APLXSTAK stub code
Desgription: Calls an SP module.
Calls: Common mgin storage services

Exit: Returns to requested entry
point

APLXDKMP
Module: APLXDKMP

Called By: Available for general use
by any VS APL module

Description: Main and only entry
point to the V5 APL CICS/VS dump
services module. It provides a
system independent interface to the
CICS/7VS executor (and auxiliary
processors) for common dump services.
The CICS/VS executor command is
emploved for each range of addresses
to be dumped.

Calls: Macro’ DFHDC

Exit: Returns

APLXDUCL
Module: APLXDUMP
Called By: APLYUINI, APLSCINI

Licensed Material—Property of IBM

Section 3. Program QOrganization 135

pgsgrugtgéﬁﬁ Closas: DUMP data set at
termlnatlon . B

Calls: APLXMSSG, APLXMYSG. Macros
IHADCB, DCB, OPEN, CLOSE, SNAP,
APLXMAIN

Exit: Returns

APLXDUMP -

Module: APLXDUMP

Callgd'ﬁig J;Fious executor routines
Description: Provides

system-independent interface for dump

services to ‘the CMS and TS0 executors

and auxiliary processors. The SNAP

macro is used to request & range of

ggd;efses to be dumped to the APLDUMP
ila. .

Calls: MAI. ;-Nacros-#PLPATCH.
IHADCB, 'DCB, OPEN, CLOSE, SNAP,
APLXMAIN,. DIAG .

Exit: Rgturns

APLXDUOP
Module: APLXDUMP E
Called By: APLYUINI. APLSCINT

Descri Called at initialization
to open fhe DUNP data set.

Calls: Manros APLPATCH, IMADCB, DCB,
OPEN, CLOSE,- SNAP. APLXMAI

Exit: Returns

APLXFINT
Module: APLXFSFL -.
Colled By: APLSCINI

§ itiglizes buffers for
'.ﬁe:hanﬂnggfniljng (CMs

Calls: APLXHSSGM.MacrOS APLPATCH,
APLSFID, APLXDMP, APLXEND, APLXFAB,
APLXMAI, APLXMAIN, APLXMOD, APLXPROC,
APLXPTH, APLXSTAK, FSREAD, FSWRITE

Exit: Refurﬁs

APLXFINT ,
Module: ARLXFYFL-

Licensed Material-—Property of IBM
136 VS :APL Program Logic

Called By: APLYUINI

Description: Initializes buffers for
AP 121 files and scrolling (TS0
only).

Callg: APLXMYSG. Macros ACB,

APLXMAIN, APLXMOD, APLXSTAK, FSREAD,
FSWRITE

Exit: Returns

APLXFKFL
Module: APLXFKFL

Called By: APLACSF

Description: This module provides a
map, for the CICS/VS file system,
from release 4 stack processors to
release 3 register requirements and
stack usage.

Calls: APLKLIBF

Exit: Returns

APLXFSFL

Module: APLXFSFL
Called By: APLSCINI, APL12l, APLACSF

Description: Manages the movement of
data to and from buffers for AP 121
files and scrolling (CMS only).
Calls: APLXDUMP, APLXMSSG, APLSCFID.
Macros APLSFID, APLXMAIN, APLXMOD,

CLOSE, ENDREQ, ERASE, FREEMAIN, GET,
GETMAIN, IFGACB, IFGRPL, PUT, RPL

Exit: Returns

APLXFTRM

Module: APLXFSFL

Called By: APLSCINI, APL121, APLACSF
Desgription: Terminates & buffer
service request for AP 121 files and
scrolling (CMS only).

Calls: APLXDUMP, APLXMSSG. Macros

APLSFID, APLXMAIN, APLXMOD, APLXSTAK,
FSREAD, FSWRITE

Exit: Returns

APLXFTRM
Module: APLXFYFL

<

Called By: APLYUINI

Description: Terminates a buffer
service request for AP 121 files and
scrolling (TS0 only).

Calls: APLXMYSG. Macros ACB, APLXFAB,
APLXMAIN, APLXMOD, APLXSTAK, CLOSE,
ENDREQ, ERASE, FREEMAIN, GET,
GETMAIN, IFGACB, IFGRPL, PUT, RPL

Exit: Returns

APLXFYFL

Module: APLXFYFL

Called By: APLYUINI, APL121, APLACSF
Description: Manages the movement of
daota to and from buffers for AP 121
files and scrolling (TS50 only).
Calls: APLXMYSG. Macros ACB, APLXMOD,
AFLXSTAK, CLOSE, ENDREQ, ERASE,
FREEMAIN, GET, GETMAIN, IFGACB,
IFGRPL, PUT, RPL

Exit: Returns

APLXGCAT
Module: APLXGCAT
Called By: Operating system or GDDM

Description: This is the attention
processing module for CMS and TS50.

Exit: To routine in PTXATTN

APLXGCHC -

Module: APLXGCHC

Called By: APLXGCOM
Description: This is the common

APLXGDDI1 hardcopy request processing
module which handles the following
APLXG requests: FSOPEN, FSCLS,

FSCOPY, FSLOG, GSCOPY, and QDEST.
Calls: GDDM APL print services, main
storage services, APLXGDDM
system-dependent modules (APLXGKU,
APLXGS, or APLXGY). Macro APLXSTK

Exit: Raeturns

APLXGCOM
Module: APLXGCOM

Called By: APL session manager, AP126

Description: This is the GDDM
interface module. APLXGCOM is the
main entry point for all APLXG macro
processing, and contains all
processing routines common across all
systems, except for hardcopy request
support and attention support. Three
types of requests are processed: APL
special requests, GDDM requests with
special considerations and
pass—through requests.

Calls: APLXGCHC, ADMASP (GDDM entry
point), and the following entry
points defined through the VCT:
GDDXE, DUMPX, MAINS, STKAB,.

Exit: Returns

APLXGXON
Module: APLXGKON

Called Ry: APLKADSP (VS APL
dispatcher)

Description: Contains CICS/VS-only
support for the startup of the
CICS/VS GDDX process, the
synchronization of requests from the
session manager, and instances of
AP126.

Calls: APLXGCOM

Exit: Returns to dispatcher

APLXGKR
Module: APLXGKR
Called By: APLXGKRR

Description: Main and only entry
point in the GDDX CICS/VS terminal
manager retrofit module that converts
GDDM calls made by the session
manager into release 3 terminal
manager calls, thus allowing the
session manager to run when GDDM is
not available.

Canlls: Macros APLKEXIT, APLKMAIN,

ERM, DFHPC TYPE=ABEND and DFHIR
E

APLKTY
TYPE=ENTRY
Ex

it: Returns
APLXGKRQ

Module: APLXGKRQ

Called By: Macro APLXG and APL126
(the session manager modules)

Licensed Material—Property of IBM

Section 3. Program Organization 137

Description: Part of GDDX
CICS/VS-only user transaction 1I/0
support. It is invoked in CICS/VS
via the VCTGDDX pointer when a
request for APLXGDDM service is
issued (through the APLXG macro). It
then signals the APLXGKON routine to
perform the request under a GDDX task
and waits for it to do so.

Exit: Returns

APLXGKRR
Module: APLXGKRR
Called By: APLXGCOM, APLXGCHC

Description: Main and only entry
point to the GDDX T.M. retrofit
router module. It routes requests
from APLXGCOM or APLXGCHC to APLXGKU
if GDDM 1is to be used in the
session, or to APLXGKR if the Release
3 terminal manager is to be used.

Calls: APLXGKR, APLXGKU
Exit: Returns

APLXGKT
Module: APLXGKT

Called By: CICS/VS as a result of an
EXEC CICS/VS start command in
APLXGKU, or an XCTL in APLKASON.
(CICS/VS sign on module)

Description: Main and only entry
point to the root CICS/VS terminal
transaction support module for GDDX.
It contains CICS/VS-only routines for
APLXG requests which must be exescuted
from the terminal transaction. These
comprise the following: SPINIT,
FSFRCE, ASREAD, and FSSHOW. APLXGKT
notifies the user transaction, as
needed, of request completion, and
synchronizes with the user
transaction to avoid overlapping of
calls to GDDM. APLXGKT also supplies
the attention-handling support for
CICS/VS.

Calls: ADMASP, APLAUATN. CICS/VS
command level: ABEND, ADDRESS,
ASSIGN, ENTER, HANDLE, POST, RECEIVE,
RETURN, RETRIEVE and WAIT

Exit: Returns to CICS/VS

APLXGKU
Modula: APLXGKU

Licensed Material—Property of IBM
138 VS APL Program Logic

Called By: APLXGCOM, APLXGCHC

Description: This is the mainline of
the GDDX CICS/VS-only user
transaction I/0 support containing
routines for the following: a)
startup of CICS/VS GDDX task, b)
synchronization of requests from
session manager and APl126, c) GDDM
path initialization, d) GDDM path
termination, e) open a hardcopy
destination (FSOPEN), f) passthrough
request to GDDM under user
transaction with proper
synchronization, and g) I/0 request
to schedule a terminal transaction
and wait for its completion.

Calls: ADMASP, KADEF via GBL.

CICS/VS command level: FREEMAIN,
RELEASE and SORT

Exit: Returns

APLXGS

Module: APLXGS

Called By: APLXGCOM, APLXGCHC
Description: This is the CMS-only
support for APLXGDDM and contains
routines that perform first-time
initialization and hardcopy open
register for APLXGDDM. It also
provides the last-path CMS-only
termination function.

Calls: ADMASP (GDDM entry point).

Exit: Returns

APLXGY

Module: APLXGY

Called By: APLXGCOM, APLXGCHC
Description: This is the entry point
in module APLXGY. Its routines
perform first path initialization and
hardcopy open register for APLXGDDM,
as required by system-dependent
modules in all environments.

Calls: ADMASP (GDDM entry point).

Exit: Returns

APLXGYON
Module: APLXGY
Called By: APLYUINI

Pescriptign: This is the APL
initialization entry from AP startup.
It causes tha AP task to gain control
at routine GYCALL, which will invoke
APLXGCOM when notified of a request
and post the caller when the task is
completed.

Calls: APLXGCOM (GDDM entry point).
Macros APLXWAIT, APLXWPST

Exit: Signs off shared storage
manager.

APLXGYRQ
Module: APLXGY

Called By: AP126, APL session manager
(in TSO via VCTGDDX)

Desgription: This is the request
processing entry point which receives
control via the VCT when macro APLXG
is issued. It causes a task switch to
the APLXGYTA routine, waking up to
return to caller when notified by
APLXGYTA,

Calls: Macros APLXWAIT, APLXWPST
Exit: Returns

APLXMKSG

Module: APLXMKSG
Called By: Various executor routines.

Descriptign: This is the main and
only entry point to the storage
management services module for
CICS/VS which provides
GETMAIN/FREEMAIN services to the
caller (CICS/VS) through a
system-independent interface.

Calls: Macros DFHSC, DFHSAADS
Exit: Returns

APLXMSSG

Module: APLXMSSG

Called By: Various executof routines.
Description: Provides
GETMAIN/FREEMAIN services through a
system—-independent interface to the
caller (CMS).

Calls: Macros DMSFREE, DMSFRET

Exit: Returns-

APLXMYSG
Module: APLXMYSG

Called By: Available as a service
routine

Description: This is the storage
management services module for TSO
which provides GETMAIN/FREEMAIN and
associated services to the caller
through a system-independent
interface.

Calls: Macros GETMAIN, FREEMAIN
Exit: Returns

APLXPK
Module: APLXPK

Called By: Available for general use
via PRTX label in VCT

Description: Main and only entry
point to common executor print
support in CICS/VS. It provides
print requests OPEN, WRITE, and
CLOSE, and transforms each request
into an appropriate APLKEMGR call.

Calls: KEDEST via GBL
Exit: Returns

APLXPY
Module: APLXPY
Called By: APLXGDDM via APLCALLS

Description: This is the main entry
point to the APL print module for TSO
which satisfies the following TSO
print requests: OPEN, WRITE, and
CLOSE.

Calls: TS0 QSAM file support, APL
main storage services, LOAD/DELETE,
and APL translation services. Macros
OPEN, CLOSE, PUT, IHADCB, LOAD

Exit: Returns

APLXSTAK
Module: APLXSTAK

Called By: All stack protocol stack
owners

Description: Create or destroy a

stack.

Licensed Material—Property of IBM

Section 3. Program Organization 139

Calls: Common main storage services.

Exit: Returns

APLXTRAN

Module: APLXTRAN

Called By: VS APL session manager,
common AP services

Descriptigon: Provides various

translation services.
Calls: Macros APLKZTO0S, APLKSTO0Z

Exit: Returns

APLXTREZ
Module: APLXTRAN
Called Bv: VS APL session manager,

common AP services

Description: Translates a table from
extended EBCDIC to ZCODE.

Calls: APLSCODE, APLKZTOS, APLKSTO0Z

Exit: Returns

APLXTRZE
Module: APLXTRAN

Called By: VS APL session manager,
common AP services

Description: Translates a table from
ZCODE to extended EBCDIC.

Exi§='Return5

APLXVERS
Moduleae: APLXVERS

¢ Any auxiliary processor.
Common AP services.

Description: Provides various
conversion services to .convert one or
more elements of a vector of values
into another form.

Exit: Returns

APLXWKUP
Module: APLXWKWP

Licensed Material—Property of IBM
140 VS APL Program Logic

Called By: Attention, VS APL session

manager separate task
Description: This is the main entry

point to the VS APL CICS/VS wait/post
services module which provides a
system~independent interface for wait
or post services to the CICS/VS user.
Each request is transformed into an
appropriate APLKEMGR call (CICS/VS).

Calls: APLKADSP (wait and post
routines)

Exit: Returns

APLXUSUHP

Module: APLSCSVI

Called By: Many executor routines.
Description: Provides

system-independent interface for wait
or post services to the CMS executor.

Calls: APLSHPST
Exit: Returns

APLXUYUP
Module: APLXWYWP

Called By: APLYUMSC, various executor
routines and auxiliary processors.

Description: Provides
system-independent interface for wait
or post services to the TS0 executor.

Calls: APLYUSVI (wait and post
routines)

Exit: Returns ta caller from post
services; exits to dispatcher from
wait.

APLXWYUP

Module: APLYUSVI

Called By: Various executor routines
and auxiliary processors

Description: Provides wait and post
services for system-independent task
control. It includes a courtesy
dispatch with a wait request of ECB
pointer of zero (TS0).

Calls: APLSHPST. Macros APLPTRGT,
APLTSOGL

Exit: Returns

<

J

<

<

APLYDAIR
Module: APLYDAIR
Called Bv: APLAM, APLXFYFL

Desgription: Allocates, frees, or
deletes a data set, or checks its
status.

Exit: Returns

APLYUCMD
Module: APLYUCMD

Called By: APLYU100

Description: Initializes all control
blocks, calls the command scan, and
builds the command name. The command
module is now attached; it is passed
& CPPL constructed by copying the
CPPL passed to VS APL, but
substituting the address of the built
CBUF. The CMSECB is used as the ECB
in the ATTACH because it is posted by
the STAX exit. The TSOCMDAT bit is
set to distinguish APLYU100 waiting
from waiting caused by DELAY or MSG.
When posted, the command subtask has
either terminated normally or has
hean rendered nondisvatchable by
STAX. DAIR is now called with a
request code of '2C' to mark the
command subtask; the subtask can
subsequently be detached. The line
delete and character delete functions
are resuppressed, and the QUAD-PW
value is reestablished before
returning to APLYUL100.

For a full explanation of TS0 command
linkage and Terminal Monitor Program
service routines, see Guide to
Writing a Terminal Monitor Proqram
and Command Processor.

Calls: Macros ATTACH, BLDL, LINK,
STCC, STSIZE, WAIT, GETMAIN, FREEMAIN

Exit: Returns

APLYUCNV

Module: APLYUCNVY]

Called By: Various executor routines
Description: Imports into a VS
APL/TS0 sequential data set a VS APL
workspace from a file created by one
?;sg?e VS APL conversion programs

Exit: Returns

APLYUEXC
Module: APLYUEXC
Called By: APLYUCMD

Description: Routine used to execute
CLISTs.

Exit: Returns

APLYUFXI
Module: APLYUFXI

Called By: APLYUINI (VS APL
initialization)

Description: Receives control after
initialization and reacts to the
success or failure of initialization
(750).

Calls: Macros APLDEFN, YYCODE
(local), ESTAE, APLEDIT

Exit: YYEXIT in APLFXIIM;
EXREQUES(Error)

APLYUHSH
Module: APLYUHSH
Called By: APLYULIB

Descriptian: This is the
hashersunhasher module which examines
a lock and its kev to determine if
the workspace was saved by VS
APL/TS0, and, if so, what the TSQ
owner userid is.

Exit: Returns

APLYULNE
Module: APLYULNE

Called By: Invocations produced by
the 'APLEDIT' macros

Description: This is the interface
module to the LINEDIT macro in the
TS0 environment. At entry, the PLIST
code is decoded and expanded inside
the work area so that it will be
possible to easily access all its
fields. The message header is then
constructed and the message text is
scanned, byte by byte. Whenever an
ellipsis is found in the message
text, an argument is taken from the
'SUBS' parameter list, the
appropriate conversion is performed,
and the raesult is substituted for the
ellipsis. The resulting message is

Licensed Material—Property of IBM

Section 3. Program Organization 141

then copied into the specified
buffer, the 'DISP' field is examined,
and the appropriate action is taken.
Calls: APLYUTIO

Exit: Returns

APLYURVC
Module: APLYURVC
Called By: Auxiliary processor or

module APLYUSHV using 'ASVP....!'
macro

Description: Links to shared storage
manager (also called shared variable
processor) from an auxiliary
processor or the T50 executor on a
shared variable service request.

Exit: Branches to entry point
ASVPSERV in module APLYUSVI

APLYUTBL
Module: APLYUTBL
Called By: None (data only)

Description: This contains all

translate tables for terminals.

Exit: None

APLYUTIO
Module: APLYUTIO

Called By: APLYUTYP

Description: This is the TS0
nondisplay terminal interface which
simulates CMS SVYC 202 terminal
input/Zoutput functions (TSQO).

Calls: SCOTRT. Macros TPUT, TGET,
APLDEFN

Exit: Returns

APLYUUSR
Module: APLYUUSR

Called By: APLYUINI
Description: This constitutes a

sample installation-written
initialization exit routine. It 1)
allows any user with operator
authority to save into or draop from
public workspaces, and 2) scans for

Licensed Material—Property of IBM
142 VS APL Program Logic

the ownership operand, and, if
provided, faorces the specification of
a password.

Exit: Returns at +0 (Error—user is
not authorized to continuel); +4 (user
is authorized to proceed with APL
session).

APL100

Module: APLYU100

Called By: Control passed directly
from shared variable processar

Description: Executes a TS0 command.

Calls: APLYUSCN. Macros APLWSM,
ASVPSON, ASVPQRY, ASVPOFR, ASVPREF,
ASVPWAIT, ASVPRET, ASVPSPC, ASUSCV,
APLPCV, APLSHSVP, ASVPSOF, APLEDIT,
ABEND

Exit: TSC ABEND (Error)

APL100
Module: APL10G
Called By: ASVPSERV; via Post on ECB

Description: Auxiliary processor
AP100; executes CMS and CP commands
while obeying the search rules for
IMPEX and IMAP.

Calls: ASVPSRVC. Macros APLWSM,
ASVPSON, ASVPQRY, ASVPOFR, ASVPREF,
ASVPWAIT, ASVPRET, ASVPSPC, ASUSCvY,
APLPCV, APLSHSVP, ASVPSOF, LINEDIT,
ABEND, NUCCON, TSOBLKS, DMSFREE,
DMSFRET, APLXBXIT

Exit: ASVPSRVC with wait request; CMS
ABEND (Error)

APL10OK

Module: APL100K
Called By: Entry point KMACRO

Description: Part of tha CICS/VS

command auxiliary processor. Issues
CICS/VS commands and starts CICS/VS
transactions.

Calls: Entry point APL100KO. Macros
APLKOFR, APLKREF, APLKSPC, APLKWAIT,
APLKEXIT, APLXRET, APLKACHK, APLKG
(LIBSERV). CICS/VS macros DFHIC (PUT,
INITIATE), DFHKC (ATTACH), DFHSC
(GETMAIN, FREEMAIN), DFHSP

Exit: Returns

C

APL100KO
Module: APL100KO
Called By: Entry point APL100K

Description: Part of the CICS/VS
command auxiliary processor. Connects
CICS/VS transactions. to the user
terminal.

Calls: Any CICS/VS transaction.
CICS/VS macros DFHPC (LOCATE, LINK,
RETURN), DFHSC (GETMAIN)

Exit: DFHPC (RETURN)

APL101
Module: APLYU101

Called By: Shared variable processor
APLYUSVI

Pescription: This is TS0's auxiliary
processor APl0l, whose function is to
stack an APL input line.

Calls: APLYUSCN. Macros APLWSM,
ASVPSON, ASVPQRY, ASVPOFR, ASVPREF,
ASVPWAIT, ASVPRET, ASVPSPC, APLSCV,
APLPCV, APLSHSVP, ASVPSOF, APLCCVO,
APLEDIT, ABEND

Exit: Signs off to the TSO SSM
APL101

Module: APL101

Called By: ASVPSERV; via Post on ECB
Description: Auxiliary processor
AP10l; stacks lines to be used at
next request for terminal input. In
VM/SP systems, an attempt to stack
'HT' or 'RT' Will result in the SET
CMSTYPE commandbeing issued.

Calls: ASVPSRVC

Exit: ASVPSRVC with wait request; CMS
ABEND (Error)

APL102
Module: APLYUL102
Called By: Shared variable processor

Description: This is the TS0 main
storage access auxiliary processor.
It displays storage for the user.

Cails: Macros APLIBITS, APLCMSGL,
APLWSM, ASVPWAIT, ASVPSOF, ASVPSON,
ASVPQRY, ASVPREF, ASVPSVP, ASVPRET,
ASVPSPEC, ASVPSOFR, APLSHSUP,
APLFSMP, APLFSMW, APLDFNUC, APLSYSTP,

Section 3.

APLGLPTR, FREEMAIN, GETMAIN, SAVE,
RETURN, IHAPSA, CVT, IKJTCB

Exit: Returns

APL102K
Module: APL102K
Called By: Entry point KMACRO

Description: The CICS/VS main storage
access auxiliary processor. Displays
storage for the user.

Calls: Macros APLKOFR, APLKREF,
APLKWAIT, APLKSPC, APLKRET, APLKEXIT,
APLKACHK

Exit: Returns

APL110
Moduleg: APL110
Called By: ASVPSERV via Post on ECB

Description: Auxiliary processor
AP110; reads and writes CMS disk
files.

Calls: ASVPSRVC

Exit: ASVPSRVC with wait request; CMS
ABEND (Error)

APL111
Module: APLYU1l1l1l

Called By: Shared variable processor
APLSCSVI

Description: This is the 7SO
auxiliary processor APlll which reads
and writes QSAM files.

Calls: APLYUSCN. Macros APLCCVI,
APLCCVO, APLIREGS, APLWSM, APLZCODE,
APLPCV, APLSCVYV, ASUSCV, APLSHSVP,
ASVPOFR, ASVPQRY, ASVPREF, ASVPRET,
ASVPSOF, ASVPSON, ASVPSPC, ASVPWAIT,
ABEND, CLOSE, DCB, DCBD, FREEPOOL,
GET, GETMAIN, APLEDIT, OPEN, PUT,
FREEMAIN, ONABEND (LOCAL)

Exit: Signs off to the TS0 SSM

APL111
Module: APL11ll
Called By: ASVPSERV via Post on ECB

Licensed Material—Property of IBM
Program Organization 143

Description: Auxiliary procassor

AP11l; reads and writes files using
CMS simulation of 0S QSAM.
Calls: ASVPSRVC

Exit: ASVPSRVC with wait request; CMS
ABEND (Error)

APL120
Module: APL120
Called By: Initialization (CMS and

T50), shared storage manager
(CICS/VS)

Description: Communicates between the
VS APL session manager commands and
auxiliary processors.

Calls: APLASCHD, APLXAC

Exit: Returns

ApL12:
Module: APL121
Called By: CMS/TSO initialization

Description: This is the main entry
point to the VS APL data file which
creates, uwrites, updates, reads,

and/or deletes VS APL object files.

Calls: APLXFYFL, APLXFSFL, APLXAC,
APLXDUMP, APLXMSSG, APLXMYSG, and
APLXSTAK. Macros APLXASO, APLXMAIN,
APLXCAPS, APLCALLS

Exit: Returns

APL121K
Module: APL121K
Called Bv: Entry point KMACRO

Description: The CICS/VS APL format
auxiliary processor. Creates, writes,
updates, reads, and/or deletes APL
object files.

Calls: Entry point APLKLIBF. Macros
APLKOFR, APLKRET, APLKREF, APLKSPC,
APLKEXIT, APLKWAIT, APLKACHK. CICS/VS
macro DFHSC (GETMAIN, FREEMAIN)

Exit: Returns

APL123
Module: APL123

Licensed Material—Property of IBM
144 VS APL Program Lagic

Called By: Control directly passed
from shared variable processar

Description: This is the TS0/CMS
auxiliary processor 123 which reads
and/or writes VSAM files.

Calls: APLXMSSG, APLXMYSG. Macros
APLCCVI, APLCCVO, APLSHSVP, ASVPACC,
ASVPOFR, ASVPQRY, ASVPREF, ASVPRET,
ASVPSOF, ASVPSON, ASVPSPC, ASPWAIT,
ABEND, CLOSE, GET, PUT, OPEN, POINT,
ERASE, MODCB, GENCB, TESTCB, SHOWCBS,
APLXMAIN, APLEDIT, APLXMAIN

Exit: Returns

APL123K

Madule: APL123K
Called By: Entry point KMACRO

Description: The CICS/VS VSAM/ISAM
file auxiliary processor. Reads from
and writes to VSAM and ISAM data
sets.

Calls: Macros APLKOFR, APLKRET,
APLKSPC, APLKREF, APLKWAIT, APLKEXIT,
APLKACHK. CICS/VS macros DFHSC
(GETMAIN, FREEMAIN), DFHFC (GET, PUT,
DELETE, GETAREA, RELEASE, SETL,
GETNEXT, RESETL, ESETL)

Exit: Returns

APLL126K

Module: APL124K
Called By: Entry point KMACRQ

Description: The CICS/VS full screen
manager auxiliary processor. Uses
terminal manager routines, which are
a part of the CICS/VS executor to
handle all valid user requests

Calls: Macros APLKOFR, APLKRET,
APLKREF, APLKSPC, APLKWAIT, APLKEXIT,
API.KTERM (INIT, FORMAT, WRITE, READ,
GETDATA, SETCUR, FLDATTR, GETFORM,
HCOPY, ALARM, FINAL). CICS/VS macros
DFHSC (GETMAIN, FREEMAIN)

Exit: Returns

APL125K
Module: APL125K
Called By: Entry point KMACRO

Description: The CICS/VS DL/I access
auxiliary processor. Provides a DL/I
interface for the CICS/VS user.

Calls: Macros APLKOFR, APLKRET,
APLKSPC, APLKREF, APLKEXIT, APLKWAIT,
APLKACHK, CALLDLI. CICS/VS macro
DFHSC (GETMAIN, FREEMAIN)

APL126
Module: APL126

Called Bv: Initialization (CMS and
750), shared storage manager
(CICS/7VS)

Description: This is the main entry
point to the GDDM auxiliary processor
which processes requests from a user
(CMS, TS0, or CICS/VS) to be passed
on to GDDX, and allows the user to 1)
control the screen format of his
terminal, 2) write to and read from
thae formatted screen, 3) erase screen
fields, 4) copy screen images to a
printer, 5) condition screen fields
for light per usage, and 6) read
program function and attention keys.
It also allows a user to specify a
request (to AP126) that is not a GDDM
call, but controls the AP options.

Calls: GDDM interface services
(APLXGDDM), common AP SERVICES
(APLXCAPS), conversion services
(APLXVERS), stack management
services, storage managament
services, abend services and dump
servicas. Macros APLXAEAT, APLG,
APLXMAIN, APLXASO, APLXBXIT, APLXCAPS

Exit: In CMS/TS0, stays active until
the shared variable processor

terminates. In CICS/VS, terminates
when user signs off.

APL126T

Modula: APL126T

Called By: GDDMRCTL

Description: This is the main entry
nama of the GDDM auxiliary processor
table module which expands the mocro
APL126TB, once for each AP ‘126 GDDM
request, to define entries in & GDDM
request table set.

Calls: Macro APL1267TB

APL132K

Module: APL132K

Callad By: Entry point KMACRO
Description: -The CICS5/VS transient

data auxiliary processor. Accesses
CICS/VS transient data including both

intrapartition queues and sequential
devices.

Calls: Entry point APLKEMGR. Macros
APLKOFR, APLKRET, APLKREF, APLKSPEC,
APLKWAIT, APLKEXIT. CICS/VS macros
DFHSC (GETMAIN, FREEMAIN)

Exit: Returns

APL139K
Module: APL13%K
Called By: Entry point KMACRO

Description: The CICS/VS alternate
input processor. Passes user-supplied
data from the shared storage manager
to the session manager.

Calls: Macros APLKOFPR, APLKRET,
APLKREF, APLKWAIT

Exit: Returns

APL210
Module: APLYUZ210

Called By: Shared variable processor
APLYUSVI

Descrintion: This is the BDAM
auxiliary processor for TS0 which
reads and writes BDAM files.

Calls: APLYUSCN. Macros APLCCVI,
APLCCVO, APLIREGS, APLWSM, APLZCODE,
APLPCY, APLSCVYV, APLSHSVP, ASVPOFR,
ASVPQRY, ASVPREF, ASVPRET, 4SVPSOF,
ASVPSON, ASVPSPC, ASVPWNAIT, ABEND,
CLOSE, DCB, DCBD, FREEPOOL, GET,
GETMAIN, APLEDIT, OPEN, PUT, FREEMAIN

Exit: Signs off to the TS0 SSM

APOPEN

Module: APLPAPCD

Called By: APLPAPPR

Description: Executes service request
to internal auxiliary processors
AP121 and AP122 to open a VSPC file
for input, ouitput, or update.

Calls: APDFN, ERMSGRTN

Exit: Returns; ERSAVEAR (Error),
ERENDEX (Error)

{icensed Material—Property of IBM

Section 3. Program Organization 145

APPASSUD
Module: APLPAPCD

Called By: APLPAPPR

Description: Executes service request
to internal auxiliary processors
AP121 and AP122 to change the
password of a VSPC file.

Calls: APDFN, ERMSGRTN

Exit: Returns; ERSAVEAR (Error),
ERENDEX (Error)

APSHARE
Module: APLPAPCD

Called By: APLPAPPR

Description: Executes service request
to internal auxiliary processors
APl21 and AP122 to change the share
status of a VSPC file.

Calls: APDFN, ERMSGRTN

Exit: Returns; ERSAVEAR (Error),
ERENDEX (Error)

APVIO
Module: APLPAPCD
Called By: APLPAPPR

Description: Executes all service
requests to internal auxiliary
processor AP123.

Calls: APDFN, ERMSGRTN

Exit: Returns; ERSAVEAR (Error),
ERENDEX (Error)

ASVPSERV

Module: APLSCSVI
Called By: ASVPSRVC

Dascription: Determines type of
shared variable request and calls
routine to handle it. On return,
schedules the next auxiliary
processor that is ready to run; if
none, returns to the interpreter at
the instruction following its last
shared variable service regquest.

Calls: APLSHACC, APLSHCPY, APLSHOFR,
APLSHQUE, APLSHREF, APLSHRET,
APLSHSOF, ‘APLSHSON, APLSHACC,
Auxiliary Processors

Licensed Material—Property of IBM
146 VS APL Program Logic

Exit: See description

ASVPSERV
Module: APLYUSVI

Called By: Various executor routines
and auxiliary processors

Description: Determines the type of
request and invokes the proper shared
variable processor routine (T7S0).

Calls: APLSHACC, APLSHCPY, APLSHOFR,
APLSHQUE, APLSHREF, APLSHRET,
APLSHSOF, APLSHSON, APLSHSPC.

APLSHPAR.
Exit: Returns

Macro

ASVPSRVC

Module: APLYURVC (T7S0), ASVPSRVC
(CMS)

Called By: User-written auxiliary
processors or dynamically-loaded
auxiliary processors

Description: Entry point to shared
storage manager for VS APL.

Calls: (for TSO0) APLYUSVI;
APLDEFN, APLPTRGT. (for CMS)
APLSCSVI; Macros NUCON, APLPATCH.

Exit: ASVPSERV

Macros

BEXIT

Module: APLKASTB

Called By: Various executor routines.
Description: This is the main entry
point to the VS APL CICS/VS abend
services module which provides a
system—-independent interface for
abend services to the CICS5/VS
executor and auxiliary processors
(CICS/VS).

Calls: APLKADSP. Macro APLKEDIT

Exit: Returns

colIeM
Module: APLCOIBM

Called By: CMS

Description: Copyright notice and
entry point from CMS to VS APL.

»)

<

Exit: APL

CVvCULL

Module: APLCCULL, APLOCULL

Called By: CVINIT

Description: Calls uworkspaces for
selective conversion; gives CMS
fileid to workspace for selected
workspace; resolves filename
conflicts. Rejects invalidly named
workspaces which cannot be resolved.
Calls: CVRPRT

Exit: Returns

CVDATE

Module: APLCMISC, APLOMISC (only for
NS/VS), APLQMISC

Colled By: CVINIT
Description: Gets date from system.

Exit: Returns

CVDIRE
Module: APLCMISC, APLODIRE

Called By: CVINIT

Description: Builds shortenad form of
directory; dummy routine under CMS.

Calls: CVSLST
Exit: Returns

CVDISP

Module: APLCDISP, APLODISP, APLQDISP
Called By: CVFUNC

Description: Converts APL/360
codestring to VS APL copy
transmission codes; for content
conversion, converts or flags APL/360
idioms to VS APL equivalents.

Calls: CVIBCD

Exit: Returns

CVFUNC
Module: APLCFUNC, APLOFUNC, APLQFUNC

Called By: CVWKSP

Description: Converts format for all
functions; converts content or
replaces function.

Calls: CVDISP, CVRPRT, CVWSEN,
CVSHIP, ITLINEO, ITOKENIZ, ITCLOSET

Exit: Returns

CVGDIR
Modula: APLODIRE
Called By: CVSAVE

Description: Looks for PERLIB in
shortened form of directory.

Exit: Returns

CVGRUP

Module: APLCGRUP, APLOGRUP, APLQGRUP
Called By: CVWKSP

Description: Enters an XM6 group name

and its members' names into VY5 APL
workspace.
Calls: ITSTSRCH, IESFIND

Exit: Returns

CVIBNM
Module: APLCIBNM, APLOIBNM, APLQIBKM
Called By: CVWKSP

Description: Generates uniaue
three-character alphabetic
underscored name for IBEAM simulator
function.

Exit: Returns

CVINIT
Modulae: APLCINIT, APLOINIT, APLQINIT

Called By: Host operating system
Description: Sole entry and exit

point for conversion program. Sets up
and initializes conversion parameters
and flags; establishes buffers and
storage spaces for APL/360 workspace
and directory (input) and VS APL
workspace (output); reads workspace
and directory from tape.

Licensed Material—Property of 1BM

Section 3. Program Organization 147

Calls: CVPARM, CVDATE, CVSPIE,
CVCULL, CVWKSP, CVDIRE, CVRPRT,
CVTBCD, CVIOER

Exit: Returns

CVIOER
Module: APLCMISC, APLOMISC
Called By: CVINIT

Description: Prints permanent
input/output error messages.

Calls: CVPRTR

Exit: Returns

CVLEAR
Module: APLCLEAR, APLOLEAR, APLQLEAR
Called By: CVWKSP

Description: Initializes VS APL
workspace.

Calls: CVTBCD, CVRPRT

Exit: Returns

CVPARM
Module: APLCPARM, APLOPARM, APLQPARM
Called By: CVINIT

Description: Sets conversion flags
according to parameters; for
selective conversion, builds
selection list in SELIST.

Calls: CVPRTR

Exit: Returns

CVPRTR
Module: APLCMISC, APLOMISC, APLQMISC

Called By: CVRPRT, CVIOER, CVSPIE,
CVPARM .

Description: Prints conversion
information on SYSPRINT (SYSLST).

Exit: Returns

CVRPRT
Module: APLCRPRT, APLORPRT, APLQRPRT

Licensed Material—Property of IBM
148 VS APL Program Logic

Called By: CVVARB, CVFUNC, CVWKSP,
CVLEAR, CVINIT, CVSAVE, CVCULL

Description: Prints a detail line of
conversion report; takes care of
pagination.

Calls: CVPRTR

Exit: Returns

CVSAVE
Module: APLCSAVE, APLOSAVE, APLQSAVE
Called By: CVUKSP

Description: Saves converted VS APL
workspace as a CMS file whose name is
provided by APLCCULL routine. Saves
as control intervals on APLOUT for
VSPC.

Calls: CVRPRT, CVGDIR

Exit: Returns

CVSHIP
Module: APLCSHIP, APLOSHIP
Called By: CVWKSP, CVFUNC

Description: Tokenizes a multiline VS
APL function into VS APL workspace.

Calls: ITLINEO, ITOKENIZ, ITCLOSET

Exit: Returns

CVSLST
Module: APLOSLST

Called By: CVDIRE
Description: Looks for given library

number and workspace name in
selective conversion list.

Exit: Returns

CVSPIE
Module: APLCSPIE, APLOSPIE, APLQSPIE

Called By: CVINIT, Host operating
system

Description: Sets SPIE exit when
called by CVINIT; when exit taken,
prints error message, time stamp,
PSW, and registers.

Calls: CVTBCD, CVPRTR

Exit: Returns; CVINIT (Recoverable
Error); ABEND (Error)

CVTBCD
Module: APLCTBCD, APLOTBCD

Called By: CVLEAR, CVDISP, CVINIT,
CVLEAR

Description: Determines internal type
of data element; converts to Z-code
representation to given format and
data type.

Exit: Returns

CVTIDY
Module: APLCMISC, APLOTIDY, APLQMISC
Called By: CVWKSP

Description: Collects discarded
material from VS APL workspace.

Exit: Returns

CVVARB

Module: APLCVARB, APLOVARB, APLQVARB
Called By: CVWKSP

Description: Enters APL/360 variables
in VS APL workspace; for character,
translates to VS APL Z-codes; for
Boolean, reverses bits in every byte.
Calls: CVYRPRT, IESFIND, ITSTSRCH

Exit: Returns

CVUKSP
Module: APLCWKSP, APLOWKSP, APLQWKSP

Called By: CVINIT

Description: Finds global objects in
source workspace; calls appropriate
routine to convert objects for VS APL
workspace.

Calls: CVIBNM, CVLEAR, CVSHIP,
CVRPRT, CVSAVE, CVGRUP, CVVARB,
CVFUNC, CVTIDY

Exit: Returns

CVUSFN

Module: APLCWSFN, APLOWSFN

Called By: CVFUNC

Description: Replaces APL/360 WSFN
with VS APL equivalent in VS APL
Z-codes (copy transmission format).

Exit: Returns

DMSSCND
Module: APLYUSCN

Called By: Various TS0 executor
modules

Description: This is the entry point

of the old parameter list format. It

transforms an input command line into
a series of 8-byte parameters.

Exit: Returns

DHMSSCNN
Module: APLYUSCN

Called By: Various TS0 executor
modules

Description: This is the entry point
of the new parameter list format. It
transforms an input command line from
a string of arguments into a series
of 8-byte parameters.

Exit: Returns

ERENDEX
Module: APLPCOEX

Called By: VSPC service request and
internal auxiliary processor routines

Description: Writes error messages to
terminal and VSPC online log; ends

Calls: ERTIMDAT
Exit: Returns to VSPC (Error)

ERMSGRTN
Module: APLPSERR

Called By: All VSPC service request
handling routines

Licensed Material—Property of IBM

Section 3. Program Organization 149

Description: Writes error message to
VSPC online log.

Exit: Returns

ERSAVEAR
Module: APLPCOEX

Called By: All VSPC service request
routines

Description: Writes error messages to
terminal and VSPC online log and ends
execution, when save area block is
full.

Calls: ERTIMDAT

Exit: Returns to VSPC (Error)

ERTIMDAT
Module: APLPSERR

Called By: PCSYSER, APLPCENT,
ERSAVEAR, ERENDEX

escription: Places time and date in
VSPC executor work area.

Exit: Returns

FREESTOR
Module: APLPAPGD

Called By: GDDMCRET, GDDMRCTL,
GDDMSCTL, GDDMSDAT

Description: Frees storage blocks
allocated for buffers by the VSPC
version of AP 126.

Calls: Macros APLPENTR, ASUSRQ,
APLPAPER, and APLPEXIT

Exit: Returns; ERSAVEAR (Error)

FSHMBUZZ
Module: APLPAPFS
Called By: APLPAPPR

Description: For FSM internal
auxiliary processor (VSPC), notes
user request to sound the audible
alarm at the display terminal at the
next display screen read or write
request.

Exit: Returns

Licensed Material—Property of IBM
150 VS APL Program Logic

FSMFORMT
Module: APLPAPFS
Called By: APLPAPPR

Description: Validity checks user's
FSM field definitions and builds
FSMFLD entries in FSM auxiliary
processor work area for FSM internal
auxiliary processor (VSPC).

Calls: FSMSUB1l, ERMSGRTN, FSMSUB3

Exit: Returns; ERSAVEAR (Error),
ERENDEX (Error)

FSHGET

Module: APLPAPFS

Called By: APLPAPPR

Dascription: For FSM internal
auxiliary processor (VYSPC), processes
user request for data read from
display screen.

Calls: ERMSGRTN, FSMSUB1, FSMSUB3

Exit: Returns; ERSAVEAR (Error),
ERENDEX (Error)

FSMHCOPY

Module: APLPAPFS

Called By: APLPAPPR
Qéscrigtiog= For FSM internal

auxiliary processor (VSPC), processes
user request to make a hard copy of
the current display screen.

Callg: FSMSUB!, ERMSGRTN

Exit: Returns; ERSAVEAR (Error),
ERENDEX (Error)

FSMMINT

Module: APLPAPFS

Called By: APLPAPPR

Description: For FSM internal
auxiliary processor (VSPC), notes
user request to modify display
intensity of defined display screen
fields.

Calls: FSMSUB3

Exit: Returns

<

C

FSMMTYPE
Module: APLPAPFS
Called By: APLPAPPR

Description: For FSM internal

auxiliary processor (VSPC), notes
user request to modify type of
defined display screen fields.
Calls: FSMSUB3

Exits: Returns

FSMREAD

Module: APLPAPFS

Called By: APLPAPPR
Description: For FSM intéfnal

auxiliary processor (VSPC), formats
display screen if necessary, reads
from display screen, and returns
description of user's input.

Calls: FSMSUB1, FSMSUB2, ERMSGRTN

Exit: Returns; ERSAVEAR (Error),
ERENDEX (Error)

FSMRFORM
Module: APLPAPFS

Called Bv: APLPAPPR

Description: For FSM internal
auxiliary processor (VSPC), processes
user request for the format of the
currently defined FSM fields.

Exit: Returns

FSMSETC

Module: APLPAPFS

Called Bv: APLPAPPR
Description: For FSM internal

auxiliary processor (VSPC), notes
user request to set cursor at a given
location on subsequent display screen
write requests.

Calls: FSMSUB3

Exit: Returns

FSMSUB1
Module: APLPAPFS

Called By: FSMFORMT, FSMREAD, FSMGET,
FSMHCOPY

Description: Allocataes additional
storage from user's VSPC workspace
quota for FSM internal auxiliary
processor (VSPC). .

Calls: ERMSGRTN

Exit: Returns; ERSAVEAR (Error),
ERENDEX (Error)

FSMSUBR2

Module: APLPAPFS

Called By: FSMWRITE, FSMREAD
Description: Builds VSPC display
screen service request to define
display screen fields and to write
data to display screen.

Calls: FSMSUB1, ERMSGRTN

Exit: Returns; ERSAVEAR (Error),
ERENDEX (Error)

FSMSUB3

Module: APLPAPFS

Called By: FSMFORMT, FSMWRITE,
FSMGET, FSMMTYPE, FSMMINT, FSMSETC,
APLPAPPR, GDDMRCTL

Description: Converts floating point
to integer, and flags negative
values.

Exit: Returns

FSMURITE
Module: APLPAPFS

Called By: APLPAPPR

Description: For FSM internal
auxiliary processor (VSPC), formats
display screen if necessary and
writes to display screen.

Calls: FSMSUB2, ERMSGRTN, FSMSUB3

Exit: Returns; ERSAVEAR (Error),
ERENDEX (Error)

GDDMCRET
Module: APLPAPGB
Called By: APLPAPRT

Licensed Material—Property of IBM

Section 3. Program Organization 151

Description: VSPC executor routina
" used to perform cleanup when an AP
126 CTL variable is retracted.
Calls: FREESTOR

Exit: Returns; ERSAVEAR (Error)

GDDHRCTL

Module: APLPAPGC

Called By: APLPAPPR

Description: Main entry point to the
GDDM auxiliary proccessor for VSPC.
User requests are interpreted,
processed, and passed to GDDM., For
more information, see description of
entry point APL126, which has similar
logic.

Calls: APLP126T. FREESTOR, FSMSUB3,
GDDXINIT, GETSTOR Macro APLPAPSR

Exit: Returns; ERSAVEAR (Error)

GDDNSCTL

Module: APLPAPGB

Called By: APLPAPPR

Description: Entry point used to
specify the control variables for the
previous AP 126 request by moving it
to the user's workspace.

Calls: FREESTOR

Exit: Returns; ERSAVEAR (Error)

GDDMSDAT

Module: APLPAPGB

Called By: APLPAPPR

Description: Entry point for VSPC AP
126 to specify DAT variable by moving
character data to the user's
workspace.

Calls: FREESTOR

Exit: Returns; ERSAVEAR (Error)

GDDMSOFF
Module: APLPAPGB
Called By: APLPAPSF, APLPAPRT

Licensed Material—Proverty of IBM
152 VS APL Program Logic

Description: Terminates GDDM after
last path is retracted or during SSM
sign-off.

Calls: ERMSGRTN. Macro ASUSRQ

Exit: Returns; ERSAVEAR (Error),
ERENDEX (Error)

G