Program Product

Order No. SC34-2036-1
File No. $370/4300-39

System Productivity Facility
Dialog Management Services

Program Number 5668-009

Second Edition (March, 1981)

This edition applies to the System Productivity Facility (SPF) Program Product (5668-009), for use
with the following:

0S/VS2 MVS Release 3.8

VM/SP '
and to all subsequent releases until otherwise indicated by Technical Newsletters. Changesare con-
tinually made to the information herein; before using this publication in connection with the opera-
tion of IBM systems, consult the latest IBM System/370 and 4300 Processors Bibliography,
GC20-0001, for the editions that are applicable and current.

It is possible that this material may contain reference to, or information about, IBM products,
programming, or services in your country. Such references or information must not be construed
to mean that IBM intends to announce such IBM products, programming, or services in your country.

Publications are not stocked at the address given below. Requests for copies of IBM publications
should be made to your IBM representative or to the IBM branch office serving your locality.

A form for readers’ comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, §ystems Publications, Department Z59,
Building 931, P.O. Box 390, Poughkeepsie, New York, U.S.A. 12602. IBM may use or distribute
any of the information you supply in any way. it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1981

PREFACE

The System Productivity Facility (SPF) is a program product that
assists in program development. It is designed to take advantage
of the characteristics of IBM 3270 display terminals, and to
increase programmer productivity in an interactive environment.

The System Productivity Facility replaces the previous Structured
Programming Facility program products (SPF/TS0C and SPF/CMS). It
includes significant new functions that support the development,
testing, and execution of interactive applications.

New services are provided to display predefined screen images and
messages, build and maintain tables of user information, generate
output files for job submission or other processing, define and
control symbolic variables, interface to edit and browse, and log
hardcopy output.

This manual provides a detailed description of the new SPF serv-—
ices and related information required to develop an interactive
application that runs under SPF. It applies to both the MVS5/TSO
and VM/CMS environments.

The manual is divided into the following chapters:

1. Introduction. - A general overview of SPF,' including its
structure and function.

2. Concepts and Facilities - A description of the services and
control facilities that support the operation of interactive
applications.

3. SPF Invocation - A description of the library setup require-
ments, and the ISPF command used to invoke the dialog manager.

4. Description of Services - A detailed description of each dia-
}og service, including syntax conventions for command or call
invocation.

5. Panel, Message, and Skeleton Formats - A detailed description
of the syntax for defining panels, messages, and file tailor-
ing skeletons.

6. Diaiog Testing Procedures - A description of the test aids
available for testing dialogs.

The manual also includes two appendixes:

A. Sample Problem
B. Summary of SPF Dialog Services

TERMINOLOGY

In this manual, the following terms are used to bridge the differ-
ences in terminology between the MVS and VM environments:

. Library - A partitioned data set in the MVS environment, or a
MACLIB in the VM environment.

. File - A sequential data set in the MVS environment, or a
sequential CMS file in the VM environment.

. Command Procedure - A CLIST in the MVS environment, or an EXEC
(coded in EXEC2 language) in the VM environment.

Preface iii

NOTATION CONVENTIONS

RELATED

The following notation conventions are used for describing the
ISPF command and each SPF service: -

. Command verbs, service names, and keywords that must be coded
exactly as shown are represented with uppercase characters.

. iubstitutable operands are represented with lowercase charac-
ers.

. Optional parameters are enclosed in brackets, "["™ and "]v.

. Within brackets, a choice of parameters is indicated with
slashes and the default is underscored.

. Multiple choice parameters, of which one is required, are
enclosed in braces, "{" and "}", and aligned vertically.

Example:
ISPEXEC VGET name-list [SHARED/PROFILE]

The command verb (ISPEXEC) and the service name (VGET) must be
coded exactly as shown. A list of variable names. must be substi-
tuted for "name-list"™. The kevword parameter is optional. Either
SHARED or PROFILE may be coded. If the parameter is omitted,
SHARED is the default.

DOCUMENTS

This document, SPF Dialog Management Services, applies to both
the MVS/TS0 and VM/CMS environments. For the other SPF documenta-
tion, separate manuals are provided for the two environments, as
follouws: :

SPF-MVS SPF-VM DESCRIPTION

GC34-2039 GC34-2046 SPF _General Information
Provides an overview and functional
description of SPF.

5$C34-2038 5C34-2047 SPF Program Reference
Provides detailed information on how to
use the SPF program development facility.

5C34-2037 S5C34-2048 SPF Installation and Customization
Provides detailed information on how to
install and custom tailor SPF.

jiv SPF Dialog Management Services

CONTENTS

Summary of Amendments e e e e e e e e

Chapter 1. Introduction e e e e e e e
Chapter 2. Concepts and Facilities
Elements of a Dialog e e e e e
Dialog Organization e e e e e e W
Flow of Control e e e e e e e e
SELECT Service . e e e e
Dialog Services OverVIew “ e
Display Services v e e e e e
Table Services . . .

File Tailoring Serv:ces
Variable Services .

Other Services e e e v e e e
Control Facilities e e e e e e
Online Tutorial e e e e e e

Screen Management .
Program Access and Function Keys

Chapter 3. SPF Invocation . .« e e s
Library Setup - MVS Env1ronment .
Requ1red Libraries . .

Table and File Tallorlng L1brar1e5
CLIST and Program Libraries

Library Setup = VM Environment .
Required Libraries . .
Table and File Tawlorlng L1brar1e5
EXEC and Program L1brar1e5 .
Restrictions on Use of MODULE Frles

e o & ¢ 4 e o

© o s 6 ¢ v e e 4 e 0 0 s e 0

L)
.

Restrictions on Use of GLOBAL Commands

ISPF Command « ¢« ¢« « « .

Chapter 4. Description of Services

Invocation of Services e e e e e e
Command Invocation e e e . PO
Call Invocation e

« o

Return Codes from Serv1ces
Display Services

DISPLAY - Display Panels and Messages

TBDISPL - Display Table Informatlon

Table Services - General . e . .
TBCREATE ~ Create a New Table . .
TBOPEN - Open a Table . .
TBQUERY - Obtain Table Informatlon
TBSAVE - Save Table . . .

TBCLOSE - Close and Save Table .
TBEND - Close Table without Sav1ng
TBERASE - Erase a Table .. . e
Table Services - Row Operatxons .
TBADD - Add Row to Table . . .
TBDELETE - Delete Row from Table .
TBGET - Retrieve Row from Table
TBPUT - Update Row in Table . e e .
TBMOD - Modify Row in Table . e e
TBEXIST - Determine if Row Exists 1n
TBSARG - Define a Search Argument
TBSCAN - Search Table . . . e
TBTOP - Set Row Pointer to Top .

TBBOTTOM - Set Row Pointer to Bottom '

TBSKIP - Move the Row Pointer . .

TBVCLEAR - Clear Variables .. .
File Tailoring Services . . .

FTOPEN - Begin File Tallorlng .

FTINCL - Include Skeleton .

FTCLOSE - End File Tailoring . .

FTERASE - Erase File Tailoring Outpu
Variable Services

« e e @

VGET - Retrieve Var1ab1e5 from Pool or Proflle

{

.
e &« o e e 0

LI I R I N R)

« o e

« s .

VPUT - Update Variables in Pool or Profile

L T I T T R S T

-
-
-
-
.

L R R A I B T Y

O e e o e e 4 s & o o

« o v e

¢« 0+ e o & 0

e e 6 4 e 4 e e e e 0

e o o & 4 4 e ¢ o s e 0

.« .

-

e o & 4 0 s e o o

o

¢ o e e

S e e o e e s e e 4 o e

e o 4 o e 0

e e 6 4 s & s e e 4t 4 s s+ s o

.

e ¢ 6 0 ¢ 0 0 s e o ¢ o

o ¢ o ¢ & o
® 4 4 e ¢ e 0 s s s s e 0 e o

® & e & & s 4 e & & 0 e o e

.
PIY

¢« e s e s s .

e« o ¢ & 4 o & e s e &
@ ¢ ¢ 4 e e s s e e 0

« e o e ¢ e e e & & o+ s
.

o e e e o « .
.
.

e ¢ & 4 & e v e

e o o s 0

.
e & & 0 4 e & * 4+ s 4 2 e e o & o o

. .
e ¢ ¢ @ e & 4 0 e e & ¢ s 9 ¢ s o

C e & 4 e & e 6 & 0 & e o+ s e

.
.

.
.

¢ e o e 0
.
¢ s e o & & & 4 4 ¢ o t s e e o s e o o

@ e s e s @ 4 4 et s 4 s e 0 e @

Contents

VDEFINE - Define Function Variables P A
VDELETE - Remove Definition of Function Variables ... 81
VCOPY - Create Copy of Variable v e . . .

VREPLACE - Replace Variable e e e e
VRESET - Reset Function Variables ..

. .

-

« o oe
.
s e e
.
[e]
o

.
. .
e e
. .

Other Services . .

o e s e e 0

« e & o o
.

SELECT - Select Panel or Funchon 85
CONTROL - Set Processing Modes e e e e e e e e e e . 88
BROWSE - Display Data Set or -File e e o s @ P 5 |
EDIT - Edit Data Set or File e e e e s e e e e e e e 93
LOG - Write Message to Log File e e e e e e e e e . 95
Chapter 5. Panel, Message, and Skeleton Formats . 97
Panel Definitions - General Syntax . . e e e e e e s 97
Panael Body N . e e v e e e e« . . 98
Initialization and Processmg Sectlons e e o s e e 100
Attribute Section . . e e e 8 e e e s 4 s e e i e e e 111
Processing Consxder‘atrons s s e e e e e e e e b e e s 114
Syntax Rules and Restrictions e e e e e e e e 114
Panel Definitions - Formatting Gu1delmes e e e e e e e 117
Panel Definitions - Special Requirements e e e e e e s 119
Selection Menus C e e e e e e e e e e e e e e s . 119
Help/Tutorial Panels e e e e e e e e e e e e e e 124
Table Display Panels . e . - e . e e e e e e s 127
Message Definitions e e e e e v e e e e . e e e . . 130
Skeleton Definitions e e e e e e e e e e e e e e e e s 133
Data Records e e e e e e e 6 e e e e e e e e e e e 133
Control Statements e e e e e e e e e e e e e e e e 134
Sample Skeleton File e e e e e e e e e e e . e e e . 137
Chapter 6. Dialog Testing Procedures e e e e e e e e e 139
Set Up Procedures . e e e e e e e e e e e s 139
Operating in Test and Trace Modes e e s s e s o w s s & = 140
Support (Option 7) e e e e e e e e e e e e e . 161
Test Panel (Option 7 1) e e e e e e e e e e e e e e e e 142
Test Function (Option 7.2) e e e e e v e e e e e e e e 143
Test Variables (Option 7.3) e . . . e e e e e . 144
Convert Menus (Option 7.4) . e e . e . e e e e 145
Convert Messages (Option 7.5) e e . . . e e e e e e 147
Test Menu (QOption 7.6) e e e e e . e e e e e e e e e s 147

Appendix A. Sample Problem e e e e e e e e e e e e e e 149

Appendix B. Summary of SPF Dialog Services e e e e s e e s 159

Command Invocation Syntax t e e e e e e e e e e e e e e s 159
Call Invocation Syntax e e e s e e e e e s e e e e e e e 161
Index e X

vi SPF Dialog Management Services

LIST OF TLLUSTRATIONS

Figure 1. SPF Organization . e e e e e e e e e e e e 3
Figure 2. Typicdl Dialog Orgamzatlon e e e . .« e s e o e 6
Figure 3. Other Dialog Organizations e e e e e e e e e 7
Figure 4. Flow of Control . e e e e e e e s e e e e e 9
Figure 5. Sample Panel Deflmtlon . e e e e . e e e e . . 13
Figure 6. Sample Panel - When Displayed . e e e e e e oo o« 13
Figure 7. Sample Member in Message Library . . e e e . . . 16
Figure 8. Sample Table . . 51
Figure 9. Sample Skeleton Flle P A
Figure 10. Sharing Variables via VPUT/VGET e e e e e e e .. 22
Figure 1l1. Service Access to Variables e e e e e e e e e e . 23
Figure 12. Sample Panel Definition . . e e e e e e e e e e . 99
Figure 13. Sample Panel - When Dlsplayed e e e e e e e e s 99
Figure 14. Sample Panel with TRANS and TRUNC e e e e e e . 103
Figure 15. Sample Panel with IF Statement e e e e e e e e 105
Figure 16. Sample Panel with Verification . e e s e e e 107
Figure 17. Sample Panel with Control Var‘1ables e e e e e e 109
Figure 18. SPF Primary Option Menu . e e e e e e e 121
Figure 19. Master Application Menu e e et e e e e e e e e 122
Figure 20. Lower Level Selection Menu e e e e e e e e e e s 123
Figure 21. Sample Tutorial Hierarchy e e e e e . e e e 125
Figure 22. Sample Tutorial Panel (B) e e e e e e . e e e . 126
Figure 23. Sample Tutorial Panel (F2) . . e e e e e e e s 126
Figure 24. Table Display Panel Definition e e e e e e e e 129
Figure 25. Current Contents of Table C e e e e s e e e e e . 129
Figure 26. Table as Di splayed . e e e e e e e e 129
Figure 27. Sample Member in Message lerary e e e e e e e 132
Figure 28. Sample Skeleton File e e e e e e e e . . o 137
Figurae 29. Support Selection Menu . e e e e e e 141
Figure 30. Entry Panel for Testing a Panel Deﬁmtion . . 142
Figure 31. Entry Panel for Testing a Function e e e e e e 143
Figure 32. Entry Panel for Testing a Variable 144
Figure 33. Entry Panels for Converting Menu Deflmtrons . 146
Figure 34. Panel for Testing 0ld Format Menus 148
Figure 35. Sample Problem - Overall Dialog Orgamzatlon . 149
Figure 36. Sample Problem - Primary Option Menu (EMPL) . . 149
Figure 37. Sample Problem - First Data Entry Panel (EMPLA) 150
Figure 38. Sample Problem — Second Data Entry Panel (EMPLB) 151
Figure 39. Sample Problem - Messages (Membar EMPX) . v e 152
Figure 40. Sample Problem - CLIST (EMPLCMD) 154
Figure 41. Sample Problem - PL/I Main Program (EMPLPGM) . 155
Figure 42, Sample Problem - PL/I Included Segment (EMPLDCL) 156
Figure 43, Sample Problem - PL/I Included Segment (EMPLDEL) 157

List of Illustrations vii

viii SPF Dialog Management Services

SUMMARY OF AMENDMENTS

This revision to SPF Dialog Management Services includes:

. Additional information pertaining to operation of SPF in the
VM/7CMS environment.

. Corrections to errors in the previous edition.
. Clarification of information in the previous edition.

All technical changes are marked with a vertical bar (|) on the
left-hand side of the page.

Summary of Amendments 1

2 SPF Dialog Management Services

H E . INTRODUCTION

The System Productivity Facility (SPF) is a program product that
replaces both of the previous Structured Programming Facility
‘products (SPF/TS0 and SPF/CMS). SPF supports two environments:

. MVS Time Sharing Option (SPF-MVS)
. VM/SP Conversational Monitor System (SPF-VM)

" The new name, System Productivity Facility, reflects the addition
of significant new functions beyond the support for structured
- programming. The new functions support the development, testing,
and execution of interactive applications that run under control
of SPF and use new SPF services to:

Display predefined screen images and messages

Build and maintain tables of user information

Generate output files for job submission or other processing
Define and control symbolic variables

Interface to edit and browse, and log hardcopy output
Control operational modes.

SPF consists of two major components: the dialog manager and the
program development facility (see Figure 1). Conceptually, the
dialog manager is an extension to the operating system. It pro-
vides control and services for running interactive applications.
One such application is the program development facility, which
includes the previous SPF functions.

DIALOG MANAGER

CONTROL FACILITIES
Menu/Tutorial Processing
Screen Management
Program Key Interpretation

SERVICES
Display
Table Creation/Maintenance
File Tailoring
Variable Definition/Control
Other

PROGRAM DEVELOPMENT FACTILITY

SPF Parms

Brouwse

Edit

Utilities
Foreground
Background (Batch)
Command

Support

Tutorial

Figure 1. SPF Organization

Chapter 1. Introduction 3

4

The dialog manager allous totally new applications to be devel-
oped. They may be DP-oriented applications, including extensions
to the SPF program development facility, or applications for
which the end user is not a DP professional, such as an inventory
appllcatxon. . ‘

stplays and message; may be tailored to- thé parttcdlar needs and
terminology of the end user, so that 1nformatxon is presented ina
user-friendly way. ;

An installation may have several applications that run under the
dialog manager. They may be independent, entered via separate
command procedures, or linked via menu options that transfer from
one application to another. A sample "master menu," distributed
with SPF, allows application selection to occur on entry to SPF.
Its use is not required; any selection menu may have options that
link to other applications.

Applications may ba coded in:

. The command language of the host system (CLIST for MVS/TSO, or
EXEC2 for VM/CMS), or

. A programming language, such as PL/I or COROL.

An application may have mixed languages, wuWwith some functions
coded in a command language and other functions coded in one or
more programming languages.

Applications coded in programming languages may be designed for
cross—~systam use, to be run under either MVS or VM.

SPF also provides new testing aids for debugging interactive
applications. These are part of the SPF program development
facility ~— the SUPPORT option (primary option 7).

SPF Dialég Management Services

CHAPTER 2. CONCEPTS AND FACILITIES:

This chapter describes basic concepts of dialog organization and
control, and the capabilities of the SPF dialog services.

NTS OF A DIALOG

A "dialog" is any application designed to be run under the SPF
dialog manager. Each dialog is composed of program and data ele-
ments, which allow an orderly interaction between the computer
-and the end user of the application. The types of elements that
make up a dialog are: :

® Functions. A function is a program that performs processing
requested by the user. It may invoke SPF dialog services to
display panels and messages, build and maintain tables, and
generate output files. A function may be coded in a command
language (CLIST or EXEC2) or a programming language.

. Panels.! A panel is a predefined display image. It may be a
selection menu, a data entry display, or an information-only
display. Most panels prompt the user for input. The user
response may identify which path is to be taken through the
dialog, or it may be interpreted as data.

. Messages. A message is a comment that provides special infor-
mation to the user. It may confirm that a user-requested
action is in progress or completed, or report an error in the
user's input. Messages may be directed to - the user's termi-
nal, to a hardcopy log, or both.

. Tables. A table is a two-dimensional array used to maintain
data. A table may be created as a temporary data repository,
or it may be retained across sessions. A retained table may
also be shared between different applications. The type and
amount of data stored in a table depends upon the nature of
the application.

. File Skeletons. A file skeleton is a generalized representa-
tion of sequential data which may be customized during dialog
execution to produce an output file. The output file may be
used to drive other processes. File skeletons are frequently
used to produce job files for batch execution.

A dialog need not include all types of elements. In particular,
tables and file skeletons may not be needed, depending upon the
type of appllcatxon. ~

Panels, messages, and file skeletons are stored in libraries
prior to execution of the dialog. They are created by editing
directly into the panel, message, or skeleton libraries; no com-
pile or preprocessing step is required.

Tables are generated or updated dynamically during dialog exe-
cution. The organization of each table is specified to SPF by the
functions that use SPF table services.

Previously, all SPF screen images uwere called menus. The terminology
has been changed to more closely reflect general usage. The term menu
is now used to mean a display from which the user may select options.
The term panel is used to mean any predefined display image, of which
one tvype is a menu.

Chapter 2. Concepts and Facilities 5

DIALOG ORGANIZATION:

A dialog may be organized 'in a variety of ways -to suit the
requirenents of the application and the needs of the end user. A
typical dialog organlzatlon is shown in Figure 2.

This example starts with the display of a high level selectIOn
menu, the primary option menu for the application. User options
selected from this menu may result in the invocation of a dialog
function, or the display of a lower level selection menu. Each
lower level menu may also cause functions to receive control, or
still lower level menus to be displayed. The menu hierarchy may
extend as many levels deep as desired. L :

Eventually a d:alog functton will receive control. ' The function
may use any of the dialog services provided by SPF. In partic-
ular, the function may continue the interaction with the end user
by means of the DISPLAY service. Typically, the function will
display data entry panels to prompt the user for information.

When the function completes, the selection menu from which it was
invoked is redisplayed. C .

SELECTION
MENU - .

v V- V-
DIALOG ‘ [seiecrron | ' SELECTION
FUNCTION MENU : MENU
F1 R
v v v v v v v

-~

7.

<

« DISPLAY :
DIALOG |—————>| DATA ENTRY
FUNCTION PANELS

Figure 2. Typical DialoQ‘Organization

6 SPF Dialog Management Services

Figure 3 shows a different type of dialog organization. In this
example, a dialog function receives control first, prior to the
display of a menu. It may perform application-dependent initial-
ization, and display data entry panels to prompt the user for bas-
ic information. It may then start the selection process by using
the SELECT service to display the primary option menu for the
application.

This example also shows one function invoking another function,
via SELECT, without displaying a menu. This provides a convenient
way to pass control from a program—-coded function to a
command-coded function, or vice versa. The invoked function then
star?s a lower level selection process, again by using the SELECT
sarvice.

DISPLAY
DIALOG e > DATA ENTRY
FUNCTION PANELS

SELECT

v

SELECTION
MENU

1Y)) V- V-
DIALOG SELECTION SELECTION
FUNCTION MENU MENU

:

€ ——and

N

-

7.

<

SELECT ‘

DIALOG > DIALOG

FUNCTION

FUNCTION

SELECT
el 4
SELECTION
MENU

Figure 3. Other Dialog Organizations

Dialog Organization 7

FLOW OF CONTROL

The flow of control is shown in Figdre 4, A dialog is started by
maans of the ISPF command. (An SPF command may be established as
an alias of ISPF.) The command may be entered:

. By a user at the terminal,
. From a command procedure (CLIST or EXEC2), or
. During LOGON (from a TS0 LOGON procedure or CMS PROFILE EXEC).

When the ISPF command'is used to invoke the SPF program develop-
ment facility, no command parameters are required.

When the ISPF command is used to invoke any other dialog, command
paramaeters are used to specify the first selection menu to be dis-
plaved or the first dialog function to receive control (prior to
the display of a menu). In this case, the ISPF command is typi-
cally entered from a command procedure or during LOGON.

Example: The user might invoke a new application by entering the
ABC command. ABC would be coded as a command procedure that allo-
cates the appropriate libraries for the application, and then
issues an ISPF command with a parameter that specifies the first
selection menu or dialog function. The ABC command serves as a
"front end™ to start the application. It may not use SPF dialog
services, since it is not running under SPF.

The ISPF command invokes the SPF controller, which initializes
the environment. The controller then calls the SELECT service to
display the first menu or invoke the first dialog function, pass-
ing it the parameters specified on the ISPF command.

SELECT SERVICE

8

SELECT is both a control facility and a dialog service. It con-
trols the sequence of selection menus, based on user inputs, and
invokes dialog functions. From a dialog function, SELECT may be
used as a service to start the display of a menu hierarchy or
invoke other functions without displaving a menu.

Selection menus contain sufficient information to determine the
next action to be taken for any option entered by the user. This
infogmation is interpreted by the SELECT service. The next action
may be:

. Display a lower level selection menu, or
. Invoke a dialog function.

When the SELECT service is used to display a menu hierarchy, it
will display the first menu (via the DISPLAY service) and continue
to display successively lower levels of menus, until a dialog
function is specified as the next action. The SELECT service will
then invoke the function. When the function completes execution,
the §ELEETdservice will redisplay the menu from which the function
was invoked.

When the SELECT service is used to invoke a function without dis-
playing a menu, it simply passes control to the lower level func-
tion. When that function completes execution, SELECT returns to
the function that called it, passing along the return code from
the lower level function.

Parameters may be passed to any dialog function from the selection
menu or function that invoked it (or from the ISPF command, if it
is the first function to receive control prior to the display of a
menu). These parameters may be used, for example, to pass the name
of a panel to be displayved, a table to be updated, or a file skel-
eton to be used by the function.

SPF Dialog Management Services

ISPF
COMMAND

CONTROLLER

.
\

SELECT
SERVICE

DIALOG
FUNCTION

> CONTROL FLOKW

\

GOrP»HO

OmMmOR<TmY

DISPLAY
SERVICES

TABLE
SERVICES

FILE
TAILORING
SERVICES

VARIABLE
SERVICES

——/ DATA FLOH

Figure 4. Flow of Control

PANEL
LIBRARY

MESSAGE

LIBRARY

DATA
TABLES

SKELETON

LIBRARY

OUTPUT
FILES

Flow of Control

9

10

DIALOG SERVICES OVERVIEW

Once a dialog function receives control, it may use SPF dialog
services to continue the interaction with the end user, and to
assist in processing operations. The dialog services allow a
function to:

Display predefined screen images and messages

Build and maintain tables of user information

Generate output files for job submission or other processing
Define and control symbolic variables

Interface to edit and browse, and log hardcopy ocutput
Control operational modes.

® o o0 ¢

Dialog services may be used only within the SPF environment. They
may not be invoked by command procedures or programs running out-
side of SPF.

Functions coded in a command language may invoke dialog services
by means ot the ISPEXEC command. Example:

ISPEXEC < DISPLAY PANEL(XYZ)

This command invokes the DISPLAY service to display a panel named
XYZ.

Caution:

. Functions coded in the CLIST command language must not
include attention exits.

. Functions coded in the EXEC2 command language must include a
&PRESUME statement prior to issuing an ISPEXEC command. For
more information, see "Invocation of Services" in Chapter 4.

Functions coded in a programming language may invoke dialog serv-
ices by calling a service interface routine, named ISPLINK. Exam-
ple:

CALL ISPLINK ('DISPLAY', 'XYZ ');

ISPLINK is a small program module which is distributed with SPF.
It may be called from programs coded in any language that uses
standard 0S register conventions for call interfaces, and the
standard convention for signaling the end of a variable length
parameter list.

Data is communicated between the functions and the services by
means of “dialog variables." A dialog variable is a character
string that may vary in length from zero to 32K bytes. It is ref-
erenced symbolically, by name.

For functions coded in a command language, the CLIST or EXEC2 var-
iables are automatically treated as dialog variables; no special
action is required to define them to SPF.

For functions coded in a programming language, the internal pro-
gram variables that are to be used as dialog variables may be
identified to SPF via the VDEFINE service, or the program may
access and update dialog variables via the VCOPY and VREPLACE
serviceas.

Dialog variable names appear in panel, message, and skeleton
definitions to allow communication with the functions. A vari-
able name in a panel definition, for example, corresponds exactly
to the name of a dialog variable accessible to a function. The
variable may be used to initialize information on the panel (prior
to display), and to store input entered by the user.

SPF Dialog Management Services

DISPLAY SERVICES

The display services allow a dialog to display informatiop and
interpret responses from the end user. There are two display
sarvices:

. DISPLAY - Display panel
. TBDISPL - Display table

The DISPLAY service reads panel definitions from the panel
library, initializes variable information in the panel from the
corresponding dialog variables, and displays the panel on the
screen. A message may optionally be displayved with the panel.

After the user has entered information, the user inputs are stored
into corresponding dialog variables, and the DISPLAY service
returns to the calling function.

The TBDISPL service combines information from panel definitions

with information stored in SPF tables. It displays selected col-
umns from all rows in a table, and allows the user to identify
rows for processing (one row at a time).

The user may scroll the information up and down, using program
function (PF) keys. The amount of scrolling for each depression
of a PF key is specified by a scroll field, displayed on the pan-
el, that may be changed by the user. The user may cause a
one-time override of the scroll field by entering a scroll value
in the command input field, and then pressing one of the Scroll PF
keys. See SPF _Program Reference for more information on scroll-
ing.

Panel definitions used by the table display service contain
non-scrollable text, including column headings, followed by a
"model line" that specifies the format of the scrollable data.

Attribute characters in the model line indicate whether each col-
umn is protected or unprotected (user-modifiable). Typically,
the left-most column is defined as an unprotected selection
field. A code entered in that field is interpreted by the dialog
function to determine the particular processing for that row.

Panel Definitions

A panel definition consists of up to four sections, of which only
the body is required:

1. Attribute section (optional) - defines the special characters
that will be used in the body of the panel definition to

: represent attribute (start of field) bytes. Default attri-
bute characters are provided, which may be overridden.

2. Body (required) - defines the format of the panel as seen by
the user, and defines the name of each variable field on the
panel.,

3. Initialization section (optional) - specifies the initial
processing that is to occur prior to displaving the panel.
Typically used to define how variables are to be initialized.

4. Processing section (optional) - specifies processing that is
to occur after the panel has been displayed. Typically used
to define how variables are to be verified and/or translated.

The panel definition syntax is. fully described in Chapter 5 of
this document.

Dialog Services Overview 11

12

Panel definitions are created by editing directly into the panel
library; no compile or preprocessing step is required. Each panel
definition is a member in the library, and is identified by member
name. :

A sample panel definition is shown in Figure 5. It consists of a
panel body followed by an ")END" control statement. It has no
attribute, initialization, or processing sections. It uses the
default attribute characters, namely: S :

% (percent sign) - text (protected) field, high intensity
+ (plus sign) - text (protected) field, low intensity
- (underscore) - input (unprotected) field, high intensity

For text fields, the inforhation following the attribute charac-

~ter is the text to be displayved. Text fields may contain substi-

tutable variables, consisting of a dialog variable name preceded
by an ampersand (&). The name and ampersand are replaced with the
value of the variable prior to displaying the panel.

For input fields, a dialog variable name .immediately follows the
attribute character (with no intervening ampersand). The name is
replaced with the value of the variable prior to displaying the
panel, and any information entered by the user is stored in the
variable after the panel has been displayed.

The panel in this example has teﬁ input fields (TYPECHG, LNAME,

ete.), indicated with underscores. It also has a substitutable
“variable (EMPSER) within a text field (on line 2). The first two

lines of the panel and the arrows. preceding the input fields are
all highlighted, indicated with percent signs. The other text
fields are low intensity, indicated with plus signs.

Before the panel is displaved, all variables in the panel body
will be automatically initialized from the corresponding dialog
variables (TYPECHG, LNAME, etc., and EMPSER). After the panel has
been displaved, the input fields will be automatically stored
into the corresponding dialog variables.

Figure 6 shows the panel as it will apbear when displayed, assum-
ing that the current value of EMPSER is "123456", and that tha
other variables are initially null.

SPF Dialog Management Services

Y tabetad EMPLOYEE RECORDS «=--- -—
ZEMPLOYEE SERIAL: &EMPSER

+ TYPE OF CHANGEZ===>_TYPECHG + (NEW, UPDATE, OR DELETE)

EMPLOYEE NAME:
LAST Z===>_LNAME +
FIRST Z===>_FNAME +
INITIALZ===>_T+

PR

HOME ADDRESS:
LINE 1 Z===>_ADDR1
LINE 2 Z===>_ADDR2
LINE 3 %===>_ADDR3
LINE & Z===>_ADDR&

IEEEE
4+ 4+

+

HOME PHONE:

-

AREA-CODE . Z==z=> PHA® . . .
LOCAL NUMBERZ===>_PHNUM =+

+

JEND

Figure 5. Sample Panel Definition

EMPLOYEE RECORDS -
EMPLOYEE SERIAL: 123456

TYPE OF CHANGE ===>) (NEW, UPBDATE, OR DELETE)

EMPLOYEE NAME:
LAST
FIRST
INITIAL

HOME ADDRESS:
LINE 1 =
LINE 2 =
LINE 3 ==
LINE ¢ ==

HOME PHONE:
AREA CODE ===>
LOCAL NUMBER ===

Figure 6. Sample Panel - When Displayed

Dialog Services Overview 13

When a display service is invoked, a message may optionally be
displayed with the panel, or superimposed on the panel that is
currently displaved. Messages may also be written to the SPF loog
file via the LOG service.

Message definitions are created by editing directly into the mes-
sage library; no compile or preprocessing step is required. Each
member of the library may contain several messages. Messages are
referenced by message id.

Each message consists of two lines. The first line contains the
message id, and optionally:

. Short message text, enclosed in apostrophes (')
. Corresponding help panel (if the user presses the Help PF key)
° Audible alarm indicator (ves or no).

The second line contains the long message text, enclosed in apos-

If a short message is specified, it will be displayed first in the
upper right-hand corner of the screen. If the user presses tha
Help PF key, the long message will then be displayed on line 3 of
the screen. If the user presses the Help key again, tutorial mode

If a short message is not specified, the long message will be dis-
playved first (on line 3). If the user then presses the Help key,
tutorial mode will be entered.

Variable names, preceded by an ampersand (&), may appear anyvwhere
within the short and long message text.

Figure 7 shows an example of a member in the message library.
This member contains all message ids which begin with "EMPX21".
The message definition syntax is fully described in Chapter 5.

EMPX210 'INVALID TYPE OF CHANGE' HELP=PERS033 JALARM=YES
'TYPE OF CHANGE MUST BE NEW, UPDATE, OR DELETE.®

(EMPX213 ‘'ENTER FIRST NAME® +HELP=PERS034 <ALARM=YES
'EMPLOYEE NAME MUST BE ENTERED FOR TYPE OF CHANGE = NEW OR UPDATE.'

EMPX214 'ENTER LAST NAME® .HELP=PERS034% <ALARM=YES
'EMPLOYEE NAME MUST BE ENTERED FOR TYPE OF CHANGE = NEW OR UPDATE.'

EMPX215 'ENTER HOME ADDRESS' .HELP=PERS035 JALARM=YES
'HOME ADDRESS MUST BE ENTERED FOR TYPE OF CHANGE = NEW OR UFDATE.'

EMPX216 'AREA CODE INVALID® +ALARM=YES
'AREA CODE &PHA IS NOT DEFINED. PLEASE CHECK THE PHONE BOOK.'

EMPX217 '&EMPSER ADDED'
'EMPLOYEE &LNAME, &FNAME &I ADDED TO FILE.'

EMPX218 '&EMPSER UPDATED'
'RECORDS FOR &LNAME, &FNAME &I UPDATED.'®

EMPX219 '&EMPSER DELETED'
'RECORDS FOR &LNAME, &FNAME &I DELETED.'

Figure 7. Sample Member in Message Library

Message Definitions
trophes.
will be entered.
14

SPF Dialog Management Services

TABLE SERVICES

Table services allow sets of dialog variables to be maintained and
accessed. A table is a two-dimensional array of information in
-which each column corresponds to a dialog variable, and each row
contains a set of values for those variables.

An,exémple is shown in Figure 8. In this table, the variables
that define the columns are:

EMPSER - Emplovee Serial Number

LNAME: - Last Name

FNAME - First Name

I - Middle Initial

PHA - Home Phone: Area Code

.PHNUM -~ Home Phone: Local Number
EMPSER LNAME FNAME I PHA - PHNUM
598304 Roberston Richard P 301 840-1224
172397 Smith Susan A 301 547-8465
813058 Russell Charles L 202 338-9557
395733 Adams John Q 202 477-1776
502774 Caruso Vincent J 914 294-1168

Figure 8. Sample Table

Table Residency

A table may be defined as temporary or permanent. A temporary
table is created in virtual storage, and deleted upon completion
of processing. A permanent table resides on direct access stor-
age.: It may be opened for update or for read-only access, at
which time the entire table is read into virtual storage. An ENQ
is automatxcally issued to prevent multlple access to a table
which is belng updated.

Permanent tables are maxntained in one or more table libraries, in
which each member contains an entire table. The ENQ that occurs
when a table is read into virtual storage applles only to that
table (member); not the entire library. :

Nhen a permanent table is opened for proc2551ng, it is read from a
table input library. ‘When the table is saved, it is written to a
table output library that may be different from the input library.
The input and output libraries should be the same if the updated
version of the table is to be reopened for further processing by
the same dialog. See discussion of library setup in Chapter 3 for
specification of input and output libraries.

Accessing of Dgfé

The variable names that define the columns of a table are speci=-
fied when the table is created. At the same time, one or more
columns (variable names) may be spacified as keys for accessing
the table. For the table shown in Figure 8, EMPSER might be
defined as the key variable. Or EMPSER and LNAME might both be
defined as keys, in which case a row would be found only if EMPSER
and LNAME both match the current values of those variables.

Dialog Services QOverview 15

A table may also be _accessed by one or more "argument™ variables,
that need not be key variables. The variableés that constitute the
search argument may be defined dynamxcally by means of the TBSARG
and TBSCAN services. . .

In addition, a table may be accessed by "current row pointer"
(CRP). When a table is opened, the CRP is automatically positioned
to TOP -~ ahead of tha first row. The table may be scanned by mov-

- ing the CRP forward or back. A row. is retrieved each time the CRP

is moved.

When a row is retrieved from a table, the conténts of the row are
stored into the corresponding dialog variables. : When a row is

stored (updated or added), the current contents of the dialog var-

jables are saved in that POW.

Khen a row is stored, a lwst of "exten51on" varrables may be spec-

"“ified, by name. This allows the variables in that. row to be

General

extended beyond what was specified when the table was created. A
list of extension_variable names for a row may be obtained when
the row is read. The list of extension variables must be respeci-
fied whenever the row is reuritten. Otherwise the extensions to
the row will be deleted. ' '

Services

The followfng services operate on an entire table: v
TBCREATE Create a new table and open it for processing.

TBOPEN Open an existing (permanent) tablé for processing.

TBQUERY Obtain information about a table.

TBSAVE Save a permanent copy of a table uithout closing.

TBCLOSE Close a table, and save a permanent copy if the table
was opened ln WRITE mode.

TBEND . Close a table wlthout saving.

. TBERASE - Delete é*permaneht table from the table library.

Temporéry tables are created by TBCREATE (NOWRITE mode) and ‘

.deleted by either TBEND or TBCLOSE. A new permanent table is cre-

ated by TBCREATE (WRITE mode). - This simply creates the table in
virtual storage. It does not become permanent until it is stored
‘on direct access storage by either TBSAVE or TBCLOSE.

An existing permanent table is opened and read into virtual stor-
age by TBOPEN. If the table is to be updated (WRITE mode), the
new copy is saved by eijther TBSAVE or TBCLOSE. If it is not to be
updated (NOWRITE mode), the virtual storage copy is deleted by
either TBEND or TBCLOSE. ’ :]

Row_Operations

The following services operate on a row of the table:

TBADD Add a new row to the table.

TBDELETE Delete a row from the table.

TBGET Retrieve a réw from thé’table. ‘
TBPUT Update an existing row in the table.

16 SPF Dialog Management Services

TBMOD Update a row ih the table if it exists (if the keys
match); otherwise, add a new row to the table.

TBEXIST Test for the existence of a row (by key).

TBSCAN Search a table for a row that matches a list of
"argument™ variables, and retrieve the row.

TBSARG Establish a new search argument for use with TBSCAN,
TBTOP Sat CRP to TOP (ahead of the first row).
TBBOTTOM Set CRP to BOTTOM and retrieve the last rou.

TBSKIP Move the CRP forward or back by a specified number of
: rows, and then retrieve a row.

TBVCLEAR Set dialog variables (that correspond to variables in
, the table) to null.

equiremen

The length of any row in a table cannot exceed 65,536 bytes. The
length céan be computed as follows:

Row size = 22 + 6a + b + 9c

where:
a = total number of variables in the row including extenszons
b = total length of variable data in the row
c = total number of extension variables in the row

The total table size is the sum of the row lengths, plus the
length of the data table control block (DTCB). The length of the
DTCB can be computed as follows:

DTCB length = 88 + 16d
whara:

d = total number of columns (not including extension
variables) in the table

The number of tables that may be processed at one time is limited

only by tha amount of available virtual storage.

Dialog Services Overview 17

"FILE TAILORING SERVICES

18

File tailoring services read. skeleton files from a library and
write tailored output that may be used to drive other functions.
Frequently, file tailoring is used to generate Job files for batch
execution. .

The file tailoring output may be directed to a library or sequen-
tial file that has been specified by the dialog function, or it
may be directed to a temporary sequential file provided by SPF.
The name of the temporary file is available in system variable
ZTEMPF. . For MVS, ZTEMPF. contains a data set name; for VM it con-
tains a file name.

Each skeléton file is read record by récoFd: Each Fécord is
scanned to find any dialog variable names (preceded by an amper-
sand). then a variable nama is found, its current value is sub-
stitute R

Skeleton file records may also contain statements that control
processing. These provide the ability to:

. Set dialog variables
. Imbed other skeleton files
. Conditionally include recordsv

. Iteratively process records in which variables from each row
of a table are substituted.

In the latter case, file tailoring services will read the selected
rows from the table. If the table was already open (prior to
processing the skeleton), it will remain open with the CRP posi-
tioned to TOP. If the table was not already open, file tailoring
will open it automatrcally and close it upon completion of proc-
essing. .

A sample skeleton file is shown in Figure 9. It contains MVS job
control language (JCL) for an assembly and optional load-go. In
an MVS environment, the tailored output could be submitted to the
background for execution. In a VM environment, it .could be
punched to an MVS machine for batch execution.

The sample skeleton references several dialog variables
(ASMPARMS, ASMIN, MEMBER, etc.). It also illustrates use of
select statements ")SEL™ and ")ENDSEL"™ to conditionally include
records. The first part of the example has nested selects to
include concatenated macro libraries i¥ the library names have
been specified by the user (i.e., if variables ASMMACL and ASMMAC2
are not equal to the null variable 2).

In the second part of the example, select statements are used to
conditionally execute a load-go step. An imbed statement, ")IMY,
is used to bring in a separate skeleton for the load-go step.

The file tailoring services are:

FTOPEN Prepare the file tailoring process, and specify whether
the temporary file is to be used for output.

FTINCL Specify the skeleton to be‘ used, and start the
tailoring process.

FTCLOSE End the file tailoring process.

FTERASE Erase (delete) an output file created by file
tailoring.

SPF Dialog Management.Services

//7ASM EXEC PGM=IFOX00,REGION=128K,

144 PARM=(&ASMPARMS)

//7SYSIN DD DSN=&ASMIN(&MEMBER),DISP=SHR
//5YSLIB DD DSN=SYS1.MACLIB,DISP=SHR
JSEL &ASMMACL -~= &Z

124 DD DSN=&ASMMAC1,DISP=SHR
JSEL &ASMMAC2 -= &Z

V24 DD DSN=&ASMMAC2,DISP=SHR
JENDSEL

JENDSEL

//78YSUT1 DD UNIT=5YSDA,SPACE=(CYL,(5,2))

/7/5YSUT2 DD UNIT=SYSDA,SPACE=(CYL,(2,1))

//78YSUT3 DD UNIT=SYSDA,SPACE=(CYL,(2,1))

//SYSPRINT DD SYSOUT=(&ASMPRT)

JCM IF USER SPECIFIED "GO", WRITE OUTPUT IN TEMP DATA SET
JCM THEN IMBED "LINK AND GO SKELETON

JSEL &GOSTEP = YES

77 DISP=(MOD,PASS)

JIM LINKGO
JENDSEL)

JCM ELSE (NOGO), WRITE OUTPUT TO USER DATA SET
JSEL &GOSTEP = NO

//8YSG0 DD DSN=&ASMOUT(&MEMBER),DISP=0LD
JENDSEL .

/%

Figure 9. Sample Skeleton File

Dialog Services Overview: 19

VARIABLE SERVICES

Variable services allow a function to define and use "dialog vari-
ables." A dialog variable is a character string that may vary in
length from zero to 32K bytes. It is referenced symbolically, by
nama. The name may bae from one to eight characters in length,
composed of alphameric characters (A-Z, 0-9%, #, $, or a) of which
the first must not be numeric.

Dialog variables serve as the main communication vehicle between
dialog functions and SPF services. They may also be used to com-
municate between a function and another function.

Referencing Variables from Command Procedures

From command procedures (CLISTs and EXECs), the variables are
always referenced implicitly. All CLIST and EXEC2 variables are
automatically treated as dialog variables; no special action is
required to define them to SPF. The variables are created dynam-
ically either by execution of the command procedure or by the SPF
saervices that the command procedure uses. CLIST example:

SET &AAA = 1
ISPEXEC DISPLAY PANEL(XYZ)
SET &CCC = &BBB + &AAA

Same example in EXEC2 language:

SAAA =1
ISPEXEC DISPLAY PANEL(XYZ)
&CCC = &BBB + &AAA

Variable AAA is created by the command procedure, simply by set-
ting it to a value. The DISPLAY service is then invoked to dis-
play panel XYZ. If panel XYZ references variable AAA, its value
may be displaved or changed by the user, depending on how the pan-
el is defined.

The same panel may allow the user to enter a value for another
variable (BBB). If a variable of that name does not already
exist, a CLIST or EXEC2 variable will be created automatically.
Its value may then be referenced in subsequent statements.

Referencing Variables from Programs

From program functions (compiled modules), dialog variables that
ara to be referenced by the FTunction may be explicitly defined to
SPF. The function calls the VDEFINE service to identify the name,
address, format, and length of ohe or more variables within the
program to be used as dialog variables. Example in PL/I language:

DECLARE AAA CHAR(8);
CALL ISPLINK ('VDEFINE', '(AAA)', AAA, 'CHAR', 8);
CALL ISPLINK ('DISPLAY", 'XYZ ');

Variable AAA is declared as an internal program variable (charac-
ter string, length 8). The program calls the VDEFINE service to
define it as a dialog variable. The program then calls the DIS-
PLAY service to display panel XYZ. If panel XYZ references vari-
able AAA, its value may be displaved or changed by the user,
depending on how the panel is defined.

If panel XYZ allows the user to enter a value for another variable
(BBB) and the program has not defined a dialog variable of that
name, storage for the variable will be allocated automatically.
BBB is then considered an implicit dialog variable associated
with this function. The program can access BBB only via an SPF

J

20 SPF Dialog Management Services

service (VCOPY), since the program does not have addressability
to the implicit area. But if the program invokes an SPF service,
the service will be able to access and/or modify the variable (see
"Variable Access from Services").

The VDELETE service performs the opposite function of VDEFINE. It
may be called to specify the names of one or more program vari-
ables that are no longer to be treated as dialog variables.

Variables may be defined whenever desired. Defining a variable
with the same name as existing function variable causes the previ-
ous occurrences to be masked out. Deleting addressibility to a
variable causes the previous occurrence (if any) to be restored.
This allows a subroutine to use different variables with the same
name as used in the main routine.

riables

The scope of a dialog variable may be limited to an individual
function or shared between functions.

When a variable is created, it is associated with the function
that is currently in control and may not be referenced by other
functions. When the function completes execution, all of its var-
iables (defined and implicit) are automatically deleted.

When a function invokes a lower level function via the SELECT
service, the lower level function has its own set of variables
(which may have the same names as variables belonging to other
functions). Again, the lower level function may not access the
variables of the invoking function.

Data may be passed from one function to another via parameters.
In addition, there are two mechanisms that allow sharing of vari-
ables between functions:

. Shared variable pool
. User profile

The shared variable pool allows communication of variables
between functions that belong to the same application. A function
may copy ona or more of its variables into the shared pool by
means of the VPUT service. Another function may then obtain a
copy of the variable by means of the VGET service.

The user profile contains variables that are automatically
retained across sessions for each user. Again, a function may use
the VPUT and VGET services to copy variables to/from the user pro-
file%h Variables in the profile are limited to 255 bytes in
ength. :

Note: The user profile contains variables that are used by the SPF
program development facility. New dialogs may access and update
those variables via VGET and VPUT. Generation of new variables in
the profile should be approached with caution, since the names
must not conflict with those already used by SPF. See SPF
Insgailation and Customization for a list of variable names in the
protile.

Figure 10 shows an example of variable sharing. Function A uses
VPUT to copy its variables (defined or implicit) to the shared
variable pool and/or user profile, and function B uses VGET to
obtain the variables.

In this document, the terms function variables, shared variables,
and profile variables are used to distinguish the scope and acces-
sibility of the variables. The term dialog variable includes all
three. '

Dialog Services Overview 21

FUNCTION A FUNCTION B
FUNCTION FUNCTICN
VPUT VARIABLES VARIABLES VGET
: 7
¢ DEFINED ¢ DEFINED N\
¢ IMPLICIT s IMPLICIT
—\ SHARED
4 VARIABLES
\ PROFILE
7/ i VARIABLES

Figure 10. Sharing Variables via VPUT/VGET

Variable Access from Services

22

When variables are accessed by SPF services, the shared variable
pool is logically concatenated to the set of function variables.
The search order is:

1. Defined function variables (if any)
2. Implicit function variables (if any)
3. Shared variables

Only the variables for the current function (i.e., the function
that invoked the service) are searched. If neither a function
variable nor a shared variable of the specified name is found, the
current value of the variable is assumed to be null.

Figure 11 shows the logical concatenation of the shared variable
pool when a variable is fetched from a service.

When a variable is created or updated by an SPF service, it is
stored as a function variable associated with the current func-
tion. It is stored in the function's defined area if a variable
of that name has been explicitly defined. Otherwise, it is stored
in the function's implicit area.

In general, services do not store variables directly into the
shared pool nor the user profile. The exceptions are:

. The VYPUT service, which is used explicitly for the purpose of
copying‘variables into the shared pool or user profile.

. The SELECT service, when a selection menu (panel) definition
- references variables in addition to those required by SELECT.
See description of selection menus in Chapter 5.

SPF Dialog Management Services

FETCH STORE
—\ DIALOG
/ SERVICE
CURRENT
FUNCTION

RTINS S SUTUISOISNTI SU oy wn /.
VETANCW

VARIABLES N\

o
f

IMPLICIT /:
VARIABLES N\

SHARED
VARIABLES

Figure 11. Service Access to Variables

Representation of Variables

Information entered by a user on a panel is in character string
format. All dialog variables remain in character string format
when stored as implicit function variables, or when stored in the
shared pool, the user profile, or SPF tables.

Defined variables, however, may be translated to fixed binary or
to a bit string when stored internally in a program module. The
internal format is specified when the variable is defined (via
VDEFINE). The translation occurs automatically when the variable
is stored by an SPF service. A translation back to character
string format occurs automatically when the variable is fetched.

When a defined variable is stored, either of two errors may occur:

. Truncation - if the current length of the variable is greater
than the defined length within the module.

. Translation - if the variable is defined as other than a char-
acter string, and the external representation has invalid
~characters.

In either case, the SPF service issues a return code of 16.

Dialog Services Overview 23 -

System Variables

Certain variable names are reserved for use by the system. They
all begin with the letter "Z". Dialog developers should avoid
names which begin with "2"” when choosing dialog variable names.

Some system variables cannot be modified. They provide the dialog
with information about the environment, such as user id, current
date and time, and terminal characteristics. These variables
reside in the shared variable pool, and may be obtained via the
VGET service.

These variables are:

ZUSER - User id

ZPREFIX - TSO user prefix?

ZLOGON - Name of TSO LOGON procedure?
ZTIME = Time of day (format hh:mm)

ZDATE - Current date (format yy/mm/dd)
ZJDATE - Julian date (format yy.ddd)

ZDAY ~ Day of the month (2 characters)
ZMONTH = Month of the year (2 characters)
ZYEAR - Year (2 characters)

ZTERM - Terminal type

ZKEYS = Number of PF keys

ZTEMPF - Name of temporary file for file tailoring output
z = Null Variable

Other system variables are used for communication of special
information between the dialog and the dialog manager. These var-
iables are:

ZERRMSG - Error message id

ZERRSM =~ Short error message text

ZERRLM - Long error message text

ZERRHM - Name of help panel associated with error message
ZHTOP - Top page (panel name) in tutorial

ZHINDEX -~ First index page in tutorial

ZTDTOP - Current top row upon return from table display

The first four are set by‘SPF services whenever an error condition
is encountered (return code of 12 or higher). They are stored in
the function variable area.

The variables ZHTOP and ZHINDEX specify the top level table of
contents and first index page, respectively, in the tutorial.
They should be initialized by the application in the event that
the user enters the tutorial via the Help PF key and then requests
TOP or INDEX. These two variables should be stored in the shared
variable pool. '

2 In the VM environment, ZPREFIX has the same value as ZUSER, and ZLOGON
has a null value.

24 SPF Dialog Management Services

Summary

Variable ZTDTOP is set by the table display service (TBDISPL).
This variable is stored in the function variable area. See
description of TBDISPL for more information.

of Variable Services

The variable services are:

VGET Retrieve variables from shared pool or profile.
VPUT Update variables in shared pool or profile.
VDEFINE Define function variables.

VDELETE Remove definition of function variables.

- ,V.c.oP*_,m,_. mmwﬂ“wi_ab}e_. e

VREPLACE Replace variable with copy.

VRESET Reset function variables.

The first two services, VGET and VPUT, may be invoked from any
function. The other variable services are for use from program

modules only (not applicable to functions coded in a command lan-
guage).

Dialog Services QOverview 25

——— —

OTHER SERVICES

The EDIT and BROWSE interface services allow a dialog function to
invoke the SPF editor or browse program, which are part of the
program development facility. These services require specifica-
tion of a data set name (MVS) or fileid (VM), and member name if
applicable. The entry panel, which is displaved if edit or brouwse
is selected from the primary option menu, is bypassed.

The LOG service allows a dialog function to write a meséage to the
SPF log file. The end user may specify whether the log is to be
printed, kept, or deleted when SPF‘is terminated.

Tha CONTROL service allows a dialog function to condition SPF to
expect certain kinds of display output, or to control the disposi-
tion of errors encountered by SPF services.

The display conditions are:

LINE Expect line output, not generated by the dialog (e.g.,
generated by execution of a TS0 or CMS command).
Optionally, the starting line may be specified for the
MVS environment. The starting line is ignored for the
VM environment, since line output is always displayed
at the top of a blank screen.

SM Transfer to TS50 Session Manager mode on the next line
output. 3 .

REFRESH Refresh the entire screen on the next display.
Typically used before or after invoking some other
full-screen application which is not using SPF display
services. .

NONDISPL Do not display the next panel (process the panel
without actually displaying it, and simulate the ENTER
or End key.)

The disposition of errors may be controlled as follows:

CANCEL Terminate the dialog function on a error (return code
12 or higher from any service). A message is displayed
and logged prior to termination.

RETURN Return control to the dialog function on all errors
(with appropriate return code). A message id is stored
in system variable ZERRMSG, which may be used by the
dialog function to display and/or log a message.

The default disposition is CANCEL. If a dialog function sets the
disposition to RETURN, the change affects only the current func-
tion. It does not affect lower level functions invoked via the
SELECT service, nor a higher level function when the current func-
tion completes. '

3

26

In the VM environment, the SM condition is treated the same as LINE.

SPF Dialog Management Services

CONTROL FACILITIES

The SPF dialog manager provides control facilities to:

o Display a hierarchy of selection menus and invoke the appro-
" priate dialog functions.

. Transfer in and out of the tutorial, and control the sequence
‘ of tutorial pages based on user inputs.

. Manage the physical display image in single screen or split
screen mode.

. Interpret program function (PF) key usage for system defined
functions.

_.The display of selection menus is handled by the SELECT serv1ce,
which has already been discussed under "Flow of Control: The—
remaining control facilities are described in the follow1ng
sections.

ONLINE TUTORIAL

A tutorial is a‘set of panels that provide online information to
the end user. The program that displays tutorial pages is part of
the dialog manager. It may be entered in either of two ways:

L As a selectable option from a menu, or

. Indirectly from any non-tutorial panel when the user presses
the Help PF key.

Transfer in and out of the tutorial via the Help key is transpar-
ent to the dialog functions.

Tutorial panels are arranged in a hierarchy. When the tutorial is
entered from a menu, the first panel to be displaved is normally
the top of the hierarchy. When the tutorial is entered via the
Help PF key, the first panel to be displayed is some appropriate
panel within the hierarchy, depending upon what the user was doing
when the Help key was pressed.

When viewing the tutorial, the user may select topics by number
(or other appropriate selection code), or simply press the ENTER
key to view the next topic. On any panel, the user may also enter
the following commands:

BACK or B - to back up to the previously viewed panel
SKIP or S - to skip to the next topic

up or U - to display a higher level list of topics
TOP or T - to display the table of contents

INDEX or I - to display the tutorial index.

When the user has finished viewing the tutorial, the panel from
which the tutorial was entered is redisplayed.

SCREEN MANAGEMENT

At any time during a dialog, the end user may partition the dis-
play screen into two "logical™ screens. The two logical screens
are treated as though they were independent terminals. The dialog
manager provides control for mapping the two logical screens onto
the physical screen.

Control Facilities 27

PROGRAM

In split screen mode, one or the other of the logical screens is
considered active at any point in time. The location of the cur-
sor is used to identify which of the two screens is active.

Split screen mode is entered by means of the Split PF key, which
may also be used to reposition the split line. Split screen mode
is terminated by ending the application on either logical screen.
The remaining logical screen is then expanded to its full size.

Use of split screen mode and positioning of the split line is
under control of the end user, and totally transparent to the dia-
log function. Panels that are displaved by the DISPLAY service
always pertain to a logical screen.

ACCESS AND FUNCTION KEYS

The dialog manager supports display terminals that have tuwo
program access (PA) keys, and 12 or 2% program function (PF) keys.
Some keys have system-defined meanings; these are handled by the
dialog manager, and are transparent to the dialog function except
for the End key.

Other keys may be equated to application-defined commands; these
are passed through to the dialog function, as if the user had
typed the command in the first input field of the panel, and then
pressed the ENTER key.

The two PA keys have system—-defined meanings. They may not be
redefined by the user.

ATTENTION (PAl) Under TS0, the PAl key is ignored when a panel
is displayved with the keyboard unlocked.
Pressing PAl a second time, however, causes the
function to be cancelled and the primary option
menu to be redisplaved. When a dialog function
is executing (keyboard locked), pressing RESET
followed by PAl causes the function to be can-
celled and the primary option menu to be redis-
plaved.

Under CMS, the PA1 key causes an immediate
return to CP mode. This key should not be used,
since it bypasses normal SPF termination.

RESHOW (PA2) Redisplays the contents of the screen.

The system-defined PF key operations are described below. The
default key assignments are shown in parentheses. For 24-key ter-
minals, PF keys 1-12 have the same defaults as keys 13-24.

HELP (PF1/13) Displays additional infofﬁation about a message
or causes a transition into the tutorial.

SPLIT (PF2714) Causes split screen mode to be entered, or
changes the location of the split lina.

END (PF3/15) Terminates the current operation and returns to
the previous menu. If the primary option menu
i§ displaved, this key terminates the applica-

jon.

RETURN (PF4/16) Causes an immediate return to the primary
option menu. (Logically equivalent to repeated
use of the End key.) May also be used to jump
directly from one function to another, without
displaying the primary option menu, as follows:
In any menu or panel input field that is
preceded by an arrow (===>), enter an equal
sign (=) followed by a primary option. Then
press the Return PF key rather than ENTER.

28 SPF Dialog Management Services

FIND (PF5717) Repeats the action of the previous FIND command
or the FIND part of the most recent CHANGE com-
mand. Applies to browse and edit only; not used
unle§s the dialog invokes the browse or eadit
service.

CHANGE (PF6/18) Repeats the action of the previous CHANGE
command. Applies to edit only; not used unless
the dialog invokes the edit service.

up (PF7/19) Causes a scroll up. Applies to browse, edit,
and table display only.

DOWN (PF8/20) Causes a scroll down. Applies to browse, edit,
and table display only.

SWAP (PF9/21) Moves the cursor to wherever it was previously
positioned on the other logical screen.

LEFT (PF10/22) Causes a scroll left. Applias—to —browse —and-
edit only.

RIGHT (PF11/23) Causes a scroll right. Applies to browse and
edit only.

CURSOR (PF12/24) Moves the cursor to the first input field on
line 2 (normally, the option selection or com-
mand input field). Pressing this PF key again
causes the cursor to be moved to the second
input field on line 2, if any (normally the
scroll field).

PRINT {none) Causes a "snapshot" of the screen image to be
recorded in the SPF list file.

PRINT-HI (none) Same as PRINT except that high intensity
characters on the screen are printaed with over-
strikes to simulate the dual intensity display.

NOP (none) Causes the PF key to be functionless.

The scroll keys are used if the dialog function invokes the table
display service (TBDISPL) or the interfaces to edit and brouse.
During execution of the tutorial, the four scroll PF keys are
interpreted as follows:

up - same as UP command

DOWN - same as SKIP command

LEFT - same as BACK command

RIGHT - same as ENTER key (display next page).

The PRINT, PRINT-HI, and NOP functions have no default PF key
assignments.

The end user may rearrange the system—-defined keys, and may rede-
fine system keys to application-defined commands. The only sys-
tem key function that is required is the End key.

The SPF parms option (program development facility, option 0.3)
is used to rearrange or redefine PF keys. See SPF__Program
Reference. The SPF parms option may be invoked from other
selection menus, such as the primary option menu of another appli-
cation. For an example, see discussion of the master application
menu in Chapter 5.

.

Control Facilities 29

30 SPF Dialpg Management Services

This chapter describes the library setup requirements in the MVS
and VM environments, and the ISPF command used to invoke SPF.

IBRARY SETUP - MV NVIRONMENT

Required and optional libraries for the operation of SPF in the
MVS environment are described in this section.

REQUIRED LIBRARIES

The following libraries (partitioned data sets) are required for
operation of SPF in the MVS/TSO environment:

DDNAME DESCRIPTION RECFM LRECL BLKSIZE
ISPPLIB Panel Library FB 80 3120
ISPMLIB Message Library FB 80 3120
ISPSLIB Skeleton Library . FB 80. 3120
ISPPARM User Profile Library F 6000 6000

The panel, message, and skeleton libraries are distributed with
SPF. The user profile library 1is dynamically generated and
updated during execution of SPF. The recommended data set names
for these libraries are shown below. Check with your system pro-
grammer to determine if these are the actual data set names for
your installation.) .

DDNAME DSNAME

ISPPLIB ISP.R1IMO.ISPPLIB
ISPMLIB ISP.R1IMO.ISPMLIB
ISPSLIB ISP .R1IMO.ISPSLIB
ISPPARM ISP.R1MO.ISPPARM

Application libraries for panels, messages, and skeletons should
be concatenated ahead of the corresponding SPF libraries using
the ddnames shouwn above. They must all have a record format of
FB, a logical record length of 80, and a block size of 3120 or
greater. (The block size must be a mult1ple of 80)

Example. Suppose application XYZ uses the followlng partltloned
data sets for panels, messages, and skeletons-

XYZ. PANELS
XYZ.MSGS
XYZ.SKELS k
The following allocations are required:

//7ISPPLIB DD DSN=XYZ.PANELS,DISP=SHR
7/ DD DSN=ISP.R1MO.ISPPLIB,DISP=SHR

//ISPMLIB DD DSN=XYZ.MSGS,DISP=SHR
/7 DD DSN=ISP.R1MO.ISPMLIB,DISP=SHR

//7ISPSLIB DD DSN=XYZ.SKELS,DISP=SHR
Vs DD DSN=ISP.R1MO.ISPSLIB,DISP=SHR

/77ISPPARM DD DSN=ISP.R1MO.ISPPARM,DISP=SHR
ISPPARM is reserved for use by SPF. Other data sets should not
be concatenated to this ddname.

Chapter 3. SPF Invocation 31

These allocations must be performed prior to invoking SPF. They
may be done in the user's TS0 LOGON procedure using DD statements,
as shogn abova, or in a CLIST using corresponding 750 ALLOCATE
commands. . .

TABLE AND FILE TAILORING LIBRARIES

The following data sets are optional, and need be allocated only
if anAapplication uses table or file tailoring services.

DDNAME DESCRIPTION RECFM LRECL BLKSIZE

ISPTLIB Table Input Library FB 80 (See note)
ISPTABL Table Output Library FB 80 (See note)
ISPFILE » File Tailoring Output FB 80 (See note)

Note: The block size may be established by the application. It
must be a multiple of 80.

The table input and output libraries must both be partitioned data
sets. The ddnames that define them may specify the same data set
or different data sets. The data sets must be the same if the
updated version of a table is to be reprocessed by the same dialog
that updated it.

If tables are used, the table ihput library must be allocated to
ddname ISPTLIB (DISP=SHR) prior to invoking SPF. ISPTLIB may
specify a concatenated sequence of partitioned data sets.

The table output library must be allocated to ddname ISPTABL prior
to use of table services. ISPTABL may be allocated dynamically by
the dialog, and freed upon completion of use. It should be allo-
cated with DISP=SHR even though it specifies an output data set;
SPF includes ENQ logic to ensure against simultaneous updates.
ISPTABL must not specify a concatenated sequence of data sets.

Note: PCF may not be used to protect the table output library from
unauthorized updating if the library is allocated DISP=SHR. The
library may either be protected via RACF, or allocated with
DISP=0LD and protected via PCF.

File tailoring output may be written to a temporary sequential
data set provided by SPF. In this case, there is no need for the
dialog to allocate a data set. (The temporary data set is allo-
cated automatically.) The fully qualified name of the temporary
data set is available in system variable ZTEMPF.

If the temporary data set is not used, file tailoring output may
be written to either a partitioned or sequential data set. The
data set must be allocated to ddname ISPFILE prior. to use of file
tailoring services. ISPFILE may be allocated dynamically by the
dialog, and freed upon completion. For a sequential data set,
ISPFILE must be allocated with DISP=0LD. For a partitioned data
set, it may be allocated with DISP=SHR, but may not be protected
via PCF unless it is allocated with DISP=0LD. ISPFILE must not
spacify a concatenated sequence of data sets. ' :

32 SPF Dialog Management Services

T

CLIST AND PROGRAM LIBRARIES

Dialog functions that are coded as CLISTs must be in a procedure
}ibrg;g that has been allocated to ddname SYSPROC prior to invok-
ing .

Dialog functions that have been coded as programs must be link
edited. The load module may reside in a step library, a system
link library (such as SYS1.LINKLIB), or the link pack area. Or it
may be in the following partitioned data set (RECFM=U):

DDNAME DESCRIPTION
ISPLLIB SPF Link Library
This library may be used for testing new dialogs that contain

program—-coded functions. If used, it must be allocated to ddname
ISPLLIB (DISP=SHR) prior to invoking SPF. ISPLLIB may specify a

—concatenated-sequence-of partitioned data sets,.

ISPLLIB is used as a task library when fetching load modules. It
is searched prior to the system link libraries and the link pack
area. A step library may not be used if ISPLLIB is allocated.

Library Setup - MVS Environment 33

LIBRARY SETUP - VM ENVIRONMENT

Required and optiohai libraries for the operation of SPF in the VM
environment are described in this section.

Note: Before SPF is invoked, the user's virtual device 191 must be
accessed as the A-disk. SPF assumes that this minidisk is avail-
able at all times in read/urite mode, and that no other user has
write access to it. - .

REQUIRED LIBRARIES

34

The follbwing libraries (MACLIBs) are required fbr operation of
SPF in the YM/7CMS environment: ‘

DDNAME DESCRIPTION FILENAME FILETYPE
ISPPLIB Panel Library ISPPLIB MACLIB
ISPMLIB Message Library . ISPMLIB MACLIB
ISPSLIB Skeleton Library ISPSLIB MACLIB

These libraries are distributed with SPF. They must reside on
minidisks that are accessable to the SPF user.

Application libraries for panels, messages, and skeletons should
be concatenated ahead of the corresponding SPF libraries using
FILEDEF statements with the ddnames shown above.

Example. Suppose application XYZ uses the following libraries
for panels, messages, and skeletons:

XYZPANLS MACLIB
XYZMSGS MACLIB
XYZSKELS MACLIB

The following FILEDEFs are required, assuming that the minidisks
containing the XYZ libraries and the distributed SPF libraries
have already been linked and accessed.

FILEDEF ISPPLIB DISK XYZPANLS MACLIB
FILEDEF ISPPLIB DISK ISPPLIB MACLIB

FILEDEF ISPMLIB DISK XYZMSGS MACLIB
FILEDEF ISPMLIB DISK ISPMLIB MACLIB

FILEDEF ISPSLIB DISK XYZSKELS MACLIB (PERM CONCAT)
FILEDEF ISPSLIB DISK ISPSLIB MACLIB (PERM CONCAT)

Note: A GLOBAL MACLIB command is not required; SPF dynamically
issues GLOBAL commands prior to reading these libraries.

(PERM CONCAT)
(PERM CONCAT)

(PERM CONCAT)
(PERM CONCAT)

XX XX

X X

These FILEDEFs must be issued prior to invoking SPF. They may be
issued in the user's PROFILE EXEC or in an EXEC that initiates the
?YZ application. Any EXEC that invokes SPF must be coded in EXEC2
anguage.

SPF Dialog Management Services

TABLE AND FILE TAILORING LIBRARIES

The following files are optional, and need be defined only if an
application uses table or file tailoring services.

DDNAME DESCRIPTION

ISPTLIB Table Input Library
ISPTABL Table Output Library
ISPFILE File Tailoring Qutput

The table input and output libraries must both be MACLIBs. The
ddnames that define them may specify the same MACLIB or different
MACLIBs. The MACLIBs must be the same if the updated version of a
table is to be reprocessed by the same dialog that updated it.

If tables are used, the table input library must be allocated (via
a FILEDEF) to ddname ISPTLIB prior to invoking SPF. It may con-
—gi-st--of—a—-concatenated.-sequonce. of libraries, in which case the

FILEDEFs must include the CONCAT pé}ameter (see above example).
Again, a GLOBAL MACLIB command is not required.

The table output library must be allocated (via a FILEDEF) to
ddname ISPTABL prior to use of table services. If the library does
not already exist, the FILEDEF must include a "RECFM F" parameter.
The ISPTABL ddname wmay be allocated dynamically by the dialog, and
freed (FILEDEF CLEAR) upon completion of use. ISPTABL must not
specify a concatenated sequence of libraries.

File tailoring output may be written to a temporary sequential
file provided by SPF. In this case, there is no need for the dia-
log to allocate an output file. The temporary file is written on
the user's A-disk. The file name of the temporary file is avail-
able in system variable ZTEMPF. The file type is always ISPTEMP.

If the temporary file is not used, file tailoring output may be
written to either a MACLIB or sequential file. The MACLIB or
sequential file must be allocated (via a FILEDEF) to ddname
ISPFILE prior to use of file tailoring services. If the MACLIB or
file does not already exist, the FILEDEF must include a "RECFM F"
parameter. The ISPFILE ddname may be allocated dynamically by the
dialog, and freed (FILEDEF CLEAR) upon completion. ISPFILE must
not specify a concatenated sequence of libraries.

Caution: Table output libraries and, in some cases, file tailor-
ing output may need to be on shared minidisks (i.e., minidisks for
which multiple users have concurrent write access). SPF ensures
the integrity of these minidisks provided all updating is done via
SPF services. However, SPF cannot prevent destructive conflicts
if other means (e.g., ordinary CMS commands) are used to update
shared minidisks. To guard against destructive conflicts, the
following procedures are recommended:

. Isolate shared SPF tables and file tailoring output files on
minidisks that do not have other types of files.

. Caution users not to update these minidisks except via SPF
services.

. Always access these minidisks as read-only extensions of
themselves. This will prevent inadvertent updating.

Example:

CP LINK XYZ 294 294 MW
ACCESS 294 D/D
FILEDEF ISPTABL DISK XYZTABL MACLIB D (PERM)

In this example, the table output library for the application is
assumed to be on the XYZ 294 minidisk. The disk is linked in
multiwrite (MW) mode to allow concurrent updating by multiple
users. However, when the disk is accessed as the D-disk, "D/D" is
specified making it a read-only extension of itself. This will

Library Setup - VM Environment 35

prevent inadvertent updating. A FILEDEF for the +table output
library (ddname ISPTABL) is then issued to specify the particular

table library (XYZTABL MACLIB) on the D-disk.

SPF will automatically reaccess the disk, when needed, to write an
updated copy of the table. SPF will then restore the original
(D/D) access mode.

The same technique should be used when a table library is allo-
cated for both input and output. Example:

CP LINK XYZ 294 294 MW
ACCESS 294 D/D
-FILEDEF ISPTLIB DISK XYZTABL MACLIB D (PERM)

.

-

FILEDEF ISPTABL DISK XYZTABL MACLIB.D (PERM)

EXEC AND PROGRAM LIBRARIES

36

Dialog functions .that are coded in the EXEC2 language must be in
EXEC files on minidisks that have been linked and accessed prior
to invoking the EXEC.

Dialog functions that are coded as programs may be invoked in text
(object) module format, or they may be link edited and invoked in
load module format.- They may be in TEXT files on minidisks that
have been linked and accessed prior to invoking the function, or
they may be members of either of the following two libraries:

DDNAME DESCRIPTION

ISPXLIB Text Module Library (TXTLIB)
ISPLLIB Load Module Library (LOADLIB)

If a TXTLIB is used, it must be allocated (via a FILEDEF) to
ddname ISPXLIB. A concatenated sequence of TXTLIBs may be speci-
fied, in which case the FILEDEFs must include the CONCAT parame-
ter. A GLOBAL TXTLIB command is not required.

When a text module is invoked (either as a TEXT file or as a mem-
ber of a TXTLIB), any additional text modules that it calls will
be loaded automatically via "automatic call" reference. The
called modules must also be TEXT files on an SPF-accessible mini-
disk or members of the TXTLIB allocated to ddname ISPXLIB.

If a LOADLIB is used, it must be allocated (via a FILEDEF) to
ddname ISPLLIB. A concatenated sequence of LOADLIBs may be speci-
fied, in which case the FILEDEFs must include the CONCAT parame-
ter. A GLOBAL LOADLIB command is not required.

No automatic call referehcing is available with load modules; all
load modules must be fully resolved prior to invocation by SPF.

Caution: Load modules may be used only for programs that are

reenterable. Nested use of the same load module or concurrent use
in split screen will cause the same copy of the load module to be
invoked, even if it is marked reenterable.

SPF Dialog Management Services

RESTRICTIONS ON USE OF MODULE FILES

Use of MODULE files, which are non-relocatable, should be avoided
whenever possible. Dialog functions that are invoked as programs
via the following SELECT keyword:

PGM(program-name)

must be relocatable (text or load module format). Whenever such a
program is loaded into the user area, SPF automatically turns on
CMS subset mode to prevent MODULE files from overlaying the relo-
catable program. SPF turns off subset mode whenever all relocata-
ble programs in the user area have completed operation.

Note: In the split screen environment, subset mode is not turned
off until all relocatable programs associated with both logical
screens have completed execution. A dialog may control the use of

Dialog functions that are invoked as commands via the following
SELECT keyword:

CMD(command)

may invoke MODULE files if CMS is not currently operating in sub-
set mode. If subset mode is on, any attempt to invoke or load a
MODULE file will result in a CMS return code of +1.

RESTRICTIONS ON USE OF GLOBAL COMMANDS

GLOBAL MACLIB commands are dynamically issued by SPF before
fetching members from the panel, message, table, and skeleton
libraries. GLOBAL TXTLIB and GLOBAL LOADLIB commands are dynam-
ically issued before invoking program-coded dialog functions. As
a result, GLOBAL commands issued by a dialog are not preserved
across the invocation of most SPF services.

Library Setup = VM Environment 37

ISPF _COMMAND

SPF is invoked using the ISPF command. (An SPF command may be
established as an alias of ISPF.) The command may be issued:

. By the user at a terminal, ,
. From a command procedure (CLIST or EXEC2), or
¢ During LOGON (from a TSO LOGON procedure or CMS PROFILE EXEC).

When the ISPF command is uséd to invoke the SPF program develop-
ment facility, no parameters are required. When it is used to
invoke another application, the PANEL, CMD, or PGM keyword must be
specified to indicate the first selection menu to be displayed or
" the first dialog function +to receive control. These three
keywords are mutually exclusive; only one may be specified.

Notation conventions for command syntax are described in the Pre-
face to this document.))

Format for invoking the SPF program development facility:

ISPF T[optionl
[TEST/TESTX/TRACE/TRACEX]

Format for invoking another application:

ISPF (PANEL(panel-name) [OPT(option)]
CMD(command)
PGM(program-name) [PARM(parameters)]
[TEST/TESTX/TRACE/TRACEX]

option

Specifies an initial option, which must be a valid option on
the first selection menu. This causes direct entry to that
option without displaying the menu. (The menu is processed in
nondisplay mode, as if the end user had entered the option.)

If an initial option is specified as a positional parameter,
it pertains to the primary option menu for the SPF program
development facility. If an initial option is specified via
the OPT keyword parameter, it pertains to the panel specified
by the PANEL keyword parameter.

panel-name
Specifiaes the name of the first selection menu (i.e., the pri-
mary option menu) to be displayed.

command
Specifies a'command procedure (CLIST or EXEC2) that is to be
‘invoked as the first dialog Tfunction. Command parameters may

38 SPF Dialog Management Services

be included within the parentheses. These parameters are
passed to the command procedure. A percent sign (%) may pre-
cede the CLIST or EXEC2 name to improve performance.

program—name

Specifies the name of a program that is to be invoked as the
first dialog function. If the program is coded in PL/I, it
must be a MAIN procedure.

In the MVS environment, this parameter must specify the name
of a load module that is accessible via the LINK macro.

In the VM environment, this parameter may specify the name of
a TEXT file, a member of a TXTLIB, or a member of a LOADLIB.
See "Library Setup - VM Environment™ for more information.

Note: Dialog devgloperg shoqld avoid the ISP prefix (tbe SPF
™

para

TEST

TEST

TRAC

TRAC

See

conventions, intended only for internal SPF use, are used to
invoke programs named "ISPxxxxx".

meters

Specifies input parameters to be passed to the program. The
program should not attempt to modify these parameters.

The parameters within the parentheses are passed as a single
character string, preceded by a halfword containing the
length of the character string, in binary. (The length value
does not include itself.) This convention is exactly the same
as if the parameters had been passed via a PARM= kevword on a
JCL EXEC statement.

Parameters passed from the ISPF command to a PL/I program may
be declared on the procedure statement in the standard way:

XXX: PROC (PARM) OPTIONS(MAIN);
DCL PARM CHAR (nnn) VAR;

If the value of the PARM field is to be used as an SPF dialog
variable, it must be assigned to a fixed character string
because the VDEFINE service cannot handle varying length PL/I
strings. The first character of the PARM field must be a

slash ('/') since PL/I assumes that any value prior to the
slash is a run-time option.

Specifies that SPF is to be operated in TEST mode.

X
Specifies that SPF is to be operated in extended TEST mode.

E
Specifies that SPF is to be operated in TRACE mode.

EX
Specifies that SPF is to be operated in extended TRACE mode.

Chapter 6 for a description of the various test and trace

modes.

ISPF Command 39

40 SPF Dialog Managemaent Services

CHAPTER 4. DESCRIPTION OF SERVICES

-

This chapter contains a description of syntax conventions and
return codes for the dialog services, followed by detailed
descriptions of each service.

INVOCATION OF SERVICES

Each service description shows the formats for command invocation
(used from a CLIST or EXEC2) and call invocation (used from a pro-
gram module). PL/I syntax is used to show the call formats.
Notation conventions are described in the preface of this docu-

Tment - -

COMMAND

INVOCATION

SPF services are invoked from a command procedure (CLIST or EXEC2)
via the ISPEXEC command. Under VM, the following statement must be
included in an EXEC2 procedure prior to issuing an ISPEXEC com-
mand:

&PRESUME &SUBCOMMAND ISPEXEC
A subsequent &PRESUME statement with no operands may be used to
cancel the subcommand environment for the purpose of issuing oth-
er VM commands.

General format for command invocation:

ISPEXEC service-name parameterl parameter2 ...

The "service-name" is an alphabetic string of up to eight charac-
ters. For some services, the first parameter following the serv-
ice name is a required positional parameter. Other services do
not use a positional parameter.

All other parameters are keyword parameters. They may take either
of two forms:

keyword
keyword(value)

Some kevword parameters are required and others are optional, as
indicated for each service. Keyword parameters may be coded in
any order. If conflicting keywords are coded, the last keyword is
used. Any preceding keyuwords with which it conflicts are ignored.

CLIST or EXEC2 variables, consisting of a name preceded by an
ampersand (&), may be used anywhere within the statement as the
service name or as a parameter. Each variable is replaced with
its current value prior to execution of the ISPEXEC command.

Caution: EXEC2 variables appearing within parentheses must be

followed by a blank, preceding the closing parenthesis. Example:

ISPEXEC DISPLAY PANEL(&PNAME)

Chapter 4. Description of Services 4l

42

Some SPF services allow the names of dialog variables to be passed

~ as parameters. These names should not be preceded with an amper-

sand unless substitution is desired. Examples:

ISPEXEC - VGET XYZ
ISPEXEC VGET &VNAME

In the first example, XYZ is the name of the dialog variable to be
passed. In the second example, variable VNAME gcontains the name
of the dialog variable to be passed.

Some services accept a list of variable names, passed as a single

parameter. For example, the syntax for the VGET service is:

ISPEXEC VGET name-list [SHARED/PROFiLE]

In this case, "name-list" is a positional parameter. It may con-
sist of a list of dialog variable names, enclosed in parentheses
and separated by commas or blanks. For command invocation, the
garen}heses may be omitted if there is only one name in the list.
xamples:

ISPEXEC VGET (AAA,BBB,CCC)
ISPEXEC VGET (LNAME FNAME I)
ISPEXEC VGET (XYZ)

ISPEXEC VGET XYZ

where the last two examples (with or without the parentheses) are
equivalent.

In other cases, a list of variable names may be passed as a
keyword parameter. For example, the syntax for the TBPUT service
is described as:

ISPEXEC TBPUT table~name [SAVE(name~list)l]

where the parentheses are required by the "keyword(value)”
gvntaﬁ. Again, the names may be separated by commas or blanks.
xamples:

ISPEXEC TBPUT TBLA SAVE(LNAME FNAME ID
ISPEXEC TBPUT XTABLE SAVE(XYZ2)

SPF Dialog Management Seryices

CALL INVOCATION

SPF services are invoked from programs by calling the ISPLINK
subroutine. Only a single task level is supported. Under MVS, a
dialog function may attach a lower level subtask, but the subtask
may not invoke SPF services.

General format for call invocation:

CALL ISPLINK (service-name, parameterl, parameter2 ... J;

The parameters are all positional; they must be coded in the order
described for each service. Optional parameters may be omitted in
a right-to-left dropout sequence.. Also, an optional character
string parameter (name or keyuword) may be coded as one or more

blanks to obtain the default value. This has the samz effectas -

omitting the parameter.

Standard register conventions are used. Registers 2-14 are pre-
served across the call.

Note: The last parameter in the calling sequence must be
indicated with a high-order "1Y bit in the last entry of the
address list. This high-order bit is automatically generated by
PL/I and COBOL call statements. It requires use of the VL keyword
in Assembler call statements.

Call statements are shown in PL/I systax. Service names and
keyword values are shouwn as literals, enclosed in apostrophes
('). Example:

CALL ISPLINK ('TBOPEN', table-name, 'NOWRITE');

where "table—name"™ must be supplied either as a literal or as a
variable containing the table name.

Some languages, such as COBOL, do not allow literals within a call
statement. Use of literals is never required; all parameters may
be specified as variables. PL/I example:

DECLARE SERVICE CHAR(8),
TABLE CHAR(8),
OPTION CHAR(3);

. -

SERVICE = 'TBOPEN';
TABLE = 'XTABLE';
OPTION = 'NOWRITE';

CALL ISPLINK (SERVICE, TABLE, OPTION);
An equivalent example in COBOL would be:

WORKING-STORAGE SECTION.

77 SERVICE PICTURE A(38).
77 TABLE PICTURE A(8).

77 OPTION PICTURE A(8).

. -

PROCEDURE DIVISION.
MOVE "TBOPEN™ TO SERVICE.
MOVE "XTABLE ™ 70 TABLE.
MOVE "NOWRITE"™ TO OPTION.
CALL "ISPLINK"™ USING SERVICE TABLE OPTION.

Invocation of Services 43

44

The following types of parameters may appear in a calling sequence
to ISPLINK:

. Service name or keyword. A left-justified character string
that must be coded as shown in the description of the partic-
ular service. The string may be up to 8 characters long. It
need not be delimited by a trailing blank.

. Single name. A left-justified character string. If the
string is less than the maximum length for the particular
parameter, it must have a trailing blank to delimit the end of
the string. The maximum length for most names is 8 characters.
The exceptions are data set name, volume serial, and fileid
(see description of EDIT and BROWSE services).

. Numeric value. A full word signed binary number.

. Name list - string format. A list of dialog variable names
coded as a character string. The string must start with a
left parenthesis and end with a right parenthesis. Within the
parentheses, the names may be separated with commas or
blanks. Example:

'(AAA BBB CCC)H!

Note: For call invocation, the parentheses must be present
even if there is only one name in the list.

L Name list - structure format. A list of dialog variable names
passed via a structure. The structure must contain the fol-
lowing information in the following order:

1. Count. Full word binary integer containing the number of
names in the list.

2. Reserved. Full word binary integer +that must contain
either 0 or 8.

3. List of names. Each element in the list must be an 8-byte
character string. Within each element, the name of the
variable must be left-justified with trailing blanks.

SPF Dialog Management Services

RETURN CODES FROM SERVICES

Each service returns a numeric code indicating the results of the
operation. For command invocation, the code is returned in the
CLIST variable LASTCC, or EXEC2 variable RETCODE. For call invo-
cation, the code is returned in register 15.

Programs coded in PL/I may examine the return code by using the
PLIRETV built-in function. The following declare statements are
required:

DECLARE ISPLINK EXTERNAL ENTRY OPTIONS(ASM RETCODE);
DECLARE PLIRETV BUILTIN;

Programs coded in COBOL may examine the return code by using the
RETURN-CODE built-in variable.

""The return codes are groupad-into-three-general-ecategories: ...
. Normal completion (code 0).

* Exception condition (codes 4 and 8). Indicates a condition
that is not necessarily an error, but that the dialog should
be aware of.

. Error condition (codes 12, 16, and 20). Indicates that the
service did not complete, or only partially completed, due to
errors.

The action taken in the case of errors (return code 12 or higher)
depends upon the current setting of error mode. There are two
error modes:

. CANCEL - Display and log a message. Then terminate the dialog
and redisplay the primary option menu.

U RETURN - Format an error message (but do not display or log
it). Then return to the function that invoked the service,
passing back the designated return code.

The dialog may set the error mode via the CONTROL service. The
~default mode is CANCEL. In CANCEL mode, control is not returned
to the function that invoked the service. Hence, the function
will never see a return code of 12 or higher, and need not include
logic to process these kinds of errors.

In RETURN mode, control will be returned to the function that
invoked the service. That function must then have logic to handle
return codes of 12 or higher.

The RETURN mode applies only to the function that set it via the
CONTROL service. If a lower level function is invoked, it starts
out in CANCEL mode. When a function returns to the higher level
function that invoked it, the mode in which the higher level func-
tion was operatvng is resumed.

In RETURN mode, an error message is formatted prior to returning
to the function. The message id is contained in system variable
ZERRMSG. The short and long message text (in which substitutable
variables have been resolved) is contained in system variables
ZERRSM and ZERRLM, respectively. If a corresponding help panel
was specified in the message definition, the name of the help pan-
el is contained in system variable ZERRHM.

The function may display and/or log the message, if desired, sim-
ply by 1nvok1ng the appropriate service with the message id con-
tained in ZERRMSG. Examples:

ISPEXEC DISPLAY MSG(&ZERRMSG)
ISPEXEC LOG MSG(&ZERRMSG)

Invocation of Services 45

DISPLAY SERVICES

DISPLAY - DISPLAY PANELS AND MESSAGES

46

The DISPLAY service reads a panel definition from the panel
library, initializes variable panel fields from the corresponding
dialog variables, and displays the panel on the screen. A message
may optionally be displayed with the panel.

After the end user presses ENTER or the End or Return PF key, user
inputs are stored into the corresponding dialog variables, and
the DISPLAY service returns to the calling function.

ISPEXEC DISPLAY [PANEL(panel-name)l
[MSG(msg-id)]
[CURSOR(field-name)ll

 CALL ISPLINK ('DISPLAY' [,panel~namel
[ymsg"i dl

[,field-namel J;

panel-name

Specifies the name of the panel to be displayved.

msg-id

Specifies the identification of a message to be displayed on
the panel. i

field-name

Specifies the name of the field where the cursor is to be
positioned.

All of the parameters are optional. The processing of the
panel-name and msg-id parameters is as follows:

. If panel-name is specified and msg-id is not specified, the
panel will be read from the panel library, initialized, and
displayed without a message.

. If panel-name and msg-id are both specified, the panel will be
read from the panel library, initialized, and displaved with
the specified message.

. If panel-name is not specified and msg-id is specified, the
current panel will be overlayed with a message, without any
initialization being performed on the panel.

. If neither panel-name nor msg—id is specified, the current
panel will be redisplayed, without a message and without any
initialization.

The field-name parameter may be used to control the initial posi-
tion of the cursor when the panel is displayed. However, the

SPF Dialog Management Services

field-name parameter may be overridden by initialization state-
ments in the panel definition. For more information on use of the
field-name parameter, see "Default Cursor Positioning” and "Proc-
essing Considerations” in Chapter 5.

The following return codes are possibla:

0 - Normal completion (ENTER key pressed, no user errors
detected).

8 = End or Refurn PF kev pressed.

12 - The specified panel, message, or cursor field could
not be found.

16 - Truncation or translation error in storing defined
variables.

.20 - Severe erro

ol 3 ML

Display Services 47

TBDISPL =-.DISPLAY TABLE INFORMATION

48

The TBDISPL service combines information from a panel definition
with information stored in an SPF table. It displays all rows
from the table, allowing the user to scroll the information up and
down, and select rows for processing.

The format of the display is specified via a panel definition,
which TBDISPL reads from the panel library. The panel definition
contains two input fields (command input and scroll field) and the
non-scrollable text, including column headings. It also contains
a "model” line that specifies the format of the scrollable data,
and additional information that specifies which columns from the
table are to be displaved. See the description of panel formats
for table display in Chapter 5.

Each line of scrollable data may have one or more input (unpro-
tected) fields, as well as output (protected) fields. The user
may modify the input fields, one line at a time, and may also
enter commands in the primary input field.

Before TBDISPL is invoked, the table to be displayed must be open,
and the CRP positioned to the row in the table that is to corre-
spond to the first line of the scrollable section of the display.
(CRP at TOP is valid; it is treated the same as if the CRP were
pointing to the first row.)

ISPEXEC TBDISPL table-name PANEL(panel-name)
[MSG(msg-id)]

CALL ISPLINK ('TBDISPL', table-name, panel-name
[,msg-idl]l J;

table-name

Specifies the name of the table from which the scrollable data
Wwill be obtained.

panel-name

Specifies the name of the panel to be displayed.

msg-id

Specifies the identification of a message to be displayed on
the panel.

TBDISPL allows the user to scroll the data up and down, and enter
primary commands and/or information in a line of scrollable data.
Once inputs have been entered, the TBDISPL service performs the
following functions:

1. The contents of the primary command field are stored into the
corresponding dialog variable.

2. If the user entered information into a line of scrollable data
and pressed ENTER or a scroll key, the CRP is positioned to
the corresponding row in the table and the row is retrieved
(all variables from that row are stored into the correspond-
ing dialog variables).

SPF. Dialog Management Services

5.

The information entered by the user on that 1line is then
stored into the corresponding dialog variables. This
includes all input fields in the line, which may or may not
correspond to variables in the table.

The row number that corresponds to the first line currently
displayed on the screen is stored into the system variable
ZTDTOP. (If desired, the dialog function may reposition the
CRP to that row before reinvoking TBDISPL, +to cause the
scrollable data to be positioned as the user last saw it.)

TBDISPL then returns to the dialoé function.

TBDISPL does not modify information in the table. The dialog
function may use the information entered by the user to determine
what processing is to be performed, and may modify the table
accordingly. i

- Fhe-fellewing-return-codas are possible:

0

12

20

Normal completion. The user has entered a command and/or
modified one line of the scrollable data, and has pressed
either ENTER or a scroll key. The CRP is set to the line
that was modified. If no line was modified (only a command
was entered), the CRP is set to TOP.

The user has attempted to modify more than one line (and
may alsc have entered a command). The first modified line
is processed in the normal fashion (variables stored, CRP
set to that line). Changes made to the other lines are
ignored. The TBDISPL service will not display an error
message in this case, but the dialog function may do so

if desired.

The user has pressed the End or Return PF key. If a
command was entered, it is stored. But if one or more
lines were modified, those variables are not stored.
The position of the CRP is unpredictable.

The specified panel or message could not be found or the
table was not open.

Severe error.

Display Services 49

TABLE SERVICES - GENERAL

TBCREATE - CREATE A NEW TABLE

50

" The TBCREATE service creates a new table in v1rtual storage, and

opens it for proceSSIng.,

TBCREATE allous speCIflcatlon of the variable names that corre-
spond to columns in the table.” These variables will be stored in
each row of the table. - Additional "extension™ variables may be
specified for a particular row when the row is written.

Ohe or more variables may be’ def\néd as keys for accessing the
table. If no keys are defined, only the current row pointer can be
used for update operations. .

The WRITE keyword (which is the default) indicates that the table
is permanent, to be stored on disk. The disk copy is not actually
created until the TBSAVE or TBCLOSE service is invoked.

The NOWRITE keyword indicates that the table is temporary. When
processing of a temporary table is ‘complete, it should be deleted
via the TBEND or TBCLOSE service.

ISPEXEC TBCREATE table-name [KEYS (key-name-list)]
 [NAMES(name-list)]
[WRITE/NOWRITE]
[REPLACE] ’

CALL ISPLINK ('TBCREATE', table-name [,key-name-listl]
~ [,name-list]
[, "WRITE/NOWRITE"']
[,"REPLACE']});

table-name

Specifies the name of the table to be created. The name may
be from one to eight alphameric characters in length, and must
begin with an alphabetic character.

key-name-list

Specifies the variables, by name, that are to be used as keys
for accessing the table. See section entitled "Invocation of
Services" for specification of name lists. If this parameter
is omitted, the table will not be accessible by keys.

name-list

Specifies the other (non-key) variables, by name, to be
stored in each row of the table. If this parameter is omit-
ted, each row can only contain extension variables that must
be specified when the row is written.

SPF Dialog Managemant Services

WRIT

NOWR

REPL

E

Specifies that the table is permanent, to be written to disk
via thae the TBSAVE or TBCLOSE service.

ITE

Spacifias tha{ fhe table is for temporary usage only.

ACE

Specifies that an existing table is to be replaced. If a
table of the same name is currently open, it is deleted from
virtual storage before the new table is created and return
code & is issued. If the WRITE parameter is also specified
and a duplicate table name exists in the table input library,

‘the table is created and return code 4 is issued. The dupli-

cate table s not deloted-fromthe-input-library. .

The following return codes are possible:

o -
4 -

12 -
16 -
20 -

Normal completion.

Normal completion -- duplicate table exists but REPLACE
was specified.

: Table already exisfs; REPLACE not specified.

Table in use; ENQ failed.
Table input library not allocated with WRITE specified.

Severe error.

Table Services - General 51

TBOPEN - OPEN A TABLE

The TBOPEN reads a permanént table fromcthe3tab1e input library
into virtual storage, and opens it for processing. TBOPEN should
not be issued for temporary tables.

The table input library, specified by ddname ISPTLIB; ‘must be
preallocated prior to invoking SPF. ISPTLIB may specify a concat-
enation of libraries. See library setup requirements in Chapter

.

An ENQ is issued to ensure that no other user is currently access-
ing the table. For the WRITE option, it is an exclusive ENQ which
remains in affect .until the table.is closed. For the NOWRITE
option, it is a shared ENQ which remains in affect only during the
time that the table is read into storage.

Note: The ENQ applies only to the specified table (member) in the
table input library == not to the entire library.

ISPEXEC TBOPEN table-name [WRITE/NOWRITE] .

CALL ISPLINK ('TBOPEN', table-name [,"WRITE'/'NOWRITE'] 3;

-table-name

Specifies the name of the table to be opened.

WRITE
Specifies that the table is being accessed for update. The
updated table may subsequently be saved on disk via the TBSAVE
or TBCLOSE service.

NOWRITE
Specifies read-only access. Upon completion of processing,
the virtual storage copy should be deleted via the TBEND or
TBCLOSE service.

The following return codes are possible:

0 - Normal completion.

8 = Table does not exist.

12 - Table in use; ENQ failed.

16 - Table input library not allocated.

20 - Severe error.

52 SPF Dialog Management Services

TBQUERY - OBTAIN TABLE INFORMATION

The TBQUERY service returns information about a specified table,
which must be open prior to invoking this service. The number of
key fields and their names, as well as the number of all other
columns and their names may be obtained. The number of rows and
the current row position may also be obtained.

All of the paramétérs e*cept:for table—-name are optional. If they
are all omitted, TBQUERY simply validates the existence of an open
table. (Return code 12 is issued if the table is not open.)

ISPEXEC TBQUERY table-name [KEYS(key-name)]
[NAMES(var-name)]
[ROWNUM(rownum—name)]
- LTKEYNUM(keynum-name)]

[INAMENUM(namenum—-name)]
[POSITION(crp-name)]

CALL ISPLINK ('TBQUERY', table-name [,key-namel
» ' ‘ [,var-namel
[,rownum-namel
[, keynum-namel
[,namenum-namel

[,crp-namel J;

table-name
Specifies the name of the table for which information is
desired.

key-name
Specifies the name of a variable into which will be stored a
list of key variable names contained in the table. The list
will be enclosed in parentheses, and the names within the list
will be separated by a blank.

var-name
Specifies the name of a variable into which will be stored a
list of non-key variable names contained in the table. The
list will be enclosed in parentheses, and the names within the
list will be separated by a blank.

rownum-name

Specifies the name of a variable into which will be stored the
number of rows contained in the table.

Table Services - General 53

54

keynum-name
Specifies the name of a variable into which will be stored the
number of key variables contained in‘thé tablei

namenum-néma . . ' o
Specifies the néme of a variable into which will be stored the
‘number of non-key variables contaihed in the table.

cEp-name
Specifies the name of a variable into which will be stored the

current row pointer (CRP) number for the table. If thae CRP is
positioned to TOP, the relative row number reaturned is zero.

Note: The parameters rownum-name, keynum-name, namenum-name, and
crp-name all specify the names of variables into which numeric
values will be stored. If these are defined variables (in a pro-
gram module), they may be either full word fixed variables or
charactar’string variables.

The following re{urn.codes are possible:

0 - Normal completion.

12 - Table is not open.

16 -~ Not all keys or names returned becéuse insufficient
space was provided.

20 - Severe error.

SPF Dialog Management Services

TBSAVE - SAVE TABLE

The TBSAVE service writes the specified table from virtual stor-
age to the table output library. The table output library must be
allocated to a ddname of ISPTABL before 1nvok1ng this service.
The table must be open in WRITE mode.

Optionally, the table can be stored under a different name in the
output library.

TBSAVE does not delete the virtual storage copy of the table; the
table is still open and available for further processing.

ISPEXEC TBSAVE table—-name [NEWCOPY/REPLCOPY]
[NAME(alt-name)]

[PAD(percentage)]

CALL ISPLINK ('TBSAVE', table—name, ['NEWCOPY/REPLCOPY']
[,alt-namel

[,percentagel);

table-name

Specifies the name of the table to be saved.

NEWCOPY

Specifies that the table is to be written at the end of the
output library, regardless of whether an update in place
would have been successful. This insures that the original
copy of the table is not destroyed before a replacement copy
has been written successfully.

REPLCOPY

Specifies that the table is to be rewritten in place in the
ocutput library. If the existing member is too small to com-
plete the update in place successfully, or if a member of the
same name does not exist in the library, the complete table
will be written at the end of the output library.

alt-name

Specifies an alternate name for the table. The table will be
stored in the output library with the alternate name. If
another table already exists in the ocutput library with that
name, it will be replaced. If the table being saved exists in
the output library with the original name, that copy will
remain unchanged.

percentage

Specifies the percentage of padding space, based on the total
size of the table. The padding is added to the total size of
the table only when the table is written as a new copy. This
parameter does not increase the table size when an update in
place is performed.

Table Services - General 55

Padding permits future updating in place, even when the table
has expanded in size. Should the table expand beyvond the pad-
ding space, the table is written at the end of the table out-
put library instead of updated in place.

This parameter’mUSt have ah_unsigned~integer.valde. For call
invocation, it must be a full word fixed binary integer.

The default Value for this parameter is zero.
Note: If both the NEWCOPY and REPLCOPY keyuwords are omitted, a
comparison is made between the virtual storage size of the table
and the external size in the table output library. If there is
insufficient storage to write the table in-place, it is written at
the end of the table output library.
The following return codes are possible:

0 - Normal completion,

12 - Table is not open.
16 - Table output library not allocated.
20 - Severe error.

56 SPF Dialog Management Services

TBCLOSE - CLOSE AND SAVE TABLE

The TBCLOSE service terminates processing of the specified table
and deletes the virtual storage copy, which is no longer available
for further processing.

If the table was opened in WRITE mode, TBCLOSE copies the table
from virtual storage to the table output library. In this case,
‘the table output library must be allocated to a ddname of ISPTABL
before invoking this service. Optionally, the table can be stored
under a different name in the output library. ‘

If the table was opened in NOWRITE mode, TBCLOSE simply deletes
the virtual storage copy.

[NAME(alt-name)l

[PAD(percentage)l]

CALL ISPLINK ('TBCLOSE', table-name [,"NEWCOPY/REPLCOPY']
[,alt-namel

[,percentagel]);

table-name

Specifies the name of the table to be closed.

NEWCOPY

Specifies that the table is to be written at the end of the
output library, regardless of whether an update in place
would have been successful. This insures that the original
copy of the table is not destroyed before a replacement copy
has been written successfully.

REPLCOPY

Specifies that the table is to be rewritten in place in the
output library. If the existing member is too small to com-
plete the update in place successfully, or if a member of the
same name does not exist in the library, the complete table
Will be written at the end of the output library.

alt-name

Specifies an alternate name for the table. The table will be
stored in the output library with the alternate name. If
another table already exists in the output library with that
name, it will be replaced. If the table being saved exists in
the output library with the original name, that copy will
remain unchanged.

parcentage
Specifies the percentage of padding space, based on the total

size of the table. The padding is added to the total size of
the table only when the table is written as a new copy. This

Table Services — General 57

ISPEXEC ~TBCLOSE ~table=name —LNEWCOPYAREPEEOPY I Lo

58

paramater does not increase the table size when an update in
place is performed.

Padding permits future updating in place, even when the table
has expanded in size. Should the table expand beyond the pad-
ding space, the table is written at the end of the table out-
put library instead of updated in place.

This parameter must have an unsigned integer value. For call
invocation, it must be a full word fixed binary integer.

The default value for this parameter is zero.
Note: If both the NEWCOPY and REPLCOPY keyuwords are omitted, a
comparison is made between the virtual storage size of the table
and the external size in the table output library. If there is
insufficient storage to write the table in-place, it is written at
the end of the table output library.
The following return codes are possible:
0 = Normal completion.
12 - Table is not open.

16 - Table output library not allocated.

20 - Severe error.

SPF Dialog Management Services

TBEND - CLOSE TABLE WITHOUT SAVING

The TBEND service deletes the virtual storage copy of the speci-
fied table, making it unavailable for further processing. The
permanent copy (if any) is not changed.

ISPEXEC TBEND table-name

CALL ISPLINK ('TBEND', table-name);

table~name

Specifies the name of the table to be ended.

The following return codes are possible:
80 - Normal completion.
12 - Table is not open.

20 — Severe error.

Table Services - General 59

TBERASE - ERASE A TABLE

60

The TBERASE: service deletes a table from the table output library.

- The table output library must be allocated to a ddname of ISPTABL

before invoking this service.

The table must nog be open in WRITE mode when this service is
invoked. o

ISPEXEC TBERASE table-name

CALL ISPLINK ('TBERASE', table-namel;

table-name

Specifies the name of the table to be erased.

The following\return codes are possible:

0 - Normal completion. |

8 =~ Table does not exist in the output library.
12 - Table in use; ENQ failed.

16

Table output library not allocated.

20 - Severe error.

SPF Dialog Management Services

JABLE SERVICES - ROW OPERATIONS

TBADD - ADD ROW TO TABLE

The TBADD service adds a new row of variables to a table.

For tables with keys, the table is searched to ensure that the new
row has a unique key. The current contents of the key variables
(dialog variables that correspond to keys in the table) are used
as the search argument.

For tables without kays, no duplicate checking is performed.
Regardless of whether the table has keys, the new row is added

immediately following the current row, pointed to by the CRP. The
- GRP--1s then set to point to the newly inserted rouw.

The current contents of all dialog variables that correspond to
columns in the table, including key variables, are saved in the
rouw.

Additional non-key variables may also be saved in the row. These
"oxtension™ variables apply only to this row; not the entire
table. The next time the row is updated, the extension variables
must be respecified if they are to be rewritten.

ISPEXEC TBADD table-name [SAVE(name-list)l

CALL ISPLINK ('TBADD', table-name [,name-listl] J;

table-name

Specifies the name of the table to be updated.

name-list
Specifies a list of extension variables, by name, that are to
be saved in the row, in addition to the variables specified
when the table was created. See section entitled "Invocation
of Services" for specification of name lists.

The following return codes are possible:

0 - Normal completion.

8 - Tables with keys: A row with the same key already
exists; CRP set to TOP.

12 - Table is not open.

20 - Severe error.

Table Services ~ Row 0Operations 61

TBDELETE - DELETE ROW FROM TABLE

The TBDELETE service deletes a row from a table.

For tables with keys, the table is searched for the row to be
deleted. The current contents of the key variables (dialog vari-
ables't?at‘correspond to keys in the table) are used as the search
argument.

For tables without keys, the row pointed to by the CRP is deleted.

The current row pointer is always updated to point to the row pri-
or to the one that was deleted.

ISPEXEC TBDELETE table-name

CALL ISPLINK ('TBDELETE', table-name);

table-name

Spacifies the name of the table to be updated.

The following return codes are possible:
0 - Normal completion.
8 - Tables with keys: Row specified by the value in key
variables does not exist; CRP set to TOP.
Non-keyed tables: CRP was at TOP and remains at TOP.
12 - Table is not open.

20 - Severe error.

62 SPF Dialog Management Services

TBGET - RETRIEVE ROW FROM TABLE

The TBGET service fetches a row from the table.

For tables with keys, the table is searched for the row to be
fetched. The current contents of the key variables (dialog vari-
ables tzat correspond to keys in the table) are used as the search
argument.

For tables without keys, the row pointed to by the CRP is fetched.
The CRP is always set to point to the row that was fetched.
All variables in the rouw, including keys and extension variables

(if any), are stored into the corresponding dialog variables. A
list of extension variable names may also be retrieved.

ISPEXEC TBGET table-name [SAVENAME(var-name)]

CALL ISPLINK ('TBGET', table-name [,var-namel);

table-name

Specifies the name of the table to be read.

var-name
Specifies the name of a variable into which will be stored a
list of extension variable names contained in the row. The
list will be enclosed in parentheses, and the names within the
list will be separated by a blank.

The following return codes are possible:

0 - Normal completion.

8 - Tables with keys: Row specified by the value in key
variables does not exist; CRP set to TOP.
Non-keyed tables: CRP was at TOP and remains at TOP.

12 - Table is not open.

16 - Variable value has been truncated or insufficient space
provided to return all extension variable names.

20 - Severe error.

Table Services - Row Operations 63

TBPUT - UPDATE ROW IN TABLE

64

zhelTBPUT service conditionally updates the current row of a
able.

For tables with keys, the current contents of the key variables
(dialog variables that correspond to keys.in the table) must match
the key of the current row, pointed to by the CRP. Otherwise, the
update is not performed.

VFor tables without keys, the row pointed to by the CRP is always.

updated.

If the update was successful, the CRP remains unchanged. It con-

tinues to point to the row that was updated. The current contents
of all dialog variables that correspond-to columns in the table,
including key variables, are saved in the rouw.

Additional non-key variables may also be saved in the row. These
"extension" variables apply only to this row; not the entire
table. The next time the row is updated, the extension variables

must be respecified if they are to be rewritten.

--ISPEXEC TBPUT table-name [SAVE(name-list)]

CALL ISPLINK ('TBPUT', table-name [,name-list]);

table-name

Specifies the name of the table to be updated.

name-list
Specifies a list of extension variables, by name, that are to
be saved in the row, in addition to the variables specified
when the table was created. See section entitled "Invocation
of Services" for specification of name lists.
The following return éodas ake possible:
0 - Normal completion.
8 =~ Tables with keys: The key does not match that of the
current row; CRP set to TOP.
Non-keyved tables: CRP was at TOP and remains at TOP.
12 - Table is not open. \

20 - Severe error..

SPF Dialog Management Services

TBMOD - MODIFY ROW IN TABLE

The TBMOD service unconditionally updates a row in a table.

For tables with keys, the table is searched for the row to be
updated. The current contents of the key variables (dialog vari-
ables that correspond to keys in the table) are used as the search
argument. If a match is found, the row is updated. If a match is
goélfound, a TBADD is performed, adding the row to the end of the
able. '

For tables without keys, TBMOD is equivalent to TBADD.

The CRP is always set to point to the row that was updated or
added.

The current contents of all dialog variables that correspond to
columns . in. the table, including key variables, are saved in the
row. I

Additional non—key variables may also be saved in the row. These
"axtension" variables apply only to this row; not the entire
table. The next time the row is updated, the extension variables
must be respecified if they are to be rewritten.

ISPEXEC TBMOD table-name [SAVE(name-list)]

CALL ISPLINK ('TBMOD', table-name [,name-list]);

table-name

Specifies the name of the table to be updated.

name-list

Specifies a list of extension variables, by name, that are to
be saved in the row, in addition to the variables specified
when the table was created. See section entitled "Invocation
of Services" for specification of name lists.

The following return codes are possible:

0 - Normal completion. Tables with keys: Existing row
updated. Non-keyed tables: Naw row added to table.

8 - Tables with keys: Keys did not match; new row added
to table.

12 - Table is not open.

20 - Severe error.

Table Services - Row Operations 65

TBEXIST - DETERMINE IF ROW EXISTS IN TABLE

The TBEXIST service tests for the existence of a specific row in a
table with keys.

The current contents of the key variables (dialog variables that
ggrrespond to keys in the table) are used to search the table for
@ row. .

This service is not valid for non-keyed tables and causes the CRP
to be set to the top.

ISPEXEC TBEXIST table-name

CALL ISPLINK ('TBEXIST', table-name);

table-name

Specifies the name of the table to be searched.

The following return codes are possible:
0 - Normal completion; CRP is positioned to specified rou.
8 =~ Tables with keys: Specified row does not exist; CRP

set to TOP.

Non-keyed tables: Service not possible; CRP set to TOP.
12 - Table is not open.

20 - Severe error.

66 SPF Dialog Management Services

TBSARG - DEFINE A SEARCH ARGUMENT

" The TBSARG service establishes a search argument for scanning a
table via the TBSCAN service.

The search argument is specified via dialog variables that corre-
spond to columns in the table, including key variables. A value
of null for one of the dialog variables means that the correspond-
ing table variable is not to be examined during the search.

Extension variables may be included in the search argument by
specifying their names via the name-list parameter. The values of
these variables will become part of the search argument. A null
value in an extension variable is a valid search argument and
requires a corresponding null variable in the matching rou.

A search argument of the form AAA¥ means that only the characters
up—to—the X" are-compared.

Note: In a CLIST, the following technique may be used to set a
variable to a literal value that ends with an asterisk:

SET &X = AAA&STR(¥%)
The position of the CRP is not affected by the TBSARG service.

TBSARG replaces all previously set search arguments for the spec-
ified table.

ISPEXEC TBSARG table-name [ARGLIST(name-list)]

CALL ISPLINK ('TBSARG', table-name [,name-listl]);

table—-name
Specifies the name of the table for which an argument is to be
established.

name—-list
Specifies a list of extension variables, by name, whose val-
ues are to be used as part of the search argument. See
section entitled "Invocation of Services" for specification
of name lists.

The following return codes are possible:

0 - Normal completion.

8 - All column variables are null and the name-list parameter
was not specified; no argument established.

12 - Tabhle is not open.

20 - Severe error.

Table Services - Row Operations 67

TBSCAN - SEARCH TABLE

68

The TBSCAN service searches a table for a row with values that
match an argument list. The argument list may be established via
the TBSARG service, or specified in the name-list for TBSCAN.

The search is always in a forward direction, starting with the row
after the current row, and continuing to the end of the table. If
a match is found, the row is retrieved and the CRP is set to that
réw. All variables in the row, including keys and extension vari-
ables (if any), are stored into the corresponding dialog vari-
ables. A list of extension variable names may also be retrieved.

Use of the name-list parameter is optional. If specified, it
overrides the search argument set by the TBSARG service for this
search only. The values of all variables specified in the
name-list parameter will become part of the search argument. A
value of the form AAAX means that only the characters up to the
"%¥" are compared (see note in TBSARG description). A null value
requires a corresponding null value in the matching rouw.

If the name-list parameter is omitted, a search argument must have
been established by a previous TBSARG command. Otherwise, a
savere error occurs.

ISPEXEC TBSCAN table-name [ARGLIST(name-list)]
[SAVENAME(var-name)l]

CALL ISPLINK ('TBSCAN', table-name [,name-listl

[,var-namel);

table-name

Specifies the name of the table to be searched.

name-list
Specifies a list of variables, by name, whose values are to be
used as the search argument. See section entitled "Invoca-
tion of Services" for specification of name lists.

var-name
Specifies the name of a variable into which will be stored a
list of extension variable names contained in the row. The
list will be enclosed in parentheses, and the names within the
list will be separated by a blank.

The following return codes are possible:

0 - Normal completion.

8 =~ Row does not exist, no match found; CRP set to TOP.

12 - Table is not open.

16 - Variable value has been truncated or insufficient space
provided to return all extension variable names.

20 - Severe error.

SPF Dialog Management Services

TBTOP - SET ROW POINTER TO TOP

'The TBTOP service sets the CRP to the top of a table, ahead of the
first rouw.

ISPEXEC TBTOP table-name

CALL ISPLINK ('TBTOP', table-name);

table-name

Specifies the name of the table to be used.

The following return codes are possible:
0 - Normal completion.
12 - Table is not open.

20 - Severe error.

Table Services - Row Operations 69

TBBOTTOM - SET ROW POINTER TO BOTTOM

70

The TBBOTTOM service sets the CRP to the last row of a table; and
retrieves the rouw.

All variables in the row, including keys and extension variables

(if any), are stored into the corresponding dialog variables. A

list of extension variabla names may also be retrieved.

ISPEXEC TBBOTTOM table-name [SAVENAME(var-name)l

CALL ISPLINK ('TBBOTTOM', table-name [,var-namel);

table-name

Specifies the name of the table to be used.

var-name
Specifies the name of a variable into which will be stored a
list of extension variable names contained in the row. The
list will be enclosed in parentheses, and the names within the
list will be separated by a blank.

The following return codes are possible:

0 - Normal completion.

8 - Table is empty; CRP set to TOP.

12 - Tabhle is not open.

16 - Variable value has been truncated or insufficient space
provided to return all extension variable names.

20 - Severe error.

SPF Dialog Management Services

TBSKIP - MOVE THE ROW POINTER

The TBSKIP service moves the CRP of table forward or backward by a
specified number of rows, and then retrieves the row to which it
is pointing.

All variables in the row, including keys and extension variables
(if any), are stored into the corresponding dialog variables. A
list of extension variable names may also be retrieved.

ISPEXEC TBSKIP table-name [NUMBER(number)]
[SAVENAME(var-name)l

CALL ISPLINK ('TBSKIP', table-name [,numberl

[,var-namel J;

table-name

Specifies the name of the table to be used.

number

Specifies the direction and number of rows to move the CRP.
This parameter must be a positive or negative integer. A pos-
itive integer moves the CRP toward the bottom of the table; a
negative integer moves it toward the top. Zero is an allow-
able value that results in retrieving the current rou.

For call invocation, this parameter must be a full word fixed
binary number.

If this parameter is omitted, the default value is 1.

var-name

Specifies the name of a variable into which will be stored a
list of extension variable names contained in the row. The
list will be enclosed in parentheses, and the names within the
list will be separated by a blank.

The following return codes are possible:

!
8

12
16

20

Normal completion.

CRP would have gone beyond limit of table; CRP set to
T0P.

Table is not open.

Variable value has been truncated or insufficient space
providad to return all extension variable names.

Severe error.

Table Services - Row Operations 71

TBYCLEAR - CLEAR VARIABLES

72

The TBVCLEAR service sets dialog variables to nulls.

All dialog variables fhat corraspond to columns in the table
(specified when the table was created) are cleared. This includes
key variables. :

The contents of the table are nof changed by this service, nor is
the position of the CRP.

ISPEXEC TBVCLEAR table-name

CALL ISPLINK ('TBVCLEAR', table~name);

table-name

Specifies the name of the table to be used.

The following return codes»are possible:
0 - Normal completion.
12 - Table is not open.

20 - Severe error.

SPF Dialog Management Services

F

E _TATILORING VICES

FTOPEN - BEGIN FILE TAILORING

Iibrary-or-a-sequential-files

The FTOPEN service begins the file tailoring process. It allows
skeleton files to be accessed from the skeleton library, speci-
fied by ddname ISPSLIB.

The skeleton library must be preallocated prior to invoking SPF.
ISPSLIB may specify a concatenation of libraries. See library
setup requirements in Chapter 3.

If output from file tailoring is not to be placed in a temporary
file, the desired output file must be allocated to ddname ISPFILE
prior to invoking this service. ISPFILE may designate either a

ISPEXEC FTOPEN [TEMP]

CALL ISPLINK ('FTOPEN' [,'TEMP'I);

TEMP
Specifies that the output of the file tailoring process
should be placed in a temporary sequential file. The file is
automatically allocated by SPF. Its name is available in sys-
tem variable ZTEMPF.
In the MVS environment, ZTEMPF contains a fully qualified
data set name. Generated JCL in this file may be submitted
for background execution via the following TS0 command:

SUBMIT &ZTEMPF
In the VM environment, the temporary file is written to the
user's A-disk. The SPF-generated file name is contained in
ZTEMPF. The file type is always ISPTEMP. Data in this file
may be punched to another virtual machine via the following
CMS command:
PUNCH &ZTEMPF ISPTEMP

If this parameter is omitted, the output will be placed in the
library or sequential file designated by ddname ISPFILE.

The following return codes are possible:

0 - Normal completion.

8 = File tailoring already in progress.

12 - Output file in use; ENQ failed.

16 - Skeleton library and/or output file not allocated.

20 - Severe error.

File Tailoring Services 73

FTINCL - INCLUDE SKELETON

The FTINCL service specxfles the name of the skeleton (member of
the skeleton library) that is to be used to produce the file tai-
loring output.

The optional parameter NOFT indicates that no tailoring is to be
performed, i.e., the entire skeleton is to be copied to the output
file exactly as—-is with no variable substitution nor interpreta-
tion of control records.

See Chapter 5 fof the skeleton formats.

ISPEXEC FTINCL skel-name [NOFT]

CALL ISPLINK ('FTINCL', skel-name [,"NOFT']);

skel-name

Specifies the name of the skeleton.

NOFT
igﬁcvfies that no tailoring is to be performed on the skele-
The following retufn codes are possible:
0 - Normal completion.
8 =~ Skeleton does not exist.
12 - Skeleton or table in use; ENQ failed.

16 - Data truncation occurred; or skeleton lxbrary and/or
output file not allocated.

20 - Severe error.

74 SPF Dialog Management Services

FTCLOSE - END FILE TAILORING

The FTCLOSE service is used to indicate the final disposition of
the file tailoring output, and to terminate the file tailoring
process. : :

A member-name parameter should be specified if the output file is

a library. The file tailoring output will be given the specified

member name. No error condition results if the member—-name param-

ﬁtgr is not specified, but the output is not stored in the
ibrary.

If the member-name parameter is specified and the output file is
sequential, a severe error results.

ISPEXEC FTCLOSE [NAME(member-name)]

CALL ISPLINK ('FTCLOSE' [,member-namel);

member—name
Specifies the name of the member in the output library that is
to contain the file tailoring output.

The following return codes are possible:

0 - Normal completion.

8 =~ File not open (FTOPEN was not used prior to FTCLOSE).

12 - Output file in use; ENQ failed.

20 - Severe error.

File Tailoring Services 75

FTERASE - ERASE FILE TAILORING OUTPUT

76

_The FTERASE service erases (deletes) a member of the file tailor-

ing output library. The library must be allocated to a ddname of
ISPFILE prior to invoking this service.

A severe error results if ISPFILE is allocated to a sequential

. file.

ISPEXEC FTERASE member-name

CALL ISPLINK ('FTERASE', member-name);

member-name
Specifies the name of the member that is to be deleted from
the output library.

The following return codes are possible:

0 - Normal completion.

8 - Member does not exist.

12 - Qutput library in use; ENQ failed.

16 - OQutput library not allocated.

20 - Severe error.

SPF Dialog Management Services

VARIABLE SERVICES

VGET - RETRIEVE VARIABLES FROM POOL OR PROFILE

The VGET service copies values from the shared variable pool or
the user profile to the set of function variables. If a function
variable of the same name already exists, it will be updated. If
not, it will be created.

ISPEXEC VGET name-list [SHARED/PROFILE]

CALL ISPLINK ('VGET', name-list L[, 'SHARED'/'PROFILEYI Y; |

name-list
Specifies the names of one or more variables to be copied.

See section entitled "Invocation of Services" for specifica-
tion of name lists.

SHARED

Specifies that the variables are to be copied from the shared
variable pool.

PROFILE
Specifies that the variables are to be copied from the user
profile.

The following return codes are possible:

0 - Normal completion.

16 - Translation error or truncation has occurred
during data movement.

20 - Severe error.

Variable Services 77

VPUT - UPDATE VARIABLES IN POOL OR PROFILE

78

The VPUT service copies values from the set of function variables
to the shared variable pool or to the user profile.

The search order for the variables to be copied is the defined
function variables (if any), followed by the implicit function
variables (if any), followed by the shared variable pool. If a
variable is not found, its value is assumed to be null.

If a variable of the same name already exists in the shared vari-.
able pool or the profile, it will be updated. If not, it will be
created.

ISPEXEC VPUT name-list [SHARED/PROFILE]

CALL ISPLINK ('VPUT', name-list [,'SHARED'/'PROFILE']);

name-list
Specifies the names of one or more véfiables‘to be copied.

See section entitled “Invocation of Services" for speciTtica~-
tion of name lists.

SHARED
Specifies that the variables are to be copied to the shared
variable pool.

PROFILE
ipfcifies that the variables are to be copied to the user pro-

ile.
The following return codes are possible:
0 - Normal completion.

16 = Truncation has occurred while copying variables to
the user profile.

20 - Severe error.

SPF Diélog Management Services

VDEFINE - DEFINE FUNCTION VARIABLES

The VDEFINE service gives SPF addressiblity to one or more vari-
ables within a program module. The format (character string,
fixed binary, bit string, or hex) and length must alsoc be defined.

If more than one variable is defined, they must all have the same
format and length, and must be located in contiguous storage
starting at the specified address. In other words, it must be an
array of variables.

CALL ISPLINK ('VDEFINE', name-list, variable,

format, length);

name-list

Specifies the symbolic names to be used by SPF when referenc-
ing these variables.

Note: If only one name is specified, it must still be enclosed
in parentheses. See section entitled "Invocation of Serv-
ices™ for specification of name lists.

variable

Specifies the variable (within the program-addressable stor-
age) being defined. This parameter must specify an array of
variables if more than one name was specified in the name-list
parameter. The number of names in the list determines the
dimension of the array.

format

Specifies the format of the data as stored in the module.
This is a keyword parameter, which must be one of the follow-
ing:

CHAR Character string. MWithin the variable, the data is
left-justified and padded on the right with blanks.

No data conversion is performed on fetching and stor-
ing a CHAR variable, nor is there any checking for val-
id characters.

FIXED Fixed binary integer, represented externally by the
- characters 0-9.

Fixed variables that have a length of 4 bytes (full
word) are treated as signed, represented externally by
the absence or presence of a leading minus sign (-).
They may also have a null value, which is stored as the
maximum negative number (X'80000000').

Fixed variables that have a length less than 4 bytes
are treated as unsigned. For these variables, a null
value is stored as binary zeros, and cannot be distin-
guished from a zero value.

BIT Bit string, represented externally by the characters 0

< or 1. Within the variable, the data is left-justified
and padded on the right with binary zeros.

Variable Services 79

80

HEX Bit string, represented externally by the characters
0-9, A-F. MWithin the variable, the data is
left-justified and padded on the right with binary
zeros. °

The default is CHAR if this parameter is coded as blank.

Note: In PL/I, a character string to be used as a dialog

variable must be declared as fixed length, because VDEFINE

cannot handle varying length PL/I strings.
length

Specifies the length of the variable storage, in bytes. The

maximum length for a FIXED variable is 4% bytes. The maximum

length for other types of variables is 32,767 bytes.

Note: This parameter must be a full word binary integer.

The following return codes are possible:
0 - Normal completion.

20 - Severe error.

SPF Dialog Management Services

VDELETE - REMOVE DEFINITION OF FUNCTION VARIABLES

The VDELETE service removes SPF addressibility to previously
defined variables within a program module. This service is the
opposite of VDEFINE.

CALL ISPLINK ('VDELETE', name-list);

name-list

Specifies the symbolic names from which addressability by SPF
is to be removed.

Note: If only one name is specified, it must still be enclosed
in parentheses. See section entitled "Invocation of Serv-
ices"™ for specification of name lists.

The following return codes are possible:

0 - Normal completion.

8 = At least one variable not found.

20 - Severe error.

‘Variable Services 81

VCOPY - CREATE COPY OF VARIABLE

82

The VCOPY service allows a program module to obtain a copy of a
dialog variable. The copied data is in character string format,
and may be accessed in either "locate™ or "move" mode.

In locate mode, the VCOPY service will automatically allocate

_storage for the data, and return the address and length to the

caller. In move mode, the caller first allocates storage for the
data, and then invokes VCOPY, passing the address and length of
the storage area into which the data is to be copied.

As with other SPF services, the search for the variable starts
with the current function's defined area, followed by the func-
tion's implicit area, followed by the shared variable pool. If a
vagiabéasof the specified name is not found, VCOPY issues a return
code o .

CALL ISPLINK ('VCOPY', var-name, length, variable
[,"LOCATE'/'MOVE"']);

var-name

Specifies the name of the variable to be copied.

length
Specifies the length of the data. This is a full word binary
variable. In move mode, it must be initialized by the caller
to specify the size of the storage area into which the data is
to be copied. In either locate or move mode, this variable is
set by the VCOPY service to the number of bytes of data.

variable
Specifies the variable to receive the data. In locate mode,
this must be a full word address variable. It is set by the
VCOPY service, and points to the copy of the data. In move
gode, this is a character string variable that receives the
ata.

LOCATE

Specifies that the variable is to be accessed in locate mode.

MOVE

Specifies that the variable is to be accessed in move mode.

The following return codes are possible:

0 - Normal completion.
8 - Variable does not exist.
16 - Truncation has occurred during data movement

(move mode only).

20 - Severe error.

SPF Dialog Management Services

VREPLACE - REPLACE VARIABLE

The VREPLACE service allows a program module to update a variable
from a copy (previously obtained via VCOPY) or from any internal
variable. The data must be in character string format.

The data to be copied is not modified. The variable to be updated
is the function's ouwn defined variable (if it exists) or an
implicit variable associated with the function. If the named var-
iab}eb?oes not exist, it will be created as an implicit function
variable.

CALL ISPLINK ('VREPLACE', var-name, length, value);

var—hame

Specifies the name of the variable to be updated.

length
Specifies the curent length of the data. This is a full word
binary integer.

value
Specifies the value of the data. This is a character string
variable that contains the data.

The following return codes are possible:

0 - Normal completion.

16 - Truncation has occurred during data movement.

20 - Severe error.

Variable Services 83

VRESET - RESET FUNCTION VARIABLES

The VRESET service allows a program module to reset. its function
.variables.

Any defined variables are removed from addressability by SPF (as
if VDELETEs had been done) and any implicit variables are deleted.
The function variables are then in the same state as when a func-
tion first receives control.

CALL ISPLINK ('VRESET');

The following return codes are possibla:
0 - Normal completion.

20 - Severe error.

84 SPF Dialog Management Services

OTHER SERVICES

SELECT - SELECT PANEL OR FUNCTION

The SELECT service may be used to display a hierarchy of selection
menus, or invoke a function.

ISPEXEC SELECT PANEL(panel-name) [OPT(option)]
CMD(command)
PGM(program-name) [PARM(parameters)]]
[MEWARPL/NEWPOOL]

CALL ISPLINK ('SELECT', buf-length, buffer);

panel-name

Specifies the name of a selection menu to be displayved.

option

Specifies an initial option, which must be a valid option on
the menu specified by panel-name. This causes direct entry to
that option without displaying the menu. (The menu is proc-—
es:gd i? nondisplay mode, as if the end user had entered the
option.

command

Specifies a command procedure (CLIST or EXEC2), or any TSO or
CMS command that is to be invoked as a dialog function. Com-
mand parameters may be included within the parentheses. A
percent (%) sign may precede the name of a command procedure
(CLIST or EXEC2) to improve performance.

Note: Under TS0, ordinary commands (command processors) are
invoked via the ATTACH macro and may not issue SPF dialog
services.

program-name

Specifies the name of a program that is to be invoked as a
dialog function. If the program is coded in PL/I, it must be
a MAIN procedure.

In the MVS environment, this parameter must specify the name
of a load module that is accessible via the LINK macro.

In the ¥M environment, this parameter may specify the name of
a TEXT file, a member of a TXTLIB, or a member of a LOADLIB.
See "Library Setup - VM Environment"™ for more information.

Note: Dialog developers should avoid the ISP prefix (the SPF
component code) in naming dialog functions., Special linkage
conventions, intended only for internal SPF use, are used to
invoke programs named "ISPxxxxx".

0ther Services 85

86

parameters

Specifies input parameters to be passed to the program. The
program should not attempt to modify these parameters.

The parameters within the parentheses are passed as a single
character string, preceded by a halfword containing the
length of the character string, in binary. (The length value

~does not include itself.) This convention is exactly the same

as if the parameters had been passed via a PARM= keyword on a
JCL EXEC statement.

Parameters passed from the SELECT service to a PL/I program
may be declared on thg procedure statement in the standard

 Way:

XXX: PROC (PARM)> OPTIONS(MAIN);
. - DCL PARM CHAR (nnn) VAR;

If the value of the PARM field is to be used as an SPF dialog
variable, it must be assngned to a fixed character string,
because the VDEFINE service cannot handle varying length PL/I
strings. The first character of the PARM field must be a
slash ('/'), because PL/I assumes that any value prior to the
slash is a run-time option.

NEWAPPL

Specifies that a new application is being invoked. The next
selection menu to be displayved is treated as the primary
option menu for the new application. Subsequent use of the
Return PF key will cause this menu to be redisplayed.

The "next selection menu” 1is the one specified by the
panel-name parameter in this invocation of SELECT. If the

_ panel-name parameter is not specified, the first invocation

of SELECT (from the new application) in which a panel-name
parameter is specified Wwill be used to determine the primary
option menu for the application.

A new shared variable pool is also created for the new appli-
cation.

NEWPOOL

Specifies that a new shared variable pool is to be created
without specifying a new application. Upon return from the
SELECT service, the current shared variable pool will be
reinstated.

Note: The only difference between NEWPOOL and NEWAPPL -
concerns the use of the Return PF key. If the next selection
menu is to be treated as a primary option menu on which the
Return PF key will stop, NEWAPPL should be specified. O0Other-
wise, NEWPOOL should be specified.

buf-length

Specifies the length of a buffer containing the selection
keywords. This parameter must be a full word binary integer.

buffer

Specifies a buffer containing the selection kevwords. This
is a character string parameter. The selection keywords in
the buffer are specified exactly as they would be coded for
the ISPEXEC command. Example:

BUFNAME = 'PANELC(ABC) OPT(9) NEWAPPL';

SPF Dialog Manqgement Services

In the above example, it is assumed that BUFNAME is the name
of the buffer. The apostrophes are part of the syntax of the
?k/llissignment statement. They are not stored in the buffer
itself.

If a command or program is invoked via SELECT, the return code

from
invo
sale

0 -

12 -

S

20 -

the command or program is passed back to the function that
ked SELECT. The following return codes are possible if a
ction menu (panel) is specified:

Normal Completion. End PF key pressed from the
saelected menu.

Normal Complation. Return PF key pressed from the
saelected menu or from some lower level panel.

The specified panel could not be found.

~Truncation error—in-storing—the-0PT-or--SEt-variable. -

Severe Error.

Other Services 87

CONTROL - SET PROCESSING MODES

88

‘The CONTROL service defines certain processing options for the
dlalog environment. The processing options control two areas:
the display screen and error processing.

ISPEXEC CONTROL (DISPLAY (LINE [START(line-number)] R
'] sM [START(line-number)] s

REFRESH
3 NONDISPL [ENTER/ENDI] e
ERRORS [CANCEL/RETURN]
SPLIT { ENABLE }
. DISABLE J

CALL ISPLINK ('CONTROL', type [,model

[,line-numberl] J;

For call invocation: ,
tvpe may be 'DISPLAY', 'NONDISPL', 'ERRORS', or 'SPLIT®
mode may be 'LINE', 'SM', or 'REFRESH' for type 'DISPLAY'

"ENTER' or 'END' for type 'NONDISPL'
YCANCEL' or 'RETURN' for type 'ERRORS'
YENABLE' or 'DISABLE' for type 'SPLIT?

DISPLAY

Specifies that a display mode is to be set. The valid modes
are LINE, SM, and REFRESH. LINE and SM are in effect until
the next display of an SPF panel. REFRESH occurs on the next
display of an SPF panel. i

LINE

Specifies that terminal line-mode output 15 expected. The
screen will be completely rewritten on the next SPF
full-screen write operation, after the line(s) have been
written.

line~number

In the MVS environment, this parameter specifies the line
number on the screen where the line-mode output is to begin.
(The first line on the screen is line number 1.) The screen
is erased from this line position to the bottom. If this
parameter is omitted or coded as zero, the value defaults to
the end of the body of the currently displayed panel.

SPF Dialog Management Services

The ljne-numper parameter must have an integer value. For
call invocation, it must be a full word binary integer.

This parameter is meaningful only when entaring line mode. It
may be specified with the SM keyword, since SM reverts to LINE
ifT the Session Manager is not installed.

In the VM environment, this parameter is ignored. Line mode
output is always displayed starting at the top of a blank
screen.

SM
Specifies that the TS0 Session Manager should take control of
the screen when the next line-mode output is issued. If the
Session Manager is not installed, the SM keyword is treated
the same as LINE.

REFRESH
Specifies that the entire screen image should be rewritten
when the next SPF-generated full-screen write is issued to
the terminal.

NONDISPL
Specifies that no display output is to be issued to the termi-
nal when processing the next panel definition. This option is
in effect only for the next panel; after that, normal display
mode is resumed. The ENTER or END keywords specify the user
rasponse that should be simulated for this panel.

ENTER
Specifies that the ENTER key is to be simulated as the user
response to the NONDISPL processing for the next panel.

END
Specifies that the End PF key is to be simulated as the user
response to the NONDISPL processing for the next panel.

ERRORS
Specifies that an error mode is to be set. The valid modes
are CANCEL and RETURN. If the RETURN mode is set, it applies
only to the function that set it via this service.

CANCEL
Specifies that the dialog should be terminated on an error (a
return code of 12 or higher from any service). A message will
be written to the SPF log file and a panel will be displayed
to describe the particular error situation.

RETURN

Specifies that control should be returned to the dialog on an
error. The system variable ZERRMSG will contain the message
id for a message that describes the error. The message will
not be written to the SPF log file, nhor will an error panel be
displayed.

Other Services 89

90

SPLIT

Specifies that the user's ability to enter split screen mode
should be enabled or disabled.

Split screen mode is normally enabled. It is disabled only if
explicitly requested via the CONTROL service. It remains
disabled until explicitly enabled via the CONTROL service.
The ability to diséble split screen mode is available only in
the VM environmment. If the SPLIT parameter is specified in
the MVS environment, a severe error (return code 20) will
result.

ENABLE
Specifies that the user should be allowed to enter split
screen mode. Pertains to the VM environment only.

DISABLE
Specifies that the user's ability to enter split screen mode
should be disabled, until explicitly enabled via the CONTROL
service. If the user is already in split screen mode, a
return code of 8 is issued and split screen remains enabled.

Pertains to the VM environment only.

The following return codes are posssible:
0 - Normal completion.

8 =~ Split screen mode already in effect (applies only to a
SPLIT DISABLE request); split screen remains enabled.

20 - Severe error.

SPF Dialog Management Services

BROWSE - DISPLAY DATA SET OR FILE

The BROMWSE service provides an interface to the SPF browse pro-
aram, bypassing display of the brouwse entry panel. See SPE
Program Reference for a description of browse.

Syntax for use in an MVS environment:

ISPEXEC BROWSE DATASET(dsname) [VOLUME(serial)l
[PASSWORD(pswd-value)l

CALL ISPLINK ('BROWSE', dsname [,seriall

[,pswd-valuel J);

Syntax for use in a VM environment:

ISPEXEC BROWSE FILE(fileid) [MEMBER(member-name)l]

CALL ISPLINK ('BROWSE', fileid [,member-namel);

dsname

Specifies the name of the data set, in TS0 syntax, to be
browsed. A fully qualified data set name may be specified,
enclosed in apostrophes. If the apostrophes are omitted, the
TS0 user prefix will be automatically left-appended to the
data set name.

For partitioned data sets, a member name may be specified,
enclosed in parentheses. If a member name is not specified, a
member selection list will be displayed.

The maximum length of the dsname parameter is 56 characters.

sarial
Specifies the volume serial on which the data set resides. If
this parameter is omitted or coded as blank, the system cata-
log will be searched for the data set name.

The maximum length of the serial parameter is 6 characters.

pswd-value
Specifies the password if the data set has 0S5 password pro-

tection. (The passuword is not specified for RACF or PCF pro-
tected data sets.)

Other Services 91

92

fileid

Specifies the fileid, in CMS syntax, to be browsed. The
fileid consists of a filename, filetype, and (optionally)
filemode, separated by one or more blanks. For call invoca-
tion of the browse saervice, the fileid must be enclosed in
parentheses. That is, fileid is one calling sequence parame-
ter consisting of a character string that starts with a left
parenthesis and ends with a right parenthesis.

The maximum length of the fileid parametér (including the
parentheses for call invocation) is 22 characters.

member-name

Specifies the member to be browsed for a MACLIB or TXTLIB (ig-
nored for other file types). If member name is not specified,
a member selection list for the MACLIB or TXTLIB will be dis~

played.

The following return codes are possible:

0

- Normal completion.

20 - Severe error.

SPF Dialog Management Services

EDIT - EDIT DATA SET OR FILE

The EDIT service provides an interface to the SPF editor, bypass-—
ing display of the edit entry panel. See SPF Program Reference
for a description of the editor.

Syntax for use in an MVS environment:

ISPEXEC EDIT DATASET(dsname) [VOLUME(serial)l
k [PASSWORD(pswd-value)l

CALL ISPLINK .(YEDIT', dsname [,seriall

[,pswd-valuel);

Syntax for use in a VM environment:

ISPEXEC EDIT FILE(fileid) [MEMBER(member-name)]

CALL ISPLINK ('EDIT', fileid [,member-namel);

dsname

Specifies the name of the data set, in TS0 syntax, to be edit-
ed. A fully qualified data set name may be specified, enclosed
in apostrophes. If the apostrophes are omitted, the TS0 user
prefix will be automatically left-appended to the data set
name.

For partitioned data sets, a member name may be specified,
enclosed in parentheses. If a member name is not specified, a
member selection list will be displaved.

The maximum length of the dsname parameter is 56 characters.

serial
Specifies the volume serial on which the data set resides. If
this parameter is omitted or coded as blank, the system cata-
log will be searched for the data set name.

The maximum length of the serial parameter is 6 characters.

pswd-value
Specifies the password if the data set has 0S5 password pro-

tection. (The password is not specified for RACF or PCF pro-
tected data sets.)

Other Services 93

94

fileid

Specifies the fileid, in CMS syntax, to be edited. The fileid
consists of a filename, filetype, and (optionally) filemode,
separated by one or more blanks. TFor call invocation of the
edit service, the fileid must be enclosed in parentheses.
That is, fileid is one calling sequence parameter consisting
of a character string that starts with a left parentheSls and
ends with a right parenthesis.

The maximum length of the fileid parameter (including the
parentheses for call invocation) is 22 characters.

Note: The EDIT service is intended for use wWith existing
files. In the VM environment, if fileid specifies a
non-existent file, the user will be able to create a new file.
However, the file characteristics (record format and logical
record length) may be unpredictable. They will be whatever
was saved in the last-used edit profile for the specified file
type. If the user has no edit profile for this file type, the
characteristics of the new file will be fixed 80.

member-name '
Specifies the member to be edited for a MACLIB or TXTLIB (ig-
nored for other file types). If member name is not specified,
a member selection list for the MACLIB or TXTLIB will be dis-
plaved.

The following return codes are possible:

0 - Normal completion, data was saved.

4 - Normal completion, data was not saved.

20 - Severe error.

SPF Dialog Management Services

LOG ~ WRITE MESSAGE TO LOG FILE

The LOG service causes a message to be written to the SPF log
file.

ISPEXEC LOG MSG(msg-id)

CALL ISPLINK ('LOG', msg-id);

msg=id

Specifies the identification of the message that is to be
retrieved from the message library and written to the log.

The following return codes are possible:
0 - Normal completion.

20 - Severe error.

Other Services 95

96 SPF Dialog Management Services

CHAPTER 5. PANEL, MESSAGE, AND SKELETON FORMATS

This chapter contains a detailed description of the syntax for
defining panels, messages, and file tailoring skeletons. The
description of panel formats is divided into three sections. The
first describes the general syntax, the second describes format-
ting guidelines, and the third describes the specific require-
ments for selection menus, help/tutorial panels, and table
display panels.

PANElL DEFINITIONS -~ GENERAL SYNTAX

SPF panel definitions are stored in a panel library and displayed
by means of the DISPLAY service. Each panel definition is refer-
enced by name, which is the same as the member name in the
library.

Panel definitions are created or changed by editing directly into
the panel library; no compile or preprocessing step is required.

Each panel definition consists of up to five sections:

1. Attribute section (optional) - defines the special characters
that will be used in the body of the panel definition to
represent attribute (start of field) bytes. Default attri-
bute characters are provided, which may be overriden.

2. Body (required) - defines the format of the panel as seen by
the gser, and defines the name of each variable field on the
panel.

3. Model section (table display panels only) - defines the for-
mat of each line of scrollable data. This section is required
fgr table display panels, and invalid for other types of pan-
elLs.

4, Initialization section (optional) - specifies the initial
processing that is to occur prior to displayving the panel.
Typically used to define how variables are to be initialized.

5. Processing section (optional) - specifies processing that is
to occur after the panel has been displayed. Typically used
to define how variables are to be verified and/or translated.

The sections must appear in the order listed above. The sections
are separated with the following header statements:

JATTR - start of attribute section
JBODY - start of body

JMODEL - start of model section

JINIT - start of initialization section
JPROC - start of processing section
JEND - end of panel definition

In this document, the panel body is described first since it is
required in all panel definitions. The attribute section is not
described until after the discussion of initialization and proc-
essing sections. An attribute section is seldom needed; the
default attribute characters will suffice in many cases.

The model section is described under "Panel Definitions - Special
Requirements,”™ since it applies to table display panels only.

Chapter 5. Panel, Message, and Skeleton Formats 97

PANEL BODY

98

This section of the panel definition specifies the format of the

- panel as the user sees it. It contains up to 43 records, each of

which corresponds.to a line on the display.

. The section.begins with the)BODY header statement, wﬁich may be
~omitted if there is no attribute section and no change to the

default attribute characters. The panel body ends with any of the
following statements: JIMODEL,)INIT, JPROC, or JEND.

The special characters defined in the attribute section (or the
default attribute characters) are used in the panel body to indi-
catefthfdstart of each field, wh1ch is also the end of the preced-
ing fie

The default attribute characters are:

% (percent sign) - text (protected) field, high intensity
+ (plus signl - text (protected) field, low intensity
_. {underscore) - input (unprotected) field, high intensity

For text (protected) fields, the information following the attri-
bute character is the text to be displaved. Text fields may con-
tain substitutable variables, consisting of a dialog variable
name preceded by an ampersand (&). The name and ampersand are
repl?ced with the value of the variable prior to displaying the
panel.

For input (unprotected) fields, a dialog variable name immediate-
ly follows the attribute character (with no intervening amper-
sand). The name is replaced with the value of the variable prior
to displaying the panel, and any information entered by the user
is stored in the variable after the panel has been displayed.

There is another type of protected field, called an output field,
for which there is no default attribute character. Output fields
allow padding and justification of the variable information. For
more information, see TYPE keyvword under "Attribute Section."

A sample panel definition is shown in Figure 12. It consists of a
panel body followed by an ")END"™ control statement. It has no
attribute, initialization, or processing sections. It uses the
default attribute characters.

This is a data entry panel with ten input fields (TYPECHG, LNAME,
etc.), indicated with underscores. It also has a substitutable
variable (EMPSER) within a text field (on line 2). The first two
lines of the panel and the arrous precedtng the input fields are
all highlighted, indicated with percent signs. The other text
fields are low intensity, indicated with plus signs.

Before the panel is displayed, all variables in the panel body
will be automatically initialized from the corresponding dialog
variables (TYPECHG, LNAME, etc., and EMPSER). After. the panel has
been displaved, the input fields will be ' automatically stored
into the corresponding dialog variables.

Figure 13 shows the panel as xt will appear ‘when displayed, assum-
ing that the current value of EMPSER is "123456", and that the
other variables are initially null. :

SPF Dialog Management Services

Jm e ———————————————————

4 EMPLOYEE RECORDS
ZEMPLOYEE SERIAL: &EMPSER

+ TYPE OF CHANGEZ===>_TYPECHG +

+ EMPLOYEE NAME:

+ LAST Z===>_LNAME +
+ FIRST Z===> FNAME +
+ INITIALZ===>_ I+

+ HOME ADDRESS:

+ LINE 1 %===>_ADDR1

+ LINE 2 %===>_ADDR2

+ LINE 3 Z===>_ADDR3

+ LINE & Z===>_ADDR&G

+ HOME PHONE:

¥ AREA CODE ~7===5_PHAW¥

+ LOCAL NUMBERZ===> PHNUM +
JEND

(NEW, UPDATE, OR DELETE)

o *

Figure 12. Sample Panel Definition

EMPLOYEE RECORDS
EMPLOYEE SERIAL: 123456

" TYPE OF CHANGE ===>

EMPLOYEE NAME:
LAST ==
FIRST
INITIAL

vV ¥V Ve

HOME ADDRE
LINE 1
LINE 2
LINE 3
LINE &

"nuHuuwy
iuunun,m

LU U TR T
vVVVvVYy

HOME PHONE:
AREA CODE ===>
LOCAL NUMBER ===>

(NEW, UPDATE, OR DELETE)

Figure 13. Sample Panel - When Displaved

Panel Definitions

- General Syntax

99

INITIALIZATION AND PROCESSING SECTIONS

The initialization section specifies the initial processing that
is to occur prior to displaying the panel. It begins with the
JINIT header statement and ends with either the JPROC or JEND
header statement.

The processing section specifies any additional processing that
is to occur after the panel has been displaved. It begins uwith
the JPROC header statement and ends with the)JEND statement.

Note: The automatic initialization of all variables in the panel
body occurs after the JINIT section has been processed, just prior
to display of the panel. The automatic storing of input fields
into the corresponding dialog variables occurs immediately fol-
lowing display, prior to processing of the)JPRGC section.

Statement Formats

100

The statements that may be used in the initialization and process-
ing sections are the same, although certain types of statements
are typically used only in the initialization section and others
only in the processing section.

There are three types of statements that may be used in these
sections: assignment, IF, and VER (verify). Two built-in func-
tions may also be used: TRUNC (truncate) and TRANS (translate).
Tgese functions may appear on the right hand side of an assignment
statement.

The following types of data references may appear within thesae
statements:

. Dialog variable - a name preceded by an ampersand (&).

. Control variable - a name preceded by a period (.) -- see
section entitled "Control Variables."

. Literal value - a character string not beginning with an
ampersand or period. A literal value may be enclosed in apos~—
trophes ('). It must be enclosed in apostrophes if it begins
with a single ampersand or a period, or if it contains any of
the following special characters:

Blank < C + |) 53 - ~-, > =

A literal may contain substitutable variables, consisting of
a dialog variable name preceded by an ampersand (&). The name
and ampersand are replaced with the value of the variable pri-
or to processing the statement. A double ampersand may be
used to specify a literal character string starting with (or
containing) an ampersand. See section entitled "Syntax Rules
and Restrictions”.

In the description of statements and built-in functions that fol-
lows, a "variable" may be either a dialog variable or control var-
iable. A "value" may be either type of variable or a literal
value. :

SPF Dialog Management Services

variable

= value

This is an assignment statement. Assignment statements may be
used in the)INIT section to set the contents of dialog variables
prior to the automatic initialization of variables in the panel
body. Assignment statements may also be used in the)JPROC
section, typically to set the contents of dialog variables that do
not correspond to fields in the panel body.

Examples:
&A = v
&COUNT = 5
&DSN = 'YYSYS1I.MACLIB'"?
&BB = &C

The first example sets variable A to blanks. The second example
sets variable COUNT to a literal character string (the number 5).

The third example sets variable DSN—to-a character—string-that
begins and ends with an apostrophe (see "Syntax Rules and
Restrictions"). The fourth example sets var1able BB to the con-
tents of another variable, C.

TRUNC (variable,value)

This built-in function may occur on the right hand side of an
assignment statement to cause truncation. The first parameter
inside the parentheses specifies the variable to be truncated.
This is followed by a value that may be a numeric quantity indi-
cating the length of the truncated result, or any special charac-
ter indicating truncation at the first occurrence of that
character. Examples:

&A = TRUNC (&XYZ,3)
&INTEG = TRUNC (&KNUMB,'.")

In the first example, the contents of variable XYZ are truncated
to a length of three characters and stored in variable A. (Vari-
able XYZ remains unchanged.) In the second example, the contents
of variable NUMB are truncated at the first occurrence of a period
and stored in variable INTEG. (Variable NUMB remains unchanged.)
If NUMB contains "3.2.4", INTEG will contain "3".

TRANS (variable value,value ... [MSG=valuel)

This built-in function may occur on the right hand side of an
assignment statement to cause translation., The first parameter
1n51de the parentheses specifies the variable to be translated

This is followed by paired values. The first value in each pair
indicates a possible value of the variable, and the second indi-
cates the translated result. Example:

&REPL = TRANS (&MOD Y,YES N,NO)

The current value of variable MOD is translated, and the result is
stored in variable REPL. (Variable MOD remains unchanged.) The
translation is as follows: If the current value of MOD is YV, it
is translated to "YES". If the current value is "N", it is trans-
lated to "NO". If the current value is anything else (neither "Y"
nor “"N™), it is translated to blank.

Panel Definitions — General Syntax 101

1g2

The anything-else condition may be specified by using an asterisk
in the last set of paired values. Examples:

&REPL
&REPL

TRANS (&MOD ... %,'?")
TRANS (&MOD ... %,%)

In the first example, if the current value of MOD does not match
any of the listed values, a question mark will be stored in vari-
able REPL. In the second example, if the current value of MOD
does not match any of the listed values, the value of MOD will be
stored untranslated into REPL.

Another option for the anything-else condition is to cause a mes-
sage to be displayed to the user, by specifying MS56=value, where
"value" is a message id. Typically, this technique is used in the
processing section of the panel description. Example:

&DISP = TRANS (&D 1,SHR 2,NEW 3,MOD MSG=ISPGO01)

The contents of variable D are translated as follows: v is
translated to "SHR'Y™, "2" is translated to "NEW", and "3" is trans-
lated to "MOD". If none of the listed values is encountered, mes-
sage ISPG001l is displaved. Message ISPG001 may be an error
message indicating that the user has entered an invalid option.

For both the TRANS and TRUNC built-in functions, the source and
destination variables may be the same. Figure 14 shows an example
in which it is assumed that variable TYPEHG was originally set (in
the dialog function) to a single character "N", "UY, or "D". In
the JINIT section, variable TYPCHG is translated to "NEW", ™"UP-
DATE"™, or "DELETE"™ and stored into itself prior to display of the
pﬁnel.t In the JPROC section, TYPCHG is truncated back to a single
character.

Use of this technique allows the end user to change the valid
options for TYPCHG by simply overtyping the first character.

Finally, the TRANS and TRUNC built-in functions may be nested.
Examples:

§XYZ = TRUNC(TRANS(&A ---),1)
&SEL = TRANS(C TRUNC(&OPT,'.') ===

In the first example, the current value of variable A is trans-
lated, the translated value is then truncated to a length of one,
and the result is stored in variable XYZ. In the second example,
the contents of variable OPT are truncated at the first period,
the truncated value is then translated, and the result is stored
in variable SEL.

SPF Dialog Management Services

Z

EMPLOYEE RECORDS

ZEMPLOYEE "SERIAL: &EMPSER
+ TYPE OF CHANGEXZ===>_TYPECHG + (NEW, UPDATE, OR DELETE)

EMPLOYEE NAME:
LAST

-+ -
n
et
)
(9]
pet |

HOME ADDRESS
LINE 1 Z==
LINE 2
LINE 3
LINE ¢ Z=

b
u

3

U

>

(=)

(=]

a

»

+ o+

+

HOME PHONE:

+

AREACODE - Z===>_PHA+
LOCAL NUMBERZ===>_PHNUM +

+*

JINIT
&TYPECHG

TRANS (&TYPECHG N,NEW U,UPDATE D,DELETE)

JPROC
&TYPECHG = TRUNC (&TYPECHG,1)

JEND

Figure 14. Sample Panel with TRANS and TRUNC

Panel Definitions - General Syntax 103

"IF (variable operator value [,value ...1)

106

The IF statement may be used to test the current value of a
variable. The parentheses contain a conditional expression, in
which the operator may be either equal (=) or not equal (-=). One
or more values may be specified. Examples:

IF (&DSN 'Y
IF (&0PT 1,2,5)
IF (&A -= &B)
IF (&A == AAA,BBB)

wu

The first example is true if variable DSN is null or contains
blanks. The second is true if variable OPT contains any of the
literal values 1, 2, or 5. The third is true if variable A is not
equal to the value of variable B. The fourth is true if variable
A is not equal to either of the literal values AAA or BBB, which
is the same as saying that variable A is not equal to AAA and not
equal to BBB. :

The IF statement is indentation sensitive. If the conditional
expression is true, processing continues with the next statement.
Otherwise all following statements are skipped up to the next
statement that begins in the same column as the IF or in a column
to the left of the IF. Example:

IF (&XYZz = v)
&A = &B
&B = &PQR
IF (&B = YES)
&C = NO
&D = &22Z
In this example, processing skips to statement &D = &2ZZ from
either IF statement if the condition is false.

Figure 15 shows a sample panel with an IF statement. The current
value of variable PHA is tested for blank. If it is blank, PHA is
initialized to the literal value 301.

SPF Dialog Management Services

Z EMPLOYEE RECORDS

ZEMPLOYEE SERIAL: &EMPSER

+ TYPE OF CHANGEZ===>_TYPECHG + (NEW, UPDATE, OR DELETE)

+ EMPLOYEE NAME:
+ LAST Z===>_LNAME +
+ FIRST #===>_FNAME +
+ INITIALZ===> I+
+ HOME ADDRESS:
+ LINE 1 Z===>_ADDR1 +
+ LINE 2 Z===>_ADDR2 +
+ LINE 3 Z===>_ADDR3 +
+ LINE & Z===>_ADDR4 +
+ HOME PHONE:
+ AREA-CODE——/4===> PHA+
+ LOCAL NUMBERZ===>_PHNUM +
JINIT

IF (4PHA = * ')

&PHA = 301
&TYPECHG = TRANS (&TYPECHG N,NEW U,UFDATE D,DELETE)

JPROC
&TYPECHG = TRUNC (&TYPECHG,1)

JEND

Figure 15. Sample Panel with IF Statement

Panel Definitions - General Syntax

105

VER (variable,kevuword [,value ...] [MS56=valuel)

106

The verify statement, VER, may be used to check that the current
value of a variable meets some criteria. Typically, it is used in
the processing section to verify the contents of input fields
entered by the user.

The first parameter inside the parentheses specifies the variable
to be checked. The second parameter is a keyword indicating the
type of verification. The number and meaning of the values that
follow the keyword are dependent upon the type of verification.

If the variable does not meet the verification criteria, a message
is displayed. The message may be specified via the MSG=value
parameter, where "value" is a message id. If no message.is speci-
fied, an SPF-supplied message is displaved, based on the type of
verification.

SPF provides several types of verification, described below. In
these descriptions, "xxx" is used to represent the variable name.
The values that must follow the verification keyword, if any, are
also indicated.

. /VER {xxx, NONBLANK) - The variable is required (must not be
blank). : .

. VER (xxx,ALPHA) - The variable must contain all alphabetic
characters (A-Z, #, $, or aJ.

. VER (xxx,NUM) - The variable must contain all numeric charac-
ters (0-9).

. VER (xxx,HEX) = The variable must contain all hexadecimal
characters (0-9, A-F). :

. VER (xxx,PICT,string) - The variable must contain characters
that match the corresponding type of character in the picture
string. The "string" parameter may be composed of the follow-
ing characters:

C - any character

A - any alphabetic character (A-Z, ¥, $, or 3)
N - any numeric character (0-9)

9 - any numeric character (same as "N")

X = any hexadicimal character (0-9, A-F)

In addition, the string may contain any special character
(except #, $, or d), which represents itself. Example:

VER (xxx,PICT,'A/NNN'")

The value must start with an alphabetic character, followed
by a slash, followed by three numeric characters.

. VER (xxx,NAME) - The variable must contain a valid name, fol-
lowing the rules of member names (up to eight alphameric char-
acters of which the Tirst must be alphabetic).

. VER (xxx,DSNAME) -~ The variable must contain a valid data set
name (in TS0 syntax).

. VER (xxx,RANGE, lower,upper) - The variable must be numeric,
and its value must fall (inclusively) within the specified
lower and upper limits.

. VER (xxx,LIST,valuel,value2, ...) - The variable must con-
tain one of the listed values.

For all tests except NONBLANK, a blank value is acceptable. That
is, if the user enters a value (or leaves a non-blank initial val-
ue unchanged), it must conform to the specified condition. But if
the user leaves an input field blank, the field will pass any ver-
ification test except NONBLANK.

SPF Dialog Management Services

Figure 16 shows a sample panel with VER statements to verify that

information entered by the user meets the following criteria:

. The truncated value of TYPCHG is "N", "U", or "D".

. The three name variables (LNAME, FNAME, and I) contain

alphabetic characters.

. The area code (PHA) contaiﬁs all numeric characters.

all

. The local number (PHNUM) contains three numeric characters,

followed by a hyphen, followed by four numeric characters.

For the TYPECHG test, a message id has been specified in the event
that the test fails. In all the other cases, an SPF-provided mes-
sage Will be displayed if the variable fails the verification

test.

N

EMPLOYEE RECORDS

{EMPLOYEE SERIAL: &EMPSER

N

+

TYPE OF CHANGEZ===>_TYPECHG + (NEW, UPDATE, OR DELETE)

+ EMPLOYEE NAME:
+ LAST Z===>_LNAME +
+ >_FNAME +
¥ INITIALZ===>_1I+
+ HOME ADDRESS:
+ LINE 1 Z===>_ADDR1 ¥
+ LINE 2 Z===>_ADDR2 +
+ LINE 3 #===>_ADDR3 +
+ LINE 4 Z===>_ADDR4 +
+ HOME PHONE:
+ AREA CODE Z===>_PHA+
+ LCCAL NUMBERZ===>_PHNUM +
JINIT

IF (&PHA = ' ')

&PHA = 301

&TYPECHG = TRANS (&TYPECHG N,NEW U,UPDATE D,DELETE)

JPROC

&TYPECHG = TRUNC. (&TYPECHG,1)

VER (&TYPECHG,LIST,N,U,D,MSG=EMPX210)
VER (&LNAME,ALPHA)

VER (&FNAME,ALPHA)

VER (&I,ALPHA)

VER (&PHA,NUM)

VER (&PHNUM, PICT, "NNN-NNNN")

JEND

Figure 16. Sample Panel with Verification

Panel Definitions - General Syntax

107

antrol Variablesv

Control variables are used to control and/or test certain condi-
tions pertaining to the display of a panel.

The control variables are:

.CURSOR May be set in the initialization section to control the
" initial placement of the cursor. Its value must be a
character string that matches a field name in the panel

body. Example:

.CURSOR = DSN ‘
The cursor is placed at the beginning of field DSN.

.HELP May be set in the initialization section to establish a
tutorial (explain) panel to be displayved if the user
presses the Help PF key. Example:

.HELP = ISPTE

If the user presses the Help PF key, tutorial page ISPTE
will be displayed.

.MSG May be set to a message id, typically in the processing
section, to cause a message to be displayed. Example:

.MS5G = ISPEOD16

This variable is automatically set via the MSG=value
keyword on a TRANS or VER statement.

.RESP Indicates which key the user pressed in response to the
panel. Automatically set to either ENTER or END after
the panel is displaved. It may be tested in the proc-
essing section to determine which key was pressed.
Example:

IF (.RESP = END)

This variable may be set in the initialization section
to simulate a user response. In this case, the panel is
not displayed but is processed as if the wuser had
pr:ssed ENTER or the End PK key without entering any
data. ’)

The control variables are automatically reset (set to blank) when
the panel display service first receives control. If .MSG and
.CURSOR are still blank aTfter processing of the initialization
section, they are set to the values passed via the calling
sequence (if any) for an initial message or cursor position.

Note: Under certain conditions, processing of the initialization
section is bypassed. See "Processing Considerations”" for more
information.

Once .MSG and .CURSOR have been set non-blank, they will retain
their initial values until the panel is displayved <(or redis-
played), at which time they are again reset.

Figure 17 shows an example in which both .HELP and .CURSCR have
been set in the)JINIT section of the panel definition.

108 SPF Dialog Management Services

D EMPLOYEE RECORDS

ZEMPLOYEE SERIAL: &EMPSER

+ TYPE OF CHANGEZ===>_TYPECHG + (NEW, UPDATE, OR DELETE)

+ EMPLOYEE NAME:
+ LAST Z===>_LNAME +
+ FIRST /===>_FNAME *
+ INITIALZ===>_I+
+ HOME ADDRESS:
+ LINE 1 Z===>_ADDR1 +
+ LINE 2 Z===>_ADDR2 +
+ LINE 3 Z==z=>_ADDR3 +
+ LINE &4 Z===>_ADDR4 +
+ HOME PHONE:
+ AREA_CODE . _“==z=> PHA+
+ LOCAL NUMBERZ===>_PHNUM +
JINIT

HELP = PERS032

+CURSOR = TYPECHG

IF (&PHA = ' ')

&PHA = 301

4&TYPECHG = TRANS (&TYPECHG N,NEW U,UPDATE D,DELETE)

JPROC

&TYPECHG = TRUNC (&TYPECHG,1)

VER (&TYPECHG,LIST,N,U,D,MSG=EMPX210)
VER (&LNAME,ALPHA)

VER (&FNAME,ALPHA)

VER (&I,ALPHA)

VER (&PHA,NUM)

VER (&PHNUM,PICT, "NNN-NNNN"')

JEND

Figure 17. Sample Panel with Control Variables

Panel Definitions - General Syntax 109

Default Cursor Positioning

110

If the control variable .CURSOR is not explicitly initialized (or

if it is set to blank), the initial position of the cursor will be
determined as follous:

* The panel body is scanned from top to bottom, and the cursor
is placed at the beginning of the first input field that meets
the following criteria:

- It must be the first or only input field on a line, and

- It must not have an initial value (i.e., the correspond-
ing dialog variable must be null or blank).

. If no fields meet the above criteria, the cursor will be
placed on the first input field in the panel body.

. If the panel has no input fields, the cursor will be placed at
row 1, column 1. ‘ ' '

Whenever a message is displaved due to a verification failure,
M5G=value condition in a TRANS, or explicit setting of .MSG, the
cursor is automatically positioned at the beginning of the field
that was last referenced in any panel definition statement.

Examples:

&XYZ = TRANS (&A ... MSG=xxxxx)
&A = TRANS (&XYZ ... MSG=xxxxx)
VER (&XYZ,NONBLANK) VER (&B,ALPHA)

Assume that field XYZ exists in the panel body, but there are no
fields corresponding to variables A or B. In all of the above
cases, the cursor would be placed on field XYZ if a message is
displayed.

SPF Dialog Management Services

ATTRIBUTE SECTION

This section defines the special characters that will be used in
the body of the panel definition to represent attribute (start of
field) bytes. When the panel is displaved, these characters are
replaced with the appropriate hardware attribute bytes, and
appear on the screen as blanks.

The attribute section precedes the panel body. It begins with the
JATTR header statement and ends with the)BODY header statement.

Statement Formats

Each statement in the attribute section must begin with a single
character. This defines the attribute character for a.particular

kKind of Tield. The remainder—of—thestatement-contains-keyword .

parameters that define the nature of the field. The keywords that
may be specified are described below.

As a general rule, special (non-alphameric) characters should be
chosen for attribute characters so that they will not conflict
with the panel text. An ampersand (&) is illegal as an attribute
character.

The keyword parameters that may be specified to the right of the
attribute character are described below. They are all optional,
except that at least one parameter must be specified. They may be
specified in any order.

TYPE(value)

Defines the type of field. The "value" may be:

TEXT - text (protected) field
INPUT - input (unprotected) field
SUTPUT - output (protected) field

If this keyword parameter is omitted, the default is INPUT.

Text fields are displaved exactly as specified in the body of the
panel, except that any variable names (preceded by an ampaersand)
are replaced with the current value of the variable.

For input and output fields, a dialog variable name must imme-
diately follow the attribute character ((with no intervening
ampersand). No text may be included within the field.

Input fields are initialized prior to display, and may be entered
(or overtyped) by the user. QOutput fields are initialized prior
to display, but may not be changed by the user. HNote that both
input and output fields may have associated caps;, justification,
and pad attributes. Note also that that there is no default attri-
bute character for output fields.

INTENS(value)

Defines the intensity of field. The "value" may be:
HIGH - high intensity field
LOW - low (normal) intensity field
NON - non—display field (valid only for input fields)

If this keyword parameter is omitted, the default is HIGH.

Panel Definitions — General Syntax 111

CAPS(value)

Defines the upper/lower case attribute of the field, and is valid
only for input and output fields. The "value"™ may be:

ON - translate to upper case
OFF - no translation

If this keyword parameter is omitted, the default is ON.
For caps on, initial values and values entered by the user are

automatically translated to upper case. For caps off, no trans-
lation is performed.

JUST(value)

Defines how the contents of the field are to be justified, and is
valid only for input and output fields. The "value™ may be:

LEFT - left justification
RIGHT - right justification
ASIS - no justification

If this keyword parameter is omitted, the default is LEFT.

Justification occurs if the initial value of a field is shorter
than the length of the field as described in the panel body.
Normally, right justification should be used only with output
fields, since a right justified input field would be difficult to
overtype.

For left or right, the justification applies only to how the field
appears on the screen; leading blanks are automatically deleted
when the field is processed. For asis, leading blanks are not
deleted when the field is processed, nor when it is initialized.
Trailing blanks are automatically deleted when a f1e1d is proc-
essed, regardless of its justification.

PAD(value)

112

Defines the pad character for initializing the field, and is valid
only for input and output fields. The "value™ may be:

NULLS
Any character, including blank (' ").

If this keyword parameter is omitted, the default is user-defined
for input fields and blank for output fields.

If the field is initialized to blanks (or the corresponding dialog
variable is null), the entire field will contain the pad character
when the panel is first displayed. If the field is initialized
with a value, the remaining field positions (if any) will contain
the pad character.

Padding and justification work together in the following manner.
On initialization, the Tield is justified (unless asis was speci-
fied) and then padded. For left justified and asis fields, the
padding will extend to the right. For right justified fields, the
padding will extend to the left.

The pad characters are automattcally deleted when the field is
processed.

SPF Dialog Management Services

Passing

Default

Attributes from Dialog Variables

In the above discussion of attribute kevwords, the "value" is
always shown as a literal. The value may also be expressed as a
dialog variable name, preceded by an ampersand (&). Example:

INTENS(&A)

Variable substitution is done after processing of the initializa-
tion section.

The current value of the dialog variable must be valid for the
particular keyword. In the above example, the value of dialog
variable A must be HIGH, LOW, or NON. :
Exception: TYPE(TEXT) must be coded explicitly. That is,

TYPE(&A)

is invalid if the current value of dialog variable A is TEXT.‘m

Attribute Characters

The following default attribute characters are provided:

% TYPECTEXT) INTENS(CHIGH)
+ TYPECTEXT) INTENSC(LOW)
TYPECINPUT) INTENSCHIGH) CAPS(ON) JUSTC(LEFT)

If additional kinds of fields are required, an attribute section
must be used to define additional attribute characters (or to
change the attributes for any of the default characters).

In addition, the three default characters may be changed by means
of a keyword on either the JATTR or)BODY header statement. For-
mat:

DEFAULT(abc)

where "a", "b", and "c" are the three characters to take the place
of "%"™, "+", and "_" respectively.

Note: The value inside the parentheses must consist of exactly
three characters, not enclosed in apostrophes and not separated
by commas or blanks.

Typically, this keyword would be used on tha YATTR header state-
ment if the three default characters are to be changed, and addi-
tional attribute characters are also to be defined. The keyword
would be used on the)BODY header statement (and the entire attri-
bute section would be omitted) if the only change is to redefine
the default characters. Example:

JATTR DEFAULT($¢_)

= TYPECINPUT) INTENS(HNON)
3 gY TYPECOUTPUT) INTENSC(LOW) JUST(RIGHT) PAD(O)
)BO

In this example, the default characters for text fields are
changed to "$Y for high intensity, and "¢" for low intensity. The
default character for high intensity input fields is specified as
" " (unchanged from the SPF-supplied default). Two additional
attribute characters are then defined: "-" for non display input
fields, and "#"™ for low intensity output fields. The output
fields are to be right justified and padded with zeros, presumably
for displaying numeric data with leading zeros.

Panel Definitions - General Syntax 113

PROCESSING CONSIDERATIONS

When the DISPLAY service is invoked from a dialog function, any or
all of the following parameters may be specified: panel name,

‘message id, cursor field. The following processing occurs:

1. If a panel name has been specified, and a message id has not
been specified, the panel is displayed without a message.

2. If both a pﬁnel name and a message id have been specified, the
panel is displayed with an initial message (typically, a
prompt or confirmation message).

3. If a message'id has ‘been specified, but a panel name has not
bgen specified, the previously displaved panel is redisplayed
with the message (typically, an error message).

4, If neither a panel name nor a message id has been specified,
the previously displaved panel is redisplayed.

In the first two cases, processing of the panel definition pro-
ceaeds normally, through the YINIT section, prior to display of the
panel. If .MS6G or .CURSOR is set in the)INIT section, that set-
ting will override an initial message or cursor position passed
via the calling sequence parameters.

‘In cases three and four, processing of the)JINIT section will be

bvpassed, and there will be no automatic initialization of vari-
ables in the panel body (nor in the attribute section). As a
result, all variables in the panel body will appear as last dis-
played, and input fields will contain whatever the user last
entered. If an initial message or cursor position is passed via
the calling sequence parameters, that setting will be used since
tha JINIT section is bypassed.

After the panel has been displayed, the user may enter information
and press the ENTER key. All input fields are automatically
stored into dialog variables of the same name, and the)JPROC
section of the panel definition is then processed. If any condi-
tion occurs that causes a message to be displaved (verification
failure, MS5G=value condition in a TRANS, or explicit setting of
.MS3G), processing continues to the)END statement. The panel is
then redisplaved with the first (or only) message that was
encountered.

When the user again presses ENTER, all input fields are stored and
the JPROC section i1s again processed. This sequence continues
until the entire }PROC section has been processed without any mes-
sage conditions encountered. The panel display service then
rit;rns to the dialog function that invoked it with a return code
° . _ ,

Whenever a panel is displayed or redisplaved, the user may press
the End PF key. UWhen End is pressed, all input fields are stored
and the)PROC section is processed but ho message is displaved
(even if a MSG condition is encountered). The panel display serv-
ice then returns to the dialog Tfunction with a return code of 8.

SYNTAX RULES AND RESTRICTIONS

General

e All statements, variable names, and keywords must be coded in

uppercase. Values that are interpreted by the DISPLAY serv-
ice, such as INTENS(LOW), must also be in uppercase. Values
assigned to dialog variables and text in the panel body need
not be in uppercase.

114 SPF Dialog Management Services

. All header statements, J)ATTR,)BODY, etc., must be coded
exactly as shown starting in column 1. Statements following
the header need not begin in column 1.

. If a section is omitted, the corresponding header statement
should also be omitted. The J)BODY header may be omitted if
the entire attribute section is omitted and there is no need
to override the default attribute bytes via a keyword on the
JBODY statement. :

. An JEND statement is required as the last line of each panel
definition.

Blanks _and Comments

. Blank lines may occur anywhere within the attrlbute, initial-

fzation—and-processing-sections-

U In the attribute section, the attribute character and all
keywords that follow must be separated by one or more blanks.
At least one keyuword must follow the attribute character on
the same line. Keywords may be continued on succeeding lines.

. In the initialization and processing sections, multiple
statements may occur on the same line, separated by one or
more blanks. Statements may not be split between lines,
except that listed items within parentheses may be continued
on succeeding lines (see below). .

. One or more blanks méy optionally occcur on either side of an
equal sign (=) or a not-equal operator (=-=). Embedded blanks
may not occur in the notfequal operator ("= =" is invalid).

. One or more blanks may optionally occur on either side of
parentheses (except that a blank may not follow the right
parenthesis that begins a header statement). The following
are all equivalent:

INTENS(LOW)
INTENS (LOWD
INTENS (LOW D

Note: One or more blanks must follow the closing parenthesis
to separate it from the next statement or keyuword.

. Comments may be coded’ in the attribute, initialization, and
processing sections. Comments must be enclosed with the PL/I
comment delimiters, /7% and ¥/. The comment must be the last
item on the line (i.e., additional keywords or statements may
not follow the comment on the same line). A comment may not
be continued on the next line. For multi-line comments, the
comment delimiters must be used on each line.

Listed Items

. Listed items within parentheses may be separated by commas
and/or one or more blanks. This includes paired values within
a TRANS. The following, for example, are all equivalent:

TRANS (&XYZ 1,A 2,B 3,C MSG=xxxx)
TRANS (&XYZ 1 A 2 B 3 C MSG=xxxx)
TRANS (&XyYz, 1 » A y 2 B, 3 » C » MSG-XXXX)

. Null items within a list are treated the same as blank items.
The following, for example, are equivalent:

TRANS (&XXX N, ', Y,YES, X%,' ")
TRANS (&XXX N,, Y,YES, ¥,)

Panel Definitions - General Syntax 115

Variables

Wi

Listed items within parentheses may be continued on one or
more lines. Example:

TRANS (&CASE 1,'THIS IS THE VALUE FOR CASE 1!
~2,"'THIS IS THE VALUE FOR CASE 2")

Literal values within a list may be split between lines by
coding a plus sign (+) as the last character on each line that
is to be continued. Example:

TRANS (&CASE 1,'THIS IS THE VALUE +

FOR CASE 1' 2,'THIS IS THE +
VALUE FOR CASE 2")

thin Text Fields and Literals

In the panel body, a variable may appear within a text field.
In the initialization and processing sections, a variable may
appear within a literal value. In both cases, the variable
name (and the preceding ampearsand) are replaced with the val-
ue of the corresponding dialog variable. For example, if var-
jable V has the value ABC then:

'F &V G6' yields 'F ABC G
'F,&V,G6' vyields 'F,ABC,G'

Note that any non-alphameric character may terminate the var-
iable name, such as a comma in the second example above.

A period (.) at the end of a variable name has a special mean-
ing. It causes concatenation with the character string fol-
lowing the variable. Example:

'&V.DEF' yields 'ABCDEF'

A single ampersand followed by a blank is interpreted as a
literal ampersand character (not the beginning of a substitu-~
table variable). An ampersand followed by a non-blank is
interpreted as the beginning of a substitutable variable.

A double ampersand may be used to produce a character string

starting with (or containing) an ampersand. The double char-

acter rule also applies to apostrophes within literal values

(if the literal is enclosed within delimiting apostrophes),

$gdttp a period if it immediately follows a variable name.
at is:

&& vyields &
"' yields ' within delimiting apostrophes
.. yields . immediately following a variable name.

When variable substitution occurs within a text field in the
panel body, left or right shifting extends to the end of the
field (defined by the occurrence of the next attribute byte).
For left shifting, the rightmost character in the field is

replicated (shifted in), provided it is a special
(non-alphameric) character. Example:
%DATA SET NAME: &DSNAME ---—-- e %

Assuming that the value of variable DSNAME is greated than
seven characters, the dashes will be "pushad" to the right, up
to the next start of field (the next "%" in this example). If
the value of DSNAME is less than seven characters, additional
dashes will be "pulled™ in from the right.

116 SPF Dialog Management Services

PANEL DEFINITIONS - FORMATTING GUIDELINES

In any panel definition, the first three lines include
system—defined areas for the display of messages, and may include
a primary input field and a scroll field.

Specific requirements are as follows:

. Short message area. The use of short messages is optional
(see section entitled "Message Definitions™). If they are
used, they are always displayed at the right-hand end of the
first line of the panel body. They are first truncated to 24
characters, and then right justified.

Short messages temporarily overlay whatever information is
currently displayed in the right-hand end of the first line,
and are automatically removed from display on the next inter-
e g et oA The—original —information is redisplaved when the

message is removed.)

. Long message area. Long messages are always displaved in the
third line of the panel body. As with short messages, they
temporarily overlay whatever information is currently dis-
plaved on that line, and are removed from display on the next
interraction.

. Primary input field. The primary input field is defined as
the first input field in the panel body. If the user equates
a PF key to an application-defined command and then presses
that key, it will appear to the dialog function as if the user
had typed the command in the primary input field and then
pressed the ENTER key.

Use of application-defined commands is optional. The first
input field on a panel has special significance only when an
application-defined command is equated to a PF key.

. Scroll field. When scrollable data is displaved (browse,
edit, and table display), the scroll amount field must be the
second input field in the panel definition, and must be exact-
ly 4 characters in length.

Following are suggestions for formatting the first three lines of
a panel body:

line 1 Title ‘ Short Message
line 2 Primary Input or Prompt Scroll
line 3 Long Message

Line 1 should contain a title indicating the function being per-
formed or, where appropriate, should display information critical
to that function. The right-hand 24 characters of line 1 should
not contain critical information if short messages are to be used.

If short messages are used, they should provide a brief
indicatation of:

° Successful completion of a processing function, or
° Error conditions (accompanied by audible alarm).

Short messages should either be used consistently throughout the
application, or not at all.

For table display, the short message area always contains an indi-
cation of current row/column positions, except when overlaid by a
function-requested message. The row/column indication is auto-
matically generated by the TBRDISPL service, and replaces whatever
was in the panel definition in that area.

Panel Definitions - Formatting Guidelines 117

118

For panels that allow application-defined commands, the primary
input field should be on line 2. This same area should be used
for the option entry field on selection menus. For panels that do
not allow application-defined commands, line 2 should contain a
prompt or other information that is significant to the user.

For table display panels, the scroll field should be at the
right-hand end of line 2, following the primary input area. A
scroll field is not meaningful for other types of panels, and

should be omitted.

Line 3 should generally be left blank, so that long messages will
not overlay any significant information. An exception to this
rule might be made in the case of table display panels, to allow
as much scrollable data as possible to fit on the screen.

Following are additional suggestions for designing panels with
good human factors:

. Avoid overly cluttered panels. Split up "busy" panels into
two or more simple panels that have less information and are
easier to read.

¢ - Do not use the last available line in a panel body. For exam-
ple, if the dialog may be used on 24 line terminals, limit the
body to 23 lines or less. The reason for this is that in
split screen mode the maximum length of a logical screen is
one less than the length of the physical screen.

. Place important input fields near the top of the panel and
less important fields (especially optional input fields) fur-
ther down, for two reasons: It is easier to move the cursor
down than up, and in split screen mode the bottom of the panel
may. not be visible unless the user repositions the split line.

. Where practical, align fields vertically on a panel, espe-
cially input fields. Group related input fields under a com-
mon heading. Minimize use of multiple input fields on the same
line, so that the NEW LINE key may be used to skip from one
input field to the next.

. Use visual signals to indicate particular types of fields,
such as arrows to indicate input fields, and colons to indi-
cate variable information that is protected. Examples:

SELECT OPTION ===>
EMPLOYEE SERIAL: 123456

In any case be consistent. Arrows, colons, and other visual
signals are very confusing if used inconsistently.

. Use highlighting sparingly. Too many intensified fields
result in visual confusion. Again, be consistent. Highlight
the same type of information on all panels.

SPF Dialog Management Services

PANEL DEFINTTIONS — SPECIAL REQUIREMENTS

This section describes special requirements for defining
selection menus, tutorial pages, and table display panels.

SELECTION MENUS

A selection menu is a special type of panel that is processed by
the SELECT service. A selection menu must have an input field
named OPT. It must also have a processing section in which vari-
able OPT is truncated at the first period and then translated to a
character string. The results must be stored in a variable named
SEL (see below).

—M-salection ave additional input fields, besides OPT, to

set up dialog variables needed by the particular application. Any
variables other than OPT and SEL that are set from a selection
menu are automatically stored in the shared variable pool.

Variables from the shared pool (including system variables) may
also be displaved on a selection menu to provide information to
the end user.

The general format of the processing section of a selection menu
is as follows:

JPROC
&SEL = TRANS(TRUNC(&OPT,'.")
value, 'string'
value, 'string’

value, 'string'
A} 1] Y ¥

¥, 70 3

Each "value" is one of the options that may be entered on the
menu. Each "string” contains selection kevwords indicating the
action to occur. The selection keywords that may be specified
are:

PANEL (name) [NEWAPPL/NEWPOOL]

CMD(command) [NEWAPPL/NEWPOOL]

PGM(program—name) [PARM(parameters)] [NEWAPPL/NEWPOOL]
EXIT |

The selection keywords have the same meaning as for the SELECT
service. The PANEL keyword, for example, is used to specify the
name of a lower level selection menu to be displaved. The CMD or
PGM keyword is used to invoke a dialog function coded in a command
language or programming lanugage, respectively. Note that the
OPT kevword (which is valid for the SELECT service) is not valid
on a selection menu.

The EXIT keyword, if used, applies only to a primary option menu.
It may be used to terminate SPF using defaults for list/log file
processing.

Except for EXIT, each string of kevwords must be enclosed in apos-
trophes, since it contains parentheses (and sometimes blanks}.

If no option is entered (OPT variable is blank), a blank should be

returned as the translated string. This will cause the SELECT
service to redisplay the menu.

Panel Definitions - Special Requirements 119

Primary

If an invalid option is entered (indicated by an asterisk, meaning
none of the above), a question mark (?) must be returned as the
translated string. This will cause the SELECT service to redis-
play the menu with an "invalid option"™ message.

The reason for the truncation of the OPT variable prior to trans-
lation is to allow the end user to bypass intermediate menus. For
example, "3.1" means primary option 3, suboption 1. Only the next
lower menu is specified via the PANEL keyvword. When the SELECT
service discovers that variable OPT (which was automatically
stored, untranslated, as the user entered it) contains a period,
it will cause the next lower level menu to be selected with an
initial option of everything following the first period. As long
as the initial option is non-blank, the lower level menu will be
processed in the normal fashion but not displayed to the end user.

Option Menus

An example of a primary option menu is shown in Figure 18. This is
the primary option menu for the SPF program development facility.
The required input field, named OPT, appears in the second line of
the panel body. It is followed by a description of the various
options avaliable to the user.

This menu also has four variables within text fields at the upper
right hand part of the screen. These reference system variables
(from the shared variable pool) to display user id, time, terminal
type, and number of PF keys.

The initialization section sets the control variable .HELP to the
name of a tutorial page, to be displaved if the user presses the
Help PF key from this menu. It also initializes two system vari-
ables that specify the tutorial table of contents and first index
page. See discussion under "Help/Tutorial Pages.”

The processing section specifies the action to be taken for each
option entered by the user. If option 0 is selected, panel ISPOPT
(a lower level selection menu) will be displayed. If option 1l is
selected, program ISPBRO will be invoked. And so on.

Other applications may wish to include "SPF parms" and tutorial
(and possibly other options from the SPF program development
facility) on a primary option menu. They need not be invoked with
the same selection codes, but the keywords that are returned in
variable SEL should be the same as for the SPF primary option
menu.

Note that for the tutorial, program ISPTUTOR is invoked and passed
a parameter (T), which ISPTUTOR interprets as the name of the
first panel to be displaved. Panel T is the first panel in the
tutorial for the SPF program development facility. Other appli-
cations should pass the name of the fTirst tutorial page fTor that
application.

120 SPF Dialog Management Services

Z
JINIT

Z

ZSELECT OPTION ===>_|
4

Z 0 +SPF PARMS -
Z 1 +BROWSE -
Z 2 +EDIT -
4 3 +UTILITIES -~
4 4% +FOREGROUND -
Z 5 +BACKGROUND -
4 6 +COMMAND -
4 7 +SUPPORT -
Z T +TUTORIAL -
Z X +EXIT -
Z

--- SPF-MVS PRIMARY OPTION MENU ---
OPT Z

SPECIFY TERMINAL AND SPF PARAMETERS -
DISPLAY SOURCE DATA OR OUTPUT LISTINGS
CREATE OR CHANGE SOURCE DATA

PERFORM SPF UTILITY FUNCTIONS

COMPILE, ASSEMBLE, LINK EDIT, OR DEBUG
COMPILE, ASSEMBLE, OR LINK EDIT

ENTER TSO COMMAND OR CLIST

%USERID
+TIME
+TERMINAL
+PF KEYS

TEST DIALOG OR CONVERT MENU/MESSAGE FORMATS

DISPLAY INFORMATION ABOUT SPF
TERMINATE SPF USING LIST/LOG DEFAULTS

+PRESSZEND KEY+TO TERMINATE SPF

THELP =" TTUTOR-

&ZHTOP = TTUTOR

&ZHINDEX = TINDEX
)JPROC

/% TUTORIAL TABLE OF CONTENTS %/
/% TUTORIAL INDEX - 1ST PAGE */

&SEL = TRANS(TRUNC (&OPT,'.")
0, 'PANEL(ISPOPT)'
1,'PGM(ISPBRO)"
2, 'PGM(ISPEDIT)"
3, "PANEL(ISPUTIL)"'
%y "PANEL(ISPFORA)*
5, 'PANEL(ISPJOB)!
6, 'PGM(ISPTSO)"
7, 'PANEL(ISPQTAC) NEWPOOL'
T, 'PGM(ISPTUTOR) PARM(T)'®

LI B)
?

X, 'EXIT!
*,'2')

JEND

&ZUSER
&ZTIME
&ZTERM
&ZKEYS

Figure 18. SPF Primary Option Menu

Panel Definitions - Special Requirements

121

. Master Application Menu

A master application menu, named ISPaMSTR, is distributed with
SPF as '‘part of the panel library. This menu may be used, if
desired, to allow selection of the various appllcatIOns available
at an lnstallatxon.

If used, the master menu should be the first menu displayved when
the user logs on. It may be displayed automatically by including
the following command in the user's TS50 LOGON procedure or CMS
PROFILE EXEC: S _ oo

ISPF PANEL(ISPaMSTR)
The master henu, as distributed,‘is‘shoﬁn in Figure 19.

The distributed version of the master menu has only three options.
Option "1" causes the primary option menu for the SPF program
development facility to be displayed. Options "P" and "X" provide
access to the SPF parms and exit functions dlrectly from the mas-
ter menu.

To add a new application to the master menu, a line should bea

added to the panel body, indicating the selection code and the

nature of the application. A corresponding addition must then be

iﬁde t?g the)PROC section, to specify the selection keywords for
e option. :

—— MASTER APPLICATION MENU --- -

ZSELECT APPLICATION ===>_OPT +
+USERID - &ZUSER
+TIME - &ZTIME

1 +SPF - SPF PROGRAM DEVELOPMENT FACILITY +TERMINAL - &ZTERM
. +PF KEYS - &ZKEYS

P +PARMS -~ SPECIFY TERMINAL PARAMETERS AND LIST/LOG DEFAULTS
X +EXIT - TERMINATE USING LIST/LOG DEFAULTS

NANNNNNNNNNNNNNNNNNNN

+PRESS/END KEY+TO TERMINATE

N

)INIT
JFROC
&SEL = TRANS(TRUNC (&OPT,'.')
1, "PANEL(ISPIPRIM) NEWAPPL'

/% */
/% ADD OTHER APPLICATIONS HERE %/
/% %/
P, 'PANEL(ISPOPT)'
X VEXIT®
L] L] 1] L]
%020)

JEND

Figure 19. Master Application Menu

122 SPF Dialog Manhagement Services

Lower Level Selection Menus

Lower'level selection menus follow the same rules as for a master
or primary option menu. The SPF primary option menu is itself a
lower‘level menu when invoked from the master menu.

Another example of a lower level menu is shown in Figure 20. This
is the MVS version of panel ISPUTIL, which is displayved if option
3 is selected from the SPF primary option menu. For option 1, it
specifies that program ISPUDA is to receive control, and that
ISPUDA is to be passed a parameter (UDAl) which ISPUDA interprets
as the name of a panel to be displayed.

An exit option is not included on this menu, since it is naever
displayed as a primary option menu.

Note: In this menu, variable OPT need not have been truncated
prior to translation, since there are no lower level selection

menus that can be displayed from this menu.

== -—= UTILITY SELECTION MENU
ZSELECT OPTION ===>_OPT *

1 +LIBRARY

LIBRARY UTILITY:
’ PRINT INDEX LISTING OR ENTIRE DATASET
PRINT, RENAME, DELETE, OR BROWSE MEMBERS
COMPRESS DATASET
2 +DATASET - DATASET UTILITY:
’ DISPLAY DATASET INFORMATION
ALLOCATE, RENAME, OR DELETE ENTIRE DATASET
CATALOG OR UNCATALOG DATASET
+MOVE/COPY - MOVE CR COPY MEMBERS OR DATASETS
4 +CATALOG - CATALOG MANAGEMENT:
DISPLAY OR PRINT CATALOG ENTRIES
INITIALIZE OR DELETE USER CATALOG ALIAS

ol

w NNNNN+ ¢ NN+ + N+ & NN

5 +RESET - RESET STATISTICS FOR MEMBERS OF SPF LIBRARY
6 +HARDCOPY - INITIATE HARDCOPY OUTPUT
7 +VTOC - DISPLAY OR PRINT VTOC ENTRIES FOR A DASD VOLUME
8 +QUTLIST - DISPLAY, DELETE, OR PRINT HELD JOB OUTPUT
9 +SCRIPT/VS - FORMAT, DISPLAY, AND OPTIONALLY PRINT SCRIPT TEXT
INIT
JHELP = TU
JPROC

&SEL = TRANS(TRUNC (&0PT,'.")

: 1, 'PGM(ISPUDA) PARM(UDAL)’
2, "PGM({ISPUDA)} PARM(UDAZ)'
3, 'PGM{ ISPUMC)!
4, 'PGM(ISPUCA)"
5, 'PGM(ISPURS)"
6, '"PGM{ISPUHC)"'
75 PGM(ISPUVT)")
8, 'PGM(ISPUOL) PARM(UOLOL)"®
9, 'PGM(ISPUSC) PARM(SCRPTA)'

(I SN R |
?

¥,'20)
JEND

Figure 20. Lower Level Selection Menu

Panel Definitions - Special Requirements 123

HELP/TUTORIAL PANELS

124

A help or tutorial page is a special type of panel that is proc-
essed by the SRF tutorial program. (The tutorial program invokes
the panel display service to display the panel.) The tutorial
program may be invoked either from a selection menu, or via the
Help PF key.

" Tutorial panels are arranged in a hierarchy. When the tutorial is

entered from a selection menu, the first panel to be displayed is
normally the top of the hierarchy. The name of the first panel is
passed as a parameter to the ISPTUTOR program (see discussion of
primary option menus).

When the tutorial is entered via the Help PF key, the first panel
to be displayed is some appropriate panel within the hierarchy,
depending upon what the user was doing when help was requested.
In this case, the name of the panel is specified by the .HELP con-
trol variable in a panel or message definition.

When viewing the tutorial, the user may select topics by entering
a selection code, or simply press the ENTER key to view the next
topic. On any panel, the user may also enter the following com-
mands:

BACK or B - to back up to the previously viewed panel
SKIP or S — to skip to the next topic

up or U - to display a higher level list of topics
TOP or T-- to display the table of contents

INDEX or I - to display the tutorial index.

The name of the top panel must be specified by dialog variable
ZHTOP, and the name of the first index panel must be specified by
ZHINDEX. It is recommended that these two dialog variables be ini~
tialized at the beginning of the application to ensure that the
end user canh always display the tutorial top or index, regardless
of how the tutorial was entered. One way to initialize these var-
iables is to set them from the primary option menu. For an exam-
ple, see Figure 18.

Each tutorrél panel must have a "next selection” Input field named
OPT. It should also have a processing section in which the fol-
lowing variables are set:

SEL Specifies the name of the next panel to be displaved based
on the topic selected by the user (by translating OPT to a
panal name). The panecl name may be preceded by an asterisk
(%) to indicate a topic that can be explicitly selected by
the user, but which will be bypassed it the user presses the
ENTER key to view the next topic.

If this panel does not have any selectable topics, SEL
should be omitted.)

up Specifies the name of the parent panel, from which this
panel was selected. Generally, UP may be omitted since the
tutorial program remembers the sequence of selections that
lead to the display of this panel. UP is used only if this
panel is the first to be displaved (via the Help key) or is
selected from the tutorial index, and the user then enters
the UP command.

CONT Specifies the name of the next continuation panel. If there
is no continuation panel, CONT should be omitted.

The entire processing section should be omitted if all of the var-
iables SEL, UP, and CONT are omitted.

A panel cannot have both a continuation panel and selectable top-
ics. However, the last panel in a sequence of continuation panels
may have selectable topics.

SPF Dialog Management Services

Figure 21 shows a sample. hierarchy of tutorial panels. Panels A
and B each have three selectable topics. Panels C and D2 each
have two selectable topics. The other panels have no- selectable
topics. Panel Dl has a continuation page (D2), and panel Fl has
two continuation pages (F2 and F3).

A
B c Bl }—
D2
L
E Fl {— G H I
Fe{— J K
F3
—_d
| E—

Figure 21. Sample Tutorial Hierarchy

Two sample tutorial panels are shown in Figure 22 and Figure 23.
These are assumed to be panels B and F2 in the hierarchy.

Panel B has three selectable topics. In the processing section,
OPT is translated to a panel name (E, Fl, or G) corresponding to
the selected option, and the result is stored in SEL. If none of
the valid options is selected, a question mark (?) is returned as
the translated string. This will cause the tutorial program to
display an “invalid option" message.

Note that option 3 is translated to "%G". This indicates that
panel G will be displayed if the user selects option 3, but will
be bypassed if the user repeatedly presses the ENTER key to view
each topic. (The order in which topics are presented when the
ENTER key is pressed is the same as the order in which they appear

in the TRANS function.) :

In panel B, the name of the parent panel (A) is stored in variable

.

Panel F2 has no selectable topics, but does have a continuation
page. The name of the continuation panel (F3) is stored in vari-
able CONT. The name of the parent panel (B) could have been
stored in UP, but this was omitted assuming that F2 cannot be
directly entered via the Help PF key or from the tutorial index.

Panel Definitions - Special Requirements 125

ZTUTORIAL 3270 DISPLAY TERMINAL -- TUTORIAL
ZNEXT SELECTION ===>_ OPT +

% : ——
! GENERAL INFORMATICON I
: 3270 KEY USAGE |

THE IBM 3270 DISPLAY TERMINAL HAS SEVERAL KEYS WHICH WILL ASSIST YOU
IN ENTERING INFORMATION. THESE ARE HARDWARE DEFINED KEYS3 THEY DO NOT
CAUSE A PROGRAM INTERRUPTION.

THE FOLLOWING TOPICS ARE PRESENTED IN SEQUENCE,
OR MAY BE SELECTED BY NUMBER:

Z1+ INSERT AND DELETE KEYS
Z2+ ERASE EOF (TO END-OF-FIELD) KEY

THE FOLLOWING TOPIC WILL BE PRESENTED ONLY IF
EXPLICITLY SELECTED BY NUMBER:

7Z3+ NEW LINE AND TAB KEYS

JPROC
&SEL = TRANS(&OPT 1,E 2,F1 3,%6 %,'?')
&UP = A

JEND

Figure 22. Sample Tutorial Panel (B)

ZTUTORIAL =--mem————— ~-- ERASE EOF KEY -~ TUTORIAL
ZNEXT SELECTION ===>_OPT +

+
WHEN THE ERASE EOF (ERASE TO END OF FIELD) KEY IS USED, IT WILL APPEAR
TO BLANK OUT THE FIELD. ACUTALLY, NULL CHARACTERS ARE USED IN ERASING
TO THE NEXT ATTRIBUTE BYTE, THUS MAKING IT EASY TO USE THE INSERT MODE
(WHICH REQUIRES NULL CHARACTERS]}.

IF THE ERASE EOF KEY IS PRESSED WHEN THE CURSOR IS NOT WITHIN A INPUT
FIELD, THE KEYBOARD WILL LOCK UP. PRESS THE RESET KEY TO UNLOCK THE
KEYBOARD. ,

YOU CAN TRY OUT THE ERASE EOF KEY BY ENTERING DATA ON LINE 2, THEN
MOVING THE CURSOR BACK OVER PART OR ALL OF THE DATA AND PRESSING THE
KEY. ‘

(CONTINUED ON NEXT PAGE)
JPROC

&CONT = F3
JEND

Figure 23. Sample Tutorial Panel (F2)

126 SPF Dialog Management Services

TABLE DISPLAY PANELS

A table display panel is a special type of panel that is processed
by +the TBDISPL service. The panel definition contains
non-scrollable text, including column headings, followed by a
modeal line that defines the format for each line of the scrollable
data. Attr!bute characters in the model line indicate whether
each column is protected or unprotected (user-modifiable).

Typically, the left-most column in each line of scrollable data is
defined as an unprotected selection field. A code entered in that
field is interpreted by the dialog function to determine the par-
ticular processing for that row.

Specific requirements for each section of the panel definition
are described in the following paragraphs.

. Attribute Section (Typically Required)

Attribute characters may be defined for use in the panel body
and the model line. For the model line, only the attributes
TYPE, INTENS, and PAD are meaningful; all fields in the model
line will assume CAPS(OFF) and JUSTC(LEFT).

Tvpically, an attribute section is required since the model
line usually contains output fields. There is no default
attribute character for output fields.

. Body (Required)

The panel body contains the non-scrollable text. It must also
contain two, and only two, input fields:

1. Command field - must be the first input field, and must be
- at least 8 characters long. The TfTield may have any
desired name. The user may enter a temporary scroll
amount in this field and then press a scroll PF key (see
gescr}ption of scrolling in the SPF Program Reference
anual)d.

This field may also be used for application-defined com-
mands. The contents of the field are automatically
stored into the corresponding dialog variable. Upon
return from TBDISPL, the dialog function may interpret
this field and take appropriate action.

2. Scroll amount field - must be the 5econd input field, and
must be exactly 4 characters long. The field may have any
desired name. Its initial value may be set in the JINIT
sectign of the panel] definition to any valid scroll
amount.

If additional input fields are specified in the panel body,
they are ignored (may not be used to enter data).

. Model Section (required)

The panel body must be followed by a JMODEL header statement,
starting in column one. The)MODEL header is immediately fol-
lowed by a single line, called the model line.

The model line contains input and/or output fields, consist-
ing of an attribute character immediately Tollowed by the
letter Z (the name of the null system variable). Only Z may
be used as a variable name in the model line.

The actual variable names that correspond to each input or
output field in the model line are spec1f1ed in the initial-
ization section (see below).

Text fields may also occur in the model line. A text attri-

bute character may appear by itself to terminate the preced-
ing input or output field.

Panel Definitions - Special Requirements 127

128

Any characters that appear within a text field in the model
line will be replicated in each line of the scrollable data.
(This includes the letter Z; it is not treated as a variable
name if it occurs in a text field.)

Variables within text fields (e.g., "+&XYZ"™) are not allowed
in the model line; results are unpredictable.

. Initialization Section (Required)-

The initialization section must assign a name list (enclosed
in parentheses) to the variable VARS, unless VARS is set by
the dialog function before invoking TBDISPL. General format:

JINIT
&VARS = '(namel name2)'

Each name in the list specifies the actual variable name
represented by a null variable (Z) in the model line. The
first name corresponds to the first Z, the second name to the
second Z, etc. Names within the list must be separated by one
or more blanks.

Typically, the first name in the list will specify the dialog
variable into which a selection code (entered by the user)
will be stored, and all remaining names will correspond to
columns in the table. However, this arrangement is not
required; any name in the list may or may not correspond to a
column in the table.

The list should not include the names of extension variables
that appear in some, but not all, rows of the table; results
are unpredictable.

The initialization section may also contain any statement
that is valid in an initialization section of a panel defi-
piti:gipexcept that the only control variable that may be set
is . . .

. Processing Section (Omit)

The panel should not - contain a processing section; the
results are unpredictable.

When the panel is displaved, the model line is replicated to the
end of the logical screen. Each input or output field that has a
corresponding column in the table is initialized with data from
succeeding rows from the table. The first row displayed is the
row pointed by the CRP when TBDISPL was entered.

Input or output fields in the model line that do not correspond to
columns in the table are initialized with the current contents of
the corresponding dialog variables (in all rows). If these fields
are to be blank, the corresponding variables must be set to blanks
or null prior to each call to TBDISPL.

The user may scroll the data up and down, and may enter informa-
tion in the command field and/or the input fields in a row (one
row at a time). Processing of input is described in the TBDISPL
service description. ;

Figure 24 shows a sample panel definition for table display.
Assuming that the current contents of the table are as shown in
Figure 25, the resulting display is shown in Figure 26.

In this example, the select field (left-most column) does not cor-
respond to a column in the table; it is used to return a selection
code, entered by the user, in a variable named SELECT. The other
variables in the VARS name list correspond to variables in the
table. The example also illustrates the initialization of the
scroll amount field to PAGE, and the specification of a corre-
sponding help panel. ;

SPF Dialog Management Services

JATTR
9 TYPE(OUTPUT) INTENS(LOW)

)BODY
A e L ettt T EMPLOYEE LIST ——
7ZCOMMAND INPUT ===>_0OPT ZSCROLL ===>_AMT +
+SELECT ~===w- EMPLOYEE NAME ~wwew-- == PHONE =-~~ EMPLOYEE
+ CODE LAST FIRST MI AREA NUMBER SERIAL
IMODEL ’
4 aZ oz oZ aZ Z 2Z
JINIT
&VARS = '(SELECT LNAME FNAME I PHA PHNUM EMPSER)'
&AMT = PAGE
.HELP = PERSI123
JEND -
Figure 24. Table Display Panel Definition
EMPSER LNAME FNAME I PHA PHNUM
598304 Roberston Richard P 301 840-1224
172397 Smith Susan A 301 547-8465
813058 Russell Charles L 202 338-9557
395733 Adams John Q 202 477-1776
502774 Caruso Vincent J 914 294-1168

Figure 25. Current Contents of Table

EMPLOYEE LIST

COMMAND INPUT ===>

SELECT —=cww- EMPLOYEE NAME ~w-wew-
CODRE LAST FIRST MI
Roberston Richard P
Smith Susan A
Russell Charles L
Adams John Q
Caruso Vincent J

- LINE 000001 COL 001 080
SCROLL ===> PAGE

=== PHONE --- EMPLOYEE
AREA NUMBER SERIAL
301 840-1224 598304
301 547-8465 172397
202 338-9557 813058
202 477-1776 395733
914 294-1168 502774

FEIIHHHHHNHNHHHHHHKNRHMNRKHNNHHHH END OF DATA HIHIHHIEK I 3 33 K2 26363636 3 36 3 3 3 36 3 36 36 36 36

Figure 26. Table as Displayed

Panel Definitions - Special Requirements

129

MESSAGE _DEFINITIONS

130

SPF message definitions are stored in a message library and dis-
played by means of the DISPLAY or TBDISPL service, or written to
the SPF log file via the LOG service. Messages are created or
changed by editing directly into the message library. The mes-
sages are interpreted during SPF execution; no compile or pre-
processing step is required.

Each message is referrenced by message id. A message id may be 4§
to 8 characters long, as follows:

. Prefix: 1 to 5 alphabetic characters (A-Z, #, $, or)
. Number: 3 numeric characters (0-9)
. Suffix (optionall): 1 alphabetic character

Note: If the prefix is 5 characters long, the suffix must be
omitted so that the total length will not exceed 8 characters.

Several messages may be contained within each member of the mes-
sage library. The member name is determined by truncating the
message id after the second digit of the number. Examples:

Message id Member name
G015 G0l
ISPE241 - ISPE24
XYZ123A XYZ1i2
ABCDE965 ABCDE96

All messages which have ids beginning with the characters "GO1"™,
for example, must be in member G0l. Within the member, the mes-
sages must appear in collating sequence by message id.

Each message consists of two lines, as follows:
msgid ['short message']l [.HELP = panels/x] [.ALARM = YES/NO1l
'long message’

Specification of a short message is optional. If a short message
is specified, it will be displayed first. Short messages are
automatically right-justified and displaved at the right hand end
of the first line on the screen. If the user presses the Help PF
key, the long message will then be displayved on the third line of
the screen. If the user presses the Help PF key again, tutorial
mode will be entered.

If a short message is not specified, the long message will be dis-
playved first, on the third line of the screen. If the user then
presses the Help PF key, tutorial mode will be entered.

If tutoral mode is entered by the user, the panel name specified
by .HELP will be the first tutorial page displayved. If .HELP=¥ is
specified, thae first tutorial page will be whatever was specified
in the panel definition (i.e., the panel on which this message is
being displayed). The default is "™ if _HELP is not specified.

If .ALARM=YES is specified, the audible alarm will be sounded
whenever the message is displaved. If .ALARM=NO is specified, the
alarm will not be sounded. The default is NO if .ALARM is not
specified.

When messages are written to the SPF log file, both the short mes-
sage (if any) and the lonhg message are written in the same output
line. The short message comes first, followed by the long mes-
sage.

SPF Dialog Management Services

Substitutable parameters, consisting of a dialog variable name
preceded by an ampersand (&), may appear anywhere within the short
and long message text. Example:

'"VOLUME &VOL NOT MOUNTED®

Substitutable parameters may also be used to specify the value of
.HELP or .ALARM, as follows:

'VOLUME &VOL NOT MOUNTED' .HELP = &H .ALARM = &A

where variable H must contain a panel name or single asterisk, and
variable A must contain YES or NO.

After substitution of the variables, the short message is trun-
cated to 24 characters and the long message is truncated to 79
characters.

--Syntax-rules:

1. The message id must begin in column 1 of the first line, and
the long message must begin in column 1 of the second line.
For readability, one or more blank lines may separate the
two—-line message specifications within the member.

2. In the first line, the message id, short message, .HELP, and
.ALARM fields must be separated by at least one blank. One or
more blanks may optionally occur on either side of an equal
sign (=),

3. The short message (if specified) and the long message must
each be enclosed in apostrophes (').

4., MWithin the short or long message text, any non-alphameric
character may terminate a variable name. Example:

YENTER &X, &Y, OR &Z2°'
where a comma terminates the variable names X and Y.

5. A period (.) at the end of a variable name has a special mean-
ing. It causes concatenation with the character string fol-
lowing the variable. For example, if the value of variable V
is ABC then:

'&V.DEF' yields T'ABCDEF®

6. A single ampersand followed by a blank is interpreted as a
literal ampersand character (not the beginning of a substitu~
table variable). An ampersand followed by a non-blank is
interpreted as the beginning of a substitutable variable.

7. A double ampersand may be used to produce a character string
starting with an ampersand. The double character rule also
applies to apostrophes (within the delimiting apostrophes
required for the short and long message text), and to a period
if it immediately follows a variable name. That is:

&& vyields &
'Y yields ' within delimiting apostrophes
.. yields . immediately following a variable name.

Figure 27 shows an example of a member in the message library.
This member contains all message ids which begin with "EMPX21".

Message Definitions 131

EMPX210 'INVALID TYPE OF CHANGE' +HELP=PERS033 +ALARM=YES
'TYPE OF CHANGE MUST BE NEW, UPDATE, OR DELETE.’

EMPX213 'ENTER FIRST NAME® .HELP=PERS034% +ALARM=YES
'EMPLOYEE NAME MUST BE ENTERED FOR TYPE OF CHANGE = NEW OR UPDATE.'®

EMPX214 'ENTER LAST NAME® +HELP=PERS034 +ALARM=YES
'EMPLOYEE NAME MUST BE ENTERED FOR TYPE OF CHANGE = NEW OR UPDATE.'

EMPX215 'ENTER HOME ADDRESS' +HELP=PERS035 +ALARM=YES
'HOME ADDRESS MUST BE ENTERED FOR TYPE OF CHANGE = NEW OR UPDATE.'

EMPX216 'AREA CODE IKNVALID' ALARM=YES
'AREA CODE &PHA IS NOT DEFINED. PLEASE CHECK THE PHONE BOOK.'®

EMPX217 '&EMPSER ADDED'
'EMPLOYEE &LNAME, &FNAME &I ADDED TO FILE.'

EMPX218 '&EMPSER UPDATED®
'RECORDS FOR &LNAME, &FNAME &I UPDATED.'

EMPX219 '&EMPSER DELETED'
'RECORDS FOR &LNAME, &FNAME &I DELETED.'

Figure 27. Sample Member in Message Library

132 SPF Dialog Management Services

SKELETON DEFINITIONS

SPF skeleton definitions are stored in a skeleton library and
accessed by means of the SPF file tailoring services. Skeletons
are created or changed by editing directly into the skeleton
library. The skeletons are interpreted during SPF execution; no
compile or preprocessing step is required.

Note: The SPF-distributed skeleton library also contains old
format SPF "proc" members. The description of skeleton formats
which follows applies only to new format skeletons used with file
tailoring services.

1bfre are two types of records that may appear in the skeleton
jila:

—-do-Data-Racords

These are a continuous stream of intermixed text, variables,
and control characters that are processed to create an output
record.

2. Control Statements

These control the file tailoring process. Control statements
start with a right parenthesis ")" in column 1. Records con-
taining a "™)" in column 1, and a blank in column 2, are inter-
preted as data records. Records containing a ")" in column 1
and a non-blank character in column 2, are interpreted as con-
trol statements.

Note: A)DEFAULT control statement can be used for assigning
different special characters for syntactical purposes.

DATA RECORDS

Columns 1-71 of each data record are scanned and processed as
described below. After variable substitution, the results are
truncated (if required) to a length of 80 and copied to columns
1-80 of the output record.

If more than one input record maps to a single output record,
continuation is specified by a question mark (?) in column 72 of
each input record that is to be continued. If any character other
than a question mark appears in column 72 of an input record, it
is copied to column 72 of the output record. In this case, column
72 of the output record must not contain generated data (i.e., it
must be blank) for the continuation character to be copied. Oth-
erwise, a severe error results.

The following control characters have special meanings:

. An ampersand (&) indicates the start of a variable name. The
value of the corresponding dialog variable is substituted in
the output record. A value of all blanks is treated as null.

. The following characters implicitly delimit the end of a Var-
iable name:

Blank ¢ < C + | & ! %)

s ~=?2,%_>z/ ' ="
This list includes the seven characters that may be overrid-
den with the)DEFAULT control statement. If those characters
age OVfrtgdden; the specified characters are substituted in
above list.

Skeleton Definitions 133

CONTROL

. A period (.) at the end of a variable name causes the value of
the variable to be concatenated with the character string
following the period. For example, if variable V has the val-
ue ABC then:

- "&V.DEF" vyields "ABCDEF"

. An exclamation mark (') is used as a tab character. It tabs
the output record to the next tab stop and fills with blanks.
The next character "following exclamation mark in the input
record is put at the tab stop location in the output record.
Tab stops are specified via the)TB control statement.

¢ A less-than (<), vertical bar (|), and greater—-than (>) sym-
bol, respectively, specify the beginning, middle, and end of
a conditional substitution string:

<stringl|string2>

where "stringl" must contain at least one variable name.
"string2" can be null.

If the first variable in "stringl"™ is not null, "stringl™ is
substituted in the output record. If the first variable in
"stringl” is null, "string2" is substituted in the output
record.

Two consecutive control characters in the input record result in
one control character being placed in the output record, i.e.

&& vyields &
'Y yields !
vields <
11 vields |
> vyields > :
.. Vields . immediately following a variable name.
STATEMENTS

The general format of a control statement, which must begin in
column 1, is:

dControl-word tokenl ... token3l
where each token represents a name, value, operator, or kevword.

The tokens must be separated by one or more blanks, and may not
contain embedded blanks. A token may be coded as:

e A character string, ’
. A dialog variable name, preceeded by an ampersand, or
. A concatenation of variable names and character strings.

The current value of each variable is substituted prior to evalu-

ation of the control statement. The rules for delimiting a vari-

able name and for the use of ampersands, periods, double
ampersands, and double periods are "the same as for data records.
See description above.

Specific control statements are described below.

JDEFAULT abcdefg

The seven characters; represented by "abcdefg" override the use
o-f the ")I! “&" "7" "'" "<“' “'" and ")" Characters, respec_
tively. Exactly seven characters must be specified, and they must
be spegial (non-alphameric) characters.

134 SPF Dialog Management Services

The)DEFAULT statement takes affect immediately, when it is
encountered. It retains affeét until the end of FTINCL process-—
ing, or until another)DEFAULT statement is encountered.

JTB valuel ... value8

Up to 8 tab stops can be specified. A tab stop specifies a tab
position in the output record, and must be in the range 1-80. The
default i3 one tab stop at location 80.

JIM skel-name [NT] [OPT]

The specifjed skeleton is imbedded at the point where the)IM

is-encountered—Up-to3-tevels-of-imbedding-are permit= .
ted. The optional NT parameter indicates that no tailoring is to
be performed on the imbedded skeleton.

The optional OPT parameter indicates that the skeleton may or may
not be present. If the skeleton is not present, no error indi-
cation is given, and the record is ignored. If OPT is not coded,
a severe error occurs if the skeleton is not present.

)JSEL relational-expression

JENDSEL

The relational expression is evaluated for a true or false
condition. If the condition is true, the skeleton input records
between the JSEL and the corresponding JENDSEL are processed. If
the condition is false, these records are skipped. Up to 8 levels
of nesting are permitted.

The relational expression consists of a simple comparison of the
form:

valuel operator value2
or a combination of up to 8 simple comparisons joined by connec-
tors. The system variable Z may be used to represent a null or
blank value.

The allowable operators are:

EQ or = LE or <=
NE or == GE or >=
GT or > NG or =>
LT or < NL or =<

The allowable connectors are | (OR) and && (AND).

Examples:
JSEL &COND = YES
JSEL &TEST1 == &2 | &ABC =5

JDOT table-name

JENDDOT

The skeleton input records between the)DOT and the corresponding
JENDDOT are iteratively processed, once for each row in the named
table, beginning with the first row. At the start of each iter-

Skeleton Definitions 135

ation, the contents of the current table row are retrieved (stored
into the corresponding dialog variables). Those values can then
be used as parameters in control statements or substituted into
data records. Up to ¢ levels of nesting are permitted. The same
table cannot be processed recursively.

If the table was already open, it remains open after file tailor-
ing with the CRP positioned at TOP. If it was not open, it is
opened automatically and then closed upon completion of file tai-
loring.

JSET variable = expression

JSET allows a value to be assigned to a dialog variable. The
variable name should not be preceded by an ampersand, unless the
variable name is itself stored as a variable., The expression can
be specified as either:

valuel
or: :
valuel operator value2 operator ... valuels

where "operator" can be a plus sign (+) or a minus sign (-).

JCM comment

136

The statement is treated as a comment. No tailoring is performed,
and the record is not placed in the output file.

SPF Dialog Management Services

SAMPLE SKELETON FILE

A sample skeleton file is shown in Figure 28.

The sample skeleton references several dialog variables
(ASMPARMS, ASMIN, MEMBER, etc.). It also 1illustrates use of
select statements ")SEL™ and ")ENDSELY™ to conditionally include
records. The first part of the example has nested selects to
include concatenated macro libraries if the library names have
been specified by the user (i.e., if variables ASMMACl and ASMMAC2
are not equal to the null variable Z).

In the second part of the example, select statements are used to
conditionally execute a load-go step. An imbed statement, ")INMY,
is used to bring in a separate skeleton for the load-go step.

//7ASM EXEC PGM=IFOX00,REGION=128K,

144 PARM=(&ASMPARMS)

//SYSIN DD ODSN=&ASMIN(&MEMBER),DISP=SHR
//78YSLIB DD DSN=5YS1.MACLIB,DISP=SHR
JSEL &ASMMACL == &Z

144 DD DSN=&ASMMAC1,DISP=SHR
JSEL &ASMMAC2 -~= &Z

144 DD DSN=&ASMMAC2,DISP=SHR
JENDSEL

JENDSEL

//8YSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,2))

//75YSUT2 DD UNIT=SYSDA,SPACE=(CYL,(2,1)})

//7S5YSUT3 DD UNIT=SYSDA,SPACE=(CYL,(2,1))

//SYSPRINT DD SYSOUT=(&ASMPRT)

JCM IF USER SPECIFIED "GO'", WRITE OUTPUT IN TEMP DATA SET
JCM . THEN IMBED "LINK AND GO SKELETON

JSEL &GOSTEP = YES

//8YSGO DD DSN=8&&&O0BJSET,UNIT=SYSDA,SPACE=(CYL,(2,1)),

144 DISP=(MOD,PASS)
JIM LINKGO
- JENDSEL

JCM ELSE (NOGO), WRITE OUTPUT TO USER DATA SET
JSEL &GOSTEP = NO

//8YSGO DD DSN=&ASMOUT(&MEMBER),DISP=0LD
JENDSEL

/%

Figure 28. Sample Skeleton File

Skeleton Definitions 137

138 SPF Dialog Management Services

CHAPTER 6. DIALOG TESTING PROCEDURES

This chapter describes recommended set up procedures, test and
trace modes, and use of the SUPPORT option for testing a dialog.

SET _UP PROCEDURES

The following steps are recommended for development and testing
of a dialog.

1.

Before starting development, set up the panel, message, skel-
eton, table{ and program libraries for tbe applicatiop._ For

data sets. For the VM environment, this means selecting mini-

disks on which the libraries are to reside, and ensuring the
dialog has access to the minidisks. See Chapter 3 for addi-
tional information on library setup procedures.

Create a command procedure (CLIST or EXEC2) that contains the
necessary ALLOCATE or FILEDEF statements to allocate the
libraries. The application libraries should be concatenated
ahead of the libraries required by SPF, as described in Chap-
ter 3. This command procedure should be executed prior to
invoking the SPF program development facility, to ensure that
the application libraries are accessible during testing. If
desired, the command procedure may include an ISPF command to
invoke the program development facility.

As a general rule, invoke the SPF program development facili-
ty in one of the test or trace modes prior to testing.

Create the panels, messages, and skeletons by editing direct-
ly into the application libraries. In the VM environment,
these libraries can be updated only in test or trace mode. Use
the SPF SUPPORT option (options 7.1 and 7.3) to display panels
and messages as the end user will see them.

Create the dialog functions and assure that the text or load
modules are in libraries (or on minidisks) accessible to SPF.
See Chapter 3 for a discussion of program libraries. The
functions may be tested by means of the SPF SUPPORT option
(option 7.2).

Note: Under MVS, functions coded as program modules must be
link edited. Under VM, they may be link edited. In either
environment, when a function is link edited the ISPLINK sub-
routine must be included (explicitly or via automatic call)
in the load module. - For MVS, ISPLINK is distributed in load
module format and may be placed in a system library for auto-
ma;é;rc?}% during link edit. For VM, ISPLINK is distributed as
a ile.

Finally, invoke the application from the top (as the end user
would do so) rather than testing pieces of it via the SUPPORT
option. To do this, add an ISPF command to the command proce-
dure created in step 2. In this case, the ISPF command should
invoke the application, using the appropriate PANEL, CMD, or
PGM parameter, rather than invoking the SPF program develop-
ment facility. This command procedure may be made available
to the end users as the means of invoking the application.
Alternatives are to invoke the application from the master
menu or other selection menu.

‘Chapter 6. Dialog Testing Procedures 139

OPERATING IN- TEST AND TRACE MODES

140

There are four mutually exclusive keyword parameters that may be
specified on the ISPF command to control the operational mode:

. TEST - Test mode

. TESTX - Extended test mode
. TRACE <~ Trace mode

] TRACEX - Extended trace mode

In TEST mode, SPF operates differently from normal mode in the
following ways:

1. Panel and message definitions are refetched from the panel
and message libraries whenever a panel name or message id is
specified in an SPF service. (In normal mode, the most
recently accessed panel definitions are retained in virtual
storage to reduce I/0 operations and, under MVS, BLDL macros
for frequently used panels and messages are issued during SPF
initialization to reduce search time.) If you have modified
the panel or message library, use of TEST mode will ensure
that the latest version of ecach panel or message is accessed
during a test run.

2. Tutorial panels are displaved with current panel name, previ-
ous panel name, and previous message id on the bottom line of
the display screen. This will assist you in identifying the
position of the panel in the tutorial hierarchy.

3. Screen printouts (obtained via the PRINT or PRINT-HI PF keys)
include line numbers, current panel name, and message id.

4. If a dialog function is operating in the CANCEL error mode
(which is the default), the panel that is displayed on an
error allows you to force the dialog to continue, in spite of
the error. Results from that point on may be unpredictable.

5. Other than the 'case discussed in item ¢ above, any

: SPF-detected error, ABEND, or program interrupt forces an

ABEND of all of SPF. The user may also force an ABEND by
entering ABEND or CRASH in the command line of any panel.

6. MVS/TSO only:
. The PAl key causes an immediate exit out of SPF.

. If an SPF subtask ABENDs, a dump may be taken by pressing
ENTER after the ABEND message appears, provided that a
SYSUDUMP, SYSMDUMP, or SYSABEND DD has been allocated.

7. VM/CMS only:

. An ADSTOP set within SPF code will not be lost, even if
SPF invokes a CMS command that executes in the user area.
If SPF is operating in DCSS, the page containing the
ADSTOP will be marked non-sharable, and will be copied
automatically to the user area.

In TESTX (extended test) mode, SPF operates the same as in TEST
mode. except that all messages written to the SPF log file are also
displayed at the terminal.

In TRACE mode, SPF operates the same as in TEST mode except that a
message is written to the SPF log file whenever any SPF service is
invoked from a CLIST or EXEC2, and whenever any error is detected
by an SPF service (even if CONTROL ERRORS RETURN has been issued).

In TRACEX (extended trace) mode, SPF operates the same as in TRACE
mode except that all maessages written to the SPF log file (includ-
ing the trace messages) are also displayed at the terminal.

SPF Dialog Management Services

SUPPORT (OPTION 7)

The support option is part of the SPF program development facility
(primary option 7). It provides dialog test aids and conversion
utilities. The support option is described here as well as in the

SPF Program Reference manual.

The support selection menu is shown in Figure 29. This menu is
displayed after option 7 is selected from the SPF primary option
menu.

e SUPPORT SELECTION MENU
SELECT OPTION ===>

DISPLAY PANEL AS USER WOULD SEE IT

INVOKE DIALOG FUNCTION OR SELECTION MENU

SET OR DISPLAY VARIABLES FOR TEST FUNCTION
CONVERT SELECTION/TUTORIAL MENUS TO NEW FORMAT
CONVERT MESSAGES TO NEW FORMAT

TEST OLD FORMAT SPF MENUS

TEST PANEL
TEST FUNCTION
TEST VARIABLES
CONVERT MENUS
CONVERT MSGS
TEST MENU

CUVPUMN -

Figure 29. Support Selection Menu

A new shared variable pool, referred to as the "test pool," is
established when option 7 is invoked. Any variables that are set
or displayed by options 7.1 or 7.3 are from this pool. Functions
that are invoked under option 7.2 may copy variables from and to
the test pool by means of VGET and VPUT services.

The test pool simply takes the place of the normal shared variable
pool to isolate variables in the option 7 environment from vari-
ables being used in the normal environment.

Installations that have previously extended or custom tailored
SPF may need to convert old format selection menus to the new pan-
el formats. A conversion utility to assist in this process is
provided by options 7.4.

The following sections describe each of the support functions,
corresponding to the six options on the support selection menu.

Support (Option 7) 141

TEST PANEL (OPTION 7.1)

142

When this option is selected, a panel is displayed that allows
entry of the name of a panel to be tested. A message id and ini-
tial cursor location may also be specified (Figure 30). These are
the same parameters that may be specified (from a dialog function)
when invoking the DISPLAY service.

The specified panel is fetched from the panel library and dis-
played as the end user would see it. Any variables referenced in
the panel definition are accessed from the test pool.

Information may be entered on the panel being tested. It is
stored in the corresponding variables in the test pool.

When the End PF key is pressed from the panel being tested, the
option 7.1 panel is redisplaved.

TEST PANEL =----

THIS FUNCTION IS USED TO TEST SPF PANEL DEFINITIONS. THE
PANEL WILL BE DISPLAYED AS THE END USER HOULD SEE IT. YOU MAY
OPTIONALLY ENTER A MESSAGE ID TO BE DISPLAYED ON THE PANEL
AND/OR THE NAME OF THE FIELD WHERE THE CURSOR IS TO BE PLACED.

ENTER THE FOLLOWING

PANEL NAME ===>
MESSAGE ID ===> (OPTIONAL)
CURSOR FIELD ===> (OPTIONAL)

ENTER THE NAME OF THE PANEL TO BE TESTED OR PRESS END KEY TO EXIT

Figure 30. Entry Panel for Testing a Panel Definition

SPF Dialog Management Services

TEST FUNCTION (OPTION 7.2)

The test function option allows a dialog function or menu hierar-
chy to be tested without having to build "scaffolding” code.

When this option is selected, a panel is displaved that allows
entry of a command or program name (to invoke a functionl), or a
panel name to test a menu hierarchy (Figure 31). The information
that may be entered on this panel corresponds to the parameters
that may be specified (from a dialog function) when invoking the
SELECT service.

When the invoked function completes execution, or the End PF key
is pressed from the specified panel (selection menu), the test
function entry panel is redisplayed.

--=— INVOKE FUNCTION OR SELECTION MENU

THIS PANEL IS USED TO INVOKE A DIALOG FUNCTION (COMMAND OR
PROGRAM) OR A SELECTION MENU (PANEL). THE PARAMETERS WHICH
MAY BE ENTERED ARE THE SAME AS FOR THE SELECT SERVICE.

THE “OPT" AND "PARM" PARAMETERS ARE OPTIONAL.

TO INVOKE A SELECTION MENU:

PANEL ===> OPT ===>
TO INVOKE A COMMAND:

CMD ===>
TO INVOKE A PROGRAM:

PGM ===> PARM ===>
FOR ANY OF THE ABOVE:

NEWAPPL ===> (YES OR NO)

Figure 31. Entry Panel for Testing a Function

Support (Option 7) 143

TEST VARIABLES (OPTION 7.3)

The test variables option allows dialog variables to be set and/or
displayed in the test pool. It is intended for use with the test
panel and test function options.

When this option is selected, a panel is displaved that allows

entry of variable names down the left-hand column. This column

has underscores as pad characters to indicate where the names may

?9 ente;;d (the underscores need not be blanked out). See
igure .

The current contents of a variable in the test pool may be dis-
playved simply by entering the name of the variable and pressing
the ENTER key. The value will then be displaved to the right of
the colon.

The contents of a variable in the test pool may be set by entering
the variable name, changing the colon to an equal s1gn (=), enter-
ing the desired value to the rlght of the equal sign, and then
pressing the ENTER key.

More than one variable may be displayed or set in the same inter-

action.
SET OR DISPLAY TEST VARIABLES
TO DISPLAY A VARIABLE, ENTER NAME. EXAMPLE: ABC. :
TO SET A VARIABLE, CHANGE COLON
TO EQUAL SIGN AND ENTER VALUE. EXAMPLE: ABC. = XYZ

THE UNDERSCORES ARE PAD CHARACTERS; THEY NEED NOT BE BLANKED OUT.
NAME VALUE

ASMOPT___ LIST,TEST, TERM,RENT

COUNT___ : 29

PROJECT_, SPFDEMO

LIBl MYLIB

€4 0 40 40 46 96 s et s 40 s ev e es ev

Figure 32. Entry Panel for Testing a Variable

144 SPF Dialog Management Services

CONVERT MENUS (OPTION 7.4)

Installations that have previously extended or custom tailored
SPF must ensure that the primary option menu and all lower
selection menus that were displayed by the SPFUTIL program are in
new fTormat. In new SPF, these menus are displayed by the SELECT
service. The SPFUTIL program no longer exists.

The convert wmenus option provides automated conversion of some
old format menus to new format panel definitions. Two panels are
displaved that are similar to the move/copy utility (option 3.3).
0ld format members are read from the first ("from") library, con-
verted to the new panel format, and stored in the second ("to™)
library. The "from" and "to" panels are shown in Figure 33. HNote
that unlike the move/copy utility, there is no option selection -=-
it is always a copy operation.

The panels shown in Figure 33 are the MVS version of the option
”7g§“ﬁ§ﬁ§137 “The-¥M-version-is-similar to the movescopy utility in
SPF-VM.)

If a menu cannot be converted, a special panel is stored in the
second library. It is a displayable "box" panel with a message
indicating the name of the corresponding old menu that could not
be converted.

The convert menus option will handle only tuwo types of old format
menus:

. Lower level selection menus (below the primary option level).
This is limited to selection menus that were designed specif-
ically to be processed by the SPFUTIL program in the previous
SPF products.

. Tutorial pages.

Do not attempt to convert a primary option menu via this utility.
If you have added options to the old primary option menu, you must
manually add these options to the new primary option menu.

Also, no attempt should be made to convert foreground and back-
ground (batch) menus, except for the foreground selection menu
(old name FORA, new name ISPFORA). The foreground selection menu
must be converted to new Tformat, and may be converted with this
utility. All other foreground and background (batch) displays,
including the background (batch) selection menu are supported in
old format only. See SPF Installation and Customization for more
information.

Conversion of tutorial pages is optional; both formats are sup-
ported. If you develop additional tutorial pages, use of the new
format is recommended since it is simpler than the old.

This utility cannot handle the bypassing of a tutorial page that
is viewed only if explicitly selected (bypassed in the normal flow
when the user keeps pressing the ENTER key). The converted page
will not be bypassed in the normal flow. To correct the problem,
manually change the parent panel by inserting an asterisk in front
of the panel name in the TRANS statement. See "Help/Tutorial Pan-
els" in Chapter 5 for more information.

Support (Option 7) 145

3

---------------------------- CONVERT MENUS

SPECIFY "OLD FORHAT" DATASET BELOW:
FROM SPF LIBRARY:

PROJECT ===> SPF22

LIBRARY ===> QURMODS

TYPE ===> MENUS

MEMBER ===> _ (BLANK FOR MEMBER LIST, % FOR ALL MEMBERS)

FROM OTHER PARTITIONED DATASET:
DATASET NAME ==z=>
VOLUME SERIAL >

i

(IF NOT CATALOGED)

v

DATASET PASSWORD === (IF PASSWORD PROTECTED)

PRESS ENTER TO SPECIFY "NEW FORMAT' DATASET

COPY --- OLD FORMAT SPF22.0URMODS.MENUS
SPECIFY "NEW FORMAT' DATASET BELOW

TO SPF LIBRARY:
PROJECT ===> ISP

LIBRARY ===> OURMODS
TYPE ===> ISPPLIB
MEMBER ===>

DATASET NAME

TO OTHER PARTITIONED DATASET.
VOLUME SERIAL ===

v

(IF NOT CATALOGED)
DATASET PASSWORD ==z=> (IF PASSHORD PROTECTED)

REPLACE LIKE-NAMED MEMBERS

"
u
[

> (YES OR NO)

Figure 33. Entry Panels for Converting Menu Definitions

146 SPF Dialog Management Services

CONVERT MESSAGES (OPTION 7.5)

The convert messages option provides automated conversion from
old format SPF message definitions to new format message defi-
nitions. As with option 7.4, two panels are displayed that are
similar to the moves/copy utility. 0ld format members are read
from the first library, converted to new message format, and
stored in the second library.

Variable fields in old format messages are converted to dummy var-
iable names, beginning with an ampersand. These must be changed
manually to the appropriate dialog variable names.

Generally, installations that have previously extended or custom
tailored SPF should not need to convert message formats. This
utility is intended to assist in development of new dialogs that
use messages derived from existing (old format) messages.

The restriction on message formats—is—that-enly-new—format mes=— .

sages may be displaved on new format panels, and old format mes-
sages on old format panels. The new LOG service will write only
new format messages to the SPF log file. Log messages specified
¥ia foreground and background (batch) procs must remain in old
ormat.

TEST MENU (OPTION 7.6)

The test menu option allows old format SPF menus to be displayed
as the end user would see them. 0ld format menus are still used
for the foreground and background (batch) options in the SPF pro-
gram development facility.

When this option is selected, a panel is displayed that allouws
entry of an old format menu name. See Figure 34. When the speci-
fied menu is displayed, the initial values for the input and vari-
able output fields are displaved as "VAL 01", "VAL 02", etc. The
numbers correspond to the numbers on the action statements in the
menu definition. The menu tester supports up to 50 action state-
ments.

WKhen the menu is displaved, information may be entered into the
input Tields. The input and variable output fields may be ini-
tialized prior to displaying the menu by first displaying a menu
named SETUP. The procedure is as follows:

1. Enter SETUP as the mehu name on the test menu display.

2. On the SETUP menu, fill in the desired parameters by overtyp-
ing "WAL 01", “WAL 02", etc. These values will be passed as
initial values to the menu to be tested.

3. PIess ENTER or the End PF key to return to the test menu dis-
play.

4. Enter the name of the menu to be tested on the test menu dis-
play.

Support (Option 7) 147

—— SPF MENU TESTER -

MENU NAME ===

THIS FUNCTION IS USED TO TEST OLD FORMAT SPF MENUS. DO NOT TRY TO USE THIS
FUNCTION TO TEST NEW FORMAT SPF PANELS.

SEVEN SPECIAL CHARACTERS ARE USED ON MENU DEFINITION STATEMENTS TO DEFINE EACH
OF 7 MENU FIELD TYPES. THE SPECIAL CHARACTERS ARE REPLACED BY THE APPROPRIATE
HARDKARE ATTRIBUTE BYTES, AND APPEAR ON THE SCREEN AS BLANKS. THE SPECIAL
CHARACTERS (LISTED IN ORDER OF USE BY THE "<FIELDS>" MENU STATEMENT) ARE:

INPUT (UNPROTECTED), NON-DISPLAY.

INPUT (UNPROTECTED), INTENSIFIED DISPLAY.

INFUT (UNPROTECTED), NORMAL DISPLAY.

OUTPUT (PROTECTED), INTENSIFIED DISPLAY.

- OUTPUT (PROTECTED), NORMAL DISPLAY.

-~ VARIABELE OUTPUT (PROTECTED), INTENSIFIED DISPLAY.
VARIABLE OUTPUT (PROTECTED), NORMAL DISPLAY.

]
LI I |

e YF 00— N

FOR FURTHER INFORMATION ON MENUS REFER TO THE SPF INSTALLATION GUIDE.

ENTER THE NAME OF THE MENU TO BE TESTED OR PRESS PF3 (END KEY) TO EXIT.

- Figure 34. Panel for Testing 0ld Format Menus

148 SPF Dialog Management Services

APPENDIX A. SAMPLE PROBLEM

This appendix illustrates the implementation of an "emplovee
records" application. The dialog begins with the display of a
primary option menu, from which the user may select several
options. Only the first option is implemented in this example.

The overall organization of the dialog is shown in Figure 35. The
panel definition for the primary option menu, named EMPL, is shown
in Figure 36. For the first option, the menu invokes a dialog
function coded as a command procedure named EMPLCMD.

EMPL

PR { SELECTION \

MENU

_

&]
<
<
<

EMPLCMD EMPLA
DIALOG e DATA ENTRY

FUNCTION PANELS -

Figure 35. Sample Problem - Overall Dialog Organization

immmm i e EMPLOYEE RECORDS ======mm=mm-

ZSELECT OPTION ===>_0OPT Z

)

+MODIFY ADD, UPDATE, OR DELETE EMPLOYEE RECORDS
+(FUTURE) - FUNCTION NOT YET AVAILABLE

+(FUTURE) = FUNCTION NOT YET AVAILABLE
+{FUTURE) - FUNCTION NOT YET AVAILABLE
+(FUTURE) = FUNCTION NOT YET AVAILABLE

FNNNNNNN
VP um -

PRESSZEND KEY+TO TERMINATE
JFROC
&SEL = TRANS(TRUNC (&OPT,'.')
1, CMD(EMPLCMD)"

/% FUTURE OPTIONS TO GO HERE %/

JEND

Figure 36. Sample Problem - Primary Option Menu (EMPL)

Appendix A. Sample Problem 149

150

Function EMPLCMD displays two data entry panels, named EMPLA and
EMPLB. The first panel prompts the user to enter an emplovee seri-
al number. The second panel allows the user to add, update, or
delete records from an employee table. The table contains the
serial number, name, home address, and phone number for some group
of employees. -

The panel definitions for the two data entry panels are shown in
Figure 37 and Figure 38.

VER- statements in the first panel definition verify that an
emplovee serial number was entered, and that it consists of 6
numeric digits. :

VER statements in the second panel definition verify that the user
did not make an invalid change to the "type of change" field; i.e.
did not specify NEW if the employee record already exists, nor
UPDATE or DELETE if the record does not exist. (See description
of the EMPLCMD procedure.) Additional VER statements check the
validity of the user's inputs and ensure that all required fields
have been entered for a type change of NEW or UPDATE.

The messages that may be displayed on these panels are shown in
Figure 39. (Message id EMPX216 is not used in this sample
problem.)

O -—- EMPLOYEE SERIAL ===-m===mmmeme—————————————————
ZENTER EMPLOYEE SERIAL BELOW .

+ EMPLOYEE SERIALZ===>_EMPSER+ (MUST BE 6 NUMERIC BIGITS}
+PRESSZENTER+TO DISPLAY EMPLOYEE RECORD.
+PRESSZEND+KEY TO RETURN TO PREVIOUS MENU.
JPROC
VER (&EMPSER,NONBLANK)
VER (&EMPSER,NUM)

JEND

Figure 37. Sample Problem - First Data Entry Panel (EMPLA)

SPF Dialog Management Services

%

ZEMPLOYEE SERIAL: &EMPSER

EMPLOYEE RECORDS

+ TYPE OF CHANGEZ===>_TYPECHG +

+ EMPLOYEE NAME:

+ LAST Z===>_LNAME

+ FIRST Z===>_FNAME

+ INITIALY===>_T+

+ HOME ADDRESS:

+ LINE 1 Z===>_ADDR1

+ LINE 2 Z===>_ADDR2 -

+ LINE 3 Z===>_ADDR3

+ LINE 4 Z===>_ADDR4

+ HOME PHONE:

+ AREA.CODE _“===> PHA+
+ LOCAL NUMBERZ===>_PHNUM
JINIT

.HELP = PERS032
.CURSOR = TYPECHG

&TYPECH

JPROC

&TYPECHG = TRUNC (&TYPECHG,1)}

A='")
= 30
G =

VER (&TYPECHG,NONBLANK)
VER (&TYPECHG, LIST,N,U,D,MSG=EMPX210)
IF (&TYPECHG = N)

IF (&CHKTYPE == N)

HMSG = EMPX211

IF (&TYPECHG == N)
IF (&CHKTYPE = N}

VER
VER
VER
VER
VER

MSG = EMPX212
(&LNAME, ALPHA)
(&FNAME ,ALPHA)
(&I,ALPHA)
(&PHA,NUM)

C&PHRNUM, PICT, 'NNN-NNNN')

IF (&TYPECHG = N,U)

VER (&LNAME,NONBLANK,MSG=EMPX214)
VER (&FNAME , NONBLANK,MSG=EMPX213)
VER (&ADDR1,NONBLANK,MSG=EMPX215)
VER (&ADDR2,NONBLANK,MSG=EMPX215)
VER (&ADDR3,NONBLANK,MSG=EMPX215)

JEND

+

1
TRANS (&TYPECHG N,NEW U,UPDATE

-

D,DELETE)

(NEW, UPDATE, OR DELETE)

4+

Figure 38. Sample Problem - Second Data Entry Panel (EMPLB)

Appendix A.

Sample Problem

151

EMPX210 *INVALID TYPE OF_CHANGE' .HELP=PERS033 ~ALARM=YES
*TYPE OF CHANGE MUST BE NEW, UPDATE, OR DELETE.'

EMPX211 'TYPE '‘'NEW'' INVALID' -HELP=PERS033 +ALARM=YES
'EMPLOYEE SERIAL &EMPSER ALREADY EXISTS. CANNOT BE SPECIFIED AS NEW.'

EMPX212 'UPDATE QR DELETE INVALID® .HELP=PERS033 .ALARM=YES
'EMPLOYEE SERIAL &EMPSER IS NEW. CANNOT SPECIFY UPDATE OR DELETE.'

EMPX213 'ENTER FIRST NAME' - .RELP=PERS034 -ALARM=YES
'EMPLOYEE NAME MUST BE ENTERED FOR TYPE OF CHANGE = NEW OR UPDATE.'

EMPX214 'ENTER LAST NAME® .HELP=PERS034 .ALARM=YES
*EMPLOYEE NAME MUST BE ENTERED FOR TYPE OF CHANGE = NEW OR UPDATE.'

EMPX215 'ENTER HOME ADDRESS' ’ .HELP=PERS035 +ALARM=YES
'HOME ADDRESS MUST BE ENTERED FOR TYPE OF CHANGE = NEW OR UPDATE.'

EMPX216 'AREA CODE INVALID® JALARM=YES
'AREA CODE &PHA IS NOT DEFINED. PLEASE CHECK THE PHONE BOOK.'

EMPX217 '&EMPSER ADDED'
'EMPLOYEE &LNAME, &FNAME &I ADDED TO FILE.®

EMPX218 *&EMPSER UPDATED'
'RECORDS FOR &LNAME, &FNAME &I UPDATED.'

EMPX219 '&EMPSER DELETED'
'RECORDS FOR &LNAME, &FNAME &I DELETED.'

Figure 39. Sample Problem - Messages (Member EMPX)

152 SPF Dialog Management Services

The code for function EMPLCMD, coded as a CLIST, is shown in
Figure 40. The same function coded as a PL/I program named EMPLPGM
is shown in Figure 41 through Figure 4¢3, If the PL/I program were
to receive control from the primary option menu (EMPL), the
selection keyuwords on that menu would have te be changed

from: 1, 'CMD(EMPLCMD)'
to: 1,'PGM(EMPLPGM)'

The function starts by invoking the TBOPEN service to open the
employee table, named EMPLTBL. If the table does not exist (first
execution of the function), the function invokes TBCREATE to cre-
ate it. The function then displays the first data entry panel
(EMPLA) via invoking the DISPLAY service.

The employee serial, entered by the user on the first panel,
serves as the key variable for accessing the employee table.
After the first panel has been displayed, the function attempts to
read the row from the table for this emplovee, using the TBGET
servicer—Then—it initializes variables for the second data entry
panel (EMPLB) and displays the panel.

If the employee record was found in the table, the "type of
change" field on panel EMPLB is initialized to UPDATE (the user
may change it to DELETE). The other fields in the panel are auto-
matically initialized to the values read from the table. If the
employee record was not found, the "type of change" field is ini-
tialized to NEN, and the other input fields on the panel are ini-
tialized to blanks.

Once the user has correctly entered all required infomation on the
second panel and pressed the ENTER key, the function updates the
employee table, using the TBADD, TBPUT, or TBDELETE service. It
then redisplays the first panel (EMPLA) with a confirmation mes-
sage. It also writes the confirmation to the log file, using the
LOG service.

If the user presses the End PF key from the second panel, the
first panel is redisplayed without making any changes to the
table, and without displaying or logging a message.

When the first panel is redisplayed, the user may enter another
employee serial number, and the process repeats. If the user
praesses the End PF key from the first panel, the function closes
the employee table using the TBCLOSE service and completes exe-
cution. The selection menu from which it was invoked will then be
redisplayed.

Appendix A. Sample Problem 153

154

CONTROL MAIN
SET &STATE
SET &EMPSER
SET &MS6 =
ISPEXEC TBOPEN EMPLTBL
IF &LASTCC -=0 THEN

ISPEXEC TBCREATE EMPLTBL KEYS(EMPSER)
NAMES(LNAME FNAME I ADDR1 ADDR2
DO WHILE &STATE == &
ISPEXEC DISPLAY PANEL(EMPLA) MSG(&MSG)
IF &LASTCC=8 THEN SET &STATE=G
ELSE DO
SET &MSG =
'SET &STATE =
ISPEXEC TBGET EMPLTBL
IF &LASTCC= 0 THEN SET &TYPECHG = U
ELSE DO
SET &TYPECHG
SET &LNAME
SET &FNAME
SET &I
SET &ADDR1
SET &ADBDR2
SET &ADDR3
SET &ADDRG
SET &PHA
SET &PHNUM
END ‘
SET &CHKTYPE = &TYPECHG
ISPEXEC DISPLAY PANEL(EMPLB)
IF &LASTCC -= 8 THEN DO
"IF &TYPECHG = N THEN DO
ISPEXEC TBADD EMPLTBL
SET &MSG = EMPX217
END
ELSE DO
IF &TYPECHG = U THEN DO
ISPEXEC TBPUT EMPLTBL
SET &MSG = EMPX218
END
ELSE DO
ISPEXEC TBDELETE EMPLTBL
SET &MSG = EMPX219
END
END
END
END
IF 8MSG ~= THEN ISPEXEC LOG MSG(&MSG)
END
ISPEXEC TBCLOSE EMPLTBL
EXIT CODE(Q)
END

N

PROC 0 _ /% EMPLOYEE UPDATE FUNCTION

/%
/%INITIAL ENTRY STATE

*/

. %/

*/

/%*INITIALIZE EMPL SERIAL»/

/%INITIALIZE MESSAGE
/%0PEN EMPLOYEE TABLE

*/
*/

/%IF TABLE DOESN'T EXIST*/-

/¥CREATE IT

ADDR3 ADDR4 PHA PHNUM)
/%LOOP UNTIL TERM SET
/%SELECT EMPLOYEE
/%END KEY PRESSED
/*ENTER KEY PRESSED
/*RESET MESSAGE

*/ -

*/
*/
*/
*/
*/

/%PROCESS EMPLOYEE PANEL*/

/%0BTAIN EMPLOYEE DATA
/%RECORD EXISTS-UPDATE
/%RECORD DOES NOT EXIST
/%SET TYPE = NEH

/% '

/% INITIALIZE

/% PANEL

/% VARIABLES

7% TO NULL
V.1

/%

/%

/¥

/% _

/%SAVE TYPE OF CHANGE
/%DISPLAY EMPLOYEE DATA
/%END KEY NOT PRESSED
/%IF NEW EMPLOYEE

/%ADD EMPLOYEE TO TABLE

*/
*/
*/
*/
x/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
x/
*/

/*%EMPLOYEE ADDED MESSAGEX/

7%

/% ,
/%IF UPDATE REQUESTED
/% UFDATE TABLE

/% UPDATE MESSAGE

/%

/%

/%DELETE TBL MEMBER
/XEMPLOYEE DELETED MSG
7%

/%END TABLE MODS

/*END 2ND PANEL PROCESS
/%END 1ST PANEL PROCESS
/%L0G ANY MESSAGES
/%END DO LOOP

/%CLOSE TABLE

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Figure 40. Sample Problem - CLIST (EMPLCMD)

SPF Dialog Management Services

EMPLPGM: PROC OPTIONS(MAIN); . /%EMPLOYEE UPDATE FUNCTION %/

ZINCLUDE ENMPLDCL; /%DCL & DEFINE VARIABLES*/
MSG = ' ' . /%INITIALIZE MESSAGE */
CALL ISPLINX('TBOPEN', 'EMPLTBL ‘)3 /%¥0PEN TABLE *®/
IF PLIRETV() == 0 THEN /¥IF TABLE DOESN'T EXIST*/

CALL ISPLINK('TBCREATE', 'EMPLTBL ', '(EMPSER)', /¥CREATE IT %/
'CLNAME FNAME I ADDR1 ADDR2 ADDR3 ADDR4 PHA FHNUM)')3

ERND EMPLPGM;

DO KWHILE (STATE -= ‘'6')s; /%¥LO0OP UNTIL TERM SET */
CALL ISPLINK('DISPLAY', ‘EMPLA ', MSG); /¥SELECT EMPLOYEE %/
IF PLIRETV() = 8 THEN /%IF END KEY PRESSED */

STATE = '6'; /% TERMINATE */
ELSE DO; /*ENTER KEY PRESSED */
MSG = * ' 3 /%RESET MESSAGE */
STATE = '2'; /%PROCESS EMPLOYEE PANEL*/
CALL ISPLINK('TBGET', 'EMPLTBL '); /%0BTAIN EMPLOYEE DATA %/
IF PLIRETV() = ¢ THEN /%IF RECORD EXISTS */
TYPECHG ='U’'; /% SET UPDATE FLAG */
B ECSETDOS - e e ARRECORD_BOES NOT EXIST %/
TYPECHG = 'N' 3 /% SET TYPE = NEW */
LNAME = ' /% */
FNAME = ' /% INITIALIZE */
I =t /% PANEL */
ADDR1 ="' '3 /% VARIABLES */
ADDR2 = /% T00 RULL */
ADDR3 = ' ' /% */
ADDR4 ="' '3 /% o */
FHA =" '3 /* .74
PHNUM =*' '3 /% */
END3 /% */
CHKTYPE = TYPECHG; /%¥SAVE TYPE OF CHANGE */
CALL ISPLINK('DISPLAY', 'EMPLB '); /*DISPLAY EMPLOYEE DATA */
IF PLIRETV() ~= 8 THEN DO; /%END KEY NOT FRESSED */
IF TYPECHG = 'N' THEN DO; /%IF NEW EMPLOYEE */
CALL ISPLINK('TBADD', 'EMPLTBL '}; /% ADD TO TABLE */
MSG = 'EMPX217 '; /*¥EMPLOYEE ADDED MESSAGEX*/
END 3 /% */
ELSE DO; /¥ . */
IF TYPECHG = ‘'U' THEN DO; /%IF UPDATE REQUESTED */
CALL ISPLINK('TBPUT', ‘EMPLTBL '); /% UPDATE TABLE */
MSG = 'EMPX218 '; /% UPDATE MESSAGE */
END; /% */
ELSE DO; /%¥ELSE ASSUME DELETE */
CALL ISPLINK('TBDELETE', 'EMPLTBL *);
MSG = 'EMPX219 ' ; /*EMPLOYEE DELETED MSG %/
END; /% */
END3; /¥END TABLE MODS */
END; /%END 2ND PANEL PROCESS */
END3; /%END 1ST PANEL PROCESS */
IF MSG ~= ' ' THEN CALL ISPLINK('LOG', MSG); /%L0G MSG */
END3; /%END DO LOOP . */
CALL ISPLINK('TBCLOSE', 'EMPLTBL '); /%CLOSE TABLE */
ZINCLUDE EMPLDEL; /*DELETE DEFINED VARS */
RETURN(O);

Figure 41. Sample Problem - PL/I Main Program (EMPLPGM)

Appendix A. Sample Problem

155

156

/% */

/% DECLARE STATEMENTS AND VARIABLE DEFINITIONS FOR "EMPLPGM"

*/

L% */

DCL YSPLINK EXTERNAL ENTRY OPTIONS{ASM RETCODE} ;
DCL PLIRETV BUILTIN H

DCL LENGTH BUILTIN H

DCL RC FIXED BIN(31,0) INIT(0);
DCL EMPSER CHAR(6) INIT((6)' ')
DCL FNAME CHAR(16) INIT((16)' °®
DCL LNAME CHAR(16) INIT((16)"' '
DCL I CHAR(1) INITC* ');
DCL ADDR1 CHAR(40) INIT((40)'
DCL ADDR2 CHAR(40) INIT((40)'
DCL ADDR3 CHAR(40) INIT((40)'
DCL ADDR4 CHAR(40) INIT((40)°
DCL PHA CHAR(3) INIT((3)®
DCL PHNUM CHAR(8) INIT((8)'
DCL MSE CHAR(8) INIT((8)'
DCL TYPECHG CHAR(1) INIT(' '
DCL CHKTYPE CHAR(C1) INIT(' °*
DCL STATE CHAR(1) INIT('l'); /*INITIAL ENTRY STATE
/% .

/% LENGTH PARAMETER IN 'CALL ISPLINK VDEFINE' MUST BE FULL KORD.
Vé s

DCL LEMPSER FIXED BIN(31,0)
DCL LFNAME FIXED BIN(31,0)
DCL LLNAME FIXED BIN(31,0)
DCL LI FIXED BIN(31,0)
DCL LADDRI FIXED BIN(31,0)
DCL LADDR2 FIXED BIN(31,0)
DCL LADDR3 FIXED BIN(31,0)
DCL LADDR4 FIXED BIN(31,0)
DCL LPHA FIXED BIN(31,0)
DCL LPHNUM FIXED BIN(31,0)
DCL LTYPECH FIXED BIN(31,0)
DCL LCHKTYP FIXED BIN(31,0)
LEMPSER LENGTH(EMPSER)
LFNAME LENGTH(FNAME)
LLNAME LENGTH(LNAME)

LI LENGTH(I)

LADDR] LENGTH(ADDR1)
LADDR2 LENGTH(ADDR2)
LADDR3 LENGTH(ADDR3)
LADDR4 LENGTH(ADDR%)
LPHA LENGTH(PHA)
LPHNUM LENGTH(PHRUM)
LTYPECH LENSTH(TYPECHG)
LCHKTYP = LENGTH(CHKTYPE)
/%

/%DEFINE VARIABLES FOR DIALOG SERVICE USE

/%

CALL ISPLINK('VDEFINE','(EMPSER)',EMPSER, ' 'CHAR',LEMPSER) 3
CALL ISPLINK('VDEFINE','(FNAME)',FNAME, 'CHAR',LFNAME) ;
CALL ISPLINK('VDEFINE','(LNAME)',LNAME, 'CHAR',LLNAME) ;
CALL ISPLINK('VDEFINE','(I)',I,'CHAR',LI) ;

CALL ISPLINK('VDEFINE','(ADDR1)',ADDR1,'CHAR',LADDR])
CALL ISPLINK('VDEFINE','{ADDR2)',ADDR2,'CHAR',LADDR2)
CALL ISPLINK('VDEFINE','(ADDR3)’',ADDR3,'CHAR',LADDR3)
CALL ISPLINK('VDEFINE','(ADDR4)',ADDRG, 'CHAR',LADDRSG)
CALL ISPLINK('VOEFINE','(PHA)',PHA, 'CHAR',LPHA) 3
CALL ISPLINK('VDEFINE','{(PHNUM)"',PHNUM, 'CHAR',LPHNUM) 3
CALL ISPLINK('VDEFINE','(TYPECHG)',TYPECHG, 'CHAR',LTYPECH);
CALL ISPLINK('VDEFINE','(CHKTYPE)',CHKTYPE, 'CHAR',LCHKTYP);
/%

LT T L O O LI T I T [B [}

NI WP e W W W M Ve W WE e M Ve W W Ve W W W W we W W we

.o we we we

*/
*/
*/
*/

®/
*/
*/

*/

Figure 42. Sample Problem - PL/I Included Segment (EMPLDCL)

SPF Dialog Management Services

/% */
/% DELETE VARIABLE DEFINITIONS FOR "EMPLPGM" */
/% */
CALL ISPLINK('VDELETE','(EMPSER)');
CALL ISPLINK(‘'VDELETE','(FNAME}') 3
CALL ISPLINK('VDELETE','(LNAME)*) 3
CALL ISPLINK('VDELETE','(I}') H
CALL ISPLINK('VDELETE',"(ADDR1)') ;
CALL ISPLINK('VDELETE',"'(ADDR2}') 3
CALL ISPLINK('VDELETE','(ADDR3)') 3
CALL ISPLINK('VDELETE','(ADDR%4)') ;
CALL ISPLINK('VDELETE','(PHA)'") H
CALL ISPLINK('VDELETE','(PHNUM)') 3
CALL ISPLINK('VDELETE','(TYPECHG)"')
CALL ISPLINK('VDELETE','(CHKTYPE}')
/% */

e

-

Figure 43. Sample Problem - PL/I Included Segment (EMPLDEL)

Appendix A. Sample Problem 157

158 SPF Dialog Management Services

APPENDIX B.

SUMMARY _OF SPF DIALOG SERVICES

This appendix contains a quick reference summary of dialog serv-

ices.

The command

invocation syntax for all services

is

first, followed by the call invocation syntax.

COMMAND TNVOCATION SYNTAX

Display Services

ISPEXEC DISPLAY

ISPEXEC TBDISPL

Table Services - General

ISPEXEC TBCREATE

ISPEXEC
ISPEXEC

TBOPEN
TBQUERY

ISPEXEC TBSAVE

ISPEXEC TBCLOSE

ISPEXEC
ISPEXEC

TBEND
TBERASE

Table Servibes -

ISPEXEC
ISPEXEC
ISPEXEC
ISPEXEC
ISPEXEC
ISPEXEC
ISPEXEC

TBADD
TBDELETE
TBGET
TBPUT
TBMOD
TBEXIST
TBSCAN

Appendix B.

[PANEL (panel—-name)]

[M5G(msg-id)]

table~name PANEL(panel-name)

table-name

table-name

table—-name

table-name

table-name

table-name

table-name

Row Operations

table-name
table-name
table-name
table-name
table-nanme
table-name

table-nane

[MSG(msg-id)]

[KEYS(key-name-list)]
[NAMES (name-list)]
[WRITE/NOWRITE]
[REPLACE]

[WRITE/NOWRITE]

[KEYS(key-name)]
[NAMES(var-name)]
[ROKNUM(rownum—name)]
[KEYNUM(keynum—name)]
[NAMENUM(namenum—-name)]
[POSITION(Ccrp-name)l]

[NEWCOPY/REPLCOPY]
[NAME(alt-name)]
[PAD(percentage)]
[NEWCOPY/REPLCOPY]

[NAME(alt-name)]
[PAD(percentage)]

[SAVE(name-list)]

[SAVENAME(var—name)}]
[SAVE(name—-list)]
[SAVE(name-list)]

[ARGLIST(name~1list)]
[SAVENAME(var—-name)]

Summary of SPF Dialog Services

shown

159

ISPEXEC
ISPEXEC
ISPEXEC
ISPEXEC

TBSARG
TBTOP
TBBOTTOM
TBSKIP

table-name
table-name
table-name

table~—name

[ARGLIST(name-list)1]

[SAVENAME(var-name)]
[NUMBER(number)]

[SAVENAME(var-name)]

ISPEXEC TBVCLEAR table-name

File Tailoring Services

ISPEXEC FTOPEN [TEMP]

ISPEXEC FTINCL skel-name [NOFT]
ISPEXEC FTCLOSE [NAME(member-name)]
ISPEXEC FTERASE member-name

Variable Services

ISPEXEC VGET name-list [SHARED/PROFILE]"
ISPEXEC VPUT name-list [SHARED/PROFILE]
Other Services
ISPEXEC SELECT PANEL(panel-name) [OPT(option)l]
CMD(command)
PGM(program-name) [PARM(parameters)]
iNENAPPL/NENPOOL]
ISPEXEC CONTROL DISPLAY LINE [START(line-number)]
{ SM [START{line-number)] }
REFRESH
NONDISPL [ENTER/ENDI]
ERRORS [CANCEL/RETURNI]
“SPLIT { ENABLE }
DISABLE
ISPEXEC BROWSE DATASET(dsname) [VOLUME(serialll
[PASSKORD(pswd-value)]l
ISPEXEC BROWSE FILE(fileid) [MEMBER(mémber-name)]
ISPEXEC EDIT DATASET(dsname) [VOLUME(serialll
L [PASSWORD(pswd-value)]
ISPEXEC EDIT FILE(fileid) [MEMBER (member-name)]
ISPEXEC LOG MSG{msg-id)

160 SPF Diwalog Management Services

CALL TINVOCATTION SYNTAX

Display Services

CALL ISPLINK ('DISPLAY! [,panel-namel
[,msg-idl
[,field-namel);

CALL ISPLINK ('TBDISPL', table-name, panel-name
[,msg-id]);

Table Services - General

CALL.. ISPLINK ('TBCREATE', table-name, key-name-list
[,name~-175%] '
[,’ﬂgllglNONRITE']
[,"REPLACE']);

» "WRITE'/"NOWRITE']);

CALL ISPLINK ('TBOPEN', table-name [

CALL ISPLINK ('TBQUERY', table-name [,key-namel
£,var namel
[, rownum-name]
[,keynum-namel
[,namenun -namel
[,crp-namel J;
["NEWCOPY/REPLCOPY"']
[,alt-namel
[,percentagel J);

)
[
L

CALL ISPLINK ('TBSAVE', table-name,

» "NEWCOPY/REPLCOPY ']
,alt-namel
spercentagel]);

CALL ISPLINK ('TBCLOSE', table-name

CALL ISPLINK ('TBEND?', table-name);
CALL ISPLINK ('TBERASE', table-namel;

Table Services - Row Operations

CALL ISPLINK ('TBADD', table-name [,name-listl] J;
CALL ISPLINK ('TBDELETE', table-name);
CALL ISPLINK ('TBGET®, table-name [,var-namel);
CALL ISPLINK ('TBPUT', table-name [,name-listl J);
CALL ISPLINK ('TBMOD', table-name [,name-listl J;
CALL ISPLINK ('TBEXIST', table-name);

CALL ISPLINK ('TBSCAN?', table-name [,name-listl]
[,var-namel);

CALL ISPLINK ('TBSARG', table-name [,name-1list] J;
CALL ISPLINK ('TBTOP', table-name);
CALL ISPLINK ('TBBOTTOM', table-name [,var-namel);

CALL ISPLINK ('TBSKIP', table-name [,numberl
[,var-namel J);

CALL ISPLINK ('TBVCLEAR', table-name);

Call Invocation Syntax 161

File Tailoring Services

CALL ISPLINK ('FTOPEN' [,'TEMP']);

CALL ISPLINK ('FTINCL', skel-name [,'NOFT']);
CALL ISPLINK ('FTCLOSE' [;member-namel J);

CALL ISPLINK ('FTERASE', member-name);

Variable Services

CALL ISPLINK ('VGET', name-list [,"SHARED'/'PROFILE']);
CALL ISPLINK ('VPUT', name-list [, "SHARED'/'PROFILE']});
CALL . ISPLINK ('VDEFINE', name-~list, variable, format, length);
CALL ISPLINK ('VDELETE', name-list);

CALL ISPLINK ('VCOPY', var-name, length, variable
[,YLOCATE'/"MOVE']);

CALL ISPLINK ('VREPLACE', var-name, length, value);
CALL ISPLINK ('VRESET');

Other Services

CALL ISPLINK ('SELECT', buf-length, buffer);

CALL ISPLINK ('CONTROL', type [,model
[,1line-numberl J;

CALL ISPLINK ('BROWSE', dsname [,seriall
: [,pswud-valuel J;

CALL ISPLINK ('BROWSE', fileid [,member-namel);

CALL ISPLINK ('EDIT', dsname [,seriall
[,pswd-valuel);

CALL ISPLINK ('EDIT', fileid [,member-namel J;
CALL ISPLINK ('LOG', msg-id);

162 SPF Dialog Management Services

INDEX

Assignment Statement 101
Attribute Characters 11-12, 97, 111-113

BROWSE Service 91

CANCEL Mode 26, 45, 88-89
Change PF Key 29

CM (Comment) Statement 136
CONTROL Service 88

Control Variables 108
Convert Menus 145

Convert Messages 147
Cursor PF Key 29

DEFAULT Statement 134
Dialog
Elements 5
Flow &-9
Functions 6-9
Organization 6-7
Saervices 10-26
Variables 10, 20-25
DISPLAY Service 11, 46
DOT Statement 135
Down Scroll PF Key 29

EDIT Service 93
End PF Key 28-29

File Skeletons 5, 18-19, 133-137
File Tailoring 18-19

File Tailoring Output 18, 32, 35
Find PF Key 29

FTCLOSE Service 75

FTERASE Service 76

FTINCL Service 74

FTOPEN Service 73

Functions 5-9 '

Function Variables 21-23

GLOBAL Command Restrictions 37

Help PF Key 27-28, 124-125
~Help/Tutorial Panels 124-126

IF Statement 104

IM (Imbed) Statement 135
ISPEXEC Command 10, 41-42
ISPF Command 8, 38-39
ISPLINK Subroutine 10, 43-44

Left Scroll PF Key 29

Library Setup 31-36, 139
Link/Load Library 33, 36, 139
LOG Service 95

Master Application Menu 122
Menus (see Panels)

Messages 5, 14, 130-132
Message Library 31, 34
MODULE File Restrictions 37

Panels 5, 11-13, 97-129
Help/Tutorial Panels 124-126
Master Application Menu 122
Primary Option Menus 120-121
Saelection Menus 119-123
Table Display 127-129

Panel Library 31, 34

Primary Option Menus 120-121

Index 163

Print, Print-Hi PF Keys 29
Profile Variables 21-22
Profile Library 31

Program (PA/PF) Keys 28-29

Return Codes from Services 45
RETURN Mode 26, 45, 88-89
Return PF Key 28

Right Scroll PF Key 29

SEL Statement 135

SELECT Service 8, 85
Selection Menus 119-123

SET Statement 136

Scrolling 29, 127-129
Shared VYariables 21-23
Skeletons 5, 18-19%, 133-137
Skeleton Library 31, 34
Split PF Key 28

Split Screen Mode 27-28, 88-90
Support (Option 7) 141-148
Swap PF Key 29

Tables 5, 15-17
Table Display Panels 127-129
Table Input/Qutput Libraries 15, 32, 35-36
TB (Tab) Statement 135
TBADD Service 61
TBBOTTOM Service 70
TBCLOSE Service 16, 57
TBCREATE Service 16, 50
TBDELETE Service 62
TBDISPL Service 11, 48
TBEND Service 16, 59
TBERASE Service 60
TBEXIST Service 66
TBGET Service 63
TBMOD Service 65
TBOPEN Service 16, 52
TBPUT Service 64
TBQUERY Service 53
TBSARG Service 67
TBSAVE Service 16, 53
TBSCAN Service 68
TBSKIP Service 71
TBTOP Service 69
TBVCLEAR Service 72
Test

Function 143

Menu 147

Panel 142

Variables 144
TEST Mode 38-39, 140
TESTX Mode 38-39, 140
Testing Procedures 139
TRACE Mode 38-39, 140
TRACEX Mode 38-39, 140
TRANS Built-in Function 101-102
TRUNC Built;in Function 101
Trikrnnrynl 2’

Tutorial Panels 124-126

Up Scroll PF Key 29
User Profile 21-22, 31

Variables 10, 20-25
VCOPY Service 21, 82
VDEFINE Service 20, 79
VDELETE Service 21, 81
VER Statement 106-107
VGET Service 21-22, 77
VPUT Service 21-22, 78
VREPLACE Service 83
VRESET Service 8%

166 SPF Dialog Management Services

Note: Staples can cause problems with automated mail sorting equipment,

Please use pressure sensitive or other gummed tape to seal this form,

-—-— - - — — — — — — — — — — — — — cCutorFoldAlongLine — — — — — — — — — — — — — — — — — —

READER'’S
System Productivity Facility COMMENT
Dialog Management Services SC34-2036-1 FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers,
and operators of IBM systems. This form may be used to communicate your views about this
publication. It will be sent to the author’s department for whatever review and action, if any, is
deemed appropriate. Comments may be written in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the information
you supply.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system,
to your IBM representative or to the IBM branch office serving your locality.

Possible topics for comments are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

K

What is your occupation? .
Number of latest Technical Newsletter (if any) concerning this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere,
an IBM office or representative will be happy to forward your comments.) '

'SC34-2036-1

Reader’s Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department Z59, Building 931

P. O. Box 390

Poughkeepsie, New York 12602

Fold and tape Please Do Not Staple

International Bﬁsiness Machines Corporation
Data Processing Division .
11133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y,, U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

-——————— e — — — — — — — — 3UIT] BUOJYY P|OH 10 N — — ——.

1-9£02-v€0%

4dS

(6€-00EY/0LES "ON 21!4) seolniag Juawabeuely 6ojelq

"V'S'N Ut pazulg

Note: Staples can cause problems with automated mail'sorting equipment.

Please use pressure sensitive or other gummed tape to seal this form.

- - - - — — — — — — — — — — — cCutorFoldAlongLine — — — — — — — — — — —

READER’S

System Productivity Facility COMMENT
Dialog Management Services SC34-2036-1 FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers,
and operators of IBM systems. This form may be used to communicate your views about this
publication. It will be sent to the author’s department for whatever review and action, if any, is
deemed appropriate. Comments may be written in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the information
you supply. .

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system,
to your IBM representative or to the IBM branch office serving your locality.

Possible topics for comments are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

What is your occupation?
Number of latest Technical Newsletter (if any) concerning this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere,
an IBM office or representative will be happy to forward your comments.)

SC34-2036-1

Reader’s Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y,

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department Z59, Building 931

P. O. Box 390

Poughkeepsie, New York 12602

Fold and tape " Please Do Not Staple

=

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

NO POSTAGE
NECESSARY
IF MAILED
- IN THE
UNITED STATES

—_————— ———— — — — — — — 3UIT BUOJY PIO4 40 IND = — — ~ ==

448

(6£-00EY/0LES "ON 2114) sadiniag Juswabeuely Goje!g

"W'S'N Ul palulg

L-9€02-€0¢

