G D D M

Application Programming
Guide

Volume 1

Front Cover Pattern: Electronic Sunflower

The pattern on the front and back cover
was produced using this GDDM program.

INTEGER TYPE, VAL, COUNT, N, M
REAL Al, A2, K1, K2, R1l, R2, X, Y
REAL XCEN, YCEN, XS, ¥S
K1=5.3333

K2=1.1

R1=2

XCEN=50

YCEN=50

CALL FSINIT

CALL GSPS(1.0,1.0)
K2=1.1*SQRT(2.4/K1)

A2=0
DO 40 M=1, 600
A2=A2+K1

R2=K2* (A2**_.5)

XS=R2*COS (A2)+XCEN

YS=R2*SIN(A2)+YCEN

DO 30 N=0, 5
Al=2.%3.142*(FLOAT(N)/5.)+A2
X=R1*COS (A1) +XS
Y=R1*SIN(Al)+YS
IF (N) 20,10,20

10 CALL GSMOVE(X,Y)
20 CALL GSLINE(X,Y)
30 CONTINUE

40 CONTINUE
CALL ASREAD (TYPE,VAL,COUNT)
CALL FSTERM
END

SC33-0337-0
File No. 5370/4300-40

G D DM

Application Programming
Guide

Program Numbers

GDDM/MVS 5665-356
GDDM/VM 5664-200

GDDM/VSE 5666-328
GDDM-PGF 5668-812

Version 2 Release 1

Licensed Programs
Volume 1

First Edition (September 1986)

This edition applies to Version 2, Release 1, Modification 0 of the following
members of the IBM GDDM Series of licensed programs:

GDDM/MVS 5665-356
GDDM/VM 5664-200
GDDM/VSE 5666-328
GDDM Interactive Map Definition 5668-801
GDDM-PGF 5668-812

Changes are made periodically to the information herein; before using this
publication in connection with the operation of IBM systems, consult the latest
IBM System|370, 30xx, and 4300 Processors Bibliography, GC20-0001, for the
editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM’s licensed program may be used. Any functionally
equivalent program may be used instead.

Publications are not stocked at the addresses given below. Requests for copies of
IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality.

A form for readers’ comments is provided at the back of this publication. If the
form has been removed, comments may be addressed either to:

International Business Machines Corporation, Department 6R1H,
180 Kost Road, Mechanicsburg, PA. 17055, U.S.A.

or to:

IBM United Kingdom Laboratories Limited,
Information Development and Release, Mail Point 095,
Hursley Park, Winchester, Hampshire, England S021 2JN

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

This Application Programming Guide contains sample programs. Permission is
hereby granted to copy and store the sample programs into a data processing
machine and to use the stored programs for study and instruction only. No
permission is granted to use the sample programs for any other purpose.

No other part of this manual may be reproduced in any form or by any means,
including storing in a data processing machine, without permission in writing from
IBM.

© Copyright International Business Machines Corporation 1982, 1983, 1984, 1986

Preface

What this book is about

The GDDM Application Programming Guide introduces the application
programming interfaces of GDDM, the Graphical Data Display Manager.

Who this book is for

This book is for application designers and programmers who are experienced in the
following areas:

e Application programming in the language in which the GDDM programs are to
be written. For example:

COBOL

FORTRAN

PL/T

SYSTEM/370 Assembler

o The subsystem under which the GDDM programs are to run. For example:
CICS/VS
IMS/VS
MVS/TSO
CMS subsystem of VM/SP
e The information contained in GDDM General Information, GC33-0319
How to use this book
This Application Programming Guide is in two volumes.

This first volume introduces the Base application programming interface of GDDM.

The second volume introduces the Presentation Graphics Facility application
programming interface of GDDM.

You can read the chapters of each volume sequentially, or just read those chapters
that concern you. The structure of both volumes is shown on the following page,
and detailed in the table of contents of each volume. The last part of each volume
is devoted to complete example programs. There is an index at the back of each
volume, that you can use for reference.

Preface 1il

The GDDM library

Introduction

General Information

GBOF-0058°

Release Guide

GC33-0320

General

*Includes the GDDM brochures.

For the General Information manual
only, use order number GC33-0319

Programming

User’s Guides

Installation and
System Management
for MVS

SC33-0321

Installation and
System Management
for VM

SC33-0323

Application
Programming Guide

(Two volumes)

S§C33-0337

Guide for Users

S§C33-0327

lnstallation and
System Management
for VSE

S$C33-0322

Base Programming
Reference

(Two volumes)

§C33-0332

Interactive Chart Utility
(1cv)

S$C33-0328

Image Symbol Editor

SC33-0329

Performance Guide

GDDM-PGF
Programming Reference

Vector Symbo! Editor

$C33-0324 SC33-0333 SC33-0330

Messages Base Programming Interactive Map Definition
Summary (Booklet) (GDDM-IMD)

§C33-0325 SX33-6053 SC33-0338

Diagnosis and Problem
Determination Guide

SC33-0326

GDDM-PGF Programming
Summary (Booklet)

$X33-6054

iv GDDM Application Programming Guide Volume 1

Books from related libraries

The Graphics Control Program (GCP), which controls the 3270-PC/G and /GX work
stations, is described in:

GCP Work Station Programmer’s Guide and Reference, SC33-0208.

The Composed Document Printing Facility (CDPF), a prerequisite IBM program
product if you use the IBM 4250 printer, is introduced in:

Composed Document Printing Facility General Information, GC33-6133.
Fonts and code pages for the IBM 4250 Printer are illustrated in:
IBM 4250 Printer Type Font Catalog, G520-0004.

The Print Services Facility (PSF), an IBM program product that directs output to
the IBM 3800 Printing Subsystem Models 3 and 8, is introduced in:

IBM 3800 Printing Subsystem Model 38 Introduction, GA32-0049
Fonts for the 3800 Model 3 are illustrated in:

IBM 3800 Printing Subsystem Model 3 Font Catalog, SH35-0053
and for the 3800 Model 8 in:

IBM 3800 Printing Subsystem Model 8 Font Catalog, SH35-0054

The Document Composition Facility (DCF), which handles GDDM-created page
segments for composed page printers, is introduced in:

Document Composition Facility and Document Library Facility General
Information Manual, GH20-9158.

The DCF Script/VS language, and other DCF functions, such as the Font Library
Index Program, are described in:

Document Composition Facility Script/VS Language Reference, SH35-0070.

Preface V

Book structure

vi

VOLUME 1. Base facilities (this volume)

Part 1. GDDM basics . . . pages 3 through 123
Describes basic graphics and alphanumeric functions and the GDDM
hierarchy of concepts. This part tells you how to write and run simple GDDM
programs, generally of the menu-driven output graphics type.

Part 2. Advanced graphics . . . pages 125 through 215
Describes advanced graphics functions, including interactive graphics. This
part tells you how to structure and store your graphics data, and how to use
logical input devices to make your graphics interactive, without making them
device-dependent.

Part 3. Advanced text . .. pages 217 through 302
Describes the remainder of the text functions. These include symbol sets,
advanced procedural alphanumerics, and mapping.

Part 4. Image processing . . . pages 303 through 364
Introduces the principles behind image hardware, image data, and image
processing. This part shows you, through simple example programs, how to
capture, manipulate, save, restore, display, and print images.

Part 5. Device support, printing, plotting and windowing . . . pages 365
through 485
Describes device support, printing, and plotting. This part also shows you
ways to split a terminal screen into a number of separate logical areas, how to
prioritize those areas, and how the end user can interact with those areas.

Part 6. Example programs . . . pages 487 through 504

Appendixes ... pages 507 through 516

Glossary of GDDM terms . . . pages 517 through 529

Index to Volume 1 . .. page 531 onward.

VOLUME 2. Presentation Graphics Facility

Part 1. Business charts
Describes two ways of producing business charts from an application program.

Part 2. Example programs
Glossary of GDDM terms

Index to Volume 2

GDDM Application Programming Guide Volume 1

Contents

Volume 1. Basefacilitiescctctttvteeeereonees 1

Part 1. GDDMbasiCS ...ttt vieeeeeeeeensnsenanas 3

Chapter 1. Introduction00ttt eentrsnscrsnsesonns . 5
What this volume deseribes0ttt 5
The GDDM application programming interface 5
Hardware and softwarec.iitiiiiiiiieiinnenneronnans 6

Chapter 2. Drawing asimplepicturecccieetvietsesnoces 7
How to compile and run a GDDM Program under CMS 11
How to compile, link-edit, and run a GDDM program under TSO 12
Error handling ittt ennennaenans 12

Chapter 3. Basic inputfoutput functionscevvevcevsece. 13
Send output and await reply using call ASREAD 13
Transmitting output using cal FSFRCE oo, 14
Checking picture complexity using call FSCHEK 15
Saving current page contents using call FSSAVE 16
Displaying a saved picture using call FSSHOR 16

Possible errors when showing saved pictures 17

Chapter 4. Graphics primitivescc0cv0enn et eseeasa 19
Coordinate Systemcviiiiiiiniii i it et 19
Drawing a straight line using callGSLINE 19
Changing the current position using GSMOVE 20
Drawing a sequence of lines using GSPLNE 20
Drawing a circular arc using callGSARC i, 22
Drawing an elliptic arc using call GSELPSc.ceuur... 23
Drawing a graphics marker symbol using call GSMARK 24
Drawing several graphics marker symbols using call GSMRKS 24
Scaling a marker symbol using callGSMSC 24
Drawing a curved polyfillet using call GSPFLT 24
Drawing a graphics area using call GSAREA 26
Closure of area’soutlinecciutiiitiineinnnrenenennennn 27
Changing attributes00ttt inrnnennnnonaonanas 27
The shading algorithm it iinnnannn 27
GSMOVE inside an areaovueeeeeeeeceoeeanaosooennns 28
Drawing graphics images using calls GSIMG and GSIMGS 30
Querying the current position using call GSQCP 32
Querying the cursor position using call GSQCUR 32
Device variationsiiuttiiiniar it eennaneatannnn 33

IBM 5080 Graphics System ittt iannnneenn. 33

Contents Vil

Chapter 5. Graphics attributes ittt ereencsesaeass 3B

Setting a new current color, using call GSCOL: 35
Setting a new line type, using call GSLT, 36
Setting a new line width, using calls GSFLW or GSLW 36
Setting the current marker symbol, using call GSMS 37
Setting the current pattern, using call GSPATt 38
The GDDM 64-color pattern setcvivtrnrnnnnernnnnnnn. 40
Mixing foreground colors, using callGSMIX 42
Special treatment of the background color, using call GSMIX 44
Mixing background colors, using call GSBMIX 45
Transforming primitives, using call GSSCT cc.u.. 46
Changing attributes inside anareac0vuiiniiennnn. 46
Querying graphics attributes 46
Changing default attribute valuescivvernno... 47
Pushing and popping graphics attributes, using calls GSAM and GSPOP ... 48
Device variationsiiiiiiiiiniiii i i 49
IBM 3270 family of terminalst 49
IBM 3270-PC/G and /GX work stationscciiiiinnnnnn. 49
IBM 5080 Graphics Systemciiiiiiniiiiininnnnnnnnnns 50
5550-family multistations i i i i e 50
Color-separation masters on printersc.oveeeeeeeennnnns 50
Plotters i e et et et ettt e e + 51
4224 TPDS Printersttt ittt e 51
Chapter 6. Displayingtextciiiiiierreencescaccansas 03
Graphies teXtttt i e e e e 53
Procedural alphanumerics e ettt e e .. 53
Mapped alphanumericscciuiiiieetttetinnerereennnnneanens 54
Chapter 7. Basicgraphicstextccctveeveeroceoscasoaes 90
Breaking lines of graphics text 00t 55
The three modes of graphics text0 nnnnnn 56
Mode-1 graphics texXtovvt ittt ittt iiiieeeneeeenaaanaanns 57
Mode-2 graphics teXt . ..o vi ittt ittt ittt i et 57
Mode-3 graphics texto vv ittt ittt e i e e 58
Affecting the appearance of graphics text, using attributes 58
Setting the character box attribute, using call GSCB 58
Setting the character angle attribute, using call GSCA 61
Changing the character direction attribute, using call GSCD 62
Shearing characters attribute, using callGSCH 64
Setting the character-box spacing attribute, using call GSCBS 65
The teXt DOX .. .i ittt it ittt ettt ittt ineeseneneanonnnnnnnas 65
Setting the text alignment attribute, using callGSTA 67
Example using graphics text attributes 68
Device variationscvuiiiirienrnnnrrerenennenansoennnns 70
Differences on the IBM 3179-G Color Display Station 70
Differences on the IBM 3270-PC/G and /GX work stations 70
Differences on the 5080 Graphics Systemc....... 70
Differences on 5550-family multistations 71
Differences on composed-page printerscc0ecccceaennn 71
Differences on plottersciir ittt neanas 71
Advantages and disadvantages of each charactermode 73
Mode-1: String positioning vvii ittt 73
Mode-2: Character positioningottt eeeenran.. 73
Mode-3: Stroke positioningiitriiriiieiiieea . 73

viii GDDM Application Programming Guide Volume 1

Chapter 8. Basicalphanumericsccceteesieesvessocssecss 10

Defining an alphanumeric field using call ASDFLD 75
Sending and Receiving alphanumericdata, 76
Breaking lines of alphanumerictext0 iiiinnnn. 77
Clearing an alphanumeric field using call ASFCLR 77
Deleting an alphanumericfield i rnennn 77
Positioning and querying the alphanumericcursor 78
Attribute bytes on 3270 terminals i 78
Alphanumeric attributescviiv ittt e e e 79
Field attributes ittt tiirinnnneeeennnnenennns 79
Character attributesc. ittt ierennnennnnnnns 81
Sample alphanumerics program et 83
Mixing graphics and alphanumerics 0 0 iiiiiiienn. 85
Device variationscccuuiiiiiiiiiiiii i e e 86
3179-G, 3270-PC/G and /GX family, and the 4224 printer 86
IBM 5080 graphics systemciuiiiiiierraneneronnanns 87
5550-family multistations i i i e 87
Chapter 9. Hierarchy of GDDMconceptsccvco00evevsoncesss 89
The GDDM hierarchyottt neenenneenanns 89
The deviCe . . v vttt ettt ettt tatee ettt aaaeeeeeannnanns 90
The partition set and partition 91
Calls that operate on partitions and partitionsets 92
The page and page windoW ittt onreonennnnesns 93
Calls that operate on pagesc.uiiieennnnnnonnonnnnanns 94
The graphics fieldttt iteieeeneennannns 96
Calls that operate on the graphicsfield 97
The PICtUre SPACEottt ittt ittt et ettt itneneesennnnnnns 97
The VIeW POtttt ittt i ettt ittt ianneeeeeannaanns 98
The graphics window iiiiiitiiiiiiiinnnans 101
Uniform world coordinatesc0iittiiineeriennnannn 102
Putting origin of uniform coordinates at bottom left-hand corner 102
Inverting the graphicswindow i innn.. 103
The graphics segmentc.iiiuiuiueeerrnnneeennnaneenns 105
Redefining objects in the hierarchy 105
Viewports and graphics windows0iiiirinnnnnnnnn. 105
Picture space and graphicsfield, 105
Other obJectsttt i i et ittt e 105
Example program using GDDM hierarchy 106
Creating two pages of graphicsottt iiniiieennnn. 107
A typical two-device graphics hierarchy, 108
Graphics ClippPIng o i i i i i i i e e et e e 110
Sample pan and zoom program using clipping 112

Chapter 10. Debugging aids0citveitontvcoansaesess 117

GDDM €ITOr MESSAZES « v v e v v vt v e e e e e et nnnenononsoaseeeenns 117
Querying the last error record using call FSQERR 118
Specifying error exit and threshold using call FSEXIT 119
GDDM traCing ...ttt ittt e e e 121
Format of traceoutput file 122
Other debugging aidsiiiiiiiiiiiiiiiiiiiiiiinnnennnnns 122
Returning error information in a control block 122
Information returned inregister 15 it 122
Reentrant and system programmer interfaces 123

Contents 1X

Part 2. Advanced graphicscc00.... 125

Chapter 11. Graphicssegmentscccciteeeveercesas.. 127

Creating segmentsc.cuuuiiiiiitrrrerrereereeaeennanan 127
Deleting segmentscoiiiiiiiniienniiennnneneenneeanas 129
Segment attributes i e e e 130
Transforming segmentso uuteinennetennneeeennanns 131
How and when transformations takeeffect 135
Transforming text, markers, and graphicsimages 136
Moving a segment and its origin using call GSSPOS 136
Transforming segments using call GSSTFM 137
Querying transformsiitiiii i e e e e 139
Examples of transformations 139
Moving the origin of asegment, 142
Transforming primitives withinasegment 143
Copying Segmentscuuutinnietennnneeeernnoneenanaanss 143
Including segmentsttt i 145
Combining segmentsc.uuitiiterrteerrreeeeereeeeeens 146
Drawing chain and segment priorityc.cciiiiirenann 147
Querying the order of allsegmentscciiiiiiievnn.. 148
Calling segments from other segmentsccivvin... 148
Graphics attribute handling with called segments 152
Graphics not in named segments it 153
Primitives outside segments i i i i, 153
Unnamed segmentsciiiiiiiniiineonnennneonnennns 154
Chapter 12. Storing graphicsccivtivrereensrcaccasea. 1587
Saving graphics on external storage using call GSSAVE 157
Loading graphics from external storage using call GSLOAD 159
Type 1load ittt ittt ttntneeeeanananns 162
Segment librariest e e e 162
Panning and zooming i i e 164
Type 2load0ctiiii ittt ittt e ittt 166
Typedloadii it i ittt e e 168
Chapter 13. Picture handling in graphics data format 171
Inter-Release compatibility 0 it iiinnnnennnnnn 172
GSGET and GSPUT ...ttt ittt eenennenns 172
Device variationsc.iviiiiuinnnnnnnnnnnnnneoneonneneans 175

Chapter 14. Interactivegraphicscciiiivvenceecss. 177

Overview of graphics input functions 177
Simple interactive graphics programc.iiiiiiiieaann 178
Locator INPUt ... i e e e e e e 181
Cholce INPUL ... ittt et ittt e et e 181
Effects of stroke and stringdevices 183
Choice devices 88 trigEerS . . v v v vt v i ie et ittt teneeiiennnnns 183
Input fromthedatakeys0t iinnenernnnn 183
String Input e et e 184
Stroke INPUtt e et 185
Creating stroke inputc..itiitiiitrirrrereenennnnns 185
Querying stroke Inputttt i i i i e e 186
Simple polyline program i e . 187
Enabling or disabling a logical inputdevice 188
The GSREAD call and theinputqueue, 189
Checking for further graphics input records using call GSQSIM 190
Handling theinput queuec0ttttirnnreereenennnnns 190

GDDM Application Programming Guide Volume 1

Using ASREAD instead of GSREAD, 192

Initializing a logical inputdevice0, 192
Initializing a locatordeviceiiiiiiiitiiiie i 192
Specifying locator echo type and initial position using call GSILOC 192
Initializing a rubber-band locator, 193
Initializing a rubber-box locator iy 194
Initializing a segment locator i, 194
Initializing a pick device i e 195
Specifying initial position of a pick device using call GSIPIK 195
Setting the pick aperturec.iiiiiiiiiniinnrennnannns 195
Initializing astring devicec. ittt 195
Initializing astroke devicec.. i e e 196
Using a locator, pick, and stroke device together 197
When toissue GSENAB callsttt innnnnnnnn 197
Querying a logical inputdevice 198
Segment picking example i e 198
Simple free-hand drawing programcoiurriinninenean. 201
Dragging segmentsc.oiiiiitiiiieete it 202
How the work stationdraws echoes 203
Local origin when draggingasegmentcoiiiiieiunnens 204
Local origin when transformingasegment 206
Panningand zooming i e e 207
Retained and non-retainedmodes i 207
Query primitives and segments in specified area using call GSCORR 208
Querying segment structure in specified area using call GSCORS 211
Interactive graphics with multiple partitions 212
Device variationsiiiiiiiiiiiieeinnnnnnnnenannnns 213
Interactive graphics on 3179-G terminals 213
Interactive graphics on ordinary 3270 terminals 213
Interactive graphics on the IBM 5080 graphics system 214
5550-family multistation i i i 215

Part3. Advanced textcoteeeeeveneneeesss 217

Chapter 15. Symbolsets et e ees et ectsscesanans 219
Using symbol setscuiiiiiiiiiiiiineeiiiiinneeannnanns 220
Loadingsymbolsets i i i, 221

Symbol sets for alphanumericsc.iiiiiiiiterrnannn 221
Symbol sets for graphics text i i 222
PS-stores for symbol sets and graphics, 223
Specifying a symbol set for alphanumerictext 223
Field symbol-set attributes i, 223
Character symbol-set attributes 224
Input of character symbol-set attributes 225
Specifying a symbol set for graphicstext0 0. 226
Multicolored symbolsciiii ittt i e e 228
Symbols for pounds, dollars, andcentsc. .. 228
Device-dependent symbol-set suffixes 228
Manipulating symbol sets by program i i, 228
Symbol sets and program variables 00 0., 229
Loading symbol setsciiiiiiiini ittt 229
Querying, reserving, and releasing PS-stores 230
Double-byte character set graphicstext, 230
GDDM default required for Kanji, 232
Device variationsc.cuiiiiiitrtrner et inanereneneaaans 233
Differences on IBM 3270-PC/G and /GX work stations 233
Differences on composed-page printersc.000ttirrin... 234

Contents X1

x11

Differenceson plotterscciiiriiiiiinnnanennnnn 234

Chapter 16. Advanced procedural alphanumeriesc0c0... 235

Defining multiple fields using call ASRFMT 235
Define multiple fields, deleting all previous fields using call ASDFMT 236
Defining multiple field attributes using call ASRATT 237
Setting default field attributes using call ASDFLT 237
Querying modified fields using call ASQMOD 238
Alphanumeric fieldstatus it i 239
Alphanumeric menu sample programeiinerrnnnnnn 240
How touse light-penfields i i nrennn 243
Double-byte character set alphanumerics 245
IBM 5550 multistation e ettt e 245
Other terminals i ittt ittt ittt eeaean 248
Field outlining on the IBM 5550 multistation 249
Chapter 17. Mapped alphanumerics0c0iveevensecees. 251
Comparison with procedural alphanumeries 252
A simple mapping application ittt 252
Creating the mapttt i einianennnnn 253
Description of the program00 ittt nnnnnnnnn . 258
Compilation and executioncitiitiiiireinnennnennn 256
Dialog with the terminal operatorciiiiiteeeenn 256
Typical mapping cyclettt ittt e 258
Why you do not always need to call MSPUT 260
Steps in creating a mapping application 0o e, 260
Changing existing mapscouiireriiernereereeeeeenenans 263
Multiple MaPS .. iv vt ettt ettt ettt et e e e e 263
Fixed mapsttt i i i e et 264
Floating mapsottt ittt ittt e tieanaaeans 264
Querying changed mapsc.iiiitiiir ittt e 269
Input from multiple copiesof amap i 270
Device-independencettt 271
Attribute handling when mapgroup does not match device 272
Output-only displayst vviii ittt it it e e e 272
MaADPINg QUEIIES . .t ittt ittt ettt ettt e e e e e 272
Chapter 18. Variationsonamapccciveeeerenesscocasss 273
Complex dialogs .. .vvviiiineei ittt ettt et e e e e 273
Error message example using a selector adjunet 274
Write, rewrite, and rejectttt ittt et e 276
Selector adjuncts on inputttt 277
Effect of reject operation0ttt 277
Usesof selector adjuncts it eennnennns 278
Alarm and keyboard locking i i 281
Effects of Mapsttt iiieitneeeneennnennnans 281
Other considerations it iininnenennnneenennnnas 281
Protecting fields from the terminal operator 282
Base attribute adjuncts i e i e 283
The CUFSOT ... ittt ittt ettt et enneeeaoesonannaaaanans 284
DU DU . it i i i i e e ittt e e e 284
Imput N P 286
Null charactersovviiiii ittt ittt eeeeeereeennans 287
Light pen and CURSRSEL keyt iiiiiinnnnnns 287
Example of selection with cursor, light pen, and PFkey 288
Alphanumeric input by PR key i 292
Highlighting, color, and symbolsets uiin.ns 293

GDDM Application Programming Guide Volume 1

Character attributesciiiiiiiiiinei it iiitineeennnn 295

Input character attributes i i i 297
Folding and justification ofinput 297
Mapping and graphics e 298

Example of graphics in amapped display 299

Part 4. Imageprocessingccccitiveeeeeeecs 303

Chapter 19. Imagebasiecsc0000 e e ree s e eo. 305
Introductionc ittt ittt e e 305
How to scan, display, and saveanimageccccueun.. 308

Scanner echoingtiiintiiniiiniiiiieeneerneanns 308
Creating an imageviiniii ettt inneeeeennnneenn 309
Loading the document into the scanner using cal ISLDE 310
Transferring images using callIMXFERccvvvunn 310
Deleting images using call IMADEL iuuu.. 311
Synchronizing output andinput 311
Saving images using call IMASAV i, 311
Loading an image, using call IMARST, 312
Obtaining a new image identifier, using call IMAGID 313
Querying image attributes i i i e e 313
ProJections i it e e et e e e e e 313
Example code to define and save a projection 315
Creating a projection using call IMPCRT 316
Extracting a rectangular sub-image using call IMREXR 316
Changing the size of an extracted image using call IMRSCL 317
Positioning an extracted image in the target image using call IMRPLR . 317
Saving a projection using call IMPSAV 319
Deleting a projection, using calIMPDEL 320
How to apply a projection during a transfer operation 320
The remaining transformelements uiu... 323
Turning (reorienting) the image through multiples of 90 degrees 323
Reflecting the image about a chosen axis, using call IMRREF 323
Getting the negative of an image, using call IMRNEG 324
Defining the resolution conversion algorithm, using call IMRRAL 324
Putting transform calls in the right sequence 325
Order of evaluation in projectionscvvv.... 326
Some other facilitiescciiiii ittt i e i e 326
Gray-scale image manipulation 326
Applying a projection during image save and restore 326
Getting a new projection identifier, using call IMPGID 326
Changing the image resolution type, using call IMARF 327
Editing images without a transfer operation 327
Clearing a rectangle in an image, using call IMACLR 327
Trimming an image, using call IMATRM 327
Converting the resolution of an image, using cal IMARES 328
Using IMXFER with target image the same as source image 328

Chapter 20. Advanced image functionscc000een. ceeeen 331
Querying image devicesttt e e 331
Converting gray-scale images to binarydata 332

Defining brightness conversion definition, using call IMRBRI 333
Defining contrast conversion, using call IMRCON 333
Defining the conversion algorithm, using call IMRCVB 334
Ordering of brightness, contrast, and image type conversion calls 335
Querying image-related device characteristics 335
Querying formats supported by a device, using call ISQFOR 335

Contents Xxili

Xiv

Querying compressions supported by a device, using call ISQCOM 336

Querying resolutions supported by a device, using call ISQRES 337
Scaling an image to fit the displayscreen 338
Interactive image manipulation, using image cursors 340

Enabling or disabling device input, using call FSENAB 341

Enabling or disabling an image cursor, using call ISENAB 341

Querying the image locator cursor, using call ISQLOC 341

Querying the image box cursor, using call ISQBOX 342

Initializing the image cursors, using calls ISILOC and ISIBOX 342

Local operations on the 3193 display station 343

Interactive image manipulation example 344
Transferring images into and out of your program 347

Starting a PUT operation, using call IMAPTS 348

PUTTING data into an image, using call IMAPT 348

Ending a PUT operation, using call IMAPTE 349

Starting a GET operation, using call IMAGTS 349

GETTING data from an image, using call IMAGT 350

Ending a GET operation, using call IMAGTE 350
Controlling host offload by specifying image quality 351

Imagesizeroundingttt 352

Scaling and resolution conversion i 352

Scaling algorithm (also used in resolution conversion) 352

Multiple extraction and placing of rectangles 352

Controlling image quality, using call ISCTL or ISXCTL 353
Direct transmission ittt eeeerennnnnns 355

Direct transmission fromascannerctiiianaann 356

Direct echoing when scanningciitiiiieiinannnn. 356
Combining an image with text or graphics 356

Defining an image field, using call ISFLD 357

Querying the attributes of an image field, using call ISQFLD 357
Printing and plotting imagesc.ttterereerrereaeneons 358

Printing an imageona 4224 printer i 358

Printing an image on 4250 0r 3800-3 it 359
Device variationsiiiiiimiiinitet ettt 363

IBM 3179-G, 3270-PC including /G and /GX, 3279, 3290, 5080, 5550 displays 364

IBM 3268 and 3287 Printerscuoiueeeenrinnnnneennnnnnnns 364

Plottersci i i e e e e e e 364

Part 5. Device support, printing, plotting, and windowing 365

Chapter 21. Devicesupportcc0000.. e eeet e e eeaasaane . 367
Opening a device using call DSOPEN iiiev.n.. 367
Device processing Optionsoiiieiiieereeeeeaen. 370
Simple DSOPEN using nicknamesciiieeeuuunnnn. 370
Specifying device usage using call DSUSE 371
Discontinuing use of a device, using call DSDROP 372
How to use more than one primary device 372
Example program: Using two primary devicesccveueeee.. 372
Closing a device using call DSCLS 0 itiiiiinneennn. 375
Usingadummy deviCeiiiuinmineneernnnonneeneneneans 376
Sample program: Using a dummy device to create a stored picture 376
NiCKNAmMES ..o ittt ittt s ittt ittt et anetene ey 378
372 117 5SS NOAPP 379
Unspecified or zerodevice family 379
Unspecified, null, *, or blank devicename 379
Multipart namesottt ittt ine it nnnterconnnnanen 380

GDDM Application Programming Guide Volume 1

Relative priorities of nickname statements and DSOPEN call 380

Defaults module and defaultsfile 380
How to use nickname statements et e e e 381
Simplifying DSOPENttt ittt e e 381
Defining devices at executiontime 381
Multiple nickname statementsc.itiiiiieenn. 382
How to pass nickname statements toGDDM 384
Processing options for operator windows 0., 386
Processing options for user control, 386
Putting the terminal into user control, using call DSCMF 388
Processing options for the 3270-PC/Gand /GX 388
Retained and non-retainedmodes 0 iiitiiiinnn. 388
Panning and zooming i i e 388
Default symbol sets for graphicstext 389
Processing options for 3270-PC/G and /GX, 3179-G, and 5550 family displays 389
Processing option for the 5080 graphics system 390
Querying the deviceiiuiiiiiiinnient i 391
Otherdevicecallsouiiniiiiiiiit it iiiinnnennnnn. 391
Pseudoconversational programming under CICS 391

Chapter 22. Using printersccieteceeceeencecceceasees 395

(01 o =) 395
Attached 3270 printer as a family-1 primary device 396
Queued printer as a family-2 primary device 397
System printer as a family-3 primary device 398
Composed-page printer as a family-4 primary device 399
Primary and secondary datastream, 402
Unformatted (canonical) output 0 iiiiiinnn... 402
Printer as an alternatedevice00ttt 402
Copying a page to a printer using call FSCOPY 403
Copying graphics to a printer using call GSCOPY 404
Sending a character string to a printer using call FSLOG 404
Sending a character string with control character to printer using call
FOLOGC . it it e et e e e e 405
Example program: Copying screen output to a printer 405
Printing GDDM family-2 printfiles ivvon... 407
Printing non-GDDM sequential files 0., 408
Re-rastering when copying0i ittt itiinennnnnnnannn 409
Mizxed graphics and alphanumericscc ..., 409
Colors and shading patterns on the IBM 3268 and 3287 printers 410
Using loadable symbol sets on family-3 3800 printer 411
Using typographic fonts on a family-4 4250 printer 411
Code PAGES ..ttt e e e e 413
Example program: Using 4250 fontscciitvevnnnnn... 413
Color masters for publications i, 415
DSOPEN statement for colormasterscovvvvinennnnnn.. 418
Restrictions with composed-page printers 0 virunn.. 419
Using the IBM 4224 printer0iiiiiiiiinnnnnnnnnnnn. 420
Chapter 23. Using plottersceceeieeeceeeccnseeoosess 421
DSOPEN fOor plotterst tvrieit i iniit ittt enineeeennn 421
Processing options for plotters i, 422
Settingup the plotterttt eiinnnnnenn. 425
Terminating a plotttt i e 426
Cells, pixels, and plotter unitsc0 ittt ennnnnnn 426
A simple plotting program i i e e i e e 427
Copying screen output toplotterccoiiiiriiininnnnnnn. 429

Contents XV

xvi

Plotting toscaleoiiiiiiiiiiii i ieiiiananan 431

Using nicknames to direct and control theoutput 433
Special considerations for graphicson plotters 434
(070 U3 . T 434
Color MIXINE . v i ittt it i e 436
Graphics images and imagesymbols 437
Linetypesand widths it iiiinnnnans 437
Shading patterns ittt 438
Symbol Sets i i e 439
Optimum penspeed and forceo nnnnnn 440
Chapter 24. Windowing et et e et e 441
Partitions i e e e e e 441
A simple partitioning example i e 442
Partition setsciiiiiiiii e e i e 444
Creating partitionsiiiiitiniitr e reennnnneeennn 445
Current partition sets, partitions, and pagescciiuunnn. 445
Input/Outputo i i e e i e i e e e 446
Active and current partitionsttt it e 447
Handling terminal-user errorscciiietennennuennnnn 448
Some other things you can do with partitions 448
Visible and invisible partitionscci ittt 449
Overlapping partitions0iiiiiininennnnnnnnnnnnnnns 452
Prioritizing partitionsouiiiiiitiiiri i 454
Querying the priority of overlapping partitions 457
Other calls that operate on partitions and partitionsets 459
Largeand small pagesiiiiiiiiinereeeennnneeeennnns 459
763 o) | Y- SO N 459
Variable charactersize ittt iinnennnnnns 461
Effects on graphics of scrolling and variable cellsize 462
Partitioning with scrolling and variable cellsize 463
Operator Windowsooviitiitiiineeereetneneeneetnnneeeneans 467
Sample program using one operator window, 469
Sample program using two operator windows 473
Modifying the attributes of an operator window, using call WSMOD ... 477
Prioritizing operator windowsc.iiiiiiiiiineiannn 478
Querying the priority of overlapping operator windows 479
Querying operator window attributes, using WSQRY 481
Task management ittt tinrrnnnrnnneennannns 481
How FSSAVE and FSSHOW perform with operator windows 484
Allocation of resources to operator windowsc.c00unvun.. 484
How to free resources when a task terminates 485

Part 6. Exampleprogramscccc00ceees... 487

Example 1. The ADMUSP4 graphics editor sample program 489

What ADMUSP4 providesoviittiuinneerennnnneenaennns 489
Global actionsiiiiiit it it e e e e 490
Drawing actionscciiiiiiiiiiiiiieiinreonaoranoneans 490
Actionsondrawnobjects i i i i i 490
Style selectioncitiiriiiiiiii et e 491

Invoking ADMUS P4 ittt eeeenneaanannn 491

Example 2. Assembler languageexamplec000000s0... 498

Example3. An APL2examplecc0evetcvessossacsscocssess 495

GDDM Application Programming Guide Volume 1

Example4. BASICexamplec00000000. Ceieeresaneas 497

Example 5. CICS pseudoconversational example 499

Appendixesccccieiittiicctrttcserrsaasss 905

Appendix A. Major types of supporteddeviceccc00eeuaen 507
3179-G display stationcciiiiriiitt it e 507
3270-PC/G and /GX work stations e 507

Retained and non-retainedmodes0, 508
5550 family multistations with 3270 PC/G program 509
5080 Graphics Systemviiiiiiiiiie ittt 509
3270-family terminals that use programmed symbols for graphics 509

How graphics are created using programmed symbols 510

PS overflow — corruption of the display output 510
3270-family terminals without programmed symbols 511
3117 and 3118 scanners, and the 3193 display station 511
3270-family graphics printersc..iit ittt et 511
3270-family alphanumeric printers00 ittt 511
System Printersiiiiiit ittt i e e 512
Composed-page Printersccvvtiennnreeeeenneeeneaneoeennnns 512
Plotters i e e e e et i e 512
IPD S printer ... ittt e et e et e 512

Appendix B. Device-independent programming tips ve... BHI13
Introductionttt e it i i e 513
Points to help you minimize device dependency in your programs 513

Graphics primitivesoiueireiiitieeeeennneenennnneeenns 514

Graphics attributesiiiiiitiiiiiinenrennanaeennn 514

Displaying teXt . ..o ittt et e et e 514

et INPUE ..ottt ittt i ettt e ettt e e e 515

Graphics hierarchyo ittt iiiinennrnns 515

Storing and loading graphics i i it i, 515

Interactive graphicsiiiiuiiiiettiiriiinieriatananns 515

Symbol Sets ... v i e ettt e 515

Device SUPPOIE ..ottt i ittt e e e ettt e e 516

WIndowingii ittt ittt ittt it ie e et e e e i e 516

GDDM glossary et iete e e s cee.. 517

Indexc000veves e Ch e ec e eees ettt e eseanans 531

Contents XVil

Figures

[Y T S S G T S S S Gy S gy
COPIASTPBREOOPAD T A WO

D) DO DD DD DD DD B
Noge b

“Sketch” sample graphics programc.outtiirenternnnnn 8
Output from “Sketch” sample graphics program 11
Sample TSO CLISTttt ittt ienaeeeenaaeenns 12
Parameters returned by ASREAD0iitiiirinnnnnnn 14
Drawingapolylineiiitiiieiinrrnnrenneenneenns 21
Drawingacircular arcc.cciiiiittinnennennnnnnnnns 22
Drawinganellipticarcccoiiiiiiinnninnnennnnnnnnnn 23
Drawing a 2-part polyfillet i, 25
Drawing a 5-part polyfillet 26
Atypical graphics areac.ccuetrerreerrerennnennnns 27
INlustration of GDDM’s shading algorithm 28
Two-part graphics area with the boundary notdrawn 29
Output from GSIMG statementsc.viirrrennnnnnnnn 31
GDDM line typesandlinewidths 36
The 10 GDDM system markerscuiiiineerenennneann a8
The 16 GDDM system shading patterns c.cciiinnnn. 39
GDDM geometric pattern set - ADMPATTCc.... 40
GDDM 64-color pattern set - ADMCOLSDcciiiunnnnn 41
The seven displayable colorsciiiiieierrnnnnnnn 42
Color-mixing table ittt 43
GSMIX table for mix mode on the 3270-PC/GX 50
Mode-1 and mode-2 graphics text ittt 57
Effect of character-box attribute on the three text modes 59
Effects of proportional spacing iiinierinnnn. 60
Effect of character-angle attribute on the three text modes 62
Effect of character-direction attribute on the three text modes 63
Effect of character-shear attribute on image and vector text 64
Using alphanumeric field and character attributes 81
“Bank Account” sample alphanumerics program 83
Output from “Bank Account” sample alphanumerics program 85
Part number sample alphanumerics program 85
PTNCRT — createapartitionc0iiiiiiinninnnnnnn. 92
FSPCRT — defining a Pagecvvvvemmnrennnneneennnenenns 93
GSFLD - defining a graphicsfield 96
GSPS — defining a picture Spacecccviieetennraeeannn 98
GSVIEW — defining a viewportc..ieeeeeennncennnn 99
Defining a complete graphics hierarchy (without partitioning) 101
Example of 2-device graphics hierarchy 109
The difference between a precise clipandaroughelip 111
The effect of segment viewing limits on displacement 112
First output from “Great Britain map” sample program 113
Second output from “Great Britain map” sample program 115
Errorexitroutine 00ttt 120
Segments are collections of primitives, 129
The four segment transformations, 132
Shearing i e e 134

47, Rotationt e e e e e e 135

48. Effects of GSSPOS callsottt i 137
49. Results of example transformations 140
50. The GSSORG calliiiiiiiiii it ieinnneennnns 142
e I €703+ V- S 145
52. Example program using calledsegments 149
53. Building plan produced by called segments 150
54. Table and chair segments withorigin 151
55. Segmentsassavediiittiiii ettt 161
56. Segmentsasloaded, 162
57. Type 2loadit ittt ittt iieiennnennns 167
B8. Type B loadoiiiiiiiii it i i e e e e 168
59. Handling GDF with GSGET and GSPUTcccv.... 174
60. Graphicsmenuroutinet 179
61. Choice data returned by 3270-PC/G and /GX terminals 182
62. Program using polylocator strokedevice 187
63. Segment pickingexample 200
64. Program for freehand drawingonthescreen 201
65. Program for draggingsegments iiitrnann. 203
66. Local origin ofechosegment 205
67. Correlation withrubberbox 210
68. Choice data returned by non-PC 3270 terminals 214
69. Comparison of image and vectorsymbols 220
70. Overviewofsymbolsetcalls 00 iiiiiinernnn. 221
71. Program using symbol sets for graphicstext 227
72. Output from “Restaurant Menu” sample program 243
73. Sourcecode of MAPEXOL0tiiiinreennnnnnnennns 253
74. Field definitions for map used by MAPEXO01 254
75. Initial display of MAPEX01 0 iiiiiiinnnnnnnn. 254
76. Sourcecode of MAPEXO20iiiiiiiiiiiinnnnnnnnnn 257
77. Typical cycle of mapping operationsc..uuiuiiuinnennn 259
78. Positioning of fully floatingmapsc0iiiiiiiininnnn 266
79. Sourcecode of MAPEXO04ttt iiiinnnennnns 267
80. Field definitions for map used by MAPEX04 268
81. Typical display by MAPEX04c0iiiiiiirnnnnnnnnn 268
82. Sourcecode of MAPEXO0Scciiiiitiiinieeennnnnennnnns 275
83. Sourcecode of MAPEXO080iiiiiiiiniirnnnnennnnn 290
84. Field definitions of map used by MAPEX08 201
85. Sourcecode of MAPEXO09c0iiiiiiiieiiniinnnennnns 293
86. Sourcecode of MAPEX11l0ciiiiiinirnennnnnnnnnn 299
87. Typical display by MAPEX110 . iviiiirinnnnnnnn 301
88. Field definitions of map used by MAPEX11c.c.0... 302
89. ImMAage ProCesSINgt eeeereeneeeeeeeeennneenss 306
90. Simple image program — scan, display, and save an image 308
91. Projection containingatransform, 314
92. Projection containing two transforms 315
93. Resolution conversionc..ciiiiiitirtrrrrerneenas 324
94. Acceptable combinations of format and compression 347
95. Verticaloverlapiiiiiiiiiiiiin et eennennneenns 353
96. Horizontal overlap ittt ininnannnn 353
97. Overview of GDDM support forprinters 395
98. Carriage-control codes for FSLOGC o 0n. 405
99. Copying to printersoiiiiiiniiennennnenneenennnnns 406
100. Output of 4250 fontexamplecciiiiietrnnnneeeennn 414
101. Exampleofusing4250fontsccciiiiiiienennnnn. 415
102. How a picture is changed into a number of color masters 416
103. ADMDHIPK, the GDDM sample symbol set for color masters 417

XX GDDM Application Programming Guide Volume 1

104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.

Creating color-separationmasterscciiiriuunnnnn 419

Plottingareac..iiiiiiiiiniiineiiitinnnneenenannnn 423
Program using plotter as primary devicec0. 0. 428
Program using plotter as secondary device 430
Scale plotting program ittt 432
Suggested color scheme for plotterpensccoiivieen. 434
Color and pen numbersonplotterscciiiieeeennnn. 436
The eight GDDM line types for plotterscoiierenenn 438
The 16 GDDM shading patterns for plotters 439
Screen formatted by simple partitioning program 448
First panel using visible and invisible partitions 452
Second panel using visible and invisible partitions 452
Overlapping partitions e e e e 454
Output from sample partition prioritizing program 457
3290 cell sizZes e et e it e 462
Program using scrollable partitions and two cell sizes 464
Screen with two cell sizesttt ennnnnns 466
Hierarchy of devices and windows in a single application 468
Task manager with several applications 482
The coordination exitroutineccueeeteeeeeernnnnnns 483
The menu displayed by the ADMUSP4 sample program 489

Figures XXi1

Summary of amendments

Changes to this manual for Version 2 Release 1

Numerous changes in organization and scope have been made, particularly:

The guide has been divided into two volumes. See “Book structure” on page vi.

An appendix listing all GDDM calls has been removed. All the calls in the
Base API are listed and explained in the GDDM Base Programming Reference.
All the calls in the PGF API are listed and explained in the GDDM-PGF
Programming Reference. Also, all the calls that are covered in the guide are
listed in the index at the back of each volume.

The information in this volume has been changed to reflect the introduction of
Version 2 Release 1 of GDDM:

Support for the following devices:

— 3193 Display Station and 3117 and 3118 Scanners
— 4224 Printer

— 5080 Graphics System

— 6180 Plotter.

Withdrawn support for the 3277GA terminal.

Extension of the Base application programming interface (API) to support the
input, output, storage, and manipulation of images.

A wide range of improvements to the Base graphics APL

More flexible partition support.

Support for operator windowing. Several applications can share a screen, each
one running in its own window. Also, a single application can use several
operator windows of its own.

A call and processing options for handling user control.

A trace facility for API calls and internal GDDM processing.

Better operating characteristics on 5550 devices.

Summary of amendments XXiil

Compatibility of Version 2 Release 1 with earlier releases

Programs that were written for Version 1, Releases 1 or 2 will execute on Version
2, Release 1, but will need to be link-edited again if they were not link-edited under
Version 1, Releases 3 or 4. Programs written for Version 1, Releases 3 or 4 do not
need to be link-edited again. Data streams, chart formats and data, symbol sets,
and map groups created under earlier releases can be used with Version 2 Release

1.

Incompatibilities

Programs that attempt to open a 3277GA terminal will fail because the 3277GA
is no longer supported.

A parameter value of zero on the GSCB or GSMB call will cause the current
default value to be used. With previous releases, the dimension was reduced to
Zero.

Segment transformations are now honored on family-4 (composed-page) printers,
even when a spill file is used. With previous releases, they were ignored.

NATLANG =K now means Kanji rather than Katakana. On terminals that do
not support double-byte character sets, US English will be used instead of
Kanji.

The local mode of operation that was previously available on work stations has
been dropped. Its functions have been taken over by user control. If the
terminal user presses PA3, then user control will be offered by default instead
of local mode. The LCLMODE option now affects only the way panning and
zooming is implemented.

The CHART call is no longer affected by preceding PG routine calls. The
exception is CHAREA, which you can use to define the area in which the ICU
constructs the chart.

With the ICU, if the chart area is altered, the size of vector markers alters
proportionately. Previously, the size of markers was independent of the chart
area.

The appearance of legends in charts created under the current release of PGF
differs from charts created under Version 1 Release 1.

Print files from earlier releases cannot be processed by Version 2 Release 1
print utilities.

Call format descriptor and APL request codes modules:

These modules can no longer be referred to and loaded by name. The only
method of accessing them is through the address obtained by a CALLINF
external defaults option in a SPINIT call. The meaning of the RCPPPGF flag
in the RCPPFLAG field of the call format descriptor has been changed. When
set on, it indicates that the call is not available in the GDDM Base programs,
instead of indicating that it is available in the Presentation Graphics Feature.
The name of the flag has been changed to RCPPOGP.

XX1Vv GDDM Application Programming Guide Volume 1

Changes to this manual for Version 1 Release 4

The guide was changed to reflect the introduction of the following facilities in
Version 1 Release 4 of GDDM:

° Support for the following devices:
IBM 3179 Models G1 and G2 Color Graphics Display Station
— IBM 3270 Personal Computer/G and /GX (3270-PC/G and /GX) Work
Stations
— Plotters attached to the IEEE-488 port of a 3270-PC/G or /GX
— IBM 3800-3 Printing Subsystem Models 3 and 8
IBM 5550 Multistation (including support for Kanji alphanumerics).
St:rmg and stroke graphlcs input devices
Transformation, copying, and priority control of graphics segments
Storing graphics segments on external storage and retrieving them
Uniform graphics window coordinates
Explicit correlation of graphics segments and primitives
Kanji graphics text (as well as alphanumerics on the 5§550)
Nicknames to increase the flexibility of device support
Copying to family-1 and -3 devices (in addition to family-2)
Fonts and codepages for the IBM 4250 Printer
Improved printer spooling
Printing non-graphics data with the GDDM Print Utility
Tower charts
Polar charts
Exploded and three-dimensional pie charts
Bar charts with numeric axes, hidden bars, and extended bar labeling functions
Support for missing values in charts
More flexibility in chart labeling, markers, shading, and outlining.

In addition, numerous changes in organization and scope were made, particularly:

e The book was divided into six parts: a primer, followed by five parts devoted to
particular functional areas.

A chapter giving a short overview of all the text facilities was added.

A chapter introducing the graphics data format (GDF) was added.

An appendix summarizing the major types of supported device was added.

A heading indicating the devices covered was added to each page.

Compatibility of Version 1 Release 4 with earlier releases

Application programs written for use with earlier releases of GDDM and PGF will
run under Version 1 Release 4 without modification. They will need link-editing
again if they were link-edited under Version 1 Release 1 or 2, but not if they were
link-edited under Version Release 3. Data streams, chart formats and data, symbol
sets, and map groups created under earlier releases, can be used with Version 1
Release 4.

Print files from earlier releases cannot be processed by Version 1 Release 4 print

utilities. Data streams, chart formats and data, and vector symbol sets created
under Version 1 Release 4 cannot be used with earlier releases.

Summary of amendments XXV

Changes to this manual for Version 1 Release 3

The guide was changed to reflect the introduction of the following facilities in
Version 1 Release 3 of GDDM:

Support for the following devices:

— IBM 3277 Graphics Attachment RPQ (3277GA).

— IBM 3290 Information Panel.

— IBM 4250 Composed Page Printer.

Alphanumeric mapping and the Interactive Map Definition utility
(GDDM-IMD)

Partitioning the screen and scrolling

Interactive graphics

Segment attributes

Primitives outside segments

Support for color separation masters for in-house printing
Proportionally spaced graphics text

Scaled images (GSIMGS call)

Vector symbol markers and scaling of them (GSMSC call)
Fractional line widths (GSFLW call)

Line-width table for PGF charts (CHLW call)

A call (FSSHOR) that provides similar function to FSSHOW, but also returns
some input data

New fields in the Interactive Chart Utility (ICU) call parameter to support new
ICU function

New libraries of PL/I declarations.

In addition, numerous editorial improvements were made, particularly:

A COBOL example was added.

Constant parameters to GDDM calls were presented in a way that shows
whether they are fixed or floating point.

An appendix listing all GDDM calls was added.

Compatibility of Version 1 Release 3 with earlier releases

xxvi

Application programs written for use with earlier releases of GDDM and PGF will
run under Version 1 Release 3 without modification, but they must be link-edited
again. Data streams, chart formats and data, and symbol sets created under earlier
releases can be used with Version 1 Release 3.

Print files from earlier releases cannot be processed by Version 1 Release 3 print
utilities. Data streams, chart formats and data, and vector symbol sets created
under Version 1 Release 3 cannot be used with earlier releases.

GDDM Application Programming Guide Volume 1

Volume 1. Base facilities

Volume 1. Base facilities 1

Part 1. GDDM basics

Part 1. GDDM basics 3

introduction

Chapter 1. Introduction

What this volume describes

GDDM is a family of IBM program products that make it possible for application
programs to produce graphics, alphanumerics, and images on display devices,
printers, and plotters, and to read input from display devices. These general
graphics, alphanumerics, and image, or base facilities are introduced in Parts 1 to
4 of this volume. Part 3 of this volume also contains some guidance on the optional
GDDM Interactive Map Definition (GDDM-IMD) product, which you can use in
conjunction with some of the alphanumeric facilities of GDDM Base.

The Presentation Graphics Facility (PGF) is a product that you use to create
business graphics, for example, line graphs or pie charts. An important part of
PGF is the Interactive Chart Utility (ICU), which allows business charts to be
drawn on a display screen by people with no programming knowledge. The PGF
and ICU are introduced in Volume 2 of this guide.

The GDDM application programming interface

All the base and PGF facilities are accessed by means of a call-type application
programming interface (API).

This guide is an introduction to GDDM, rather than a comprehensive reference
document. The GDDM Base Programming Reference, Volume 1 and GDDM-PGF
Programming Reference manuals have complete descriptions of all the calls and
their parameters.

Most of the examples given in the text are coded in PL/I, but the GDDM calls are
similar in the other supported languages — COBOL, FORTRAN, and System/370
Assembler. For example, these pairs of calls initialize GDDM and request a screen

read:
PL/I: CALL FSINIT;
CALL ASREAD(TYPE,MOD,COUNT) ;
FORTRAN: CALL FSINIT
CALL ASREAD(TYPE,MOD,COUNT)
COBOL: CALL 'FSINIT'.
CALL 'ASREAD' USING TYPE, MOD, COUNT.
ASSEMBLER: CALL FSINIT,(O0),VL

CALL ASREAD, (TYPE,MOD,COUNT) ,VL

Throughout this guide, floating-point constant parameters are shown with a
decimal point (for instance: 3.0), and fixed point without (for instance: 3).

Chapter 1. Introeduction 5

There is an Assembler example program in “Example 2. Assembler language
example” on page 493, and a COBOL example in Volume 2.

APL and BASIC programs can also call GDDM routines. However, the support is
provided by software associated with the languages, rather than by GDDM. There
is an APL example program in “Example 3. An APL2 example” on page 495, and a
BASIC one at “Example 4. BASIC example” on page 497. For further information,
you will need to refer to the manuals describing this language-related software.

The examples are intended to illustrate particular points about GDDM, not
necessarily to demonstrate good programming practice. For instance, a
well-written real application program might test the return codes from every
GDDM call and take special action to handle any errors. The examples do not in
general do this because it would obscure the main points.

All the examples use the GDDM non-reentrant interface. Two less commonly
used interfaces are available, the reentrant interface and the system
programmer interface. These are fully documented in the GDDM Base
Programming Reference manual.

Hardware and software

GDDM supports IBM 3179 Model G color display stations, IBM 3270
terminal-attached display units, including the 3270-PC/G and /GX family of work
stations, 5550 family multistations, 5080 graphics systems, 3270 terminal-attached
printers, IPDS printers, system printers, composed-page printers, and plotters.
Overviews of the major types of device are given in Appendix A, “Major types of
supported device” on page 507.

The examples and descriptions in this guide typically apply equally to IBM 3179
Model G color display stations (3179-G) or 3279 terminals running under the CMS
subsystem of VM/SP, unless otherwise stated or implied. Where appropriate,
device variations are listed at the end of chapters. Most of the examples would
require little or no change to execute on other terminals and under one of the
other supported subsystems, namely CICS/VS, IMS/VS, or TSO. Information about
running under these subsystems is given in the GDDM Base Programming
Reference manual.

All the color illustrations in both volumes of the GDDM Application Programming
Guide were produced by GDDM programs.

6 GDDM Application Programming Guide Volume 1

Chapter 2. Drawing a simple picture

This chapter tells you how to write a program that draws a simple picture on the
screen of any GDDM-supported graphics display terminal.

When drawing pictures, there are two main types of call to GDDM. One type
requests the addition of a graphies primitive, such as a line or arc, to the picture:

CALL GSLINE(20.0,65.0); /* Draw a line to (x=20,y=65) */

To address points on the screen, GDDM uses a coordinate system of 0 through 100
in each direction, with the origin in the bottom left-hand corner, unless you specify
a different system.

The other type of call changes the value of a graphics attribute such as color,
line type, or line width:

CALL GSCOL(6); /* Change current color to yellow */

On color terminals this call causes all subsequently drawn primitives to appear in
yellow, until the color is changed again. (On monochrome devices, the call has no
effect.)

Figure 1 on page 8 shows a simple PL/I graphics program to draw a sketch of a
house, complete with a dimension. The output of the program is shown in Figure 2
on page 11. If you like, when you have read the explanation of the calls in the
program, you can copy it, and have a go at putting in the calls to draw some
windows.

The program introduces several important GDDM calls and concepts. These will
now be explained. The explanations refer to statements in the program that are
identified by letter. The identifications look like this in the program:

/*A*/

Chapter 2. Drawing a simple picture 7

applies to all graphics devices

SKETCH: PROC OPTIONS{(MAIN);
DCL (TYPE,MOD,COUNT) FIXED BIN(31); /* Parameters for ASREAD * /

CALL FSINIT; /* Initialize GDDM */ /*A*/
CALL GSSEG(O0); /* Create a graphics segment to */ /*B*/
/* contain the lines and text that *x/
/* make up the picture */
CALL GSCOL(7); /* Set color to neutral (white) X/ J*C*/
CALL GSLW(2); /* Set line width to thick *x/

/**************************

/* DRAW OUTLINE OF HOUSE */
/**************************/

CALL GSMOVE(20.0,70.0); /* Move current position to (X=20,Y=70)*/ /*D*/
CALL GSLINE(20.0,20.0); /* Draw line from current position to */
/* (X=20,Y=20) */
CALL GSLINE(80.0,20.0);
CALL GSLINE(80.0,70.0);
CALL GSLINE(20.0,70.0);
CALL GSMOVE(45.0,20.0); /* Move to begin drawing doorway */
CALL GSLINE(45.0,40.0);
CALL GSLINE(55.0,40.0);
CALL GSLINE(55.0,20.0);

**************************/

/* NOW DRAW THE ROOF *x/
JREEKI KKk R KRR AR KK RA KKK AN K /

Set color to red
Start an area - a shaded shape

CALL GSCOL(2); * */
* */
* Move to begin drawing roof :/
*

: /

CALL GSAREA(1);

CALL GSMOVE(15.0,70.0);
CALL GSLINE(35.0,95.0); Draw first edge of roof
CALL GSLINE(65.0,95.0); and so on...

CALL GSLINE(85.0,70.0);

CALL GSLINE(15.0,70.0);

CALL GSENDA; /* Area now complete, will be shaded */

Figure 1 (Part 1 of 2). “Sketch” sample graphics program

8 GDDM Application Programming Guide Volume 1

drawing a simple picture

**************************/

/* ADD DIMENSIONS *x/

/**************************/

CALL GSCOL(5); * Set color to turquoise *x/
CALL GSLW(1); * Set line width to normal */
CALL GSMOVE(20.0,15.0); /* Move to begin dimensioning */
CALL GSLINE(47.0,15.0); /* Draw first stroke of first arrow */
CALL GSMOVE(22.0,13.0); /* and so on... */

CALL GSLINE(20.0,15.0);
CALL GSLINE(22.0,17.0);

CALL GSCHAR(49.0,14.0,2,'50'); /* 2 characters at (x=49,y=14) */
CALL GSMOVE(53.0,15.0); /* Begin second arrow */
CALL GSLINE(80.0,15.0); /* and so on... */

CALL GSLINE(78.0,13.0);
CALL GSMOVE(78.0,17.0);
CALL GSLINE(80.0,15.0);
CALL GSCHAR(5.0,2.0,26,'All dimensions are in feet'

) ;
/* 26 characters at (x=5,y=2) */

**************************/

/* SEND PICTURE TO SCREEN */
JrEEEKE KKK KKK KR KRR KRR KKK /

CALL ASREAD(TYPE,MOD,COUNT); /* Send the picture to the screen */
* and await a response *

CALL FSTERM; /* Terminate GDDM */

$INCLUDE ADMUPINA; /* GDDM Entry declarations *x/

$INCLUDE ADMUPINF;
%$INCLUDE ADMUPING;

END SKETCH;

Figure 1 (Part 2 of 2). “Sketch” sample graphics program

Housekeeping: You are required or advised to put some housekeeping statements
into any GDDM graphics program:

The FSINIT call /*A*/ initializes GDDM and is compulsory. The FSTERM
call /*G*/ at the end is advised, to free all the storage and other resources
acquired by GDDM. Its omission may cause subsequent programs (or reruns of
the same program) to fail through lack of storage.

The GSSEG call /*B*/ creates a graphics segment and is recommended
before any graphics primitives are drawn. A graphics segment is a logical
grouping of primitives and of the attributes that determine their appearance. If
you do not use GSSEG, for the 3179-G, 3270-PC/G and /GX family, and 5550
family, the primitives will be discarded after any local operation takes place at
the device (for example, if the screen is scrolled or if a system-issued message is
displayed).

In PL/I, but not in other languages, each GDDM entry point (that is, each
GDDM call-name) used by your program should be declared. The declarations
should specify the data types of all parameters. A set of files is supplied with
GDDM that contains these entry declarations for you to include in your
programs. Each file has a name of the form ADMUPINXx for the nonreentrant
entry points (or ADMUPIRx for the reentrant entry points), and contains
declarations for all the entry points starting with “x”. The declarations
necessary for the example are included at /*H*/. It is customary to include the
files at the end of the program because they affect the line numbers of all
subsequent statements.

Chapter 2. Drawing a simple picture 9

/*E*/

/*F*/
/*G*/
/*H*/

applies to all graphics devices

Under CMS, if you include several files, you may exceed the external names
limit. To avoid the problem, you can edit the files to remove names you do not
use. Some of the examples in this guide may not work if you leave all the files
unedited.

Default Attribute Values: All graphics attributes have default values initially, that
is, when a segment is opened. You need to set a particular attribute only if you
require a different value, as at /*C*/.

Current Position: An important notion when drawing graphics is the current
position. When you draw a line, for example, you do not specify the start point of
the line. It will be drawn from the current position to the specified end point. The
current position will normally be the end point of the previous primitive, but it can
be set explicitly by calling GSMOVE, as at /*D*/.

Graphics Text: GSCHAR at /*E*/ produces graphics text. Such text is created
from lines, arcs, areas, and dot images like the rest of the graphics. It should not
be confused with alphanumerics (which is described in “Chapter 8. Basic
alphanumerics” on page 75).

Output of the Picture: The picture gradually being built by the program is held
inside GDDM. It is not transmitted to the screen until you issue a specific “send”
command, most commonly a call to ASREAD as at /*F*/. The new (or modified)
picture then appears on the display, and a screen “read” is issued. The terminal
operator can reply to the read by causing an interrupt on the screen, for example,
by pressing ENTER or a PF key. The three parameters of ASREAD will then be
set by GDDM to indicate the type of response. Control will return to the program
at the statement following the ASREAD. In the example, the type of response is
not relevant; the program will terminate.

Pages: The picture is built up and stored by GDDM in a logical entity called a
page. The example uses only one page, which GDDM created by default. A
program can explicitly create and use multiple pages, although only one page is
current at any one time. Graphics calls always apply to the current page. When
the program executes an ASREAD call, the current page is sent to the terminal.

Data Types of GDDM Call Parameters: These are not necessarily apparent from
the program. The parameters were mostly constants. Often the parameters will be
variables and will have to be declared appropriately. These are the three PL/I data
types used in GDDM call statements:

e FLOAT DECIMAL(6). This is used for all graphics calls specifying positioning
of any sort. For example, the GSMOVE and GSLINE calls in the program had
float-decimal parameters. The COBOL equivalent is COMPUTATIONAL-1; in
FORTRAN it is REAL*4.

e FIXED BIN(31). This is used for all integer attribute and parameter settings.
For example, the GSCOL and GSLW settings were fixed binary, as were the
character string lengths. The COBOL equivalent is PICTURE S9(8); in
FORTRAN it is INTEGER*4.

e CHARACTER. The data for text output is obviously in character form. The
COBOL equivalent is PICTURE X(n); in FORTRAN, the equivalent is string
literals or a numeric data array initialized with string literals.

The GDDM Base Programming Reference, Volume 1 has a complete description of
all the GDDM base calls and their parameters.

10 GDDM Application Programming Guide Volume 1

drawing a simple picture

Figure 2. Output from “Sketch” sample graphics program

How to compile and run a GDDM Program under CMS

After creating a GDDM program, you will need to know what steps are required to
run it. As an example, these are typical commands required to compile and execute
a PL/I GDDM program under CMS:

CP LINK SYSTEM 2DD 2DD
ACCESS 2DD B

These two commands make the disk holding GDDM (2DD in the example) known to
your virtual machine.

GLOBAL MACLIB ADMLIB
PLIOPT POST (INCLUDE FLAG(I)

The PLIOPT command invokes the PL/I Optimizing Compiler to compile the
program. The INCLUDE option is required to pick up ADMUPINA, ADMUPINF,
and ADMUPING, the declarations of the GDDM entry points. The macro library
(ADMLIB) that contains these has been made known to CMS with a GLOBAL
MACLIB command. The FLAG() option is not essential, but it ensures that useful
messages about dummy variables are not suppressed. These are created when
parameter attributes do not match GDDM’s requirements.

GLOBAL TXTLIB ADMNLIB ADMPLIB ADMGLIB PLILIB
LOAD POST
START *

The GLOBAL TXTLIB command tells CMS to use the text libraries containing
GDDM and PL/I. ADMGLIB must be the last GDDM text library listed. The
LOAD command loads the program into storage and the START command starts
execution. The picture of the house will appear on the screen that you use to
invoke the program.

Chapter 2. Drawing a simple picture 11

applies to all graphics devices

How to compile, link-edit, and run a GDDM program under TSO

Figure 3 shows a CLIST that you can use to compile, link-edit, and run a GDDM
program under TSO. The PLI command invokes the PL/I optimizing compiler to
compile the program.

/**/

/* TEST(INCLCARD) CONTAINS THE FOLLOWING RECORD: */
/* INCLUDE INCLIB(ADMASNT) */
/* FOR USE WITH THE GDDM NON-REENTRANT INTERFACE. */
/* */
/* REPLACE ADMASNT */
/* BY ADMASRT IF USING THE REENTRANT INTERFACE */
/* OR BY ADMASPT IF USING THE SYSTEM PROGRAMMER INTERFACE */
/* OR BY ADMASRT AND ADMASPT IF USING BOTH THE */
/* REENTRANT AND SYSTEM PROGRAMMER INTERFACES */

**/
PROC 1 NAME

PLI TEST(POST) OBJECT(TEST(POST)) +
LIB('GDDM.REL210.GDDMSAM') PRINT(*) INC FLAG(I)
ALLOC F(INCLIB) DA('GDDM.REL400.GDDMLOAD') REUSE SHR
LINK (TEST(POST), TEST(INCLCARD)) +
LOAD(TEST (POST)) LIST PLIBASE PRINT(*)
CALL TEST(POST)

Figure 3. Sample TSO CLIST

The GDDM Base Programming Reference manual describes the steps required on
other subsystems and using other languages.

Error handling

For reasons of clarity, the example does not test for errors in the GDDM calls. If
there is an error, GDDM issues two messages. The first names the call and gives
its location in main storage. The second describes the error. Execution then
continues with the next statement in the program.

Eventually execution will reach the output statement (ASREAD in the example).
This may or may not produce recognizable graphics, depending on the errors. The
terminal operator will need to both clear the error messages from the screen and
satisfy the outstanding read. This may involve two interactions.

More information about error handling is given in “Chapter 10. Debugging aids”
on page 117.

12 GDDM Application Programming Guide Volume 1

Chapter 3. Basic input/output functions

This chapter discusses the following topics:
e The two basic output calls (ASREAD and FSFRCE)
e A call to check whether pictures are too complex to be displayed (FSCHEK)

¢ A device-dependent mechanism for saving pictures on auxiliary storage
(FSSAVE) and redisplaying them later (FSSHOR).

GDDM maintains a record of the contents of each page. The program may change
the contents, and so may the terminal operator, in ways to be described later.

Whenever the program issues an output call (ASREAD or FSFRCE), GDDM
updates the screen so that it displays the alphanumeric and graphics contents of
the current page. Some devices (the dual screen configuration of the 3270-PC/GX
work station, or 5080 Graphics System, for example) have two screens, one for the
graphics and the other for the alphanumerics. Whatever the type of screen, GDDM
does not necessarily send the whole page — it sends only those parts that have
been changed. When the target device is a printer, of course, the whole picture has
to be sent.

Send output and await reply using call ASREAD

This is the basic call for sending out the current page. Other input/output calls for
particular purposes will be introduced in later chapters. ASREAD requests a
write-and-read operation: the current picture is sent to the screen and a response
is awaited. The cursor is positioned in the top left-hand corner of the screen,
unless otherwise specified by an ASFCUR call or set by the terminal operator in a
previous interaction.

In other words, an ASREAD call requests that, after transmitting the data stream,
GDDM should wait for the operator to reply before returning control to the
program. This is the format of the call:

CALL ASREAD(TYPE,VALUE, COUNT) ; /* Send output to device */

The parameters are set by GDDM to indicate the type of interrupt that was
received. In the above example of an ASREAD call, the names of the parameters
have been chosen to reflect their function, namely the type of interrupt, a value
associated with the type, and the number of modified fields. Figure 4 on page 14
shows their possible values.

For interrupts of types 0-2, the last parameter indicates how many alphanumeric

fields have been modified by the operator. For a discussion on how these fields are
created and processed, see “Chapter 8. Basic alphanumerics” on page 75. The

Chapter 3. Basic input/output functions 13

applies to all graphics devices

handling of light-pen fields is covered in “Chapter 16. Advanced procedural
alphanumerics” on page 235.

A returned type of 7 indicates that the read was performed on an output-only
device such as a printer. In such circumstances, GDDM changes the write-and-read
into a write only.

Interrupt Type | Value Count

ENTER key 0 number of modified fields

PF key 1 PF key number number of modified fields

Light pen 2 number of modified
LP-fields

Badge reader 3 0(valid), 1(not)

PA key 4 PA key number

CLEAR key 5

Other 6

Output —only 7

device

Mouse or puck 10 Button number

button

Figure 4. Parameters returned by ASREAD

In the special case of CICS pseudoconversational mode, the first ASREAD in all
subsequent invocations of the pseudoconversation will perform only input — the
output is suppressed.

See “Pseudoconversational programming under CICS” on page 391 for a

description of this mode of programming, and the differences in effect of the
various GDDM calls.

Transmitting output using call FSFRCE

When you want to update the screen without waiting for a reply, you must use the
FSFRCE call instead of ASREAD. There are no parameters:

CALL FSFRCE; /* Send data stream to device and return to program */

This causes all changes made to the current page since the last FSFRCE or
ASREAD to be sent to the device.

The primary use of FSFRCE is to send output to a device that is output-only (such
as a printer). Another use is to send a sequence of pictures to a device (rather like
a slide show) where the timing of the displays is handled by the program in some
way.

As with ASREAD, the cursor is positioned in the top left-hand corner of the screen,
unless otherwise specified by an ASFCUR call.

Here is an example of how not to use FSFRCE:

14 GDDM Application Programming Guide Volume 1

basic input/output functions

CALL FSINIT; /* Initialize GDDM */
CALL GSSEG(0); /* Open segment */

CALL GSMOVE(25.0,60.0); /* Start drawing the picture */

.
/********************************/

/* PICTURE SENT TO DEVICE.. */
/********************************/
CALL FSFRCE; /* Send out the picture */

/********************************

/* ..BUT DISAPPEARS IMMEDIATELY */
R R L T

CALL FSTERM; /* Terminate GDDM */

If this program is run on CMS, for example, the graphics will appear on the screen
for only a moment. Control will return to the program, the FSTERM will be
executed and the program will terminate, returning control to CMS. To hold the
picture on the screen, ASREAD must be used instead.

Checking picture complexity using call FSCHEK

Some pictures are too complex to be displayed at the terminal. The limits depend
on the type of terminal. On a 3279, for instance, it is set by the availability of
programmed symbol stores. On other types, it is set by the size of the buffer in
which the terminal stores the vectors that comprise the picture. The size of the
data stream may also limit picture complexity. More information is given in
Appendix A, “Major types of supported device” on page 507.

Except on a 3179-G, 3270-PC/G or /GX work station, 5550 family multistation, and a
5080 Graphics System, a call to FSCHEK allows the program to determine whether
the next output operation (typically an ASREAD or FSFRCE) would exceed any
such limits:

CALL FSCHEK; /* Determine whether overflow would occur */

This will return an error condition if the picture is too complex. To diagnose the
error condition, the program can issue an FSQERR call. This call is described in
“Chapter 10. Debugging aids” on page 117. For the moment, here is an example of
the code required:

DCL ERROR_PARM(2) FIXED BIN(31);

CALL FSCHEK; /* Check picture complexity */
CALL FSQERR(8,ERROR_PARM) ; /* Query the most recent error */

/**A returned error code of 273 indicates overflow would occur **/
IF ERROR_PARM(2)=273 THEN DO; /* Overflow would occur on output */
END;

FSCHEK only checks the picture — it does not perform any output. A further call,
such as ASREAD or FSFRCE, must be issued to send out the data stream.

On a 3270-PC/G or /GX, too-complex pictures are degraded by GDDM, as explained

in “Retained and non-retained modes” on page 508. Therefore the FSCHEK call,
although not invalid, never returns an error condition with these terminals.

Chapter 3. Basic input/output functions 15

applies to all graphics devices

Saving current page contents using call FSSAVE

With this call you can save the alphanumerics and graphics contained in the
current page, or the alphanumerics and image contained in the current page. The
saved picture may subsequently be redisplayed using FSSHOR. The format of the
object saved is very similar to that of the eventual data stream. It is
device-dependent. Other, device-independent, ways of saving graphics are
described in “Chapter 11. Graphics segments” on page 127 and “Chapter 13.
Picture handling in graphics data format” on page 171. Unless you require to save
alphanumeric data (see “Chapter 6. Displaying text” on page 53) with your
picture, you are recommended to use these other methods. Not only do they
have the advantage of device-independence, but they allow you to manipulate, and
add to, the saved picture.

Here is an example of FSSAVE:

CALL FSSAVE('DEMOS8'); /* Save picture on auxiliary storage */

The parameter is the name to be assigned to the picture when written to auxiliary
storage. On CMS the full object name would become "DEMO08 ADMSAVE Al’. On
other subsystems, ‘DEMOS8’ would be a member name in a library assigned for
saved pictures.

If your picture is complex, you may get a diagnostic message saying that the object
is too big to be saved. In that case you must reduce the complexity or the size of
your picture, and then retry the FSSAVE.

The FSSAVE and FSSHOR calls are not supported when the picture has been
created for a 5080, or a plotter, or a family-4 printer (printer families are explained
in “Chapter 22. Using printers” on page 395).

Displaying a saved picture using call FSSHOR

With this call you can show a picture previously saved with an FSSAVE call.

CALL FSSHOR('DEMO8',TYPE,VALUE); /* Send saved picture to screen */

The saved picture will now appear on the display screen and remain there until the
operator causes an interrupt (by pressing ENTER or a PF key, for example).
Control will then return to the program, where normal processing of the current
page may continue.

GDDM returns codes giving information about the interrupt in the second and
third parameters. They have the same meanings as those returned in the first two
parameters of ASREAD, as shown in Figure 4 on page 14. Data typed by the
operator is not returned by FSSHOR.

The saved picture is not added to the previous graphics on the screen: it uses its
own page and replaces the previous display. After the operator acknowledges the
saved picture (by causing an interrupt), the program continues execution and the
next ASREAD, FSFRCE, or FSSHOR will determine the screen contents to replace
the saved picture.

If the picture was saved under Release 1 or 2 of GDDM, then the terminal operator

will not be able to enter any data. This is because the Release 1 and 2 version of
the FSSAVE call changed all unprotected fields to protected.

16 GDDM Application Programming Guide Volume 1

basic input/output functions

There is another call similar to FSSHOR, called FSSHOW. It differs in not
returning any information about the interrupt generated by the operator:

CALL FSSHOW('DEMO8'); /* Send saved picture to screen */

Possible errors when showing saved pictures

The FSSHOR device is not compatible with the device that was current when
the FSSAVE was performed.

The 3274 controller was configured for compressed data streams when the
FSSAVE was performed, but is differently configured for the FSSHOR.

Reference is made in the saved data stream to PS-stores that are either not
present on the target device or have been reserved by the program.

In the case of 3270-PC/G or /GX work stations, the FSSAVE and FSSHOR
devices are compatible, but they have been customized differently — with
different screen sizes, for instance.

The 5080 graphics system does not support FSSAVE and FSSHOR.

Chapter 3. Basic input/output functions 17

Chapter 4. Graphics primitives

This chapter describes the GDDM calls that add graphics primitives (lines and arcs,
for example) to your picture.

Coordinate system

You can define the (x,y) coordinate system that is used to address the drawing area.
The coordinate system is known as the graphics window. When adding a
primitive to your picture, you define locations such as the end of a line in terms of
graphics window coordinates, which are also known as world coordinates. They
are defined by this type of call:

CALL GSUWIN(0.0,200.0,0.0,100.0); /* Define coordinate system */
/* where x range is at least */
/* 0 to 200 (left to right) */
/* and y range is at least *x/
/* 0 to 100 (bottom to top) */

If you are going to specify a graphics window, you must do so before opening a
graphics segment or creating any graphics primitives.

If no window is explicitly defined, the default of exactly 0 through 100 in both
directions applies. In this case, however, the coordinates may not be uniform: one
X unit on the screen may not physically equal one y unit. This can lead to
unexpected results, such as circles appearing as ovals and squares as rectangles.
The GSUWIN call always creates a uniform set of coordinates. There is a full
discussion of graphics windows in “The graphics window” on page 101.

The starting point for all primitives consisting of lines or arcs is the current

position. The current position is the end point of the previous primitive, unless a
GSMOVE has been issued.

Drawing a straight line using call GSLINE

This call draws a line from the current position to a specified end point, for
example:

CALL GSLINE(25.0,90.0); /* Draw straight line to (X=25,Y=90) */
The line is to be drawn in the current color, using the current line width and the
current line type. The setting of such attributes is addressed in “Chapter 5.
Graphics attributes” on page 35:

After this call the current position is (25,30) — the end point of the line.

Chapter 4. Graphics primitives 19

see end of chapter for device variations

Changing the current position using GSMOVE

This call is used to move to the required starting point of a new primitive. The
format of the call is similar to that of GSLINE:

CALL GSMOVE(50.0,0.0); /* Change current position to (X=50,Y=0) */
The call is used whenever the end point of the previous primitive is not the

required starting point of the next primitive.

Drawing a sequence of lines using GSPLNE

Rather than issue a series of GSLINE calls, the programmer can place the line-end
coordinates in an array and issue a single call to draw the sequence of lines called
a polyline. This is the format of the call:

DCL X22(5) FLOAT DEC(6) INIT(20.0,70.0,70.0,35.0,20.0);

/* x line-end coordinates *x/
DCL Y22(5) FLOAT DEC(6) INIT(80.0,80.0,50.0,50.0,20.0);

/* y line-end coordinates */
CALL GSMOVE(20.0,20.0); /* Set current position. */
CALL GSPLNE(5,X22,Y22); /* Draw 5-part polyline. */

/* The first line will run from the */

/* current position to (20,80), the second*/

/* from (20,80) to (70,80), and so on */

As with most primitives, the first line of the polyline will start at the current
position. The current position after the polyline has been drawn is, as you would
expect, the end of the last line. N

Figure 5 on page 21 shows the effect of the above GSPLNE call.

20 GDDM Application Programming Guide Volume 1

graphics primitives

(20,80)
N P T SOWI (70, 88)

(70, 50)

".(35, 50)

(20, 20)
5-PART POLYLINE

DCL X22(5) FLOAT DEC(b) INIT(20, 70, 70, 35,20); /* X-COORDS */
DCL Y22(5) FLOAT DEC(b) INIT(8, 80, 50,50, 20); /* Y-COORDS */
CALL GSMOVE(20, 20); /% SET NEW CURRENT POSITION */
CALL GSPLNE (5, X22,Y22); /% DRAW THE 5-PART POLYLINE ¥/

Figure 5. Drawing a polyline

Chapter 4. Graphics primitives 21

see end of chapter for device variations

Drawing a circular arc using call GSARC

This is one of several statements to draw arcs. The arcs will not appear circular on
the screen unless you ensure that the window has uniform coordinates, as
described in “Coordinate system” on page 19. This is the format of the call:

CALL GSARC(25.0,60.0,90.0); /* Draw 90 degree arc with */
/* center at (25,60) 2%

The arc’s starting point is the current position. The first two parameters specify
the center of the arc and the third parameter gives its sweep in degrees. A positive
angle of sweep denotes a counterclockwise arc. A negative angle of sweep will
give a clockwise arc.

Note that the radius is not specified explicitly. It will be determined by the
distance between the arc’s center and the current position before drawing.

Figure 6 shows the effect of two GSARC calls, one clockwise and the other
counterclockwise.

....... (50, 80)

(80,50
%..(50,50) }

%--(58, 50) |

(80, 50
....... (50, 20)
COUNTER-CLOCKWISE ARC CLOCKWISE ARC
CALL GSMOVE (89, 50); CALL GSMOVE (80, 50);
CALL GSARC (58, 50, 270); CALL GSARC (58, 50, -270);

Figure 6. Drawing a circular arc

It is easy enough to write GSARC calls for arcs of 90, 180, or 360 degrees. It is very
difficult, though, to determine which GSARC call will go from a known current
position to a required end position. Trial and error is hardly a satisfactory method.
You should either resort to graph paper, compass, and protractor to determine the
GSARC parameters, or use GSPFLT (polyfillet), a simpler call which is described in
“Drawing a curved polyfillet using call GSPFLT” on page 24.

22 GDDM Application Programming Guide Volume 1

graphics primitives

Drawing an elliptic arc using call GSELPS

Th.is c.:all draws an elliptic arc that starts at the current position and follows an
elliptic curve until it reaches the prescribed end point. This is a typical call:

CALL GSMOVE(60.0,70.0); /* Set starting point for curve */
CALL GSELPS(20.0,10.0,45.0,30.0,60.0);
/* Draw an elliptic arc that has axes */
/* of 20 & 10, that is tilted at 45 L
/* degrees to the horizontal and that */
/* runs from the current position to */
/* an end point of (X=30,Y=60) */

This call is best understood by looking at Figure 7, which shows the various
elements of the ellipse.

MAJOR AXIS
(LENGTH=20)

MINOR AXIS
(LENGTH=18

(b0, 78) START-POINT

END-POINT (30/60)

ILT ANGLE IS
45 DEGREES

~~~~~~

CALL GSMOVE(b@, 70); /* CURRENT POSITION BEFORE ELLIPSE ¥/
CALL GSELPS(20, 18, 45, 30, 60); /% DRAW THE ELLIPSE ¥/

Figure 7. Drawing an elliptic arc

In general there are four elliptic arcs that satisfy the five specified parameters.
GDDM will never draw an elliptic arc that is longer than half an ellipse. Of the
remaining two arcs, one is clockwise and the other is counterclockwise. If the two
axis parameters have the same sign (as in the example), GDDM will draw the
counterclockwise arc; otherwise it will draw the clockwise one.

Chapter 4. Graphics primitives 23



graphics primitives

Drawing an elliptic arc using call GSELPS

Th}s gall draws an elliptic arc that starts at the current position and follows an
elliptic curve until it reaches the prescribed end point. This is a typical call:

CALL GSMOVE(60.0,70.0);

/* Set starting point for curve

CALL GSELPS(20.0,10.0,45.0,30.0,60.0);

/* Draw an elliptic arc that has axes
/* of 20 & 10, that is tilted at 45
/* degrees to the horizontal and that
/* runs from the current position to
/* an end point of (X=30,Y=60)

This call is best understood by looking at Figure 7, which shows the various

elements of the ellipse.

END-POINT (30/60)

MAJOR AXIS
(LENGTH=28)

MINOR AXIS
(LENGTH=18

(60, 78) START-POINT

ILT ANGLE IS
\ 45 DEGREES

~~~~~~

CALL GSMOVE(b®, 78); /* CURRENT POSITION BEFORE ELLIPSE */
CALL GSELPS(28, 18, 45, 38, 60);

/% DRAW THE ELLIPSE ¥/

Figure 7.

Drawing an elliptic arc

In general there are four elliptic arcs that satisfy the five specified parameters.

GDDM will never draw an elliptic arc that is longer than half an ellipse. Of the

*/

*/
*/
*/
*/

remaining two arcs, one is clockwise and the other is counterclockwise. If the two
axis parameters have the same sign (as in the example), GDDM will draw the
counterclockwise arc; otherwise it will draw the clockwise one.

Chapter 4. Graphics primitives

23

see end of chapter for device variations

Drawing a graphics marker symbol using call GSMARK

This call draws a single graphics marker at a specified position. A graphics
marker is a symbol used to indicate a point on the screen. The symbol used
depends on the current setting of the marker attribute (see “Setting the current
marker symbol, using call GSMS” on page 37). The default is a cross. This is the
format of the call:

CALL GSMARK(50.0,43.0); /* Draw graphics marker at (X=50,Y=43) */

The marker is positioned so that its center lies at the specified position. The
current position is updated to that of the marker.

Drawing several graphics marker symbols using call GSMRKS

This call is a quick way to draw more than one marker. As with the GSPLNE call
seen earlier, the coordinates of the points at which the markers should appear are
stored in two arrays. Here is an example:

DCL X09(7) FLOAT DEC(6) INIT(40.0,50.0,75.0,75.0,80.0,45.0,45.0);
/* x coordinates */

DCL Y09(7) FLOAT DEC(6) INIT(20.0,20.0,35.0,55.0,20.0,20.0,50.0);
/* y coordinates */

CALL GSMRKS(7,X09,Y09); /* Draw 7 graphics markers, *x/
/* the first at (40,20), */
/* the second at (50,20) and so on */

After drawing the markers, the current position will be set to that of the last
marker in the series.

Scaling a marker symbol using call GSMSC

You can control the size of marker symbols, if they are from a vector symbol set
(see “Setting the current marker symbol, using call GSMS” on page 37 for more
information about markers and symbol sets). For instance:

CALL GSMSC(2.0);

makes subsequently drawn vector symbol markers twice their default size. The
default size of markers is such that their width is equal to the width of the default
character box (see “Chapter 7. Basic graphics text” on page 55).

The GSMSC call has no effect on image symbol markers. They are always
displayed at the size defined by the symbol itself.

Drawing a curved polyfillet using call GSPFLT
This call is similar in format to GSPLNE. A series of points is passed to GDDM in
two arrays. The difference is that whereas GSPLNE results in a sequence of
straight lines, GSPFLT results in a smooth curve.

This is the format of a typical call:

24 GDDM Application Programming Guide Volume 1

graphics primitives

DCL X09(5) FLOAT DEC(6) INIT(20.0,70.0,70.0,35.0,20.0);
/* x coordinates */

DCL Y09(5) FLOAT DEC(6) INIT(80.0,80.0,50.0,50.0,20.0);
/* y coordinates */
CALL GSMOVE(20.0,20.0); /* Set current position 7
CALL GSPFLT(5,X09,Y09); /* Draw 5-part polyfillet. *f
/* The first "construction line" ®/
/* will extend from the current */
/* position to (20,80). The second */
/* construction line will run from */
/* (20,80) to (70,80), and so on */

The easiest way to visualize the resultant curve is to consider the polyline that
would be drawn from the current position through the specified points. These line
segments may then be thought of as construction lines for the polyfillet. The
polyfillet will start at the current position and finish at the end of the last
construction line. On the way it will touch tangentially the midpoints of all the
intermediate construction lines. Figure 8, and Figure 9 on page 26 clarify the
algorithm. The curves are tangential to the end points of the first and last
construction lines, and tangential to the midpoints of all the others.

(20, 80) (20, 80),
—
b T e (70,70 ..(78,70)
H
1
1
1]
1
1
1
1
1
1
H
20,30 L (20, 30
THE CONSTRUCTION LINES THE 2-PART POLYFILLET
DCL X88(2) FLOAT DEC(b) INIT(20,70); /* X-COORDINATES %/
DCL Y88(2) FLOAT DEC(b) INIT(80,78): _ /* Y-COORDINATES %/
CALL GSMOVE(Z0, 38); /7% SET NEW CURRENT POSITION ¥/
CALL GSPFLT(Z, X88,Y88); /* DRAW THE 2-PART POLYFILLET %/

Figure 8. Drawing a 2-part polyfillet

Chapter 4. Graphics primitives 25

see end of chapter for device variations

(20, 88), (20, 80),

s e e e (70, 80) P RPN & JB.)

) 1 1 1

i ‘ H 1

1 1 1 1

1 1 1

1] 1

1] 1

1 1 1

i i i i

: el e s, ICEHE ! il O |)

1 ,"'-,' 1

i/ (35,50) i (35, 50)

P/

1 7

)

Jof

z:

(28, 205 (28, 20

THE CONSTRUCTION LINES THE 5-PART POLYFILLET
DCL X@9(5) FLOAT DEC(b) INIT(28,70,78,35,20); /% X-COORDS %/
DCL Y03(3) FLOAT DEC(6) INIT(80.88,50. 50, 20); /% Y-COORDS %/
CALL GEHOVE (20, 200 /% SET _NEW' CURRENT POSITION %/
CALL GSPFLT (5, %09, Y09); /% DRAW THE 5-PART POLYFILLET ¥/

Figure 9. Drawing a 5-part polyfillet

Drawing a graphics area using call GSAREA

A graphics area is a shaded shape. It is defined by specifying its outline and then

requesting that it be shaded in. The outline may be constructed using any of the

primitives just described (except markers).

Here is an example of a graphics area specification:

CALL GSMOVE(70.0,10.0); 7E
/*
CALL GSAREA(1); £*
/*
/*
CALL GSLINE(60.0,70.0); S %

CALL GSARC(50.0,80.0,270.0);

CALL GSLINE(30.0,10.0); S¥
CALL GSLINE(70.0,10.0); L%
CALL GSENDA; 1%
/*
/*
/*

The resultant shape will be that of a keyhole, as shown in Figure 10 on page 27.

26 GDDM Application Programming Guide Volume 1

Move current position to the
start of the area's outline.

*/
¥

Tell GDDM we are starting an area.*/

Parameter of 1 = draw boundary

o

Parameter of 0 = suppress boundary*/

The area's outline
begins with a line,

/* continues with a circular arc,

and two more lines
complete the outline.

Tell GDDM that the outline is

*

complete and should now be shaded.*/

The current color and shading
pattern will be used.

2y
'

graphics primitives

¢ (50,80
VO e, 10
e
! \
' '
,l '
i \
|l !
h \
1
{ !
Go,10) | L (70,10
THE AREA’S OUTLINE THE SHADED AREA

Figure 10. A typical graphics area

Closure of area’s outline

The area’s outline must be closed. If the end of the last primitive in the area is not
the same as the current position at the start of the area, GDDM will add a closure
line. For example, if your area has only two lines in it (forming a “V”), GDDM will
add a third line to make it into a triangle. The current position after the GSENDA
call will be at the end of the added closure line.

Changing attributes

There are restrictions on changing attributes while drawing an area. They are
described in “Changing attributes inside an area” on page 46.

The shading algorithm

A region will be shaded if you need to cross an odd number of lines to move from

that region to outside the picture. If you need to cross an even number of lines to
leave the picture, the region will not be shaded. Figure 11 on page 28 illustrates
this algorithm.

Chapter 4. Graphics primitives 27

see end of chapter for device variations

OUTLINE OF 6-POINT STAR THE AREA WHEN SHADED

Figure 11. Illustration of GDDM'’s shading algorithm

If you look at the left-hand part of the figure you will see that all the points in the
central area of the star are two line-crossings from infinity. In whichever direction
you move, you will cross two lines before leaving the figure. The central part of
the star will therefore not be shaded. The six outermost parts of the star are all
either one or three line-crossings from infinity, depending on which direction you
take. These parts of the shape are therefore shaded. The right-hand part of the
figure shows the shaded area.

GSMOVE inside an area

It is permitted to include GSMOVEs inside an area specification. In that case the
outline drawn before the GSMOVE must be closed. If not, GDDM will add a
closure line before performing the move. The following example illustrates this.
The two-part area produced by these GDDM calls is shown in Figure 12 on

page 29.

28 GDDM Application Programming Guide Volume 1

graphics primitives

CALL GSPAT(3); /* Area to be shaded

/* with system pattern 3.
CALL GSMOVE(20.0,20.0); /* Move to area's start position.
CALL GSAREA(O0) ; /* Start area - do not show boundary.
CALL GSLINE(40.0,40.0); /* Draw first line of boundary.
CALL GSLINE(60.0,20.0); /* Draw second line of boundary.
CALL GSMOVE(70.0,60.0); /* Previous part of outline was not

/* closed, GDDM will add closure line

/* from (60,20) to the area's

/* start position at (20,20).
CALL GSLINE(80.0,80.0); /* Draw second part of area's outline.
CALL GSLINE(30.0,90.0);
CALL GSENDA; /* Second part of outline was not

/* closed, GDDM will add closure line

/* from (30,90) to the start of the

/* second part at (70,60).
CALL ASREAD(TYPE,MOD,COUNT); /* Send the 2 shaded triangles

/* to the screen.
Ge,8e)
.80, 80)
XY (18,60)
(40,40)
_ (68, 20)
8,20 ¢
TWO-PART GRAPHICS AREA

Figure 12. Two-part graphics area with the boundary not drawn

Chapter 4. Graphics primitives

29

see end of chapter for device variations

Drawing graphics images using calls GSIMG and GSIMGS

There are two graphics primitives remaining; they operate in a different way from

all the others, because they deal with graphics images. Full image processing

functions are dealt with in “Chapter 19. Image basics” on page 305 and “Chapter

20. Advanced image functions” on page 331 of this book. See those chapters for

GDDM support of image processing on image devices.

The GSIMG call allows you to declare a pattern of dots within the program and

then add the pattern to the current page’s graphics. Each dot will be displayed as
one pixel (also occasionally referred to as a pel).

Because the size and aspect ratio of a pixel varies from one type of device to
another, the size and aspect ratio of the image may vary if the program is

transferred from one device to another. For instance, the pixel aspect ratios of the
3279 and 3270-PC/G are different.

This is an example of its use:

DCL SPIDER CHAR(198);
UNSPEC (SPIDER)=

CALL GSIMG(0,43,33,198,SPIDER);

' 00'B| |
'000000000000000000000000010000000000000000000000'B| |
'000000000000100000000000010000000000000000000000"'B]| |
'000000000000010000000000100000000000000000000000"'B{ |
'000000000000010000000001000000000000000000000000"'B]| |
'000000000000010000000010000000000000000000000000"'B] |
'000000000000010000000100000000000000000000000000"'B]| |
'000000000000010000001000000000000000000000000000"'B]| |
'000000000000010000001000000000000000000000000000'B| |
'00000000000000100000100000011.0000000000000000000"'B| |
'000000000000001000001000011111000000000001100000"'B]| |
'000000000000000100001000011111000000000010000000"'B] |
'000000000000000100001000011111000000001100000000"'B]| |
'100000000000000010001111111110000000010000000000"'B]| |
‘'011111111100000010111111110000000001100000000000'B| |
*000000000011000011111111111000000010000000000000'B] |
'000000000000110111111111111111111100000000000000"'B] |
'000000000000001111111111111000000000000000000000"'B]| |
'000000000000001111111111110000000000000000000000"'B]| |
'000000000000001111111111110000000000000000000000"'B]| |
'000000001111111111111111101110000000000000000000"'B]| |
'000000110000000111111110000001110000000000000000"'B]| |
'000011000000000011111010000000001111111111000000"'B]| |
'011100000000000000100001100000000000000000100000"'B]| |
'000000000000000000100000010000000000000000000000"' B |
'000000000000000000100000001000000000000000000000"'B]| |
'000000000000000000010000000100000000000000000000°'B] |
*000000000000000000010000000100000000000000000000'B]| |
*000000000000000000010000000100000000000000000000"'B| |
'000000000000000000100000000100000000000000000000'B| |
*000000000000000001000000000100000000000000000000"'B| |
*000000000000000010000000000010000000000000000000'B]| |
*000000000000000010000000000000000000000000000000"'B;

/* the current position

Its parameters are as follows:

The first parameter must always be set to zero.

30 GDDM Application Programming Guide Volume 1

/* Send image of spider to */

*/

graphics primitives

e The second parameter, 43, gives the width of the image in display points. This
may be any number less than 2040, but the image data must have each row
padded to a multiple of 8 bits.

In the GSIMG example above, the width is 43 and the data has been padded to
48 display points per row.

e The third parameter, 33, gives the depth of the image in display points.

e The fourth parameter, 198, gives the length of the image data in bytes,
including padding.

e The last parameter, SPIDER, gives the name of the character variable in which
the dot pattern has been stored.

The top left-hand corner of the image is placed at the current position. Any bits set
to 1 will cause the corresponding dot on the screen to be set on. The image will be
shown in the current color, but it is always monochrome. To obtain multicolor
images you must overlay images of different colors.

Figure 13 shows output from several GSIMG calls, similar to the one above. Note
that “black” images will show, when placed on a shaded background.

Figure 13. Output from GSIMG statements

The GSIMGS call is similar to GSIMG, except that it allows the image to be scaled.
For example:

Chapter 4. Graphics primitives 31

see end of chapter for device variations

CALL GSIMGS(0,43,33,198,SPIDER,30.0,20.0);
/* Fit spider image into a */
/* box 30 world-coordinate */
/* units by 20 */

The first five parameters have the same meaning as in the GSIMG call. The last
two parameters define a box, called an image window, in world-coordinate units.
GDDM will fit the image into the image window by displaying each bit in the
character variable as a rectangular array of dots, rather than as a single dot. The
number of dots in the array is such that the image is the largest possible one that
will not overflow the image window. The top left-hand corner of the image window
will be at the current position.

Because the array need not be a square, the horizontal and vertical dimensions are
scaled separately. The mechanism allows only integral scaling, and does not allow
scaling down. If a scale factor of less than one would be required to fit the image
window, the image is displayed using a factor of one, and is allowed to overflow the
image window.

Another method of presenting images (using an image symbol set) is described in
“Chapter 7. Basic graphics text” on page 55.

Querying the current position using call GSQCP

At any stage in a graphics program you may query the current position. It will be
returned in world coordinates. This is the call:

DCL (X,Y) FLOAT DEC(6);/* Parameters for query current position */

CALL GSQCP(X,Y); /* Query the current position. */
On return from this call, GDDM will have set the current position into variables X

and Y. Here is an example of using this function to underline a graphics text
string:

CALL GSCHAR(20.0,34.0,26,'Figure 8. The Eye of a Fly');

/* Write text. */
CALL GSCOL(2); * Change color to red. */
CALL GSQCP(X,Y); /* Determine position of right-hand end */
/* of text string. */
CALL GSMOVE(X,33.5); /* Move down by 0.5 y window units. */
CALL GSLINE(20.0,33.5); /* Underline the text in red. */

Here, the y position was known (34). GSQCP was used to determine the x position
of the end of the string.

Querying the cursor position using call GSQCUR

To query the cursor position in terms of your world-coordinate system, you issue
this call at some stage after executing an ASREAD:

DCL INWIN FIXED BIN(31l); /* Declare fullword parameter. */
DCL (X,Y) FLOAT DEC(6); /* Declare 2 float parameters. */
CALL GSQCUR(INWIN,X,Y); /* Query cursor position. */

32 GDDM Application Programming Guide Volume 1

graphics primitives

INWIN will be set to 1 if the cursor position was inside your graphics window, and
to 0 otherwise.

Parameters X and Y will be set to the x and y coordinates of the center of the cell
containing the cursor.

Another way of determining the cursor position is described in “Chapter 14.
Interactive graphics” on page 177.

Device variations

IBM 5080 Graphics System

Images created with the GSIMG call will require one byte of storage per pixel in
both the host and 5080.

You cannot produce multicolored images by overlaying graphics images created by

GSIMG. The whole of each successive image will blank out any underlying
graphics.

Chapter 4. Graphics primitives 33

Chapter 5. Graphics attributes

There are several attributes that affect the appearance of graphics primitives such
as lines and arcs. Each of these attributes has a default setting initially. For
example, on a 3179-G or 3279 terminal the default color is green and the line type
solid.

At any stage the program can change a particular attribute. All primitives drawn
subsequently will assume the new attribute value. In a program that uses
segments, the effect of the calls that change attributes is limited to the segments in
which they are issued. When a new segment is opened, the attributes return to
their default settings. In the following sections, the defaults quoted are those
initially supplied by GDDM at the start of a program. Note, however, that you can
change the default attribute settings in your program to defaults of your own
choosing. See “Changing default attribute values” on page 47 for details.

Setting a new current color, using call GSCOL

The current color affects the appearance of all graphics output — lines, arcs, areas,
graphics text, graphics images, and markers. It is set by this call:

CALL GSCOL(2); /* Set the current color to red */

The parameter may take these values:

-2 White

Black

Default (initially green on color displays, black on printers)
Blue

Red

Pink (magenta)

Green

Turquoise (cyan)

Yellow

Neutral (white on display, black on printers)
Background (black on displays, white on printers).

!
[an

OOV WNEO

Information about what happens if the device does not support the chosen color is
given in the GDDM Base Programming Reference manual. Information about the
16-color version of the 3270-PC/GX is given in “IBM 3270-PC/G and /GX work
stations” on page 49.

The same codes (except —2 and —1) are used in other calls for specifying colors. A
suggested mnemonic for the codes for blue through neutral is:

Boys Reading Politics Go To Yale Now

Chapter 5. Graphics attributes 35

see end of chapter for device variations

Setting a new line type, using call GSLT
There are a number of different line types (or styles).

This call sets a new current line type:

CALL GSLT(1); /* Set the current line type to dotted */

The parameter may take the value 0 through 8. The effect of these line types on a
3179-G terminal can be seen in Figure 14.

Figure 14. GDDM line types and line widths

Setting this attribute affects the appearance of all subsequently drawn primitives
such as lines, arcs, and ellipses. It also affects the boundaries of graphics areas.

Setting a new line width, using calls GSFLW or GSLW

You can vary the line width used for graphics with this call:

CALL GSFLW(0.66);/* Set current line width to two-thirds standard */

The parameter specifies a factor by which the standard line width for the current
device is to be multiplied.

Omitting the call or specifying a value of 1 gives a line of the standard width for
the device. On display devices the standard width is one pixel, and the only other
available thickness is two pixels. These two widths are shown in Figure 14.

On all devices, a value of zero gives the current drawing default. This is initially
the standard width for the device.

On high-resolution devices, such as the 4250 printer, a line one or two pixels wide
would be nearly invisible. Line widths of up to 600 pixels are allowed. The
standard width on a 4250 is six pixels. More information about standard and
maximum line widths is given in the GDDM Base Programming Reference manual.

36 GDDM Application Programming Guide Volume 1

graphics attributes

There is another call that is similar in effect to GSFLW, but requires a fixed-point,
and therefore integral, parameter:

CALL GSLW(2); /* Set the current line width to twice standard */

Setting the current marker symbol, using call GSMS

As described in “Drawing a graphics marker symbol using call GSMARK” on

page 24, the primitive GSMARK puts out a graphics marker at a specified location.
There are several styles of marker and the GSMS call is used to change to a new
style.

CALL GSMS(3); /* Set marker type to diamond */
The parameter may take these values:

Default (initially a cross)
Cross

Plus-sign

Diamond

Square

Six-point star
Eight-point star
Shaded diamond
Shaded square

Dot

10 Small circle

65 to 254 User-defined markers.

OWONOL A WNEREO

The markers numbered 1 through 10 are called system markers. They are
symbols contained in GDDM-supplied symbol sets. The markers are illustrated in
Figure 15 on page 38.

It is also possible for the users to create their own markers, using the GDDM
Image Symbol Editor or Vector Symbol Editor. These markers may be of any size.
They will still be positioned by GDDM such that the center of the marker symbol
lies at the specified position.

Information about the size of vector symbol markers is given in “Scaling a marker
symbol using call GSMSC” on page 24.

The following code will load a user marker set, and then display one of its markers.
The GSLSS call /*aA*/ is described in “Symbol sets for graphics text” on page 222.
The first parameter is set to 4 to indicate that the symbol set being loaded is a
marker set. The second parameter is the name of the symbol set. The third
parameter must be set to 0 in this instance. The GSMS call /*B*/ identifies the
symbol by its position in the set. A marker symbol set may have markers at any or
all of the positions 65 through 254. If you specify a position where no marker has
been created (in other words, an empty position in the symbol set), no marker will
be drawn.

You are allowed only one user marker set at a time. You can then choose either a

marker from the user set, or one of the ten system markers. If you load a second
user marker set, it will replace the previously loaded one.

Chapter 5. Graphics attributes 37

see end of chapter for device variations

CALL GSLSS(4,'NEWMARKS',0); /* Load user marker-set */ JER%/
/* called NEWMARKS */

CALL GSMS(72); /* Set marker type to that of *y J*BY/
/* symbol 72 (X'48') in the ®/

/* currently loaded user marker set */

CALL GSMARK(50,50); /* Draw user marker 72 at X=50,Y=50 */

If the marker set is multicolored, you must set the current color to 7 (neutral)
before using any markers that need to be multicolored in the display.

Figure 15. The 10 GDDM system markers

Setting the current pattern, using call GSPAT

The scheme for shading patterns is similar to that for markers. There are 16
system patterns, and the user may also create his own patterns with the Image
Symbol Editor (but not the Vector Symbol Editor), and subsequently specify their
use. This is the call to select a new current shading pattern:

CALL GSPAT(11); /* Set current pattern to system-pattern 11 */

All subsequently drawn areas will be shaded in this pattern until a new shading
pattern is specified. The parameter may take these values:

0 Default (initially solid on displays, half-tone on printers)
1to 16 GDDM system-defined patterns
65 to 254 User-defined patterns

The available system patterns for displays and 3287s are shown in Figure 16 on
page 39.

38 GDDM Application Programming Guide Volume 1

graphics attributes

=8
VA7

NN
BN
L&

Figure 16. The 16 GDDM system shading patterns

A user pattern set can be either a GDDM-supplied one or one that you have created
yourself using the GDDM Image Symbol Editor. Such pattern sets should be
designed to match the width and depth in pixels required by the device.

The following code will load a user pattern set, and then use one of its patterns.
The first parameter of the GSLSS call /*A*/ is set to 3 to indicate that the symbol
set being loaded is a pattern set. The GSPAT call /*B*/ identifies the pattern by
its position within the set. A pattern symbol set may have patterns at any or all of
the positions 65 through 254. If you specify a position at which no pattern has been
created (in other words, an empty position in the symbol set), subsequent areas will
be unshaded.

CALL GSLSS(3,'PRETTY',0); /* Load user pattern set */ JEA*/
/* called PRETTY. x [

CALL GSPAT(97); /* Set pattern to symbol 97 (X'el') */ [*B*/
/* in the currently loaded user v]
/* pattern set. %/
CALL GSMOVE(80.0,22.4); /* Move to start point of */
/* graphics area. * 7
CALL GSAREA(1); /* Start a graphics area. */
CALL GSLINE(90.0,30.0); /* Draw first line of the outline, */
- /* and so on... iV d
CALL GSENDA; /* End the area, and shade it with * A
/* pattern 97 from the user pattern %/
/* set called PRETTY. */

You are allowed to load only one user pattern set at a time. You may then use
either a pattern from the loaded set or one of the 16 system patterns. You must set
the current color to 7 (neutral) before using a pattern from a multicolored set if
you want the pattern to be multicolored in the display.

Several sample user pattern sets are supplied with the GDDM package. One of
them, the geometric pattern set, is shown in Figure 17 on page 40.

Chapter 5. Graphics attributes 39

see end of chapter for device variations

spseeess XX
e

COOCO
B R B

W
HRNRNRE “:':f’:

QOO

ok

o}ﬁ‘o

",
5%

Figure 17. GDDM geometric pattern set - ADMPATTC

All the GDDM sample pattern sets are listed in the GDDM Base Programming

Reference manual.

The GDDM 64-color pattern set

The GDDM-supplied symbol sets ADMCOLSD, ADMCOLSN, and ADMCOLSR
allow you to shade your areas in any of 64 different colors. These colors are shown
in Figure 18 on page 41. The three sets differ only in the size of the symbols.

The chosen color is specified with a GSPAT call:

CALL GSLSS(3,'ADMCOLSD',0);

CALL GSCOL(7);

CALL GSPAT(93);

40 GDDM Application Programming Guide Volume 1

Load GDDM-supplied L4
64-color pattern set. *y
Set current color to neutral to */
permit use of multicolored Ly
pattern set. *./
Set pattern to orange, pattern 93*/

in the GDDM 64-color pattern set.*/

graphics attributes

Figure 18. GDDM 64-color pattern set - ADMCOLSD

Pattern 93 in the image symbol set ADMCOLSD is a mixture of red and yellow
points. When every cell (and part cell) inside a graphics area is loaded with this
pattern, the area appears in orange.

When you use a multicolored shading pattern in this way, the boundary line will be
white (or black on a printer) unless you reset the color after opening the area.
Here is how to draw a red outline around a multicolored area:

CALL GSLSS(3,'ADMCOLSD',0); /* Load 64-color pattern set. */
CALL GSPAT(83); /* Select blue pattern. o
CALL GSCOL(7); /* Set color to neutral */

/* for area fill. x/
CALL GSAREA(1); /* Open area. */

CALL GSCOL(2); /* Set color to red for outline. */

/* Draw the area */

Or, instead, you can specify GSAREA(0) to suppress the drawing of the boundary.

Chapter 5. Graphics attributes 41

see end of chapter for device variations

Mixing foreground colors, using call GSMIX

By default, graphics primitives are drawn on top of the primitives drawn
previously. If you draw a blue line and then a green line that crosses it, the
crossing point will be shown in green. This form of foreground color mixing is
called overpaint mode. The other foreground modes that can be set are mix
mode, underpaint mode, and transparent mode.

All the displayable colors are made up of one or more of the three primary colors,
blue, red, and green. If you set mix mode, and then draw a blue line crossed by a
green one, the point where they cross will be a mixture of blue and green, that is
turquoise. Using all combinations of the three primary colors, seven colors can be
created, as shown in Figure 19.

Color No. Primaries Used

Displayed

Blue 1 Blue

Red 2 Red

Pink 3 Blue Red

Green 4 Green
Turquoise 5 Blue Green
Yellow 6 Red Green
White 7 Blue Red Green

Figure 19. The seven displayable colors

Mixing two colors results in combining their primaries. For example, red mixed
with pink (blue and red) will give blue and red, that is, pink. Turquoise (blue and
green) mixed with yellow (red and green) will give blue, red, and green, which is
white.

A color representation of the possible mixes is given in Figure 20 on page 43.

The third form of color mixing is underpaint mode. Wherever two primitives cross,
the displayed color will be that of the first-drawn primitive. If you draw a blue
line, then a green line crossing it, the crossing point will be shown in blue. Not all
devices support underpaint mode (see “Device variations” on page 49).

The fourth form of color mixing is called transparent mode. Primitives drawn in

this mode will be transparent and will therefore not appear. Not all devices
support transparent mode (see “Device variations” on page 49).

42 GDDM Application Programming Guide Volume 1

graphics attributes

ELLOWRERHITE

YELLOW

BHITE!

Figure 20. Color-mixing table

The call that defines the mixing mode is a simple one:

CALL GSMIX(1); /* Set current color-mixing rule to mix mode.?*/
The possible values of the parameter are as follows:

Current default

Mix mode

Overpaint mode (the initial default)
Underpaint mode

Overpaint mode

Transparent mode.

b wNhpE o

As for other graphics attributes, this setting will affect only primitives drawn
subsequently.

Chapter 5. Graphics attributes 43

see end of chapter for device variations

Special treatment of the background color, using call GSMIX

One of the colors allowed on the GSCOL call is color 8, the background. This color
shows as black on a display and white on a printer or plotter. When it is mixed
with another color, it has the following special effects:

To erase graphics from a part of the screen, you can simply paint over the
graphics with a background area, using the initial default color-mixing mode,
overpaint. This technique may be used on, for instance, a 3279 terminal, to
produce a cartoon effect. To show an owl blinking his eye, you would use this
sequence of calls:

CALL GSSEG(O0); /* Open a graphics segment. */
Draw owl...

CALL FSFRCE; /* Send picture of owl with two open eyes. */
CALL BLACK_EYE; /* Call subroutine to black out one eye. *x/
Draw closed eye in blacked-out area...

CALL FSFRCE; /* Send picture of owl with one eye closed.*/

CALL BLACK_EYE; /* Call subroutine to black out closed eye.*/

Redraw open eye...

CALL FSFRCE; /* Send picture of owl with two open eyes. */
BLACK_EYE: PROC;

CALL GSPAT(16); /* Solid shading pattern. */
CALL GSCOL(8); /* Set current color to background.*/
CALL GSMIX(2); /* Set mixing mode to overpaint. */
CALL GSMOVE(53.4,70.0); /* Move to bottom of eye. */
CALL GSAREA(0); /* Open area. *

CALL GSARC(53.4,70.6,360.0); /* Overpaint eye in background.*/
CALL GSENDA;
END BLACK_EYE;

Underpaint mode does not apply when the underlying color is background. The
reason is that there is no such thing as a background color to take precedence.
Background primitives are represented by switching off all the primary colors.

Background primitives make no impact on the previously drawn graphics if mix
mode is in effect. Remember that the effect of mix mode is to add the primary
components of the two colors together. Because “background” means having
no primaries, there is nothing to be added — the original color stands.

The effect of reverse-video can be achieved by setting the current color to
background and writing background graphics text on a colored area. The text
may be mode-2 (image) or mode-3 (vector). (Text modes are explained in
“Chapter 7. Basic graphics text” on page 55.) Except on a 3270-PC/G or /GX,
this technique will not work with mode-1, because the characters occupy whole
cells to the exclusion of the graphics. Background mode-1 text would be
invisible.

44 GDDM Application Programming Guide Volume 1

graphics attributes

Mixing background colors, using call GSBMIX

We have seen how GDDM gives you control over the mixing of the foreground
color of overlapping primitives. For certain primitives, you can also control how
the background of the current primitive combines with any previously drawn
primitives that it overlaps. By default, previously drawn primitives can be seen
through the background of the current primitive. This form of background mixing
is called transparent mode. The other background mix mode that you can set is
opaque mode. In this mode, the background of the current primitive completely
obscures any previously drawn primitives that it overlaps. The background will be
black for a display, and white for a printer or plotter.

The format of the call to set background mix mode is as follows:

CALL GSBMIX(2); /* Set background mix mode to opaque.*/
The possible values of the parameter are as follows:

0 Current default

2 Opague mode

5 Transparent mode (the initial default)

The graphics primitives (and their backgrounds) for which you can set this
attribute are:

Graphics images The background is every pixel that is not set within an
image.
Image markers The background is every pixel that is not set within the

marker definition.
Vector markers The background is the complete marker box.

Areas The background is every pixel within the area that is not
set by the shading pattern. For example, an area
containing a shading pattern that is a grid of horizontal
and vertical lines is drawn over some existing primitives.
If the background mix mode is set to transparent, the
underlying primitives will be seen through the square “
holes” contained by the horizontal and vertical lines. If
the background mix mode is set to opaque, the underlying
primitives will be covered up by the holes, which will
contain background color only.

Graphics text The effect of background mix depends on the mode of the
text. For Mode-1 and Mode-2 text, the background of a
character is every pixel that is not set within the
character definition. The effect of background mix on
Mode-1 text is also device-dependent. For more
information, see “Device variations” on page 49. For
Mode-3 text, the background is the complete character
box. For more information, see “Chapter 7. Basic
graphics text” on page 55.

GSBMIX has no effect on lines. Background mix mode is valid for all devices when
the foreground mix mode is overpaint. For details of which devices support which
combinations of foreground and background mix modes, see “Device variations” on
page 49.

Chapter 5. Graphics attributes 45

see end of chapter for device variations

Transforming primitives, using call GSSCT

You can set a current transform that will be applied to all the primitives that
follow using the GSSCT call. Primitives can be transformed in four ways:

Displaced Moved to another x,y location

Scaled Made larger or smaller in the x,y direction, or in both
Rotated Moved about a turning point in the x,y plane
Sheared Sloped to one side

Here is a typical call:

/* Scaling Shearing Rotation Displacement Type */
CALL GSscCT(1,1, 0,1, 1,0, 0,0, 0);

Although the current transform is a primitive attribute, the call can only be issued
within a currently open segment, and is processed in relation to the origin of the
segment (the position x=0,y=0 in world coordinates when the primitive is drawn).
GSSCT is therefore covered more fully in “Transforming primitives within a
segment” on page 143 in “Chapter 11. Graphics segments.”

Changing attributes inside an area

It is not permitted to change, say, the shading pattern in the middle of defining an
area. Only four attributes may be changed: the line type (CALL GSLT), the line
width (CALL GSFLW or CALL GSLW), the color (CALL GSCOL), and the mixing
mode (CALL GSMIX). Changes to these attributes will affect the drawing of
subsequent parts of the area boundary, but not the area fill. The attributes of the
fill are fixed when the GSAREA is executed.

Querying graphics attributes

All GDDM calls that set an attribute have a matching call to query the current
attribute value. For example: GSQCOL, GSQCA, and GSQFLW query the
attributes that can be set by GSCOL, GSCA, and GSFLW.

One use of these calls is to permit a subroutine to maintain the environment at the

time of its calling. For example, a subroutine that draws a thick red square at an
X,y position passed to it might look like this:

46 GDDM Application Programming Guide Volume 1

graphics attributes

/* Subroutine to draw red square centered on passed x,y position*/

RSQUARE: PROC(X,Y);

DCL (X,Y) FLOAT DEC(6); /* Parameters passed to subroutine. */

DCL COL FIXED BIN(31), /* Temporary variables. */
LW FLOAT DEC(6);

/**********************/

/* Query attributes */
/**********************/
CALL GSQCOL(COL); /* Save current value of color attribute. */
CALL GSQFLW(LW); /* Save current value of line width attribute.*/

CALL GSCOL(2); /* Change current color to red. */
CALL GSFLW(2.0); /* Change current line width to thick*/
CALL GSMOVE(X-1.0,Y-1.0); /* Move to start of red square. */
CALL GSLINE(X+1.0,Y¥-1.0); /* Draw first line of square. */
CALL GSLINE(X+1.0,Y+1.0);
CALL GSLINE(X-1.0,Y+1.0);
CALL GSLINE(X-1.0,Y-1.0);
/**********************/
/* Restore attributes */
/**********************/
CALL GSCOL(COL); /* Restore the color attribute. *x/
CALL GSFLW(LW); /* Restore the line-width attribute. */

END RSQUARE;

So, this subroutine might be called from several different points in the main
program. On each occasion the attributes in the main program would be left
unchanged.

Changing default attribute values

When a primitive is processed, any attributes that relate to the primitive and that
have not been explicitly set assume drawing default values supplied by GDDM. At
any time in your program you can change the drawing defaults from the values
supplied by GDDM to default values of your own choice — affecting color, line
width, line type, shading patterns, graphics text, symbol sets, and many other
attributes.

You can achieve this by containing attribute calls within two calls, GSDEFS and
GSDEFE, that respectively start and end a definition of drawing defaults.

For example, to change the default value of the current marker symbol from a cross
(the GDDM-supplied default) to a square, you would use these calls:

CALL GSDEFS(1,1); /* Start new drawing defaults definition. */
CALL GSMS(4); /* Set current marker symbol to square. */
CALL GSDEFE; /* End new drawing defaults definition. */

For the above example, any past or subsequent occurrence in your program of
GSMARK or GSMRKS for which the marker symbol has not been set (or is set to 0)
will result in a square marker symbol.

The first parameter of GSDEFS is always 1. The second parameter may take these
values:

Chapter 5. Graphics attributes 47

see end of chapter for device variations

1 Merge (the default). When merge is specified, the defaults within the new
default definition are merged in with those in the existing default definition.
So the only existing defaults that are affected by the new definition are those
specifically set within it.

2 Override. When override is specified, the new default definition completely
overrides any existing default definition. As with merge, any attribute
default specifically set within the new definition changes the existing default
attribute that it relates to. Unlike merge, any default that is not specifically
set within the new definition will be reset to the GDDM default value.

For both merge and override, the existing defaults can be either GDDM defaults, or
defaults set by a previous default definition.

In general, whenever you change a drawing default, any segment primitive drawn
using the old default will be redrawn using the new one. For example, you could
draw and display a segment primitive using the default color green. You could
subsequently use several drawing default definitions to change the default color
attribute to red, pink, yellow, or any of the colors supported by your display. Each
time that you change the default color, the primitive will be redrawn in the new
color. Primitives outside segments will be discarded when the redraw occurs.

See “Chapter 12. Storing graphics” on page 157 for information on how default
definitions can affect the storing and restoring of pictures.

For the rules that apply to the use of GSDEFS and GSDEFE, and a complete list of
the calls that you can use with them, refer to the GDDM Base Programming
Reference manual.

Pushing and popping graphics attributes, using calls GSAM and GSPOP

Whenever you alter a primitive attribute to a new value, the old setting of the
attribute is automatically saved (PUSHED) by GDDM onto a last-in/first-out stack,
unless you specify otherwise. If you wish, your program can subsequently retrieve
(POP) the stored attribute value from the stack and reuse the value. The following
call controls the pushing:

CALL GSAM(0); /* Preserve attributes */
The value of the parameter is:

0 Preserve the attributes (the default)
1 Do not preserve the attributes

You can save all the primitive attributes introduced in this chapter (for example,
color, line type, current transform) and many others covered elsewhere in this
guide. For the full list of the attributes that can be saved, see the coverage of
GSAM in the GDDM Base Programming Reference manual.

The following call controls the popping:

CALL GSPOP(5); /* Restore the last five attributes saved.*/

The single parameter defines the number of attribute values to be restored, starting
with the last value saved.

For an example of the use of pushing and popping of attribute values, see
“Graphics attribute handling with called segments” on page 152.

48 GDDM Application Programming Guide Volume 1

graphics attributes

Device variations

The preceding sections of this chapter refer primarily to the 3179-G terminal.
However, most of the function is device-independent, so most of the information
applies to all graphics devices. The following sections describe functional
variations on other types of device.

IBM 3270 family of terminals

This covers members of the the 3270 family that use programmed symbols for
graphics, such as the 3279.

GSBMIX call: Background mix is only supported when the foreground mix mode
is overpaint.

IBM 3270-PC/G and /GX work stations

GSCOL call: If the work station is a 3270-PC/GX with a 5371 Model CO1 display
unit, 16 colors are supported. Their values are as follows:

-2 White

Black

Default (green)
Blue

Red

Pink (magenta)
Green
Turquoise (cyan)
Yellow
Neutral (white)
Background (black)
Dark blue

10 Orange

11 Purple

12 Dark green

13 Turquoise

14 Mustard

15 Gray

16 Brown.

1
[any

O OO WNREO

GSMIX call: Mode 3 (underpaint) is not supported. It is treated as overpaint.

The results for mix mode with the above colors are as indicated in the table in
Figure 21 on page 50.

Chapter 5. Graphics attributes 49

device variations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 3 3 5 5 7 7 1 13 14 15 12 13 14 15 12
2 3 2 3 6 7 6 7 2 9 11 11 13 13 15 15 9
3 3 3 3 7 7 7 7 3 13 15 15 13 13 15 15 13
4 5 6 7 4 5 6 7 4 11 10 11 14 15 14 15 10
5 5 7 7 5 5 7 7 5 15 14 15 14 15 14 15 14
6 7 6 7 6 7 6 7 6 11 11 11 15 15 15 15 11
7 7 7 7 7 7 7 7 7 15 15 15 15 15 15 15 15
8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
9 13 9 13 11 15 11 15 9 9 11 11 13 13 15 15 2
lo0 14 11 15 10 14 11 15 10 11 10 11 14 15 14 15 10
11 15 11 15 11 15 11 15 11 11 11 11 15 15 15 15 11
12 12 13 13 14 14 15 15 12 13 14 15 12 13 14 15 12
13 13 13 13 15 15 15 15 13 13 15 15 13 13 15 15 13
14 14 15 15 14 14 15 15 14 15 14 15 14 15 14 15 14
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
le 12 9 13 10 14 11 15 16 9 10 11 12 13 14 15 16

Figure 21. GSMIX table for mix mode on the 3270-PC/GX

Pattern sets: There must be sufficient symbol set storage available in the work
station for any specified pattern set, otherwise the default pattern will be used for
shading.

IBM 5080 Graphics System

GSBMIX call: This call is not supported.

GSCOL call: 16 colors are supported. Their values are the same as the values for
the 3270-PC/G and /GX.

GSLW call: Only one line width is supported. Any other specified line width
defaults to this.

GSMIX call: Only overpaint mode is supported. A warning message is issued if
any other mode is specified.

Pattern sets: Only the 16 GDDM-supplied pattern sets are available, in any of the
16 supported colors. Any other specified pattern set results in pattern 16 (solid).

5550-family multistations

GSMIX call: Mode 3 (underpaint) is not supported. It is treated as overpaint.

GSBMIX call: Opaque mode is not supported. It is treated as transparent.

Color-separation masters on printers

GSCOL call: If color separation is required on a family-4 device (see
“Composed-page printer as a family-4 primary device” on page 399), the value of
the GSCOL parameter can range from 0 to the number of entries in the selected
color table.

50 GDDM Application Programming Guide Volume 1

graphics attributes

Plotters
GSMIX call: Mix mode is not supported.
GSCOL call: The parameter to this call is the number of a pen holder on the
plotter, rather than a color. The color that results depends on the color of the pen
that the plotter operator puts into the holder. More information is given in
“Colors” on page 434.

Pattern sets: You cannot specify user pattern sets for plotters.

GSBMIX call: Background mix is only supported when the foreground mix mode
is overpaint.

4224 IPDS printers
GSMIX call: Only overpaint is supported.

Pattern sets: Only the 16 GDDM-supplied system shading patterns are available.
Any other specified pattern results in pattern 16 (solid).

Chapter 5. Graphics attributes 51

Chapter 6. Displaying text

GDDM provides three different sets of functions for displaying characters and
other symbols: graphics text, procedural alphanumerics, and mapped
alphanumerics. This chapter briefly describes each one, to help you decide which
to use for a particular purpose, and tells you where to find more information.

Graphics text

This is the simplest set of functions. The caption on the house in Figure 1 on
page 8 is in graphics text. It was created simply by executing a GSCHAR call for
each line.

The primary purpose of graphics text is to annotate graphics displays. It is also
used where maximum control over the appearance of the text is required - for
instance, when preparing presentation material, such as overhead projection foils
and slides.

The location of the text is specified in world coordinates, and it can be positioned
to pel accuracy. The application program can specify its size, angle, and direction.
Characters can be proportionally spaced. Large and complex symbols can be
displayed, as well as characters.

On 3270-PC/G and /GX work stations, and on 5080 Graphics Systems, graphics text
functions can be used for input, that is, for reading data from the terminal, but
they are suitable for obtaining only small amounts of data. The input functions,
like the output, are primarily intended for use in a graphics context - for instance,
to allow the terminal user to enter parameters concerning a picture currently on
display. On other types of terminal, graphics text is output only.

Graphics text is supported on all devices except alphanumerics-only terminals and
printers.

For more information about writing graphics text, see “Chapter 7. Basic graphics
text” on page 55. For input, see “Chapter 14. Interactive graphics” on page 177.

Procedural alphanumerics

The GDDM alphanumeric calls display one symbol per hardware cell, and exploit
the 3270 family’s alphanumeric field functions. Comprehensive support is provided
for both output and input on 3270 devices. Alphanumeric functions are not
supported on some devices, such as plotters or the 4250 printer.

The procedural functions are so named because the alphanumeric fields are defined

procedurally - that is, during execution of the program. There are calls first to
define the fields’ size, position, and other characteristics, then to put data into

Chapter 6. Displaying text 53

applies to all devices

them. After an ASREAD, alphanumeric data entered by the terminal operator can
be read from the fields.

Alphanumeric fields do not generally mix well with graphics. Their positions are
defined in terms of rows and columns rather than by the window coordinates used
for graphics. They can be positioned only to cell accuracy, and their appearance

cannot be controlled to the same extent as graphics text.

Alphanumerics and graphics can be used together, but to be successful, they
usually need to occupy separate areas of the display.

The procedural alphanumeric calls are described in “Chapter 8. Basic
alphanumerics” on page 75 and “Chapter 16. Advanced procedural alphanumerics”
on page 235.

Mapped alphanumerics

Mapped alphanumerics, like procedural, exploit hardware cells and fields in the
terminal. They are supported on a similar range of devices. Mapped
alphanumerics differ from procedural in that the layout of a display is defined
separately from the program before execution.

The definition is done interactively, using the GDDM Interactive Map Definition
product (GDDM-IMD). This generates a record of each layout, called a map, to be
stored on disk and used by GDDM when the application program is executed.

Compared with procedural alphanumerics, mapped alphanumerics are generally
somewhat slower to implement as they require the initial map-definition step. But
for displaying more than a small number of fields, particularly if their layout is
crucial, mapping has considerable advantages:

® You can define the positions and sizes of all the fields in a display by
positioning the cursor on the screen. This is generally much easier than
specifying row and column numbers, and it is the major advantage of mapping.

¢ Execution time performance is likely to be better with mapping than with
procedural alphanumerics.

® You can change the layout of mapped fields more easily than procedural ones.
In many cases, you do not need to recompile the program.

Graphics can be added to mapped alphanumerics in a special graphics area, the size
and position of which is specified during map definition.

After sending the mapped output to the terminal, either using ASREAD or the
special MSREAD call, an application program can read any alphanumeric input
data entered by the operator.

More information is given in “Chapter 17. Mapped alphanumerics” on page 251
and “Chapter 18. Variations on a map” on page 273.

54 GDDM Application Programming Guide Volume 1

Chapter 7. Basic graphics text

This chapter describes the output of graphics text. Input on 3270-PC/G and /GX
work stations, and on 5080 Graphics Systems, is described in “String input” on
page 184.

To add graphies text to a display, there are two possible calls. One is GSCHAR:

CALL GSCHAR(30.0,90.0,11, 'TOTAL SALES');
/* Put 11 characters of graphic */
/* text in position (30,90) */

As with all graphics calls, the position is given in world coordinates rather than
the rows and columns scheme used for alphanumerics. The text itself may be a
character constant (as here) or a character variable.

The second call, GSCHAP, is similar, but the string is located at the current
position, instead of a specified position:

CALL GSCHAP(1l,'TOTAL SALES'); /* Send 1l characters of graphics*/
/* text to the current position. */

GSCHAR and GSCHAP leave the current position set to the end of the created text
string. GSCHAP is most frequently used when concatenating text, for example:

DCL PPP PIC'$$$$89'; /* PL/I picture variable to edit data.*/
DCL PROFIT FIXED BIN(31); /* Variable holds the year's profit. */
PPP=PROFIT; /* Convert from numeric to character form */

CALL GSCHAR(30.0,45.0,25,"'THE PROFIT THIS YEAR WAS '});

CALL GSCHAP(6,PPP); /* Concatenate actual profit.*/
CALL GSCHAP(13,' (BEFORE TAX)'):; /* Concatenate further text. */

If the profit was, say, $45300, the output from these calls would be:

THE PROFIT THIS YEAR WAS $45300 (BEFORE TAX)

Breaking lines of graphics text
To request a line break, you must include the special character code X’15° in your

text string. Because PL/I does not support hexadecimal constants, this is the code
required:

Chapter 7. Basic graphics text 55

see end of chapter for device variations

DCL CHAR1 CHAR(1); /* Declare temporary variable.*/

UNSPEC(CHAR1)='00010101'B; /* Assign X'15' into variable.*/
JERRKEIRERKRKIEIRARKRKR KA KKK RN /

/¥ Put out 2-line text string */
/******************************/

CALL GSCHAR(20.0,20.0,22,'FIRST LINE'||CHAR1||'SECOND LINE'};

The output will appear as:

FIRST LINE
SECOND LINE

The three modes of graphics text

When creating graphics text, you can specify many attributes that will affect its
appearance. The most important of these is the mode of the text, which can have
the value 1, 2, or 3. You can specify the mode with the GSCM call:

CALL GSCM(3); /* Set character mode to 3 - vector text.*/

The mode will apply to all subsequent GSCHAP and GSCHAR calls until the
character mode is changed again. If it is not specified, the default is mode-1. If the
program uses segments, opening a new segment resets the mode to the default.

The character mode determines which type of symbol set is used. A symbol set is
a collection of characters and other symbols; usually they are all a particular style,
or font, such as Times Roman or Gothic.

For the main description of symbol sets, see “Chapter 15. Symbol sets” on
page 219. Briefly, there are two sorts:

Image symbols These are defined in terms of pixels. They can be either built
into the terminal, in which case they are called hardware
symbols, or loaded into it from the host computer.

Vector symbols These are defined in terms of straight and curved lines. They
are loaded into the terminal from the host, except in the cases
described in “Differences on the IBM 3270-PC/G and /GX work
stations” on page 70,

GDDM supplies a number of image and vector symbol sets. In addition, users can
create their own.

Mode-1 and Mode-2 are highly device-dependent. This chapter describes their use
primarily on the ordinary terminals in the 3270 family, such as the IBM 3279.
Differences on other types of device are described at the end of the chapter.

The relative advantages and disadvantages of the three modes on all types of

terminal are discussed later, in “Advantages and disadvantages of each character
mode” on page 73.

56 GDDM Application Programming Guide Volume 1

basic graphics text

......... BB BN O omoh W W e e BB s 8 W M W W
......... R R R E T ERE TR ETE
......... R R e R B e om oW s W oW A R e e
......... B e # %> & B S ner 0 e el B M MEMK ® W e ug e G
......... o EmEEN R EEE R I 1 @ T
......... R R TR T I N R | £ 8 3@ W% w o e
......... e ek 3 Aas R S T T R T
......... R & & 9 % & is O BT I | i 8 MR e o R
......... B s EEDN w A B AHERERES & e e
......................... " b 3 A Y 0T s
......................... Il e T U e
......................... B oade @ 5% @ o @ W
BARER « odw & ¢ ¢ o w w0 ey lfoh s 90w s I G% O M TR TE S RO
Wi o o m o wlbue = 5 B o @ o B oeE e o4 o e EE © W W w X €W
W5 ot % b0 ® 5 o % % & & mF Qe B owi e b VIR @ 4 W D s
W a2 e e mEa @ om §o@e B R e 3 e s G A M e e deite a0 @ S B E e B o
B E'R ER: 3 Ba 4 8 & 2 & 58 $r & & omos B s @ oEle e & e b ow ownoe @
B4 # % 9 = R°o%ow 6 % & & % %N w0 T s 4 N R FEEE § P qF RS
W s 5 9 0 E G s R bR sl B s @ A E e WES W e E
W o oma n Ehad @ 9f% 4 @ @Ry B98PV e s RRE Y e e e @
N EE > s « @ ¢ 4 v ¢ & o8 B o o w9 @ ® 6Eec § & @ & & 49 &
DISPLAY OF MODE-1 SYMBOLS DISPLAY OF MODE-2 SYMBOLS
(POSITIONED IN HARDWARE CELLS) (POSITIONED TO PEL ACCURACY)

Figure 22. Mode-1 and mode-2 graphics text

Mode-1 graphics text

Mode-1 is basically the same as GDDM alphanumerics output (see “Chapter 16.
Advanced procedural alphanumerics” on page 235). The symbols occupy one
hardware cell each. By default, the device’s own hardware symbol set will be used,
but the application program can load its own image symbol set (see “Symbol sets
for graphics text” on page 222). Only image symbols that match the hardware cell
size may be used.

A mode-1 symbol occupies its cell completely. Any graphics in the cell is
obliterated. This can aid the readability of the text.

A general name for mode-1, applicable to all types of terminal, is string-positioning
mode, indicating that the application program can control the position of the start
of the string only.

Mode-2 graphics text

Mode-2 text is similar to mode-1 in many respects. Like mode-1, it is composed of
image symbols. GDDM will load a default image symbol set, or the application may
load one explicitly (see “Symbol sets for graphics text” on page 222). The symbols
may be of any size, and they are positioned to pixel accuracy.

Figure 22 shows how a mode-1 character occupies a whole hardware cell, but a
mode-2 character may occupy several cells. If a symbol set does match the
hardware cell size, it may be used for either mode-1 or mode-2.

Chapter 7. Basic graphics text 57

see end of chapter for device variations

The pixels that make up a mode-2 text string are merged with those representing
the requested graphics. They do not take precedence over the graphics. They are
on an equal footing, and are subject to the same color-mixing rules (see “Mixing
foreground colors, using call GSMIX” on page 42 and “Mixing background colors,
using call GSBMIX” on page 45).

The general name for mode-2 is character-positioning mode, indicating that the
application program dictates the position of each character (or symbol) within the
string. '

Mode-3 graphics text

Mode-3 text is composed of vector symbols. GDDM will load a default vector
symbol set, or the application may load one explicitly (see “Symbol sets for
graphics text” on page 222).

Because each symbol is created as a sequence of lines and arcs, GDDM can
manipulate it into any required size, aspect ratio, angle, or shear (italicization).
Each symbol is positioned in the display to the maximum accuracy allowed by the
hardware (pixel accuracy on ordinary 3270 terminals).

The lines and arcs that make up a mode-3 text string are merged with those
representing the requested graphics. Like mode-2 text, they do not take precedence
over the graphics, and they are subject to the same color-mixing rules as graphics
primitives (see “Mixing foreground colors, using call GSMIX” on page 42 and
“Mixing background colors, using call GSBMIX” on page 45).

The general name for mode-3 is stroke-positioning mode, because the application
program can control the drawing of every stroke of every symbol.

Affecting the appearance of graphics text, using attributes

There are several attributes that affect the appearance of graphics text. How much
effect a particular attribute has on the character string depends on the mode of the
text. The general situation is that all the attributes apply fully to mode-3
(stroke-positioned) text. Some of them apply to mode-2 (character-positioned) text
but hardly any affect mode-1 (string-positioned) text.

Each of the attributes will be described, together with its effect on each of the
three modes.

Setting the character box attribute, using call GSCB
This affects the size and spacing of the characters within a text string. The call
has two parameters: the width of the character box (expressed in x world

coordinates) and the height of the character box (expressed in y world coordinates).
This is a typical call:

CALL GSCB(2.5,2.0); /* Set character box of size x=2.5, y=2.0 */
This would have the following effect on the three modes of text:

Mode-1 Hardware characters are placed in successive cells. The character-box
attribute is therefore completely ignored.

58 GDDM Application Programming Guide Volume 1

basic graphics text

Mode-2 Image symbols are used, and these are of fixed size - they cannot be
expanded or contracted to fit the character box. The character-box
setting therefore affects their spacing. Successive characters will be
spaced 2.5 x units apart and the lines 2 y units apart. If you use a
symbol set that is larger than this, and do not adjust the character
box, then your symbols will overlap. If you use a symbol set that is
smaller, there will be extra space around each symbol.

Mode-3 Each character would be scaled to fill the character box of 2.5 by 2 in
world coordinates, separate scale factors being used for the width and
depth to fill the box in both directions. The space allocated to each
character would be 2.5 x units wide (unless the symbol set is
proportionally spaced - see “Using proportionally spaced characters”
on page 60). Should a new-line character occur, the second line would
be placed 2 y units below the first.

The default character box is the hardware character cell.

Figure 23 shows the effect of a GSCB call on text of the three different modes
displayed on a color graphics display. If you want to set the character box to four
times its normal size, you must first query the attribute’s default value in window
coordinates:

CALL GSQCB(WIDTH,HEIGHT) ; /* Query character box. */
/* (When this query is made */
/* before any GSCB call, ® 7

/* default value will be returned) */
CALL GSCB(WIDTH*4.0,HEIGHT*4.0);

/* Set character box to */

/* 4.0 times default size. LY

This pair of statements was used in the GDDM program that produced Figure 23.

VECTOR TEXT | IMAGE TEXT HARDUWARE TEXT

Figure 23. Effect of character-box attribute on the three text modes

Chapter 7. Basic graphics text 59

see end of chapter for device variations

Using proportionally spaced characters: The maximum width of a mode-3
symbol is the width of the character box. But symbols can be assigned individual
widths less than this when the symbol set is created.

Symbols that do have individual widths are said to be proportionally spaced.
GDDM supplies a number of proportionally spaced vector symbol sets, (see the
GDDM Base Programming Reference, Volume 2 for details), and you can create
your own using the Vector Symbol Editor. In the latter case, you assign a width to
each character, and the editor records, as part of the character’s definition, the
ratio between its assigned width and the maximum. Altering the width of a
character does not alter the size of the character box.

If a symbol set is not proportionally spaced, a narrow character like an “i” is
allocated just as much space as a wide one like a “W”. The result is empty space
around narrow characters. The advantage of proportionally spaced characters is
that GDDM displays them at a spacing that is in proportion to their individual
widths. This gives a more pleasing appearance and more compact character
strings. The difference is illustrated in Figure 24.

Graphics Text

Glr|alplh|i|c|s| |T|e|x|t

The above text uses symbol-set
ADMUVCRP, which IS NOT

proportionally~spaced.

Graphics Text

Giriaiplhiicls| (Tlexit

The above text uses symbol-set
ADMUWCRP which IS
proportional ly-spaced.

Figure 24. Effects of proportional spacing

The spacing works as follows. After GSCHAR or GSCHAP has drawn a
nonproportionally spaced character, the current position is moved along by an
amount equal to the width of the character box. After drawing a proportionally
spaced character, the movement is a fraction of the character box width. The
fraction is equal to the ratio between the character’s assigned width and the
maximum, as recorded in the definition of the character.

The amount of space occupied by a proportionally spaced character string can be
determined by the GSQTB call (see “The text box” on page 65).

60 GDDM Application Programming Guide Volume 1

basic graphics text

For mode-2 and mode-3 characters, you can also control the amount of space
between character boxes, using the character box spacing attribute. See “Setting
the character-box spacing attribute, using call GSCBS” on page 65.

Setting the character angle attribute, using call GSCA

This specifies the angle of an imaginary base line along which the characters will
be written. The angle is specified as a ratio between the required x and y
increments, dx and dy. This is a typical call:

CALL GSCA(2.0,1.0); /* Set character angle of dx=2.0, dy=1.0 */

The angle will be that obtained by moving 2 x units (measured in world
coordinates) in the x direction and 1 y unit (again measured in world coordinates)
in the y direction.

When the graphics window has been chosen so that 1 x unit is physically equal to 1
y unit (see discussion in “The graphics window” on page 101), the angle of the base
line will be given by arctan(dy/dx). Or, to get an angle A, you should set the
parameter dx=cos(A) and dy =sin(A). For some angles one or both of the
parameters will be negative.

Setting a character angle has a different effect on each of the three modes:
Mode-1 The attribute is ignored.

Mode-2 The character boxes are placed side by side along the base-line, but the
characters themselves are not rotated. As with character box, the
attribute affects the positioning of mode-2 text but not its appearance.
The lower left-hand corner of each mode-2 character will be placed at
the lower left-hand corner of each (tilted) character box.

Mode-3 Character boxes of the specified (or defaulted size) will be placed side
by side along the base-line. The vector symbols will fill these (tilted)
character boxes. In other words, each character will be rotated so that
its base lies on the baseline.

Chapter 7. Basic graphics text 61

see end of chapter for device variations

VECTOR TEXT IMAGE TEXT

Figure 25. Effect of character-angle attribute on the three text modes

Figure 25 shows the effect of the above GSCA call on text of the three different
modes.

Changing the character direction attribute, using call GSCD

This attribute provides support for languages that are not written in the European
left-to-right fashion. This is a typical call:

CALL GSCD(2); /* Set character direction to downward. */
After this call, a GSCHAR of the string ABC would appear as:
A

B
C

This is the standard direction for Chinese text. It might also be used to annotate
the y axis of a business chart.

There are four possible values for the single parameter:

1 Normal direction (left to right)
2 Downward

3 Right to left

4 Upward.

A new line is placed below the previous one for directions 1 and 3, and to the left
for directions 2 and 4.

Of course, this attribute does not act independently. It interacts with other

attributes such as character box and angle. This is the effect of setting a
downward direction for the three different modes:

62 GDDM Application Programming Guide Volume 1

basic graphics text

Mode-1

Mode-2

Mode-3

Figure 26.

The attribute is supported by using successive character positions
running in the appropriate direction. This means that successive cells
running in the appropriate direction are used. Note that the character
angle is always ignored for mode-1. A GSCD downward request has
the same effect whether the character angle is set to 0, 90, or 180
degrees, or some sloping angle.

The character boxes are placed as for mode-3. The image symbols are
positioned at the bottom left of the character boxes, as always.

The first character box is placed on the (possibly tilted) base line. The
next character box is placed underneath it, with the top of the
character box on the base line. Further character boxes are placed
similarly.

(XY == (XoY)==)

VECTOR TEXT IMAGE TEXT

Effect of character-direction attribute on the three text modes

Figure 26 shows the effect of the above GSCD call on text of the three different
modes displayed on a color graphics display.

Chapter 7. Basic graphics text 63

see end of chapter for device variations

VECTOR TEXT IMAGE TEXT

Figure 27. Effect of character-shear attribute on image and vector text

Shearing characters attribute, using call GSCH

This attribute gives an italicizing effect on mode-3 symbols by shearing the top of
each character box to the right or the left. The amount of shear is given in the
same way as the character angle was specified — by stating a dx and a dy. If dx
and dy are positive, the characters will slope forward. If dx is negative, they will
slope backward. This is a typical call:

CALL GSCH(1.0,3.0); /*Shear the characters right, dx=1.0, dy=3.0%*/

As with GSCA, the parameters express a ratio. They are in world coordinates (not
absolute units).

This will be the effect of the call on the three different modes:
Mode-1 The attribute is ignored.

Mode-2 The attribute has no effect on the appearance of individual characters
nor on the positioning of characters in a single line of text. If image
symbols are used, the characters will be placed in the bottom left of
the character boxes, as usual.

The attribute does have an effect on positioning when there is more
than one line of text. The boxes of the second and subsequent rows
will be placed so that their tops coincide with the bottoms of those in
the previous row. A block of several equal-length lines of text will
itself then form a parallelogram.

Mode-3 The first line of character boxes is placed along the base-line specified
by the character angle (if any). The tops of each box are now sheared
(parallel to the base line) to form parallelograms. The mode-3 symbols
are now transformed to fit accurately into these character boxes. If
there are two or more lines of text, then, as explained for mode-2 text,

64 GDDM Application Programming Guide Volume 1

basic graphics text

each line of character boxes will be offset from the previous one
because of the alignment of the parallelogram character boxes.

Figure 27 on page 64 shows the effect of character shear, both on the positioning
of the character boxes and on the drawing of each character.

Setting the character-box spacing attribute, using call GSCBS

The text box

This attribute gives you control over the spacing between character boxes in a text
string. Once it has been set, it applies to all mode-2 and mode-3 text. For mode-1
text, it is ignored. This is a typical call:

CALL GSCBS(0.9,3.0); /* _Set character box spacing.*/

The parameters are the width multiplier and the height multiplier. Both
parameters are multipliers of the dimensions of the character box. A positive
multiplier will put extra space between character boxes. A negative multiplier can
be used to overlap character boxes. A value of zero in a multiplier gives standard
spacing (the default). For any individual symbol set, whether proportionally or
non-proportionally spaced, the dimensions of the character box are constant.

The width multiplier is specified as a fraction of the width of the current character
box, and affects the horizontal space between character boxes.

The height multiplier is specified as a fraction of the height of the current
character box, and affects the vertical space between character boxes.

The effect of the multipliers depends on the direction of the text. See the GDDM
Base Programming Reference manual for details.

Characters in proportionally spaced vector symbol sets will still have their
individual widths, but will be separated by the specified or defaulted character-box
space.

The set of character boxes in which the text string specified in a GSCHAR or
GSCHAP call is drawn are conceptually enclosed within a rectangle or
parallelogram called a text box.

If you allow the character-box space to default, the set of character boxes will be
contiguous.

The dimensions of the text box for left-to-right text will therefore be:

For a string containing no new-line characters, the height of the text box will
be the same as the character-box height, and the width will be equal to an exact
number of character-box widths,

If there are new-line characters, the box will be equal in depth to the
character-box height multiplied by the number of lines, and as wide as the
longest line.

If you use a non-default character-box space, or proportionally spaced vector
symbols, the width of the text box will not be a simple multiple of the character box
width. For example, with non-default character-box spacing, the dimensions of the
text box have to take account of the appropriate number of character box spaces.

Chapter 7. Basic graphics text 65

see end of chapter for device variations

You can use the GSQTB call to find out the positions of the corners of the box, and
the current position after the characters have been drawn. You will be aware of a
particular need for it if you use character-box spacing or proportionally spaced
vector symbols,

Here is an example:

DCL XCOORDS(5) FLOAT DEC(6),

YCOORDS (5) FLOAT DEC(6);

/* Length String Count Returned coordinates */
CALL GSQTB(3, 'ABC', 5, XCOORDS, YCOORDS) ;

The first parameter is the length of the string, and the second, its contents. The
last two parameters are arrays in which GDDM returns information about the text
box. The third parameter specifies the number of elements in these arrays.

The arrays can have up to five elements each. In the first four, GDDM returns the
positions of the corners of the text box as offsets from the starting point of the
string. Their order is: top left, bottom left, top right, bottom right. Precise
definitions of these terms are given in GDDM Base Programming Reference
manual. The fifth element of each array gives the offsets of the current position
after the character string has been generated. This pair of offsets identifies where
the next character would be drawn.

You should note that all the offsets are always returned as if the starting point of
the string is at 0,0. This means that you have to add the actual coordinates of the
starting point of the string to the returned offsets to get the actual positions of the
corners of the text box. For example, the following section of sample code adds the
first four offsets to the actual position of the starting point, to draw a line around

the string:

DCL XC(5) FLOAT DEC(6), /* Declare arrays for */
YC(5) FLOAT DEC(6); /* GSQTB call */

DCL NEWLINE CHAR(1); /* Declare new line character */

UNSPEC(NEWLINE) = '00010101'B; /* and initialize it. */

CALL GSCM(3); /* Specify mode-3 (vector text) */

/* Now write the string of characters and query their text box */
CALL GSCHAR (X,Y,19,'CURRENT'||NEWLINE||'EXPENDITURE');

CALL GSQTB (19, 'CURRENT' | |[NEWLINE| | 'EXPENDITURE' ,5,XC,YC);
CALL GSMOVE (X+XC(1),Y+YC(1l)); /* Move to bottom left of text box*/
CALL GSLINE(X+XC(3),Y+YC(3)); /* Draw around ... */
CALL GSLINE(X+XC(4),Y+YC(4)); /* the ... *
CALL GSLINE(X+XC(2),Y+YC(2)); /* text box */
CALL GSLINE{X+XC(1),¥Y+YC(1)); /* */
CALL GSMOVE (X+XC(5)+10,Y+YC(5));/* Move to 10 x units along from*/
. /* what was current position */
. /* after text was written. */

The primary application of the GSQTB calls is with proportionally spaced mode-3
vector symbols. It can be used with mode-1 and mode-2 text.

In the case of mode-2 text, it is particularly important to remember that the call
returns the coordinates of a box that encloses the character boxes within the
string, not the symbols. Image symbols do not necessarily fill the character boxes,
and can also extend outside them, as can be seen from Figure 27 on page 64. And

66 GDDM Application Programming Guide Volume 1

basic graphics text

if the boxes are angled, their edges will be staircased. In all cases, the text box
runs through the extremities of the character boxes.

Setting the text alignment attribute, using call GSTA

If you allow the text alignment attribute to default, text is aligned such that a
point on the text box corresponds with either the position specified in the x and y
coordinates in the GSCHAR parameters, or the current position before a GSCHAP
call was issued. The character direction determines which point on the text box is
used as the alignment point. For example, if you have a normal graphics window,
the GDDM default character angle, direction, and shear, and the width and height
of the character box are both positive values, the alignment point will be the
bottom-left corner of the leftmost character box in the first row of text. Default
alignment points for other character directions are given below.

You can use the text alignment attribute call to alter the alignment point of a text
box. This is a typical call:

GSTA(3,2); /* Align center top of text box with current position*/

The call is valid for all three modes of graphics text. The first parameter
horizontally aligns the text box. It has the following possible values:

-1 Alignment according to character direction:

Direction Alignment

Left to right Left edge of first character
Downward Left edge of first character
Right to left Right edge of first character
Upward Left edge of first character

o] The default (initially the same as -1).

1 Alignment according to current character direction:
Direction Alignment
Left to right Left edge of text box
Downward Left edge of text box
Right to left Right edge of text box
Upward Left edge of text box

2 Left edge of text box
3 Center (arithmetic mean of left and right edges of text box)
4 Right edge of text box

The second parameter vertically aligns the text box. It has the following possible
values:

-1 Alignment according to current character direction:

Direction Alignment

Left to right Bottom edge of first character
Downward Top edge of first character
Right to left Bottom edge of first character
Upward Bottom edge of first character

Chapter 7. Basic graphics text 67

see end of chapter for device variations

0 The default (initially the same as -1)

1 Alignment according to current character direction:
Direction Alignment
Left to right Bottom edge of text box
Downward Top edge of text box
Right to left Bottom edge of text box
Upward Bottom edge of text box

2 Top edge of text box

3 Cap of character furthest towards top of text box (see note).
4 Center (arithmetic mean of top and bottom edges of text box)
5 Base of character furthest towards bottom of text box (see note).

6 Bottom edge of text box

Note: Vertical parameter values of 3 and § apply only to symbol sets where the
positions of bases and caps are defined. GDDM-supplied symbol sets do not define
these positions; parameter value 3 will therefore have the same effect as value 2,
and value 5 will have the same effect as value 6.

If you have a normal graphics window, the GDDM default character angle,
direction, and shear, and the width and height of the character box are both
positive values, the meanings of terms like “top-left” and “bottom-right” are
obvious. The meanings are not so obvious when text is rotated or sheared. For
example, the term “top-left” actually refers to the corner of the text box that is
top-left when no rotation or shearing is applied. There is an illustration of this in
the coverage of GSQTB in the GDDM Base Programming Reference manual.

Also, if you change the direction of the graphics window so that, for example, low x
values lie on the right-hand side of the display, the term “left” will apply to the side
of the display corresponding to low x values. The same principle applies to
changing the direction of the graphics window in the y direction.

Example using graphics text attributes

There are eight different attributes that affect the appearance of graphics text:
character mode, character box, character angle, character direction, character
shear, character box space, text alignment, and character symbol-set. Whenever
some graphics text is written (with a GSCHAR or GSCHAP call), the current
values of these eight attributes will apply, whether they have been explicitly set or
defaulted. Here is an example using the first five attributes. The symbol set
attribute is discussed in “Chapter 15. Symbol sets” on page 219.

68 GDDM Application Programming Guide Volume 1

basic graphics text

CALL GSSEG(0); /* Open unnamed segment. */
CALL GSCHAR(4.0,8.0,3,'ABC');/* Mode-1, color green, default */
/* direction. */
CALL GSCA{(1.0,1.0); /* Set character angle to dx=1.0, */
/* dy=1.0 (45 degrees above */
/* horizontal, if */
/* 1 x unit = 1 y unit) */
CALL GSCB(8.0,6.0); /* Set character box to */
/* 8 x units by 6 y units. */
CALL GSCHAR(24.0,30,0,3,'GHI');
/* Mode-1, color green, default */
/* direction (still). */
CALL GSCM(3); /* Set mode to 3 - vector text. */
CALL GSCHAR(60.0,45.0,5,"'PQRST');
/* Green vector characters. */
/* The string and each character */
/* tilted at 45 degrees, each */
/* character of size 8 by 6 */
/* in world coordinates. */
CALL GSCH(-1.0,5.0}; /* Request backward shear. */

CALL GSCHAR(10.0,15.0,2,'YZ');
/¥ Same as previous string except */
/* that the top of each character */

/* is sheared to the left. */
CALL GSCM(2); /* Set mode-2 - image characters. */
CALL GSCOL(6) ; /* Change color to yellow. */
CALL GSCHAR({50.0,50.0,4,'JKLM');

/* Yellow image characters. */

/* The string slopes at an */

/* angle of 45 degrees but the */

/% individual characters are */

/* not rotated or sheared. */
CALL GSCD(2); /* Set downward character direction*/
CALL GSCM(3); /* Revert to vector characters. */

CALL GSCHAR(20.0,90.0,2,'0OP');
/* Yellow sheared vector characters*/
/* - each character is rotated 45 */
/* degrees and placed beneath the */
/* previous one. The text string x/
/* is therefore at an angle of */
/* minus 45 degrees to horizontal. */

CALL ASREAD(TYPE,MOD,CQUNT); /* Send out all the graphics text. */

It is the attribute values current at the time of the GSCHAR call that affect the
appearance of the characters. The attribute values at the time of the ASREAD call
have no particular significance. An exception to this is if GSCHAR uses the
default value of any attributes (such as character mode). If such a default is
subsequently changed (from mode-3 to mode-2, for example) the appearance at
ASREAD will be affected.

Chapter 7. Basic graphics text 69

device variations

Device variations

The preceding sections of this chapter refer primarily to members of the 3270 family
that use programmed symbols for graphics, such as the 3279. However, most
function is device-independent, so most of the information applies to all graphics
devices. The following sections describe functional variations on other types of
device.

Differences on the IBM 3179-G Color Display Station

Mode-1 text Graphics and text are presented on an equal footing:
where they coincide, both are displayed. Mode-1 does not
have the advantage that the text is always the sole
occupant of the text box.

Differences on the IBM 3270-PC/G and /GX work stations

Mode-1 text Graphics and text are presented on an equal footing:
where they coincide, both are displayed. Mode-1 does not
have the advantage that the text is always the sole
occupant of the text box.

The symbols are not located in hardware-defined cells.
They can be of any size. The start of the string is
positioned to pixel accuracy.

Mode-2 and -3 text The work station has a hardware image and vector symbol
set. These are used as the defaults for modes-2 and -3
unless you specify that a GDDM symbol set is to be loaded
and used instead (see “Default symbol sets for graphics
text” on page 389).

Default character box For all modes of text, the default character box is the
hardware graphics cell size, which is different from the
hardware alphanumerics cell size.

Alphanumerics cells have a predefined size and predefined
locations, in rows and columns, on the screen. Graphics
cells have a predefined size, but not predefined locations.
Differences on the 5080 Graphics System
Mode-1 text As for 3270-PC/G and /GX, above.
Mode-2 text Other data in the cell is obscured by the text.

Default character box For all modes of text, the default character box is the
character size of the 5080 base-character set.

70 GDDM Application Programming Guide Volume 1

basic graphics text

Differences on 5550-family multistations
Mode-1 and -2 text The same as for 3270-PC/G and /GX

Mode-3 text The same as for 8270-PC/G and /GX, if Japanese 3270-PC/G
software from Version 6 and onward is used.

Default character box The same as for 3270/PC/G and /GX.

The 5550 family has no mode-3 hardware image symbol set if Japanese 3270-PC/G
software before Version 6 is used. GDDM’s default mode-3 symbol set is used if not
loaded explicitly. For DBCS text, GDDM’s DBCS symbol set is automatically
loaded.

Differences on composed-page printers

This section describes how text on composed-page printers, such as the IBM 4250
and the 3800 Models 3 and 8, differs from text on the ordinary members of the IBM
3270 family, like the 3279:

Mode-1 text and graphics
Graphics and text are presented on an equal footing:
where they coincide, both are displayed. Mode-1 does not
have the advantage that the text is always the sole
occupant of the text box.

Effect of call GSCB

Mode-1 text The GSCB call has no effect. If image symbols are used,
the character box is the same size as the symbols. If
vector symbols are used, the character box is the default
one, and the width and depth of the symbols are scaled
separately to fill the box.

Mode-2 text The symbols come from either an image symbol set

specified by you, in which case the effect of the character
box is the same as on ordinary 3270 devices, or the default
vector symbol set, in which case they are scaled to fill the
box, as for mode-3.

Default character box
The default character box is such that letter heights
approximating to 12 points (1/6 inch) are produced. The
width is half the height. In terms of pixels, this means, for
example, 100 pixels deep by 50 wide on a 4250, and 40 deep
by 20 wide on a 3800.

Differences on plotters

Some special considerations for plotters are described in “Symbol sets” on
page 439.

Mode-1 text The start of the string is positioned to the maximum
accuracy allowed by the hardware.

Chapter 7. Basic graphics text 71

device variations

Mode-2 text The pixel spacing for image symbols is as described in
“Cells, pixels, and plotter units” on page 426.

If no image symbol set is loaded by the program, the
default vector symbol set ADMDVSS is used. The
characters are then scaled to fit the current character box
as far as possible without distortion.

Default character box This is the notional cell described in “Cells, pixels, and
plotter units” on page 426.

72 GDDM Application Programming Guide Volume 1

basic graphics text

Advantages and disadvantages of each character mode

Each of the three character modes has its own advantages that will prove the best
choice in particular situations. These are the main features of each mode:

Mode-1: String positioning

Advantages: This is the cheapest mode to use as very little processing is required
by GDDM. Multicolored symbols are permitted, except on the IBM 5080 Graphics
System. On devices in the IBM 3270 family (except the 3270-PC/G and /GX), the
fact that mode-1 text is the sole occupant of its cells aids its readability where text
and graphics coincide. Other modes will merge the text with the graphics.

Disadvantages: These are best considered individually for each type of supported
device:

e IBM 3270 devices (except the 3270-PC/G and /GX): The text can be positioned
only to hardware cell accuracy. Its placement relative to the graphics will
therefore vary from device to device. The size of each character in a symbol set
has to match the cell size of the device. This prevents the use of large symbols
and requires a separate version of the symbol set for each device of different
cell-size.

e Plotters, IBM 3270-PC/G and /GX, 5550: Although the text can be positioned to
the maximum accuracy allowed by the hardware, the size, direction, and angle
of the characters are fixed.

o Composed-page printers: If vector symbols are used they are limited to one size
— that of the default character box. The limitation can be overcome by using
image symbols, which can be of any size.

Mode-2: Character positioning

Advantages: The limitations on character size and positioning mentioned for
mode-1 can be avoided. You can use image symbols. Multicolored symbols are
again permitted, except on the IBM 5080 Graphics System. With image symbols,
the dot representation of each character is always exactly the one that was defined
when the symbol set was created. The characters do not therefore suffer from
distortion, as vector characters may in some circumstances.

Disadvantages: The characters cannot be rotated or otherwise manipulated. You
can use image symbols to achieve a particular size of character, but the size is fixed
when the symbol set is created; the characters may not be expanded or contracted
by the application program.

Mode-3: Stroke positioning
Advantages: Because each character is originally created as a sequence of lines
and curves, GDDM can manipulate the symbols when they are displayed. They

may be shown at any size or aspect ratio (GSCB), rotated (GSCA), or sheared
(GSCH).

Chapter 7. Basic graphics text 73

Disadvantages: The symbols are monochrome. On 3270 devices, rastering is
subject to rounding errors. The end of each line in the symbol can be resolved only
to the nearest pixel (screen position). This means that mode-3 characters displayed
at a small size may be difficult to read. Mode-2 may therefore be preferable when
small characters are required on these devices.

On the 3270-PC/G and /GX family, and 5550 family, mode-3 text takes longer to
draw than mode-1 and -2.

74 GDDM Application Programming Guide Volume 1

Chapter 8. Basic alphanumerics

This chapter introduces the facilities that GDDM provides for output and input of
alphanumeric data.

On the IBM 3270 family of devices, the display area (that is, the screen or printed
page) is divided into cells. The cells are rectangular in shape, they are arranged in
rows and columns, and each can display one character (or symbol, as the terms are
synonymous). GDDM allows you to define contiguous blocks of cells to be
alphanumeric fields.

You can specify where on the display area the fields are to be located.
Alphanumeric data may be transmitted to them, and a terminal operator may type
input data into them. All the calls that process alphanumeric fields have the
format CALL ASxxxx.

The facilities provided by these calls are called procedural alphanumerics, to
distinguish them from GDDM mapping. An introduction to mapping, and guidance
on when to use it in preference to procedural alphanumerics, are given in “Chapter
17. Mapped alphanumerics” on page 251.

Logically, alphanumeric fields are stored, like graphics, in pages by GDDM. When
an alphanumeric field is created, it is added to the current page. A page can
therefore contain both graphics and alphanumeric fields.

The way that they combine depends on the device. On the 3179-G, 3270-PC/G and
/GX family, and 5550 family, you can control the precedence of alphanumerics over
graphics. See “Device variations” on page 86. On a 3279, the alphanumerics take
precedence; no graphics will appear in hardware cells that are part of an
alphanumeric field.

On some terminals (such as the dual-screen configuration of the 3270-PC/GX and
the 5080 Graphics System), the graphics are displayed on one screen and the
alphanumerics on another. See “IBM 5080 graphics system” on page 87 for details
of alphanumerics on the 5080.

Defining an alphanumeric field using call ASDFLD

This is a typical call to define an alphanumeric field:

/* Field-id Row Column Depth Width Type *x/
CALL ASDFLD(3, 14, 5, 1, 21, 2);

The six parameters have these meanings:

Chapter 8. Basic alphanumerics 75

does not apply to graphics-only devices such as plotters

3 The field identifier. Any later call that refers to the new field will use this
identifier (in other words, it is the name of the field). If a field with identifier
3 already exists, the new field replaces the old one.

14 The row in which the data of the alphanumeric field will start. The rows are
numbered from the top.

5 The column of the first data position in the field.
1 States that the field will have only 1 row.
21 Gives the width. It will be 21 columns across.

2 Specifies the type of the field - how it should be handled by the terminal.
These are the possible settings:

0 Unprotected alphanumeric. “Unprotected” means that the operator
may type data into the field.
1 Alphanumeric output, numeric input. Also unprotected - but the field

will accept numeric input only. If the terminal does not support this
feature, this setting is equivalent to 0.

2 Protected alphanumeric. The keyboard will lock if the operator tries
to type into the field.

3-6 Various types of light-pen field. The field will be sensitive to the
light-pen if the terminal has this feature.

Note that whereas the position of GDDM graphics on a page is defined in terms of
a device-independent user-chosen coordinate system (or the default coordinates of
100 by 100), alphanumeric fields are positioned in row/column coordinates.

Sending and Receiving alphanumeric data

To use a field for output, you must assign data to it. A typical statement would be:

CALL ASCPUT(3,21,'ENTER ACCOUNT NUMBER:'):;
/* Put data in field 3 */

This call requests GDDM to place 21 characters of data into the alphanumeric field
with field identifier 3.

When an unprotected field is sent to the screen (by issuing an ASREAD), the
terminal operator may type data into it. This data will be transmitted to the
program when the terminal operator presses ENTER (or causes any other
interrupt). The program may then retrieve the data with a call such as:

CALL ASCGET(4,5,ACCOUNT_NO) ; /* Retrieve data from field 4 */
This call requests GDDM to retrieve the data from field 4 and place the first 5

characters (typically the complete field) into the program variable called
ACCOUNT_NO.

76 GDDM Application Programming Guide Volume 1

basic alphanumerics

Breaking lines of alphanumeric text

Multiline fields can be created in two ways. You can define a field one line deep
but long enough to extend beyond the edge of the page. GDDM will wrap the field
around the screen and continue it on the next line, and on following lines if
necessary.

CALL ASDFLD(19,4,21,1,150,2); /* Field continues on lines 5 & 6 */

Or you can define the field to be narrow enough to fit onto the page, but more than
one line deep:

CALL ASDFLD(20,4,21,2,7,2); /* Field is 2 rows by 7 columns */

The data of such a multiline field is considered as one long string:

CALL ASCPUT(20,14,'AccountProgram'); /* Put data in 2-row field */

Field 20 will have its top left-hand corner character in row 4, column 21, and will
appear like this:

Account
Program

Were this field an input field, its contents would be retrieved by a call such as:

CALL ASCGET(20,14,INCHAR),

where INCHAR is the name of a character variable 14 bytes long.

Clearing an alphanumeric field using call ASFCLR

To clear the data from a single alphanumeric field, you can issue this call:

CALL ASCPUT(6,0,''); /* Assign null data to field 6 */
The previous content of field 6 will be replaced with null characters.

When there are several fields to be cleared, you may issue one of these calls:

CALL ASFCLR(O); /* Clear all unprotected fields */
CALL ASFCLR(1); /* Clear all protected fields */
CALL ASFCLR(2); /* Clear all fields */

Deleting an alphanumeric field

To delete a single alphanumeric field (as opposed to clearing its contents), you
must redefine it with a row-position of zero. This is a typical call:

/* Field-id Row Column Depth width Type */
CALL ASDFLD(3, 0, 0, 0, 0, 0);

After this call, field 8 will cease to exist.

To delete all the alphanumeric fields in the page (and the graphics too), you must
call FSPCLR (see “The page and page window” on page 93).

Chapter 8. Basic alphanumerics 77

does not apply to graphics-only devices such as plotters

Positioning and querying the alphanumeric cursor

You can set the position of the cursor with a call to ASFCUR. If the operator is
expected to type some information, it will probably be helpful to position the cursor
at the start of the first input field:

CALL ASFCUR(4,1,1); /* Position cursor at start of field 4 */

As you would expect, the first parameter is the field identifier. The other two
parameters specify the row and column position of the cursor within the field.

Alternatively, if you specify a value of 0 for the first parameter, the other two then
refer to the row and column position of the cursor within the page. For example:

CALL ASFCUR(0,20,1); /* Position cursor at start of row 20 */

You can query the cursor position, by using this call:

CALL ASQCUR(CODE,F_IDENT,ROW,COLUMN); /* Query cursor position */

If you set the first parameter (CODE) to 0, GDDM will set ROW and COLUMN to
the page coordinates of the cursor, that is, its row and column numbers within the
page.

If you set CODE to 1, the cursor position will be returned in field coordinates.
F_IDENT will be set to the alphanumeric field identifier and ROW and COLUMN
will give the row and column position within the field.

If field coordinates are requested but the cursor does not lie within a field,
F_IDENT will be set to 0 and page coordinates will be returned.

Where the above descriptions refer to the position of the cursor in the field, they
mean the field on the screen, as opposed to your program’s description of the field.
In most cases, there is a one-for-one relationship between each character position
of the field on the screen and each character position of the field in your program.
An exception to this, and the use of ASFCUR and ASQCUR in that context, are
described in “IBM 5550 multistation” on page 245.

Attribute bytes on 3270 terminals

The buffer in which a 3270-type terminal stores the data being displayed on the
screen has one position for each screen cell. The data for each alphanumeric field
is preceded in the buffer by a byte of information about the field’s attributes. The
screen position just before the actual data is therefore made inactive.
Consequently, it is not good practice to define two alphanumeric fields that are
horizontally adjacent. No error will result but the last byte of the field on the left
will lose its data and appear blank.

When the data position starts in the leftmost cell of a row, the attribute byte will
occupy the last cell of the previous row, making that cell inactive.

The representation in the buffer will include trailing attribute bytes to end each
field. The default setting for this trailing attribute is auto-skip, meaning that the
cursor will automatically jump to the next unprotected field when the current field
is filled. It is permissible for the attribute byte of one field to share the same cell
as the trailing attribute byte of the previous field. You need therefore allow only a
1-column gap between your alphanumeric fields.

78 GDDM Application Programming Guide Volume 1

basic alphanumerics

Alphanumeric attributes

There are two classes of GDDM alphanumeric attribute, field attributes that
affect the whole of an alphanumeric field and character attributes that affect

separately each character within a field.

Field attributes

These attributes affect the way the terminal handles the fields, and also their
appearance. There are a number of different attributes that you may set:

Type. This is the only attribute that has to be specified when the field is
defined by an ASDFLD call (see “Defining an alphanumeric field using call

ASDFLD” on page 75). It defines handling characteristics such as whether the
field is to be protected, and whether it is a light-pen field. The type attributes

can subsequently be altered by a call to ASFTYP.

For example:

CALL ASFTYP(21,2); /* Change field 21 to protected type */

These are the possible settings of the second parameter:

-1 Leave type as it is

Unprotected alphanumeric
Alphanumeric output, numeric input
Protected alphanumeric

Light-pen attention field

Light-pen selection field

Light-pen enter field

General light-pen field.

S b wNoPRE O

Intensity. The intensity of a field may be set w<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>