
• •••

. .. ,. .. , : -..

"\
/

>"

DOCUMENT COMPOSITION FACILITY:
SCRIPT /VS TEXT PROGRAMMER'S

GUIDE
RELEASE 3

Document Number SH35-0069-2

January 22nd, 1985

This publication was produced using the IBM Document
Composition Facility (program number 5748-XX9).

Third Edition (March t 985)

This edition contains information from and makes obsolete the Document Composition Facility: SCRIPT/VS
Text Programmer's Guide, SH35-0069-1.

Technical changes in this edition are marked by vertical bars in the left margin.

This edition applies to Release 3 of the Document Composition Facility program product, Program Number
5748-XX9, and to any subsequent releases until otherwise indicated in new editions or tcchnical newsletters.

Changes are periodically made to the information herein; before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/370 and 4300 Processors Bibliography, Ge20-0001,
for editions that are applicable and cun·ent.

It is possible that this material may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not available in your country. Such references or information
must not be constmed to mean that IBM intends to announce such products in your country.

Publications are not stocked at the address given below; requests for IBM publications should be made to your
IBM representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed, com­
ments may be addressed to IBM Corporation, Information Products Division, Box 1900, Dcpartment 580,
Boulder, Colorado, U.S.A. 80301. IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of course, continue to use the infor­
mation you supply.

(c) Copyright International Business Machines Corporation 1984, 1985

ii DCF: SCRIPT/VS Text Programmer's Guide

Preface
This manual describes the IBM Document Composition Facility (DCF) program prod­
uct and its component text processing program, SCRIPTjVS, and provides the informa­
tion necessary to use them. This book should be used in conjunction with the Document
Composition Facility: SCRIPT/VS Language Reference, which defmes the SCRIPT com­
mand and the SCRIPT /VS control words.

In order to use this book, the end user must be familiar with:

• The concepts of text processing and formatting

• The operating environment on which SCRIPT jVS resides

• A text editor supported in the above environment.

We recommend that new users satisfy their text formatting requirements by using the
Generalized Markup Language (GML).

This publication is specifically designed for users whose tasks may include:

• Formatting documents using SCRIPTjVS control words.

• Modifying the Document Composition Facility Generalized Markup Language
starter set. See the Document Composition Facility: Generalized Markup Language
Starter Set Implementation Guide for more details on modifying the GML starter
set.'

• Creating Generalized Markup Language applications.

• Installing, modifying, and maintaining the Document Composition Facility.

This book is not addressed to users of any installation defmcd GML applications. These
users should refer to their application's documentation. Users of the GML starter set
application should refer to the Document Composition Facility: Generalized Markup Lan­
guage Starter Set User's Guide, the Document Composition Facility: Generalized Markup
Language Starter Set Reference, and the Document Composition Facility: Generalized
Markup Language Starter Set Implementation Guide.

The information in this publication applies equally to OSjVS2 l'vfVS, VSE, VM/SP, and
A TMS-III unless specifically stated otherwise.

Use of SCRIPTjVS in an ATMS-III, CMS, or TSO environment requires the Fore­
ground Environment Feature; use in a background environment requires the Document
Library Facility program product (Program Number S748-XXE).

References to the 3800 Printing Subsystem refer to both the 3800 Printing Subsystem
Model 1 and to the 3800 Printing Subsystem Model 3 (in compatibility mode) unless
otherwise explicitly stated.

, Field Engineering support and maintenance is provided only on the unmodified GML starter set.
If you modify the starter set, it is recommended that you also maintain an unmodified starter
set for diagnostic purposes.

Preface iii

Organization

References to the 3800 Printing Subsystem Model 1 also apply to the 3800 Printing Sub­
system Model 3 (in compatibility mode) unless otherwise explicitly stated.

References to page printers apply to the 4250 printer, the 3800 Printing Subsystem
Model 3, and the 3820 Page Printer unless otherwise explicitly stated.

The chapters of this book are:

• "Chapter 1. An Overview of SCRIPTjVS": A general description of SCRIPTjVS.
This chapter includes a discussion of what SCRIPT jVS is and what it does.

• "Chapter 2. Using the SCRIPT Command": A description of how to use and spec­
ify the SCRIPT command. This chapter discusses fIle requirements and conventions
and how to use the SCRIPT command in several environments.

• "Chapter 3. Marking Up Documents with SCRIPTjVS": A description of
SCRIPT/VS language syntax and control words. This chapter includes a discussion
of the control word separator and space notation.

• "Chapter 4. Combining SCRIPTjVS Input Files": A description of how to imbed
and append SCRIPT jVS fIles. This chapter includes a brief summary of
SCRIPT jVS utility files.

• "Chapter S. Communicating with SCRIPT/VS": A description of interaction with
SCRIPT/VS. This chapter includes a discussion of SCRIPTjVS messages and inter­
active SCRIPT /VS processing.

• "Chapter 6. Composing Lines": A description of how to define the parameters of a
line. This chapter includes a discussion of concatenation, justification, indention,
tabs, and marking updated material.

• "Chapter 7. Hyphenating and Horizontally Justifying Text": A description of how
to hyphenate words, how to horizontally justify text, and how to use the algorith­
mic hyphenator.

• "Chapter 8. Creating Vertical Space": A description of how to insert vertical space
into your text.

• "Chapter 9. Vertically Justifying Text": A description of how to vertically distribute,
format and justify text.

• "Chapter 10. Establishing Page Layout": A description of how to define the param­
eters of a page, such as page length, page width, column line length, line length, and
page numbering. This chapter describes running headings and footings.

• "Chapter 11. Placing Text in Named Areas": A description of how to define and
place named areas in your text. Also included is a discussion of how segments can
be included in your text.

• "Chapter 12. Composing Multiple-Column Pages": A description of how to estab­
lish a multicolumn format for the body of a page.

• "Chapter 13. Creating Head Levels and Table of Contents": A description of how
to specify and modify SCRIPT jVS head levels, that is, chapter and topic headings,
and how SCRIPT jVS creates a table of contents from the head levels.

• "Chapter 14. Creating Rules and Boxes": A description of how to create simple and
complicated boxes and how to draw horizontal and vertical rules.

iv DCF: SCRIPT /VS Text Programmer's Guide

/

• "Chapter 15. Selecting Fonts": A description of how to defme and specify fonts for
line devices, the 4250 printer, the 3800 Printing Subsystem Model 3, and the 3820
Page Printer and how to use fonts for emphasis.

• "Chapter 16. Keeping Blocks of Text Together": A description of widow zones, in­
line keeps, and floats.

• "Chapter 17. Creating Footnotes": A discussion of how to create footnotes and
footnote leaders.

• "Chapter 18. Translating Characters": A description of character manipulation and
input and output character translation. This chapter includes a discussion of upper­
case and string translation as well.

• "Chapter 19. Creating an Index": A description of how to create an index by plac­
ing index entry information in the text of a document.

• "Chapter 20. Defming the Formatting Environment": A description of the
SCRIPT /VS formatting environment.

• "Chapter 21. Processing Symbols": A description of the SCRIPT/VS symbol proc­
essing capability and how to name symbols, store them in a symbol1ibrary, use sys­
tem symbols, and use symbol arrays. This chapter describe& many useful
applications for symbols.

• "Chapter 22. Processing Logical Statements": A description of how to alter the or­
der in which input lines are processed. The techniques discussed include conditional
control words, branching, and conditional sections.

• "Chapter 23. Processing Macros": A description of the SCRIPT jVS macro process­
ing capability and how to defme a macro, use symbols within a macro, conditionally
process parts of the macro, and store macros in a macro library.

• "Chapter 24. Processing GML": A description of how to create a GML tag, build
an application processing function (APF) associated with the tag, and map the tag
to the APF. This section should be read in conjunction with the Document Compo­
sition Facility: Generalized Markup Language Starter Set Reference and the Docu­
ment Composition Facility: Generalized Markup Language Starter Set
Implementation Guide.

• "Chapter 25. Verifying Spelling": A description of how to verify spelling using the
SPELLCHK option. This chapter also includes a discussion of how to build user
and addenda dictionaries.

• "Appendix A. Using SCRIPT/VS with Other Programs": A discussion of
SCRIPT /VS compatibility with other programs. Also included in this chapter is a
discussion of SCRIPTjVS as a postprocessor and as a preprocessor.

• "Appendix B. Improving System Performance": A discussion of the consumption
and use of system resources in formatting documents.

Related DeF and DLF Publications
• Document Composition Facility: SCRIPTjVS Language Reference, SH35-0070. This

manual describes the SCRIPT command options and the SCRIPT/VS control
words and provides a summary of system symbols, special characters, character sets,
and 3800 Printing Subsystem fonts.

• Document Composition Facility and Document Library Facility General Information
Manual, GH20-9158. This manual describes the Document Composition Facility
and Document Library Facility program products and summarizes their functions

Preface v

and capabilities. It also summanzes the operating environment requirements for
these products.

• Document Composition Facility: Generalized Markup Language Starter Set User's
Guide, SH20-9186. This manual provides an introduction to GML and a primer on
document markup using the GML starter set provided with SCRIPT/VS.

• Document Composition Facility: Generalized Markup Language Starter Set Refer­
ence, SH20-9187. This manual describes the GML starter set provided with
SCRIPTjVS.

• Document Composition Facility: Generalized Markup Language Starter Set Imple­
mentation Guide, SH35-0050. This manual describes how to modify, design, and add
to the GML starter set!

• Document Composition Facility: Generalized Markup Language Concepts and Design
Guide, SH20-9188. This manual discusses GML concepts and provides guidelines
for designing your own GML.

• Document Library Facility Guide, SH20-9165. This manual explains how to set up,
use, and maintain the library. It also explains how to call SCRIPTjVS as a subrou­
tine and how to convert A TMS documents into SCRIPT jVS input fIles.

• Document Composition Facility Diagnosis Guide, SY35-0067. This manual is for
IBM service personnel and customers who diagnose programming errors.

• Document Composition Facility Messages, SH35-0048. This manual documents
SCRIPT/VS messages and suggests actions to be tal(en in response to these mes­
sages.

• Document Composition Facility: SCRIPT/VS Text Programmer's Quick Reference,
SX26-3723. This reference card summarizes the SCRIPT command, the
SCRIPTjVS language, and other facilities of SCRIPTjVS.

• Document Composition Facility: Generalized Markup Language Quick Reference,
SX26-3719. This reference card summarizes the GML starter set and how to use
SCRIPT jVS in each interactive environment.

Restricted Materials
• Document Composition Facility Diagnosis Reference, LY35-0068. This manual is for

IBM service personnel and customers who diagnose programming errors. It de­
scribes the logic of the DCF program product and lists pertinent control blocks and
data areas.

Related Publications
• IBM Virtual Machine Facility/SP: Introduction, GC20-1800. This manual contains

an introduction to CMS (the Conversational Monitor System), which is one of the
interactive systems in which SCRIPT /VS operates. Other manuals that include de­
tailed information about CMS are:

• IBM Virtual Machine/System Product: CP Command Reference for General Us­
ers, SC20-6211

2 Field Engineering support and maintenance is provided only on the unmodified GML starter set.
If you modify the starter set, it is recommended that you also maintain an unmodlfred starter .4
set for diagnostic purposes. ~

vi DCF: SCUIPT/VS Text Programmer's Guide

• IBM Virtual Machine/System Product: CMS User's Guide, SC19-621O

• IBM Virtual Machine/System Product: CMS Primer, SC24-5236

• IBM Virtual Machine/System Product: CMS Command and Macro Reference,
SC20-6209

• IBM Virtual Machine/System Product: Terminal User's Guide, SC20-6206.

• OS/VS2 TSO Terminal User's Guide, GC28·0645. This manual gives detailed user
information about OS/VS2 TSO (Time Sharing Option), which is one of the inter­
active systems in which SCRIPT /VS operates. It describes the TSO EDIT com­
mand and related facilities for text entry and editing and for text data set
management. Other manuals that include detailed information about TSO are:

• OS/VS2 TSO Command Language Reference, GC28-0646

• OS/VS2 TSO Command Language Reference Summary, GX28-0647.

• Advanced Text Management System-Ill (ATMS-III): General Information Manual,
GH20-2404. This manual contains an introduction to ATMS (the Advanced Text
Management System). which is one of the interactive systems in which SCRIPT /VS
operates. Other manuals that include detailed information about A TMS are:

• ATMS-III: Program Reference Manual, SH20-2424

• ATMS-III: Terminal Operator's Guide, SH20-2425

• ATMS-III: Terminal Operator's Exercise/Reference Guide, SH20-2426

• ATMS-III: Operations Guide, SH20-2427.

Related Printel' Publications
• Introducing the IBM 3800 Printing Subsystem and Its Programming, GC26-3829.

This manual provides general information about the 3800 Printing Subsystem. It de­
scribes what the 3800 Printing Subsystem is and provides information about the
standard and optional features available for the 3800 Printing Subsystem.

• IBM 3800 Printing Subsystem Programmer's Guide, GC26-3846 (for OS/VS2 MVS)
and GC26-3900 (for VSE). These manuals include detailed information about pro­
gramming for the 3800 Printing Subsystem.

• IBM 3800 Model 3 Printing Subsystem Programmer's Guide: Compatibility,
SH35-0051. This manual provides detailed information about programming for the
IBM 3800 Model 3 Printing Subsystem in compatibility mode.

• Graphical Data Display Manager (GDDM) and Presentation Graphics Feature
(PGF) General Information, GC33-0100. This manual describes the program prod­
uct and its installation and storage requirements.

• Composed Document Printing Facility: General Information, GC33-6133. This man­
ual introduces the CDPF program product.

• Composed Document Printing Facility: Operation, GC33-6135. This manual explains
how to set uP. operate, and service the CDPF program product.

• Composed Document Printing Facility: Data Stream Interface, Typographic Fonts
Interface, GC33-6134. This manual contains the information those customers will
need who want to generate their own input to the CDPF program.

Preface vii

• IBM 3800 Printing Subsystem Model 3 Introduction, GA32-0049. This manual pro­
vides general information about the 3800 Printing Subsystem Model 3 and the pro­
gram products associated with it.

• IBM 3800 Printing Subsystem Models 3 and 8 Programmer's Guide, SH35-0061.
This manual provides information for customer personnel who install the Print Ser­
vices Facility (PSF) and Print Utility Program Products.

• IBM 3800 Printing Subsystem Models 3 and 8: Preparing Fonts for Printing,
SH35-0082. This manual gives all procedures necessary to prepare IBM-supplied
fonts for use in the printing of documents.

• IBM 3800 Printing Subsystem Model 3 Font Catalog, SH35-0053. This manual gives
print samples of the fonts available for the 3800 Printing Subsystem Model 3
printer.

• IBM 3800 Printing Subsystem Model 8 Font Catalog, SH35-0054. This manual gives
print samples of the fonts available for the Printing Subsystem Model 8 printer.

• IBM 3820 Page Printer and Advanced Function Printing Software: Introduction and
Planning Guide, GBOF-1l89 (MVS). Through a series of booklets, this publication
introduces the 3820; provides planning information for its data network, physical 10-
cation, and software; and presents specifics about ordering 3820 supplies and prepar­
ing an implementation plan in an MVS environment.

• IBM 3820 Page Printer and Advanced Function Printing Software: Introduction and
Planning Guide, GBOF-1666 (VSE). Through a series of booklets, this publication
introduces the 3820; provides planning information for its data network, physical 10-
cation, and software; and presents specifics about ordering 3820 supplies and prepar­
ing an implementation plan in a VSE environment.

• IBM 4250 Printer Operator's Guide, GA33-1551. This manual gives instructions and
procedures for operating the 4250 printer.

• IBM 4250 Printer Font Catalog, G520-0004. This manual gives print samples of the
fonts available for the 4250 printer.

• Print Management Facility User's Guide and Reference, SH35-0059. This manual
gives guide information for system and application programmers using the Print
Management Facility.

• A Guide to Using IBM Printers for Advanced Function Printing, S544-3095. This
manual describes the use of a program product (PSF, DCF, GML, OGL, GDDM,
and PMF) and the use of a subset of a program product in conjunction with the
IBM APF printers available, including the 3800 Printing Subsystem Model 3 and
the 3820 Page Printer.

• Print Services Facility User's Programming Guide, S544-3084. This manual de­
scribes, for the application programmer, the abilities of an all-points-addressable
printer and the tasks associated with such a printer, including how to use JCL to
produce output.

viii DCF: SCRIPT/VS Text Programmer's Guide

'\ ,
/

Publication Library Guide for the Document Composition Facility
The following table is a library guide to the manuals for the Document Composition Facility (DCF). The
manuals are listed as they relate to user tasks.

User Typical Recommended Brief
Tasks Audience Books Description

Planning and intro- Users, system plan- DCF and DLF General Provides a general over-
ducing DCFjDLF ners Information (GH20-9158) view of text processing, li-

brary facility, and
available books

Formatting docu- Novice user to expe- DCF: GML Starter Set Provide an introduction to
ments (using the rienced end users User's Guide (SH20-9186) the GML starter set, de-
GML starter set) DCF: GML Starter Set scribe the GML starter sct

Reference (SH20-9187) tags and SCRIPTjVS
DCF Messages messages
(SH35-0048)

Formatting docu- Knowledgeable to DCF: SCRIPTjVS Text Describe the function and
ments (using experienced end us- Programmer's Guide use of all SCRIPT/VS
SCRIPT /VS control ers (SH35-0069) control words,
words) DCF: SCRIPTjVS Lan- SCRIPT jVS macros,

guage Reference SCRIPT diagnostic aids,
(SH35-0070) and the formatting fca-
DCF Messages tures and messages of
(SH35-0048) SCRIPTjVS

Modifying GML Document adminis- DCF: GML Starter Set Contain material on:
starter set3 trator and text pro- Implementation Guide GML starter set tags,

gramme~ (SH35-0050) SCRIPT jVS control
DCF: GML Starter Set words, and how to modify
User's Guide (SH20-9186) the GML starter set
DCF: GML Starter Set
Reference (SH20-9187)
DCF: SCRIPT/VS Text
Programmer's Guide
(SH35-0069)
DCF: SCRIPT/VS Lan-
guage Reference
(SH35-0070)

3 Field Engineering support and maintenance is provided only on the unmodificd GML starter set. If you modify the starter
set, it is recommended that you also maintain an unmodified starter sct for diagnostic purposes.

• The document administrator is responsible for defining markup conventions and procedures for an organization. The
text programmer implements APFs that provide the processing specified by the document administrator.

Preface ix

User Typical Recommended Brief
Tasks Audience Books Description

Creating G ML ap- Document adminis- DCF: GML Starter Set Provide information on:
plication processing trator and text pro- Implementation Guide how to design your own
functions grammer" (SH35-0050) GML, GML concepts,

DCF: GML Starter Set GML starter set tags,
User's Guide (SH20-9186) SCRIPT jVS control
DCF: GML Starter Set words, and usage guide-
Reference (SH20-9187) lines
DCF: SCRIPT/VS Text
Programmer's Guide
(SH35-0069)
DCF: SCRIPTjVS Lan-
guage Reference
(SH35-0070)
DCF: GML Concepts
and Design Guide
(SH20-9188)

Installing, modify- Systems program- DCF Program Directory Give information on error
ing, and maintaining mer DCF: SCRIPTjVS Text isolation, program tailor-
DCF Programmer's Guide ing, and use of

(SH35-0069) SCRIPT/VS
DCF: SCRIPTjVS Lan-
guage Reference
(SH35-0070)
DCF Diagnosis Guide
(SY35-0067)
DCF Diagnosis Reference
(LY35-0068)
DCF Messages
(SH35-0048)

Note: As an aid to Document Composition Facility users, the following reference cards are also available:

Document Composition Facility: SCRIPT/VS Text Programmer's Quick Reference, SX26-3723
Document Composition Facility: Generalized Markup Language Quick Reference, SX26-3719.

x DCF: SCRIPT/VS Text Programmer's Guide

Table of Contents
PART 1. BASIC INFORMATION ABOUT SCRIPT/VS 1

Chapter 1. An Overview of SCRIPT /VS•.......•.........•......... 3
Operating Envirorunents .. 3
SCRIPT /VS Input Files .. 3

Markup Languages .. 4
SCRIPT /VS Control Word Language 4
Generalized Markup Language 5

Logical Output Devices and Output Destinations 6
Defaults and Initial Settings 6

Vertical and Horizontal Space Units 6
Fonts .. 7
Imbedding Files .. 8
SCRIPT /VS Utility Files ... 8
Communicating with SCRIPT /VS 8
SCRIPT /VS Functions ... 8

Formatting Functions .. 8
Composing Lines .. 9
Hyphenating and Horizontally Justifying Lines 9
Creating Vertical Space .. 9
Vertically Justifying Text .. 9
Laying Out Pages .. 10
Named Areas ... 10
Creating Head Levels ... 10
Creating a Table of Contents 10
Creating Boxes and Rules .. 10
Selecting Fonts ... 10
Keeping Text Together .. 11
Placing Text at the Top or Bottom of a Page or Column 11
Footnotes ... 11
Translating Characters .. 11
Indexing .. 11

SCRIPT /VS Programming Facilities 11
Processing Symbols and Macros 12
Processing Generalized Markup Language (GML) Tags 12
GML Starter Set Application 12
Verifying Spelling .. 12

General Document Handling Functions 12
Saving Input Lines for Subsequent Processing 12
Specifying the Destination of Output 13
Printing Part of the Output Document 13
Processing Interactively During Formatting 13
Converting A TMS Documents 13
Debugging by Tracing Processing Actions 13

Calling the SCRIPT /VS Processor 13
Interactive Environments .. 13
Batch Envirorunents ... 14
Using SCRIPT/VS as a Subroutine 14

Table of Contents xi

Using SCRIPT/VS as a Preprocessor 14
Formatting Considerations .. 14

Selecting Control Words .. 15

Chapter 2. Using the SCRIPT Command 17
Using SCRIPT/VS in the Interactive Environment 17

Naming the Primary Input File 18
CMS Naming Conventions 18
TSO Naming Conventions 18
ATMS-III Naming Conventions 18

Characteristics of an Input File 19
Using SCRIPT/VS in the Batch Environment 20

Environment Restrictions ... 20
The SCRIPT Command Options 21

Default Options .. 21
Mutually Exclusive Options .. 21
Logical Output Devices and Destinations 22
Printer Classes 24

Printing on the 4250 Printer ... 26
Printing on the 3800 Printing Subsystem Model 3 27
Printing on the 3820 Page Printer 29
Printing on Page Printers in ATMS-III 30
Migration and Conversion Considerations for Release 3 31

3800 Printing Subsystem Model 3 to 3820 Page Printer 31
3820 Page Printer to 3800 Printing Subsystem Model 3 32
4250 Printer to 3800 Printing Subsystem Model 3 32
3800 Printing Subsystem Model 3 to 4250 Printer 33
4250 Printer to 3820 Page Printer 34
3820 Page Printer to 4250 Printer 34
Other Page Printing Considerations 34

Chapter 3. Marking Up Documents with SCRIPT/VS 37
Language Syntax ... 37

Control 'Word Syntax .. 37
The Control Word Separator 38
The Control Word Modifier .. 39
Macro Syntax .. 40
Symbol Syntax ... 40

Guidelines for Entering Text and Control Words In SCRIPT/VS 40
Start All Input Lines in Position One 40
Avoid a Text Period in Position One 40
Remember Which Control Words Cause Breaks 41

Comments in SCRIPT /VS Documents 42
Valid Space Unit Notation .. 42
Text ... 45

Implicit l'vlarkup 45
Continuation and the Continuation Character 45

Chapter 4. Combining SCRIPT /VS Input Files 47
Imbedding and Appending Files 47
Naming the File to Be Imbedded or Appended 48
Indicating the End of a File .. 49
Master Files 50
SCRIPT/VS System Generated Files 51

Writing to an Output File ... 52
Merging Documents from Several Sources 54
Imbedding Segments in Your Documents 55

Specifying Segment Width and Depth 55
Specifying Inline Page Segments 56
Using the &SW' and &SD' Symbol Attributes 56

xii DCF: SCRIPT/VS Text Programmer's Guide

The Segment Library ... 56

Chapter 5. Communicating with SCRIPT /VS 59
SCRIPT /VS Messages and Severity Levels 59

Using a SCRIPT/VS Command Option to Control Message Printing 59
The .MG [Message] Control Word 60

Interactive SCRIPT ... 61
Interactive SCRIPT/VS Processing 61
Communicating with VM/SP 63
Communicating with TSO ... 63
Tracing SCRIPT /VS Processing 64

The Output Line Generated by Input Tracing 64
Capabilities of the .IT Control Word 66

PART 2. DOCUMENT COMPOSITION FACILITIES OF SCRIPT/VS 69

Chapter 6. Composing Lines ... 71
SCRIPT /VS Text Formatting .. 71

Format Mode .. 71
Centered Text .. 72
Ragged Right .. 73
Ragged Left ... 74
Altenlate Formats ... 75

Overdraw Options .. 75
Splitting Text .. 76

Breaks ... 77
Indenting 78

Simple Indention .. 78
Temporary and Permanent Indention 79
Using Indention with Tabs .. 82

Using Tabs .. 84
Processing Tabs .. 85
Tab Fill Characters 87
Tab Positioning and Alignment 87
Using Inline Spacing for Tabs 89
Leading Blanks and Tabs .. 90
Blank and Null Lines .. 91
Full Stop Characters 92
Determining Word Space Values 92
Determining Extra Space Values 93
Inserting Horizontal White Space 94

Revision Codes ... 95
Revision Code Considerations 96

The 3800 Printing Subsystem 96

Chapter 7. Hyphenating and Horizontally Justifying Text 99
Hyphenation and Horizontal Justification 99

Hyphenation ... 99
The .HY RANGE Control Word and Horizontal Justification 100
More on Hyphenation ... 102

Using an Algorithmic Hypnenator 102
Hyphenating Single Words 102
Hyphenation Points and Fallibility 103

Chapter 8. Creating Vertical Space 105
Spaces and Skips ... 105
Setting Line Space .. 106
Shifting the Baseline .. 107
Formatting Fractions on Page Printers 108

Table of Contents xiii

Chapter 9. Vertically Justifying Text 111
Vertical Distribution, Fonnatting and Justification III

Distribution .. III
Vertical F onnatting ... 112
Vertical Justification .. 112
Section and Page Ending Considerations 113
Other Considerations .. 114

Chapter 10. Establishing Page Layout 117
Default Page Dimensions .. 119
Changing Page Dimensions ... 119

Changing the Page Margin .. 121
Changing the Page Length .. 122
Changing the Page Width .. 122
Changing the Line Length .. 122
Establishing Top and Bottom Margins 123

Starting aNew Page .. 123
Starting an Odd or Even Page 124
Specifying Page Eject Mode 124
Conditional Column and Page Ejects 124

Page Numbers .. 125
Roman Numeral Page Numbers 126
Decimal Page Numbers .. 126
Alphabetic Page Numbers .. 126
Prefixes for Page Numbers .. 127

Running Headings and Footings 127
Where to Defme Headings and Footings 130

Chapter 11. Placing Text in Named Areas 133
Page Areas ... 133
Body Areas .. 133
Section Areas ... 134
Other Considerations ... 134

Specifying Width ... 134
Specifying Depth ... 134
Specifying a Font .. 134

Putting Text in the Named Areas 136
Placing the Named Area on the Page 136
Specifying Named Areas ... 137
Using the &AD' Symbol Attribute 139
Using Named Areas with the 3800 Subsystem Model 1 140

Chapter 12. Composing Multiple-Column Pages 141
Defining Multicolumn Layout ',' 141

Page Sections and Section Breaks 143
DefIDing Columns .. 144

Column Line Length .. 145
Starting a New Column .. 146

Suspending and Resuming Multicolumn Processing 147

Chapter 13. Creating Head Levels and Table of Contents 149
Head Levels .. 149

Spacing and Page Ejects .. ISO
Defming Head Levels ... 150

The Table of Contents .. 153
Adding Lines to the Table of Contents 153
Printing the Table of Contents 154
TWOPASS Considerations 154

Chapter 14. Creating Rules and Boxes 157

xiv DCF: SCRIPT /VS Text Programmer's Guide

Drawing Horizontal and Vertical Rules 157
Defining Rules .. 157
Drawing Horizontal Rules .. 158

Using Named Horizontal Rules 160
Underscoring with Named Rules 160

Drawing Vertical Rules .. 161
Using Named Vertical Rules 161

Aligning Vertical Rules .. 162
Drawing Boxes .. 164

Creating Simple Boxes ... 164
Drawing Boxes with Named Rules 165

A Three Column Box ... 167
Centering Text within a Box 167
Stacking One Box on Another 168
Drawing a Box within a Box 169
Drawing Boxes in a Horizontal Row 170
Drawing the Top Line (Only) of a Box 170
Drawing the Middle Portion of a Box (without Top or Bottom Lines) 171
Drawing the Middle Portion of a Box within Another (Larger) Box 171
Drawing the Bottom Line (Only) of a Box 172
Drawing Boxes with the 3800 Printing Subsystem Model 1 172
Boxes with a Different Top and Bottom 173

Chapter 15. Selecting Fonts ... 175
Selecting Initial or Default Fonts 175
Using Fonts .. 176
Defming Fonts .. 178

Defming Fonts for Impact Printers 178
Defming Fonts for Page Devices 179
Describing a Font .. 179

Typeface ... 180
Point size ... 180

Code Pages ... 180
Coded Fonts .. 180
The Default Coded Font ... 181
What Is in the Font Library? 181
Specifying the Font Library 182

Defining Fonts by Characteristics 182
Selecting Fonts for a Variety of Devices 185

Emphasizing Text .. 186
Underscoring and Capitalization 187
Using the .IC Control Word for Emphasis. 190

Chapter 16. Keeping Blocks of Text Together 191
Keeps .. 191

Inline Keeps .. 192
Floats ... 194

Widow Zones ... 195

Chapter 17. Creating Footnotes 197
Normal Footnote Placement 197
Unusual Footnote Placement Conditions 198
Other Footnote Considerations 199

Chapter 18. Translating Characters 201
Translating Output Characters 201
Translating Input Characters .. 202
Capitalizing Text .. 203
Translating Strings of Characters 204
Prefixing Input Lines ... 205

Table of Contents xv

Chapter 19. Creating an Index•.••.....•...•...••..•. 207
Placing the Index in a Document 207

TWOPASS Considerations 207
Creating Index Entries ... 208

Page References ... 208
Multilevel Entries ' .. 209
Explicitly Specified Page Numbers 210
Cross-References ... 210

Sorting Index Entries ... 211
Handling Special Characters .. 212
Explicitly Specifying Sort Keys 213

Creating the Index '. 2 I 4

PART 3. SCRIPT/VS PROGRAMMING FACILmES 217

Chapter 20. Defining the Formatting Environment•........ 219
The Formatting Environment Parameters 219

The Running Heading and Footing Environments 219
The Keep, Float, Footnote, and Named Area Environments 220

Saving and Restoring the Current Formatting Environment 220
Named Environments ... 220

Chapter 21. Processing Symbols 223
How SCRIPT/VS Substitutes Values for Symbol Names 226

Compound Symbols .. 227
Unresolved Symbols .. 227
Inhibiting Substitution ... 228
Canceling a Symbol ... 229
Attributes of a Symbol Value 229
Space Unit Symbol Attributes 233

Symbol and Macro Libraries .. 233
SCRIPT /VS System Symbols 234

Symbols for the System Date and Time 235
Elaborating the System Date 238

Symbols for SCRIPT/VS Control Values 239
The &$RET Special Symbol 239
The &$LC Special Symbol 240
The &$DCF Special Symbol 240
The &$DDUT Special Symbol 240
The &$GML Special Symbol 240
The &$EGML Special Symbol 240
The &$ENV Special Symbol 241
The &$LST Special Symbol 241
The &$PASS Special Symbol 241
The &$PRT Special Symbol 241
The &$TAGD Special Symbol 241
The &$VR Special Symbol 242

Passing Parameters to Input Files 242
Setting Symbols with the SCRIPT Command 242
Symbols Set When a File Is Imbedded or Appended 242
Symbols Set When a Macro Is Processed 243

Setting a Symbol to the Current Page Number 244
Symbols for Arrays of Values 244

Controlling the Array Elements 245
Accessing the Index Counter 246
Setting the Index Counter 247

Extended Symbol Processing .. 247
Defining Text Variables .. 249

Producing Special Characters 249
Producing a Greek Alpha Character 249

xvi DCF: SCRIPT/VS Text Programmer's Guide

Overriding Delimiter Characters 250
Using Deftned Variables to Change Fonts 251

Chapter 22. Processing Logical Statements .•.....................•...... 253
The .IF Control Word Family 253

Altemative Processing ... 254
Bypassing Part of an Input File 255
The SYSPAGE and SYSOUT Comparands 256
Special Techniques for Conditional Processing 256

Conditional Sections .. 257
Logical Processing With Symbols 259

Chapter 23. Processing Macros•... 261
\Vhen to Use Macros ... 261
How to Deftne a Macro ... 262
How Values Are Substituted for Symbols within a Macro Deftnition 264

Conditional Macro Processing 264
Macro Naming Conventions 265
Local Symbols for Macros .. 265
Processing Local Variables .. 266
Terminating a Macro .. 267
Redefming SCRIPTjVS Control Words 267

Avoiding an Endless Loop 268
Using Symbols and Macros as Associative Memory 269
Redeftning SCRIPTjVS Formatting Conventions 271

Processing Input Lines That Begin with a Blank or a Tab 271
Specifying a Macro Library ... 272

LIB: Specify Symbol and Macro Libraries 272
Creating SCRIPT jVS Macro Libraries 273

In a CMS Environment .. 273
In a TSO Environment .. 274
In an ATMS-III Environment 275
In a Batch Environment ... 275

Chapter 24. Processing GML•••.......••..•.. 277
GML Markup Syntax ... 277

Changing the GML Delimiters 279
SCRIPTjVS Processing of GML 280

Automatic GML Processing 280
Attribute Scanning Rules ... 281

Attribute Processing ... 282
Value Attribute Processing 282
Residual Text Processing 283

GML Tag-to-APF Mapping 284
Explicit Mapping ... 285
Class Mapping ... 285
Direct Mapping .. 285

Creating Your Own GML Tag 285

Chapter 25. Verifying Spelling •....••..•...•........•••....•..•••.... 289
Spelling Veriftcation .. 289

Spelling Fallibility .. 292
The SCRIPTjVS Dictionaries 292

Building a User Dictionary .. 294
Building an Addenda Dictionary 294
TLIB: Specify Spelling Checking and Hyphenation Libraries 295
Searching a SCRIPT jVS Dictionary 296

Stem Processing ... 296
English Preftxes and Suffixes .. 296
French Prefixes and Suffixes .. 297

Table of Contents xvii

Dutch Prefixes and Suffixes ... 298
Italian Prefixes and Suffixes ... 300
German Prefixes ... 302
Spanish Prefixes ... 305

PART 4. APPENDIXES ...•............................•......... 307

Appendix A. Using SCRIPT /VS with Other Programs 309
Producing Input for STAIRS/VS 309

Specifying STAIRSjVS Output 309
Restrictions Imposed on Formatted Output 309
STAIRSjVS Paragraph Identification 310

The ATMS Conversion Routine 311
Conversion Technique ... 312

Hyphenating Words ... 312
Conversion Program Operation 312

Non-Format Command Conversion 312
End of Imbedded Control 312
ATMS GML Identifier ... 313
Subdocument Identifier .. 313

Formatting Control Conversion 313
Explicit Paragraphing Specification 313
Implicit Paragraphing Specification 314
Floating Skip .. 314
Width/Depth Control .. 314
Text Alignment Controls 314
Floating Keeps .. 314
Text Block Indention .. 314
Page Number Control ... 314
Stop Code .. 314
Split Text .. 314
Revision lVlarkers ... 315
Counters ... 315
Triplets and Backspaces .. 315

ATMS Control- SCRIPTjVS Symbol Relationship 316
Using SCRIPTjVS as a Postprocessor 318
Using SCRIPTjVS as a Preprocessor 318

Developing Preprocessor APFs and Proflles 318
Redefining Symbols ... 319
Handling Directly Entered Control Words 319

Managing a Source Document 319
Preparing for Processing ... 320

Appendix B. Improving System Performance 321
SCRIPT Command Options .. 321

The TWOPASS Option .. 321
The SPELLCHK Option ... 321
The INDEX Option .. 322

SCRIPTjVS in the ATMS-III Environment 322
Tuning ATMS-III for SCRIPT/VS 322

Glossary ... 325

Index•... 333

xviii DCF: SCRIPT/VS Text Programmer's Guide

List of Illustrations
Figure 1. Minimum Abbreviations of SCRIPT Options. 23
Figure 2. Logical Output Device vs. Output Destination 25
Figure 3. Space Units Notation 44
Figure 4. Imbedding and Appending SCRIPT jVS Files 49
Figure 5. Master File Structure 51
Figure 6. How the Current Margins Are Established 80
Figure 7. Permanent and Temporary Indention 82
Figure 8. Justification Alignment Error for 3800 Printing Subsystem Output 97
Figure 9. Adjusting an Overdraw Condition 101
Figure 10. Example of Fractions Formatted on Page Devices. 110
Figure 11. SCRIPT jVS Terms for Parts of the Page. 118
Figure 12. SCRIPTjVS Logical Devices 120
Figure 13. Measuring the Origin of Areas on a Page. 135
Figure 14. Summary of Initial Head Level Characteristics 151
Figure 15. SCRIPT/VS System Symbol Names 236
Figure 16. Processing Documents with GML 281
Figure 17. Characters that Delimit Words for Spelling Verification 291
Figure 18. Code Point Assignments for Accented Characters 293
Figure 19. STAIRSjVS Condensed Text Format (CTF) Records 311
Figure 20. Character Codes Recognized by ATMS-III Conversion 316
Figure 21. ATMS-III Controls to SCRIPTjVS Conversion 317

List of lIiustrations xix

/

Part 1. Basic Information about SCRIPT/VS
This part of the book contains general information about SCRIPT /VS.

Included in this section are the following chapters:

• Chapter 1 - An Overview of SCRIPT/VS

• Chapter 2 - Using the SCRIPT Command

• Chapter 3 - Marking Up Documents with SCRIPT/VS

• Chapter 4 - Combining SCRIPT /VS Input Files

• Chapter 5 - Communicating with SCRIPT/VS.

Part 1. Basic Information about SCRIPT/VS I

Chapter 1. An Overview of SCRIPT/VS
SCRIPT jVS can format documents that include SCRIPT jVS control words and Gener­
alized Markup Language (GML) tags as well as text. SCRIPT is the command that you
use to invoke the SCRIPTjVS program. SCRIPTjVS can be used with several operating
systems in both the interactive foreground and the batch background environments.

Operating Environments

With the Foreground Environment Feature of the Document Composition Facility in­
stalled, the SCRIPT jVS text formatting program can execute in the following interactive
environments:

• The Conversational Monitor System (CMS) of the IBM Virtual Machine
FacilityjSystem Product (VMjSP)

• The Time Sharing Option (TSO) of OSjVS2 MVS

• The Advanced Text Management System-III (ATMS-III) in a Customer Informa­
tion Control SystemjVirtual Storage (CICSjVS) environment (note that CICSjVS
here refers to both the CICSjOSjVS and CICSjVSE program products).

With the Document Library Facility (DLF) installed, SCRIPTjVS can execute in the
following background environments:

• OS/VS2 MVS

• VSE.

When SCRIPT jVS is run in a batch environment, input can come from:

• Files created by the ATMS-I1I, CMS, TSO, or ISPF editors

• A word processing system attached to the host system using a telecommunications
network

• A user-written program that calls DLF as a subroutine.

SCRIPT /VS Input Files

SCRIPTjVS reads input data containing text and control information, formats the data
into pages, and produces formatted output for a system printer or other suitable output
device. The following kinds of information may appear in SCRIPTjVS input ftles:

• Text. This is the content of the document.

• Symbols. These are character strings that begin with an ampersand (&) and are re­
solved to a different character string when the line is processed. The new string may
be text, another symbol, or control information. For example, in this document the
symbol &3800 resolves to the string 3800 Printing Subsystem.

Chapter 1. An Overview ofSCRIPT/VS 3

• Control words. These are two-letter codes recognized when the ftrst character in the
input line is a period (.). For example, to cause a page eject, .PA is specifted in
column one of an input line.

• Macros. These are groups of control words and symbol substitutions. (Macros are
often used to accomplish functions not provided by a single control word or to
change how a control word is processed.) A macro is defmed using the .DM [Defme
Macro] control word. For example, you can deftne a .TOP macro that contains a
.PA control word followed by a .CE control word. Then, anytime the .TOP macro
is encountered in the input ftle, the .PA control word is executed to begin a new
page, and the .CE control word is executed to center the next line of text.

• GML markup. This is a formatting language that uses tags to identify the associated
text as a particular part of a document, such as paragraph or heading. GML (Gener­
alized Markup Language) provides the syntax and usage rules for marking up a doc­
umentS and allows you to develop a vocabulary of tags for describing your
documents. For example, in the GML starter set provided with the Document
Composition Facility, the tag :p identifies a paragraph. The tag is identified by the
GML delimiter, which is by default the colon (:).

A SCRIPT/VS input ftle is usually a sequential ftle on direct access storage that can be
modified using an editing program. SCRIPT /VS can process the flIe and produce for­
matted output.

SCRIPTjVS offers additional flexibility in the following forms:

• SCRIPTjVS data flIes are independently maintained. Any editor that can produce
ftles in a format acceptable to SCRIPT/VS can be used to create or modify these
ftles.

• SCRIPTjVS can combine many input ftles to produce a single, integrated output
document. The imbedded flIes can be arranged in any sequence. While they are
being processed, SCRIPT jVS treats each input ftle as though it were part of a single
continuous input ftle.

• SCRIPTjVS has high-level macro and symbol capabilities. With SCRIPTjVS you
can defme your own control words or GML tags, conditionally process text, per­
form variable symbol substitutions, and do integer arithmetic.

• New SCRIPT/VS users can become productive quickly because the control words
and GML tags are easy to learn.

ill arkup Languages
The Document Composition Facility provides two languages for marking up text:
SCRIPTjVS and Generalized Markup Language.

SCRIPT /VS Control Word Language

Markup in the SCRIPTjVS language consists of entering SCRIPTjVS control words
that direct the SCR IPT jVS formatter.

A SCRIPT /VS control word is identified by a period in column one of the input line,
except when the .LI (Literal) control word specifies that a period in column one should

5 To mark up a source document is to add information to it that tells SCRIPTfVS how to proc­
ess it.

4 DCF: SCRIPT/VS Text Programmer's Guide

be regarded as text. A . * at the start of an input line identifies a comment line that does
not appear in the output.

Each input line is scanned from left to right for a control word separator, which is ini­
tially a semicolon (;). If a control word separator is found and the next character is a
period, the character string to the left of the control word separator is processed; the
character string to its right is saved. (The character strings can be control words.) This
process is repeated until the input line is completely scanned. For example,

.sk 7.5mm;. in 10mm for 3

causes approximately seven and one-half millimeters of vertical space to be skipped be­
fore the next output lines are printed (.sk 7.Smm). It also causes the next three output
lines to be indented ten millimeters (.in lOmm for 3).

Control words may have numeric or keyword parameters that further qualify the action
to be performed. For example, the .CE [Center] control word accepts the keywords O?'-!
and OFF and is specified as follows:

. ce on

The .SP [Space] control word can be specified as follows:

.sp 2i

Some control words that accept keyword parameters also accept numeric parameters.
The .CE [Center] control word also allows you to specify a number of input lines to be
centered. For example,

. ce 10

See the Document Composition Facility: SCRIPT/VS Language Reference for de­
scriptions of the SCRIPT /VS control words and associated parameters.

Generalized Markup Language

Generalized Markup Language (GML) provides the syntax and usage rules for describing
the parts, or elements, of a document without respect to particular processing. \Vith
GML tags you can describe the type of element; you can also enter attributes to describe
other characteristics of an element.

The following example of GML markup describes a figure element and causes that figure
element to be enclosed in a box.

: fig frame='box'.

SCRIPT /VS interprets the GML markUp and invokes the correct application processing
function (APF) for the clement the markup describes. In SCRIPT/VS, APFs are imple­
mented as sets of control words in the form of macro definitions. The macro definitions
are usually contained in a macro library. The association, or mapping, between the
GML markup and the APFs is usually made in a document called a proftle. The proftle
is processed by SCRIPT /VS before the ftle marked up in GML is processed.

Information on GML markup is contained in the Document Composition Facility: Gen­
eralized Markup Language Starter Set Reference. This manual explains the processing
results of GML starter set markup. The Document Composition Facility: Generalized
Markup Language Starter Set Implementation Guide discusses the GML starter set pro­
ftle and macro library and how you can modify the GML starter set.

Chapter 1. An Overview of SCRIPT /VS 5

Logical Output Devices and Output Destinations
SCRIPT /VS provides flexible composition for printing on a computer printer as an al­
ternative to independent typesetting machines or sending typesetting jobs to an outside
vendor. SCRIPT/VS formats text for printing on terminals, impact printers, or nonim­
pact printers.

When SCRIPT /VS formats a document, it takes into consideration the characteristics of
the specific physical output device, called the logical output device. This may be a termi­
nal, a line printer, or a nonimpact page printer. The output devices SCRIPT/VS sup­
ports are:

• 2741 typewriter terminal

• 3270 display terminal

• 1403 printer

• 3800 Printing Subsystem Modell and Model 3 (in compatibility mode)

• 3800 Printing Subsystem Model 3 (page printing mode)

• 4250 printer

• 3820 Page Printer.

A logical device, which is specified with the DEVICE option of the SCRIPT command,
includes a physical device type, a page size, and a number of lines per vertical inch (for
line devices). For example, the 3800N8 logical device is a 3800 Printing Subsystem, at 8
lines-per-inch on 8-1/2 by 11 inch paper.

SCRIPT /VS can also be directed to send the output to a specific destination such as a
disk fIle or the terminal, regardless of the logical device for which it was formatted. You
can specify almost any combination of output destination and logical device. For exam­
ple, when formatting documents that are to be saved for printing at a later date, specify
the destination FILE and the logical output device of your choice. See the Document
Composition Facility: SCRIPT/VS Language Reference for a complete list of available
logical devices.

SCRIPT jVS can also be used to prepare documents for processing by other programs,
such as formatters that support photocomposers, and to prepare data for use as input to
the Storage and Information Retrieval System/Virtual Storage (STAIRS/VS) program
product.

Defaults and Initial Settings

SCRIPTjVS can format an input fIle without any control words or GML tags specified.
In such cases, the initial settings for page dimensions and formatting controls are used.
The initial settings are associated with the logical device specified with the DEVICE op­
tion of the SCRIPT command. The initial settings for each logical device are docu­
mented in the Document Composition Facility: SCRIPT/VS Language Reference.

Vertical and Horizontal Space Units
In SCRIPT jVS you can specify vertical or horizontal dimensions or distances. As
Figure 3 on page 44 illustrates, these dimensions can be expressed in any of several dif­
ferent space units:

6 DCF: SCRIPT/VS Text Programmer's Guide

Fonts

• Centimeter

• Character (Horizontal)

• Cicero

• Device Unit (Horizontal)

• Device Unit (Vertical)

• Em-space (Horizontal)

• Em-height (Vertical)

• Inch

• Line (Vertical)

• Millimeter

• Pica.

In SCRIPT /VS, a font is a set of characters having the same vertical size and type style.
Fonts may be fixed-pitch, wherein all characters have the same pitch (or width); mixed­
pitch, wherein the characters are a mixture of 10-, 12-, and IS-pitch characters; or pro­
portional, wherein the characters have different widths.s

The pitch of a font is the number of characters per inch in a line of printed text. Certain
output devices, such as the 3270 Display Tenninal, are capable only of printing fixed­
pitch fonts. Other devices, such as the 3800 Printing Subsystem are capable of printing
fixed-pitch and mixed-pitch fonts. The 3800 Printing Subsystem has three pitch values:

10-Pitch (10 characters per inch)
12-Pitch (12 characters per inch)
IS-Pitch (15 characters per inch).

Output devices such as the 4250 printer, the 3800 Printing Subsystem Model 3, and the
3820 Page Printer are capable of printing fixed-pitch, mixed-pitch, and proportional fonts.
A wide variety of typographical fonts arc available for use with these page printers. Any
of these fonts may be used with SCRIPT/VS. See "Chapter 15. Selecting Fonts" on
page 175 for morc details on specifying fonts for particular output devices.

Capitalization and underscoring can be used to create different logical fonts on all de­
vices, and overstriking allows you to print boldface text on impact printers and type­
writer terminals. (See "Deflning Fonts" on page 178.)

For details about 4250 printer fonts, see the IBM 4250 Printer Type Font Catalog and
the appropriate Composed Document Print Facility (CDPF) documents. (See "Related
Printer Publications" on page vii.) For details about 3800 Printing Subsystem Model 3
and 3820 Page Printer fonts, see the 3800 Printing Subsystem Model 3 Font Catalog, the
IBM 3800 Printing Subsystem Models 3 and 8 Programmer's Guide, and IBM 3800
Printing Subsystem lv/odels 3 and 8: Preparing Fonts for for Printing.

G For example, the character I may be narrower than the character H, and the M and the \V
may be wider than the N.

Chapter 1. An Overview of SCRIPT/VS 7

Imbedding Files
You can combine many SCRIPT /VS input flies for processing as a single document.

For convenience in updating and tracking SCRIPTjVS flies, you can use one flie as the
master flie for a SCRIPT /VS document. The master flie can contain the global format­
ting ~ontrols for the entire document and the .1M [Imbed} control words that imbed the
other flies into the master flie.

You can control how separate source files are brought together for processing as a single
document. Any number of source flies can be imbedded in the primary source flie. A
source flie that has been imbedded can itself imbed another source file. For details, see
"Imbedding and Appending Files" on page 47.

SCRIPT/ VS Utility Files
SCRIPT /VS creates a number of utility files when it encounters certain control words
(such as .WF [Write To File]), or command options, or both. You have the option of
defining or redefining these flies using the .DD [Define Data File-idJ control word.

COml111111icating with SCRIPT/ VS
You can communicate with SCRIPT /VS in order to determine error conditions and to
interactively process your documents.

SCRIPT/VS issues program messages accompanied by a severity level code when certain
error conditions are encountered.

By using certain SCRIPTjVS control words, you can interact with SCRIPT/VS before
your input text is in final form and while your document is being formatted. For details,
see "Chapter 5. Communicating with SCRIPTjVS" on page 59.

SCRIPT/ VS FUllctiolls
User-controlled SCRIPTjVS processing includes three general categories of functions:
formatting functions, programming facilities, and general document handling.

Formatting Functions

SCRIPTjVS provides you with many text formatting functions including line composi­
tion, page composition, head levels, table of contents generation, boxes, keeping text to­
gether, footnotes, character translation, indexing, and hyphenation and spelling
veriiication.

8 DCF: SCRIPT/VS Text Programmer's Guide

".
i

/

Composing Lines

You can control many functions of line composition including the following:

Line Formatting You can specify concatenation, justification, centering, and left or right
alignment. For details, see "SCRIPT/VS Text Formatting" on page 71.

Indenting You can specify indention in a number of ways. For example, you can create
hanging indents and left or right margin indention and can control the verti­
cal duration and extent of all indention. For details, see "Indenting" on page
78.

Tabs You can specify tab positions. Tab characters may be resolved into a number
of blanks or into a string of another character. For details, see "Using Tabs"
on page 84.

Revision Codes You can select the placement of as many as nine distinct revision codef:
in the left margin to flag a line of particular interest, such as text that has
been revised since a previous version of a document. For details, see "Re­
vision Codes" on page 95.

Fonts You can select fonts for different portions of text, both in the body and in
running headings and footings. For details, see "Chapter 15. Selecting Fonts"
on page 175.

Highlighted Phrases You can highlight phrases for emphasis. Font selection, overstrik­
ing, capitalization, and underscoring can be used to emphasize important
phrases. For devices that support multiple fonts, you can change fonts for
emphasis. For details, see "Underscoring and Capitalization" on page 187.

Hyphenating and Horizontally Justifying Lines

You can determine if and how hyphenation should be done, how large a word must be
before it can be hyphenated, and how much of a word must be left at the beginning or
ending of a line. You can use an algorithmic hyphenator7 to further extend
SCRIPT/VS's hyphenation capabilities. Text can be justified horizontally to avoid hy­
phenation, to achieve fully justified lines within the left and right margins, or to reduce
white space in a line. For details, see "Chapter 7. Hyphenating and Horizontally Justify­
ing Text" on page 99.

Creating Vertical Space

You can specify the amount of space left between output lines, including the reservation
of space for drop-in art. For details, see "Chapter 8. Creating Vertical Space" on page
105.

Vertically Justifying Text

You can perform column balancing in order to distribute text evenly among columns
and you can vertically justify your text in order to achieve fully justified lines within the
top and bottom margins. For details, see "Chapter 9. Vertically Justifying Text" on page
Ill.

1 An algorithmic hyphenator for American English is provided with SCRIPTNS.

Chapter I. An Overview of SCRIPT /VS 9

Laying Out Pages

Named Areas

You can specify page dimensions, the number of columns per page and running headings
and footings.

Page composition includes:

Margins You can specify the size of the top and bottom margins as well as the left
and right margins. For details, see "Default Page Dimensions" on page 119.

Headings and Footings You can create running headings and footings that will be printed
on all pages or different ones for odd and even pages. For details, see "Run­
ning Headings and Footings" on page 127.

Columns You can defme the number of columns, their size and their placement on a
page. For details, see "Chapter 12. Composing Multiple-Column Pages" on
page 141.

You can defme and place text into named areas. These areas can be positioned anywhere
on the page. For details, see "Chapter II. Placing Text in Named Areas" on page 133.

Creating Head Levels

You can specify as many as seven head levels for distinctive formatting of headings that
represent different levels of topics. Distinctive formatting includes before and after spac­
ing, font selection, overstriking, capitalization, underscoring, and text alignment. For de­
tails, see "Chapter 13. Creating Head Levels and Table of Contents" on page 149.

Creating a Table of Contents

You can specify whether or not a table of contents is automatically generated and where
it is placed. SCRIPT/VS collects entries for a table of contents from the text accompa­
nying head levels and automatically supplies the page number. You can also specify
phrases other than the text accompanying head levels to appear in the table of contents.
For details, see "Chapter 13. Creating Head Levels and Table of Contents" on page 149.

Creating Boxes and Rules

Selecting F Ollts

You can construct boxes around fom1atted text. You can also draw boxes within boxes,
vertical lines to separate columns of text, and horizontal lines to separate rows.

You can define named rules of varying thicknesses and place horizontal and vertical rules
in the current column. For details, see "Chapter 14. Creating Rules and Boxes" on page
157.

You can select coded fonts for use with line devices and page printers. With page print­
ers, you can also define and select fonts from font families found in a font library. For
details, see "Chapter 15. Selecting Fonts" on page 175.

10 DCF: SCRIPTjVS Text Programmer's Guide

\.

Keeping Text Togetlter

SCRIPT /VS processing includes functions that keep text together to improve the ap­
pearance of output. For example, SCRIPT/VS keeps the text of a head level together
with the first few lines of text after the heading so that they appear in the same column.
SCRIPT /VS can also ensure that single lines at the beginning or end of a paragraph
(widows) are not placed by themselves at the top or bottom of a column or page. For
details, see "Chapter 16. Keeping Blocks of Text Together" on page 191.

Placing Text at tlte Top or Bottom of a Page or Column

Footnotes

You can indicate that blocks of text, called floats, are to be kept together and placed at
the top or bottom of a column or page. For details, see "Chapter 16. Keeping Blocks of
Text Together" on page 191.

You can have SCRIPT jVS save text indicated as a footnote and place it at the bottom
of the page.B Subsequent footnotes are placed below it. For details, see "Chapter 17. Cre­
ating Footnotes" on page 197.

Translating Characters

Indexing

You can defme specific character mappings so that SCRIPT JVS will perform character
translations on input and output lines as part of its normal processing. See "Chapter 18.
Translating Characters" on page 201.

You can include index entries in the body of your document at their points of reference.
SCRIPTJVS uses these index entries to generate an index for your document that in­
cludes appropriate page numbers for all of the entries. For details, see "Chapter 19. Cre­
ating an Index" on page 207.

SCRIPT /VS Programming Facilities

SCRIPT /VS provides several programming facilities that enable you to specify the
SCRIPTJVS formatting environment, process input conditionally, process symbols and
macros, and process Generalized Markup Language tags.

You can set the values and parameters of the formatting environment in order to specify
exactly how you want SCRIPT JVS to format each line on an output page.

You can cause SCRIPT jVS to alter input processing. For example, by setting symbol
values and comparing those values, you can control whether a block of input text is in­
cluded in the output document. For details, see "Chapter 22. Processing Logical
Statements" on page 253.

8 Like this.

Chapter I. An Overview of SCRIPT /VS II

Processing Symbols and Macros

You can defme symbols and macros for substitution during processing. Symbols are used
in many ways: for example, in tests for conditional processing, for cross-references to
pages or figure numbers, for entering characters unavailable on the entry keyboard, and
as abbreviations for repetitive phrases. You can define macros, which are sets of
SCRIPT/VS control words. For example, you might redefme a particular head level
macro to alter the SCRIPT/VS formatting style. For details, see "Chapter 21. Processing
Symbols" on page 223 and "Chapter 23. Processing Macros" on page 261.

Symbols and macros are used to support the Generalized Markup Language. The Docu­
ment Composition Facility: Generalized Markup Language Starter Set Implementation
Guide discusses how symbols and macros are used to create the GML starter set.

Processing Generalized Markup Language (GMLJ Tags

SCRIPT/VS recognizes Generalized Markup Language (GML) tags as a form of text
markup and provides extensive facilities for mapping GML tags to APFs, manipulating
attributes, and processing symbols. For details, see "Chapter 24. Processing GML" on
page 277.

GML Starter Set Application

Verifying Spelling

The Document Composition Facility provides a GML starter set consisting of a profllc
and a macro library to support a set of tags for general documents. You can use the
starter set either as an example of one way to support GML or you can further enhance
the starter set by adding your own tags to suit the needs of your own unique documents.
The Document Composition Facility: Generalized Markup Language Starter Set Imple­
mentation Guide documents how the GML starter set is constructed and illustrates how
you can modify it.

You can specify whether or not words are checked for correct spelling. SCRIPTjVS pro­
vides dictionaries of many common root words in nine languages. Algorithms for prefix
and suffix variations, provided with each language, extend the basic root words.
SCRIPT/VS determines spelling validity (and hyphenation points) based on these algo­
rithms and the basic root words. You can add words to addenda or user-created diction­
aries as required for a particular document. For details, see "Chapter 25. Verifying
Spelling" on page 289.

General Document Handling Functions

SCRIPT jVS provides several document handling functions. These are discussed in the
sections immediately below.

Saving Input Lines for Subsequent Processing

You can determine whether certain input lines will be written to a flle. For details, see
"Chapter 4. Combining SCRIPTjVS Input Files" on page 47.

12 DCF: SCRIPT/VS Text Programmer's Guide

Specifying the Destination of Output

You can specify the output destination of the fonnatted document. It can be stored as a
flle for later use or printed on a variety of devices, including impact and nonimpact
printers and display and typewriter terminals. For details, see the discussion of SCRIPT
command options in the Document Composition Facility: SCRIPT/VS Language Refer­
ence.

Printing Part of the Output Document

You can specify whether every page, a single page, or a range or ranges of pages is to be
included in the fonnatted output. For details, see the PAGE option in the summary of
SCRIPT command options in the Document Composition Facility: SCRIPT/VS Lan­
guage Reference.

Processing Interactively During Formatting

In an interactive environment (CMS or TSO), you can affect SCRIPT/VS as it processes
by entering text or markup at a terminal. In effect, the terminal can be treated as an
input flle. For example, you can interactively specify the values of symbolic variables
specified in the document or enter those portions of text that vary from one processing
time to the next. If you are using a typewriter terminal, you can also stop SCRIPT /VS
output processing at any point on a line to change typing clements or enter text. For
details, see "Interactive SCRIPT/VS Processing" on page 61.

Converting ATMS DocumeJlts

If the IBM Document Library Facility program product is installed with SCRIPT/VS,
you can convert most A TMS-II or A TMS- III markup to similar or equivalent
SCRIPT/VS markup. For details, see the Document Library Facility Guide and "The
A TMS Conversion Routine" on page 311.

Debugging by Tracing Processing Actiolls

You can trace all control words and each step of symbol and macro substitution in input
lines. In cases where unexpected results are observed, trace infonnation can be an invalu­
able aid in pinpointing the problem area.

Calling the SCRIPT/VS Processor
You call the SCRIPT /VS processor by issuing the SCRIPT command and specifying
the name of the flle SCRIPT /VS is to process.

Interactive Environments

In one of the three interactive environments that support SCRIPT/VS, use one of the
following formats for the SCRIPT command:

• In CMS: SCRIPT fllename (options

• In TSO: SCRIPT dsname options

• In ATMS-III: script docname (options

Chapter 1. An Overview of SCRIPT/VS 13

The SCRIPT command format and options are described in detail in the SCRIPT com­
mand options section of the Document Composition Facility: SCRIPT/VS Language Ref­
erence.

Batch Environments

For details about calling SCRIPT /VS in a batch environment, see the Document Library
Facility Guide.

Using SCRIPT fVS as a Subroutine

In a batch environment, with the Document Library Facility program product, an appli­
cation program can invoke DLF as a subroutine which in turn invokes SCRIPTJVS.
For details, see the Document Library Facility Guide.

Using SCRIPT /VS as a Preprocessor

SCRIPT JVS can be used to prepare an input file for use as input to another text pro­
gram such as the STAIRSJVS program product. For details, see "Producing Input for
STAIRSJVS" on page 309.

Formatting Considerations
When you create an input file or when you create application processing functions
(APFs) for GML processing, you should consider:

• How is the text to be formatted? Do you want to add spaces between lines or para­
graphs? Indent lines? Create numbered or bulleted lists?

• What size paper are you using for output? How many lines of text should be on the
page? How wide is it? Do you want special headings on the top or bottom of each
page? Where, and in what format, do you want the page number to appear?

• Are you going to use a multiple column page layout?

• Do you want to generate a table of contents listing major headings and the page
numbers on which they occur?

• Do you want to generate an index?

• How long is the fmal document going to be? Can you organize it into several input
files and let SCRIPT /VS combine them?

• Do you need a special size or style of type for your documentation? Will you need
different types for body text? Headings? Footnotes? And so on?

• Are you going to have illustrations? Are you going to create. boxes and rules using
SCRIPT JVS? Do you need to leave blank pages or blank space so that artwork can
be included later? How are you going to number the illustrations?

• Are you using variable information? Can you use symbolic names throughout a
document to represent information that changes frequently?

14 DCF: SCRIPT/VS Text Programmer's Guide

• Do you want the SCRIPT /VS processing to be interactive? Are there types of infor­
mation you may want to enter during SCRIPT /VS processing?

• Are you using the same sequences of control words frequently? Can you define a
macro so you do not have to reenter all the control words in sequence each time?

• Do you want your output lines fully justified? Do you want them left-aligned or
right-aligned? Do you want to balance your columns by distributing text? If you
want your columns justified, what are your leadout, skip, space and text linespacing
requirements and allowable variations?

Selecting Control Words

This book describes many formatting techniques and shows many examples. No single
example or technique is necessarily the best; there are usually several ways to do the
same thing. As you become more experienced in using SCRIPT/VS, standard ways of
doing things will evolve and may be accepted as installation standards where you work.

Note: The purpose of the examples in this book is to illustrate various formatting tech­
niques using the SCRIPT /VS control words. Because of various factors, such as column
line length, hyphenation dictionaries, and algorithmic hyphenators, example results may
not always be identical to that shown. However, the effect of the control word will be
the same.

Some of the examples in this book are formatted using a predefmed column line length
of 30; others are formatted to the actual line length of the column, except when a spe­
cific column line length is given using the .CL control word.

Chapter 1. An Overview ofSCRIPT/VS 15

Chapter 2. Using the SCRIPT Command
You can use the SCRIPT command and its options to process and format an input file,
either in an interactive or batch environment.

Using SCRIPT/ VS in the Interactive Environ111ent
If you want to process and format an input file in the interactive environment, you sim­
ply issue the SCRIPT command along with the necessary options to control processing.
SCRIPT jVS formats the input ftle using GML tags, macros, control words, and text
that are included in the fIle.

The SCRIPT command can be issued as a CMS command, a TSO command, or an
A TMS-III command. The format of the SCRIPT command is the same for each sys­
tem, except that in TSO options must not be placed in parentheses and in ATMS-III
the SCRIPT command itself must be entered in lowercase. The forms of the SCRIPT
command are as follows:

In CMS,

SCRIPT

In TSO,

SCRIPT

In A TMS-III,

script

where:

?

file-id

*
options

file-id [(options ...]
?

file-id [options ...]
?

file-id [[(] options ...]
?
"k

causes SCRIPT jVS to display a list of all the valid command
options.

is the name of the primary input file. When the input file contains
imbedded or appended files, file-id names the primary or master file;
the imbedded and appended files are named with control words in
the master file. The format of the file-id depends on the environment
from which SCRIPT /VS is called.

is the document in A TMS-III working storage.

specify how SCRIPT jVS is to process and format the input ftle and
where the resulting output file is to go. You can specify as many

Chapter 2. Using the SCRIPT Command 17

options as you think appropriate. The left parenthesis "(" preceding
the option list is required in the CMS environment.

Naming the Primary Input File

The format of the name you specify for file-id depends on the environment from which
you call SCRIPT/VS. Except when using SCRIPT in the TSO environment, the naming
rules and conventions apply equally to the primary input file, the profIle, and any imbed­
ded or appended files.

CMS Naming COllventions

The file-id of a CMS file to be processed is given in the form:

filename [filetype [filemodeJ]

If file type is omitted, a filetype of SCRIPT is assumed. If filemode is omitted, the CMS
search sequence is used to locate the file on an accessed CMS disk. If you want to spec­
ifY the filemode, you must also give the filetype, because these parameters are positional.

TSO Naming Conventions

In TSO, you can use a fully or partially qualified data set name to refer to the primary
input fIle or profIle in the SCRIPT command. If the file-id given is not fully qualified
(enclosed in single quotation marks), the userid is prefixed to the file-id as the leftmost
qualifier, and TEXT is added (unless it already appears) as the right-most qualifier. For
example,

Specified DSNAME

A
A.TEXT
DOC(CHAP1)
'DPJKl. X. y'
(CHAP2)

ATMS-III Naming Conventions

Actual DSNAME

userid. A. TEXT
userid. A. TEXT
userid. DOC. TEXT(CHAP1)
DPJKl. X. y
userid.TEXT(CHAP2)

Documents in an operator's working storage can be formatted with the command

script *
Documents that are to be fOlmatted from permanent storage or imbedded or appended
can be specified in a fully qualified way, such as:

'docname:opnum;getw'

This results in a search for the document named docname with a getword of getw be­
longing to the user whose operator number is opnum. A qualified name always results in
an explicit search without subdocument index search. A name can be qualified by the
use of only the colon character (:) without any opnum. This form of qualification signi­
fies that the document is to be explicitly located and read from the requesting user's per­
manent storage.

18 DCF: SCRIPT/VS Text Programmer's Guide

If a getword is specified, it must match the document getword even though the docu­
ment belongs to the requesting user. If a getword is not specified for a document that
does not belong to the requestor, it must have a getword of any.

Documents in an operator's permanent storage can also be formatted by transmitting a
request to an appropriate SCRIPT /VS peripheral queue:

XFO;qname;docname:opnum;getw;options

where qname is the name of a SCRIPTjVS output queue and options are any valid
SCRIPT /VS command options.

Note: A TMS-III always adds an appropriate destination option, such as PRINT or
CTP, to the user's options when the peripheral queue is processed. TERM is always
added when the SCRIPT command is issued from a terminal.

Characteristics of an Input File

The following are characteristics of input files that can be processed by SCRIPT/VS:

• In a CMS environment:

• A filetype of SCRIPT

• As many as 65,535 fixed- or variable-length records, with a maximum of 132
bytes per record

• Include uppercase and lowercase letters, numbers, and special characters

• Do not contain line numbers; however, if the lines are numbered, the number
must be in positions 1 to 8 of each record. When the input file is processed,
line numbers are ignored.

• In a TSO environment:

• Data set organization of PO (partitioned organization) or PS (physical sequen­
tial)

• Composed of fixed- or variable-length records, blocked or unblocked, with a
maximum of 132 bytes per record

• Include uppercase and lowercase letters, numbers, and special characters

• Contain records with or without line numbers; if the input lines are numbered,
the numbers are ignored if:

... A variable-length record has the line number in the first eight positions of
each record.

... A fixed-length record has the line number in the last eight positions of
each record.

• In an ATMS-III environment:

• Contained in ATMS-III working or permanent storage

• Composed of variable-length records, with a maximum of 230 text characters
per record

• Include uppercase and lowercase letters, numbers, and special characters

• Include A TMS-III page and unit numbers that are not included in the 230 text
characters.

Chapter 2. Using the SCRIPT Command 19

Usillg SCRIPT/ VS ill the Batch EllvirOllnlellt
With the Document Library Facility (DLF) installed, SCRIPTjVS can be used in a
batch environment under OSjVS2 MVS and VSE. Using the DLF SCRIPT command,
input flIes can be formatted with the SCRIPT /VS formatter in a batch environment. In­
put flIes are usually stored as documents in the library, or as external data sets to DLF.
The output can be directed to either a printer or to an external data set.

SCRIPTjVS flIes stored as documents in the library are specified by:

• A three-part document identifier, which includes:

• Library number

• Document name

• Password

• Data name

• Version number.

SCRIPT/VS flIes stored as external data sets to DLF are specified with a ddname or
dataset name via the FROM operand of the DLF SCRIPT command.

Environment Restrictions

Depending on the environment in which you are using SCRIPTJVS, certain SCRIPT
command options and control word parameters are restricted.

• In the CMS environment, the following should not be used:

• The DEST command option

• Suboptions of the PRINT command

• The DD, DSN, CATALOG, DATA, VERSION, PROC, and PARM parame­
ters of the .DD [Defme Data File-id] control word.

• In the TSO environment, the following should not be used:

• The OPTIONS, TUB, and @user-option command options

• The DATA, VERSION, PROC and PARM parameters of the .DD [Define
Data File-idJ control word.

• In the ATMS-III environment, the following should not be used:

• The DEST, FILE, NOSPIE, NOWAIT, STOP, TUB, and @user-option
SCRIPT conunand options

• The PROMPT option of the PAGE command option

• The suboptions of the PRINT command option

• The DD, DSN, CATALOG, DATA, VERSION, PROC and PARM parame­
ters of the .DD [Defme Data File-id] control word

• In VSE, the SEGLIB option should not be used.

20 DCF: SCRIPT /VS Text Programmer's Guide

"\
./

• In the DLF Environment, the following should not be used:

• The LIB, QUIET, NOSPIE, STOP, and TERM options of SCRIPT/VS

• In VSE, the SEGLIB option should not be used.

The DSN ... parameter of the FROM suboption (which specifies the name of the
data set used for input when the document library is not the source) and the DSN ...
parameter of the FILE option (which specifies the name of the data set used for
output) are valid in OS/VS2 MVS only.

The SCRIPT Command Options

Default Options

SCRIPT command options control how SCRIPT /VS processes and formats your input
fIle. Some of the options have suboptions; each option's suboptions are enclosed in pa­
rentheses. You do not have to enter a right parenthesis unless another option follows.
Options and sUboptions are separated from each other by blanks. In TSO, a comma can
also be used as a separator.

The name of each option can be shortened to its minimum abbreviation. In TSO, am­
biguous truncations are not accepted and you are prompted to reenter the option. In
other systems, ambiguous truncations are accepted and interpreted as shown in Figure 1
on page 23.

When you specify the SCRIPT command with a file-id or an '" and no options, the
defaults are:

For CMS,

TERM PROFILE (PROFILE) LIB (DSMGML3) NOCONT NODDUT

For TSO,

TERM PROFILE (PROFILE) LIB ('SCRIPT.R30.MACLIB') NOCONT NODDUT

For ATMS-III,

TERM PROFILE (PROFILE) MESSAGE (DELAY) NOCONT

For batch,

PRINT PROFILE (PROFILE) MESSAGE (DELAY) NOCONT

All other options must be explicitly specified when desired.

Mutually Exclusive Options

Some of the SCRIPT command options are mutually exclusive from a logical stand­
point. However, when two such command options are specified, no error results; but
one option can cancel the effect of another previously specified option. Within the fol­
lowing groups of options, the last one processed by SCRIPT jVS takes effect, except in
TSO. Because of the way TSO parses parameters before passing them to SCRIPT/VS,
options are processed in alphabetical order regardless of the order of entry. In other sys­
tems, they are processed in the order in which they are specified.

Chapter 2. Using the SCRIPT Command 21

The mutually exclusive options are:

• PROFILE and NOPROF. The PROFILE option specifies that a file is to be im­
bedded before the primary input file is processed; the NO PROF option specifies
that no profile is needed, respectively.

• CTF, FILE, PRINT, and TERM. These options specify the destination of the for­
matted output. If a logical output device is not also specified, SCRIPT/VS selects
one, based on the destination. If CTF is specified and the device type is not
STAIRS, CTF is ignored. Figure 2 on page 25 lists the default logical device for
each destination.

• CONTINUE and NOCONT. These options determine whether processing is to
continue after SCRIPT /VS detects an error condition and issues an error message.
Even if CONTINUE has been specified, SCRIPT/VS will stop processing if a se­
vere or terminal error is encountered.

• DDUT and NODDUT. These options determine if SCRIPT/VS utility file redefi­
nition to a non-utility file is allowed. The redefmition is disallowed by NODDUT.
DDUT allows redefinition.

• SEGUB and NOSEGUB. These options determine whether the segment library is
to be searched for a specified segment. If the CONTINUE option has been speci­
fied, SCRIPT /VS will continue processing even if the specified segment does not
exist.

• SYON and SYOFF. These options determine if the .SY [System Command] control
word is enabled or disabled. SYOFF disables .sy [System Command] and SYON
enables it.

Descriptions of all of the SCRIPT command options can be found in the Document
Composition Facility: SCRIPT/VS Language Reference.

Logical Output Devices and Destinations

SCRIPT /VS can format a document for a number of different output devices, including
the 1403 printer, the 3800 Printing Subsystem, and the 4250 printer. During formatting,
SCRIPT /VS takes into consideration the characteristics of the specific output device.

SCRIPT /VS always formats documents for some specific logical output device. A logical
output device is a combination of a physical device type, such as the 3800 Printing Sub­
system, form size, such as 8 1/2 by 11 inches, and a specific lines-per-inch specification,
such as 6 or 8. The logical device type is specified with the DEVICE option of the
SCRIPT command. For example, you can direct SCRIPT/VS to format a document for
a 3800 Printing Subsystem standard page size (8-1/2 by 11 inches) at 8 lines-per-inch
with the following command.

SCRIPT TEST (DEVICE(3800N8)

See Figure 2 on page 25 for a list of the logical devices that SCRIPT/VS can format for.

If the DEVICE option is not specified with the SCRIPT command, SCRIPT/VS uses a
default logical device, usually 1403W6.9

The logical device that SCRIPT /VS uses in formatting the document is independent of
the the actual destination of the formatted output. For example, you can not only direct
SCRIPT /VS to format for a 3800 Printing Subsystem but also tell it to put the format-

9 This default device can be changed by the installation.

22 DCF: SCRIPT/VS Text Programmer's Guide

Option non-TSO Environments TSO Environment

BIND B B
CHARS C CH
CONTINUE CO CO
CTF CT CT
DDUT DD DD
DEST DE DES
DEVICE D DEV
FILE F FI
FONTLIB FO FO
INDEX I I
LIB L L
MESSAGE M M
NOCONT NOC NOC
NODDUT NOD NOD
NOPROF N NOP
NOSEGLIB NOSE NOSE
NOSPIE NOS NOSP
NOWAIT NOW NOW
NUMBER NU NU
OPTIONS 0
PAGE P PA
PRINT PR PRI
PROFILE PRO PRO
QUIET Q Q
SEARCH S SEA
SEGLIB SEG SEG
SPELLCHK SP SP
STOP ST ST
SYOFF SYOF SYOF
SYON SYON SYON
SYSVAR SYS SYS
TERM T TE
TLIB TL TL
TWOPASS TW TW
UNFORMAT U UN
UPCASE UP UP

Figure 1. Minimum Abbreviations of SCRIPT Options.

ted output in a disk file, rather than send it to the printer. There are several options of
the SCRIPT command that specify the destination of the output. These are:

• FILE (put it in a disk ftle)

• TERM (send it to your terminal)

• PRINT (send it to the printer)

• CTF (put it in a disk file in Condensed Text Format for the STAIRS program
product).

Chapter 2. Using the SCRIPT Command 23

Printer Classes

You can specify almost any combination of output destination and logical device. For
example, if you specify

SCRIPT TEST (FILE DEVICE(3800N8)

then SCRIPT /VS fonnats a document for the 3800 Printing Subsystem at 8 lines-per­
inch but saves the output in a disk file for later printing, if you so request, on a physical
printer.

Note: There are two exceptions to this rule:

1. The CTF destination is valid only for the STAIRS logical device and is ignored if
any other logical device is specified.

2. The PRINT option is not valid for 4250 printer logical devices.'o

Additionally, certain destinations are invalid in certain environments. See the descriptions
of the FILE, PRINT, TERM and CTF command options in the Document Composition
Facility: SCRIPT/VS Language Reference for more details.

If you specify only a logical device with the DEVICE option, SCRIPT/VS assumes an
appropriate output destination. For example, if you specify a 1403 logical device,
SCRIPT /VS may send the output to the printer. If you specify a 4250 printer logical
device, SCRIPT /VS may file the output for you in a disk file.'o

Similarly, if you specify an explicit output destination, SCRIPT/VS assumes an appro­
priate logical device. If you specify neither a destination nor a logical device,
SCRIPT /VS formats the document for and sends it to your terminal. The logical output
device and output destination for a document when various combinations of options are
specified are shown in Figure 2 on page 25.

SCRIPT /VS supports two basic classes of printer devices: line printers and page printers.
A line printer or line device is any printer that accepts one line of text from the host
system at a time. SCRIPTjVS supports such line devices as the 1403 printer, the 2741
typewriter terminal, and the 3800 Printing Subsystem Model 1. A page printer is any
printer that accepts composed pages, which are constructed of composed text and im­
ages, among other things. SCRIPT/VS supports the 4250 printer, the 3800 Printing Sub­
system Model 3, and the 3820 Page Printer.

Note: The Document Composition Facility (DC F) and the Generalized Markup Lan­
guage (GML) starter set require the following font program products be installed for the
4250 printer:

• 577l-AAR Monotype Times New Roman"

• 5771-AA W Typewriter and Pi

and DCF requires tne following font program products be installed for the 3800 Printing
Subsystem Model 3 and the 3820 Page Printer:

'0 In the A TMS-III environment, A TMS-III will cause the output for a 4250 printer to be sent
to a CICSjVS extra partitioned dataset.

11 Trademarks of The Monotype Corporation, Limited.

24 DCF: SCRIPT /VS Text Programmer's Guide

I

2

3

4

• 5771-ABA Sonoran Serif'

• 5771-ABC Pi and Specials.

You may tailor DCF and/or use the CHARS option of the SCRIPT command to point
to typeface families other than the required ones listed here.

Logical Physical Output
Options Specified Device Device Destination

none [Foreground] TERM 2741 or 3270 Terminal
none [Background] 1403W6 1403 Printer

CTF STAIRS 1403 (,)
FILE 1403W6 1403 File
PRINT 1403W6 1403 Printer
TERM TERM 2741 or 3270 Terminal

DEVICE(1403xx) 1403xx 1403 Printer
DEVICE(2741) 2741 2741 Terminal
DEVICE(3270) 3270 3270 Terminal
DEVICE(38PPxxxx) 38PPxxxx 3800-3 Printer
DEVICE(3800xx) 3800xx 3800 Printer
DEVICE(3820xx) 3820xx 3820 Printer
DEVICE(4250xx) 4250xx 4250 File (2)
DEVICE(ST AIRS) STAIRS 1403 (,)

CTF DEVICE(devtype) devtype device (3)
FILE DEVICE(devtype) devtype device File
PRINT DEVICE{devtype) devtype device Printer
TERM DEVICE(devtype) devtype device Terminal

CTF DEVICE(ST AIRS) STAIRS 1403 (,)
FILE DEVICE(STAIRS) STAIRS 1403 File (4)
PRINT DEVICE{ST AIRS) STAIRS 1403 Printer (4)
TERM DEVICE(STAIRS) STAIRS 1403 Terminal (4)

The destination of Condensed Text Format output depends upon the environment:

• In CMS, TSO, and VS2: a file named DSMUTCTF
• In VSE: a file named DSMUCTF
• In ATMS-liI: a CICSIVS partitioned data set.

In ATMS-III, the destination is a CICSIVS partitioned data set.

If the CTF and DEVICE options are both specified, and devtype is not STAIRS, CTF is ignored.

This output is in STAIRS Proof format.

Figure 2. Logical Output Device vs. Output Destination: It is the user's responsibility to ensure that the character­
istics of the physical device to which the output is directed match the characteristics of the specified or
implied logical device. Your installation's conventions for output classes and forms must be included in
these considerations. Refer to Figure 12 on page 120 for a description of all logical devices.

'2 Data derived under license from The Monotype Corporation, Limited.

Chapter 2. Using the SCRIPT Command 25

Printing on the 4250 Printer
DCF enables you to get output printed on the 4250 printer. The method you use to get
this output depends on the operating environment in which you are working.

In CMS, for example, you must use the FILE option of the SCRIPT command to get
4250 printer printed output. It is assumed that you have a font library, a font library
index, and the necessary 4250 printer fonts on your CMS system. If you have these nec­
essary requisites and if you have formatted your document with SCRIPT jVS, then you
can send your output to a me by entering, for example:

script docname (dev(4250a) file

Output created by this command is then placed into a file called docname LIST4250 A.

To get the file docname LIST4250 A printed, you must use the Composed Document
Printing Facility (CDPF) running as an application program in a virtual machine to
which the 4250 printer is attached. An example of the command to do this is:

bfucdpf docname list4250 a (processing options)

where "processing options" are CDPF command options that you want to specify, such
as MESSAGE, PRINT, and so on. For more information on CDPF see the Composed
Document Printing Facility: Installation and Operation.

In MVS, you can get 4250 printer printed output either in the foreground or in the back­
ground. In the foreground (TSO), you must first enter the conunand

script docname dev(4250a) file

in order to create a file called uscrid.docname.LIST4250. This assumes you used the de­
fault for your document name. If you did not use the default naming convention, then
this me will be called by the name of what other preallocated data set you specified with
the SCRIPT command.

Next you will have to invoke a print CLIST (command list) input me that you have
created or had created for you that contains such information as the font library name,
the segment library name, and the CDPF command. By entering the name of the
CLIST, you cause the print to be sent to the 4250 printer.

In the background environment (DLF), you will have to specify in your batch procedure
the name of the font and segment libraries to be used and that the printing is to be in
page mode. The JCL statements for DLF SCRIPT command processing are as follows:

26 DCF: SCRIPT /VS Text Programmer's Guide

//SCRIPT JOB
//STEPI EXEC PGM=DSMSPEXC,PARM=' LIST'
//SYSPRINT DD SYSOUT=A
//DEV4250 DD DSN=DOCNAME.LIST4250,DISP=MOD
//FONTLIB DD DISP=OLD,DSN=SYSl.FONT4250
//DSMLIST DD SYSOUT=A
//DSMINDIR DD DSN=DSMLIB.DIRECTORY,DISP=SHR
//DSMINLIB DD DSN=DSMLIB.SOURCE,DISP=SHR
//DSMUTMSG DD UNIT=SYSDA,SPACE=(TRK,(5,5»
//DSMUTDIM DD UNIT=SYSDA,SPACE=(TRK,(5,5))
//DSMUTTOC DD UNIT=SYSDA,SPACE=(TRK,(5,5))
//DSMUTWTF DD UNIT=SYSDA,SPACE=(TRK,(5,5»
//SYSIN DD *

AUTH 88/CITADEL
SCRIPT 1314151 DSMIVC30 (PROF(DSMPROF3) CONT -

FILE(DEV4250) DEV(4250A»
/i:
/1

These JCL statements cause the specified input dataset to be formatted to a file,
docname.LIST4250. To then get this me to a 4250 printer for printing, you must again
use CDPF as shown in the following example:

I/jobname JOB
/I*MAIN SYSTEM=systemname,CLASS=c1assname
I/JOBLIB DD DSN=load.library.name,DISP=SHR
IICDPF EXEC PGM=BFUDCPF,REGION=nnnnK,
1/ PARM='PRINT(BR,AFP001),
I/INPUT DD DSN=DOCNAME.LIST4250,DISP=OLD
I/FONTLIB DD DSN=SYSl.FONT4250,DISP=SHR
IIPSEGLIB DD DSN=SYSl.PSEG4250,DISP=SHR
IISYSPRINT DD SYSOUT=A

For more information on CDPF see the Composed Document Printing Facility: Installa­
tion and Operation.

Printing 011 the 3800 Printing Suhsystenl l\l/odel 3
DCF enables you to print output on the 3800 Printing Subsystem Model 3. The method
you use to get this output depends on the operating environment in which you are
working.

It is assumed that you have a font library containing a font library index, the necessary
3800 Printing Subsystem Model 3 fonts on your CMS system, and a page segment li­
brary. If you have these necessary requisites, then you can format your output to a me
by entering, for example:

script docname (dev(38ppn)

Output created by this command is then placed into a file called docname LIST38pp A.

Because your job can not be printed directly on CMS, you will have to send this me to
an MVS system that has the Print Services Facility (PSF) support to print it. You may

Chapter 2. Using the SCRIPT Command 27

need to use a different program product (such as the SENDFILE command, if you are a
CMSjSP user) or a user written program.

In TSO, you can get 3800 Printing Subsystem Model 3 printed output in either of two
ways. One way of getting 3800 Printing Subsystem Model 3 output in TSO is to use the
SCRIPT command. If, for example, you issue the conunand

script docname dev(38ppn)

a ftle called userid.docname.LIST38PP is created. This ftle is the default. Your next step
will be to use a system utility, such as IEBGENER, to put the ftle into the output queue
for JES and PSF to print it.

The most direct way is to use the PRINT option of the SCRIPT command. If, for ex­
ample, you issue the command

script docname dev(38ppn) print (l,c)

your output goes directly to SYSOUT as a JES allocated spool dataset. In this example,
the suboptions of the PRINT option (i,c) represent the number of copies requested and
the SYSOUT spool class for page mode printing, respectively.

There are also two ways of getting 3800 Printing Subsystem Model 3 printed output in
DLF jMVS; in either method you will have to specify in your JCL statements the name
of the font library and the page segment library to be used and that the printing is to be
in page mode. If you want your output to go directly to a JES spool output qucue for
immediate printing, you could enter:

//SCRIPT JOB
//STEP1 EXEC PGM=DSMSPEXC,PARM='LIST'
//SYSPRINT DD SYSOUT=A
//DEV3800P DD SYSOUT=P
//FONTLIB DD DISP=OLD,DSN=SYS1.FONT38PP
/IPSEGLIB DD DISP=OLD,DSN=SYS1.PSEG38PP
/IDSMLIST DD SYSOUT=A
//DSMINDIR DD DSN=DSMLIB.DIRECTORY,DISP=SHR
//DSMINLIB DD DSN=DSMLIB.SOURCE,DISP=SHR
//DSMUTMSG DD UNIT=SYSDA,SPACE=(TRK,(S,S»
I/DSMUTDIM DD UNIT=SYSDA,SPACE=(TRK,(S,5»
//DSMUTTOC DD UNIT=SYSDA,SPACE=(TRK,(S,S»
IIDSMUTWTF DD UNIT=SYSDA,SPACE=(TRK,(S,S»
//SYSIN DD *

1*
1/

AUTH 88/CITADEL
SCRIPT 1314151 DSMIVC30 (PROF(DSMPROF3) CONT -

FILE(DEV3800P) DEV(38PPN»

If, however, you want to first have a me created and then use a utility like IEBGENER
to put the ftle into an output queue for JES and PSF to then print, simply change the
line printed in boldface in our example above to read as follows:

//DEV3800P DD DSN=DEV3800.LIST38PP,DISP=MOD

In DLF JVSE, 3800 Printing Subsystem Model 3 formatted output is not supported.

28 DCF: SCRIPT/VS Text Programmer's Guide

I Printing Oil the 3820 Page Printer
DCF enables you to print output on the 3820 Page Printer. The method you use to get
this output depends on the operating environment in which you are working.

It is assumed that you have a font library containing a font library index, a page segment
library, and the necessary 3820 Page Printer fonts on your CMS system. If you have
these necessary requisites, you can format your output to a me by entering, for example:

script docname (dev(3820a)

Output created by this command is then placed into a flle called docname LIST3820 A.

Because your job can not be printed directly on CMS, you will have to send this me to
an MVS system that has the Print Services Facility (PSF) support to print it. You may
need to use a different program product (such as the SENDFILE command, if you are a
CMS/SP user) a or user written program.

In TSO, you can get 3820 Page Printer printed output in either of two ways. The most
direct way is to use the PRINT option of the SCRIPT command. If, for example, you
issue the command

script docname dev(3820a) print (l,c)

your output goes directly to SYSOUT as a JES allocated spool dataset. In this example,
the suboptions of the PRINT option (l,e) represent the number of copies requested and
the SYSOUT spool class for page mode printing, respectively.

Another method of getting 3820 Page Printer output in TSO is to use the SCRIPT com­
mand. If, for example, you issue the command

script docname dev(3820a)

a me called uscrid.docname.LIST3820 is created. Your next step will be to use a system
utility, such as IEBGENER, to put the me into a JES output queue for PSF to print.

There are also two ways of getting 3820 Page Printer printed output in DLF/MVS; in
either method you will have to specify in your JCL statements the name of the font
library and the page segment library to be used and that the printing is to be in page
mode. If you want your output to go directly to a JES spool output queue for irrunedi­
ate printing, you could enter:

Chapter 2. Using the SCRIPT Command 29

//SCRIPT JOB
//STEP1 EXEC PGM=DSMSPEXC,PARM=' LIST'
//SYSPRINT DD SYSOUT=A
//DEV3820P DD SYSOUT=P
//FONTLIB DD DISP=OLD.DSN=SYS1.FONT3820
//PSEGLIB DD DISP=OLD,DSN=SYS1.PSEG3820
//DSMLIST DD SYSOUT=A
//DSMINDIR DD DSN=DSMLIB.DlRECTORY,DISP=SHR
//DSMINLIB DD DSN=DSMLIB.SOURCE.DISP=SHR
//DSMUTMSG DD UNIT=SYSDA.SPACE=(TRK,(5,5))
//DSMUTDIM DD UNIT=SYSDA,SPACE=(TRK,(5,5))
//DSMUTTOC DD UNIT=SYSDA,SPACE=(TRK,(5,5))
//DSMUTWTF DD UNIT=SYSDA,SPACE=(TRK,(5,5))
//SYSIN DD *

/*
//

AUTH 88/CITADEL
SCRIPT 1314151 DSMIVC30 (PROF(DSMPROF3) CONT -

FILE(DEV3820P) DEV(3820A))

If, however, you want to ftrst have a flle created and then use a utility like IEBGENER
to put the fue into an output queue for JES and PSF to then print, simply change the
line printed in boldface in our example above to read as follows:

//DEV3820P DD DSN=DEV3820.LIST3820,DISP=MOD

Prilltillg 011 Page Prillters ill A TMS-JJJ
In A TMS-III, you can get page printer output by following these steps:

1. Add a queue. The command syntax to do this for the 4250 printer, for example, is:

$qaddjdevpqifunctionjdestid

where: devpq is the queue name for the 4250 printer

function is a required 4250 function keyword, such as 4250a. See the
ATMS-III Operation's Guide for a list of supported function keywords.

destid is the destination name for your output (look at the CICS DCT
table - DSCNAME for the 4250 entry). Once the queue is added, it does
not have to be added again.

2. Transmit a DCF input file to a queue. The command syntax to do this is:

xfo;devpq;docname;;[options]

where devpq is the queue name for the 4250 printer

docname is the name of the document to be transmitted.

options are the SCRIPT command options.

The following example shows some of the SCRIPT command options you might
add to the A TMS command given earlier:

xfo;devpq;docname;;hind(l) co

30 DCF: SCRIPT/VS Text Programmer's Guide

If, after you specify this command, you receive a message indicating you have re­
quested an invalid device type, then issue the command:

set;script;r3

and then reissue the xfo command. If the device type is correct, you should simply
get a message indicating that the document was transmitted.

3. Process the queue. The command syntax to do this is:

$qstart;devpq

This command invokes the asynchronous task, which in tum calls DCF to format
the document.

Note: Once the $qstart command is issued, all documents that are already in the
CPDS output dataset will be lost. You can transmit more than one document to
the queue before starting and the output from all the documents will then be in the
CPDS output dataset. Information about $qadd and $qstart is in the ATMS-III
Operation's Guide. Information about xfo is in the ATMS-III Terminal Operator's
Guide, SH20-242S.

To determine that processing has completed in the asynchronous task and that the data
is in the dataset, use the ql command

ql;devpq;all

This gives a list of all entries in the queue. An entry of ACT means the entry has not
been processed. An entry of PRC/xx means the entry has been processed. xx is the re­
tum code and it should be 0; if it is not, there was an error. See the ATMS-III Terminal
Operator's Guide for a list of these codes.

Once the three previous steps have been done, you can get 4250 printer printed output
by setting up a CDPF job with the DLBL/EXTENT or DD statement pointing to the
dataset described in the DCT. Printing of documents in this dataset will end when
BFUCDPF gets a return code greater than 8.

I Migration and Conversion Considerations for Release 3
.Because of differences among the printers you may be using, you should be aware of
certain migration considerations when you format and print the same document on two
different types of page printers or when you go from a line printer to a page printer.
Many of these migration considerations are listed in the sections that follow. Refer to
Document Composition Facility: SCRIPT/VS Language Reference, "Compatibility with
Earlier Releases of SCRIPT".

3800 Printing Subsystem lVlodel 3 to 3820 Page Printer

If you have formatted a document with DCF and printed it on the 3800 Printing Sub­
system Model 3 and then want to format and print this same document on the 3820
Page Printer, the logical page size should be considered.

The primary migration consideration between the 3800 Printing Subsystem Model 3 and
the 3820 Page Printer is the difference in logical page sizes. There are certain 3800 Print­
ing Subsystem Model 3 logical pages that can not be printed on the 3820 Page Printer.
These are:

Chapter 2. Using the SCRIPT Command 31

13.5i x Iii (O-degree rotation)
Iii x 8.5i (O-degree rotation)
I3.5i x 8.5i (O-degree rotation)
IIi x 8.5i (90-degree rotation)
13.5i x IIi (270-degree rotation).

For example, if you format a document for the 38PPW logical device which uses I3.5i x
Iii paper; there is no equivalent paper size for a 3820 logical device. Therefore, certain
page length and page width settings that work on large paper sizes for the 3800 Printing
Subsystem Model 3 may "fall off" the logical page on the 3820 Page Printer.

3820 Page Printer to 3800 Printing Subsystem Model 3

If you have formatted a document with DCF and printed it on the 3820 Page Printer
and then want to format and print this same document on the 3800 Printing Subsystem
Model 3, you need to consider the following:

• Hardware requirements for the 3800 Printing Subsystem Model 3 prohibit the use of
the top and bottom half inch of a page. If the bottom margin plus the reserved bot­
tom half inch for the 3800 Printing Subsystem Model 3 is bigger than the bottom
margin for the 3820 Page Printer, then the body length of your printed page will be
smaller for the 3800 Printing Subsystem Model 3 than it is for the 3820 Page
Printer.

• Because the 3820 Page Printer can print in the top and bottom half inch of the
page, you can put data in those areas, for example, using page name areas. How­
ever, such formatting will not print on the 3800 Printing Subsystem Model 3 with·
out errors because the top and bottom half inch of the page is reserved.

• The page origin is different on the 3820 Page Printer than it is on the 3800 Printing
Subsystem Model 3. The physical origin and the logical origin of a page are the
same for the 3820 Page Printer. The physical origin and the logical origin of a page
are different for the 3800 Printing Subsystem Model 3 because of the half inch re­
stricted area at the top of the page. As a result of this difference, text that fits on a
3820 Page Printer page may not fit on the page on the 3800 Printing Subsystem
Model 3.

• A 180-degree rotation is not allowed on the 3800 Printing Subsystem Model 3 but is
allowed on the 3820 Page Printer.

• The 3820 Page Printer has 16 possible combinations of character rotation and
baseline direction by having only one copy of a base font. This is not true for the
3800 Printing Subsystem Model 3. Therefore, documents formatted for the 3820
Page Printer, that use different character rotations and/or baseline directions, may
not print on the 3800 Printing Subsystem Model 3 because the fonts are not avail­
able on the 3800 Printing Subsystem Model 3.

4250 Printer to 3800 Printing Subsystem Model 3

If you have formatted a document with DCF and printed it on the 4250 printer and then
want to format and print this same document on the 3800 Printing Subsystem Model 3,
you need to consider the following:

• Hardware requirements for the 3800 Printing Subsystem Model 3 prohibit the use of
the top and bottom half inch of a page. If the bottom margin plus the reserved bot­
tom half inch for the 3800 Printing Subsystem Model 3 is bigger than the bottom
margin for the 4250 printer, then the body length of your printed page will be
smaller for the 3800 Printing Subsystem Model 3 than it is for the 4250 printer.

32 DCF: SCRIPT/VS Text Programmer's Guide

• Page length is variable for the 4250 printer. For the 3800 Printing Subsystem Model
3, the page length is limited by the physical size of the paper.

• The 4250 printer and the 3800 Printing Subsystem Model 3 have different typeface
families. A .BF control word that is valid for the 4250 printer can be invalid for the
3800 Printing Subsystem Model 3.

• Line and page endings may be different because the widths of the equivalent charac­
ters in the fonts for the 4250 printer and the 3800 Printing Subsystem Model 3 are
different.

• There is a limit to how many fonts you can use on a page with the 3800 Printing
Subsystem Model 3, but there is no limit on the number of fonts that can be used
on a page with the 4250 printer. Because of this difference, pages that print prop­
erly on the 4250 printer can cause errors and be unprintable on the 3800 Printing
Subsystem Model 3.

• Images are incompatible.

• Negative intercharacter spacing is not available on the 3800 Printing Subsystem
Model 3.

• Text that goes beyond the physical page for the 4250 printer truncates. When text
goes beyond the physical page for the 3800 Printing Subsystem Model 3 the rest of
the page may not be printed.

• The page origin is different on the 4250 printer than it is on the 3800 Printing Sub­
system Model 3. The physical origin and the logical origin of a page are the same
for the 4250 printer. The physical origin and the logical origin of a page are differ­
ent for the 3800 Printing Subsystem Model 3 because of the half inch restricted area
at the top of the page. As a result of this difference, text that fits on a 4250 printer
page may not fit on the page on the 3800 Printing Subsystem Model 3.

• A character printed very close to the edge of a page on the 4250 printer may "fall
off" the logical page when printed on the 3800 Printing Subsystem Model 3 because
of the extra padding around each 3800 Printing Subsystem Model 3 character.

3800 Printing Subsystem lVlodel 3 to 4250 Printer

If you have formatted a document with DCF and printed it on the 3800 Printing Sub­
system Model 3 and then want to format and print this same document on the 4250
printer, you need to consider the following:

• Rotation is not supported by the 4250 printer. Therefore, if you try to print a
rotated area on the 4250 printer, no rotation is done, and the output will be differ­
ent.

• Some characters are included in the 3800 Printing Subsystem Model 3 fonts that are
~ot in the 4250 printer fonts, such as: superscripts, long em dash, and logical not
SIgn.

• The 4250 printer and the 3800 Printing Subsystem Model 3 have different typeface
families. A .BF control word that is valid for the 4250 printer can be invalid for the
3800 Printing Subsystem Model 3.

• Line and page endings may be different because the widths of the equivalent charac­
ters in the fonts for the 4250 printer and the 3800 Printing Subsystem Model 3 are
different.

• Images are incompatible.

Chapter 2. Using the SCRIPT Command 33

4250 Printer to 3820 Page Printer

If you have formatted a document with DCF and printed it on the 4250 printer and then
want to format and print this same document on the 3820 Page Printer, you need to
consider the following:

• Page length is variable for the 4250 printer. For the 3820 Page Printer, the page
length is limited by the physical size of the paper.

• The 4250 printer and the 3820 Page Printer have different typeface families. A .BF
control word that is valid for the 4250 printer can be invalid for the 3820 Page
Printer.

• Line and page endings may be different because the widths of the equivalent charac­
ters in the fonts for the 4250 printer and the 3820 Page Printer are different.

• There is a limit to how many fonts you can use on a page \vith the 3820 Page
Printer, but there is no limit on the number of fonts that can be used on a page
with the 4250 printer. Because of this difference, pages that print properly on the
4250 printer can cause errors and be unprintable on the 3820 Page Printer.

• Images are incompatible.

• Negative intercharacter spacing is not available on the 3820 Page Printer.

3820 Page Printer to 4250 Printer

If you have formatted a document with DCF and printed it on the 3820 Page Printer
and then want to format and print this same document on the 4250 printer, you need to
consider the following:

• Rotation is not supported by the 4250 printer. Therefore, if you try to print a
rotated area on the 4250 printer, no rotation is done, and the output will be differ­
ent.

• Some characters are included in the 3820 Page Printer fonts that are not in the 4250
printer fonts, such as: superscripts, long em dash, and logical not sign.

• The 4250 printer and the 3820 Page Printer have different typeface families. A .BF
control word that is valid for the 4250 printer can be invalid for the 3820 Page
Printer.

• Line and page endings may be different because the widths of the equivalent charac­
ters in the fonts for the 4250 printer and the 3820 Page Printer are different.

• Images are incompatible.

Other Page Printing Considerations

It is possible to create documents that can be formatted and printed with acceptable re­
sults on a line printer but not a page printer. The following should be considered:

• Data off the page. When data runs off a page, line printers will truncate the data
without issuing a message. Page printers will issue an error message, and either mark
the printed output at the point where truncation occurred or leave the rest of the
page blank. This condition may occur if:

• You are using format off mode (.FO OFF control word)

• You are creating examples (:XMP tag)

34 DCF: SCRIPT/VS Text Programmer's Guide

• You are using an input line that is too long

• You are using a large font size.

• Undefined characters. When a line printer encounters an undefmed character, one
of the following occurs:

• A blank is printed

• The previous character in a print buffer is printed

• You get a data check.

For a page printer, one or more of the following occurs:

• A special character symbol is printed

• A DCF error message is issued

• A PSF error message is issued

• You get a data check.

The above will occur whenever you use a codepoint (via character translation with
the .TI, .TR, or the .TV control words or via keyboard input) which is not defmed
in the coded font that you are using.

If the font you are using has a specified default character to use when undefined
characters are encountered, you will get a bold cross (for the 4250) or a zero with a
diagonal through it (for the 3800-3) printed. If the font does not have a specified
default character, an error occurs and printing stops.

Unlike line printing, page printers do not print a blank when an undefmed character
is encountered. For page printers, use the .IS control word to leave blank a space in
which to draw or paste in characters.

To print the character you desire, one of the following may accomplish your results.

• Change the character codcpoint

• Change to a different fput

• Change to a different code page

• Use a substitute character.

Check your font catalog to determine the codepoint of the character you desire.

• Descenders. A bottom print line that is printable on a line printer may not be print­
able on a page printer. In line printing, the bottom of the print line is at the bottom
of all the characters - the descenders sit at the print line. But in page printing, the
baseline of the font characters is at the bottom of the print line and, therefore, the
descenders of the characters extend below the print line. When the bottom print line
is too close to the logical bottom of the page, the descenders may extend off of the
page and one of the following can happen:

• An error message is printed

• The entire line or remainder of the page will not print

• A special character appears where the error occurred.

This condition may occur if you changed the default bottom margin to zero or if
you are using a font with very large descenders and the print line is positioned too
close to the logical bottom of the page.

Chapter 2. Using the SCRIPT Command 35

Chapter 3. Marking Up Documents with SCRIPT /VS
When you prepare a document for SCRIPT/VS to format, the document (called the in­
put file) can contain two kinds of data:

• Text, the actual content of the document which SCRIPT /VS places on your output
page

• Markup, which consists of:

• SCRIPT /VS control words that control processing of your document and the
placement of the text on the output page.

• GML markup that describes the characteristics of the document, but does not
specify processing.'3 When GML markup is used, the application processing
functions (APFs) contain the control words that specify the processing.

A SCRIPT/VS input file might contain text data only. In this case, SCRIPT/VS formats
the file using a set of defaults appropriate for the logical output device. Typical default
values specify the output pagc as 8-1/2 by 11 inches, single-column format, with concat­
enation and justification.

Insert control words into the input ftle when you want to change any of the default as­
sumptions and when you want to use the more advanced functions of SCRIPTjVS, such
as footnotes, automatically generated table of contents, and interactive text input.

Language Syntax
When you use a text formatting language like SCRIPT/VS, certain conventions of that
language, called its syntax, must be observed. The correct syntax for SCRIPT/VS con­
trol words and for SCRIPT/VS macro and symbol processing is given below.

Control Word Syntax

All control words have two-character names. A control word is identified by a period (.)
in the fIrst position of an input line, followed by the two-character name." If the control
word accepts parameters, they follow the control word name and are separated from
each other by blanks:

.du add raccoon giraffe llama

13 See the Document Composition Facility: Generalized Markup Language Starter Set Reference
for a description of how to mark up a document with GML tags.

,. SCRIPT;VS control words are presented throughout this book. For a complete description of
SCRIPT;VS control words see the Document Composition Facility: SCRIPTjVS Language
Reference.

Chapter 3. Marking Up Documents with SCRIPT/VS 37

The blank separating the control word name from the ftrst parameter IS usually
optional;'5 if you omit it, SCRIPT/VS will insert it. Thus,

.cecenter this line

will be processed as

.ce center this line

Note: If you omit the first blank, and the control word name and ftrst parameter to­
gether form a valid macro name, the macro will be processed, rather than the control
word, if macro substitution is on. Conversely, if you incorrectly enter a macro name,
SCRIPT/VS may interpret this invalid macro as a control word. If macro substitution is
off, any macro name may be interpreted as a control word.

The Control Word Separator

You can enter more than one control word on a single input line. You can also enter
control words and text on the same input line. To separate the control words, or the
control words and text, use a semicolon (;). The semicolon is called the control word
separator.'S Its effect is to allow SCRIPT/VS to separate an input line into two or more
processable input lines. For example,

,skj.ce on

is the same as the two lines:

.sk

. ce on

Grouping control words on a line, you can quickly see the sequence and context of one
control word within the group.

The control word separator character may be used to enter several control words on a
single line:

.sk .5ij.fo onj.in 10m

SCRIPT /VS scans every control word line for the control word separator character. If a
separator character is found, the line is divided at that point, and the part of the line
before the control word separator is processed as a complete control word line. The re­
mainder, to the right of the control word separator, becomes the next input line. The
period in .FO ON in this example appears in the first character position, allowing the
.FO to be recognized as a control word.

15 The blank separating the control word name from the ftrst parameter is not optional with .LI
OFF, .DM OFF,.CS n OFF, and .WF OFF.

IS The character to be used as the control word separator may be changed with the .DC CW ~
[Defme Character] control word.

38 DCF: SCRIPT/VS Text Programmer's Guide

The control word separator character may also be used to place a control word within a
line of text. For example,

an ;.us on;underscored;.us off; word.

results in:

an underscored word.

SCRIPT/VS scans every text line for the control word separator character. If a separator
character is found which is immediately followed by a period and a two-character control
word name, the line is divided at that point. The part of the line preceding the control
word separator is processed as a line of text with continuation, and the remainder of the
line, to the right of the control word separator, becomes the next input line. If a control
word separator character is found in a text line, but is not followed by a control word, it
is treated as text.

Note: Macros are not recognized in text lines. The .EM [Execute Macro] control word
must be used to process macros in text lines.

The Control Word Modifier

The SCRIPTjVS control word processor recognizes a single quotation mark (') after the
period as a control word modifier. Most control words'7 can be entered with the modifier
(') as shown in the following example:

. I ce Center this line.

The control word modifier changes the usual operation of the control word processor in
two important ways:

1. No macro search is done. Even if a macro of the given name exists and macro sub­
stitution is on, the control word is invoked, not the macro.

2. No control word separator scan is done. Any control word separators in the line are
left there as ordinary text characters. Thus, a control word entered with the control
word modifier must be the last control word on that line.

Since no control word separator scan is done, a control word that accepts a line of text
may be entered with the control word modifier to protect any separator characters that
appear in the line as part of the text. The input line

. Ice centered line; one line.

results in:

centered line; one line.

17 With the exception of .LI OFF, .DM OFF, .PX OFF, and .WF OFF.

Chapter 3. Marking Up Documents with SCRIPT/VS 39

Macro Syntax

Symbol Syntax

A SCRIPT /VS macro name can look much like a control word but its syntax is slightly
different. A macro name can be up to ten characters long and these characters must be
chosen from the valid character set: A-Z, 0-9, $, # or @.

A SCRIPTjVS symbol is preceded with the ampersand sign (&). Symbols can also be
up to ten characters long and these characters must be chosen from the valid character
set: A-Z, 0-9, $, #, or @.

Guidelines for Entering Text and Control Words III SCRIPT/VS
You may fmd the following tips useful when entering input for SCRIPT /VS files.

Start All Input Lines in Position One

When you enter input into a SCRIPT /VS f:tle, you should enter all the input lines (text
lines as well as control words) beginning in position one. Occasionally, you may want to
enter lines that begin with blank characters or tabs. Blanks and tabs at the beginning of a
line may cause breaks. When you want to manipulate the margins for output lines, use
control words instead of blanks or tabs.

Avoid a Text Period in Position One

When SCRIPT /VS processes an input line, data that follows a period in position one is
treated as a control word. If what follows the period is not a valid control word or
macro, SCRIPT/VS issues an error message. If a valid control word follows the period
in position one (even though you intended it to be text), SCRIPT/VS processes it as a
control word. In such a case, the results might be undesirable.

You can use the .LI [Literal] control word to have a line interpreted as a text input line,
even though it begins with a period, leading blank, or leading tab. For example,

. ti ... 05

.li ... and so it goes .

. li 2
Leading blank lines

... and leading tab lines
do not cause an implicit break
when preceded by the .LI
control word.

prints as:

... and so it goes. Leading
blank lines and leading tab
lines do not cause an implicit
break when preceded by the .LI
control word.

40 DCF: SCRIPT /VS Text Programmer's Guide

You can specify parameters with the .LI [Literal] control word. If there are many lines
that begin with a period, for example, you can issue:

Study the following control words:
.Ii on
• DS,
· LI,
· PA, and
.IM.
· Ii off
This assignment is due on Monday.

which results in:

Study the following
words: . DS, . LI, . PA,
This assignment is
Monday.

control
and .IM.
due on

Note: When literal mode is in effect, the only SCRIPT /VS control word that is proc­
essed is .LI OFF. Other forms of the .LI control word, as well as other SCRIPT/VS
control words, are treated as text.

Remember Which Control Words Cause Breaks

When you finish a block of text or a paragraph, you might want SCRIPT /VS to print
the text that has accumulated, so that the next input line begins a new output line. You
can use the .BR [Break] control word to do this. However, many other control words
cause breaks as part of their normal function. In the sequence

text text text
.br
· in Sm

the .BR [Break1 control word is unnecessary, since the .IN [Indent1 control word causes
a break.

Many control words that provide format functions do not cause breaks. For example,
the underscoring and capitalization control words are good examples of control words
that do not cause breaks:

This
· up sentence
.us has several control
· uc words in
· up it,
and its text is concatenated.

results in:

This SENTENCE :.:h""a"",s_--",s:.::e,-"v...o:e""r""a=l
control WORDS IN IT, and its
text is concatenated.

Chapter 3. Marking Up Documents with SCRIPT/VS 41

Comments in SCRIPT/ VS DocUlnents
In addition to text and control words, SCRIPT jVS ftles can contain comments. Com­
ments are useful for:

• Accounting notes: You can include comments that give your name and location, the
date and reason you created a ftle, and a date when the ftle can be erased.

• Documenting formats: If you use a special format in a SCRIPT jVS ftle that may be
accessed by others, you can include notes within the ftle explaining how to access it.

• Placeholders: If a ftle is only partially complete, you may want to insert comments
at places where information should be added later.

• Documenting options: If you use a special set of SCRIPT command options to for-
mat a document, you can include notes within the ftle to list the options.

To place comments in a SCRIPT/VS fUe, use the .CM [Comment] control word.
SCRIPT/VS treats the .CM control word the same as any other control word. However,
when it scans the input line that contains this control word, it will ignore the text of the
comment. This means that any other control words that exist on the same input line as
the .CM control word but are separated from the comment text by a control word sepa­
rator will still be processed. The comments themselves will not be included in the final
formatted output. For example, if you specified

. em Created:

. em Updated:
11/3/78
6/25/79 ;.im doe3

These two comments will only appear in your input ftle; they will not appear in the [mal
output. SCRIPT/VS will recognize the control word separator (;) and will process the
.1M control word that imbeds fUe DOC3.

If you do not want SCRIPTjVS to scan your comment lines for control word separa­
tors, ". *" to enter enter them using. >I< instead of the .CM control word. The. * function,
even though it begins with a period, is not considered a control word. Therefore,
SCRIPT /VS ignores any input line that begins with . "', including any other control
words or control word separators that exist on that line. For example, the entry

* SCRIPT/VS ignores this line ;.im doe3

causes SCRIPT /VS to ignore this entire input line. Therefore, ftle DOC3 will not be
imbedded.

Valid Space Unit Notation
Many SCRIPT /VS control words accept parameters that specify vertical or horizontal
dimensions or distances. As Figure 3 on page 44 illustrates, these dimensions may be
expressed in any of several different space units:

Centimeter One-hundredth of a meter. There are 0.39 inches in one centimeter.

Cicero A standard measurement in the Didot Point System, used in most coun­
tries except Great Britain and the United States. The Cicero is 4.511 milli­
meters (0.1776 inches), and there are twelve Didot points in one Cicero.
Ciceros can be specified in tenths of units (for example, 1.5c = 1.5
Ciceros).

42 DCF: SCRIPT/VS Text Programmer's Guide

Device Unit

Horizontal An integral number of horizontal device units. The size of a
horizontal device unit depends upon the device and varies
from 2.540 millimeters (1/10 inch) for the 1403 to 0.0423
millimeters (1/600 inch) for the 4250 printer and 0.1058
millimeters (1/240 inch) for the 3800 Printing Subsystem
Model 3 and the 3820 Page Printer. 1B

Vertical An integral number of vertical device units. The size of a
vertical device unit depends upon the device and varies from
4.233 millimeters (1/6 inch) for a 2741 to 0.0423 millimeters
(1/600 inch) for the 4250 printer and 0.1058 millimeters
(1/240 inch) for the 3800 Printing Subsystem Model 3 and
the 3820 Page Printer.1B

Em-space A decimal number of horizontal em-widths. The size of an em-width de­
pends upon the current font.

Em-height A decimal number of vertical em-heights. The size of an em-height de­
pends upon the current font.

Inch One-twelth of a foot (25.4 millimeters).

Millimeter One-thousandth of a meter. There are 10 millimeters in one centimeter.
(25.4 millimeters = 1 inch).

Pica A standard printer's measurement in Great Britain and the United States.
A pica is 4.224 millimcters (0.1663 inches). There are twelve points in a
pica and 72 points in an inch.1s• Picas can be specified in tenths of units
(for example, 1.5p = 1.5 picas).

Unqualified space units arc defmed in the following ways:

• Horizontal space units (such as .IN 5) are defmed in one of the following ways in
the order given:

• The size of a figure space in the initial font

• The size of an en in the initial font

• One-half the size of an em in the initial font

• Vertical space units (such as .SP 5) are defmed as:

• The linespacing value of the current font

Also note that fractional unqualified space units and ems, such as 1.5, are now sup­
ported. In order to avoid a problem with the symbol delimiter, which is a period (.),
fractional units may be specified with a comma instead of a period. For example, you
can specify 1,5 instead of 1.5.

lB Because of the wide variation in magnitude of device units between devices, the use of these
space unit designations can bind individual documents to particular devices. To maintain de­
vice independence, formatting using device units should always be done in conjunction with
calculations using device units symbol attributes. It is not always possible to satisfy space re­
quests exactly on all devices. In this case, the nearest available amount is used.

19 In SCRIPTjVS, 72 points equals exactly one inch rather than .996 or 1.008 inches.

Chapter 3. Marking Up Documents with SCRIPT/VS 43

Space Unit

Centimeter

Character
(Horizontal)

Cicero

Device Unit
(Horizontal)

Device Unit
(Vertical)

Em-space
(Horizontal)

Em-space
(Vertical)

Inch

Line
(Vertical)

Millimeter

Pica

Where:

Specified As

aCM

a

nCp

nDH

nOV

aMH -or- aM

aMV

al

a

aMM

nPp

Examples

4.25cm 2,54cm 15cm

5 12.5 1,33

c12 (12 didot points)
2c3 (2 Ciceros and 3 points)
c1.5 (1.5 didot points)

10dh 600dh

10dv 600dv

6mh 6m .33mh .33m

1mv .5mv

3.5i 6,5i .75i

2 3.5 1,75

12.7mm 25,4mm 100mm

p6 (6 points)
3p2 (3 picas and 2 points)
p1.5 (1.5 points)

a is a number of centimeters, characters, ems, inches, lines, or millimeters.
The number may be fractional, with up to two decimal positions, and either
a period (.) or comma (.) can be used to separate the integral and frac­
tional portions of the number.

n is a number of whole ciceros, picas, or device units.

p is a number of points. (There are twelve points in a cicero or pica, and 72
points in an inch.)

Figure 3. Space Units Notation: All vertical and horizontal dimensions specified with SCRIPTjVS control words
and options may be given in any of the forms shown here.

Note: Character spaces are equal in size to the figure space of the default (or initial) font. Line spaces
are equal in size to the Iinespacing of the current font.

44 DCF: SCRIPT/VS Text Programmer's Guide

Text

Implicit Markup

Because SCRIPT jVS formats your document based on default settings appropriate for
the logical device you have specified, you need to be aware of certain implicit markup. In
this case, implicit markup refers to such horizontal spacing mechanisms as spaces, tabs,
and backspaces.

In a SCRIPTjVS context, spaces, tabs (see "Using Tabs" on page 84 for a full dis­
cussion of tabs), and backspaces function as word delimiters. Their hexadecimal repres­
entations are as follows:

• Spaces - hexadecimal 40

• Tabs - hexadecimal 05

• Backspaces - hexadecimal 16

• Nulls - hexadecimal 00

Continuation and the Continuation Character

Ordinarily SCRIPTjVS appends a word space to the last word on a text input line.
However, if the continuation character is the last character on a text input line, it is re­
moved and the word space is not appended. The continuation character is defmed with
the .DC [Defme Character] control word:

. dc cont +

This allows a single word to span text input lines and control words. For example, the
input lines

A few high+
.bf
light+
.pf
ed characters.

will produce this output:

A few highlighted characters.

If a formatter control that causes a breal(follows the continued word, continuation is
cancelled for that line. The control words that cause breaks are listed in the Document
Composition Facility: SCRIPT/VS Language Reference.

Initially, there is no continuation character; it must be explicitly set before it can be used.

Chapter 3. Marking Up Documents with SCRIPT/VS 45

Even if a previous line does not end with a continuation character, you can use the .CT
[Continued Text] control word to cause a line to be treated as a continuation of a previ­
ous text line. For example, if you specified

This input line a
.ct nd this input line should be one line.

then the two input lines will be joined as one:

This input line and this input line should be one line.

If the .CT control word is given without a line of text, then nothing will be continued
and any continuation that may be in effect from a continuation character on the previ­
ous text line is cancelled.

46 DCF: SCRIPT/VS Text Programmer's Guide

Chapter 4. Combining SCRIPT /VS Input Files
SCRIPT /VS provides the ability to combine many SCRIPT /VS input ftles for process­
ing as a single document. The control words that allow you to do this are:

• .1M [Imbed], which causes SCRIPT /VS to process another fIle immediately then re­
turn to the imbedding ftle

• .AP [Append], which causes SCRIPT/VS to process another ftle immediately with­
out returning to the appending ftle

• .SI [Segment Include], which identifies a segment to be included in a column

• .WF [Write To File], which causes lines of text or control words to be written to the
output file DSMUTWTF.

Imbedding and Appelldillg Files
You must specify the ftlcname of the ftle you want to imbed or append. If the
SCRIPT/VS fIle named OUTER processes the input line

. im tester

SCRIPT/VS stops reading input lines from the ftle OUTER and begins reading and
processing lines from a file named TESTER. Whatever formatting controls are in cffect
when the ftle is imbedded remain in effect unless respecified by control words in
TESTER. When SCRIPT /VS reaches the end of the ftle TESTER, it continues process­
ing in OUTER with the input line following the .1M [Imbed] control word.

The ftle TESTER can also contain .1M [Imbed] control words to imbed additional ftles.
For example, consider the following four ftles:

MASTER: FILEA: FILEB: FILEC:

. im filea The quick brown fox over

. im filec . im fileb the lazy
dog. jumps

When you issue the SCRIPT command to format the MASTER input ftle, the result is:

The quick brown fox jumps over
the lazy dog.

Chapter 4. Combining SCRIPT/VS Input Files 47

The .AP [Append] control word is similar to the .1M [Imbed] control word, except that
when SCRIPT /VS finishes processing the input lines from a IDe specified in a .AP con­
trol word, it does not return to the calling IDe. For example, when SCRIPTjVS proc­
esses the input line

. ap names

it closes the current input ftle and begins processing the NAMES file. When the end of
the NAMES fue is reached, SCRIPT jVS does not return to the IDe that appended it:

• If the me that appended NAMES was the IDe named in the SCRIPT command,
SCRIPT /VS completes processing.

• Otherwise, if the me that appended NAMES was itself imbedded, SCRIPT jVS reo
turns to the next input line in the IDe that originally imbedded the file that appended
NAMES, as shown in Figure 4 on page 49.

You can pass values to the imbedded or appended me, so the file can be customized
each time it is called.

Naming the File to Be Imbedded or Appended
The name of the fue to be imbedded or appended is given as a 1- to 8-character name
with the .1M or .AP control word:

· im file-id
· ap file-id

fue-id is an internal SCRIPT /VS name for the ftle to be read. The external name of the
fue can be established in one of three ways:

• You can use the .DD [Defme Data File-id] control word to associate the ftle-id with
any real IDe or data set name available in the system under which SCRIPT /VS is
executing, as described in "Naming the Primary Input File" on page 18.

• If you enclose the file-id in parentheses, SCRIPT/VS uses the fue-id, which in this
case can be more than eight characters long, as the real file or data set name.

• If no .DD control word has been processed for file-id, SCRIPT/VS uses the ftle-id
to derive the real name of the file or data set to be read, based on rules appropriate
for the system under which it is executing.

• In CMS, ftle-id is used as the name of a CMS ftle whose filetype is SCRIPT or
the filetype specified with the SEARCH option of the SCRIPT command.

• In TSO, SCRIPT/VS assumes that the file-id is a member of the partitioned
data set (PDS) 'userid.text' and imbeds this file if it exists.

• In ATMS-III, SCRIPTjVS assumes that the document is in the invoking
operator's permanent storage.

In CMS, you should use the .DD [Define Data File-id] control word when:

• The imbedded filename on the .1M control word is different from the actual CMS
ftlename.

• The filetype is other than SCRIPT and was not specilled with the SEARCH option
of the SCRIPT command.

• A specific ftlemode that is not the first in the CMS search sequence is to be used.

48 DCF: SCRIPT/VS Text Programmers Guide

OUTER
INNER

N~=ti~r~~ <------, >1 NAMES I .. ap names >r--I
'---=~-~

Figure 4. Imbedding and Appending SCRIPT/VS Files

In TSO, you must use the .DD [Deflne Data File-id] control word when:

• The imbedded or appended ftle is not a member of the partitioned data set (PDS)
named in the SCRIPT command.

• The member name is different from the ftle-id.

In ATMS-III, you should use the .DD [Define Data File-id] control word when:

• The imbedded or appended ille is not in the invoking operator's permanent storage
or the permanent storage of another operator whose number has not been specified
in the SEARCH command option.

• The document has been protected by a password by the other operator.

In the batch processing environment, use the .DD [Defme Data File-id] control word
when:

• The library document name is different from the imbedded ftlename.

• A password is required to access the ftle.

• The ftle is stored in a library other than the ones listed with SCRIPT command
options.

The format and use of the .DD control word in the definition of ftles are explained in
full in the description of the .DD [Defme Data File-id] control word found in the Docu­
ment Composition Facility: SCRJPT/VS Language Reference.

Indicating the End of a File
The .EF {End of File] control word causes a ille to end and this can be useful when you
are imbedding illes. If a .EF control word occurs in an imbedded ille, SCRIPT/VS does
not continue imbedding the ftle but returns to process the outer fue. If another .1M
[Imbed] control word is encountered that imbeds the same ille again, SCRIPT jVS re­
sumes reading and processing with the input line following the .EF control word that
was last processed.

Alternatively, if you specify:

. ef close

the next time the file is imbedded, SCRIPT/VS begins reading at the beginning of the
ille rather than where you left off.

Note: If the .EF {End of File] control word is included in the proftle specified with the
SCRIPT command, the contents of the ille preceding the .EF [End of File] control word
will be processed before the main document. The remainder of the file, after the .EF

Chapter 4. Combining SCRIPT/VS Input Files 49

Master Files

control word, is referred to as the epiflle and is automatically processed after the main
document. This indicates the end of processing.

Two control words, .QV (Quit] and .QQ [Quick Quit], cause SCRIPT/VS to stop proc­
essing entirely, regardless of whether the current flie is an imbed flie or not. When you
use the .QU [Quit] control word, processing stops after SCRIPTjVS prints the remain­
der of the current page (and any running footings in effect) and after SCRIPT/VS closes
all open flies. In contrast, the .QQ (Quick Quit] control word causes processing to stop
immediately with no fInal page eject. Therefore, all of the text on the last page will be
lost.

The .QQ [Quick Quit] control word can be useful when checking your flie for errors.
You can specify the TWOPASS option when formatting the flie and stop processing af­
ter the fIrst pass completes. For example, a very long input flie named MASTER 10 can
have the last input line:

.qq

When you format it at the terminal using the SCRIPT command:

script masterlO (term twopass

the flie is completely formatted during the fIrst formatting pass. Errors detected by
SCRIPT /VS can be displayed at your terminal for you to note and correct later. How­
ever, processing stops before the second pass occurs, and no formatted output will be
displayed.

Using imbeds in SCRIPT/VS has several advantages.

• For convenience in updating and tracking SCRIPT /VS flies, you can use one flie as
the master flie for a SCRIPT /VS document. The master flie can contain special for­
matting controls that are to be in effect for the entire document. The remainder of
the master me might contain only the .1M control words that imbed the remaining
flies.

• You can easily reorganize a large document that is composed of many small flies
that are imbedded in a single master flie. When you want to move or remove infor­
mation, you need only to change the position of the .1M [Imbed] control word in
the master flie, or to delete it.

• Small mes can be shared by several master flies. Each master flie can imbed the
small flies where appropriate. Therefore, you do not need to keep duplicate copies
of the same information.

• Although there may be a limit to the number of records that can be contained in a
single disk flie, within the limits of your virtual storage there is no restriction on the
number of flies that SCRIPT/VS can process.

• Many different people can work on pieces of the same document simultaneously.

Figure 5 on page 51 illustrates a typical master flie structure.

50 DCF: SCRIPT/VS Text Programmer's Guide

UNFORMATTED

xmaster xintro
xfigs I> text text text

.f1 on I text text text ,> B
· im xfigs
.im xintro --------------~ .f1 off <-----------,

--------text text text U <
· im xdescrip

< ---------------- .ef
----------- L Figure 1.

.im xconfig

.im xlist
· im xfunctn

SAMPLE

xintro text
xintro text
xintro text
xintro text
xintro text
xintro text
xintro text
xintro text
xintro text
xintro text

Page 1

>'---te-xtx-:::_:r~~:xt > ~
text text text
.f1 on
. im xfigs
.f1 off <----------------Figure 2.

L-----text text text
I

SAMPLE

Figure 1.
xintro text
xdescrip text
xdescrip text
xdescrip text

Page 2

FORMATTED

SAMPLE

Figure 2.
xdescrip text
xconfig text
xconfig text

Page 3

SAMPLE

xconfig text
xconfig text
xconfig text
xconfig text
xlist text
xlist text
xlist text
xlist text
xlist text
xfunctn text

Page 4

Figure S. Master File Structure

SCRIP T I VS Systenl Gellerated Files
SCRIPT /VS has a number of utility rues that are generated by the system when it en­
counters certain control words, or command options, or both. The user has the option
of defming or redefming these files using the .DD [Defme Data Filc-id] control word.
These rues and a brief description of them are listed below.

DSMTERMI The rue from which terminal input is read when SCRIPT /VS encounters
the .TE [Terminal Input] or .RV [Read Variable] control words. By default
this is the terminal.

DSMTERMO The rue into which terminal output is written when the .TY [Type on
Terminal] control word is specified, the TERM option of the SCRIPT com­
mand is specified, or messages are given when the MESSAGE (DELAY) op­
tion of the SCRIPT command is not specified. By default this is the
terminal.

DSl\UJTCTF The rue into which STAIRS/VS CTF output is written when
SCRIPT /VS encounters the CTF option of the SCRIPT command.

Chapter 4. Combining SCRIPT/VS Input Files S1

DSMUTMSG The fIle into which messages are written when the MESSAGE(DELA Y)
option of the SCRIPT command is specified.

DSMUTfOC The fIle into which the table of contents entries are written when
SCRIPT/VS encounters the .PT [Put Table of Contents] or .HO - .H6 [Head
Level 0 - 6] control words.

DSMUTWTF The fIle into which input lines may be placed dynamically when
SCRIPT/VS encounters the .WF [Write To File] control word.

\Vriting to an Output File

The .WF [Write To File] control word allows you to put input lines into a fIle dynam­
ically20. For example, you can collect figure captions for a figure list in one fIle and index
entries in another.

While you can have several .WF fIles, only one .WF fIle can be open at a time. \Vhen
SCRIPT/VS processes the .WF [Write To File] control word, one or more input lines
are written to a SCRIPT jVS file named DSMUTWTF.

• You can insert one input line into the fIle with:

.wf contents of the input line

• You can insert a specific number of input lines into the file with:

· wf 5
· in 3m
· ce 3
These dre the
lines to go
into DSMU1WTF.

Input lines that are written to the fIle will be processed for symbol substitution and
GML tag processing unless these functions have been specifically inhibited.

• You can also insert a number of input lines into the fIle with:

.wf on

Many input lines

· wf off

20 In ATMS-III, the .WF control word can only be used to write to a document in CICSjVS
auxiliary storage. It cannot be used to write to a document in either working or permanent
storage.

52 DCF: SCRIPT/VS Text Programmer's Guide

(~ \'~ ,

Note: The .WF OFF control word must appear on an input line by itself exactly as
it is shown here.

If you want to use .WF ON in a GML start tag APF, you can use the .WF TAG form
as shown in the following example:

· aa tag tag etag
· gs tag on
· ms on

· dm tag on
.wf tag
· dm off
.dm etag /.*

Then when you specify :TAG. all lines will be written to DSMUTWTF until the end
tag (:ETAG.) is encountered.

The write to fIle request is automatically ended before the end APF is invoked. GML
scanning is off during this form of write to fIle processing until the end tag is found.

You can later imbed the contents of the DSMUTWTF fIle with the IMBED parameter
of the .WF [Write To File] control word:

· wf imbed

After imbedding the DSMUTWTF fIle, you can add to the end of it with more .WF
control words. You can imbed the DSMUTWTF fIle into another file many times.

To add lines to the end of the CMS file PART6 ZORCH Zl:

.dd dsmutwtf part6 zorch zl

.wf on
Input lines
to be added
to PART6.
· wf off

Note: If the fIle (PART6 in the above example) is currently being imbedded or ap­
pended, you cannot add lines to it. That is, you cannot write into a fIle that is currently
being read.

To restore the fIle-id DSMUTWTF to the default real file, specify

.dd dsmutwtf dsmutwtf

\Vhen the contents of DSMUTWTF are no longer useful to you, you can erase the fIle
with the ERASE parameter of the .WF [Write To File] control word:

.wf erase

The DSMUTWTF me can be erased and reused many times.

Chapter 4. Combining SCRIPT /VS Input Files 53

M ergillg Documents jroln Several Sources
You can create a customized document from many different input ftles by using the .1M
[Imbed] and .EF [End of File] control words. An imbedded ftle can include .EF [End of
File] control words to cause a different group of input lines to be processed each time
the ftle is imbedded. This can result in customized sections of a document because each
group of lines from the imbedded ftle can contain the specific information for a partic­
ular section of the basic document.

You can use this technique to create a table whose format and content can be separately
updated or altered. To create such a table, you would set up one fIle containing the table
format and the symbolic names for the table entries and another ftle containing the .SE
[Set Symbol] control words that defme the actual values for the table entries. For exam­
ple, consider the following two SCRIPT/VS ftles:

File: TABLE File: TABLSYM

.tp 3 21 .se state 'STATE
· cs 2 on .se capital 'CAPITAL
· cs 1 ignore · ef
.sp 2 .se state 'Alabama
· fo off .se capital 'Montgomery
· bx 1 19 36 · ef
.se bxoff = .se state 'Alaska
· cs 2 ignore .se capital 'Juneau
· cs 2 off .ef
· im tablsym .se state 'Arizona
&$TAB.&state.&$TAB.&capital .se capital 'Phoenix
· bx &bxoff .ef
· cs 1 on .se state ' Arkansas
· fo on .se capital 'Little Rock
· cs 2 include · ef
.sp 2 .se state 'California
.ef .se capital 'Sacramento
· cs 1 off .se bxoff == off
· ap table · cs 1 include

When the command SCRIPT TABLE is issued, the table of state capitals will be gener­
ated. Each time the fIle T ABLSYM is imbedded, it is read starting with the input line
following the .EF control word that ended the last imbed. Each group sets new values
for the symbols &state and &capital. The last time TABLSYM is imbedded, the control
word .CS 1 INCLUDE is encountered. This allows the .EF control word in the parent
fIle to be recognized, terminating the table generation. The symbol &bxoff is set to the
word OFF, so that the last .BX control word will end the box. (The symbol &bxoff was
originally set to null, so that all the .BX control words encountered before the last one
merely repeat the same box defmition. The actual table looks like this:

54 DCF: SCRIPT/VS Text Programmer's Guide

STATE CAPITAL

Alabama Montgomery

Alaska Juneau

Arizona Phoenix

Arkansas Little Rock

California Sacramento

Imbedding Segments in Your Documents
You can use the .SI (Segment Include] control word to identify a segment to be included
in a column when a document is printed on a page printer. A segment can also be used
to reserve space for artwork when a document is printed on a line device. A segment can
be composed of text and images and it can be imbedded either directly in your document
or within a named area. See "Chapter 11. Placing Text in Named Areas" on page 133 for
more details on named areas.

You must specify the external name of the file that contains the segment. This name
depends on the system in which you are operating:

• CMS - the name is that of a CMS file, whose ftletype and filemode were identified
with the SEGLIB option of the SCRIPT command.

• TSO - the name is that of a member in the segment libr3.1Y.

• ATMS-III - the name is that of a member in the segment library, which was identi­
fied with the SEGLIB option of the SCRIPT command.

• MVS - the name is that of a member in the segment libraJ.y, which was identified
with the SEGLIB option of the SCRIPT command.

• VSE - segments are not supported in VSE.

The existence of the segment identified with the .S! control word is verified when the
document is formatted unless the NOSEGLIB option of the SCRIPT command is spec­
ified.

When your segment is printed on a page printer, it will be aligned according to the cur­
rent text formatting settings.

Specifying Segment Widtb and Deptb

If you want to reserve space for a segment that is incomplete or has not yet been created
- when, for example, you are working on a draft of a document - you can do so by
specifying a width, a depth, or both. As an example, if your document were one-column
and you expected the segment to take up a large part of the output page, you might
specify:

.si clash width 6i depth 7.Si

which reserves 6 inches of horizontal space 3.11d 7.5 inches of vertical space for the pro­
posed segment. Later, when the actual segment is included in your document, any width
and depth values you specify will be replaced by the actual size of the segment as it has
been specified in the segment libraJ.y.

Chapter 4. Combining SCRIPT/VS Input Files 55

Specifying Inline Page Segments

If you want the actual contents of the page segment and not just its name included in
the output data stream, use the INLINE parameter of the .SI [Segment Include] control
word.

If the requested page segment is not found and the INLINE parameter was not specified,
SCRIPT jVS will still put the page segment name in the output data stream. If the re­
quested page segment is found and the INLINE parameter was specified, SCRIPT jVS
will not put the page segment name in the output data stream. In either case, a message
is issued.

Using the &SW' and &SD' Symbol Attributes

The &SW' and &SD' symbol attributes can be used to determine the width and depth of
a segment. These symbol attributes can be useful when you are trying to dynamically
place a segment on the page.

If a segment named segl exists, for example, the value of &SW'segl will be the width of
segl specified in unqualified horizontal space units. Similarly, &SD'segl ""ill return the
depth of seg 1 in unqualified vertical space units.

When formatting for a line printer or when NOSEGLIB has been specified on the
SCRIPT command, the value returned by both symbol attributes will be o.
To obtain the width or depth of a segment in pels, thereby avoiding rounding, use
&DH'&SW'segl and &DV'&SD'segl.

The Segment Library

Keep in mind that when you process your document, SCRIPT jVS searches either the
default segment library or a segment library you have specified with the SEGLIB option
of the SCRIPT command for any segments you request with the .SI control word.
SCRIPT/VS automatically searches the default library for requested segments but you
must specify the SEGLIB option of the SCRIPT command if the segment you request
is in a segment library you have created. Note also that SCRIPT jVS searches only one
segment library, either the default library or the one you created, but not both.

The defaults for the 4250 printer are:

• In CMS, SEGLIB(PSEG4250)

• In TSO, SEGLIB(SYSl.PSEG4250)

• In ATMS-III, NOSEGLIB

• In batch MVS, SEGLIB(PSEG4250)

• In batch VSE, segments are not supported.

The defaults for the 3800 Printing Subsystem Model 3 are:

• In CMS, SEGLIB(PSEG38PP)

• In TSO, SEGLIB(SYSl.PSEG38PP)

• In ATMS-III, NOSEGLIB

• In batch MVS, SEGLIB(PSEG38PP)

• In batch VSE, segments are not supported.

56 DCF: SCRIPT/VS Text Programmer's Guide

The defaults for the 3820 Page Printer are:

• In CMS, SEGLlB(PSEG3820)

• In TSO, SEGLlB(SYS l.PSEG3820)

• In ATMS-III, NOSEGLIB

• In batch MVS, SEGLlB(PSEG3820)

• In batch VSE, segments are not supported.

If the segment you request is not in the library that SCRIPT/VS searches or there is no
segment library, then processing stops (unless you have specified the CONTINUE op­
tion of the SCRIPT command) and an error message is issued.

If you know a segment has not yet been created or there is no segment library, you can
specify the NOSEGLIB option of the SCRIPT command. SCRIPTjVS will not search
for a segment library and no error message will be issued. In this case, if no depth or
width was specified, no space is reserved for the segment in the formatted output.

The Composed Document Printing Facility (CDPF), which is used to print
SCRIPTjVS output on the 4250 printer, does not allow the use of a segment of the
same name more than once on the same page. SCRIPT jVS, however, has no such re­
striction for any printer.

Segments can be included as part of a figure. For example, assume the following segment
named BARCHART has been created and that it exists in the segment library.

- -
r-- !--

-
- !--

-

r--

-

W M A M J J A S o N D

This segment can then be included as the body of the following figure:

:fig frame=box place=inline width=column .
. s i barchart
:figdesc: Monthly Sales Report
: efig.

Chapter 4. Combining SCRIPT/VS Input Files 57

When the document is printed on a page printer, the segment will be combined with the
figure frame and figure caption to produce the following figure:

r-- .--
..-- f-

r-
r-- f-

r-

.--

r--

W M A M J J A S 0 N D

Monthly Sales Report

58 DCF: SCRIPT /VS Text Programmer's Guide

Chapter 5. Communicating with SCRIPT /VS

SCRIPT/ VS Messages and Severity Levels
When certain error conditions are encountered, SCRIPT/VS issues messages in the form
of a lO-character message identifier that includes a one-character severity level code.

The message identifier is in the fonn DSMmmmrumx

where

DSM

mmm

nnn

x

identifies the Document Composition Facility

is a three-character identifier of the program module that caused the message
to be sent

is a three-digit message number

is a severity level

The severity levels associated with these SCRIPT /VS messages are as follows:

R reply required

I informational

W warning

E error

S severe error

T tenninal error

Using a SCRIPT jVS Command Option to Control l\tlessage Printing

You can use the MESSAGE option of the SCRIPT command to control message print­
ing. You can specify:

• When messages are printed

• Whether the message number is to be included

• How the line causing the error was imbedded.

The MESSAGE option also controls the amount and timing of the information
SCRIPT /VS provides with error messages. If the MESSAGE option is not specified,
SCRIPT /VS provides a short message that includes the message text and, when appro­
priate, the line number and text of the input line last read when the error was detected.

Chapter 5. Communicating 'lith SCRIPT /VS 59

The MESSAGE option is specified as:

MESSAGE ([DELAY] [ID] [TRACE])

You must specify at least one parameter with the MESSAGE option; you can specify
two or all three parameters, separated by blanks. Each of the options can be abbreviated
as a single letter.

DELAY requests that SCRIPTjVS not display messages while a document is being dis­
played or printed. SCRIPTjVS accumulates messages in a utility fIle and appends them
to the end of the formatted output. DELA Y is always used in A TMS-III.

ID causes SCRIPT jVS to include the error message identifier along with the error mes­
sage.

TRACE causes SCRIPT/VS to list, whenever appropriate, the sequence of imbedded
ftles, from the file that includes the error input line backward to the primary input fIle.
This is useful when a file is imbedded in many other fIles.

If CONTINUE is specified, SCRIPT/VS continues processing unless a severe (S) or ter­
minal (T) error is encountered. Severe and terminal errors cause SCRIPT /VS to stop
processing even if CONTINUE was specified.

The NOCONT option stops processing after SCRIPT/VS encounters an error condition
of severity level E (error), S, or T and issues an error message.

Note: CMS truncates messages that are more than 130 characters long. Truncation can
also occur in the batch or TSO environments when the messages exceed the record
length of the message data set (DSMUTMSG).

For a description of SCRIPT /VS error messages, see the publication Document Compo­
sition Facility Messages.

The .MG [Message] Control Word

You can use the .M G [Message 1 control word to write out a message and to provide
diagnostic messages from macros.

Messages generated by the .MG control word can affect the return code from
SCRIPT/VS and can cause SCRIPT/VS processing to stop. Type S (severe) or type T
(terminating) messages always stop processing, and type E (error) messages stop process­
ing if the CONTINUE option of the SCRIPT command is not in effect. If, for example,
you specified

.mg IT/London's Burningl

then processing \\lould stop and the message - London's Burning - would be printed.

When a message is displayed, a prefix of "+ + + " appears before the identifier or text to
indicate the message was generated by the .MG control word. If no data is given with
the .MG control word, it is ignored.

60 DCF: SCRIPT/VS Text Programmer's Guide

The following is an example of the .MG [Message] control word as you might use it:

The control word:

.mg JOOlejThis is a message.j

is displayed as:

+++OOlE This is a message.

if MESSAGE(ID) is in effect, or:

+++ This is a message.

if MESSAGE(ID) is not in effect.

Interactive SCRIP T
You can interact with SCRIPT/VS while it is processing your document in order to
communicate with VM/SP and TSO or to trace SCRIPT/VS processing.

Interactive SCRIPT /VS Processing

For TSO and CMS, when you use SCRIPTjVS, you do not have to have all of your
input text in fmal form when you issue the SCRIPT command. Several control words
allow you to interact with SCRIPT /VS as your document is being formatted.

If you are in CMS (only), you can use the .RD [Read Terminal] control word when you
want to stop a typewriter tenninal during SCRIPTjVS output to type in some text.
SCRIPT/VS does not process this text in any way, but resumes its output when you
signal ATTENTION.

The .RD [Read Terminal] control word is meaningful only when the formatted output is
actually being typed at your terminal in CMS. The text typed is not processed by
SCRIPT/VS, but appears in the output exactly as it was typed. When using the .RD
[Read Tenninal] control word under CMS, specify

cp term attn off

before invoking SCRIPT/VS to suppress CP's normal attention acknowledgment. Re­
member, the .RD [Read Terminal] control word is recognized only in the CMS environ­
ment.

You can use the .RV [Read Variable] control word to set symbols to read values from
the terminal during SCRIPT/VS processing. When the .RV [Read Variable] control
word is encountered, a line is read from your telminal. This line is used as the right-hand
side of the equal sign to set the value of the symbol named in the .RV [Read Variable]
control word.

Any expression that would be allowable as the value in a .sE [Set Symbol) control word
is allowable here. (See the Document Composition Facility: SCRIPTjVS Language Refer­
ence for a complete description of the .SE [Set Symbol] control word and its syntax
rules.) If no name is given on the .RV [Read Variable] control word, it is ignored and no
line is read from the terminal.

The .RV [Read Variable] control word will be ignored in batch environments unless the
file DSMTERMI can be read.

Chapter 5. Communicating with SCRIPT/VS 61

The .TE [Terminal Input] control word accepts input lines of text or control words as
though they were part of an imbedded input fUe, and processes each line as it is entered.
The .TE [Terminal Input] control word accepts several operands. If, in the input fUe,
you specify

· te on

SCRIPT/VS reads input lines from the terminal until you type in

· te off

Then, SCRIPT/VS processing continues with the next line in the file. You can enter
SCRIPT/VS control words or text.

You can specify a numeric parameter with the .TE [Terminal Input] control word. For
example,

· te 4

causes SCRIPT /VS to read four lines from the terminal.

You can also stop terminal input with the .EF control word, which indicates the end of
the current file. 1ne .TE [Temlinal Input] control word is essentially an imbed, where
the fUe imbedded is the tenninal.

The .TE [Terminal Input] and .RV [Read Variable] control words are enhanced by using
the .TY [Type on Terminal] control word to produce a prompting message, which is
displayed at the terminal during SCRIPT /VS processing. The prompting message is not
fonnatted as part of the output.

The following example uses these control words to process and fonnat the same fUe an
indefinite number of times.

· .. start
.im heading
· ty Enter NAtfE (1 line)
· rd 1
.ty Enter ADDRESS (2 lines)
· rd 2
· im letter
.ty Any more? (YES or NO)
.rv answer = '
.if j&U'&answer eq jYES .go start

The .RV [Read Variable] control word allows one line to be entered at the terminal. It
assigns that line the symbol &answer. In the following .IF [If] control word, the upper­
case attribute (&U') of the symbol &answer is concatenated to an arbitrary delimiter (/Y'
and is compared to the string /YES.

Since your response is folded to uppercase, you can enter either yes or YES and the
comparands will be found equal, causing the loop to continue.

21 If you do not enter any text in response to the .RV control word, the value assigned to the
symbol &answer is null. When a symbol that can have a null value is used as a comparand
with an .IF [If], .AN [And], or .OR [Or] control word, an arbitrary preceding delimiter should ,4
be used, as discussed in "Chapter 21. Processing Symbols" on page 223. ~

62 DCF: SCRIPT/VS Text Programmer's Guide

Communicating with VM/SP

Another useful feature of SCRIPT /VS is the ability to execute CMS or CP commands
from CMS SUBSET during SCRIPTjVS processing. To execute a command or an
EXEC procedure, use the .SY [System Command] control word. For example,

.sy cp spool printer class s

Note: Because the SYOFF SCRIPT command option (which is the default) disables the
.SY control word, you must specify the SYON command option (which enables the .SY
control word) when you process your document. SYOFF and SYON are applicable only
in the CMS and TSO environments.

The .SY [System Command] control word is convenient if you ordinarily need to issue
several commands before you process a SCRIPT jVS file (you may need certain disks, a
particular printer class, as in the above example, and so on). With the .SY [System
Command] control word you can put the commands directly in the input file.

If a SCRIPTjVS file imbeds several files from another user's disk, you can include the
commands to link to and access the required disks. For example,

.sy cp link user2 191 291 rr rpass

.sy access 291 b

. im filea

. im fileb

.sy release 291 (detach

When you process a command during SCRIPTjVS processing,22 you might not want
SCRIPTjVS to continue processing if the command fails. To test the return code from
the CMS or CP command, you can check the value of the SCRIPT jVS system symbol,
&$RET:

.sy exec mysetup

.if &$RET ne 0 .qu

If the EXEC procedure MYSETUP completes with a nonzero return code, SCRIPT jVS
stops processing. If the return code is zero, execution continues with the next input line
following the .IF control word line.

Note: The CMS commands CP and EXEC are explicitly shown here for clarity. The
implied CP (IMPCP) and implied EXEC (IMPEX) functions are not turned off when
SCRIPT jVS executes, as they are within an EXEC file.

Communicating with TSO

The .SY [System Command] control word can be used to specify TSO commands and
procedures to be executed after SCRIPT jVS completes processing an input file. The
commands specified with .SY are passed to TSO for execution in the order they are en­
countered.

Note: Because the SYOFF SCRIPT command option (which is the default) disables the
.SY control word, you must specify the SYON command option (which enables the .SY

22 Caution must be exercised when processing commands in this way because they might cause
SCRIPTjVS to prematurely end processing as a result of the way in which.these commands
use and/or manage storage.

Chapter 5. Communicating with SCRIPT/VS 63

control word) when you process your document. SYOFF and SYON are applicable only
in the CMS and TSO environments.

The .SY [System Command] control word, for example, might be used to display the
output me after it has been formatted. To request that the document be sent to an out­
put me, you can, if you have followed correct TSO naming conventions and if you have
properly allocated another me, specify

script infile file('outfile')

Then if you enter

.syedit 'outfile' old

this causes the output me to be displayed.

For more details, see "TSO Naming Conventions" on page 18 and the discussion of the
FILE option of the SCRIPT command in the Document Composition Facility:
SCRIPTjVS Language Reference.

Tracing SCRIPT jVS Processing

One of the most powerful SCRIPTiVS control words is the .IT [Input Trace] control
word. This allows you to see the steps taken by SCRIPT/VS when it substitutes a value
for a symbol name. You can also see the step-by-step processing of the control words
that make up a macro or GML tag's APF. The .IT control word has many other capa­
bilities that allow you to trace specific events during SCRIPT/VS processing.

The Output Line Generated hy Input Tracing

When input tracing is activated, SCRIPT jVS generates one or more output lines that
describe the sequence of processing required for the input line about to be executed.
These lines are displayed as though they were messages. They are written to the same
output destination as messages. Each generated output line is in the form:

c [file-idJ [un] x <current source line>

where:

¢ is a code that identifies why the current source line is being traced:

file-id

C: Control word trace
G: GML substitution trace
M: Macro substitution trace
S: Symbol substitution trace
*: Symbol table snap

identifies the origin of the current source line. This is usually the name of the
file or macro currently being processed. If the name is in parentheses, the cur­
rent source line does not come from the me or macro currently being proc­
essed:

(ATf)

(BT II)

(FNLEAD)

The current source line displays an attribute of the GML
tag being scanned.

The current source line comes from a previously saved
running bottom title definition.

The current source line comes from a previously saved
footnote leader defmition.

64 DCF: SCRIPT/VS Text Programmer's Guide

(RHEAD)

(RFOO1)

(RULES)

(SCAN)

(IT n)

(VAIT)

The current source line comes from a previously saved
running heading defInition.

The current source line comes from a previously saved
running footing deftnition.

The current source line displays the rules that will be
used in scanning the current GML tag.

The current source line displays the text that will be
scanned for GML attributes.

The current source line comes from a previously saved
running top title deftnition.

The current source line displays the value attributes of
the current GML tag.

nn is the line number of the current source line, either within a flle or within a
macro.

x is the length (number of characters and blanks) of the current source line.

current source line is the line being traccd by SCRIPTjVS. The following description as­
sumes that all traceable events, control word tracing, symbol substitution
tracing, and macro substitution tracing (as specmed with .IT ALL), are being
traced:

• When the current source line contains only text, it is not displayed as
part of the input trace.

• When the current source line contains a control word (*C*),
SCRIPTjVS displays the current source line and then performs the con­
trol word function. However, if the STEP parameter of .IT is specmed,
you can change a control word current source line before it is executed.
SCRIPTjVS then executes the modified current source line (as described
in "Stepping through an Input Trace" later in this chapter).

• When the current source line contains a GML tag (*G*), SCRIPTjVS
displays the name of the GML tag and the APF that is called to process
it. If the GML tag has attributes, subsequent lines display the line
scanned and the attribute rules used in scanning it.

• When the current source line contains one or more symbols (*S*),
SCRIPTjVS:

• Displays the line as it is (*S*) before any symbols are substituted.

• Displays the line repeatedly, each time showing the next stage of
substitution, until each symbol has been replaced with its value. Un­
defmed symbol names are regarded as text.

• At this point, the line is processed as a line of text, or is traced as a
control word current source line (*C*) (as described above).

• \Vhen the current source line is from a macro expanSlOn (*M*),
SCRIPTjVS:

• Displays the line as it exists in the macro (*M*).

• If the line contains one or more symbols, SCRIPT jVS traces the
line as described above for symbol substitution tracing (*S*).

• At this point, the line is processed as a line of text, or is traced as a
control word (*C*) as described above.

Chapter 5. Communicating with SCRIPT /VS 65

Capabilities of the .IT Control Word

The above description made assumptions that allowed a simplified presentation of input
substitution tracing. However, the .IT (Input Trace] control word allows you to trace
events much more selectively and to only trace events that interest you.

• When you want to display all traceable events processed by SCRIPTjVS, specify:

· it al1

• When you want to trace only symbol substitution (and no other traceable events)
specify:

· it sub

• When you want to trace only macro expansions (and no other traceable events)
specify:

· it mac

Symbols that are part of the macro expansion are traced. However, symbols that are
not part of a macro expansion will not be traced.

• \Vhen you want to trace occurrences of control words that interest you, specify
them with the .IT control word:

.it ctl .if .el .th

When .IT ON is specified, all occurrences of these control words will be traced.

For example, to trace each occurrence of the .IN [Indent], .IL [Indent Line], and
.OF [Offset] control words, specify:

.it ctl .in .il .of

The .IN, .IL, and .OF control words are added to the list of control words currently
being traced, called the control word table.

When you want to stop tracing for control words, but want to continue the input
trace for other kinds of input items previously specified, specify

· it ctl

The CTL parameter of the .IT control word clears the list of control words being
traced.

• \Vhen you want to stop tracing control words but leave the control word table in­
tact for later tracing, or if you want to tum off all input tracing, specify:

· it off

When you want to resume tracing the control words currently in the table, specify:

· it on

To add more control words to the control word table, issue another .IT CTL com­
mand:

· it ctl . if . el

66 DCF: SCRIPT/VS Text Programmer's Guide

When you want to display the current value of a macro or symbol, specify the
SNAP parameter of the .IT control word. For example, if you want to fmd out the
current defmition of the @LIST macro specify:

. it snap @LIST

The current defmition of the symbol or macro is then displayed. The SNAP param­
eter does not affect other parameters of the .IT control word and can be specified
even when input tracing is turned off.

Chapter 5. Communicating with SCRIPT /VS 67

Part 2. Document Co nIp os ition Facilities of SCRIPTI vs
In this section of the book the many document composition facilities provided by
SCRIPT /VS are discussed.

Included in this section are the following chapters:

• Chapter 6 - Composing Lines

• Chapter 7 - Hyphenating and Horizontally Justifying Text

• Chapter 8 - Creating Vertical Space

• Chapter 9 - Vertically Justifying Text

• Chapter 10 - Establishing Page Layout

• Chapter 11 - Placing Text in Named Areas

• Chapter 12 - Composing Multiple-Column Pages

• Chapter 13 - Creating Head Levels and Table of Contents

• Chapter 14 - Creating Rules and Boxes

• Chapter 15 - Selecting Fonts

• Chapter 16 - Keeping Blocks of Text Together

• Chapter 17 - Creating Footnotes

• Chapter 18 - Translating Characters

• Chapter 19 - Creating an Index.

Part 2. Document Composition Facilities ofSCRIPT/VS 69

Chapter 6. Composing Lines

SCRIPTj VS Text Formatting

Format l\1ode

SCRIPT /VS can fOlmat input text to build output lines. This formatting consists of two
processes that SCRIPTjVS perfonns as it builds output lines:

• Concatenation: moving words from one line to another to put as many words as
possible on each output line

• Justification: distributing space between words to align the right edges of output
lines (right-justified).

Most documents that you compose require some kind of fonnatting. With fonnat mode
on, lines that are entered in a SCRIPT/VS file as:23

The quick brown fox
came over to greet the lazy
poodle.
The lazy poodle was
as indifferent
as the fox was quick.

result in the output lines:

The quick brown fox came over
to greet the lazy poodle. The
lazy poodle was as indifferent
as the fox was quick.

When SCRIPTjVS reads input, it saves words until it accumulates enough of them to
fill an entire output line. When the next word in the input would make the line too long,
SCRIPT /VS justifies and prints the line, then begins formatting the next output line.
When two input lines are joined (that is, concatenated), SCRIPTjVS inserts blank space
between the last word of one line and the first word of the next.

If you enter text in a SCRIPT/VS file with no markup, the defaults established by
SCRIPTjVS cause the text to be concatenated and justified as in the above example.

23 Many of the examples of SCRIPT fVS formatting in this book are shown, for convenience.
with short lines.

Chapter 6. Composing Lines 71

Centered Text

There may be occasions when you do not want SCRIPT/VS to concatenate and justify
the input lines. You may want to present a simple list, such as:

Boston
Chicago
New York
Providence

If these lines are processed when SCRIPT /VS formatting is in effect, the four names are
concatenated as follows:

Boston Chicago New York Providence

To prevent this, you can use the .BR [Break] control word between each entry to force a
break,z" or you can use the .FO (Format Mode] or the .NF (No Formatting) control
words to suspend SCRIPT jVS justification and concatenation:

· fo off
Boston
Chicago
New York
Providence

-or-

.nf on
Boston
Chicago
New York
Providence

To restore normal formatting, use the control word:

· fo on -or- . nf off

Because ON is the default for .FO (Format Mode], you can also specify:

· fo

If you use the .FO OFF or the .NF ON control words when you create tables or charts,
remember to turn formatting back on when you resume entering text.

SCRIPT/VS allows you to center text using the .CE [Center] control word, and to align
text with the right margin using the .RI [Right Adjust] control word.

When using the .CE [Center] and .RI [Right Adjust] control words, remember that the
text lines affected by these control words are not concatenated or justified.

The .CE [Center] control word adjusts an output line to provide an equal amount of
space on either side of the line. The line

• ce Chapter 1

results in:

Chapter 1

Both the .CE (Center] and .RI [Right Adjust] control words allow you to specify a nu­
meric parameter, indicating how many input lines should be centered or aligned with the
right margin. For example,

24 The .BR [Break] control word is discussed later in this chapter under "Breaks" on page 77.

72 DCF: SCRIPT/VS Text Programmer's Guide

Ragged Right

· ce 4
After this control word is processed,
the next four lines from the input file
are centered within the current
margins.
However, subsequent input lines are
processed without centering,
to produce formatted (that is,
concatenated and justified)
output lines.

results in:

After this control word is processed,
the next four lines from the input file

are centered within the current
margins.

However, subsequent input lines are processed without
centering, to produce formatted (that is, concatenated
and justified) output lines.

You can also center text using the CENTER parameter of both the .FO and .NF con­
trol words.

The following paragraph is formatted using the .FO CENTER control word:

Do not confuse the .CE [Center] control word with the .FO
[Format Mode] CENTER control word. The .FO CENTER con­
trol word allows you to fonnat the input lines with concatenation,

producing unjustified output lines that are centered between the
column's margins (that is, with ragged left and ragged right edges).

The following text is formatted using the .NF CENTER control word.

Up and spoke an elderly knight,
Who sat at the king's right knee:

"Sir Patrick Spence is the best sailor
That sails upon the sea."

The difference between .FO CENTER and .NF CENTER is that .FO CENTER will
cause input lines to be concatenated while .NF CENTER will not.

The .FO [Format Mode] OFF control word suspends both concatenation and justifica­
tion. When you want to produce SCRIPTjVS output that resembles typewriter output
(that is, ragged right output), you want each line to contain as many words as can fit on
it, but you do not want extra space inserted between the words to pad the line to a spe­
cific length. To achieve this, use the .FO [Format Mode] LEFT control word:

· fo left

When the .FO [Format Mode1 LEFT control word is in effect, output is formatted as in
the above paragraph. To resume justification of output lines, use the ON parameter of
the .FO control word:

· £0 on

Chapter 6. Composing Lines 73

Ragged Left

If you want your text to be left-aligned in the column but not concatenated, you can use
the .NF LEFT control word to produce the following output.

The king sits in Dumferling town,
Drinking blood-red wine:
"0 where will I get a good sailor
To sail this ship of mine?"

The .RI [Right Adjust] control word adjusts an output line to align it with the right
margin. For example,

· ri Chapter 1

results in:

Chapter 1

You can also usc the ON and OFF parameters with the .RI [Right Adjust] control
word. For example,

· ri on
These lines must
be flush with the
right margin.
· ri off

results in:

These lines must
be flush with the

right margin.

All the output lines between the .RI [Right Adjust] ON and .RI [Right Adjust] OFF
control words are aligned with the right margin. No concatenation or justification takes
place.

You can use the .FO RIGHT control word if you want to format input lines that are
concatenated and that produce ragged left output (unjustified output lines aligned with
the right margin).

The following paragraph is formatted using the .FO RIGHT control word.

Do not confuse the .RI [Right Adjust] control word with the .FO RIGHT
control word. The .ro RIGHT control word allows you to format input

lines with concatenation, producing unjustified output lines that are aligned
with the right margin (that is, ragged left edge).

If you want your text to be right-aligned in the column but not concatenated, you can
use the .NF RIGHT control word to produce the following output.

The king has written a braid letter,
And signed it with his hand,

And sent it to Sir Patrick Spence,
Who was walking on the sand.

74 DCF: SCRIPT/VS Text Programmer's Guide

Alternate Formats

You can use the .FO INSIDE control word if you want input lines to be concatenated
and aligned so that resulting output lines are against the inside margin of the column -
towards the presumed binding edge of the duplexed page. This is equivalent to .FO
LEFT for odd pages and .FO RIGHT for even pages. The following text was formatted
using the .FO INSIDE control word.

The first line that Sir Patrick read, A loud laugh laughed
he; The next line that Sir Patrick read, Caused the tears to
flow full free.

You can use the .FO OUTSIDE control word if you want input lines to be concat­
enated and aligned so that resulting output lines are against the outside margin of the
column - away from the presumed binding edge of the duplexed page. This is equivalent
to .FO RIGHT for odd pages and .FO LEFT for even pages. The following text was
formatted using the .FO OUTSIDE control word.

"Make haste, make haste, my merry men so fme Our guide ship sails in the
morn." "0 say 'tis not so, my captain great, For I fear a deadly storm."

If you want your text to be aligned against the inside margin of the column (towards the
presumed binding edge of the duplexed page) and not concatenated, you can use the .NF
INSIDE control word to produce the following output.

"Late last night I saw the new moon,
With the old moon in his arm,
And I fear, so fear, my captain dear,
That we will fall to harm."

This is equivalent to .NF LEFT for odd pages and .NF RIGHT for even pages.

If you want your text to be aligned against the outside margin of the column (away from
the presumed binding edge of the duplexed page) and not concatenated, you can use the
.NF OUTSIDE control word to produce the following output.

"0 who is this has done this deed,
This ill deed done to me,

send me out this time of the year,
To sail upon the sea!"

This is equivalent to .NF RIGHT for odd pages and .NF LEFT for even pages.

Overdraw Optiolls
With concatenation suspended, if the input line is longer than the output column line
length or if concatenation is on and a single word is longer than the column line length,
the placement of excess characters depends on the other parameters of the .FO [Format
ModeJ or .NF [No Formatting] control words:

• EXTEND: the excess characters are printed on the same output line; the line is al­
lowed to extend beyond the column line length. This is the default setting.

• FOLD: the excess characters are printed on the next output line.

• TRUNC: the excess characters are truncated at column line length and are not
printed.

Chapter 6. Composing Lines 75

Splitting Text

With .FO FOLD or .FO TRUNC or with .NF FOLD or .NF TRUNC, a word is di­
vided at the last character to fit in the column.

Perhaps you want to align part of an output line with the left margin, and the other part
with the right margin, all on the same line. You can do this by using left and right tabs
as described in "Using Tabs" on page 84. You can also do this by using the .SX [Split
Text] control word, whose format is:

.sx /Left-edge text/fRight-edge text/

which results in:

Left-edge text Right-edge text

In this example, the slash (f) is used as a delimiter to separate the control word fields.
SCRIPT/VS recognizes the first character after the blank (in this case, the slash) as the
delimiter character for the control word. If you want to use a slash as part of the text,
use some other character as a delimiter. For example,

.sx ¢SCRIPT/VS Text Programmer's Guide¢¢Control Words¢

is formatted as:

SCRIPT/VS Text Programmer's Guide Control Words

The space between the parts of split text can be left blank or you can specify a fill string
or leader that can either be centered or repeated as often as necessary to fill the space
between the two parts of the split text.2S The default action is to repeat the fill string. For
example,

.sx /Left side/*-/Right side/

results in:

Left side *_~'r_-Ir_"ir_ .. 't_i~_"l(_*_*_.,'r_"ir_*_*_*_-Ir_*_*_*_*_*_ Right side

You can also cause the fill string to be centered by specifying the C parameter on the
.SX control word. For example,

.sx c /Left side/middle/Right side/

results in:

Left side middle Right side

If the left-side text of the output line does not fit on a single line with the right-side text,
SCRIPT /VS will allow the left side text to extend past the column line length or trun­
cate it at the column line length depending upon the overdraw option in effcct (if EX­
TEND is in effect it will extend, if FOLD or TRUNCATE is in effect it will truncate).
To prevent this, specify the F parameter. This parameter causes SCRIPTjVS to fold the

2S A fill string that is to be centered and not repeated may be as long as the space remaining ~
between the left-side text and the right-side text. If a fill is too long it will be ignored.

76 DCF: SCRIPT/VS Text Programmer's Guide

Breaks

portion of the left-side text that does not fit on the current line onto the next line. A
foldable split text, as used in tables of contents, could be specified as:

. of 1

.sx f /An example of a folded split text line/ ./58/

The result is:

An example of a folded split
text line 58

The fill character and the right-side text are never folded. The F parameter can be partic­
ularly useful when producing such things as a list of illustrations that has figures with
long captions.

When you want an input line to begin a new line of output, you must cause a break.
The break causes SCRIPT /VS to promote the partial output line that is being built be­
fore it processes the next input line.

If you begin a line with a blank or a tab, the formatting process is interrupted2S , the text
that has accumulated for the current output line is promoted, and the next input line
begins a new output line.

To create paragraphs in text, one method you can use is to enter spaces before each line
that begins a new paragraph. For example,

The quick brown
fox
came over to greet the lazy
poodle.
Notice that the above sentence
contains each letter of the
alphabet, except the letters J
and S.
That's why the quick brown fox
usually jumps.

But the poodle was frightened
and ran away.

results in:

The quick brown fox came over
to greet the lazy poodle.
Notice that the above sentence
contains each letter of the
alphabet, except the letters J
and S. That's why the qUick
brown fox usually jumps.

But the poodle was frightened
and ran away.

26 This is not always true during GML processing. See "Residual Text Processing" on page 283
for more details.

Chapter 6. Composing Lines 77

Indenting

Simple Indention

You can specify a break using the .BR [Break] control word.

The quick brown
.br
fox came over to greet .. , but
. br
you know the rest.

results in:

The quick brown
fox came over to greet ... but
you know the rest.

Without the .BR [Break] control word between the two input lines, the above input lines
format as:

The quick brown fox came over
to greet ... but you know the
rest.

Some SeRI PT;VS control words cause a break in addition to their explicit function.
For a complete list of the control words that cause a break see the Document Composi­
tion Facility: SCRIPT/VS Language Reference.

To improve readability or emphasize a block of text, you may want to alter the left or
right column margins. Two SCRIPT;VS control words are provided for this purpose:

• .IN [Indent] - change the left margin for subsequent output lines.

• .IR [Indent Right] - change the right margin for subsequent output lines.

These control words normally cause a break. When the NOBREAK parameter of .IN
and .lR is specified, a break is not performed.

The most basic form of indention is simple modification of the left or right margin.
When the indention is zero, all text output lines originate in the leftmost print position
of the column as specified with the .PM [Page Margins] control word or the BIND op­
tion of the SCRIPT command. By increasing the indent, the left margin can be moved
to the right. For example, by specifying

. in 6m

--6m->
the left margin is set 6M to the right of column origin. The left margin may
also be changed by specifying an incremental value to be applied to the

78 DCF: SCRIPT/VS Text Programmer's Guide

current left margin. This is called relative indenting. For example, by speci­
fying

. in +5m

---11m >

---8m-->

the value 5M is added to the current left margin. In this exam­
ple, 6M + 5M is 11M, so the current left margin is now 11M
to the right of the column origin. You can move the current left
margin to the left by specifying a negative value. For example,
by specifying

. in -3m

the value 3M is subtracted from the current left margin. In tIus exam­
ple, 11M - 3M is 8M, so the current left margin is now 8M to the
right of its origin.

You can return the left margin to the column origin by specifying

. in 0 -or- . in

The right margin can be easily changed with the .IR [Indent Right] control word. With
justification on, the last character in each line is flush with the right margin. By changing
the right indent the right margin can be moved to the left.

For example, by specifying

· ir 8m

<--8m--­
the right margin is moved 8M to the left. As with .IN [Indent] you can
modify the current right margin using relative values. For example, by
specifying

· ir +3m

the value 3M is added to the current right indent. In this exam­
ple 8M + 3M is 11M, so the current right margin is now 11M
to the left of its origin.

You can return to the original right margin by specifying

· ir 0 -or- . ir

< Ilm----

In practice it is more convenient to use relative indention rather than absolute indention.
The advantage of relative indention is that you need not be sensitive to the actual value
of the margin that you are changing. Relative indents will work in context with the sur­
rounding text so that the document can be imbedded into another while maintaining the
same relative appearance.

Temporary and Permanent Indention

Ordinarily, indention set with the .IN [Indent] and .IR [Indent Right] control words is
permanent until changed by a sinlllar control word. However, if a vertical extent is speci-

Chapter 6. Composing Lines 79

fied with the FOR parameter, the change is temporary; the indention reverts to the per·
manent value when the specified amount of vertical space has been formatted.

For example, to indent just the first line of a paragraph, specify:

· in 5 for 1

The indention of five spaces is temporary, and lasts for only one line. The second
line reverts to the left margin.

To create a hanging indent, a negative temporary indention can be applied to a perma·
nent indention. For example,

· in 5
· in -3 for 1

Subsequent text will be indented five spaces, except for the
first line, which will be indented only two spaces.

The JL [Indent Line] and .UN [Undent) control words provide functions similar to the
FOR parameter of .IN [Indent). Figure 7 on page 82 illustrates a more general use of
temporary indention with both .IN and JR.

Current margins:
1<-- -->1
The current left margin is the position established by the combined effect of
the .IN £Indent], .OF [Offset], .UN [Undent1, and .IL [Indent line1 control
words. The current right margin is determined by the combined effect of the
.Cl [Column line length1 and .IR [Indent Right] control words .

. Il 5 [Indent line]:
-->1

The first line following the indent line control word is moved to the
right of the current left margin. All subsequent lines start at the current
left margin. (Changes affect the current left margin for one line.)

. IN 9 [Indent]:
---->1

All lines following the indent control word are moved to the right of
the current left margin. (Changes affect the current left margin for
all subsequent lines until respecified.)

.OF 5 [Offset]:
1->1
The first line following the offset control word is not indented

from the current left margin; all subsequent lines are in­
dented. The offset remains in effect until changed by another
offset or indent control word. (Changes affect the current left
margin after one output line.)

.UN 5 [Undent]:
1<-1
The first line following the undent control word is shifted to the left

of the current left margin; all subsequent lines start at the cur­
rent left margin. (Changes affect the current left margin for one
line.)

.IR 5 [Indent Right]:
1<-­

All lines following an indent right control word are justified
to the column line length minus the right indention. (Changes
affect the current right margin for all subsequent lines until
respecified.)

Figure 6. How the Current Margins Are Established

80 DCF: SCRIPT/VS Text Programmer's Guide

By default, the .IN (Indent] and .IR (Indent Right] control words cause a break, and take
effect on the next output line. For example, if you enter

Some lines of text that have
little or no meaning to anyone
· in .5i for 3
and use the . IN control word
to request an indention of
one-half inch for the next 3
lines or until indention is
reset.

the result is:

Some lines of text that have
little or no meaning to anyone

and use the . IN control
word to request an
indention of one-half

inch for the next 3 lines or
until indention is reset.

If you do not want a break to occur, you can use the NOBREAK parameter of either
the .IN [Indent] or .IR [Indent Right] control words. For example, if you enter

Some lines of text that have
little or no meaning to anyone
· in .5i for 3 nobreak
and use the . IN control word
to request an indention of
one-half inch for the next 3
lines or until indention is
reset.

the result is:

Some lines of text that have
little or no meaning to anyone

and use the . IN control
word to request an
indention of one-half

inch for the next 3 lines or
until indention is reset.

The AFTER parameter may be used to delay the indention until a specific amount of
vertical space has been fonnatted.

For example, a hanging indent may also be created by delaying indention for one line:

· in 1i after I

Chapter 6. Composing Lines 81

Subsequent text will be
indented one inch,
except for the
first line, which
will have the
indention of the
preceding text.

The FOR and AFTER parameters of the .IN [Indent] and .IR [Indent Right] control words determine
the duration and extent of temporary indention. For example,

.in + 1 i for 1 i after .5i

.ir + 1i for 1i after 1i

The FOR parameter indicates that the margin change is temporary and will only be in effect for the
duration specified. The current margin for any line is a combination of the permanent and temporary
indention values that have been specified. If you specify the temporary indention as a negative value
(-), the current margin is decreased; if you specify it as a positive value (+), the current margin is

increased. After the duration of a temporary indention has been reached, the current
margin reverts to the permanent indention that was in effect before the temporary
indention. If another temporary indention is encountered prior to the completion of an
existing one, the existing one is immediately stopped and the new
margin is the sum of the permanent indention margin and the new
temporary indention. A temporary margin change can either start im-
mediately (if the AFTER parameter is not specified) or after the verti-

cal distance specified with the AFTER parameter. Once the values specified with the
FOR and AFTER parameters have been satisfied, the margin reverts to the perma­
nent indention that was in effect before the temporary margin went into effect.

Figure 7. Permanent and Temporary Indention

Using Indention with Tabs

A definition list contains dcfmition terms of varying length followed by the text that de­
fines these terms. To ensure that all the text lines originate at the same point on the
output line, follow each term with a tab to the current indention.27 For example, if you
specify

27 You can also use the TO parameter of the .IS control word to perform a single, immediate A

tab to the value of the current indention. (~

82 DCF: SCRIPT/VS Text Programmer's Guide

· in 12m
· tp 12m
· ti -. 05
· in -12m for 1
.uc term-.definition
· sk 1
· in -12m for 1
BEE-.any of a number of related four-winged, hairy
insects which feed on the nectar of flowers .
. sk 1
· in -12m for 1
BEEKEEPER-'person who keeps bees for producing
honey; apiarist.
· sk 1
· in -12m for 1
BEESWAX-.a tallow-like substance secreted by
honeybees and used by them in making their
honeycomb.

The result will be

BEE

BEEKEEPER

BEESWAX

DEFINITION

any of a number of related four-winged, hairy
insects which feed on the nectar of flowers.

person who keeps bees for producing honey;
apiarist.

a tallow-like substance secreted by honeybees and
used by them in making their honeycomb.

The tab ensures that the text portion of each initial line starts at the same point on the
output line as the next output line. If you did not use the tab or the .IS [Inline Space)
control word, you would have to manually space the number of blanks necessary to po­
sition the first word of the text to the appropriate point. There are some disadvantages to
manually entering the blank space:

• The number of keystrokes and attendant potential for error is greater.

• The blank space may be increased in width if justification is on. This problem can
be avoided by using required blanks.

• The space can not always be accurately filled with manually entered blanks if you
are formatting the document for the 3800 Printing Subsystem.

• With proportional fonts, such as those you can use with page printers, the exact
amount of space required may vary depending on the width of the characters on the
left hand side.

Indentions and tab-like results similar to those described above can be created with se­
veral other control words as well. The .IL [Indent Line) control word, for example, can
be useful for beginning paragraphs. To create a paragraph with just the first line indented
you could enter

. i1 3m

which results in output like this:

Chapter 6. Composing Lines 83

Using Tabs

This line is preceded by the
control word .IL 3M and it has
enough text to show how the
first line is indented
differently from subsequent
lines.

Another way to make tab-like indentions is to use the .OF [Offset] control word. Since
the .OF control word does not take effect until after the next line is formatted, you could
enter

. of 3

to achieve the follO\ving results:

The line immediately following
the . OF control word is
printed at the current left
margin. All lines thereafter
(until the next indent or
offset request) are indented
three character spaces from
the current margin setting.

To end offset, enter

. of

and the effect of any previous .OF request is cancelled and all output after the next line
continues at the current left margin setting.

You can create output much like that shown in the .OF example above by using the
.UN [Undent] control word. If, for example, you have a normal indention of 3 picas
from the left margin you could enter:

.un 3p

to achieve the following results:

If an indention of 3 picas is
in effect (as in these
lines), the next line is
undented to the left
margin; all following
lines have the normal
indention of 3 picas from
the left margin.

Use the .TP [Tab Position] control word to derme how tab characters (hexadecimal 05)
are to be resolved.

To generate the tab character (hexadecimal 05) in your input lines, you can use one of
the following techniques:

84 DCF: SCRIPT/VS Text Programmer's Guide

Processing Tabs

• Choose a character that you would not normally use in your text and assign it the
hexadecimal 05 using the .TI [Translate Input] control word. The .TI [Translate
Input] control word can be used to translate any keyable character to a tab character
on input. For example, to set the not sign (....) character to a tab character, specify

. ti ... OS

This causes every character to be translated to a tab in the input line, before
fonnatting occurs. Using this technique, you can see your tab characters when you
edit the input me.

• Use the SCRIPT/VS system symbol &$TAB., which has the value of a tab charac­
ter (hexadecimal 05), anywhere in a text line where a tab is needed. Using this tech­
nique, you can see your tab characters when you edit the input me. Always delimit
the symbol with a period (.).

• Using an editor, build the text lines with hexadecimal 05 characters as required.
Some text editors, such as the CMS editor, allow you to assign the tab function to
any keyable character. When the specified character is entered, the editor changes it
into a tab character.

• Build the input me using an input device that can generate a hexadecimal 05 in re­
sponse to pressing a key (some terminals, the IBM 2741 Communications Terminal,
for example, have a special key that, when pressed, generates a tab character.)

The last two techniques have the disadvantage of putting nondisplayable data into
the input me. When such a me is examined with a different terminal or editor, the
tab characters may be invisible.

When SCRIPT/VS processes an input line and encounters a tab character, it fonnats the
line using the current tab settings that were established using the .TP [Tab Position] con­
trol word.

The default tab settings (the ones SCRIPT /VS uses if you do not specify any with the
.TP control word) are at every filth horizontal space20 position to position 80.

lf a tab character is found in an input line, the text following the tab character is posi­
tioned at the next tab position. For example, these input lines

.tp .Si I.Si 2.Si
Position&$TAB.this with a tab.

will be formatted as

Position this with a tab.
f---> ----------> >

Tab positions can be added to those currently in effect. These input lines

. tp add Ii
Position&$TAB.this with a tab.

will be fonnatted as

20 Horizontal space is based on the width of the figure space in the initial font.

Chapter 6. Composing Lines 85

Position this with a tab.
\--> --> --> >

To change the default tab setting values, specify the tab settings you want using the .TP
[Tab Position} control word. For example, specifying

· ti ... 05
· tp 8m 18m 30m
... This line starts with a tab.

results in the following format:

This line starts with a tab.
~------>--------->--------->

Once a .TP control word has been processed, the tab settings remain in effect until ex­
plicitly reset by another .TP control word.

You can add tab settings to the ones that already exist by including the ADD parameter
when specifying the .TP [Tab Position} control word. For example, if your current tab
settings are at positions 15m, 30m, and 45m, to put an additional tab setting at position
25m, specify

· tp add 25m

This gives you tab settings at positions 15m, 25m, 30m, and 45m.

You can remove one or more of your tab settings without respecifying the ones you
want to keep. Specify the .TP [Tab Position} control word with the DEL parameter and
the tab settings that you want removed. For example, if your current tab settings are at
15m, 25m, 30m, and 45m, specifying

· tp del 15m 25m

leaves you with tab settings at positions 30m and 45m.

If you want to respecify all of your tab setting positions, you can specify .TP SET fol­
lowed by the new tab settings that you want to have in effect. For example, specifying

.tp set 10m 20m 40m 60m

leaves you with tab settings at positions 10m, 20m, 40m, and 60m regardless of the pre­
vious tab settings.

If the .TP control word is entered with no parameters, the initial tab positions at 5, 10,
15, ... , 80 are restored. For example, the input lines

· ti ., 05
· tp

will be formatted as

* * * * *
r---> ---> ---> ---> ---> --->

86 DCF: SCRIPT/VS Text Programmer's Guide

Tab Fill Characters

Ordinarily, tab characters are replaced with an amount of horizontal white space suffi­
cient to position the text following the tab character at the next tab position. You can
specify a "tab flll character" to be used instead of horizontal white space. For example,

· ti ., 05
· tp . /5m
.,This line begins with a tab.

is formatted as:

..... This line begins with a tab.

You can specify different fill characters for each tab setting position you specify with the
.TP control word. The fill character and its tab position designation are separated by a
slash (/). For example, the input lines

· ti ., 05
.tp ./10 ,/20 -/30
hup"one.,two.,ten

will be formatted as

hup one""",two-------ten
I > > >

The fill character is formatted in the current font when the fill string is being formatted.

If the space to the next tab stop is less than the width of one fill character (or less than
24 pels, for 3800 line printers), the tab stop after the next is used.

On the 3800 Printing Subsystem, fill characters are only supported with monospaced
fonts. If you use fill characters with proportionally spaced fonts, vertical misalignment
may result.

Tab Positioning and Alignment

You can use the .TP [Tab Position] control word to specify that text following a tab
character is to be left- or right-aligned at a tab position, centered about a tab position, or
aligned with , the first occurrence of a particular character positioned at a tab position.

Tab characters at the beginning of an input line cause a brealc in concatenation. There­
fore, you can use tab characters to create simple lists. For example, the input lines:

· ti ., 05
· tp 5m
Go look for:
.. Jake
"Frederick
"Santiago

are formatted as:

Chapter 6. Composing Lines 87

Go look for:
Jake
Frederick
Santiago

r---> >
The text following a tab character is normally left-aligned at the next tab position. You
can also define tab positions at which text is centered and right-aligned. For example,

. ti .. 05

.tp .Si right l.Si center
"l) .. Dog
"2) .. Crump
"3) .. Cramp
.. 4) .. Tackled
.. S) .. Bedazzled

The text following the first tab character will be right-aligned at the frrst tab position,
one-half inch from the margin. The text following the second tab character will be cen­
tered about the second tab position, one and one-half inches from the margin:

1) Dog
2) Crump
3) Cramp
4) Tackled
5) Bedazzled

r--> ---->
You can also indicate that the text following a tab character be aligned with the first
occurrence of a specific character at the tab position. For example,

. ti .. OS

.tp .Si left -j2i char .

.. Expensive"$1234.
"Cheap"$.OOS
"Reasonable'$1.00

The text following the first tab character will be left-aligned at the frrst tab position. The
text following the second tab character will be positioned so that the first period is left­
aligned at the second tab position and the space between the two pieces of text will be
filled with hyphens (-):

Expensive----$1234.
Cheap------------$.OOS
Reasonable------$1.00

r--> >
You can also use the .TP control word to interchange columns of data without actually
changing the input data. In the following example, the .TP control word is used to de­
fine tab positions at 10, 20, and 45. The text following the third tab position at 45 will
be left-aligned with the period.

88 DCF: SCRIPT/VS Text Programmer's Guide

· ti ., 05
.tp 10 20 45 char
"name l"'description of 1"$11. 50
"'name 2"'description of 2"$1. 50
"'name 3"'description of 3"$33
"name 4"'description of 4"$0.50
"name 5"description of 5"$44.50
"name 6"'description of 6"$101. 50

This results in the following columns of data. Name is placed at position 10, description
at position 20 and cost at position 45.

name 1 description of 1 $11. 50
name 2 description of 2 $1. 50
name 3 description of 3 $33
name 4 description of 4 $0.50
name 5 description of 5 $44.50
name 6 description of 6 $101.50

When using the .TP control word, tab stops need not be specified in ascending order.
This allows you to rearrange columns of data without changing the data. By changing
the tab stops as shown below, you can rearrange the data so that the description appears
fIrst at position 10, followed by name at position 32, and cost at position 45.

· ti ... 05
· tp 32 10 45 char
"'name l"'description of 1"'$11.50
"name 2"'description of 2-'$1.50
"'name 3"'description of 3"'$33
"'name 4"'description of 4"'$0.50
"'name 5"'description of 5"'$44.50
"name 6"'description of 6"'$101. 50

Resulting in the following columns of data:

description of 1 name 1 $11.50
description of 2 name 2 $1. 50
description of 3 name 3 $33
description of 4 name 4 $0.50
description of 5 name 5 $44.50
description of 6 name 6 $101.50

Using Inline Spacing for Tabs

Another way to create immediate tabs is to use the .IS [Inline Space} control word. That
is, using the .IS control word, you can create an immediate tab that will position subse­
quent text at a specific point on a line without disturbing the current tab settings estab­
lished with the .TP [Tab Position] control word. For example,

Sign in ink please:
· is to 8p

The amount of inserted space is the difference between the amount specified and the
width of the text preceding it in the output line:

Chapter 6. Composing Lines 89

Sign in ink please:

An immediate tab will be considered missed if the width of the text already placed on the
output line plus the value specified on the MINIMUM parameter exceeds the value
specified with the TO parameter of the .IS control word. If it is not specified, the MINI­
MUM value defaults to one horizontal device unit. If the BLANK parameter has been
specified, then a missed immediate tab will be treated as an ordinary wordspace. For ex­
ample,

Place your score here:
. is to Ii blank

will result in

Place your score here:

If the BREAK parameter has been specified, then a missed immediate tab will cause a
break and the immediate tab is processed on a new output line. For example,

Place your score here:
. is to 1i break

will result in

Place your score here:

If the ABSOLUTE parameter is specified, the immediate tab will always be processed on
the current output line; if the tab is missed, negative horizontal space will be inserted.
For example,

Place your score here:
.is to Ii absolute

will result in

Place your score here:

Leading Blanks and Tabs

Input lines that start with a leading blank or leading tab cause breaks. SCRIPTjVS gen­
erates a control word and executes it when it detects one of these situations. For leading
blanks, the .LB [Leading Blank] control word is generated, and for leading tabs, the .LT
[Leading Tab] control word is generated. These control words do the same thing as the
.BR [Break] control word.

SCRIPT jVS implements these implicit breaks as control words to allow you to alter the
processing for these situations. You can define a .LB or .LT macro to provide whatever
processing you require.29

29 Note that input lines processed in literal mode, under the .LI [Literal] control word, do not
invoke the .LB or .LT functions. Also, GML scan processing may cause .LB or .LT not to be a
~~~ ~ 

90 DCF: SCRIPT/VS Text Programmer's Guide 



If you have defIned a .LB macro or a .LT macro and macro substitution is on, the .LB 
macro will be executed whenever a leading blank is processed or the .LT macro will be 
executed whenever a leading tab is processed. 

Note, however, that after the .LB or .L T control word or macro is processed, the leading 
blank or tab is still on the line and it is processed as part of that text input line. In other 
words, you cannot use the .LB or .LT macro to remove leading blanks or tabs from a 
line. 

Blank and Null Lines 

Whenever SCRIPT/VS encounters a blank input line, it generates and processes a .BL 
control word which has the same effect as a .SP control word. 

Blank lines can originate from: 

• A source input ftle (not all systems in which SCRIPTjVS operates allow this) 

• A macro line that is blank 

• Terminal input (.TE) 

• A line containing control word separators with only blanks between them 

• A non-blank line that becomes blank as a result of symbol substitution. 

To redefme the SCRIPTjVS implicit formatting convention for blank lines, defIne a .BL 
[Blank Line) macro that will be processed whenever a blank line is encountered and 
macro substitution is on. For example, 

. dro b1 /. sk 2 

Now, when SCRIPT/VS encounters a blank line, the result is two line spaces on your 
output page. 

Note that a blank line is not the same as a null line. Null lines contain no characters and 
are processed by the .NL [Null Line] control word. 

Whenever SCRIPTjVS encounters a null input line, that is, a line whose length is zero, 
it generates and executes a .NL control word. The .NL control word does nothing ex­
cept reset line continuation in case the previous line ended with a continuation character. 

Like blank lines, null lines can also originate from a number of sources: 

• A source input ftle 

• Terminal input (.TE) 

• A non-null line that becomes null as a result of substitution 

• A macro line that is null. 

To redefme the SCRIPTjVS implicit formatting convention for null lines, defme a .NL 
[Null Line) macro that will be processed whenever a null line is encountered and macro 
substitution is on. For example, 

. dro n1 /. sk 2 

Now, when SCRIPTjVS encounters a null line, the result is two line spaces on your 
output page. 

Chapter 6. Composing Lines 91 



You can also deftne the null line to be completely ignored by SCRIPT /VS: 

• dm nl /. * 

Full Stop Characters 

Normally, when concatenation of input lines is in effect, SCRIPT/VS inserts a word 
space between the last word of each input line and the fIrst word of the next input line. 
If the input line ends in a full stop, SCRIPTjVS will add a second word space, unless, 
for example, continuation is performed. 

If you follow the typing convention that requires sentences to be separated by two 
blanks, you must enter both blanks if you enter a full stop in the middle of an input line. 
SCRIPT jVS will automatically insert two blanks after a full stop if it occurs at the end 
of an input line. 

A full stop is a period (.), a question mark (?), an exclamation point (!), or a colon (:). A 
line is also considered to end in a full stop if it ends with a double quotation mark (") or 
a right parenthesis ()), and the next-to-last character is a full stop character. 

You can use the .DC (Defme Character] STOP control word to change the characters 
that are treated as full stop characters. For example, if you enter 

· dc stop: . 

only the colon and period will result in full stops. 

Determining \Vord Space Values 

Each font is designed with a default wordspace value appropriate to the size of the char­
acters and SCRIPTjVS normally uses this as the width of blanks. But when more than 
one blank is found in text, the ftrst blank is considered a word space and any other 
blanks are considered extra spaces. The width of the fIrst blank is determined by the .WS 
(Word Space] control word. The width of each subsequent, successive blank is deter­
mined by the .ES (Extra Space) control word. 

You can use the .WS [Word Space) control word to control the width of word spaces in 
your text. If, for example, you specifIed 

· ws normal p8 

then the width of all word spaces will be eight pica points, as shown in the following 
example: 

The width of all word spaces will 
be eight pica points. 

Until changed, this new value will remain in effect for all subsequent font changes. If 
you want to revert to default wordspacing, then specify 

.ws 

to restore the default wordspace values of your current font. 

92 DCF: SCRIPT/VS Text Programmer's Guide 



"­
\ 
\ 

) 

The BY parameter of the .WS [Word Space1 control word also can be used to increase 
or decrease wordspace values. If, for example, you wanted to decrease word spaces, you 
could specify 

.ws by .8 

which means that the current wordspace value (either the default wordspace value of the 
current font, or the value you specified with the NORMAL parameter of the .WS [Word 
Space] control word) will be multiplied by .8 to give a fixed wordspace value equal to 
80% of the currently set value, as shown in the following example: 

The current words pace 
multiplied by .8 to 
wordspace equal to 
currently set value. 

value will be 
give a fixed 
80% of the 

If you wanted to increase word spaces, you could specify 

. ws by 1. 2 

which means that the current wordspace value (either the default word space value of the 
current font, or the value you specified with the NORMAL parameter of the .WS [Word 
Space] control word) will be multiplied by 1.2 to give a fixed wordspace value equal to 
120% of the currently set value, as shown in the following example: 

The current words pace 
multiplied by 1. 2 to 
wordspace equal to 
currently set value. 

value will be 
give a fixed 
120% of the 

The width of word spaces may be increased or decreased according to the expansion and 
compression ranges given on the .HY [Hyphenate1 control word. See "Chapter 7. Hy­
phenating and Horizontally Justifying Text" on page 99 for more details on using the 
.HY [Hyphenate] control word. Wordspace values set with the .WS [Word Space) con­
trol word are also subject to horizontal justification. 

Values given with the .WS (Word Space] control word are subject to rounding in accord 
ance with the limitations of the device. 

Determining Extra Space Values 

The .ES [Extra Space] control word is used to specify the width of extra spaces when 
more than one blank follows some part of your text. 

If you want to establish the width of extra spaces in your text, regardless of the default 
value (which is equal to the wordspace value of the current font), you can do so using 
the .ES NORMAL control word. Specifying 

. es normal p6 

will fix the width of extra spaces in your text to six pica points regardless of any cur­
rently set defaults. Until changed, this new value will remain in effect for all subsequent 
font changes. 

The .ES control word is also particularly useful if you use the typing convention of fol­
lowing sentences with two blanks. The .ES control word can be used to decrease the 
width of the second blank without changing the width of other word spaces. 

Chapter 6. Composing Lines 93 



If, for example, you were using a proportional typeface and you wanted to set the extra 
spaces after a full stop to be half as wide as word spaces you would enter 

· es by .5 
A full stop. And an additional line. 

which results in: 

A full stop. And an additional line. 

If you enter 

· es 

then SCRIPT /VS resumes using the values determined by the current font. 

Extra space values set with the .ES [Extra Space1 control word are also subject to hori­
zontal justification. 

Values given with the .ES [Extra Space] control word are subject to rounding in accord­
ance with the limitations of the device. 

Inserting Horizontal White Space 

In addition to using the .IS [Iuline Space] control word to perform an immediate tab to 
a specific position on a line, you can use it to insert a specified amount of horizontal 
white space between two words. 

The .IS control word can be thought of as a required blank or backspace character of 
arbitrary width, depending upon whether the inserted space is positive or negative, re­
spectively. 

To include a fixed amount of horizontal white space in text, you could specify: 

Shadwell 
· is .5i 
was sacked. 

The inserted space is treated as a single character, and is not subject to justification: 

Shadwell was sacked. 

The inserted horizontal white space may be negative: 

An underscored 
· is -.5i 
___ word. 

The inserted space is treated as a single backspace character: 

An underscored word. 

94 DCF: SCRIPT /VS Text Programmer's Guide 



Revision Codes 

? 
? 

If you process documents that are frequently revised, you can identify revised text with a 
revision code in the left margin. Use the .RC [Revision Code) control word to identify 
changed material. You can defme as many as nine different revision code characters, 
which are printed to the left of your text output. 

For example, the lines 

· rc 1 ! 
· rc 2 ? 

define two different revision codes. Within the body of your document, you can bracket 
revised material with pairs of .RC [Revision Code) control words. The control word 

· rc 1 on 

indicates the beginning of a revised piece of text. If the revision code used has not been 
defmed, no revision code will appear because the default revision code is a blank. The 
control word 

· rc 1 off 

indicates the end of the revised piece of text. 

Pieces of revised text may overlap, and their revision codes may be nested. For example, 
if you have specified 

· rc 1 on 

and then, while revision code I is on, specify 

· rc 2 on 

revision code 1 is suspended, and revision code 2 is turned on. When you tum revision 
code 2 off, 

· rc 2 off 

revision code 1 is restored to its former on status. 

To tum revision code 1 off, specify 

· rc 1 off 

When you have changed only a single line, you can indicate that that line be flagged with 
a revision code by specifying 

· rc lon/off 

before that line rather than bracketing the line with ".rc 1 on" and ".rc 1 off". 

Chapter 6. Composing Lines 9S 



$ 

You may also flag a single line by specifying 

· re * $ 

without changing any other revision codes. 

The revision code is placed to the left of the column of text to which it applies. For the 
leftmost column, the revision code is placed in the binding area provided with the BIND 
option of the SCRIPT command or the .PM [Page Margins] control word. For other 
columns, it is placed in the intercolumn gutter. If the space for the revision code is insuf­
ficient, the revision code is omitted. 

When you do not want a revision code character to be printed, you can respecify the 
character to a blank character with the .RC control word. For example, 

· re 1 

Revision code 1 now prints as a blank. 

Ordinarily, revision codes are placed in the gutter two spaces to the left of the column, 
so that a single blank separates the revision code from the column text. You can change 
this separation with the ADJUST parameter of the .RC [Revision Code] control word. 
For example, 

.re adjust 1 
· re 1 on 

! specifies that the revision code be placed immediately adjacent to the column text, and 

· re adjust Ii 

specifies that the revision code is to be placed one inch from the edge of the column. If a 
value is specified which exceeds the availablc gutter space, 

· re adjust 30cm 

the revision code is not printed. 

Revision Code Considerations 

The 3800 Prilltillg Subsystem 

The revision code character is normally placed immediately preceding each changed line, 
separated from the column by a blank. Because the RC field has a variable width based 
on the width of the RC character and the RC adjust, it is necessary to measure and 
format it in the same way as text data. 

It is most desirable for the first character of each text line to start in the same relative 
position. To ensure this, the RC character and its field must have a combined width that 
does not vary from line to line. If special blanks are available in the current font, this can 
be achieved by combining the RC character with a special blank that brings the total 
width of RC and blank to 30 pels. The following table shows relative widths: 

96 DCF: SCRIPT /VS Text Programmer's Guide 



RC Width Blank Width 

12 18 
15 15 
18 12 

The RC field width should be defmed such that sufficient space is allocated on both 
sides of the revision code character for proper inline space management. This requires 
that: 

• The width of the RC field, less the width of the RC character, should be 0, 11-19, 
or more than 23 pels. 

• The width of the intercolumn gutter, less the width of the RC field, should be 0, 
11-19, or more than 23 pels. 

If these restrictions are violated, inline space errors of up to 6 pels can result, as illus­
trated in Figure 8. 

Requested 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Actual 
o 
o 
o 
o 
o 
o 

12 
12 
12 
12 
12 
12 
12 
15 
15 
15 
18 
18 
18 
18 
18 
18 
24 
24 
24 

Error 
~ 
-2 
-3 
-4 
-5 
-6 
+5 
+4 
+3 
+2 
+1 
o 

-1 
+1 
o 

-1 
+1 
o 

-1 
-2 
-3 
-4 
+1 
o 

-1 

Figure 8. Justification Alignment Error for 3800 Printing Subsystem Output: When re­
questing horizontal space values, you must remember that the values will be 
rounded to be a multiple of 3 pels with the exception that 3, 6, 9, and 21 are not 
obtainable. As a result, you may not get the exact space that you requested. 

Chapter 6. Composing Lines 97 





Chapter 7. Hyphenating and Horizontally Justifying Text 
This chapter describes the SCRIPT /VS control words you can use to hyphenate and 
horizontally justify your text. 

Hyphenation and Horizontal Justification 

Hyphenation 

SCRIPT /VS hyphenates words in your text based on the values you specify with the 
.HY [Hyphenate] control word. You can tum hyphenation on by specifying 

.hyon 

or tum hyphenation off by specifying 

. hy off 

When .HY ON is specified, hyphenation is controlled by the values that you assign to 
the MINPT, MAXPT, MINWORD and LADDER parameters of that control word. 

• MINPT controls the minimum hyphenation point: the smallest number of charac­
ters before the hyphenation point that is acceptable. 

The initial value for MINPT is 4. However, in large column line lengths, it may be 
preferable to hyphenate a word after the third character. In short column line 
lengths, it may be preferable to hyphenate a word after the second character. For 
example, you might want to specify 

. hy minpt 2 

After this control word is encountered, there must be at least two characters left on 
the line before SCRIPT /VS will hyphenate the word. 

• MAXPT indicates the minimum number of characters that is acceptable after the 
hyphenation point. 

The initial value for MAXPT is 2. However, in large column measures, it may be 
preferable to have at least three characters left after a word is hyphenated. In small 
column measures, it may be preferable to have at least two characters left after a 
word is hyphenated. For example, you might want to specify 

. hy maxpt 3 

Mter this control word is encountered, there must be at least three characters left in 
the word after hyphenation has taken place. 

Chapter 7. Hyphenating and Horizontally Justifying Text 99 



• MINWORD specifies the minimum size that a word can be before it is eligible for 
hyphenation. 

The initial value for MINWORD is 6. However, in large column measures, it may 
be preferable to hyphenate words that are at least seven characters long. In small 
column measures, it may be preferable to hyphenate words that are at least five 
characters long. For example, you might want to specify 

.hy on minword 7 

After this control word is encountered, a word must be at least seven characters 
long before hyphenation will be attempted. 

Note that the sum of the MINPT and MAXPT values can not exceed the 
MINWORD word value. 

• LADDER specifies the maximum number of lines that may be hyphenated consec­
utively. 

The initial value for LADDER is 2. To change it, you could specify 

. hy on ladder 3 

After tIlls control word is encountered, up to three consecutive lines are eligible for 
hyphenation. 

The .HY RANGE Control Word and Horizontal Justification 

You can use the RANGE parameter of the .HY control word to specify the factors by 
which word spaces may be compressed or expanded to avoid hyphenation. 

Compression and expansion values are specified with the .HY RANGE control word30 

as in the following example: 

.hy range. 75 1.2 

The following three steps are performed whether hyphenation is on or off. If .FO OFF 
is in effect, then .HY RANGE is ignored. 

1. Given the compression and expansion values, SCRIPTjVS first attempts to keep 
the last word on the line by compressing word space values in the line by up to 75 
percent. 

2. If compression fails, SCRIPT jVS attempts to force the word off the line by expand­
ing the wordspace values by up to 20 percent. 

3. If compression and expansion with the .HY RANGE control word both fail, 
SCRIPT jVS checks to see if hyphenation is on. 

If hyphenation is on, SCRIPTjVS then checks to see if the value set with the LADDER 
parameter of the .HY control word has been exceeded. If it has, then the word is moved 
onto the next line. If the specified LADDER value has not been exceeded, then hyphen­
ation is attempted based on the MINPT, MAXPT and MINWORD values you have 
specified. If hyphenation is off, the word is moved to the next line. 

30 Because horizontal adjustments must be made in even multiples of the horizontal escapement 
of the device, the exact amount of adjustment may be more or less than the range you speci­
fied. 

toO DCF: SCRIPT/VS Text Programmer's Guide 



Mter the hyphenation step, if justification is on (.FO ON), SCRIPTjVS will then justify 
the line by expanding the word spaces. The expansion is done proportionally according 
to the wordspace sizes and the amount of space needed to achieve a fully justified line. 
The expansion is done without regard to the values given on the RANGE parameter of 
the .HY control word. 

These steps are illustrated in the following figure which assumes these values: 

.hyon 

. hy range . 5 2. 0 
• ws normal 8 

Given the following overdraw condition: 

<----------------- 127 --------------1--> 
I~----------~~I 

45 8 27 8 36 27 
SCRIPT/VS first attempts to keep the 
word on the line by compressing the 
wordspaces 50Y.. 

~ __ ~I I I I 
45 4 27 4 44 19 

If the word still overdraws. SCRIPT/VS 
attempts to place the word off the line 
by expanding the word spaces 100Y.. 

~--:-:~I I I Ir----~-__.I 
45 16 27 16 20 43 

If the word still overdraws. SCRIPT/VS 
looks for a hyphenation point that sat­
isfies the specified MINWORD. MINPT. 
and MAXPT constraints. 

At this point there are two possibil­
itiesl 

1) No satisfactory hyphenation point 
can be found (or hyphenation is not on) 
and the word is placed onto the next 
line; 

45 52 27 

63 

2) A satisfactory hyphenation point can 
be found. 

L--__ -.l1 I • 
45 5 27 5 41 1 

I 
22 

Figure 9. Adjusting an Overdraw Condition: This figure illustrates the steps taken to cor­
rect an overdraw condition. 

Chapter 7. Hyphenating and Horizontally Justifying Text 101 



More on Hyphenation 

You can also instruct SCRIPT /VS to: 

• Search a SCRIPT jVS dictionary to see if there is an entry for the word to be hy-
phenated 

• Use an algorithmic hyphenator, if one is available, to hyphenate the word 

Unless otherwise specified, SCRIPT /VS first searches for the word in the addenda, user 
and main dictionaries in that order. If the word cannot be found there, it will usc an 
algorithmic hyphenator, if one is available, to perfonn the hyphenation. 

If you do not want the addenda dictionary searched, specify 

· hy no add 

If you do not want any of the dictionaries to be searched, specify 

· hy nodiet 

If you do not want an available algorithmic hyphenator to be used, specify 

· hy noalg 

If you want the addenda dictionary searched, specify 

· hy add 

If you want any of the dictionaries to be searched, specify 

· hy diet 

If you want an available algorithmic hyphenator to be used, specify 

.hyalg 

Using all Algorithmic Hyphenator 

Unless you use the NOALG parameter of the .HY [Hyphenate] control word, 
SCRIPT /VS attempts to use an algorithmic hyphenation routine to hyphenate: 

• Words that cannot be found in the supplied language dictionaries 

• All words if the NODICT parameter of the .HY control word was specified. 

An algorithmic hyphenation routine for American English is provided with SCRIPTjVS. 
Your installation may provide other algorithmic hyphenators for English or any of the 
other languages. Any installation-provided algorithmic hyphenators must be linkedited to 
SCRIPTjVS before they can be used during hyphenation processing. For infonnation on 
how to linkedit such a routine, see the Document Composition Facility Program Direc­
tory. 

Hyphellatillg Single Words 

Regardless of whether SCRIPT jVS is using automatic hyphenation, there may be occa­
sions when you would like a specific word to be hyphenated if it occurs at the end of a 
line. The .HW [Hyphenate Word] control word allows you to specify how a word should 
be hyphenated if hyphenation is necessary. 

102 DCF: SCRIPT/VS Text Programmer's Guide 



This may be convenient for long words that are nonnally hyphenated, or for words that 
occasionally need hyphenation. For example, 

. cl 22m 
Guinevere's 
.hw lighter--than--air 
laughter was regularly heard 
. hw through-out 
the kingdom and caused her to be 
crudely and 
.hw un-cer-e-mo-ni-ous-ly 
bounced into the heavens. 

When this line is processed, SCRIPT jVS uses the hyphens supplied as hyphenation 
points and suppresses the hyphens it does not need: 

Guinevere's lighter­
than-air laughter was 
regularly heard 
throughout the kingdom 
and caused her to be 
crudely and unceremo­
niously bounced into 
the heavens. 

Note that since "throughout" did not require hyphenation when the line was fonnatted, 
the hyphen was suppressed. For the hyphenated expression "lighter-than-air," two hy­
phens are used with the .HW [Hyphenate Word) control word to indicate that 
SCRIPTjVS will print the necessary hyphens. "Unceremoniously" is hyphenated at one 
of the appropriate hyphenation points specified by the .HW control word. Note that the 
hyphenation points supplied by a .HW word apply only in this instance and nowhere 
else. 

Hyphenation Points and Fallibility 

The SCRIPT jVS dictionaries do not contain all possible hyphenation points for all 
words. Each word placed in an addenda, user, or root word dictionary is divided into 
four three-character groups starting with the fIrst vowel in the word. Only one hyphen­
ation point is recorded for each of the four groups. Sec "Chapter 25. Verifying Spelling" 
on page 289 for a complete description of the SCRIPTjVS dictionaries and their relation 
to hyphenation. 

Chapter 7. Hyphenating and Horizontally Justifying Text 103 





Chapter 8. Creating Vertical Space 
This chapter describes how you can create vertical space in the text. 

You can insert space between lines of text and control vertical space in the text by using 
a blank line, or with any of the following control words: 

• .SP [Space] 

• .sK [Skip] 

• .BL (Blank Line] 

• .LS [Line Spacing] 

• .LO [Lead-Out] 

• .SB [Shift Baseline] 

Spaces and Skips 

You can insert space between lines of text in your document by using the .SP [Space) 
and .SK [Skip] control words. 

For example, the input lines 

The quick brown fox came over 
to greet the lazy poodle . 
. sp 
But the poodle was frightened 
and ran away . 
. sk 
The poodle ran over to her 
friend the Saint Bernard. 

are fonnatted as: 

The quick brown fox came over 
to greet the lazy poodle. 

But the poodle was frightened 
and ran away. 

The poodle ran over to her 
friend the Saint Bernard. 

If the space generated by the .SK [Skip] control word occurs at the top or bottom of a 
column (or page), no blank lines are printed. However, if the space generated by the .SP 
[Space) control word occurs at the top or bottom of a column (or page), the blank lines 

Chapter 8. Creating Vertical Space 105 



are printed. For this reason, you may prefer to use the .SK [Skip} control word instead 
of the .SP [Space} control word whenever you need blank output lines. 

The .SP [Space} and .SK [Skip} control words allow you to specify an amount of vertical 
space in a qualified space unit notation. For example, 

.sp 2i 

indicates that you want to create two inches of space in the output. 

You can use blank space to cause a heading or a title to stand out. For example, the 
lines: 

A Love Story 
.sk 3 
The quick brown fox 
was eager 
to meet the pretty poodle. 

results in: 

Setting Line Space 

A Love Story 

The quick brown fox was eager 
to meet the pretty poodle. 

On page printers, each font is designed with a default linespace value appropriate to the 
size of the font. For a particular line, default linespacing is determined by the size of the 
largest font used on that line. 

You can use the .LS [Line Spacing] control word to change the vertical space separating 
lines of text and to establish limits for increasing or decreasing line spacing in your docu­
ment for purposes of vertical justification. 

You can establish fIxed line spacing by entering: 

. Is normal p15 

On page printers, each line will have a depth of 15 pica points, regardless of the size of 
the characters on the line. On line devices, the depth of each line will be the nearest 
multiple of the vertical device unit. For example, at 6 lines per inch, each line of text 
occupies 1/6 of an inch; at 8 lines per inch, each line of text occupies 1/4 of an inch. 

The BY keyword of .LS can be used to decrease or increase the default linespace value 
to set text more densely or sparsely. You can, for example, double-space your output by 
entering: 

. Is by 2.0 

Each line of text (and each .SK and .SP, when given in line spaces) will be twice as deep 
as nonnal, as shown in the following example: 

106 DCF: SCRIPT/VS Text Programmer's Guide 



The following lines of text 

including any skips or spaces 

will be twice as deep as normal. As 

can be readily seen in this brief 

but highly entertaining example. 

On line devices, SCRIPT jVS will use the nearest multiple of the fixed line space value 
for that device as the depth of each line. 

Shifting the Baseline 

Fonts are designed so that the characters appear to rest on the normal baseline. If your 
output is for a page printer, you can use the .SB [Shift Baseline] control word to place 
characters above or below the normal baseline to create, for example, subscripts or 
superscripts. 

Superscripts may be formatted with baseline shifts. For example, the expression 5-cubed 
may be formatted as 

S 
· sb . IScm 
· ct 3 

The 3 will be placed .15 centimeters higher than the 5. 

A macro can be defrned that will create subscripts: 

.dm subs on 
· se heightl = &dv'l 
.bf small 
.se height2 = &dv'l 
.se diff = &heightl - &height2 
.sb +&diff. dv 
&*1 
.sb -&diff. dv 
.pf 
.dm off 

In this example, we first set a symbol (heightl) to one vertical device unit in the current 
font, then begin a new font, small (assuming it is a valid, defrned font and that it is in a 
smaller point size than the current font), and set a symbol to one vertical device unit in 
this new font. Next we set a symbol (dill) to the difference between &heightl and 
&height2, shift the baseline by that value, and enter the superscript number (&*1). When 
we arc done, we enter .SB - &diff.dv to return the baseline to its previous position and 
.PF to return to the previous font. 

Chapter 8. Creating Vertical Space 107 



Subscripts may also be fonnatted with baseline shifts. For example, the expression x­
sub-i can be fonnatted as 

x 
.sb -p2 
· ct i 

The i will be placed two pica points lower than the x. 

Xi 

You can enter 

.sb 

to restore the nonnal baseline for subsequent text. 

Formatting Fractions on Page Printers 

Since a limited number of fractions exists in most of the fonts for page printers, you may 
have to construct fractions. One method of doing this is illustrated in the following steps: 

1. Define an appropriate font for the fraction pieces and start the macro definition . 

. df fraction type(6) 

.ms on 
• dm fraction on 

2. Make sure that the parameters passed to the macro are valid. There must be exactly 
three parameters. The frrst and third parameters must be numeric and the second 
one must be a slash (f). We've chosen here to issue error messages if the parameters 
are invalid. 

· if &*0 ne 3 
.th .mg IE I FRACTION: Missing parameters: u&*.u 
· th .me 
· if &T'&*l ne N 
· or &*2 ne / 
· or &T'&*3 ne N 
.th .mg IE I FRACTION: Invalid parameters: n&*.n 
· th . me 

3. Calculate the amount of 

• Baseline shift needed to position the left hand side of the fraction. This amount 
is the difference between the nonnal font em-height and the fraction font em­
height. 

• Insert the negative inline space necessary to kern (shift) the pieces properly with 
respect to the slash: (we've chosen one third of the width of a zero (the figure 
space) in the fraction font.) 

108 DCF: SCRIPT/VS Text Programmer's Guide 



.se *sb = &DH'lmv 
· bf fraction 
.se *sb = &*sb - &DV'lmv 
.se *is = &DH'&W'O / 3 
.pf 
· if &*sb Ie 0 
· th &*1. /&*3 
.th .me 

4. Format the left hand side in the appropriate font and baseline shift. Then restore the 
original font and baseline . 

. bf fraction 

.sb +&~"'sb. dv 
&*1 
.pf 
.sb -&~"'sb. dv 

5. Kern the amount calculated above, put out the slash and then kern again so that 
the right hand piece of the fraction is under the slash. 

· is -&*is. dv 
· ct / 
.is -&*is.dv 

6. Format the right hand side in the appropriate font and then restore the original font. 

.bf fraction 
&*3 
.pf 

7. End the macro defmition. 

· dm off 

The method described above consists of using a baseline shift, inserting space, and defm­
ing and using fonts in order to format fractions for page printers. Figure 10 on page 110 
shows how such a fraction is constructed. 

Chapter 8. Creating Vertical Space 109 



~---z--?> 

II' :" ...................... ~ ';:" 
I I . 
I I .' 
I ~ 
I 1 .' 
I . I 0° 

X' v:: 
I : '*·....:.D .; --' " 
I .1 : 
I :, 
I a I ;, 
I : :1 "I :.. .. .. .. .. .. . ..... 

Figure 10. Example of Fractions Formatted on Page Devices. 

110 DCF: SCRIPT /VS Text Programmer's Guide 



'\ 
\ 

) 

Chapter 9. Vertically Justifying Text 

VeJ~tical Distribution, Formatting and Justification 

Distribution 

Use the .BC (Balance Columns) control word to distribute text across columns in order 
to achieve a balanced set of columns (the amount of text in each column is as close to 
equal as possible). If column balancing is OFF, no columns are balanced. If column bal­
ancing is ON, each set of columns is balanced whenever a section break occurs. Text 
lines in a block will not be split across columns. 

In order to get the proper distribution of text, you must consider: 

• Top and bottom floats. If your floats are very large and your columns are small, 
proper distribution may not be possible. 

• Keeps. There is no breaking of keeps. If your keeps are very large and your columns 
are small, proper distribution may not be possible. 

• Widows. Remember that there should be no one-line widows. 

• Skips and Spaces. Skips at the top or bottom of a column are discarded and not 
considered in vertical distribution. It should be noted that an apparent shortness in 
columns and/or insufficient space in the text may be due to such skips in your text. 
Spaces, however, are considered and, therefore, an apparent erroneous extra space at 
the top or bottom of columns may be due to spaces in your text. 

• Multicolumn sections. In a multicolumn section, a .CC or .CB control word ends 
one set of balanceable columns and the new column becomes the ftrst column in a 
new set of balanceable columns. Of course, if there is only one column in the set, 
no text is distributed. 

In SCRIPT/VS, distribution is not guaranteed to result in columns that are exactly equal 
in depth. Short columns (more than one text line difference) can result from: 

• User-entered unconditional column begins (.CB) 

• Floats, skips, spaces, and so on (especially if they are comparatively large in size) 

• Very short section depths 

• Widow zones and keeps because they are not split across columns 

• Variations in line spacing and font sizes. 

Chapter 9. Vertically Justifying Text III 



Vertical Formatting 

You can use the .FV [Fonnat Vertically] control word to indicate how fonnatted lines of 
text should be placed within the columns of a section. 

For example, if you specify 

· £v top 

text will be placed at the top of the columns in the section. This is the default value. 

If you specify 

· £v bottom 

the text will be moved to the bottom of the columns. 

If you specify 

· £v center 

the text will be centered in the columns. 

Vertical Justification 

If you want to vertically justify your text, that is, specify that the text in all columns of a 
section should extend to the same depth, if possible, then specify 

· £v justify 

The purpose of vertical justification is to adjust the vertical spacing in each column so 
that: 

• In an unconditionally ended section, the depths of the columns within the section 
are as equal as possible 

• In conditionally ended sections, the columns end at the bottom of the page. 

Vertical fonnatting is applied separately to each section on the page. For example, be­
cause section breaks are performed before and after a level 1 (.H 1) heading, the heading 
is vertically fonnatted within its own section. Since there is no additional space to be 
distributed within the section, the actual results for the section are the same regardless of 
the vertical fonnatting option. 

For the last section on the page, however, there may be some additional space to be 
distributed within the section. If the page was ended unconditionally (as described below 
in "Section and Page Ending Considerations" on page 113), no distribution of white 
space occurs and so the vertical formatting does not change the appearance of text on 
the page. If the page is ended conditionally, extra white space is distributed in the last 
section according to values you may have specified with the .FV (Fonnat Vertically] con­
trol word. 

112 DCF: SCRIPT/VS Text Programmer's Guide 



Section and Page Ending Considerations 

Sections can be ended unconditionally by the ending of the primary input me, specifying 
a head level that causes a page or section break, and by any of the following control 
words: 

• .PA [Page Eject] 

• .CP [Conditional Page Eject] without a conditional value 

• .CD (Column DefInition] 

• .SC (Single Column Mode] 

• .MC [Multicolumn Mode] 

• .SK (Skip] with the P parameter 

• .SP [Space] with the P parameter. 

Unconditional sections occur in multi-section pages or at the end of a chapter or other 
major division of a document. They will be justifIed to the depth of the deepest column 
or some intermediate point between the shortest, non-empty column and the deepest 
column in the section. If there is only one non-empty column in the section, no vertical 
justification will be done. 

Sections can be ended conditionally by normal text overflow, and by specifying any of 
the following control words: 

• .CB [Column Begin] 

• .CC [Conditional Column Begin] 

• .CP [Conditional Page Eject] with a vertical parameter. 

Conditionally ended sections always end a page and the column(s) in them are always 
adjusted towards the bottom of the page. The object is to have the columns of the page 
(such as those in a chapter) end at the bottom of the page. The last page of a chapter is 
normally unconditionally ended and the column(s) in it will be set "short" as previously 
described. 

If you want the columns to be justifted towards the bottom of the page, then you must 
conditionally end the page. For example, if your page is 26cm deep, you could specify 

. cp 26cm 

to end the page conditionally instead of entering 

. cp 

which would cause the page to be unconditionally ended. 

Chapter 9. Vertically Justifying Text 113 



Other Considerations 

Vertical justification is achieved, if possible, by making incremental and proportional ad­
justments to the sizes of of the following in the order given: 

• Leadout points (set with the .LO [Lead-Out] control word) 

• Skips (set with the .SK [Skip] control word) 

• Spaces (set with the .SP [Space] control word) 

• Text lines. 

The exact value of the adjustments depends on: 

• The number and sizes of any leadout points 

• The number and sizes of any skips, spaces, and text lines 

• The increment values specified by .LS INCREMENT at any given point 

• The ranges specified by the SKIP , SPACE, and TEXT parameters of the .LS con­
trol word at any given point 

• The size of the vertical escapement of the device for which the document is format­
ted. 

SCRIPT /VS performs rounding so that the vertical spacing adjustments are made in 
whole increments of the values specified by the INCREMENT parameter of the .LS 
[Line Spacing] control word. The increment values may also be rounded so that they are 
an even multiple of the vertical escapemene' of the device. Thus the values you specify 
for increments, ranges, and leadout size may be exceeded. 

The use of 1eadout points before headings can be very effective since they already have 
spacing and some extra space will usuallv n' t be objectionable. For example, 

.10 .Si 

.h2 Heading Text 

allows SCRIPT;VS to add up to an extra half inch of vertical space in front of the head­
ing, if vertical justification has been requested with the JUSTIFY parameter of the .FV 
[Format Vertically] control word. 

You could also consider allowing the sizes of skips to be varied. For example, 

. 1s skip . 8 2. 0 

will allow SCRIPT;VS to compress skips by 80% or expand them by up to 200% of 
their original size32 • If you have also used leadout points, they will be adjusted before the 
sizes of the skips. 

3' Escapement is the minimum amount by which a particular device can move in the vertical 
direction. For example, on a six lines·per-inch device it is 1/6 of an inch. This term is also 
referred to in this book as a vertical device unit. 

32 Because of rounding, the actual values used may be less than or more than the factors you (~ 
specify. .~ 

114 DCF: SCRIPT/VS Text Programmer's Guide 



If you do not want a specific skip to be adjusted, then you can use the A (absolute) 
parameter of the .SK [Skip] control word. In the following example, even though a skip 
adjustment range has been specified, the skip will never be adjusted because it has been 
specified as being "absolute": 

· ls skip 1. 5 
The absolute parameter 
· sk .5i a 
means a skip (or space) is not eligible 
for vertical adjustment. 

After leadouts and skips, you may want to allow SCRIPT jVS to adjust the SIzes of 
spaces. You could, for example, use 

· ls space 1. 2 

which indicates that the size of spaces can be expanded as much as 120%, if necessary, 
in order to achieve vertical justification. Again, the A (ABSOLUTE) parameter of the 
.SP (Space] control word disallows a particular space from being expanded or com­
pressed for vertical justification. 

As a last resort, you may consider the TEXT parameter of the .LS (Line Spacing] con­
trol word. This is most appropriate for single column documents where variations in text 
linespacing are usually less noticeable (and therefore less objectionable) than for multi­
column documents. 

It is possible that SCRIPT jVS will be unable to achieve full vertical justification, if so 
you may need to consider the following potential problem situations: 

• Extremely short columns in the section or page. About the only reasonable thing 
that you can do is to add more text or, perhaps, cause the previous page to end 
sooner so that more text is formatted on the short page. 

• Insufficient number of objects to justify. You need to insert more leadout points or, 
perhaps, allow SCRIPTjVS to adjust skips (if you have not already done so). 

• Insufficient size variations. Perhaps you should increase the size of the leadout 
points that you are using or you could increase the appropriate range factors. 

• Extremely short or long columns. This may be due to large keeps and floats. You 
should reduce the text in the keep or float or split it into two or more smaller ones. 

An apparently unjustified column may actually be the result of a space (.SP) at the 
top or bottom of a column. If the results are not what you desire, rearrange the text 
and/or spaces in order to obtain more desirable results. 

Chapter 9. Vertically Justifying Text 115 





'\ 

Chapter 10. Establishing Page Layout 
This chapter describes the SCRIPT jVS control words you can use to establish the page 
layout within which the text resides. It covers: 

• Page Dimensions: The length and width, and the amount of space reserved for top 
and bottom margins. 

• Running Headings: Descriptive information that precedes the body of text on each 
page. 

• Running Footings: Descriptive information that follows the body of text on each 
page, printed after footnotes, if any. 

• Page numbering: SCRIPTjVS can automatically insert the current page number and 
its prefix, if any, on each page as it is formatted for printing. 

See Figure lIon page 118 for an illustration of the layout of a SCRIPTjVS output 
page. Control words used to specify the size or contents of each area are shown in pa­
rentheses. 

Chapter 10. Establishing Page Layout 117 



A 

P 
a 
g 
e 

l 
e 
n 
g 
t 
h 

( .Pl) 

v 

<------------------- ----------------------> Page Width (.PW) 

line length (.ll) 

Page 
Margin 

(.PM) 

-or-

Binding 
(BIND) 

<--------

Top Margin 
(.TM) 

----------> 

t--------

I Running Heading 
(.RH) 

Top Page Float (.Fl) 

<-Indent--> ................................... . 
( . IN) ...................... . 

...................... . <-Indent 
................................... Right--> 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (. IR) 

................................................................................................ 
< Column line length (.Cl) > 

< Column line length > 

G 
u 
t 
t 
e 
r 

Bottom Column Float 
(. FU 

Footnotes (.FN) 

Running Footing 
( . RF) 

t------------------------
Bottom Margin 

(.BM) 

Figure 11. SCRIPT /VS Terms for Parts of the Page. 

118 DCF: SCRIPTfVS Text Programmer's Guide 



Default Page Dimensions 
The output pages that SCRIPT /VS fonnats are designed to fit the fonn size of the log­
ical output device (for details, refer to the discussion of the DEVICE option of the 
SCRIPT command in the Document Composition Facility: SCRIPT/VS Language Refer­
ence). 

When SCRIPT /VS fonnats output for logical line devices, each SCRIPT /VS page has 
default dimensions. For example, the page dimensions for a l403N610gical device are: 

• 11 inches long (66 lines at 6 lines-per-inch, 88 lines at 8 lines-per-inch, or 132 lines 
at 12 lines-per-inch). For 3800-type logical line devices, the values are 60, 80, and 
120 respectively, because one inch of the form is reserved by the 3800 Printing Sub­
system. One inch of the page length is reserved for top and bottom margins. 

• 6 inches wide (60 characters at 10 pitch, 72 characters at 12 pitch, and 90 characters 
at 15 pitch). 

See Figure 12 on page 120 for page printer default page dimensions. 

Although the initial page length, page width, and line length values are based on the log­
ical output device, you can change these values within your document by using the .PL 
[Page Length], .PW [Page Width], and .LL [Line Length] control words. Some things 
which you need to take into consideration are: 

• The physical size of the paper on which you are printing SCRIPT /VS output. 

• The number of lines printed per page depends on the linespacing of the fonts used. 

• The number of characters per line depends on the fonts used in the line. 

• The fact that the 3800 Printing Subsystem line device reserves one-half inch at the 
top and bottom of the page that is not counted in the page length. 

• For page printers, you must reserve some white space at the bottom of the page to 
allow for descenders. 

Page length includes all of the page that is accessible to SCRIPT/VS. For non-3800 line 
devices, this is the entire fonn (the vertical distance between perforations for continuous 
forms). The 3800 Printing Subsystem reserves 1/2 inch (12.7 mm) above and below the 
perforation, and makes it inaccessible for printing. Consequently, for 3800 logical de­
vices, page length does not include 1/2 inch (12.7mm) at the top and bottom of the 
page. 

Changing Page Dimensions 
There are a number of control words that allow you to override default page dimensions. 
Among these are: 

• .PM [Page Margins] 

• .PL [Page Length] 

• .PW [Page Width] 

• .TM [Top Margin] 

• .LL [Line Length] 

• .BM [Bottom Margin] 

Chapter 10. Establishing Page Layout 119 



Logical Real lines Page Size Margins Line Class 
Device Device per of 
Type Type Inch Width Length Bind Top Bottom Length Device 

TERM (') 
2741 2741 6 8.Si IIi 2 .5i .5i 6i 
3270 3270 

1403N6 6 8.5i 11 i 
1403N8 8 8.5i 11 i 
1403W6 6 13.5i 11 i 
1403W8 1403 8 13.5i 11 i Ii .5i .5i 6i 
1403W6S 6 13.Si 8.Si 
1403W8S 8 13.5i 8.Si 
1403SW (2) 6 8.5i 11 i 
STAIRS 6 13.5i 11 i 

3800N6 6 8.5i 10 i line 
3800N8 8 8.5i 10 i devices 
3800N12 12 8.5i 10 i 
3800W6 6 13.5i 10 i 
3800W8 8 13.Si 10 i 
3800W12 3800 12 13.5i 10 i Ii 0 0 6i 
3800N6S 6 11 i 7.Si 
3800N8S 8 11 i 7.Si 
3800N12S 12 11 i 7.Si 
3800W6S 6 13.Si 7.Si 
3800W8S 8 13.Si 7.Si 
3800W12S 12 13.Si 7.Si 

38PPN 8.5i 10 i 
38PPW 13.5i Wi Ii 0 .125i 6i 
38PPNS 11 i 7.5i 
38PPWS 3800-3 (3) 13.5i 7.Si 

38PPW90 10 i 13.5i .5i .5i .5i 6i 
38PPNS90 7.Si 11 i 
38PPW270 Wi 13.5i 

3820A 8.51 11 i 
3820A90 8.Si 11 i page 
3820AI80 8.Si 11 i devices 
3820A270 3820 (3) 8.5i II i Ii .Si .5i 6i 
3820L 8.5i 14 i 
3820A4 210mm 297mm 
3820B4 257mm 364mm 
3820B5 182mm 257mm 

4250A 8.5i l1i 
4250B 4250 (3) 11 i 17i 
4250L 8.5i 14i Ii .5i .5i 6i 
4250A3 297mm 420mm 
4250A4 210mm 297mm 

1 The physical device type corresponding to the TERM logical device can be either 2741 or 3270, depending upon the 
actual terminal type. 

2 This is a 12-pitch device; all other 1403 devices are 10-pitch. 

3 The linespacing for page devices is determined by the .LS [Line Spacing) control word and the fonts used in the 
document. 

Figure 12. SCRIPTNS Logical Devices: This table lists the logical devices that can be specified with the DE­
VICE option of the SCRIPT command, and the default page dimensions for each. The page size can 
be changed with the .PW [Page Width) and .PL [Page Length) control words. The page margins can 
be changed with the .PM [Page Margins] •. TM [Top Margin], and .BM [Bottom Margin] control 
words. 

120 DCF: SCRIPT/VS Text Programmer's Guide 



All of these control words take effect on the next page. 

You can put page layout control words into the proftle. Whenever you format the docu­
ment using that proftle, the page layout appropriate for that document is used. 

Changing the Page Margin 

The .PM [Page Margins] control word causes SCRIPT/VS to shift the formatted output 
of each page to the right. You can use this control word to change margins if they were 
established using the BIND option of the SCRIPT command. For example, 

· pm 6 

sets the page margin to six character spaces, whereas 

· pm .5i 

sets the page margin to one-half inch. 

The current page margin can be increased or decreased by preceding the amount with a 
plus or a minus sign. For example, 

· pm +9mm 

increases the page margin by nine millimeters. 

If only one value is specified with the .PM [Page Margins] control word, it will be used 
for both odd- and even-numbered pages. You can set different margins for odd- and 
even-numbered pages by specifying two values; the ftrst value will be used for odd­
numbered pages and the second one will be used for even-numbered pages. For example, 

· pm 9p 6p 

causes the formatted output to be shifted nine picas to the right for odd-numbered pages 
and six picas to the right for even-numbered pages. 

If you specify the .PM [Page Margins] control word with no parameters, the value that 
was specilied in the BIND option on the SCRIPT command will be used. If the BIND 
option was not specified, then the default bind is restored. 

If the BIND option is not specified, the initial setting for the page margins is established 
by the logical device. In this case, tlus initial setting can be changed by specifying new 
values with the .PM control word. For example, if you specify, 

.pm nobind 9p 6p 

the initial settings for the page margins are changed to nine picas for odd-numbered 
pages and six picas for even-numbered pages. NOBIND indicates the .PM control word 
should be processed only if the BIND option of the SCRIPT command was not speci­
fted. If the NOBIND parameter is not specilied, the .PM control word unconditionally 
overrides the initial setting. 

Chapter 10. Establishing Page Layout 121 



Changing the Page Length 

Page length can be changed using the .PL [Page Length] control word. For example, you 
might specify 

.pl 68 

which will set the page length to 68 lines. 

You may need to adjust a page dimension to handle a special situation in your docu­
ment. Instead of changing the page length, you may be able to increase or decrease the 
amount of space reserved for margins. For example, if you want to reduce the number of 
text lines per page from 68 to 65, you can increase the amount of space for the top mar­
gin by specifying 

• tm +3 

To restore the original top margin, use the control word 

• tm -3 

If you specify the .TM [Top Margin] control word with no parameter, the top margin is 
set to the default established for the logical output device. 

Changing the Page Width 

You can specify the width of the output page by using the .PW [Page Width] control 
word. 

The page width includes both the page margins, as determined by the .PM [Page 
Margins] control word (or binding, as established with the BIND option of the SCRIPT 
command), and the line length, as determined by the .LL [Line Length] control word. 
These relationships are illustrated in Figure lIon page 118. The unbound margin of a 
page equals the page width minus the size of the binding and the line length. All text 
must be placed within the page, as defmed with .PW. 

Changing the Line Length 

When you are changing the default dimensions of the page, you should consider the 
length of lines as well as the width of pages. The SCRIPT jVS line length default is based 
on the logical output device, and can be changed by using the .LL [Line Length] control 
word. For example, if you want a line length of eight inches, specify 

.11 8i 

The .LL [Line Length] control word controls the width of the running headings and 
footings, and footnotes. Column line length, specified with the .CL [Column Line 
Length] control word, defaults to the .LL value, and controls the line length of each out­
put text column. The starting position of the rightmost column plus the column line 
length is the effective width of the body. This can exceed the .LL value. 

122 DCF: SCRIPT/VS Text Programmer's Guide 



You can increase and decrease the value of the line length. For example, 

.11 -2i 

decreases the line length by 2 inches. 

If you specify the .LL [Line Length] control word with no parameter, the line length is 
set to the default established for the logical output device. 

When SCRIPT/VS is concatenating text, the column line length (not the line length) 
limits the number of characters that can fit on an output line in that column. 

Establishing Top and Bottom Margins 

For most logical devices, SCRJPTjVS includes space for top and bottom margins in the 
page length. The amount of space is based on the logical output device type. The maxi­
mum number of text lines on a page is the number of lines per page less the number of 
lines for top and bottom margins. The .TM [Top Margin] and .BM [Bottom Margin] 
control words are used to respecify the top and bottom margin size. 

The .TM [Top Margin] control word specifies the amount of vcrtical space to be left at 
the top of output pages. The .BM [Bottom Margin] control word specifics the amount 
of vertical space to be left at the bottom of output pages. 

The value given with the .BM control word and with the .TM control word should not 
be so large that the top margin and bottom margin together fill the entire page. The size 
of the top and bottom margins is not affected by line spacing. 

Starting a New Page 
As SCRIPT/VS formats text, it keeps track of how many lines it has put on a page. 
When it reaches the bottom of the output page, SCRIPTjVS performs a page eject and 
continues on a new output page. SCRIPTjVS keeps track of the current page number as 
it is processing. 

You can force SCRIPT /VS to begin a new output page by using the .PA [Page Eject] or 
the .CP [Conditional Page Eject] control word: 

.pa 
or 
. cp 

The .PA [Page Eject] control word also allows you to specify a numeric parameter, to 
assign a page number to the new page. When you specify a page number with the .PA 
[Page Eject] control word, the page number counter is reset to the new number and con­
tinues sequentially from that number. 

For example, if you are creating a SCRIPT/VS me with a title page and you want the 
second output page to be numbered 1. you can enter: 

Title page ... 
. pa 1 
This is page one 

to cause a page eject after the title page and number the following pages, beginning with 
1. later in this section. 

Chapter 10. Establishing Page Layout 123 



Starting an Odd or Even Page 

You can force a new odd-numbered or even-numbered page when you specify the ODD 
or EVEN parameter of the .PA [Page Eject] control word. For example, if SCRIPT/VS 
is currently processing output page 3 and the next control word it encounters is 

. pa odd 

it ejects the cu.rrent page, prints any running heading and running footing that might be 
in effect on the next page (page 4), ejects, and prints the next output text on page 5. 

This is convenient when some of the pages in a document must begin on even- or odd­
numbered pages, such as the frrst page of a chapter, or the text that describes a figure on 
the facing page. 

Specifying Page Eject Mode 

When you want your document to be printed only on even-numbered pages (leaving the 
intervening odd-numbered pages blank) you can specify 

. pa even on 

This process is called even page eject mode. To specify even or odd page eject mode, 
you use the ON and OFF parameters of the .PA (Page Eject] control word, along with 
its EVEN or ODD parameters. You can similarly specify odd page eject mode with 

.pa odd on 

You can end page eject mode by issuing: 

• Another page eject mode control word. For example, if the odd-page eject mode is 
in effect, you can change to even-page eject mode with 

.pa even on 

• The OFF parameter. To tum off the odd-page eject mode, issue 

.pa odd off 

• Page renumbering. You can also cancel page eject mode by specifying a page eject 
that resets the page number: 

.pa 12 

Conditional Column and Page Ejects 

The .CP (Conditional Page Eject] and the .CC [Conditional Column Begin] control 
words allow you to specify how much space must remain in the column for 
SCRIPT /VS to continue formatting lines in that column. If there is not enough space 
remaining, SCRIPT/VS performs the page (or column) eject. For example: 

124 DCF: SCRIPT/VS Text Programmer's Guide 



This list includes 
· fa off 
.sk 
· cp 3 
GML Tags 
Symbols 
Macros 

When the .CP [Conditional Page Eject] control word is encountered, SCRIPTjVS deter­
mines the number of lines left in the column. If there are at least three lines, as in the 
example above, processing continues and the lines are printed on the current page. If 
there are fewer than three lines, however, SCRIPT/VS performs a page eject; the lines 
following the .CP control word are printed on the next page. 

When you use the .CP [Conditional Page Eject] control word by itself, SCRIPT/VS 
ejects to the next page unless there is no data on the current page. 

The .CC [Conditional Column Begin] control word works in an analogous manner. A 
column eject (which might result in a page eject if it occurs in the last column) is per­
formed when there are fewer than the required number of lines left in the column. 

Page NUlnbers 
The page number symbol is, by default, the ampersand (&), but it can be changed using 
the PS parameter of the .DC [Deftne Character] control word. The page number symbol 
is replaced, wherever it appears in the running heading and footing, with the current page 
number of the document being processed. SCRIPT/VS uses an internal page counter to 
keep track of what the current page number is. You can use the .P A [Page Eject] control 
word to reset this counter if you need to. For example, 

· pa 17 

sets the internal page counter to 17 regardless of how many pages have been formatted. 
Subsequent pages will be incremented by one. 

If you do not want page number substitution to occur, but you want SCRIPT/VS to 
continue counting the pages internally, you can specify 

· pn off 

If you do not want page number substitution or internal page counting to occur, you 
can specify 

· pn offno 

The OFF and OFFNO parameters of the .PN [Page Numbering Mode] control word 
can then be reset with 

.pn on 

The .PN control word further allows you to specify the form that the current page num­
ber takes when it appears in a table of contents, index, or running heading, or footing. 
The numbers can be arabic (which is the default), roman numerals, decimals, or alpha­
betics. 

Chapter 10. Establishing Page Layout 125 



Roman Numeral Page Numbers 

When you want page numbers to be printed in lowercase roman numerals, you can 
specify 

.pn roman 

The ROMAN parameter is useful for printing prefaces, forewords, and front matter. To 
restore arabic numbering, you can specify 

.pn arabic 

Decimal Page Numbers 

You can specify that you want decimal-point page numbering to begin after the next 
even-numbered page: 

· pn frac 

If this control word is encountered while SCRIPT/VS is processing page 46, then subse­
quent pages are numbered 46.1,46.2,46.3, and so on. 

You can end decimal-point page numbering and resume normal page numbering when 
you specify 

· pn norm 

SCRIPT /VS ends decimal page numbering and ejects the page; the next page will be 
number 47. 

Alphabetic Page Numbers 

When you want page numbers to be printed as lowercase alphabetic characters, such as 
page a, page b, page c, and so on, you can specify 

· pn alpha 

To restore arabic page numbering, you specify 

.pn arabic 

126 DCF: SCRIPT/VS Text Programmer's Guide 



Prefixes for Page Numbers 

Large documents often use a compound page numbering scheme to facilitate the fre­
quent replacement or addition of chapters or sections. You can use the PREF parameter 
of the .PN [Page Numbering Mode] control word to obtain this effect. For example, if 
you specify 

.pn 1 

.pn pref 1-

for the first chapter of a document, then its pages will be numbered 1-1, 1-2, 1-3, and so 
on. If you then specify 

.pn 1 

.pn pref 2-

for the second chapter, its pages will be numbered 2-1,2-2,2-3, and so on. 

RU1lning Headings and Footings 
The .RH [Running Heading] and .RF [Running Footing] control words provide a flexi­
ble mechanism for placing information at the top and bottom of each page. Running 
headings and footings appear inside of, and flush with, the body of the page. Running 
headings and footings can contain text, symbols, macros, logical functions, iterative proc­
essing, GML tags, and control words, enabling you to format the information to fit your 
needs. 

Running headings and footings are processed in two phases: 

• Definition phase: The entire heading or footing, including all text, symbols, macros, 
and GML tags, is saved for later processing. No control words are processed during 
definition phase. Symbol substitution and GML processing are not performed dur­
ing definition phase. 

• Processing phase: The saved definition is a macro and is processed as such. Only 
control words that cause a page eject are disallowed during the processing phase. 

For example, if your document contains the running footing definition: 

· rf on 
· sp 2 
.sx f /&title.//&/ 
· rf off 

then the running footing for each page will contain the value of the symbol &title at the 
time the page is started. 

A simple running heading which places text in the upper left hand comer of both odd 
and even pages can be specified as: 

· rh on 
The Text of the Heading 
· rh off 

Chapter 10. Establishing Page Layout 127 



If you wanted to center text at the top of each page for your running heading, you could 
specify: 

· rh on 
.ce Internal Use Only 
.sp 2 
· rh off 

You can also emphasize the security classification of your document by specifying:33 

· rh on 
.bf 
· ce Confidential 
· sp 2 
· rh off 

which places the running heading in a bold font. 

A simple running footing which places text in the lower left hand corner of both odd 
and even pages can be specified as: 

· rf on 
The Text of the Footing 
· rf off 

A running footing which places the current page number in the right-hand corner of 
each page can be entered as: 

· rf on 
· sp 2 
· ri Page & 
· rf off 

The page number symbol (&) will be replaced with the current page number on each 
page. 

Separate running headings and footings can be deftned for odd- and even-numbered 
pages. For example, 

· rf even 
.sp 2 
.sx c /Page &/Introduction// 
· rf off 
· rf odd 
.sp 2 
.sx c //Introduction/Page &/ 
· rf off 

33 It is not necessary to restore the previous font after the .RH [Running Heading] definition 
because the active formatting environment is automatically saved when a running heading or 
footing definition is formatted and restored afterward. See "Chapter 20. Defining the Format­
ting Environment" on page 219 for details. 

128 DCF: SCRIPT/VS Text Programmer's Guide 



centers the title "Introduction" at the bottom of each page and places the page number 
in the lower left comer on even-numbered pages and in the lower right comer on odd­
numbered pages. The page number symbol, by default the ampersand (&), is replaced by 
the current page number whenever it appears in a running heading or footing definition. 

Because running heading and footing defInitions can contain text, macros and control 
words, sophisticated headings and footings can be created to fill special requirements. 
For example,34 

· rh on 
· bx 1 &$LL 
· fo center 
.bf 
Expiration Date: 
.pf 
.us January 22nd, 1985 
· bx off 
.sp 2 
· rh off 

results in the following running heading being placed at the top of each page: 

Expiration Date: January 22nd, 1985 

Running headings and footings appear in the body of a page flush with the text. Ordi­
nailly, some space should be included at the end of a running heading and at the begin­
ning of a running footing to separate the heading or footing from the body text. 

There may be times, however, when you want to merge a running heading or footing 
with the body text. For example, the heading of a multipage table might be defmed as 

· rh on 
· bx 1m &$L1 
· ce Parts 1ist 
.tp 3m 24m 49m 
.bx 1m 14m 47m &$11 
&$TAB.Part No. &$TAB.Description &$TAB.Quantity 
.bx 
.sp 
· bx can 
· rh off 

which would produce this heading: 

Parts 1ist 

Part No. Description Quantity 

34 The .BX [Box] control word is described in detail under "Chapter 14. Creating Rules and 
Boxes" on page 157. 

Chapter 10. Establishing Page Layout 129 



The vertical rules of this heading can be made to line up and merge with the vertical 
rules in the body text on each page. 

Running heading and footing deftnitions must be redefmed in their entirety when 
changed. If a running heading or running footing is no longer needed, it can be com­
pletely removed by specifying 

· rh cancel - or - . rf cancel 

If you do not want to remove a running heading or footing, but you do not want it to 
be placed on a particular page or series of pages, you can temporarily suppress it by 
specifying: 

· rh sup - or - . rf sup 

Then, when you are ready to restore it, all you have to specify is 

· rh res - or - . rf res 

This automatically restores the running heading without having to redefme it. 

Where to Define Headings and Footings 
SCRIPT jVS formats running headings and running footings for each page before proc­
essing the body text for that page. Therefore, when you redefme a running heading or 
footing, you should make sure that it is redefmed before a control word that causes a 
new page is encountered, because ordinarily it will not take effect until the next output 
page is processed. 

If you want to alter a running heading or footing after the page has started, however, 
you can do so as follows: 

1. Redefme the current running heading or footing to whatever new values you want it 
to have 

2. And then specify 

.rh execute - or - . rf execute 

The new running heading or running footing for this page is processed immediately; that 
is, it takes effect on the current page. If the heading or footing contains any variable 
information, the latest values for those variables is used. Your new running heading or 
footing definition remains in effect until you redefine it again. 

If the new running heading or running footing specified with the EXECUTE parameter 
is larger than the original running heading or running footing definition, then the follow­
ing rules apply: 

• If the new definition can ftt on the page, it takes effect on the current page 

• If the new definition does not ftt, it takes effect on the next page. 

130 DCF: SCRIPT/VS Text Programmer's Guide 



If it is necessary for SCRIPT/VS to finish processing the current page before a running 
heading or footing is redefmed, you can specify 

. pa nostart 

which ends the current page but does not start the next page. You can then redefine the 
running heading or footing for the next page. The next page will automatically be 
started when text for the body of that page is formatted. 

Ordinarily, running headings and footings do not appear on the ftrst page of a document. 
If you want them to, you must issue their defmitions before any text for the body of the 
fIrst page is formatted. 

Chapter 10. Establishing Page Layout 131 





Chapter 11. Placing Text in Named Areas 

Page Areas 

Body Areas 

The .DA [Define Area] and .AR [Area] control words can be used to place text at prede­
fmed places on the page. 

The .DA [Defme Area] control word is used to defme named areas. With this control 
word you can specify the following: 

• Type of area: page, body or section 

• Horizontal displacement of upper left-hand comer of the area 

• Vertical displacement of upper left-hand comer of the area 

• Width of the area 

• Depth of the area 

• Font to be used in the area. 

A page area can be placed anywhere on the page, as defmed by the .PL [Page Length] 
and .PW [Page Width] control words.3S The horizontal and vertical displacements given 
for a page area are measured from the upper left-hand comer of the page. All page areas 
are placed on the page when the page is ended. See Figure 13 on page 135 to see how 
the horizontal and vertical displacement of a page area is measured on the page. 

A body area can be placed anywhere within the body of a page. The body of the page 
starts after the running heading (or after the top margin, if there is no running heading) 
and extends to the footnote, running footing, or bottom margin. Horizontally, the body 
of a page begins at the left margin as defmed by the BIND option of the SCRIPT com­
mand and the .PM [Page Margins] control word. The horizontal and vertical displace­
ments given for a body area are measured from the upper left-hand corner of the body of 
the page. All body areas are placed on the page when the page ends. See Figure 13 on 
page 135 to see how the horizontal and vertical displacement of a body area is measured 
on the page. 

3S On the 3800 Printing Subsystem the top and bottom half inch of the physical form is reserved 
by the printer and cannot be printed on. 

Chapter 11. Placing Text in Namcd Areas 133 



Section Areas 
A section area is a bit different from page and body areas. Section areas are placed on 
the page by specifying the PUT parameter of the .AR [Area] control word. When a sec­
tion area is placed, the current section is ended and a new section is begun. A section 
area uses the upper left-hand comer of the new section as its origin. The vertical dis­
placement is ignored for section areas. All section areas begin at the top of the section 
created for them. The horizontal displacement is used, and is measured from the left 
margin of the section as defmed with the BIND option of the SCRIPT command and 
the .PM [Page Margins] control word. See Figure 13 on page 135 to see how the hori­
zontal and vertical displacement of a section area is measured on the page. 

Othel' Considerations 

Specifying Width 

Specifying Depth 

The horizontal and vertical displacement parameters are positional, they must be the sec­
ond and third parameters on the .DA [Define Area] control word. Any valid space unit 
notation can be used for these two parameters. If the vertical displacement is omitted, 
zero is assumed. 

If the type of area is not specified, PAGE is assumed. 

The WIDTH parameter of the .DA control word allows you to give a specific column 
line length for the named area. If not specified, the current column line length is used. 
Use this parameter to ensure that all of the text fomlatted in the area fits within the 
boundaries of the page. All text in the area will be formatted as if the value given on the 
WIDTH parameter had been given on a .CL [Column Line Length] control word at the 
beginning of the area. 

SCRIPT jVS always formats all of the text in a named area. The DEPTH parameter of 
the .DA control word is used to deteffi1ine how much formatted text will be placed on 
the current page, body, or section. If omitted, the area will be filled until there is no 
more text in the area, or the end of the page, body, or section is reached. Any text not 
placed is saved and may be placed on the next page, body, or section. 

If the DEPTH value specified would exceed the bottom of the page, body, or section, 
the area will only extend to the bottom of the page, body, or section. 

Specifying a Font 

The FONT parameter of the .DA control word allows you to specify that a named area 
be formatted in a particular font. The font specified may be any fontname that can be 
used with .BF [Begin Font]. This font will be the initial font for the named area. If the 
FONT parameter is not specified, the current font will be used. 

134 DCF: SCRIPT/VS Text Programmer's Guide 



"'. , 

........ 
0 
liP< ... 
i:I 
15 
~ 
'-' 

liP< 

J 
I'Q 

~ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

Top M.uwIN 

, , 
.......................................................... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . ............................................ ~ ........ '.' ••••••••••••••••••••• ':«i' .... . ·········································Z· ....... . .. '".................................... .. ... .. ............•......................... ~~Q .. ......... . ................. ~ ....... . ................................ .. ............ .. ................................. .. .............. .. ................................ ~{: ................. . ........................... ;...; ........................ . .:.:.:.:.:. :.:.:.:.:.:.: '~-: .. ,: -:.:.:. :-:.:.:.:.:.: . ........... ~ •• "1> •••••••••••••• .................. ~ .... ~> ........................ . 
.:.:-:-:-:.:.' .. (' ... ':-:-:':-:-:':-:':-:-:':-:-:' ....... 1: .................. . ............ " ...................................... .. ........................................................ .............. ...................................... .. ........................................................ .. ...................................................... .. ........................................................ .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 

\ . 
," 

. - - - - - - - _. - - _. - - - - - - - - - --................................................... ................................................ .. .................................................. .. ................................................ .. .................................................. .. ................................................ .. 

rr)m))t}~\k~)jj~ .............. ~~~ ...... .. .. .. .. .. .. .. .. .. .. .. .. ... . :) ....... . .............. . ....... . ....................... ~ .......................... . .................. ~.:\: .......................... . ................. ~ :,;.. ........................ . 

!i:i·::.~0 :::.::': !·:·:i·i,·:·:·!·!i!::i.i! 
..................................................................................................................................... , . . , 

~ ~ 
~ RUNNING FOOTING ~ 
: : 

r·""·"··"·· ....... ""··""·········~::::::::""m"" ... ' ... "''''' ...... '"""""''': 

Figure 13. Measuring the Origin of Areas on a Page. 

Chapter t I. Placing Text in Named Areas 135 



Putting Text in the Named Areas 
Use the .AR [Area1 control word to put text into a named area. The first parameter 
given is the name of the area that the following text is to go into. This is the name given 
with the .DA [Defme Area1 control word. For example, 

· ar cortney on 

causes all text, control words, GML tags and macros encountered until a .AR OFF con­
trol word to be put into the named area CORTNEY. 

Specifying: 

· ar cortney top 

causes all text, control words, GML tags and macros encountered until an .AR OFF 
control word to be put into the area CORTNEY, ahead of anything that might already 
be in that area. If the area is empty, the ON and TOP parameters give the same results.36 

Specifying: 

· ar eric delete 

will delete all the contents of the named area ERIC that have not yet been placed on a 
page. The named area is now empty. 

Specifying: 

· ar eric replace 

will delete all the current contents of the named area ERIC that have not yet been 
placed on a page; then all text until the next .AR OFF control word is placed in the 
area. This parameter is equivalent to saying: 

· ar eric delete 
· ar eric on 

All control words that are disallowed in keeps, floats and footnotes are also disallowed in 
named areas. If SCRIPT jVS encounters any of these control words while in a named 
area, the area is ended and the control word is processed. See the Document Composition 
F acUity,' SCRf PTj VS Language Reference for a list of these control words. 

Placillg the Named Area 011 the Page 
Page and body named areas are placed on the page when the page is ended. Text can be 
added to an area several times before the area is placed on the page. Any text that does 
not fit on the current page, either because the DEPTH parameter was reached, or the 
end of the page or body was reached, will be saved and placed on the next page. 

To place section areas on the page, you must explicitly specify .AR PUT. When you 
specify .AR PUT, the current section is ended and a new section is started. All section 

36 Specifying TOP does not necessarily mean that the follo\\ing text will end up at the top of the 
area when the area is put on the page. If another .AR TOP control word is encountered for 
that area, the text following that control word will be put ahead of any text entered with a 
previous .AR TOP control word. 

136 DCF: SCRIPT/VS Text Programmer's Guide 



areas that are not empty are placed in the new section and as many sections as needed 
are created to place all the text of all the section areas. Also, as many pages as needed 
are created to place all of these sections. 

Note: If you never specify .AR PUT, text formatted into section areas will never be 
placed on any page. 

Skips that occur at the top of an area will be discarded when the area text is placed on a 
page. If the depth of the area is measured by use of &AD', the returned value will not 
reflect the presence of any top skip even though it has not yet been discarded. 

A skip at the bottom of a page or body area is not discarded. If the placement of the 
skip (or any other object, such as a text line) would cause the depth of the area to be 
exceeded, the placement will be deferred until the next page. When this occurs, the short 
area is padded with vertical white space. 

A skip at the bottom of a section area mayor may not be discarded. If it will fit, the 
skip is kept; otherwise, it is discarded. After the section is complete, all of the section 
areas will be made equal in depth by padding the shOlier areas with vertical white space. 

SpecifjJillg N alned Areas 
The following .DA [Defme Area] control word defmes a page type area that originates at 
the upper left-hand corner of the page, is 3 inches wide, and is 5 inches deep: 

.da piezie 0 0 page width 3i depth 5i 

Since the default area type is PAGE, and the default vertical displacement is zero, the 
following .DA control word defines an area with the same specifications as the area 
PIEZIE above . 

. da joe 0 width 3i depth 5i 

The following .DA control word defmes an area that covers the entire page: 

.da paulO 0 width &$PW depth &$PL 

A body area that starts 3 centimeters in from the left margin, 2 centimeters down from 
the top of the body of the page, is 5 centimeters wide and extends to the end of the body 
would be defmed as: 

.da mick 3cm 2cm body width 5cm 

To defme two section areas to simulate a two column format with columns 26 characters 

Chapter II. Placing Text in Named Areas 137 



wide starting at the left margin and 30 characters from the left margin specify: 

.da edgar 0 section width 26 

.da lewis 30 section width 26 
· ar edgar on 
· fo left 
Once upon a midnight dreary, 
while I pondered, weak and weary, 
Over many a quaint and curious volume of forgotten lore-­
While I nodded, nearly napping, 
suddenly there came a tapping, 
As of some one gently rapping, 
rapping at my chamber door. 
"'Tis some visitor," I muttered, 
"tapping at my chamber door--
Only this and nothing more." 
· ar off 
· ar lewis on 
· fo right 
The sun was shining on the sea, 
Shining with all his might: 
He did his very best to make 
The billows smooth and bright-­
And this was odd, because it was 
The middle of the night . 
. sk 
The moon was shining sulkily, 
Because she thought the sun 
Had got no business to be there 
After the day was done--
"It's very rude of him," she said, 
"To come and spoil the fun!" 
· ar off 
.ar edgar top 
RAVEN: 
.sp 
· ar off 
· ar lewis top 
WALRUS: 
.sp 
· ar off 
· ar put 

138 DCF: SCRIPT/VS Text Programmer's Guide 



This will be formatted as: 

RAVEN: 

Once upon a midnight dreary, 
while I pondered, weak and 
weary, Over many a quaint 
and curious volume of forgot­
ten lore-- While I nodded, 
nearly napping, suddenly 
there came a tapping, As of 
some one gently rapping, 
rapping at my chamber door. 
'''Tis some visitor," I mut­
tered, "tapping at my cham­
ber door-- Only this and 
nothing more." 

WALRUS: 

The sun was shining on the 
sea, Shining with all his 

might: He did his very best to 
make The billows smooth 
and bright-- And this was 

odd, because it was The mid­
dle of thc night. 

The moon was shining 
sulkily, Because she thought 
the sun Had got no business 

to be there After the day was 
done-- "It's very rude of 

him," she said, "To come and 
spoil the fun!" 

To specify a page area that starts 4cm down from the top of the page and 4cm over from 
the left edge of the page, uses the default column line length, and an italic font (for page 
printers) specify: 

.df italic type(futura 10 italic) 

.da cleo 4cm 4cm page font italic 

The text in the named area CLEO will use Futura 10 point italic as its initial font. Other 
font changes can be made in the area with the .BF control word. 

To put an area in the upper left hand corner of the page specify: 

.da fred 0 0 page width .5i depth 3 

. ar fred on 
something else ... 
. ar off 

Named areas can overlap other named areas, and any other text that may be placed on 
the page. Choose vertical displacements, horizontal displacements, WIDTH values and 
DEPTH values, to avoid any unintentional overlapping. On devices that do not over­
print, overlaying of text in this manner may produce unpredictable results. 

Using the &AD' SY11lboi Attribute 
The &AD' symbol attribute can be used to determine the depth of the unplaced text in a 
named area. This symbol attribute can be helpful in putting headings on areas each time 
they appear on a page. In the following example, the line "DIET continued:" will appear 
at the beginning of the named area CECIL on each page after the fust that it appears on. 

Chapter 11. Placing Text in Named Areas 139 



· rh on 
.if &ad'cecil eq 0 .go skip 
· ar cecil top 
DIET continued: 
· ar off 
... skip 
· rh off 
.da cecil 0 0 body width 5i depth 3i 
· ar cecil on 
· fo left 
· ce DIET 
.sp 
Some ladies smoke too much and 
some ladies drink too much and some ladies pray too much, 
But all ladies think that they weigh too much. 
They may be as slender as a sylph or a dryad, 
But just let them get on the scales 
and they embark on a doleful jeremiad; 
No matter how low the figure the needle happens to touch, 
They always claim it is at least five pounds too much; 
To the world she may appear slinky and feline, 
But she inspects herself in the mirror and cries, 
Oh, I look like a sea lion. 

· ar off 

* 
When the running heading is executed at the beginning of each page, the value of 
&AD'ceci1 will be the number of lines in the named area CECIL that have not yet been 
put on a page. If there is still text left in CECIL, the line "DIET continued:" will be 
inserted at the top of the area. When all of the text of the area has been placed on pages, 
the value of &AD'cecil will be zero; the condition will then be false: nothing more will 
be placed into the named area CECIL. 

Using Named Areas with the 3800 Subsystenl Modell 
If text or rules from the area overlay anything outside that area, misalignment of text 
and/or rules may occur. 

140 DCF: SCRIPT/VS Text Programmer's Guide 



Chapter 12. Composing Multiple-Column Pages 
With SCRIPT/VS, you can produce single-column or multiple-column output pages or 
a mixture of both. 

Note: Many of the examples in this chapter are formatted to the column line length of 
the page for demonstration purposes. 

Defining Mliiticolllnlll Layout 
You can defme an output page with as many as nine columns of text. To define a multi­
column page layout, you should decide the number of columns that you want, the line 
length of each column, and the desired horizontal displacement for the left margin of 
each column. 

The space between columns (the gutter) is determined by the relationship of the column 
line length to the column positions. Usually, the column line length will be a value that 
is less than the difference between the left margin positions of adjacent columns, ensur­
ing that some space will be present between columns. 

Once you have decided the dimensions and positions of your columns, the column defi­
nition can be specifted using the following SCRIPT /VS control words: 

• .CD [Column Definition], which provides for 

• Specifying the number of columns 

• Specifying the left margin position for each column 

• .CL [Column Line Length] which provides for 

• Specifying the column line length for all columns 

To defme a multicolumn layout for three columns that have widths of 9P, and have left 
margins at the page's left margin, at 12P, and at 26P respectively, the following control 
words would be used: 

· cl 9p 
· cd 3 0 12p 26p 

and would produce the following effect: 

Chapter 12. Composing Multiple-Column Pages 141 



o 9p 
I I 
As you can see, the col-
umn deftnition has 
changed and we are 
now fonnatting with 
three columns. The first 
column's left margin is 
at the left margin of the 
page (position 0). The 
second column's left 
margin is at position 
12P. Column one's right 
margin (position + col-

12p 2lp 
! I 
umn line length) is 9P. 
The space between col­
umn one and column 
two is 3P (12P - 9P). 
Column two's right 
margin is 21P (12P + 
9P). The third column's 
left margin is at position 
26P. The space between 
column two and col­
umn three is 5P (26P -
2IP). As can be seen, 

26p 35p 
I I 
the space between col­
umns two and three is 
greater than that be­
tween columns one and 
two. All columns have 
the same width. It is not 
necessarily desirable to 
vary the gutter space 
but this does illustrate 
the flexibility of the .CD 
[Column Deftnition) 
and .CL [Column Line 
Length) control words. 

1-3p--1 1-5p----1 

The preceding example shows one multicolumn layout. There are many possible vari­
ations. 

The .LL [Line Length] control word is used to specify the line length for single column 
text layout, running headings and footings, page floats, and footnotes. Normally this 
value is set equal to the right margin of the rightmost column to align all the compo­
nents of the page. In the preceding example you would specify: 

.11 35p 

The following control words specify text that is fonnatted using line length (.LL) instead 
of the colunm line length (.CL): 

• .RH [Running Heading] 

• .RF [RUlming Footing] 

• .FL [Float] PAGE 

• .FN [Footnote] 

Note: The .CD [Column Defmition) and .CL [Column Line Length) control words take 
effect immediately on the next output line. 

142 DCF: SCRIPT/VS Text Programmer's Guide 



Page Sections and Section Breaks 

A page is divided into sections that can be thought of as independent components. 
These sections are: 

Running Heading 

Top Page Float 

Body Text 

Bottom Page Float 

Footnotes 

Running Footing. 

Once a page section is completely formatted and its columns balanced, it cannot be 
changed. This is called a section break. When all page sections are complete, the page is 
written to the output destination. 

See Figure lion page 118 for a pictorial representation of the page and its component 
parts. 

The column depth for each column on the page is equal to the page length minus the 
space reserved for the top and bottom margins, running headings and footings, and foot­
notes, if any. See "Chapter 10. Establishing Page Layout" on page 117 for details on 
these component space values. 

When a page is being formatted, completed output lines arc placed in the current col­
umn until it is full. The lines formatted for the current column are saved and a new 
column is begun. This is called a column eject. 

If all columns on the page are full, a new page is begun. This is called a page eject. 

A section break occurs when: 

• All columns on the page are full. 

• A page eject is requested by: 

.PA [Page Eject] 

.CP [Conditional Page Eject] 

.CB [Column Begin] in the last column 

.CC [Conditional Column Begin] in the last column. 

• The column defmition is changed by: 

.CD [Column Definition] 

• The column mode is changed by: 

.MC [Multicolumn Mode] 

.SC [Single Column ModeJ 

Chapter 12. Composing Multiple-Column Pages 143 



• A full page skip or space is requested by: 

.SK [Skip) with the "P" parameter 

.SP [Space] with the "P" parameter. 

When a section break occurs, the lines that have been formatted for this section are re­
distributed as equally as possible among the defIned columns. This is called column bal­
ancing. This process is not performed if there is only one column, or if column balancing 
has been disabled by the .BC [Balance Columns} control word. See "Chapter 9. Verti­
cally Justifying Text" on page 111 for more details on balancing columns. 

If the column definition is changed in the middle of the page, all lines formatted to that 
point are processed and sent to the output destination. A new output section is started 
using the new column defInition. The depth of the new columns is equal to the space 
remaining on the page above the running footing and bottom margin. 

Defining Collunns 
You can place text in a column by using a combination of the .CD [Column DefInition] 
and .CB [Column Begin] control words. 

You can use the .CD [Column DefInition] control word to defIne a set of columns. Or­
dinarily, text flows from one column to the next as the columns are filled. 

The .CD [Column DefInition} control word causes a section break when it is processed. 
This means that all the text entered before the .CD [Column DefInition] control word is 
processed and positioned on the page using the old defInition before the new defmition 
becomes active. 

The gutter between columns is obtained by defIning the column line length to a value 
less than the distance between column starting positions. 

If you enter 

· cd 2 0 21p 
· cl 19p 

you get two 19 pica columns with a 2 pica gutter between them. 

The positions of the columns do not control how wide the columns are to be; you must 
set the column line length, using the .CL [Column Line Length} control word, to control 
this. If the current column line length is greater than the distance between columns, the 
text from a column can overlay the next column. 

Whenever you use a .CD control word, you should specify positions for each column 
available. If you specify .CD n without specifying any positions and no previous column 
defInition has been specifIed, the initial values 0, 46, 92, 0, 0, 0, 0, 0, and ° are used. 

You can also predefine columns without actually using them. For example, if you enter 

.cd 2 0 10cm 20cm 30cm 
· cl Bcm 

four columns are defined, but text is formatted into only the first two of them. If you 
later enter 

.cd 4 

144 DCF: SCRIPT/VS Text Programmer's Guide 



text is formatted into all four of the columns you defmed with the earlier .CD control 
word. If .CD is specified with no other parameters, a section break is performed and the 
column defmitions are unchanged. 

Columns can be defined that overlay one another in whole or in part. The results may 
be undesirable on devices which do not allow overprinting. 

Column positions remain in effect until explicitly changed by a .CD [Column Defmition] 
control word. For example, you can defme a multicolumn layout and then format using 
one or more columns without changing the column positions. 

This first section was 
produced by specifying 

· cd 1 0 IIp 22p 
· cl 9p 

to format using only the 
first column. 

This second section was 
produced by specifying 

· cd 2 

to format using the first 
two columns. The ori-

This third section was 
produced by specifying 

· cd 3 

to format using all three 
columns. As can be 

Column Line Length 

ginal column line length 
is used for all columns. 
Notice that the format­
ted lines are distributed 
between columns one 
and two using column 
balancing. 

seen from this example, 
the number of columns 
can be varied without 
changing the column 
position values. Notice 
that the formatted lines 

are distributed among 
all three columns. If the 
lines carmot be equally 
divided, some columns 
may be longer than oth­
ers. 

Column line length remains in effect until explicitly changed by a .CL [Column Line 
Length] control word. 

To make best use of the space on a page, column line length and column positions are 
usually changed when the number of columns changes. Usually the column line length 
value would be set to line length minus all gutter space, divided by the number of col­
umns. 

Chapter 12. Composing Multiple-Column Pages 145 



With a line length of 34P, and a gutter of 
2P, two columns would be dermed as: 

most use of the space on the page. As can 
be seen, there is little wasted. This example 
is meant to show typical usage. Nonnally 
columns will be laid out to be as dense as 
possible for economic page use. Readability 
is also a factor in column defmition. 

· cd 2 0 l8p 
· c1 16p 

This two-column data is formatted with a 
column line length of 16P to make the 

With the same line length 
and gutter size, three col­
umns would be dermed as: 

.cd 3 0 12p 24p 
· cl lOp 

Starting a New Column 

This three-column data is 
formatted with a column 
line length of lOP to make 
the most use of the space 
on the page. As can be 
seen, there is little wasted. 
This example is meant to 
show typical usage. Nor-

mally columns will be laid 
out to be as dense as pos­
sible for economic page 
use. Readability is also a 
factor in column defi­
nition. In this three-co­
lumn example the columns 
are a little narrow. 

The following SCRIPT jVS control words can be used to end a column before it is full. 

• .CB [Column Begin] ends the column unconditionally. 

• .CC [Conditional Column Begin] ends the column based on the space remaining in 
the column. 

• .CP [Conditional Page Eject] ends the column and causes a page eject based on the 
space remaining in the column. 

Use the .BC [Balance Columns] control word to enable or disable column balancing. If 
column balancing is OFF, no columns are balanced. If column balancing is ON, each 
set of columns is balanced whenever a section break occurs. 

Blocks of text, such as figures or tables, can be kept together and balanced as a unit. 
Text lines in such a block will not be split across columns. see "Keeps" on page 191 for 
details on use of the .KP [Keep} control word. 

You can use the .CB control word when you want to make subsequent text appear at 
the top of a new column. If the current column at the time .CB is encountered is the last 
column on the page, the column eject is the same as a page eject, because the next col­
umn is the first column of the next page. 

The material following the .CB control word will be placed at the top of the new col­
umn, and will remain there, even if column balancing is in effect. 

146 DCF: SCRIPT/VS Text Programmer's Guide 



The .CB control word ensures that the text following it will appear at the top of a col­
umn: 

. cb 
This text will fall 
at the top of a column 

If a floating or delayed keep is waiting for the start of a new column, then the text that 
follows the .CB control word appears after the keep. 

If both a top column float and a keep are waiting for the start of a new column then the 
top column float precedes the keep, which in turn precedes the text. 

A column eject can be performed by certain other control words if the conditions war­
rant it. If this happens, the function is the same as the unconditional column eject that is 
caused by the .CJ3 control word. The other control words that can cause a column eject 
are: 

. HO - . H6 [Head Level 0 - 6] 

. KP [Keep] 

Suspending and Resulnillg Multicollunn Processing 
If you use several different column formats in a document you can create symbolic 
names (with the .SE [Set Symbol] control word) or macros (with the .DM [Defme 
Macro] control word) to establish column definitions, column line lengths, and so on. If 
you use a single one-column format and a single multiple-column format, you can 
switch back and forth using the .SC [Single Column Mode] and .MC [Multicolumn 
Mode] control words. 

The .SC [Single Column Mode] control word 

• Saves the current column defmition 

• Column line length 

• Number of columns 

• Column positions. 

• Defmes a single column with a column line length equal to line length. 

The .MC [Multicolumn ModeJ control word restores the last-saved column definition. 

You must specify the .SC [Single Column ModeJ control word before you specify the 
.MC (Multicolumn Mode] control word. 

Chapter 12. Composing Multiple-Column Pages 147 





Chapter 13. Creating Head Levels and Table of Contents 

Head Levels 

SCRIPTjVS provides an automatic table of contents facility which is based on the con­
cept of head levels. When you create a SCRIPTjVS ftie, you can enter topic headings" 
to designate changes in content, or to create titles. 

The format of a topic heading indicates its relationship to the other topic headings in the 
document. In SCRIPTjVS, different levels of headings can be entered with the control 
words .HO, .Hi, .H2, .H3, .H4, .HS and .H63B • When SCRIPT/VS processes a .HO -
.H6 [Head Level ° -6] control word: 

• The text portion of the heading is formatted according to characteristics associated 
with the head level. The formatting can include such things as spacing above and 
below the heading, capitalization, underscoring, and font changes. 

• If the heading requires a table of contents entry, the heading's text and current page 
number are saved in the DSMUTTOC file. 

For example, if you enter a topic heading as 

. h3 Symptoms 

SCRIPT/VS uses the characteristics of a level-three heading to format the heading's text 
on the page. SCRIPT jVS also creates an entry in the table of contents file for the topic 
"Symptoms" and the page number on which it appears. All the headings entered with 
the .H3 control word are formatted in the same way. 

If you use SCRIPTjVS head-level control words exclusively, you need not create a table 
of contents manually. \Vhen you revise or reorganize your document, the table of con­
tents is automatically updated. 

Head levels are commonly associated with the following sections of a document: 

.HO Table of contents entry only 

.HI Chapter 

.H2 Major section 

.H3 Minor section 

.H4 Topic 

.HS Inline heading 

.H6 Inline heading 

31 The word heading is used in this section to mean a topic heading that is printed as part of the 
text. 

38 The GML starter set provides tags with similar names and functions. This discussion is con­
cerned only with the SCRIPTjVS control words. 

Chapter 13. Creating Head Levels and Table of Contents 149 



The .DH {Define Head Level] control word allows you to redefIne the characteristics of 
any head level to suit your needs. You can determine whether: 

• The heading in the text should begin on a new page or cause a break. 

• The heading should be placed in a separate section. 

• The heading should be numbered with a decimal number associated with the head 
level. 

• The heading should be eligible for hyphenation. 

• The heading should never be hyphenated. 

• The heading should or should not be formatted in hanging indent style if it occupies 
two or more lines. 

• The heading should be right-aligned, left-aligned, centered, or aligned away from the 
presumed binding of the page. 

• !he heading should be capitalized or underscored, and which font it is to be printed 
ID. 

• Vertical space will precede and follow the heading, and how much 

• A table of contents entry is to be created. If so, other characteristics for the table of 
contents entry which can be specifted are the following: 

• The indention of the entry in the table of contents 

• The font to be used for the entry in the table of contents 

• Whether the entty is to be preceded by a skip in the table of contents 

• Whether to right-align the page number associated with the entry, separated 
from the text by a dot-leader 

• Whether only a table of contents entry should be created, placing no heading at 
all in the text. 

Figure 14 on page 151 lists the default characteristics of the .HO - .H6 [Head Level 0 - 6] 
control words. 

Spacing and Page Ejects 

Headings are printed in the current column when there is enough space for the heading 
and at least two lines of text that follow it in the body of the document. If there is not 
enough space the heading is placed at the top of the next column. However, if the head­
ing is defined to cause a section break, then SCRIPT jVS checks to see if there is space 
for the heading, plus a following line of space, plus 1/2 inch. If not, the heading is placed 
at the top of the next page. In this case, you should use a .CP control word prior to 
headings that cause section breaks but not page breaks. 

The line spaces that follow topic headings are conditional. If the heading is followed by 
more vertical space (whether caused by the .SP (Space] or .SK [Skip] control words or 
another head level), only the larger of the two spaces is used, not the sum. If the heading 
causes a section break, then both spaces will be used. 

Defining Head Levels 

The .DH [DefIDe Head Level] control word allows you to redefIDe the characteristics of ~ 
any head level. The .DH control word accepts parameters that describe head level char- ~ 

150 DCF: SCRIPT/VS Text Programmer's Guide 



acteristics, such as SPAF (SPace AFter) to set the amount of vertical space to follow the 
heading and TC to indicate that a table of contents entry is to be generated. For exam­
ple, 

. dh 3 skbf 1 us 

will redefme the .H3 head level to provide only one line of space before the heading, and 
to underscore the heading. 

To center all level 1 headings and set them in the second font specified with the CHARS 
options of the SCRIPT command, enter 

.dh 1 center font &$CHAR(2) 

If only one font is specified with the CHARS option, the value of the symbol 
&$CHAR(2) will be null and the FONT keyword will be ignored if it is on the end of a 
line. 

You might have requested a font you had previously specified with the .DF [Define 
Font] control word. The example above might then look like this: 

.dh 1 center font emph 

See "Chapter 15. Selecting Fonts" on page 175 for more details on defIDing and selecting 
fonts. 

.HO .H1 .H2 .H3 .H4 .H5 .H6 

New page for heading yes 

Section breaks around heading yes 

Heading alignment out- left left left 
side 

Space before heading 0 0 0 0 0 0 0 

Skip before heading 0 0 3 3 3 1 1 

Space after heading a 5 2 2 2 a 0 

Heading underscored yes yes yes yes yes 

Heading capitalized yes yes yes yes 

Break before heading yes yes yes yes 

Table of Contents entry yes yes yes yes 

Table of Contents only yes 

Skip before T.O.C. entry yes 

T.O.C. indention 0 0 a 2 4 6 8 

Automatic hyphenation a yes yes yes yes yes yes 

Hanging indent a no no no no no no 

Figure 14. Summary of Initial Head Level Characteristics: This table lists the initial characteristics of the .Hn 
[Head Level n] control words. The .DH [Define Head Level] control word allows you to redefine any of 
these characteristics to suit your needs. 

Note: By default, all headings and table of contents entries are printed in the current font and headings 
are subject to hyphcnation. 

Chapter 13. Creating Head Levels and Table of Contents 151 



To make level 2 headings result in exactly the same formatting as the default level 1 
headings, you would enter 

.dh 2 pa sect outside spaf 5 ts 

your level 2 headings will then: 

• Do a page eject before the head level (if not already at the top of a page). 

• Cause a section break before and after the head level. 

• Align the text of the heading against the outside margin of the column - away from 
the presumed binding edge of the duplexed page. This is equivalent to .FO OUT­
SIDE. 

• Put five spaces after the head level. 

• Space one line before a table of contents entry. 

If you want to left-align (as in .FO LEFT) the text of a heading, you can enter: 

· dh 2 left 

If you want to right-align (as in .FO RIGHT) the text of a heading, you can enter: 

· dh 2 right 

If you want to align the text of the heading against the inside margin of the column -
towards the presumed binding edge of the duplexed page (equivalent to .FO INSIDE) -
you could enter: 

.dh 2 inside 

If you want to center the text of the heading, you could enter 

· dh 2 center 

If you do not want level 5 headings to be underscored or capitalized but you do want 
them to create table of contents entries, enter 

· dh 5 nus nup tc 

To restore the default characteristics at a later time, you can enter 

· dh 5 

You can also redefme a .HO - .H6 [Head Level 0 - 6] control word using macros to pro­
vide an entirely different function for an existing head level. Use the .DM [Defme Macro} 
control word to defme a macro with the name of the head level control word. 

IS2 DCF: SCRIPT/VS Text Programmer's Guide 



The Table of Contents 
When SCRIPT /VS processes a head-level control word that requires a table of contents 
entry, it writes the entry in the DSMUTTOC file. The entry contains the following in­
formation: 

• A fixed-length field containing information about the font, indention, current re-
vision code, and so on, to be used for formatting this table of contents entry 

• The text of the heading 

• The page number of the page on which the heading appears. 

All entries in the table of contents fIle are inserted into DSMUTTOC by .PT [Put Table 
of Contents] control words. 

The automatic underscoring and capitalization provided for topic headings do not apply 
to the associated table of contents entry. Therefore, enter the text of a topic heading as it 
should appear in the table of contents. The specification of any hanging indent for topic 
headings does not also apply to the associated table of contents entry. 

Adding Lines to the Table of Contents 

You can place lines directly into the table of contents with the .PT [Put Table of 
Contents] control word. 

The .PT (Put Table of Contents] control word causes the text line to be written into the 
fIle DSMUTTOC along with the current page number as a .SX [Split Text] control 
word. For example, the input line: 

.pt Sail and Rudder 

will cause the following control word to be written into DSMUTTOC: 

. 'sx F /Sail and Rudder/ ./153/ 

When the input lines in the DSMUTTOC fIle are processed, the line appears in the table 
of contents as: 

Sail and Rudder 153 

You can insert any SCRIPT/VS control word into the table of contents with the .PT 
control word. If the text line part of the .PT control word begins with a period (with 
only one blank between .PT and the text line), SCRIPT/VS inserts it directly into the 
DSMUTTOC as a control word, rather than as the text of a .SX [Split Text] control 
word. For example, 

.pt .h3 Head Three Text 

inserts the .H3 control word into the table of contents. 

Chapter 13. Creating Head Levels and Table of Contents 153 



If the line of text you want to enter into the table of contents begins with a period, begin 
the line with a leading blank so that SCRIPT /VS will not interpret the line as a control 
word but will include the page number with the line in the table of contents. For exam­
ple, 

. pt . h3 Head Three Text 

inserts 

. 'sx F /.h3 Head Three Text/ ./154/ 

into the table of contents; the leading blanks are removed. 

Printing the Table of Contents 

Use the .TC [Table of Contents] control word to imbed the DSMUTTOC ftle. When 
the .TC control word is encountered, SCRIPT/VS: 

• Ejects to a new page if it is not already at the top of a page. 

• Prints the word CONTENTS as a level one heading unless otherwise specified with 
the . TC control word. 

If you want a different title for the table of contents page, you can specify it as 

.tc Table of Contents 

If you do not want a title at all, specify 

. tc / 

and a page eject will still be performed but no heading will be put on the page. 

• Formats the DSMUTTOC ftle according to the SCRIPTjVS environment in effect 
when the .TC control word is processed, as modified by fomlatting controls inserted 
in the DSMUTTOC ftle. The table of contents will contain all the entries made 
prior to the .TC control word during the current or previous pass. 

In the CMS environment, the DSMUTTOC ftle is not deleted until the next time a new 
table of contents is started by another .PT control word. 

In the MVS and VSE environments, unless preallocated, the DSMUTTOC ftle is deleted 
after the DCF run. 

TWOPASS Considerations 

If you place the .TC [Table of Contents] control word at the beginning of your input 
ftle, you must use the TWOPASS option of the SCRIPT command to produce a com­
plete table of contents. Otherwise, the DSMUTTOC ftle will be empty when the .TC 
control word is encountered. For details, refer to the discussion of the TWOPASS 
SCRIPT command option in the Document Composition Facility: SCRIPT/VS Lan­
guage Reference. 

In order to have correct page numbers in the table of contents, pages must be numbered 
the same way on both passes. On the first pass, the table of contents is empty. On the 
second pass, it can contain several pages of information. Because SCRIPT/VS does not 
know how many pages will be required for the table of contents, it numbers the pages 
following the table of contents the same way on both passes. 

154 DCF: SCRIPT/VS Text Programmer's Guide 



You can reserve a range of page numbers for the table of contents. For example, you 
can reserve six pages if the table of contents is to occupy pages 3 through 8. The page 
number range you reserve has nothing to do with how many actual pages the table of 
contents will occupy: it only establishes the page number of the page that follows the 
table of contents page. 

For example, if the table of contents will require three pages, you can reserve the current 
page number and the next two page numbers by specifying: 

.tc 3 Table of Contents 

If the document is formatted with the TWOPASS option, SCRIPT/VS will allow page 
numbering to continue sequentially following the table of contents if the page number is 
explicitly reset with a .PA [Page Eject] or .PN [Page Numbering Mode] control word 
before any head level or .PT [Put Table of Contents] control word is encountered that 
requires knowledge of the page number. 

You can precede the .TC [Table of Contents] control word with other SCRIPT /VS con­
trol words: 

• Use the .PN [Page Numbering Mode] control word 

· pn roman 

to number table of contents pages with roman numerals 

• Use the .RF [Running Footing] control word 

.rf even on 
Contents & 
· rf off 
· rf odd on 
· ri Contents & 
· rf off 

to put running footings on each table of contents page 

• Use the .PA [Page Eject] control word 

· pa odd 

to ensure that the first page of the table of contents starts on an odd-numbered 
page. 

Note: Because the .TC [Table of Contents] control word has a level one heading built 
into it, you should avoid redefining a head level one until after the .TC control word is 
processed. 

Chapter 13. Creating Head Levels and Table of Contents 155 





Chapter 14. Creating Rules and Boxes 
This chapter describes how you can create rules and boxes. It contains information 
about drawing: 

• Horizontal and vertical rules 

• Simple boxes 

• Boxes with named rules 

• Several types of boxes and including text within them 

• Boxes with page printers. 

Drawing Horizontal and Vertical Rules 

Defining Rules 

You can use the .DR [Defme Rule] to define rules. You can use these rules to under­
score text (.UD), to create boxes (.BX), and to draw horizontal (.HR) or vertical (.VR) 
rules. 

With the .DR [Define Rule] control word you can defme named rules of a specified 
weight for page printers or, for line devices, in a particular font previously specified with 
the CHARS option of the SCRIPT command or defmed with the .DF [Define Font] 
control word. 

For page printers, the default weight for horizontal and vertical rules, a rule called 
boxrule, is .3mm. If you want to redefme boxrule, and therefore change the default rule, 
you can do so by entering, for example, 

.dr boxrule weight .4mm 

Until you specify otherwise, the default horizontal and vertical rule weight then becomes 
and will remain Amm. 

If you want to, you can simultaneously specify rules so that whether you are printing on 
a line device, or on a page printers, your input is device independent. For example, if 
you specify 

.dr thin weight .2mm font &$CHAR(l) 

and then enter 

.hr thin Ii for 2i 

Chapter 14. Creating Rules and Boxes 157 



a one inch horizontal rule, .2 millimeters thick, will be printed by page printers. On line 
devices, this rule will be constructed of characters from the ftrst font you requested with 
the SCRIPT command. 

If you enter 

.vr thin 4cm 

a vertical rule, .2 millimeters thick, will be printed four centimeters from the left margin 
by page printers. On line devices, this rule will be constructed of characters from the ftrst 
font you requested with the SCRIPT command. 

You do not, of course, have to specify both types of rules but if your output may be 
directed to more than one type of device, making your rules device independent may be 
very useful and efficient. When SCRIPT /VS processes the rule deftnitions, it selects the 
one appropriate to the specifted logical device and ignores the other. 

Remember that when you request a particular font for a rule on a line device, you are 
implicitly requesting a box character set as well. If you wanted to specify a particular box 
character set, you might modify our previous example as follows: 

.df fontl box APL font &$char(l) 

.dr thin weight .2mm font fontl 

Then if you requested that the rule thin be printed on a line device, it would be printed 
in the fIrst font you requested on the CHARS option of the SCRIPT command and it 
would be constructed of characters from the APL box character set. 

For line devices, boxes and rules must be built with characters containing fragments of 
rules and rule intersections. For such devices, SCRIPT /VS assumes an appropriate box 
character set based on the logical device type and current font. You can override this 
assumption with the CHAR parameter of the .BX control word or the BOX parameter 
of the .DF control word, specifying any of the following box character sets: 

APL APL characters 
GPC 3800 GP12 font 
TNC 1403 TN character set 
TRM terminal character set 
32A 3270 APL characters 
32T 3270 text characters 
38C SCRIPT/VS 3800 fonts. 

Drawing Horizontal Rules 

You can use the .HR [Horizontal Rule1 control word to spccify unnamed or named hor­
izontal rules. The default for unnamed rules is a rule (named boxrule) .3mm thick for 
page printers, and the current font for line devices. 

If, for example, you wanted a rule to be the width of the entire column, you can use the 
LEFT and RIGHT parameters of the .HR [Horizontal Rule] control word: 

. hr left right 

158 DCF: SCRIPT/VS Text Programmer's Guide 



If you wanted a horizontal rule to print for only part of a column you could specify: 

. hr 1i for 2i 

or 

. hr 1i to 4i 

In the fIrst case, a two-inch long horizontal rule will be drawn beginning one inch from 
the current left hand margin. 

In the second case, a horizontal rule will be drawn beginning one inch from the current 
left hand margin and extending through four inches from the current margin. 

You can also specify several horizontal rules with a single .HR [Horizontal Rule] control 
word. For example, if you specify: 

.hr 1 for 5 10 to 15 

then two horizontal rules will be drawn: one that starts in the fIrst position of the cur­
rent column and is fIve characters long and a second that begins in the tenth character 
position in the column and is printed up to and including the ftfteenth character posi­
tion. 

When defIning two or more rules with one .HR [Horizontal Rule] control word, be sure 
that they are given in ascending order and that they do not overlap. The following exam­
ples 

.hr 1i to 3i 2i to 4i 

.hr 1i to 3i 3i to 4i 

are incorrect because in each case the rules will overlap. 

Also, keep in mind that there is a break before and after a .HR control word, so that 
you cannot insert a horizontal rule in the midst of tcxt. For example, if you dcfme a 
named rule, "thick," by specifying 

.dr thick weight .8mm 

and then enter 

Here's some text;.hr thick 2i to 2.5i;more text following 

you will get a break in the middle of the line and the rulc will be printed on a line by 
itself and subsequent text (in this case the words "more text following") will be printed 
on the following line. 

Here's some text 

more text following 

Chapter 14. Creating Rules and Boxes 159 



Using Named HoriZOIltal Rules 

If you have defmed named rules with the .DR [Defme Rule] control word, you can use 
them with the .HR [Horizontal Rule] control word to create rules of different weights on 
the same line for page printers. For example, if you had defmed the rules thin and thick, 

.dr thin weight .2mm 

.dr thick weight .8mm 

you could specify 

.hr thick Ii to 2i thin 2.5i to 3.5i 

to get: 

If you had only specified one named rule in the example above, 

.hr thick Ii to 2i 2.3i to 3.5i 

then the second rule specification (2.3i to 3.5i) reverts back to the width of the last rule 
specified (in this case the rule thick) and you will get: 

If no rulcname had been given, the designated rules will be drawn using the default rule, 
boxrule. 

On line devices, the font used for rules can not be changed on a given line. In other 
words, for a single set of horizontal rules, the first rulename specified with the .HR con­
trol word will be used for all segments of those horizontal rules and subsequent 
rulenames will be ignored. 

Underscoring with Named Rules 

If you want to explicitly position an underscore rule on a page printer, you can use the 
.DD [Underscore Definition] control word. For example, if you enter 

.dr thick weight .5mm 

. ud thick -p2 

a rule is drawn two pica points below the baseline of underscored text: 

a rule is drawn two pica points below the baseline of 
underscored text. 

If the underscore rule is positioned above the normal baseline on a page printer, it may 
overlay text. 

If, for example, you enter 

.dr thin weight .3mm 

. ud thin p2 

160 DCF: SCRIPT/VS Text Programmer's Guide 



a rule is drawn two pica points above the baseline and through the middle of the under­
scored text: 

Ii rule is drawa two pica poiats /ilbOV9 th9 bas91ia9 aad 
through th9 midd19 of th9 UJl.QsrscorsQ t9Xt. 

For more details on underscoring text, see "Emphasizing Text" on page 186. 

Drawing Vertical Rules 

You can use the .VR [Vertical Rule] control word to specify unnamed or named vertical 
rules. A simple vertical rule can be drawn anywhere in a column. For example, if you 
specify 

· vr 10 
· sp 3 
· vr off 

a vertical rule will be drawn starting in the tenth character position of the current col­
umn and the rule will be three lines long. In this example, note that any vertical space 
unit could have been used and that you must end the vertical rule by specifying .VR 
OFF. 

If you want a vertical rule to be flush left or flush right in a column, you can use the 
LEFT and RIGHT parameters of the .VR control word 

or 

· vr left 
.sp 3 
· vr off 

· vr right 
· sp 3 
· vr off 

respectively. 

Using Named Vertical Rules 

If you have defined a named rule, you can use it with the .VR [Vertical Rule) control 
word. For example, named rules defined as 

.dr thin weight .3mm 

.dr thick weight .6mm 

for page printers can be used to create vertical rules. The following control word se­
quence, then, 

Chapter 14. Creating Rules and Boxes 161 



·vr thin 15m thick 20m thin 25m 
.sp 2 
.vr 20m off 
.sp 2 
.vr off 

results in: 

Note from the above example that you can specify several vertical rules with one .VR 
[Vertical Rule] control word. You can also tum off veltical rules independently as shown 
in this example. 

If you had not specified a particular named rule for every vertical rule, for example, 

.vr thick 15m thin 20m 25m 

then the second and third rules would both be drawn using the thin rule because rules 
without specific designations will default to the previously specified named rule (as in this 
example) or to the default font if no named rules are specified: 

On line devices, the font used for rules can not be changed on a given line. In other 
words, for a single set of vertical rules, the first rulename specified with the .VR control 
word will be used for all of the vertical rules and subsequent rulenames will be ignored. 

Vertical rules created with the .VR IVertical Rule] control word which cross columns or 
pages will extend to the bottom of the section or page unless explicitly ended by a .VR 
OFF control word. 

Aligning Vertical Rules 

On page printers, you can also align vertical rules in various ways relative to a given 
horizontal position. For example, if you had defIned a vertical rule as follows: 

.dr thick weight 1mm 

and you want the left edge of this vertical rule to align with a particular horizontal posi­
tion, you would specify 

.vr thick 20m lalign 

.sp 3 

. vr off 

which results in: 

162 DCF: SCRIPT/VS Text Programmer's Guide 



• 

I 
This is the default alignment. 

Note: In the previous example, and in the two following examples, the bullet above the 
vertical rule is used only as point of reference to more clearly show the alignment of the 
rule to the designated horizontal position. 

In a similar manner, if you want the right edge of your vertical rule to align with a par­
ticular horizontal position, you would specify 

.vr thick 20m ralign 
· sp 3 
· vr off 

which results in: 

• 

I 
To center your vertical rule at the given horizontal position you would specify 

.vr thick 20m center 
· sp 3 
· vr off 

which results in: 

• 

I 
You can combine vertical rules with horizontal rules. To create an axis-like figure, you 
could specify 

.vr 15m 

.sp 2 

.hr 5m for 20m 

.sp 2 

.vr off 

which will produce the following figure: 

Chapter 14. Creating Rules and Boxes 163 



Drawing Boxes 
SCRIPT /VS can draw boxes around illustrations or text and can format charts with hor­
izontal and vertical lines. Boxes drawn for page printers are formatted with horizontal 
and vertical rules. The control word that draws boxes and lines within boxes is the .BX 
[Box) control word. The three steps below define a box that would look like this: 

1. Define the left- and right-hand edges of the box and the character positions you 
want to contain vertical lines. For example, to create a box 30 spaces wide, starting 
in character position 1, with vertical lines at character positions 10 and 20, specify 

.bx 1m 10m 20m 30m 

This formats and prints a box top, with upper corners and descenders: 

2. Each time you want a horizontal line within the box, specify the .BX [Box) control 
word with no other parameters: 

. bx 

results in 

The lines are drawn with intersections at the vertical rule character positions. 

3. When you want to complete the box, use the OFF parameter of the .BX [Box) con­
trol word. For example, 

. bx off 

This terminates the box deftnition and draws a bottom line with lower corners and 
ascenders. 

Mter a box is started, SCRIPT /VS processes and formats output lines as usual. When 
each line is formatted and ready to print, SCRIPT/VS inserts box vertical rule characters 
wherever appropriate to continue the box's vertical lines on the output line39 • 

Creating Simple Boxes 

Typically, a simple, basic box can be drawn as follows: 

39 The box may be considered to be overlaid on the formatted text. On some devices, like the 
1403 printer, the 4250 printer, the 3800 Printing Subsystem Model 3, and the 3820 Page 
Printer vertical rules will cover up text characters which fall beneath them. On certain other 
devices, like the 3270 Display Station and the 3800 Printing Subsystem, the rule replaces the 
text characters. 

164 DCF: SCRIPT/VS Text Programmer's Guide 



· bx 1 30 
.sp 
.bx 
.sp 
· bx off 

If you did not want the initial horizontal line in your box, you could specify 

.bx set 1 30 

.sp 
· bx 
.sp 
· bx off 

and your box would look like this: 

If you want the box to extend horizontally from one side of the column to the other, 
you can simply specify 

.bx left right 

.sp 

.bx 

.sp 

.bx off 

and the box would look like this: 

The box will be as wide as the currently defmed column without you having to know 
exactly or guess the dimensions of that column. 

Drawing Boxes with Named Rules 

You can use named rules defmed with the .DR [Defme Rule] control word to draw 
boxes with rules of different weights. If you had defmed rules thin and thick as follows 

.dr thin weight .3mm font &$char(l) 

.dr thick weight .6mm font &$char(2) 

Chapter 14. Creating Rules and Boxes 165 



then you could specify 

· ti .. 05 
· tp 18m 
• bx thin 15m 25m 
.. Box 1 
· bx off 
.bx thick 15m 25m 
"Box 2 
· bx off 

and get the following two boxes: 

Box 1 

Box 2 

On page printers, a single box can be drawn with rules of different weights. For example, 

.bx thick 3p 6p thin 9p 12p thick 15p 

.sp 

.bx 

. sp 3 

. bx off 

Note that in the above example: 

• The first name given (thick) is the rule used for the horizontal rule 

• The next two values (3p and 6p) are vertical starting positions for the box and they 
will be drawn with the thick rule designated 

• The next name (thin) applies to the vertical rules beginning in positions 9p and 12p 

• The last name (thick) applies to the last vertical rule that starts in position lSp. 

On line devices, the font used for rules cannot be changed on a given line. In other 
words, for a single set of horizontal or vertical rules, the first rulename specified with the 
.BX control word will be used for all segments of those horizontal or vertical rules and 
subsequent rulenames will be ignored. 

166 DCF: SCRIPT/VS Text Programmer's Guide 



A Three Column Box 

You can use the .BX [Box] control word to build a three-column table and use tabs to 
align text within the rules: 

· ti ... as 
· tp 11m 21m 

* 
.bx 1m 10m 20m SSm 
· cl 53m 
· in 21m 
· un 19m 
Item 1 "'Part 1 ... The first part 
of item 1 is described here . 
. sk 
· un 10m 
Part 2 ... The second part of item 1 is 
described here. 
It is a rather long description. 
· bx 
· un 19m 
Item 2 ... Part 1 ... The second and 
subsequent items are entered in a similar fashion . 
. bx 

· bx off 

The above example results in 

Item 1 Part 1 The first part of item 1 is 
described here. 

Part 2 The second part of item 1 
is described here. It is a 
rather long description. 

Item 2 Part 1 The second and subsequent 
items are entered in a 
similar fashion. 

... 

Centering Text withill a Box 

SCRIPT /VS constructs the corners and rules of boxes using the most appropriate char­
acters available, based on the logical output device and current font. For example, the 
input lines 

Chapter 14. Creating Rules and Boxes 167 



.bx 1m 5m 25m 29m 
· cl 35m 
· ce on 
These lines 
are centered within 
this 
lovely box. 
· ce off 
· bx off 

when formatted for a terminal may appear as: 

+---+-------------------+---+ 
I I These lines I I 
I lare centered within I I 
I I this I I 
I I lovely box. I I 
+---+-------------------+---+ 

However, when the same input lines are formatted for the 3800 Printing Subsystem, they 
appear as: 

These lines 
are centered within 

this 
lovely box. 

SCRIPT jVS chooses the appropriate box character set for the logical output device. 
However, you can force SCRIPT /VS to use any of the box character sets by using the: 

• CHAR parameter of the .BX control word 

• BOX parameter of the .DF control word 

• .DR control word. 

(See "Defining Fonts" on page 178.) 

You can use SCRIPT /VS to produce many different box configurations, horizontal 
lines, and graphic structures. Some of the ways you can use the .BX [Box] control word 
are described below. 

Stacking One Box on Another 

You can stack several boxes by defIDing one box and then defining larger or smaller 
boxes, and you can do so without ending the definition of the first box. If you then 
define a box that is not contiguous with the first one, the first box is ended and the top 
of the second box is printed on the same line as the bottom of the first box. You can use 
these techniques to create a complex structure of boxes. For example, the lines 

168 DCF: SCRIPT/VS Text Programmer's Guide 



· bx 10m 20m 
.sp 
.bx 25m 35m 
.sp 
.bx 10m 20m 
.sp 
.bx 1m 15m 
.sp 
.bx 10m 20m 
.sp 
· bx 1m 30m 
.sp 
.bx off 

result in: 

Drawing a Box within a Box 

You can draw a box within a box, using the NEW parameter of the .BX [Box] control 
word. 

Each box is ended with a .BX CAN or .BX OFF control word. Note the different re­
sults of each type of ending. For example, 

.cl 30m 

.bx 1m 30m 

.sp 

.bx new Sm 25m 

.sp 
· bx new 10m 20m 
.sp 
· ce Strummer 
.bx off 
.bx can 
.bx off 

results in 

I Strummer I 
Chapter 14. Creating Rules and Boxes 169 



When boxes are nested, the new box does not have to be completely within the previous 
box. For example, 

· bx 1m 30m 
.sp 
.bx new 5m 40m 
.sp 
· bx new 3m 45m 
.sp 
· bx off 
.sp 
· bx off 
.sp 
· bx off 

results in 

Drawing Boxes in a Horizontal Row 

You can draw a row of boxes by specifying a box deftnition with slashes. For example, 

.bx 1m 10m / 20m 30m / 40m SOm 

.sp 2 
· bx off 

The slash indicates a discontinuity with no horizontal connection. These lines result in: 

D D D 
Drawing tile Top Line (Only) of a Box 

When you want SCRIPT /VS to draw the top portion of a box, but not the bottom line, 
you use the CAN parameter of the .BX [Box] control word to cancel the box definition. 
For example, 

.bx 1m 10m 20m SOm 

.sp 

.bx 1m SOm 
· in +2 
Last line of text in the box 
· bx can 

170 DCF: SCRIPT/VS Text Programmer's Guide 



results in 

I Last line of toxt in the box 

Drawing the Middle Portion of a Box (without Top or Bottom Lines) 

When you want SCRIPTjVS to draw a box without horizontal top and bottom lines, 
use the SET parameter of .BX to specify the positions of the vertical rules. Subsequent 
text will be formatted and overlaid with vertical rules, but no box top will be drawn. For 
example, 

· in 22m 
· cl 38m 
.bx set 1m 10m 20m 40m 
First item in the box 
.bx 
Second item in the box 
.bx 
Third and subsequent items 
in the box .... 
· bx can 

results in 

First 
the box 

Second 
the box 

Third 

item in 

item in 

and 
subsequent items 
in the box .... 

Drawing the Middle Portion of a Box within Another (Larger) Box 

You can draw a series of boxes by using slashes (J) between the character position dis­
placements (as shown previously). You can also nest that type of box within a larger 
box. For example, 

· bx 1m 35m 
.sp 
.bx new 5m 10m / 15m 20m / 25m 30m 
· sp 2 
· bx off 
.sp 
· bx off 

results in 

Chapter 14. Creating Rules and Boxes 171 



DDD 
Drawing the Bottom Line (Only) of a Box 

When you want SCRIPTjVS to draw the bottom line of a box, you use the .BX [Box] 
control word as you would to derme the start of a box and you include the OFF param­
eter. For example, 

.bx off 1m 10m 20m 40m 

results in 

Drawing Boxes with the 3800 Printing Subsystem Modell 

Special considerations apply to boxes when the output is being formatted for a 3800 
Printing Subsystem. Because SCRIPTjVS does not provide three widths of each box 
character in each font, SCRIPTjVS performs monospace justification of text inside a 
box. The following restrictions apply within a box: 

• All nested boxes are in the font of the outennost box, regardless of the font changes 
within the box. 

• All fonts used within the box must be of the same pitch as the box itself (that is, the 
pitch of the current font when the outermost box was begun). 

• Proportional fonts (for example, GP12) cannot be used within a box. 

• When a vertical rule is overlaid on a text character, the rule replaces the character. 

• Only monospace40 fonts can be used within a box and all fonts used must be of the 
same pitch. 

When using boxes and rules in a named area, if the boxes or rules overlay text from 
outside that area, misalignment may occur. Likewise, if text from an area is overlayed by 
rules or boxes from outside that area, misalignment may occur. 

You can produce boxes of different line thicknesses containing text in several fonts. For 
example, 

40 All of the fonts distributed with SCRIPTjVS are monos pace, with the exception ofGP12. 

172 DCF: SCRIPT/VS Text Programmer's Guide 



.bx 1m 15m 
· in +3 
The 
· bf GB12 
first 
.pf 
box 
· bx off 
· sp 2 
· bf GB12 
· bx 1m 15m 
The 
· bf GT12 
second 
.pf 
box 
· bx off 
.pf 

results in: 

The first box 

The second box 

Boxes with a Different Top and Bottom 

When you want SCRIPT/VS to draw a box having a different top and bottom, you can 
change the specifications with the CAN and SET parameters of the .BX [Box) control 
word. If a box is cunently going, and a .BX control word with horizontal displacements 
and slashes is encountered, the previous box is ended with a box bottom which is the 
minor image of the previous box top. The CAN and SET paranleters redefme the box. 
When the box is ended by .BOX OFF or by another .BX control word, the box is 
ended with the horizontal rule drawn as specified on the .BX SET command. For exam­
ple: 

· bx 5 15 25 35 
.sp 1 
.bx can 
· bx set 5 / 15 25 / 35 
.bx 5 / 15 20 25 / 35 
.sp 1 
.bx can 
.bx set 5 15 20 25 35 
· bx off 

results in: 

Chapter 14. Creating Rules and Boxes 173 



( 
\ 



Chapter 15. Selecting Fonts 
With the Document Composition Facility you can take advantage of font capabilities 
available with various printers. On typewriter-like terminals you can stop the printing 
while you change typing elements. On line printers such as the 1403 you can specify 
underscoring, capitalization, and create boldface type by overstriking. Line printers such 
as the 3800 Printing Subsystem also allow actual font changes. For a page printer, you 
can use any font in its font library. 

For the 3800 Printing Subsystem Model 1, you can select two fonts that you want to use 
by specifying them with the CHARS option of the SCRIPT command. 

With page printers, you can select more than just two fonts. You can specify coded fonts 
with the CHARS option of the SCRIPT command, but entire families of fonts may be 
available for use with page printers as well. The font library contains these font families 
and you can access them with the .DF [Define Font] control word. 

On page printers, you can request a particular coded font with all its defaults or you can 
use the TYPEFACE and CODEPAGE parameters of the .DF control word t·;) specify 
parts of or variations on a particular font as well. 

The latter specification is possible because page printer fonts consist of a code page 
(which contains the hexadecimal representation of a character in a given national lan­
guage) and a font object (which is the representation of the character itself) both of 
which are accessible with the .DF [Define Font] control word. 

Note: The Document Composition Facility (DC F) requires the following font program 
products be installed for the 4250 printer: 

• 5771-l\AR Monotype Times New Roman 

• 5771-AAW Typewriter and Pi 

and DCF requires the following font program products be installed for the 3800 Printing 
Subsystem Model 3, and the 3820 Page Printer: 

• 5771-ABA Sonoran Serif 

• 5771-ABC Pi and Specials. 

You may tailor DCF and/or use the CHARS option of the SCRIPT command to point 
to typeface families other than the required ones listed here. 

Selecting Initial or Default F Ollts 
When formatting a document you can take advantage of the printer's dynamic font stor­
age and use different fonts in your document. You can use the CHARS option of the 
SCRIPT command to specify the fonts you want to use. 

Chapter 15. Selecting Fonts 175 



Using Fonts 

The CHARS option is specified as: 

CHARS (fontl ... ) 

When you specify the CHARS option, you must specify at least one font. 

If you do not specify the CHARS option, the default font specified for the logical device 
is used. In either case, the flIst font specified or implied becomes the initial font. 

When formatting for the 3800 Printing Subsystem Model I, you can specify as many as 
four uppercase-only fonts, or two upper- and lowercase fonts. The CHARS JCL param­
eter must specify the corresponding character arrangement tables in the same sequence as 
the fonts specified with the CHARS option of the SCRIPT command. 

Refer to the discussion of the PRINT option of the SCRIPT command in the Document 
Composition Facility: SCRIPTjVS Language Reference for details on printing documents 
formatted for the 3800 Printing Subsystem under TSO. 

Fonts selected with the .DF [Defme Font] control word for printing on the 3800 Printing 
Subsystem Model 1 are restricted to those fonts that you have specified with the 
CHARS option. 

When formatting for page printers, there is no limit to the number of fonts you can 
specify with the CHARS option but you will most likely specify your fonts with the .DF 
[Defme Font] control word instead. See "Defming Fonts for Page Devices" on page 179 
for details on how to use the FONTLIB option. 

SCRIPT/VS supports the fonts distributed by IBM with the IBM 3800 Printing Subsys­
tem. However, most of the line device fonts are uppercase only and therefore inappropri­
ate for text applications. (For more information about the IBM 3800 Printing Subsystem 
fonts, see the IBM 3800 Printing Subsystem Programmer's Guide.) 

In addition to the upper-case only fonts, SCRIPT /VS provides sixteen complete upper­
and lowercase fonts. You can also create your own fonts to use with SCRIPT /VS as 
long as the characteristics of these fonts are listed in a font table. (See the section on 
Device and Font Table Maintenance in the Document Composition Facility: SCRIPT/VS 
Language Reference for details on how to add a new font's characteristics to a font ta­
ble.) 

The IBM 3800 Printing Subsystem line device can contain up to four uppercase-only 
fonts, or two complete upper- and lowercase fonts. To ensure proper output line justi­
fication, you should not specify fonts of different pitches on a single line. However, each 
SCRIPT/VS font contains special blanks that allow the SCRIPT/VS fonts to be freely 
intermixed without regard to pitch. 

When SCRIPT /VS begins formatting a document, the flIst font specified with the 
CHARS option of the SCRIPT command becomes the current font. If CHARS is not 
specified, the default font of the logical output device becomes the current font. 

With page printers the number of fonts you can specify with CHARS is unlimited but 
you must specify coded fonts and these fonts must be in the font library. You can also 
specify or describe any font in the library with the .DF control word. 

More than one font can be identified with the .BF control word. The flIst font given 
which has been defined with the .DF control word or specified with the CHARS option 

176 DCF: SCRIPT/VS Text Programmer's Guide 



of the SCRIPT command is taken as the new font.41 An error occurs only if none of the 
fonts given is valid. 

Use the .BF [Begin Font] control word to change the current font to any font specified 
with the CHARS option. For example, 

This is a 
.bf 
bold 
.pf 
word. 

produces the line: 

This is a bold word. 

The .BF [Begin Font] control word saves the current font before beginning a new font; 
the .PF [Previous Font] control word restores the last font saved. As many as 16 fonts 
can be saved. Because the font stack is in the current environment, it can be affected by 
the .SA and .RE control words and any other control words that save and restore the 
environment. 

You can use the .BF [Begin Font] control word to start any font that is either defmed 
with the .DF [Defme Font] control word, or listed in the CHARS option the SCRIPT 
command. If more than one font is specified with the .BF control word, the first valid 
font is used. 

To eliminate dependence in the me on specific font names, use the SCRIPTjVS symbols 
&$CHAR(n) or the .DF control word instead of actual font names. For line devices, the 
previous example could be revised as: 

This is a 
.bf &$CHAR(2) 
bold 
.pf 
word. 

which prints as: 

This is a bold word. 

For page printers, the previous example could be revised as: 

.df bold type(bold) 
This is a 
. bf bold 
bold 
.pf 
word. 

which prints as: 

This is a bold word. 

41 For page printers, the font must be in the font library to be valid. 

Chapter 15. Selecting Fonts 177 



All SCRIPT /VS 3800 Printing Subsystem fonts contain three special blanks that are 
used for justification: hexadecimal 11, 12, and 13 identify 10-, 12-, and IS-pitch blanks, 
respectively. These special blanks allow SCRIPT/VS to justify output lines and align 
columns regardless of font and pitch changes. Therefore, you should not use these 
hexadecimal codes with the .TI [Translate Input] and .TR [Translate Character] control 
words. 

Defining Fonts 
SCRIPT /VS extends the concept of fonts to include underscoring and capitalization on 
all devices, overstriking on impact printers, and stopping to change typing elements on 
typewriter terminals. 

You can use the .DF [Defme Font] control word to defme named fonts for use with the 
.BF [Begin Font]. This allows you to alter the characteristics of the fonts specified with 
the CHARS option of the SCRIPT command and provides a means of identifying fonts 
descriptively. For example, The UP parameter of the .DF control word includes capital­
ization as part of the font: 

. df caps up 

You now capitalize text by entering 

. bf caps 

AND RESET CAPITALIZATION BY ENTERING 

.pf 

When formatting for the 3800 Printing Subsystem Model 1, formatting attributes such as 
underscoring and capitalization can be combined with "real" fonts and managed simul­
taneously. For example, 

.df gb12 us font gb12 

redefmes the font GB12 to include underscoring as well as the l2-pitch gothic bold font. 
Now the input line 

.bf &$CHAR(2) 

will underscore text formatted in the font GRf2. 

Defining Fonts for Impact Printers 

When formatting for an impact printer, such as the 1403 printer, you can create boldface 
headings and emphasize important phrases by overstriking. You can defme a named font 
using the .DF control word, specifying the as parameter to indicate that the font is to 
be formed by overstriking the text four times: 

.df boldface os rpt 4 

To defme a new font for 1403 output which causes capitalization and overstriking, spec­
ify 

.df bold up os rpt 3 

178 DCF: SCRIPT/VS Text Programmers Guide 



You can emphasize phrases by changing to a new font with 

.bf boldface 

Overstriking is ignored for devices other than the 1403 and 2741, unless overstriking with 
the underscore character is specified. For example, 

.df under as char 

defines a font that underscores text, just as 

. df under us 

does, except that blanks are never overstruck.'2 

When fonnatting for a typewriter tenninal with changeable typing elements, you can de­
fine those elements as fonts with the STOP attribute. Whenever you format text in that 
font, SCRIPTjVS stops typing to allow you to change elements. See "Interactive 
SCRIPTjVS Processing" on page 61 for a discussion of the use of the STOP parameter 
of the .DF [Define Font] control word. 

Defining Fonts for Page Devices 

For page printers a number of fonts may be available to you. These fonts are stored in a 
font library. Any font you request must be in this font library or SCRIPTjVS will not 
recognize it as a valid font. In order to properly select fonts, you need to know which 
fonts are available. 

The font library consists of members or objects. In MVS, an object can be an actual 
member of a partitioned data set. In CMS, this object is simply a file whose filetype 
matches the name of the library. There are four types of objects in the font library: 

Font Which provides both global font and individual character descriptive infor­
mation. 

Code page Which associates character names with code points. 

Coded font Which is a combination of both a font and a code page. SCRIPTjVS re­
quires both a font and a code page for formatting. A coded font is also one 
that is fully defined in tenns of typeface, point-size, weight, width, attri­
bute, and code page. Coded fonts are listed in the font library. 

DCFINl)EX Which contains one logical record for each set of page printer font objects 
in the font library that have a common typeface name. 

Describing a Font 

Most simply stated, a font is a set of characters in one typeface (such as Monotype 
Times New Roman) and one pointsize (such as 10 point). These two aspects of a font 
are described below. 

42 Underscoring of blanks is controlled by the .UD [Underscore DefinitIon] control word; over­
striking, even with the underscore character, affects only nonblank characters. 

Chapter 15. Selecting Fonts 179 



Typeface 

Pointsize 

Code Pages 

Coded Fonts 

A typeface is a specific set of style variations in one typeface family (such as Futura or 
Monotype Times New Roman). The major style variations are: 

Posture The two most common typeface postures are roman, sometimes referred to 
as upright, and italic, sometimes referred to as cursive. Note that the roman 
posture is not to be confused with the typeface family Monotype Times New 
Roman. 

Weight Weight is the variation in the width of the individual strokes of characters in 
a font that makes them appear to be bolder or lighter when they are printed. 
The common weights are light, medium, semibold, and bold. 

Width Width is the variation in the width of characters that makes them appear to 
be narrower or wider when they are printed. The common widths are con­
densed, normal, and expanded. Width, as used here, does not refer to the 
width of individual characters. 

The pointsize of a font (a point is 1/72 of an inch) refers to the height of the rectangle 
within which the largest character would fit. Of course, within a given font, the height of 
the individual characters vary in size, as do the ones you are now reading. IBM page 
printer fonts vary in size from 6 points to 72 points. 

What is a code page? When you enter a character into a file, that character is stored as a 
hexidecimal code point in your me. The relationship between the hexidecimal code point 
values in your file and the actual character produced when the file is printed is defined by 
a code page. 

IBM supplies code pages for the major IBM language groups. For example, there is a 
code page for French and a different code page for Spanish. These code pages are related 
to the national language keyboards that IBM supports. You should use the code page 
that most closely matches the keyboard that you are using, unless you are using a non­
English hyphenation dictionary, in which case you should use the international 
codepage. 

The code pages for use with the Pi and Light Italic fonts are a different kind of code 
page. These codepages have nothing to do with language groups or different kinds of 
keyboards. These fonts have a special set of characters, and thus need special code pages 
to use in relating those characters to specific hexidecimal code points. 

A coded font is simply a member of the font library that relates a specific code page to a 
specific font. For each typeface family supplied by IBM, there is a coded font for each 
combination of code page and the lO-point font in that typeface family. As you will find 
out in a later section, DCF lets you derme fonts for use without specifying a code page. 
This means it is not necessary to have a coded font for each combination of code page 
and font. 

180 DCF: SCRIPT/VS Text Programmer's Guide 



The Default Coded Font 

When you specify the SCRIPT command option, DEVICE(4250x),"3 SCRIPTjVS se­
lects an initial coded font to use in composing your document. If you do not use the 
CHARS option of the SCRIPT command, SCRIPT/VS will use a default coded font 
(AFTTR395). This coded font associates the V.S./Canada (English) code page with the 
Monotype Times New Roman 10 point, medium weight, normal width, roman posture 
font. The default coded font can be changed for your installation by changing the 
SCRIPT jVS logical device table as explained in Appendix B of the Document Composi­
tion Facility: SCRIPT/VS Language Reference. 

You can tell SCRIPT jVS to select a different initial coded font by specifying a coded 
font with the CHARS option of the SCRIPT command. For example, specifying 

CHARS (AFTFT383) 

results in Futura, 10 point, medium weight, normal width, roman posture being used 
with the Belgium code page. 

What Is in the Font Library? 

The font library contains the fonts, code pages, and coded fonts for all of the typeface 
families that are available for your use. 

There is a convenient way to fmd out what is available in your font library. 

The DCF Font Library Index Program Report lists the contents of the font library.44 
The fonts are listed by typeface family name (such as Futura). The font characteristics 
listed here are: 

Font identifier The font identifier is the name by which a font is ftled in the font li­
brary. You will never need to use the font identifier when working with 
fonts. 

Pointsize Point size is the height of the rectangle within which the largest charac­
ter of a font would fit. 

Weight Weight is the variation in width of individual strokes of of characters in 
a font that makes them appear to be bolder or lighter when they are 
printed. 

Width Width is the variation in the width of characters in a font that makes 
them appear to be narrower or wider when they are printed. 

Attribute Attribute is the heading to look under for the posture of the font. Italic, 
of course, means italic. The absence of italic means roman or upright. 

Line spaee Line space refers to the vertical distance, in pels, between baselines 
when formatting in the font. 

43 See the SCRIPTjVS logical device table in the Docwnent Composition Facility: SCRIPTjVS 
Language Reference for the various specifications of 4250x, depending on page size. 

44 The actual format of the listing is subject to change. 

Chapter 15. Selecting Fonts 18t 



Figure space 

Word space 

Figure space is equal to the width, in pels, of the number 0 in the font. 

Word space is the size of the horizontal space, in pels, to be used be­
tween words. 

The code pages and coded fonts are also listed in the Font Library Index Report. 

Specifying the Font Library 

The FONTLIB option of the SCRIPT command is used to specify where the font li­
brary exists. 

Normally, you do not need to specify this option, as SCRIPT/VS knows the name of 
the default font library to use if the FO NTLIB option is not specified. 

If your installation does not use the defaults, ask your systems programmer how to iden­
tify your library. You can find more information about the Font Library Index Program 
in the Document Composition Facility: SCRIPTjVS Language Reference. 

Defining Fonts by Characteristics 

In addition to the methods of defIning fonts already described, with page printers you 
can defIne fonts in even greater detail. Using the TYPE or CODEPAGE parameters of 
the .DF [Defme Font) control word, you can describe a font by typeface, point-size, 
weight, width, and an attribute identifier. You can also specify a code page name. A code 
page contains the particular hexadecimal coding for each character of a font in a partic­
ular language. 

Page devices can take advantage of large families of fonts - as long as they are defmed in 
the font library - and these devices also give you greater flexibility in altering the parame­
ters of any properly defmed font. 

When formatting for page printers, use the FONTLIB option of the SCRIPT command 
to identify the host system font library containing the fonts to be used. 

In CMS, the FONTLIB is specified as one of the following: 

FONTLIB ( filetype ) 
FONTLIB ( filemode ) 
FONTLIB ( filetype filemode ) 

The default is FONT4250 for the 4250 printer, FONT38PP for the 3800 Printing Sub­
system Model 3 and FONT3820 for the 3820 Page Printer. 

In TSO, each font description resides in a member of a partitioned data set. The 
FONTLIB option is specified as: 

FONTLIB ( dsname ) 

The default is SYSl.FONT4250 for the 4250 printer, SYSl.FONT38PP for the 3800 
Printing Subsystem Model 3, and SYS l.FONT3820 for the 3820 Page Printer. 

In ATMS-III, font definitions reside in a host system font library. The FONTLIB op­
tion is specified as: 

FONTLIB ( dsname ) 

The default is FONT4250 for the 4250 printer, FONT38PP for the 3800 Printing Sub­
system Model 3 and FONT3820 for the 3820 Page Printer. 

182 DCF: SCRIPT/VS Text Programmer's Guide 



In batch MVS, font defInitions reside in a host system font library. The FONTLIB op­
tion is specilied as: 

FONTLIB ( ddname ) 

ddname identilies a DD statement which gives the name of the host system font library. 

The default is FONT4250 for the 4250 printer, FONT38PP for the 3800 Printing Sub­
system Model 3, and FONT3820 for the 3820 Page Printer. 

In batch VSE, font defInitions reside in a host system font library. The FONTLIB op­
tion is specilied as: 

FONTLIB ( dlblname ) 

dlblname identilies a DLBL statement which gives the name of the host system font li­
brary. 

The default is FNT4250 for the 4250 printer and FNT3820 for the 3820 Page Printer. 
The batch VSE environment is not supported for the 3800 Printing Subsystem Model 3. 

In all environments, it is the user's responsibility to ensure that the font library used in 
printing a document is the same one used during formatting. 

When formatting for page printers, you can defme a named font by describing it. Al­
though not all of the following parameters are necessarily available with any given font, 
you can specify a typeface (the style of the font, such as Monotype Bodoni45), point-size 
(the vertical height of the characters in the font, such as 6-, 8-, lO-point and so on), 
weight, width, attribute and code page. 

Keep in mind that the font defmitions described in the following examples show a hy­
pothetical font description. In most cases, only some of the descriptive parameters will 
be available for any given font that you may want to defme. Check the font library index 
listing for specilic fonts and the particular parameter combinations that are available at 
your installation. 

If, for example, you want to specify a particular typeface you can ente~6 

.df body type('monotype bodoni') 

and when you begin the font, body, 

. bf body 

all subsequent text is set in Monotype Bodoni type provided it is available. Notice that 
the typeface name, Monotype Bodoni, was enclosed in quotation marks. These are re­
quired around the typeface name if it contains any blanks or parentheses. Because it was 
not specified on the .DF control word, the point-size is the same as the font that was in 
effect when we started our new font. Because no other parameters were specilied, the 
weight is medium, the width and attributes are normal, and the code page is the same as 
the code page currently being used. 

45 Trademarks of The Monotype Corporation, Limited. 

46 This example and following examples use Monotype Bodoni as an example only. Monotype 
Bodoni is only availabe on the 4250 printer. 

Chapter 15. Selecting Fonts 183 



If you want to specify a point size for your font, you can enter 

.df body type('monotype bodoni' 10) 

. bf body 

and all following type is printed in 10 point Monotype Bodoni. 

If you had not specified the typeface, as in 

.df body type(10) 

.bf body 

then subsequent text will be 10 point but it will be in the typeface of the previously 
specified font. Because no other parameters were specified, the width and attributes are 
normal, weight is medium, and the code page is the same as the code page currently 
being used. 

Weight can be specified as: 

• Ultralight 

• Extralight 

• Light 

• Medium (the default if weight is not specified) 

• Semibold 

• Bold 

• Extrabold 

• Ultrabold. 

If you want to specify a weight for your font, you can enter 

.df body type('monotype bodoni' 10 semibold) 

. bf body 

and all following type is printed in 10 point Monotype Bodoni with a weight of semi­
bold. Because no other parameters were specified, the width and attributes are normal, 
and the code page is the same as the code page currently being used. 

Width can be specified as: 

• Ultracondensed 

• Extracondensed 

• Condensed 

• Semicondensed 

• Normal (the default if width is not specified) 

• Semiexpanded 

• Expanded 

• Extraexpanded 

• Ultraexpanded. 

184 DCF: SCRIPT/VS Text Programmer's Guide 



If you want to add a width specification to your font, you can enter 

.df body type('monotype bodoni' 10 semibold condensed) 
· bf body 

and all following type is printed in 10 point Monotype Bodoni with a weight of semi­
bold and a condensed width. Because no other parameters were specified, the attribute is 
normal and the code page is the same as the code page currently being used. 

If you want to add an attribute to your font description, that is, ask for your font to be 
italic, underscored, or outlined, you can enter 

.df body type('monotype bodoni' 10 semibold condensed italic) 
· bf body 

and all following type is printed in 10 point Monotype Bodoni with a weight of semi­
bold, a condensed width and in italics. Because no other parameters were specified, the 
code page is the same as the code page currently being used. 

If, for another example, you want text printed in 10 point Futura italic and you want the 
characters printed as they would appear in different languages, specify a code page with 
the .DF control word. 

If you specify 

.df body type(futura 10 italic) codepage aftc0395 
· bf body 

your text will be printed in 10 point Futura italic, but the font library is also searched for 
the code page, AFTC0395 (which is the code page that contains the hexadecimal codes 
for U.S. American and Canadian English characters) in order to select the characters ap­
propriate to the language you specified. 

A convenient method of using type defmed fonts is as follows. First, you could specify 

· dm font on 
.df font type(&*.) 
.bf font = 
· dm off 

then, for example, you could enter 

.font "monotype garamond' 18 italic' 

in order to defme and begin the particular font you want. 

Selecting Fonts for a Variety of Devices 

If a document is formatted for a variety of devices, the fonts available may vary accord­
ing to the device. When you specify a .BF control word in a document, you can either 
provide font defmitions that are based on the device type or you can provide a list of 
fonts in the order of your preference. These techniques are especially useful if you are 
creating a document to print on different printers - or if, when you create the docu­
ment, you might not know which device it will be printed on. 

Chapter 15. Selecting Fonts 185 



For example, you can specify 

· df hi2 us 
.if &$PDEV eq 1403 .df hi2 os rpt 3 
.if &$PDEV eq 3800 .df hi2 font &$CHAR(2) 
.if &$PDEV eq 3820 .df hi2 type(italic) 
.if &$PDEV eq 4250 .df hi2 type(italic) 

and then specify 

· bf hi2 

in our example, if the document is printed on a 1403 impact line printer, the printing is 
underlined by overstriking three times. 

If the document is printed on a 3800 Printing Subsystem Modell, the printing is under­
lined as a result of requesting the second font specified with the CHARS option, which, 
in our example, is an underlined font. 

If the document is printed on a page printer, the printing is italicized as a result of re­
questing the current font in italics. 

You may not know exactly which fonts will be available when a document is created. 
For example, you may prepare a document to be formatted for a 3800 Printing Subsys­
tem without knowing what fonts will be used. If you want to ensure that a piece of text 
is set in a bold font, you can enter 

.bf gblO gb12 sb12 

Subsequent text will be formatted in the GBlO font, if it was specified with the CHARS 
option of the SCRIPT command. If not, GBl2 will be used if it was specified, and so 
on. 

If you want a font change to apply only for a particular device and to be unused the rest 
of the time, you could specify 

.if &$PDEV eq 4250 

.th .df figfnt type ('prestige elite') 

Then if you specified 

· bf figfnt = 

the figfnt font (in this case, prestige elite), will only be used when you are formatting 
output page printer. 

The equals sign (=) in our example is required to restart the current font after it has 
concluded using the figfnt font. In this case a font change was desired only for the 4250 
printer, all other devices should not change fonts. So, there is no point in defining the 
font for each possible device. 

Emphasizing Text 
You can emphasize text several different ways. Some methods of emphasizing a word or 
phrase are: uppercase, underscore, change of type weight (such as bold), italic, and inter­
character space. 

186 DCF: SCRIPT/VS Text Programmer's Guide 



Underscoring and Capitalization 

Because underscoring on line devices requires backspacing and overstriking characters, 
the procedure can be particularly frustrating when you need to create a line that contains 
an underscored word or words. Instead of manually keying in the 
character/backspace/underline sequence, you can use either the. US [Underscore] control 
word or a combination of the .DF [Defme Font] and .BF [Begin Font] control words to 
have a word or phrase underscored when it is printed. 

For example, 

.us This is very important. 

prints as:·7 

This is very important. 

You could also have entered 

· df hil us 
· bf hil 
This is very important . 
. pf 

and obtained the same result. 

Because the .US [Underscore] control word does not cause a break, you can specify: 

This line contains a very 
· us important 
concept for consideration. 

and it results in: 

This line contains a very 
important concept for 
consideration. 

The .UP [Uppercase] allows you to capitalize text and the .UC [Underscore and 
Capitalize] control word allows you to both capitalize and underscore your text. Both of 
these functions can also be specified with combinations of the .DF [Defme Font] and 
.BF [Begin Font] control words. 

For example, 

· up Chapter 10 

· df hi2 up 
· bf hi2 
Chapter 10 
.pf 

- or -

47 By default, SCRIPT jVS draws an uninterrupted rule beneath underscored text. The . UD 
[Underscore Definition] control word allows you to specify that blanks are not to be under­
scored. 

Chapter 15. Selecting Fonts 187 



result in: 

CHAPTER 10 

Use the .UC [Underscore and Capitalize} control word or a combination of the .DF 
[Defme Font} and .BF (Begin Font) control words when you want to both underscore 
and capitalize a line. For example, the lines: 

• liC preface 

· df hi3 uc 
· bf hi3 
preface 
.pf 

result in: 

PREFACE 

- or -

You can also affect a number of input lines with the .US (Underscore], .UP [Uppercase], 
and .UC [Underscore and Capitalize] and with the .DF IDefme Font) and .BF [Begin 
Font] control words. For example, to underscore three input lines you would enter: 

· us 3 
Do not 
destroy this letter 
until 
its expiration date, 
which is January 22nd, 1985. 

· df hil us 
· bf hil 
Do not 
destroy this letter 
until 
.pf 
its expiration date, 
which is January 22nd, 1985. 

both of which result in: 

- or -

Do not destroy this letter 
until its expiration date, 
which is January 22nd, 1985. 

Use the ON and OFF parameters of the .US [Underscore], .UD [Underscore DefInition], 
.UC [Underscore and Capitalize] control words to affect a group of text lines in a similar 
manner. Using the ON and OFF parameters might require less updating than using a 
numeric parameter when you add or delete lines to a group of underscored lines. For 
example, 

188 DCF: SCRIPT/VS Text Programmer's Guide 



This is capitalized for 
· up on 
emphasis 
· up off 
and 
· uc on 
emotional 
· uc off 
impact. 

results in: 

This is capitalized for 
EMPHASIS and EMOTIONAL impact. 

The same results could have been obtained if, using the fonts described in our examples 
above, we entered: 

This is capitalized for 
· bf hiZ 
emphasis 
.pf 
and 
· bf hi3 
emotional 
.pf 
impact. 

You can use the . UO [Underscore Oefmition] control word to determine how automatic 
underscoring with the .US [Underscore] and .UC [Underscore and Capitalize] control 
words should be performed. You can indicate whether or not blanks are to be under­
scored and, on page printers, which named rule is to be used for underscoring and where 
it is to be located with respect to the baseline. 

Because word spaces are initially underscored, you must specify the OFF parameter of 
the . UO [Underscore Defmition] control word if you wish to tum off wordspace under­
scoring. 

For example, when you underscore text by entering 

· us on 

all characters, including wordspaces, are underscored. But if you have entered 

· ud off 

wordspaces will not be underscored. Nonblank characters are always underscored, but 
tab expansions and spaces specified with the TO parameter of the .IS control word are 
never underscored. 

Chapter 15. Selecting Fonts 189 



You can also use the .UD [Underscore Defmition] control word to explicitly position the 
underscore rule on page printers. For example, if you enter 

.dr thud weight .6mm 
· ud thud -p2 

a rule .6mm thick is drawn two pica points below the baseline to underscore text: 

a rule .6mm thick is drawn two pica points below the baseline 
to underscore text. 

If the underscore rule is positioned above the normal baseline on page printers, it may 
overlay text. 

If, for example, you enter 

.dr thump weight .4mm 
· ud thump p3 

a rule .4mm thick is drawn three pica points above the baseline, through the middle of 
the text: 

a nile .4mm thick is drawn three pica points above the 
baseline, throBgh the middle of the tent. 

The 3800 Printing Subsystem Model 3 and the 3820 Page Printer fonts include under­
scoring information in the font objects. This built-in underscore defInition will be used 
for these fonts unless you explicitly specify the . UD [Underscore Defmition] control 
word with a rulename or position. 

Each time a new font is started or restalted, the underscore deftnition is changed to use 
the underscore defmition in the new font. However, this deftnition does not take effect 
until a new underscore rule is started for the next output line if underscoring of blanks is 
on, or for the next word if underscoring blanks is off. 

For more details on drawing rules see "Drawing Horizontal and Vertical Rules" on page 
157. 

Using the .IC Control Word for Emphasis. 

On page printers, you can also use the .Ie [Intercharacter Space] control word to insert 
extra white space between characters of a word for emphasis. For example, jf you enter 

We must 
· ic espace p6 
emphasize 
· ic espace 0 
this word. 

two extra pica points of horizontal white space is inserted between each pair of charac­
ters in the word emphasize: 

We must e mph a s i z e this word. 

190 DCF: SCRIPTjVS Text Programmer's Guide 



Chapter 16. Keeping Blocks of Text Together 

Keeps 

SCRIPT /VS provides several means of keeping lines of text together for such purposes 
as: 

• Ensuring that an example or list of items is not split across a column or page 

• Keeping a heading and the first few lines of text below it together 

• Placing a figure or diagram at the top or bottom of a column or page 

• Preventing widows (single lines at the beginning or end of a paragraph that appear 
by themselves at the bottom or top of a column or page). 

When you wish to keep a specifIc group of lines, such as a figure or example, together, 
consider using: 

• A regular keep, started with .KP ON, is placed in the current column if it will fit. 
Otherwise, a column eject is performed and the keep is placed in the next column. 
If necessary, a new page may be started to force the keep to be placed at the top of 
the page body. 

• A floating keep, started with .KP FLOAT, is placed in the next available column if 
it does not fit in the current column. If the float does not fit into the current col­
umn, it is saved and the text that follows it in the input ftle is formatted and placed 
in the current column. Once a float has been placed, neither it nor the text that was 
moved before it can be rearranged for text distribution purposes. 

• A delayed keep, started with .KP DELAY, is always placed in the next column, 
whether or not it fits in the current column. As with floating keeps, text following 
the keep in the input file can be moved ahead of it in the output to fill the current 
column. 

Each of these keeps must be explicitly ended with .KP OFF, and each saves the current 
formatting environment. The formatting environment is restored when the keep ends. 
See the Document Composition Facility: SCRIPT/VS Language Reference for a list of the 
formatting parameters saved and restored around keeps. 

Chapter 16. Keeping Blocks of Text Together 191 



Inline Keeps 

For example, 

· kp on 
· in p6 
· ir p6 
· fo center 
These lines will be kept together in the 
column, regardless of page ejects and column balancing, 
and 
the formatted lines will be centered. 
· kp off 
These lines will not, however, necessarily appear in the 
same column 
as the lines above, nor will they be centered, 
since the formatting mode was restored when the 
keep was ended. 

will be formatted as: 

These lines will be kept together in the column, 
regardless of page ejects and column balancing, and the 

formatted lines will be centered. 
These lines will not, however, necessarily appear in the 
same column as the lines above, nor will they be centered, 
since the formatting mode was restored when the keep was 
ended. 

If you place a large figure in a regular keep and it does not fit in the current column, it 
will be placed in the next column. lbis can leave a large blank space at the bottom of 
the current column. If the figure does not have a specific relationship to the text around 
it, you can avoid the blank space by placing the figure in a floating keep. For example, 

This paragraph contains a reference 
to the figure that follows it. 
This text will appear above the figure, 
· kp float 

(drop in figure here) 

· kp off 
but this text can appear above or 
below the figure, depending upon whether 
the figure is moved to the next column. 

When you wish to ensure that a certain amount of text is kept together without other­
wise disturbing the formatting of that text, use an inline keep. Iuline keeps are started 
with: 

• .kp inline 

• .kpv 

• .kpv + v 

192 DCF: SCRIPT/VS Text Programmer's Guide 



v is an amount of vertical space. These kinds of keeps do not cause breaks. For example, 
to ensure that the heading of a table is kept together with the ftrst few items in the table, 
specify 

· fo off 
· kp 1i 
· ce AMERICAN INVENTORS 
.sp 
Name 
.sp 
Armstrong) Edwin 
Bell, Alexander 
Bell, Herbert 
Carlson, Chester 
De Forrest, Lee 

Born Died 

1891 1954 
1847 1922 
1890 1970 
1906 1968 
1874 1961 

Inline keeps that specify an amount of vertical space are automatically ended when that 
amount oftext has been formatted. They can also be ended prematurely with .KP OFF. 
In either case, no break is performed; the formatting of lines is not affected by the inline 
keep. 

In1ine keeps are preferable to conditional column ejects, especially when your page lay­
out contains more than one column, because columns that are explicitly started with 
.CB [Column Begin] or .CC [Conditional Column Begin] are ineligible for balancing. In­
line keeps ensure that text is moved to the next column if necessary to keep the text 
together, yet allow preceding text to be moved into the next column as needed to bal­
ance the columns if the page is not filled. See "Chapter 12. Composing Multiple­
Column Pages" on page 141 for more information on column balancing. 

There is an order of precedence among keeps, with regular, floating, and delayed keeps 
taking precedence over inline keeps. If an inline keep is encountered within a floating 
keep, it is ignored. But if a regular keep is encountered within an inline keep, the inline 
keep is ended and the regular keep begun. Keeps of the same level of precedence end 
each other, except for v and v + v type of keeps. v and v + v type of keeps will combine 
their depths. For example, 

.kp on 
These lines will be 
kept together in 
one column. 
· kp on 
So will these lines, 
but not necessarily in 
the same column with the 
previous few lines. 
· kp off 

Note: Some control words are not allowed within keeps and will cause termination of 
the keep before being processed. This is true regardless of whether the control word is 
found in the input fUe, in a tag, or within a macro. In general, these control words alter 
the page or column defmitions. See the Document Composition Facility: SCRIPT/VS 
Language Reference for a listing of these control words. 

Chapter 16. Keeping Blocks of Text Together 193 



Floats 

Figures and tables often are not related to the text immediately surrounding them. 
SCRIPTjVS provides a way of setting such text apart from the body of the page by 
placing it at the top or bottom of a column or page, independent of the body text. 

Use the .FL [Float] control word to delimit the lines to be set apart, and to indicate 
where they should be placed. For example, the input lines 

· f1 on page 
· im spunits 
· hr left right 
· f1 off 

will place the contents of the file SPUNITS at the top of a subsequent page, separated 
from the text in the page by a horizontal rule (Figure 3 on page 44 illustrates such a 
float.) 

Floats can be specifically designated for odd- or even-numbered pages. For example, 

.f1 on page even 
· im tblleft 
.sp 2 
.f1 off 
.f1 on page odd 
· im tblright 
.sp 2 
.f1 off 

will place the contents of the file TBLLEFT and TBLRIGHT at the tops of two subse­
quent pages. 

The intent of the previous example is to produce a double-page-width table on facing 
pages of a duplexed document. However, if the next page is odd, the right-hand float will 
be placed first, on the front of a sheet, and the left-hand float will be placed later, on the 
back of the sheet. When floats bear such a relationship to each other, the ORDER op­
tion should be included in the .FL [Float] control word. Ordered floats will be placed in 
the same order in which they are defmed, ahead of any unordered floats. 

When a single chapter of a document does not' contain enough pages of text to accom­
modate all the floats defmed within the chapter, you can specify 

· f1 dump 

before beginning the new chapter. Extra pages will be added as needed to place all the 
queued floats within the current chapter. 

Note: The same control words that are disallowed within a keep are also disallowed 
within a float. In general, these control words alter the page or column defmitions. See 
the Document Composition Facility: SCRIPT/VS Language Reference for a listing of 
these control words. 

194 DCF: SCRIPT/VS Text Programmer's Guide 



Widow Zones 
When SCRIPT /VS is concatenating input text, it will automatically prevent single out­
put lines at the beginning or end of a paragraph from being left alone at the bottom or 
top of a column or page. This is called widow zone control. If a paragraph spans two 
columns, at least two lines of the paragraph will appear in each column.4e Widow zone 
control can be turned off by specifying 

• wz off 

Note: For purposes of widow zone control, SCRIPTjVS considers paragraphs to be de­
limited by breaks. 

When a vertical, inline keep (.KP v or .KP v + v) is ended and widow zone processing 
is on, the ended keep is treated as the first two lines of a widow zone. When regular, 
floating, delayed and inline keeps are ended, SCRIPT jVS does not attempt to keep the 
last line in them together with the next line. This may cause one line widows to occur. 

Widow zones are ended by any control that causes a break or by a line with a leading 
tab or blank. A widow zone is also ended whenever a line is encountered that is more 
than one-third the depth of the page body. 

40 When widow zone control is in effect, paragraphs of fewer than four lines will not be split 
between columns. 

Chapter 16. Keeping Blocks of Text Together 195 





Chapter 17. Creating Footnotes 
The .FN [Footnote] control word allows you to have text formatted and placed at the 
bottom of a page as a footnote. SCRIPT/VS determines how many lines currently re­
main on the page and reserves the space needed for the footnote. The following example 
will produce the footnote at the bottom of this page. 

· fn on 
~'d( This line is going to 
appear as a footnote 
on this page. 
· fn off 

SCRIPT/VS prints a horizontal rule of 16 figure spaces, called a leader, to separate the 
body of the page from the footnote. To change the footnote leader, redefine it before the 
page on which the footnote appears is started: 

· fn leader 
.sp 

.sk 
· fn off 

Normal Footnote Placement 

Because there is no maximum depth for a footnote, once a footnote is started, text is 
included in the footnote until a .FN OFF control word is encountered, or unless the 
footnote is prematurely ended by a disallowed control word. 

To keep the footnote and its callout on the same page, you should enter the .FN (Foot­
note) control word and the footnote input lines immediately after the word or phrase 
that the footnote refers to (known as the "footnote callout"). If the footnote does not 
immediately follow a text line (without an intervening break), it will be placed as soon as 
possible and no attempt is made to associate it with a callout line or widow. 

*+ This line is going to appear as a footnote on this page. Unless otherwise indicated, 
footnotes are generally aligned against the left page margin. In this book, offset style is 
used and footnotes have been adjusted to be aligned with the offset text. This also ap­
plies to the footnote leader. 

Chapter 17. Creating Footnotes 197 



A line or widow containing a footnote callout will be placed on the page if there is suffi­
cient space for all of the following: 

• The line or widow 

• The footnote leader 

• At least two lines, counting skips and spaces, of the last footnote referenced in that 
line or widow. If the footnote is only three or less lines deep, then the entire foot­
note must fit on the page. 

If there is insufficient space on the page for the line or widow, the line or widow and its 
associated footnote will be moved to the next page. However, if the line or widow is 
already at the top of a page it will not be moved. In such a case, the line or widow will 
be placed on the page with as much of the footnote as will fit. The remainder of the 
footnote will be placed on a subsequent output page. 

In placing footnotes, SCRIPT/VS will, if necessary, attempt to split footnotes only if 
they are four or more lines (including skips and spaces) deep. If a footnote is split, 
SCRIPT /VS will keep at least the first two lines of the footnote on one page, and it will 
keep at least the last two lines of the footnote on another page. For the purposes of 
splitting, a double spaced footnote line and a vertical space generated by a single control 
word (for example, .SP 3) are considered to be single lines. 

When a footnote is split, or cannot be placed on a page (for example, the first of two 
footnotes called out on a page is greater than the space allowed for footnotes on that 
page), the remainder will be allowed to float to the next available page. 

\Vhenever a new page is started, footnotes that were allowed to float from previous pages 
are placed on the new page. In placing footnotes that were floated from previous pages, 
SCRIPT /VS will attempt to reserve space on the page for any pending output line or 
widow that has not yet been placed. If that pending line or widow also contains footnote 
callouts, the line or widow may be further deferred, as necessary, in order to keep foot­
notes and their callouts on the samc page. 

The .FL (Float) DUMP control word causes SCRIPT/VS to place all floats, including 
footnotes, before resuming input text processing. 

Unusual Footnote Placement Conditions 

There are ccrtain conditions under which SCRIPT/VS will be unable to satisfy the gen­
eral guideline of keeping footnote callouts and at least two lines of the last footnote on 
the same page. Some of these conditions occur when: 

• The page depth is very small 

• The footnote leader is very large 

• One or more footnotes are very large. 

The conditions and the actions that will be taken are as follows: 

• If the footnote leader is as large or larger than the body depth plus the first line of 
the first footnote, the footnote will be placed on the page but not the footnote 
leader. 

• If the callout line or widow is at the top of the page and all of the footnotes will not 
fit, then SCRIPT/VS will cause as many of the footnotes as necessary to "float" to 
subsequent output pages. 

198 DCF: SCRIPT /VS Text Programmer's Guide 



• If the callout line or widow is at the top of the page, then SCRIPT/VS will, if nec­
essary, place only one lineJof the first footnote on the page. 

• If the callout line or widow is at the top of the page, then SCRIPT jVS will, if nec­
essary, split the first footnote even if it is a two or three line footnote (this will cause 
the first line and/or the last line to be placed by itself on an output page.) 

Note: The splitting of small footnotes or the placement of only one line of a footnote 
will not occur unless the footnote is the first one to be placed on the page. If at least one 
complete footnote is placed on the page, then SCRIPT jVS will only attempt to split the 
other footnotes if they are four or more lines deep and the first two lines and the last 
two lines will be kept together. 

If a footnote begins with one or more skips and the footnote is the first one to be placed 
on the page, the size of the first skip will be made zero. 

Other Footnote Considerations 

**************** 

You can mark up a footnote with GML tags, control words, macros, and text just as 
you can the material within a keep. For example, to provide special formatting within a 
footnote you could enter: 

· fn on 
· tr 2 B2 
· in 2 after 1 
2 This is the next footnote 
in this section. 
· fn off 

Since footnotes do not cause breaks, you can interrupt a sentence to place the footnote 
on the line above the word it refers to, even if the word is in the middle of a sentence. 

Because the environment is saved during a footnote definition and restored after it, any 
formatting changes within the footnote (such as indention, font changes, revision codes, 
and so on) are automatically restored to their previous values when the footnote is 
ended. In the example above, therefore, it was not necessary to reset the indention. See 
"Chapter 20. Defining the Formatting Environment" on page 219 for details about sav­
ing and restoring the formatting environment. 

Note: The control words that are disallowed within a keep are also disallowed within a 
footnote. 

2 This is the next footnote in this section. 

Chapter 17. Creating Footnotes 199 





Chapter 18. Translating Characters 
SCRIPT/VS performs several character translations on input and output lines as part of 
its nonnal processing. You can define the specific character mappings each of these 
translations performs for such purposes as: 

• Printing characters that are available on your output device but not on your termi­
nal 

• Simulating control characters not available on your terminal 

• Pairing the upper- and lowercase letters of various national languages 

• Expanding individual input characters into character strings. 

Translating Output Characters 
If you are using a terminal with a standard keyboard, you may not have an immediate 
way to enter special characters in a SCRIPT/VS fIle. You cannot, for example, directly 
enter a bullet (.) from the keyboard. When you print SCRIPT/VS output, you may 
want to use a bullet and other special characters as well. One way to enter special char­
acters into a fIle is to use the appropriate commands while editing. 

SCRIPT /VS provides another method for printing special characters. You can specify 
that one of your keyboard characters be translated to the special character, using the .TR 
[Translate Character] control word. For example, 

. tr * af 

Each occurrence of an asterisk in your fIle is translated, on output, to the bullet charac­
ter (.) that has the hexadecimal code AF.49 For example, the input line 

* Pay attention to this point. 

results in: 

• Pay attention to this point. 

You can specify as many translation pairs with one .TR [Translate Character} control 
word as your input line allows. For example, 

49 The hexadecimal codes for each character for line devices are shown in the Document Compo­
sition Facility: SCRIPTjVS Language Reference. The hexadecimal codes for page printer 
fonts depend on the code page being used. See the 4250 printer, the 3800 Printing Subsystem 
Model 3, and the 3820 Page Printer font catalogs for the appropriate code points. 

Chapter 18. Translating Characters 201 



.tr 0 bO I bl 2 b2 3 b3 4 b4 5 b5 6 b6 7 b7 8 b8 9 b9 

causes the characters 0 thru 9 to print as their corresponding SUbscript characters if they 
are available in the current font. For example, the formula: 50 

X2+Y2=Z3 prints as: X2+Y2=Z3 

To cancel translation of all previously specified character mappings, use the .TR 
[Translate Character} control word with no parameters: 

.tr 

When you have many character mappings specified, you can reassign or cancel some of 
them without affecting the others. For example, 

. tr ( ( 

cancels translation of the left parenthesis to any character established for it. Actually, this 
is equivalent to setting up a new mapping for (: the character is to be translated to itself. 

Note: While an output character mapping is in effect, every occurrence of the affected 
character is translated to the designated output character. You should therefore take care 
to translate only characters that will not be needed during that time. 

Output translation is performed during formatting just before the characters' widths are 
measured for justification. 

If you have used the .TR [Translate Character] control word and direct the SCRIPTjVS 
output to your terminal, some of the special characters cannot be displayed in the out­
put. The positions occupied by the translated characters can appear as blanks because 
there are no equivalent characters on the terminal. You can use the .IF [If] control word 
to make character translations conditional based on the output device: 

.if SYSOUT eq PRINT .tr * af 

This control word line results in output translation of asterisks (*) to bullets (.) only if 
output is going to the printer. The .IF [If] control word is discussed in dctail in "Chapter 
22. Processing Logical Statements" on page 253. 

Translatillg Input Characters 
SCRIPT jVS also performs character translation on input lines. The .TI [Translate Input] 
control word allows you to make characters that are unavailable on your terminal effec­
tively part of your input me. For example, the IBM 3270 terminal does not have a tab 
key. However, an available character, such as the not-sign (--,), can be translated to 
hexadecimal as, the tab character code: 

. ti ., 05 

While the translation is in effect, any not-sign (--,) on an input line is processed as 
though it were a tab. Because the translation occurs first, before any other processing, 
you should take care when using the .TI control word: 

50 Superscript characters are not available in all fonts on all devices. 

202 DCF: SCRIPT /VS Text Programmer's Guide 



• Use hexadecimal codes for the special character rather than the character itself. For 
example, 

· ti % $ 

translates all occurrences of % to $. However, you cannot restore the percent-sign 
character by subsequently issuing 

· ti % % 

because that input line is translated to .ti $ $ before being processed. However, you 
can restore % to itself with 

· ti 6C 6C 

Be careful. Remember that each character on the input line is translated (if a trans­
lation for it exists) before processing the input line. If you translate 0 (hexadecimal 
FO) to @ (hexadecimal 7C), for example, with 

· ti FO 7C 

you cannot restore the 0 to its original deftnition by issuing 

· ti FO FO 

because each 0 in the above control word would be translated to @ before the con­
trol word is processed. The only way to restore the 0 to its original deftnition is by 
issuing .TI [Translate Input] with no parameters. 

• Be careful when you translate a symbol that has special meaning for SCRIPT/VS, 
speciftcally the period C. or hexadecimal 4B) and the blank (hexadecimal 40). For 
example, 

· ti . % 

translates the period C.) to the percent sign (%). All subsequent SCRIPT/VS con­
trol words are ignored because the input characters are translated fIrst, before the 
line is processed. Control words and macros would be regarded as text because they 
begin with a percent sign instead of a period. 

• To restore all characters to normal, use the .TI [Translate Input] control word with 
no parameters: 

.ti 

Capitalizing Text 
SCRIPT /VS provides several means of capitalizing text. They are: 

• The UPCASE option of the SCRIPT command, described in detail in the Docu­
ment Composition Facility: SCRIPT/VS Language Reference. 

• The .UP [Uppercase] and .UC [Underscore and Capitalize] control words, described 
in detail in the Document Composition Facility: SCRIPT/VS Language Reference. 

• The .HO - .H6 [Head Level 0 - 6] control words, if capitalization is specifted with 
the .DH [Defme Head Level] control word 

Chapter 18. Translating Characters 203 



• The .DF [Define Font] and .BF [Begin Font} control words, described in "Chapter 
6. Composing Lines" on page 71 

• The &U' symbol attribute, described in "Chapter 21. Processing Symbols" on page 
223 

By default, SCRIPT /VS capitalizes text by translating the letters a through z to A 
through Z. This translation can be extended for languages other than English with the 
.TU [Translate Uppercase] control word. For example, 

.tu 8a ea 9a da aa ea 

would add capitalization pairs appropriate for German. 

Uppercase translation can be reset to its default by entering 

· tu 

without any parameters. Note, however, that unlike .TR and .TI, the default for .TU is 
the mapping of a through z to A through Z. 

Tl·anslating Strings of Characters 
All of the forms of translation discussed above provide one-la-one character pairings: 
Each character is mapped by the translation into another single character. Occasionally, 
it may be convenient to translate a single character into a string of characters. For exam­
ple, single asterisks can be expanded into arrows: 

.ts * 1=> I 

With this translation in effect, the input line 

*Pay Attention 

will be formatted as 

=> Pay Attention 

The character string that replaces a character can contain both text and control words. 
For example, 

· de ew off 
· ts < I;. bf ; "I 
.ts > I?";.pf;/ 
· de ew ; 

will cause the input line 

<What, four> bellowed the Mathemagieian. 

to be formatted as 

"What, four?" bellowed the Mathemagieian. 

String translation is actually a form of symbol substitution, and therefore: 

204 DCF: SCRIPT/VS Text Programmer's Guide 



• Is only performed when symbol substitution is on. (You can inhibit string trans­
lation with the .SU [Substitute Symbol] OFF control word.) 

• Is performed at the same time as symbol substitution, just after input translation, 
but before any other processing. 

• Is not subject to further symbol substitution. 

String translations are reset somewhat differently from other forms of translation, and 
special care must be taken to prevent string translation when resetting a character. The 
first example above can be safely reset by specifying 

or 

· ts 5c off 

· su off 
· ts ~'( off 
.su on 

Remember when using .TS that, like .TI, string translations affect all occurrences of the 
character, and are performed before any other processing of the line. 

If you specify .TS IGNORE, this causes SCRIPTjVS to ignore the width of specilled 
characters when it is measuring the text to put on an output line. For example, if you 
specify 

· ts a ignore 

this causes SCRIPTjVS to assign a width of 0 to the character "a" when SCRIPTjVS 
measures text. 

Prefixing Input Lilles 
You can use the .PX [Prefix) control word to replace control characters at the beginning 
of input lines with control words, macros, or other strings. 

With the .PX control word, you can get control over lines that start with a particular 
character. For example, a complier listing might have printer carriage control characters 
in the first position of each output line. A new page might be signalled by a line that 
starts with the ASA control character 1. 

You can write a macro called NEWPAGE, and then cause the macro to get control 
whenever SCRIPT reads a line that starts with the control character one. To do this, 
you would use the .PX control word: 

.px 1 I.NEWPAGEI 

This will cause every I in position one to be deleted and replaced with the character 
string .NEWPAGE. Because the line now starts with a period, followed by the name of 
a defmed macro, SCRIPT will give control to that macro just as though the original 
input line had started with .NEWPAGE. 

Only lines read from an input ftle are examined for prefixing; macro lines are never pre­
fixed. Prefixing is performed before symbol substitution and is performed even when 
symbol substitution is off. 

Chapter 18. Translating Characters 205 



To treat input lines beginning with an asterisk ("') as comments, you can preftx them 
with the SCRIPTjVS comment characters: 

.px * /.* 

Any input line beginning with '" is preftxed: the '" is replaced with . '" . 

You could tum off the input line preftxing as begun in the previous example by entering: 

. px * off 

If an input line does not begin with a currently defmed preftx control character, you can 
use 

. px nu11 j. * 
to add a period and an asterisk (. *) to the front of subsequent input lines (until turned 
off with a .PX OFF control word) without disturbing the fIrst character in the input 
lines. 

206 DCF: SCRIPT/VS Text Programmer's Guide 



Chapter 19. Creating an Index 
SCRIPT /VS enables you to automatically produce an index, such as the one contained 
in this publication. You must include the INDEX option when you issue the SCRIPT 
command to indicate to SCRIPTjVS that an index is to be generated from the informa­
tion provided by the .PI [Put Index] control words. If the INDEX option of the 
SCRIPT command is not specified, all .PI control words are ignored. The .PI [Put 
Index] control words are used to specify the index entries and are placed throughout a 
document wherever the index entry topics are described. 

This index can contain multilevel entries and cross references. SCRIPT/VS generates the 
page numbers for the index entries based on the location of .PI control words within the 
document. For example, specifying 

. pi /weasels/ 

indicates that the term weasels should be placed in the index along with a reference to 
the current page number. 

Placing the Illdex ill a Documellt 
Use the .IX [Index] control word to indicate where you want the index to be placed. 
When .IX is encountered, SCRIPT jVS: 

• Starts a new page, if it is not already at the top of a page 

• Prints the word INDEX as a heading. 

If you want a different title for the index page, you can specify it as 

.ix Subject Index 

this indicates that Subject Index is to be used for the title instead of INDEX. 

If you do not want a title at all, specify 

. ix / 

and SCRIPT jVS will generate the index without a title. 

TWOPASS Considerations 

In order to have correct page numbers in the index, pages must be numbered the same 
wayan both passes. On the first pass, the index is empty. On the second pass, it can 
contain several pages of information. 

You should reserve a range of page numbers for the index. This ensures that the page 
following the index will have the same page number for both passes so that the page 

Chapter 19. Creating an Index 207 



number for the index entries collected during the fust pass will be correct during the sec­
ond pass. For example, if the index will require three pages, you can reserve the current 
page number and the next two page numbers by specifying: 

· ix 3 Index 

Another way to ensure consistent page numbering between the two passes is to explicitly 
reset the page number with a .PA [Page Eject] or .PN [Page Numbering Mode] control 
word before any head level or .IX [Index] control word is encountered that requires 
knowledge of the page number. 

Creating Index Entries 

Page References 

The fust nonblank character that follows the .PI control word delimits the beginning of 
an index term; the second occurrence of that character delimits the end of that term. Any 
nonblank character that does not appear in the index term can be used as a delimiter. 
The trailing delimiter does not have to be specified if no other text follows the index 
term on the input line. For example, specifying 

· pi ?SCRIPT/VS 

will place the term SCRIPT/VS in the index along with a reference to the current page 
number. 

Regardless of the order in which they are specified within a document, all index entries 
are placed in alphabetical order before the index is formatted. For example, if you specify 

· pi /martens 
.pi /marsupials 

marsupials will appear in the index before martens. 

If the same index term is specified several times within a document, that term will only 
be included in the index once. The page numbers for each occurrence of that term will 
be listed after it, separated by commas. For example, several occurrences of the term 
melodrama will be formatted in the index as 

melodrama 9, 14, 37 

If one particular instance of an index term is more important than the others, you can 
use the ORDER parameter of the .PI [Put Index] control word to indicate that that page 
reference is to be listed first, regardless of where in the document other references occur. 
For example, if the second reference to melodrama refers to the principal discussion of 
the subject, and the others are just passing references, the second instance can be speci­
fied as 

.pi order /melodrama 

The entry will be formatted as 

melodrama 14, 9, 37 

If the discussion of a topic is lengthy, you can indicate the range of pages the discussion 
spans. The START and END parameters of the .PI control word can be used to mark 

208 DCF: SCRIPT/VS Text Programmer's Guide 



the beginning and end of the topic. For example, the principal discussion of melodrama 
can be preceded by 

.pi start /melodrama 

and succeeded by 

.pi end /melodrama 

The entry will be formatted as 

melodrama 9, 14-16, 37 

Multilevel Entries 

When there are many references to a particular index term, you may want to further 
qualifY the term with another level of indexing. Up to three levels of terms can be speci­
fied for an index entry using the .PI control word. SCRIPT /VS collects all index entries 
with the same first-level term and sorts the second-level terms alphabetically. These 
second-level terms are then placed in the index immediately following the first-level term 
to which they apply. Similarly, all third-level index entries with the same first- and 
second-level terms are collected and formatted alphabeticallY. These third-level terms are 
then placed in the index immediately following the second level-term to which they ap­
ply. 

A description of weasels, for example, can contain the following: 

.pi /weasels/training 

.pi /weasels/care and feeding 

.pi /weasels/breeding 

The index entry for wease/looks like this: 

weasels 
breeding 22 
care and feeding 15 
training 14 

Similarly, the section concerned with the care and feeding of weasels might contain these 
entries: 

.pi /weasels/care and feeding/exercise 

.pi /weasels/care and feeding/nutrition 

.pi /weasels/care and feeding/dental hygiene 

Chapter 19. Creating an Index 209 



The index entry will then appear as: 

weasels 
breeding 22 
care and feeding 

dental hygiene 19 
exercise 15 
nutrition 16 

training 14 

Explicitly Specified Page Numbers 

Cross-References 

When four index terms are specified with a .PI [Put Index] control word, the fourth term 
is not interpreted as a fourth-level term; it is used in place of the current page number in 
formatting the index entry. For example, to indicate that a Japanese Black Pine is illus­
trated in the fourth folio that is being attached, you can specify 

.pi /Pines/Japanese Black//Folio 4 

The text Folio 4 will be formatted in the index along with the page numbers of the other 
occurrences of these terms. This index entry will be formatted as 

Pines 
Japanese Black 19, 22, Folio 4 

When there are a large variety of topics in a document, you may want to include cross­
references to related topics. The REF parameter of the .PI [Put Index] control word can 
be used for this purpose. This parameter indicates that the last term specified is a cross­
reference to another index entry.51 Rather than suffixing the term with the current page 
number, SCRIPTjVS will prefix it with See or See also depending on whether or not 
there are any non-reference terms of the same level. For example, if the document de­
scribing weasels also contained a general discussion of burrowing mammals, you might 
want to specify 

.pi ref /weasels/martens 

which would make the index entry appear as 

weasels 
See also martens 
breeding 22 
care and feeding 

dental hygiene 19 
exercise 15 
nutrition 16 

training 14 

51 The REF parameter is valid only if at least two terms are specified. 

210 DCF: SCRIPT/VS Text Programmer's Guide 



Index cross references can also be used to direct readers from variations on a term to the 
principal index entry for that term. For example, specifying 

.pi ref /circular definition/definition, circular 

will create the following index entry: 

circular definition 
See definition, circular 

Because there are no nonreference terms under the entry circular definition, the cross ref­
erence is prefIxed only with See. 

Sorting Index Entries 
SCRIPT /VS collects index entries as they are specilled throughout the document and 
sorts them alphabetically. Included for each index term are the text of that term and a 
sort key. The sort key is used to determine where each entry is placed in the index and 
to group multiple occurrences of the same entry. 

The sort key for an index entry is, by default, created by folding the text of the index 
term to uppercase. Therefore, many different index terms can result in the same sort key. 
SCRIPT /VS considers index terms with the same sort key to be multiple occurrences of 
the sanle term and formats them as one term with multiple page references. Thus the 
index terms 

· pi /Walrus 

· pi /walrus 

· pi /WALRUS 

all have the same sort key, W ALR US, and will be recognized as three occurrences of the 
same index term. 

The text of the term printed in the index is that of the fIrst occurrence specilled with the 
.PI [Put Index] control word. Subsequent occurrences contribute only additional page 
references. Therefore, the index entry for the preceding three terms will be formatted as 

Walrus 4, 7, 22 

When the page number for an index term is explicitly specilled, but null, the term be­
comes part of the index without any page number associated with it. Subsequent occur­
rences of that term contribute page number references, but the text of the term is that of 
the fIrst occurrence. For example, if the proille for the document containing the preced­
ing terms contains 

· pi /walrus/ / / / 

The index entry will appear as 

walrus 4, 7, 22 

The text of the index entry is taken from the fIrst occurrence of the term. The page num­
bers come from the three subsequent occurrences of that term. 

Chapter 19. Creating an Index 211 



Handling Special Characters 

Index terms often contain special characters that, even though they are part of the term, 
should not be considered when the term is being alphabetized. For example, 

.pi /"The Walrus & the Carpenter" 

will, by default, be placed at the beginning of the index because the double quotation 
mark (") appears near the beginning of the alphabetizing sequence. You can use the IXI 
parameter of the .DC [Defme Character] control word to indicate that certain characters 
are to be ignored when they appear in an index term. For example, if you specify 

· de ixi " 

the preceding index term will be placed in the T section of the index, rather than at the 
beginning, because the double quotation marks will be ignored when the index terms are 
sorted. Similarly, the terms 

.pi /Olduvai Gorge 

.pi /O'Leary/ 

will, by default, be formatted in the index as 

O'Leary 39 
Olduvai Gorge 22 

However, if you specify 

· de ixi ' 

before specifying these terms, the apostrophe in O'Leary will be ignored during sorting 
and the index entries will be formatted as 

Olduvai Gorge 22 
O'Leary 39 

It is even possible to have SCRIPT /VS ignore blanks in index terms when sorting them. 
For example, the terms 

.pi /Waterford 

.pi /water wheel 

will, by default, be formatted as 

water wheel 12 
Waterford 7 

because the blank precedes f in the alphabetizing sequence. 

If you specify 

· de ixi 40 

blanks will be ignored during sorting and the entries will be formatted as 

Waterford 7 
water wheel 12 

212 DCF: SCRIPT/VS Text Programmer's Guide 



Initially, there are no characters that are ignored for index sorting. 

There may be occasions when you want special characters treated as blanks when they 
appear in an index tenn. You can use the IXB parameter of the .DC [Defme Character] 
control word to do this. For example, the tenns 

.pi /second-class mail 

.pi /second division 

will, by default, be fonnatted as 

second division 32 
second-class mail 29 

because the blank character precedes the hyphen in the alphabetizing sequence. How­
ever, if you specify 

. dc ixb -

before specifying the preceding index terms, the hyphens will be treated as blanks during 
the sorting process, and the entries will be fonnatted as 

second-class mail 29 
second division 32 

Initially, only hexadecimal 40 is treated as a blank when sorting index entries. 

Explicitly Specifying Sort Keys 

Occasionally, you may want to place an index entry in some section of the index inde­
pendent of the entry's default sort key. You can use the KEY parameter of the .PI [Put 
Index] control word to explicitly specify the sort key that is to be used for an index tenn. 
The KEY parameter is specified as 

.pi key /keyl/key2/key3/ /terml/term2/term3 

where keyl, key2, and key3 are the new sort keys that are to be used and tennl, tenn2, 
and tenn3 are the index tenns that they apply to. The keys are separated by a delimiter 
that can be any nonblank character that does not appear in any of the keys. All four 
delimiters must be specified even if only one key is being specified and the other keys are 
null. For example, to place the tenn IBiv! 3800 at the end of the index in the 3 section, 
specify 

.pi key /3800/// /IBM 3800 

For a multilevel index entry, explicitly specified keys can be specified separately for each 
level. When the specified key is null, the sort key is developed according to nonnal 
SCRIPT jVS sort key processing, as described earlier in this section. For example, if you 
specify 

.pi key /HUNGARY/// /Austria-Hungary/Domestic Policy 

The tenn Austria-Hungary is placed in the H section of the index, using HUNGARY as 
the sort key. The key for the second-level tenn, Domestic Policy, is developed using 
nonnal SCRIPTjVS key processing, because the explicit sort key specified is null. 

Chapter 19. Creating an Index 213 



Using the KEY parameter of the .PI control word, you can make the text of an index 
term completely unrelated to the actual term. For example, if you specified 

.pi key /WALRUS/// /"The Walrus and The Carpenter" 

all entries specified for walrus would be formatted in the "W" section as 

"The Walrus and The Carpenter" 4, 7, 22 

instead of as 

walrus 4, 7, 22 

provided that the entry with the KEY parameter comes before any other .PI control 
word with "walrus" as its index term. 

Creating the Index 
When you specify the .IX (Index] control word, SCRIPT jVS formats the index by creat­
ing and executing the .IE [Index Entry] control words generated for each index entry. 
The fIrst parameter of the .IE control word indicates the index entry level. For example, 
the control words 

.pi /Pines/Lodgepole 

.pi /Pines/Japanese Black 

generates the fIrst-level term, Pines, with two second-level terms, Japanese Black and 
Lodgepole. 

When you specify .IX, SCRIPT jVS formats these terms by creating and executing the 
following control words:S2 

.IE! Pines 

.IE2 Japanese Black 9 

.IE2 Lodge pole 5 

The .IE (Index Entry] control word causes a break and sets an indention based on the 
fIrst parameter. This makes the formatted entry appear as 

Pines 
Japanese Black 9 
Lodge pole 5 

S2 The blank between the control word name and the first parameter does not have to be speci­
fied. It is omitted in the .IE [Index Entry] control words generated by .IX [Index]. 

214 DCF: SCRIPT/VS Text Programmer's Guide 



The .IX [Index] control word precedes each section of the index with an .IE Header con­
trol word. For example, the P header that precedes the section containing terms begin­
ning with P is generated using 

.IEH P 

This header control word causes SCRIPT jVS to skip two lines, print the specified sec­
tion letter, and then skip another line before formatting the ftrst index entry for that sec­
tion.53 The .IX control word generates and executes a header for each section of the 
index for which there are entries. 

53 Because SCRIPTjVS omits the optional blank between the control word name and the first 
parameter, you can write macros to provide more elaborate formatting for some index entries 
without interfering with other terms. For example, the following macro will draw a box 
around each index header: 

.dm ieh j.sk 2 /.bx 1 5 / & * /.bx off j.sk 

The formatting of first-, second-, and third-level entries is not affected by this macro. 

Chapter 19. Creating an Index 215 





Part 3. SCRIPT/ VS Programming Facilities 
This section of the book contains information about the programming facilities of 
SCRIPT/VS. 

Included in this section are the following chapters: 

• Chapter 20 - Defining the Fonnatting Environment 

• Chapter 21 - Processing Symbols 

• Chapter 22 - Processing Logical Statements 

• Chapter 23 - Processing Macros 

• Chapter 24 - Processing GML 

• Chapter 25 - Verifying Spelling. 

Part 3. SCRIPTfVS Programming Facilities 217 





Chapter 20. Defining the Formatting Environment 
The formatting environment is a set of values and parameters that specify exactly how 
SCRIPT /VS is to format each line on an output page. The formatting environment con­
sists of three parts: 

• The active environment, which contains parameters for formatting text 

• The page environment, which contains parameters that defme the entire page 

• The translation tables associated with the .TI [Translate Input] and .TR [Translate 
Character] control words. 

The Fornlatting Environlnent Parameters 
When SCRIPT/VS ejects to a new page (or begins the ftrst page), it prepares the output 
page in the following manner: 

1. It saves the active environment values used for body text and initializes the active 
environment for formatting running headings and running footings. 

The active environment is reinitialized before each of these is formatted. 

2. Top and bottom page floats are selected from the float queue. If any floats exist and 
will ftt, they are placed on the page. 

The output page's running headings and footings, and page floats are now in place 
on the output page. All page control dimensions are fixed for this page, and any 
changes to these values will take effect on the next page. 

3. SCRIPT/VS restores the active environment for body text that it had saved. 

Input lines are processed to produce output lines, which are inserted into the body 
of the page. When the page is full, or when a page eject occurs, the fonnatted page 
is sent to its output destination. 

The Running Heading and Footing Environments 

When running headings and footings are started, SCRIPT /VS: 

• Saves the current formatting environment 

• Restores the initial formatting environment 

• Modifies the environment to reflect changes that have been made with the .DC and 
.GS control words. 

When the running heading or footing ends, the saved formatting environment is restored. 

Chapter 20. Defining the Formatting Environment 219 



The Keep, Float, Footnote, and Named Area Environments 

When keeps (other than inline keeps), floats, footnotes, and named areas are started, 
SCRIPT /VS saves a copy of the active environment and then modifies it by: 

• Clearing the values of the .OF [Offset] and .UN [Undent] control words 

• Restoring the indention to the basic .IN [Indent] value currently in effect. 

In addition, for page floats and footnotes, the column line length is set equal to the line 
length value. 

When the keep, footnote, float, or named area ends, the saved copy of the active envi­
ronment is restored. 

Saving and Restoring the Current Formatting Environment 
The .SA [Save Environment] and .RE [Restore Environment] control words are used to 
save and restore the current formatting environment. All three parts of the environment 
are saved and restored by .SA and .RE: 

• The active enviromnent 

• The page environment 

• The .TI and .TR translation tables. 

For example, part of an input me that contains a distribution list requires indention and 
tab settings to format properly. However, the main document indention and tab settings 
are different. You could use the .SA [Save Environment] and .RE [Restore Environment] 
control words, as in the following example, 

.sa 
· in 
Distribution list for special publications: 
.sk 
· in 3m 
· ti ., 05 
· tp 2i 2.5i 
.us Name .,Dept .,Address 

* End of distribution list 
· re 

to avoid having to restore the main document's values. 

Named Environments 

The .SA control word saves environments in a stack or by name. The .RE [Restore 
Environment] control word restores the SCRIPTjVS environment to the values that 
were in effect at the time of the corresponding .SA control word. 

To save the current environment by name, enter 

· sa barnes 

220 DCF: SCRIPT/VS Text Programmer's Guide 



The current environment is saved as BARNES. 

The .SA control word only saves a copy of the values of these SCRIPT /VS variables in 
the current environment, it does not change any of these variables. 

Because .SA does not change any of the SCRIPT jVS variable settings, all variables 
should be explicitly set to the appropriate values unless the current settings are known. 
For example, you can explicitly set indention to 0 and then restore it to whatever it was 
previously. 

The .RE control word restores the SCRIPT /VS fonnatting environment from a named 
saved environment or from the last-in-ftrst-out stack created by the .SA control word. 
The .RE control word restores the SCRIPTjVS variables to values that were in effect at 
the time of the corresponding .SA control word. 

To restore the most recently saved unnamed environment, enter 

. re 

To restore the named environment BARNES, enter 

. re barnes 

If there is no currently active .SA control word, the .RE control word restores the initial 
values. 

Chapter 20. Defining the Formatting Environment 221 





Chapter 21. Processing Symbols 
By using symbols, you can refer to page numbers, variable values, character strings, and 
control words in your input file. A symbol has a name and a value. When SCRIPT /VS 
encounters a symbol name, it replaces it with the current value of the symbol. After all 
symbol names in an input line have becn replaced with their current values, SCRIPT /VS 
processes the line. 

Define a symbol with the .SE [Set Symbol] control word. For example, to defme the 
symbol &printer, you can specify 

.se printer = 'IBM 1403 Printer' 

Later, you can refer to the symbol printer in an input line as &printer. Each SCRIPT/VS 
symbol is identiftcd with its prefix, an ampersand (&). The symbol is terminated with 
either a period (.) or a blank. For example, the input line 

Our publisher uses the &printer for output. 

is processed by SCRIPT/VS and printed as: 

Our publisher uses the IBM 1403 Printer for output. 

but, 

Our publisher uses the &printer .. 

is processed as: 

Our publisher uses the IBM 1403 Printer. 

Your document might contain the symbol &printer many times, in different places. In 
the future, when you want the document to describe a different printing device, you can 
reset the symbol with 

.se printer = '3800 Printing Subsystem' 

At that time, SCRIPT /VS will process your document and substitute the new value for 
the same symbol: 

Our publisher uses the 3800 Printing Subsystem for output. 

The symbol name can be up to ten characters long and can contain upper and lowercase 
characters, numbers, and the characters @, #, and $. 

The symbol value can be a character string, a numeric value, another symbol, or an 
arithmetic expression. It can contain compound data items with imbedded blanks and 
control words. If the symbol value contains blanks or special characters, enclose the en­
tire value in single quotation marks (as shown in the example above). 

Chapter 21. Processing Symbols 223 



The .SU [Substitute Symbol] control word causes SCRIPT/VS to stop or resume the 
substitution of defmed set symbols. The .S U control word causes a specified number of 
subsequent input lines, including control words as well as text, to be scanned for defined 
set symbols. 

If the argument ON is in effect, every line up to a subsequent .SU OFF will be scanned. 
Substitution ON is the initial value but it is reset to OFF with .SU OFF or with .SU n, 
after n lines have been read. 

Even when symbol substitution has been turned off with the .SU [Substitute Symbol] 
control word, symbols on a .SE control word line will be substituted if they are not en­
closed in single quotation marks. 

Some examples of valid symbol defmitions are: 

• A numeric value: 

. se number = 25 

.se add = 1 

• A character string: 

.se text1 = 'IBM 1403 Printer' 

.5e TEXT 1 = 'IBM 1403 Printer' 

• A character string that includes a quoted phrase: 

.se type 'prepared on a "word processing" machine 

.se type = 'prepared on a "word processing" machine 

• A SCRIPT /VS control word: 

.se break = '.br' 

• The value of another symbol: 

.se printer = '&text1' 

You can perform integer arithmetic with symbols: 

• To increment it: 

.se incr = &add + 1 

.se next = &number + 1 

• To decrement it: 

.se prev = &number - 1 

• To divide it: 

.5e half = &number / 2 

224 DCF: SCRIPT/VS Text Programmer's Guide 



• To multiply it: 

.se mult = &add * 10 

.se cost = &number * 20 

• To negate a value: 

.se negvalue = -&number 

Symbols can also be set using the .RV [Read Variable] control word. The .RV control 
word allows you to enter symbol values from the terminal during SCRIPT /VS process­
ing in interactive environments. 

For example, a symbol called name could be set with the following control word: 

.se name = 'Ray Hicks 

The same symbol could also be set this way: 

. rv name = 

At this point, SCRIPT/VS issues a read to your terminal and you can enter the material 
to be used as the value of the symbol. In this example, you would enter: 

Ray Hicks 

You must use single quotation marks in the same circumstances where they would be 
required in a .SE control word. 

Symbols can be set to a part of the value of another symbol by using the SUBSTR 
(substring) parameter of the .SE [Set Symbol] control word. The substring is one or 
more characters of the character string (the symbol value). For example, 

. su off 

.se corp = 'Scriptographicology, Inc.' 

.se name = substr &corp 1 6 

.su on 

sets the symbol &name to the substring of the value of the symbol &corp beginning with 
the fIrst character (character I) and continuing for six characters. Because &corp has 
been previously set to Scriptographicology, Inc., this substring results in the symbol 
&name having the value of the 6-character substring Script. 

The SUBSTR (substring) function also can be used to extract characters from a charac­
ter string that is not another symbol value. For example, 

.se name = substr Jonathan 5 4 

sets the symbol &name to that 4-character substring of Jonathan beginning with charac­
ter 5: the symbol &name will have the value than. The substring must follow the rules 
for character string values of a symbol. If the string contains any imbedded blanks or 
special characters, including arithmetic operators, it must be enclosed in single quotation 
marks. 

You can use the INDEX function of the .SE [Set Symbol] control word to fInd the lo­
cation of a string of characters within a symbol value or a string of characters. For 

Chapter 21. Processing Symbols 225 



example, 

.se name = 'Nicola' 

.se location = index &name cola 

defmes the symbol &location to have the value 3, because the string cola starts with the 
third character of the value of &name (Nicola). 

The INDEX and SUBSTR parameters can be used together to process control informa­
tion. For example, the SYSVAR option of the SCRIPT command can be used to spec­
ify formatting parameters and you can define SYSVAR C to establish the number of 
columns. You can validate that a permissible value has been given with the INDEX pa­
rameter: 

.se x = index '-1-2-' '-&SYSVARC.-' 

.if &x eq 0 .mg /e/SYSVAR C invalid. 

If the value given in &SYSVARC is valid, you can use the symbol &x, set with the 
INDEX parameter and the SUBSTR parameter to convert synonyms of valid values to 
a standard value: 

.se cols = substr '1-2' &x 1 

How SCRIPT/ VS Substitutes Values for SYlnhol Nalnes 
When SCRIPTjVS processes an input line, it first scans for any symbols in the line that 
require substitution. SCRIPT jVS checks any character string that begins with an amper­
sand (&) to see if it is a symbol name. When SCRIPT/VS finds a valid symbol, it re­
places the symbol name with its value. A symbol name is ended either with a blank, a 
period C.), or the end of the input line. If the symbol name ends with a blank, the blank 
is treated as a normal input character and is left in the input line. If the symbol name 
ends with a period, the symbol value, after substitution, is concatenated with the next 
input character and the period is removed. Therefore, if a symbol has punctuation imme­
diately after it, you must concatenate the punctuation character to the symbol with a 
symbol-end period. For example, 

This list ends with an &item1 .. 

results in an end-of-sentence period concatenated with the value of the symbol named 
&iteml. Otherwise, SCRIPT/VS considers a single period as the end-of-symbol indicator 
and concatenates the symbol with the next character. 

You should use this technique when the symbol precedes other punctuation marks or 
text. For example, 

The name of our product is &prodname., which is scheduled 
for shipment on &shipmo &shipday., 19&shipyr .. 

In this example, values for the symbols are substituted and the printed sentence appears 
as: 

The name of our product is Whizbanger, which is scheduled 
for shipment on January 22nd, 1985. 

If you do not place an end-of-symbol period between &prodname and its punctuation 
(,), SCRIPT/VS regards &prodname,' simply as a character string, and performs no sub­
stitution. 

226 DCF: SCRIPT/VS Text Programmer's Guide 



You can redefme a symbol as often as necessary in your input ftle. Each time you rede­
fine the symbol with the .SE [Set Symbol) control word, the new value replaces the old 
value. 

SCRIPT /VS limits an input line to a maximum of 256 characters. Because symbol sub­
stitution is performed before the line is evaluated, with symbol substitution on, the com­
plete input line including the substituted symbol values should not exceed 256 characters. 
If the substituted line exceeds 256 characters, it will be split and the remaining characters 
will be treated as a separate input line. 

One exception to this processing occurs with symbol arrays. If an input line contains a 
symbol array, for example, &sym(+), one or more elements of the array will be segre­
gated into additional input lines rather than splitting the line at 256 characters. However, 
if the line contains a single element of a symbol array, for example, &sym(l), then the 
symbol will be treated as a simple symbol. 

Lines split during symbol substitution processing will be processed as if they were sepa­
rate lines in the input ftle. Therefore, it is possible even with formatting off, for a single 
input line to appear as two or more output lines in the formatted document. This may 
result in errors if a split line contains a script control word. 

Compound Symbols 

When SCRIPT/VS substitutes values for symbol names, it performs as many substi­
tutions as necessary to resolve the symbol name. Because of this, you can use a com­
pound symbol, composed of two or more separately defmed symbols. For example, 
when you defme the symbols 

. se x = 1 

.se typel = first 

.se type2 = second 

the input line 

This is the &type&x try. 

results in: 

This is the &typel try. (intermediate result) 
This is the first try. 

Another example of compound symbols is in "Elaborating the System Date" on page 
238. 

Unresolved Symbols 

Sometimes SCRIPT/VS encounters a symbol name that has not yet been defmed. In 
this case, the symbol is unresolved and remains in the input line as a character string that. 
happens to begin with an ampersand. The unresolved symbol is printed on the output 
page as it appears in the input line. 

When you use symbols that are set later in the document than they are referred to (such 
as a symbol that refers to a page number or a figure number), the symbol will be unre­
solved when first encountered. When you specify the TWOPASS option with the 
SCRIPT command, SCRIPT /VS processes the input ftle twice. As a result, properly de­
fmed symbols not resolved during the first formatting pass will be resolved during the 
second pass. 

Chapter 21. Processing Symbols 227 



Inhibiting Substitution 

Usually, ampersands that occur in an input ftle as ordinary text characters are treated as 
text characters and not as symbol delimiters. The context in which it appears usually 
prevents the text ampersand from being mistaken for a symbol name. \\There a text am­
persand precedes a character string that forms a defmed symbol name that you want 
treated as a text character string, there are several ways to inhibit symbol substitution: 

• Turn off substitution with the .SU [Substitute Symbol] control word. With the .SU 
OFF control word, all substitution is turned off. You can turn symbol substitution 
on again with .SU ON. 

• Make the symbol name unrecognizable by adding punctuation without a delimiting 
period. For example, 

I have defined the symbols &AAA, &BBB, &CCC, and others 
for this file. 

The symbol for the day of the month (&SYSDAYOFM) is 
maintained by SCRIPTjVS. 

• Translate an unused punctuation mark or special character on your keyboard to the 
ampersand, and enter the special character in your input whenever you need a text 
ampersand: 

. tr C & 

Because the translation happens after symbol substitution, the text ampersand can­
not be mistaken for a symbol-starting ampersand. 

• Defme a symbol to have the value of an unused hexadecimal code and translate that 
code to an ampersand." Enter the symbol name in your input whenever you need a 
text ampersand. The &X' attribute can be used to assign the unused hexadecimal 
code to a symbol. For example, 

.se amp = &x'07 

. tr 07 & 

Defmes a symbol named &amp whose value is the single hexadecimal code 07, and 
establishes an output translation that maps that hexadecimal code to the character 
&. 

You can then use the symbol &amp wherever you want an ampersand to appear.55 

There are many times when text ampersands are perfectly safe and there is no need to 
worry about an unexpected substitution. Any time the character string immediately fol­
lowing the ampersand is not a symbol name, no substitution occurS.56 A character string 
cannot be a symbol name if: 

54 Make sure the hexadecimal code you are using is not already being used or you may have 
unpredictable results. 

SS This technique has been used in marking up this book whenever a text ampersand is required. 

S6 Except in a running heading or running footing where the ampersand (&) will be mistaken for 
the page number symbol. 

228 DCF: SCRIPT/VS Text Programmer's Guide 



• It has not been defmed as such with a previous .SE [Set Symbol] or .RV [Read 
Variable] control word. 

• It contains a character that would not be allowed in a symbol name (before the first 
blank or period that ends a symbol name). 

• It contains more than ten characters before a blank or period. 

Canceling a Symbol 

When you no longer want to use one of the symbols that you have previously defmed, 
you can cancel the symbol: 

.se oldsymbol off 

The symbol &oldsymbol will be regarded by SCRIPT /VS as an undefined symbol. It is 
as though it had never been defmed; it is not regarded as a null-value symbol. When you 
specify 

.se oldsymbol = 
or 

. se oldsymbol = I I 

you redefme the symbol with a null value. It exists as a symbol but it has as its value the 
null string. Note that a null symbol is quite different from an undefmed symbol. The 
null symbol is substituted with a value: the zero-length null string. 

You can also cancel an array symbol by using the OFF parameter of the .SE [Set 
Symbol] control word. If the symbol is an array symbol and no SUbscript is provided, 
the entire array is cancelled. 

Attributes of a Symbol Value 

SCRIPT /VS provides you with the ability to determine some of the characteristics of a 
symbol in your input fUe, such as: 

• Existence (&E') 

• Length (&L') 

• type (&T') 

• Current value (& V') 

• Width (&W') 

In addition, you can convert 

• A numeric symbol value to a base-26 number; that is, a character string: 1 A, 2 
= B, ... 26 = Z,27 = AA, 28 = AB, ... and so on (&A' or &a') 

• A space value into horizontal device units (&DH') 

• A space value into vertical device units (&DV') 

• A numeric symbol value to its roman numeral character string equivalent (&R' or 
&r') 

• A character string to uppercase (& U') 

• A character representation of a hexadecimal string to that string (&X') 

Chapter 21. Processing Symbols 229 



The symbol attribute names &E', &L', &T', and &V' can be specified, to produce the 
same result, in either uppercase or lowercase. That is, &L' and &1' will both return the 
length of a symbol. 

However, the symbol attribute &R', which converts a numeric value to roman numerals, 
and the symbol attribute &A', which converts a numeric value to an alphabetic character 
string, have different meanings when specified in uppercase and lowercase. These attri­
butes are only substituted if symbol substitution is on. 

&A' converts a number to a character string. The number is converted to a character 
string that might be thOUght of as a base-26 number composed of alphabetic letters. 

• &A'2 results in the string B 

• &A'26 results in the string Z 

• &A'27 results in the string AA 

• &A'28 results in the string AB 

• &A'705 results in the string AAC 

• &a'28 results in the string ab 

The largest number that can be converted is 65535. Numbers higher than this return a 
zero. 

If the character string to be converted is not a decimal integer number, the result is zero 
(for example, &A'zorch = 0). 

&E' verifies the existence of a symbol. When you use the &E' symbol attribute, the value 
is substituted with either a 1 or a 0, depending on whether or not the character string 
following &E' is a defmed symbol. For example, 

. se test = on 
The result is &E'&test .. 

results in: 

The result is 1. 

If the symbol named &test had not been set, the value of &E'&test would be O. Any 
character string that is not a defined symbol name, as in 

&E'czechoslovakia 

results in O. 

&L' determines the length of a symbol value or the number of characters in any character 
string. For example, after the lines: 

.se test = 'This is a test.' 

.se length = &L'&test 

the value of &length is 15. If the symbol named &test had not been set, then &length 
would have a value of 5 (that is, the length of the character string &test). 

&R' converts a decimal number to a roman numeral. The decimal integer number is con­
verted to a character string that represents the roman numeral equivalent of the number: 

• &R'87 causes the string LXXXVII to be substituted. 

• &R'19&SYSYEAR causes the string MCMLXXXV to be substituted (in 1985). 

230 DCF: SCRIPT /VS Text Programmer's Guide 



• &r'87 causes the string lxxxvii to be substituted. 

The largest number correctly translated to a roman numeral is 3999. For numbers be­
tween 4000 and 9999, the character? is used to represent the number 5000 or 10000 (for 
example, &R'6020 = ?MXX and &R'9020 = M?XX). Numbers larger than 9999 are 
not translated to roman numerals (zero is returned). 

If the character string to be converted is not a decimal integer number, the result is zero 
(for example, &R'zorch = 0). 

&T' analyzes the symbol type. It also replaces the character string with: 

• N, if the value is numeric. 

• C, if the value contains nonnumeric data (Characters). 

The N or C that SCRIPT/VS sets is always in uppercase. For example, 

&T'1978 

is replaced with N, but 

&T'DAD 

is replaced with C. 

&U' converts lowercase characters to uppercase. For example, 

&U'hello 

results in: 

HELLO 

Note: The capitalization that takes place is the same as all other uppercase conversions 
and is controlled by the .TU [Translate Uppercase] control word. 

&V' returns the current value of the symbol (as it was last set), without any further sub­
stitution. An undefined symbol or a character string has no value attribute, (that is, a 
value attribute of nothing). For example, 

.se a = '&b. linda' 

.se b = 'Be' 

An occurrence of &a will be substituted with Belinda and its length is 7 (however, 
&L'&a = 8). An occurrence of &V'&a will be substituted with &b.linda. 

Attribute symbol prefixes can be combined. For example, &L' & V' &a is the length of the 
value of the symbol &a, which is 8. 

Note that & V' returns a character string that represents the current value of the symbol 
as previously set. In other words, a defmed symbol has a value; character strings and 
undefmed symbols do not have a value (that is, a character string value is null). For 
example, 

.se a = '&c.linda' 

• &V'&a yields the character string &c.linda. The ampersand and the period in &c. 
are merely text characters, not symbol delimiters, for this value substitution. 

Chapter 21. Processing Symbols 231 



• &V'&c.linda yields the character string linda. In this case, the ampersand and the 
period in &c. act as symbol delimiters. The value of the symbol &c is concatenated 
to the character string linda. Because &c is not a defined symbol, it has no value. 

• &V'&V'&a yields either of two results, depending upon whether or not substitution 
tracing is in effect from the .IT [Input Trace] control word. Let's see why: 

If substitution tracing is off, &V'&V'&a yields the null string. &V'&a yields the 
character string &c.linda, as shown above, as an intermediate result. The value 
of this character string is the null string. 

If substitution tracing is on, & V' & V' &a yields the character string linda. & V' &a 
yields the intermediate result &c.lmda, but in this case substitution stops at this 
point so that the intermediate result can be traced. After tracing, the string 
& V' &c.linda is evaluated as a separate operation. The ampersand and the pe­
riod in &c. now act as symbol delimiters, causing the value of the symbol &c, 
which is null, to be concatenated to the string linda. 

Attributes apply only to the symbol (or character string) immediately following them, up 
to the next delimiter (period or blank). For example, 

• sa a = '&J' 
· se b = 'K' 
.se JK = 'TIMOTHY' 

The string &a.&b resolves to TIMOTHY, because &a.&b resolves to &1&b, then to 
&JK, and fmally to TIMOTHY. However, the string &L'&a.&b results in 2K, because 
&L'&a is evaluated ftrst. SCRIPTjVS provides a length of 2 (for the symbol value: &1), 
and concatenates the 2 with the character K. &L'&a&b results in 3, because &b is evalu­
ated ftrst and the length SCRIPT /VS provides is the length of the character string &aK 
(because a symbol with that name hasn't been deftned in the example). 

& W' yields the width of a character string in ftgure spaces, measured in the current font. 
If, for example, you wanted to offset some following text by the width (in horizontal 
device units) of a name within a symbol, you could specify: 

· se width = 100 
· of &width. dh 

and text following the .OF control word will be offset by the value, in horizontal device 
units, of the name found within &home. 

&X' converts a hexadecimal notation into a character string. Hexadecimal codes that do 
not have common keyboard assignments can be entered with the &X' attribute. For ex­
ample, the bullet character (hexadecimal AF) can be entered by specifying 

&x' af Step one: 

This results in the formatted line 

• Step one: 

The &X' attribute converts the hexadecimal code af to a bullet. The hexadecimal code 
must contain an even number of hexadecimal digits (0 to 9 and A to F). For example, 

DATA&x'afad.TRANSFORM&x'b2bdbe.O 

results in 

232 DCF: SCRlPTfVS Text Programmer's Guide 



If an even number of hexadecimal digits is not specified or an invalid hexadecimal digit is 
encountered, the value of the &X' attribute is zero. 

Space Unit Symbol Attributes 

SCRIPT/VS provides the following space unit symbol attributes: 

&DH' 

&DV' 

&AD' 

&SW' 

&SD' 

Which converts a space unit value into the nearest number of horizontal de­
vice units. The space value can be the value of a symbol. For example, if you 
wanted to set a symbol to convert the width of the current page number 
symbol to the nearest number of horizontal device units, you could specify: 

.se width = &dh'&w'& 

Which converts a space unit value into the nearest number of vertical device 
units. The space value can be the value of a symbol. For example, if you 
wanted to set a symbol to the height of one vertical device unit, you could 
specify: 

.se height = &dv'l 

Which indicates the depth of material within a specified named area. If the 
specified areaname is not the name of a currently defined area, or if there is 
nothing in the area at the moment, then 0 is returned. The value returned 
does not include the depth of skips at the top and bottom of the area. See 
"Chapter 11. Placing Text in Named Areas" on page 133 for more details on 
the &AD' symbol. 

Which indicates the width of a named segment. If the specified segment does 
not exist, or if NOSEGLIB was specified on the SCRIPT command, or if 
you are formatting for a line printer, then 0 is returned. See "Imbedding Seg­
ments in Your Documents" on page 55 for more details on the &SW' sym­
bol attribute. 

Which indicates the depth of a named segment. If the specified segment does 
not exist, or if NOSEGLIB was specified on the SCRIPT command, or if 
you are formatting for a line printer, then 0 is returned. See "Imbedding Seg­
ments in Your Documents" on page 55 for more details on the &SD' symbol 
attribute. 

Note: The size of device units varies widely from one device to another, ranging from 
about six units to the inch to 600 units to the inch. If you have converted numbers into 
device units so you can do integer arithmetic with the values, be sure to tell SCRIPT 
that the number is in device units when you use it in a control word. 

For example if you have calculated an indention in horizontal device units in the symbol 
&hin, you can then use the value with: 

.in &hin.DH 

If you do not specify that the value is in horizontal device units by appending DH, the 
size of the resulting indention may be much larger than intended. 

Synlbol alld M aero Lihral~ies 
If a symbol cannot be resolved from a definition that has been set with the .SE [Set 
Symbol1 control word, SCRIPTjVS can look for a definition in a library. 

Chapter 21. Processing Symbols 233 



A symbol and macro library is a partitioned data set. In CMS, a library is a file whose 
filetype is MACLIB, which is a CMS simulated partitioned data set. Each symbol defi­
nition in the library is a one-line member whose member name is the symbol name. 
(Macro defmitions can reside in the same library, and can occupy as many lines as re­
quired.) In ATMS-III, a library member is a document or a subdocument. 

Before searching a library for a symbol, SCRIPT /VS translates the symbol name to up­
percase characters. Even though SCRIPTjVS recognizes the symbols &libsym and 
&LIBS YM as separate and unique symbols, the library does not. Member names in the 
library are always in uppercase. Therefore, the symbol names libsym and LIBSYM, even 
though they are different, will be set from the same library member. You can use the 
library in two ways: 

• To explicitly set a symbol name by declaring that its definition is in a library: 

. se para lib 

SCRIPTjVS searches the library specified by the LIB option of the SCRIPT com­
mand for the definition of &para (member PARA) and sets it in the SCRIPTjVS 
symbol table. 

• To set an unresolved symbol. During substitution, the library will be searched for 
the definition of an undefmed symbol only when .LY ON or .LY SYM is specified. 

Note: Searching the library for symbol values and macro defmitions uses a lot of proc­
essing time. This is especially true for the forward referencing of symbol values, a case in 
which there are normally many potentially unresolved symbols. For this reason, the .L Y 
control word is provided to control library lookup. If a symbol is found in the library, it 
is defined in the SCRIPT jVS symbol table and processing time used for this purpose is 
thereby reduced. 

When you are sure that none of your symbols are defined in a symbol library, you can 
issue the .L Y [Library) control word to prevent library searches for unresolved symbols. 
(The initial setting is OFF. You have to specify .LY ON or .LY SYM to search a li­
brary for undefroed symbols.) 

The .LY OFF control word prevents all library searches, for unresolved macros as well 
as for symbols. The .L Y MAC control word allows library searches for unresolved 
macros. 

Note: When you specify that a symbol definition is in the symbol library with 

. se libsym lib 

the current .L Y [Library) control word specification is ignored. In the above example, 
the library is searched to frod a definition for &libsym. Remember, the symbol name is 
translated to uppercase before searching the library. 

SCRIPT/ VS System Symbols 
There are several groups of system symbol names that are initialized and recognized by 
SCRIPTjVS: 

• Symbols you can use to obtain the current date and time 

• Symbols you can use to obtain current values of SCRIPT /VS formatting parame­
ters: the current line length, left margin indention, and page length, to name a few 

• The symbol set as a return code from the latest CMS command executed using the 
.SY [System Command) control word. 

234 DCF: SCRIPT/VS Text Programmer's Guide 



A complete list of system symbols is given in the Document Composition Facility: 
SCRIPT/VS Language Reference. 

Most system symbols begin with &$. These symbols cannot be changed with a .SE [Set 
Symbol] control word, because they are reserved and contain SCRIPTjVS formatting 
parameters and controls. Most of the special symbols reflect values under your control. 
You can change them with the appropriate control word or command option, but not 
with the .SE [Set Symbol] control word. All symbol names that begin with a $ may be 
entered in either upper- or lowercase, including any non-system symbols that you define. 

All other system symbols (those that do not begin with &$) can be manipulated and 
modified by .SE [Set Symbol] control words within the input file. 

Symbols for the System Date and Time 

The symbol names for date and time values that are maintained by the system are: 

Symbol Name Description Value Range 

&SYSYEAR Year 00-99 
&SYSMONTH Month 01-12 
&SYSDAYOFM Day of the month 01-31 
&SYSDAYOFW Day of the week 1-7 (1 = Sunday) 
&SYSDAYOFY Day of the year 001-366 
&SYSHOUR Hour of the day 00-23 
&SYSMINUTE Minute of the hour 00-59 
&SYSSECOND Second of the minute 00-59 

The date and time values are set once and stay in effect throughout the processing of the 
file. You can use these symbol names to set symbol values for the date and time your­
self. 

No punctuation is provided by SCRIPT jVS for combining these values. You must sup­
ply it yourself when combining them. For example, to obtain the current date and time 
for printing on your output pages, you might enter: 

DATE: &SYSMONTH./&SYSDAYOFM./&SYSYEAR 
TIME: &SYSHOUR.:&SYSMINUTE.:&SYSSECOND 

These symbols could, for example, yield the following dates and times: 

DATE: 01/22/85 
TIME: 12:50:02 

Notes: 

• The date and time symbol names must be specified with all uppercase characters. 

• Leading zeros are provided with the symbol value whenever appropriate. For exam­
ple, on the eighth day of the month the value of &SYSDA YOFM is set to 08, 
rather than to 8. To suppress leading zeros, you can reset the symbol with the fol­
lowing arithmetic expression before you refer to it: 

.se SYSDAYOFM = &SYSDAYOFM + 0 

The symbol &SYSDA YOFM will be redefmed, for your input file only, without 
leading zeros. SCRIPT jVS removes leading zeros from the result of arithmetic ex­
pressions on the right-hand side of the equal sign in .SE control words. 

Chapter 21. Processing Symbols 235 



Date and Time 1 

Symbol Description Value 

&SYSYEAR Year of the century 00 - 99 
&SYSMONTH Month of the year 01 - 12 
&SYSDAYOFM Day of the month 01 - 31 
&SYSDAYOFW Day of the week 1 -7 ("1" is Sunday) 
&SYSDAYOFY Day of the year 001 - 366 
&SYSHOUR Hour of the day 00 - 23 
&SYSMINUTE Minute of the hour 00 - 59 
&SYSSECOND Second of the minute 00 - 59 

Output Device Characteristics 

Symbol Description Value 

&$LDEV Logical output device 2 1 - 8 characters 
&$OUT Output destination TERM, PRINT, FILE 
&$PDEV Physical output device 1403, 2741, 3270, 3800, 38PP, 3820, 4250 

SCRIPT Command Options 

Symbol Description Value 

&$BE Even bind 3 • 0- nnn 
&$BO Odd bind 3' 0- nnn 
&$CHAR(n) Fonts 5 1 - 4 characters 
&$DCF SCRIPTIVS release level 3.0 
&$DDUT Utility file redefenition 6 0, 1 
&$INDX Indexing 6 0, 1 
&$UB Macro library available 6 0, 1 
&$PARM Command options 7 8 - 256 characters 
&$PASS Current pass number 1, 2 
&$PRT Current page print switch ON, OFF 
&$SYS Environment CMS, TSO, VS2, VSE, CICS 
&$TWO TWOPASS option in effect 6 0, 1 
&$UNF Unformatted output 6 0, 1 

These symbols may contain leading zeros. They can be eliminated with a .SE [Set Symbol] 
control word: ".se SYSHOUR = &SYSHOUR + 0". 

2 Set by the DEVICE option of the SCRIPT command. 

3 Set by the BIND option of the SCRIPT command and the .PM [Page Margins] control word. 

The system symbol values are represented in character spaces, regardless of the space 
units used in setting them. The maximum value depends on the logical output device. 

Set by the CHARS option of the SCRIPT command. This is a symbol array; element a con­
tains the number of fonts specified and elements 1, 2, ... contain the names of the fonts spec­
ified. 

6 "1" indicates the command option was specified; "a" indicates it was not specified. 

This is the SCRIPT command options list. In CMS, the command options list is tokenized (di­
vided into eight character fields separated by blanks and parentheses) and truncated at 32 
tokens (256 characters). 

Figure 15. SCRIPT/VS System Symbol Names (Part 1 of 2) 

236 DCF: SCRIPT/VS Text Prog.·ammer's Guide 



Page Characteristics 

Symbol Description Value 

&$BE Bind even (BIND) 0- nnn 
&$BM Bottom margin (.BM) B 0- nnn 
&$BO Bind odd (BIND) 0- nnn 
&$CL Column line length (.CL) 9 1 - nnn 
&$FM Footing margin (.FM) B 0- nnn 
&$IN Left indention (.IN) 9 0- nnn 
&$IR Right indention (.IR) 9 0- nnn 
&$LC Internal line counter B 10 0- nnn 
&$LL Line length (.LL) 9 0- nnn 
&$OF Offset (.OF) 9 0- nnn 
&$PL Page length (.PL) B 1 - nnn 
&$PW Page width (.PW) B 1 - nnn 
&$TM Top margin (.TM) 8 0- nnn 

SCRIPTIVS Formatter Parameters 

Symbol Description Value 

&$BS Backspace character hexadecimal 16 
&$CONT Continuation character 11 one character 
&$CW Control word separator 11 (default: ";") 
&$C256 Identity vector 256 characters 
&$EGML GML end-tag delimiter 11 (default: "::") 
&$ENV Formatting environment BODY,FL,FN,KP,RF,RH,IBP,AR,FNL 
&$FNAM Current input file name eight characters 
&$GML GML tag delimiter 11 (default: ":") 
&$KP Keep in process ON, OFF 
&$LNUM Last line number read 0- nnn 
&$LST Line started 0,1 
&$PN Page number 12 1 - nnn 
&$PS Page number symbol 11 (default: "&") 
&$RB Required blank 11 (default: hexadecimal 41) 
&$RET Return code from .SY 13 0- nnn 
&$SU Symbol substitution enabled ON, OFF 
&$TAB Tab character hexadecimal 05 
&$TAGD GML delimiter of last tag &$GML, &$EGML 
&$VR Vertical rules in effect ON, OFF 

These values are represented in line spaces, regardless of the space units used in setting 
them. The maximum value depends upon the logical output device. 

The values of these symbols are represented in character spaces, regardless of the space 
units used in setting them. The maximum value depends upon the logical output device. 

10 The value of the symbol &$LC is the number of lines remaining in the current column, ex­
cluding unplaced keeps, floats, footnotes, widow zones and partial lines. 

11 Set by the .DC [Define Character) control word. 

12 &$PN contains the numeric portion of the current page number. The page number as substi­
tuted can be obtained with the control word" .se x = &". 

13 In CMS, any possible return code value. In TSO, "0" to indicate the command was stacked 
for execution after SCRIPTIVS terminates. In ATMS-III, "0" to indicate the control word was 
ignored. In batch, "-3" to indicate that .SY is not supported. 

Figure 15. SCRIPTIVS System Symbol Names (Part 2 of 2) 

Chapter 21. Processing Symbols 237 



Elaborating the System Date 

If you want to print the date with the names of the months and days, your output page 
can include the date in the form 

Tuesday, January 22, 1985. 

This requires a group of .SE [Set Symbol] control words using the reserved symbols in 
compound expressions, as follows: 

.se d1 = Sunday 

.se d2 = Monday 

.se d3 = Tuesday 

.se d7 = Saturday 

.se mOl = January 

.se m02 = February 

.se m12 = December 

To eliminate the leading zero of &SYSDA YOFM, include 

.se SYSDAYOFM = &SYSDAYOFM + 0 

Leading zeros that occur with the other symbols do not present a problem in this exam­
ple. 

The symbolic input line might be: 

&d&SYSDAYOFW .. , &m&SYSUONTH .• &SYSDAYOFM., 19&5YSYEAR •• 

which results in: 

Tuesday, January 22, 1985. 

Notice the ending delimiters for the compound symbols &d&SYSDA YOFW and 
19&5YSYEAR in the above: 

• &d&SYSDA YOFW .. , ends with two periods to prevent the symbol name from be­
ing concatenated with the comma and to allow its value to be concatenated with the 
comma. This compound symbol requires two stages of substitution to be resolved. 
&SYSDAYOFW ends with the first period. When resolved, the symbol &d3 ends 
with the second period. In this way, the comma needed for punctuation is concat­
enated with the name of the weekday. 

• 19&5YSYEAR is not a compound symbol. It is resolved with only one stage of 
substitution. The character string 19 is concatenated with the symbol &SYSYEAR. 
The ftrst period ends the symbol &SYSYEAR. The second period is needed (in tlus 
example) for punctuation, and is concatenated with the value of the year. 

238 DCF: SCRIPT/VS Text Programmer's Guide 



Symbols for SCRIPT /VS Control Values 

SCRIPT jVS allows you to examine the formatting parameter values it uses when proc­
essing your input file. You can obtain the current value of the parameter by using the 
system symbols. 

The symbols that represent SCRIPTjVS intemal formatting parameters cannot be set by 
.SE control words in your input ftle. The name of each of the following reserved sym­
bols begins with &$ and can be specified using either lowercase or uppercase characters. 

You can use this technique to ensure proper results even though some formatting pa­
rameters can be changed by control words. For example, the following sequence 
produces a box the width of the output page: 

.se indent = &$IN 

.se rindent = &$CL - &$IR 

.if &indent eq 0 .se 

.bx &indent &rindent 
· in +2m 
· ir +2m 
The .BX control 
a box structure 
· bx off 

which results in 

word 

indent 

begins 

= 1 

The . BX control word begins a box structure using the 
current margins. The .IN [Indent] and .rR [Indent Right] 
control words shift the margins to position the text 
within the box. After the text is processed, the original 
values are restored. 

As another example, you might want to leave a blank page with only a figure caption at 
the bottom of a single column page. Perhaps the file is to be formatted within different 
master ftles, each of which requires a different page length. You might code the following 
sequence: 

.pa 

.se lines = &$LC - 1 
· sp &lines 
Figure x. Sample Output 

You will fmd that these special symbols can be especially useful when wntmg 
SCRIPTjVS macros or for testing the current environment using the .IF control word 
family. 

The &$RET SI)ecial Symbol 

In CMS, the &$RET special symbol contains the retum code from the CMS or CP 
command that was most recently executed as a result of a .SY [System Command] con­
trol word. You can examine the return code and take conditional action based on its 
value. For example, the following sequence will imbed a ftle named OPTDAT A only 
after ensuring that the file exists: 

Chapter 21. Processing Symbols 239 



.sy state optdata script * 

.if &$RET eq 0 .im optdata 

In TSO, &$RET is set to 0 by the .SY [System Command] control word to indicate that 
the command was stacked for execution after SCRIPT /VS terminates. 

In ATMS-III, &$RET is always set to 0, indicating that the .SY [System Command} 
control word is ignored by ATMS-III. 

In batch, &$RET is set to -3 to indicate that the .SY [System Command} control word 
is not supported. 

The &$LC Special Symbol 

The &$LC special symbol contains the number of lines left in the column at the time of 
symbol substitution. This value does not include running headings or footings that have 
been placed on the page, nor does it include keeps, widows, or partially filled output 
lines that have not been placed in the column at the time of symbol substitution. 

The value of &$LC at the time of symbol substitution cannot accurately reflect the fInal 
position of surrounding text on the page if that text is in a keep, float, or widow, if there 
is a partially filled output line, or if column balancing is in effect. The value of &$LC at 
the time of symbol substitution will accurately reflect the fmal position on the page of 
text only at the beginning of a new page, section, or column. 

The &$DCF Special Symbol 

The &$DCF special symbol indicates the release level of the module being executed. The 
value will be 3.0 for Release 3, level 0. 

The &$DDUT Special Symbol 

The &$DDUT special symbol indicates whether the NODDUT or DDUT command 
option is in effect. The value is either 0 or 1. It is ° when the NODDUT command 
option has been given on the command line. It is I when the DDUT command option 
has been given. 

If neither option has been specified, the value of &$DDUT is 0, because NODDUT is 
the default. This special symbol is meaningful only in the CMS and TSO environments. 

In ATMS-III and batch, &$DDUT is always set to 1, indicating that DDUT is the de­
fault command option of the pair in these environments. 

The &$GML Special Symbol 

The &$GML special symbol reflects the value of the current GML tag delinliter as set 
by the .DC [Defme Character} GML tag. 

The &$EGML Special Symbol 

The &$EGML special symbol reflects the value of the current GML end-tag delimiter as 
set by the .DC [Defme Character} GML tag. 

240 DCF: SCRIPT /VS Text Programmer's Guide 



The &$ENV Special Symbol 

The &$ENV special symbol indicates the current formatting environment. The range of 
possible values includes: 

AR Named area 
BODY Body of page 
FL Float 
FN Footnote 
FNL Footnote leader 
IBP In between pages 
KP Keep 
RF Running footing 
RH Running heading 

The &$LST Special Symbol 

The &$LST special symbol indicates whether or not an output line is started. The value 
is either I or 0. It is 1 when text has been formatted (line started), but the line has not 
yet been completed. It is 0 when a line has been promoted into the current column and 
no more text has been formatted yet. The value of &$LST is 0, for example, following a 
.BR [Break] control word. 

The &$P ASS Special Symbol 

The &$P ASS special symbol indicates if the current formatting pass is the first or second 
pass. A value of 1 or 2, respectively, is returned. 

The &$P ASS system symbol can be used with the &$TWO system symbol to determine 
whether or not the current formatting pass is the last pass. For example, you could spec-
ify 

.if &$TWO = 0 .se lastpass = yes 

.el .if &$PASS eq 2 .se lastpass = yes 

.el .se lastpass = no 

Then if the TWOPASS option of the SCRIPT command wasn't specified, the current 
formatting pass is the last pass. Else, if the TWO PASS option was specified, the last pass 
will be indicated if the &$P ASS symbol equals 2. 

The &$PRT Special Symbol 

The &$PR T special symbol indicates whether the current page will be written to the 
output destination or discarded. Pages are always discarded on the first of two passes 
when the TWOPASS option of the SCRIPT command is used. Pages can be discarded 
when the PAGE option of the SCRIPT command is used. The value is either ON or 
OFF. 

The &$TAGD Special Symbol 

The &$T AGD special symbol indicates whether a GML tag or end-tag was last proc­
essed. The value is equal to either &$GML or &$EGML. 

Chapter 21. Processing Symbols 241 



The &$VR Special Symbol 

The &$VR special symbol indicates whether vertical rules are currently being drawn, due 
either to the .BX [Box] or the .VR [Vertical Rule] control words. The value is either ON 
or OFF. 

Passing Parameters to Input Files 
SCRIPT jVS has three sets of symbols that are set automatically by parameters passed to 
a me or macro. These are: 

• SCRIPTjVS system symbols, which can be set when the SCRIPT command is is­
sued 

• Parameters passed to imbedded files with the .1M [Imbed] and .AP [Append] con­
trol words 

• Parameters passed to a macro. 

Setting Symbols with the SCRIPT Command 

Use the SYSVAR option of the SCRIPT command when you want to pass values to 
the input me from the SCRIPT command line. 

The symbols that you can set with the SYSV AR option have names starting with 
&SYSVAR appended to one alphameric character: 0 through 9, uppercase A through Z, 
and @, #, and $. For example, 

script outline ( sysvar ( a atype 2 nogo 

This command line sets the symbols &SYSV ARA to ATYPE and &SYSV AR2 to 
NOGO. Lowercase letters assigned to an &SYSVAR symbol are translated to uppercase 
letters. Consequently, when you include the symbols in an input line or as a comparand 
for an .IF control word line, always use the uppercase symbol name and character-string 
values. 

For example, &SYSV ARA can be used to bypass parts of the document and 
&SYSV AR2 can be used to terminate processing before completion: 

.if &SYSVARA eq ATYPE .go aproc 

.if &SYSVAR2 eq NOGO .qu 

... aproc 

When you use &SYSV AR symbols, you should put comments at the beginning of your 
input me so that other users who process the me are aware of each &SYSV AR symbol 
and the meanings of its values. 

For details about the SYSV AR option of the SCRIPT command, see the Document 
Composition Facility: SCRIPTjVS Language Reference. 

Symbols Set When a File Is Imbedded or Appended 

You can pass parameters to an imbedded or appended me with the .1M [Imbed] and .AP 
[Append] control words. The symbols &0 through &14 are St", to the parameters follow­
ing the name of the imbedded me. For example, 

242 DCF: SCRIPT/VS Text Programmer's Guide 



.im finance George 125 $21.50 '18-7' 

When the me named FINANCE is imbedded, the symbols &0 through &4 are automat­
ically set by SCRIPTjVS: 

Symbol 
Name 

&0 
&1 
&2 
&3 
&4 

Value Set by SCRIPT/VS 

4 
George 
125 
$21. 50 
18-7 

Symbol &0 contains the number of parameters passed. As many as 14 parameters can be 
passed when a me is imbedded or appended. These parameters are called tokens. Each 
token can be up to eight characters long, delimited with blanks. The rules that apply to 
setting the value of a symbol also apply to specifying a token. See "Chapter 4. Combin­
ing SCRIPT/VS Input Files" on page 47 for details about imbedding and appending 
meso 

Symbols Set When a Macro Is Processed 

You can pass parameters to a macro when your input me calls the macro. The parame­
ters become local symbols (that is, symbols that are set for the called macro only; not for 
other macro calls that occur within the called macro). The format of the macro call 
might be: 

.burger fries+shake nosauce 'on a great big poppy-seed bun' 

When the macro BURGER is processed, local symbols within it are automatically set by 
SCRIPTjVS: 

Symbol 
Name 

&~': 

&*0 
&'':1 
&· ... 2 
&~"'3 

&~"'4 

&*5 

Value set by SCRIPT/VS 

fries+shake nosauce 'on a great big poppy-seed bun' 
5 
fries 
+ 
shake 
nosauce 
on a great big poppy-seed bun 

Symbol & * contains the entire untokenized input line. It contains all leading blanks after 
the blank that delimits the macro name. Symbol &*0 contains the number of symbol 
values passed. The symbols & * 1 through & *n contain the individual tokens passed to 
the macro. Notice that blanks, arithmetic operators, and parentheses normally delimit 
tokens, but that a single token can contain these and other special characters if it is en­
closed in single quotation marks. Also, macro tokens are not subject to the 8-character 
limit applied to .1M [ImbedJ and .AP [AppendJ tokens. See "Chapter 23. Processing 
Macros" on page 261 for details about specifying symbols within macro instructions. 

Note: Symbols whose names begin with an asterisk (*) are treated differently from other 
symbols. Other symbols are globally available to all mes and macros, but symbols whose 
names begin with an asterisk (*) are local to a particular macro at a particular level of 

Chapter 21. Processing Symbols 243 



nesting. Each time a macro is called, a new set of local symbols is established for it. 
These symbols are deleted when the macro ends. 

Unlike other symbols, local symbols, when undefmed, are replaced during symbol substi­
tution with the null string. 

Setting a Symhol to the Current Page Numher 
You can set a symbol to be equal to the value of the current page number when the .SE 
[Set Symbol] control word is encountered. For example, 

.se pagenum = & 

A single ampersand on the right-hand side of the equal sign of a .SE control word is 
replaced with the character string of the current page number, including its prefix, if any. 
Elsewhere in your document, you can refer. to the page number with its symbol name. 
To continue the example, 

For details, see page &pagenum .. 

Whenever the &pagenum symbol occurs in your document, SCRIPT/VS replaces it with 
whatever the page number was when the .SE [Set Symbol] control word was processed. 
If the symbol is set before the page is started, the page number will be the same as that 
of the previous page and not that of the next page. At the start of the document, the 
page number is O. 

Symhols for Arrays of Values 
An array symbol is a special type of symbol that allows you to assign many values to the 
same symbol name. Each individual element of the array has, in addition to the name, 
an element number in parentheses. The element number is also called the index or sub­
script of the element. When you format your document for output, the entire array of 
values can be referred to by a single symbol name. You can defme an array symbol with 
the .SE [Set Symbol] control word. For cxanlple, 

.se name() = value 

The parentheses indicate that this is an element of an array and value is any expression 
that can legally appear on a .SE [Set Symbol] control word line. The notation 0 is a 
shorthand way to specify the next element of the array. 

When SCRIPT /VS encounters the array symbol value in the form: 

&name(*) 

it replaces &name( *) with the values of all the currently defmed array elements, in the 
order in which they are indexed. A comma and a blank separate the individual elements. 

You can specify different array separator characters using the .DC [DefIne Character] 
ASEP control word. The ASEP parameter of .DC allows you to defme up to four char­
acters that are to be used to separate array elements when an array is substituted in a 
document using the &name(*) form. All characters to be used in separating array ele­
ments must be specilled, including blank characters (as 40). 

The initial array separator characters are the comma (,) and the blank. The characters 
given with ASEP replace the previous array separator characters. 

244 DCF: SCRIPT/VS Text Programmer's Guide 



Suppose you have defmed a symbol array containing the names of geographical lo­
cations: 

.se plaee() = Goldsboro 

.se plaee() = Kunsan 

.se plaee() = Misawa 

When the symbol &place(*) is found, it is replaced with the entire symbol array and the 
elements of the array are separated by the array separator characters. For example, the 
initial setting of the array separator characters is a comma (,) and a blank, so if you enter 

At: &plaee(*) 

the result of symbol substitution will be 

At: Goldsboro, Kunsan, Misawa 

You can specify up to four characters with the ASEP parameter. You can insert more 
than four characters, including control words, between array elements by setting the ar­
ray separator characters to a symbol. For example, 

· se x = ' and ' 
· de asep &x . 
At: &plaee(*) 

The intermediate result of symbol substitution is 

At: Goldsboro&x.Kunsan&x.Misawa 

The fmal result of symbol substitution is 

At: Goldsboro and Kunsan and Misawa 

If you want to set the array separator to cause a break, specify: 

· 'se i<x = ';.br;' 
· de asep &x 

Controlling the Array Elements 

Each element in an array has a value associated with it. You can refer to any element of 
the array with the array symbol name and the element index number in the form 

&name(n) 

n is the positive integer that identifies the position of the element within the array. 

An array symbol reference can be used anywhere that a nonarray symbol can be used. If 
the element n exists in the array, its value is substituted just as a nomlal symbol value 
would be. If the symbol exists but has no element n, a null value is substituted. If the 
symbol is not defmed at all, the symbol is treated as an undefmed symbol. 

You can specify which array element you wish to set by including a number (identifying 
its location within the array) within the parentheses. For example, the input line 

· se list(l) = & 

Chapter 21. Processing Symbols 245 



sets element number 1 of the array to the current page number. When you list all the 
elements of the array, this entry will be listed first, even if it is not the first one set. Here 
is another example: 

· se name(1) = 1 
· se name( 47) = 2 
.se name(25) = 3 
.se name(2) = 4 
· se name(3) = 5 

The expression 

&name(~\-) 

results in &name( *) being substituted as follows: 

1, 4, 5, 3, 2 

In other words, SCRIPT/VS places the array element values in ascending element index 
order, not in the order in which they were defmed. In this example, there are many avail­
able but undefined element numbers in between those that are defmed. Any undefined 
elements in an array are ignored when the array values are substituted. 

The array element number can be another symbol. For example, 

.se elem = 1 

.se array(&elem) = & 

No blanks can appear between the symbol name and index. When array symbols are 
used on the right-hand side of a .SE [Set Symbol) control word expression and symbol 
substitution is off, symbols used as array subscripts must be simple, not compound, 
symbols. 

An example of a complex symbol is: 

. se x = ry 

. se ry = 4 
&&x 

which resolves as follows: 

I. &ry 

2. 4 

Accessing the Index Counter 

Every array has an element zero, represented by the symbol name 

&name(O) 

Element zero is an index counter that indicates the last element used. It indicates which 
element should be set next if you did not specify one. 

Note: When the TWOPASS option of the SCRIPT command is specified, all array in­
dex counters are reset to zero for the second pass but the individual elements are not 
reset. 

246 DCF: SCRIPT/VS Text Programmer's Guide 



Setting the Index Counter 

The expression &name() is treated as an index counter as well as a symbolic expression. 
Each time SCRIPT jVS encounters the expression, it assumes that the next element of 
the array is to be filled. If you never specify a number within the parentheses of an array 
symbol, SCRIPTjVS begins numbering with element 1. 

It is possible to set the initial value of the array index counter, as follows: 

. se name(O) = n 

n is any nonnegative integer. The flrst occurrence of ".se nameO", with no element spec­
ified, would be equivalent to ".se name(n + 1)" and the counter would be incremented 
from there. 

In this way, you can start the automatic indexing of an array at element 5, for example, 
and reserve elements 1 through 4 for explicitly specifled deftnitions. 

If you do not set the index counter explicitly, it will be incremented from the index value 
of the element last set. For example, 

.se name() = first 

.se name(3) = second 

.se name() = third 

The flrst element of the array is set to the value first, element 2 has a null value, element 
3 has the value second, and element 4 has the value third. 

For substitution of arrays, you can cause substitution of all elements in the array (except 
element zero), or you can cause substitution for just a single element. The notation 
&name(5) causes only element 5 to be substituted. The notation &name(*) causes all 
elements of the array to be substituted, as previously described. 

Any symbol is potentially an array symbol. The symbol &XYZ, for example, is actually 
element zero of a possible array. &XYZ(O) refers to the same symbolic value as &XYZ. 
If, after using a symbol like &XYZ, you set another element with: 

.se XYZ(S) = 'last letters' 

be careful about the value previously set in element zero (that is, in symbol &XYZ). If 
the value is not a number, you will get an error message if you ever use the shorthand 
notation where element zero is supposed to contain the current index. 

Extended SYlnbol Processing 
A control word can be placed anywhere in an input line as long as it is preceded by the 
control word separator and a period. You can also invoke a control word or a macro at 
any point in the input line by setting it as the value of a symbol. TIllS symbol value 
must also be preceded by a control word separator. When a symbol value begins with 
the control word separator (;), the rest of the value is treated as though it began a new 
line. Therefore, a control word that is set as the value of a symbol is processed by 
SCRIPT jVS as though it were a control word that started in the fust character position, 
even when it occurs in the nliddle of a text input line. For example, the .BR [Break] 
control word, defmed as the symbol &BR 

. 'se BR = ';.br ;' 

Chapter 21. Processing Symbols 247 



causes SCRIPT/VS to interpret the symbol &BR as though you had a new input line 
starting with .br ;. (Because the value of the symbol contains a control word separator, 
the .SE (Set Symbol] control word is entered with the control word modifier (') to in­
hibit control word separator scanning for that input line. Thus, the input line 

This is line one.&BR.This is line two.&BR. 

is fonnatted as though it were the following four input lines: 

This is line one. 
· br 
This is line two . 
. br 

Note: The control word modifier was used here to set up the symbol 'BR' that con­
tained control word separators. The extended symbol processing rule described here 
takes effect during substitution and not during control word processing. 

Substitution occurs before SCRIPT /VS has classified the line as a control word line or a 
text line, thus a control word modifier cannot prevent the symbol substitution processor 
from recognizing a control word separator. 

The input line 

.ce Note this; The symbol &BR starts with a semicolon. 

is formatted as the following four lines: 

· ce Note this 
The symbol 

.br 
starts with a semicolon. 

The extended symbol substitution rule only divided the line into three parts. The first 
part was a control word line (.CE ... ) that was later split into two lines by the control 
word separator rule. 

The input line 

· Ice Note this; The symbol &BR starts with a semicolon. 

is formatted as the following three lines: 

· Ice Note this; The symbol 
.br 
starts with a semicolon. 

The control word modifier only suppressed the control word separator rule for the first 
line after symbol substitution was completed. 

For more infonnation about the control word modifier, see the SCRIPT/VS control 
word description section of the Document Composition Facility: SCRIPT/VS Language 
Reference. 

248 DCF: SCRIPT /VS Text Programmer's Guide 



Defining Text Variables 
There are certain times when you may want to define and assign a value to a particular 
text variable. For example, you might want to print a special character, such as the 
Greek alpha character, that is not on your keyboard; or you might want to override a 
delimiter character so that it is printed as ordinary text; or perhaps you might want to 
change fonts within a GML heading without having to rewrite the APF that defines this 
heading. The .DV [Defme Variable] control word provides a simple way to resolve all of 
these text variable concerns. 

Producing Special Characters 

For many applications, you may need to be able to select any arbitrary character from 
any arbitrary font, and to do so whenever you want. This can be a problem, however, 
because the special character you need may not be on your keyboard. Such special char­
acters may include: 

• Accented characters for languages other than English 

• APL characters 

• Greek characters. 

Producing a Greek Alpha Character 

One way of producing unkeyable characters, such as the Greek alpha character, in 
SCRIPTjVS is to use a code page defmed for the set of characters you wish to use. In 
this way, you can allocate, using the .TR [Translate Character] control word, the keys 
you do have to represent whatever characters you wish. This is not a complete solution, 
however, because a required character might still be in a different font than that used for 
surrounding text. 

If you want to be able to produce a Greek lowercase alpha character, one approach in 
SCRIPT jVS is to defme a symbol called alpha that can be used by entering the symbol 
&alpha. in your input file. If, for example, the alpha character is at code point 
hexadecimal 41 in a font called greek, then the alpha symbol could be defmed as 
follows:57 

. 'se alpha '&$CONT.&$CW .. bf greekj&X'4I.j.pfj 

Because this coding frequently does not produce correct results, a better approach is to 
use the .DV control word. The same Greek alpha character, which is hexadecimal 41 in 
the greek font, can be defined with .DV as follows: 

.dv alpha font greek /$X'41 

In this example, the symbol alpha is defmed to associate a font (greek) with a text string 
(hexadecimal 41). 

The symbol alpha may also be used in the text of a heading as shown in the following 
example 

.hI the &alpha symbol 

51 A continuation character must have been previously specified, and a font named greek must 
have been previously dermed with the .DF control word. 

Chapter 21. Processing Symbols 249 



or as part of a split text control word line such as the following: 

.sx j&alpha.jjgreekj 

See "Using Defmed Variables to Change Fonts" on page 251 for more details on using 
defined variables. 

Overriding Delimiter Characters 

Another potential problem in SCRIPT /VS is the occasional need to treat one of the spe­
cial delimiter or escape characters as text. The following characters have special meaning 
to SCRIPTjVS and need a mechanism to override them if they are to appear as ordinary 
text characters: 

• A period C.) delimits a control word when it is in column one of an input line or 
when it follows a control word separator. 

• The ampersand (&) delimits a symbol. 

• The GML delimiter (:) delimits a tag. 

• The page number symbol (& by default) is replaced by the current page number in 
running headings and footings. 

• The control word separator (; by default): 

• Allows several control words to appear on one line, or 

• Delimits a control word sequence, or 

• Causes a line to be treated as two logical input lines when it occurs as the first 
character in a symbol's value. 

• The required blank (hexadecimal 41 by default) is automatically converted to white 
space in the output. 

In SCRIPT jVS, there are ways to produce any of these characters as ordinary text, but a 
different mechanism is required to produce each one. In some cases, it is necessary to 
shut off the normal function of a character in order to use it as text. With text variables, 
a single mechanism can be used to define symbols for all of these characters, thereby 
making them available as text characters anywhere in the document. This can be done 
without shutting off the character's normal function. 

In SCRIPTjVS, symbols are commonly defined in a GML proftle to allow special de­
limiters to be used as text characters. For the ampersand, which is the symbol delimiter 
and also the default page number symbol, the symbol &amp. is defmed to be used where 
a text ampersand is needed. It is done as follows: 

.se amp &X'08 

.tr 08 & 

In other words, the symbol &amp. is replaced by a hexadecimal 08 by substitution, and 
then all X'08's are translated to ampersands on output. 

A simpler method of producing the &amp. symbol is to use the .DV control word. With 
text variables, for example, all symbols like &amp. are defmed in this form: 

. dv amp text j& 

The TEXT form of .DV is used for a character string that has no associated font and 
that is merely defmed as known text. This method has the following benefits: 

250 DCF: SCRIPT/VS Text Programmer's Guide 



• No code point need be given up for this symbol 

• TIle translate table is not needed 

• The symbol may be used anywhere freely, including in a running heading or footing. 

Using Defined Variables to Change Fonts 

In SCRIPT /VS there is no mechanism whereby a font can be changed in the middle of 
certain elements that require all of the text on the same line, such as topic headings or 
the content of split text control words. You can not, for example, change fonts in a 
heading in SCRIPT jVS unless you disregard all of the built-in heading and table of con­
tents functions, and rewrite these functions yourself as macros. 

A text variable defmed with .DV, however, can have a font associated with it, and it can 
be used freely anywhere, including in a topic heading, table of contents, index entry, or 
split text. If the text variable requires a change of fonts, this is done automatically as part 
of the text variable support. 

If you want to add a special character from the Pi font to the font of a heading, for 
example, you could entcr: 

.df pifont type('Pi font Sans Serif' 14 codepage AFTC0363) 

.dv special font pifont j&x'fc 

.hl &special. Words to the Wise 

The result of these lines is that the telephone character will be printed as the fIrst charac­
ter in the heading. 

Chapter 21. Processing Symbols 251 





Chapter 22. Processing Logical Statements 
SCRIPT /VS provides several methods for processing input logically or conditionally. 
You can write input ftles and macros that are capable of making simple decisions and 
taking action based on the result. With logical processing techniques, you can do the 
following: 

• Select the alternative input lines to be processed in a particular run. 

• Construct loops that process the same material several times to provide several 
copies of the formatted output. (Each copy can, of course, contain different specific 
information. ) 

• Write macros that cause different formatting based on the logical output device or 
other variables. 

• Provide processing based on the content of an input line. 

These capabilities use basic logical processing techniques in conjunction with other tech­
niques that are not discussed here. "Chapter 23. Processing Macros" on page 261 con­
tains information about the mechanics of writing macros, and "Chapter 21. Processing 
Symbols" on page 223 discusses symbol substitution. Individual control words are de­
scribed in the SCRIPT /VS control word description section of the Document Composi­
tion Facility: SCRIPT/VS Language Reference. 

There are three basic logical processing techniques: 

• The.IF control word family 

• Conditional sections 

• Conditional processing with symbols. 

The .IF Control Word F anlily 
SCRIPT/VS allows you to test a symbol value to determine whether to process an input 
line or ignore it. To make this conditional test, you can use the .IF [If] control word 
alone or in conjunction with the .AN [And], .OR [Or], .TH [Then], and .EL [Else] con­
trol words. Using the .IF [If] control word alone is the simplest way of specifying a con­
ditional statement. This control word is specified in the form: 

. if comparandl test comparand2 target-line 

Chapter 22. Processing Logical Statements 253 



Each comparand can be up to 255 characters 10ng,S8 and the shorter comparand will be 
padded with blanks to match the length of the longer comparand. 

The conditions you can test for and the codes you can use are: 

Code Meaning 

= or eq equal to 
.,= or ne not equal to 
> or gt greater than 
< or It less than 
>= or ge greater than or equal to 
<= or Ie less than or equal to 

The target-line part of the .IF [If] control word can be any valid SCRIPT jVS input line: 
a control word, a symbol, a macro, or text. The fIrst nonblank character after 
comparand2 is treated 1S the ftrst character of the input line. If the condition is true, the 
input line is processed by SCRIPT/VS. Otherwise, it is ignored. 

Alternative Processing 

There may be times when, depending on the results of a comparison, alternative process­
ing can occur. You can use multiple .IF [If] control words to handle this situation or 
you can use the .TH [Then] or .EL [Else] control words in conjunction with an .IF con­
trol word. For example, 

.if &street eq Broadway .se branch = Commercial 

.if &street ne Broadway .se branch = Warehouse 

causes the same results as: 

.if &street eq Broadway 

.th .se branch = Commercial 

.el .se branch = Warehouse 

Both of these examples result in the symbol &branch being set to the value Commercial 
if the comparison is equal and to the value Warehouse if it is not. 

The .TH [Then] and the .EL [Else] control words cause their targets to be executed or 
ignored based on the results of the most recently executed comparison in the current f:t1e 
or macro. Therefore, a series of conditionally executed lines can follow a single compar­
ison. For example, 

sa The entire input line, after substitution, cannot be longer than 255 characters. When compar­
ing symbols that can potentially have long values or contain blanks, we recommend that the 
.IF control word be performed with substitution off, as described in "Special Techniques for 
Conditional Processing" on page 256. 

254 DCF: SCRIPT/VS Text Programmer's Guide 



.if &job eq chimney-sweep 
· th . sp 2 
.th . notes height of roof 
· el . us salary 
· el . in 5 
.el . im salary &job 
· th . sp 2 
· el . sp 4 

causes all of the .TH and .EL control words that follow the .IF control word to be exe­
cuted or ignored based on the result of its comparison. Other .IF control words that can 
be contained in the .NOTES macro or the SALARY me do not affect this series of con­
trol words because the result of the most recent comparison is preserved across macro 
calls and imbedded ftIes. 

There may also be times when you want to test for multiple conditions. This can be 
accomplished by using the .AN [And] and .OR [Or] control words in conjunction with 
the .IF control word. For example, you might have a situation where two conditions 
have to be true before a certain type of processing can occur. In this situation, specify 

.if &city = Fayetteville .an &state = Arkansas .se zip = 72701 

which causes the symbol &zip to be set to 72701 if both conditions are true. 

Similarly, you can have a situation where only one of multiple conditions must be true 
for one type of processing to be done. In this case, you might specify 

· if &city eq Knob Noster .or &city eq Warrensburg 
.th . carpool &city 
· el . se city = 

The macro .CARPOOL will be invoked if the value of the variable &city is either Knob 
Noster or Warrensburg; if it is neither, the variable &city will be reset to null. 

Bypassing Part of an Input File 

When you want to bypass a part of your current input me, you can use the .GO [Goto] 
and ... [Set Label] control words. For example: 

· if &type = 1 .go bypass 

· .. bypass 

In the above example, if the symbol &type has a value of 1, all the control words and 
text between the .IF and the ... [Set Label] control words (which sets the label bypass) 
are skipped. 

Conditional processing with the .IF [If] control word can be especially convenient when 
one file is imbedded in several different master files. You can provide for slight differ­
ences among the files by setting the same symbol to a different value in each master file 
and using that symbol to determine how processing is to be done in the imbedded me. 

The .GO function, on the other hand, can be relatively inefficient. You should restrict its 
use to situations where it best achieves the required results. When the label follows the 
.GO in your input me, processing is most efficient if that label is not far from the .GO; 

Chapter 22. Processing Logical Statements 255 



when the label comes before the .GO in your input file, processing is most efficient if 
that label is near the beginning of the file. 

Label processing in macros is much more efficient than in files. However, it is most effi­
cient to branch to a label that is early in a macro because the search for labels always 
begins at the top of the macro. 

The SYSPAGE and SYSOUT Comparands 

There are two comparands that you can use with the .IF (If] control word family: 
SYSPAGE and SYSOUT. They are keywords, not symbols. Therefore, they should not 
be prefaced with an ampersand (&). 

• SYSPAGE tests whether the page currently being formatted is an even- or odd­
numbered page (EVEN or ODD). You can use SYSPAGE to place text on an out­
put page, based on whether the output page is even-numbered or odd-numbered: 

.if SYSPAGE = EVEN .sx IEvenpage Top Linelll 

.if SYSPAGE = ODD .sx IllOddpage Top Linel 

• SYSOUT tests whether the destination of the output is the line printer (PRINT), 
page printer (PAGE), or the terminal (TERM). This keyword is provided for com­
patibility with SCRIPT/370. The SCRIPTjVS system symbols &$LDEV and 
&$PDEV provide a better way to test which of the many logical and physical out­
put devices possible with SCRIPTjVS is currently in use. 

Special Techniques for Conditional Processing 

There are several techniques you should be aware of when using the .IF [If] family of 
control words. 

• Comparing Null-Value Symbols 

When you specify the name of a symbol value that might be null, you should prefix 
the symbol name with a character-prefix to avoid a possible syntax error. For exam­
ple, the input line 

. se a = I I 

. if &a = ON . go next 

results in a SCRIPT/VS error because the symbol &a was set to a null value. The 
conditional statement resolves to: 

.if = ON .go next 

The = character is treated as the first comparand, and 0 N is not a valid compar­
ison. However, the input line 

.if I&a = ION .go next 

resolves to 

.if I = ION .go next 

When the symbol &a has the value ON, it resolves to 

.if ION = ION .go next 

256 DCF: SCRIPT/VS Text Programmer's Guide 



That is, the prefix I is concatenated with the value of &a to result in ION, which 
satisfies the test. When the symbol &a is null, I&a results in / and the test fails, but 
no error results. 

• Comparing Symbols Containing Special Characters 

The .IF [If] control word family, like the .SE [Set Symbol] control word, is capable 
of resolving symbols in its comparands even if symbol substitution is off. This is 
essential when comparing symbols whose values might contain special characters, 
such as blanks and control word separators, or whose values might be very long. 
For example, with symbol substitution on, the input line 

.if &needle eq &haystack .th .im lost 

might result in 

.if Rachel's MG eq Parking Lot .th .im lost 

after symbol substitution has occurred. This would result in an error because 
Rachel's would be interpreted as the first comparand and MG would be interpreted 
as an invalid comparator. With substitution off, the symbols &needle and 
&haystack will be recognized as the comparands, and symbol substitution will be 
performed on the two comparands separately before they are compared. 

• Comparing Potentially Long Comparands 

Mter substitution, an input line cannot be longer than 255 characters. If your input 
line might exceed 255 characters after substitution has been performed, the .IF con­
trol word should be processed with substitution off. 

Conditional Sections 
When a document might be read by several different audiences, you can customize it for 
each. To do this, you identify those sections of the input file that are to be processed 
conditionally. 

SCRIPT /VS processes a conditional section, or ignores it, based on the setting of a .CS 
[Conditional Section] control word. Each conditional section number, from I to 9, can 
be used many times in a document. You can associate each type of information to be 
processed conditionally with its own conditional section number. For example, 

Conditional 
Section 
Number Conditional Section Applies To 

1 Only Class A Widgets 
2 Only Class B Widgets 
3 Only Class C Widgets 
4 Either Class B or Class C (Not Class A) 
5 Either Class A or Class C (Not Class B) 
6 Either Class A or Class B (Not Class C) 

At the beginning of the document, specify that SCRIPT /VS is to bypass all conditional 
sections with the IGNORE parameter of the .CS [Conditional Section] control word. 
The SCRIPT /VS default is to process all conditional sections not specifically bypassed. 

Chapter 22. Processing Logical Statements 257 



.cs 1 ignore 
· cs 2 ignore 

· cs 6 ignore 

Before you issue the SCRIPT command to process the document, change some of the 
.CS [Conditional Section] IGNORE control words to .CS [Conditional Section] IN­
CLUDE control words, to process each desired conditional section. For example, to 
print all material appropriate for readers interested in Class B Widgets, specify 

· cs 2 include 
· cs 4 include 
• cs 6 inc1 ude 

In the body of your input file, you identify each conditional section by preceding it and 
following it with the .CS [Conditional Section] control words, using the ON and OFF 
parameters. For example, 

· cs 2 on 
This material applies only 
to Class B Widgets. 
It does not apply to either 
of the other types. 
· cs 2 off 

Because you can only specify one conditional section number with the .CS [Conditional 
Section] control word, you must use a separate number to identify sections that apply to 
either one of two (but not the third) type of device. 

Because the .CS [Conditional Section] control word does not cause a break, you can 
process small units of text conditionally. For example, the input lines 

.cs 1 ignore 
· cs 2 ignore 
· cs 3 include 
This book is written specifically 
for the operator of a 
· cs 1 on 
Class A 
· cs 1 off 
· cs 2 on 
Class B 
· cs 2 off 
· cs 3 on 
Class C 
· cs 3 off 
Widget. 

are printed as: 

This book is written 
specifically for the operator 
of a Class C Widget. 

258 DCF: SCRIPT /VS Text Programmer's Guide 



The input lines (GML tags, control words, and text) between the .CS ON and the .CS 
OFF control words are included unless explicitly bypassed as a result of a preceding .CS 
IGNORE control word. Such a bypass is not a total one: macros and GML tags are 
resolved. 

Logical Processing With Symbols 
With set symbols, you can do logical processing in several ways. The simplest of these is 
to have a symbol that resolves to one control word or another depending on the specific, 
applicable conditions. For example, the symbol xim could be set to either .eM or .IM to 
cause the input line 

&xim filename 

to be treated as an .1M [Imbed] control word or a .CM [Comment] control word. If your 
me has several places at which another me should be imbedded conditionally, the sym­
bol xim could be defIned once to control all occurrences of the symbolic control word. 

Another technique uses the existence attribute (&E') of a symbol to generate a macro 
name according to whether a symbol exists or not. See "Chapter 21. Processing 
Symbols" on page 223 for details on symbol attributes. The existence attribute causes a 
string to be substituted with 0 if a symbol does not exist, and with 1 if it does. You 
could write a macro called XO to provide the appropriate processing when a given sym­
bol does not exist, and another called X I for when it does exist. Now, the expression: 

.X&E'&name 

will resolve to XO if the symbol &name. does not exist and Xl if it does. 

You can also use the symbol length attribute (&L') to perform logical processing. The 
length attribute and the following string or symbol are replaced with the length of the 
string or symbol during substitution. See "Chapter 21. Processing Symbols" on page 223 
for details. If a symbol called &num contains a number that is from one to fIve digits 
long, you can develop a 5-digit number by adding the correct number of leading zeros to 
&num. First, you need to defIne symbols that contain the number of zeros needed for 
each possible length the number might be: 

.se 5z = 

.se 4z = a 

.se 3z = 00 

.se 2z = 000 

.se lz = 0000 

If the number is fIve digits long, zeroes need not be added. If it is four digits long, you 
need one zero, and so on. Now, the expression 

&&L'&num.z.&num 

concatenates the correct number of zeros to the number to form a 5-digit number. One 
part of the expression, &L' &num, is resolved to the number 1, 2, 3, 4, or 5, whatever the 
length of the number in the symbol &num happens to be. If it is 3, the expression be­
comes &3z.&num. The symbol &3z is now replaced with 2 zeros, the proper number of 
zeros for a 3-digit number and is concatenated with the number itself when &num is 
substituted. 

Chapter 22. Processing Logical Statements 259 





Chapter 23. Processing Macros 
SCRIPT /VS allows you to define your own processing controls, called macro in­
structions. A macro instruction can consist of SCRIPT /VS control words, GML 
markup, symbols, text lines, and other macros. 

You can defme macros for GML processing, to provide additional formatting controls, 
or to modify the action taken by a SCRIPT /VS control word. 

To process macros, you must explicitly specify .MS [Macro Substitution] ON in your 
document before SCRIPT/VS encounters any of the macros. If SCRIPT/VS encounters 
a macro when macro substitution is off, the first two characters of the macro are treated 
as a control word. 

When to Use Macros 
Many macro-like functions can be performed by symbols that are defmed as control 
word strings. Sometimes, though, you may need to defme a macro to perform a function 
that symbol processing alone cannot provide. For example, the control word sequence 

.se x = &x + l;.se y = &x 

is intended to increment the symbols x and y. But because SCRIPT/VS performs sym­
bol substitution before control word execution, &y is set equal to the current value of 
&x and only &x is incremented. 

You can perform this sequence properly by defIDing a macro. For example, 

· su off 
.dm increment I.se x = &x + 1 I.se y = &x 
· su on 

After SCRIPT /VS processes the macro 

· increment 

&x and &y have equal values, because the two .SE [Set Symbol] control words are proc­
essed sequentially. 

Macros also allow you to redefme the meaning of SCRIPT /VS control words. For ex­
ample, you can use the macro facility to defme new head levels. Although seven head 
levels, .HO - .H6 [Head Level 0 - 6], are provided with SCRIPT/VS, you might want to 
defme additional head levels. 

Chapter 23. Processing Macros 261 



How to Define a Macro 
Use the .DM [Defme Macro] control word to defme macros. Because SCRIPTjVS proc­
esses macros as control words, an undefmed SCRIPT jVS macro may be treated as an 
invalid control word. 

When you defme a SCRIPT/VS macro, you must name the macro and specify the input 
lines to be processed whenever the macro is called. You can write the following para­
graph macro: 

.su off 
· dm para /. sk /. in 3 for 2 /&~~ 
.su on 

The macro defmition elements (usually control words) are separated by delimiters. The 
delimiter is the fIrst nonblank character that follows the blank after the macro name. It 
can be any character that does not appear in the line itself. 

The symbol & '" represents the entire macro argument (that is, the line passed to the 
macro for processing). For example, when the input line 

.para On second thought, 

is processed, & '" has a value of On second thought,. 

The form of the .DM [DefIne Macro] control word shown above is restricted to one 
input line. The input line is broken at delimiter characters into separate macro lines. 

The simplest way of defIDing a macro within a document is this: 

.dm echo on 

.ty --

.ty &,~ 

.ty --

.dm off 

The inline fann (ON/OFF) of the .DM [Defme Macro] control word allows you to de­
fme macro lines on separate input lines. For example, you could defIne the .PARA 
macro as follows: 

· dm para on 
.sk 
· in 3 for 2 
• dm off 

All of the input lines between the .DM PARA ON and the .DM OFF will be put into 
the macro defInition. Substitution and input translation will not be performed on these 
lines until the macro is invoked. The .DM OFF control word line must begin in column 
one of the input record and cannot contain the control word modilier. The inline form 
of the .DM control word requires that you completely defIne the macro each time. 

This type of macro defInition includes an implied .SU OFF and .SU ON and .GS TAG 
OFF and .GS TAG ON. Symbols and GML tags in the macro defmition are not re­
solved but are instead saved as part of the macro and are substituted whenever the 
macro is executed. This eliminates the need to surround a macro with .SU OFF and .SU 
ON and with .GS TAG OFF and .GS TAG ON when using this form of the .DM con­
trol word. 

262 DCF: SCRIPT/VS Text Programmer's Guide 



Another method of defining macros involves using the subscripted form of the .DM con­
trol word. For example, 

· su off 
.dm para(5) I.sk 
.dm para(10) I.in 3 for 2 
· dm parae 15) 1&7~ 

· su on 

The macro line number in parentheses is also called the subscript. If the number is omit­
ted from the parentheses, SCRIPTjVS uses an increment of 10, starting at 10. Macro 
line numbers, if included, do not have to be defmed in any particular order. However, 
when the macro is used, it is executed in sUbscript order, which is not necessarily the 
sequence in which the macro lines were entered. 

Each line can be defmed separately and each line can be given an explicit line number. 
Each macro line can contain several control words, separated by control word separa­
tors. If so, the control word separator scan must be prevented. This can be accomplished 
by using the control word modifier or the .DM control word. 

· su off 
.dm echo(l) I.ty -
.dm echo(2) I.ty &* 
· dm echo(3) I. ty -
.su on 

If line numbers are not given explicitly, they will be automatically generated, using an 
increment of 10: 

· su off 
· dm echoO I. ty -
.dm echo() I.ty &* 
· dm echoO I. ty -
.su on 

Whenever the single line or subscripted forms are used, remember to turn symbol substi­
tution off during the defmition so that symbol names will be saved as part of the macro. 
You also need to turn GML processing off with .GS TAG OFF if there are GML tags 
in the macro. 

The subscripted form of the .DM control word can be used to modify individual lines of 
a macro without having to respecify the entire macro defmition. For example, to increase 
the indention caused by the previously defmed .PARA macro, you can issue: 

.dm para(10) I.in 5 for 1 

or you can cause the .PARA macro to start an inline keep by specifying 

.dm para(12) I.kp 6 

Be careful when you mix the forms of the .DM control word. You can use the single 
line form and the subscripted form within an inline macro definition but you cannot use 
an inline macro defmition within another inline macro defmition. 

Chapter 23. Processing Macros 263 



How Values Are Substituted/or Symbols within a Macro 
Definition 

Macro defmitions almost always contain symbols and these symbols are generally meant 
to be substituted anew each time the macro is executed. You can ensure that symbol 
substitution is turned off when you defme a macro within a document and that it is 
turned on when you execute it by using the .DM macroname ON form to defme 
macros. This form explicitly disables symbol substitution for the defmition: 

· dm count on 
· se x = &x + 1 
.ty &x 
• dm off 

The symbol &x will be saved as part of the macro definition and substituted whenever 
the macro is executed. Each time the macro is executed the value of x will be different. 

If you use the subscripted or the single line form of the .DM [Defme Macro] control 
word and symbol substitution is on, the .DM [Defme Macro} control word line is 
scanned for symbol names. If you defme a macro that contains a symbol, you usually 
want the symbol value substituted for the symbol name when the macro is encountered 
as an input line, rather than when the macro is defmed. Therefore, turn off symbol sub­
stitution (using the .SU OFF control word) before you define the macro, to allow the 
symbol (rather than its value when the macro is defmed) to be part of the macro defi­
nition. For example, 

.su off 

.dm of /.sk/.in &off after 1/ 

.su on 

In this example, &off is a symbol that might have a value when SCRIPTjVS processes 
the .DM [Defme Macro] control word. If substitution is ON, the symbol value becomes 
part of the macro defmition instead of the symbol &off. The macro .OF would then 
result in a hanging indention of that amount, rather than of the value of &off when 
SCRIPTjVS encounters the macro .OF. 

When you use the inline form of the .DM control word you do not have to be con­
cerned with when symbol substitution will be performed on the macro lines. It wi11not 
be done when the lines are read into the macro definition, only when the macro is actu­
ally executed. 

Conditional Macro Processing 

Macros can be defmed to conditionally format a document using the .IF [If] control 
word family. For example, you can have a series of input flies that contain information 
for several people, none of whom require all of the infonnation. You can defme a macro 
that will execute certain control words only if the document is being formatted for spe­
cific individuals: 

· dm canbe on 
.if &who eq Geoff .or &who eq Dot 
· th &-l( 
• dm off 

264 DCF: SCRIPT/VS Text Programmer's Guide 



When you specify 

.canbe .im pg$sym 

the file PG$SYM will be imbedded only if the document is being fonnatted for either 
Geoff or Dot. The symbol &who has presumably been set elsewhere. 

You can also use conditional processing to highlight lines of text differently depending 
upon the device for which the document is being formatted. The following macro will 
cause a line of text to be put in uppercase, if the document is being formatted for a 3270 
terminal. For all other devices, the line will be underscored. 

• dm hilite on 
.sk 
.if &$PDEV eq 3270 
.th .up &* 
· el . us &* 
.sk 
• dm off 

Macro Naming Conventions 

A macro name can be up to 10 nonblank characters long, without imbedded blanks or 
special characters, and is not case sensitive. That is, the macro name ABC is the same as 
the macro name abc. The name can be the same as the two-letter name of a control 
word, in which case its definition supersedes the function of the control word. When you 
enter a macro name as part of your input file (after you have defined it), enter it as 
though it were a control word, with a period in column 1. 

Local Symbols for Macros 

Within macros, symbols can be defmed with an asterisk (*) as the first character of the 
symbol name. Such symbols are local to the macro in which they are defmed. They are 
recognized only within that macro and, unlike ordinary symbols, if they are undefined, 
they have a null value. You use a different set of local symbols for each macro, and for 
each occurrence of a macro call. 

For symbol substitution within a macro, the following rules apply: 

• All global symbols are considered text character strings if undefmed as symbols. 

• All local symbols are considered null if not defmed. 

When SCRIPT/VS processes a macro, it assigns values to certain designated local sym­
bols based on the macro's input line. The local symbols are named &*0. &*1, &*2, and 
so on. Values are assigned to a new set of local symbols each time a macro is called. 

The symbol &* contains the entire character string on the macro's input line (except for 
the macro name). The symbol &*0 represents the number of words or tokens that make 
up the character string. The symbol &"'1 contains the frrst token, the symbol &*2 con­
tains the second token, and so on. For example, when SCRIPT/VS encounters the fol­
lowing input line 

.process fileb 10 filea no 

it sets the following values for the macro's local symbol values (&"', and &*1 through 
&*n are called tokens): 

Chapter 23. Processing Macros 265 



Symbol 
&* 
&*0 
&*1 
&*2 
&*3 
&*4 
&*5-&*n 

Value 
fileb 10 filea no 
4 
fileb 
10 
filea 
no 
(null value) 

When you want to assign a null value to a macro symbol without also assigning null 
values to all subsequent tokens on the input line, use the percent sign (%) to represent 
the null-value token. For example, the macro input line 

. insert filea 10 % fileb 15 

results in the symbols being set as: 

Symbol 
&* 
&*0 
&*1 
&*2 
&*3 
&*4 
&~"'5 

&*6-&*n 

Value 
filea 10 % fileb 15 
4 
filea 
10 
(nu11 value) 
fileb 
15 
(nu11 value) 

You can set any symbol with a name that begins with the character "'. A symbol so 
named is considered a local symbol for the macro whose definition includes it. Such 
symbols are known only to the macro that defmes them. The symbol values are saved 
when the macro calls another macro and are restored when the called macro returns to 
the calling macro. A different set of local symbols is set each time a macro is called, plus 
another set for when no macro is the current source. 

Note: Undefmed local symbols are replaced with null values only when the current input 
source is a macro. 

Processing Local Variables 

Macros can contain conditional and iterative processing and can use local variables. You 
can use the .GO [Goto] control word to branch to another portion of a macro on certain 
conditions. For example, to process each token specified with a macro invocation sepa­
rately you could enter: 

· dm macro on 
· se *1 = 1 
... loop 
· process &*&*i 
.se *i = &*i + 1 
.if &*i Ie 2 .go loop 
• dm off 

266 DCF: SCRIPT /VS Text Programmer's Guide 



Terminating a Macro 

Ordinarily, processing of a macro ends after the last line of the macro has been proc­
essed; control returns to the file or macro that invoked the macro. 

The .ME [Macro Exit] control word can be used to end processing of a macro prema­
turely: 

• dm score on 
· sk 1 
.if &place eq inline .me 
.hr left to right 
· sk 1 
• dm off 

If the value of the symbol &place is inline, the .ME control word causes control to re­
turn immediately to the macro's caller, without processing the remainder of the macro. 

If the remainder of an input line containing a .ME [Macro Exit] control word is not null, 
it is saved until after the macro is closed and then is processed as if it had been part of 
the calling macro or file. This allows a macro to set its caller's local symbols. For exam­
ple, 

• dm macro on 

· me . se *rc = 4 
· dm off 

Here the .ME control word function of prematurely ending the macro is superfluous, 
because it is the last line of the macro. The remainder of the line, however, is saved and 
executed as if it had been part of the macro's caller, and results in the setting of a macro 
local symbol. 

The .ME [Macro Exit] control word also allows you to create a computed GOTO facility: 

· dm case on 
· se *i = &*1 + 1 
.if &*i gt &*0 .mg I I CASE index error. I 
.el .me .go &*&*i 
· dm off 

The CASE macro can be invoked with an index number (0, 1, 2, or 3) and a list of 
labels: 

. case &function open read write close 

The CASE macro uses the index to select one of the labels and return a .GO [Goto] 
control word for that label to its caller. 

Redefining SCRIPT fVS Control Words 

You can defme a macro with the same name as a control word to effectively redefme it, 
to revise it, or to supplement its function. The definition you code with the .DM [Define 
Macro] control word is used instead of the SCRIPT/VS-defmed function. If you redefme 
a control word as a macro, the new defmition is effective whenever the control word is 
encountered as long as macro substitution is on (.MS ON), or whenever the macro is 
called using the .EM [Execute Macro] control word. 

Chapter 23. Processing Macros 267 



When macro substitution is on, you can still specify that a SCRIPT /VS control word 
function is to be executed, even when a macro of the same name is defined, by using the 
.EC [Execute Control] control word or the control word modifier. For example, the in­
put line 

o dm sk on 
o ec 0 sk &* 
oil 5 
o dm off 

redeftnes the .SK [Skip] control word, to skip lines and indent the ftrst output line after 
the line space. 

When you want the .SK (Skip] control word to be executed but do not want to tum off 
macro substitution, issue 

o ec 0 sk 4 -or- o Isk 4 

to skip four lines without indenting the next output line (that is, to execute the control 
word rather than the macro). 

When macro substitution is off (.MS OFF) and you want to execute a macro (whether 
or not the macro name is the same as a SCRIPT /VS control word), use the .EM 
[Execute Macro] control word. For example, 

oem 0 sk 3 

results in three line spaces, with the next output line indented ftve spaces. 

Note: When you redefme a SCRIPT/VS control word with a macro of the same name: 

• Be sure to defme all the functions, implicit as well as explicit, that you want. The 
macro deftnition does not modify the control word function; it is used, as a macro, 
instead o/the control word function. 

• To make the macro defmition effective: 

• Tum macro substitution on (.MS ON), or 

• Use the .EM [Execute Macro] control word to execute the macro defmition. 

• When the macro defmition includes the SCRIPT /VS control word of the same 
name, use the .EC [Execute Control] control word to specify the control word. An 
example of this technique is in the following section, "Avoiding an Endless Loop." 

Avoiding an Endless Loop 

When you defme a macro to replace the function of a SCRIPT /VS control word, you 
might have to tum macro substitution off to avoid an endless loop. For example, if you 
want to redefme the .SK [Skip] control word to skip lines and indent to the ftrst output 
line: 

o dm sk on 
oms off 
osk &* 
oms on 
oil 5 
o dm off 

268 DCF: SCRIPT/VS Text Programmer's Guide 



Because we turned macro substitution off with the .MS OFF control word, the third line 
of the macro invokes the .SK control word, rather than reinvoking the .SK macro. 

Sometimes turning off macro substitution is not an adequate solution to the problem of 
an endless loop. For example, you can cause the .1M [Imbed] control word to type the 
name of the imbedded me whenever it is imbedded by defIning a .1M macro: 

.dm im on 

.ty Imbedding &-;~ . 
· ms off 
· im &* 
.ms on 
· dm off 

Macro substitution is turned off to prevent an endless loop from occurring. However, 
when macro substitution is turned off, substitution is prevented for any macro that 
might be part of the imbedded me (as well as mes it might imbed). 

Instead, use the .EC (Execute Control] control word to have the input line treated as a 
control word even though a macro of the same name might be defIned. For example, the 
following lines 

.dm im on 

.ty Imbedding &* . 
· ec . im &* 
· dm off 

redefme the .1M [Imbed] control word, preventing an endless loop while still allowing for 
macro substitution in the imbedded me. 

USillg SYlnbols alld Macros as Associative Memory 
When your document contains a large number of fIgures, updating the document with a 
new fIgure might mean that you have to renumber all subsequent fIgures. When you 
have to do this task manually, it is time-consuming and prone to error. 

With symbols, SCRIPT /VS can automatically keep track of the numbering you need 
and provide more convenient fIgure referencing as well. You can also build a list of fIg­
ures, including fIgure numbers and page numbers, automatically. Most important, you 
can rearrange the fIgures as often as you please without having the monumental task of 
renumbering the fIgures and their references each time. 

To number fIgures, use a counter: a unique symbol name that refers to (and contains the 
value of) the current fIgure number. The figure number symbol is set at the beginning of 
the input me or in a separate me that is imbedded at the beginning of the input me. To 
manage the counter, defIne macros for fIgures and fIgure references in the prome of your 
document: 

Chapter 23. Processing Macros 269 



se figct;r = 0 

* 
· dm fignurn on 
.se figctr = &figctr + 1 
.se fig@&*1 = &figctr 
· se figl!&'Ir 1 = & 
Figure &fig@&*1 .. 
• dm off 

* 
· dm figref /Figure &fiG@&'\"1 on page &figil&*1 

Whenever you enter a figure in your document, invoke the FIGNUM macro with a 
unique identifier just before the figure caption: 

· f1 on 
(body of figure) 
· f ignurn fred 
Example of Aardvarkls Table Manners 
· f1 off 

The FIGNUM macro assigns the figure the unique identifier fred and: 

• Increments the figure counter 

• Saves the number of the fred figure in the symbol &fig@fred 

• Saves the page number of the fred figure in the symbol &fig#fred 

• Inserts the word Figure and the figure number in front of the figure caption. 

Whenever you wish to refer to the figure you have called "fred" in the text of your docu­
ment, use the FIGREF macro: 

... as shown in 
· figref fred 

The FIGREF macro inserts a string containing the appropriate figure number and page 
number into your document: 

... as shown in Figure 4 on page 123 .,. 

To automatically build a list of illustrations, the FIGNUM macro could have been de­
fmed like this: 

· se figctr = 0 

* 
· dm fignum on 
.se figctr = &figctr + 1 
.se *sx '?Figure &fiG@&*1 .. ? . ?&fig#&*1 .. ? 
· dm figlist() I. sx &'\"sx 
· se fiG@&'\"1 = &figctr 
· se fig#&*1 = & 
Figure &fiG@&*1 .. 
· dm off 

* 
'dm figref /Figure &figl!&*1 on page &figl!&*l 

270 DCF: SCRIPT/VS Text Programmer's Guide 



Notice that the FIGLIST macro is actually defined by the FIGNUM macro. You can 
use the other forms of the .DM control word within an inline form of .DM, but an in­
line form of .DM within an inline form will cause the initial macro definition to end. 

At the end of the first pass, the FIGLIST macro will contain one line for each figure in 
the document, and each line will consist of a .SX [Split Text] control word that will for­
mat a figure number and page number. 

Note: The lines of the FIGNUM macro that build the FIGLIST macro appear before 
the lines of the FIGNUM macro that set the symbols referred to in the FIGLIST 
macro. This is deliberate: figures are usually enclosed in floats or keeps, and the page on 
which they will be placed is not known when the figure is formatted. For this reason, 
SCRIPT /VS processes .SE [Set Symbol] control words that refer to the page number 
symbol twice: once when first encountered, and again when the page on which surround­
ing text will be formatted is known. To ensure that the page numbers in the list of illus­
trations are correct, substitution of these symbols is delayed until the FIGLIST macro is 
executed, when alI figures have been placed. 

Redefining SCRIPT/ VS Formatting Conventions 
SCRIPT /VS has several implicit formatting functions. Input lines that are null reset line 
continuation, and those that begin with a blank or tab character cause a break. You can 
use a macro to redefme these functions. 

Processing Input Lines That Begin with a Blank or a Tab 

When an input line begins with a blank (called a leading blank) or a tab (called a leading 
tab), SCRIPTjVS does not concatenate the line with the previous input line. That is, a 
break occurs. 

Breaks are provided by processing the .LB [Leading Blank] control word when a leading 
blank is encountered, and by processing the .LT [Leading Tab] control word when a 
leading tab is encountered. Both of these control words function exactly the same as the 
.BR [Break] control word. However, after the break occurs, the leading blank or tab re­
mains on the input line and is processed as part of the line. 

You can control the actions to be taken for leading blanks and tabs by defining a .LB 
and .LT macro. When you want the leading blank and leading tab to be processed by 
SCRIPT /VS as just a blank (or just a tab) that happens to occur as the first character 
(that is, not processed differently than other blanks or tabs), redefme the control words 
as: 

• dm Ib j. * 
.dm It /.* 

The tab or blank at the beginning of the input line will be concatenated with the previ­
ous input line. It will not necessarily appear at the beginning of an output line. 

Note: The .NL [Null Line], .LB [Leading Blank], .LT [Leading Tab], and .BL [Blank 
Line] functions are not performed for a line that would otherwise call for them when the 
line is processed in literal mode (that is, preceded by the .LI [Literal] control word). Null 
text lines still reset line continuation if the previous line ended with a continuation char­
acter, but the .NL control word or macro is not processed. 

Chapter 23. Processing Macros 271 



Specifying a Macro Library 

LIB: Specify Symbol and Macro Libraries 

The LIB option is valid in the CMS, TSO, and ATMS-III environments and specifies 
that SCRIPTjVS is allowed to search the specified libraries for a defInition of the sym­
bols and macros not defmed within the input ftle. In a batch environment, the SEARCH 
option provides a similar facility. 

In CMS, the LIB option is specified as: 

LIB (libnamel [ ... libname8] ) 

where libname is the ftlename of a CMS macro library. The ftletype is MACLIB. The 
CMS search sequence is used to locate the library on any accessed disk. 

In TSO, the LIB option is specified as: 

LIB (libname) 

If the libname given is not fully qualifIed (placed within quotation marks), the userid is 
prefIxed to the libname as the leftmost qualifier, and MACLIB is added (unless it already 
appears) as the right-most qualifier. 

In ATMS-III, the LIB option is specified as: 

LIB (opnuml [ ... opnum8] ) 

where opnum is an operator number. It must include the user's number if the user's per­
manent storage is to be searched. 

The library is searched when a symbol or macro is not already known and SCRIPT/VS 
has encountered a .LY ON, a .LY SYM (for symbols only), or a .LY MAC (for macros 
only) control word. The library is also searched (without regard to the setting of the .L Y 
control word) when a symbol or macro is defmed with the LIB parameter. For example, 

.se symbolname LIB 

.dm macroname LIB 

If the symbol name or macro name is not found in the symbol table (and the symbol or 
macro is defmed as being in a libraty), SCRIPTjVS scans each library named in the LIB 
option (in the order given) until the symbol or macro is found. SCRIPT/VS then moves 
the symbol or macro defmition into the SCRIPT /VS symbol table, so that a second oc­
currence of the macro or symbol does not require a library search. If no LIB option is 
specified, the symbol name or macro is searched for in the default library (if it exists). 

When a macro name cannot be resolved (because there was no previous defmition set 
with a .DM [Defme Macro] control word), SCRIPTjVS can look for its defmition in a 
macro library. 

272 DCF: SCRIPT/VS Text Programmer's Guide 



The member name of each macro defmed in the macro library is the macro name with­
out the leading period. It is restricted to eight characters. Symbol defmitions and macro 
definitions can be members of the same library.59 

You can use the macro library in two ways: 

• To explicitly set a macro name. Use the LIB parameter of the .DM [Defme Macro] 
control word to instruct SCRIPT jVS to retrieve its defmition from a library: 

• dm para lib 

SCRIPT jVS searches the library specified by the LIB option of the SCRIPT com­
mand for the defmition of .PARA and retrieves the definition. The retrieved defi­
nition replaces any existing defmition. 

• To defme an unresolved macro. When SCRIPTjVS encounters a macro that has 
not been defined, the library is searched for a member with the same name as the 
macro when .L Y ON or .L Y MAC have been specified. 

When your input ftle contains macros that are defmed in a macro library, specify either 
.LY (Library] ON or .LY [Library] MAC to instruct SCRIPTjVS to search the macro 
library for any unresolved macro it encounters: 

.lyon -or- .ly mac 

The ON parameter specifies that the macro library is to be searched for unresolved 
macros and symbols. The MAC parameter specifies that the macro library is to be 
searched only for unresolved macros. You can use the OFF or SYM parameters of the 
.L Y control word to tum off library searching for unresolved macros. 

Because searching macro libraries for unresolved symbols is expensive in terms of proc­
essing time, we recommend that .L Y MAC be used except for short periods when you 
expect symbol definitions to be returned; then .L Y SYM or .L Y ON should be used. 

In ATMS-III, the search technique is the same for both symbols and macros. Therefore, 
it does not matter whether .LY MAC, .LY SYM, or .LY ON is used. 

Creating SCRIPT/ VS Macro Libraries 
Macros that are going to be used for multiple documents can be stored in a macro li­
brary. How you create your macro libraries is determined by the environment in which 
you are operating SCRIPTjVS. 

When you are placing the definition of a macro into a macro library, be sure none of the 
lines of the macro is preceded by a .DM [Define Macro] control word. 

In a eMS Environment 

In a CMS environment, a SCRIPTjVS macro library must have a ftletype of MACLIB. 
Members can be edited directly using SPF /CMS but not with the CMS editor or the 
Display Editing System. 

59 Only the ftrst line of a macro library member is read for a symbol deftnition; for a macro 
deftnition, all lines of the member are read and treated as individual lines of the macro deft­
nition. 

Chapter 23. Processing Macros 273 



A macro can be created or changed by editing a fIle with a ftle name that is the same as 
the macro name and a ftletype of COPY. The record format of the ftle must be fixed, 
and the record length must be 80 bytes. 

The CMS MACLIB command is used to add or replace macros in a macro library. To 
modify an existing macro, you must have the text of the macro punched to your virtual 
card reader, and then read into a COpy ftle. This makes the macro accessible to the 
CMS editor. (This procedure is described in detail in the Virtual Machine Facility/SP: 
eMS User's Guide.) 

You can use the LIB option of the SCRIPT 'command to specify as many as eight 
macro library names. 

script test ( lib (mylib yourlib) 

The ftletype for all of these libraries must be MACLIB. When an undefmed macro is 
encountered, the libraries will be searched in the order specified on the LIB option of the 
SCRIPT command. If no library name is specified using the LIB option, a default name 
of DSMGML3 MAC LIB is used. 

In a TSO Environment 

In a TSO environment, your macro library has to be a partitioned data set. TSO does 
not have standard characteristics for a macro library. Therefore, for SCRIPT/VS, you 
must set up the data set so that it is in variable-record format. The maximum length of a 
record is 132 bytes. The block size should be chosen based on the physical device on 
which your library is going to reside."o 

The standard data set type for a SCRIPT /VS macro library is MACLIB. This data set 
type is assumed if one is not specified with the data set name. 

The standard name of the SCRIPT/VS macro library is SCRIPT.R30.MACLIB. You 
can concatenate a private library to this macro library using the LIB option of the 
SCRIPT command. However, when you do this, you must concatenate the private li­
brary to the front of the standard library so that SCRIPT /VS will search it first when 
looking for a macro defmition. 

Because only one private macro library can be concatenated using the LIB option, if you 
want to use multiple private libraries, you must allocate and concatenate them before 
invoking SCRIPT. When doing this, you must use the ftle name (ddname) of 
SCRPTLIB. If you want SCRIPT.R30.MACLIB to be searched for macro definitions, 
you must include it in the concatenation when defining SCRPTLIB. Otherwise, it will 
not be searched. (For more information on concatenating libraries, see the OS/VS2 TSO 
Terminal User's Guide.) 

If the LIB option is not specified, but instead a user allocates a partitioned data set with 
the DDname of SCRPTLIB, SCRIPT/VS uses whatever data sets are allocated to this 
DDname to resolve symbols and macros. Any number of data sets can be concatenated 
in this manner, and SCRIPT.R30.MACLIB is not included in the concatenation. If the 
LIB option is not specified and a DDname of SCRPTLIB is not allocated, 
SCRIPT.R30.MACLIB is used. 

Members of a macro library can be added or changed directly using either the TSO sys­
tem editor or the Structured Programming Facility-II (SPF-II) editor. The SPF-ll utility 

GO We recommend that a standard block size be used for all SCRIPT/VS macro libraries within 
an installation. Errors will occur if a macro library is concatenated to another one with a 
smaller block size. 

274 DCF: SCRIPT/VS Text Programmer's Guide 



function can be used to delete members or list member names. Because changing or de­
leting members leaves free space within a macro library that cannot be reused, you 
should occasionally reorganize your macro libraries. 

In an ATMS-III Environment 

In an ATMS-III environment, macros can be created as individual documents. However, 
they can be accessed as either documents or subdocuments. Macros that are accessed as 
individual documents must have uppercase names and must reside in permanent storage. 
Macros that are accessed as subdocuments must also reside in permanent storage but do 
not have to have uppercase names. 

In ATMS-III, the LIB search is used only if the requested source can not be located 
through the use of A TMS subdocument index build/connect facilities. Furthermore, the 
search is performed only against the permanent storage of the users whose operator 
numbers are specified in the LIB list. 

If other operators are going to be using your macros, you must store them with a 
getword of any. Another operator can then access them by specifying the LIB option 
and your operator's number. If you are going to use macros that are stored in your per­
manent storage and macros that are stored in another operator's permanent storage, you 
must specify both your number and the other operator's number when specifying the 
LIB option.sl 

script * ( lib (myopnum youropnum) 

If the LIB option is not specified, A TMS-III uses only its subdocument facilities to 
search for unresolved symbols and macros. 

When you are going to access macros as subdocuments, you might want to give them 
names with a common prefix. This enables you to build and connect them based on the 
common prefix. For example, if you created these macros 

testPARA 
testKEEP 
prodPARA 
prodKEEP 

issuing these A TMS-III commands 

build;m;test 
connect; X; test 

results in the macros .PARA and .KEEP being retrieved from the documents testPARA 
and testKEEP, rather than prodPARA and prodKEEP. 

In a Batch Environment 

In a batch environment, the Document Library Facility must be used to invoke 
SCRIPTjVS. Therefore, any macro libraries that are required for processing a document 

61 If all of your macros, symbols, and GML tags are going to be accessed as subdocuments and 
they are all stored in your permanent storage area, you do not have to specify the LIB option. 
See the ATMS-Ill Terminal Operator's Guide for more information on creating and using 
subdocuments. 

Chapter 23. Processing Macros 275 



must be created as sequential data sets and brought into the Document Library Facility's 
Document Library by the IMPORT command before they can be accessed by 
SCRIPTjVS. For more information on how to use the IMPORT command to bring 
documents into the Document Library using the Document Library Facility, and how to 
access documents stored in the Document Library, see the Document Library Facility 
Guide. 

276 DCF: SCRIPT/VS Text Programmer's Guide 



Chapter 24. Processing GML 
Generalized Markup Language (GML) can be used to describe the structure and ele­
ments of your document without regard to the particular processing that can be required. 
Like other languages, GML has a syntax and usage rules, but GML has no fixed vocab­
ulary. You can develop your own vocabulary of tags to describe your documents. The 
Document Composition Facility actually provides two languages: SCRIPT /VS format­
ting language and GML descriptive language. One way of characterizing the difference 
between the two languages is this: the formatting language is made up, basically, of verbs 
that indicate what processing to perform; GML, on the other hand, is made up, bas­
ically, of adjectives that describe the structure and elements of a document. 

The Document Composition Facility also provides a GML starter set, consisting of a 
proflle and a macro library to support a set of tags for general documents. You can use 
the starter set as an example of one way to implement GML or you can use the starter 
set of tags, where appropriate, and add your own tags to tailor the GML vocabulary to 
describe your documents. See the Document Composition Facility: Generalized Markup 
Language Starter Set Implementation Guide for more details on the starter set. 

The GML functions of SCRIPT/VS are enabled with the .GS [GML Services] control 
word: 

. gs tag on 

The proflle provided with the GML starter set executes this control word. 

Note: The unmodified GML starter set is a supported component of the Document 
Composition Facility. The GML starter set requires the Typewriter and Pi Specials 
(5771-AAW) font for the 4250 printer and the Pi and Specials (5771-ABC) font for the 
3800 Printing Subsystem Model 3 and for the 3820 Page Printer. 

GML Markup Syntax 
GML tags can appear anywhere in an input document and are identified by the GML 
delimiter, which, by default, is a colon (:). A control word should never precede a tag in 
the same input line. If doing so is absolutely necessary, then use the control word sepa­
rator symbol (&$CW) instead of the control word separator character. A GML tag name 
can be up to 8 characters long and can consist of letters, numbers, and the characters @, 
#, and $ (except that the first character cannot be numeric). The tag name can be en­
tered in either upper- or lowercase. For example, in the GML starter set provided with 
SCRIPT /VS, the following tag identifies a place where a list of illustrations should be 
generated: 

: figlist 

This same tag can also be entered as: 

: FIGLIST 

Chapter 24. Processing GML 277 



GML tags indiCate where specific document elements begin. Some elements also require 
an explicit end-tag to indicate the end of the element. GML end-tags are identified by 
the GML end-tag delimiter, by default a double colon (::), and have the same naming 
rules as GML tags. For example, an ordered list might be indicated as: 

: 01 

::01 

Some GML tags recognize attributes, which further describe the document element iden­
tified by the tag. Attributes follow the tag name, separated by one or more blanks, and 
have the same naming rules as GML tags. Attributes also have values, which follow the 
attribute name, separated by an equal sign: 

: fig frame=box 

When an attribute value contains blanks or special characters, it must be enclosed in 
single quotation marks ('): 

:gdoc sec='Company Confidential' 

If the value itself contains quotation marks, they should be doubled. 

:hl. stit1e='Programmer"s Guide'. DCF: Text Programmer's Guide 

Some tags recognize attributes that consist of a single word. These are called value attri­
butes, and have the same naming rules as GML tags. They are entered just as other attri­
butes, but without any equal sign: 

: 01 compact 

Whenever text follows markup, the text should be delimited by a markup/content separa­
tor (MCS), which is by default a period (.). For example, 

:p.While there's no cause for alarm, 
there is no room for complacency. 

The line of text following the markup/content separator is the residual text for the GML 
tag. In the example above, the residual text for the p tag is "While there's no cause for 
alarm,". 

The residual text can be null, if no text appears between the end of markup and the next 
tag. If there is text between the end of markup and the next tag, then the residual text is 
the fIrst line of text. For example, 

: 01 
: Ii. 
A solitary list item. 
::01 

The residual text for the 01 tag is null, while the residual text for the Ii tag is "A solitary 
list item.". 

Normally, residual text is formatted along with any other text following the markup. See 
"Residual Text Processing" on page 283 for more details on the treatment of residual 
text. 

278 DCF: SCRIPT/VS Text Programmer's Guide 



The markup/content separator need not be entered if 

• The markup is immediately followed by another tag 

• Whatever follows the markup cannot be misconstrued as an attribute 

The markup/content separator can appear anywhere on an input line; however, if the 
MCS character is the period (.), SCRIPT/VS will interpret it as a control word delimiter 
if it appears in the first character position of an input line. You should, therefore, avoid 
starting a line with a markup/content separator. 

GML markup can span as many lines in the input document as necessary, and blanks 
between attributes are ignored. For example, a tag, its attributes, and the residual text 
can all be entered on a single line: 

:hl id=gml.GML Support in SCRIPTjVS 

Or, a tag, each of its attributes, and the residual text can all be entered on separate lines: 

: hl 
id = gml 

stitle= 'GML Support' 
Generalized Markup Language Support in SCRIPTjVS 

Each input line can have one or more attributes on it, separated by one or more blanks, 
but each attribute must be entirely contained on a single line. The markup can end on 
any line, with the residual text line following all on that same line or all on the next line. 

Note: GML markup cannot span input f:t1es. 

GML scanning may be ended by another tag, by a control word at the start of an input 
line, or if an end-of-input file condition is encountered. 

Changing the GML Delimiters 

The GML tag and end-tag delimiters and the markup/content separator can be changed 
with the .DC [Defme Character] control word. 

The GML tag delimiter can be set to any character that is not valid in a tag name, ex­
cept ampersand (&). For example, 

. de gml ! 

With this delimiter, the list of illustrations would be identified as: 

! figlist 

The GML end-tag delimiter can be one or two characters. If it is a single character, it 
can be any character that is not valid in a tag name, except ampersand (&) and the 
GML tag delimiter. For example, 

. de gml $ ¢ 

Chapter 24. Processing GML 279 



With these delimiters, an ordered list would be identified as 

$01 

¢ol 

H the GML end-tag delimiter is two characters, the first must be the same as the GML 
tag delimiter. For example, in the GML starter set the delimiters are set as: 

· de gm1 : : e 

With these delimiters, an ordered list would be identified as 

:01 

: eo1 

The markup/content separator can be set to any character that is not valid in a tag 
name, except ampersand (&). For example. 

· de gm1 < 
· de mes > 

With these delimiters, tags can be entered as: 

<hl id=gm1>GML Support in SCRIPT/VS 

SCRIPTI VS Processing of GML 
This section describes the functions available in SCRIPT/VS to recognize GML markup 
and associate the tags and attributes with APFs. 

Automatic GML Processing 

When SCRIPTjVS processes a document and encounters a GML tag, the following 
processing sequence occurs: 

1. Any attributes not processed by the previous tag are purged. 

2. A search is made for an application processing function (APF) for the tag. This 
APF (written in the SCRIPT jVS formatting language and usually a macro) may be: 

• An APF associated with the tag by the .AA [Associate APF] control word 

• An APF with the same name as the tag. 

3. The input is scanned for attributes and value attributes, if recognized by the tag, and 
saves them for processing 

4. The residual text line is identified and saved. 

5. The APF is invoked. 

280 DCF: SCRIPT /VS Text Programmer's Guide 



Source 
Document 

3( 

Profile 

tag macro 

Host 
System 

Library 

:hl.H:ading --~ 
:p.pa~agraPh -- I I 
:sl. Simple list 

_> HI _> DSMHEADI _ .-J -> DSMHEADI APF 
H2 DSMHEAD2 

-> Sl -> DSMSLIST - -, 
L- -> DSMSLIST APF 

-> P -> ~~~PARA -- I 
3( 

3( 

3( 
L Ir--->-D-S-M-P-A-RA-A-P-F--' 

Figure 16. Processing Documents with GML: The profile provides the mapping between tags, which identify ele­
ments of text in the source document, and APFs, which provide formatting functions. 

6. Any residual text is processed. 

See Figure 16 for an illustration of how SCRIPT;VS processes documents containing 
GMLtags. 

Attribute Scanning Rules 

The .GS [GML Services] RULES control word can be used to specify 

• Whether attributes are allowed for tags 

• Whether value attributes are allowed 

• What to do if an invalid attribute is found: 

• Stop the scan and treat the invalid attribute as text 

• Step over the invalid attribute and keep scanning. 

• Whether to issue a message if an invalid attribute is found or quietly take the appro­
priate action. 

Attribute scanning rules can be specified separately for GML tags and end-tags. For ex­
ample, in the GML starter set provided with SCRIPTjVS: 

.gs rules (att novat stop nomsg) (noatt) 

specifies that GML tags can have attributes but not value attributes, and that attribute 
scanning should stop without a warning message when an invalid attribute is found;62 
GML end-tags will not recognize attributes at all. 

The attribute scanning rules for tags given with .GS RULES can be overridden for spe­
cific tags with the .AA [Associate APF) control word. For example, in the GML starter 
set, 

62 Invalid attributes are most commonly text, encountered when an optional markup/content 
separator has been omitted. 

Cha,pter 24. Processing GML 281 



.aa 01 dsmo1ist (vat) dsme1ist 

indicates that the APF for the of tag is the DSMOLIST macro, and that value attributes 
are allowed for this tag. The APF for the 01 end-tag is the DSMELIST macro an.d be­
cause no attribute scanning rules are specified, those given with .GS RULES for end-tags 
will be used. 

The attribute scanning rules for .AA and .GS RULES are described in the SCRIPT;V~ 
control word description section of the Document Composition Facility: SCRIPT/VS 
Language Reference. 

Attribute Processing 

Within the APF for a tag, for example, 

: fig id=fred p1ace=inline frame=box 

the .GS [GML Services] EXATT control word, specified as, 

. gs exatt 

can be used to process all of the attributes that have been found and placed in the attri­
bute stack. 

The attributes are processed by APFs of the same names as the attributes. In other 
words, id is processed by the ID APF, place is processed by the PLACE APF, and 
frame is processed by the FRAME APF. 

It is also possible to selectively process attributes. If the APF that processes the fig tag 
specifies 

.gs exatt frame id as @idf 

the frame attribute is processed by the FRAME APF and the id attribute is processed by 
the @IDF APF. The place attribute is not processed unless specified on another .gs 
exatt control word line. 

The value of the attributes is provided to the APFs as parameters. For example, box is 
provided to the FRAME APF as the parameter &*1 and the value fred is provided to 
@IDF as &*1. 

The APF for the fig tag can also specify 

. gs exatt width 

but because the width attribute was not specified with the tag, the width macro is not 
processed. 

Attribute processing is described in further detail in the description of the .GS [GML 
Services] control word in the Document Composition }acility: SCRIPT/VS Language 
Reference. 

Value Attribute Processing 

Value attributes are presented to the APF for the tag as the parameters &*1, &*2, and 
so on. The number of value attributes is provided in & *0. 

If a simple list tag were encountered, for example, 

282 DCF: SCRIPT/VS Text Programmer's Guide 



: s 1 compact. 

the value compact would be provided in & '" 1 to the APF that processes the SL tag. The 
APF could test whether this symbol was compact and then proceed accordingly. 

In the following example, 

.if /&U'&*l eq /COMPACT 

.th (do something) 

.el (do something different) 

the &U' symbol attribute was uscd to ensure that the uppercase form of &*1 would be 
used for comparisons because we do not know whether it was entcred in upper- or low­
ercase. The symbol &*1 is a null symbol if the COMPACT attribute is not specified and 
it will cause an error if it is used alone on the IF control word, so it is prefixed here with 
a slash (f). 

Residual Text Processing 

For many elements, the APF operates by setting up the correct formatting environment 
and then allowing the following text to be formatted under the control of this environ­
ment. In these cases, the APF does not need to process the residual text line directly; 
SCRIPT /VS automatically retrieves the residual line and processes it after the APF has 
completed its function. SCRIPT/VS automatically provides continuation, if necessary, so 
that if the GML markup occurred in the middle of a word, the processing (such as start­
ing a new font, for example) will not break the word. Because of this continuation, if the 
user is running with the SPELLCHK option, the first word of residual text may not be 
spellchecked. 

If the APF needs to process the residual line directly, the APF can retrieve the residual 
line with the .GS [GML Services] SCAN control word: 

• gs scan line 

The residual text is removed from the document and is placed in the symbol &line. If 
you do not want the residual text to be removed from the document but only want to 
have a copy of it placed in the symbol &line, you can specify 

. gs copy line 

When an APF explicitly retrieves the residual text, it is the APF's responsibility to pro­
vide continuation or other special treatment which can be required, such as turning on 
literal mode for the residual piece. 

Residual text is treated as literal text; that is, special processing, such as execution of 
another control word, is not performed if the line begins with a leading blank, tab, or 
control word separator. Normally, residual text is formatted along with any text follow­
ing the markup; however, in format off mode, a tag in the middle of an input line may 
cause two or more output lines if that tag contains control words that cause a break. 

GML scanning was designed to enable the creation of APFs and tags that can be used to 
describe the structure and elements of your documents. It was not designed as a means 
of introducing text, such as "boilerplate phrases." If such text is deemed necessary, you 
should avoid, if possible, having the text at the end of the APF. If this is not possible, 
then use a continuation character at the end of the phrase. For example, the lines 

Chapter 24. Processing GML 283 



• gs tag on 
· dm text /phrase 
: text. , 
xxx : text. , 

will result in 

phrase , xxx phrase, (notice the blank before the first comma) 

whereas 

· dc cont + 
· gs tag on 
.dm text /phrase+ 
: text. , 
xxx : text. , 

will result in 

phrase, xxx phrase, 

If you want to insert text from an APF, use the INSERT parameter of the .GS control 
word. For example, if you specify 

.gs insert Figure 7 

then the text, Figure 7, will be inserted, using proper continuation, before any residual 
text that may exist for the tag associated with this APF. 

The continuation of text that comes before and after a GML tag can be affected by 
other markUp on the input line. For example if you entered, 

.spj textl : tag text2 

the .SP (Space) control word causes a break between textl and text2. The resulting out­
put may appear as: 

textl 
text2 

Any control words entered at the beginning of an input line that contains both text and 
GML tags, will have this effect. 

GML Tag-to-APF Mapping 

GML scanning is enabled with the .GS [GML Services) control word: 

· gs tag on 

When a valid GML tag is found, SCRIPTjVS attempts to locate an APF for the tag. 
The APF, which can be a macro or a control word, can be found by 

• Explicit mapping (established with the .AA [Associate APF] control word) 

• Class mapping (established with the .GS [GML Services) PREFIX control word) 

• Direct APF mapping (a macro or control word with the same name as the tag) 

284 DCF: SCRIPT/VS Text Programmer's Guide 



Explicit Mapping 

Class Mapping 

Direct Mappillg 

If no APF is found, a warning message is issued, and the tag is treated as text. If you do 
not want to be warned about invalid tags, specify 

. gs tag anna 

The .AA [Associate APF] control word allows you to explicitly specify the APFs for 
particular GML tags and end-tags. For example, to define tag-to-APF mappings for the 
fig tag and end-tag, specify 

.aa fig figure figurex 

The APF for the fig tag is the FIGURE macro, and the APF for the fig end-tag is the 
FIGUREX macro. 

The .AA control word also allows you to specify the attribute scanning rules for each 
tag, as described under "Attribute Scanning Rules" on page 281. The .AA control word 
is described in more detail in the Document Composition Facility: SCRIPT/VS Language 
Reference. 

A single character that will be added to the front of a tag name to produce an APF 
name can be specified with the .GS [GML Services] PREFIX control word. For exam­
ple, 

. gs prefix @ 

With this class mapping in effect, the APF for the figlist tag is the @FIGLIST macro. 

If no other tag-to-APF mapping is provided for a tag, a macro or control word whose 
name matches the tag name is used as the APF. This is the default. 

Creating Your Own GML Tag 

Before you create a tag of your own, you will need to: 

• Identify the need for a tag 

• Decide on a tag name 

• Identify the tag's function 

• Defme an APF to process the tag 

• Enable the tag. 

Suppose, then, that you need a frequently used disclaimer that contains some constant 
and some variable text. 

Chapter 24. Processing GML 28S 



Any Similarity To Living Or Dead Persons 
Of The Same Name Is Purely Coincidental. 

For Legal Questions Contact: John Doe 

In our example, the variable text is the name of the person to contact, the rest of the 
disclaimer will always be the same. 

Your first step would be to give names to your tags. 

• :disc - to start the structure 

• :edisc - to end the structure. 

The markup might look like this: 

: disc. John Doe 
: edisc. 

Your second step is to define the APF for the :disc tag. Tills APF will: 

• Get to the top of a page 

• Turn on highlighting 

• Start a box 

• Insert some space 

• Left align the text of the message 

• Print the text of the message 

It might look like this: 

• dIn lnote on 
· pa nostart 
· bf hi2 
· bx 1 45 
.sp 1 
· in +2 
· ir +2 
· fo left 
Any Similarity To Living Or Dead Persons 
Of The Same Name Is Purely Coincidental. 
· sp 1 
For Legal Questions Contact: &rbl. &$cont. 
• dIn off 

Note that the two symbols in the last line of our disclaimer text (&rbl. and &$cont.) are 
there to put a required blank between the text and the variable name to follow, to keep 
that variable name and the text on the same line. 

Then the APF for the end tag should: 

• Turn normal formatting back on 

• Leave some more space 

286 DCF: SCRIPT/VS Text Programmer's Guide 



• Complete the box 

• Tum ofT highlighting 

It might look like this: 

.dm elnote on 
· fa 
.sp 1 
.bx off 
.pf 
.dm off 

Your last step would be to integrate the tags into your document or into a proftle that 
you created that then imbeds DSMPROF3 (the proftle for the GML starter set that, 
among other things, turns on tag and macro processing, enables the macro library, and 
associates GML tags that you have enabled with the .AA [Associate APF) control word 
to their proper APFs). In the example, you would associate the tags :disc and :edisc like 
this: 

.aa disc lnote elnote 

Your complete tag description might look like this: 

· dm lnote on 
· pa nostart 
· bf hi2 
· bx 1 45 
.sp 1 
· in +2 
· ir +2 
· fa left 
Any Similarity To Living Or Dead Persons 
Of The Same Name Is Purely Coincidental . 
. sp 1 
For Legal Questions Contact: &rbl. &$cont. 
· dm off 

* 
.dm elnote on 
· fo 
.sp 1 
.bx off 
.pf 
.dm off 

* 
.aa disc lnote elnote 

With your tag complete, you can now specify 

: disc. John Doe 
: edisc. 

and you will get the disclaimer 

Chapter 24. Processing GML 287 



Any Similarity To Living Or Dead Persons 
Of The Same Name Is Purely Coincidental. 

For Legal Questions Contact: John Doe 

printed at the top of your next page with the variable text (in this case, John Doe) added 
as a result of the processing of your tag. 

288 DCF: SCRIPT /VS Text Programmer's Guide 



Chapter 25. Verifying Spelling 
SCRIPT/VS can automatically verify the spelling of words. When this function is acti­
vated, each word in your document will be checked for correct spelling. The 
SCRIPT jVS dictionaries, described later in this chapter, are used for spelling verification, 
and also hyphenation. 

Spelling Verification 
The spelling of words in your input fIle will be checked by the SCRIPT jVS spelling ver­
ification function when you include the SPELLCHK option in the SCRIPT command. 

The SPELLCHK option causes SCRIPT /VS to verify spelling. Each word is verified us­
ing the spelling and hyphenation dictionaries specified with the .DL [Dictionary List] 
control word. unless spelling verification has been turned off with the .SV [Spelling 
Verification] control word. If no .DL control word has been encountered, the default 
dictionary for your installation will be used. Spelling errors are listed with other errors 
found during formatting. using the .UW [Unverified Word] control word. 

Whenever misspelled words are found in an input line, the . UW control word is executed 
with the misspelled words as parameters. This control word issues an error message to 
tell you that those words were not verified. 

However, if you wish to have some function perfonned when a misspelled word is en­
countered, you can define a .UW macro. 'Vhen macro substitution is on, your .UW 
macro will be executed whenever misspelled words are found. Note, however, that after 
the . UW control word or macro is processed, the misspelled words are still on the line, 
and are processed as part of that text input line. In other words, you cannot use the 
. UW macro to correct or remove such words from a line. 

When unverified words are found. you may want to add them to an addenda dictionary 
using the .DU [Dictionary Update] control word so that only the first occurrence is de­
tected; or you may want to write the words to a fIle to use later as an addition to your 
dictionary. 

The following .UW macro will do both functions: 

.dm uw on 

.mg //Unverified Words: &* 

. du add &* 

.wf .du add &* 
• dm off 
.ms on 

Mter you have fonnatted a document containing this macro with the SPELLCHK op­
tion of the SCRIPT command, the DSMUTWTP fIle will contain a list of all unverified 
words, prefixed with .DU ADD. This fIle must be edited to remove any truly misspelled 
words and can then be renamed and imbedded the next time the document is fonnatted 
to create an addenda dictionary. 

Chapter 25. Verifying Spelling 289 



For purposes of spelling verification, a word is a string of two to fifty-five characters de­
limited by word delimiters. The WORD parameter of the .DC [Define Character) control 
word specifies characters that are to be interpreted as word delimiters during spelling ver­
ification. The spelling of each string marked with word delimiter characters is separately 
verified. A list of the default word delimiter characters is in Figure 17 on page 291. 

Characters given with WORD will be added to the current word delimiter set when 
ADD is specified; they will be deleted when DEL is specified. 

The following example shows how the WORD parameter is used to separate individual 
words for spelling verification. A hyphen (-), for instance, is initially a punctuation char­
acter, so the term in-laws will be processed by spelling verification as a single word. 
However, if you enter 

· de word -

the hyphen will be treated as a word delimiter, and the term in-laws will be checked as 
two separate words. 

The backslash (\) is initially neither a word delimiter nor a punctuation character, so the 
term APL\360 will be verified as a single word. The backslash is not keyable on some 
terminals, but it can be identified as a word delimiter by entering its hexadecimal code 
on any terminal: 

· de word eO 

The term APL\360 will now be processed as two separate words. 

The PUNC parameter of the .DC [Define Character) control word specifies characters 
that are to be recognized as punctuation for spelling checking. When punctuation char­
acters occur within a word, they will be retained when the word is checked against the 
dictionary; if they occur at either end of a word, they will be removed before checking 
takes place. 

The initial punctuation characters are the hyphen (-) and single quote ('). Characters 
given with PUNC will be added to the current set of pf punctuation characters if ADD 
is specified; they will be deleted if DEL is specified. 

For example, the slash (/) is initially a word delimiter character, so when the term 
SCRIPT/VS is processed by spelling verification, SCRIPT and VS are checked sepa­
rately as two different words. If you enter 

· de pune / 

the slash will now be treated as a punctuation character, and the term SCRIPT/VS will 
be checked as a single word. If you enter the term jrubbish/, the slashes will be removed, 
since they occur at the ends of the word, and the word rubbish will be verified. 

When words are verified for correct spelling, the original word, using the case (upper, 
lower, or mixed) as it occurs in the input line after symbol substitution, is checked 
against both the addenda and main dictionaries that make up the SCRIPT /VS dictionary 
being used. If no match is found and the word is in uppercase, all of the letters except 
the first arc translated to lowercase and the word is again checked against both diction­
aries. If still no match is found, the first letter is translated to lowercase and the word is 
again checked against both dictionaries. If no match is found this time, SCRIPT jVS re­
moves the prefix and suffix, if any, to yield the word's root. This form of the word is 
then checked against both dictionaries. If again no match is found, the word is consid­
ered unverified. SCRIPTjVS synthesizes a .UW [Unverified Word] control word and ex­
ecutes it with all of the unverified words from a single input line. 

290 DCF: SCRIPT/VS Text Programmer's Guide 



Code Character Code Character Code Character 

05 Tab 4F I 6F ? 
11 Special Blank 1 5A ! 7A 
12 Special Blank 1 5B $ 7E = 
13 Special Blank 1 5C * 7F " 
16 Backspace 5D 8B { 
40 Blank 5E 9B } 
41 Required Blank 2 5F AO -
4A ¢ 61 / AD 
4B . (Period) 6B . AF • 
4C < 6C % BD 
4D ( 6D -
4E + 6E > 

Special blanks are used for justification in documents formatted for the 3800 Printing Subsys­
tem. 

The required blank is a blank which cannot have space added to it during justification. The 
code point assignment of the required blank can be changed with the .DC [Define Character] 
control word. 

Figure 17. Characters that Delimit Words for Spelling Verification: The .DC [Define Character] control word can 
be used to make other characters word delimiters. 

Note: Because stem processing (the process of removing the prefix and suffix of a word) 
is perfonned only after each word is translated to lowercase, all words placed in the 
addenda dictionary should be in lowercase if stem processing is desired. No match will 
be found for a lowercase occurrence of a word if that word was added to the addenda 
dictionary in uppercase. 

Spelling verification is normally perfonned using the addenda and main dictionaries with 
stem processing. Words that contain numbers are not checked unless requested with the 
NUM parameter of .SV [Spelling Verification] control word. 

You can specify that: 

• The addenda dictionary is not to be used: 

. sv noadd 

• No stem processing is to be perfonncd: 

.sv nostem 

• Words that contain numbers are to bc checked: 

. sv num 

Spelling verification can also be used to verify that proper names start with an initial 
capital letter. For example, if an entry is made in the addenda dictionary as follows, 

. du add Teri 

then Teri and TERI will both be correctly spelled. However, teri will be regarded as mis­
spelled. 

Chapter 25. Verifying Spelling 291 



When spelling verification is performed, each occurrence of every word in the document 
being formatted is checked against the active dictionaries. TIlls can result in a significant 
increase in the processor time required to format a document. 

Often it is sufficient to perform spclling verification only twice: once, when the document 
is first created, to find entry errors, acronyms, and valid words that are not in the dic­
tionaries; and, again, just bcfore the final formatting runs, to catch any errors made while 
updating or revising the document. 

Spelling Fallibility 

SCRIPT jVS spelling verification is not infallible. A misspelled word with a suflix or pre­
fix could possibly yield a correctly spelled word after stem processing. For example, dis­
booked (with the stcm book), and miss teak will both be verified after stem processing. 

Also, the stem processing algorithms do not handle all exceptions to general spelling 
rules used in the English Language. For example, the plural of mouse must be explicitly 
added to an addenda dictionary. 

Spelling verification may fail on the first word of a GML Tag's residual text due to pos­
sible continuation from a previous tag. 

The SCRIPT/ VS Dictionaries 
There are three types of SCRIPT jVS dictionaries that are used for hyphenation and 
spelling verification: 

• Read-only dictionaries of words provided by IBM with SCRIPT jVS. Each contains 
about 10,000 words. Because suffixes and prefixes are removed from a word, if nec­
essary, the effective dictionary size is significantly larger. 

• User dictionaries created by your installation using the dictionary maintenance pro­
gram. These dictionaries contain words that are not in the main dictionaries but are 
used in most of the documents produced at your installation. These words often 
reflect the nature of a particular business and usually include technical terms and 
company acronyms. Once created, these dictionaries are also read-only. The algo­
rithms used in building dictionaries require that they contain more than five words 
and that they are relatively dissimilar. 

• Addenda dictionaries you create for a specific document using the .DU [Dictionary 
Update] control word. Addenda dictionaries contain words that are not in the main 
or user-created dictionaries but are frequently used in a specific document. This type 
of dictionary often includes acronyms that apply to a particular product, jargon, and 
the names of people and places. It is the most temporary of the three types of dic­
tionaries because it is rebuilt in storage every time SCRIPT/VS processes a docu­
ment that requires it. An addenda dictionary can contain a maximum of 804 words. 

IBM provides root word dictionaries in nine languages: 

• American English 
• United Kingdom English 
• Canadian English 
• Canadian French 
• French 
• German 
• Italian 
• Dutch 
• Spanish. 

292 DCF: SCRIPT/VS Text Programmer's Guide 



C 
A 
NF 

D AR 
U DE 
T IN 
C AC 
H NH 

UC/lc UCllc 

145 
144 64/44 
142 62/42 

63/43 

148 68/48 

151 71/51 
154 74/54 
152 72/52 

73/53 73/53 

76/56 
77/57 77/57 

ICE 
ICD 
ICB EBICB 

EC/CC 
EEIDF 

FDIDD 
FBIDB 

FCIDC FCIDC 

The unique stem processing routine that IBM provides with each of these languages is 
used by all three types of SCRIPTjVS dictionaries in performing hyphenation and spell­
ing verification in a given language. 

Use the .DL [Dictionary List] control word to specify which language you want to use 
for hyphenation and spelling verification. This control word automatically activates the 
corresponding stem processing routine for that language, as well as any user dictionaries 
that are associated with that root word dictionary. If a dictionary is not specified, the 
default dictionary for your installation is used. 

The hexadecimal code points for accented characters in the SCRIPTjVS spelling check­
ing and hyphenation dictionaries are listed in Figure 18. 

I S 
F G T P 
R E A A Character 
E R L N 
N M I I Name 
C A A S 
H N N H 

UCllc UC/lc UC/lc UCllc 

145 "A" Acute 
144 144 "A" Grave 
142 "A" Circumflex 

63/43 "A" Diaeresis (Umlaut) 

148 "C" Cedilla 

151 151 151 "E" Acute 
154 154 "E" Grave 
152 "E" Circumflex 
153 "E" Diaeresis (Umlaut) 

ISS "I" Acute 
"I" Grave 

156 "I" Circumflex 
157 "I" Diaeresis (Umlaut) 

69/49 "N" Tilde 

ICE "0" Acute 
ICD "0" Grave 

ICB "0" Circumflex 
EC/CC "0" Diaeresis (Umlaut) 

EE/DF "OE" Digraph 

IDE "U" Acute 
IDD IDD "U" Grave 
IDB "U" Circumflex 
IDC FCIDC IDC "U" Diaeresis (Umlaut) 

59 Ess zet 

Figure 18. Code Point Assignments for Accented Characters: Accented characters in the SCRIPT jVS Spelling 
Verification and Hyphenation dictionaries are represented using the hexadecimal code points shown 
under each language for uppercase (UC) and lowercase (Ie) characters. 

Chapter 25. Verifying Spelling 293 



Building a User Dictionary 

A user dictionary is created using the dictionary maintenance procedures that are de­
scribed in Appendix E. of the Document Composition Facility: SCRIPT/VS Language 
Reference. The words that are to be placed into the user dictionary are submitted, with 
the appropriate JCL, to run as a batch job in a background environment. 

The input record for each job is 80 bytes long and includes 

• The appropriate hyphenation for the word 

• The date on which the word was placed in the dictionary. 

Once the user dictionary has been built, it must be concatenated to the main dictionary 
(using the .DL control word) to be accessible to SCRIPTjVS. 

Because it is concatenated to the main dictionary, SCRIPT/VS treats it as part of the 
main dictionary. Therefore, whenever you specify, with the .HY [Hyphenate] or .SV 
[Spelling Verification] control words, that the main dictionary is to be used for hyphen­
ation and spelling verification, you are automatically specifying that the user dictionary is 
also to be used. Refer to Appendix E in the Document Composition Facility: 
SCRIPT/VS Language Reference for information about creating and maintaining user 
dictionaries. 

Building an Addenda Dictionary 

You use the .DU [Dictionary Update] control word to create an addenda dictionary. 
Each word specified with this control word is delimited with blanks. The word can con­
tain lowercase and uppercase alphabetic characters, the integers 0 through 9, and punctu­
ation characters, as defmed with the .DC [Defme Character] PUNC control word. 

If you are building an addenda dictionary for use with multiple documents, you can cre­
ate a separate ftle to contain the .DU [Dictionary Update] control words being used to 
build it and then imbed this ftle at the beginning of any input ftle that requires it. 

When you include single hyphens in a word that you are adding to an addenda diction­
ary, SCRIPT/VS assumes they are potential hyphenation points. Therefore, words that 
normally contain hyphens (for example, upside-down) should be specified with a double­
hyphen for the normally appearing hyphen. For example, 

.du add up-side--down 

specifies two potential hyphenatlon points: between up and side, and between side and 
down. It also specifies one normal hyphen that is to always appear: between side and 
down. 

Before creating an addenda dictionary, you should use the .DL [Dictionary List] control 
word to specify the language you are using if it is other than the default dictionary at 
your installation. This will associate the addenda dictionary with the main dictionary for 
that language. For example, 

. dl earn 

.du add Paul Ri-ver-front ec-cle-si-asti-cal 

causes SCRIPT/VS to use the American English root word dictionary, and associate the 
addenda dictionary with that main dictionary. The new addenda dictionary will contain 
the words Paul, Riverfront, and ecclesiastical, which are not in the main American Eng­
lish dictionary. 

294 DCF: SCRIPT /VS Text Programmer's Guide 



The .DU [Dictionary Update] control word can later be used to add more words to the 
addenda dictionary or to delete words previously added. For example, 

.du add Ty-pog-ra-phy 

.du del Paul Ri-ver-front 

adds the word Typography to the addenda dictionary and removes the words Paul and 
Riverfront from it. 

If you specify a new language prior to specifying the .DU ADD and .DU DEL control 
words, the new words will be placed in the addenda dictionary associated with the new 
language. For example, 

. dl germ 

.du add Aus-wahl-list-en Ent-wick-lung 

causes the German main dictionary to be used instead of the American English one, and 
the words Auswahllisten and Entwicklung to be added to the addenda dictionary associ­
ated with this main dictionary. 

Note: More than one language can be used when processing a document. However, only 
one language can be active at a time. 

TLIB: Specify Spelling Checking and Hyphenation Libraries 

The TUB option specifies text libraries that contain IBM-supplied root word diction­
aries, user-created root word dictionaries, and stem processing routines for use in spelling 
checking and hyphenation. 

The TUB option is specified as: 

TLIB ( libnamel [ ... libname8] ) 

libname is the name of a CMS text library. The flletype is TXTUB. The CMS search 
sequence is used to locate the library on any accessed disk. 

• The specified libraries are searched when a dictionary is named in the .DL 
[Dictionary List! control word which is not included as part of the SCRIPT/VS 
load module. Both the dictionary and stem processing routines arc loaded from the 
libraries. 

• If the TUB option is not specified, the library searched is SVTEXT TXTLIB. 

• If the dictionary or dictionaries used are included as part of the SCRIPT;VS load 
module when it is created, no library is needed. 

• If you want to use a user library and the default library, you must specify both on 
the TUB option. 

The TUB option is valid only in CMS. 

Chapter 25. Verifying Spelling 295 



Searching a SCRIPT {VS Dictionary 

Any time SCRIPT jVS encounters a word that needs to be hyphenated, it searches the 
SCRIPT jVS dictionary for the word as it appears in the input line. The associated 
addenda dictionaries are searched first and then, if the word is not found there, the 
SCRIPT jVS main dictionary with which the addenda dictionaries are associated. 

If no match is found in any of these dictionaries, and the word, as it appears, is all in 
uppercase characters, all of the letters except the first are translated to lowercase and 
SCRIPT jVS again searches for the word in the addenda and main dictionaries. If no 
match is found, SCRIPT /VS translates all of the letters to lowercase and repeats the 
search. 

If no match is found this time, SCRIPTjVS removes the prefix and the suffix if any, to 
yield the word's root. This form of the word is then searched for in the dictionaries. If no 
match is found, the word will be hyphenated using an algorithmic hyphenator unless 
.HY NOALG was specified. 

Stem Processing 
The stem processing function attempts to generate one or more possible root words 
from which the input word might be derived. Suffix and prefix processing are both per­
formed on the input word. The stem processing function will not generate a root word, 
or stem, less than three characters long. 

When a word's prefix is removed, the resulting stem is not changed. However, when a 
word's suffix is removed, the stem processing function derives the word's stem based on 
the spelling rules for the language being used. For example, in English the word churches 
yields the stem church, and the word flames yields the stem flame. 

Words may have to be processed repeatedly to remove multiple suffixes before yielding a 
stem. For example, the word conceptions would lose the two suffixes s and ion before 
yielding the stem concept. 

The following descriptions summarize, by language, the prefixes and suffixes 
SCRIPT jVS checks for during this process. 

English Prefixes alld Suffixes 
SCRIPT /VS checks for the following prefixes during stem processing: 

ANTI ANY BACK COUNTER CROSS DE 
DIS DOWN EN FORE IN INTER 
INTRA KILO MACRO MEGA MICRO MILLI 
MINI MIS MULTI NON OUT OVER 
PRE PRO RE SEMI SOME SUB 
SUPER TELE TRANS UN UNDER UP 

SCRIPT jVS also checks for these seven suffixes: 

I (apostrophe) S ED AL ALLY 
ING ION 

296 DCF: SCRIPT/VS Text Programmer's Guide 



French Prefixes and Suffixes 
There are two types of French63 prefixes that SCRIPT /VS checks during stem process­
ing: contractions that are the result of elision processing, and grammatical prefixes. The 
following are the contractions that SCRIPT /VS checks for: 

D' (DE) J' (JE) L' (LEILA) s' (SE/SI) 
Nt (NE) M' (ME) JUSQU' (JUSQUE) LORSQU t (LORSQUE) 
QU' (QUE) T' (TE) PUISQU' (PUISQUE) QUOIQU' (QUOIQUE) 

SCRIPT /VS also checks for these grammatical prefixes: 

INTER ENTRE CONTRE TRANS SUR ANTI 
DE(S) EN EM IN 1M RE 
REM REN RES REDE 

The French suffixes that SCRIPT/VS checks for are: 

ERAI ERAS ERA ERONS EREZ 
ERONT ERAIS ERAIT ERIEZ ERIONS 
ERA lENT lRAI IRAS IRA IRONS 
lREZ IRONT IRAIS IRA IT IRIONS 
lRAIENT OSITION(S) ATION(S) ATEUR(S) ATRICE(S) 
ATIF(S) ATIVE(S) ATIVEMENT IVE(S) IVEMENT 
IONS SIONS TIONS INS INT 
I/NMES I/NTES INRENT IS IT 
lIMES lITES IRENT US UT 
U/MES U/TES URENT ISSE ISSES 
ISSENT ISSEMENT ELLE(S) ELLEMENT EUSE(S) 
EUSEMENT ENT(S) ENTES ENCE(S) ANT(S) 
ANTE(S) ALE(S) AUX ALS ALEMENT 
E EMENT X AIS AIT 
AITS IEZ AlENT ABLE(S) ABLEMENT 
AI AS A A/MES A/TES 
ABILlTE(S) IBILlTE(S) E s ER(S) 
lEUR EUR EURS RONT 

S3 These prefixes and sufJixes are also checked for Canadian French. 

Chapter 25. Verifying Spelling 297 



Dutch Prefixes and Suffixes 
The following Dutch prefixes are processed by SCRIPT/VS during stem processing: 

AAN 
AF 
AVERIJ 
BELEIDS 
BIJ 
BOUW 
BURGER 
CONTRA 
DISCONTO 
DRIE 
EI 
FILM 
GELD 
HER 
HOEK 
KABEL 
KLUB 
KOSTEN 
MAATSCHAPPIJ 
MICRO 
NETTO 
OCTROOI 
ONT 
PERS 
PRIJS 
PSYCHO 
RESEARCH 
SALDO SPROEI 
SLIB 
STUD IE 
TELEGRAM 
TOE 
TUSSEN 
VALUTA VLIEGTUIG 
VERZEKERINGS VRAGHT 
VOOR 
WEER 
ZAND 
ZIJ 

298 DCF: SCRIPT/VS Text Programmer's Guide 

AARDAPPEL 
ANTI 
BANK BOEREN 
BE 
BINNEN 
BOVEN 
BURO 
DAAR 
DOOR 
DRIEE:N 
EIND 
FOTO 
GROND 
HOEK 
HUUR 
KALK 
KOMMANDO 
LABORATORIUM 
MASSA 
MIKRO 
NIEUWBOUW 
OKTROOI 
ON 
PLAN 
PRODUCTIE 
RADIO 
RIJ 
SAMEN 
STAATS 
TEGEN 
TENTOON 
TOUW 
UIT 
VENDU VOORT 
VIJFEN 
VRAGHTEN 
WEG 
ZEE 
ZINK 

ACHTEN 
ATOOM 
BASIS BOOM 
BIER BUlTEN 
BLAAS 
BRUTO 
CLUB 
DAK 
DRAAD 
DRUK 
EXPORT 
GAS GIRO 
HALF 
HOOFD 
IN INCASSO 
KANTOOR 
KONTRA 
LEIDING 
MEDE MILIEU 
NA 
NlVEAU 
OM 
OP 
POMP 
PRODUKTIE 
REGLAME 
RISICO 
SGHAKEL 
STOF 
TELEFOON 
TERRE IN 
TRANS ITO 
VAST 
VER 
VLOEI 
VRIJ 
WERP 
ZELF 

ACHTER 
AUTO 
BEDRIJFS 
BlJEEN 
BODEM 
BUREAU 
COMMANDO 
DEPOSITO 
DRAA I 
EENEN 
FABRIEKS 
GE GROEI 
HAVEN 
HUIS 
JAAR 
KAPITAAL 
KOOP 
LOS 
MEE 
NEGENEN 
NIVO 
ONDER 
OVER 
POST 
PROGRAMMA 
REKLAME 
RISIKO 
SCHEEPS 
STROOM 
TELEGRAAF 
TERUG 
TROUW 
VEEL 
VIEREN 
VLOEISTOF 
WAAR 
WONING 
ZEVENEN 



SCRIPT /VS also checks for the following Dutch suffixes: 

ELIJKE 
DENDE 
LOZE 
IE:LE 
LIJKEN 
TOREN 
EN 
ER 
LIJKHEID 
ING 

LIJKE lJE 
ENDE KTE 
E ERE 
DE INGEN 
ELIJKHEDEN LIJKHEDEN 
EREN ELEN 
DEN VAN 
DER LOOS 
HEID END 
DING IING 

JE 
PTE 
ELE 
IINGEN 
HEDEN 
BAREN 
lEN 
S 
DEND 

ENDE 
BARE 
AGE 
ELIJKEN 
SOREN 
LOZEN 
BAAR 
ELIJKHEID 
lEND 

Chapter 25. Verifying Spelling 299 



Italian Prefixes and Suffixes 
There are two types of Italian prefixes that SCRIPT jVS checks for during stem process­
ing: contractions that are formed during elision processing, and grammatical prefixes. 
The following list summarizes the contractions that SCRIPTjVS checks for: 

L' ALL' ANCH' BELL' COLLI D' 
DALL' DEGL' DELL' GL' NELL' QUELL' 
QUEST' SULL' UN' NEANCH' NESSUN' NEINT' 
QUAL' QUALCOS' QUALCUN' QUAND' QUANT' SENZ' 
C' V' DAGL' S' M' T' 
BUON' COM' DEV' AGL' SUGI' COS 
TUTT GRAND 

The following list summarizes the grammatical prefixes that SCRIPTjVS checks for: 

AUTO ANTI APPAR BIS CAPO CENTRO 
CON CONTRO DIS DE EX EXTRA 
FILO FOTO IN IPER INTER RI 
SEMI SODDIS SOM SOPRA SOS SOTTO 
SUPER TELE TRAS TRAT ULTRA SUB 
VICE PRE SOM STRA 'SOVRA 's 
, INTRA 'CONTRA 'SOTT 

SCRIPT /VS processes the suftixes of Italian verbs differently than it does suffixes for 
Italian nouns. The Italian noun suffixes that SCRIPT;VS checks for are: 

A E I 0 AZIONE AZIONI 
ANZA ANZE ATORE ATORI ATRICE ATRICI 
ATURA ATURE IZIONE IZIONI ISTA ETTO 
ETTO ETTI ETTA ETTE HETTO HETTI 
HETTA LINO LINI INA INE INI 
NCINO TINA TINO AMENTE CAMENTE EMENTE 
AMENTO AMENTI IMENTO IMENTI LMENTE TAMENTE 
CHE( CHE) ISSIMA ISSIME ISSIMI ISSIMO 
ATIVO ATIVI ATIVA ATIVE ABILE ABILI 

300 DCF: SCRIPT/VS Text Programmer's Guide 



The Italian verb suffixes that SCRIPT /VS checks for are: 

A AI AMMO ANDO ANO ANTE 
ANTI ARE ARONO ASSE ASSI ASSHm 
ASTE ASTI ATA ATE ATI ATO 
AVA AVAMO AVANO AVATE AVI AVO 
0 INO E EMMO ENDO EI 
ENTE ENTI ERONO ESIMO ESSE ESSERO 
ESSI ESSIMO ESTE ESTI ETE EVA 
EVAMO EVANO EVATE EVI EVO UTA 
UTE UTI UTO ONO ERE ERO 
ERAI ERA EREMO ERETE ERANNO EREI 
ERESTI EREBBE EREBBERO EREMMO ERESTE AMERAI 
METTERAI MANGERAI LASCERAI ISTE ISTI ITA 
ITA II I IMMO IRAI IRANNO 
IRE IREBBE IREBBERO IREI IREMMO IREMO 
IRESTE IRESTI IRETE ITA ITE ITI 
ITO IVA IVAMO IVANO IVATE IVI 
IVO ISSE ISSERO ISSI ANO IAMO 
lATE ISCA ISCANO ISCE ISCI ISCO 
ISCONO CO GO CA GA GHE 
CRE CIA RAI RA REMO RETE 
RAr\n~o RESTI REBBE REMMO RESTE REBBERO 
SERO ETTERO 

Chapter 25. Verifying Spelling 301 



German Prefixes 
The following Gennan prefixes are processed by SCRIPT /VS during stem processing. 

ABER 
AClITUND 
ALT 
ANTI 
AUF 
BAGATELL 
BAUSPAR 
BESCHLUSS 
BlLANZ 
BUCH 
DEFIZIT 
DISKONT 
DREIUND 
DRUCK 
EINFUHR 
EINSATZ 
EIN 
ERSATZ 
EXISTENZ 
FAHRT 
FERNMELDE 
FINANZIELL 
FLUT 
FREMD 
FUENF 
GARANT IE 
GELD 
GEPAECK 
GEWERBE 
GIRO 
GRUENDSAETZ 
HALBJAHRES 
HAUS 
HERAN 
HERBEl 
HERUM 
HILFS 
HINAUS 
HlNUNTER 
HOCHSCHUL 
HUNDERT 
INITIATIV 
INVENTAR 
JUGEND 
KAPITAL 

ABTAST 
ACHT 
ANLAGE 
ANTRAGS 
AUSFUHR 
BAHN 
BEDARFS 
BESITZ 
BINNEN 
BUDGET 
DEPOT 
DOLLAR 
DREI 
DURCHFUHR 
EINKAUFS 
EINSPRUCHS 
ELEKTRO 
ERWERBS 
EXPORT 
FAHR 
FERN 
FINANZ 
FORT 
FRIST 
FUERSORGE 
GAST 
GEMEINDE 
GESAMT 
GEWERBS 
GLEICH 
GRUND 
HALB 
HE I MAT 
HERAUF 
HEREIN 
HE RUNTER 
HINAB 
HINEIN 
HINWEG 
HOCH 
IMPORT 
INNEN 
INVESTIV 
JUSTIZ 
KARTELL 

302 DCF: SCRIPT/VS Text Programmer's Guide 

ABSATZ 
AKZEPT 
ANLElHE 
AN 
AUSSEN 
BANK 
BEl 
BESTELL 
BRIEF 
DAR 
DIENST 
DOPPEL 
DRITTEL 
DURCH 
EINLAGE 
EINUND 
ENERGIE 
EUROPA 
FABRIK 
FEHL 
FEST 
FLUGZEUG 
FRACHT 
FRUEH 
FUNKTIONAERS 
GAS 
GEMEIN 
GESETZ 
GEWINN 
GRENZ 
GUT 
HAND 
HElM 
HERAUSGE 
HERNACH 
HERVOR 
HINAN 
HINDURCH 
HINZU 
HOECHST 
INDIVIDUAL 
INSOLVENZ 
INVESTMENT 
KABEL 
KASSE 

AB 
ALLGEMEIN 
ANLERN 
AUFTRAG 
AUS 
BAR 
BEREIT 
BETRIEBS 
BRUTTO 
DA 
DlREKT 
DREH 
DRITT 
EIGENTUMS 
EINNAHME 
EINZEL 
ENTGEGEN 
EXEKUTIV 
FACH 
FEIN 
FILIAL 
FLUG 
FREI 
FUENFUND 
GANZ 
GEBAEUDE 
GENERAL 
GEWAEHR 
GE 
GROSS 
HAFT 
HAUPT 
HERAB 
HERAUS 
HERUEBER 
HER 
HINAUF 
HINUEBER 
HIN 
HONORAR 
INDUSTRIE 
INTERZONEN 
IN 
KAMPF 
KAUF 



KERN KLAGE KLEIN KLINIK 
KLIMA KOLLEKTIV KOMMUNAL KOMPROMISS 
KONJUNKTUR KONKURRENZ KONKURS KONTO 
KONTROLL KONZERN KRAFT KREDIT 
KURIS KULTUR KULTUS KUNSTSTOFF 
KUNST KURS KURZ KUR 
LANG LEHR LIZENZ LORN 
LOS LUFT LUXUS MACHT 
MAGNET MANAGEMENT MARKT MATERIAL 
MEHR MERK METALL MIET 
MIKRO MINDEST MINIMAL MISS 
MITTEL MIT MODELL MONOPOL 
MONTAN NACHFRAGE NACHSCHUB NACHWUCHS 
NACH NATIONAL NETTO NEUNUND 
NEUN NEU NICHT NOMINAL 
NORD NORMAL NOT NUTZ 
OBEN OBER OPTIMAL ORTS 
OST PACHT PAKET PARALLEL 
PARTE I PATENT PAUSCHAL PERSONAL 
PFAND PFLICHT PLAN PORTO 
POST PREIS PRE SSE PRIVAT 
PROBE PROBLEM PROFIT PROJECT 
PROTEST PROZENT PROZESS PUNKT 
QUER RAND RANG RATS 
REFORM REGEL REGIONAL REIN 
REISE REKLAME REPARATUR REPRAESENTATIV 
REPORT RESERVE REST RISIKO 
ROHSTOFF ROH RUECKWAERTS RUECK 
RUHEGELD RUHE RUNDFUNK RUND 
SACH SALDO SAMMEL SCHATZ 
SCHECK SCHEIN SCHLUSS SCHNELL 
SCHREIB SCHRIFT SCHUL SCHUTZ 
SECHSUND SEE SELBST SICHT 
SIEBENUND SOFORT SOLL SONDER 
SOZIAL SPAR SPERR SPEZIAL 
SPITAL SPRACH STADT STAHL 
STANDARD STAMM START STIMM 
STOER STRAF STRAHL STREIK 
STROM STRUKTUR STUECK SUBSTANZ 
SUED SUPER SYSTEM TAR IF 
TAT TAUSCH TElL TELEFON 
TELEGRAM TENDENZ TERMlN TEST 
TEXTIL TON TOTAL TRANSPORT 
TREUHAND TREUHAENDER UEBERNAHME UEBERSCHUSS 
UMLAUFS UMSATZ UMTAUSCH UMWELT 

Chapter 25. Verifying Spelling 303 



UM UNFALL UN UR 
VALUTA VERDIENST VERGLEICHS VERKAUFS 
VERKEHR VERLADE VERLUST VERMAECHTNIS 
VERSAND VERTRIEBS VIEL VIERTEL 
VIERUND VIER VOLL VORAN 
VORAUF VORAUS VORJAHRES VORSORGE 
VORWAERTS VOR WACHSTUMS WAHL 
WANDEL WECHSEL WEG WEHR 
WEIHNACHTS WELT WERBE WERT 
WEST WIDER WOHL WOHN 
ZEHN ZENTRAL ZIEL ZINS 
ZIVIL ZOLL ZURUECK ZUSATZ 
ZUSCHUSS ZUWACHS ZU ZWECK 
ZWEIG ZWEIUND ZWEI 

304 DCF: SCRIPT/VS Text Programmer's Guide 



Spanish Prefixes 
The following Spanish prefixes are processed by SCRIPT jVS during stem processing. 

CONTRA RECOMP PRES# PRES$ SUBS# 
SUBS$ TRANS ANTI COMP CONP 
PRE> REM/I REM$ REN/I REN$ 
RES/I RES$ CON DES 1MB 
IMP INB INP IRR PRE 
RE> SUB IN RE 

Chapter 25. Verifying Spelling 3' 





Part 4. Appendixes 
This part of the book contains additional information about SCRIPT JVS. Included in 
this section are the following appendixes: 

• Appendix A - Using SCRIPTJVS with Other Programs 

• Appendix B - Improving System Performance. 

Part 4. Appendixes 307 





Appendix A. Using SCRIPT /VS with Other Programs 
You can use SCRIPT/VS to fonnat an input stream prepared by another program. You 
can also use SCRIPT /VS as a preprocessor, to prepare an input ftle for processing by 
another text processing system or by an application program. 

Producing Inpllt for ST AIRSI VS 
The Storage and Infonnation Retrieval System/Virtual Storage (STAIRS/VS) is an IBM 
program product that provides content-based retrieval of documents using a comprehen­
sive indexing structure. Documents to be stored in the ST AIRS/VS data base must be 
prepared in a Condensed Text Fonnat (CTF). SCRIPT/VS can provide input for 
ST AIRS/VS in this fonnat, as shown in Figure 19 on page 311. 

Specifying STAIRS/VS Output 

Use the DEVICE option of the SCRIPT command to specify STAIRS/VS output. (For 
details, refer to the description of the DEVICE command option in the Document Com­
position Facility: SCRIPT/VS Language Reference.) 

When you specify DEVICE(ST AIRS) or CTF, SCRIPT/VS fonnats the input docu­
ment as it would for device 1403W6. The fonnatted lines are then converted to 
STAIRS/VS CTF blocks. These blocks are fixed length records of 1008 bytes and they 
must be directed to either an F (fixed-length records) or FB (fixed-length, blocked re­
cords) type data set. The use of a V (fonnat-V records) or VB (variable-length, blocked 
records) data set may cause a system error. 

If you specify DEVICE(STAIRS) and PRINT, FILE, or TERM, the document is writ­
ten to the specified destination for proofreading. 

Restrictions Imposed on Formatted Output 

The ST AIRS/VS program recognizes only the text in the body of a document. Conse­
quently, running headings and footings, footnotes, and floats are ignored when preparing 
STAIRS/VS output. Multiple-column sections are treated as one single column. Under­
scoring, overstriking, skip, and space are also ignored. 

Whenever a paragraph has a paragraph identifier that is equal to or lower than the previ­
ous paragraph identifier, ST AIRS/VS will create a new logical document. This is referred 
to as stepdown. This mayor may not be the result of a user error. In either case, 
SCRIPT /VS will flag it as an error in proofing mode output as described below. 

In addition, ST AIRS/VS requires that its input not exceed 69 characters per line, or 449 
lines per paragraph. In documents prepared for STAIRS/VS, lines exceeding these limi­
tations are flagged when output is being prepared in proof fonnat, and are truncated 
when output is being prepared in CTF records. The following error flags are placed in 
columns 72 through 80 of proof output: 

Appendix A. Using SCRIPT/VS with Other Programs 309 



C - more than 69 characters 
L - more than 449 lines 
P - paragraph id stepdown. 

A line is considered to be a sentence delimited by full stops: a full stop character followed 
by two blanks. As described in "Chapter 3. Marking Up Documents with SCRIPT/VS" 
on page 37, SCRIPTjVS will automatically insert an extra blank between sentences 
when an input line ends in a full stop character, to satisfy this requirement. 

STAIRS/VS Paragraph Identification 

ST AIRS/VS requires that a 3-character identifier be associated with each paragraph of a 
document placed in its data base. 

STAIRS/VS paragraph identifiers are composed of a single decimal digit (0 through 9) 
followed by one or two alphameric characters in ascending order (blank, A through Z, 
and 0 through 9). SCRIPTjVS, by default, numbers the fIrst paragraph of a document 0, 
and increments the paragraph number by one with each break when concatenation is on, 
or by one with each input line when concatenation is off. 

Thus, the fIrst and subsequent paragraphs will be numbered: 

0 OAE OA2 OBB 
OA OAF OA3 OBC 
OAA 
OAB OAZ OA9 
OAG OAO OB 
OAD OA1 OBA 

You can reset the STAIRS/VS paragraph numbering counter at any time with the .SO 
[ST AIRS/VS Output] control word. For example, specifying 

.so pid 20b 

causes subsequent paragraphs to be numbered 

20B 20Z 208 
20G 200 209 
20D 201 21 

21A 
20X 206 21B 
20Y 207 

When the ST AIRS/VS paragraph numbering counter is reset to a value that is equal to 
or less than the last value used, a new logical document is created, regardless of whether 
a new document name has been specified with the .SO DOC control word. 

When output is prepared in condensed text format, the ST AIRS/VS paragraph number 
is included as pat1 of the CTF record with each line. When output is prepared in proof 
format, the STAIRS/VS paragraph number is printed to the left of the ftrst line of each 
paragraph. 

Information for the document name, operator number, and read and delete password 
ftelds of the CTF block can also be provided with the .SO [STAIRS/VS Output] control 
word. 

310 DCF: SCRIPT/VS Text Programmer's Guide 



Offset 
Dec. Hex. Length Contents 

0 0 12 SCRIPTIVS Document Name 
12 C 3 Paragraph number of first line 
15 F 1 Continued Block Count 
16 10 2 Operator Number 
18 12 2 CTF Record Length 
20 14 5 Read Password 
25 19 5 Delete Password 
30 1E 45 (Reserved) 
75 4B 69 First line of text 

144 90 864 Twelve more lines: 
144 90 3 Paragraph number of second line 
147 93 69 Second line of text 
216 D8 3 Paragraph number of third line 
219 DB 69 Third line of text 
... ~ ... ... ... 
936 3A8 3 Paragraph number of thirteenth line 
939 3AB 69 Thirteenth line of text 

CTF record blocks are not cleared or blanked out. The record length must be read in order te 
determine the end of the valid data. 

Figure 19. ST AIRS/VS Condensed Text Format (CTF) Records: Each record has a fixed length of 1008 bytes 
and contains up to 13 lines of text. 

The A TM S COllvel'sioll Routine 
The A TMS-to-SCRIPT /VS conversion routine is composed of three separate element 

• The conversion program, which runs as a processor under the control of the Do 
ment Library Facility. This processor scans ATMS documents for ATMS-II 
ATMS-III formatting controls and substitutes SCRIPT/VS symbols that inV( 
similar or equivalent formatting functions. 

• The A TMS conversion proftle, DSMA TMS3, which is used when invok 
SCRIPT /VS to format documents that were converted from A TMS. The proftle 
filles to the formatter the substitutions required for the symbols generated by 
conversion program. 

• The library of SCRIPT /VS macros that are used to emulate the original A TJ 
functions. 

The conversion routine is designed to convert most A TMS controls, GML tags, and i 
plieit keying conventions to similar or equivalent SCRIPT /VS symbols. The output 
the conversion routine can then be formatted using DSMA TMS3 and the library 
SCRIPT /VS macros supplied to emulate the original A TMS functions. 

Some functions in A TMS are not directly convertible. Editing of the document may 
necessary to achieve the desired formatting results. 

A TMS to SCRIPT jVS conversion limitations include: 

• Floating skips 

• Hyphenation 

• Text block indention 

Appendix A. Using SCRIPT/VS with Other Programs 



• Une controls within split text 

• GML 

• Office System/6 OCL and special character codes 

• The r option of the Ide and ldr controls. 

In many of these areas the most noticeable difference is that the SCRIPT /VS equivalent 
of the A TMS function can cause a line break. 

onversion Technique 

A TMS documents to be converted can be in ATMS FTOO output format or any other 
sequential format. If the conversion routine is being used for a document in A TMS 
FTOO format, SCRIPT/VS takes the information contained in the document header re­
cords (page width, page depth, and tab settings) and inserts it into the output as 
SCRIPT /VS symbols. If the conversion routine is being used for a document that is in a 
format other than ATMS FTOO and the ATMS application control definition (ACD) 
character is not the default (:), the real ACD character must be passed to the attribute 
processor using the PARM parameter. See the Document Library Facility Guide for de­
tails. 

ypl,ellatbzg JV ords 

In A TMS, hyphens in a word at the end of an input line indicate potential hyphenation 
points should that word fall at the end of an output line. If the word does not fall at the 
end of an output line, the hyphens are removed. 

The input processor combines the word parts together and builds a .HW [Hyphenate 
Word] SCRIPT /VS control word to obtain the same effect. 

'Jnversion Program Operation 

The ATMS ftle(s) in FTOO format can be imported into the Document Library Facility 
or used directly as input to the formatter in batch mode. 

Conversion of the ATMS controls and A TMS GML into SCRIPT /VS symbols can be 
accomplished during an IMPORT or READ operation, or the SCRIPT/VS formatting 
process. After each access method logical record has been read from the source docu­
ment, an input processing program that has been associated with the content attribute of 
A TMS is given control by the Document Library Facility. Tills input processing pro­
gram converts the ATMS controls and A TMS GML as described above. When the re­
cord conversion is complete, the formatter, or the IMPORT or READ routine, gains 
control in order to continue with the task. 

on-Format Command Conversion 

The following describes the conversion of each A TMS nonformatting control. 

rd of Imbedded Control 

The !x is deleted. 

DCF: SCRIPT/VS Text Programmer's Guide 



ATMS GML Identifier 

The !mname is converted to :name (where the: is the default SCRIPT/VS GML delim­
iter). Whenever the name has had special characters translated to @ (at sign) or trun­
cated to ten characters if necessary, a message is issued indicating the original name and 
its resultant name. It does not matter whether the name is in upper or lowercase letters. 

Suhdocument Identifier 

The subdocument identifier !i is converted to a .SE (Set Symbol] and some .DM (Define 
Macro] control words with all of the units that follow the !i being converted to elements 
of the macro. 

The macros thus defmed must be known to SCRIPT /VS when formatting documents 
that refer to the macros through the ATMS !m syntax. To accomplish this, the subdocu­
ments containing the macros can be specified on the SCRIPT command statement 
through the use of the SYSVAR option. For example, to use SCRIPT/VS to format an 
A TMS document (ATMSDOC) that contains :m's that are defmed by another subdocu­
ment (SUBDOC), the following command is required: 

SCRIPT ATMSDOC (PROFILE(DSMATMS3) SYSVAR(A SUBDOC)) 

The IBM-supplied ATMS profile document (DSMATMS3) examines SYSVARs A 
through J to determine if they have been set. If so, their values are taken as the names of 
documents to be imbedded before the start of formatting of the primary document. This 
limit of 10 names can be changed by the user by altering DSMATMS3 at the user's own 
installation. 

Fonnatting Control Conversion 

A TMS formatting controls are identified by the occurrence of an application control de­
fmition (ACD) (usually!) and an application type defmition (ATD) (t,l,m,f,i,x), and are 
converted to SCRIPT/VS symbols by the SCRIPT/VS ATMS attribute processor. 

It must be understood that in the following descriptions, the A TMS controls are con­
verted to SCRIPTjVS symbols by the attribute processor. The SCRIPT/VS symbols are 
resolved at format time to control word separators and macros that do not exist in the 
attribute processor output. 

The definitions of the SCRIPTjVS symbols created by the attribute processor are con­
tained in DSMA TMS3. 

The conversion macros are defined in DSMA TMS3 MACLIB. 

Explicit Paragraphing Specification 

The !tf control inter-paragraph space is placed before the paragraph rather than after the 
paragraph as in A TMS. 

!tf; causes text to be formatted corresponding to the parameters set in the previous 
!tfnl;n2;n3;n4. Note that the control without the following; resets the format settings to 
the values set by the first explicit paragraphing !tf in the ftle (or the default values). 

The !tfe ends the explicit paragraphing mode so that paragraphing is controlled again by 
entry conventions. 

Appendix A. Using SCRIPT/VS with Other Programs 313 



Implicit Paragraphing Specification 

Floating Skip 

A TMS recognizes the end of paragraphs by the following conventions: 

• A double CR at the end of a paragraph. The use of the double CR does not affect 
the paragraph spacing in explicit paragraphing. 

• Indention of the first line of a paragraph by at least one tab (with certain re-
strictions). 

• Issuing most text format (!t) controls. 

The input processor recognizes these conditions in !tf (formatted mode) and inserts the 
appropriate symbols. 

The ATMS floating skip control !t + nn;a is forced to the top of the page. 

U7idthjl>epth l7ontrol 

The ATMS width/depth control !tw when converted causes a line break unlike ATMS. 

Text Alignment l7ontrols 

!tal, !tar, !tac, and !taj when converted cause a line break unlike ATMS. 

Floating Keeps 

The !tif control causes all pending floats to be placed on the page. 

Text Block Indention 

The A TMS indent block control (!tib) can only be partially supported in SCRIPT jVS. 
The second parameter, the number of blocks to be indented, is only supported for for­
matted paragraph blocks. In mode it is not supported. The first parameter, the amount 
of indent for blocks, sets the indention value of all text of the same mode ( or !tf). 

Page Number l7ontrol 

Stop l70de 

Split Text 

The ATMS page number symbol !lpn resolves to the default SCRIPT/VS page number 
symbol &. 

The A TMS typewriter input capability specified by !lsc resolves to a generated bullet 
character, the same as is done for ATMS operations on the peripheral queues. This is 
consistent, because the input processor is preparing data, stored in the Document Li­
brary Facility, for formatting by SCRIPTjVS. The optional spaces entered by the 
A TMS user will be removed by the input processor. 

The ATMS split text control !lst cannot be used on a line with other line controls. (re­
sults are unpredictable) 

314 DCF: SCRIPT/VS Text Programmer's Guide 



Revision Markers 

Counters 

fhe inclusion of markers in the output is controlled in A TMS by the print command 
option (m). Similarly, when revision markers are to be printed by SCRIPT/VS in docu­
ments converted by the A TMS conversion processor, a SYSVAR with the name M with 
any value must be specified; otherwise, the revision marker will not be printed. 

The A TMS counters are handled by two controls, !tset and !lcn of the form: 

!tsetjidentifier;valuejstyle 

where identifier is 

pn-page number 
cn-all counters 
cn-specific counter 0 thru 9 

value is 

o to 65535 
or 

+0 to +65535 

style is 

a or la for upper and lowercase alphabetic 
r or lr for upper and lowercase roman 
n for arabic 

These controls are simulated using SCRIPT/VS control words and symbols. 

Note: Counters can not be used in split text lines. 

Triplets and Backspaces 

In A TMS there is an entry convention involving backspaces for characters that do not 
occur on the keyboards but that can be represented on the output printers by graphics. 
These entry conventions are defmed in ATMS-II Terminal Operations Guide and the 
ATMS-III Terminal Operations Guide. 

The input processor converts defmed triplets (character-backspace-character) to a single 
hexadecimal character that represents the triplet. All other instances of backspaces are 
left unchanged. 

The special characters and their hexadecimal codes are listed in Figure 20 on page 316. 

Appendix A. Using SCRIPT/VS with Other Programs 315 



Hexadecimal Hexadecimal 
Code Character Code Character 

4A 
4C 
4F 
SF 
6E 
8B 
8C 
8F 
9B 
9F 
AB 
AC 
AE 
AF 
BO 
B1 
B2 
B3 
B4 
BS 
B6 
B7 
B8 
B9 
BB 
Be 
BE 
BF 

&X'4a 
&X'4c 
&X'4f 
&X'Sf 
&X'6e 
&X'8b 
&X'8c 
&X'8f 
&X'9b 
&X'9f 
&X'ab 
&X'ac 
&X'ae 
&X'af 
&X'bO 
&X'b1 
&X'b2 
&X'b3 
&X'b4 
&X'bS 
&X'b6 
&X'b7 
&X'b8 
&X'b9 
&X'bb 
&X'bc 
&X'be 
&X'bf 

Figure 20. Character Codes Recognized by ATMS-III Conversion: The triplet (character-backspace-character) 
conventions for special characters defined in the ATMS-Ill Terminal Operations Guide are recognized 
and translated into a single hexadecimal character. 

ATMS Control - SCRIPT/ VS SY111hol Relationship 
Figure 21 on page 317 identifies the ATMS controls and the SCRIPT/VS symbols to 
which they are converted. The substitution for the SCRIPT/VS symbols is contained in 
DSMA TMS3 and should be looked at in conjunction with this list. The contents of 
each macro that is eventually invoked by the substitution is contained in DSMA TMS3 
MAC LIB. 

316 DCF: SCRIPT/VS Text Programmer's Guide 



ArMS Input 

!fname 
!iname 

!len;+ 
!lda;x 
!lde;x 
!lpn 
!loe 
!los;x 
!lre 
! I rs; x 
!lse 
text1!lst;xtext2 
!lue 
!lus 
!mname 
!t( 
!t) 
! tH 
!t+nn;x 
!tae;n 
! taj; n 
! tal; n 
! tar; n 
!tem 
!tds 
!tfn1;n2;n3;n4 
!tfe 
!thh 
!thm;n 
!tib;n1;n2 
!tif 
!til;n1;n2;n3 
!tir;n1;n2;n3 
!tj 
!t1e 
!t1s 
!tm;n1;n2 
!tnj 
!tnp 
!tpd;n1;n2 
!tps;nxx 
!trs;n 
!tset;id;va1;style 
!tss 
!ttab;n1; ... ;nm 
!ttab-;n1; ... ;nm 
!ttab+;n1; ... ;nm 
!tts 
!tu 
!tue 
!tufnn 
!tufenn 
!tuhnn 
!tuhenn 
!tw;n1;n2 
!twz;n 
!x 

Conversion Output 

&GlF name 
.SU OFF 
.SE name = '&GlCONT.&GlCW .. Glname' 
.DM name OFF 
&GlLC N + 
&GlLDA X 
&GlLDE X 
&GlLPN. 
&GlLOE. 
&GlLOS X 
&GlLRE. 
&GlLRS X 
&GlLSC. 
&GlLST Gltext1GlxGltext2 
&GlLUE. 
&GlLUS. 
:name 
&GlTBKP 
&GlTEKP 
&GlTEBK 
&GlSKIP nn X 
&GlTAC N 
&aHAJ N 
&GlTAL N 
&GlTAR N 
&GlTCM 
&GlTDS 
&GlTF n1 n2 n3 n4 
&GlTFE 
&GlTHH 
&GlTHM n 
&GlTIB n1 n2 
&GlTIF 
&GlTIl n1 n2 n3 
&GlTIR n1 n2 n3 
&GlTJ 
&GlTl E 
&GlTlS 
&GlTM n1 n2 
&GlTNJ 
&GlTNP 
&GlTPD n1 n2 
&GlTPS Nxx 
&GlTRS n 
&GlTSET ID val STYLE 
&GlTSS 
&GlTTAB n1 '" nm 
&GlTTABM n1 nm 
&GlTTABP n1 ... nm 
&GlTTS 
&GlTU 
&GlTUC 
&GlTUFnn 
&GlTUFCnn 
&GlTUHnn 
&GlTUHCnn 
&GlTW n1 n2 
&GlTWZ n 
null 

Figure 21. ATMS-III Controls to SCRlPT/VS Conversion 

Appendix A. Using SCRIPT/VS with Other Programs 317 



Using SCRIPTI VS as a Postprocessor 
You can use SCRIPT jVS to format reports using data from data processing meso An 
application program could access these files, petform the necessary computations, and 
create an output me. The output me could contain GML markup just as if it had been 
created with normal text entry procedures. You will then be able to process it with the 
same flexibility as any of your other documents. 

Alternatively, the application program can call SCRIPT/VS as a subroutine. This can be 
done when the Document Library Facility is installed with SCRIPTjVS. For details on 
using SCRIPTjVS via the Document Library Facility, see the Document Library Facility 
Guide. 

You can also use SCRIPT/VS to prepare input for itself, except in an ATMS-III envi­
ronment. For example, you can use the .WF [Write To File] control word to create in­
put files dynamically. These files can later be resubmitted to SCRIPTjVS for further 
processing. 

You can also write formatted output to a me and use it as input for a subsequent invo­
cation of SCRIPT /VS. 

Using SCRIPTI VS as a Preprocessor 
You can use SCRIPT/VS as a preprocessor if you want SCRIPTjVS to produce an out­
put file that can be processed by some other text formatter or application program. To 
use SCRIPTjVS as a preprocessor, you must first thoroughly understand the text for­
matter that is to receive the output me prepared by SCRIPT/VS. 

Your SCRIPT/VS input me can contain any markup appropriate for SCRIPT/VS (that 
is, GML tags, control words, macros, and symbols) as well as text and implicit format­
ting conventions (such as leading blanks, leading tabs, null lines, and full stops). You 
must build a profile and APFs that interpret the SCRIPT/VS markup and generate ap­
propriate formatter controls.G<I 

In most cases, you will find it preferable to use GML markup when using SCRIPTjVS 
as a preprocessor. The following discussion, therefore, will assume that your document's 
markup observes conventions like those described in the Document Composition Facility: 
Generalized Markup Language Starter Set Reference. 

Developing Preprocessor APFs and Profiles 

SCRIPT/VS has a great variety of general document-handling functions that can be used 
independently of formatting. You can use these functions to create APFs that will trans­
late a SCRIPT/VS document into suitable input for another program, such as a format­
ter that can support photocomposers. 

For example, the GML starter set APFs for ordered lists and list items automatically 
generate numbers (or letters) for the items in an ordered list. TillS is convenient, because 
it permits the list to be revised without renumbering all the items. 

You can create a modified version of the APFs that retain the general processing func­
tions but eliminate the SCRIPT jVS control words that result in formatting. For exam­
ple, instead of executing the .SK [Skip] and .IN [Indent] control words, you would insert 

6~ See "Chapter 24. Processing GML" on page 277 for details about proflles, APFs, and map­
ping tags to APFs. See "Chapter 21. Processing Symbols" on page 223 for details about sym­
bols, and "Chapter 23. Processing Macros" on page 261 for details about macros. 

318 DCF: SCRIPT/VS Text Programmer's Guide 



the appropriate formatting controls of the postprocessor into the output stream. The 
SCRIPT /VS symbol substitution capability can still be used to calculate parameters for 
the postprocessor's formatting controls. 

Some of the logical sequence of formatting controls might have to be changed, however. 
The graphic effect of having the first line of a list item printed to the left of the indention 
for the rest of the list item is achieved, in SCRIPT/VS, with the .IN [Indent] control 
word. The receiving processor might require a different sequence of formatting controls 
to achieve the same graphic effect. 

When modifying an APF in this way, you can structure its logic and function to produce 
formatting different from that produced by the original APF. You can change the sym­
bol definition for symbols used to achieve different formatting values. 

In addition to creating APFs, you would also create a proflie that would map to the new 
APFs. The proflie would also issue control words that would tum off justrncation and 
page numbering, and the like, so the output would look like a source file . 

. pm 0 
• wz off 
. fo off 

You might also need to translate special characters that might be unacceptable to the 
postprocessor. 

By having two sets of APFs and two proftles, you could continue to print draft copies of 
the document on a line printer while getting final output on a photocomposer via the 
postprocessor. 

Redefining Symbols 

Many symbols used in source document markup will not require redefinition. Among 
these are symbols used in the following ways: 

• As abbreviations for lengthy character strings 

• As references to generated information that is not format-dependent (such as a fig­
ure or section number -- but not a page number) 

• To enter unkeyable characters that are represented by the same codes in both 
SCRIPT /VS and the postprocessor 

Handling Directly Entered Control Words 

Observing a GML convention for direct entry of control words, like that described in the 
Document Composition Facility: Generalized Markup Language Starter Set Reference, 
makes it easy to prepare your document for another processor. The following discussion 
refers to the specrnc conventions recommended in that book, but the information is ap­
plicable to conventions that can be adopted by your own installation. 

Managing a Source Document 

The .CM [Comment], .1M [Imbed], and .SE [Set Symbol] control words are executed by 
SCRIPT/VS before the document is available to the postprocessor. You need take no 
special action with respect to them. 

However, the .RC [Revision Code] and .OC [Output Comment] control words are differ­
ent; they have a formatting effect. (The .RC control word inserts a revision code charac­
ter to the left of an output line; the .OC control word places unformatted output 

Appendix A. Using SCRIPT/VS with Other Programs 319 



comments and carriage control characters at the same position in the output as the~ 
were encountered in the input.) If the postprocessor has comparable functions, you car 
defme macros, called .RC and .OC, to generate the corresponding postprocessor con· 
troIs. (This technique can be used for all control words if a one-to-one conversion ap· 
proach is taken.) 

If the revision code and/or output comment functions are not available, you can deacti· 
vate them by specifying 

. dm re /. em 

and/or 

• dm oe /. em 

which defmes the .RC and/or .OC macros to be comments. 

Note: The .OC [Output Comment] control word is ignored for page printers. 

Preparing for Processing 

When you are ready to have SCRIPT jVS prepare your input ftle for the receiving text 
processor, take the usual steps needed for SCRIPTjVS execution, as discussed in the 
SCRIPT command options section of the Document Composition Facility: SCRIPT/VS 
Language Reference. 

Although the ftle produced by SCRIPTjVS will contain the correct text and markup for 
your postprocessor, it will not necessarily have the correct physical characteristics. Some 
postprocessors can require record lengths and formats, or other characteristics, which dif­
fer from those produced by SCRIPTjVS. You might have to use a utility program, or 
code your own, to handle such interface requirements. 

320 DCF: SCRIPT/VS Text Programmer's Guide 



Appendix B. Improving System Performance 
Several facilities provided by SCRIPT /VS can significantly increase the system resources 
consumed in formatting documents. The facilities discussed in this appendix should be 
used with discretion, only when really needed, and with an understanding of their impact 
on performance. 

SCRIPT Command Options 
These options of the SCRIPT command can significantly increase the CPU resources 
needed to format a document: 

• TWOPASS - Process the document twice 

• SPELLCHK - Perform spelling verification 

• INDEX - Create an index. 

Each function must be explicitly specified; none are defaults. The effect on performance 
of each option is independent of the other options and is discussed separately. 

The TWOP ASS Option 

The TWOPASS option causes the document being formatted, including all imbedded 
files and macros, to be processed twice. Only the SCRIPT jVS symbol table and table of 
contents file are saved from the ftrst pass; formatted output is produced only on the sec­
ond pass. 

The TWOPASS option must be used when an automatically generated table of contents 
is placed in the front of a document or when reference is made to symbols that are set 
later in the document.s5 

Not unexpectedly, the TWOPASS option roughly doubles the system resources con­
sumed in formatting a document. However, unresolved forward references are often ac­
ceptable in early proofmg versions of a document. Similarly, the table of contents can 
often be moved temporarily to the back of the document. In these cases, the TWOPASS 
option can be omitted for all but the final formatting runs, when the table of contents is 
replaced properly. 

The SPELLCHK Option 

When spelling verification is enabled, each occurrence of every word in the document 
being formatted is checked against the active dictionaries. 

6S These are called forward references, because the value of the symbol is used before the symbol 
is defined. 

Appendix B. Improving System Performarlce 321 



Because spelling verification significantly increases the processor time required to format 
a document, it should be used only occasionally. Often it is sufficient to perform spelling 
verification only twice: once, when the document is first created, to fmd entry errors, 
acronyms, and valid words that are not in the dictionaries, and again, just before the 
fmal formatting runs, to catch any errors made while updating or revising the document. 

The INDEX Option 

When the INDEX option is included, index terms specified in the body of the document 
are saved and sorted to produce an index in the back of the document. Producing a large 
index can consume significant amounts of both virtual storage and processor time, be­
cause the index entries are kept in storage and sorted dynamically. 

Because an INDEX is often not needed for draft copies of a document, the INDEX 
option can simply be omitted; the index terms specified in the document will be ignored. 

SCRIPTI VS ill the ATMS-III Envirollment 
In the ATMS-III environment, CICS provides facilities for creating and editing docu­
ments, and SCRIPTjVS can be used to format these documents. If you are an A TMS 
user, you can invoke SCRIPT/VS to format your documents in anyone of three ways: 

• On-line formatting: SCRIPTjVS can be invoked at the terminal to format a docu­
ment cUlTently residing in A TMS working storage. The output is placed in 
CICSjVS auxiliary temporary storage; it can then be transferred to a printer or re­
viewed at your terminal. 

• Using a peripheral queue: Requests can be placed on a special queue for deferred 
document processing by SCRIPT/VS. A single CICS task is used to process all 
such queues. 

• Batch formatting: A batch job can be submitted to format a document using 
SCRIPT/VS if the document and all imbedded documents and macros reside within 
the Document Library Facility. 

Tuning ATMS-III for SCRIPT/VS 

Five parameters provided with the ATMS-III system generation macro DOKVA can be 
used to regulate SCRIPT/VS in the CICS environment. The parameters are: 

SPA Limits the amount of virtual storage used by SCRIPT jVS when formatting 
documents submitted to a peripheral queue. SPA gives the number of 8K 
byte blocks that can be obtained per document, beyond an initial 64K byte 
block. 

SPP Limits the number of output pages that can be produced when formatting 
documents submitted to a peripheral queue. SPP gives the number of pages 
permitted. 

ST A Limits the amount of virtual storage used by SCRIPT /VS when formatting 
documents online from a terminal. ST A gives the number of 8K byte blocks 
that can be obtained per document, beyond an initial 64K byte block. 

STO Limits the number of concurrent online users of SCRIPT /VS. 

TSP Limits the number of output pages that can be produced when formatting 
documents on-line from a terminal. TSP gives the number of pages permit­
ted. 

322 DCF: SCRIPT/VS Text Programmer's Guide 



Further information on tuning ATMS-III in the CICS environment can be found in the 
ATMS-III Program Reference Manual. 

Appendix B. Improving System Performance 323 





The glossary illustrates some basic SCRIPT/VS for­
matting concepts and defInes words and phrases that 
have special meanings in SCRIPT /VS or special 
meanings in a typographical sense. The terms are de­
fmed as they are used in this book. If you do not 
find the term you are looking for, refer to the index 
or to the IBM Data Processing Glossary, GC20-1699. 

This glossary includes defInitions developed by the 
American National Standards Institute (ANSI) and 
the International Organization for Standardization 
(ISO). This material is reproduced from the Ameri­
can National Dictionary for Information Processing, 
copyright 1977 by the Computer and Business 
Equipment Manufacturers Association, copies of 
which can be purchased from the American National 
Standards Institute, 1430 Broadway, New York, New 
York 10018. 

ampersand: The & character. 

When an ampersand begins a character string, 
SCRIPT/VS assumes the character string is a symbol 
name. If the symbol name is defmed, SCRIPT/VS 
replaces the symbol with its value (unless symbol 
substitution is oil). 

In running footings, running headings, and running 
titles, the ampersand is usually the page number 
symbol. 

When encountered by itself on the right side of a .SE 
[Set Symbol] control word, it is interpreted as the 
page number symbol. 

APF: See application processing function. 

API: See application programming interface. 

application processing function (APF): In GML 
processing, the processing that is performed when a 
document element or attribute is recognized. In 
SCRIPT/VS, an APF is implemented as a sequence 
of control words, possibly intermixed with text and 
symbols, in one of three forms: macro defmition, 
value of a symbol, or imbedded fIle. 

application programming interface (API): An ex­
ternal, published interlace that can be programmed 
to by another application. 

Glossary 
attribute: A characteristic of a document (or docu­
ment element) other than its type or content. For ex­
ample, the security level of a document or the depth 
of a fIgure. 

attribute label: In GML markup, a name of an at­
tribute that is entered in the source document when 
specifying the attribute's value. 

back matter: In a book, those sections (such as 
glossary and index) that are placed after the main 
chapters or sections. 

balancing: In multicolumn formatting, the process 
of making column depths on a page approximately 
equal by re-distributing the text in the columns. See 
also vertical justification. 

baseline: An imaginary horizontal line upon which 
most of the letters in a line of text appear to rest. 

batch environment: The environment in which non­
interactive programs are executed. 

binding edge: The edge of a page to be bound, sta­
pled, or drilled. Defmed with the BIND option of 
the SCRIPT command. 

body: (1) Of a printed page, that portion between 
the top and bottom margins that contains the text. 
(2) Of a book, that portion between the front matter 
and the back matter. 

boldface: A heavy-faced type. Also, printing in this 
type. 

bottom margin: On a page, the space between the 
body or the running footing, if any, and the bottom 
edge of the page. 

break: An interruption in the formatting of input 
lines so that the next input line is printed on a new 
output line. 

caps: Capital letters. See also initial caps. 

caption: Text accompanying and describing an illus­
tration. 

character: A symbol used in printing. For example, 
a letter of the alphabet, a numeral, a punctuation 

Glossary 325 



mark, or any other symbol that represents informa­
tion. 

character set: A ftnite set of different characters that 
is agreed to be complete for some purpose. For ex­
ample, in printing, the characters that constitute a 
font. 

character space: The horizontal size of a character. 
This size depends upon which font the character is 
from and on which physical device the character is 
printed. 

character spacing: The space between characters in 
a word. 

cicero: In the Didot point system, a unit of 0.1776 
inch (4.512 millimeters) used in measuring 
typographical material. 

eMS: An interactive processor that operates within 
VM/370. 

code page: A font library member name that gives 
the association between code points and the charac­
ter names of a font. 

code point: An eight-bit binary code representing 
one of 256 possible characters. 

coded font: (1) The combination of a code page and 
a font library. (2) A font that is fully described in 
terms of typeface, point-size, weight, width, and attri­
bute. 

column balancing: The process of redistributing 
lines of text among a set of columns so that the 
amount of text in each column is as equal as possi­
ble. 

column width: The width of each text column on a 
page. Specified with the .CL [Column Line Lenf,rth] 
control word. (In multicolumn formatting, all col­
umns on a page usually have the same width.) 

command: A request from a terminal or specified in 
a batch processing job for the performance of an op­
eration or the execution of a patiicular program. For 
example, a request given at a terminal for 
SCRIPT;VS to format a document or for an editor 
to edit a line of text. 

comment: A control word line that is ignored by 
SCRIPT ;VS. Such lines begin with either. * or .cm. 

composed text: Text that has been formatted and 
that contains control information to direct the pres­
entation of the text on page printers. 

compositor: A person or program that composes 
text. 

326 DCF: SCRIPT/VS Text Programmer's Guide 

composition: The act or result of formatting a docu­
ment. 

concatenation: The fanning of an output line that 
contains as many words as the column width allows, 
by placing the ftrst words from an input line after the 
last words from the preceding input line. When 
words from an input line would reach beyond the 
right margin and hyphenation cannot be perfoIDled, 
they are placed at the beginning of the next output 
line, and so 011. 

control word: An instruction within a document 
that identifies its parts or tells SCRIPT /VS how to 
format the document. See also macro. 

control word line: An input line that contains at 
least one control word. 

current left margin: The left limit of a column that 
is in effect for formatting. Each column's left marf,'in 
is specified with the .CD [Column Deftnition] con­
trol word. However, the current left margin (that is, 
the left boundary for an output line) might vary to 
the right of the column's left margin when indention 
is changed with the .IN [IndentJ, .UN [UndentJ, .IL 
[Indent Line], and .OF [Offset] control words. 

current line: The line in a source document at 
which a computer program (such as an editor or a 
formatter) is positioned for processing. 

debug: To detect, trace, and eliminate errors in 
computer programs and SCRIPT jVS documents. 

default value: A value assumed by a computer pro­
gram when a control word, command, or control 
statement with no parameters is processed. 

destination: The physical device to which data is 
sent. 

dictionary: A collection of word stems that is used 
with the spelling veriftcation and automatic hyphen­
ation functions. 

Didot point system: A standard printer's measure­
ment system on which type sizes are based. A Didot 
point is 0.0148 inch (0.376 millimeter). There are 12 
Didot points to a cicero. See also cicero and point. 

document: (1) A publication or other written mate­
rial. (2) A machine-readable collection of lines of text 
or images, usually called a source document. See also 
output document and source document. 

document conversion processor: A computer pro­
gram that processes a machine-readable document 
that includes formatting controls written in one for­
matter language, to produce a machine-readable doc­
ument that includes fonnatting controls appropriate 
for another formatter language. 



document library: A set of VSAM data sets, accessi­
ble in a batch environment, which contain docu­
ments and related files. 

dot leader: A set of periods that fills in the space be­
tween two pieces of split text such as a chapter title 
and its page number in a table of contents. 

duplex: A mode of formatting appropriate for print­
ing on both sides of a sheet. 

EBCDIC: Extended binary-coded decimal inter­
change code. A coded character set consisting of 
8-bit coded characters. 

edit: To create or modify the contents of a docu­
ment or file. For example, to insert, delete, change, 
rearrange, or copy lines. 

editor: A computer program that processes com­
mands to enter lines into a document or to modify 
it. 

eject: In formatting, a skip to the next column or 
page. 

em: A unit of measure usually equal to the width or 
the height of the character "m" in a particular font. 

en: A unit of measure usually equal to one-half the 
width of an em. For many typefaces, lower case 
characters tend to average the width of an en. 

epifile: The second portion of a profile (after a .EF 
control word) that is processed after a main docu­
ment has been processed. 

escapement: The space unit of movement (either 
vertical or horizontal) that is built into a physical de­
vice. For the 1403 printer with a lO-pitch train, the 
horizontal escapement unit is 1/l0th of an inch; for 
the 4250 printer, that value is 1/600th of an inch; and 
for the 3800 Printing Subsystem Model 3 and the 
3820 Page Printer, that value is 1/24Oth of an inch. 

extended symbol processing: The processing of a 
symbol whose value causes the remainder of the line 
to be stacked and later processed as a new input line. 

factor: A dimensionless scalar value used to form a 
product with another value. Factors can also be ex­
pressed as percentages. 

figure space: (1) The width of the figure zero (0) is 
commonly used as the figure space of a given 
typeface. This is the definition of figure space as it is 
used in the Document Composition Facility. (2) A 
unit of measure equal to the width of the "en" space 
in a particular font. 

fill character: The character that is used to fill up a 
space; for example, blanks used to fill up the space 
left by tabbing. 

float: (1) (noun) A keep (group of input lines kept 
together) whose location in the source file can vary 
from its location in the printed document. (2) (verb) 
Of a keep, to be formatted in a location different 
from its location in the source ftle. 

flush: Having no indention. 

fold: (1) To translate the lowercase characters of a 
character string into uppercase. (2) To place that 
portion of a line that does not fit within a column 
on the next output line. 

font: 1) An assortment of type, all of one size and 
style. 2) A font library member that contains charac­
ters that must be used in conjunction with a code 
page font library member. 

font object: Refers to a member of a font library. In 
CMS, a font object is a file whose filetype matches 
the name of the font library. In MVS, a font object 
can be a member of a partitioned data set (PDS). 

font set: The set of fonts to be used in formatting a 
source document. 

footing: Words located at the bottom of the text 
area. See also running footing. 

footnote: A note of reference, explanation, or com­
ment, placed below the text of a column or page, but 
within the body of the page (above the running foot­
ing). 

foreground: The environment in which interactive 
programs are executed. Interactive processors reside 
in the foreground. 

format: (1) (noun) The shape, size, and general 
makeup of a printed document. (2) (verb) To pre­
pare a document for printing in a specified format. 

formatting mode: In document fonnatting, the state 
in which input lines are concatenated and the result­
ing output lines are justified. 

formatter: (1) A computer program that prepares a 
source document to be printed. (2) That part of 
SCRIPTjVS that formats input lines for a particular 
logical device type. 

front matter: In a book, those sections (such as pre­
face, abstract, table of contents, list of illustrations) 
that are placed before the main chapters or sections. 

Generalized Markup Language (GML): A language 
that can be used to identify the parts of a source 
document without respect to particular processing. 

GML: Generalized Markup Language 

gutter: In multicolumn formatting, the space be­
tween columns. 

Glossary 327 



hanging indention: The indention of all lines of a 
block of text following the first line (which is not in­
dented the same number of spaces). Specified with 
the .OF [Offset] or .UN [Undent] control word. 

head-level: The typeface and character size associ­
ated with the words standing at the beginning of a 
chapter or chapter topic. 

heading: Words located at the beginning of a chap­
ter or section or at the top of a page. See also head­
level and running heading. 

hexadecimal: Pertaining to a number system based 
on 16, using the sixteen digits 0, 1, ... 9, A, B, C, 
D, E, and F. For example, hexadecimal 1B equals 
decimal 27. See also EBCDIC. 

horizontal justification: The process of redistributing 
the extra horizontal white space at the end of a line 
of text in between the words and letters of the line so 
as to exactly fill the width of the column with the 
text. 

impact printer: A printer, such as the 1403 and the 
3211, in which printing is the result of mechanical 
impacts. 

indent: To set typographical material to the right of 
the left margin. 

indention: The action of indenting. The condition of 
being indented. The blank space produced by indent­
ing. Specified with the .IN [Indent], .IR [Indent 
Right], .UN [Undent], .OF [Offset], and .IL [Indent 
Line] control words. See also hanging indention. 

initial caps: Capital letters occurring as the ftrst let­
ter of each word in a phrase. To set a phrase in ini­
tial cap~ is to capitalize the ftrst letter of each word 
in the phrase. 

initial value: A value assumed by SCRIPT jVS for a 
formatting function until the value is explicitly 
changed with a control word. The initial value is as­
sumed even before the control word is encountered, 
whereas the default value is assumed when the con­
trol word is issued without parameters. See also de­
fault value. 

inline space: An amount of horizontal white space 
in a line that usually occurs between two words. 

input device: A machine used to enter information 
into a computer system (for example, a terminal used 
to create a document). 

input line: A line, as entered into a source fUe, to be 
processed by a formatter. 

interactive: Pertaining to an application in which 
entries call forth a response from a system or pro­
gram, as in an inquiry system. An interactive system 

328 DCF: SCRIPTfVS Text Programmer's Guide 

might also be conversational, implying a continuous 
dialog between the user and the system. Interactive 
systems are usually communicated with via termi­
nals, and respond immediately to commands. See 
also foreground. 

interactive environment: The environment in which 
an interactive processor operates. 

intercharacter space: Extra horizontal white space 
inserted between characters of a word. This space is 
in addition to the space included as part of the char­
acters by the designer of the font. 

interword space: See word space. 

italic: A typestyle with characters that slant upward 
to the right. 

JCL: Job control language. 

job control language (JCL): A language of control 
statements used to identify a computer job or de­
scribe its requirements to the operating system. 

job control statement: A statement that provides an 
operating system with information about the job be­
ing run. 

justification: See horizontal justification and vertical 
justification) 

justify: To insert extra blank space between the 
words in an output line to cause the last word in the 
line to reach the right margin. As a result, the right­
hand edge of each output line is aligned with preced­
ing and following output lines. 

keep: (noun) In a source document, a collection of 
lines of text to be printed in the same column. When 
the vertical space remaining in the current column is 
insufficient for the block of text, the text is printed in 
the next column. (In the case of single-column for­
mat, the next column is on the next page.) 

layout: The arrangement of matter to be printed. 
See also format. 

leader: (1) Dots or hyphens (as in a table of con­
tents) used to lead the eye horizontally. (2) The di­
vider between text and footnotes on a page (usually a 
short line of dashes, although you can redefme it). 

left-hand page: The page on the left when a book is 
opened; usually even-numbered. 

ligature: A single character (piece of type or font 
raster) that represents two or more input characters: 
ff and ffi are examples of characters that may be re­
presented by (printed as) a ligature. 

line device: Any of a class of printers that accept 
one line of text from the host system at a time. 



SCRIPT/VS supports such line devices as the 1403, 
2741, and 3800. 

line space: The vertical distance between the 
baseline of the current line and the baseline of the 
previous line. 

line spacing: See line space. 

logical output device: The combination of a physical 
output device and such logical variables as page size 
and number of lines per vertical inch (for line de­
vices). A specification of l403W6 is an example of a 
logical output device. 

lowercase: Pertaining to small letters as distin­
guished from capitals; for example, a, b, g rather 
than A, B, G. 

machine-readable: Data in a form such that a ma­
chine can acquire or interpret (read) it from a storage 
device, from a data medium, or from another source. 

macro: An instruction in a source language that is 
to be replaced by a defined sequence of instructions 
in the same source language. In SCRIPT/VS, a 
macro is a sequence of one or more control words, 
symbols, and input lines. A macro's deftnition can be 
recursive. 

macro substitution: During formatting, the substi­
tution of control words, symbols, and text for a 
macro. 

margin: (1) The space above, below, and on either 
side of the body of a page. (2) The left or right limit 
of a column. 

mark up: (verb) (1) To determine the markup for a 
document. (2) To insert markup into a source docu­
ment. 

markup: (noun) Information added to a document 
that enables a person or system to process it. 
Markup can describe the document's characteristics, 
or it can specify the actual processing to be per­
formed. In SCRIPT/VS, markup consists of GML 
tags, attribute labels and values, and control words. 

nonimpact printer: A printer, such as the 3800 
Printing Subsystem, in which printing is not the re­
sult of mechanical impacts, but is instead produced 
by another process such as laser beam, ink-jet, or 
electro-erosion. The 3800 Printing Subsystem, for ex­
ample, uses a laser based technology and the 4250 
printer uses an electro-erosion process. 

object.: A sequential collection of control records 
that represent documents, pages, fonts and so on. 

offset: (verb) To indent all lines of a block of text, 
except the ftrst line. (noun) The indention of all lines 
of a block of text following the ftrst line. 

option: Information entered with a SCRIPT com­
mand to control the execution of SCRIPT/VS. 

output device: A machine used to print, display, or 
store the result of processing. 

output document: A machine-readable collection of 
lines of text or images that have been formatted, or 
otherwise processed, by a document processor. The 
output document can be printed or it can be ftled for 
future processing. 

output line: A line of text produced by a formatter. 

page printer: Any of a class of printers that accept 
composed pages, constructed of composed text and 
images, among other things. SCRIPT /VS supports 
such page printers as the 4250 printer, the 3800 
Printing Subsystem Model 3, and the 3820 Page 
Printer. 

page segment: See segment. 

paginate: To number pages. 

parameter: Anyone of a set of properties whose 
values determine the characteristics or behavior of 
something. The syntax of some SCRIPT/VS control 
words includes parameters, which establish the prop­
erties of a formatting function or a printed page. 

PDS: Partitioned data set. 

pel: The unit of horizontal measurement for the 
3800 Printing Subsystem and the 4250 printer. On 
the 3800 Printing Subsystem Model I, one pel equals 
approximately 1/180th inch. On the 3800 Printing 
Subsystem Model 3 and the 3820 Page Printer, one 
pel equals approximately 1/240th inch. On the 4250 
printer, one pel equals approximately 1/600th inch. 

physical output device: A physical device, such as a 
terminal, a disk ftle, a line printer, or a nonimpact 
printer. The 1403 printer is an example of a physical 
output device. 

pica: A unit of about 1/6 inch used in measuring 
typographical material. Similar to a cicero in the 
Didot point system. 

pitch: A number that represents the amount of hor­
izontal space a font's character occupies on a line. 
For example, lO-pitch means 10 characters per inch, 
or each character is 0.1 (1/10) inch wide. 12-pitch 
means 12 characters per inch, and IS-pitch means IS 
characters per inch. 

point: (1) A unit of about 1/72 of an inch used in 
measuring typographical material. There are twelve 
points to the pica. (2) In the Didot point system, a 
unit of 0.0148 inch. There are twelve Didot points to 
the cicero. 

Glossary 329 



profile: (1) In SCRIPT /VS processing, a fIle that is 
imbedded before the primary fIle is processed. It can 
be used to control the formatting of a class of source 
documents. When processing GML markUp, the 
profIle usually contains the mapping from GML to 
APFs and the symbol settings that define the format­
ting style. (2) In the Document Library Facility li­
brary, a collection of information that identifies a 
batch SCRIPT/VS user (user profIle) or a document 
processor (attribute profIle) or that defmes certain li­
brary parameters (system profIle). 

proportional spacing: The spacing of characters in a 
printed line so that each character is allotted a space 
proportional to the character's width. 

ragged right: The unjustified right edge of text lines. 
See also justify. 

residual text: The line of text following the 
markup/content separator of a GML tag. 

right-hand page: The page on the right when a 
book is opened; usually odd-numbered. 

rule: (I) A straight horizontal or vertical line used, 
for example, to separate or border the parts of a fig­
ure or box. (2) A solid black rectangle of a given 
width, extending horizontally across the column or 
vertically down the column. 

running footing: A footing that is repeated above 
the bottom margin area on consecutive pages (or 
consecutive odd- or even-numbered pages) in the 
body of the page (text area). 

running heading: A heading that is repeated below 
the top margin area on consecutive pages (or consec­
utive odd- or even-numbered pages) in the body of 
the page (text area). 

section: When an output page has two or more 
single-column parts with the same or different 
column-widths, or a single-column part and a multi­
column part, or two or more different multicolumn 
parts, each part of the output page is called a section. 

segment: An object containing composed text and 
images, prepared before formatting and included in a 
document when it is printed. 

set size: The set size of a given typeface determines 
the number of characters that will fit in a line of a 
given width when it is printed or set. 

small caps: Capital letters in the same style as the 
normal capital letters in a font, but approximately 
the size of the lowercase letters. 

sourcc document: A machine-readable collection of 
lines of text or images that is used for input to a 
computer program. 

330 DCF: SCRIPT /VS Text Programmer's Guide 

space: A blank area separating words or lines. 

structured field: A self-identifying string of bytes, 
analogous to a logical record. A structured field con­
sists of an introducer, which identifies and character­
izes the structured field, and data or parameters. 

symbol: A name in a source document that can be 
replaced with something else. In SCRIPT/VS, a 
symbol is replaced with a character string. 
SCRIPT/VS can interpret the character string as a 
number, a character string, a control word, or an­
other symbol. 

symbol substitution: During formatting, the replace­
ment of a symbol with a character string that 
SCRIPT/VS can interpret as a value (numeric, char­
acter string, or control word) or as another symbol. 

tab: (1) (noun) A preset point in the typing line of 
a typewriter-like terminal. A preset point in an out­
put line. (2) (verb) To advance to a tab for printing 
or typing. (3) (noun) a tab character, hexadecimal 
05. 

tag: In GML markup, a name for a type of docu­
ment (or document element) that is entered in the 
source document to identify it. For example, :p. 
might be the tag used to identify each paragraph. 

terminal: A device, usually equipped with a key­
board and some kind of display, capable of sending 
and receiving information over a communication 
channel. 

text line: An input line that contains only text. 

token: A string of characters that is treated as a sin­
gle entity. In SCRIPTjVS, a parameter passed to a 
macro in one a f the local variables & * 1, ... & *n. 

top margin: On a page, the space between the body 
or running heading and the top edge of the page. 

TRC: Table reference character. In printer 
SYSOUT data sets, a second control byte, following 
the carriage control byte, which indicates which font 
the record is to be printed in. The presence of TRCs 
is indicated by the JCL parameter 
DCB= OPTCD=.J. 

TSO: An interactive processor within OS/VS2. 

typeface: All type of a single style. There might be 
several fonts (different sizes) with the same typeface 
or style. 

typeface family: A collection of fonts of a common 
typeface that vary in size and style. 

typeset: (1) (verb) To arrange the type on a page for 
printing. (2) (adjective) Pertaining to material that 
has been set in type. 



type posture: A typeface style vanatlOn indicating 
whether a typeface is upright (as in roman) or 
slanted to the right (as in italic or cursive). 

type size: The vertical height (point size) of a given 
typeface, such as 10 point. 

type style: Style variations in a typeface. Among 
these variations are posture, weight, and width. 

type weight: The relative thickness of the strokes of 
a typeface. Usually described in such tenns as light, 
demi bold, bold, and so on. 

type width: The horizontal size (set size) of a given 
typeface. The width may be given in units of meas­
urement, such as set 9 point, or it may be descrip­
tive: ultra condensed, condensed, expanded, and so 
on. 

underscore: (I) (noun) A line printed under a char­
acter. (2) (verb) To place a line under a character. 
To underline. 

unformatted mode: (1) In document formatting, the 
state in which eaeh input line is processed and 
printed without formatting. Other SCRIPT/VS con­
trol words remain in effect and arc recognized. (2) In 

document printing using the UNFORMAT option, 
the state in which each input line (control words as 
well as text) is printed as it exists in the input, in the 
order in which it is processed. No formatting is done. 

unit space: The minimum amount of additional 
spacing acceptable for purposes of horizontal justi­
fication, as specified by the font designer. 

uppercase: Pertaining to capital letters, as distin­
guished from small letters; for example, A, B, G 
rather than a, b, g. 

vertical justification: The process of redistributing 
the extra vertical white space at the end of a column 
in between the lines of text, so as to make each col­
umn in a set appear to be equal in depth. 

widow: One or two lines or words at the end of a 
paragraph that are printed separately from the rest of 
the paragraph. 

word space: The horizontal white space placed be­
tween words. This is sometimes referred to as an 
interword blank. 

word spacing: The space between words in a line. 
See also word space. 

Glossary 331 





* 42 

See control word modifier 
+ 

See continuation character 
& 

See ampersands 
&$CHAR(n) 177 
&$DCF 240 
&$DDUT 240 
&$EGML 240 
&$ENV 241 
&$GML 240 
&$LC 240 
&$LDEV 256 
&$LST 241 
&$PASS 241 
&$PDEV 256 
&$PRT 241 
&$RET 63, 239 
&$TAB 85 
&$TAGD 241 
&$VR 242 
&A' 230 
&AD' 233 
&AD' symbol attribute 

using 139 
&DH' 233 
&DV' 233 
&E' 230 
&L' 230,259 
&R' 230 
&SD' 56,233 
&SW' 56,233 
&SYSDA YOFM 228, 235 
&SYSDA YOFW 235 
&SYSDA YOFY 235 
&SYSHOUR 235 
&SYSMINUTE 235 
&SYSMONTH 235 
&SYSSECOND 235 
&SYSYEAR 235 
&T' 231 
&U' 231 
&V' 231 
&W' 232 
&X' 228 
; (semicolon) 

See control word separator 

[ 

... [Set Label] 
using 255 

A 

.AA [Associate APF] control word 
using -285 

ADD parameter 
of .DU control word 292, 295 
of .BY control word 102 

addenda dictionaries 
building 294 
defInition of 292 
searching 102 
using for spelling verifIcation 291 

ADJUST parameter 
of .RC control word 96 

Advanced Text Management System-III 
See ATMS-III 

AFTER parameter 
of .IN control word 80 
of .IR control word 80 

ALG parameter 
of .BY control word 102 

algorithmic hyphenator 102 
aligning text 72 
aligning vertical rules 162 
ALL parameter 

of .IT control word 65 
alphabetic page numbers 126 
ampersands 

in text 228 

Index 

using as page number symbol 125, 244 
.AN [And] control word 

using in macros 264 
using to check multiple conditions 255 
using with.lF 253 

.AP [Append) control word 
using 47 

APFs 

Index 333 



for GML tags 284 
formatting considerations 14 
implementing 5 
modifying 319 
when using SCRIPT /VS as a preprocessor 318 

appended mes, passing values to 48 
appending input files 

description of 47 
naming the mes to be appended 48 
symbols set when mes are appended 242 

application processing function 
See APFs 

.AR [Area] control word 
using 133 

ARABIC parameter 
of .PN control word 126 

areas 
See named areas 

arrays 
controlling elements of 245 
index counter of 246 
specifying 244, 245 

ASEP parameter 
of .DC control word 245 

associating me-id with data set name 48 
associating me-id with ftle name 48 
A TMS conversion routine 

conversion technique 312 
converting A TMS controls 

to SCRIPT/VS symbols 316 
description of 311-316 
handling formatting controls 313 
handling non-formatting controls 312 
limitations of 311 
proftle for 311 

ATMS-II 311 
converting documents to SCRIPT jVS 
format 311 

ATMS-III 
creating macro libraries in 275 
environment restrictions 20 
me naming conventions 18 
input ftle characteristics 19 
printing on page printers in 30 
using .L Y control word with 273 
using with SCRIPT/VS 3 

attributes for GML tags 
processing 282 
rules for 281 

attributes of a symbol value 229 

334 DCF: SCRIPT/VS Text Programmer's Guide 

B 

background environment 
using SCRIPT /VS in 3 

baseline 
shifting 107 

baseline shifts 
used to create subscripts 107 
used to create superscripts 107 

batch environment 
using SCRIPT /VS in 20 

.BC [Balance Columns] control word 
using 111 

.BF [Begin Font] control word 
using 177, 179 

BIND option 
effect on page margins 121 

.BL [Blank Line] control word 
effect of 91 
using 105 

blank lines 
redefining formatting convention for 91 

blanks 
leading 90 
processing input lines that begin with 271 
required 290 
terminating a symbol with 223 

blocks of text 
keeping them together 

See floats 
See keeps 

.BM [Bottom Margin] control word 
using 123 

body areas 133 
boldface font 178 
box character sets 

list of 158 
boxes 

centering text within 167 
different configurations for 168 
drawing 164 
drawing in a horizontal row 170 
drawing only the bottom line of 172 
drawing only the middle portion of 171 
drawing only the top line 170 
drawing with an open top and bottom 171 
drawing with the 3800 Printing Subsystem 172 
drawing within a box 169 
formatting text within 164 
specifying 164 
stacking 168 
terminating 164 

.BR [Break] control word 
using 78 

breaks 92 
causes of section breaks 143 
causing 41 
deftnition of 77 
effect of multicolumn format on 143 



specifying 78 
.BX [Box] control word 

c 

CAN parameter of 169, 170 
NEW parameter of 169 
SET parameter of 171 
using to draw boxes 164 

CAN parameter 
of .BX control word 169 

Canadian French prefixes 297 
Canadian French suffixes 297 
CANCEL parameter 

of .RF control word 130 
of .RH control word 130 

capitalization 
of text 187 
providing for languages other than English 204 
using &U' for 231 

.CB [Column Begin] control word 
effect on inline keeps 193 

.CC [Conditional Column Begin] control word 
effect on inline keeps 193 

.CD [Column Defmition] control word 
using 141 

.CE [Center] control word 
using 72 

CENTER parameter 
of .FO control word 73 

centering text on a page 72 
centering text within a box 167 
change bars 95 
character mappings 

canceling 202 
changing 202 

CHARS option 
description of 176 
using 175 

CICSjVS 3 
circular definition 

See definition, circular 
.CL [Column Line Length] control word 

using 122, 141 
CLOSE parameter 

epifile 49 
of .EF control word 49 

.CM (Comment] control word 
using 42 

CMS 
creating macro libraries in 273 
environment restrictions 20 
me naming conventions 18 
input me characteristics 19 
interactive processing with 61 
using MACLIB command 274 
using with SCRIPTjVS 3,63 

CMS SUBSET 63 

code page 179 
code pages 

defmition of for page printers 180 
coded font 

default for page printers 181 
coded fonts 176, 179 

definition of for page printers 180 
column balancing 

defmition of 144 
keeping blocks of text together during Ill, 146 

column length 
See page dimensions 

column line length 
See page dimensions 

columns 
balanced 111 
changing positions of 141 
conditional ejects of 124 
specifying the dimensions of 141 

combining input fues 46 
control words used 47 

.AP [Append] 47 

.1M [Imbed] 47 

.SI [Segment Include] 47 

.WF [Write To File] 47 
comments 

adding to a SCRIPT jVS me 42 
using 42 

composing lines 71 
compound symbols 227 
concatenation 71 
Condensed Text Format (CTF) 309 
conditional processing 

special techniques for 256 
using macros for 264 

conditional section number 257 
conditional sections 113 
CONT parameter 

of .DC control word 45 
continuation character 45 

defming 45 
CONTINUE option 

description of 59, 60 
control word modifier 39 
control word separator 

definition of 38 
effect of 38 
starting a symbol with 247 

control words 
defaults of 6, 37 
definition of 4 
direct entry of 319 
guidelines for entering in an input me 40 
how to select 15 
how to use 4 
marking up a document with 37 
redefining 267 
See individual control words 
using in footnotes 199 

Conversational Monitor System 

Index 335 



See CMS 
converting A TMS documents 311 

see A TMS conversion routine 
converting documents to SCRIPT/VS format 311 

converting A TMS documents 311 
converting numbers to character strings 230 
converting space unit values to horizontal device 
units 233 

converting space unit values to vertical device 
units 233 

.CP [Conditional Page Eject] control word 
using 123 

.CS [Conditional Section] control word 
IGNORE parameter of 257 
INCLUDE parameter of 258 
using 257 

.CT [Continued Text] control word 
using 46 

CTF option 
using 309 

CTL parameter 
of .IT control word 66 

customizing documents 54 

D 

.DA [DefIne Area] control word 
using 133 

date system symbol 235 
dating your document 238 
.DC (Deftne Character] control word 

ASEP parameter of 245 
changing full stop characters with 92 
CaNT parameter of 45 
IXB parameter of 213 
IXI parameter of 212 
PS parameter of 125 
PUNC parameter of 290,294 
WORD parameter of 290 

DCFINDEX 179 
.DD [Defme Data File-id] control word 

used for associating ftle-ids 48 
using in ATMS-III 49 
using in CMS 48 
using in TSO 49 

decimal numbers 
converting to roman numerals 230 
using for page numbers 126 

decimal point numbering 126 
default coded font for page printers 181 
defaults for logical output devices 31 
defming fonts for page printers 179 
defining hexadecimal codes 228 
defming macros 262 
defming symbols 223 
defining text variables 249 
defming variables 249 
deftnition 

336 DCF: SCRIPT/VS Text Programmer's Guide 

circular 211 
See also circular defmition 

list 82 
DEL parameter 

of .DU controi word 295 
DELA Y parameter 

of .KP control word 191 
delayed keeps 191 
delimiter characters 

overriding 250 
DEVICE option 

using to specify ST AIRS/VS output 309 
.DF [Deftne Font] control word 

CODEPAGE parameter of 182 
STOP parameter of 179 
TYPE parameter of 182 
using 178 

.DH [Deftne Head Level] control word 
SPAF parameter of 151 
TC parameter of 151 
using to redeftne head levels 150 

diagnostic aids 
tracing 64 

D I CT parameter 
of .HY control word 102 

dictionaries 
See addenda, main, root word, SCRIPT /VS, and 
user dictionaries 

Display Editing System 273 
distribution of text 

vertical III 
.DL [Dictionary List) control word 

specifying languages with 293 
DLF 

See Document Library Facility 
.DM [Defme Macro] control word 

using inline form of 262 
using subscripted form of 263 
using to defme macros 262 
using to redeftne head levels 152 

Document Library Facility 
as a SCRIPT /VS requirement 3 
environment restrictions 21 
using SCRIPT/VS as a subroutine 318 
using to create SCRIPT/VS macro libraries 275 

.DR [Defme Rule} control word 
using 157, 165 

DSMATMS3 311 
DSMUTTOC ftle 

using to process table of contents 149, 153 
DSMUTWTF ftle 52,53 
.DU (Dictionary Update] control word 

ADD parameter of 292,295 
DEL parameter of 295 
using 294 

DUMP parameter 
of .FL control word 194 

Dutch preftxes 298 
Dutch suffixes 299 
.DV [Defme Variable] control word 



using 249 

E 

.EC [Execute Control) control word 
using 268 

.EF [End of File] control word 
CLOSE parameter of 49 
using 54 
using to end SCRIPT jVS processing 49 

ejecting a page 124 
.EL [Else) control word 

using for alternative processing 254 
using in macros 264 
using with.lF 253 

.EM [Execute Macro] control word 
using 268 

emphasizing text 
using the .IC [Intercharacter Space] control 

word 190 
END parameter 

of .PI control word 208 
English prefixes 296 
English sufftxes 296 
entering text 

guidelines for 40 
environment restrictions 

ATMS-III 20 
CMS 20 
Document Library Facility 21 
TSO 20 
VSE 20 

ERASE parameter 
of .WF control word 53 

error messages 
control information in 59 
printing .60 

error processmg 
defaults for 22 

.ES [Extra Space) control word 
using 92 

escapement 
defmition of 114 

EVEN parameter 
of .FL control word 194 
of .PA control word 124 

even-numbered pages 
printing only on 124 
testing for 256 

extended symbol processing 247 
extra spaces 

determining the width of 93 

F 

F parameter 
of .SX control word 76 

flie names 
in ATMS-III 18 
in CMS 18 
in TSO 18 

flie-id 
associating with a real flie or data set name 48 
using in ATMS-III 48,49 
using in CMS 48 
using in TSO 48, 49 

flies 
See also input flies 
See also output ftles 
characteristics of 19 

in ATMS-III 19 
in CMS 19 
in TSO 19 

ftles, input 
combining 47 

control words used 47 
ftles, primary 

naming conventions 18 
fill characters 

between split text 76 
between tab positions 87 

.FL [Float] control word 
DUMP parameter of 194 
effect of .LL control word on 142 
EVEN parameter of 194 
ODD parameter of 194 
ORDER parameter of 194 
PAGE parameter of 194 
using 194 

FLOAT parameter 
of .KP control word 191 

floating keeps 191 
floats 194 

description of 194 
formatting environment of 220 

.FN (Footnote] control word 
effect of .LL control word on 142 
using 197 

.FO [Format Mode] control word 
CENTER parameter of 73 
EXTEND parameter 75 
FOLD parameter 75 
LEFT parameter of 73 
RIGHT parameter of 74 
TRUNC parameter 75 
using 72 

font 
deftnition of for page printers 179 

font library 
deftnition of for page printers 181 
index listing 182 
index program 182 

Index 337 



storing fonts in 179 
types of objects in 182 

font library index program 
running 182 

font library index program report 
font characteristics in 181 

attribute 181 
figure space 182 
font identifier 181 
line space 181 
point size 181 
weight 181 
width 181 
word space 182 

font library objects 
code page 179 
coded font 179 
DCFINDEX 179 
font 179 

FONTLIB option 
defaults 182, 183 

in ATMS-III 182 
in CMS 182 
in MVS 183 
in TSO 182 
in VSE 183 

specifying 182, 183 
in A TMS- III 182 
in CMS 182 
in MVS 183 
in TSO 182 
in VSE 183 

using 182 
fonts 

attributes 185 
italic 185 
outlined 185 
specifying 185 
underscored 185 

boldface 178 
code page 185 

specifying 185 
coded 176 

specifying 176 
default 175 
defining 178 
defming by characteristics 182 
defming for impact printers 178 
defining for page printers 179 
describing for page printers 179 
for impact printers 7 
for typewriter terminals 7 
initial 175 
point size 184 

specifying 184 
provided by SCRIPT /VS 176 
required for the 3800 Printing Subsystem Model 

3 24 
required for the 3820 Page Printer 24 
required for the 4250 printer 24 

338 nCF: SCRIPT/VS Text Programmer's Guide 

saving 177 
selecting 175 
selecting for several devices 185 
specifying 7 
specifying with CHARS option 176 
typeface 183 

specifying 183 
using with the 3800 Printing Subsystem Model 

1 176 
using with the 3800 Printing Subsystem Model 

3 176 
using with the 3820 Page Printer 176 
using with the 4250 printer 176 
weight 184 

specifying 184 
width 184 

specifying 184 
with STOP attribute 179 

footings 
See running headings and footings 

footnotes 
callout 197 
controlling line lengths of 122 
formatting environment of 220 
providing a leader for 197 
providing special formatting within 199 
rules for entering 197 
specifying 197 
splitting of 199 

FOR parameter 
of .IN control word 80 
of .lR control word 80 

forcing a new page 123 
Foreground Environment Feature 3 
format mode 71 
formatting 

alternate modes of 75 
for a typewriter tenninal 179 
termination of 49 
text within boxes 164 

formatting environment 
defming 219 
description of 219 
for footnotes 220 
for keeps and floats 220 
for named areas 220 
for running headings and footings 219 
named 220 
parameters of 219 
saving and restoring 220 

formatting fractions 
on page printers 108 

FRAC parameter 
of .PN control word 126 

~rench prefixes 297 
French suffixes 297 
[ull stop characters 

changing 92 
defmition of 92 

.FV [Format Vertically] control word 



using 112 

G 

Generalized Markup Language 
See GMLtags 

German prefixes 302 
GML delimiter 

defining 279 
GML markup 37 

see GMLtags 
GMLtags 

attributes 
See attributes for GML tags 

automatic processing of 280 
converting ATMS to SCRIPT/VS 311 
creating your own 285 
definition of 4 
marking up a document with 37,277 
markup content separator 278 
markup syntax 277 
processing of 

See APFs for GML tags 
residual text processing 283 
tag-to-APF processing 284, 285 

class mapping 285 
direct mapping 285 
explicit mapping 285 
using the .AA [Associate APF) control 

word 285 
using the .GS [GML Services) control 

word 285 
using 5 
using in footnotes 199 
using in macro definitions 261 
value attribute processing 282 
when using SCRIPT /VS as a preprocessor 318 

.GO [Goto) control word 
using to bypass part of a ftle 255 

.GS [GML Services) control word 
using 277, 285 

H 

hanging indention 84 
head levels 

characteristics of 149 
defining 150 
definition of 149 
redefining 150 
spacing for 150 
that cause page ejects 150 

headings 
See head levels 
See running headings and footings 

hexadecimal codes 

defining 228 
for special characters 201 

highlighting 178 
.Hn [Head Level n] control word 

SCRIPTjVS processing of 149 
horizontal rules 157 
horizontal space 

units for specifying 6 
horizontal white space 

inserting 94 
.HR [Horizontal Rule] control word 

using 158, 160 
.HW [Hyphenate Word] control word 

using 102 
.HY (Hyphenate] control word 

ADD parameter of 102 
ALG parameter of 102 
DICT parameter of 102 
LADDER parameter of 99 
MAXPT parameter of 99 
MINPT parameter of 99 
MINWORD parameter of 99 
NOADD parameter of 102 
NOALG parameter of 102,296 
NODICT parameter of 102 
RANGE parameter of 100 

hyphenation 
changing the frequency of 99 
of single words 102 
prefixes checked for during 296 
search sequence for 296 
See also algorithmic hyphenator 
suffixes checked for during 296 

hyphenation and horizontal justification 
SCRIPTjVS support for 99-103 

I 

.IC [Intercharacter Space1 control word 
using 190 

.IE [Index Entry) control word 
"header" parameter of 215 
using 214 

.IF [If] control word 
using for character translations 202 
using for conditional processing 253 
using in macros 264 
using SYSO UT comparand with 256 
using SYSPAGE comparand with 256 
using with substitution off 254 

IGNORE parameter 
of .CS control word 257 

.IL [Indent Line] control word 
using 83 

.1M [Imbed] 
using 47 

IMBED parameter 
of .WF control word 53 

Index 339 



imbedded flIes, passing values to 
imbedding input flIes 

description of 47 
naming the flIes to be imbedded 48 
symbols set when flIes are imbedded 242 

implicit markup 
.IN [Indent] control word 

FOR and AFTER parameters of 79 
using 78 

INCLUDE parameter 
of .CS control word 258 

indention 79 
hanging 84 
of a single line or paragraph 80 
permanent 79 
simplest form of 78 
temporarj 79 
using offset mode 84 
using with tabs 82 

index 
resetting the page numbers 208 
TWOPASS considerations 207 

index counter 
accessing 246 
setting 247 

index entries 
creating 208 
generating page numbers for 207 
including multi-levels of 209 
specifying null page numbers for 211 
specifying page numbers for 210 
specifying ranges of pages 208 
specifying tenns for 208 
specifying text of 211 

INDEX option 
description of 207 
improving system performance with 322 
using 207 

INDEX parameter 
of .SE control word 225 

index tenns 
cross-referencing 210 
emphasizing a reference to 208 
multiple references to 208 
specifying 207, 208 
with same sort key 211 

indexes 
See also index entries 
See also index tenns 
automatically generating 207-215 
creating 214 
creating entries for 208 
generating section headers for 215 
handling of special characters 212 
including cross references 210 
including multi-level entries 209 
including page references 208 
positioning within a document 207 
sorting entries for 211 

See also sort keys 

340 DCF: SCRIPT/VS Text Programmer's Guide 

specifying headings for 207 
inline keeps 192 
input file 17 

data contained in 37 
guidelines for creating 40 
processing using SCRIPT jVS 17 

input flIes 
adding comments 42 
appending 47 
bypassing part of 255 
characteristics of 19 

in a CMS environment 19 
in a TSO environment 19 
in an A TMS-III environment 19 

combining 47 
control words used 47 

conditionally merging 257 
dynamically creating 318 
fonnatting of 17 
imbedding 47 
naming conventions 18 

ATMS-III 18 
CMS 18 
TSO 18 

passing parameters to 242 
preparing for processing 320 
SCRIPTjVS 3 
terminating fonnatting of 49 
using a master flIe 50 

input lines 
beginning with a blank 271 
beginning with a tab 271 
overdraw conditions 75 

extend 75 
fold 75 
truncate 75 

input processing 
tracing of 64 

input trace 
output lines generated by 64 

input, logically processing 253 
interactive environment 

processing SCRIPTjVS documents in 61 
using SCRIPT jVS in 3, 225 

interactive processing 61 
interword spacing 92 
.IR [Indent Right] control word 

FOR and AFTER parameters of 79 
using 78-82 

.IS [Inline Space] control word 
ABSOLUTE parameter of 90 
BLANK parameter of 90 
BREAK parameter of 90 
using to set tabs 89 
using to specify horizontal white space 94 

ISPF 3 
.IT [Input Trace] control word 

ALL parameter of 65 
CTL parameter of 66 
SNAP parameter of 67 



STEP parameter of 65 
using 64,66 

Italian prefixes 300 
Italian suffixes 300 
.IX [Index] control word 

using 207 
IXB parameter 

of .DC control word 213 
IXI parameter 

of .DC control word 212 

J 

justification 
definition of 71 
horizontal 100 

K 

with the .HY [Hyphenate] range control 
word 100 

vertical 112 
with the .FV [Format Vertically] control 
word 112 

keeping blocks of text together 191 
keeps 

control words not allowed within 193 
formatting environment of 220 
order of precedence among 193 
types of 191 

KEY parameter 
of .PI control word 213 

.KP [Keep] control word 
DELAY parameter of 191 
FLOAT parameter of 191 

L 

labels 
setting 255 

LADDER parameter 
of .HY control word 99 

layout of a page 
See page layout 

.LB [Leading Blank] control word 
effect of 90 

leading blanks 90 
leading tabs 90 
leadout points 

in vertical justification 114 
length of a page 119 
.LI [Literal] control word 

using 40 
LIB option 

description of 272 

specifying macro libraries with 234, 273 
in a CMS environment 274 
in a TSO environment 274 
in an ATMS-III environment 275 

specifying symbol libraries with 234 
library guide 

for DCF publications 1X 

line devices 
defmition of 24 

line lengths 
See page dimensions 

line spacing 106 
lines 

composing 71 
.LL [Line Length] control word 

control words it affects 142 
specifying 122 
using 119 

.LO [Lead-Out] control word 
using 105 

logical output devices 
defaults for 31, 92 
definition of 6 
description of 22 
effect on page dimensions 122 
formatting considerations for 6, 22 
specifying 6 
specifying as destination of output 22 
specifying with the DEVICE option 6 
table of 120 

logical processing 
with symbols 259 

logical processing by SCRIPT;VS 
methods available for 253 

loops, avoiding 268 
.LS [Line Spacing] control word 

using 105, 106 
.LT [Leading Tab] control word 

effect of 90 
.L Y [Library] control word 

MAC parameter of 273 
SYM parameter of 234, 273 
using 234 
using in an A TMS-III environment 273 

M 

MAC parameter 
of .LY control word 273 
of .SE control word 234 

macro d £mitions 261 
macro libraries 

creating in 
a batch environment 275 
a CMS environment 273 
a TSO environment 274 
an ATMS-III environment 275 

defmition of 233 

Index 341 



specifying 272 
using 273 

macros 
conditional processing with 264 
converting A TMS to SCRIPT /VS 311 
defuring 261, 262 
defining symbols within 265 
definition of 4 
ending 267 
local symbols for 265 
naming conventions for 265 
processing 261 
redefuring SCRIPT /VS control words with 267 
rules for symbol substitution within 265 
substituting values for symbols within 264 
used to emulate A TMS functions 311 
using in footnotes 199 
using with substitution off 261 
when to use 261 
writing 261-276 

main dictionaries 
searching 102 
using for spelling verification 291 

managing source documents 319 
margins 74 

changing 78, 123 
effect of BIND option on 121 
effect of column width on 78 
specifying for even-numbered pages 121 
specifying for odd-numbered pages 121 

marking updated material 95 
markup content separator (MCS) 279 
markup languages 

Generalized Markup Language 4 
SCRIPT/VS 4 

master mes, using 50 
MAXPT parameter 

of .BY control word 99 
.MC [Multicolumn Madej control word 

using 143, 147 
MCS 

See markup content separator 
merging documents 54 
MESSAGE option 

description of 60 
using to diagnose problems 59 

.MG [Message] control word 
using 60 

migration and conversion considerations 
Other 34 
3800 Printing Subsystem Model 3 to 3820 Page 

Printer 31 
3800 Printing Subsystem Model 3 to 4250 
printer 33 

3820 Page Printer to 3800 Printing Subsystem 
Model3 32 

3820 Page Printer to 4250 printer 34 
4250 printer to 3800 Printing Subsystem Model 
3 32 

4250 printer to 3820 Page Printer 34 

342 DCF: SCRIPT jVS Text Programmer's Guide 

MINPT parameter 
of .HY control word 99 

MINWORD parameter 
of .BY control word 99 

.MS [Macro Substitution) control word 
required for macro processing 261 

multicolumn format 
defuring 141, 145 

N 

effect on page sections 143 
processing of for STAIRS/VS output 309 
resuming processing of 147 
starting a new column 146 
suspending processing of 147 

named areas 
formatting environment of 220 
placing on the page 136 
placing text in 133 
specifying 13 7 
specifying depth of 134 
specifying fonts for 134 
specifying width of 134 
types of ·133, 134 

body 133 
page 133 
section 134 

unplaced text 139 
determining depth of 139 

using 140 
named formatting environments 220 
named rules 

drawing boxes with 165 
underscoring with 160 
using 160, 161 

new page, specifying 123 
NEW parameter 

of .BX control word 169 
.NF [No Formatting) control word 

CENTER parameter of 73 
FOLD parameter of 76 
INSIDE parameter of 75 
LEFT parameter of 74 
OUTSIDE parameter of 75 
RIGHT parameter of 74 
TR UNC parameter of 76 
using 72 

.NL [Null Line] control word 
effect of 91 

NOADD parameter 
of .HY control word 102 
of .SV control word 291 

NOALG parameter 
of .HY control word 102 

NODICT parameter 
of .HY control word 102 

NORM parameter 



of .PN control word 126 
NOSEGLIB option 

using 55 
NOSTEM parameter 

of .SV control word 291 
notational conventions 37 
null lines 

redefming formatting convention for 91 
NUM parameter 

of .SV control word 291 
numbering pages 125 

o 
.OC [Output Comment] control word 

defining for postprocessor use 320 
formatting effect of 319 

ODD parameter 
of .FL control word 194 
of .PA control word 124 

odd-numbered pages 
printing only on 124 
testing for 256 

.OF [Offset] control word 
using 84 

operating environments 
ATMS-II1 3 
CMS 3 
TSO 3 

.OR (Or] control word 
using in macros 264 
using to check multiple conditions 255 
using with.lF 253 

ORDER parameter 
of .FL control word 194 
of .PI control word 208 

OSjVS2 MVS 3 
output 

specifying destination of 23 
output destination 

specifying 6 
output file 

writing to 52 
output lines, generated by tracing 64 
overdraw condition 

illustration of 10 1 
overriding delimiter characters 250 
overstriking 178 

p 

.PA [Page Eject] control word 
EVEN parameter of 124 
ODD parameter of 124 
using to reset page numbers 125 
using to start a new page 123 

page areas 133 
page breaks 123 
page composition 

multico1umn format for 141-147 
see also multicolumn format 

page dimensions 
adjusting for special situations 122 
changing 119 
column line length 

changing 123, 145 
default value for 122 
deftning 145 
effect of concatenation on 123 

defaults for 119 
defmition of 117 
effect oflogical output device 122 
for logical line devices 119 
for 3800 Printing Subsystem Model 1 119 
for 3800 Printing Subsystem Model 3 119 
for 3820 Page Printer 119 
for 4250 printer 119 
line lengths 

changing 122 
default values for 119 

page lengths 
changing 122 
default values for 123 
for non-3800 line devices 119 

See also margins 
page eject mode 124 
page ejects, conditional 124 
page layout 

defming 110, 117 
positioning text on a page 72 

page1ength 119 
page lengths 

See page dimensions 
page number symbol 125 
page numbers 

automatically inserting 117 
default symbol for 125 
including in a running heading or footing 129 
including preftxes for 127 
placing in a title 125 
resetting 124 
resetting in table of contents 155 
resetting in the index 208 
resetting the internal counter 125 
restoring arabic numbering 126 
setting current 244 
specifying as alphabetic characters 126 
specifying as roman numerals 126 

Index 343 



specifying decimal-point numbering 126 
PAGE parameter 

of .FL control word 194 
page printers 

defining fonts for 179 
defmition of 24 
describing code pages for 180 
describing coded fonts for 180 
describing fonts for 179 
describing point size for 180 
describing typefaces for 180 
formatting fractions on 108 
SCRIPTjVS support for 24 
4250 printer, 3800 Printing Subsystem Model 3 
and 3820 Page Printer 24 

page sections 143 
pagination 

forcing an even-numbered page 124 
forcing an odd-numbered page 124 
printing only on even-numbered pages 124 
printing only on odd-numbered pages 124 
starting a new page 123 

period, guidelines for using 40 
.PF [Previous Font] control word 

using 177 
physical output devices 

formatting considerations for 6, 24 
specifying 6 

.PI [Put Index] control word 
END parameter of 208 
KEY parameter of 213 
ORDER parameter of 208 
REF parameter of 210 
START parameter of 208 
using 207 

.PL [Page Length] control word 
using 119 

.PM [Page Margins] control word 
using 121 

.PN [Page Numbering Mode] control word 
ARAB I C parameter of 126 
FRAC parameter of 126 
NORM parameter of 126 
PREF parameter of 127 
ROMAN parameter of 126 
using 125 

point size 
defmition of for page printers 180 

positioning text on a page 72 
postprocessor, using SCRIPTjVS as 318 
PREF parameter 

of .PN control word 127 
prefixes for page numbers 127 
prefixes removed during stem processing 296 
preprocessor, using SCRIPTJVS as 318 
primary input file 

naming conventions 18 
printer devices 

types of 24 
printing 

344 DCF: SCRlPTfYS Text Programmer's Guide 

on page printers 26,27,28,29,30 
printing characters not available on terminal 201 
printing on page printers 

in A TMS-III 30 
on the 3800 Printing Subsystem Model 3 27, 
28,30 

in CMS 27 
in DLF jMVS 28 
in TSO 28 

on the 3820 Page Printer 29 
in CMS 29 
in DLFjMVS 29 
in TSO 29 

on the 4250 printer 26, 30 
in CMS 26 
in TSO 26 

printing part of an output document 13 
processing 

documents with GML (diagram) 281 
producing input for ST AIRS/VS 309-310 
profiles 

when using SCRIPTJVS as a preprocessor 318 
PS parameter 

of .DC control word 125 
.PT [Put Table of Contents] control word 

using to place text in table of contents 153 
PUNC parameter 

of .DC control word 290, 294 
.PW [Page Width] control word 

using 119, 122 
.PX [Prefix] control word 

using 205 

Q 

.QQ [Quick Quit] control word 
affect on TWOPASS option 50 
using 49 

.QU [Quit] control word 
using 49 

R 

ragged left 74 
ragged right 73 
RANGE parameter 

of .HY control word 100 
.RC [Revision Code1 control word 

ADJUST parameter of 96 
defming for postprocessor use 320 
formatting effect of 319 
using to mark updated material 95 

.RD [Read Terminal] control word 
using 61 

.RE [Restore Environment] control word 
using 220 



redefining symbols 319 
REF parameter 

of .PI control word 210 
relative indention 

advantage of using 79 
defmition of 79 
example of 79 

required blanks 290 
RES parameter 

of .RH control word 130 
residual text 278 

defmition of 330 
in macro processing 283 

revision codes 
specifying 95 

.RF [Running Footing] control word 
affect on table of contents 155 
CANCEL parameter of 130 
effect of .LL control word on 142 
EXECUTE parameter of 130 
S UP parameter of 130 
using 127 

.RH [Running Heading) control word 
CANCEL parameter of 130 
effect of .LL control word on 142 
EXECUTE parameter of 130 
RES parameter of 130 
SUP parameter of 130 
using 127 

.RI [Right Adjust) control word 
using 72 

right margin 
aligning text with 74 

RIGHT parameter 
of .FO control word 74 

roman numerals 
converting decimal numbers to 230 
specifying page numbers as 126 

ROMAN parameter 
of .PN control word 126 

root word dictionaries 292 
root word dictionaries provided by IBM 292 
root word processing 

See stem processing 
rules 

aligning 162 
default weight for 157 
horizontal 157 

drawing 157 
specifying 157 

named 160, 161 
using 160, 161 

vertical 157 
drawing 157 
specifying 157 

running footings 
See running headings and footings 

running headings 
See running headings and footings 

running headings and footings 

controlling line lengths of 122 
defming for even-numbered pages 128 
defming for odd-numbered pages 128 
defmition of 117 
placement on a page 129 
processing of 

defmition phase 127 
GML processing 127 
processing phase 127 
symbol substitution 127 

redefming 130 
specifying 127 
suppressing 130 
where to defme 130 

.RV [Read Variable] control word 
setting symbols with 225 
using 61 

s 
.SA [Save Environment] control word 

using 220 
.SB [Shift Baseline) control word 

using 105, 107 
.SC [Single Column Mode] control word 

using 143, 147 
SCRIPT command 

default options 21 
descriptions 17 
issuing as an 

ATMS-III command 17 
CMS command 17 
TSO command 17 

setting symbols with 242 
syntax of 
using 17 

SCRIPT command options 
abbreviating 21 
defaults 21 
mutually exclusive 21 
specifying 21 

SCRIPT/VS 
communicating with 59 
control words 

See individual control words 
current formatting environment 

restoring 220 
saving 220 

files 
See input flies 
See output files 

flexibility of 4 
formatting considerations 14 
formatting environment 220 

description of 219-221 
for keeps and floats 220 
for named areas 220 
for running headings and footings 219 

Index 345 



named 220 
parameters that defme 219 
three parts of 219 

formatting input with 71 
how it works 4 
in batch environment 
in interactive environment 
indenting 78 
input mes 3 
invoking 13 
logical devices 120 
logical processing by 253 
marking up documents with 37 
messages 59 

severity levels 59 
overview of 3-13 
processing in an interactive environment 61 
processing input lines 

beginning with a blank 271 
beginning with a tab 271 

processing of GML 280 
redefIning fOlmatting conventions 271 
root word dictionaries provided with 292 
summary of functions 8-13 
system generated mes 51, 52 

DSMTERMI 51 
DSMTERMO 51 
DSMUTCTF 51 
DSMUTMSG 52 
DSMUTTOC 52 
DSMUTWTF 52 

system symbols 
See system symbols 

terminating processing by 49 
terms for parts of page 118 
using as a preprocessor 14, 318 
using as a subroutine 14, 318 
using as postprocessor 318 
using in a background environment 3 
using in an interactive environment 3, 225 
using with other programs 309-320 
with DLF 

SCRIPT/VS control words 
syntax of 37 

SCRIPT /VS dictionaries 
searching 102, 296 
specifying language of 293 
three types of 292 

SCRIPT /VS macro 
syntax 40 

.SE [Set Symbol] control word 
INDEX parameter of 225 
MAC parameter of 234 
SUBSTR parameter of 225 
using 223 

SEARCH option 
specifying macro libraries with 272 
specifying symbol libraries with 272 

section areas 134 
section breaks 143 

346 DCF: SCRIPT/VS Text Programmer's Guide 

sections 
conditional end of 113 
unconditional end of 113 

SEGUB option 
identifying segments with 55 
using 55 

segment library 
default 56 

searching 56 
defaults for 56 

ATMS-III 56 
CMS 56 
MVS 56 
TSO 56 
VSE 56 

search options for 22 
seg..rnents 

imbedding in documents 55 
specifying dcpth of 55, 56 

using the &SD'symbol attribute 56 
specifying inline page segments 56 
specifying width of 55, 56 

using the &SW'symbol attribute 56 
specifying with the .SI [Segment Include] control 
word 55 

verifying the existence of 55 
semicolon 

See control word separator 
separating lines of text 105 
SET parameter 

of .BX control word 171 
setting labels 255 
setting tabs 84 
shifting baseline in fOlmatting fractions 108 
.SI [Segment Include] 

using 47 
.SI [Segment Include] control word 

specifying segments with 55 
using 55 

simple indention 78 
single words, hyphenation of 102 
.SK [Skip] control word 

using 105 
SKAF parameter 

of .DB control word 151 
SKBF parameter 

of .DB control word 151 
SNAP parameter 

of .IT control word 67 
.SO [ST AIRS/VS Output] 

using 310 
sort keys 

See also indexes 
creating 211 
definition of 211 
explicitly specifying 213 
multiple occurrences of the same one 211 
using 211 

source documents, managing 319 
.SP [Space] control word 



using 105 
space units 

horizontal 43 
defining 43 

specifying 6, 42 
symbol attributes of 233 

&AD' 233 
&DH' 233 
&DV' 233 
&SD' 233 
&SW' 233 

types of 6, 42 
unqualified 43 
vertical 43 

defining 43 
spacing 

between output lines l06 
positioning text on a page 72 
using the .BL control word 105 
using the .LO control word 105 
using the .LS control word 105 
using the .SB control word 105 
using the .SK control word 105 
using the .SP control word 105 

SPAF parameter 
of .DH control word 151 

Spanish prefixes 305 
S P B F parameter 

of .DH control word 151 
special blanks 178 
special characters 

entering into a ftle 201 
ignoring during index processing 212 
including in an index 212 
treating as blanks during index processing 213 

SPELLCHK option 
description of 289 
improving system performance with 321 
using 289 

spelling veriftcation 
fallibility of 292 
SCRIPT;VS support for 289-292 
veriftcation process 290 

SPF-II 
using to edit macro library members 274 
using utility function of 274 

SPF/CMS 273 
using to edit macro library members 273 

splitting text 76 
STAIRS;VS 

definition of 309 
input restrictions 309 
paragraph number 

description of 310 
printing of 310 
resetting of numbering counter 310 

producing input for 309-310 
restrictions in formatting input for 309 

START parameter 
of .PI control word 208 

starting a new page 123 
starting an even-numbered page 124 
starting an odd-numbered page 124 
stem processing 

description of 296 
prefixes removed during 296-305 
suffixes removed during 296-305 

STEP parameter 
of .IT control word 65 

STO P parameter 
of .DF control word 179 

Storage and Information Retrieval System/Virtual 
Storage 

See ST AIRS;VS 
Structured Programming Facility-II 

see SPF-ll 
.SU (Substitute Symbol] control word 

using 228 
subscripts 107 
SUBSTR parameter 

of .SE control word 225 
suffixes removed during stem processing 296 
S UP parameter 

of .RF control word 130 
of .RH control word 130 

superscripts 107 
.SV [Spelling Veriftcation] control word 

NOADD parameter of 291 
NO STEM parameter of 291 
NUM parameter of 291 

.SX (Split Text] control word 
F parameter of 76 
using 76 
using to position text in table of contents 153 

.SY (System Command] control word 
using 63 

SYM parameter 
of .L Y control word 234, 273 

symbol length attribute 259 
symbol substitution 226, 228 
symbols 

analyzing type of 231 
attributes of their values 229 
beginning with an asterisk (+) 243 
canceling 229 
comparing null values 256 
conditional processing with 253 
containing special characters 257 
converting A TMS to SCRIPT;VS 311 
converting lowercase characters to uppercase 
with 231 

converting numbers to character strings 
with 230 

defining 223 
defining a null value for 229 
defining in a macro library 273 
defming within a macro 265 
definition of 3 
determining current value 231 
extended processing of 247 

Index 347 



inhibiting substitution 228 
libraries containing 233 
logical processing with 259 
multiple substitutions 227 
name restrictions 223 
page number 125 
redefining 319 
returning current value of 231 
set by tokens 242 
set when ftle is appended 242 
set when ftle is imbedded 242 
set when macro is processed 243 
set with SCRIPT command 242 
specifying attributes for 229 
specifying length value 230 
specifying width value 232 
starting with control word separator 247 
substituting values for 226 
substituting values for within a macro 264, 265 
symbol substitution with macros 264 
unresolved 227 
using for arrays of values 244 
using to set currcnt page number 244 
verifying the existence of 230 
when to use 223-244 

SYSOUT comparand 256 
SYSPAGE comparand 256 
system commands 

disabling 22 
enabling 22 

system performance 
improving 321, 322 

with the INDEX option 322 
with the SPELLCHK option 321 
with the TWOPASS option 321 

system symbols 
&$CHAR(n) 177 
&$DCF 240 
&$DDUT 240 
&$EGML 240 
&$ENV 241 
&$GML 240 
&$LC 240 
&$LDEV 256 
&$LST 241 
&$PASS 241 
&$PDEV 256 
&$PRT 241 
&$RET 63, 239 
&$TAB 85 
&$TAGD 241 
&$VR 242 
&SYSDA YOFM 228 
beginning with &$ 235 
for control values 239 
for system date and time 235 
list of 236 
summary of 234-244 

SYSV AR option 
setting symbols with 242 

348 DCF: SCRIPT/VS Text Programmer's Guide 

specifying subdocuments with 313 

T 

table of contents 
adding lines to 153 
adding running footings to 155 
automatic generation of 149 
entries generated by head levels 149 
printing of 154 
processing of 153 
resetting the page numbers 155 
specifying entries for 149 
TWOPASS considerations 154 
USiJlg DSMUTTOC ftle to process 153 
using the DSMUTTOC ftle 149 

tabs 
alignment 87 
default values of 85 
ftll characters for 87 
inline spacing for 89 
leading 90 
positioning 87 
processing 85 
processing input lines that begin with 271 
setting 84 
using in SCRIPTjVS 84 

TAG parameter 
of .WF control word 53 

.TC [Table of Contents] control word 
using 154 

TC parameter 
of .DH control word 151 

.TE [Terminal Input] control word 
using 62 

techniques for logical processing 
See logical processing by SCRIPT jVS 

terminating formatting of a file 49 
terminating SCRIPT/VS processing 49 ~ 
text 

guidelines for entering in an input ftle 40 
text ampersands 228 
te:>.i formatting 

indenting 78 
text processing, logical 253 
text variables 

changing fonts of 251 
deflning 249 
overriding delimiter characters 250 
producing special characters 249 

.TH [Then] control word 
using for alternative processing 254 
using in macros 264 
using with.lF 253 

.TI [Translate Input] control word 
restrictions in using 178 

Time Sharing Option 
See TSO 



time system symbol 235 
TLIB option 

description of 295 
.TM [Top Margin] control word 

using 123 
tokens 

deftnition of 243 
used in passing symbol values 243 

.TP [Tab Position] control word 
setting tabs with 84 

.TR [Translate Character] control word 
restrictions in using 178 
use in input character translation 202 
using 201, 202 

tracing of input processing 64 
tracing, output lines generated by 64 
translation 

cancelling 202 
of character strings 204 
of input characters 202 
of output characters 201, 202 
SCRIPT jVS support of 201 
to uppercase 203 
using .IF control word for 202 

.TS [Translate String] control word 
using 205 

TSO 
communicating with 63 
creating macro libraries in 274 
environment restrictions 20 
me naming conventions 18 
input me characteristics 19 
interactive processing with 61 
using with SCRIPT jVS 3 

TSO CLIST 64 
.TU [Translate Uppercase] control word 

using 204 
TWOPASS option 

effect of .QQ control word on 50 
effect on symbol substitution 227 
effect on table of contents 154 
effect on the index 207 
improving system performance with 321 

.TY [Type on Terminal] control word 
using 62 

typeface 
deftnition of for page printers 180 
variations of 

posture 180 
weight 180 
width 180 

u 

.UC [Underscore and Capitalize] control word 
using 187 

.UD [Underscore Definition] control word 
using 160, 189 

.UN [Undent] control word 
using 84 

unconditional sections 113 
underlining text 179, 187 
underscoring 

See underlining text 
umesolved symbols 227 
.UP [Uppercase) control word 

using 187 
updated material, marking 95 
.US [Underscore] control word 

using 187 
user dictionaries 

building 294 
definition of 292 

.UW [Unverified Word] control word 
using 289 

v 
variables 

defming 249 
verifying spelling 289 
vertical distribution 

\vith the .BC [Balance Columns] control 
word 111 

vertical formatting 
with the .FV [Format Vertically] control 

word 112 
vertical justification 

as affected by the .LO [Lead-Out] control 
word 114 

as affected by the .LS [Line Spacing] increment 
control word 114 

as affected by the .LS [Line Spacing] skip control 
word 114 

as affected by the .LS [Line Spacing] space con­
trol word 114 

as affected by the .LS [Line Spacing] text control 
word 114 

SCRIPT jVS support for 111-115 
with adjustments to 114 

leadout points 114 
skips 114 
spaces 114 
text lines 114 

vertical rules 157 
vertical space 

specifying 1 06 
units for specifying 6, 42 

vertical spacing 

Index 349 



separating lines of text 105 
using the .BL control word 105 
using the .LO control word 105 
using the .LS control word 105 
using the .SB control word 105 
using the .SK control word 105 
using the .SP control word 105 

VM/SP 
See also CMS 
communicating with 63 

.VR [Vertical Rule] control word 
using 161 

VSE 3 
environment restrictions 20 

w 

.WF [Write To File] 
using 47 

.WF [Write To File] control word 
A TMS-III restrictions in using 52 
ERASE parameter of 53 
IMBED parameter of 53 
TAG parameter of 53 
using 52 
using to dynamically create input flles 318 

widow control 195 
widow zones 

controlling 195 
WORD parameter 

of .DC control word 290 
word spacing 

determining the value of 92 
.WS [Word Space] control word 

using 92 
.WZ [Widow Zone] control word 

using 195 

350 DCF: SCRIPT/VS Text Programmer's Guide 

3 

3800 Printing Subsystem Model 1 
drawing boxes with 172 
fonts distributed with 176 
formatting documents for printing on 178 
page dimension considerations 119 
using fonts with 176 

3800 Printing Subsystem Model 3 
drawing boxcs with 166 
formatting documents for printing on 179 
page dimension considerations 119 
printing on 27, 28 

in CMS 27 
in DLF/MVS 28 
in TSO 28 

required fonts 24, 175 
using fonts with 176 

3820 Page Printer 

4 

drawing boxes with 166 
page dimension considerations 119 
printing on 29 

in CMS 29 
in DLF/MVS 29 
in TSO 29 

required fonts 24, 175 
using fonts with 176 

4250 printer 
drawing boxes with 166 
formatting documents for printing on 179 
page dimension considerationd 119 
printing on 26 

in CMS 26 
in TSO 26 

required fonts 24, 175 
using fonts with 176 



Document Composition Facility: 
SCRIPT /VS Text Programmer's Guide Release 3 
Order No. SH35-0069-2 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. This form may be used to communicate your views 
about this publication. They will be sent to the author's department for whatever review and 
action, if any, is deemed appropriate. Comments may be written in your own language; use of 
English is not required. 

You may use this form to communicate your comments about this publication, its organization, or 
subject matter with the understanding that IBM may use or distribute whatever information you 
supply in any way it believes appropriate without incurring any obligation to you. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, 
to your IBM representative or the IBM branch office serving your locality. 

Yes No 

· Does the publication meet your needs? D D 

· Did you find the information: 

Accurate? D D 
Easy to read and understand? D D 
Easy to retrieve? D D 
Organized for convenient use? D D 
Legible? D D 
Complete? D D 
Well illustrated? D D 
Written for your technical level? D D 

· How do you use this publication: 

As an introduction to the subject? D 
For advanced knowledge of the subject? D 
To learn about operating procedures? D 
As an instructor in class? D 
As a student in class? D 
As a reference manual? D 

· What is your occupation? 

Comments: 

If you would like a reply, please give your name and address. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an 
IBM office or representative will be happy to forward your comments or you may mail them directly to 
the address on the back of the title page.) 



SH35-0069-2 

Reader's Comment Form 

Fold and tape Please Do Not Staple Fold and tape 

Attention: Information Development 
Department 580 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Information Products Division 
P. O. Box 1900 
Boulder, Colorado 80301 

NO POSTAGE 
NECESSARY IF 
MAILED IN THE 
UNITED STATES 

o 
o 
(') 
c::: 
3 
(I) 
:::I .... 
(') 
o 
3 
'0 o 
Ul 
;::j: 
(,-
:::I 

"T1 
Dl 

& 
.-?' 
en 
(') 
::IJ 

~ ....... 
r;5 

~ 
"'C a co 
iil 
3 
3 
(I) 
...... 
Ul 

c;) 
c::: 
c.: 
(I) 

::IJ 
(I) 

CD 
Q) 
Ul 
(I) 

c..> 

"'C 
:::l. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .:::1 

Fold and tape Please Do Not Staple Fold and tape 

.... 
(I) 
c. 
:::I 

C 
en 
~ 
en 
::J: 
c..> 
U1 
I 

8 
C» 
CD 




