

DOCUMENT COMPOSITION FACILITY:
SCRIPT/VS TEXT PROGRAMMER'’S
GUIDE

RELEASE 3

Document Number SH35-0069-2

January 22nd, 1985

This publication was produced using the IBM Document
Composition Facility (program number 5748-XX9).

| Third Edition (IMarch 1985)

This edition contains information from and makes obsolete the Document Composition Facility: SCRIPT|VS
Text Programmer’s Guide, SH35-0069-1.

Technical changes in this edition are marked by vertical bars in the left margin.

This edition applies to Release 3 of the Document Composition Facility program product, Program Number
5748-XX09, and to any subsequent releases until otherwise indicated in new editions or technical newsletters.

Changes are periodically made to the information herein; before using this publication in connection with the
operation of IBM systems, consult the latest /BM System/370 and 4300 Processors Bibliography , GC20-0001,
for editions that are applicable and current.

It is possible that this material may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not available in your country. Such references or information
must not be construed to mean that IBM intends to announce such products in your country.

Publications are not stocked at the address given below; requests for IBM publications should be made to your
IBM representative or to the IBM branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If the form has been removed, com-
ments may be addressed to IBM Corporation, Information Products Division, Box 1900, Department 580,
Boulder, Colorado, U.S.A. 80301. IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of course, continue to use the infor-
mation you supply.

(c) Copyright International Business Machines Corporation 1984, 1985

i DCF: SCRIPT/VS Text Programmer’s Guide

Preface

This manual describes the IBM Document Composition Facility (DCF) program prod-
uct and its component text processing program, SCRIPT/VS, and provides the informa-
tion necessary to use them. This book should be used in conjunction with the Docurnent
Composition Facility: SCRIPT|VS Language Reference, which defines the SCRIPT com-
mand and the SCRIPT/VS control words.

In order to use this book, the end user must be familiar with:
e The concepts of text processing and formatting

e The operating environment on which SCRIPT/VS resides
e A text editor supported in the above environment.

We recommend that new users satisfy their text formatting requirements by using the
Generalized Markup Language (GML).

This publication is specifically designed for users whose tasks may include:
e Formatting documents using SCRIPT/VS control words.

e Modifying the Document Composition Facility Generalized Markup Language
starter set. See the Document Composition Facility: Generalized Markup Language
Starter Set Implementation Guide for more details on modifying the GML starter
set.!

e Creating Generalized Markup Language applications.
e Installing, modifying, and maintaining the Document Composition Facility.

This book is not addressed to users of any installation defined GML applications. These
users should refer to their application‘s documentation. Users of the GML starter set
application should refer to the Document Composition Facility: Generalized Markup Lan-
guage Starter Set User's Guide, the Document Composition Facility: Generalized Markup
Language Starter Set Reference, and the Document Composition Facility: Generalized
Markup Language Starter Set [mplementation Guide.

The information in this publication applies equally to OS/VS2 MVS, VSE, VM/SP, and
ATMS-III unless specifically stated otherwise.

Use of SCRIPT/VS in an ATMS-III, CMS, or TSO environment requires the Fore-
ground Environment Feature; use in a background environment requires the Document
Library Facility program product (Program Number 5748-XXE).

References to the 3800 Printing Subsystem refer to both the 3800 Printing Subsystem
Model 1 and to the 3800 Printing Subsystem Model 3 (in compatibility mode) unless
otherwise explicitly stated.

' Field Engineering support and maintenance is provided only on the unmodified GML starter set.
If you modify the starter set, it is recommended that you also maintain an unmodified starter
set for diagnostic purposes.

Preface i

Organization

References to the 3800 Printing Subsystem Model 1 also apply to the 3800 Printing Sub-
system Model 3 (in compatibility mode) unless otherwise explicitly stated.

References to page printers apply to the 4250 printer, the 3800 Printing Subsystem
Model 3, and the 3820 Page Printer unless otherwise explicitly stated.

The chapters of this book are:

[]

“Chapter 1. An Overview of SCRIPT/VS”: A general description of SCRIPT/VS.
This chapter includes a discussion of what SCRIPT/VS is and what it does.

“Chapter 2. Using the SCRIPT Command”: A description of how to use and spec-
ify the SCRIPT command. This chapter discusses file requirements and conventions
and how to use the SCRIPT command in several environments.

“Chapter 3. Marking Up Documents with SCRIPT/VS”: A description of
SCRIPT/VS language syntax and control words. This chapter includes a discussion
of the control word separator and space notation.

“Chapter 4. Combining SCRIPT/VS Input Files”: A description of how to imbed
and append SCRIPT/VS files. This chapter includes a bref summary of
SCRIPT/VS utility files.

“Chapter 5. Communicating with SCRIPT/VS”: A description of interaction with
SCRIPT/VS. This chapter includes a discussion of SCRIPT/VS messages and inter-
active SCRIPT/VS processing.

“Chapter 6. Composing Lines”: A description of how to define the parameters of a
line. This chapter includes a discussion of concatenation, justification, indention,
tabs, and marking updated material.

“Chapter 7. Hyphenating and Horizontally Justifying Text”: A description of how
to hyphenate words, how to horizontally justify text, and how to use the algorith-
mic hyphenator.

“Chapter 8. Creating Vertical Space”: A description of how to insert vertical space
into your text.

“Chapter 9. Vertically Justifying Text”: A description of how to vertically distribute,
format and justify text.

“Chapter 10. Establishing Page Layout”: A description of how to define the param-
eters of a page, such as page length, page width, column line length, line length, and
page numbering. This chapter describes running headings and footings.

“Chapter 11. Placing Text in Named Areas”: A description of how to define and
place named areas in your text. Also included is a discussion of how segments can
be included in your text.

“Chapter 12. Composing Multiple-Column Pages”: A description of how to estab-
lish a multicolumn format for the body of a page.

“Chapter 13. Creating Head Levels and Table of Contents”: A description of how
to specify and modify SCRIPT/VS head levels, that is, chapter and topic headings,
and how SCRIPT/VS creates a table of contents from the head levels.

“Chapter 14. Creating Rules and Boxes”: A description of how to create simple and
complicated boxes and how to draw horizontal and vertical rules.

v DCF: SCRIPT/VS Text Programmer’s Guide

“Chapter 15. Selecting Fonts”: A description of how to define and specify fonts for
line devices, the 4250 printer, the 3800 Printing Subsystem Model 3, and the 3820
Page Printer and how to use fonts for emphasis.

“Chapter 16. Keeping Blocks of Text Together”: A description of widow zones, in-
line keeps, and floats.

“Chapter 17. Creating Footnotes”: A discussion of how to create footnotes and
footnote leaders.

“Chapter 18. Translating Characters”: A description of character manipulation and
input and output character translation. This chapter includes a discussion of upper-
case and string translation as well.

“Chapter 19. Creating an Index”: A description of how to create an index by plac-
ing index entry information in the text of a document.

“Chapter 20. Defining the Formatting Environment”: A description of the
SCRIPT/VS formatting environment.

“Chapter 21. Processing Symbols”: A description of the SCRIPT/VS symbol proc-
essing capability and how to name symbols, store them in a symbol sibrary, use sys-
tem symbols, and use symbol arrays. This chapter describes many useful
applications for symbols.

“Chapter 22. Processing Logical Statements”: A description of how to alter the or-
der in which input lines are processed. The techniques discussed include conditional
control words, branching, and conditional sections.

“Chapter 23. Processing Macros”: A description of the SCRIPT/VS macro process-
ing capability and how to define a macro, use symbols within a macro, conditionally
process parts of the macro, and store macros in a macro library.

“Chapter 24. Processing GML": A description of how to create a GML tag, build
an application processing function (APF) associated with the tag, and map the tag
to the APF. This section should be read in conjunction with the Document Compo-
sition Facility: Generalized Markup Language Starter Set Reference and the Docu-
ment Composition Facility: Generalized Markup Language Starter Set
Implementation Guide.

“Chapter 25. Verifying Spelling”: A description of how to verify spelling using the
SPELLCHK option. This chapter also includes a discussion of how to build user
and addenda dictionaries.

“Appendix A. Using SCRIPT/VS with Other Programs”: A discussion of
SCRIPT/VS compatibility with other programs. Also included in this chapter is a
discussion of SCRIPT/VS as a postprocessor and as a preprocessor.

“Appendix B. Improving System Performance”: A discussion of the consumption
and use of system resources in formatting documents.

Related DCF and DLF Publications

Document Composition Facility: SCRIPT|VS Language Reference, SH35-0070. This
manual describes the SCRIPT command options and the SCRIPT/VS control
words and provides a summary of system symbols, special characters, character sets,
and 3800 Printing Subsystem fonts.

Docwment Composition Facility and Document Library Facility General Information
Manual, GH20-9158. This manual describes the Document Composition Facility
and Document Library Facility program products and summarizes their functions

Preface v

and capabilitics. It also summarizes the operating environment requirements for
these products.

Document Composition Facility: Generalized Markup Language Starter Set User's
Guide, SH20-9186. This manual provides an introduction to GML and a primer on
document markup using the GML starter set provided with SCRIPT/VS.

Document Composition Facility: Generalized Markup Language Starter Set Refer-
ence, SH20-9187. This manual describes the GML starter set provided with
SCRIPT/VS.

Document Composition Facility: Generalized Markup Language Starter Set Imple-
mentation Guide, SH35-0050. This manual describes how to modify, design, and add
to the GML starter set.?

Document Composition Facility: Generalized Markup Language Concepts and Design
Guide, SH20-9188. This manual discusses GML concepts and provides guidelines
for designing your own GML.

Document Library Facility Guide, SH20-9165. This manual explains how to set up,
use, and maintain the library. It also explains how to call SCRIPT/VS as a subrou-
tine and how to convert ATMS documents into SCRIPT/VS input files.

Document Composition Facility Diagnosis Guide, SY35-0067. This manual is for
IBM service personnel and customers who diagnose programming errors.

Document Composition Facility Messages, SH35-0048. This manual documents
SCRIPT/VS messages and suggests actions to be taken in response to these mes-
sages.

Document Composition Facility: SCRIPT/VS Text Programmer’s Quick Reference,
S$X26-3723. This reference card summarizes the SCRIPT command, the
SCRIPT/VS language, and other facilities of SCRIPT/VS.

Document Composition Facility: Generalized Markup Language Quick Reference,
§$X26-3719. This reference card summarizes the GML starter set and how to use
SCRIPT/VS in each interactive environment.

Restricted Materials

[

Document Composition Facility Diagnosis Reference, 1 Y35-0068. This manual is for
IBM service personnel and customers who diagnose programming errors. It de-
scribes the logic of the DCF program product and lists pertinent control blocks and
data areas.

Related Publications

IBM Virtual Machine Facility/SP: Introduction, GC20-1800. This manual contains
an introduction to CMS (the Conversational Monitor System), which is one of the
interactive systems in which SCRIPT/VS operates. Other manuals that include de-
tailed information about CMS are:

» IBM Virtual Machine/System Product: CP Command Reference for General Us-
ers, SC20-6211

2

Field Engineering support and maintenance is provided only on the unmodified GML starter set.
If you modify the starter set, it is recommended that you also maintain an unmodified starter
set for diagnostic purposes.

vi DCF: SCRIPT/VS Text Programmer’s Guide

Related Printer

w [BM Virtual Machine/System Product: CMS User’s Guide, SC19-6210
= [BM Virtual Machine/System Product: CMS Primer, SC24-5236

= [BM Virtual Machine/System Product: CMS Conwnand and Macro Reference,
SC20-6209

= [BM Virtual Machine/System Product: Terminal User's Guide, SC20-6206.

0S/VS2 TSO Terminal User's Guide, GC28-0645. This manual gives detailed user
information about OS/VS2 TSO (Time Sharing Option), which is one of the inter-
active systems in which SCRIPT/VS operates. It describes the TSO EDIT com-
mand and related facilities for text entry and editing and for text data set
management. Other manuals that include detailed information about TSO are:

= 0S/VS2 TSO Command Language Reference, GC28-0646
= 0S/VS2 TSO Command Language Reference Summary, GX28-0647.

Advanced Text Management System-11I (ATMS-111): General Information Manual,
GH20-2404. This manual contains an introduction to ATMS (the Advanced Text
Management System), which is one of the interactive systems in which SCRIPT/VS
operates. Other manuals that include detailed information about ATMS are:

= ATMS-III: Program Reference Manual, SH20-2424

= ATMS-1I1: Terminal Operator's Guide, SH20-2425

= ATMS-11I: Terminal Operator's Exercise/Reference Guide, SH20-2426
= ATMS-111: Operations Guide, SH20-2427.

Publications

Introducing the IBM 3800 Printing Subsystem and Its Programming, GC26-3829.
This manual provides general information about the 3800 Printing Subsystem. It de-
scribes what the 3800 Printing Subsystem is and provides information about the
standard and optional features available for the 3800 Printing Subsystem:.

IBM 3800 Printing Subsystem Programmer’s Guide, GC26-3846 (for OS/VS2 MVS)
and GC26-3900 (for VSE). These manuals include detailed information about pro-
gramming for the 3800 Printing Subsystem.

IBM 3800 Model 3 Printing Subsystem Programumer’'s Guide: Compatibility,
SH35-0051. This manual provides detailed information about programming for the
IBM 3800 Model 3 Printing Subsystem in compatibility mode.

Graphical Data Display Manager (GDDM) and Presentation Graphics Feature
(PGF) General Information, GC33-0100. This manual describes the program prod-
uct and its installation and storage requirements.

Composed Document Printing Facility: General Information, GC33-6133. This man-
ual introduces the CDPF program product.

Composed Document Printing Facility: Operation, GC33-6135. This manual explains
how to set up, operate, and service the CDPF program product.

Composed Document Printing Facility: Data Stream Interface, Typographic Fonts
Interface, GC33-6134. This manual contains the information those customers will
need who want to generate their own input to the CDPF program.

Preface vii

viii

IBM 3800 Printing Subsystem Model 3 Introduction, GA32-0049. This manual pro-
vides general information about the 3800 Printing Subsystem Model 3 and the pro-
gram products associated with it.

IBM 3800 Printing Subsystem Models 3 and 8 Programmer's Guide, SH35-0061.
This manual provides information for customer personnel who install the Print Ser-
vices Facility (PSF) and Print Utility Program Products.

IBM 3800 Printing Subsystem Models 3 and 8: Preparing Fonts for Printing,
SH35-0082. This manual gives all procedures necessary to prepare IBM-supplied
fonts for use in the printing of documents.

IBM 3800 Printing Subsystem Model 3 Font Catalog, SH35-0053. This manual gives
print samples of the fonts available for the 3800 Printing Subsystem Model 3
printer.

IBM 3800 Printing Subsystem Model 8 Font Catalog, SH35-0054. This manual gives
print samples of the fonts available for the Printing Subsystem Model 8 printer.

IBM 3820 Page Printer and Advanced Function Printing Software: Introduction and
Planning Guide, GBOF-1189 (MVS). Through a series of booklets, this publication
introduces the 3820; provides planning information for its data network, physical lo-
cation, and software; and presents specifics about ordering 3820 supplies and prepar-
ing an implementation plan in an MVS environment.

IBM 3820 Page Printer and Advanced Function Printing Software: Introduction and
Planning Guide, GBOF-1666 (VSE). Through a series of booklets, this publication
introduces the 3820; provides planning information for its data network, physical lo-
cation, and software; and presents specifics about ordering 3820 supplies and prepar-
ing an implementation plan in a VSE environment.

IBM 4250 Printer Operator’s Guide, GA33-1551. This manual gives instructions and
procedures for operating the 4250 printer.

IBM 4250 Printer Font Catalog, G520-0004. This manual gives print samples of the
fonts available for the 4250 printer.

Print Management Facility User's Guide and Reference, SH35-0059. This manual
gives guide information for system and application programmers using the Print
Management Facility.

A Guide to Using IBM Printers for Advanced Function Printing, S544-3095. This
manual describes the use of a program product (PSF, DCF, GML, OGL, GDDM,
and PMF) and the use of a subset of a program product in conjunction with the
IBM APF printers available, including the 3800 Printing Subsystem Model 3 and
the 3820 Page Printer.

Print Services Facility User’s Programming Guide, S544-3084. This manual de-
scribes, for the application programmer, the abilities of an all-points-addressable
printer and the tasks associated with such a printer, including how to use JCL to
produce output.

DCF: SCRIPT/VS Text Programmer’s Guide

PN

Publication Library Guide for the Document Composition Facility

The following table is a library guide to the manuals for the Document Composition Facility (DCF). The
manuals are listed as they relate to user tasks.

User Typical Recommended Brief

Tasks Audience Books Description

Planning and intro- Users, system plan- DCF and DLF General Provides a general over-
ducing DCF/DLF ners Information (GH20-9158) | view of text processing, li-

brary facility, and
available books

Formatting docu-
ments (using the
GML starter set)

Novice user to expe-
rienced end users

DCF: GML Starter Set
User’s Guide (SH20-9186)
DCF: GML Starter Set
Reference (SH20-9187)
DCF Messages
(SH35-0048)

Provide an introduction to
the GML starter set, de-
scribe the GML starter set
tags and SCRIPT/VS
messages

Formatting docu-
ments (using
SCRIPT/VS control
words)

Knowledgeable to
experienced end us-
ers

DCF: SCRIPT/VS Text
Programmer’s Guide
(SH35-0069)

DCF: SCRIPT/VS Lan-
guage Reference
(SH35-0070)

DCF Messages
(SH35-0048)

Describe the function and
use of all SCRIPT/VS
control words,
SCRIPT/VS macros,
SCRIPT diagnostic aids,
and the formatting fea-
tures and messages of
SCRIPT/VS

Modifying GML
starter set®

Document adminis-
trator and text pro-
grammer*

DCF: GML Starter Set
Implementation Guide
(SH35-0050)

DCF: GML Starter Set
User’s Guide (SH20-9186)
DCF: GML Starter Set
Reference (SI1120-9187)
DCF: SCRIPT/VS Text
Programmer’s Guide
(SH35-0069)

DCF: SCRIPT/VS Lan-
guage Reference
(SH35-0070)

Contain material on:
GML starter set tags,
SCRIPT/VS control
words, and how to modify
the GML starter set

Field Engineering support and maintenance is provided only on the unmodified GML starter set. If you modify the starter

set, it is recommended that you also maintain an unmodified starter sct for diagnostic purposes.

The document administrator is responsible for defining markup conventions and procedures for an organization. The

text programmer implements APFs that provide the processing specified by the document administrator.

Preface

User
Tasks

Typical
Audience

Recommended
Books

Brief
Description

Creating GML ap-
plication processing
functions

Document adminis-
trator and text pro-
grammer*

DCF: GML Starter Set
Implementation Guide
(SH35-0050)

DCF: GML Starter Set
User’s Guide (SH20-9186)
DCF: GML Starter Set
Reference (SH20-9187)
DCEF: SCRIPT/VS Text
Programmer’s Guide
(SH35-0069)

DCEF: SCRIPT/VS Lan-
guage Reference
(SH35-0070)

DCF: GML Concepts
and Design Guide
(SH20-9188)

Provide information on:
how to design your own
GML, GML concepts,
GML starter set tags,
SCRIPT/VS control
words, and usage guide-
lines

Installing, modify-
ing, and maintaining

DCF

Systems program-
mer

DCF Program Directory
DCF: SCRIPT/VS Text
Programmer’s Guide
(SH35-0069)

DCF: SCRIPT/VS Lan-
guage Reference
(ST135-0070)

DCF Diagnosis Guide
(SY35-0067)

DCEF Diagnosis Reference
(LY35-0068)

DCF Messages
(SH35-0048)

Give information on error
isolation, program tailor-
ing, and use of
SCRIPT/VS

Note: As an aid to Document Composition Facility users, the following reference cards are also available:

Document Composition Facility: SCRIPT|VS Text Programmer’s Quick Reference, SX26-3723
Document Composition Facility: Generalized Markup Language Quick Reference, $X26-3719.

X

DCF: SCRIPT/VS Text Programmer’s Guide

Table of Contents

PART 1. BASIC INFORMATION ABOUT SCRIPT/VS 1
Chapter 1. An Overview of SCRIPT/VS it 3
Operating Environmentsottt it 3
SCRIPT/VS Input Files e 3
Markup Languagesottt e e 4
SCRIPT/VS Control Word Languagec.oiuiiiiiinnnnnnn.. 4
Generalized Markup Language 0. 5
Logical Output Devices and Output Destinationsc.ouunu... 6
Defaults and Initial Settings i i 6
Vertical and Horizontal Space Units 6
FONES o o e e 7
Imbedding Fileso e 8
SCRIPT/VS Utility Files i e e e e 8
Communicating with SCRIPT/VS i 8
SCRIPT/VS FUNCHONS .« vttt ittt e e it et e e et e et e e e 8
Formatting Functions i e i 8
Composing LAnes e e 9
Hyphenating and Horizontally Justifying Lines 9
Creating Vertical Spaceo vttt e 9
Vertically Justifying Text 9
Laying Out Pageso e e 10
Named Areas ov it e e 10
Creating Head Levels i, 10
Creating a Table of Contents 10
Creating Boxesand Rules i, 10
Selecting Fonts e 10
Keeping Text Together 11
Placing Text at the Top or Bottom of a Page or Column 11
Footnotes e 11
Translating Characters i e 11
Indexing ..o e e 11
SCRIPT/VS Programming Facilitiest 11
Processing Symbols and Macros e 12
Processing Generalized Markup Language (GML) Tags 12
GML Starter Set Application it 12
Verifying Spellingo oo e 12
General Document Handling Functions i, 12
Saving Input Lines for Subsequent Processing 12
Specifying the Destination of Qutput 13
Printing Part of the Output Document 13
Processing Interactively During Formatting 13
Converting ATMS Documentsttt 13
Debugging by Tracing Processing Actions 13
Calling the SCRIPT/VS Processoroty 13
Interactive Environmentst e 13
Batch Environments e 14
Using SCRIPT/VS asa Subroutine i, 14

Table of Contents xi

xii

Using SCRIPT/VS as a Preprocessoroueeiemmnnennnnneenenn 14

Formatting Considerationsttt eennreennnneeeenn. 14
Selecting Control Words e e 15
Chapter 2. Using the SCRIPT Commandc0iiinireinnnnnnnns 17
Using SCRIPT/VS in the Interactive Environment 17
Naming the Primary Input File i, 18
CMS Naming Conventionseuuuteeerreneneneneneeeeennn 18
TSO Naming Conventionsot teenunmeeneeeeennneeennn. 18
ATMS-III Naming Conventionseeeeennmnmnnnnnnnnnn.. 18
Characteristics of an Input File ittt 19
Using SCRIPT/VS in the Batch Environment, 20
Environment Restrictionso iiit ittt e 20
The SCRIPT Command Optionsottt ittt i iiieeeaenen.. 21
Default Options vttt e ettt e e e e e 21
Mutually Exclusive Optionsuut ettt iiieeneneneeeens 21
Logical Output Devices and Destinationsoeeeenneeenneenan. 22
Printer CIassesttt ittt ettt e e e e 24
Printing on the 4250 Printerttt e e 26
Printing on the 3800 Printing Subsystem Model 3 27
Printing on the 3820 Page Printer it 29
Printing on Page Printers in ATMS-HI 30
Migration and Conversion Considerations for Release 3 31
3800 Printing Subsystem Model 3 to 3820 Page Printer 31
3820 Page Printer to 3800 Printing Subsystem Model 3 32
4250 Printer to 3800 Printing Subsystem Model 3 32
3800 Printing Subsystem Model 3 to 4250 Printerc.... 33
4250 Printer to 3820 Page Printer ittt 34
3820 Page Printer to 4250 Printerottt e e 34
Other Page Printing Considerationsuuiiiiunneeeeeenennnn 34
Chapter 3. Marking Up Documents with SCRIPT/VS 37
Language Syntaxt 37
Control Word Syntaxt i e e e e 37
The Control Word Separatorttt 38
The Control Word Modifier 39
Macro Syntax e e 40
Symbol Syntax e 40
Guidelines for Entering Text and Control Words In SCRIPT/VS 40
Start All Input Lines in Position Oneo, 40
Avoid a Text Period in Position One t iiiinnnnn... 40
Remember Which Control Words Cause Breaks 41
Comments in SCRIPT/VS Documentst 42
Valid Space Unit Notation vttt it 42
. 45
Implicit Markup e 45
Continuation and the Continuation Characterc.couitiuererenn.. 45
Chapter 4. Combining SCRIPT/VS Input Filesciiiiiiiinninnnn. 47
Imbedding and Appending Files e 47
Naming the File to Be Imbedded or Appended, 48
Indicatingthe End of a File i, 49
Master Files e e 50
SCRIPT/VS System Generated Files 51
Wrtingtoan Output File i e 52
Merging Documents from Several Sourcesovii it 54
Imbedding Segments in Your Documents, 55
Specifying Segment Widthand Depth 55
Specifying Inline Page Segments, 56
Using the &SW’ and &SD’ Symbol Attributes, 56

DCF: SCRIPT/VS Text Programmer’s Guide

The Segment Libraryttt ettt e 56

Chapter 5. Communicating with SCRIPT/VS ittt 59
SCRIPT/VS Messages and Severity Levels, 59
Using a SCRIPT/VS Command Option to Control Message Printing 59
The .MG [Message] Control Word i 60
Interactive SCRIPT e 61
Interactive SCRIPT/VS Processingcvtiiiuiniiiiinnnnna... 61
Communicating with VM/SP 63
Communicating with TSO e e 63
Tracing SCRIPT/VS Processingc.c.iiiiiin e e enneennenn, 64
The Output Line Generated by Input Tracing 64
Capabilities of the .IT Control Word 66
PART 2. DOCUMENT COMPOSITION FACILITIES OF SCRIPT/VS 69
Chapter 6. Composing Linesttt nnannas ghl
SCRIPT/VS Text Formattingoiititinitteteneeeeenenennnnn 71
Format Mode e e e e 71
Centered TeXt ... i it i i e e e 72
Ragged Right e e e 73
Ragged Left 74
Alternate Formats e 75
Overdraw OpLIONS ..ottt i ettt e e e 75
Sphitting Text e 76
Breaks ... e e 77
INdentingo e 78
Simple Indention e 78
Temporary and Permanent Indention 79
Using Indention with Tabs i e 82
Using Tabs ..ot e e 84
Processing Tabsottt e e 85
Tab Fill Characters e et et 87
Tab Positioning and Alignment, ... ettt 87
Using Inline Spacing for Tabs i 89
Leading Blanks and Tabs i i e e 90
Blank and Null Lines 91
Full Stop Characters i i e e i 92
Determining Word Space Values it 92
Determining Extra Space Values it 93
Inserting Horizontal White Space ittt 94
Revision €odest e e 95
Revision Code Considerationsuinentimen e, 96
The 3800 Printing Subsystem 96
Chapter 7. Hyphenating and Horizontally Justifying Text 99
Hyphenation and Horizontal Justification 99
Hyphenation i i e i e e 99
The .HY RANGE Control Word and Horizontal Justification 100
More on Hyphenationttt 102
Using an Algorithmic Hyphenator i, 102
Hyphenating Single Words i 102
Hyphenation Points and Fallibility 103
Chapter 8. Creating Vertical Space ittt rennes 105
Spaces and SKIps oo e e 105
Setting Line Spacet e e 106
Shifting the Baselinettt 107
Formatting Fractions on Page Printers 108

Table of Contents xiii

Chapter 9. Vertically Justifying Textc. ittt ennnsns 111

Vertical Distribution, Formatting and Justification 111
Distributiont e e e e e 111
Vertical Formattingttt ittt 112
Vertical Justification e 112
Section and Page Ending Considerations0uveieerennnnnn... 113
Other Considerationsttt iiie ettt eennens 114

Chapter 10. Establishing Page Layoutttt innnnnns 117

Default Page Dimensionso.iuiitiiiiiireee., 119

Changing Page DIMENsions iiitninerernnnnneennnenns 119
Changing the Page Marginttt 121
Changing the Page Length iviunn. 122
Changingthe Page Width 122
Changing the Line Length 122
Establishing Top and Bottom Marginsciuuvoroo.. 123

Startinga New Paget e 123
Startingan Oddor Even Page 124
Specifying Page Eject Mode 124
Conditional Column and Page Ejects 124

Page Numbers e e 125
Roman Numeral Page Numbers 126
Decimal Page Numbers it 126
Alphabetic Page Numbers i 126
Prefixes for Page Numbers i 127

Running Headings and Footings 127

Where to Define Headings and Footings, 130

Chapter 11. Placing Text in Named Areas 0 iiiiinereennnns 133

Page Areas e e e 133

Body Areas e e e e e 133

SECHION ATEAS .+ vttt et ittt e et e e e 134

Other Considerationsottt ettt 134
Specifying Width e 134
Specifying Depth e 134
Specifying a Font e 134

Putting Text in the Named Areas i 136

Placing the Named Areaonthe Page 136

Specifying Named Areasttt i e 137

Using the &AD’ Symbol Attribute 139

Using Named Areas with the 3800 Subsystem Model 1 140

Chapter 12. Composing Multiple-Column Pageso it 141

Defining Multicolumn Layout R 141
Page Sections and Section Breaks i ... 143

Defining Columns i e e 144
Column Line Length 145
Startinga New Column ittt e 146

Suspending and Resuming Multicolumn Processing 147

Chapter 13. Creating Head Levels and Table of Contents 149

Head Levelso e e 149
Spacing and Page Ejects i . 150
Defining Head Levels i i i, 150

The Table of Contents it 153
Adding Lines to the Table of Contents 153
Printing the Table of Contents i, 154
TWOPASS Considerationsottt et i eeee 154

Chapter 14. Creating Rulesand Boxesttt eenns 157

DCF: SCRIPT/VS Text Programmer’s Guide

Drawing Horizontal and Vertical Rules i, 157

Defining Rules e e 157
Drawing Horizontal Rules e 158
Using Named Horizontal Rules i 160
Underscoring with Named Rules 160
Drawing Vertical Rules 161
Using Named Vertical Rules 161
Aligning Vertical Rules 162
Drawing BoXest e e e 164
Creating Simple BoXes ittt it e e 164
Drawing Boxes with Named Rules 165
A Three Column BoXo e e 167
Centering Text withina Box o i i i 167
Stacking One Boxon Another 168
Drawing a Box withina Box i e 169
Drawing Boxesina Horizontal Row 170
Drawing the Top Line (Only)ofaBox 170
Drawing the Middle Portion of a Box (without Top or Bottom Lines) 171
Drawing the Middle Portion of a Box within Another (Larger) Box 171
Drawing the Bottom Line (Only)ofaBox 172
Drawing Boxes with the 3800 Printing Subsystem Model 1 172
Boxes with a Different Top and Bottom 173
Chapter 15. Selecting Fonts it i i it 175
Selecting Initial or Default Fonts 175
Using Fonts 176
Defining Fonts e 178
Defining Fonts for Impact Panters 178
Defining Fonts for Page Devices 179
Describinga Font 179
Typeface e e 180
POINtSIZE . .ottt e 180
Code Pagesot e e e 180
Coded Fonts i i e e e 180
The Default Coded Font i, 181
What Is in the Font Library? i it 181
Specifying the Font Library it 182
Defining Fonts by Characteristicst iennnn e 182
Selecting Fonts for a Varety of Devices 185
Emphasizing Text e e e e 186
Underscoring and Capitalizationuvuutttetn it ennnn.. 187
Using the .IC Control Word for Emphasis. 190
Chapter 16. Keeping Blocks of Text Togetherot 191
KPS ot e e e e e, 191
Inline Keepsottt ettt e e 192
Floats ... e e e e 194
WIdOW ZOMES .« v ittt ettt et et e e e e 195
Chapter 17. Creating Footnotes0ttt nnnnnennns 197
Normal Footnote Placement0ttt rrnnnnnnn. 197
Unusual Footnote Placement Conditions 198
Other Footnote Considerationsttt ieiiieetenannn.. 199
Chapter 18. Translating Characterso iiiiiiiiiineenn. 201
Translating Output Charactersii e, 201
Translating Input Charactersttt innnnn 202
Capitalizing TeXtttt et et e e 203
Translating Strings of Charactersc. .0t 204
Prefixing Input Lines i e e e 205

Table of Contents XV

xvi

Chapter 19. Creatingan Indexottt iiiiinnennncans 207

Placing the Indexina Documentc0iiiiiiiininnnnnnn... 207
TWOPASS Considerationsvutetinmnteennnnnennnnnn.. 207
Creating Index Entries vttt it ittt i e e 208
Page References i e e 208
Multilevel Entries e e 209
Explicitly Specified Page Numbers 210
Cross-Referencest i 210
Sorting Index Entries i e 211
Handling Special Characters e e e e 212
Explicitly Specifying Sort Keysootiiin ittt 213
Creatingthe Index PP 214
PART 3. SCRIPT/VS PROGRAMMING FACILITIES 217
Chapter 20. Defining the Formatting Environment 219
The Formatting Environment Parameterscotiiiiinnennnn.. 219
The Running Heading and Footing Environments 219
The Keep, Float, Footnote, and Named Area Environments 220
Saving and Restoring the Current Formatting Environment 220
Named Environmentsuuiiitiinninniaeee e, 220
Chapter 21. Processing Symbols0 ittt 223
How SCRIPT/VS Substitutes Values for Symbol Names 226
Compound Symbols e 227
Unresolved Symbols i 227
Inhibiting Substitutionttt e e e 228
Cancelinga Symbol e 229
Attributes of a Symbol Value 229
Space Unit Symbol Attributesttt 233
Symbol and Macro Librariesttt 233
SCRIPT/VS System Symbols i i, 234
Symbols for the System Date and Time, 235
Elaborating the System Datettt 238
Symbols for SCRIPT/VS Control Valuesciiiiiiere.... 239
The &$RET Special Symbol e 239
The &$L.C Special Symbol 240
The &$DCF Special Symbol i 240
The &$DDUT Special Symbol e 240
The &$GML Special Symbol i e 240
The &$EGML Special Symbol o i i e 240
The &SENV Special Symbol i e 241
The &S$LST Special Symbol i 241
The &$PASS Special Symbol 241
The &$PRT Special Symbol i e 241
The &$TAGD Special Symbol i i i 241
The &$VR Special Symbol e e 242
Passing Parametersto Input Files 242
Setting Symbols with the SCRIPT Commandciiuve.... 242
Symbols Set When a File Is Imbedded or Appended 242
Symbols Set When a Macro Is Processed, 243
Setting a Symbol to the Current Page Number 244
Symbols for Arrays of Values i 244
Controlling the Array Elements 0.0ttt iiinnnnnnn. .. 245
Accessing the Index Counterc0iuitiimnennnnnnnnnnnn. 246
Setting the Index Counterouiiiminneeennnanneennnn. 247
Extended Symbol Processingiiniiiiin i 247
Defining Text Variablesttt ittt ittt it ieeeees 249
Producing Special Charactersoiuiutteeeennnnnennnnnn . 249
Producing a Greek Alpha Character, 249

DCF: SCRIPT/VS Text Programmer’s Guide

<

Overriding Delimiter Charactersttt iinntniennnenn. 250

Using Defined Variables to Change Fonts 251
Chapter 22. Processing Logical Statementsc..iiiiiiiineonnnnns 253
The IF Control Word Family i 253

Alternative Processingt e 254

Bypassing Part ofan Input File 255

The SYSPAGE and SYSOUT Comparands, 256

Special Techniques for Conditional Processingccvuininn... 256
Conditional Sections i e 257
Logical Processing With Symbols 259
Chapter 23. Processing Macrost ittt ennnens 261
When to Use Macrosot ettt ettt et e 261
Howto Definea Macro i i 262
How Values Are Substituted for Symbols within a Macro Definition 264

Conditional Macro Processingitiittint e eennnnnn 264

Macro Naming CONVENtONS - v oottt v et ennrueeeeneeeeeeeenannns 265

Local Symbols for Macrosttt 265

Processing Local Variables i iiiiiiiannnnnn.. 266

Terminating @ MacrOt ct it e e e e e e e 267

Redefining SCRIPT/VS Control Words 267

Avoidingan Endless Loop 268
Using Symbols and Macros as Associative Memoryc.veuunnnnnn.. 269
Redefining SCRIPT/VS Formatting Conventionsccuoeeeunnn.. 271

Processing Input Lines That Begin with a BlankoraTab 271
Specifyinga Macro Library e 272

LIB: Specify Symbol and Macro Libraries, 272
Creating SCRIPT/VS Macro Libraries0o i, . 273

Ina CMS Environmentttttttininteeeneeennnnnnns 273

InaTSO Environmentttt 274

Inan ATMS-III Environmentt ieeennn. 275

In a Batch Environment e 275
Chapter 24. Processing GML ittt iiiiiiiniennnonans 277
GML Markup Syntaxttt e 277

Changing the GML Delimiters ittt 279
SCRIPT/VS Processing of GML i i i i i e 280

Automatic GML Processingttt 280

Attribute Scanning Rules 281

Attribute Processingcv vttt e e 282
Value Attribute Processing i e 282
Residual Text Processinguiiitiinineineenenneeeannn 283

GML Tag-to-APF Mapping ottt it iieaee . 284

Explicit Mappingottt ittt e e 285
Class Mapping . oo ittt ettt e ettt ettt ettt e e e 285
Darect Mapping . oot ittt ittt e e e e e 285

Creating Your Own GML Tag i, 285
Chapter 25. Verifying Spellingottt iiiiiiienrenss 289
Spelling Verification i it 289

Spelling Fallibility i it e e 292
The SCRIPT/VS Dictionariesc.uiiiiitinnnreernrnnnnennnnn. 292

Buildinga User Dictionaryttt nniennnnnnns 294

Building an Addenda Dictionaryc..iiiinttteiiietrannnn. 294

TLIB: Specify Spelling Checking and Hyphenation Libraries 295

Searching a SCRIPT/VS Dictionaryt einnnnnennnnn. 296
Stem Processing . .. ivvit ittt e et e e e e 296
English Prefixes and Suffixes i i, 296
French Prefixesand Suffixes i 297

Table of Contents xvii

Xviii

Dutch Prefixesand Suffixes i e 298

Italian Prefixesand Suffixes 300
German Prefixes e e 302
Spanish Prefixes e e e e 305
PART 4. APPENDIXES i i it etannenans 307
Appendix A. Using SCRIPT/VS with Other Programs 309
Producing Input for STAIRS/VS e 309
Specifying STAIRS/VS OQutput e 309
Restrictions Imposed on Formatted Qutput 309
STAIRS/VS Paragraph Identification 310
The ATMS Conversion Routinet 311
Conversion Technique i, 312
Hyphenating Words ittt ettt 312
Conversion Program Operation iuiiiiirennnnnnnns 312
Non-Format Command Conversionuittenronneennnn.. 312
End of Imbedded Control0t 312
ATMS GML Identifier, e 313
Subdocument Identifier 313
Formatting Control CONVErSIONtttnteeeeeevnnnnennnnnnnnnn. 313
Explicit Paragraphing Specification 313
Implicit Paragraphing Specification 314
Floating SKip . ..ottt ittt i i i i s e e 314
Width/Depth Control et 314
Text Alignment Controlsttt et 314
Floating Keeps ii ittt ittt e i i 314
Text Block Indentionttt 314
Page Number Control e e 314
Stop Code ... i e 314
Sphit Text .. 314
Revision Markers e e e 315
L] 05 0175 3O 315
Triplets and Backspacest 315
ATMS Control - SCRIPT/VS Symbol Relationship 316
Using SCRIPT/VS as a Postprocessorcuuiineeennnnnnn. 318
Using SCRIPT/VS as a Preprocessoriiitiiiinn e, 318
Developing Preprocessor APFsand Profiles 318
Redefining Symbols 319
Handling Directly Entered Control Words 319
Managing a Source Document 319
Preparing for Processingt e 320
Appendix B. Improving System Performance 0., 321
SCRIPT Command Optionsottt iei e, 321
The TWOPASS Optioncoiiiii ittt e et e, 321
The SPELLCHK Optionttt i iii i, 321
The INDEX Optionttt ittt e 322
SCRIPT/VS in the ATMS-III Environment, 322
Tuning ATMS-III for SCRIPT/VS i 322

L T | P 325
1T 1. G 333

DCF: SCRIPT/VS Text Programmer’s Guide

List of Illustrations

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

OO LN~

Minimum Abbreviations of SCRIPT Options. 23
. Logical Output Device vs. Output Destination 25
. Space Units Notationc.uiiiiiinneeeeennnneannn. 44
. Imbedding and Appending SCRIPT/VS Files 49
. Master File Structure i . 51
. How the Current Margins Are Established 80
. Permanent and Temporary Indention 82
. Justification Alignment Error for 3800 Printing Subsystem Output 97

Adjusting an Overdraw Conditiono, .. 101
. Example of Fractions Formatted on Page Devices. 110
. SCRIPT/VS Terms for Parts of the Page. 118

SCRIPT/VS Logical Devices, 120
. Measuring the Origin of Areasona Page. 135
. Summary of Initial Head Level Characteristics 151
. SCRIPT/VS System Symbol Names 236
. Processing Documents with GML 281
. Characters that Delimit Words for Spelling Verification 291
. Code Point Assignments for Accented Characters 293
. STAIRS/VS Condensed Text Format (CTF) Records 311
. Character Codes Recognized by ATMS-III Conversion 316
. ATMS-III Controls to SCRIPT/VS Conversion 317

List of Hlustrations xix

Part 1. Basic Information about SCRIPT/|VS

This part of the book contains general information about SCRIPT/VS.
Included in this section are the following chapters:

¢ Chapter 1 - An Overview of SCRIPT/VS

e Chapter 2 - Using the SCRIPT Command

e Chapter 3 - Marking Up Documents with SCRIPT/VS

® Chapter 4 - Combining SCRIPT/VS Input Files

e Chapter 5 - Communicating with SCRIPT/VS.

Part 1. Basic Information about SCRIPT/VS 1

Chapter 1. An Overview of SCRIPT/VS

SCRIPT/VS can format documents that include SCRIPT/VS control words and Gener-
alized Markup Language (GML) tags as well as text. SCRIPT is the command that you
use to invoke the SCRIPT/VS program. SCRIPT/VS can be used with several operating
systems in both the interactive foreground and the batch background environments.

Operating Environments

With the Foreground Environment Feature of the Document Composition Facility in-
stalled, the SCRIPT/VS text formatting program can execute in the following interactive
environments:

e The Conversational Monitor System (CMS) of the IBM Virtual Machine
Facility/System Product (VM/SP)

¢ The Time Sharing Option (TSO) of OS/VS2 MVS

e The Advanced Text Management System-III (ATMS-III) in a Customer Informa-
tion Control System/Virtual Storage (CICS/VS) environment (note that CICS/VS
here refers to both the CICS/OS/VS and CICS/VSE program products).

With the Document Library Facility (DLF) installed, SCRIPT/VS can execute in the
following background environments:

e OS/VS2 MVS

e VSE.

When SCRIPT/VS is run in a batch environment, input can come from:
¢ Files created by the ATMS-1II, CMS, TSO, or ISPF editors

e A word processing system attached to the host system using a telecommunications
network

® A user-written program that calls DLF as a subroutine.

SCRIPT/VS Input Files

SCRIPT/VS reads input data containing text and control information, formats the data
into pages, and produces formatted output for a system printer or other suitable output
device. The following kinds of information may appear in SCRIPT/VS input files:

e Text. This is the content of the document.

e Symbols. These are character strings that begin with an ampersand (&) and are re-
solved to a different character string when the line is processed. The new string may
be text, another symbol, or control information. For example, in this document the
symbol &3800 resolves to the string 3800 Printing Subsystem.

Chapter 1. An Overview of SCRIPT/VS 3

e Control words. These are two-letter codes recognized when the first character in the
input line is a period (.). For example, to cause a page eject, .PA is specified in
column one of an input line.

® Macros. These are groups of control words and symbol substitutions. (Macros are
often used to accomplish functions not provided by a single control word or to
change how a control word is processed.) A macro is defined using the .DM [Define
Macro] control word. For example, you can define a .TOP macro that contains a
.PA control word followed by a .CE control word. Then, anytime the .TOP macro
is encountered in the input file, the .PA control word is executed to begin a new
page, and the .CE control word is executed to center the next line of text.

e GML markup. This is a formatting language that uses tags to identify the associated
text as a particular part of a document, such as paragraph or heading. GML (Gencr-
alized Markup Language) provides the syntax and usage rules for marking up a doc-
ument® and allows you to develop a vocabulary of tags for describing your
documents. For example, in the GML starter set provided with the Document
Composition Facility, the tag :p identifies a paragraph. The tag is identified by the
GML delimiter, which is by default the colon (:).

A SCRIPT/VS input file is usually a sequential file on direct access storage that can be
modified using an editing program. SCRIPT/VS can process the file and produce for-
matted output.

SCRIPT/VS offers additional flexibility in the following forms:

e SCRIPT/VS data files are independently maintained. Any editor that can produce
files in a format acceptable to SCRIPT/VS can be used to create or modify these
files.

e SCRIPT/VS can combine many input files to produce a single, integrated output
document. The imbedded files can be arranged in any sequence. While they are
being processed, SCRIPT/VS treats each input file as though it were part of a single
continuous input file.

e SCRIPT/VS has high-level macro and symbol capabilities. With SCRIPT/VS you
can define your own control words or GML tags, conditionally process text, per-
form variable symbol substitutions, and do integer arithmetic.

e New SCRIPT/VS users can become productive quickly because the control words
and GML tags are easy to learn.

Markup Languages

The Document Composition Facility provides two languages for marking up text:
SCRIPT/VS and Generalized Markup Language.

SCRIPT/VS Control Word Language

4

Markup in the SCRIPT/VS language consists of entering SCRIPT/VS control words
that direct the SCRIPT/VS formatter.

A SCRIPT/VS control word is identified by a period in column one of the input line,
except when the .LI (Literal) control word specifies that a period in column one should

5 To mark up a source document is to add information to it that tells SCRIPT/VS how to proc-
ess it.

DCEF: SCRIPT/VS Text Programmer’s Guide

be regarded as text. A .* at the start of an input line identifies a comment line that does
not appear in the output.

Each input line is scanned from left to right for a control word separator, which is ini-
tially a semicolon (;). If a control word separator is found and the next character is a
period, the character string to the left of the control word separator is processed; the
character string to its right is saved. (The character strings can be control words.) This
process is repeated until the input line is completely scanned. For example,

.sk 7.5mm;.in 10mm for 3

causes approximately seven and one-half millimeters of vertical space to be skipped be-
fore the next output lines are printed (.sk 7.5mm). It also causes the next three output
lines to be indented ten millimeters (.in 10mm for 3).

Control words may have numeric or keyword parameters that further qualify the action
to be performed. For example, the .CE [Center] control word accepts the keywords ON
and OFF and is specified as follows:

.Ce on

The .SP [Space] control word can be specified as follows:
.sp 2i

Some control words that accept keyword parameters also accept numeric parameters.
The .CE [Center] control word also allows you to specify a number of input lines to be
centered. For example,

.ce 10

See the Document Composition Facility: SCRIPT|VS Language Reference for de-
scriptions of the SCRIPT/VS control words and associated parameters.

Generalized Markup Language

Generalized Markup Language (GML) provides the syntax and usage rules for describing
the parts, or elements, of a document without respect to particular processing. With
GML tags you can describe the type of element; you can also enter attributes to describe
other characteristics of an element.

The following example of GML markup describes a figure element and causes that figure
element to be enclosed in a box.

: fig frame='box'.

SCRIPT/VS interprets the GML markup and invokes the correct application processing
function (APF) for the element the markup describes. In SCRIPT/VS, APFs are imple-
mented as scts of control words in the form of macro definitions. The macro definitions
are usually contained in a macro library. The association, or mapping, between the
GML markup and the APFs is usually made in a document called a profile. The profile
is processed by SCRIPT/VS before the file marked up in GML is processed.

Information on GML markup is contained in the Document Composition Facility: Gen-
eralized Markup Language Starter Set Reference. This manual explains the processing
results of GML starter set markup. The Document Composition Facility: Generalized
Markup Language Starter Set Implementation Guide discusses the GML starter set pro-
file and macro library and how you can modify the GML starter set.

Chapter 1. An Overview of SCRIPT/VS 5

Logical Output Devices and QOutput Destinations

SCRIPT/VS provides flexible composition for printing on a computer printer as an al-
ternative to independent typesetting machines or sending typesetting jobs to an outside
vendor. SCRIPT/VS formats text for printing on terminals, impact printers, or nonim-
pact printers.

When SCRIPT/VS formats a document, it takes into consideration the characteristics of
the specific physical output device, called the Jogical output device. This may be a termi-
nal, a line printer, or a nonimpact page printer. The output devices SCRIPT/VS sup-
ports are:

e 2741 typewriter terminal

e 3270 display terminal

® 1403 printer

e 3800 Printing Subsystem Modcl 1 and Model 3 (in compatibility mode)
® 3800 Printing Subsystem Model 3 (page printing mode)

® 4250 printer

® 3820 Page Printer.

A logical device, which is specified with the DEVICE option of the SCRIPT command,
includes a physical device type, a page size, and a number of lines per vertical inch (for
line devices). For example, the 3800N8 logical device is a 3800 Printing Subsystem, at 8
lines-per-inch on 8-1/2 by 11 inch paper.

SCRIPT/VS can also be directed to send the output to a specific destination such as a
disk file or the terminal, regardless of the logical device for which it was formatted. You
can specify almost any combination of output destination and logical device. For exam-
ple, when formatting documents that are to be saved for printing at a later date, specify
the destination FILE and the logical output device of your choice. See the Document
Composition Facility: SCRIPT|VS Language Reference for a complete list of available
logical devices.

SCRIPT/VS can also be used to prepare documents for processing by other programs,
such as formatters that support photocomposers, and to prepare data for use as input to
the Storage and Information Retrieval System/Virtual Storage (STAIRS/VS) program
product.

Defaults and Initial Settings

SCRIPT/VS can format an input file without any control words or GML tags specified.
In such cases, the initial settings for page dimensions and formatting controls are used.
The initial settings are associated with the logical device specified with the DEVICE op-
tion of the SCRIPT command. The initial settings for each logical device are docu-
mented in the Document Composition Facility: SCRIPT|VS Language Reference.

Vertical and Horizontal Space Units

6

In SCRIPT/VS you can specify vertical or horizontal dimensions or distances. As
Figure 3 on page 44 illustrates, these dimensions can be expressed in any of several dif-
ferent space units:

DCF: SCRIPT/VS Text Programmer’s Guide

Fonts

e Centimeter

e Character (Horizontal)

e Cicero

® Device Unit (Horizontal)
¢ Device Unit (Vertical)

e Em-space (Horizontal)

e Em-height (Vertical)

e Inch

e Line (Vertical)

e Millimeter

e Pica.

In SCRIPT/VS, a font is a set of characters having the same vertical size and type style.
Fonts may be fixed-pitch, wherein all characters have the same pitch (or width); mixed-
pitch, wherein the characters are a mixture of 10-, 12-, and 15-pitch characters; or pro-
portional, wherein the characters have different widths.®

The pitch of a font is the number of characters per inch in a line of printed text. Certain
output devices, such as the 3270 Display Terminal, are capable only of printing fixed-
pitch fonts. Other devices, such as the 3800 Printing Subsystem are capable of printing
fixed-pitch and mixed-pitch fonts. The 3800 Printing Subsystem has three pitch values:

10-Pitch (10 characters per inch)
12-Pitch (12 characters per inch)
15-Pitch (15 characters per inch).

Output devices such as the 4250 printer, the 3800 Printing Subsystem Model 3, and the
3820 Page Printer are capable of printing fixed-pitch, mixed-pitch, and proportional fonts.
A wide variety of typographical fonts arc available for use with these page printers. Any
of these fonts may be used with SCRIPT/VS. See “Chapter 15. Selecting Fonts” on
page 175 for more details on specifying fonts for particular output devices.

Capitalization and underscoring can be used to create different logical fonts on all de-
vices, and overstriking allows you to print boldface text on impact printers and type-
writer terminals. (See “Defining Fonts” on page 178.)

For details about 4250 printer fonts, see the IBM 4250 Printer Type Font Catalog and
the appropriate Composed Document Print Facility (CDPF) documents. (See “Related
Printer Publications” on page vii.) For details about 3800 Printing Subsystem Model 3
and 3820 Page Printer fonts, see the 3800 Printing Subsystem Model 3 Font Catalog, the
IBM 3800 Printing Subsystem Models 3 and 8 Programmer's Guide, and IBM 3800
Printing Subsystern Models 3 and 8: Preparing Fonts for for Printing.

& For example, the character I may be narrower than the character H, and the M and the W
may be wider than the N.

Chapter 1. An Overview of SCRIPT/VS 7

Imbedding Files

You can combine many SCRIPT/VS input files for processing as a single document.

For convenience in updating and tracking SCRIPT/VS files, you can use one file as the
master file for a SCRIPT/VS document. The master file can contain the global format-
ting controls for the entire document and the .IM [Imbed] control words that imbed the
other files into the master file.

You can control how separate source files are brought together for processing as a single
document. Any number of source files can be imbedded in the primary source file. A
source file that has been imbedded can itself imbed another source file. For details, see
“Imbedding and Appending Files” on page 47.

SCRIPT|VS Utility Files

SCRIPT/VS creates a number of utility files when it encounters certain control words
(such as .WF [Write To File]), or command options, or both. You have the option of
defining or redefining these files using the .DD [Define Data File-id] control word.

Communicating with SCRIPT|VS

You can communicate with SCRIPT/VS in order to determine error conditions and to
interactively process your documents.

SCRIPT/VS issues program messages accompanied by a severity level code when certain
error conditions are encountered.

By using certain SCRIPT/VS control words, you can interact with SCRIPT/VS before
your input text is in final form and while your document is being formatted. For details,
see “Chapter 5. Communicating with SCRIPT/VS” on page 59.

SCRIPT/[VS Functions

User-controlled SCRIPT/VS processing includes three general categories of functions:
formatting functions, programming facilities, and general document handling.

Formatting Functions

8

SCRIPT/VS provides you with many text formatting functions including line composi-
tion, page composition, head levels, table of contents generation, boxes, keeping text to-
gether, footnotes, character translation, indexing, and hyphenation and spelling
verification.

DCF: SCRIPT/VS Text Programmer’s Guide

Composing Lines

You can control many functions of line composition including the following:

Line Formatting You can specify concatenation, justification, centering, and left or right
alignment. For details, see “SCRIPT/VS Text Formatting” on page 71.

Indenting You can specify indention in a number of ways. For example, you can create
hanging indents and left or right margin indention and can control the verti-
cal duration and extent of all indention. For details, see “Indenting” on page

78.

Tabs You can specify tab positions. Tab characters may be resolved into a number
of blanks or into a string of another character. For details, see “Using Tabs”
on page 84.

Revision Codes You can select the placement of as many as nine distinct revision codes
in the left margin to flag a line of particular interest, such as text that has
been revised since a previous version of a document. For details, see “Re-
vision Codes” on page 95.

Fonts You can select fonts for different portions of text, both in the body and in
running headings and footings. For details, see “Chapter 15. Selecting Fonts”
on page 175.

Highlighted Phrases You can highlight phrases for emphasis. Font selection, overstrik-
ing, capitalization, and underscoring can be used to emphasize important
phrases. For devices that support multiple fonts, you can change fonts for
emphasis. For details, see “Underscoring and Capitalization” on page 187.

Hyphenating and Horizontally Justifying Lines

You can determine if and how hyphenation should be done, how large a word must be
before it can be hyphenated, and how much of a word must be left at the beginning or
ending of a line. You can use an algorithmic hyphenator’” to further extend
SCRIPT/VS’s hyphenation capabilities. Text can be justified horizontally to avoid hy-
phenation, to achieve fully justified lines within the left and right margins, or to reduce
white space in a line. For details, see “Chapter 7. Hyphenating and Horizontally Justify-
ing Text” on page 99.

Creating Vertical Space

You can specify the amount of space left between output lines, including the reservation
of space for drop-in art. For details, see “Chapter 8. Creating Vertical Space” on page
105.

Vertically Justifying Text

You can perform column balancing in order to distribute text evenly among columns
and you can vertically justify your text in order to achieve fully justified lines within the
top and bottom margins. For details, see “Chapter 9. Vertically Justifying Text” on page
111.

7 An algorithmic hyphenator for American English is provided with SCRIPT/VS.

Chapter 1. An Overview of SCRIPT/VS 9

Laying Out Pages

Named Areas

You can specify page dimensions, the number of columns per page and running headings
and footings.

Page composition includes:

Margins You can specify the size of the top and bottom margins as well as the left
and right margins. For details, see “Default Page Dimensions” on page 119.

Headings and Footings You can create running headings and footings that will be printed
on all pages or different ones for odd and even pages. For details, see “Run-
ning Headings and Footings” on page 127.

Columns You can define the number of columns, their size and their placement on a
page. For details, see “Chapter 12. Composing Multiple-Column Pages” on
page 141.

You can define and place text into narmed areas. These areas can be positioned anywhere
on the page. For details, see “Chapter 11. Placing Text in Named Areas” on page 133.

Creating Head Levels

You can specify as many as seven head levels for distinctive formatting of headings that
represent different levels of topics. Distinctive formatting includes before and after spac-
ing, font selection, overstriking, capitalization, underscoring, and text alignment. For de-
tails, see “Chapter 13. Creating Head Levels and Table of Contents” on page 149.

Creating a Table of Contents

You can specify whether or not a table of contents is automatically generated and where
it is placed. SCRIPT/VS collects entries for a table of contents from the text accompa-
nying head levels and automatically supplies the page number. You can also specify
phrases other than the text accompanying head levels to appear m the table of contents.
For details, see “Chapter 13. Creating Head Levels and Table of Contents” on page 149.

Creating Boxes and Rules

Selecting Fonts

You can construct boxes around formatted text. You can also draw boxes within boxes,
vertical lines to separate columns of text, and horizontal lines to separate rows.

You can define named rules of varying thicknesses and place horizontal and vertical rules
in the current column. For details, see “Chapter 14. Creating Rules and Boxes” on page
157.

You can select coded fonts for use with line devices and page printers. With page print-
ers, you can also define and select fonts from font families found in a font library. For
details, see “Chapter 15. Selecting Fonts” on page 175.

10 DCF: SCRIPT/VS Text Programmer’s Guide

Keeping Text Together

SCRIPT/VS processing includes functions that keep text together to improve the ap-
pearance of output. For example, SCRIPT/VS keeps the text of a head level together
with the first few lines of text after the heading so that they appear in the same column.
SCRIPT/VS can also ensure that single lines at the beginning or end of a paragraph
(widows) are not placed by themselves at the top or bottom of a column or page. For
details, see “Chapter 16. Keeping Blocks of Text Together” on page 191.

Placing Text at the Top or Bottom of a Page or Column

Footnotes

You can indicate that blocks of text, called floats, are to be kept together and placed at
the top or bottom of a column or page. For details, see “Chapter 16. Keeping Blocks of
Text Together” on page 191.

You can have SCRIPT/VS save text indicated as a footnote and place it at the bottom
of the page.® Subsequent footnotes are placed below it. For details, see “Chapter 17. Cre-
ating Footnotes” on page 197.

Translating Characters

Indexing

You can define specific character mappings so that SCRIPT/VS will perform character
translations on input and output lines as part of its normal processing. See “Chapter 18.
Translating Characters” on page 201.

You can include index entries in the body of your document at their points of reference.
SCRIPT/VS uses these index entries to generate an index for your document that in-
cludes appropriate page numbers for all of the entries. For details, see “Chapter 19. Cre-
ating an Index” on page 207.

SCRIPT/VS Programming Facilities

SCRIPT/VS provides several programming facilities that enable you to specify the
SCRIPT/VS formatting environment, process input conditionally, process symbols and
macros, and process Generalized Markup Language tags.

You can set the values and parameters of the formatting environment in order to specify
exactly how you want SCRIPT/VS to format each line on an ouiput page.

You can cause SCRIPT/VS to alter input processing. For example, by setting symbol
values and comparing those values, you can control whether a block of input text is in-
cluded in the output document. For details, see “Chapter 22. Processing Logical
Statements” on page 253.

8 Like this.

Chapter 1. An Overview of SCRIPT/VS 11

Processing Symbols and Macros

You can define symbols and macros for substitution during processing. Symbols are used
in many ways: for example, in tests for conditional processing, for cross-references to
pages or figure numbers, for entering characters unavailable on the entry keyboard, and
as abbreviations for repetitive phrases. You can define macros, which are sets of
SCRIPT/VS control words. For example, you might redefine a particular head level
macro to alter the SCRIPT/VS formatting style. For details, see “Chapter 21. Processing
Symbols” on page 223 and “Chapter 23. Processing Macros” on page 261.

Symbols and macros are used to support the Generalized Markup Language. The Docu-
ment Composition Facility: Generalized Markup Language Starter Set Implementation
Guide discusses how symbols and macros are used to create the GML starter set.

Processing Generalized Markup Language (GML) Tags

SCRIPT/VS recognizes Generalized Markup Language (GML) tags as a form of text
markup and provides extensive facilities for mapping GML tags to APFs, manipulating
attributes, and processing symbols. For details, see “Chapter 24. Processing GML” on
page 277.

GML Starter Set Application

Verifying Spelling

The Document Composition Facility provides a GML starter set consisting of a profile
and a macro library to support a sct of tags for general documents. You can use the
starter set either as an example of one way to support GML or you can further enhance
the starter set by adding your own tags to suit the needs of your own unique documents.
The Document Composition Facility: Gerneralized Markup Language Starter Set Imple-
mentation Guide documents how the GML starter set is constructed and illustrates how
you can modify it.

You can specify whether or not words are checked for correct spelling. SCRIPT/VS pro-
vides dictionaries of many common root words in nine languages. Algorithms for prefix
and suffix variations, provided with each language, extend the basic root words.
SCRIPT/VS determines spelling validity (and hyphenation points) based on these algo-
rithms and the basic root words. You can add words to addenda or user-created diction-
aries as required for a particular document. For details, see “Chapter 25. Verifying
Spelling” on page 289.

General Document Handling Functions

SCRIPT/VS provides several document handling functions. These are discussed in the
sections immediately below.

Saving Input Lines for Subsequent Processing

12

You can determine whether certain input lines will be written to a file. For details, see
“Chapter 4. Combining SCRIPT/VS Input Files” on page 47.

DCF: SCRIPT/VS Text Programmer’s Guide

Specifying the Destination of Output

You can specify the output destination of the formatted document. It can be stored as a
file for later use or printed on a variety of devices, including impact and nonimpact
printers and display and typewriter terminals. For details, see the discussion of SCRIPT
command options in the Document Composition Facility: SCRIPT|VS Language Refer-
ence.

Printing Part of the Output Document

You can specify whether every page, a single page, or a range or ranges of pages is to be
included in the formatted output. For details, see the PAGE option in the summary of
SCRIPT command options in the Document Composition Facility: SCRIPT|VS Lan-
guage Reference.

Processing Interactively During Formatting

In an interactive environment (CMS or TSO), you can affect SCRIPT/VS as it processes
by entering text or markup at a terminal. In effect, the terminal can be treated as an
input file. For example, you can interactively specify the values of symbolic variables
specified in the document or enter those portions of text that vary from one processing
time to the next. If you are using a typewriter terminal, you can also stop SCRIPT/VS
output processing at any point on a line to change typing clements or enter text. For
details, see “Interactive SCRIPT/VS Processing” on page 61.

Converting ATMS Documents

If the IBM Document Library Facility program product is installed with SCRIPT/VS,
you can convert most ATMS-II or ATMS-III markup to similar or equivalent
SCRIPT/VS markup. For details, see the Document Library Facility Guide and “The
ATMS Conversion Routine” on page 311.

Debugging by Tracing Processing Actions
You can trace all control words and each step of symbol and macro substitution in input

lines. In cases where unexpected results are observed, trace information can be an invalu-
able aid in pinpointing the problem area.

Calling the SCRIPT/[V'S Processor

You call the SCRIPT/VS processor by issuing the SCRIPT command and specifying
the name of the file SCRIPT/VS is to process.

Interactive Environments

In one of the three interactive environments that support SCRIPT/VS, use one of the
following formats for the SCRIPT command:

e In CMS: SCRIPT filename (options
e In TSO: SCRIPT dsname options
e In ATMS-III: script docname (options

Chapter 1. An Overview of SCRIPT/VS 13

The SCRIPT command format and options are described in detail in the SCRIPT com-
mand options section of the Document Composition Facility: SCRIPT|VS Language Ref-
erence.

Batch Environments

For details about calling SCRIPT/VS in a batch environment, see the Document Library
Facility Guide.

Using SCRIPT/VS as a Subroutine

In a batch environment, with the Document Library Facility program product, an appli-
cation program can invoke DLF as a subroutine which in turn invokes SCRIPT/VS.
For details, see the Document Library Facility Guide.

Using SCRIPT/VS as a Preprocessor

SCRIPT/VS can be used to prepare an input file for use as input to another text pro-
gram such as the STAIRS/VS program product. For details, see “Producing Input for
STAIRS/VS” on page 309.

Formatting Considerations

When you create an input file or when you create application processing functions
(APFs) for GML processing, you should consider:

e How is the text to be formatied? Do you want to add spaces between lines or para-
graphs? Indent lines? Create numbered or bulleted lists?

® What size paper are you using for output? How many lines of text should be on the
page? How wide is it? Do you want special headings on the top or bottom of each
page? Where, and in what format, do you want the page number to appear?

® Are you going to use a multiple column page layout?

¢ Do you want to generate a table of contents listing major headings and the page
numbers on which they occur?

¢ Do you want to generate an index?

e How long is the final document going to be? Can you organize it into several input
files and let SCRIPT/VS combine them?

¢ Do you need a special size or style of type for your documentation? Will you need
different types for body text? Headings? Footnotes? And so on?

® Are you going to have illustrations? Are you going to create boxes and rules using
SCRIPT/VS? Do you need to leave blank pages or blank space so that artwork can
be included later? How are you going to number the illustrations?

® Are you using variable information? Can you use symbolic names throughout a
document to represent information that changes frequently?

14 DCF: SCRIPT/VS Text Programmer’s Guide

V2R N

¢ Do you want the SCRIPT/VS processing to be interactive? Are there types of infor-
mation you may want to enter during SCRIPT/VS processing?

e Are you using the same sequences of control words frequently? Can you define a
macro so you do not have to reenter all the control words in sequence each time?

e Do you want your output lines fully justified? Do you want them left-aligned or
right-aligned? Do you want to balance your columns by distributing text? If you
want your columns justified, what are your leadout, skip, space and text linespacing
requirements and allowable variations?

Selecting Control Words

This book describes many formatting techniques and shows many examples. No single
example or technique is necessarily the best; there are usually several ways to do the
same thing. As you become more expcrienced in using SCRIPT/VS, standard ways of
doing things will evolve and may be accepted as installation standards where you work.

Note: The purpose of the examples in this book is to illustrate various formatting tech-
niques using the SCRIPT/VS control words. Because of various factors, such as column
line length, hyphenation dictionaries, and algorithmic hyphenators, example results may
not always be identical to that shown. However, the effect of the control word will be
the same.

Some of the examples in this book are formatted using a predefined column line length

of 30; others are formatted to the actual line length of the column, except when a spe-
cific column line length is given using the .CL control word.

Chapter 1. An Overview of SCRIPT/VS 15

Chapter 2. Using the SCRIPT Command

You can use the SCRIPT command and its options to process and format an input file,
either in an interactive or batch environment.

Using SCRIPT/V'S in the Interactive Environment

If you want to process and format an input file in the interactive environment, you sim-
ply issue the SCRIPT command along with the necessary options to control processing.
SCRIPT/VS formats the input file using GML tags, macros, control words, and text
that are included in the file.

The SCRIPT command can be issued as a CMS command, a TSO command, or an
ATMS-III command. The format of the SCRIPT command is the same for each sys-
tem, except that in TSO options must not be placed in parentheses and in ATMS-1II
the SCRIPT command itself must be entered in lowercase. The forms of the SCRIPT
command are as follows:

In CMS,

SCRIPT file-id [(options...]
?

In TSO,

SCRIPT file-id [optioms...]
?

In ATMS-III,

script file-id [[(] optioms...]
?

*

where:

? causes SCRIPT/VS to display a list of all the valid command
options.

file-id 1s the name of the primary input file. When the input file contains
imbedded or appended files, file-id names the primary or master file;
the imbedded and appended files are named with control words in
the master file. The format of the file-id depends on the environment
from which SCRIPT/VS is called.

* is the document in ATMS-III working storage.

options specify how SCRIPT/VS is to process and format the input file and

where the resulting output file is to go. You can specify as many

Chapter 2. Using the SCRIPT Command 17

options as you think appropriate. The left parenthesis “(” preceding
the option list is required in the CMS environment.

Naming the Primary Input File

The format of the name you specify for file-id depends on the environment from which
you call SCRIPT/VS. Except when using SCRIPT in the TSO environment, the naming
rules and conventions apply equally to the primary input file, the profile, and any imbed-
ded or appended files.

CMS Naming Conventions

The file-id of a CMS file to be processed is given in the form:

filename [filetype [filemode]]

If filetype is omitted, a filetype of SCRIPT is assumed. If filermode is omitted, the CMS
search sequence is used to locate the file on an accessed CMS disk. If you want to spec-
ify the filemode, you must also give the filetype, because these parameters are positional.

TSO Naming Conventions

In TSO, you can use a fully or partially qualified data set name to refer to the primary
input file or profile in the SCRIPT command. If the file-id given is not fully qualified
(enclosed in single quotation marks), the userid is prefixed to the file-id as the leftmost
qualifier, and TEXT is added (unless it already appears) as the right-most qualifier. For
example,

Specified DSNAME Actual DSNAME

A userid. A. TEXT

A. TEXT userid. A. TEXT
DOC(CHAP1) userid. DOC. TEXT(CHAP1)
'DPJK1.X.Y' DPJK1.X.Y

(CHAP2) userid. TEXT(CHAP2)

ATMS-III Naming Conventions

18

Documents in an operator‘s working storage can be formatted with the command

script *

Documents that are to be formatted from permanent storage or imbedded or appended
can be specified in a fully qualified way, such as:

t
'docname: opnum; getw

This results in a search for the document named docname with a getword of getw be-
longing to the user whose operator number is opnum. A qualified name always results in
an explicit search without subdocument index search. A name can be qualified by the
use of only the colon character (:) without any opnum. This form of qualification signi-
fies that the document is to be explicitly located and read from the requesting user's per-
manent storage.

DCF: SCRIPT/VS Text Programmer’s Guide

If a getword is specified, it must match the document getword even though the docu-
ment belongs to the requesting user. If a getword is not specified for a document that
does not belong to the requestor, it must have a getword of any.

Documents in an operator‘s permanent storage can also be formatted by transmitting a
request to an appropriate SCRIPT/VS peripheral queue:

XFO; qname; docname: opnum; getw; options

where gname is the name of a SCRIPT/VS output queue and options are any valid
SCRIPT/VS command options.

Note: ATMS-III always adds an appropriate destination option, such as PRINT or
CTF, to the user's options when the peripheral queue is processed. TERM is always
added when the SCRIPT command is issued from a terminal.

Characteristics of an Input File

The following are characteristics of input files that can be processed by SCRIPT/VS:
¢ In a CMS environment:
= A filetype of SCRIPT

= As many as 65,535 fixed- or variable-length records, with a maximum of 132
bytes per record

= Include uppercase and lowercase letters, numbers, and special characters

= Do not contain line numbers; however, if the lines are numbered, the number
must be in positions 1 to 8 of each record. When the input file is processed,
line numbers are ignored.

e In a TSO environment:

= Data set organization of PO (partitioned organization) or PS (physical sequen-
tial)

= Composed of fixed- or variable-length records, blocked or unblocked, with a
maximum of 132 bytes per record

= Include uppercase and lowercase letters, numbers, and special characters

= Contain records with or without line numbers; if the input lines are numbered,
the numbers are ignored if:

A A variable-length record has the line number in the first eight positions of
each record.

A A fixed-length record has the linc number in the last eight positions of
each record.

¢ In an ATMS-III environment:
= Contained in ATMS-III working or permanent storage

= Composed of variable-length records, with a maximum of 230 text characters
per record

= Include uppercase and lowercase letters, numbers, and special characters

= Include ATMS-III page and unit numbers that are not included in the 230 text
characters.

Chapter 2. Using the SCRIPT Command 19

Using SCRIPT/VS in the Batch Environment

With the Document Library Facility (DLF) installed, SCRIPT/VS can be used in a
batch environment under OS/VS2 MVS and VSE. Using the DLF SCRIPT command,
input files can be formatted with the SCRIPT/VS formatter in a batch environment. In-
put files are usually stored as documents in the library, or as external data sets to DLF.
The output can be directed to either a printer or to an external data set.

SCRIPT/VS files stored as documents in the library are specified by:
e A three-part document identifier, which includes:
= Library number
= Document name
= Password
¢ Data name
¢ Version number.

SCRIPT/VS files stored as external data sets to DLF are specified with a ddname or
dataset name via the FROM operand of the DLF SCRIPT command.

Environment Restrictions

20

Depending on the environment in which you are using SCRIPT/VS, certain SCRIPT
command options and control word parameters are restricted.

¢ In the CMS environment, the following should not be used:
= The DEST command option
= Suboptions of the PRINT command

= The DD, DSN, CATALOG, DATA, VERSION, PROC, and PARM parame-
ters of the .DD [Define Data File-id] control word.

¢ In the TSO environment, the following should not be used:
=« The OPTIONS, TLIB, and @user-option command options

= The DATA, VERSION, PROC and PARM parameters of the .DD [Define
Data File-id] control word.

e In the ATMS-III environment, the following should not be used:

= The DEST, FILE, NOSPIE, NOWAIT, STOP, TLIB, and @user-option
SCRIPT command options

= The PROMPT option of the PAGE command option
= The suboptions of the PRINT command option

= The DD, DSN, CATALOG, DATA, VERSION, PROC and PARM parame-
ters of the .DD [Define Data File-id] control word

= In VSE, the SEGLIB option should not be used.

DCF: SCRIPT/VS Text Programmer’s Guide

e In the DLF Environment, the following should not be used:
= The LIB, QUIET, NOSPIE, STOP, and TERM options of SCRIPT/VS
= In VSE, the SEGLIB option should not be used.

The DSN... parameter of the FROM suboption (which specifies the name of the
data set used for input when the document library is not the source) and the DSN...
parameter of the FILE option (which specifies the name of the data set used for
output) are valid in OS/VS2 MVS only.

The SCRIPT Command Options

Default Options

SCRIPT command options control how SCRIPT/VS processes and formats your input
file. Some of the options have suboptions; each option‘s suboptions are enclosed in pa-
rentheses. You do not have to enter a right parenthesis unless another option follows.
Options and suboptions are separated from each other by blanks. In TSO, a comma can
also be used as a separator.

The name of each option can be shortened to its minimum abbreviation. In TSO, am-
biguous truncations are not accepted and you are prompted to reenter the option. In
other systems, ambiguous truncations are accepted and interpreted as shown in Figure 1
on page 23.

When you specify the SCRIPT command with a file-id or an * and no options, the
defaults are:

For CMS,

TERM PROFILE (PROFILE) LIB (DSMGML3) NOCONT NODDUT
For TSO,

TERM PROFILE (PROFILE) LIB ('SCRIPT.R30.MACLIB') NOCONT NODDUT
For ATMS-III,

TERM PROFILE (PROFILE) MESSAGE (DELAY) NOCONT

For batch,

PRINT PROFILE (PROFILE) MESSAGE (DELAY) NOCONT

All other options must be explicitly specified when desired.

Mutually Exclusive Options

Some of the SCRIPT command options are mutually exclusive from a logical stand-
point. However, when two such command options are specified, no error results; but
one option can cancel the effect of another previously specified option. Within the fol-
lowing groups of options, the last one processed by SCRIPT/VS takes effect, except in
TSO. Because of the way TSO parses parameters before passing them to SCRIPT/VS,
options are processed in alphabetical order regardless of the order of entry. In other sys-
tems, they are processed in the order in which they are specified.

Chapter 2. Using the SCRIPT Command 21

The mutually exclusive options are:

e PROFILE and NOPROF. The PROFILE option specifies that a file is to be im-
bedded before the primary mput file is processed; the NOPROF option specifies
that no profile is needed, respectively.

e CTF, FILE, PRINT, and TERM. These options specify the destination of the for-
matted output. If a logical output device is not also specified, SCRIPT/VS selects
one, based on the destination. If CTF is specified and the device type is not
STAIRS, CTF is ignored. Figure 2 on page 25 lists the default logical device for
each destination.

¢ CONTINUE and NOCONT. These options determine whether processing is to
continue after SCRIPT/VS detects an error condition and issues an error message.
Even if CONTINUE has been specified, SCRIPT/VS will stop processing if a se-
vere or terminal error is encountered.

e DDUT and NODDUT. These options determine if SCRIPT/VS utility file redefi-
nition to a non-utility file is allowed. The redefinition is disallowed by NODDUT.
DDUT allows redefinition.

e SEGLIB and NOSEGLIB. These options determine whether the segment library is
to be searched for a specified segment. If the CONTINUE option has been speci-
fied, SCRIPT/VS will continue processing even if the specified segment does not
exist.

¢ SYON and SYOFF. These options determine if the .SY [System Command] control
word 1s enabled or disabled. SYOFF disables .SY [System Command] and SYON
enables it.

Descriptions of all of the SCRIPT command options can be found in the Document
Composition Facility: SCRIPT|VS Language Reference.

Logical Output Devices and Destinations

22

SCRIPT/VS can format a document for a number of different output devices, including
the 1403 printer, the 3800 Printing Subsystem, and the 4250 printer. During formatting,
SCRIPT/VS takes into consideration the characteristics of the specific output device.

SCRIPT/VS always formats documents for some specific logical output device. A logical
output device is a combination of a physical device type, such as the 3800 Printing Sub-
system, form size, such as 8 1/2 by 11 inches, and a specific lines-per-inch specification,
such as 6 or 8. The logical device type is specified with the DEVICE option of the
SCRIPT command. For example, you can direct SCRIPT/VS to format a document for
a 3800 Printing Subsystem standard page size (8-1/2 by 11 inches) at 8 lines-per-inch
with the following command.

SCRIPT TEST (DEVICE(3800N8)

See Figure 2 on page 25 for a list of the logical devices that SCRIPT/VS can format for.

If the DEVICE option is not specified with the SCRIPT command, SCRIPT/VS uses a
default logical device, usually 1403W6.°

The logical device that SCRIPT/VS uses in formatting the document is independent of
the the actual destination of the formatted output. For example, you can not only direct
SCRIPT/VS to format for a 3800 Printing Subsystem but also tell it to put the format-

9 This default device can be changed by the installation.

DCF: SCRIPT/VS Text Programmer’s Guide

Option non-TSO Environments TSO Environment
BIND B B
CHARS C CH
CONTINUE (el0] CcO
CTF CT CT
DDUT DD DD
DEST DE DES
DEVICE D DEV
FILE F Fl
FONTLIB FO FO
INDEX | |

LIB L L
MESSAGE M M
NOCONT NOC NOC
NODDUT NOD NOD
NOPROF N NOP
NOSEGLIB NOSE NOSE
NOSPIE NOS NOSP
NOWAIT NOW NOW
NUMBER NU NU
OPTIONS (0]

PAGE P PA
PRINT PR PRI
PROFILE PRO PRO
QUIET Q Q
SEARCH S SEA
SEGLIB SEG SEG
SPELLCHK SP SP
STOP ST ST
SYOFF SYOF SYOF
SYON SYON SYON
SYSVAR SYS SYS
TERM T TE
TLIB TL TL
TWOPASS T™W TW
UNFORMAT u UN
UPCASE up up

Figure 1. Minimum Abbreviations of SCRIPT Options.

ted output in a disk file, rather than send it to the printer. There are several options of
the SCRIPT command that specify the destination of the output. These are:

e FILE (put it in a disk file)
e TERM (send it to your terminal)
e PRINT (send it to the printer)

¢ CTF (putit in a disk file in Condensed Text Format for the STAIRS program
product).

Chapter 2. Using the SCRIPT Command 23

Printer Classes

You can specify almost any combination of output destination and logical device. For
example, if you specify

SCRIPT TEST (FILE DEVICE(3800N8)

then SCRIPT/VS formats a document for the 3800 Printing Subsystem at 8 lines-per-
inch but saves the output in a disk file for later printing, if you so request, on a physical
printer.

Note: There are two exceptions to this rule:

1. The CTF destination is valid only for the STAIRS logical device and is ignored if
any other logical device is specified.

2. The PRINT option is not valid for 4250 printer logical devices.'

Additionally, certain destinations are invalid in certain environments. See the descriptions
of the FILE, PRINT, TERM and CTF command options in the Document Composition
Facility: SCRIPT|VS Language Reference for more details.

If you specify only a logical device with the DEVICE option, SCRIPT/VS assumes an
appropriate output destination. For example, if you specify a 1403 logical device,
SCRIPT/VS may send the output to the printer. If you specify a 4250 printer logical
device, SCRIPT/VS may file the output for you in a disk file."

Similarly, if you specify an explicit output destination, SCRIPT/VS assumes an appro-
priate logical device. If you specify neither a destination nor a logical device,
SCRIPT/VS formats the document for and sends it to your terminal. The logical output
device and output destination for a document when various combinations of options are
specified are shown in Figure 2 on page 25.

SCRIPT/VS supports two basic classes of printer devices: line printers and page printers.
A line printer or line device is any printer that accepts one line of text from the host
system at a time. SCRIPT/VS supports such line devices as the 1403 printer, the 2741
typewriter terminal, and the 3800 Printing Subsystem Model 1. A page printer is any
printer that accepts composed pages, which are constructed of composed text and im-
ages, among other things. SCRIPT/VS supports the 4250 printer, the 3800 Printing Sub-
system Model 3, and the 3820 Page Printer.

Note: The Document Composition Facility (DCF) and the Generalized Markup Lan-
guage (GML) starter set require the following font program products be installed for the
4250 printer:

e 5771-AAR Monotype Times New Roman"

e 5771-AAW Typewriter and Pi

and DCF requires tne following font program products be installed for the 3800 Printing
Subsystem Model 3 and the 3820 Page Printer:

° In the ATMS-III environment, ATMS-III will cause the output for a 4250 printer to be sent
to a CICS/VS extra partitioned dataset.

"' Trademarks of The Monotype Corporation, Limited.

24 DCF: SCRIPT/VS Text Programmer’s Guide

e 5771-ABA Sonoran Serif'
e 5771-ABC Pi and Specials.
You may tailor DCF and/or use the CHARS option of the SCRIPT command to point

to typeface families other than the required ones listed here.

Logical Physical Output
Options Specified Device Device Destination
none [Foreground] TERM 2741 or 3270 Terminal
none [Background] 1403W6 1403 Printer
CTF STAIRS 1403 ()
FILE 1403W6 1403 File
PRINT 1403W6 1403 Printer
TERM TERM 2741 or 3270 Terminal
DEVICE(1403xx) 1403xx 1403 Printer
DEVICE(2741) 2741 2741 Terminal
DEVICE(3270) 3270 3270 Terminal
DEVICE(38PPxxxx) 38PPxxxx 3800-3 Printer
DEVICE(3800xx) 3800xx 3800 Printer
DEVICE(3820xx) 3820xx 3820 Printer
DEVICE(4250xx) 4250xx 4250 File (2)
DEVICE(STAIRS) STAIRS 1403 "
CTF DEVICE{devtype) devtype device (3)
FILE DEVICE({devtype) devtype device File
PRINT DEVICE{devtype) devtype device Printer
TERM DEVICE({devtype) deviype device Terminal
CTF DEVICE(STAIRS) STAIRS 1403 ()
FILE DEVICE(STAIRS) STAIRS 1403 File (4)
PRINT DEVICE(STAIRS) STAIRS 1403 Printer (4)
TERM DEVICE(STAIRS) STAIRS 1403 Terminal (1)
+ The destination of Condensed Text Format output depends upon the environment:
e |n CMS, TSO, and VS2: a file named DSMUTCTF
¢ |n VSE: a file named DSMUCTF
e In ATMS-lil: a CICS/VS partitioned data set.
2 |n ATMS-III, the destination is a CICS/VS patrtitioned data set.
3 |f the CTF and DEVICE options are both specified, and devtype is not STAIRS, CTF is ignored.
4+ This output is in STAIRS Proof format.

Figure 2.

Logical Output Device vs. Output Destination: It is the user‘s responsibility to ensure that the character-
istics of the physical device to which the output is directed match the characteristics of the specified or
implied logical device. Your installation‘s conventions for output classes and forms must be included in
these considerations. Refer to Figure 12 on page 120 for a description of all logical devices.

2 Data derived under license from The Monotype Corporation, Limited.

Chapter 2. Using the SCRIPT Command 25

Printing on the 4250 Printer

26

DCEF enables you to get output printed on the 4250 printer. The method you use to get
this output depends on the operating environment in which you are working.

In CMS, for example, you must use the FILE option of the SCRIPT command to get
4250 printer printed output. It is assumed that you have a font library, a font library
index, and the necessary 4250 printer fonts on your CMS system. If you have these nec-
essary requisites and if you have formatted your document with SCRIPT/VS, then you
can send your output to a file by entering, for example:

script docname (dev(4250a) file

Output created by this command is then placed into a file called docname LIST4250 A.

To get the file docname LIST4250 A printed, you must use the Composed Document
Printing Facility (CDPF) running as an application program in a virtual machine to
which the 4250 printer is attached. An example of the command to do this is:

bfucdpf docname 1ist4250 a (processing options)

where “processing options” are CDPF command options that you want to specify, such
as MESSAGE, PRINT, and so on. For more information on CDPF see the Composed
Document Printing Facility: Installation and Operation.

In MVS, you can get 4250 printer printed output either in the foreground or in the back-
ground. In the foreground (TSO), you must first enter the command

script docname dev(4250a) file

in order to create a file called userid.docname.LIST4250. This assumes you used the de-
fault for your document name. If you did not use the default naming convention, then
this file will be called by the name of what other preallocated data set you specified with
the SCRIPT command.

Next you will have to invoke a print CLIST (command list) input file that you have
created or had created for you that contains such information as the font library name,
the segment library name, and the CDPF command. By entering the name of the
CLIST, you cause the print to be sent to the 4250 printer.

In the background environment (DLF), you will have to specify in your batch procedure
the name of the font and segment libraries to be used and that the printing is to be in
page mode. The JCL statements for DLF SCRIPT command processing are as follows:

DCF: SCRIPT/VS Text Programmer’s Guide

&£

//SCRIPT JOB
//STEP1 EXEC PGM=DSMSPEXC,PARM='LIST'
//SYSPRINT DD SYSOUT=A
//DEV4250 DD DSN=DOCNAME. LIST4250,DISP=MOD
//FONTLIB DD DISP=0LD,DSN=SYS1.FONT4250
//DSMLIST DD SYSOUT=A
//DSMINDIR DD DSN=DSMLIB.DIRECTORY,DISP=SHR
//DSMINLIB DD DSN=DSMLIB. SOURCE,DISP=SHR
//DSMUTMSG DD UNIT=SYSDA,SPACE=(TRK,(5,5))
//DSMUTDIM DD UNIT=SYSDA,SPACE=(TRK,(5,5))
//DSMUTTOC DD UNIT=SYSDA,SPACE=(TRK,(5,5))
//DSMUTWTF DD UNIT=SYSDA,SPACE=(TRK,(5,5))
//SYSIN DD *

AUTH 88/CITADEL

SCRIPT 1314151 DSMIVC30 (PROF(DSMPROF3) CONT -

FILE(DEV4250) DEV(4250A))

/ *
//

These JCL statements cause the specified input dataset to be formatted to a file,
docname LIST4250. To then get this file to a 4250 printer for printing, you must again
use CDPF as shown in the following example:

//jobname JOB
//*MAIN SYSTEM=systemname,CLASS=classname

//JOBLIB DD DSN=1load. library. name ,DISP=SHR
//CDPF EXEC PGM=BFUDCPF,REGION=nnnnkK,

// PARM='PRINT(BR,AFP001)'

//INPUT DD DSN=DOCNAME. LIST4250,DISP=0LD

//FONTLIB DD DSN=SYS1.FONT4250,DISP=SHR
//PSEGLIB DD DSN=SYS1.PSEG4250,DISP=SHR
//SYSPRINT DD SYSOUT=A

/-L
W

For more information on CDPF see the Composed Document Printing Facility: Installa-
tion and Operation.

Printing on the 3800 Printing Subsystem Model 3

DCEF enables you to print output on the 3800 Printing Subsystem Model 3. The method
you use to get this output depends on the operating environment in which you are
working.

It 1s assumed that you have a font library containing a font library index, the necessary
3800 Printing Subsystem Model 3 fonts on your CMS system, and a page segment li-
brary. If you have these necessary requisites, then you can format your output to a file
by entering, for example:

script docname (dev(38ppn)

Output created by this command is then placed into a file called docname LIST38pp A.

Because your job can not be printed directly on CMS, you will have to send this file to
an MVS system that has the Print Services Facility (PSF) support to print it. You may

Chapter 2. Using the SCRIPT Command 27

28

need to use a different program product (such as the SENDFILE command, if you are a
CMS/SP user) or a user written program.

In TSO, you can get 3800 Printing Subsystem Model 3 printed output in either of two
ways. One way of getting 3800 Printing Subsystem Model 3 output in TSO is to use the
SCRIPT command. If, for example, you issue the command

script docname dev(38ppn)

a file called userid.docname. LIST38PP is created. This file is the default. Your next step
will be to use a system utility, such as IEBGENER, to put the file into the output queue
for JES and PSF to print it.

The most direct way is to use the PRINT option of the SCRIPT command. If, for ex-
ample, you issue the command

script docname dev(38ppn) print (1l,c)

your output goes directly to SYSOUT as a JES allocated spool dataset. In this example,
the suboptions of the PRINT option (1,c) represent the number of copies requested and
the SYSOUT spool class for page mode printing, respectively.

There are also two ways of getting 3800 Printing Subsystem Model 3 printed output in
DLF/MVS; in either method you will have to specify in your JCL statements the name
of the font library and the page segment library to be used and that the printing is to be
in page mode. If you want your output to go directly to a JES spool output qucue for
immediate printing, you could enter:

//SCRIPT JOB
//STEP1 EXEC PGM=DSMSPEXC,PARM='LIST'
//SYSPRINT DD SYSOUT=A
//DEV3800P DD SYSOUT=P
//FONTLIB DD DISP=OLD,DSN=SYS1.FONT38PP
//PSEGLIB DD DISP=0LD,DSN=SYS1.PSEG38PP
//DSMLIST DD SYSOUT=A
//DSMINDIR DD DSN=DSMLIB.DIRECTORY,DISP=SHR
//DSMINLIB DD DSN=DSMLIB.SOURCE,DISP=SHR
//DSMUTMSG DD UNIT=SYSDA,SPACE=(TRK,(5,5))
//DSMUTDIM DD UNIT=SYSDA,SPACE=(TRK,(5,5))
//DSMUTTOC DD UNIT=SYSDA,SPACE=(TRK,(5,5))
//DSMUTWTF DD UNIT=SYSDA,SPACE=(TRK,(5,5))
//SYSIN DD *

AUTH 88/CITADEL

SCRIPT 1314151 DSMIVC30 (PROF(DSMPROF3) CONT -

FILE(DEV3800P) DEV(38PPN))

/'k
//

If, however, you want to first have a file created and then use a utility like IEBGENER
to put the file into an output queue for JES and PSF to then print, simply change the
line printed in boldface in our example above to read as follows:

//DEV3800P DD DSN=DEV3800. LIST38PP,DISP=MOD

In DLF/VSE, 3800 Printing Subsystem Model 3 formatted output is not supported.

DCF: SCRIPT/VS Text Programmer’s Guide

| Printing on the 3820 Page Printer

DCF enables you to print output on the 3820 Page Printer. The method you use to get
this output depends on the operating environment in which you are working.

library, and the necessary 3820 Page Printer fonts on your CMS system. If you have

It is assumed that you have a font library containing a font library index, a page segment
these nccessary requisites, you can format your output to a file by entering, for example:

| script docname (dev(3820a)

| Output created by this command is then placed into a file called docname LIST3820 A.

Because your job can not be printed directly on CMS, you will have to send this file to
an MVS system that has the Print Services Facility (PSF) support to print it. You may
need to use a different program product (such as the SENDFILE command, if you are a
CMS/SP user) a or user written program.

In TSO, you can get 3820 Page Printer printed output in either of two ways. The most
direct way is to use the PRINT option of the SCRIPT command. If, for example, you
issue the command

script docname dev(3820a) print (1,c)

your output goes directly to SYSOUT as a JES allocated spool dataset. In this example,
the suboptions of the PRINT option (1,c) represent the number of copies requested and
the SYSOUT spool class for page mode printing, respectively.

Another method of getting 3820 Page Printer output in TSO is to use the SCRIPT com-
mand. If, for example, you issue the command

script docname dev(3820a)

a file called uscrid.docname.LIST3820 is created. Your next step will be to use a system
utility, such as IEBGENER, to put the file into a JES output queue for PSF to print.

There are also two ways of getting 3820 Page Printer printed output in DLF/MVS; in
either method you will have to specify in your JCL statements the name of the font
library and the page segment library to be used and that the printing is to be in page
mode. If you want your output to go directly to a JES spool output queue for immedi-
ate printing, you could enter:

Chapter 2. Using the SCRIPT Command 29

//SCRIPT JOB
//STEP1 EXEC PGM=DSMSPEXC,PARM='LIST'
//SYSPRINT DD SYSOUT=A
//DEV3820P DD SYSOUT=P
//FONTLIB DD DISP=0LD,DSN=SYS1.FONT3820
//PSEGLIB DD DISP=0OLD,DSN=SYS1.PSEG3820
//DSMLIST DD SYSOUT=A
//DSMINDIR DD DSN=DSMLIB.DIRECTORY,DISP=SHR
//DSMINLIB DD DSN=DSMLIB. SOURCE,DISP=SHR
//DSMUTMSG DD UNIT=SYSDA,SPACE=(TRK,(5,5))
//DSMUTDIM DD UNIT=SYSDA,SPACE=(TRK,(5,5))
//DSMUTTOC DD UNIT=SYSDA,SPACE=(TRK,(5,5))
//DSMUTWTIF DD UNIT=SYSDA,SPACE=(TRK,(5,5))
//SYSIN DD *

AUTH 88/CITADEL

SCRIPT 1314151 DSMIVC30 (PROF(DSMPROF3) CONT -

FILE(DEV3820P) DEV(3820A))

/%
//

If, however, you want to first have a file created and then use a utility like IEBGENER
to put the file into an output queue for JES and PSF to then print, simply change the
line printed in boldface in our example above to read as follows:

//DEV3820P DD DSN=DEV3820.LIST3820,DISP=MOD

Printing on Page Printers in ATMS-111

In ATMS-11I, you can get page printer output by following these steps:

1. Add a queue. The command syntax to do this for the 4250 printer, for example, is:

$qadd; devpq; function; destid

where: devpq is the queue name for the 4250 printer

function is a required 4250 function keyword, such as 4250a. See the
ATMS-III Operation’s Guide for a list of supported function keywords.

destid is the destination name for your output (look at the CICS DCT
table - DSCNAME for the 4250 entry). Once the queue is added, it does
not have to be added again.

2. Transmit a DCF input file to a queue. The command syntax to do this is:
xfo; devpq; docname; ; [options]
where devpq 1s the queue name for the 4250 printer
docname is the name of the document to be transmitted.

options are the SCRIPT command options.

The following example shows some of the SCRIPT command options you might
add to the ATMS command given earlier:

xfo; devpq; docname; ; bind(1) co

30 DCF: SCRIPT/VS Text Programmer’s Guide

If, after you specify this command, you receive a message indicating you have re-
quested an invalid device type, then issuc the command:

set;script; r3

and then reissue the xfo command. If the device type is correct, you should simply
get a message indicating that the document was transmitted.

3. Process the queue. The command syntax to do this is:

Sgstart; devpq

This command invokes the asynchronous task, which in turn calls DCF to format
the document.

Note: Once the Sqstart command is issued, all documents that are already in the
CPDS output dataset will be lost. You can transmit more than one document to
the queue before starting and the output from all the documents will then be in the
CPDS output dataset. Information about $qadd and Sqstart is in the ATMS-111
Operation’s Guide. Information about xfo is in the ATMS-III Terminal Operator’s
Guide, SH20-2425.

To determine that processing has completed in the asynchronous task and that the data
is in the dataset, use the ql command

ql; devpqg; all

This gives a list of all entries in the queue. An entry of ACT means the entry has not
been processed. An entry of PRC/xx means the entry has been processed. xx is the re-
turn code and it should be 0; if it is not, there was an error. See the ATMS-11I Terminal
Operator’s Guide for a list of these codes.

Once the three previous steps have been done, you can get 4250 printer printed output
by setting up a CDPF job with the DLBL/EXTENT or DD statement pointing to the
dataset described in the DCT. Printing of documents in this dataset will end when
BFUCDPF gets a return code greater than 8.

| Migration and Conversion Considerations for Release 3

Because of differences among the printers you may be using, you should be aware of
certain migration considerations when you format and print the same document on two
different types of page printers or when you go from a line printer to a page printer.
Many of these migration considerations are listed in the sections that follow. Refer to
Document Composition Facility: SCRIPT|VS Language Reference, “Compatibility with
Earlier Releases of SCRIPT”.

| 3800 Printing Subsystem Model 3 to 3820 Page Printer

If you have formatted a document with DCF and printed it on the 3800 Printing Sub-
system Model 3 and then want to format and print this same document on the 3820
Page Printer, the logical page size should be considered.

The primary migration consideration between the 3800 Printing Subsystem Model 3 and
the 3820 Page Printer is the difference in logical page sizes. There are certain 3800 Print-
ing Subsystem Model 3 logical pages that can not be printed on the 3820 Page Printer.
These are:

Chapter 2. Using the SCRIPT Command 3t

13.51 x 11i (0-degree rotation)
11i x 8.51 (0-degree rotation)
13.51 x 8.51 (0-degree rotation)
111 x 8.51 (90-degree rotation)
13.51 x 11i (270-degree rotation).

For example, if you format a document for the 38PPW logical device which uses 13.5i x
111 paper; there is no equivalent paper size for a 3820 logical device. Therefore, certain
page length and page width settings that work on large paper sizes for the 3800 Printing
Subsystem Model 3 may “fall off” the logical page on the 3820 Page Printer.

| 3820 Page Printer to 3800 Printing Subsystem Model 3

If you have formatted a document with DCF and printed it on the 3820 Page Printer
and then want to format and print this same document on the 3800 Printing Subsystem
Model 3, you need to consider the following:

Hardware requirements for the 3800 Printing Subsystem Model 3 prohibit the use of
the top and bottom half inch of a page. If the bottom margin plus the reserved bot-
tom half inch for the 3800 Printing Subsystem Model 3 is bigger than the bottom
margin for the 3820 Page Printer, then the body length of your printed page will be
smaller for the 3800 Printing Subsystem Model 3 than it is for the 3820 Page
Printer.

Because the 3820 Page Printer can print in the top and bottom half inch of the
page, you can put data in those areas, for example, using page name areas. How-
ever, such formatting will not print on the 3800 Printing Subsystem Model 3 with-
out errors because the top and bottom half inch of the page is reserved.

The page origin is different on the 3820 Page Printer than it is on the 3800 Printing
Subsystem Model 3. The physical origin and the logical origin of a page are the
same for the 3820 Page Printer. The physical origin and the logical origin of a page
are different for the 3800 Printing Subsystem Model 3 because of the half inch re-
stricted area at the top of the page. As a result of this difference, text that fits on a
3820 Page Printer page may not fit on the page on the 3800 Printing Subsystem
Model 3.

A 180-degree rotation is not allowed on the 3800 Printing Subsystem Model 3 but is
allowed on the 3820 Page Printer.

The 3820 Page Printer has 16 possible combinations of character rotation and
baseline direction by having only one copy of a base font. This is not true for the
3800 Printing Subsystem Model 3. Therefore, documents formatted for the 3820
Page Printer, that use different character rotations and/or baseline directions, may
not print on the 3800 Printing Subsystem Model 3 because the fonts are not avail-
able on the 3800 Printing Subsystem Model 3.

| 4250 Printer to 3800 Printing Subsystem Model 3

32

If you have formatted a document with DCF and printed it on the 4250 printer and then
want to format and print this same document on the 3800 Printing Subsystem Model 3,
you need to consider the following:

Hardware requirements for the 3800 Printing Subsystem Model 3 prohibit the use of
the top and bottom half inch of a page. If the bottom margin plus the reserved bot-
tom half inch for the 3800 Printing Subsystem Model 3 is bigger than the bottom
margin for the 4250 printer, then the body length of your printed page will be
smaller for the 3800 Printing Subsystem Model 3 than it is for the 4250 printer.

DCF: SCRIPT/VS Text Programmer’s Guide

Page length is variable for the 4250 printer. For the 3800 Printing Subsystem Model
3, the page length is limited by the physical size of the paper.

The 4250 printer and the 3800 Printing Subsystem Model 3 have different typeface
families. A .BF control word that is valid for the 4250 printer can be invalid for the
3800 Printing Subsystem Model 3.

Line and page endings may be different because the widths of the equivalent charac-
ters in the fonts for the 4250 printer and the 3800 Printing Subsystem Model 3 are
different.

There is a limit to how many fonts you can use on a page with the 3800 Printing
Subsystem Model 3, but there is no limit on the number of fonts that can be used
on a page with the 4250 printer. Because of this difference, pages that print prop-
erly on the 4250 printer can cause errors and be unprintable on the 3800 Printing
Subsystem Model 3.

Images are incompatible.

Negative intercharacter spacing is not available on the 3800 Printing Subsystem
Model 3.

Text that goes beyond the physical page for the 4250 printer truncates. When text
goes beyond the physical page for the 3800 Printing Subsystem Model 3 the rest of
the page may not be printed.

The page origin is different on the 4250 printer than it is on the 3800 Printing Sub-
system Model 3. The physical origin and the logical origin of a page are the same
for the 4250 printer. The physical origin and the logical origin of a page are differ-
ent for the 3800 Printing Subsystem Model 3 because of the half inch restricted area
at the top of the page. As a result of this difference, text that fits on a 4250 printer
page may not fit on the page on the 3800 Printing Subsystem Model 3.

A character printed very close to the edge of a page on the 4250 printer may “fall
off” the logical page when printed on the 3800 Printing Subsystem Model 3 because
of the extra padding around each 3800 Printing Subsystem Model 3 character.

| 3800 Printing Subsystem Model 3 to 4250 Printer

If you have formatted a document with DCF and printed it on the 3800 Printing Sub-
system Model 3 and then want to format and print this same document on the 4250
printer, you need to consider the following:

Rotation is not supported by the 4250 printer. Therefore, if you try to print a
rotated area on the 4250 printer, no rotation is done, and the output will be differ-
ent.

Some characters are included in the 3800 Printing Subsystem Model 3 fonts that are
not in the 4250 printer fonts, such as: superscripts, long em dash, and logical not

sign.

The 4250 printer and the 3800 Printing Subsystem Model 3 have different typeface
families. A .BF control word that is valid for the 4250 printer can be invalid for the
3800 Printing Subsystem Model 3.

Line and page endings may be different because the widths of the equivalent charac-
ters in the fonts for the 4250 printer and the 3800 Printing Subsystem Model 3 are
different.

Images are incompatible.

Chapter 2. Using the SCRIPT Command 33

| 4250 Printer to 3820 Page Printer

If you have formatted a document with DCF and printed it on the 4250 printer and then
want to format and print this same document on the 3820 Page Printer, you need to
consider the following:

Page length is variable for the 4250 printer. For the 3820 Page Printer, the page
length is limited by the physical size of the paper.

The 4250 printer and the 3820 Page Printer have different typeface families. A .BF
control word that is valid for the 4250 printer can be invalid for the 3820 Page
Printer.

Line and page endings may be different because the widths of the equivalent charac-
ters in the fonts for the 4250 printer and the 3820 Page Printer are different.

There is a limit to how many fonts you can use on a page with the 3820 Page
Printer, but there is no limit on the number of fonts that can be used on a page
with the 4250 printer. Because of this difference, pages that print properly on the
4250 printer can cause errors and be unprintable on the 3820 Page Printer.

Images are incompatible.

Negative intercharacter spacing is not available on the 3820 Page Printer.

| 3820 Page Printer to 4250 Printer

If you have formatted a document with DCF and printed it on the 3820 Page Printer
and then want to format and print this same document on the 4250 printer, you need to
consider the following:

Rotation is not supported by the 4250 printer. Therefore, if you try to print a
rotated area on the 4250 printer, no rotation is done, and the output will be differ-
ent.

Some characters are included in the 3820 Page Printer fonts that are not in the 4250
printer fonts, such as: superscripts, long em dash, and logical not sign.

The 4250 printer and the 3820 Page Printer have different typeface families. A .BF
control word that is valid for the 4250 printer can be invalid for the 3820 Page
Printer.

Line and page endings may be different because the widths of the equivalent charac-
ters in the fonts for the 4250 printer and the 3820 Page Printer are different.

Images are incompatible.

| Other Page Printing Considerations

34

It 1s possible to create documents that can be formatted and printed with acceptable re-
sults on a line printer but not a page printer. The following should be considered:

Data off the page. When data runs off a page, line printers will truncate the data
without issuing a message. Page printers will issue an error message, and either mark
the printed output at the point where truncation occurred or leave the rest of the
page blank. This condition may occur if:

= You are using format off mode (.FO OFF control word)

= You are creating examples (:XMP tag)

DCF: SCRIPT/VS Text Programmer’s Guide

PN

= You are using an input line that is too long
= You are using a large font size.

Undefined characters. When a line printer encounters an undefined character, one
of the following occurs:

= A blank is printed

= The previous character in a print buffer is printed

= You get a data check.

For a page printer, one or more of the following occurs:

= A special character symbol is printed

A DCEF error message is issued

A PSF error message is issued
= You get a data check.

The above will occur whenever you use a codepoint (via character translation with
the .TI, .TR, or the .TU control words or via keyboard input) which is not defined
in the coded font that you are using.

If the font you are using has a specified default character to use when undefined
characters are encountered, you will get a bold cross (for the 4250) or a zero with a
diagonal through it (for the 3800-3) printed. If the font does not have a specified
default character, an error occurs and printing stops.

Unlike line printing, page printers do not print a blank when an undefined character
is encountered. For page printers, use the .IS control word to leave blank a space in
which to draw or paste in characters.

To print the character you desire, one of the following may accomplish your results.
= Change the character codepoint

= Change to a different font

= Change to a different code page

= Use a substitute character.

Check your font catalog to determine the codepoint of the character you desire.

Descenders. A bottom print line that is printable on a line printer may not be print-
able on a page printer. In line printing, the bottom of the print line is at the bottom
of all the characters — the descenders sit at the print line. But in page printing, the
baseline of the font characters is at the bottom of the print line and, therefore, the
descenders of the characters extend below the print line. When the bottom print line
is too closc to the logical bottom of the page, the descenders may extend off of the
page and one of the following can happen:

= An error message is printed
= The entire line or remainder of the page will not print
= A special character appears where the error occurred.

This condition may occur if you changed the default bottom margin to zero or if
you are using a font with very large descenders and the print line is positioned too
close to the logical bottom of the page.

Chapter 2. Using the SCRIPT Command 35

Chapter 3. Marking Up Documents with SCRIPT/VS

When you prepare a document for SCRIPT/VS to format, the document (called the in-
put file) can contain two kinds of data:

e Text, the actual content of the document which SCRIPT/VS places on your output
page

¢ Markup, which consists of:

= SCRIPT/VS control words that control processing of your document and the
placement of the text on the output page.

= GML markup that describes the characteristics of the document, but does not
specify processing.”” When GML markup is used, the application processing
functions (APFs) contain the control words that specify the processing,

A SCRIPT/VS input file might contain text data only. In this case, SCRIPT/VS formats
the file using a set of defaults appropriate for the logical output device. Typical default
values specify the output page as 8-1/2 by 11 inches, single-column format, with concat-
enation and justification.

Insert control words into the input file when you want to change any of the default as-
sumptions and when you want to use the more advanced functions of SCRIPT/VS, such
as footnotes, automatically generated table of contents, and interactive text input.

Language Syntax

When you use a text formatting language like SCRIPT/VS, certain conventions of that
language, called its syntax, must be observed. The correct syntax for SCRIPT/VS con-
trol words and for SCRIPT/VS macro and symbol processing is given below.

Control Word Syntax

All control words have two-character names. A control word is identified by a period (.)
in the first position of an input line, followed by the two-character name.™ If the control
word accepts parameters, they follow the control word name and are separated from
each other by blanks:

.du add raccoon giraffe llama

'3 See the Document Composition Facility: Generalized Markup Language Starter Set Reference
for a description of how to mark up a document with GML tags.

14 SCRIPT/VS control words are presented throughout this book. For a complete description of

SCRIPT/VS control words see the Document Composition Facility: SCRIPT/VS Language
Reference.

Chapter 3. Marking Up Documents with SCRIPT/VS 37

The blank separating the control word name from the first parameter is usually
optional;" if you omit it, SCRIPT/VS will insert it. Thus,

.cecenter this line

will be processed as

.ce center this line

Note: If you omit the first blank, and the control word name and first parameter to-
gether form a valid macro name, the macro will be processed, rather than the control
word, if macro substitution is on. Conversely, if you incorrectly enter a macro name,
SCRIPT/VS may interpret this invalid macro as a control word. If macro substitution is
off, any macro name may be interpreted as a control word.

The Control Word Separator

38

You can enter more than one control word on a single input line. You can also enter
control words and text on the same input line. To separate the control words, or the
control words and text, use a semicolon (;). The semicolon is called the control word
separator.'® Tts effect is to allow SCRIPT/VS to separate an input line into two or more
processable input lines. For example,

.sk;.ce on

is the same as the two lines:

.sk
.ce on

Grouping control words on a line, you can quickly see the sequence and context of one
control word within the group.

The control word separator character may be used to enter several control words on a
single line:

.sk .51i;.fo on;.in 10m

SCRIPT/VS scans every control word line for the control word separator character. If a
separator character is found, the line is divided at that point, and the part of the line
before the control word separator is processed as a complete control word line. The re-
mainder, to the right of the control word separator, becomes the next input line. The
period in .FO ON in this example appears in the first character position, allowing the
.FO to be recognized as a control word.

> The blank separating the control word name from the first parameter is not optional with .LI
OFF, .DM OFF, .CS n OFF, and .WF OFF.

'® The character to be used as the control word separator may be changed with the .DC CW
[Define Character] control word.

DCF: SCRIPT/VS Text Programmet’s Guide

The control word separator character may also be used to place a control word within a
line of text. For example,

an ;.us onj;underscored;.us off; word.

results in:

an underscored word.

SCRIPT/VS scans every text line for the control word separator character. If a separator
character is found which is immediately followed by a period and a two-character control
word name, the line is divided at that point. The part of the line preceding the control
word separator is processed as a line of text with continuation, and the remainder of the
line, to the right of the control word separator, becomes the next input line. If a control
word separator character is found in a text line, but is not followed by a control word, it
is treated as text.

Note: Macros are not recognized in text lines. The .EM [Execute Macro] control word
must be used to process macros in text lines.

The Control Word Modifier

The SCRIPT/VS control word processor recognizes a single quotation mark (’) after the
period as a control word modifier. Most control words' can be entered with the modifier
(’) as shown in the following example:

.'ce Center this line.

The control word modifier changes the usual operation of the control word processor in
two important ways:

1. No macro search is done. Even if a macro of the given name exists and macro sub-
stitution 1s on, the control word is invoked, not the macro.

2. No control word separator scan is done. Any control word separators in the line are
left there as ordinary text characters. Thus, a control word entered with the control
word modifier must be the last control word on that line.

Since no control word separator scan is done, a control word that accepts a line of text
may be entered with the control word modifier to protect any separator characters that
appear in the line as part of the text. The input line

. 'ce centered line; one line.

results in:

centered line; one line.

7 With the exception of .LI OFF, .DM OFF, .PX OFF, and .WF OFF.

Chapter 3. Marking Up Documents with SCRIPT/VS 39

Macro Syntax

Symbol Syntax

A SCRIPT/VS macro name can look much like a control word but its syntax is slightly
different. A macro name can be up to ten characters long and these characters must be
chosen from the valid character set: A-Z, 0-9, §, # or @.

A SCRIPT/VS symbol is preceded with the ampersand sign (&). Symbols can also be
up to ten characters long and these characters must be chosen from the valid character
set: A-Z, 0-9, $, #, or @.

Guidelines for Entering Text and Control Words In SCRIPT[VS

You may find the following tips useful when entering input for SCRIPT/VS files.

Start All Input Lines in Position One

When you enter input into a SCRIPT/VS file, you should enter all the input lines (text
lines as well as control words) beginning in position one. Occasionally, you may want to
enter lines that begin with blank characters or tabs. Blanks and tabs at the beginning of a
line may cause breaks. When you want to manipulate the margins for output lines, use
control words instead of blanks or tabs.

Avoid a Text Period in Position One

When SCRIPT/VS processes an input line, data that follows a period in position one is
treated as a control word. If what follows the period is not a valid control word or
macro, SCRIPT/VS issues an error message. If a valid control word follows the period
in position one (even though you intended it to be text), SCRIPT/VS processes it as a
control word. In such a case, the results might be undesirable.

You can use the .LI [Literal] control word to have a line interpreted as a text input line,
even though it begins with a period, leading blank, or leading tab. For example,

.ti -~ 05
.1i ...and so it goes.
L1i 2

Leading blank lines

mand leading tab lines

do not cause an implicit break
when preceded by the .LI
control word.

prints as:

...and so it goes. Leading
blank lines and 1leading tab
lines do not cause an implicit
break when preceded by the .LI
control word.

40 DCF: SCRIPT/VS Text Programmer’s Guide

You can specify parameters with the .LI [Literal] control word. If there are many lines
that begin with a period, for example, you can issue:

Study the following control words:
.1i on

.Ds,

.LI,

.PA, and

. IM.

.1i off

This assignment is due on Monday.

which results in:

Study the following control
words: .DS, .LI, .PA, and .IM.
This assignment 1is due on
Monday.

Note: When literal mode is in effect, the only SCRIPT/VS control word that is proc-
essed is .LI OFF. Other forms of the .LI control word, as well as other SCRIPT/VS
control words, are treated as text.

Remember Which Control Words Cause Breaks

When you finish a block of text or a paragraph, you might want SCRIPT/VS to print
the text that has accumulated, so that the next input line begins a new output line. You
can use the .BR [Break] control word to do this. However, many other control words
cause breaks as part of their normal function. In the sequence

text text text
.br
.in 5m

the .BR [Break] control word is unnecessary, since the .IN [Indent] control word causes
a break.

Many control words that provide format functions do not cause breaks. For example,
the underscoring and capitalization control words are good examples of control words
that do not cause breaks:

This

.up sentence

.us has several control

.uc words in

.up it,

and its text is concatenated.

results in:

This SENTENCE has several
control WORDS IN IT, and its
text is concatenated.

Chapter 3. Marking Up Documents with SCRIPT/VS 41

Comments in SCRIPT[VS Documents

In addition to text and control words, SCRIPT/VS files can contain comments. Com-
ments are useful for:

¢ Accounting notes: You can include comments that give your name and location, the
date and reason you created a file, and a date when the file can be erased.

® Documenting formats: If you use a special format in a SCRIPT/VS file that may be
accessed by others, you can include notes within the file explaining how to access it.

e Placeholders: If a file is only partially complete, you may want to insert comments
at places where information should be added later.

e Documenting options: If you use a special set of SCRIPT command options to for-
mat a document, you can include notes within the file to list the options.

To place comments in a SCRIPT/VS file, use the .CM [Comment] control word.
SCRIPT/VS treats the .CM control word the same as any other control word. However,
when it scans the input line that contains this control word, it will ignore the text of the
comment. This means that any other control words that exist on the same input line as
the .CM control word but are separated from the comment text by a control word sepa-
rator will still be processed. The comments themselves will not be included in the final
formatted output. For example, if you specified

.cm Created: 11/3/78
.cm Updated: 6/25/79 ;.im doc3

These two comments will only appear in your input file; they will not appear in the final
output. SCRIPT/VS will recognize the control word separator (;) and will process the
.IM control word that imbeds file DOC3.

If you do not want SCRIPT/VS to scan your comment lines for control word separa-
tors, “.*” to enter enter them using .* instead of the .CM control word. The .* function,
even though it begins with a period, is not considered a control word. Therefore,
SCRIPT/VS ignores any input line that begins with .* including any other control
words or control word separators that exist on that line. For example, the entry

* SCRIPT/VS ignores this line ;.im doc3

causes SCRIPT/VS to ignore this entire input line. Therefore, file DOC3 will not be
imbedded.

Valid Space Unit Notation

42

Many SCRIPT/VS control words accept parameters that specify vertical or horizontal
dimensions or distances. As Figure 3 on page 44 illustrates, these dimensions may be
expressed in any of several different space units:

Centimeter One-hundredth of a meter. There are 0.39 inches in one centimeter.

Cicero A standard measurement in the Didot Point System, used in most coun-
tries except Great Britain and the United States. The Cicero is 4.511 milli-
meters (0.1776 inches), and there are twelve Didot points in one Cicero.
Ciceros can be specified in tenths of units (for example, 1.5¢c = 1.5
Ciceros).

DCF: SCRIPT/VS Text Programmer’s Guide

Device Unit

Horizontal ~ An integral number of horizontal device units. The size of a
horizontal device unit depends upon the device and varies
from 2.540 millimeters (1/10 inch) for the 1403 to 0.0423
millimeters (1/600 inch) for the 4250 printer and 0.1058
millimeters (1/240 inch) for the 3800 Printing Subsystem
Model 3 and the 3820 Page Printer.'

Vertical An integral number of vertical device units. The size of a
vertical device unit depends upon the device and varies from
4.233 millimeters (1/6 inch) for a 2741 to 0.0423 millimeters
(1/600 inch) for the 4250 printer and 0.1058 millimeters
(1/240 inch) for the 3800 Printing Subsystem Model 3 and
the 3820 Page Printer.'®

Em-space A decimal number of horizontal em-widths. The size of an em-width de-
pends upon the current font.

Em-height A decimal number of vertical em-heights. The size of an em-height de-
pends upon the current font.

Inch One-twelth of a foot (25.4 millimeters).

Millimeter One-thousandth of a meter. There are 10 millimeters in one centimeter.
(25.4 millimeters = 1 inch).

Pica A standard printer’s measurement in Great Britain and the United States.
A pica is 4.224 millimeters (0.1663 inches). There are twelve points in a
pica and 72 points in an inch.”. Picas can be specified in tenths of units
(for example, 1.5p = 1.5 picas).

Unqualified space units arc defined in the following ways:

¢ Horizontal space units (such as .IN 5) are defined in one of the following ways in
the order given:

= The size of a figure space in the initial font

= The size of an en in the initial font

= One-half the size of an em in the initial font
e Vertical space units (such as .SP 5) are defined as:

= The linespacing value of the current font

Also note that fractional unqualified space units and ems, such as 1.5, are now sup-
ported. In order to avoid a problem with the symbol delimiter, which is a period (.),
fractional units may be specified with a comma instead of a period. For example, you
can specify 1,5 instead of 1.5.

'® Because of the wide variation in magnitude of device units between devices, the use of these
space unit designations can bind individual documents to particular devices. To maintain de-
vice independence, formatting using device units should always be done in conjunction with
calculations using device units symbol attributes. It is not always possible to satisfy space re-
quests exactly on all devices. In this case, the nearest available amount is used.

% In SCRIPT/VS, 72 points equals exactly one inch rather than .996 or 1.008 inches.

Chapter 3. Marking Up Documents with SCRIPT/VS 43

Space Unit Specified As Examples
Centimeter aCM 4.25cm 2,54cm 15cm
Character a 5 125 1,33
{Horizontal)
Cicero nCp c12 (12 didot points)
2c3 (2 Ciceros and 3 points)
c1.5 (1.5 didot points)
Device Unit nDH 10dh 600dh
(Horizontal)
Device Unit nDV 10dv 600dv
(Vertical)
Em-space aMH -or- aM 6mh 6m .33mh .33m
{Horizontal)
Em-space aMv 1mv .5mv
(Vertical)
Inch al 3.5i 6,5i .75i
Line a 2 35 1,75
{Vertical)
Millimeter aMM 12.7mm 25,4mm 100mm
Pica nPp p6 (6 points)
3p2 (3 picas and 2 points)
p1.5 (1.5 points)
Where:
a is a number of centimeters, characters, ems, inches, lines, or millimeters.
The number may be fractional, with up to two decimal positions, and either
a period () or comma (,) can be used to separate the integral and frac-
tional portions of the number.
n is a number of whole ciceros, picas, or device units.
p is a number of points. (There are twelve points in a cicero or pica, and 72

points in an inch.)

Figure 3. Space Units Notation: All vertical and horizontal dimensions specified with SCRIPT/VS control words

and options may be given in any of the forms shown here.

Note: Character spaces are equal in size to the figure space of the default (or initial) font. Line spaces

are equal in size to the linespacing of the current font.

44

DCF: SCRIPT/VS Text Programmer’s Guide

Text

Because SCRIPT/VS formats your document based on default settings appropriate for
the logical device you have specified, you need to be aware of certain implicit markup. In
this case, implicit markup refers to such horizontal spacing mechanisms as spaces, tabs,
and backspaces.

Implicit Markup

In a SCRIPT/VS context, spaces, tabs (see “Using Tabs” on page 84 for a full dis-
cussion of tabs), and backspaces function as word delimiters. Their hexadecimal repres-
entations are as follows:

¢ Spaces - hexadecimal 40
e Tabs - hexadecimal 05
e Backspaces - hexadecimal 16

e Nulls - hexadecimal 00

Continuation and the Continuation Character

Ordinarily SCRIPT/VS appends a word space to the last word on a text input line.
However, if the continuation character is the last character on a text input line, it is re-
moved and the word space is not appended. The continuation character is defined with
the .DC [Define Character] control word:

.dc cont +

This allows a single word to span text input lines and control words. For example, the
input lines

A few high+
.bf

light+

.pf

ed characters.

will produce this output:

A few highlighted characters.
If a formatter control that causes a break follows the continued word, continuation is

cancelled for that line. The control words that cause breaks are listed in the Document
Composition Facility: SCRIPT|VS Language Reference.

Initially, there is no continuation character; it must be explicitly set before it can be used.

Chapter 3. Marking Up Documents with SCRIPT/VS 45

Even if a previous line does not end with a continuation character, you can use the .CT
[Continued Text] control word to cause a line to be treated as a continuation of a previ-
ous text line. For example, if you specified

This input line a
.ct nd this input line should be one line.

then the two input lines will be joined as one:
This input line and this input line should be one line.
If the .CT control word is given without a line of text, then nothing will be continued

and any continuation that may be in effect from a continuation character on the previ-
ous text line is cancelled.

46 DCF: SCRIPT/VS Text Programmer’s Guide

Chapter 4. Combining SCRIPT/VS Input Files

SCRIPT/VS provides the ability to combine many SCRIPT/VS input files for process-
ing as a single document. The control words that allow you to do this are:

¢ _IM [Imbed], which causes SCRIPT/VS to process another file immediately then re-
turn to the imbedding file

e AP [Append], which causes SCRIPT/VS to process another file immediately with-
out returning to the appending file

e SI[Segment Include], which identifies a segment to be included in a column

e WF [Write To File], which causes lines of text or control words to be written to the
output file DSMUTWTEF.

Imbedding and Appending Files

You must specify the filename of the file you want to imbed or append. If the
SCRIPT/VS file named OUTER processes the mput line

.im tester

SCRIPT/VS stops reading input lines from the file OUTER and begins reading and
processing lines from a file named TESTER. Whatever formatting controls are in cffect
when the file is imbedded remain in effect unless respecified by control words in
TESTER. When SCRIPT/VS reaches the end of the file TESTER, it continues process-
ing in OUTER with the input line following the .IM [Imbed] control word.

The file TESTER can also contain .IM [Imbed] control words to imbed additional files.
For example, consider the following four files:

MASTER: FILEA: FILEB: FILEC:
.im filea The quick brown fox over
.im filec .im fileb the lazy
dog. jumps

When you issue the SCRIPT command to format the MASTER input file, the result is:

The quick brown fox jumps over
the lazy dog.

Chapter 4. Combining SCRIPT/VS Input Files 47

The .AP [Append] control word is similar to the .IM [Imbed] control word, except that
when SCRIPT/VS finishes processing the input lines from a file specified in a .AP con-
trol word, it does not return to the calling file. For example, when SCRIPT/VS proc-
esses the input line

. ap names

it closes the current input file and begins processing the NAMES file. When the end of
the NAMES file is reached, SCRIPT/VS does not return to the file that appended it:

e If the file that appended NAMES was the file named in the SCRIPT command,
SCRIPT/VS completes processing.

e Otherwise, if the file that appended NAMES was itself imbedded, SCRIPT/VS re-
turns to the next input line in the file that originally imbedded the file that appended
NAMES, as shown in Figure 4 on page 49.

You can pass values to the imbedded or appended file, so the file can be customized
each time it is called.

Naming the File to Be Imbedded ov Appended

43

The name of the file to be imbedded or appended is given as a 1- to 8-character name
with the .IM or .AP control word:

.im file-id
.ap file-id

file-id is an internal SCRIPT/VS name for the file to be read. The external name of the
file can be established in one of three ways:

® You can use the .DD [Define Data File-id] control word to associate the file-id with
any real file or data set name available in the system under which SCRIPT/VS is
executing, as described in “Naming the Primary Input File” on page 18.

e If you enclose the file-id in parentheses, SCRIPT/VS uses the file-id, which in this
case can be more than eight characters long, as the real file or data set name.

e If no .DD control word has been processed for file-id, SCRIPT/VS uses the file-1d
to derive the real name of the file or data set to be read, based on rules appropriate
for the system under which it is executing.

= In CMS, file-id is used as the name of a CMS file whose filetype is SCRIPT or
the filetype specified with the SEARCH option of the SCRIPT command.

= In TSO, SCRIPT/VS assumes that the file-id is a member of the partitioned
data set (PDS) ‘userid.text’ and imbeds this file if it exists.

= In ATMS-III, SCRIPT/VS assumes that the document is in the invoking
operator’s permanent storage.

In CMS, you should use the .DD [Define Data File-id] control word when:

e The imbedded filename on the .IM control word is different from the actual CMS
filename.

e The filetype is other than SCRIPT and was not specified with the SEARCH option
of the SCRIPT command.

e A specific filemode that is not the first in the CMS search sequence is to be used.

DCF: SCRIPT/VS Text Programmer’s Guide

P

OUTER

INNER
|

.im inner —mMm8M8MM8™™ > l NAMES
Next line < ‘

.ap names ————————>
1

- Last line.

Figure 4. Imbedding and Appending SCRIPT/VS Files

In TSO, you must use the .DD [Define Data File-id] control word when:

e The imbedded or appended file is not a member of the partitioned data set (PDS)
named in the SCRIPT command.

e The member name is different from the file-id.
In ATMS-III, you should use the .DD [Define Data File-id] control word when:

e The imbedded or appended file is not in the invoking operator’s permanent storage
or the permanent storage of another operator whose number has not been specified
in the SEARCH command option.

e The document has been protected by a password by the other operator.

In the batch processing environment, use the .DD [Define Data File-id] control word
when:

e The library document name is different from the imbedded filename.
e A password is required to access the file.

e The file is stored in a library other than the ones listed with SCRIPT command
options.

The format and use of the .DD control word in the definition of files are explained in
full in the description of the .DD [Define Data File-id] control word found in the Docu-
ment Composition Facility: SCRIPT|VS Language Reference.

Indicating the End of a File

The .EF [End of File] control word causes a file to end and this can be useful when you
are imbedding files. If a .EF control word occurs in an imbedded file, SCRIPT/VS does
not continue imbedding the filc but returns to process the outer file. If another .IM
[Imbed] control word is encountered that imbeds the same file again, SCRIPT/VS re-
sumes reading and processing with the input line following the .EF control word that
was last processed.

Alternatively, if you specify:

.ef close

the next time the file is imbedded, SCRIPT/VS begins reading at the beginning of the
file rather than where you left off.

Note: If the .EF [End of File] control word is included in the profile specified with the
SCRIPT command, the contents of the file preceding the .EF [End of File] control word
will be processed before the main document. The remainder of the file, after the .EF

Chapter 4. Combining SCRIPT/VS Input Files 49

Master Files

50

control word, is referred to as the epifile and is automatically processed after the main
document. This indicates the end of processing.

Two control words, .QU [Quit] and .QQ [Quick Quit], cause SCRIPT/VS to stop proc-
essing entirely, regardless of whether the current file is an imbed file or not. When you
use the .QU [Quit] control word, processing stops after SCRIPT/VS prints the remain-
der of the current page (and any running footings in effect) and after SCRIPT/VS closes
all open files. In contrast, the .QQ [Quick Quit] control word causes processing to stop
immediately with no final page eject. Therefore, all of the text on the last page will be
lost.

The .QQ [Quick Quit] control word can be useful when checking your file for errors.
You can specify the TWOPASS option when formatting the file and stop processing af-
ter the first pass completes. For example, a very long input file named MASTER 10 can
have the last input line:

-qq

When you format it at the terminal using the SCRIPT command:

script masterl0 (term twopass

the file is completely formatted during the first formatting pass. Errors detected by
SCRIPT/VS can be displayed at your terminal for you to note and correct later. How-
ever, processing stops before the second pass occurs, and no formatted output will be
displayed.

Using imbeds in SCRIPT/VS has several advantages.

e For convenience in updating and tracking SCRIPT/VS files, you can use one file as
the master file for a SCRIPT/VS document. The master file can contain special for-
matting controls that are to be in effect for the entire document. The remainder of
the master file might contain only the .IM control words that imbed the remaining
files.

® You can easily reorganize a large document that is composed of many small files
that are imbedded in a single master file. When you want to move or remove infor-
mation, you need only to change the position of the .IM [Imbed] control word in
the master file, or to delete it.

e Small files can be shared by several master files. Each master file can imbed the
small files where appropriate. Therefore, you do not need to keep duplicate copies
of the same information.

e Although there may be a limit to the number of records that can be contained in a
single disk file, within the limits of your virtual storage there is no restriction on the
number of files that SCRIPT/VS can process.

¢ Many different people can work on pieces of the same document simultaneously.

Figure S on page 51 illustrates a typical master file structure.

DCF: SCRIPT/VS Text Programmer’s Guide

UNFORMATTED

xmaster xintro

.im xintro

.................. —> | text text text
.................. text text text
.................. .fl on
.................. .im xfigs

I xfigs

.fl off <

.im xdescrip

ltext text text |

Figure 1.

.ef
.im xconfig xdescrip —>
.im xlist I
.im xfunctn —>|text text text
.................. text text text
.................. .fl on
.................. .im xfigs ——
.................. .fl off < Figure 2.
.................. ltext text text] L
FORMATTED

SAMPLE SAMPLE SAMPLE SAMPLE
xintro text xconfig text
xintro text xconfig text
xintro text xconfig text
xintro text xconfig text
xintro text xlist text
xintro text Figure 1. xlist text
xintro text xintro text Figure 2. xlist text
xintro text xdescrip text xdescrip text xlist text
xintro text xdescrip text xconfig text xlist text
xintro text xdescrip text xconfig text xfunctn text

Page 1 Page 2 Page 3 Page 4

Figure 5. Master File Structure

SCRIPT|VS System Generated Files

SCRIPT/VS has a number of utility files that are generated by the system when it en-
counters certain control words, or command options, or both. The user has the option
of defining or redefining these files using the .DD [Define Data File-id] control word.
These files and a brief description of them are listed below.

DSMTERMI The file from which terminal input is read when SCRIPT/VS encounters
the .TE [Terminal Input] or .RV [Read Variable] control words. By default
this is the terminal.

DSMTERMO The file into which terminal output is written when the .TY [Type on
Terminal] control word is specified, the TERM option of the SCRIPT com-
mand is specified, or messages are given when the MESSAGE (DELAY) op-
tion of the SCRIPT command is not specified. By default this is the
terminal.

DSMUTCTF The file into which STAIRS/VS CTF output is written when
SCRIPT/VS encounters the CTF option of the SCRIPT command.

Chapter 4. Combining SCRIPT/VS Input Files St

DSMUTMSG The file into which messages are written when the MESSAGE(DELAY)
option of the SCRIPT command is specified.

DSMUTTOC The file into which the table of contents entries are written when
SCRIPT/VS encounters the .PT [Put Table of Contents] or .HO - .H6 [Head
Level 0 - 6] control words.

DSMUTWTF The file into which input lines may be placed dynamically when
SCRIPT/VS encounters the .WF [Write To File] control word.

Writing to an Output File

The .WF [Write To File] control word allows you to put input lines into a file dynam-
ically®. For example, you can collect figure captions for a figure list in one file and index
entries in another.

While you can have several .WF files, only one .WF file can be open at a time. When
SCRIPT/VS processes the .WF [Write To File] control word, one or more input lines
are written to a SCRIPT/VS file named DSMUTWTFE.

® You can insert one input line into the file with:
.wf contents of the input line

® You can insert a specific number of input lines into the file with:

.wf 5

.in 3m

.ce 3

These dre the
lines to go
into DSMUTWTF.

Input lines that are written to the file will be processed for symbol substitution and
GML tag processing unless these functions have been specifically inhibited.

® You can also insert a number of input lines into the file with:

.wf on

Many input lines

.wf off

20 In ATMS-III, the .WF control word can only be used to write to a document in CICS/VS
auxiliary storage. It cannot be used to write to a document in either working or permanent
storage.

52 DCF: SCRIPT/VS Text Programmer’s Guide

Note: The .WF OFF control word must appear on an input line by itself exactly as
it is shown here.

If you want to use .WF ON in a GML start tag APF, you can use the .WF TAG form
as shown in the following example:

.aa tag tag etag

.gs tag on
.ms on

.dm tag on
.wf tag

.dm off

.dm etag /.*

Then when you specify :TAG. all lines will be written to DSMUTWTF until the end
tag :ETAG.) is encountered.

The write to file request is automatically ended before the end APF is invoked. GML
scanning is off during this form of write to file processing until the end tag is found.

You can later imbed the contents of the DSMUTWTF file with the IMBED parameter
of the \WF [Write To File] control word:

.wf dimbed

After imbedding the DSMUTWTTF file, you can add to the end of it with more .WF
control words. You can imbed the DSMUTWTF file into another file many times.

To add lines to the end of the CMS file PART6 ZORCH Z1:
.dd dsmutwtf part6é zorch zl
.wf on
Input lines
to be added

to PARTS.
.wf off

Note: If the file (PART6 in the above example) is currently being imbedded or ap-

pended, you cannot add lines to it. That is, you cannot write into a file that is currently
being read.

To restore the file-id DSMUTWTF to the default real file, specify

.dd dsmutwtf dsmutwtf

When the contents of DSMUTWTF are no longer useful to you, you can erase the file
with the ERASE parameter of the .\WF [Write To File] control word:

.wf erase

The DSMUTWTEF file can be erased and reused many times.

Chapter 4. Combining SCRIPT/VS Input Files 53

Merging Documents from Several Sources

54

You can create a customized document from many different input files by using the .IM
[Imbed] and .EF [End of File] control words. An imbedded file can include .EF [End of
File] control words to cause a different group of input lines to be processed each time
the file is imbedded. This can result in customized sections of a document because each
group of lines from the imbedded file can contain the specific information for a partic-
ular section of the basic document.

You can use this technique to create a table whose format and content can be separately
updated or altered. To create such a table, you would set up one file containing the table
format and the symbolic names for the table entries and another file containing the .SE
[Set Symbol] control words that define the actual values for the table entries. For exam-
ple, consider the following two SCRIPT/VS files:

File: TABLE File: TABLSYM

.tp 3 21 .se state 'STATE

.cs 2 on .se capital 'CAPITAL
.cs 1 ignore .ef

.sp 2 .se state 'Alabama

. fo off .se capital 'Montgomery
.bx 1 19 36 .ef

.se bxoff = .se state 'Alaska

.cs 2 ignore .se capital 'Juneau

.cs 2 off .ef

.im tablsym .se state 'Arizona
&STAB. &state. &$TAB. &capital .se capital 'Phoenix
.bx &bxoff .ef

.cs 1 on .se state 'Arkansas
.fo on .se capital 'Little Rock
.cs 2 include .ef

.sp 2 .se state 'California
.ef .se capital 'Sacramento
.cs 1 off .se bxoff = off

.ap table .cs 1 include

When the command SCRIPT TABLE is issued, the table of state capitals will be gener-
ated. Each time the file TABLSYM is imbedded, it is read starting with the input line
following the .EF control word that ended the last imbed. Each group sets new values
for the symbols &state and &capital. The last time TABLSYM is imbedded, the control
word .CS 1 INCLUDE is encountered. This allows the .EF control word in the parent
file to be recognized, terminating the table generation. The symbol &bxoff is set to the
word OFF, so that the last .BX control word will end the box. (The symbol &bxoff was
originally set to null, so that all the .BX control words encountered before the last one
merely repeat the same box definition. The actual table looks like this:

DCF: SCRIPT/VS Text Programmer’s Guide

STATE CAPITAL
Alabama Montgomery
Alaska Juneau
Arizona Phoenix
Arkansas Little Rock
California Sacramento

Imbedding Segments in Your Documents

You can use the .SI [Segment Include] control word to identify a segment to be included
in a column when a document is printed on a page printer. A segment can also be used
to reserve space for artwork when a document is printed on a line device. A segment can
be composed of text and images and it can be imbedded either directly in your document
or within a named area. See “Chapter 11. Placing Text in Named Areas” on page 133 for
more details on named areas.

You must specify the external name of the file that contains the segment. This name
depends on the system in which you are operating:

¢ CMS - the name is that of a CMS file, whose filetype and filemode were identified
with the SEGLIB option of the SCRIPT command.

¢ TSO - the name is that of a member in the segment library.

e ATMS-III - the name is that of a member in the segment library, which was identi-
fied with the SEGLIB option of the SCRIPT command.

e MVS - the name is that of a member in the segment library, which was identified
with the SEGLIB option of the SCRIPT command.

® VSE - segments are not supported in VSE.

The existence of the segment identified with the .SI control word is verified when the
document is formatted unless the NOSEGLIB option of the SCRIPT command is spec-
ified.

When your segment is printed on a page printer, it will be aligned according to the cur-
rent text formatting settings.

Specifying Segment Width and Depth

If you want to reserve space for a segment that is incomplete or has not yet been created
- when, for example, you are working on a draft of a document - you can do so by
specifying a width, a depth, or both. As an example, if your document were one-column
and you expected the segment to take up a large part of the output page, you might

specify:

.si clash width 6i depth 7.5i1
which reserves 6 inches of horizontal space and 7.5 inches of vertical space for the pro-
posed segment. Later, when the actual segment is included in your document, any width

and depth values you specify will be replaced by the actual size of the segment as it has
been specified in the segment library.

Chapter 4. Combining SCRIPT/VS Input Files 55

| Specifying Inline Page Segments

If you want the actual contents of the page segment and not just its name included in
the output data stream, use the INLINE parameter of the .SI [Segment Include] control
word.

If the requested page segment is not found and the INLINE parameter was not specified,
SCRIPT/VS will still put the page segment name in the output data stream. If the re-
quested page segment is found and the INLINE parameter was specified, SCRIPT/VS
will not put the page segment name in the output data stream. In either case, a message
1s issued.

Using the &SW’ and &SD’ Symbol Attributes

The &SW’ and &SD’ symbol attributes can be used to determine the width and depth of
a segment. These symbol attributes can be useful when you are trying to dynamically
place a segment on the page.

If a segment named segl exists, for example, the value of &SW’segl will be the width of
segl specified in unqualified horizontal space units. Similarly, &SD’segl will return the
depth of segl in unqualified vertical space units.

When formatting for a line printer or when NOSEGLIB has been specified on the
SCRIPT command, the value returned by both symbol attributes will be 0.

To obtain the width or depth of a segment in pels, thereby avoiding rounding, use
&DH'&SW'segl and &DV‘&SD’segl.

The Segment Library

Keep in mind that when you process your document, SCRIPT/VS searches either the
default segment library or a segment library you have specified with the SEGLIB option
of the SCRIPT command for any segments you request with the .SI control word.
SCRIPT/VS automatically searches the default library for requested segments but you
must specify the SEGLIB option of the SCRIPT command if the segment you request
is in a segment library you have created. Note also that SCRIPT/VS searches only one
segment library, either the default library or the one you created, but not both.

The defaults for the 4250 printer are:

e In CMS, SEGLIB(PSEG4250)

e In TSO, SEGLIB(SYS1.PSEG4250)
e In ATMS-III, NOSEGLIB

In batch MVS, SEGLIB(PSEG4250)

L]

[

In batch VSE, segments are not supported.

The defaults for the 3800 Printing Subsystem Model 3 are:
e In CMS, SEGLIB(PSEG38PP)

e In TSO, SEGLIB(SYS1.PSEG38PP)

e In ATMS-III, NOSEGLIB

In batch MVS, SEGLIB(PSEG38PP)

In batch VSE, segments are not supported.

56 DCEF: SCRIPT/VS Text Programmer’s Guide

The defaults for the 3820 Page Printer are:

e In CMS, SEGLIB(PSEG3820)

e In TSO, SEGLIB(SYS1.PSEG3820)

e In ATMS-III, NOSEGLIB

e In batch MVS, SEGLIB(PSEG3820)

e In batch VSE, segments are not supported.

If the segment you request is not in the library that SCRIPT/VS searches or there is no
segment library, then processing stops (unless you have specified the CONTINUE op-
tion of the SCRIPT command) and an error message is issued.

If you know a segment has not yet been created or there is no segment library, you can
specify the NOSEGLIB option of the SCRIPT command. SCRIPT/VS will not search
for a segment library and no error message will be issued. In this case, if no depth or
width was specified, no space is reserved for the segment in the formatted output.

The Composed Document Printing Facility (CDPF), which is used to print
SCRIPT/VS output on the 4250 printer, does not allow the use of a segment of the
same name more than once on the same page. SCRIPT/VS, however, has no such re-
striction for any printer.

Segments can be included as part of a figure. For example, assume the following segment
named BARCHART has been created and that it exists in the segment library.

This segment can then be included as the body of the following figure:

: fig frame=box place=inline width=column.
.si barchart

: figdesc: Monthly Sales Report

:efig.

Chapter 4. Combining SCRIPT/VS Input Files 57

58

When the document is printed on a page printer, the segment will be combined with the
figure frame and figure caption to produce the following figure:

J|F|MIA[M|J|J|A|S|O|N|D

Monthly Sales Report

DCF: SCRIPT/VS Text Programmer’s Guide

=N

Chapter 5. Communicating with SCRIPT/VS

SCRIPT|VS Messages and Severity Levels

When certain error conditions are encountered, SCRIPT/VS issues messages in the form
of a 10-character message identificr that includes a one-character severity level code.

The message identifier is in the form DSMmmmnnnx

where

DSM identifies the Document Composition Facility

mmm is a three-character identifier of the program module that caused the message
to be sent

nnn is a three-digit message number

X is a severity level

The severity levels associated with these SCRIPT/VS messages are as follows:

R reply required
I informational
W warning

E error

S severe error
T terminal error

Using a SCRIPT/VS Command Option to Control Message Printing

You can use the MESSAGE option of the SCRIPT command to control message print-
ing. You can specify:

e When messages are printed
¢ Whether the message number is to be included
e How the line causing the error was imbedded.

The MESSAGE option also controls the amount and timing of the information
SCRIPT/VS provides with error messages. If the MESSAGE option is not specified,
SCRIPT/VS provides a short message that includes the message text and, when appro-
priate, the line number and text of the input line last read when the error was detected.

Chapter 5. Communicating with SCRIPT/VS 59

The MESSAGE option is specified as:

MESSAGE ([DELAY] [ID] [TRACE])

You must specify at least one parameter with the MESSAGE option; you can specify
two or all three parameters, separated by blanks. Each of the options can be abbreviated
as a single letter.

DELAY requests that SCRIPT/VS not display messages while a document is being dis-
played or printed. SCRIPT/VS accumulates messages in a utility file and appends them
to the end of the formatted output. DELAY is always used in ATMS-IIL.

ID causes SCRIPT/VS to include the error message identifier along with the error mes-
sage.

TRACE causes SCRIPT/VS to list, whenever appropriate, the sequence of imbedded
files, from the file that includes the error input line backward to the primary input file.
This is useful when a file is imbedded in many other files.

If CONTINUE is specified, SCRIPT/VS continues processing unless a severe (S) or ter-
minal (T) error is encountered. Severe and terminal errors cause SCRIPT/VS to stop
processing even if CONTINUE was specified.

The NOCONT option stops processing after SCRIPT/VS encounters an error condition
of severity level E (error), S, or T and issues an error message.

Note: CMS truncates messages that are more than 130 characters long. Truncation can
also occur in the batch or TSO environments when the messages exceed the record
length of the message data set (DSMUTMSGQG).

For a description of SCRIPT/VS error messages, see the publication Document Compo-
sition Facility Messages.

The .MG [Message] Control Word

60

You can use the MG [Message] control word to write out a message and to provide
diagnostic messages from macros.

Messages generated by the .MG control word can affect the return code from
SCRIPT/VS and can cause SCRIPT/VS processing to stop. Type S (severe) or type T
(terminating) messages always stop processing, and type E (error) messages stop process-
ing if the CONTINUE option of the SCRIPT command is not in effect. If, for example,
you specified

.mg /T/London's Burning/

then processing would stop and the message - London’s Burning - would be printed.

When a message is displayed, a prefix of “+ + + ” appears before the identifier or text to
indicate the message was generated by the .MG control word. If no data is given with
the .MG control word, it is ignored.

DCEF: SCRIPT/VS Text Programmer’s Guide

The following is an example of the .MG [Message] control word as you might use it:
The control word:
.mg /00le/This is a message. /
is displayed as:
+++001E This is a message.

if MESSAGE(ID) is in effect, or:

+H++ This is a message.

if MESSAGE(ID) is not in effect.

Interactive SCRIPT

You can interact with SCRIPT/VS while it is processing your document in order to
communicate with VM/SP and TSO or to trace SCRIPT/VS processing.

Interactive SCRIPT/VS Processing

For TSO and CMS, when you use SCRIPT/VS, you do not have to have all of your
input text in final form when you issue the SCRIPT command. Several control words
allow you to interact with SCRIPT/VS as your document is being formatted.

If you are in CMS (only), you can use the .RD [Read Terminal] control word when you
want to stop a typewriter terminal during SCRIPT/VS output to type in some text.
SCRIPT/VS does not process this text in any way, but resumes its output when you
signal ATTENTION.

The .RD [Read Terminal] control word is meaningful only when the formatted output is
actually being typed at your terminal in CMS. The text typed is not processed by
SCRIPT/VS, but appears in the output exactly as it was typed. When using the .RD
[Read Terminal] control word under CMS, specify

cp term attn off

before invoking SCRIPT/VS to suppress CP’s normal attention acknowledgment. Re-
member, the .RD [Read Terminal] control word is recognized only in the CMS environ-
ment.

You can use the .RV [Read Variable] control word to set symbols to read values from
the terminal during SCRIPT/VS processing. When the .RV [Read Variable] control
word is encountered, a line is read from your terminal. This line is used as the right-hand
side of the equal sign to set the value of the symbol named in the .RV [Read Variable]
control word.

Any expression that would be allowable as the value in a .SE [Set Symbol] control word
is allowable here. (See the Document Composition Facility: SCRIPT|VS Language Refer-
ence for a complete description of the .SE [Set Symbol] control word and its syntax
rules.) If no name is given on the .RV [Read Variable] control word, it is ignored and no
Iine is read from the terminal.

The .RV [Read Variable] control word will be ignored in batch environments unless the
file DSMTERMI can be read.

Chapter 5. Communicating with SCRIPT/VS 61

62

The .TE [Terminal Input] control word accepts input lines of text or control words as
though they were part of an imbedded input file, and processes each line as it is entered.
The .TE [Terminal Input] control word accepts several operands. If, in the input file,
you specify

.te on

SCRIPT/VS reads input lines from the terminal until you type in

.te off

Then, SCRIPT/VS processing continues with the next line in the file. You can enter
SCRIPT/VS control words or text.

You can specify a numeric parameter with the .TE [Terminal Input] control word. For
example,

.te 4

causes SCRIPT/VS to read four lines from the terminal.

You can also stop terminal input with the .EF control word, which indicates the end of
the current file. The .TE [Terminal Input] control word is essentially an imbed, where
the file imbedded is the terminal.

The .TE [Terminal Input] and .RV [Read Variable] control words are enhanced by using
the .TY [Type on Terminal] control word to produce a prompting message, which is
displayed at the terminal during SCRIPT/VS processing. The prompting message is not
formatted as part of the output.

The following example uses these control words to process and format the same file an
indefinite number of times.

...start

. im heading

.ty Enter NAME (1 line)

.rd 1

.ty Enter ADDRESS (2 lines)

.rd 2

.im letter

.ty Any more? (YES or NO)

.rv answer = '

.if /&U'&answer eq /YES .go start

The .RV [Read Variable] control word allows one line to be entered at the terminal. It
assigns that line the symbol &answer. In the following .IF [If] control word, the upper-
case attribute (&U”) of the symbol &answer is concatenated to an arbitrary delimiter (/)*'
and is compared to the string /YES.

Since your response is folded to uppercase, you can enter either yes or YES and the
comparands will be found equal, causing the loop to continue.

2t If you do not enter any text in response to the .RV control word, the value assigned to the
symbol &answer is null. When a symbol that can have a null value is used as a comparand
with an .IF [If], .AN [And], or .OR [Or] control word, an arbitrary preceding delimiter should
be used, as discussed in “Chapter 21. Processing Symbols” on page 223.

DCF: SCRIPT/VS Text Programmer’s Guide

Communicating with VM /SP

Another useful feature of SCRIPT/VS is the ability to execute CMS or CP commands
from CMS SUBSET during SCRIPT/VS processing. To execute a command or an
EXEC procedure, use the .SY [System Command] control word. For example,

.sy cp spool printer class s

Note: Because the SYOFF SCRIPT command option (which is the default) disables the
.SY control word, you must specify the SYON command option (which enables the .SY
control word) when you process your document. SYOFF and SYON are applicable only
in the CMS and TSO environments.

The .SY [System Command] control word is convenient if you ordinarily need to issue
several commands before you process a SCRIPT/VS file (you may need certain disks, a
particular printer class, as in the above example, and so on). With the .SY [System
Command] control word you can put the commands directly in the input file.

If a SCRIPT/VS file imbeds several files from another user’s disk, you can include the
commands to link to and access the required disks. For example,

.8y cp link user2 191 291 rr rpass
.sy access 291 b

.im filea

.im fileb

.8y release 291 (detach

When you process a command during SCRIPT/VS processing,” you might not want
SCRIPT/VS to continue processing if the command fails. To test the return code from
the CMS or CP command, you can check the value of the SCRIPT/VS system symbol,
&S$RET:

. 8y exec mysetup
.1if &SRET ne 0 .qu

If the EXEC procedure MYSETUP completes with a nonzero return code, SCRIPT/VS
stops processing. If the return code is zero, execution continues with the next input line
following the .IF control word line.

Note: The CMS commands CP and EXEC are explicitly shown here for clarity. The
implied CP (IMPCP) and implied EXEC (IMPEX) functions are not turned off when
SCRIPT/VS executes, as they are within an EXEC file.

Communicating with TSO

The .SY [System Command] control word can be used to specify TSO commands and
procedures to be executed after SCRIPT/VS completes processing an input file. The
commands specified with .SY are passed to TSO for execution in the order they are en-
countered.

Note: Because the SYOFF SCRIPT command option (which is the default) disables the
.SY control word, you must specify the SYON command option (which enables the .SY

22 Caution must be exercised when processing commands in this way because they might cause
SCRIPT/VS to prematurely end processing as a result of the way in which.these commands
use and/or manage storage.

Chapter 5. Communicating with SCRIPT/VS 63

control word) when you process your document. SYOFF and SYON are applicable only
in the CMS and TSO environments.

The .SY [System Command] control word, for example, might be used to display the
output file after it has been formatted. To request that the document be sent to an out-
put file, you can, if you have followed correct TSO naming conventions and if you have
properly allocated another file, specify

script infile file('outfile') ...
Then if you enter
.sy edit 'outfile' old

this causes the output file to be displayed.

For more details, see “TSO Naming Conventions” on page 18 and the discussion of the
FILE option of the SCRIPT command in the Document Composition Facility:
SCRIPT|VS Language Reference.

Tracing SCRIPT/VS Processing

One of the most powerful SCRIPT/VS control words is the .IT {Input Trace] control
word. This allows you to see the steps taken by SCRIPT/VS when it substitutes a value
for a symbol name. You can also see the step-by-step processing of the control words
that make up a macro or GML tag’s APF. The .IT control word has many other capa-
bilities that allow you to trace specific events during SCRIPT/VS processing.

The Output Line Generated by Input Tracing

64

When input tracing is activated, SCRIPT/VS generates one or more output lines that
describe the sequence of processing required for the input line about to be executed.
These lines are displayed as though they were messages. They are written to the same
output destination as messages. Each generated output line is in the form:

¢ [file-id] [nn] x <current source line>

where:
¢ is a code that identifies why the current source line is being traced:

C: Control word trace

G: GML substitution trace
M: Macro substitution trace
S: Symbol substitution trace
*: Symbol table snap

file-id identifies the origin of the current source line. This is usually the name of the
file or macro currently being processed. If the name is in parentheses, the cur-
rent source line does not come from the file or macro currently being proc-

essed:

(ATT) The current source line displays an attribute of the GML
tag being scanned.

(BT n) The current source line comes from a previously saved
running bottom title definition.

(FNLEAD) The current source line comes from a previously saved

footnote leader definition.

DCF: SCRIPT/VS Text Programmer’s Guide

(RHEAD) The current source line comes from a previously saved

running heading definition.

(RFOOT) The current source line comes from a previously saved
running footing definition.
(RULES) The current source line displays the rules that will be
used in scanning the current GML tag.
(SCAN) The current source line displays the text that will be
scanned for GML attributes.
(TT n) The current source line comes from a previously saved
running top title definition.
(VATT) The current source line displays the value attributes of
the current GML tag.
nn is the line number of the current source line, either within a file or within a
macro.
X is the length (number of characters and blanks) of the current source line.

current source line is the line being traced by SCRIPT/VS. The following description as-
sumes that all traceable events, control word tracing, symbol substitution
tracing, and macro substitution tracing (as specified with .IT ALL), are being
traced:

When the current source line contains only text, it is not displayed as
part of the input trace.

When the current source line contains a control word (*C*),
SCRIPT/VS displays the current source line and then performs the con-
trol word function. However, if the STEP parameter of .IT is specified,
you can change a control word current source line before it is executed.
SCRIPT/VS then executes the modified current source line (as described
in “Stepping through an Input Trace” later in this chapter).

When the current source line contains a GML tag (*G*), SCRIPT/VS
displays the name of the GML tag and the APF that is called to process
it. If the GML tag has attributes, subsequent lines display the line
scanned and the attribute rules used in scanning it.

When the current source line contains one or more symbols (*S*),
SCRIPT/VS:

= Displays the line as it is (*S*) before any symbols are substituted.

= Displays the line repeatedly, each time showing the next stage of
substitution, until each symbol has been replaced with its value. Un-
defined symbol names are regarded as text.

= At this point, the line is processed as a line of text, or is traced as a
control word current source line (*C*) (as described above).

When the current source line is from a macro expansion (*M*),
SCRIPT/VS:

= Displays the line as it exists in the macro (*M*).

= If the line contains one or more symbols, SCRIPT/VS traces the
line as described above for symbol substitution tracing (*S*).

= At this point, the line is processed as a line of text, or is traced as a
control word (*C*) as described above.

Chapter 5. Communicating with SCRIPT/VS 65

Capabilities of the .IT Control Word

66

The above description made assumptions that allowed a simplified presentation of input
substitution tracing. However, the .IT [Input Trace] control word allows you to trace
events much more selectively and to only trace events that interest you.

¢ When you want to display all traceable events processed by SCRIPT/VS, specify:
.it all

e When you want to trace only symbol substitution (and no other traceable events)
specify:

.1t sub

e When you want to trace only macro expansions (and no other traceable events)
specify:

. it mac

Symbols that are part of the macro expansion are traced. However, symbols that are
not part of a macro expansion will not be traced.

¢ When you want to trace occurrences of control words that interest you, specify
them with the .IT control word:

it ctl .if .el .th

When .IT ON is specified, all occurrences of these control words will be traced.

For example, to trace each occurrence of the .IN [Indent], .IL [Indent Line], and
.OF [Offsct] control words, specify:

it ctl .din .4il .of

The .IN, .IL, and .OF control words are added to the list of control words currently
being traced, called the control word table.

When you want to stop tracing for control words, but want to continue the input
trace for other kinds of input items previously specified, specify

.it ctl

The CTL parameter of the .IT control word clears the list of control words being
traced.

e When you want to stop tracing control words but leave the control word table in-
tact for later tracing, or if you want to turn off all input tracing, specify:

. it off

When you want to resume tracing the control words currently in the table, specify:

. it on

To add more control words to the control word table, issue another .IT CTL com-
mand:

it etl L if .el

DCF: SCRIPT/VS Text Programmer’s Guide

When you want to display the current value of a macro or symbol, specify the
SNAP parameter of the .IT control word. For example, if you want to find out the
current definition of the @LIST macro specify:

. it snap @QLIST
The current definition of the symbol or macro is then displayed. The SNAP param-

eter does not affect other parameters of the .IT control word and can be specified
even when input tracing is turned off.

Chapter 5. Communicating with SCRIPT/VS 67

Part 2. Document Composition Facilities of SCRIPT[VS

In this section of the book the many document composition facilities provided by
SCRIPT/VS are discussed.

Included in this scction are the following chapters:

e Chapter 6 - Composing Lines

Chapter 7 - Hyphenating and Horizontally Justifying Text
e Chapter 8 - Creating Vertical Space

e Chapter 9 - Vertically Justifying Text

e Chapter 10 - Establishing Page Layout

e Chapter 11 - Placing Text in Named Areas

e Chapter 12 - Composing Multiple-Column Pages

e Chapter 13 - Creating Head Levels and Table of Contents
e Chapter 14 - Creating Rules and Bozxes

e Chapter 15 - Selecting Fonts

e Chapter 16 - Keeping Blocks of Text Together

e Chapter 17 - Creating Footnotes

e Chapter 18 - Translating Characters

e Chapter 19 - Creating an Index.

Part 2. Document Composition Facilities of SCRIPT/VS 69

Chapter 6. Composing Lines

SCRIPT/[VS Text Formatting

Format Mode

SCRIPT/VS can format input text to build output lines. This formatting consists of two
processes that SCRIPT/VS performs as it builds output lines:

e Concatenation. moving words from one line to another to put as many words as
possible on each output line

e Justification: distributing space between words to align the right edges of output
lines (right-justified).

Most documents that you compose require some kind of formatting. With format mode
on, lines that are entered in a SCRIPT/VS file as:*

The quick brown fox

came over to greet the lazy
poodle.

The lazy poodle was

as indifferent

as the fox was quick.

result in the output lines:

The quick brown fox came over
to greet the lazy poodle. The
lazy poodle was as indifferent
as the fox was quick.

When SCRIPT/VS reads input, it saves words until it accumulates enough of them to
fill an entire output line. When the next word in the input would make the line too long,
SCRIPT/VS justifies and prints the line, then begins formatting the next output line.
When two input lines are joined (that is, concatenated), SCRIPT/VS inserts blank space
between the last word of one line and the first word of the next.

If you enter text in a SCRIPT/VS file with no markup, the defaults established by
SCRIPT/VS cause the text to be concatenated and justified as in the above example.

2 Many of the examples of SCRIPT/VS formatting in this book are shown, for convenience.
with short lines.

Chapter 6. Composing Lines 71

Centered Text

There may be occasions when you do not want SCRIPT/VS to concatenate and justify
the input lines. You may want to present a simple list, such as:

Boston
Chicago
New York
Providence

If these lines are processed when SCRIPT/VS formatting is in effect, the four names are
concatenated as follows:

Boston Chicago New York Providence

To prevent this, you can use the .BR [Break] control word between each entry to force a
break,” or you can use the .FO [Format Mode] or the .NF [No Formatting] control
words to suspend SCRIPT/VS justification and concatenation:

. fo off .nf on
Boston Boston
Chicago -or- Chicago
New York New York
Providence Providence

To restore normal formatting, use the control word:

. fo on -or- .nf off

Because ON is the default for .FO [Format Mode], you can also specify:

. fo

If you use the .FO OFF or the .NF ON control words when you create tables or charts,
remember to turn formatting back on when you resume entering text.

SCRIPT/VS allows you to center text using the .CE [Center] control word, and to align
text with the right margin using the .RI [Right Adjust] control word.

When using the .CE [Center] and .RI [Right Adjust] control words, remember that the
text lines affected by these control words are not concatenated or justified.

The .CE [Center] control word adjusts an output line to provide an equal amount of
space on either side of the line. The line

.ce Chapter 1

results in:

Chapter 1

Both the .CE [Center] and .RI [Right Adjust] control words allow you to specify a nu-
meric parameter, indicating how many input lines should be centered or aligned with the
right margin. For example,

24 The .BR [Break] control word is discussed later in this chapter under “Breaks” on page 77.

72 DCF: SCRIPT/VS Text Programmer’s Guide

Ragged Right

.ce 4

After this control word is processed,
the next four lines from the input file
are centered within the current
margins.

However, subsequent input lines are
processed without centering,

to produce formatted (that is,
concatenated and justified)

output lines.

results in:

After this control word is processed,
the next four lines from the input file
are centered within the current
margins.
However, subsequent input lines are processed without
centering, to produce formatted (that is, concatenated
and justified) output lines.

You can also center text using the CENTER parameter of both the .FO and .NF con-
trol words.

The following paragraph is formatted using the .FO CENTER control word:

Do not confuse the .CE [Center] control word with the .FO
[Format Mode] CENTER control word. The .FO CENTER con-
trol word allows you to format the input lines with concatenation,

producing unjustified output lines that are centered between the
column’s margins (that is, with ragged left and ragged right edges).

The following text is formatted using the .NF CENTER control word.

Up and spoke an elderly knight,
Who sat at the king's right knee:
"Sir Patrick Spence is the best sailor
That sails upon the sea.”

The difference between .FO CENTER and .NF CENTER is that .FO CENTER will
cause input lines to be concatenated while .NF CENTER will not.

The .FO [Format Mode] OFF control word suspends both concatenation and justifica-
tion. When you want to produce SCRIPT/VS output that resembles typewriter output
(that is, ragged right output), you want each line to contain as many words as can fit on
it, but you do not want extra space inserted between the words to pad the line to a spe-
cific length. To achieve this, use the .FO [Format Mode] LEFT control word:

. fo left

When the .FO [Format Mode] LEFT control word is in effect, output is formatted as in
the above paragraph. To resume justification of output lines, use the ON parameter of
the .FO control word:

.fo on

Chapter 6. Compesing Lines 73

Ragged Left

If you want your text to be left-aligﬁed in the column but not concatenated, you can use
the .NF LEFT control word to produce the following output.

The king sits in Dumferling town,
Drinking blood-red wine:

“O where will I get a good sailor
To sail this ship of mine?”

The .RI [Right Adjust] control word adjusts an output line to align it with the right
margin. For example,

.ri Chapter 1

results in:

Chapter 1

You can also use the ON and OFF parameters with the .RI [Right Adjust] control
word. For example,

.ri on

These lines must
be flush with the
right margin.

.ri off

results in:

These lines must
be flush with the
right margin.

All the output lines between the .RI [Right Adjust] ON and .RI [Right Adjust] OFF
control words are aligned with the right margin. No concatenation or justification takes
place.

You can use the .FO RIGHT control word if you want to format input lines that are
concatenated and that produce ragged left output (unjustified output lines aligned with
the right margin).

The following paragraph is formatted using the .FO RIGHT control word.

Do not confuse the .RT [Right Adjust] control word with the .FO RIGHT
control word. The .FO RIGHT control word allows you to format input
lines with concatenation, producing unjustified output lines that are aligned
with the right margin (that is, ragged left edge).

If you want your text to be right-aligned in the column but not concatenated, you can
use the .NF RIGHT control word to produce the following output.

The king has written a braid letter,
And signed it with his hand,

And sent it to Sir Patrick Spence,
Who was walking on the sand.

74 DCF: SCRIPT/VS Text Programmer’s Guide

Alternate Formats

You can use the .FO INSIDE control word if you want input lines to be concatenated
and aligned so that resulting output lines are against the inside margin of the column -
towards the presumed binding edge of the duplexed page. This is equivalent to .FO
LEFT for odd pages and .FO RIGHT for even pages. The following text was formatted
using the .FO INSIDE control word.

The first line that Sir Patrick read, A loud laugh laughed
he; The next line that Sir Patrick read, Caused the tears to
flow full free.

You can use the .FO OUTSIDE control word if you want input lines to be concat-
enated and aligned so that resulting output lines are against the outside margin of the
column - away from the presumed binding edge of the duplexed page. This is equivalent
to .FO RIGHT for odd pages and .FO LEFT for even pages. The following text was
formatted using the .FO OUTSIDE control word.

“Make haste, make haste, my merry men so fine Our guide ship sails in the
morn.” “O say ‘tis not so, my captain great, For I fear a deadly storm.”

If you want your text to be aligned against the inside margin of the column (towards the
presumed binding edge of the duplexed page) and not concatenated, you can use the .NF
INSIDE control word to produce the following output.

“Late last night I saw the new moon,
With the old moon in his arm,

And 1 fear, so fear, my captain dear,
That we will fall to harm.”

This is equivalent to .NF LEFT for odd pages and .NF RIGHT for even pages.

If you want your text to be aligned against the outside margin of the column (away from
the presumed binding edge of the duplexed page) and not concatenated, you can use the
.NF OUTSIDE control word to produce the following output.

"0 who is this has done this deed,
This ill deed done to me,

send me out this time of the year,
To sail upon the sea!"

This is equivalent to .NF RIGHT for odd pages and .NF LEFT for even pages.

Overdraw Options

With concatenation suspended, if the input line is longer than the output column line
length or if concatenation is on and a single word is longer than the column line length,
the placement of excess characters depends on the other parameters of the .FO [Format
Mode] or .NF [No Formatting] control words:

e EXTEND: the excess characters are printed on the same output line; the line is al-
lowed to extend beyond the column line length. This is the default sctting.

e FOLD: the excess characters are printed on the next output line.

e TRUNC: the excess characters are truncated at column line length and are not
printed.

Chapter 6. Composing Lines 75

Splitting Text

With .FO FOLD or .FO TRUNC or with .NF FOLD or .NF TRUNC, a word is di-
vided at the last character to fit in the column.

Perhaps you want to align part of an output line with the left margin, and the other part
with the right margin, all on the same line. You can do this by using left and right tabs
as described in “Using Tabs” on page 84. You can also do this by using the .SX [Split
Text] control word, whose format is:

.sx [Left-edge text//Right-edge text/

which results in:

Left-edge text Right-edge text
In this example, the slash (/) is used as a delimiter to separate the control word fields.
SCRIPT/VS recognizes the first character after the blank (in this case, the slash) as the

delimiter character for the control word. If you want to use a slash as part of the text,
use some other character as a delimiter. For example,

.sX ¢SCRIPT/VS Text Programmer's Guide¢¢Control Words¢

is formatted as:

SCRIPT/VS Text Programmer's Guide Control Words
The space between the parts of split text can be left blank or you can specify a fill string
or leader that can ecither be centered or repeated as often as necessary to fill the space
between the two parts of the split text.® The default action is to repeat the fill string. For
example,

.sx [Left side/*-/Right side/
results in:

Left side F-F-F-drododadabatadadodoabatadabadabbada Right side

You can also cause the fill string to be centered by specifying the C parameter on the
.SX control word. For example,

.sx ¢ /Left side/middle/Right side/

results in:

Left side middle Right side

If the left-side text of the output line does not fit on a single line with the right-side text,
SCRIPT/VS will allow the left side text to extend past the column line length or trun-
cate it at the column line length depending upon the overdraw option in effect (if EX-
TEND is in effect it will extend, if FOLD or TRUNCATE is in effect it will truncate).
To prevent this, specify the F parameter. This parameter causes SCRIPT/VS to fold the

2 A fill string that is to be centered and not repeated may be as long as the space remaining
between the left-side text and the right-side text. If a fill is too long it will be ignored.

76 DCF: SCRIPT/VS Text Programmer’s Guide

Breaks

portion of the lcft-side text that does not fit on the current line onto the next line. A
foldable split text, as used in tables of contents, could be specified as:

.of 1
.sx f /An example of a folded split text line/ ./58/

The result is:

An example of a folded split
text line . « + « . . . 58

The fill character and the right-side text are never folded. The F parameter can be partic-
ularly useful when producing such things as a list of illustrations that has figures with
long captions.

When you want an input line to begin a new line of output, you must cause a break.
The break causes SCRIPT/VS to promote the partial output line that is being built be-
fore it processes the next input line.

If you begin a line with a blank or a tab, the formatting process is interrupted®, the text
that has accumulated for the current output line is promoted, and the next input line
begins a new output line.

To create paragraphs in text, one method you can use is to enter spaces before each line
that begins a new paragraph. For example,

The quick brown

fox

came over to greet the lazy
poodle.
Notice that the above sentence
contains each letter of the
alphabet, except the letters J
and S.

That's why the quick brown fox
usually jumps.

But the poodle was frightened
and ran away.

results in:

The quick brown fox came over
to greet the 1lazy poodle.
Notice that the above sentence
contains each letter of the
alphabet, except the letters J
and S. That's why the quick
brown fox usually jumps.

But the poodle was frightened
and ran away.

2 This is not always true during GML processing. See “Residual Text Processing” on page 283
for more details.

Chapter 6. Composing Lines 77

Indenting

Simple Indention

You can specify a break using the .BR [Break] control word.

The quick brown

. br

fox came over to greet ... but
.br

you know the rest.

results in:

The quick brown
fox came over to greet ... but
you know the rest.

Without the .BR [Break] control word between the two input lines, the above input lines
format as:

The quick brown fox came over
to greet ... but you know the
rest.

Some SCRIPT/VS control words cause a break in addition to their explicit function.
For a complete list of the control words that cause a break see the Docurnent Composi-
tion Facility: SCRIPT|VS Language Reference.

To improve readability or emphasize a block of text, you may want to alter the left or
right column margins. Two SCRIPT/VS control words are provided for this purpose:

¢ _IN [Indent] - change the left margin for subsequent output lines.
¢ IR [Indent Right] - change the right margin for subsequent output lines.

These control words normally cause a break. When the NOBREAK parameter of .IN
and .IR is specified, a break is not performed.

The most basic form of indention is simple modification of the left or right margin.
When the indention is zero, all text output lines originate in the leftmost print position
of the column as specified with the .PM [Page Margins] control word or the BIND op-
tion of the SCRIPT command. By increasing the indent, the left margin can be moved
to the right. For example, by specifying

.in 6m
—_6m—>

the left margin is set 6M to the right of column origin. The left margin may
also be changed by specifying an incremental value to be applied to the

78 DCF: SCRIPT/VS Text Programmer’s Guide

p==N

current left margin. This is called relative indenting. For example, by speci-
fying

.in +5m

1im >
the value 5M is added to the current left margin. In this exam-
ple, 6M + 5M is 11M, so the current left margin is now 11M
to the right of the column origin. You can move the current left
margin to the left by specifying a negative value. For example, -
by specifying

.in -3m

Sm——>

the value 3M is subtracted from the current left margin. In this exam-
ple, 11M - 3M is 8M, so the current left margin is now 8M to the
right of its origin.

You can return the left margin to the column origin by specifying
.in O -or- .in

The right margin can be easily changed with the .IR [Indent Right] control word. With
justification on, the last character in each line is flush with the right margin. By changing
the right indent the right margin can be moved to the left.

For example, by specifying

.ir 8m
< 8m
the right margin is moved 8M to the left. As with .IN [Indent] you can
modify the current right margin using relative values. For example, by
specifying
ir 4+3m
< 1lm

the value 3M is added to the current right indent. In this exam-
ple 8M + 3Mis 11M, so the current right margmn is now 11M
to the left of its origin.

You can return to the original right margin by specifying

.ir O -or- cir
In practice it is more convenient to use relative indention rather than absolute indention.
The advantage of relative indention is that you need not be sensitive to the actual value
of the margin that you are changing. Relative indents will work in context with the sur-
rounding text so that the document can be imbedded into another while maintaining the
same relative appearance.

Temporary and Permanent Indention

Ordinarily, indention set with the .IN [Indent] and .IR [Indent Right] control words is
permanent until changed by a similar control word. However, if a vertical extent is speci-

Chapter 6. Composing Lines 79

fied with the FOR parameter, the change is temporary; the indention reverts to the per-
manent value when the specified amount of vertical space has been formatted.

For example, to indent just the first line of a paragraph, specify:

.in 5 for 1

The indention of five spaces is temporary, and lasts for only one line. The second
line reverts to the left margin.

To create a hanging indent, a negative temporary indention can be applied to a perma-
nent indention. For example,

.in 5
.in -3 for 1

Subsequent text will be indented five spaces, except for the
first line, which will be indented only two spaces.

The .IL [Indent Line] and .UN {Undent] control words provide functions similar to the
FOR parameter of .IN [Indent]. Figure 7 on page 82 illustrates a more general use of
temporary indention with both .IN and .IR.

?urrent margins:
<
The current left margin is the position established by the combined effect of
the .IN [Indentl, .OF [0Offsetl, .UN [Undentl, and .IL [Indent Linel control
words. The current right margin is determined by the combined effect of the

right of the current left margin. All subsequent lines start at the current
left margin. (Changes affect the current left margin for one line.)

.IN 9 [Indent]:

Figure 6. How the Current Margins Are Established

>

CL [Column Line Lengthl and .IR [Indent Rightl] control words.

JIL ? [Indent Linel:
>
The first line following the indent line control word is moved to the

>

All lines following the indent control word are moved to the right of
the current left margin. (Changes affect the current left margin for
all subsequent lines until respecified.)

.0F 5 [OTfset?:
—_—2
The first line following the offset control word is not indented
from the current left margin; all subsequent lines are 1in-
dented. The offset remains in effect until changed by another
offset or indent control word. (Changes affect the current left
margin after one output line.)

.UN|5 [UTdentlz
(.—
The first line following the undent control word is shifted to the left
of the current left margin; all subsequent lines start at the cur-
;9nt }eft margin. (Changes affect the current left margin for one
ine.

.IR 5 [Indent Rightl:

<
All lines following an indent right control word are justifiedl
to the column line length minus the right indention. (Changes
affect the current right margin for all subsequent lines until
respecified.)

80

DCEF: SCRIPT/VS Text Programmet’s Guide

= N

By default, the .IN [Indent] and .IR [Indent Right] control words cause a break, and take
effect on the next output line. For example, if you enter

Some lines of text that have
little or no meaning to anyone
.in .51 for 3

and use the .IN control word
to request an indention of
one-half inch for the next 3
lines or until indention is
reset.

the result is:

Some lines of text that have
little or no meaning to anyone
and use the .IN control
word to request an
indention of one-half
inch for the next 3 lines or
until indention is reset.

If you do not want a break to occur, you can use the NOBREAK parameter of cither
the .IN [Indent] or .IR [Indent Right] control words. For example, if you enter

Some lines of text that have
little or no meaning to anyone
.in .51 for 3 nobreak

and use the .IN control word
to request an indention of
one-half inch for the next 3
lines or until indention is
reset.

the result is:

Some 1lines of text that have
little or no meaning to anyone
and use the .IN control
word to request an
indention of one-half
inch for the next 3 lines or
until indention is reset.

The AFTER parameter may be used to delay the indention until a specific amount of
vertical space has been formatted.

For example, a hanging indent may also be created by delaying indention for one line:

.in 1i after 1

Chapter 6. Composing Lines 81

Subsequent text will be
indented one inch,

except for the
first line, which
will have the

indention of the
preceding text.

The FOR and AFTER parameters of the .IN [Indent] and .IR [Indent Right] control words determine
the duration and extent of temporary indention. For example,

.in +1i for 1i after .5i
.ir +1i for 1i after 1i

The FOR parameter indicates that the margin change is temporary and will only be in effect for the
duration specified. The current margin for any line is a combination of the permanent and temporary
indention values that have been specified. If you specify the temporary indention as a negative value
(-), the current margin is decreased; if you specify it as a positive value (+), the current margin is
increased. After the duration of a temporary indention has been reached, the current
margin reverts to the permanent indention that was in effect before the temporary
indention. If another temporary indention is encountered prior to the completion of an
existing one, the existing one is immediately stopped and the new
margin is the sum of the permanent indention margin and the new
temporary indention. A temporary margin change can either start im-
mediately (if the AFTER parameter is not specified) or after the verti-
cal distance specified with the AFTER parameter. Once the values specified with the
FOR and AFTER parameters have been satisfied, the margin reverts to the perma-
nent indention that was in effect before the temporary margin went into effect.

Figure 7. Permanent and Temporary Indention

Using Indention with Tabs

A definition list contains definition terms of varying length followed by the text that de-
fines these terms. To ensure that all the text lines originate at the same point on the
output line, follow each term with a tab to the current indention.” For example, if you
specify

27 You can also use the TO parameter of the .IS control word to perform a single, immediate
tab to the value of the current indention.

82 DCF: SCRIPT/VS Text Programmer’s Guide

.in 12m

.tp 12m

.ti - 05

.in -12m for 1

.uc term~definition

.sk 1

.in -12m for 1

BEE-~any of a number of related four-winged, hairy
insects which feed on the nectar of flowers.
.sk 1

.in -12m for 1

BEEKEEPER-person who keeps bees for producing
honey; apiarist.

.sk 1

.in -12m for 1

BEESWAX~a tallow-like substance secreted by
honeybees and used by them in making their
honeycomb.

The result will be
TERM DEFINITION

BEE any of a number of related four-winged, hairy
insects which feed on the nectar of flowers.

BEEKEEPER person who keeps bees for producing honey;
apiarist.

BEESWAX a tallow-like substance secreted by honeybees and
used by them in making their honeycomb.

The tab ensures that the text portion of each initial line starts at the same point on the
output line as the next output line. If you did not use the tab or the .IS [Inline Space]
control word, you would have to manually space the number of blanks necessary to po-
sition the first word of the text to the appropriate point. There are some disadvantages to
manually entering the blank space:

¢ The number of keystrokes and attendant potential for error is greater.

e The blank space may be increased in width if justification is on. This problem can
be avoided by using required blanks.

e The space can not always be accurately filled with manually entered blanks if you
are formatting the document for the 3800 Printing Subsystem.

e With proportional fonts, such as those you can use with page printers, the exact
amount of space required may vary depending on the width of the characters on the
left hand side.

Indentions and tab-like results similar to those described above can be created with se-
veral other control words as well. The .IL [Indent Line] control word, for example, can
be useful for beginning paragraphs. To create a paragraph with just the first line indented
you could enter

.1l 3m

which results in output like this:

Chapter 6. Composing Lines 83

Using Tabs

This line is preceded by the
control word .IL 3M and it has
enough text to show how the

first line is indented
differently from subsequent
lines.

Another way to make tab-like indentions is to use the .OF [Offset] control word. Since
the .OF control word does not take effect until after the next line is formatted, you could
enter

.of 3

to achieve the following results:

The line immediately following
the .OF control word is
printed at the current left
margin. All lines thereafter
(until the next indent or
offset request) are indented
three character spaces from
the current margin setting.

To end offset, enter

.of

and the effect of any previous .OF request is cancelled and all output after the next line
continues at the current left margin setting.

You can create output much like that shown in the .OF example above by using the
.UN [Undent] control word. If, for example, you have a normal indention of 3 picas
from the left margin you could enter:

.un 3p

to achieve the following results:

If an indention of 3 picas is
in effect (as din these
lines), the next 1line is
undented to the left
margin; all following
lines have the mnormal
indention of 3 picas from
the left margin.

Use the .TP [Tab Position] control word to define how tab characters (hexadecimal 05)
are to be resolved.

To generate the tab character (hexadecimal 05) in your input lines, you can use one of
the following techniques: (

84 DCF: SCRIPT/VS Text Programmer’s Guide

Processing Tabs

¢ Choose a character that you would not normally use in your text and assign it the
hexadecimal 05 using the .TI [Translate Input] control word. The .TI [Translate
Input] control word can be used to translate any keyable character to a tab character
on input. For example, to set the not sign (—) character to a tab character, specify

.ti -~ 05

This causes every — character to be translated to a tab in the input line, before
formatting occurs. Using this technique, you can see your tab characters when you
edit the input file.

e Use the SCRIPT/VS system symbol &$TAB., which has the value of a tab charac-
ter (hexadecimal 05), anywhere in a text line where a tab is needed. Using this tech-
nique, you can see your tab characters when you edit the input file. Always delimit
the symbol with a period (.).

e Using an editor, build the text lines with hexadecimal 05 characters as required.
Some text editors, such as the CMS editor, allow you to assign the tab function to
any keyable character. When the specified character is entered, the editor changes it
into a tab character.

e Build the input file using an input device that can generate a hexadecimal 05 in re-
sponse to pressing a key (some terminals, the IBM 2741 Communications Terminal,
for example, have a special key that, when pressed, generates a tab character.)

The last two techniques have the disadvantage of putting nondisplayable data into
the input file. When such a file is examined with a differcnt terminal or editor, the
tab characters may be invisible.

When SCRIPT/VS processes an input line and encounters a tab character, it formats the
line using the current tab scttings that were established using the .TP [Tab Position] con-
trol word.

The default tab settings (the ones SCRIPT/VS uses if you do not specify any with the
.TP control word) are at every fifth horizontal space® position to position 80.

If a tab character is found in an input line, the text following the tab character is posi-
tioned at the next tab position. For example, these input lines

.tp .5i 1.5i 2.5i
Position&$TAB. this with a tab.

will be formatted as

Position this with a tab.

} > > >

Tab positions can be added to those currently in effect. These input lines

.tp add 1i
Position&$TAB. this with a tab.

will be formatted as

28 Horizontal space is based on the width of the figure space in the initial font.

Chapter 6. Composing Lines 85

86

Position this with a tab.
} > > > >

To change the default tab setting values, specify the tab settings you want using the .TP
[Tab Position] control word. For example, specifying

.ti - 05
.tp 8m 18m 30m
~This line starts with a tab.

results in the following format:

This line starts with a tab.
} >
|

Once a .TP control word has been processed, the tab settings remain in effect until ex-
plicitly reset by another .TP control word.

You can add tab settings to the ones that already exist by including the ADD parameter
when specifying the .TP [Tab Position] control word. For example, if your current tab
settings are at positions 15m, 30m, and 45m, to put an additional tab setting at position
25m, specify

.tp add 25m

This gives you tab settings at positions 15m, 25m, 30m, and 45m.

You can remove one or more of your tab settings without respecifying the ones you
want to keep. Specify the . TP [Tab Position] control word with the DEL parameter and
the tab settings that you want removed. For example, if your current tab settings are at
15m, 25m, 30m, and 45m, specifying

.tp del 15m 25m

leaves you with tab settings at positions 30m and 45m.

If you want to respecify all of your tab setting positions, you can specify .TP SET fol-
lowed by the new tab settings that you want to have in effect. For example, specifying

.tp set 10m 20m 40m 60m

leaves you with tab settings at positions 10m, 20m, 40m, and 60m regardless of the pre-
vious tab settings.

If the .TP control word is entered with no parameters, the initial tab positions at 5, 10,
15, ..., 80 are restored. For example, the input lines

.ti ~ 05
- tp

e SO)
AR AT At Al At

will be formatted as

* * * * *

DCF: SCRIPT/VS Text Programmer’s Guide

—

Tab Fill Characters

Ordinarily, tab characters are replaced with an amount of horizontal white space suffi-
cient to position the text following the tab character at the next tab position. You can
specify a “tab fill character” to be used instead of horizontal white space. For example,

.ti ~ 05
.tp ./5m
~This line begins with a tab.

is formatted as:

..... This line begins with a tab.

You can specify different fill characters for each tab setting position you specify with the
.TP control word. The fill character and its tab position designation are separated by a
slash (/). For example, the input lines

.ti -~ 05
.tp ./10 ,/20 -/30
hup-one-two-ten

will be formatted as

The fill character is formatted in the current font when the fill string is being formatted.

If the space to the next tab stop is less than the width of one fill character (or less than
24 pels, for 3800 line printers), the tab stop after the next is used.

On the 3800 Printing Subsystem, fill characters are only supported with monospaced
fonts. If you use fill characters with proportionally spaced fonts, vertical misalignment
may result.

Tab Positioning and Alignment

You can use the TP [Tab Position] control word to specify that text following a tab
character is to be left- or right-aligned at a tab position, centered about a tab position, or
aligned with the first occurrence of a particular character positioned at a tab position.

Tab characters at the beginning of an input line cause a break in concatenation. There-
fore, you can use tab characters to create simple lists. For example, the input lines:

.ti = 05
.tp 5m

Go look for:
~Jake
-Frederick
=~Santiago

are formatted as:

Chapter 6. Composing Lines 87

88

Go look for:
Jake
Frederick
Santiago

|
I > >

The text following a tab character is normally left-aligned at the next tab position. You
can also define tab positions at which text is centered and right-aligned. For example,

.ti -~ 05

.tp .51 right 1.5i center
~1)-Dog

=2)~Crump

~3)-Cramp

=4)-Tackled

~5)-Bedazzled

The text following the first tab character will be right-aligned at the first tab position,
one-half inch from the margin. The text following the second tab character will be cen-
tered about the second tab position, one and one-half inches from the margin:

1) Dog

2) Crump

3) Cramp

4) Tackled

5) Bedazzled
{ > >

You can also indicate that the text following a tab character be aligned with the first
occurrence of a specific character at the tab position. For example,

.ti = 05
.tp .51 left -/2i char .
~Expensive-$§1234.

~Cheap-$. 005
~Reasonable-§1. 00

The text following the first tab character will be left-aligned at the first tab position. The
text following the second tab character will be positioned so that the first period is left-
aligned at the second tab position and the space between the two pieces of text will be
filled with hyphens (-):

Expensive----§1234,

Cheap-==-========~~ §.005
Reasonable~-=~--- §1.00
| > >

You can also use the .TP control word to interchange columns of data without actually
changing the input data. In the following example, the .TP control word is used to de-
fine tab positions at 10, 20, and 45. The text following the third tab position at 45 will
be left-aligned with the period.

DCF: SCRIPT/VS Text Programmer’s Guide

.ti ~ 05

.tp 10 20 45 char .

~name l-description of 1-$11.50
~name 2-description of 2-§1.50
~name 3-description of 3-§33
~name 4-description of 4-$0.50
~name 5-description of 5-$§44.50
-name 6-~description of 6-$101.50

This results in the following columns of data. Name is placed at position 10, description
at position 20 and cost at position 45.

name 1 description of 1 $§11.50
name 2 description of 2 $1.50
name 3 description of 3 §33

name 4 description of 4 $0.50
name 5 description of 5 $44.50
name 6 description of 6 $101.50

When using the .TP control word, tab stops need not be specified in ascending order.
This allows you to rearrange columns of data without changing the data. By changing
the tab stops as shown below, you can rearrange the data so that the description appears
first at position 10, followed by name at position 32, and cost at position 45.

.ti -~ 05

.tp 32 10 45 char .

~name l-description of 1-§11.50
~name 2-~description of 2-$§1.50
~name 3-~description of 3-§33
~name 4-~description of 4-$0.50
~name 5-description of 5-$44.50
~name 6-description of 6-§101.50

Resulting in the following columns of data:

description of 1 name 1 §11.50
description of 2 mname 2 $§1.50
description of 3 name 3 $33

description of 4 name 4 $0.50
description of 5 mname 5 $44.50
description of 6 name 6 $101.50

Using Inline Spacing for Tabs

Another way to create immediate tabs is to use the .IS [Inline Space] control word. That
is, using the .IS control word, you can create an immediate tab that will position subse-
quent text at a specific point on a line without disturbing the current tab settings estab-
lished with the .TP [Tab Position] control word. For example,

Sign in ink please:
.is to 8p

The amount of inserted space is the difference between the amount specified and the
width of the text preceding it in the output line:

Chapter 6. Composing Lines 89

Sign in ink please:

An immediate tab will be considered missed if the width of the text already placed on the
output line plus the value specified on the MINIMUM parameter exceeds the value
specified with the TO parameter of the .IS control word. If it is not specified, the MINI-
MUM value defaults to one horizontal device unit. If the BLANK parameter has been
specified, then a missed immediate tab will be treated as an ordinary wordspace. For ex-
ample,

Place your score here:
.1is to 1i blank

will result in

Place your score here:

If the BREAK parameter has been specified, then a missed immediate tab will cause a
break and the immediate tab is processed on a new output line. For example,

Place your score here:
.is to 1i break

will result in

Place your score here:

If the ABSOLUTE parameter is specified, the immediate tab will always be processed on
the current output line; if the tab is missed, negative horizontal space will be inserted.
For example,

Place your score here:
.1s to 1i absolute

will result in

Place your_ score here:

Leading Blanks and Tabs

90

Input lines that start with a leading blank or leading tab cause breaks. SCRIPT/VS gen-
erates a control word and executes it when it detects one of these situations. For leading
blanks, the .LB [Leading Blank] control word is generated, and for leading tabs, the .L'T
[Leading Tab] control word is generated. These control words do the same thing as the
.BR [Break] control word.

SCRIPT/VS implements these implicit breaks as control words to allow you to alter the
processing for these situations. You can define a .LB or .LT macro to provide whatever
processing you require.”

28 Note that input lines processed in literal mode, under the .LI [Literal] control word, do not
invoke the .LB or .LT functions. Also, GML scan processing may cause .LB or .LT not to be
processed.

DCF: SCRIPT/VS Text Programmer’s Guide

If you have defined a .LB macro or a .LT macro and macro substitution is on, the .LLB
macro will be executed whenever a leading blank is processed or the .LT macro will be
executed whenever a leading tab is processed.

Note, however, that after the .LLB or .LT control word or macro is processed, the leading
blank or tab is still on the line and it is processed as part of that text input line. In other
words, you cannot use the .LB or .LT macro to remove leading blanks or tabs from a
Line.

Blank and Null Lines

Whenever SCRIPT/VS encounters a blank input line, it generates and processes a .BL
control word which has the same effect as a .SP control word.

Blank lines can originate from:

¢ A source input file (not all systems in which SCRIPT/VS operates allow this)
¢ A macro line that is blank

e Terminal input (.TE)

¢ A line containing control word separators with only blanks between them

® A non-blank line that becomes blank as a result of symbol substitution.

To redefine the SCRIPT/VS implicit formatting convention for blank lines, define a .BL
[Blank Line] macro that will be processed whenever a blank line is encountered and
macro substitution is on. For example,

.dm bl /.sk 2

Now, when SCRIPT/VS encounters a blank line, the result is two line spaces on your
output page.

Note that a blank line is not the same as a null line. Null lines contain no characters and
are processed by the .NL [Null Line] control word.

Whenever SCRIPT/VS encounters a null input line, that is, a line whose length is zero,
it generates and executes a .NL control word. The .NL control word does nothing ex-
cept reset line continuation in case the previous line ended with a continuation character.

Like blank lines, null lines can also originate from a number of sources:
® A source input file

¢ Terminal input (.TE)

¢ A non-null line that becomes null as a result of substitution

¢ A macro line that is null.

To redefine the SCRIPT/VS implicit formatting convention for null lines, define a .NL
[Null Line] macro that will be processed whenever a null line is encountered and macro
substitution is on. For example,

.dm nl /.sk 2

Now, when SCRIPT/VS encounters a null line, the result is two line spaces on your
output page.

Chapter 6. Composing Lines 91

You can also define the null line to be completely ignored by SCRIPT/VS:

.dm nl /.%

Full Stop Characters

Normally, when concatenation of input lines is in effect, SCRIPT/VS inserts a word
space between the last word of each input line and the first word of the next input line.
If the input line ends in a full stop, SCRIPT/VS will add a second word space, unless,
for example, continuation is performed.

If you follow the typing convention that requires sentences to be separated by two
blanks, you must enter both blanks if you enter a full stop in the middle of an input line.
SCRIPT/VS will automatically insert two blanks after a full stop if it occurs at the end
of an input line.

A full stop is a period (.), a question mark (?), an exclamation point (!), or a colon (:). A
line is also considered to end in a full stop if it ends with a double quotation mark (") or
a right parenthesis ()), and the next-to-last character is a full stop character.

You can use the .DC [Define Character] STOP control word to change the characters
that are treated as full stop characters. For example, if you enter

.dc stop :

only the colon and period will result in full stops.

Determining Word Space Values

92

Each font is designed with a default wordspace value appropriate to the size of the char-
acters and SCRIPT/VS normally uses this as the width of blanks. But when more than
one blank is found in text, the first blank is considered a word space and any other
blanks are considered extra spaces. The width of the first blank is determined by the .WS
[Word Space] control word. The width of each subsequent, successive blank is deter-
mined by the .ES [Extra Space] control word. '

You can use the .WS [Word Space] control word to control the width of word spaces in
your text. If, for example, you specified

.ws normal p8

then the width of all word spaces will be eight pica points, as shown in the following
example:

The width of all word spaces will
be eight pica points.

Until changed, this new value will remain in effect for all subsequent font changes. If
you want to revert to default wordspacing, then specify

WS

to restore the default wordspace values of your current font.

DCF: SCRIPT/VS Text Programmer’s Guide

The BY parameter of the .WS [Word Space] control word also can be used to increase
or decrease wordspace values. If, for example, you wanted to decrease word spaces, you
could specify

.ws by .8

which means that the current wordspace value (either the default wordspace value of the
current font, or the value you specified with the NORMAL parameter of the .WS [Word
Space] control word) will be multiplied by .8 to give a fixed wordspace value equal to
80% of the currently set value, as shown in the following example:

The current wordspace value will be
multiplied by .8 to give a fixed
wordspace equal to 80% of the
currently set value.

If you wanted to increase word spaces, you could specify

.ws by 1.2

which means that the current wordspace value (either the default word space value of the
current font, or the value you specified with the NORMAL parameter of the .WS [Word
Space] control word) will be multiplied by 1.2 to give a fixed wordspace value equal to
120% of the currently set value, as shown in the following example:

The current wordspace value will be
multiplied by 1.2 to give a fixed
wordspace equal to 120% of the
currently set value.

The width of word spaces may be increased or decreased according to the expansion and
compression ranges given on the .HY [Hyphenate] control word. See “Chapter 7. Hy-
phenating and Horizontally Justifying Text” on page 99 for more dctails on using the
.HY [Hyphenate] control word. Wordspace values set with the .WS [Word Space] con-
trol word are also subject to horizontal justification.

Values given with the .WS [Word Space] control word are subject to rounding in accord
ance with the limitations of the device.

Determining Extra Space Values

The .ES [Extra Space] control word is used to specify the width of extra spaces when
more than one blank follows some part of your text.

If you want to establish the width of extra spaces in your text, regardless of the default
value (which is equal to the wordspace value of the current font), you can do so using
the .ES NORMAL control word. Specifying

.es normal pé

will fix the width of extra spaces in your text to six pica points regardless of any cur-
rently set defaults. Until changed, this new value will remain in effect for all subsequent
font changes.

The .ES control word is also particularly useful if you use the typing convention of fol-
lowing sentences with two blanks. The .ES control word can be used to decrease the
width of the second blank without changing the width of other word spaces.

Chapter 6. Composing Lines 93

If, for example, you were using a proportional typeface and you wanted to set the extra
spaces after a full stop to be half as wide as word spaces you would enter

.es by .5
A full stop. And an additional line.

which results in:

A full stop. And an additional line.

If you enter

. es

then SCRIPT/VS resumes using the values determined by the current font.

Extra space values set with the .ES [Extra Space] control word are also subject to hori-
zontal justification.

Values given with the .ES [Extra Space] control word are subject to rounding in accord-
ance with the limitations of the device.

Inserting Horizontal White Space

94

In addition to using the .IS [Inline Space] control word to perform an immediate tab to
a specific position on a line, you can use it to insert a specified amount of horizontal
white space between two words.

The .IS control word can be thought of as a required blank or backspace character of
arbitrary width, depending upon whether the inserted space is positive or negative, re-
spectively.

To include a fixed amount of horizontal white space in text, you could specify:

Shadwell
.is .51
was sacked.

The inserted space is treated as a single character, and is not subject to justification:
Shadwell was sacked.

The inserted horizontal white space may be negative:

An underscored
.is =-.51i
word.

The inserted space is treated as a single backspace character:

An underscored word.

DCF: SCRIPT{VS Text Programmer’s Guide

Revision Codes

If you process documents that are frequently revised, you can identify revised text with a
revision code in the left margin. Use the .RC [Revision Code] control word to identify
changed material. You can define as many as nine different revision code characters,
which are printed to the left of your text output.

For example, the lines

define two different revision codes. Within the body of your document, you can bracket
revised material with pairs of .RC [Revision Codc] control words. The control word

.rc 1 on
! indicates the beginning of a revised piece of text. If the revision code used has not been

! defined, no revision code will appear because the default revision code is a blank. The
! control word

.rc 1 off

indicates the end of the revised piece of text.

Pieces of revised text may overlap, and their revision codes may be nested. For example,
if you have specified

.rc 1 on

! and then, while revision code 1 is on, specify

.rc 2 on
? revision code 1 is suspended, and revision code 2 is turned on. When you turn revision
? code 2 off,

.rc 2 off

! revision code 1 is restored to its former on status.

To turn revision code 1 off, specify

.rc 1 off

When you have changed only a single line, you can indicate that that line be flagged with
a revision code by specifying

.rc 1 on/off

! before that line rather than bracketing the line with “.xc 1 on” and “.rc 1 off”.

Chapter 6. Composing Lines 95

You may also flag a single line by specifying
.xc * §

without changing any other revision codes.

The revision code is placed to the left of the column of text to which it applies. For the
leftmost column, the revision code is placed in the binding area provided with the BIND
option of the SCRIPT command or the .PM [Page Margins] control word. For other
columns, it is placed in the intercolumn gutter. If the space for the revision code is insuf-
ficient, the revision code is omitted.

When you do not want a revision code character to be printed, you can respecify the
character to a blank character with the .RC control word. For example,

.rc 1

Revision code 1 now prints as a blank.

Ordinarily, revision codes are placed in the gutter two spaces to the left of the column,
so that a single blank separates the revision code from the column text. You can change
this separation with the ADJUST parameter of the .RC [Revision Code] control word.
For example,

.rc adjust 1
.rc 1 on

! specifies that the revision code be placed immediately adjacent to the column text, and

.rc adjust 1i

specifies that the revision code is to be placed one inch from the edge of the column. If a
value is specified which exceeds the available gutter space,

.rc adjust 30cm

the revision code is not printed.

Revision Code Considerations

The 3800 Printing Subsystem

96

The revision code character is normally placed immediately preceding each changed line,
separated from the column by a blank. Because the RC field has a variable width based
on the width of the RC character and the RC adjust, it is necessary to measure and
format it in the same way as text data.

It is most desirable for the first character of each text line to start in the same relative
position. To ensure this, the RC character and its field must have a combined width that
does not vary from line to line. If special blanks are available in the current font, this can
be achieved by combining the RC character with a special blank that brings the total
width of RC and blank to 30 pels. The following table shows relative widths:

DCF: SCRIPT/VS Text Programmer’s Guide

RC Width Blank Width

12 18
15 15
18 12

The RC field width should be defined such that sufficient space is allocated on both
sides of the revision code character for proper inline space management. This requires
that:

¢ The width of the RC field, less the width of the RC character, should be 0, 11-19,
or more than 23 pels.

¢ The width of the intercolumn gutter, less the width of the RC field, should be 0,
11-19, or more than 23 pels.

If these restrictions are violated, inline space errors of up to 6 pels can result, as illus-
trated in Figure 8.

Requested Actual Error
1 0 -
2 0 -2
3 0 -3
4 0 -4
5 0 -5
6 0 -6
7 12 +5
8 12 +4
9 12 +3
10 12 +2
11 12 +1
12 12 0
13 12 -1
14 15 +1
15 15 0
16 15 -1
17 18 +1
18 138 0
19 18 -1
20 18 -2
21 18 -3
22 13 -4
23 26G +1
24 26 0
25 26 -1
Figure 8. Justification Alignment Error for 3800 Printing Subsystem Output: When re-
questing horizontal space values, you must remember that the values will be
rounded to be a multiple of 3 pels with the exception that 3, 6, 9, and 21 are not
obtainable. As a result, you may not get the exact space that you requested.

Chapter 6. Composing Lines 97

PN

Chapter 7. Hyphenating and Horizontally Justifying Text

This chapter describes the SCRIPT/VS control words you can use to hyphenate and
horizontally justify your text.

Hyphenation and Horizontal Justification

Hyphenation

SCRIPT/VS hyphenates words in your text based on the values you specify with the
.HY [Hyphenate] control word. You can turn hyphenation on by specifying

.hy on

or turn hyphenation off by specifying

.hy off

When .HY ON is specified, hyphenation is controlled by the values that you assign to
the MINPT, MAXPT, MINWORD and LADDER parameters of that control word.

MINPT controls the minimum hyphenation point: the smallest number of charac-
ters before the hyphenation point that is acceptable.

The initial value for MINPT is 4. However, in large column line lengths, it may be
preferable to hyphenate a word after the third character. In short column line
lengths, it may be preferable to hyphenate a word after the second character. For
example, you might want to specify

.hy minpt 2

After this control word is encountered, there must be at least two characters left on
the line before SCRIPT/VS will hyphenate the word.

MAXPT indicates the minimum number of characters that is acceptable after the
hyphenation point.

The initial value for MAXPT is 2. However, in large column measures, it may be
preferable to have at least three characters left after a word is hyphenated. In small
column measures, it may be preferable to have at least two characters left after a
word is hyphenated. For example, you might want to specify

.hy maxpt 3

After this control word is encountered, there must be at least three characters left in
the word after hyphenation has taken place.

Chapter 7. Hyphenating and Horizontally Justifying Text 99

¢ MINWORD specifies the minimum size that a word can be before it is eligible for
hyphenation.

The initial value for MINWORD is 6. However, in large column measures, it may
be preferable to hyphenate words that are at least seven characters long. In small
column measures, it may be preferable to hyphenate words that are at least five
characters long. For example, you might want to specify

.hy on minword 7

After this control word is encountered, a word must be at least seven characters
long before hyphenation will be attempted.

Note that the sum of the MINPT and MAXPT values can not exceed the
MINWORD word value.

e LADDER specifies the maximum number of lines that may be hyphenated consec-
utively.

The initial value for LADDER is 2. To change it, you could specify

.hy on ladder 3

After this control word is encountered, up to three consecutive lines are eligible for
hyphenation.

The .HY RANGE Control Word and Horizontal Justification

100

You can use the RANGE parameter of the .HY control word to specify the factors by
which word spaces may be compressed or expanded to avoid hyphenation.

Compression and expansion values are specified with the .HY RANGE control word®
as in the following example:

.hy range .75 1.2

The following three steps are performed whether hyphenation is on or off. If . FO OFF
is in effect, then .HY RANGE is ignored.

1. Given the compression and expansion values, SCRIPT/VS first attempts to keep
the last word on the line by compressing word space values in the line by up to 75
percent.

2. If compression fails, SCRIPT/VS attempts to force the word off the line by expand-
ing the wordspace values by up to 20 percent.

3. If compression and expansion with the .HY RANGE control word both fail,
SCRIPT/VS checks to see if hyphenation is on.

If hyphenation is on, SCRIPT/VS then checks to see if the value set with the LADDER
parameter of the .HY control word has been exceeded. If it has, then the word is moved
onto the next line. If the specified LADDER value has not been exceeded, then hyphen-
ation is attempted based on the MINPT, MAXPT and MINWORD values you have
specified. If hyphenation is off, the word is moved to the next line.

3 Because horizontal adjustments must be made in even multiples of the horizontal escapement
of the device, the exact amount of adjustment may be more or less than the range you speci-
fied.

DCF: SCRIPT/VS Text Programmer’s Guide

P

After the hyphenation step, if justification is on (.FO ON), SCRIPT/VS will then justify
the line by expanding the word spaces. The expansion is done proportionally according
to the wordspace sizes and the amount of space needed to achieve a fully justified line.
The expansion is done without regard to the values given on the RANGE parameter of
the .HY control word.

These steps are illustrated in the following figure which assumes these values:
.hy on

.hy range .5 2.0
.ws normal 8

Given the following overdraw condition:

45 8 27 8 36 27
SCRIPT/VS first attempts to keep the
word on the line by compressing the
wordspaces 50%.

| N 11 |
4

45 4 27 (19
If the word still overdraws, SCRIPT/VS
attempts to place the word off the line
by expanding the word spaces 100X%.

L 1

45 16 27 16 20 43
If the word still overdraws, SCRIPT/VS
looks for a hyphenation point that sat-
isfies the specified MINWORD, MINPT,
and MAXPT constraints.

At this point there are two possibil-
ities:

1) No satisfactory hyphenation point
can be found (or hyphenation is not on)
and the word is placed onto the next

line;
45 52 27
| |
63
2) A satisfactory hyphenation point can
be found.
L Il { | | |=
45 5 27 5 4G1 1
22

Figure 9. Adjusting an Overdraw Condition: This figure illustrites the steps taken to cor-
rect an overdraw condition.

Chapter 7. Hyphenating and Horizontally Justifying Text 101

More on Hyphenation

You can also instruct SCRIPT/VS to:

e Scarch a SCRIPT/VS dictionary to see if there is an entry for the word to be hy-
phenated

e Use an algorithmic hyphenator, if one is available, to hyphenate the word

Unless otherwise specified, SCRIPT/VS first searches for the word in the addenda, user
and main dictionaries in that order. If the word cannot be found there, it will use an
algorithmic hyphenator, if one is available, to perform the hyphenation.

If you do not want the addenda dictionary searched, specify

. hy noadd
If you do not want any of the dictionaries to be searched, specify
.hy nodict
If you do not want an available algorithmic hyphenator to be used, specify
.hy noalg
If you want the addenda dictionary searched, specify
.hy add
If you want any of the dictionaries to be searched, specify
.hy dict
If you want an available algorithmic hyphenator to be used, specify

.hy alg

Using an Algorithmic Hyphenator

Unless you use the NOALG parameter of the .HY [Hyphenate] control word,
SCRIPT/VS attempts to use an algorithmic hyphenation routine to hyphenate:

¢ Words that cannot be found in the supplied language dictionarics
® All words if the NODICT parameter of the .HY control word was specified.

An algorithmic hyphenation routine for American English is provided with SCRIPT/VS.
Your installation may provide other algorithmic hyphenators for English or any of the
other languages. Any installation-provided algorithmic hyphenators must be linkedited to
SCRIPT/VS before they can be used during hyphenation processing. For information on
how to linkedit such a routine, see the Document Composition Facility Program Direc-

tory.

Hyphenating Single Words

102

Regardless of whether SCRIPT/VS is using automatic hyphenation, there may be occa-
sions when you would like a specific word to be hyphenated if it occurs at the end of a
line. The .HW [Hyphenate Word] control word allows you to specify how a word should
be hyphenated if hyphenation is necessary.

DCF: SCRIPT/VS Text Programmer’s Guide

This may be convenient for long words that are normally hyphenated, or for words that
occasionally need hyphenation. For example,

.cl 22m

Guinevere's

.hw lighter--than--air

laughter was regularly heard
.hw through-out

the kingdom and caused her to be
crudely and

.hw un-cer-e-mo-ni-ous-ly
bounced into the heavens.

When this line is processed, SCRIPT/VS uses the hyphens supplied as hyphenation
points and suppresses the hyphens it does not need:

Guinevere's lighter-
than-air laughter was
regularly heard
throughout the kingdom
and caused her to be
crudely and unceremo-
niously bounced into
the heavens.

Note that since “throughout” did not require hyphenation when the line was formatted,
the hyphen was suppressed. For the hyphenated expression “lighter-than-air,” two hy-
phens are used with the .HW [Hyphenate Word] control word to indicate that
SCRIPT/VS will print the necessary hyphens. “Unceremoniously” is hyphenated at one
of the appropriate hyphenation points specified by the .HW control word. Note that the
hyphenation points supplied by a .HW word apply only in this instance and nowhere
else.

Hyphenation Points and Fallibility

The SCRIPT/VS dictionaries do not contain all possible hyphenation points for all
words. Each word placed in an addenda, user, or root word dictionary is divided into
four three-character groups starting with the first vowel in the word. Only one hyphen-
ation point is recorded for each of the four groups. See “Chapter 25. Verifying Spelling”
on page 289 for a complete description of the SCRIPT/VS dictionaries and their relation
to hyphenation.

Chapter 7. Hyphenating and Horizontally Justifying Text 103

Chapter 8. Creating Vertical Space

This chapter describes how you can create vertical space in the text.

You can insert space between lines of text and control vertical space in the text by using
a blank line, or with any of the following control words:

e _SP [Space]

e SK [Skip]

e BL [Blank Line]

e LS [Line Spacing]
e 1O [Lead-Out]

e SB [Shift Baseline]

Spaces and Skips

You can insert space between lines of text in your document by using the .SP [Space]
and .SK [Skip] control words.

For example, the input lines

The quick brown fox came over
to greet the lazy poodle.

. Sp

But the poodle was frightened
and ran away.

.sk

The poodle ran over to her
friend the Saint Bernard.

are formatted as:

The quick brown fox came over
to greet the lazy poodle.

But the poodle was frightened
and ran away.

The poodle ran over to her
friend the Saint Bernard.

If the space generated by the .SK [Skip] control word occurs at the top or bottom of a

column (or page), no blank lines are printed. However, if the space generated by the .SP
[Space] control word occurs at the top or bottom of a column (or page), the blank lines

Chapter 8. Creating Vertical Space 105

are printed. For this reason, you may prefer to use the .SK [Skip] control word instead
of the .SP [Space] control word whenever you need blank output lines.

The .SP [Space] and .SK [Skip] control words allow you to specify an amount of vertical
space 1n a qualified space unit notation. For example,

.Sp 2i

indicates that you want to create two inches of space in the output.

You can use blank space to cause a heading or a title to stand out. For example, the
lines:

A Love Story

.sk 3

The quick brown fox

was eager

to meet the pretty poodle.

results in:

A Love Story

The quick brown fox was eager
to meet the pretty poodle.

Setting Line Space

106

On page printers, each font is designed with a default linespace value appropriate to the
size of the font. For a particular line, default linespacing is determined by the size of the
largest font used on that line.

You can usc the .LS [Line Spacing] control word to change the vertical space separating
lines of text and to establish limits for increasing or decreasing line spacing in your docu-
ment for purposes of vertical justification.

You can establish fixed line spacing by entering:

. 1s normal pl5

On page printers, each line will have a depth of 15 pica points, regardless of the size of
the characters on the line. On line devices, the depth of each line will be the nearest
multiple of the vertical device unit. For example, at 6 lines per inch, each line of text
occupies 1/6 of an inch; at 8 lines per inch, each line of text occupies 1/4 of an inch.

The BY keyword of .LS can be used to decrease or increase the default linespace value
to set text more densely or sparscly. You can, for example, double-space your output by
entering:

.1s by 2.0

Each line of text (and each .SK and .SP, when given in line spaces) will be twice as deep
as normal, as shown in the following example:

DCF: SCRIPT/VS Text Programmer’s Guide

The following lines of text

including any skips or spaces

will be twice as deep as normal. As
can be readily seen in this brief

but highly entertaining example.

On line devices, SCRIPT/VS will use the nearest multiple of the fixed line space value
for that device as the depth of each hne.

Shifting the Baseline

Fonts are designed so that the characters appear to rest on the normal baseline. If your
output is for a page printer, you can use the .SB [Shift Baseline] control word to place
characters above or below the normal baseline to create, for example, subscripts or
superscripts.

Superscripts may be formatted with baseline shifts. For example, the expression 5-cubed
may be formatted as

5
.sb .15cm
.ct 3

The 3 will be placed .15 centimeters higher than the 5.
53
A macro can be defined that will create subscripts:

.dm subs on
.se heightl
.bf small
.se height2 = &dv'1l

.se diff = &heightl - &height2
.sb +&diff.dv

&dv'1l

&*1

.sb -&diff.dv
.pf

.dm off

In this example, we first set a symbol (height1) to one vertical device unit in the current
font, then begin a new font, small (assuming it is a valid, defined font and that it is in a
smaller point size than the current font), and set a symbol to one vertical device unit in
this new font. Next we set a symbol (diff) to the difference between &heightl and
&height?2, shift the baseline by that value, and enter the superscript number (&*1). When
we are done, we enter .SB - &diff.dv to return the baseline to its previous position and
.PF to return to the previous font.

Chapter 8. Creating Vertical Space 107

Subscripts may also be formatted with baseline shifts. For example, the expression x-
sub-i can be formatted as

X
.sb -p2
.ct i

The i will be placed two pica points lower than the x.
xj
You can enter

.sb

to restore the normal baseline for subsequent text.

| Formatting Fractions on Page Printers

| Since a limited number of fractions exists in most of the fonts for page printers, you may
have to construct fractions. One method of doing this is illustrated in the following steps:

1. Define an appropriate font for the fraction pieces and start the macro definition.

.df fraction type(6)
.ms on
.dm fraction on

2. Make sure that the parameters passed to the macro are valid. There must be exactly
three parameters. The first and third parameters must be numeric and the second
one must be a slash (/). We've chosen here to issue error messages if the parameters
are invalid.

.if &*%0 ne 3

.th .mg |E|FRACTION: Missing parameters: "&*%. "
.th .me

.if &T'&*1 ne N

.or &2 ne /

.or &T'&*3 ne N

.th .mg |E|FRACTION: Invalid parameters: "&*. "
.th .me

3. Calculate the amount of

e Bascline shift needed to position the left hand side of the fraction. This amount
is the difference between the normal font em-height and the fraction font em-
height.

e Insert the negative inline space necessary to kern (shift) the pieces properly with
respect to the slash: (we've chosen one third of the width of a zero (the figure
space) in the fraction font.)

108 DCF: SCRIPT/VS Text Programmer’s Guide

.se *sb = &DH' Imv

.bf fraction

.se *sb = &*sb - &DV'lmv
.se *is = &DH'&W'0 / 3

.pf

.if &*sb le O
.th &*1, /&*3
.th .me

4. Format the left hand side in the appropriate font and baseline shift. Then restore the
original font and baseline.

.bf fraction
.sb +&¥%sb.dv
&*1
.pf
.sb -&%sb.dv

5. Kern the amount calculated above, put out the slash and then kern again so that
the right hand piece of the fraction is under the slash.

.1s =&%Fis.dv
.ct /
.is -&Fis.dv

6. Format the right hand side in the appropriate font and then restore the original font.

.bf fraction
&*3
.pf

7. End the macro definition.
.dm off
The method described above consists of using a baseline shift, inserting space, and defin-

ing and using fonts in order to format fractions for page printers. Figure 10 on page 110
shows how such a fraction is constructed.

Chapter 8. Creating Vertical Space 109

P ——

Figure 10. Example of Fractions Formatted on Page Devices.

110 DCF: SCRIPT/VS Text Programmer’s Guide

PN

Chapter 9. Vertically Justifying Text

Vertical Distribution, Formatting and Justification

Distribution

Use the .BC [Balance Columns] control word to distribute text across columns in order
to achieve a balanced set of columns (the amount of text in each column is as close to
equal as possible). If column balancing is OFF, no columns are balanced. If column bal-
ancing is ON, each set of columns is balanced whenever a section break occurs. Text
lines in a block will not be split across columns.

In order to get the proper distribution of text, you must consider:

*

Top and bottom floats. If your floats are very large and your columns are small,
proper distribution may not be possible.

Keeps. There is no breaking of keeps. If your keeps are very large and your columns
are small, proper distribution may not be possible.

Widows. Remember that there should be no one-line widows.

Skips and Spaces. Skips at the top or bottom of a column are discarded and not
considered in vertical distribution. It should be noted that an apparent shortness in
columns and/or insufficient space in the text may be due to such skips in your text.
Spaces, however, are considered and, therefore, an apparent erroneous extra space at
the top or bottom of columns may be due to spaces in your text.

Multicolumn sections. In a multicolumn section, a .CC or .CB control word ends
one set of balanceable columns and the new column becomes the first column in a
new set of balanceable columns. Of course, if there is only one column in the set,
no text is distributed.

In SCRIPT/VS, distribution is not guaranteed to result in columns that are exactly equal
in depth. Short columns (more than one text line difference) can result from:

User-entered unconditional column begins (.CB)

Floats, skips, spaces, and so on (especially if they are comparatively large in size)
Very short section depths

Widow zones and keeps because they are not split across columns

Variations in line spacing and font sizes.

Chapter 9. Vertically Justifying Text 111

Vertical Formatting

You can use the .FV [Format Vertically] control word to indicate how formatted lines of
text should be placed within the columns of a section.

For example, if you specify
. fv top
text will be placed at the top of the columns in the section. This is the default value.
If you specify
. fv bottom
the text will be moved to the bottom of the columns.
If you specify
. fv center

the text will be centered in the columns.

Vertical Justification

112

If you want to vertically justify your text, that is, specify that the text in all columns of a
section should extend to the same depth, if possible, then specify

.fv justify

The purpose of vertical justification is to adjust the vertical spacing in each column so
that:

¢ In an unconditionally ended section, the depths of the columns within the section
are as equal as possible

¢ In conditionally ended scctions, the columns end at the bottom of the page.

Vertical formatting is applied separately to each section on the page. For example, be-
cause section breaks are performed before and after a level 1 (.HH1) heading, the heading
is vertically formatted within its own section. Since there is no additional space to be
distributed within the scction, the actual results for the section are the same regardless of
the vertical formatting option.

For the last section on the page, however, there may be some additional space to be
distributed within the section. If the page was ended unconditionally (as described below
in “Section and Page Ending Considerations” on page 113), no distribution of white
space occurs and so the vertical formatting does not change the appearance of text on
the page. If the page is ended conditionally, extra white space is distributed in the last
section according to values you may have specified with the .FV [Format Vertically] con-
trol word.

DCF: SCRIPT/VS Text Programmer’s Guide

Section and Page Ending Considerations

Sections can be ended unconditionally by the ending of the primary input file, specifying
a head level that causes a page or section break, and by any of the following control
words:

¢ PA [Page Eject]

® . CP [Conditional Page Eject] without a conditional value
¢ .CD [Column Definition]

¢ SC [Single Column Mode]

e _MC [Multicolumn Mode]

e SK [Skip] with the P parameter

e SP [Space] with the P paramcter.

Unconditional sections occur in multi-section pages or at the end of a chapter or other
major division of a document. They will be justified to the depth of the deepest column
or some intermediate point between the shortest, non-empty column and the deepest
column in the section. If there is only one non-empty column in the section, no vertical
justification will be done.

Sections can be ended conditionally by normal text overflow, and by specifying any of
the following control words:

¢ .CB [Column Begin]
¢ _CC [Conditional Column Begin]
¢ _CP [Conditional Page Eject] with a vertical parameter.

Conditionally ended sections always end a page and the column(s) in them are always
adjusted towards the bottom of the page. The object is to have the columns of the page
(such as those in a chapter) end at the bottom of the page. The last page of a chapter is
normally unconditionally ended and the column(s) in 1t will be set “short” as previously
described.

If you want the columns to be justified towards the bottom of the page, then you must
conditionally end the page. For example, if your page is 26cm deep, you could specify

.cp 26cm

to end the page conditionally instead of entering

. cp

which would cause the page to be unconditionally ended.

Chapter 9. Vertically Justifying Text 113

Other Considerations

Vertical justification is achieved, if possible, by making incremental and proportional ad-
justments to the sizes of of the following in the order given:

e [ecadout points (set with the .LO [Lead-Out] control word)

e Skips (set with the .SK [Skip] control word)

e Spaces (set with the .SP [Space] control word)

e Text lines.

The exact value of the adjustments depends on:

e The number and sizes of any leadout points

¢ The number and sizes of any skips, spaces, and text lines

¢ The increment values specified by .LS INCREMENT at any given point

e The ranges specified by the SKIP, SPACE, and TEXT parameters of the .LS con-
trol word at any given point

e The size of the vertical escapement of the device for which the document is format-
ted.

SCRIPT/VS performs rounding so that the vertical spacing adjustments are made in
whole increments of the values specified by the INCREMENT parameter of the .LS
[Line Spacing] control word. The increment values may also be rounded so that they are
an even multiple of the vertical escapement® of the device. Thus the values you specify
for increments, ranges, and leadout size may be exceeded.

The use of leadout points before headings can be very effective since they already have
spacing and some extra space will usuallv - t be objectionable. For example,

.lo .51
.h2 Heading Text

allows SCRIPT/VS to add up to an extra half inch of vertical space in front of the head-
ing, if vertical justification has been requested with the JUSTIFY parameter of the .FV
[Format Vertically] control word.

You could also consider allowing the sizes of skips to be varied. For example,
.1s skip .8 2.0
will allow SCRIPT/VS to compress skips by 80% or expand them by up to 200% of

their original size®™. If you have also used leadout points, they will be adjusted before the
sizes of the skips.

3 Escapement is the minimum amount by which a particular device can move in the vertical
direction. For example, on a six lines-per-inch device it is 1/6 of an inch. This term is also
referred to in this book as a vertical device unit.

32 Because of rounding, the actual values used may be less than or more than the factors you
specify.

114 DCF: SCRIPT/VS Text Programmer’s Guide

£

If you do not want a specific skip to be adjusted, then you can use the A (absolute)
parameter of the .SK [Skip] control word. In the following example, even though a skip
adjustment range has been specified, the skip will never be adjusted because it has been
specified as being “absolute”:

.1s skip 1.5

The absolute parameter

.sk .51 a

means a skip (or space) is not eligible
for vertical adjustment.

After leadouts and skips, you may want to allow SCRIPT/VS to adjust the sizes of
spaces. You could, for example, use

. 1s space 1.2

which indicates that the size of spaces can be expanded as much as 120%, if necessary,
in order to achieve vertical justification. Again, the A (ABSOLUTE) parameter of the
.SP [Space] control word disallows a particular space from being expanded or com-
pressed for vertical justification.

As a last resort, you may consider the TEXT parameter of the .LS [Line Spacing] con-
trol word. This is most appropriate for single column documents where variations in text
linespacing are usually less noticeable (and therefore less objectionable) than for multi-
column documents.

It is possible that SCRIPT/VS will be unable to achieve full vertical justification, if so
you may need to consider the following potential problem situations:

¢ Extremely short columns in the section or page. About the only reasonable thing
that you can do is to add more text or, perhaps, cause the previous page to end
sooner so that more text is formatted on the short page.

¢ Insufficient number of objects to justify. You need to insert more leadout points or,
perhaps, allow SCRIPT/VS to adjust skips (if you have not already done so).

e Insufficient size variations. Perhaps you should increase the size of the leadout
points that you are using or you could increase the appropriate range factors.

e Extremely short or long columns. This may be due to large keeps and floats. You
should reduce the text in the keep or float or split it into two or more smaller ones.

An apparently unjustified column may actually be the result of a space (.SP) at the
top or bottom of a column. If the results are not what you desire, rearrange the text
and/or spaces in order to obtain more desirable results.

Chapter 9. Vertically Justifying Text 118

=¥

Chapter 10. Establishing Page Layout

This chapter describes the SCRIPT/VS control words you can use to establish the page
layout within which the text resides. It covers:

e Page Dimensions: The length and width, and the amount of space reserved for top
and bottom margns.

¢ Running Headings: Descriptive information that precedes the body of text on each
page.

o Running Footings: Descriptive information that follows the body of text on each
page, printed after footnotes, if any.

e Page numbering: SCRIPT/VS can automatically insert the current page number and
its prefix, if any, on each page as it is formatted for printing.

See Figure 11 on page 118 for an illustration of the layout of a SCRIPT/VS output
page. Control words used to specify the size or contents of each area are shown in pa-
rentheses.

Chapter 10. Establishing Page Layout 117

THQ IO 0QY T

(.PL)

Figure 11.

< Page Hidth (.PK) >
{~————————— Line Length (.LL) >
I Top Margin
. TM
o m = e e e e e e e e e — - - —]
| Running Heading
RH)
|
| Top Page Float (.FL)
Lo e e it i et e e
J<—Indent—>. ittt ittt
CIND i i i et e
| e i e, <—Indent
................................... Right—>
Lo e e (.IR)
Pageo, R E R I R AU
Margin |< Column Line Length (.CL) >
O 1
<
3 Ve 1 T
CBIND) ottt iities ieeeeanneenonnnnnasan
...................... C
...................... I
< Column Line Length > t et
...................... t
...................... B ittt et
I P i i ittt
Bottom Column Float
| C.FL)
| Footnotes (.FN)
! : :
Running Footing
] C.RF)
e m e e e e e e e —

Bottom Margin
(.BM)

SCRIPT/VS Terms for Parts of the Page.

118 DCF: SCRIPT/VS Text Programmer’s Guide

Default Page Dimensions

The output pages that SCRIPT/VS formats are designed to fit the form size of the log-
ical output device (for details, refer to the discussion of the DEVICE option of the
SCRIPT command in the Document Composition Facility: SCRIPT|VS Language Refer-
ence).

When SCRIPT/VS formats output for logical line devices, each SCRIPT/VS page has
default dimensions. For example, the page dimensions for a 1403N6 logical device are:

® 11 inches long (66 lines at 6 lines-per-inch, 88 lines at 8 lines-per-inch, or 132 lines
at 12 lines-per-inch). For 3800-type logical line devices, the values are 60, 80, and
120 respectively, because one inch of the form is reserved by the 3800 Printing Sub-
system. One inch of the page length is reserved for top and bottom margins.

® 6 inches wide (60 characters at 10 pitch, 72 characters at 12 pitch, and 90 characters
at 15 pitch).

See Figure 12 on page 120 for page printer default page dimensions.

Although the initial page length, page width, and line length values arc based on the log-
ical output device, you can change these values within your document by using the .PL
[Page Length], .PW [Page Width], and .LL [Line Length] control words. Some things
which you need to take into consideration are:

e The physical size of the paper on which you are printing SCRIPT/VS output.
e The number of lines printed per page depends on the linespacing of the fonts used.
e The number of characters per line depends on the fonts used in the line.

e The fact that the 3800 Printing Subsystem line device reserves one-half inch at the
top and bottom of the page that is not counted in the page length.

e For page printers, you must reserve some white space at the bottom of the page to
allow for descenders.

Page length includes all of the page that is accessible to SCRIPT/VS. For non-3800 line
devices, this is the entire form (the vertical distance between perforations for continuous
forms). The 3800 Printing Subsystem reserves 1/2 inch (12.7 mm) above and below the
perforation, and makes it inaccessible for printing. Consequently, for 3800 logical de-
vices, page length does not include 1/2 inch (12.7mm) at the top and bottom of the

page.

Changing Page Dimensions

There are a number of control words that allow you to override default page dimensions.
Among these are:

e . PM [Page Margins]

e _PL [Page Length]

e PW [Page Width]

e TM [Top Margin]

e LL [Line Length]

¢ .BM [Bottom Margin]

Chapter 10. Establishing Page Layout 119

Logical Real Lines Page Size Margins Line Class

Device Device per of

Type Type Inch Width Length Bind Top Bottom Length Device

TERM Q)

2741 2741 6 8.5i 11 2 5i .51 6i

3270 3270

1403N6 6 8.5i i

1403N8 8 8.51 11 i

1403W6 6 13.51 11 i

1403W8 1403 8 13.51 11 i 1i 5i .5i 61

1403W6S 6 13.51 8.5i

1403 W8S 8 13.51 8.51

14038W (2) 6 8.51 11 i

STAIRS 6 13.51 11 i

3800N6 6 8.5i 10 i line

3800N8 8 8.51 10 i devices

3800N12 12 8.5i 10 i

3800W6 6 13.51 10 i

3800W8 8 13.51 10 i

3800W12 3800 12 13.5i 10 i 1 0 0 6i

3800N6S 6 11 i 7.51

3800N8S 8 11 i 7.51

3800N12S 12 11 i 7.51

3800W6S 6 13.51 7.51

3800W8S 8 13.51 7.51

3800W12S 12 13.5i 7.51

38PPN 8.5i 10 i

38PPW 13.51 10 i 1i 0 .125i 61

38PPNS 11 i 7.51

38PPWS 3800-3 (3 13.51 7.51

38PPW90 10 i 13.51 51 .51 .Si 6i

38PPNS90 7.51 11 i

38PPW270 10 i 13.5i

3820A 8.51 11 i

3820A90 8.51 11 i page

3820A180 8.5i 11 i devices

3820A270 3820 [©) 8.51 11 i 1i 5i .51 6i

3820L 8.51 14 i

3820A4 210mm 297mm

3820B4 257mm 364mm

3820B5 182mm 257mm

4250A 8.5i 1

4250B 4250 ©) 11 i 17

4250L 8.51 14i 1i Si .Si 61

4250A3 297mm 420mm

4250A4 210mm 297mm

' The physical device type corresponding to the TERM logical device can be either 2741 or 3270, depending upon the
actual terminal type.

2 This is a 12-pitch device; all other 1403 devices are 10-pitch.

3 The linespacing for page devices is determined by the .LS [Line Spacing] control word and the fonts used in the
document.

Figure 12. SCRIPT/VS Logical Devices: This table lists the logical devices that can be specified with the DE-
VICE option of the SCRIPT command, and the default page dimensions for each. The page size can
be changed with the .PW [Page Width] and .PL [Page Length] control words. The page margins can
be changed with the .PM [Page Margins], .TM [Top Margin], and .BM [Bottom Margin] control
words.

120 DCF: SCRIPT/VS Text Programmer’s Guide

All of these control words take effect on the next page.

You can put page layout control words into the profile. Whenever you format the docu-
ment using that profile, the page layout appropriate for that document is used.

Changing the Page Margin

The .PM [Page Margins] control word causes SCRIPT/VS to shift the formatted output
of each page to the right. You can use this control word to change margins if they were
established using the BIND option of the SCRIPT command. For example,

.pm 6
sets the page margin to six character spaces, whereas

.pm .51

sets the page margin to one-half inch.

The current page margin can be increased or decreased by preceding the amount with a
plus or a minus sign. For example,

.pm +9mm

increases the page margin by nine millimeters.

If only one value is specified with the .PM [Page Margins] control word, it will be used
for both odd- and even-numbered pages. You can set different margins for odd- and
even-numbered pages by specifying two values; the first value will be used for odd-
numbered pages and the second one will be used for even-numbered pages. For example,

.pm 9p 6p

causes the formatted output to be shifted nine picas to the right for odd-numbered pages
and six picas to the right for even-numbered pages.

If you specify the .PM [Page Margins] control word with no parameters, the value that
was specified in the BIND option on the SCRIPT command will be used. If the BIND
option was not specified, then the default bind is restored.

If the BIND option is not specified, the initial setting for the page margins is established
by the logical device. In this case, this initial setting can be changed by specifying new
values with the .PM control word. For example, if you specify,

.pm nobind 9p 6p

the initial settings for the page margins are changed to nine picas for odd-numbered
pages and six picas for even-numbered pages. NOBIND indicates the .PM control word
should be processed only if the BIND option of the SCRIPT command was not speci-
fied. If the NOBIND parameter is not specified, the .PM control word unconditionally
overrides the initial setting.

Chapter 10. Establishing Page Layout 121

Changing the Page Length

Page length can be changed using the .PL [Page Length] control word. For example, you
might specify

.pl 68

which will set the page length to 68 lines.

You may need to adjust a page dimension to handle a special situation in your docu-
ment. Instead of changing the page length, you may be able to increase or decrease the
amount of space reserved for margins. For example, if you want to reduce the number of
text lines per page from 68 to 65, you can increase the amount of space for the top mar-

gin by specifying
.tm +3

To restore the original top margin, use the control word
.tm -3

If you specify the .TM [Top Margin] control word with no parameter, the top margin is
set to the default established for the logical output device.

Changing the Page Width

You can specify the width of the output page by using the .PW [Page Width] control
word.

The page width includes both the page margins, as determined by the .PM [Page
Margins] control word (or binding, as established with the BIND option of the SCRIPT
command), and the line length, as determined by the .LL [Line Length] control word.
These relationships are illustrated in Figure 11 on page 118. The unbound margin of a
page equals the page width minus the size of the binding and the line length. All text
must be placed within the page, as defined with .PW.

Changing the Line Length

122

When you are changing the default dimensions of the page, you should consider the
length of lines as well as the width of pages. The SCRIPT/VS line length default is based
on the logical output device, and can be changed by using the .LL [Line Length] control
word. For example, if you want a line length of eight inches, specify

.11 81

The .LL [Line Length] control word controls the width of the running headings and
footings, and footnotes. Column line length, specified with the .CL [Column Line
Length] control word, defaults to the .LL value, and controls the line length of each out-
put text column. The starting position of the rightmost column plus the column line
length 1s the effective width of the body. This can exceed the .LL value.

DCF: SCRIPT/VS Text Programmet’s Guide

Establishing Top

You can increase and decrease the value of the line length. For example,
.11 -21

decreases the line length by 2 inches.

If you specify the .LL [Line Length] control word with no parameter, the line length is
set to the default established for the logical output device.

When SCRIPT/VS is concatenating text, the column line length (not the line length)
limits the number of characters that can fit on an output line in that column.

and Bottom Margins

For most logical devices, SCRIPT/VS includes space for top and bottom margins in the
page length. The amount of space is based on the logical output device type. The maxi-
mum number of text lines on a page is the number of lines per page less the number of
lines for top and bottom margins. The .TM [Top Margin] and .BM [Bottom Margin]
control words are used to respecify the top and bottom margin size.

The .TM [Top Margin] control word specifies the amount of vertical space to be left at
the top of output pages. The .BM [Bottom Margin] control word specifies the amount
of vertical space to be left at the bottom of output pages.

The value given with the .BM control word and with the .TM control word should not
be so large that the top margin and bottom margin together fill the entire page. The size
of the top and bottom margins is not affected by line spacing.

Starting a New Page

As SCRIPT/VS formats text, it keeps track of how many lines it has put on a page.
When it reaches the bottom of the output page, SCRIPT/VS performs a page eject and
continues on a new output page. SCRIPT/VS keeps track of the current page number as
it is processing.

You can force SCRIPT/VS to begin a new output page by using the .PA [Page Eject] or
the .CP [Conditional Page Eject] control word:

.pa
or

.Ccp

The .PA [Page Eject] control word also allows you to specify a numeric parameter, to
assign a page number to the new page. When you specify a page number with the .PA
[Page Eject] control word, the page number counter is reset to the new number and con-
tinues sequentially from that number.

For example, if you are creating a SCRIPT/VS file with a title page and you want the
second output page to be numbered 1. you can enter:

Title page ...
.pal
This is page one .

to cause a page eject after the title page and number the following pages, beginning with
1. later in this section.

Chapter 10. Establishing Page Layout 123

Starting an Odd or Even Page

You can force a new odd-numbered or even-numbered page when you specify the ODD
or EVEN parameter of the .PA [Page Eject] control word. For example, if SCRIPT/VS
is currently processing output page 3 and the next control word it encounters is

.pa odd

it ejects the current page, prints any running heading and running footing that might be
in effect on the next page (page 4), ejects, and prints the next output text on page 5.

This 1s convenient when some of the pages in a document must begin on even- or odd-
numbered pages, such as the first page of a chapter, or the text that describes a figure on
the facing page.

Specifying Page Eject Mode

When you want your document to be printed only on even-numbered pages (leaving the
intervening odd-numbered pages blank) you can specify

.pa even on
This process is called even page eject mode. To specify even or odd page eject mode,

you use the ON and OFF parameters of the .PA [Page Eject] control word, along with
its EVEN or ODD parameters. You can similarly specify odd page eject mode with

.pa odd on

You can end page eject mode by issuing:

e Another page eject mode control word. For example, if the odd-page eject mode is
in effect, you can change to even-page eject mode with

.pa even on

e The OFF parameter. To turn off the odd-page eject mode, issue

.pa odd off

e Page renumbering. You can also cancel page eject mode by specifying a page eject
that resets the page number:

.pa 12

Conditional Column and Page Ejects

124

The .CP [Conditional Page Eject] and the .CC [Conditional Column Begin] control
words allow you to specify how much space must remain in the column for
SCRIPT/VS to continue formatting lines in that column. If there is not enough space
remaining, SCRIPT/VS performs the page (or column) eject. For example:

DCF: SCRIPT/VS Text Programmer’s Guide

This list includes
. fo off

.sk

.cp 3

GML Tags

Symbols

Macros

When the .CP [Conditional Page Eject] control word is encountered, SCRIPT/VS deter-
mines the number of lines left in the column. If there are at least three lines, as in the
example above, processing continues and the lines are printed on the current page. If
there are fewer than three lines, however, SCRIPT/VS performs a page eject; the lines
following the .CP control word are printed on the next page.

When you use the .CP [Conditional Page Eject] control word by itself, SCRIPT/VS
ejects to the next page unless there is no data on the current page.

The .CC [Conditional Column Begin] control word works in an analogous manner. A
column eject (which might result in a page eject if it occurs in the last column) is per-
formed when there are fewer than the required number of lines left in the column.

Page Numbers

The page number symbol is, by default, the ampersand (&), but it can be changed using
the PS parameter of the .DC [Define Character] control word. The page number symbol
is replaced, wherever it appears in the running heading and footing, with the current page
number of the document being processed. SCRIPT/VS uses an internal page counter to
keep track of what the current page number 1s. You can use the .PA [Page Eject] control
word to reset this counter if you need to. For example,

.pa 17

sets the internal page counter to 17 regardless of how many pages have been formatted.
Subsequent pages will be incremented by one.

If you do not want page number substitution to occur, but you want SCRIPT/VS to
continue counting the pages internally, you can specify

.pn off

If you do not want page number substitution or internal page counting to occur, you
can specify

.pn offno

The OFF and OFFNO parameters of the .PN [Page Numbering Mode] control word
can then be reset with

.pn on

The .PN control word further allows you to specify the form that the current page num-
ber takes when it appears in a table of contents, index, or running heading, or footing.
The numbers can be arabic (which is the default), roman numerals, decimals, or alpha-
betics.

Chapter 10. Establishing Page Layout 125

Roman Numeral Page Numbers

When you want page numbers to be printed in lowercase roman numerals, you can
specify

.pn roman

The ROMAN parameter is useful for printing prefaces, forewords, and front matter. To
restore arabic numbering, you can specify

.pn arabic

Decimal Page Numbers

Alphabetic Page

You can specify that you want decimal-point page numbering to begin after the next
even-numbered page:

.pn frac

If this control word is encountered while SCRIPT/VS is processing page 46, then subse-
quent pages are numbered 46.1, 46.2, 46.3, and so on.

You can end decimal-point page numbering and resume normal page numbering when
you specify

. pn norm

SCRIPT/VS ends decimal page numbering and ejects the page; the next page will be
number 47.

Numbers

When you want page numbers to be printed as lowercase alphabetic characters, such as
page a, page b, page c, and so on, you can specify

.pn alpha
To restore arabic page numbering, you specify

.pn arabic

126 DCF: SCRIPT/VS Text Programmer’s Guide

Prefixes for Page Numbers

Large documents often use a compound page numbering scheme to facilitate the fre-
quent replacement or addition of chapters or sections. You can use the PREF parameter
of the .PN [Page Numbering Mode] control word to obtain this effect. For example, if

you specify

.pn 1l
.pn pref 1-

for the first chapter of a document, then its pages will be numbered 1-1, 1-2, 1-3, and so
on. If you then specify

.pn 1
.pn pref 2-

for the second chapter, its pages will be numbered 2-1, 2-2, 2-3, and so on.

Running Headings and Footings

The .RH [Running Heading] and .RF [Running Footing] control words provide a flexi-
ble mechanism for placing information at the top and bottom of each page. Running
headings and footings appear inside of, and flush with, the body of the page. Running
headings and footings can contain text, symbols, macros, logical functions, iterative proc-
essing, GML tags, and control words, enabling you to format the information to fit your
needs.

Running headings and footings are processed in two phases:

e Definition phase: The entire heading or footing, including all text, symbols, macros,
and GML tags, is saved for later processing. No control words are processed during
definition phase. Symbol substitution and GML processing are not performed dur-
ing definition phase.

e Processing phase: The saved definition is a macro and is processed as such. Only
control words that cause a page eject are disallowed during the processing phase.

For example, if your document contains the running footing definition:

.rf on

.sp 2

.sx f /&title.//&/
.rf off

then the running footing for each page will contain the value of the symbol &title at the
time the page is started.

A simple running heading which places text in the upper left hand corner of both odd
and even pages can be specified as:

.rh on

The Text of the Heading
.rh off

Chapter 10. Establishing Page Layout 127

128

I you wanted to center text at the top of each page for your running heading, you could

specify:

.rh on

.ce Internal Use Only
.sp 2

.rh off

You can also emphasize the security classification of your document by specifying:*

.rh on

.bf

.ce Confidential
.sp 2

.th off

which places the running heading in a bold font.

A simple running footing which places text in the lower left hand corner of both odd
and even pages can be specified as:

.rf on
The Text of the Footing
.rf off

A running footing which places the current page number in the right-hand corner of
each page can be entered as:

.rf on

.sp 2

.ri Page &
.rf off

The page number symbol (&) will be replaced with the current page number on each
page.

Separate running headings and footings can be defined for odd- and even-numbered
pages. For example,

.rf even

.sp 2

.sx ¢ [/Page &/Introduction//
.rf off

.rf odd

.sp 2

.sx ¢ //Introduction/Page &/
.rf off

33 It is not necessary to restore the previous font after the .RH [Running Heading] definition
because the active formatting environment is automatically saved when a running heading or
footing definition is formatted and restored afterward. See “Chapter 20. Defining the Format-
ting Environment” on page 219 for details.

DCF: SCRIPT/VS Text Programmer’s Guide

centers the title “Introduction” at the bottom of each page and places the page number
in the lower left corner on even-numbered pages and in the lower right corner on odd-
numbered pages. The page number symbol, by default the ampersand (&), is replaced by
the current page number whenever it appears in a running heading or footing definition.

Because running heading and footing definitions can contain text, macros and control
words, sophisticated headings and footings can be created to fill special requirements.
For example,™

.rh on

.bx 1 &$LL

. fo center

.bf

Expiration Date:

.pf

.us January 22nd, 1985
.bx off

.sp 2

.rh off

results in the following running heading being placed at the top of each page:

Expiration Date: January 22nd, 1985

Running headings and footings appear in the body of a page flush with the text. Ordi-
narily, some space should be included at the end of a running heading and at the begin-
ning of a running footing to separate the heading or footing from the body text.

There may be times, however, when you want to merge a running heading or footing
with the body text. For example, the heading of a multipage table might be defined as

.rh on

.bx 1m &$LL

.ce Parts List

.tp 3m 24m 49m

.bx 1m 1l4m 47m &SLL

&S$TAB. Part No. &S$TAB.Description &S$TAB. Quantity
. bx

. Sp

.bx can

.rh off

which would produce this heading:

Parts List

Part No. Description Quantity

3 The .BX [Box] control word is described in detail under “Chapter 14. Creating Rules and
Boxes” on page 157.

Chapter 10. Establishing Page Layout 129

The vertical rules of this heading can be made to line up and merge with the vertical
rules in the body text on each page.

Running heading and footing definitions must be redefined in their entirety when
changed. If a running heading or running footing is no longer needed, it can be com-
pletely removed by specifying

.rh cancel - or - .rf cancel
If you do not want to remove a running heading or footing, but you do not want it to
be placed on a particular page or series of pages, you can temporarily suppress it by
specifying:

.rh sup - or - .rf sup

Then, when you are ready to restore it, all you have to specify is

.rh res - or - .rf res

This automatically restores the running heading without having to redefine it.

Wheve to Define Headings and Footings

130

SCRIPT/VS formats running headings and running footings for each page before proc-
essing the body text for that page. Therefore, when you redefine a running heading or
footing, you should make surc that it is redefined before a control word that causes a
new page is encountered, because ordinarily it will not take effect until the next output
page is processed.

If you want to alter a running heading or footing after the page has started, however,
you can do so as follows:

1. Redefine the current running heading or footing to whatever new values you want it
to have

2. And then specify

. rh execute - or - . rf execute

The new running heading or running footing for this page is processed immediately; that
is, it takes effect on the current page. If the heading or footing contains any variable
information, the latest values for those variables is used. Your new running heading or
footing definition remains in effect until you redefine it again.

If the new running heading or running footing specified with the EXECUTE parameter
is larger than the original running heading or running footing definition, then the follow-
ing rules apply:

e If the new definition can fit on the page, it takes effect on the current page

e If the new definition does not fit, it takes effect on the next page.

DCF: SCRIPT/VS Text Programmer’s Guide

If it is necessary for SCRIPT/VS to finish processing the current page before a running
heading or footing is redefined, you can specify

. pa nostart

which ends the current page but does not start the next page. You can then redefine the
running heading or footing for the next page. The next page will automatically be
started when text for the body of that page is formatted.

Ordinarily, running headings and footings do not appear on the first page of a document.
If you want them to, you must issue their definitions before any text for the body of the
first page is formatted.

Chapter 10. Establishing Page Layout 131

Chapter 11. Placing Text in Named Areas

Page Avreas

Body Areas

The .DA [Define Area] and .AR [Area] control words can be used to place text at prede-
fined places on the page.

The .DA [Define Area] control word is used to define named areas. With this control
word you can specify the following:

e Type of area: page, body or section

e Horizontal displacement of upper left-hand corner of the area
e Vertical displacement of upper left-hand comner of the area

e Width of the area

® Depth of the area

o Font to be used in the area.

A page area can be placed anywhere on the page, as defined by the .PL [Page Length]
and .PW [Page Width] control words.® The horizontal and vertical displacements given
for a page area are measured from the upper left-hand corner of the page. All page areas
are placed on the page when the page is ended. See Figure 13 on page 135 to see how
the horizontal and vertical displacement of a page area is measured on the page.

A body area can be placed anywhere within the body of a page. The body of the page
starts after the running heading (or after the top margin, if there is no running heading)
and extends to the footnote, running footing, or bottom margin. Horizontally, the body
of a page begins at the left margin as defined by the BIND option of the SCRIPT com-
mand and the .PM [Page Margins] control word. The horizontal and vertical displace-
ments given for a body area are measured from the upper left-hand corner of the body of
the page. All body arcas are placed on the page when the page ends. See Figure 13 on
page 135 to see how the horizontal and vertical displacement of a body area is measured
on the page.

3 On the 3800 Printing Subsystem the top and bottom half inch of the physical form is reserved
by the printer and cannot be printed on.

Chapter 11. Placing Text in Named Areas 133

Section Arveas

A section area is a bit different from page and body areas. Section areas are placed on
the page by specifying the PUT parameter of the .AR [Area] control word. When a sec-
tion area is placed, the current section is ended and a new section is begun. A section
area uses the upper left-hand corner of the new section as its origin. The vertical dis-
placement is ignored for section areas. All section arcas begin at the top of the section
created for them. The horizontal displacement is used, and is measured from the left
margin of the section as defined with the BIND option of the SCRIPT command and
the .PM [Page Margins] control word. See Figure 13 on page 135 to see how the hori-
zontal and vertical displacement of a section area is measured on the page.

Other Considerations

Specifying Width

Specifying Depth

The horizontal and vertical displacement parameters are positional, they must be the sec-
ond and third parameters on the .DA [Define Area] control word. Any valid space unit
notation can be used for these two parameters. If the vertical displacement is omitted,
zero is assumed.

If the type of area is not specified, PAGE is assumed.

The WIDTH parameter of the .DA control word allows you to give a specific column
line length for the named area. If not specified, the current column line length is used.
Use this parameter to ensure that all of the text formatted in the area fits within the
boundaries of the page. All text in the area will be formatted as if the value given on the
WIDTH parameter had been given on a .CL [Column Line Length] control word at the
beginning of the area.

SCRIPT/VS always formats all of the text in a named area. The DEPTH parameter of
the .DA control word is used to determine how much formatted text will be placed on
the current page, body, or section. If omitted, the area will be filled until there is no
more text in the area, or the end of the page, body, or section is reached. Any text not
placed is saved and may be placed on the next page, body, or section.

If the DEPTH value specified would exceed the bottom of the page, body, or section,
the area will only extend to the bottom of the page, body, or section.

Specifying a Font

134

The FONT parameter of the .DA control word allows you to specify that a named area
be formatted in a particular font. The font specified may be any fontname that can be
used with .BF [Begin Font]. This font will be the initial font for the named area. If the
FONT parameter is not specificd, the current font will be used.

DCF: SCRIPT/VS Text Programmer’s Guide

K
\
N Top MarGIN
N
\-
"-\ RunniNe Heabine
Pamn)
[«]
2]
A
<]
m
N’
=
£
g
[a B
Ruxnine Foorine
Borrom MareIN

Figure 13. Measuring the Origin of Areas on a Page.

Chapter 11. Placing Text in Named Areas 135

Putting Text in the Named Areas

Use the .AR [Area] control word to put text into a named area. The first parameter
given is the name of the area that the following text is to go into. This is the name given
with the .DA [Define Area] control word. For example,

.ar cortney on

causes all text, control words, GML tags and macros encountered until a .AR OFF con-
trol word to be put into the rnamed area CORTNEY.

Specifying:
. ar cortney top

causes all text, control words, GML tags and macros encountered until an .AR OFF
control word to be put into the area CORTNEY, ahead of anything that might already
be in that area. If the area is empty, the ON and TOP parameters give the same results.”

Specifying;
.ar eric delete

will delete all the contents of the named area ERIC that have not yet been placed on a
page. The named area is now empty.

Specifying:
.ar eric replace

will delete all the current contents of the named areca ERIC that have not yet been
placed on a page; then all text until the next . AR OFF control word is placed in the
area. This parameter is equivalent to saying:

.ar eric delete
.ar eric on

All control words that are disallowed in keeps, floats and footnotes are also disallowed in
named areas. If SCRIPT/VS encounters any of these control words while in a named
area, the area is ended and the control word is processed. See the Document Composition
Facility: SCRIPT|VS Language Reference for a list of these control words.

Placing the Named Area on the Page

136

Page and body named areas are placed on the page when the page is ended. Text can be
added to an area several times before the area is placed on the page. Any text that does
not fit on the current page, either because the DEPTH parameter was reached, or the
end of the page or body was reached, will be saved and placed on the next page.

To place section areas on the page, you must explicitly specify .AR PUT. When you
specify . AR PUT, the current section is ended and a new section is started. All section

3% Specifying TOP does not necessarily mean that the following text will end up at the top of the
area when the area is put on the page. If another .AR TOP control word is encountered for
that area, the text following that control word will be put ahead of any text entered with a
previous .AR TOP control word.

DCF: SCRIPT/VS Text Programmer’s Guide

~

areas that are not empty are placed in the new section and as many sections as needed
are created to place all the text of all the section areas. Also, as many pages as needed
are created to place all of these sections.

Note: If you never specify . AR PUT, text formatted into section areas will never be
placed on any page.

Skips that occur at the top of an area will be discarded when the area text is placed on a
page. If the depth of the area is measured by use of &AD’, the returned value will not
reflect the presence of any top skip even though it has not yet been discarded.

A skip at the bottom of a page or body area is not discarded. If the placement of the
skip (or any other object, such as a text line) would cause the depth of the area to be
exceeded, the placement will be deferred until the next page. When this occurs, the short
area is padded with vertical white space.

A skip at the bottom of a section area may or may not be discarded. If it will fit, the
skip is kept; otherwise, it is discarded. After the section is complete, all of the section
areas will be made equal in depth by padding the shorter areas with vertical white space.

Specifying Named Areas

The following .DA [Define Area] control word defines a page type area that originates at
the upper left-hand corner of the page, is 3 inches wide, and is 5 inches deep:

.da piezie 0 0 page width 3i depth 5i
Since the default area type is PAGE, and the default vertical displacement is zero, the

following .DA control word defines an area with the same specifications as the area
PIEZIE above.

.da joe 0 width 3i depth 5i
The following .DA control word defines an area that covers the entire page:

.da paul 0 0 width &$PW depth &$PL
A body area that starts 3 centimeters in from the left margin, 2 centimeters down from
the top of the body of the page, is 5 centimeters wide and extends to the end of the body
would be defined as:

.da mick 3cm 2cm body width 5cm

To define two section areas to simulate a two column format with columns 26 characters

Chapter 11. Placing Text in Named Areas 137

wide starting at the left margin and 30 characters from the left margin specify:

.da edgar 0 section width 26

.da lewis 30 section width 26
.ar edgar on

. fo left

Once upon a midnight dreary,
while I pondered, weak and weary,
Over many a quaint and curious volume of forgotten lore--
While I nodded, nearly napping,
suddenly there came a tapping,
As of some one gently rapping,
rapping at my chamber door.
"'Tis some visitor," I muttered,
"tapping at my chamber door--
Only this and nothing more."

.ar off

.ar lewis on

. fo right

The sun was shining on the sea,
Shining with all his might:

He did his very best to make
The billows smooth and bright--
And this was odd, because it was
The middle of the night.

.sk

The moon was shining sulkily,
Because she thought the sun

Had got no business to be there
After the day was done--

"It's very rude of him," she said,
"To come and spoil the fun!"

.ar off

.ar edgar top

RAVEN:

. Sp

.ar off

.ar lewis top

WALRUS:

. sp

.ar off

.ar put

138 DCF: SCRIPT/VS Text Programmer’s Guide

This will be formatted as:

RAVEN:

Once upon a midnight dreary,
while I pondered, weak and
weary, Over many a quaint
and curious volume of forgot-
ten lore-- While I nodded,
nearly napping, suddenly
there came a tapping, As of
some one gently rapping,
rapping at my chamber door.
““T1s some visitor,” I mut-
tered, “tapping at my cham-
ber door-- Only this and
nothing more.”

WALRUS:

The sun was shining on the
sea, Shining with all his
might: He did his very best to
make The billows smooth
and bright-- And this was
odd, because it was The mid-
dle of the night.

The moon was shining
sulkily, Because she thought
the sun Had got no business

to be there After the day was
done-- “It’s very rude of
him,” she said, “To come and
spoil the fun!”

To specify a page area that starts 4cm down from the top of the page and 4cm over from
the left edge of the page, uses the default column line length, and an italic font (for page

printers) specify:

.df italic type(futura 10 italic)
.da cleo 4cm 4cm page font italic

The text in the named area CLEO will use Futura 10 point italic as its initial font. Other
font changes can be made in the area with the .BF control word.

To put an area in the upper left hand corner of the page specify:

.da fred 0 0 page width .5i depth 3

.ar fred on
something else...
.ar off

Named areas can overlap other named areas, and any other text that may be placed on
the page. Choose vertical displacements, horizontal displacements, WIDTH values and
DEPTH values, to avoid any unintentional overlapping. On devices that do not over-

print, overlaying of text in this manner may produce unpredictable results.

Using the &AD’ Symbol Attribute

The &AD’ symbol attribute can be used to determine the depth of the unplaced text in a
named area. This symbol attribute can be helpful in putting headings on areas each time
they appear on a page. In the following example, the line “DIET continued:” will appear
at the beginning of the named area CECIL on each page after the first that it appears on.

Chapter 11. Placing Text in Named Areas 139

.rh on

.if &ad'cecil eq 0 .go skip

.ar cecil top

DIET continued:

.ar off

...skip

.rh off

.da cecil 0 0 body width 5i depth 3i

.ar cecil on

. fo left

.ce DIET

. sp

Some ladies smoke too much and

some ladies drink too much and some ladies pray too much,
But all ladies think that they weigh too much.

They may be as slender as a sylph or a dryad,

But just let them get on the scales

and they embark on a doleful jeremiad;

No matter how low the figure the needle happens to touch,
They always claim it is at least five pounds too much;
To the world she may appear slinky and feline,

But she inspects herself in the mirror and cries,

Oh, I look like a sea liocn.

.ar off
K

When the running heading is executed at the beginning of each page, the value of
&AD’cecil will be the number of lines in the named area CECIL that have not yet been
put on a page. If there is still text left in CECIL, the line “DIET continued:” will be
inserted at the top of the area. When all of the text of the area has been placed on pages,
the value of &AD’cecil will be zero; the condition will then be false: nothing more will
be placed into the named area CECIL.

| Using Named Areas with the 3800 Subsystem Model 1

If text or rules from the area overlay anything outside that area, misalignment of text
and/or rules may occur.

140 DCF: SCRIPT/VS Text Programmer’s Guide

Chapter 12. Composing Multiple-Column Pages

With SCRIPT/VS, you can produce single-column or multiple-column output pages or
a mixture of both.

Note: Many of the examples in this chapter are formatted to the column line length of
the page for demonstration purposes.

Defining Multicolumn Layout

You can define an output page with as many as nine columns of text. To define a multi-
column page layout, you should decide the number of columns that you want, the line
length of each column, and the desired horizontal displacement for the left margin of
each column.

The space between columns (the gutter) is determined by the relationship of the column
line length to the column positions. Usually, the column line length will be a value that
is less than the difference between the left margin positions of adjacent columns, ensur-
ing that some space will be present between columns.

Once you have decided the dimensions and positions of your columns, the column defi-
nition can be specified using the following SCRIPT/VS control words:

e .CD [Column Definition], which provides for

= Specifying the number of columns

s Specifying the left margin position for each column
e .CL [Column Line Length] which provides for

= Specifying the column line length for all columns

To define a multicolumn layout for three columns that have widths of 9P, and have left
margins at the page’s left margin, at 12P, and at 26P respectively, the following control
words would be used:

.cl 9p
.cd 3 0 12p 26p

and would produce the following effect:

Chapter 12. Composing Multiple-Column Pages 141

0

l

As you can see, the col-
umn definition has
changed and we are
now formatting with
three columns. The first
column’s left margin is
at the left margin of the
page (position 0). The
second column’s left
margin is at position
12P. Column one’s right
margin (position + col-

12p

|

umn line length) is 9P.
The space between col-
umn one and column
two is 3P (12P - 9P).
Column two’s right
margin is 21P (12P +
9P). The third column’s
left margin is at position
26P. The space between
column two and col-
umn three is SP (26P -
21P). As can be seen,

26p

the space between col-
umns two and three is
greater than that be-
tween columns one and
two. All columns have
the same width. It is not
necessarily desirable to
vary the gutter space
but this does illustrate
the flexibility of the .CD
[Column Definition]
and .CL [Column Line

Length] control words.

—=3p— |——5p—

The preceding example shows one multicolumn layout. There are many possible varn-
ations.

The .LL [Line Length] control word is used to specify the line length for single column
text layout, running headings and footings, page floats, and footnotes. Normally this
value is set equal to the right margin of the rightmost column to align all the compo-
nents of the page. In the preceding example you would specify:

.11 35p

The following control words specify text that is formatted using line length (.LL) instead
of the column line length (.CL):

¢ _RH [Running Heading]
¢ _RF [Running Footing]
e FL [Float] PAGE

¢ _FN [Footnote]

Note: The .CD [Column Definition] and .CL [Column Line Length] control words take
effect immediately on the next output line.

142 DCF: SCRIPT/VS Text Programmer’s Guide

Page Sections and Section Breaks

A page is divided into sections that can be thought of as independent components.
These sections are:

Running Heading
Top Page Float
Body Text

Bottom Page Float
Footnotes
Running Footing.

Once a page section is completely formatted and its columns balanced, it cannot be
changed. This is called a section break. When all page sections are complete, the page is
written to the output destination.

See Figure 11 on page 118 for a pictorial representation of the page and its component
parts.

The column depth for each column on the page is equal to the page length minus the
space reserved for the top and bottom margins, running headings and footings, and foot-
notes, if any. See “Chapter 10. Establishing Page Layout” on page 117 for details on
these component space values.

When a page is being formatted, completed output lines are placed in the current col-
umn until it is full. The lines formatted for the current column are saved and a new
column is begun. This is called a column eject.

If all columns on the page are full, a new page is begun. This is called a page eject.
A section break occurs when:
¢ All columns on the page are full.
® A page eject is requested by:

.PA [Page Eject]

.CP [Conditional Page Eject]

.CB [Column Begin] in the last column

.CC [Conditional Column Begin] in the last column.
e The column definition is changed by:

.CD [Column Definition]
® The column mode is changed by:

.MC [Multicolumn Mode]

.SC [Single Column Mode]

Chapter 12. Composing Multiple-Column Pages 143

e A full page skip or space is requested by:
.SK [Skip] with the “P” parameter
.SP [Space] with the “P” parameter.

When a section break occurs, the lines that have been formatted for this section are re-
distributed as equally as possible among the defined columns. This is called column bal-
ancing. This process is not performed if there is only one column, or if column balancing
has been disabled by the .BC [Balance Columns] control word. See “Chapter 9. Verti-
cally Justifying Text” on page 111 for more details on balancing columns.

If the column definition is changed in the middle of the page, all lines formatted to that
point are processed and sent to the output destination. A new output section is started
using the new column definition. The depth of the new columns is equal to the space
remaining on the page above the running footing and bottom margin.

Defining Columns

144

You can place text in a column by using a combination of the .CD [Column Definition]
and .CB [Column Begin] control words.

You can use the .CD [Column Definition] control word to define a set of columns. Or-
dinarily, text flows from one column to the next as the columns are filled.

The .CD [Column Definition] control word causes a section break when it is processed.
This means that all the text entered before the .CD [Column Definition] control word is
processed and positioned on the page using the old definition before the new definition
becomes active.

The gutter between columns is obtained by defining the column line length to a value
less than the distance between column starting positions.

If you enter

.cd 2 0 21p
.cl 19p

you get two 19 pica columns with a 2 pica gutter between them.

The positions of the columns do not control how wide the columns are to be; you must
set the column line length, using the .CL [Column Line Length] control word, to control
this. If the current column line length is greater than the distance between columns, the
text from a column can overlay the next column.

Whenever you use a .CD control word, you should specify positions for each column
available. If you specify .CD n without specifying any positions and no previous column
definition has been specified, the initial values 0, 46, 92, 0, 0, 0, 0, 0, and 0 are used.

You can also predefine columns without actually using them. For example, if you enter

.cd 2 0 10cm 20cm 30cm
.cl 8cm

four columns are defined, but text is formatted into only the first two of them. If you
later enter

.cd &

DCF: SCRIPT/VS Text Programmer’s Guide

text is formatted into all four of the columns you defined with the earlier .CD control
word. If .CD is specified with no other parameters, a section break is performed and the
column definitions are unchanged.

Columns can be defined that overlay one another in whole or in part. The results may
be undesirable on devices which do not allow overprinting.

Column positions remain in effect until explicitly changed by a .CD [Column Definition]
control word. For example, you can define a multicolumn layout and then format using

one or more columns without changing the column positions.

This first section was
produced by specifying

.cd 1 0 11p 22p
.cl 9p

to format using only the
first column.

This second section was
produced by specifying

.cd 2

to format using the first
two columns. The ori-

ginal column line length
1s used for all columns.
Notice that the format-
ted lines are distributed
between columns one
and two using column
balancing.

This third section was
produced by specifying

.cd 3

to format using all three

seen from this example,
the number of columns
can be varied without
changing the column
position values. Notice
that the formatted lines

are distributed among
all three columns. If the
lines cannot be equally
divided, some columns
may be longer than oth-
ers.

columns. As

can be

Column Line Length

Column line length remains in effect until explicitly changed by a .CL [Column Line
Length] control word.

To make best use of the space on a page, column line length and column positions are
usually changed when the number of columns changes. Usually the column line length
value would be set to line length minus all gutter space, divided by the number of col-
umns.

Chapter 12. Composing Multiple-Column Pages 145

With a line length of 34P, and a gutter of most use of the space on the page. As can
2P, two columns would be defined as: be seen, there is little wasted. This example
is meant to show typical usage. Normally
.cd 2 0 18p columns will be laid out to be as dense as
.cl 16p possible for economic page use. Readability

is also a factor in column definition.

This two-column data is formatted with a
column line length of 16P to make the

With the same line length
and gutter size, three col-
umns would be defined as:

.cd 3 0 12p 24p
.cl 10p

This three-column data is
formatted with a column
line length of 10P to make
the most use of the space
on the page. As can be
seen, there is little wasted.
This example is meant to
show typical usage. Nor-

mally columns will be laid
out to be as dense as pos-
sible for economic page
use. Readability is also a
factor in column defi-
nition. In this three-co-
lumn example the columns
are a little narrow.

Starting a New Column

The following SCRIPT/VS control words can be used to end a column before it is full.
e .CB [Column Begin] ends the column unconditionally.

¢ CC [Conditional Column Begin] ends the column based on the space remaining in
the column.

e CP [Conditional Page Eject] ends the column and causes a page eject based on the
space remaining in the column.

Use the .BC [Balance Columns] control word to enable or disable column balancing. If
column balancing is OFF, no columns arc balanced. If column balancing is ON, each
set of columns is balanced whenever a section break occurs.

Blocks of text, such as figures or tables, can be kept together and balanced as a unit.
Text lines in such a block will not be split across columns. see “Keeps” on page 191 for
details on use of the .KP [Keep] control word.

You can use the .CB control word when you want to make subsequent text appear at
the top of a new column. If the current column at the time .CB is encountered is the last
column on the page, the column eject is the same as a page eject, because the next col-
umn is the first column of the next page.

The material following the .CB control word will be placed at the top of the new col-
umn, and will remain there, even if column balancing is in effect.

146 DCF: SCRIPT/VS Text Programmer’s Guide

P N

The .CB control word ensures that the text following it will appear at the top of a col-
umn:

.cb
This text will fall
at the top of a column ...

If a floating or delayed keep is waiting for the start of a new column, then the text that
follows the .CB control word appears after the keep.

If both a top column float and a keep are waiting for the start of a new column then the
top column float precedes the keep, which in turn precedes the text.

A column eject can be performed by certain other control words if the conditions war-
rant it. If this happens, the function is the same as the unconditional column eject that is
caused by the .CB control word. The other control words that can cause a column eject
are:

.HO - .H6 [Head Level 0 - 6]
.KP [Keep]

Suspending and Resuming Multicolumn Processing

If you use several different column formats in a document you can create symbolic
names (with the .SE [Set Symbol] control word) or macros (with the .DM [Define
Macro] control word) to establish column definitions, column line lengths, and so on. If
you use a single one-column format and a single multiple-column format, you can
switch back and forth using the .SC [Single Column Mode] and .MC [Multicolumn
Mode] control words.

The .SC |Single Column Mode] control word
e Saves the current column definition
= Column line length
= Number of columns
= Column positions.
® Defines a single column with a column line length equal to line length.
The .MC [Multicolumn Mode] control word restores the last-saved column definition.

You must specify the .SC [Single Column Mode] control word before you specify the
.MC [Multicolumn Mode] control word.

Chapter 12. Composing Multiple-Column Pages 147

Chapter 13. Creating Head Levels and Table of Contents

Head Levels

SCRIPT/VS provides an automatic table of contents facility which is based on the con-
cept of head levels. When you create a SCRIPT/VS file, you can enter topic headings™
to designate changes in content, or to create titles.

The format of a topic heading indicates its relationship to the other topic headings in the
document. In SCRIPT/VS, different levels of headings can be entered with the control
words .HO, .HI1, .H2, .H3, .H4, .HS and .H6*® . When SCRIPT/VS processes a .HO -
.H6 [Head Level 0 - 6] control word:

o The text portion of the heading is formatted according to characteristics associated
with the head level. The formatting can include such things as spacing above and
below the heading, capitalization, underscoring, and font changes.

e If the heading requires a table of contents entry, the heading’s text and current page
number are saved in the DSMUTTOC file.

For example, if you enter a topic heading as

.h3 Symptoms

SCRIPT/VS uses the characteristics of a level-three heading to format the heading’s text
on the page. SCRIPT/VS also creates an entry in the table of contents file for the topic
“Symptoms” and the page number on which it appears. All the headings entercd with
the .H3 control word are formatted in the same way.

If you use SCRIPT/VS head-level control words exclusively, you need not create a table
of contents manually. When you revise or reorganize your document, the table of con-
tents is automatically updated.

Head levels are commonly associated with the following sections of a document:

.H0 Table of contents entry only
H1 Chapter

H2 Major section

H3 Minor section

.H4 Topic

H5 Inline heading

.Hé6 Inline heading

37 The word heading is used in this section to mean a topic heading that is printed as part of the
text.

3® The GML starter set provides tags with similar names and functions. This discussion is con-
cerned only with the SCRIPT/VS control words.

Chapter 13. Creating Head Levels and Table of Contents 149

The .DH [Define Head Level] control word allows you to redefine the characteristics of
any head level to suit your needs. You can determine whether:

® The heading in the text should begin on a new page or cause a break.
¢ The heading should be placed in a separate section.

¢ The heading should be numbered with a decimal number associated with the head
level.

® The heading should be eligible for hyphenation.
® The heading should never be hyphenated.

e The heading should or should not be formatted in hanging indent style if it occupies
two or more lines.

® The heading should be right-aligned, left-aligned, centered, or aligned away from the
presumed binding of the page.

® The heading should be capitalized or underscored, and which font it is to be printed
in.

e Vertical space will precede and follow the heading, and how much

e A table of contents entry is to be created. If so, other characteristics for the table of
contents entry which can be specified are the following:

» The indention of the entry in the table of contents
= The font to be used for the entry in the table of contents
= Whether the entry is to be preceded by a skip in the table of contents

= Whether to right-align the page number associated with the entry, separated
from the text by a dot-leader

= Whether only a table of contents entry should be created, placing no heading at
all in the text.

Figure 14 on page 151 lists the default characteristics of the .HO - .H6 [Head Level 0 - 6]
control words.

Spacing and Page Ejects

Headings are printed in the current column when there is enough space for the heading
and at least two lines of text that follow it in the body of the document. If there is not
enough space the heading is placed at the top of the next column. However, if the head-
ing is defined to cause a section break, then SCRIPT/VS checks to see if there is space
for the heading, plus a following line of space, plus 1/2 inch. If not, the heading is placed
at the top of the next page. In this case, you should use a .CP control word prior to
headings that cause section breaks but not page breaks.

The line spaces that follow topic headings are conditional. If the heading is followed by
more vertical space (whether caused by the .SP [Space] or .SK [Skip] control words or
another head level), only the larger of the two spaces is used, not the sum. If the heading
causes a section break, then both spaces will be used.

Defining Head Levels

The .DH [Define Head Level] control word allows you to redefine the characteristics of
any head level. The .DH control word accepts parameters that describe head level char-

150 DCF: SCRIPT/VS Text Programmer’s Guide

acteristics, such as SPAF (SPace AFter) to set the amount of vertical space to follow the
heading and TC to indicate that a table of contents entry is to be generated. For exam-
ple,

.dh 3 skbf 1 us

will redefine the .H3 head level to provide only one line of space before the heading, and
to underscore the heading.

To center all level 1 headings and set them in the second font specified with the CHARS
options of the SCRIPT command, enter

.dh 1 center font &$CHAR(2)
If only one font is specified with the CHARS option, the value of the symbol
&$CHAR(2) will be null and the FONT keyword will be ignored if it is on the end of a
line.

You might have requested a font you had previously specified with the .DF [Define
Font] control word. The example above might then look like this:

.dh 1 center font emph

See “Chapter 15. Selecting Fonts” on page 175 for more details on defining and selecting

fonts.

HO H1 H2 H3 H4 H5 HE
New page for heading yes
Section breaks around heading yes
Heading alignment out- | left | left | left

side

Space before heading 0 0 0 0 o 0 0]
Skip before heading 0 0
Space after heading 0 5 2 2 2 0 0
Heading underscored yes | yes yes | yes | yes
Heading capitalized yes | yes | yes yes
Break before heading yes | yes |yes | yes
Table of Contents entry yes | yes |yes |vyes
Table of Contents only yes
Skip before T.O.C. entry yes
T.0.C. indention 0 0 0 2 4 6 8
Automatic hyphenation 0 yes | yes |yes |yes |yes |yes
Hanging indent 0 no no no no no no

Figure 14. Summary of Initial Head Level Characteristics: This table lists the initial characteristics of the .Hn
[Head Level n] control words. The .DH [Define Head Level] control word allows you to redefine any of
these characteristics to suit your needs.

Note: By default, all headings and table of contents entries are printed in the current font and headings
are subject to hyphenation.

Chapter 13. Creating Head Levels and Table of Contents 151

152

To make level 2 headings result in exactly the same formatting as the default level 1
headings, you would enter

.dh 2 pa sect outside spaf 5 ts

your level 2 headings will then:
® Do a page eject before the head level (if not already at the top of a page).
¢ Cause a section break before and after the head level.

® Align the text of the heading against the outside margin of the column - away from
the presumed binding edge of the duplexed page. This is equivalent to .FO OUT-
SIDE.

e Put five spaces after the head level.

e Space one line before a table of contents entry.

If you want to left-align (as in .FO LEFT) the text of a heading, you can enter:
.dh 2 left

If you want to right-align (as in .FO RIGHT) the text of a heading, you can enter:

.dh 2 right
If you want to align the text of the heading against the inside margin of the column -

towards the presumed binding edge of the duplexed page (equivalent to .FO INSIDE) -
you could enter:

.dh 2 inside

If you want to center the text of the heading, you could enter

.dh 2 center

If you do not want level 5 headings to be underscored or capitalized but you do want
them to creatc table of contents entries, enter

.dh 5 nus nup tc

To restore the default characteristics at a later time, you can enter

.dh 5

You can also redefine a .HO - .H6 [IHead Level 0 - 6] control word using macros to pro-
vide an entirely different function for an existing head level. Use the .DM [Define Macro)
control word to define a macro with the name of the head level control word.

DCF: SCRIPT/VS Text Programmer’s Guide

The Table of Contents

When SCRIPT/VS processes a head-level control word that requires a table of contents
entry, it writes the entry in the DSMUTTOC file. The entry contains the following in-
formation:

e A fixed-length field containing information about the font, indention, current re-
vision code, and so on, to be used for formatting this table of contents entry

¢ The text of the heading
¢ The page number of the page on which the heading appears.

All entries in the table of contents file are inserted into DSMUTTOC by .PT [Put Table
of Contents] control words.

The automatic underscoring and capitalization provided for topic headings do not apply
to the associated table of contents entry. Therefore, enter the text of a topic heading as it
should appear in the table of contents. The specification of any hanging indent for topic
headings does not also apply to the associated table of contents entry.

Adding Lines to the Table of Contents

You can place lines directly into the table of contents with the .PT [Put Table of
Contents] control word.

The .PT [Put Table of Contents] control word causes the text line to be written into the
file DSMUTTOC along with the current page number as a .SX [Split Text] control
word. For example, the input line:

.pt Sail and Rudder

will cause the following control word to be written into DSMUTTOC:

.'"SX F /Sail and Rudder/ ./153/

When the input lines in the DSMUTTOC file are processed, the line appears in the table
of contents as:

Sail and Rudder . 153
You can insert any SCRIPT/VS control word into the table of contents with the .PT
control word. If the text line part of the .PT control word begins with a period (with
only one blank between .PT and the text line), SCRIPT/VS inserts it directly into the

DSMUTTOC as a control word, rather than as the text of a .SX [Split Text] control
word. For example,

.pt .h3 Head Three Text

inserts the .H3 control word into the table of contents.

Chapter 13. Creating Head Levels and Table of Contents 153

If the line of text you want to enter into the table of contents begins with a period, begin
the line with a leading blank so that SCRIPT/VS will not interpret the line as a control
word but will include the page number with the line in the table of contents. For exam-

ple,
.pt .h3 Head Three Text
inserts

."SX F /.h3 Head Three Text/ ./154/

into the table of contents; the leading blanks are removed.

Printing the Table of Contents

Use the .TC [Table of Contents] control word to imbed the DSMUTTOC file. When
the .TC control word is encountered, SCRIPT/VS:

¢ FEjects to a new page if it is not already at the top of a page.

e Prints the word CONTENTS as a level one heading unless otherwise specified with
the .TC control word.

If you want a different title for the table of contents page, you can specify it as

.tc Table of Contents

If you do not want a title at all, specify

.tc /

and a page eject will still be performed but no heading will be put on the page.

¢ Formats the DSMUTTOC file according to the SCRIPT/VS environment in effect
when the .TC control word is processed, as modificd by formatting controls inserted
in the DSMUTTOC file. The table of contents will contain all the entries made
prior to the .TC control word during the current or previous pass.

In the CMS environment, the DSMUTTOC file is not deleted until the next time a new
table of contents is started by another .PT control word.

In the MVS and VSE environments, unless preallocated, the DSMUTTOC file is deleted
after the DCF run.

TWOPASS Considerations

154

If you place the .TC [Table of Contents] control word at the beginning of your input
file, you must use the TWOPASS option of the SCRIPT command to produce a com-
plete table of contents. Otherwise, the DSMUTTOC file will be empty when the .TC
control word is encountered. For details, refer to the discussion of the TWOPASS
SCRIPT command option in the Document Composition Facility: SCRIPT|VS Lan-
guage Reference.

In order to have correct page numbers in the table of contents, pages must be numbered
the same way on both passes. On the first pass, the table of contents is empty. On the
second pass, it can contain several pages of information. Because SCRIPT/VS does not
know how many pages will be required for the table of contents, it numbers the pages
following the table of contents the same way on both passes.

DCF: SCRIPT/VS Text Programmer’s Guide

You can reserve a range of page numbers for the table of contents. For example, you
can reserve six pages if the table of contents is to occupy pages 3 through 8. The page
number range you reserve has nothing to do with how many actual pages the table of
contents will occupy: it only establishes the page number of the page that follows the
table of contents page.

For example, if the table of contents will require three pages, you can reserve the current
page number and the next two page numbers by specifying:

.tc 3 Table of Contents

If the document is formatted with the TWOPASS option, SCRIPT/VS will allow page
numbering to continue sequentially following the table of contents if the page number is
explicitly reset with a .PA [Page Eject] or .PN [Page Numbering Mode] control word
before any head level or .PT [Put Table of Contents] control word is encountered that
requires knowledge of the page number.

You can precede the .TC [Table of Contents] control word with other SCRIPT/VS con-
trol words:

e Use the .PN [Page Numbering Mode] control word

.pn roman

to number table of contents pages with roman numerals
e Use the .RF [Running Footing] control word
.rf even on
Contents &
.rf off
.rf odd on
.ri Contents &
.rf off
to put running footings on each table of contents page

e Use the .PA [Page Eject] control word

.pa odd
to ensure that the first page of the table of contents starts on an odd-numbered
page.

Note: Because the .T'C [Table of Contents] control word has a level one heading built
into it, you should avoid redefining a head level one until after the .TC control word is
processed.

Chapter 13. Creating Head Levels and Table of Contents 155

Chapter 14. Creating Rules and Boxes

This chapter describes how you can create rules and boxes. It contains information
about drawing:

¢ Horizontal and vertical rules

¢ Simple boxes

® Bozxes with named rules

e Several types of boxes and including text within them

* Boxes with page printers.

Drawing Horizontal and Vertical Rules

Defining Rules

You can use the .DR [Define Rule] to define rules. You can use these rules to under-
score text (.UD), to create boxes (.BX), and to draw horizontal (.HR) or vertical (.VR)
rules.

With the .DR [Define Rule] control word you can define named rules of a specified
weight for page printers or, for line devices, in a particular font previously specified with
the CHARS option of the SCRIPT command or defined with the .DF [Define Font]
control word.

For page printers, the default weight for horizontal and vertical rules, a rule called

boxrule, is .3mm. If you want to redefine boxrule, and therefore change the default rule,
you can do so by entering, for example,

.dr boxrule weight .4mm

Until you specify otherwise, the default horizontal and vertical rule weight then becomes
and will remain .4mm.

If you want to, you can simultancously specify rules so that whether you are printing on
a line device, or on a page printers, your input is device independent. For example, if
you specify

.dr thin weight .2mm font &$CHAR(1)

and then enter

.hr thin 1i for 2i

Chapter 14. Creating Rules and Boxes 157

a one inch horizontal rule, .2 millimeters thick, will be printed by page printers. On line
devices, this rule will be constructed of characters from the first font you requested with
the SCRIPT command.

If you enter

.vr thin 4cm

a vertical rule, .2 millimeters thick, will be printed four centimeters from the left margin
by page printers. On line devices, this rule will be constructed of characters from the first
font you requested with the SCRIPT command.

You do not, of course, have to specify both types of rules but if your output may be
directed to more than one type of device, making your rules device independent may be
very useful and efficient. When SCRIPT/VS processes the rule definitions, it selects the
one appropriate to the specified logical device and ignores the other.

Remember that when you request a particular font for a rule on a line device, you are
implicitly requesting a box character set as well. If you wanted to specify a particular box
character set, you might modify our previous example as follows:

.df fontl box APL font &$char(1l)
.dr thin weight .2mm font fontl

Then if you requested that the rule thin be printed on a line device, it would be printed
in the first font you requested on the CHARS option of the SCRIPT command and it
would be constructed of characters from the APL box character set.

For line devices, boxes and rules must be built with characters containing fragments of
rules and rule intersections. For such devices, SCRIPT/VS assumes an appropriate box
character set based on the logical device type and current font. You can override this
assumption with the CHAR parameter of the .BX control word or the BOX parameter
of the .DF control word, specifying any of the following box character sets:

APL APL characters

GPC 3800 GP12 font

TNC 1403 TN character set
TRM terminal character set
32A 3270 APL characters
32T 3270 text characters
38C SCRIPT/VS 3800 fonts.

Drawing Horizontal Rules

158

You can use the .HR [Horizontal Rule] control word to specify unnamed or named hor-
izontal rules. The default for unnamed rules is a rule (named boxrule) .3mm thick for
page printers, and the current font for line devices.

If, for example, you wanted a rule to be the width of the entire column, you can use the
LEFT and RIGHT parameters of the .HR [Horizontal Rule] control word:

.hr left right

DCF: SCRIPT/VS Text Programmer’s Guide

If you wanted a horizontal rule to print for only part of a column you could specify:
.hr 1i for 2i

or
Jhr 11 to 41

In the first case, a two-inch long horizontal rule will be drawn beginning one inch from
the current left hand margin.

In the second case, a horizontal rule will be drawn beginning one inch from the current
left hand margin and extending through four inches from the current margin.

You can also specify several horizontal rules with a single .HR [Horizontal Rule] control
word. For example, if you specify:

.hr 1 for 5 10 to 15

then two horizontal rules will be drawn: one that starts in the first position of the cur-
rent column and 1s five characters long and a second that begins in the tenth character
position in the column and is printed up to and including the fifteenth character posi-
tion.

When defining two or more rules with one .HR [Horizontal Rule] control word, be sure
that they are given in ascending order and that they do not overlap. The following exam-
ples

.hr 11 to 3i 21 to 41
.hr 1i to 31 3i to 4i

are incorrect because in each case the rules will overlap.

Also, keep in mind that there is a break before and after a .HR control word, so that
you cannot insert a horizontal rule in the midst of text. For example, if you define a
named rule, “thick,” by specifying

.dr thick weight .8mm

and then enter

Here's some text;.hr thick 2i to 2.5ij;more text following

you will get a break in the middle of the line and the rule will be printed on a line by
itself and subsequent text (in this case the words “more text following”) will be printed
on the following line.

Here's some text

more text following

Chapter 14. Creating Rules and Boxes 159

Using Named Hovrizontal Rules

If you have defined named rules with the .DR [Define Rule] control word, you can use
them with the .HR [Horizontal Rule] control word to create rules of different weights on
the same line for page printers. For example, if you had defined the rules thir and thick,

.dr thin weight .2mm
.dr thick weight .8mm

you could specify
.hr thick 1i to 2i thin 2.5i to 3.5i

to get:

If you had only specified one named rule in the example above,

.hr thick 1i to 2i 2.3i to 3.51i

then the second rule specification (2.3 to 3.51) reverts back to the width of the last rule
specified (in this case the rule thick) and you will get:

If no rulename had been given, the designated rules will be drawn using the default rule,
boxrule.

On line devices, the font used for rules can not be changed on a given line. In other
words, for a single set of horizontal rules, the first rulename specified with the .HR con-
trol word will be used for all segments of those horizontal rules and subsequent
rulenames will be ignored.

Underscoring with Named Rules

160

If you want to explicitly position an underscore rule on a page printer, you can use the
.UD [Underscore Definition] control word. For example, if you enter

.dr thick weight .5mm
.ud thick -p2

a rule is drawn two pica points below the baseline of underscored text:

a rule is drawn two pica points below the baseline of
underscored text.

If the underscore rule is positioned above the normal baseline on a page printer, it may
overlay text.

If, for example, you enter

.dr thin weight . 3mm
.ud thin p2

DCF: SCRIPT/VS Text Programmer’s Guide

a rule is drawn two pica points above the baseline and through the middle of the under-
scored text:

For more details on underscoring text, see “Emphasizing Text” on page 186.

Drawing Vertical Rules

You can use the .VR [Vertical Rule] control word to specify unnamed or named vertical
rules. A simple vertical rule can be drawn anywhere in a column. For example, if you
specify

.vr 10
.sp 3
.vr off

a vertical rule will be drawn starting in the tenth character position of the current col-
umn and the rule will be three lines long. In this example, note that any vertical space
unit could have been used and that you must end the vertical rule by specifying .VR
OFF.

If you want a vertical rule to be flush left or flush right in a column, you can use the
LEFT and RIGHT parameters of the .VR control word

.vr left

.sp 3
.vr off

or
.vr right

.sp 3
.vr off

respectively.

Using Named Vertical Rules

If you have defined a named rule, you can use it with the .VR [Vertical Rule] control
word. For example, named rules defined as

.dr thin weight .3mm
.dr thick weight .6mm

for page printers can be used to create vertical rules. The following control word se-
quence, then,

Chapter 14. Creating Rules and Boxes 161

.vr thin 15m thick 20m thin 25m
.sp 2

.vr 20m off

.sp 2

.vr off

results in:

Note from the above example that you can specify scveral vertical rules with one .VR
[Vertical Rule] control word. You can also turn off vertical rules independently as shown
in this example.

If you had not specified a particular named rule for every vertical rule, for example,
.vr thick 15m thin 20m 25m
then the second and third rules would both be drawn using the thin rule because rules

without specific designations will default to the previously specified named rule (as in this
example) or to the default font if no rnamed rules are specified:

On line devices, the font used for rules can not be changed on a given line. In other
words, for a single set of vertical rules, the first rulename specified with the .VR control
word will be used for all of the vertical rules and subsequent rulenames will be ignored.

Vertical rules created with the .VR [Vertical Rule] control word which cross columns or
pages will extend to the bottom of the section or page unless explicitly ended by a .VR
OFF control word.

Aligning Vertical Rules

162

On page printers, you can also align vertical rules in various ways relative to a given
horizontal position. For example, if you had defined a vertical rule as follows:

.dr thick weight 1lmm

and you want the left edge of this vertical rule to align with a particular horizontal posi-
tion, you would specify

.vr thick 20m lalign
.sp 3
.vr off

which results in:

DCF: SCRIPT/VS Text Programmer’s Guide

This is the default alignment.

Note: In the previous example, and in the two following examples, the bullet above the
vertical rule is used only as point of reference to more clearly show the alignment of the
rule to the designated horizontal position.

In a similar manner, if you want the right edge of your vertical rule to align with a par-
ticular horizontal position, you would specify

.vr thick 20m ralign
.sp 3
.vr off

which results in:

To center your vertical rule at the given horizontal position you would specify

.vr thick 20m center
.sp 3
.vr off

which results in:

You can combine vertical rules with horizontal rules. To create an axis-like figure, you
could specify

.vr 15m

.sp 2

.hr 5m for 20m
.sp 2

.vr off

which will produce the following figure:

Chapter 14. Creating Rules and Boxes 163

Drawing Boxes

SCRIPT/VS can draw boxes around illustrations or text and can format charts with hor-
izontal and vertical lines. Boxes drawn for page printers are formatted with horizontal
and vertical rules. The control word that draws boxes and lines within boxes is the .BX
[Box] control word. The three steps below define a box that would look like this:

1. Define the left- and right-hand edges of the box and the character positions you
want to contain vertical lines. For example, to create a box 30 spaces wide, starting
in character position 1, with vertical lines at character positions 10 and 20, specify

.bx 1m 10m 20m 30m

This formats and prints a box top, with upper corners and descenders:

[1 I 1

2. Each time you want a horizontal line within the box, specify the .BX [Box] control
word with no other parameters:

.bx

results in

| | | |

]] ¥ 1

The lines are drawn with intersections at the vertical rule character positions.

3. When you want to complete the box, use the OFF parameter of the .BX [Box] con-
trol word. For example,

.bx off

This terminates the box definition and draws a bottom line with lower corners and
ascenders.

L | | }

After a box is started, SCRIPT/VS processes and formats output lines as usual. When
each line is formatted and ready to print, SCRIPT/VS inserts box vertical rule characters
wherever appropriate to continue the box’s vertical lines on the output line®.

Creating Simple Boxes

164

Typically, a simple, basic box can be drawn as follows:

3% The box may be considered to be overlaid on the formatted text. On some devices, like the
1403 printer, the 4250 printer, the 3800 Printing Subsystem Model 3, and the 3820 Page
Printer vertical rules will cover up text characters which fall beneath them. On certain other
devices, like the 3270 Display Station and the 3800 Printing Subsystem, the rule replaces the
text characters.

DCF: SCRIPT/VS Text Programmer’s Guide

.bx 1 30
. Sp
. bx
.sp
.bx off

If you did not want the initial horizontal line in your box, you could specify

.bx set 1 30

. sp
.bx

. Sp
.bx off

and your box would look like this:

If you want the box to extend horizontally from one side of the column to the other,
you can simply specify

.bx left right

. sp
.bx

. Sp
.bx off

and the box would look like this:

The box will be as wide as the currently defined column without you having to know
exactly or guess the dimensions of that column.

Drawing Boxes with Named Rules

You can use named rules defined with the .DR [Define Rule] control word to draw
boxes with rules of different weights. If you had defined rules thin and thick as follows

.dr thin weight .3mm font &$char(1l)
.dr thick weight .6mm font &$char(2)

Chapter 14. Creating Rules and Boxes 165

then you could specify

.ti ~ 05

.tp 18m

.bx thin 15m 25m
=Box 1

.bx off

.bx thick 15m 25m
=Box 2

.bx off

and get the following two boxes:

Box 1

Box 2

On page printers, a single box can be drawn with rules of different weights. For example,

.bx thick 3p 6p thin 9p 12p thick 15p
. Sp

.bx

.sp 3

.bx off

Note that in the above example:
e The first name given (thick) is the rule used for the horizontal rule

® The next two values (3p and 6p) are vertical starting positions for the box and they
will be drawn with the thick rule designated

e The next name (thin) applies to the vertical rules beginning in positions 9p and 12p
® The last name (thick) applies to the last vertical rule that starts in position 15p.

On line devices, the font used for rules cannot be changed on a given line. In other
words, for a single set of horizontal or vertical rules, the first rulename specified with the
.BX control word will be used for all segments of those horizontal or vertical rules and
subsequent rulenames will be ignored.

166 DCF: SCRIPT/VS Text Programmer’s Guide

A Three Column Box

You can use the .BX [Box] control word to build a three-column table and use tabs to
align text within the rules:

.ti = 05

.tp 1lm 21m

K

.bx 1m 10m 20m 55m

.cl 53m

.in 21m

.un 19m

Item 1 ~Part 1 -~The first part

of item 1 is described here.

.sk

.un 10m

Part 2 -The second part of item 1 is
described here.

It is a rather long description.

. bx

.un 19m

Item 2 -~Part 1 -The second and
subsequent items are entered in a similar fashion.
. bx

.bx off

The above example results in

Item 1 | Part 1 The first part of item 1 is
described here.

Part 2 The second part of item 1
is described here. It is a
rather long description.

Item 2 | Part 1 The second and subsequent
items are entered in a
similar fashion.

Centering Text within a Box

SCRIPT/VS constructs the corners and rules of boxes using the most appropriate char-
acters available, based on the logical output device and current font. For example, the
input lines

Chapter 14. Creating Rules and Boxes 167

.bx 1m 5m 25m 29m
.cl 35m

.ce on

These lines

are centered within
this

lovely box.

.ce off

.bx off

when formatted for a terminal may appear as:

T TR et
	These lines	
	are centered within	
	this	
	lovely box.	
R TRR——

However, when the same input lines are formatted for the 3800 Printing Subsystem, they
appear as:

These lines
are centered within
this
lovely box.

SCRIPT/VS chooses the appropriate box character set for the logical output device.
However, you can force SCRIPT/VS to use any of the box character sets by using the:

e CHAR parameter of the .BX control word
¢ BOX parameter of the .DF control word
e DR control word.

(See “Defining Fonts” on page 178.)

You can use SCRIPT/VS to produce many different box configurations, horizontal
lines, and graphic structures. Some of the ways you can use the .BX [Box] control word
are described below.

Stacking One Box on Another

You can stack several boxes by defining one box and then defining larger or smaller
boxes, and you can do so without ending the definition of the first box. If you then
define a box that is not contiguous with the first one, the first box is ended and the top
of the second box is printed on the same line as the bottom of the first box. You can use
these techniques to create a complex structure of boxes. For example, the lines

168 DCF: SCRIPT/VS Text Programmer’s Guide

.bx

. sp
.bx

. Sp
.bx

. Sp
.bx

. Sp
.bx

.Sp
.bx

. Sp
.bx

result in:

10m 20m

25m 35m

10m 20m

Im 15m

10m 20m

Im 30m

off

Drawing a Box within a Box

You can draw a box within a box, using the NEW parameter of the .BX [Box] control

word.

FEach box is ended with a .BX CAN or .BX OFF control word. Note the different re-

sults of each type of ending. For example,

.cl
. bx

. sp
.bx

. Sp
.bx
. Sp
.ce
. bx
. bx
.bx

results in

30m
Im 30m

new 5m 25m
new 10m 20m
Strummer
off

can
off

Strummer

Chapter 14. Creating Rules and Boxes

169

When bozxes are nested, the new box does not have to be completely within the previous
box. For example,

.bx 1m 30m

. Sp

.bx new 5m 40m
. Sp

.bx new 3m 45m
. sp

.bx off

. Sp

.bx off

. Sp
.bx off

results in

Drawing Boxes in a Horizontal Row

You can draw a row of boxes by specifying a box definition with slashes. For example,

.bx Im 10m / 20m 30m / 40m 50m
.Sp 2
.bx off

The slash indicates a discontinuity with no horizontal connection. These lines result in:

Drawing the Top Line (Only) of a Box

When you want SCRIPT/VS to draw the top portion of a box, but not the bottom line,
you use the CAN parameter of the .BX [Box] control word to cancel the box definition.
For example,

.bx 1m 10m 20m 50m

.Sp
.bx 1m 50m

.in +2

Last line of text in the box
.bx can

170 DCF: SCRIPT/VS Text Programmer’s Guide

results in

Last line of text in the box

Drawing the Middle Portion of a Box (without Top or Bottom Lines)

When you want SCRIPT/VS to draw a box without horizontal top and bottom lines,
use the SET parameter of .BX to specify the positions of the vertical rules. Subsequent
text will be formatted and overlaid with vertical rules, but no box top will be drawn. For
example,

.in 22m

.cl 38m

.bx set 1Im 10m 20m 40m
First item in the box

. bx

Second item in the box
.bx

Third and subsequent items
in the box....

.bx can

results in

First item in

the box
Second item in
the box
Third and

subsequent items
in the box....

Drawing the Middle Portion of a Box within Another (Larger) Box

You can draw a series of boxes by using slashes (/) between the character position dis-
placements (as shown previously). You can also nest that type of box within a larger
box. For example,

.bx 1m 35m

.sp

.bx new 5m 10m / 15m 20m / 25m 30m
.sp 2

.bx off

. Sp
.bx off

results in

Chapter 14. Creating Rules and Boxes 171

Drawing the Bottom Line (Only) of a Box
When you want SCRIPT/VS to draw the bottom line of a box, you use the .BX [Box]

control word as you would to define the start of a box and you include the OFF param-
eter. For example,

.bx off 1m 10m 20m 40m

results in

L | | |

Drawing Boxes with the 3800 Printing Subsystem Model 1

Special considerations apply to boxes when the output is being formatted for a 3800
Printing Subsystem. Because SCRIPT/VS does not provide three widths of each box
character in each font, SCRIPT/VS performs monospace justification of text inside a
box. The following restrictions apply within a box:

¢ All nested bozxes are in the font of the outermost box, regardless of the font changes
within the box.

e Al fonts used within the box must be of the same pitch as the box itself (that is, the
pitch of the current font when the outermost box was begun).

e Proportional fonts (for example, GP12) cannot be used within a box.
¢ When a vertical rule is overlaid on a text character, the rule replaces the character.

¢ Only monospace® fonts can be used within a box and all fonts used must be of the
same pitch.

When using boxes and rules in a named area, if the boxes or rules overlay text from
outside that area, misalignment may occur. Likewise, if text from an area is overlayed by
rules or boxes from outside that area, misalignment may occur.

You can produce boxes of different line thicknesses containing text in several fonts. For
example,

“ Al of the fonts distributed with SCRIPT/VS are monospace, with the exception of GP12.

172 DCF: SCRIPT/VS Text Programmer’s Guide

.bx 1m 15m
.in +3

The

.bf GB12
first

.pf

box

.bx off
.sp 2

.bf GB12
.bx 1Im 15m
The

.bf GT12
second

. pf

box

.bx off

.pf

results in:

The first box

The second box

| Boxes with a Different Top and Bottom

When you want SCRIPT/VS to draw a box having a different top and bottom, you can
change the specifications with the CAN and SET parameters of the .BX [Box] control
word. If a box is currently going, and a .BX control word with horizontal displacements
and slashes is encountered, the previous box is ended with a box bottom which is the
mirror image of the previous box top. The CAN and SET parameters redefine the box.
When the box is ended by .BOX OFF or by another .BX control word, the box is
ended with the horizontal rule drawn as specified on the .BX SET command. For exam-
ple:

.bx 5 15 25 35

.sp 1

.bx can

.bx set 5/ 15 25 / 35
.bx 5/ 15 20 25 / 35
.sp 1

.bx can

.bx set 5 15 20 25 35
.bx off

results in:

Chapter 14. Creating Rules and Boxes 173

Chapter 15. Selecting Fonts

With the Document Composition Facility you can take advantage of font capabilities
available with various printers. On typewriter-like terminals you can stop the printing
while you change typing elements. On line printers such as the 1403 you can specify
underscoring, capitalization, and create boldface type by overstriking. Line printers such
as the 3800 Printing Subsystem also allow actual font changes. For a page printer, you
can use any font in its font library.

For the 3800 Printing Subsystem Model 1, you can select two fonts that you want to use
by specifying them with the CHARS option of the SCRIPT command.

With page printers, you can select more than just two fonts. You can specify coded fonts
with the CHARS option of the SCRIPT command, but entire families of fonts may be
available for use with page printers as well. The font library contains these font families
and you can access them with the .DF [Define Font] control word.

On page printers, you can request a particular coded font with all its defaults or you can
use the TYPEFACE and CODEPAGE parameters of the .DF control word to specify
parts of or variations on a particular font as well.

The latter specification is possible because page printer fonts consist of a code page
(which contains the hexadecimal representation of a character in a given national lan-
guage) and a font object (which is the representation of the character itself) both of
which are accessible with the .DF [Define Font] control word.

Note: The Document Composition Facility (DCF) requires the following font program
products be installed for the 4250 printer:

e 5771-AAR Monotype Times New Roman
¢ 5771-AAW Typewriter and Pi

and DCEF requires the following font program products be installed for the 3800 Printing
Subsystem Model 3, and the 3820 Page Printer:

e 5771-ABA Sonoran Serif
e 5771-ABC Pi and Specials.

You may tailor DCF and/or use the CHARS option of the SCRIPT command to point
to typeface families other than the required ones listed here.

Selecting Initial or Default Fonts

When formatting a document you can take advantage of the printer’s dynamic font stor-
age and use different fonts in your document. You can use the CHARS option of the
SCRIPT command to specify the fonts you want to use.

Chapter 15. Selecting Fonts 175

Using Fonts

The CHARS option is specified as:

CHARS (fontl ...)

When you specify the CHARS option, you must specify at least one font.

If you do not specify the CHARS option, the default font specified for the logical device
is used. In either case, the first font specified or implied becomes the initial font.

When formatting for the 3800 Printing Subsystem Model 1, you can specify as many as
four uppercase-only fonts, or two upper- and lowercase fonts. The CHARS JCL param-
eter must specify the corresponding character arrangement tables in the same sequence as
the fonts specified with the CHARS option of the SCRIPT command.

Refer to the discussion of the PRINT option of the SCRIPT command in the Document
Composition Facility: SCRIPT|VS Language Reference for details on printing documents
formatted for the 3800 Printing Subsystem under TSO.

Fonts selected with the .DF [Define Font] control word for printing on the 3800 Printing
Subsystem Model 1 are restricted to those fonts that you have specified with the
CHARS option.

When formatting for page printers, there is no limit to the number of fonts you can
specify with the CHARS option but you will most likely specify your fonts with the .DF
[Define Font] control word instead. See “Defining Fonts for Page Devices” on page 179
for details on how to use the FONTLIB option.

SCRIPT/VS supports the fonts distributed by IBM with the IBM 3800 Printing Subsys-
tem. However, most of the line device fonts are uppercase only and therefore inappropri-
ate for text applications. (For more information about the IBM 3800 Printing Subsystem
fonts, see the IBM 3800 Printing Subsystem Programmer’s Guide.)

In addition to the upper-case only fonts, SCRIPT/VS provides sixteen complete upper-
and lowercase fonts. You can also create your own fonts to use with SCRIPT/VS as
long as the characteristics of these fonts are listed in a font table. (See the section on
Device and Font Table Maintenance in the Document Composition Facility: SCRIPT|VS
Language Reference for details on how to add a new font’s characteristics to a font ta-
ble.)

The IBM 3800 Printing Subsystem line device can contain up to four uppercase-only
fonts, or two complete upper- and lowercase fonts. To ensure proper output line justi-
fication, you should not specify fonts of different pitches on a single line. However, each
SCRIPT/VS font contains special blanks that allow the SCRIPT/VS fonts to be freely
intermixed without regard to pitch.

When SCRIPT/VS begins formatting a document, the first font specified with the
CHARS option of the SCRIPT command becomes the current font. If CHARS is not
specified, the default font of the logical output device becomes the current font.

With page printers the number of fonts you can specify with CHARS is unlimited but
you must specify coded fonts and these fonts must be in the font library. You can also
specify or describe any font in the library with the .DF control word.

More than one font can be identified with the .BF control word. The first font given
which has been defined with the .DF control word or specified with the CHARS option

176 DCF: SCRIPT/VS Text Programmer’s Guide

of the SCRIPT command is taken as the new font.*" An error occurs only if none of the
fonts given is valid.

Use the .BF [Begin Font] control word to change the current font to any font specified
with the CHARS option. For example,

This is a
.bf

bold

.pf

word.

produces the line:

This is a bold word.

The .BF [Begin Font] control word saves the current font before beginning a new font;
the .PF [Previous Font] control word restores the last font saved. As many as 16 fonts
can be saved. Because the font stack is in the current environment, it can be affected by
the .SA and .RE control words and any other control words that save and restore the
environment.

You can use the .BF [Begin Font] control word to start any font that is either defined
with the .DF [Define Font] control word, or listed in the CHARS option the SCRIPT
command. If more than one font is specified with the .BF control word, the first valid
font is used.

To eliminate dependence in the file on specific font names, use the SCRIPT/VS symbols
&$CHAR(n) or the .DF control word instead of actual font names. For line devices, the
previous example could be revised as:

This is a
.bf &$CHAR(2)
bold
.pf
word.
which prints as:
This is a bold word.

For page printers, the previous example could be revised as:

.df bold type(bold)
This is a

.bf bold

bold

.pf
word.

which prints as:

This is a bold word.

4" For page printers, the font must be in the font library to be valid.

Chapter 15. Selecting Fonts 177

All SCRIPT/VS 3800 Printing Subsystem fonts contain three special blanks that are
used for justification: hexadecimal 11, 12, and 13 identify 10-, 12-, and 15-pitch blanks,
respectively. These special blanks allow SCRIPT/VS to justify output lines and align
columns regardless of font and pitch changes. Therefore, you should not use these
hexadecimal codes with the .TI [Translate Input] and .TR [Translate Character] control
words.

Defining Fonts

SCRIPT/VS extends the concept of fonts to include underscoring and capitalization on
all devices, overstriking on impact printers, and stopping to change typing elements on
typewriter terminals.

You can use the .DF [Define Font] control word to define named fonts for use with the
.BF [Begin Font]. This allows you to alter the characteristics of the fonts specified with
the CHARS option of the SCRIPT command and provides a means of identifying fonts
descriptively. For example, The UP parameter of the .DF control word includes capital-
ization as part of the font:

.df caps up

You now capitalize text by entering

.bf caps
AND RESET CAPITALIZATION BY ENTERING
.pf
When formatting for the 3800 Printing Subsystem Model 1, formatting attributes such as

underscoring and capitalization can be combined with “real” fonts and managed simul-
taneously. For example,

.df gbl2 us font gbl2

redefines the font GB12 to include underscoring as well as the 12-pitch gothic bold font.
Now the input line

.bf &$CHAR(2)

will underscore text formatted in the font GB12.

Defining Fonts for Impact Printers

178

When formatting for an impact printer, such as the 1403 printer, you can create boldface
headings and emphasize important phrases by overstriking. You can define a named font
using the .DF control word, specifying the OS parameter to indicate that the font is to
be formed by overstriking the text four times:

.df boldface os rpt &4

To define a new font for 1403 output which causes capitalization and overstriking, spec-
ify

.df bold up os rpt 3

DCF: SCRIPT/VS Text Programmer’s Guide

You can emphasize phrases by changing to a new font with

.bf boldface

Overstriking is ignored for devices other than the 1403 and 2741, unless overstriking with
the underscore character is specified. For example,

.df under os char

defines a font that underscores text, just as

.df under us

does, except that blanks are never overstruck.”

When formatting for a typewriter terminal with changeable typing elements, you can de-
fine those elements as fonts with the STOP attribute. Whenever you format text in that
font, SCRIPT/VS stops typing to allow you to change elements. See “Interactive
SCRIPT/VS Processing” on page 61 for a discussion of the use of the STOP parameter
of the .DF [Define Font] control word.

Defining Fonts for Page Devices

For page printers a number of fonts may be available to you. These fonts are stored in a
font library. Any font you request must be in this font library or SCRIPT/VS will not
recognize it as a valid font. In order to properly select fonts, you need to know which
fonts are available.

The font library consists of members or objects. In MVS, an object can be an actual
member of a partitioned data set. In CMS, this object is simply a file whose filetype
matches the name of the library. There are four types of objects in the font library:

Font Which provides both global font and individual character descriptive infor-
mation.

Code page Which associates character names with code points.

Coded font Which is a combination of both a font and a code page. SCRIPT/VS re-
quires both a font and a code page for formatting. A coded font is also one
that is fully defined in terms of typeface, point-size, weight, width, attri-
bute, and code page. Coded fonts are listed in the font library.

DCFINDEX Which contains one logical record for each set of page printer font objects
in the font library that have a common typeface name.

Describing a Font

Most simply stated, a font is a set of characters in one typeface (such as Monotype
Times New Roman) and one pointsize (such as 10 point). These two aspects of a font
are described below.

42 Underscoring of blanks is controlled by the .UD [Underscore Definition] control word; over-
striking, even with the underscore character, affects only nonblank characters.

Chapter 15. Selecting Fonts 179

Typeface

Pointsize

Code Pages

Coded Fonts

A typeface is a specific set of style variations in one typeface family (such as Futura or
Monotype Times New Roman). The major style variations are:

Posture The two most common typeface postures are roman, sometimes referred to
as upright, and italic, sometimes referred to as cursive. Note that the roman
posture is not to be confused with the typeface family Monotype Times New
Roman.

Weight Weight is the variation in the width of the individual strokes of characters in
a font that makes them appear to be bolder or lighter when they are printed.
The common weights are light, medium, semibold, and bold.

Width Width is the variation in the width of characters that makes them appear to
be narrower or wider when they are printed. The common widths are con-
densed, normal, and expanded. Width, as used here, does not refer to the
width of individual characters.

The pointsize of a font (a point is 1/72 of an inch) refers to the height of the rectangle
within which the largest character would fit. Of course, within a given font, the height of
the individual characters vary in size, as do the ones you are now reading. IBM page
printer fonts vary in size from 6 points to 72 points.

What is a code page? When you enter a character into a file, that character is stored as a
hexidecimal code point in your file. The relationship between the hexidecimal code point
values in your file and the actual character produced when the file is printed is defined by
a code page.

IBM supplies code pages for the major IBM language groups. For example, there is a
code page for French and a different code page for Spanish. These code pages are related
to the national language keyboards that IBM supports. You should use the code page
that most closely matches the keyboard that you are using, unless you are using a non-
English hyphenation dictionary, in which case you should use the international
codepage.

The code pages for use with the Pi and Light Italic fonts are a different kind of code
page. These codepages have nothing to do with language groups or different kinds of
keyboards. These fonts have a special set of characters, and thus need special code pages
to use in relating those characters to specific hexidecimal code points.

A coded font is simply a member of the font library that relates a specific code page to a
specific font. For each typeface family supplied by IBM, there is a coded font for each
combination of code page and the 10-point font in that typeface family. As you will find
out in a later section, DCF lets you define fonts for use without specifying a code page.
This means it is not necessary to have a coded font for each combination of code page
and font.

180 DCF: SCRIPT/VS Text Programmer’s Guide

The Default Coded Font

When you specify the SCRIPT command option, DEVICE(4250x),”* SCRIPT/VS se-
lects an initial coded font to use in composing your document. If you do not use the
CHARS option of the SCRIPT command, SCRIPT/VS will use a default coded font
(AFTTR395). This coded font associates the U.S./Canada (English) code page with the
Monotype Times New Roman 10 point, medium weight, normal width, roman posture
font. The default coded font can be changed for your installation by changing the
SCRIPT/VS logical device table as explained in Appendix B of the Document Composi-
tion Facility: SCRIPT|VS Language Reference.

You can tell SCRIPT/VS to select a different initial coded font by specifying a coded
font with the CHARS option of the SCRIPT command. For example, specifying

CHARS (AFTFT383)

results in Futura, 10 point, medium weight, normal width, roman posture being used
with the Belgium code page.

What Is in the Font Library?

The font library contains the fonts, code pages, and coded fonts for all of the typeface
families that are available for your use.

There is a convenient way to find out what is available in your font library.

The DCF Font Library Index Program Report lists the contents of the font library.*
The fonts are listed by typeface family name (such as Futura). The font characteristics
listed here are:

Font identifier The font identifier is the name by which a font is filed in the font Li-
brary. You will never need to use the font identifier when working with
fonts.

Pointsize Pointsize is the height of the rectangle within which the largest charac-
ter of a font would fit.

Weight Weight is the variation in width of individual strokes of of characters in
a font that makes them appear to be bolder or lighter when they are
printed.

Width Width is the variation in the width of characters in a font that makes
them appear to be narrower or wider when they are printed.

Attribute Attribute is the heading to look under for the posture of the font. Italic,
of course, means italic. The absence of italic means roman or upright.

Line space Line space refers to the vertical distance, in pels, between baselines
when formatting in the font.

43 See the SCRIPT/VS logical device table in the Document Composition Facility: SCRIPT/VS
Language Reference for the various specifications of 4250x, depending on page size.

4 The actual format of the listing is subject to change.

Chapter 15. Selecting Fonts 181

Figure space Figure space is equal to the width, in pels, of the number 0 in the font.

Word space Word space is the size of the horizontal space, in pels, to be used be-
tween words.

The code pages and coded fonts are also listed in the Font Library Index Report.

Specifying the Font Library

The FONTLIB option of the SCRIPT command is used to specify where the font li-
brary exists.

Normally, you do not need to specify this option, as SCRIPT/VS knows the name of
the default font library to use if the FONTLIB option is not specified.

If your installation does not use the defaults, ask your systems programmer how to iden-
tify your library. You can find more information about the Font Library Index Program
in the Document Composition Facility: SCRIPT|VS Language Reference.

Defining Fonts by Characteristics

182

In addition to the methods of defining fonts already described, with page printers you
can define fonts in even greater detail. Using the TYPE or CODEPAGE parameters of
the .DF [Define Font] control word, you can describe a font by typeface, point-size,
weight, width, and an attribute identifier. You can also specify a code page name. A code
page contains the particular hexadecimal coding for each character of a font in a partic-
ular language.

Page devices can take advantage of large families of fonts - as long as they are defined in
the font library - and these devices also give you greater flexibility in altering the parame-
ters of any properly defined font.

When formatting for page printers, use the FONTLIB option of the SCRIPT command
to 1dentify the host system font library containing the fonts to be used.

In CMS, the FONTLIB is specified as one of the following:

FONTLIB (filetype)
FONTLIB (filemode)
FONTLIB (filetype filemode)

The default is FONT4250 for the 4250 printer, FONT38PP for the 3800 Printing Sub-
system Model 3 and FONT3820 for the 3820 Page Printer.

In TSO, each font description resides in a member of a partitioned data set. The
FONTLIB option is specified as:

FONTLIB (dsname)

The default is SYSI.FONT4250 for the 4250 printer, SYSI.FONT38PP for the 3800
Printing Subsystem Model 3, and SYS1.FONT3820 for the 3820 Page Printer.

In ATMS-III, font definitions reside in a host system font library. The FONTLIB op-
tion is specified as:

FONTLIB (dsname)

The default is FONT4250 for the 4250 printer, FONT38PP for the 3800 Printing Sub-
system Model 3 and FONT3820 for the 3820 Page Printer.

DCF: SCRIPT/VS Text Programmer’s Guide

In batch MVS, font definitions reside in a host system font library. The FONTLIB op-
tion is specified as:

FONTLIB (ddname)

ddname identifies a DD statement which gives the name of the host system font library.

The default is FONT4250 for the 4250 printer, FONT38PP for the 3800 Printing Sub-
system Model 3, and FONT3820 for the 3820 Page Printer.

In batch VSE, font definitions reside in a host system font library. The FONTLIB op-
tion 1s specified as:

FONTLIB (dlblname)

dlbiname identifies a DLBL statement which gives the name of the host system font li-
brary.

The default is FNT4250 for the 4250 printer and FNT3820 for the 3820 Page Printer.
The batch VSE environment is not supported for the 3800 Printing Subsystem Model 3.

In all environments, it is the user’s responsibility to ensure that the font library used in
printing a document is the same one used during formatting.

When formatting for page printers, you can define a named font by describing it. Al-
though not all of the following paramecters are necessarily available with any given font,
you can specify a typeface (the style of the font, such as Monotype Bodoni*®), point-size
(the vertical height of the characters in the font, such as 6-, 8-, 10-point and so on),
weight, width, attribute and code page.

Keep in mind that the font definitions described in the following examples show a hy-
pothetical font description. In most cases, only some of the descriptive parameters will
be available for any given font that you may want to define. Check the font library index
listing for specific fonts and the particular parameter combinations that are available at
your installation.

If, for example, you want to specify a particular typeface you can enter®

.df body type('monotype bodoni')

and when you begin the font, bodp,

.bf body

all subsequent text is set in Monotype Bodoni type provided it is available. Notice that
the typeface name, Monotype Bodoni, was enclosed in quotation marks. These are re-
quired around the typeface name if it contains any blanks or parentheses. Because it was
not specified on the .DF control word, the point-size is the same as the font that was in
effect when we started our new font. Because no other parameters were specified, the
weight is medium, the width and attributes are normal, and the code page is the same as
the code page currently being used.

“ Trademarks of The Monotype Corporation, Limited.

% This example and following examples use Monotype Bodoni as an example only. Monotype
Bodoni is only availabe on the 4250 printer.

Chapter 15. Selecting Fonts 183

If you want to specify a point size for your font, you can enter

.df body type('monotype bodoni' 10)
.bf body

and all following type is printed in 10 point Monotype Bodoni.
If you had not specified the typeface, as in

.df body type(10)
.bf body

then subsequent text will be 10 point but it will be in the typeface of the previously
specified font. Because no other parameters were specified, the width and attributes are
normal, weight is medium, and the code page is the same as the code page currently
being used.

Weight can be specified as:

¢ Ultralight

e Extralight

e Light

¢ Medium (the default if weight is not specified)
e Semibold

e Bold

e Extrabold

e Ultrabold.

If you want to specify a weight for your font, you can enter

.df body type('monotype bodoni' 10 semibold)
.bf body

and all following type is printed in 10 point Monotype Bodoni with a weight of semi-
bold. Because no other parameters were specified, the width and attributes are normal,
and the code page is the same as the code page currently being used.

Width can be specified as:

e Ultracondensed

¢ Extracondensed

e Condensed

e Semicondensed

¢ Normal (the default if width is not specified)
® Semiexpanded

¢ Expanded

¢ Extraexpanded

e Ultraexpanded.

184 DCF: SCRIPT/VS Text Programmer’s Guide

If you want to add a width specification to your font, you can enter

.df body type('monotype bodoni' 10 semibold condensed)
.bf body

and all following type is printed in 10 point Monotype Bodoni with a weight of semi-
bold and a condensed width. Because no other parameters were specified, the attribute is
normal and the code page is the same as the code page currently being used.

If you want to add an attribute to your font description, that is, ask for your font to be
italic, underscored, or outlined, you can enter

.df body type('monotype bodoni' 10 semibold condensed italic)
.bf body

and all following type is printed in 10 point Monotype Bodoni with a weight of semi-
bold, a condensed width and in italics. Because no other parameters were specified, the
code page is the same as the code page currently being used.

If, for another example, you want text printed in 10 point Futura italic and you want the
characters printed as they would appear in different languages, specify a code page with
the .DF control word.

If you specify

.df body type(futura 10 italic) codepage aftc0395
.bf body

your text will be printed in 10 point Futura italic, but the font library is also searched for
the code page, AFTC0395 (which is the code page that contains the hexadecimal codes
for U.S. American and Canadian English characters) in order to select the characters ap-
propriate to the language you specified.

A convenient method of using type defined fonts is as follows. First, you could specify

.dm font on

.df font type(&¥*.)
.bf font =

.dm off

then, for example, you could enter

1t

. font ''monotype garamond' 18 italic'

in order to define and begin the particular font you want.

Selecting Fonts for a Variety of Devices

If a document is formatted for a variety of devices, the fonts available may vary accord-
ing to the device. When you specify a .BF control word in a document, you can either
provide font definitions that are based on the device type or you can provide a list of
fonts in the order of your preference. These techniques are especially useful if you are
creating a document to print on different printers — or if, when you create the docu-
ment, you might not know which device it will be printed on.

Chapter 15. Selecting Fonts 185

Emphasizing

For example, you can specify

.df hi2 us

.1f &SPDEV eq 1403 .df hi2 os rpt 3

.if &S$PDEV eq 3800 .df hi2 font &S$CHAR(2)
.if &SPDEV eq 3820 .df hi2 type(italic)
.1f &SPDEV eq 4250 .df hi2 type(italic)

and then specify

.bf hi2

in our example, if the document is printed on a 1403 impact line printer, the printing is
underlined by overstriking three times.

If the document is printed on a 3800 Printing Subsystem Model 1, the printing is under-
lined as a result of requesting the second font specified with the CHARS option, which,
in our example, is an underlined font.

If the document is printed on a page printer, the printing is italicized as a result of re-
questing the current font in italics.

You may not know exactly which fonts will be available when a document is created.
For example, you may prepare a document to be formatted for a 3800 Printing Subsys-
tem without knowing what fonts will be used. If you want to ensure that a piece of text
is set in a bold font, you can enter

.bf gbl0 gbl2 sbl2

Subsequent text will be formatted in the GB10 font, if it was specified with the CHARS
option of the SCRIPT command. If not, GB12 will be used if it was specified, and so
on.

If you want a font change to apply only for a particular device and to be unused the rest
of the time, you could specify

.if &$PDEV eq 4250
.th .df figfnt type ('prestige elite')

Then if you specified

.bf figfnt =

the figfnt font (in this case, prestige elite), will only be used when you are formatting
output page printer.

The equals sign (=) in our example is required to restart the current font after it has
concluded using the figfnt font. In this case a font change was desired only for the 4250
printer, all other devices should not change fonts. So, there is no point in defining the
font for each possible device.

Text

You can emphasize text several different ways. Some methods of emphasizing a word or
phrase are: uppercase, underscore, change of type weight (such as bold), italic, and inter-
character space.

186 DCF: SCRIPT/VS Text Programmer’s Guide

Underscoring and Capitalization

Because underscoring on line devices requires backspacing and overstriking characters,
the procedure can be particularly frustrating when you need to create a line that contains
an underscored word or words. Instead of manually keying in the
character/backspace/underline sequence, you can use either the .US [Underscore] control
word or a combination of the .DF [Define Font] and .BF [Begin Font] control words to
have a word or phrase underscored when it is printed.

For example,

.us This is very important.

prints as:’

This is very important.

You could also have entered

.df hil us

.bf hil

This is very important.
.pf

and obtained the same result.

Because the .US [Underscore] control word does not cause a break, you can specify:

This line contains a very
.us important
concept for consideration.

and it results in:

This line contains a very
important concept for
consideration.

The .UP [Uppercase] allows you to capitalize text and the .UC [Underscore and
Capitalize] control word allows you to both capitalize and underscore your text. Both of
these functions can also be specified with combinations of the .DF [Define Font] and
.BF [Begin Font] control words.

For example,

.up Chapter 10
- or -
.df hi2 wup
.bf hi2
Chapter 10

.pf

47 By default, SCRIPT/VS draws an uninterrupted rule beneath underscored text. The .UD
[Underscore Definition] control word allows you to specify that blanks are not to be under-
scored.

Chapter 15. Selecting Fonts 187

188

result in:

CHAPTER 10

Use the .UC [Underscore and Capitalize] control word or a combination of the .DF
[Define Font] and .BF [Begin Font] control words when you want to both underscore
and capitalize a line. For example, the lines:

.uc preface
- or -
.df hi3 uc
.bf hi3
preface

.pf

result in:

PREFACE

You can also affect a number of input lines with the .US [Underscore], .UP [Uppercase],
and .UC [Underscore and Capitalize] and with the .DF [Define Font] and .BF [Begin
Font] control words. For example, to underscore three input lines you would enter:

.us 3

Do not

destroy this letter

until

its expiration date,

which is January 22nd, 1985.
- or -

.df hil us

.bf hil

Do not

destroy this letter

until

.pf

its expiration date,

which is January 22nd, 1985.

both of which result in:

Do not destroy this letter
until its expiration date,
which is January 22nd, 1985.

Use the ON and OFF parameters of the .US [Underscore], .UD [Underscore Definition],
.UC [Underscore and Capitalize] control words to affect a group of text lines in a similar
manner. Using the ON and OFF parameters might require less updating than using a
numeric parameter when you add or delete lines to a group of underscored lines. For
example,

DCF: SCRIPT/VS Text Programmer’s Guide

This is capitalized for
.up on

emphasis

.up off

and

.uc on

emotional

.uc off

impact.

results in:

This is capitalized for
EMPHASIS and EMOTIONAL impact.

The same results could have been obtained if, using the fonts described in our examples
above, we entered:

This is capitalized for
.bf hi2

emphasis

.pf

and

.bf hi3

emotional

.pf

impact.

You can use the .UD [Underscore Definition] control word to determine how automatic
underscoring with the .US [Underscore] and .UC [Underscore and Capitalize] control
words should be performed. You can indicate whether or not blanks are to be under-
scored and, on page printers, which named rule is to be used for underscoring and where
it 1s to be located with respect to the baseline.

Because word spaces are initially underscored, you must specify the OFF parameter of
the .UD [Underscore Definition] control word if you wish to turn off wordspace under-
scoring.

For example, when you underscore text by entering

.us on

all characters, including wordspaces, are underscored. But if you have entered

.ud off

wordspaces will not be underscored. Nonblank characters are always underscored, but
tab expansions and spaces specified with the TO parameter of the .IS control word are
never underscored.

Chapter 15, Selecting Fonts 189

You can also use the .UD [Underscore Definition] control word to explicitly position the
underscore rule on page printers. For example, if you enter

.dr thud weight . 6mm
.ud thud -p2

a rule .6mm thick is drawn two pica points below the baseline to underscore text:

a rule .6mm thick is drawn two pica points below the baseline
to underscore text.

If the underscore rule is positioned above the normal bascline on page printers, it may
overlay text.

If, for example, you enter

.dr thump weight .4mm
.ud thump p3

a rule .4mm thick is drawn three pica points above the baseline, through the middle of
the text:

1 . hick 4 .) . , ! 1
The 3800 Printing Subsystem Model 3 and the 3820 Page Printer fonts include under-
scoring information in the font objects. This built-in underscore definition will be used

for these fonts unless you explicitly specify the .UD [Underscore Definition] control
word with a rulename or position.

Each time a new font is started or restarted, the underscore definition is changed to use
the underscore definition in the new font. However, this definition does not take effect
until a new underscore rule is started for the next output line if underscoring of blanks is
on, or for the next word if underscoring blanks is off.

For more details on drawing rules see “Drawing Horizontal and Vertical Rules” on page
157.

Using the .IC Control Word for Emphasis.

| On page printers, you can also use the .IC [Intercharacter Space] control word to insert
extra white space between characters of a word for emphasis. For example, if you enter

We must

.ic espace pbé
emphasize

.ic espace O
this word.

two extra pica points of horizontal white space is inserted between each pair of charac-
ters in the word emphasize:

We must e m p h a s i z e this word.

g\

190 DCEF: SCRIPT/VS Text Programmer’s Guide

Chapter 16. Keeping Blocks of Text Together

SCRIPT/VS provides several means of keeping lines of text together for such purposes
as:

e Ensuring that an example or list of items is not split across a column or page
e Keeping a heading and the first few lines of text below it together
e Placing a figure or diagram at the top or bottom of a column or page

® Preventing widows (single lines at the beginning or end of a paragraph that appear
by themselves at the bottom or top of a column or page).

Keeps

When you wish to keep a specific group of lines, such as a figure or example, together,
consider using:

e A regular keep, started with .KP ON, is placed in the current column if it will fit.
Otherwise, a column eject is performed and the keep is placed in the next column.
If necessary, a new page may be started to force the keep to be placed at the top of
the page body.

e A floating keep, started with .KP FLOAT, is placed in the next available column if
it does not fit in the current column. If the float does not fit into the current col-
umn, it 1s saved and the text that follows it in the input file is formatted and placed
in the current column. Once a float has been placed, neither it nor the text that was
moved before it can be rearranged for text distribution purposes.

e A delayed keep, started with .KP DELAY, is always placed in the next column,
whether or not it fits in the current column. As with floating keeps, text following
the keep in the input file can be moved ahead of it in the output to fill the current
column.

Each of these keeps must be explicitly ended with .KP OFF, and each saves the current
formatting environment. The formatting environment is restored when the keep ends.
See the Document Composition Facility: SCRIPT]VS Language Reference for a list of the
formatting parameters saved and restored around kecps.

Chapter 16. Keeping Blocks of Text Together 191

For example,

.kp on

.in pbé

.ir pb

. fo center

These lines will be kept together in the

column, regardless of page ejects and column balancing,
and

the formatted lines will be centered.

.kp off

These lines will not, however, necessarily appear in the
same column

as the lines above, nor will they be centered,

since the formatting mode was restored when the

keep was ended.

will be formatted as:

These lines will be kept together in the column,
regardless of page ejects and column balancing, and the
formatted lines will be centered.

These lines will not, however, necessarily appear in the
same column as the lines above, nor will they be centered,

since the formatting mode was restored when the keep was
ended.

If you place a large figure in a regular keep and it does not fit in the current column, it
will be placed in the next column. This can leave a large blank space at the bottom of
the current column. If the figure does not have a specific relationship to the text around
it, you can avoid the blank space by placing the figure in a floating keep. For example,

This paragraph contains a reference

to the figure that follows it.

This text will appear above the figure,
.kp float

(drop in figure here)
.kp off
but this text can appear above or

below the figure, depending upon whether
the figure is moved to the next column.

Inline Keeps

When you wish to ensure that a certain amount of text is kept together without other-
wise disturbing the formatting of that text, use an inline keep. Inline keeps are started

with:

e kp inline
* kpv

e kpv+tyv

192 DCF: SCRIPT/VS Text Programmer’s Guide

v is an amount of vertical space. These kinds of keeps do not cause breaks. For example,
to ensure that the heading of a table is kept together with the first few items in the table,

specify

. fo off

.kp 1i

.ce AMERICAN INVENTORS

. Sp

Name Born Died
. Sp

Armstrong, Edwin 1891 1954
Bell, Alexander 1847 1922
Bell, Herbert 1890 1970
Carlson, Chester 1906 1968
De Forrest, Lee 1874 1961

Inline keeps that specify an amount of vertical space are automatically ended when that
amount of text has been formatted. They can also be ended prematurely with .KP OFF.
In either case, no break is performed; the formatting of lines is not affected by the inline
keep.

Inline keeps are preferable to conditional column ejects, especially when your page lay-
out contains more than one column, because columns that are explicitly started with
.CB [Column Begin] or .CC [Conditional Column Begin] are ineligible for balancing. In-
line keeps ensure that text is moved to the next column if necessary to keep the text
together, yet allow preceding text to be moved into the next column as needed to bal-
ance the columns if the page is not filled. See “Chapter 12. Composing Multiple-
Column Pages” on page 141 for more information on column balancing.

There is an order of precedence among keeps, with regular, floating, and delayed keeps
taking precedence over inline keeps. If an inline keep is encountered within a floating
keep, it is ignored. But if a regular keep is encountered within an inline keep, the inline
keep is ended and the regular keep begun. Keeps of the same level of precedence end
each other, except for v and v+ v type of keeps. v and v+ v type of keeps will combine
their depths. For example,

.kp on

These lines will be
kept together in

one column.

.kp on

So will these lines,

but not necessarily in
the same column with the
previous few lines.

.kp off

Note: Some control words are not allowed within keeps and will cause termination of
the keep before being processed. This is true regardless of whether the control word is
found in the input file, in a tag, or within a macro. In general, these control words alter
the page or column definitions. See the Document Composition Facility: SCRIFTIVS
Language Reference for a listing of these control words.

Chapter 16. Keeping Blocks of Text Together 193

Floats

Figures and tables often are not related to the text immediately surrounding them.
SCRIPT/VS provides a way of setting such text apart from the body of the page by
placing it at the top or bottom of a column or page, independent of the body text.

Use the .FL [Float] control word to delimit the lines to be set apart, and to indicate
where they should be placed. For example, the input lines

. f1 on page
.im spunits
.hr left right
. f1 off

will place the contents of the file SPUNITS at the top of a subsequent page, separated
from the text in the page by a horizontal rule (Figure 3 on page 44 illustrates such a
float.)

Floats can be specifically designated for odd- or even-numbered pages. For example,

. fl1 on page even
.im tblleft

.sp 2

.f1 off

. fl on page odd
.im tblright

.sp 2

. f1 off

will place the contents of the file TBLLEFT and TBLRIGHT at the tops of two subse-
quent pages.

The intent of the previous example is to produce a double-page-width table on facing
pages of a duplexed document. However, if the next page is odd, the right-hand float will
be placed first, on the front of a sheet, and the left-hand float will be placed later, on the
back of the sheet. When floats bear such a relationship to each other, the ORDER op-
tion should be included in the .FL [Float] control word. Ordered floats will be placed in
the same order in which they are defined, ahead of any unordered floats.

When a single chapter of a document does not contain enough pages of text to accom-
modate all the floats defined within the chapter, you can specify

. f1 dump

before beginning the new chapter. Extra pages will be added as needed to place all the
queued floats within the current chapter.

Note: The same control words that are disallowed within a keep are also disallowed
within a float. In general, these control words alter the page or column definitions. See
the Document Composition Facility: SCRIPT|VS Language Reference for a listing of
these control words.

194 DCF: SCRIPT/VS Text Programmer’s Guide

Widow Zones

When SCRIPT/VS is concatenating input text, it will automatically prevent single out-
put lines at the beginning or end of a paragraph from being left alone at the bottom or
top of a column or page. This is called widow zone control. If a paragraph spans two
columns, at least two lines of the paragraph will appear in each column.”® Widow zone
control can be turned off by specifying

.wz off

Note: For purposes of widow zone control, SCRIPT/VS considers paragraphs to be de-
limited by breaks.

When a vertical, inline keep ((KP v or KP v + v) is ended and widow zone processing
is on, the ended keep is treated as the first two lines of a widow zone. When regular,
floating, delayed and inline keeps are ended, SCRIPT/VS does not attempt to keep the
last line in them together with the next line. This may cause one line widows to occur.

Widow zones are ended by any control that causes a break or by a line with a leading
tab or blank. A widow zone is also ended whenever a line is encountered that is more
than one-third the depth of the page body.

“8 When widow zone control is in effect, paragraphs of fewer than four lines will not be split
between columns.

Chapter 16. Keeping Blocks of Text Together 195

Chapter 17. Creating Footnotes

The .FN [Footnote] control word allows you to have text formatted and placed at the
bottom of a page as a footnote. SCRIPT/VS determines how many lines currently re-
main on the page and reserves the space needed for the footnote. The following example
will produce the footnote at the bottom of this page.

.fn on

#*% This line is going to
appear as a footnote

on this page.

. fn off

SCRIPT/VS prints a horizontal rule of 16 figure spaces, called a leader, to separate the
body of the page from the footnote. To change the footnote leader, redefine it before the
page on which the footnote appears is started:

. fn leader
. sp

Tt deb e e ekt
.sk
. fn off

Normal Footnote Placement

Because there is no maximum depth for a footnote, once a footnote is started, text is
included in the footnote until a .FN OFF control word is encountered, or unless the
footnote is prematurely ended by a disallowed control word.

To keep the footnote and its callout on the same page, you should enter the .FN (Foot-
note) control word and the footnote input lines immediately after the word or phrase
that the footnote refers to (known as the “footnote callout”). If the footnote does not
immediately follow a text line (without an intervening break), it will be placed as soon as
possible and no attempt is made to associate it with a callout line or widow.

** This line is going to appear as a footnote on this page. Unless otherwise indicated,
footnotes are generally aligned against the left page margin. In this book, offset style is
used and footnotes have been adjusted to be aligned with the offset text. This also ap-
plies to the footnote leader.

Chapter 17. Creating Footnotes 197

A line or widow containing a footnote callout will be placed on the page if there is suffi-
cient space for all of the following:

e The line or widow
o The footnote leader

e At least two lines, counting skips and spaces, of the last footnote referenced in that
line or widow. If the footnote is only three or less lines deep, then the entire foot-
note must fit on the page.

If there is insufficient space on the page for the line or widow, the line or widow and its
associated footnote will be moved to the next page. However, if the line or widow 1is
already at the top of a page it will not be moved. In such a case, the line or widow will
be placed on the page with as much of the footnote as will fit. The remainder of the
footnote will be placed on a subsequent output page.

In placing footnotes, SCRIPT/VS will, if necessary, attempt to split footnotes only if
they are four or more lines (including skips and spaces) deep. If a footnote is split,
SCRIPT/VS will keep at least the first two lines of the footnote on one page, and it will
keep at least the last two lines of the footnote on another page. For the purposes of
splitting, a double spaced footnote line and a vertical space generated by a single control
word (for example, .SP 3) are considered to be single lines.

When a footnote is split, or cannot be placed on a page (for example, the first of two
footnotes called out on a page is greater than the space allowed for footnotes on that
page), the remainder will be allowed to float to the next available page.

Whenever a new page is started, footnotes that were allowed to float from previous pages
are placed on the new page. In placing footnotes that were floated from previous pages,
SCRIPT/VS will attempt to reserve space on the page for any pending output line or
widow that has not yet been placed. If that pending line or widow also contains footnote
callouts, the line or widow may be further deferred, as necessary, in order to keep foot-
notes and their callouts on the same page.

The .FL (Float) DUMP control word causes SCRIPT/VS to place all floats, including
footnotes, before resuming input text processing.

Unusual Footnote Placement Conditions

198

There are certain conditions under which SCRIPT/VS will be unable to satisfy the gen-
eral guideline of keeping footnote callouts and at least two lines of the last footnote on
the same page. Some of these conditions occur when:

e The page depth is very small

e The footnote leader is very large

e One or more footnotes are very large.

The conditions and the actions that will be taken are as follows:

e If the footnote leader is as large or larger than the body depth plus the first line of
the first footnote, the footnote will be placed on the page but not the footnote
leader.

e [f the callout line or widow is at the top of the page and all of the footnotes will not
fit, then SCRIPT/VS will cause as many of the footnotes as necessary to “float” to
subsequent output pages.

DCF: SCRIPT/VS Text Programmer’s Guide

e If the callout line or widow is at the top of the page, then SCRIPT/VS will, if nec-
essary, place only one linefof the first footnote on the page.

e If the callout line or widow is at the top of the page, then SCRIPT/VS will, if nec-
essary, split the first footnote even if it is a two or three line footnote (this will cause
the first line and/or the last line to be placed by itself on an output page.)

Note: The splitting of small footnotes or the placement of only one line of a footnote
will not occur unless the footnote is the first one to be placed on the page. If at least one
complete footnote is placed on the page, then SCRIPT/VS will only attempt to split the
other footnotes if they are four or more lines deep and the first two lines and the last
two lines will be kept together.

If a footnote begins with one or more skips and the footnote is the first one to be placed
on the page, the size of the first skip will be made zero.

Other Footnote Considerations

sk sk sfokokokokokokokokokok ok

You can mark up a footnote with GML tags, control words, macros, and text just as
you can the material within a keep. For example, to provide special formatting within a
footnote you could enter:

. fn on

.tr 2 B2

.in 2 after 1

2 This is the next footnote
in this section.

. fn off

Since footnotes do not cause breaks, you can interrupt a sentence to place the footnote
on the line above the word it refers to, even if the word is in the middle of a sentence.

Because the environment is saved during a footnote definition and restored after it, any
formatting changes within the footnote (such as indention, font changes, revision codes,
and so on) are automatically restored to their previous values when the footnote is
ended. In the example above, therefore, it was not neccessary to reset the indention. See
“Chapter 20. Defining the Formatting Environment” on page 219 for details about sav-
ing and restoring the formatting environment.

Note: The control words that are disallowed within a keep are also disallowed within a
footnote.

2 This is the next footnote in this section.

Chapter 17. Creating Footnotes 199

Chapter 18. Translating Characters

SCRIPT/VS performs several character translations on input and output lines as part of
its normal processing. You can define the specific character mappings each of these
translations performs for such purposes as:

e Printing characters that are available on your output device but not on your termi-
nal

e Simulating control characters not available on your terminal
e Pairing the upper- and lowercase letters of various national languages

e Expanding individual input characters into character strings.

Translating Output Characters

If you are using a terminal with a standard keyboard, you may not have an immediate
way to enter special characters in a SCRIPT/VS file. You cannot, for example, directly
enter a bullet (¢) from the keyboard. When you print SCRIPT/VS output, you may
want to use a bullet and other special characters as well. One way to enter special char-
acters into a file is to use the appropriate commands while editing.

SCRIPT/VS provides another method for printing special characters. You can specify
that one of your keyboard characters be translated to the special character, using the .TR
[Translate Character] control word. For example,

.tr # af

Each occurrence of an asterisk in your file is translated, on output, to the bullet charac-
ter (#) that has the hexadecimal code AF.*® For example, the input line

* Pay attention to this point.
results in:
¢ Pay attention to this point.

You can specify as many translation pairs with one .TR [Translate Character] control
word as your input line allows. For example,

49 The hexadecimal codes for each character for line devices are shown in the Document Compo-
sition Facility: SCRIPT|VS Language Reference. The hexadecimal codes for page printer
fonts depend on the code page being used. See the 4250 printer, the 3800 Printing Subsystem
Model 3, and the 3820 Page Printer font catalogs for the appropriate code points.

Chapter 18. Translating Characters 201

.tr 0 b0 1 bl 2 b2 3 b3 4 b4 5 b5 6 b6 7 b7 8 b8 9 b9

causes the characters 0 thru 9 to print as their corresponding subscript characters if they
are available in the current font. For example, the formula: %

X2+Y2=Z3 prints as: X+Yz=Z3

To cancel translation of all previously specified character mappings, use the .TR
[Translate Character] control word with no parameters:

.tr

When you have many character mappings specified, you can reassign or cancel some of
them without affecting the others. For example,

.tr ((

cancels translation of the left parenthesis to any character established for it. Actually, this
is equivalent to setting up a new mapping for (: the character is to be translated to itself.

Note: While an output character mapping is in effect, every occurrence of the affected
character is translated to the designated output character. You should therefore take care
to translate only characters that will not be needed during that time.

Output translation is performed during formatting just before the characters’ widths are
measured for justification.

If you have used the .TR [Translate Character] control word and direct the SCRIPT/VS
output to your terminal, some of the special characters cannot be displayed in the out-
put. The positions occupied by the translated characters can appear as blanks because
there are no equivalent characters on the terminal. You can use the .IF [If] control word
to make character translations conditional based on the output device:

.if SYSOUT eq PRINT .tr * af

This control word line results in output translation of asterisks (*) to bullets () only if
output is going to the printer. The .IF [If] control word is discussed in detail in “Chapter
22. Processing Logical Statements” on page 253.

Translating Input Characters

202

SCRIPT/VS also performs character translation on input lines. The .TI [Translate Input]
control word allows you to make characters that are unavailable on your terminal effec-
tively part of your input file. For example, the IBM 3270 terminal does not have a tab
key. However, an available character, such as the not-sign (—), can be translated to
hexadecimal 05, the tab character code:

.ti - 05

While the translation is in effect, any not-sign (—) on an input line is processed as
though it were a tab. Because the translation occurs first, before any other processing,
you should take care when using the .T1 control word:

50 Superscript characters are not available in all fonts on all devices.

DCF: SCRIPT/VS Text Programmer’s Guide

Use hexadecimal codes for the special character rather than the character itself. For
example,

ti %S

translates all occurrences of % to $. However, you cannot restore the percent-sign
character by subsequently issuing

Lti % %

because that input line is translated to .ti § $ before being processed. However, you
can restore % to itself with

.ti 6C 6C

Be careful. Remember that each character on the input line is translated (if a trans-
lation for it exists) before processing the input line. If you translate 0 (hexadecimal
F0) to @ (hexadecimal 7C), for example, with

.ti FO 7C

you cannot restore the 0 to its original definition by issuing

.ti FO FO

because each 0 in the above control word would be translated to @ before the con-
trol word is processed. The only way to restore the 0 to its original definition is by
issuing .TI [Translate Input] with no parameters.

Be careful when you translate a symbol that has special meaning for SCRIPT/VS,
specifically the period (. or hexadecimal 4B) and the blank (hexadecimal 40). For
example,

il %

translates the period (.) to the percent sign (%). All subsequent SCRIPT/VS con-
trol words are ignored because the input characters are translated first, before the
line is processed. Control words and macros would be regarded as text because they
begin with a percent sign instead of a period.

To restore all characters to normal, use the .TI [Translate Input] control word with
no parameters:

.ti

Capitalizing Text

SCRIPT/VS provides several means of capitalizing text. They are:

The UPCASE option of the SCRIPT command, described in detail in the Docu-
ment Composition Facility: SCRIPT|VS Language Reference.

The .UP [Uppercase] and .UC [Underscore and Capitalize] control words, described
in detail in the Document Composition Facility: SCRIPT|VS Language Reference.

The .HO - .H6 [Head Level 0 - 6] control words, if capitalization is specified with
the .DH [Decfine Head Level] control word

Chapter 18. Translating Characters 203

¢ The .DF [Define Font] and .BF [Begin Font] control words, described in “Chapter
6. Composing Lines” on page 71

¢ The &U’ symbol attribute, described in “Chapter 21. Processing Symbols” on page
223

By default, SCRIPT/VS capitalizes text by translating the letters a through z to A
through Z. This translation can be extended for languages other than English with the
.TU [Translate Uppercase] control word. For example,

.tu 8a ca 9a da aa ea
would add capitalization pairs appropriate for German.
Uppercase translation can be reset to its default by entering
. tu

without any parameters. Note, however, that unlike .TR and .TI, the default for .TU is
the mapping of a through z to A through Z.

Translating Strings of Characters

204

All of the forms of translation discussed above provide one-to-one character pairings:
Each character is mapped by the translation into another single character. Occasionally,
it may be convenient to translate a single character into a string of characters. For exam-
ple, single asterisks can be expanded into arrows:

Lts F j==> /

With this translation in effect, the input line
*Pay Attention

will be formatted as

===> Pay Attention

The character string that replaces a character can contain both text and control words.
For example,

.dc cw off

.ts < /;.bf 3"/
.ts > /7" pfy/
.dec cw ;

will cause the input line
<What, four> bellowed the Mathemagician.
to be formatted as

"What, four?" bellowed the Mathemagician.

String translation is actually a form of symbol substitution, and therefore:

DCF: SCRIPT/VS Text Programmer’s Guide

¢ s only performed when symbol substitution is on. (You can inhibit string trans-
lation with the .SU [Substitute Symbol] OFF control word.)

e s performed at the same time as symbol substitution, just after input translation,
but before any other processing.

e s not subject to further symbol substitution.

String translations are reset somewhat differently from other forms of translation, and
special care must be taken to prevent string translation when resetting a character. The
first example above can be safely reset by specifying

.ts 5¢ off

or

.su off
.ts * off
.su on

Remember when using .TS that, like .T1, string translations affect all occurrences of the
character, and are performed before any other processing of the line.

If you specify .TS IGNORE, this causes SCRIPT/VS to ignore the width of specified
characters when it is measuring the text to put on an output line. For example, if you
specify

.ts a ignore

this causes SCRIPT/VS to assign a width of 0 to the character “a” when SCRIPT/VS
measures text.

Prefixing Input Lines

You can use the .PX [Prefix] control word to replace control characters at the beginning
of input lines with control words, macros, or other strings.

With the .PX control word, you can get control over lines that start with a particular
character. For example, a complier listing might have printer carriage control characters
in the first position of each output line. A new page might be signalled by a line that
starts with the ASA control character 1.

You can write a macro called NEWPAGE, and then cause the macro to get control
whenever SCRIPT reads a line that starts with the control character one. To do this,
you would use the .PX control word:

.px 1 /.NEWPAGE/

This will cause every 1 in position one to be deleted and replaced with the character
string .NEWPAGE. Because the line now starts with a period, followed by the name of
a defined macro, SCRIPT will give control to that macro just as though the original
input line had started with .NEWPAGE.

Only lines read from an input file are examined for prefixing; macro lines are never pre-
fixed. Prefixing is performed before symbol substitution and is performed even when
symbol substitution is off.

Chapter 18. Translating Characters 205

206

To treat input lines beginning with an asterisk (*) as comments, you can prefix them
with the SCRIPT/VS comment characters:

px ¥ /.*

Any input line beginning with * is prefixed: the * is replaced with .*,

You could turn off the input line prefixing as begun in the previous example by entering:
.px * off

If an input line does not begin with a currently defined prefix control character, you can
use

.px null /.*
to add a period and an asterisk (.*) to the front of subsequent input lines (until turned

off with a .PX OFF control word) without disturbing the first character in the input
lines.

DCF: SCRIPT/VS Text Programmer’s Guide

Chapter 19. Creating an Index

SCRIPT/VS enables you to automatically produce an index, such as the one contained
in this publication. You must include the INDEX option when you issue the SCRIPT
command to indicate to SCRIPT/VS that an index is to be generated from the informa-
tion provided by the .PI [Put Index] control words. If the INDEX option of the
SCRIPT command is not specified, all .PI control words are ignored. The .PI [Put
Index] control words are used to specify the index entries and are placed throughout a
document wherever the index entry topics are described.

This index can contain multilevel entries and cross references. SCRIPT/VS generates the
page numbers for the index entries based on the location of .PI control words within the
document. For example, specifying

.pi /weasels/

indicates that the term weasels should be placed in the index along with a reference to
the current page number.

Placing the Index in a Document

Use the .IX [Index] control word to indicate where you want the index to be placed.
When .IX is encountered, SCRIPT/VS:

e Starts a new page, if it is not already at the top of a page
® Prints the word INDEX as a heading.

If you want a different title for the index page, you can specify it as

. ix Subject Index
this indicates that Subject Index is to be used for the title instead of INDEX.
If you do not want a title at all, specify

Lix /

and SCRIPT/VS will generate the index without a title.

TWOPASS Considerations

In order to have correct page numbers in the index, pages must be numbered the same
way on both passes. On the first pass, the index is empty. On the second pass, it can
contain several pages of information.

You should reserve a range of page numbers for the index. This ensures that the page
following the index will have the same page number for both passes so that the page

Chapter 19. Creating an Index 207

number for the index entries collected during the first pass will be correct during the sec-
ond pass. For example, if the index will require three pages, you can reserve the current
page number and the next two page numbers by specifying:

.ix 3 Index

Another way to ensure consistent page numbering between the two passes is to explicitly
reset the page number with a .PA [Page Eject] or .PN [Page Numbering Mode] control
word before any head level or .IX [Index] control word is encountered that requires
knowledge of the page number.

Creating Index Entries

Page References

The first nonblank character that follows the .PI control word delimits the beginning of
an index term; the second occurrence of that character delimits the end of that term. Any
nonblank character that does not appear in the index term can be used as a delimiter.
The trailing delimiter does not have to be specified if no other text follows the index
term on the input line. For example, specifying

.pi ?SCRIPT/VS

will place the term SCRIPT/VS in the index along with a reference to the current page
number.

Regardless of the order in which they are specified within a document, all index entries
are placed in alphabetical order before the index is formatted. For example, if you specify

.pi /martens
.pi /marsupials

marsupials will appear in the index before martens.

If the same index term is specified several times within a document, that term will only
be included in the index once. The page numbers for each occurrence of that term will
be listed after it, separated by commas. For example, several occurrences of the term
melodrama will be formatted in the index as

melodrama 9, 14, 37

If one particular instance of an index term is more important than the others, you can
use the ORDER parameter of the .PI [Put Index] control word to indicate that that page
reference is to be listed first, regardless of where in the document other references occur.
For example, if the second reference to melodrama refers to the principal discussion of
the subject, and the others are just passing references, the second instance can be speci-
fied as

.pi order /melodrama

The entry will be formatted as

melodrama 14, 9, 37

If the discussion of a topic is lengthy, you can indicate the range of pages the discussion
spans. The START and END parameters of the .PI control word can be used to mark

208 DCF: SCRIPT/VS Text Programmer’s Guide

the beginning and end of the topic. For example, the principal discussion of melodrama
can be preceded by

.pi start /melodrama

and succeeded by

.pi end /melodrama

The entry will be formatted as

melodrama 9, 14-16, 37

Multilevel Entries

When there are many references to a particular index term, you may want to further
qualify the term with another level of indexing. Up to three levels of terms can be speci-
fied for an index entry using the .PI control word. SCRIPT/VS collects all index entries
with the same first-level term and sorts the second-level terms alphabetically. These
second-level terms are then placed in the index immediately following the first-level term
to which they apply. Similarly, all third-level index entries with the same first- and
second-level terms are collected and formatted alphabetically. These third-level terms are
then placed in the index immediately following the second level-term to which they ap-

ply.
A description of weasels, for example, can contain the following:
.pi /weasels/training
.pi /weasels/care and feeding
.pi /weasels/breeding
The index entry for weasel looks like this:
weasels
breeding 22
care and feeding 15
training 14

Similarly, the section concerned with the care and feeding of weasels might contain these
entries:

.pi /weasels/care and feeding/exercise
.pi /weasels/care and feeding/nutrition

.pi /weasels/care and feeding/dental hygiene

Chapter 19. Creating an Index 209

The index entry will then appear as:

weasels
breeding 22
care and feeding
dental hygiene 19
exercise 15
nutrition 16
training 14

Explicitly Specified Page Numbers

Cross-References

When four index terms are specified with a .PI [Put Index] control word, the fourth term
is not interpreted as a fourth-level term; it is used in place of the current page number in
formatting the index entry. For example, to indicate that a Japanese Black Pine is illus-
trated in the fourth folio that is being attached, you can specify

.pi /Pines/Japanese Black//Folio 4

The text Folio 4 will be formatted in the index along with the page numbers of the other
occurrences of these terms. This index entry will be formatted as

Pines
Japanese Black 19, 22, Folio 4

When there are a large variety of topics in a document, you may want to include cross-
references to related topics. The REF parameter of the .PI [Put Index] control word can
be used for this purpose. This parameter indicates that the last term specified is a cross-
reference to another index entry.®' Rather than suffixing the term with the current page
number, SCRIPT/VS will prefix it with See or See also depending on whether or not
there are any non-reference terms of the same level. For example, if the document de-
scribing weasels also contained a general discussion of burrowing mammals, you might
want to specify

.pi ref /weasels/martens

which would make the index entry appear as

weasels

See also martens

breeding 22

care and feeding
dental hygiene 19
exercise 15
nutrition 16

training 14

5' The REF parameter is valid only if at least two terms are specified.

DCF: SCRIPT/VS Text Programmer’s Guide

Index cross references can also be used to direct readers from variations on a term to the
principal index entry for that term. For example, specifying

.pi ref /circular definition/definition, circular

will create the following index entry:

circular definition
See definition, circular

Because there are no nonreference terms under the entry circular definition, the cross ref-
erence is prefixed only with See.

Sorting Index Entries

SCRIPT/VS collects index entries as they are specified throughout the document and
sorts them alphabetically. Included for each index term are the text of that term and a
sort key. The sort key is used to determine where each entry is placed in the index and
to group multiple occurrences of the same entry.

The sort key for an index entry is, by default, created by folding the text of the index
term to uppercase. Therefore, many different index terms can result in the same sort key.
SCRIPT/VS considers index terms with the same sort key to be multiple occurrences of
the same term and formats them as one term with multiple page references. Thus the
index terms

.pi /Walrus
.pi /walrus
.pi /WALRUS

all have the same sort key, WALRUS, and will be recognized as three occurrences of the
same index term.

The text of the term printed in the index is that of the first occurrence specified with the
.PI [Put Index] control word. Subsequent occurrences contribute only additional page
references. Therefore, the index entry for the preceding three terms will be formatted as

Walrus 4, 7, 22
When the page number for an index term is explicitly specified, but null, the term be-
comes part of the index without any page number associated with it. Subsequent occur-
rences of that term contribute page number references, but the text of the term is that of

the first occurrence. For example, if the profile for the document containing the preced-
ing terms contains

.pi /walrus////

The index entry will appear as

walrus &4, 7, 22

The text of the index entry is taken from the first occurrence of the term. The page num-
bers come from the three subsequent occurrences of that term.

Chapter 19. Creating an Index 211

Handling Special Characters

212

Index terms often contain special characters that, even though they are part of the term,
should not be considered when the term is being alphabetized. For example,

.pi /"The Walrus & the Carpenter"
will, by default, be placed at the beginning of the index because the double quotation
mark (') appears near the beginning of the alphabetizing sequence. You can use the IXI

parameter of the .DC [Define Character] control word to indicate that certain characters
are to be ignored when they appear in an index term. For example, if you specify

.de ixi "

the preceding index term will be placed in the T section of the index, rather than at the

beginning, because the double quotation marks will be ignored when the index terms are
sorted. Similarly, the terms

.pi /0lduvai Gorge
.pi /0'Leary/

will, by default, be formatted in the index as

0'Leary 39
Olduvai Gorge 22

However, if you specify

.dc ixi '

before specifying these terms, the apostrophe in O’Leary will be ignored during sorting
and the index entries will be formatted as

Olduvai Gorge 22
0'Leary 39

It is even possible to have SCRIPT/VS ignore blanks in index terms when sorting them.
For example, the terms

.pi /Waterford
.pi /water wheel

will, by default, be formatted as

water wheel 12
Waterford 7

because the blank precedes fin the alphabetizing sequence.
If you specify
.dc ixi 40

blanks will be ignored during sorting and the entries will be formatted as

Waterford 7
water wheel 12

DCF: SCRIPT/VS Text Programmer’s Guide

Initially, there are no characters that are ignored for index sorting.

There may be occasions when you want special characters treated as blanks when they
appear in an index term. You can use the IXB parameter of the .DC [Define Character]
control word to do this. For example, the terms

.pi /second-class mail
.pi /second division

will, by default, be formatted as

second division 32
second-class mail 29

because the blank character precedes the hyphen in the alphabetizing sequence. How-
ever, if you specify

.dc ixb -

before specifying the preceding index terms, the hyphens will be treated as blanks during
the sorting process, and the entries will be formatted as

second-class mail 29
second division 32

Initially, only hexadecimal 40 is treated as a blank when sorting index entries.

Explicitly Specifying Sort Keys

Occasionally, you may want to place an index entry in some section of the index inde-
pendent of the entry’s default sort key. You can use the KEY parameter of the .PI [Put
Index] control word to explicitly specify the sort key that is to be used for an index term.
The KEY parameter is specified as

.pi key /keyl/key2/key3/ /terml/term2/term3

where keyl, key2, and key3 are the new sort keys that are to be used and terml, term2,
and term3 are the index terms that they apply to. The keys are separated by a delimiter
that can be any nonblank character that does not appear in any of the keys. All four
delimiters must be specified even if only one key is being specified and the other keys are
null. For example, to place the term IBM 3800 at the end of the index in the 3 section,
specify

.pi key /3800/// /IBM 3800
For a multilevel index entry, explicitly specified keys can be specified separately for each

level. When the specified key is null, the sort key is developed according to normal
SCRIPT/VS sort key processing, as described earlier in this section. For example, if you

specify
.pi key /HUNGARY/// /[Austria-Hungary/Domestic Policy
The term Austria-Hungary is placed in the H section of the index, using HUNGARY as

the sort key. The key for the second-level term, Domestic Policy, is developed using
normal SCRIPT/VS key processing, because the explicit sort key specified is null.

Chapter 19. Creating an Index 213

Using the KEY parameter of the .PI control word, you can make the text of an index
term completely unrelated to the actual term. For example, if you specified

.pi key /WALRUS/// /"The Walrus and The Carpenter"
all entries specified for walrus would be formatted in the “W?” section as
"The Walrus and The Carpenter" 4, 7, 22
instead of as

walrus &4, 7, 22

provided that the entry with the KEY parameter comes before any other .PI control
word with “walrus” as its index term.

Creating the Index

214

When you specify the .IX [Index] control word, SCRIPT/VS formats the index by creat-
ing and executing the .IE [Index Entry] control words generated for each index entry.
The first parameter of the .IE control word indicates the index entry level. For example,
the control words

.pi /Pines/Lodgepole
.pi /Pines/Japanese Black

generates the first-level term, Pines, with two second-level terms, Japanese Black and
Lodgepole.

When you specify .IX, SCRIPT/VS formats these terms by creating and executing the
following control words:*

.IE1 Pines
. IE2 Japanese Black 9
.IE2 Lodge pole 5

The .IE [Index Entry] control word causes a break and sets an indention based on the
first parameter. This makes the formatted entry appear as

Pines
Japanese Black 9
Lodge pole 5

52 The blank between the control word name and the first parameter does not have to be speci-
fied. It is omitted in the .IE [Index Entry] control words generated by .IX [Index].

DCF: SCRIPT/VS Text Programmer’s Guide

The .IX [Index] control word precedes each section of the index with an .JE Header con-
trol word. For example, the P header that precedes the section containing terms begin-
ning with P is generated using

.IEH P

This header control word causes SCRIPT/VS to skip two lines, print the specified sec-
tion letter, and then skip another line before formatting the first index entry for that sec-
tion.*® The .IX control word generates and executes a header for each section of the
index for which there are entries.

53 Because SCRIPT/VS omits the optional blank between the control word name and the first
parameter, you can write macros to provide more elaborate formatting for some index entries
without interfering with other terms. For example, the following macro will draw a box
around each index header:

.dmieh /sk 2 /bx 15/ &*/bx off /sk

The formatting of first-, second-, and third-level entries is not affected by this macro.

Chapter 19. Creating an Index 215

Part 3. SCRIPT|VS Programming Facilities

This section of the book contains information about the programming facilities of
SCRIPT/VS.

Included in this section are the following chapters:

® Chapter 20 - Defining the Formatting Environment
e Chapter 21 - Processing Symbols

e Chapter 22 - Processing Logical Statements

e Chapter 23 - Processing Macros

e Chapter 24 - Processing GML

® Chapter 25 - Verifying Spelling.

Part 3. SCRIPT/VS Programming Facilities 217

Chapter 20. Defining the Formatting Environment

The formatting environment is a set of values and parameters that specify exactly how
SCRIPT/VS is to format each line on an output page. The formatting environment con-
sists of three parts:

The active environment, which contains parameters for formatting text
The page environment, which contains paramecters that define the entire page

The translation tables associated with the .TI [Translate Input] and .TR [Translate
Character] control words.

The Formatting Environment Parameters

When SCRIPT/VS ejects to a new page (or begins the first page), it prepares the output
page in the following manner:

1.

It saves the active environment values used for body text and initializes the active
environment for formatting running headings and running footings.

The active environment is reinitialized before each of these is formatted.

Top and bottom page floats are selected from the float queue. If any floats exist and
will fit, they are placed on the page.

The output page’s running headings and footings, and page floats are now in place
on the output page. All page control dimensions are fixed for this page, and any
changes to these values will take effect on the next page.

SCRIPT/VS restores the active environment for body text that it had saved.

Input lines are processed to produce output lines, which are inserted into the body
of the page. When the page is full, or when a page eject occurs, the formatted page
is sent to its output destination.

The Running Heading and Footing Environments

When running headings and footings are started, SCRIPT/VS:

Saves the current formatting environment
Restores the initial formatting environment

Modifies the environment to reflect changes that have been made with the .DC and
.GS control words.

When the running heading or footing ends, the saved formatting environment is restored.

Chapter 20. Defining the Formatting Environment 219

The Keep, Float, Footnote, and Named Area Environments

When keeps (other than inline keeps), floats, footnotes, and named areas are started,
SCRIPT/VS saves a copy of the active environment and then modifies it by:

¢ Clearing the values of the .OF [Offset] and .UN [Undent] control words
¢ Restoring the indention to the basic .IN [Indent] value currently in effect.

In addition, for page floats and footnotes, the column line length is set equal to the line
length value.

When the keep, footnote, float, or named area ends, the saved copy of the active envi-
ronment is restored.

Saving and Restoring the Current Formatting Environment

The .SA [Save Environment] and .RE [Restore Environment] control words are used to
save and restore the current formatting environment. All three parts of the environment
are saved and restored by .SA and .RE:

o The active environment
e The page environment
e The .TI and .TR translation tables.

For example, part of an input file that contains a distribution list requires indention and
tab settings to format properly. However, the main document indention and tab settings
are different. You could use the .SA [Save Environment] and .RE [Restore Environment]
control words, as in the following example,

.sa
.in

Distribution list for special publications:
.sk

.in 3m

.ti =~ 05

.tp 21 2.54i

.us Name -Dept -Address

.%* End of distribution list
. re

to avoid having to restore the main document’s values.

Named Environments

220

The .SA control word saves environments in a stack or by name. The .RE [Restore
Environment] control word restores the SCRIPT/VS environment to the values that
were in effect at the time of the corresponding .SA control word.

To save the current environment by name, enter

.sa barnes

DCF: SCRIPT/VS Text Programmer’s Guide

The current environment is saved as BARNES.

The .SA control word only saves a copy of the values of these SCRIPT/VS variables in
the current environment, it does not change any of these variables.

Because .SA does not change any of the SCRIPT/VS variable settings, all variables
should be explicitly set to the appropriate values unless the current settings are known.
For example, you can explicitly set indention to 0 and then restore it to whatever it was
previously.

The .RE control word restores the SCRIPT/VS formatting environment from a named
saved environment or from the last-in-first-out stack created by the .SA control word.
The .RE control word restores the SCRIPT/VS variables to values that were in effect at
the time of the corresponding .SA control word.

To restore the most recently saved unnamed environment, enter
.Te
To restore the named environment BARNES, enter

. re barnes

If there is no currently active .SA control word, the .RE control word restores the initial
values.

Chapter 20. Defining the Formatting Environment 221

Chapter 21. Processing Symbols

By using symbols, you can refer to page numbers, variable values, character strings, and
control words in your input file. A symbol has a name and a value. When SCRIPT/VS
encounters a symbol name, it replaces it with the current value of the symbol. After all
symbol names in an input line have been replaced with their current values, SCRIPT/VS
processes the line.

Define a symbol with the .SE [Set Symbol] control word. For example, to define the
symbol &printer, you can specify

.se printer = 'IBM 1403 Printer'
Later, you can refer to the symbol printer in an input line as &printer. Each SCRIPT/VS

symbol is identified with its prefix, an ampersand (&). The symbol is terminated with
either a period (.) or a blank. For example, the input line

Our publisher uses the &printer for output.

is processed by SCRIPT/VS and printed as:

Our publisher uses the IBM 1403 Printer for output.

but,

Our publisher uses the &printer..

is processed as:

Our publisher uses the IBM 1403 Printer.

Your document might contain the symbol &printer many times, in different places. In
the future, when you want the document to describe a different printing device, you can
reset the symbol with

.se printer = '3800 Printing Subsystem'

At that time, SCRIPT/VS will process your document and substitute the new value for
the same symbol:

Our publisher uses the 3800 Printing Subsystem for output.

The symbol name can be up to ten characters long and can contain upper and lowercase
characters, numbers, and the characters @, #, and $.

The symbol value can be a character string, a numeric value, another symbol, or an
arithmetic expression. It can contain compound data items with imbedded blanks and
control words. If the symbol value contains blanks or special characters, enclose the en-
tire value in single quotation marks (as shown in the example above).

Chapter 21. Processing Symbols 223

The .SU [Substitute Symbol] control word causes SCRIPT/VS to stop or resume the
substitution of defined set symbols. The .SU control word causes a specified number of
subsequent input lines, including control words as well as text, to be scanned for defined
set symbols.

If the argument ON is in effect, every line up to a subsequent .SU OFF will be scanned.
Substitution ON is the initial value but it is reset to OFF with .SU OFF or with .SU n,
after n lines have been read.

Even when symbol substitution has been turned off with the .SU [Substitute Symbol]

control word, symbols on a .SE control word line will be substituted if they are not en-
closed in single quotation marks.

Some examples of valid symbol definitions are:

¢ A numeric value:

. se number = 25
.se add = 1

® A character string:

.se textl = 'IBM 1403 Printer'
.se TEXT1 = 'IBM 1403 Printer'

® A character string that includes a quoted phrase:

.se type 'prepared on a "word processing' machine
.se type = 'prepared on a "word processing'" machine

e A SCRIPT/VS control word:

.se break = '.br'

¢ The value of another symbol:

.se printer = '&textl'
You can perform integer arithmetic with symbols:

e To increment it:

.se incr = &add + 1
.se next = &number + 1

¢ To decrement it:

|

.se prev = &number - 1

e To divide it:

]

.se half = &number / 2

224 DCF: SCRIPT/VS Text Programmer’s Guide

e To multiply it:

&add * 10
&number * 20

.se mult
.se cost

e To negate a value:

. se negvalue = -&number

Symbols can also be set using the .RV [Read Variable] control word. The .RV control
word allows you to enter symbol values from the terminal during SCRIPT/VS process-
ing in interactive environments.

For example, a symbol called name could be set with the following control word:

.se name = 'Ray Hicks

The same symbol could also be set this way:

.rv name = '

At this point, SCRIPT/VS issues a read to your terminal and you can enter the material
to be used as the value of the symbol. In this example, you would enter:

Ray Hicks

You must use single quotation marks in the same circumstances where they would be
required in a .SE control word.

Symbols can be set to a part of the value of another symbol by using the SUBSTR
(substring) parameter of the .SE [Set Symbol] control word. The substring is one or
more characters of the character string (the symbol value). For example,

.su off

.se corp = 'Scriptographicology, Inc.'
.se name = substr &corp 1 6

.su on

sets the symbol &name to the substring of the value of the symbol &corp beginning with
the first character (character 1) and continuing for six characters. Because &corp has
been previously set to Scriptographicology, Inc., this substring results in the symbol
&name having the value of the 6-character substring Script.

The SUBSTR (substring) function also can be used to extract characters from a charac-
ter string that is not another symbol value. For example,

.se name = substr Jonathan 5 4

sets the symbol &name to that 4-character substring of Jonathan beginning with charac-
ter 5: the symbol &name will have the value than. The substring must follow the rules
for character string values of a symbol. If the string contains any imbedded blanks or
special characters, including arithmetic operators, it must be enclosed in single quotation
marks.

You can use the INDEX function of the .SE [Set Symbol] control word to find the lo-
cation of a string of characters within a symbol value or a string of characters. For

Chapter 21. Processing Symbols 225

example,

.se name = 'Nicola’
.se location = index &name cola

defines the symbol &location to have the value 3, because the string cola starts with the
third character of the value of &name (Nicola).

The INDEX and SUBSTR parameters can be used together to process control informa-
tion. For example, the SYSVAR option of the SCRIPT command can be used to spec-
ify formatting parameters and you can define SYSVAR C to establish the number of
columns. You can validate that a permissible value has been given with the INDEX pa-
rameter:

.se x = index '-1-2-' '-&SYSVARC. -'
.if & eq 0 .mg /e/SYSVAR C invalid.

If the value given in &SYSVARC is valid, you can use the symbol &x, set with the

INDEX parameter and the SUBSTR parameter to convert synonyms of valid values to
a standard value:

.se cols = substr '1-2' &x 1

How SCRIPT/|VS Substitutes Values for Symbol Names

226

When SCRIPT/VS processes an input line, it first scans for any symbols in the line that
require substitution. SCRIPT/VS checks any character string that begins with an amper-
sand (&) to see if it is a symbol name. When SCRIPT/VS finds a valid symbol, it re-
places the symbol name with its value. A symbol name is ended either with a blank, a
period (.), or the end of the input line. If the symbol name ends with a blank, the blank
is treated as a normal input character and is left in the input line. If the symbol name
ends with a period, the symbol value, after substitution, is concatenated with the next
input character and the period is removed. Therefore, if a symbol has punctuation imme-
diately after it, you must concatenate the punctuation character to the symbol with a
symbol-end period. For example,

This list ends with an &iteml..

results in an end-of-sentence period concatenated with the value of the symbol named
&iteml. Otherwise, SCRIPT/VS considers a single period as the end-of-symbol indicator
and concatenates the symbol with the next character.

You should use this technique when the symbol precedes other punctuation marks or
text. For example,

The name of our product is &prodname., which is scheduled
for shipment on &shipmo &shipday., 19&shipyr..

In this example, values for the symbols are substituted and the printed sentence appears
as:

The name of our product is Whizbanger, which is scheduled
for shipment on January 22nd, 1985.

If you do not place an end-of-symbol period between &prodname and its punctuation
(,), SCRIPT/VS regards &prodname, simply as a character string, and performs no sub-
stitution.

DCF: SCRIPT/VS Text Programmer’s Guide

You can redefine a symbol as often as necessary in your input file. Each time you rede-
fine the symbol with the .SE [Set Symbol] control word, the new value replaces the old
value.

SCRIPT/VS limits an input line to a maximum of 256 characters. Because symbol sub-
stitution is performed before the line is evaluated, with symbol substitution on, the com-
plete input line including the substituted symbol values should not exceed 256 characters.
If the substituted line exceeds 256 characters, it will be split and the remaining characters
will be treated as a separate input line.

One exception to this processing occurs with symbol arrays. If an input line contains a
symbol array, for example, &sym(*), one or more elements of the array will be segre-
gated into additional input lines rather than splitting the line at 256 characters. However,
if the line contains a single element of a symbol array, for example, &sym(1), then the
symbol will be treated as a simple symbol.

Lines split during symbol substitution processing will be processed as if they were sepa-
rate lines in the input file. Therefore, it is possible even with formatting off, for a single
input line to appear as two or more output lines in the formatted document. This may
result in errors if a split line contains a script control word.

Compound Symbols

When SCRIPT/VS substitutes values for symbol names, it performs as many substi-
tutions as necessary to resolve the symbol name. Because of this, you can use a com-
pound symbol, composed of two or more separately defined symbols. For example,
when you define the symbols

.sex =1

.se typel = first

.se type2 = second
the input line

This is the &type&x try.

results in:

This is the &typel try. (intermediate result)
This is the first try.

Another example of compound symbols is in “Elaborating the System Date” on page
238.

Unresolved Symbols

Sometimes SCRIPT/VS encounters a symbol name that has not yet been defined. In
this case, the symbol is unresolved and remains in the input line as a character string that.
happens to begin with an ampersand. The unresolved symbol is printed on the output
page as it appears in the input line.

When you use symbols that are set later in the document than they are referred to (such
as a symbol that refers to a page number or a figure number), the symbol will be unre-
solved when first encountered. When you specify the TWOPASS option with the
SCRIPT command, SCRIPT/VS processes the input file twice. As a result, properly de-
fined symbols not resolved during the first formatting pass will be resolved during the
second pass.

Chapter 21. Processing Symbols 227

Inhibiting Substitution

228

Usually, ampersands that occur in an input file as ordinary text characters are treated as
text characters and not as symbol delimiters. The context in which it appears usually
prevents the text ampersand from being mistaken for a symbol name. Where a text am-
persand precedes a character string that forms a defined symbol name that you want
treated as a text character string, there are several ways to inhibit symbol substitution:

e Turn off substitution with the .SU [Substitute Symbol] control word. With the .SU
OFF control word, all substitution is turned off. You can turn symbol substitution
on again with .SU ON.

® Make the symbol name unrecognizable by adding punctuation without a delimiting
period. For example,

I have defined the symbols &AAA, &BBB, &CCC, and others
for this file.

The symbol for the day of the month (&SYSDAYOFM) is
maintained by SCRIPT/VS.

¢ Translate an unused punctuation mark or special character on your keyboard to the
ampersand, and enter the special character in your input whenever you need a text
ampersand:

.tr ¢ &

Because the translation happens after symbol substitution, the text ampersand can-
not be mistaken for a symbol-starting ampersand.

¢ Define a symbol to have the value of an unuscd hexadecimal code and translate that
code to an ampersand.® Enter the symbol name in your input whenever you need a
text ampersand. The &X'’ attribute can be used to assign the unused hexadecimal
code to a symbol. For example,

.se amp = &x'07
.tr 07 &

Defines a symbol named & whose value is the single hexadecimal code 07, and
establishes an output translation that maps that hexadecimal code to the character
&.

You can then use the symbol & wherever you want an ampersand to appear.*®

There are many times when text ampersands are perfectly safe and there is no need to
worry about an unexpected substitution. Any time the character string immediately fol-
lowing the ampersand is not a symbol name, no substitution occurs.*® A character string
cannot be a symbol name if:

54 Make sure the hexadecimal code you are using is not already being used or you may have
unpredictable results.

5 This technique has been used in marking up this book whenever a text ampersand is required.

56 Except in a running heading or running footing where the ampersand (&) will be mistaken for
the page number symbol.

DCF: SCRIPT/VS Text Programmer’s Guide

® It has not been defined as such with a previous .SE [Set Symbol] or .RV [Read
Variable] control word.

® It contains a character that would not be allowed in a symbol name (before the first
blank or period that ends a symbol name).

e It contains more than ten characters before a blank or period.

Canceling a Symbol

When you no longer want to use one of the symbols that you have previously defined,
you can cancel the symbol:

.se oldsymbol off

The symbol &oldsymbol will be regarded by SCRIPT/VS as an undefined symbol. It is
as though it had never been defined; it is not regarded as a null-value symbol. When you
specify

. se oldsymbol
or
.se oldsymbol

i

you redefine the symbol with a null value. It exists as a symbol but it has as its value the
null string. Note that a null symbol is quite different from an undefined symbol. The
null symbol is substituted with a value: the zero-length null string.

You can also cancel an array symbol by using the OFF parameter of the .SE [Set
Symbol] control word. If the symbol is an array symbol and no subscript is provided,
the entire array is cancelled.

Attributes of a Symbol Value

SCRIPT/VS provides you with the ability to determine some of the characteristics of a
symbol in your input file, such as:

¢ Existence (&E’)

¢ Length (&L")

e type (&T")

¢ Current value (&V’)

e Width (&W’)

In addition, you can convert

* A numeric symbol value to a base-26 number; that is, a character string: 1 = A, 2
= B,..26 = Z,27 = AA, 28 = AB, ... and so on (&A’ or &a’)

® A space value into horizontal device units (&DH”)
® A space value into vertical device units (&DV’)

¢ A numeric symbol value to its roman numeral character string equivalent (&R’ or
&r')

® A character string to uppercase (&U’)

® A character representation of a hexadecimal string to that string (&X”)

Chapter 21. Processing Symbols 229

230

The symbol attribute names &E’, &L’, &T’, and &V’ can be specified, to produce the
same result, in either uppercase or lowercase. That is, &L’ and &I’ will both return the
length of a symbol.

However, the symbol attribute &R’, which converts a numeric value to roman numerals,
and the symbol attribute &A’, which converts a numeric value to an alphabetic character
string, have different meanings when specified in uppercase and lowercase. These attri-
butes are only substituted if symbol substitution is on.

&A’ converts a number to a character string. The number is converted to a character
string that might be thought of as a base-26 number composed of alphabetic letters.

e &A’2 results in the string B

e &A’26 results in the string Z

e &A’27 results in the string AA

e &A’28 results in the string AB

e &A’705 results in the string AAC
e &a’28 results in the string ab

The largest number that can be converted is 65535. Numbers higher than this return a
Zero.

If the character string to be converted is not a decimal integer number, the result is zero
(for example, &A’zorch = 0).

&E’ verifies the existence of a symbol. When you use the &E’ symbol attribute, the value
is substituted with either a 1 or a 0, depending on whether or not the character string
following &E’ is a defined symbol. For example,

.se test = on
The result is &E'&test..

results in:

The result is 1.

If the symbol named &test had not been set, the value of &E’&test would be 0. Any
character string that is not a defined symbol name, as in

&E'czechoslovakia

results in 0.

&L’ determines the length of a symbol value or the number of characters in any character
string. For example, after the lines:

.se test = 'This is a test.'
.se length = &L'&test

the value of &length is 15. If the symbol named &test had not been set, then &length
would have a value of 5 (that is, the length of the character string &tes?).

&R’ converts a decimal number to a roman numeral. The decimal integer number is con-
verted to a character string that represents the roman numeral equivalent of the number:

e &R’87 causes the string LXXXVII to be substituted.
o &R’19&SYSYEAR causes the string MCMLXXXYV to be substituted (in 1985).

DCF: SCRIPT/{VS Text Programmer’s Guide

e &r’87 causes the string Ixxxvii to be substituted.

The largest number correctly translated to a roman numeral is 3999. For numbers be-
tween 4000 and 9999, the character 2 is used to represent the number 5000 or 10000 (for
example, &R’6020 = IMXX and &R’9020 = M?XX). Numbers larger than 9999 are
not translated to roman numerals (zero is returned).

If the character string to be converted is not a decimal integer number, the result is zero
(for example, &R’zorch = 0).

&T’ analyzes the symbol type. It also replaces the character string with:
e N, if the value is numeric.
e C, if the value contains nonnumeric data (Characters).

The N or C that SCRIPT/VS sets is always in uppercase. For example,

&T'1978

is replaced with N, but

&T'DAD

is replaced with C.

&U’ converts lowercase characters to uppercase. For example,
&U'hello

results in:

HELLO

Note: The capitalization that takes place is the same as all other uppercase conversions
and is controlled by the .TU [Translate Uppercase] control word.

&V’ returns the current value of the symbol (as it was last set), without any further sub-
stitution. An undefined symbol or a character string has no value attribute, (that is, a
value attribute of nothing). For example,

'&b. linda'
lBel

n
(¢}
o
nu

.se b

An occurrence of &a will be substituted with Belinda and its length is 7 (however,
&L’&a = 8). An occurrence of &V’&a will be substituted with &b./inda.

Attribute symbol prefixes can be combined. For example, &L'&V’&a is the length of the
value of the symbol &a, which is 8.

Note that &V’ returns a character string that represents the current value of the symbol
as previously set. In other words, a defined symbol has a value; character strings and
undefined symbols do not have a value (that is, a character string value is null). For
example,

.se a = '&c.linda'

e &V’&a yields the character string &c.linda. The ampersand and the period in &c.
are merely text characters, not symbol delimiters, for this value substitution.

Chapter 21. Processing Symbols 231

232

o &V'&clinda yields the character string linda. In this case, the ampersand and the
period in &c. act as symbol delimiters. The value of the symbol &c is concatenated
to the character string linda. Because &c is not a defined symbol, it has no value.

e &V'&V’&a yields either of two results, depending upon whether or not substitution
tracing is in effect from the .IT [Input Trace] control word. Let’s see why:

If substitution tracing is off, &V’&V’'&a yields the null string. &V’&a yields the
character string &c.linda, as shown above, as an intermediate result. The value
of this character string is the null string.

If substitution tracing is on, &V'&V’&a yields the character string linda. &V'&a
yields the intermediate result &c.inda, but in this case substitution stops at this
point so that the intermediate result can be traced. After tracing, the string
&V’&c.linda is evaluated as a separate operation. The ampersand and the pe-
riod in &c. now act as symbol delimiters, causing the value of the symbol &c,
which is null, to be concatenated to the string linda.

Attributes apply only to the symbol (or character string) immediately following them, up
to the next delimiter (period or blank). For example,

.se a = '&J'
.se b 'K'
.se JK = 'TIMOTHY'

o

The string &a.&b resolves to TIMOTHY, because &a.&b resolves to &J&b, then to
&JK, and finally to TIMOTHY. However, the string &L'&a.&b results in 2K, because
&L &a is evaluated first. SCRIPT/VS provides a length of 2 (for the symbol value: &J),
and concatenates the 2 with the character K. &L’&a&b results in 3, because &b is evalu-
ated first and the length SCRIPT/VS provides is the length of the character string &aK
(because a symbol with that name hasn’t been defined in the example).

&W’ yiclds the width of a character string in figure spaces, measured in the current font.
If, for example, you wanted to offset some following text by the width (in horizontal
device units) of a name within a symbol, you could specify:

.se width = 100
.of &width. dh

and text following the .OF control word will be offset by the value, in horizontal device
units, of the name found within &home.

&X’ converts a hexadecimal notation into a character string. Hexadecimal codes that do
not have common keyboard assignments can be entered with the &X’ attribute. For ex-
ample, the bullet character (hexadecimal AF) can be entered by specifying

&x'af Step one:
This results in the formatted line

¢ Step one:

The &X’ attribute converts the hexadecimal code af to a bullet. The hexadecimal code
must contain an even number of hexadecimal digits (0 to 9 and A to F). For example,

DATA&x' afad. TRANSFORM&x ' b2bdbe. 0

results in

DATAe[TRANSFORM?] #0

DCF: SCRIPT/VS Text Programmer’s Guide

If an even number of hexadecimal digits is not specified or an invalid hexadecimal digit is
encountered, the value of the &X’ attribute is zero.

Space Unit Symbol Attributes

SCRIPT/VS provides the following space unit symbol attributes:

&DH’

&DV’

&AD’

&SW’

&S’

Which converts a space unit value into the nearest number of horizontal de-
vice units. The space value can be the value of a symbol. For example, if you
wanted to set a symbol to convert the width of the current page number
symbol to the nearest number of horizontal device units, you could specify:

.se width = &dh'&w'&

Which converts a space unit value into the nearest number of vertical device
units. The space value can be the value of a symbol. For example, if you
wanted to set a symbol to the height of one vertical device unit, you could
specify:

.se height = &dv'1

Which indicates the depth of material within a specified named area. If the
specified areaname is not the name of a currently defined area, or if there is
nothing in the area at the moment, then 0 is retumned. The value returned
does not include the depth of skips at the top and bottom of the area. See
“Chapter 11. Placing Text in Named Areas” on page 133 for more details on
the &AD’ symbol.

Which indicates the width of a named segment. If the specified segment does
not exist, or if NOSEGLIB was specified on the SCRIPT command, or if
you are formatting for a line printer, then 0 is returned. See “Imbedding Seg-
ments in Your Documents” on page 55 for more details on the &SW’ sym-
bol attribute.

Which indicates the depth of a named segment. If the specified segment does
not exist, or if NOSEGLIB was specified on the SCRIPT command, or if
you are formatting for a line printer, then 0 is returned. See “Imbedding Seg-
ments in Your Documents” on page 55 for more details on the &SD’ symbol
attribute.

Note: The size of device units varies widely from one device to another, ranging from
about six units to the inch to 600 units to the inch. If you have converted numbers into
device units so you can do integer arithmetic with the values, be sure to tell SCRIPT
that the number is in device units when you use it in a control word.

For example if you have calculated an indention in horizontal device units in the symbol
&hin, you can then use the value with:

.in &hin.DH

If you do not specify that the value is in horizontal device units by appending DH, the
size of the resulting indention may be much larger than intended.

Symbol and Macro Libraries

If a symbol cannot be resolved from a definition that has been set with the .SE [Set
Symbol] control word, SCRIPT/VS can look for a definition in a library.

Chapter 21. Processing Symbols 233

A symbol and macro library is a partitioned data set. In CMS, a library is a file whose
filetype is MACLIB, which is a CMS simulated partitioned data set. Each symbol defi-
nition in the library is a one-line member whose member name is the symbol name.
(Macro definitions can reside in the same library, and can occupy as many lines as re-
quired.) In ATMS-III, a library member is a document or a subdocument.

Before searching a library for a symbol, SCRIPT/VS translates the symbol name to up-
percase characters. Even though SCRIPT/VS recognizes the symbols &libsym and
&LIBSYM as separate and unique symbols, the library does not. Member names in the
library are always in uppercase. Therefore, the symbol names libsym and LIBSYM, even
though they are different, will be set from the same library member. You can use the
library in two ways:

e To explicitly set a symbol name by declaring that its definition is in a library:

.se para lib

SCRIPT/VS searches the library specified by the LIB option of the SCRIPT com-
mand for the definition of ¶ (member PARA) and sets it in the SCRIPT/VS
symbol table.

® To set an unresolved symbol. During substitution, the library will be searched for
the definition of an undefined symbol only when .LY ON or .LY SYM is specified.

Note: Searching the library for symbol values and macro definitions uses a lot of proc-
essing time. This is especially true for the forward referencing of symbol values, a case in
which there are normally many potentially unresolved symbols. For this reason, the .LY
control word is provided to control library lookup. If a symbol is found in the library, it
is defined in the SCRIPT/VS symbol table and processing time used for this purpose is
thereby reduced.

When you are sure that none of your symbols are defined in a symbol library, you can
issue the .LY [Library] control word to prevent library searches for unresolved symbols.
(The 1nitial setting is OFF. You have to specify .LY ON or .LY SYM to scarch a li-
brary for undefined symbols.)

The .L'Y OFF control word prevents all library searches, for unresolved macros as well
as for symbols. The .LY MAC control word allows library searches for unresolved
macros.

Note: When you specify that a symbol definition is in the symbol library with
.se libsym lib
the current .LY [Library] control word specification is ignored. In the above example,

the library is searched to find a definition for &libsym. Remember, the symbol name is
translated to uppercase before searching the library.

SCRIPT|VS System Symbols

234

There are several groups of system symbol names that are initialized and recognized by
SCRIPT/VS:

¢ Symbols you can use to obtain the current date and time

¢ Symbols you can use to obtain current values of SCRIPT/VS formatting parame-
ters: the current line length, left margin indention, and page length, to name a few

¢ The symbol set as a return code from the latest CMS command executed using the
SY [System Command] control word.

DCF: SCRIPT/VS Text Programmer’s Guide

A complete list of system symbols is given in the Document Composition Facility:
SCRIPT|VS Language Reference.

Most system symbols begin with &$. These symbols cannot be changed with a .SE [Set
Symbol] control word, because they are reserved and contain SCRIPT/VS formatting
parameters and controls. Most of the special symbols reflect values under your control.
You can change them with the appropriate control word or command option, but not
with the .SE [Set Symbol] control word. All symbol names that begin with a § may be
entered in either upper- or lowercase, including any non-system symbols that you define.

All other system symbols (those that do not begin with &$) can be manipulated and
modified by .SE [Set Symbol] control words within the input file.

Symbols for the System Date and Time

The symbol names for date and time values that are maintained by the system are:

Symbol Name Description Value Range
&SYSYEAR Year 00-99

&SYSMONTH Month 01-12
&SYSDAYOFM Day of the month 01-31
&SYSDAYOFW Day of the week 1-7 (1 = Sunday)
&SYSDAYOFY Day of the year 001-366
&SYSHOUR Hour of the day 00-23
&SYSMINUTE Minute of the hour 00-59
&SYSSECOND Second of the minute 00-59

The date and time values are set once and stay in effect throughout the processing of the

file. You can use these symbol names to set symbol values for the date and time your-
self.

No punctuation is provided by SCRIPT/VS for combining these values. You must sup-
ply it yourself when combining them. For example, to obtain the current date and time
for printing on your output pages, you might enter:

DATE: &SYSMONTH. /&SYSDAYOFM. /&SYSYEAR
TIME: &SYSHOUR. : &SYSMINUTE. : &SYSSECOND

These symbols could, for example, yield the following dates and times:

DATE: 01/22/85
TIME: 12:50:02

Notes:
e The date and time symbol names must be specified with all uppercase characters.

e Leading zeros are provided with the symbol value whenever appropriate. For exam-
ple, on the eighth day of the month the value of &SYSDAYOFM is set to 08,
rather than to 8. To suppress leading zeros, you can reset the symbol with the fol-
lowing arithmetic expression before you refer to it:

.se SYSDAYOFM = &SYSDAYOFM + O
The symbol &SYSDAYOFM will be redefined, for your input file only, without

leading zeros. SCRIPT/VS removes leading zeros from the result of arithmetic ex-
pressions on the right-hand side of the equal sign in .SE control words.

Chapter 21. Processing Symbols 235

Date and Time '
Symbol Description Value
&SYSYEAR Year of the century 00 - 99
&SYSMONTH Month of the year 01-12
&SYSDAYOFM Day of the month 01- 31
&SYSDAYOFW Day of the week 1-7 ("1 is Sunday)
&SYSDAYOFY Day of the year 001 - 366
&SYSHOUR Hour of the day 00 - 23
&SYSMINUTE Minute of the hour 00 - 59
&SYSSECOND Second of the minute 00 - 59
Output Device Characteristics

Symbol Description Value
&$LDEV Logical output device 2 1 - 8 characters
&$ouT Output destination TERM, PRINT, FILE

| &$PDEV Physical output device 1403, 2741, 3270, 3800, 38PP, 3820, 4250

SCRIPT Command Options

Symbol Description Value
&$BE Even bind 3 4 0 - nnn
&$BO Odd bind 3 4 0 - nnn
&$CHAR(N) Fonts s 1 - 4 characters
&$DCF SCRIPT/VS release level 3.0

| &$DDUT Utility file redefenition s 0,1
&$INDX Indexing s 0,1
&$LIB Macro library available s 0, 1
&$PARM Command options 7 8 - 256 characters
&$PASS Current pass number 1, 2
&$PRT Current page print switch ON, OFF
&$SYS Environment CMS, TSO, V82, VSE, CICS
&$TWO TWOPASS option in effect s 0, 1
&$UNF Unformatted output s 0, 1

' These symbols may contain leading zeros. They can be eliminated with a .SE [Set Symbol]
control word: “.se SYSHOUR = &SYSHOUR + 0”.

2 Set by the DEVICE option of the SCRIPT command.
3 Set by the BIND option of the SCRIPT command and the .PM [Page Margins] control word.

+« The system symbol values are represented in character spaces, regardless of the space
units used in setting them. The maximum value depends on the logical output device.

s Set by the CHARS option of the SCRIPT command. This is a symbol array; element 0 con-
tains the number of fonts specified and elements 1, 2, ... contain the names of the fonts spec-
ified.

& “1” indicates the command option was specified; “0” indicates it was not specified.

7 This is the SCRIPT command options list. In CMS, the command options list is tokenized (di-
vided into eight character fields separated by blanks and parentheses) and truncated at 32
tokens (256 characters).

Figure 15. SCRIPT/VS System Symbol Names (Part 1 of 2)

——

236 DCF: SCRIPT/VS Text Programmer’s Guide

Page Characteristics

Symbol Description Value
&$BE Bind even (BIND) 0 - nnn
&$BM Bottom margin (.BM) s 0 - nnn
&$BO Bind odd (BIND) 0-nnn
&$CL Column line length (.CL) ® 1-nnn
&$FM Footing margin (.FM) e 0-nnn
&S$IN Left indention (.IN) s 0-nnn
&3$IR Right indention (.IR) s 0 - nnn
&$LC Internal line counter & 1o 0-nnn
&$LL Line length (.LL) ® 0 - nnn
&$OF Offset (.OF) » 0 - nnn
&$PL Page length (.PL) ® 1-nnn
&$PW Page width (.PW) e 1-nnn
&$TM Top margin (.TM) s 0 -nnn

SCRIPT/VS Formatter Parameters
Symbol Description Value
&$BS Backspace character hexadecimal 16
&$CONT Continuation character one character
&$CW Control word separator (default: *;”)
&$C256 Identity vector 256 characters
&$EGML GML end-tag delimiter n (default: “::)
&$ENV Formatting environment BODY,FL,FN,KP,RF,RH,IBP,AR,FNL
&SFNAM Current input file name eight characters
&$GML GML tag delimiter (default: “:")
&$KP Keep in process ON, OFF
&$SLNUM Last line number read 0-nnn
&$LST Line started 0,1
&$PN Page number 12 1-nnn
&$PS Page number symbol " (default: “&”)
&$RB Required blank (default: hexadecimal 41)
&$RET Return code from .SY 13 0 - nnn
&$suU Symbol substitution enabled ON, OFF
&$TAB Tab character hexadecimal 05
&$TAGD GML delimiter of last tag &$GML, &SEGML
&$VR Vertical rules in effect ON, OFF

e These values are represented in line spaces, regardless of the space units used in setting
them. The maximum value depends upon the logical output device.

s The values of these symbols are represented in character spaces, regardless of the space
units used in setting them. The maximum value depends upon the logical output device.

10 The value of the symbol &8LC is the number of lines remaining in the current column, ex-
cluding unplaced keeps, floats, footnotes, widow zones and partial lines.

1 Set by the .DC [Define Character] control word.

1z &$PN contains the numeric portion of the current page number. The page number as substi-
tuted can be obtained with the control word “.se x = &”.

13 In CMS, any possible return code value. In TSO, “0” to indicate the command was stacked
for execution after SCRIPT/VS terminates. In ATMS-lll, “0” to indicate the control word was
ignored. In batch, “-3” to indicate that .SY is not supported.

Figure 15. SCRIPT/VS System Symbol Names (Part 2 of 2)

Chapter 21. Processing Symbols 237

Elaborating the System Date

If you want to print the date with the names of the months and days, your output page
can include the date in the form

Tuesday, January 22, 1985.

This requires a group of .SE [Set Symbol] control words using the reserved symbols in
compound expressions, as follows:

.se d1 = Sunday
.se d2 = Monday
.se d3 = Tuesday

.se d7 = Saturday
.se m01 = January
.se m02 = February

.se ml2 = December

To eliminate the leading zero of &SYSDAYOFM, include

. se SYSDAYOFM = &SYSDAYOFM + O

Leading zeros that occur with the other symbols do not present a problem in this exam-
ple.

The symbolic input line might be:

&d&SYSDAYOFW. . , &m&SYSMONTH.. &SYSDAYOFM. , 19&SYSYEAR..

which results in:

Tuesday, January 22, 1985.

Notice the ending delimiters for the compound symbols &d&SYSDAYOFW and
19&SYSYEAR in the above:

e &J&SYSDAYQFW.., ends with two periods to prevent the symbol name from be-
ing concatenated with the comma and to allow its value to be concatenated with the
comma. This compound symbol requires two stages of substitution to be resolved.
&SYSDAYOFW ends with the first period. When resolved, the symbol &d3 ends
with the second period. In this way, the comma needed for punctuation is concat-
enated with the name of the weekday.

e 19&SYSYEAR is not a compound symbol. It is resolved with only one stage of
substitution. The character string 19 is concatenated with the symbol &SYSYEAR.
The first period ends the symbol &SYSYEAR. The second period is needed (in this
example) for punctuation, and is concatenated with the value of the year.

238 DCEF: SCRIPT/VS Text Programmer’s Guide

Symbols for SCRIPT/VS Control Values

SCRIPT/VS allows you to examine the formatting paramecter values it uses when proc-
essing your input file. You can obtain the current value of the parameter by using the
system symbols.

The symbols that represent SCRIPT/VS internal formatting parameters cannot be set by
.SE control words in your input file. The name of each of the following reserved sym-
bols begins with &$ and can be specified using either lowercase or uppercase characters.

You can use this technique to ensure proper results even though some formatting pa-
rameters can be changed by control words. For example, the following sequence
produces a box the width of the output page:

.se indent = &$IN

.se rindent = &$CL - &$IR

.if &indent eq 0 .se indent =1
.bx &indent &rindent

.in +2m

cir +2m

The .BX control word begins

a box structure .

.bx off

which results in

The .BX control word begins a box structure using the
current margins. The .IN [Indent] and .IR [Indent Right]
control words shift the margins to position the text
within the box. After the text is processed, the original
values are restored.

As another example, you might want to leave a blank page with only a figure caption at
the bottom of a single column page. Perhaps the file is to be formatted within different
master files, each of which requires a different page length. You might code the following
sequence:

.pa

.se lines = &$LC - 1
.sp &lines

Figure x. Sample Output

You will find that these special symbols can be especially useful when writing

SCRIPT/VS macros or for testing the current environment using the .IF control word
family.

The &SRET Special Symbol

In CMS, the &$RET special symbol contains the return code from the CMS or CP
command that was most recently executed as a result of a .SY [System Command] con-
trol word. You can examine the return code and take conditional action based on its
value. For example, the following sequence will imbed a file named OPTDATA only
after ensuring that the file exists:

Chapter 21. Processing Symbols 239

.8y state optdata script *
.if &SRET eq O .im optdata

In TSO, &$RET is set to 0 by the .SY [System Command] control word to indicate that
the command was stacked for execution after SCRIPT/VS terminates.

In ATMS-III, &$RET is always set to 0, indicating that the .SY [System Command]
control word is ignored by ATMS-III.

In batch, &$RET is set to -3 to indicate that the .SY [System Command] control word
is not supported.

The &SLC Special Symbol

The &$LC special symbol contains the number of lines left in the column at the time of
symbol substitution. This value does not include running headings or footings that have
been placed on the page, nor does it include keeps, widows, or partially filled output
lines that have not been placed in the column at the time of symbol substitution.

The value of &$LC at the time of symbol substitution cannot accurately reflect the final
position of surrounding text on the page if that text is in a keep, float, or widow, if there
1s a partially filled output line, or if column balancing is in effect. The value of &$LC at
the time of symbol substitution will accurately reflect the final position on the page of
text only at the beginning of a new page, section, or column.

The &$SDCF Special Symbol

The &$DCEF special symbol indicates the release level of the module being executed. The
value will be 3.0 for Release 3, level 0.

The &$SDDUT Special Symbol

The &$DDUT special symbol indicates whether the NODDUT or DDUT command
option is in effect. The value is either 0 or 1. It is 0 when the NODDUT command
option has been given on the command line. It is 1 when the DDUT command option
has been given.

If neither option has been specified, the value of &$DDUT is 0, because NODDUT is
the default. This special symbol is meaningful only in the CMS and TSO environments.

In ATMS-III and batch, &$DDUT is always set to 1, indicating that DDUT is the de-
fault command option of the pair in these environments.

The &$GML Special Symbol

The &$GML special symbol reflects the value of the current GML tag delimiter as set
by the .DC [Define Character] GML tag.

The &SEGML Special Symbol

240

The &$SEGML special symbol reflects the value of the current GML end-tag delimiter as
set by the .DC [Define Character] GML tag.

DCF: SCRIPT/VS Text Programmer’s Guide

The &SENYV Special Symbol

The &$ENV special symbol indicates the current formatting environment. The range of
possible values includes:

AR Named area

BODY Body of page

FL Float

FN Footnote

FNL Footnote leader
IBP In between pages
KpP Keep

RF Running footing
RH Running heading

The &SLST Special Symbol

The &$LST special symbol indicates whether or not an output line is started. The value
is either 1 or 0. It is 1 when text has been formatted (line started), but the line has not
yet been completed. It is 0 when a line has been promoted into the current column and
no more text has been formatted yet. The value of &$LST is 0, for example, following a
.BR [Break] control word.

The &$PASS Special Symbol

The &$PASS special symbol indicates if the current formatting pass is the first or second
pass. A value of 1 or 2, respectively, is returned.

The &$PASS system symbol can be used with the &$TWO system symbol to determine
whether or not the current formatting pass is the last pass. For example, you could spec-

ify

.1if &$TWO = 0 .se lastpass = yes
.el .if &$PASS eq 2 .se lastpass = yes
.el .se lastpass = no

Then if the TWOPASS option of the SCRIPT command wasn’t specified, the current
formatting pass is the last pass. Else, if the TWOPASS option was specified, the last pass
will be indicated if the &$PASS symbol equals 2.

The &SPRT Special Symbol

The &$PRT special symbol indicates whether the current page will be written to the
output destination or discarded. Pages are always discarded on the first of two passes
when the TWOPASS option of the SCRIPT command is used. Pages can be discarded
when the PAGE option of the SCRIPT command is used. The value is either ON or
OFF.

The &STAGD Special Symbeol

The &$TAGD special symbol indicates whether a GML tag or end-tag was last proc-
essed. The value 1s equal to either &$GML or &$SEGML.

Chagpter 21. Processing Symbols 241

The &S$VR Special Symbol

The &$VR special symbol indicates whether vertical rules are currently being drawn, due
either to the .BX [Box] or the .VR [Vertical Rule] control words. The value is either ON
or OFF.

Passing Parameters to Input Files

SCRIPT/VS has three sets of symbols that are set automatically by parameters passed to
a file or macro. These are:

¢ SCRIPT/VS system symbols, which can be set when the SCRIPT command is is-
sued

e Parameters passed to imbedded files with the .IM [Imbed] and .AP [Append] con-
trol words

® Parameters passed to a macro.

Setting Symbols with the SCRIPT Command

Use the SYSVAR option of the SCRIPT command when you want to pass values to
the input file from the SCRIPT command line.

The symbols that you can set with the SYSVAR option have names starting with
&SYSVAR appended to one alphameric character: 0 through 9, uppercase A through Z,
and @, #, and $. For example,

script outline (sysvar (a atype 2 nogo

This command line sets the symbols &SYSVARA to ATYPE and &SYSVAR2 to
NOGO. Lowercase letters assigned to an &SYSVAR symbol are translated to uppercase
letters. Consequently, when you include the symbols in an input line or as a comparand
for an .IF control word line, always use the uppercase symbol name and character-string
values.

For example, &SYSVARA can be used to bypass parts of the document and
&SYSVAR2 can be used to terminate processing before completion:

.if &SYSVARA eq ATYPE .go aproc
.1f &SYSVAR2 eq NOGO .qu
... aproc

When you use &SYSVAR symbols, you should put comments at the beginning of your
input file so that other users who process the file are aware of each &SYSVAR symbol
and the meanings of its values.

For details about the SYSVAR option of the SCRIPT command, see the Document
Composition Facility: SCRIPT]VS Language Reference.

Symbols Set When a File Is Imbedded or Appended

242

You can pass parameters to an imbedded or appended file with the .IM [Imbed] and .AP
[Append] control words. The symbols &0 through &14 are sc: to the parameters follow-
ing the name of the imbedded file. For example,

DCF: SCRIPT/VS Text Programmer’s Guide

.im finance George 125 $21.50 '18-7'

When the file named FINANCE is imbedded, the symbols &0 through &4 are automat-
ically set by SCRIPT/VS:

Symbol

Name Value Set by SCRIPT/VS
&0 4

&1 George

&2 125

&3 $21.50

&4 18-7

Symbol &0 contains the number of parameters passed. As many as 14 parameters can be
passed when a file is imbedded or appended. These parameters are called tokens. Each
token can be up to eight characters long, delimited with blanks. The rules that apply to
setting the value of a symbol also apply to specifying a token. See “Chapter 4. Combin-
ing SCRIPT/VS Input Files” on page 47 for details about imbedding and appending
files.

Symbols Set When a Macro Is Processed
You can pass parameters to a macro when your input file calls the macro. The parame-
ters become local symbols (that is, symbols that are set for the called macro only; not for

other macro calls that occur within the called macro). The format of the macro call
might be:

.burger fries+shake nosauce 'on a great big poppy-seed bun'

When the macro BURGER is processed, local symbols within it are automatically set by

SCRIPT/VS:
Symbol
Name Value set by SCRIPT/VS
&% fries+shake nosauce 'on a great big poppy-seed bun'
&*0 5
&*1 fries
&%2 +
&*3 shake
&%4 nosauce
&*5 on a great big poppy-seed bun

Symbol &* contains the entire untokenized input line. It contains all leading blanks after
the blank that delimits the macro name. Symbol &*0 contains the number of symbol
values passed. The symbols &*1 through &*n contain the individual tokens passed to
the macro. Notice that blanks, arithmetic operators, and parentheses normally delimit
tokens, but that a single token can contain these and other special characters if it is en-
closed in single quotation marks. Also, macro tokens are not subject to the 8-character
limit applied to .IM [Imbed] and .AP [Append] tokens. See “Chapter 23. Processing
Macros” on page 261 for details about specifying symbols within macro instructions.

Note: Symbols whose names begin with an asterisk (*) are treated differently from other
symbols. Other symbols are globally available to all files and macros, but symbols whose
names begin with an asterisk (*) are local to a particular macro at a particular level of

Chapter 21. Processing Symbols 243

nesting. Each time a macro is called, a new set of local symbols is established for it.
These symbols are deleted when the macro ends.

Unlike other symbols, local symbols, when undefined, are replaced during symbol substi-
tution with the null string.

Setting a Symbol to the Current Page Number

You can set a symbol to be equal to the value of the current page number when the .SE
[Set Symbol] control word is encountered. For example,

.Se pagenum = &

A single ampersand on the right-hand side of the equal sign of a .SE control word is
replaced with the character string of the current page number, including its prefix, if any.
Elsewhere in your document, you can refer to the page number with its symbol name.
To continue the example,

For details, see page &pagenum. .

Whenever the &pagenum symbol occurs in your document, SCRIPT/VS replaces it with
whatever the page number was when the .SE [Set Symbol] control word was processed.
If the symbol is set before the page is started, the page number will be the same as that
of the previous page and not that of the next page. At the start of the document, the
page number is 0.

Symbols for Arrays of Values

244

An array symbol is a special type of symbol that allows you to assign many values to the
same symbol name. Each individual element of the array has, in addition to the name,
an element number in parentheses. The element number is also called the index or sub-
script of the element. When you format your document for output, the entire array of
values can be referred to by a single symbol name. You can define an array symbol with
the .SE [Set Symbol] control word. For example,

.se name() = value

The parentheses indicate that this is an element of an array and value is any expression
that can legally appear on a .SE [Set Symbol] control word line. The notation () is a
shorthand way to specify the next element of the array.

When SCRIPT/VS encounters the array symbol value in the form:

&name(*)

it replaces &name(*) with the values of all the currently defined array elements, in the
order in which they are indexed. A comma and a blank separate the individual elements.

You can specify different array separator characters using the .DC [Define Character]
ASEP control word. The ASEP parameter of .DC allows you to define up to four char-
acters that are to be used to separate array elements when an array is substituted in a
document using the &name(*) form. All characters to be used in separating array ele-
ments must be specified, including blank characters (as 40).

The initial array separator characters are the comma (,) and the blank. The characters
given with ASEP replace the previous array separator characters.

DCF: SCRIPT/VS Text Programmer’s Guide

Suppose you have defined a symbol array containing the names of geographical lo-
cations:

.se place() = Goldsboro
.se place() = Kunsan
.se place() = Misawa

When the symbol &place(*) is found, it is replaced with the entire symbol array and the
elements of the array are separated by the array separator characters. For example, the
initial setting of the array separator characters is a comma (,) and a blank, so if you enter

At: &place(¥)
the result of symbol substitution will be

At: Goldsboro, Kunsan, Misawa

You can specify up to four characters with the ASEP parameter. You can insert more
than four characters, including control words, between array elements by setting the ar-
ray separator characters to a symbol. For example,
.se x = ' and
.dc asep &x .
At: &place(¥)

The intermediate result of symbol substitution is

At: Goldsboro&x.Kunsan&x.Misawa

The final result of symbol substitution is

At: Goldsboro and Kunsan and Misawa

If you want to set the array separator to cause a break, specify:

ota

.'se *x = ';.br;"
.dc asep &x .

Controlling the Array Elements

Each element in an array has a value associated with it. You can refer to any element of
the array with the array symbol name and the element index number in the form

&name(n)

n is the positive integer that identifies the position of the element within the array.

An array symbol reference can be used anywhere that a nonarray symbol can be used. If
the element n exists in the array, its value is substituted just as a normal symbol value
would be. If the symbol exists but has no element n, a null value is substituted. If the
symbol is not defined at all, the symbol is treated as an undefined symbol.

You can specify which array element you wish to set by including a number (identifying
its location within the array) within the parentheses. For example, the input line

.se list(1l) = &

Chapter 21. Processing Symbols 245

sets element number 1 of the array to the current page number. When you list all the
elements of the array, this entry will be listed first, even if it is not the first one set. Here
is another example:

.se name(1l) =1
.se name(47) = 2
.se name(25) = 3
.se name(2) = 4
.se name(3) =5

The expression
&name(*)

results in &name(*) being substituted as follows:
1, 4, 5, 3, 2

In other words, SCRIPT/VS places the array element values in ascending element index
order, not in the order in which they were defined. In this example, there are many avail-
able but undefined element numbers in between those that are defined. Any undefined
elements in an array are ignored when the array values are substituted.

The array element number can be another symbol. For example,

.se elem = 1
.se array(&elem) = &

No blanks can appear between the symbol name and index. When array symbols are
used on the right-hand side of a .SE [Set Symbol] control word expression and symbol
substitution is off, symbols used as array subscripts must be simple, not compound,
symbols.

An example of a complex symbol is:

se X = ry
.se ry =4
&&x

which resolves as follows:
1. &ry
2. 4

Accessing the Index Counter

246

Every array has an element zero, represented by the symbol name

&name(0)

Element zero is an index counter that indicates the last element used. It indicates which
element should be set next if you did not specify one.

Note: When the TWOPASS option of the SCRIPT command is specified, all array in-
dex counters are reset to zero for the second pass but the individual elements are not
reset.

DCF: SCRIPT/VS Text Programmer’s Guide

Setting the Index Counter

The expression &name() is treated as an index counter as well as a symbolic expression.
Each time SCRIPT/VS encounters the expression, it assumes that the next element of
the array is to be filled. If you never specify a number within the parentheses of an array
symbol, SCRIPT/VS begins numbering with element 1.

It is possible to set the initial value of the array index counter, as follows:

.se name(0) = n

n is any nonnegative integer. The first occurrence of “.se name()”, with no element spec-
ified, would be equivalent to “.se name(n+1)” and the counter would be incremented
from there.

In this way, you can start the automatic indexing of an array at element 5, for example,
and reserve elements 1 through 4 for explicitly specified definitions.

If you do not set the index counter explicitly, it will be incremented from the index value
of the element last set. For example,

.se name() = first
.se name(3) = second
.se name() = third

The first element of the array is set to the value first, element 2 has a null value, element
3 has the value second, and element 4 has the value third.

For substitution of arrays, you can cause substitution of all elements in the array (except
element zero), or you can cause substitution for just a single element. The notation
&name(5) causes only element 5 to be substituted. The notation &name(*) causes all
elements of the array to be substituted, as previously described.

Any symbol is potentially an array symbol. The symbol &XYZ, for example, is actually
element zero of a possible array. &XYZ(0) refers to the same symbolic value as &XYZ.
If, after using a symbol like &XYZ, you set another element with:

.se XYZ(5) = 'last letters'

be careful about the value previously set in element zero (that is, in symbol &XYZ). If
the value is not a number, you will get an error message if you ever use the shorthand
notation where element zero is supposed to contain the current index.

Extended Symbol Processing

A control word can be placed anywhere in an input line as long as it is preceded by the
control word separator and a period. You can also invoke a control word or a macro at
any point in the input line by setting it as the value of a symbol. This symbol value
must also be preceded by a control word separator. When a symbol value begins with
the control word separator (;), the rest of the value is treated as though it began a new
line. Therefore, a control word that is set as the value of a symbol is processed by
SCRIPT/VS as though it were a control word that started in the first character position,
even when it occurs in the middle of a text input line. For example, the .BR [Break]
control word, defined as the symbol &BR

.'se BR = ';.br ;'

Chapter 21. Processing Symbols 247

248

causes SCRIPT/VS to interpret the symbol &BR as though you had a new input line
starting with .br ;. (Because the value of the symbol contains a control word separator,
the .SE [Set Symbol] control word is entered with the control word modifier () to in-
hibit control word separator scanning for that input line. Thus, the input line

This is line one.&BR.This is line two. &BR.

is formatted as though it were the following four input lines:

This is line one.
.br
This is line two.
.br

Note: The control word modifier was used here to set up the symbol ‘BR’ that con-
tained control word separators. The extended symbol processing rule described here
takes effect during substitution and not during control word processing.

Substitution occurs before SCRIPT/VS has classified the line as a control word line or a
text line, thus a control word modifier cannot prevent the symbol substitution processor
from recognizing a control word separator.

The input line

.ce Note this; The symbol &BR starts with a semicolon.

is formatted as the following four lines:

.ce Note this
The symbol
.br
starts with a semicolon.

The extended symbol substitution rule only divided the line into three parts. The first
part was a control word line (.CE ...) that was later split into two lines by the control
word separator rule.

The input line

.'ce Note this; The symbol &BR starts with a semicolon.

is formatted as the following three lines:

. 'ce Note this; The symbol
.br

starts with a semicolon.

The control word modifier only suppressed the control word separator rule for the first
line after symbol substitution was completed.

For more information about the control word modifier, see the SCRIPT/VS control
word description section of the Document Composition Facility: SCRIPT|VS Language
Reference.

DCF: SCRIPT/VS Text Programmer’s Guide

Defining Text Variables

There are certain times when you may want to define and assign a value to a particular
text variable. For example, you might want to print a special character, such as the
Greek alpha character, that is not on your keyboard; or you might want to override a
delimiter character so that it is printed as ordinary text; or perhaps you might want to
change fonts within a GML heading without having to rewrite the APF that defines this
heading. The .DV [Define Variable] control word provides a simple way to resolve all of
these text variable concerns.

Producing Special Characters

For many applications, you may need to be able to select any arbitrary character from
any arbitrary font, and to do so whenever you want. This can be a problem, however,
because the special character you need may not be on your keyboard. Such special char-
acters may include:

e Accented characters for languages other than English
¢ APL characters

o Greek characters.

Producing a Greek Alpha Character

One way of producing unkeyable characters, such as the Greek alpha character, in
SCRIPT/VS is to use a code page defined for the set of characters you wish to use. In
this way, you can allocate, using the .TR [Translate Character] control word, the keys
you do have to represent whatever characters you wish. This is not a complete solution,
however, because a required character might still be in a different font than that used for
surrounding text.

If you want to be able to produce a Greek lowercase alpha character, one approach in
SCRIPT/VS is to define a symbol called alpha that can be used by entering the symbol
&alpha. in your input file. If, for example, the alpha character is at code point
hexadecimal 41 in a font called greek, then the alpha symbol could be defined as
follows:*

. 'se alpha '&$CONT.&S$CW..bf greek;&X'41. ;. pf;
Because this coding frequently does not produce correct results, a better approach is to

use the .DV control word. The same Greek alpha character, which is hexadecimal 41 in
the greek font, can be defined with .DV as follows:

.dv alpha font greek /$X'4l

In this example, the symbol alpha is defined to associate a font (greek) with a text string
(hexadecimal 41).

The symbol alpha may also be used in the text of a heading as shown in the following
example

.hl the &alpha symbol

57 A continuation character must have been previously specified, and a font named greek must
have been previously defined with the .DF control word.

Chapter 21. Processing Symbols 249

or as part of a split text control word line such as the following:

.sx /&alpha. //greek/

See “Using Defined Variables to Change Fonts” on page 251 for more details on using
defined variables.

Overriding Delimiter Characters

Another potential problem in SCRIPT/VS is the occasional need to treat one of the spe-
cial delimiter or escape characters as text. The following characters have special meaning
to SCRIPT/VS and need a mechanism to override them if they are to appear as ordinary
text characters:

® A period (.) delimits a control word when it is in column one of an input line or
when it follows a control word separator.

e The ampersand (&) delimits a symbol.
e The GML delimiter (:) delimits a tag.

e The page number symbol (& by default) is replaced by the current page number in
running headings and footings.

e The control word separator (; by default):
= Allows several control words to appear on one line, or
= Delimits a control word sequence, or

= Causes a line to be treated as two logical input lines when it occurs as the first
character in a symbol’s value.

e The required blank (hexadecimal 41 by default) is automatically converted to white
space in the output.

In SCRIPT/VS, there are ways to produce any of these characters as ordinary text, but a
different mechanism is required to produce each one. In some cases, it is necessary to
shut off the normal function of a character in order to use it as text. With text vanablcs,
a single mechanism can be used to define symbols for all of these characters, thereby
making them available as text characters anywhere in the document. This can be done
without shutting off the character’s normal function.

In SCRIPT/VS, symbols are commonly defined in a GML profile to allow special de-
limiters to be used as text characters. For the ampersand, which is the symbol delimiter
and also the default page number symbol, the symbol &. 1s defined to be used where
a text ampersand is needed. It is done as follows:

.se amp &X'08
.tr 08 &

In other words, the symbol &. is replaced by a hexadecimal 08 by substitution, and
then all X‘08’s are translated to ampersands on output.

A simpler method of producing the &. symbol is to use the .DV control word. With
text variables, for example, all symbols like &. are defined in this form:

.dv amp text /&

The TEXT form of .DV is used for a character string that has no associated font and
that is merely defined as known text. This method has the following benefits:

250 DCF: SCRIPT/VS Text Programmer’s Guide

¢ No code point need be given up for this symbol
e The translate table is not needed

¢ The symbol may be used anywhere freely, including in a running heading or footing.

Using Defined Variables to Change Fonts

In SCRIPT/VS there is no mechanism whereby a font can be changed in the middle of
certain elements that require all of the text on the same line, such as topic headings or
the content of split text control words. You can not, for example, change fonts in a
heading in SCRIPT/VS unless you disregard all of the built-in heading and table of con-
tents functions, and rewrite these functions yourself as macros.

A text variable defined with .DV, however, can have a font associated with it, and it can
be used freely anywhere, including in a topic heading, table of contents, index entry, or
split text. If the text variable requires a change of fonts, this is done automatically as part
of the text variable support.

If you want to add a special character from the Pi font to the font of a heading, for
example, you could enter:

.df pifont type('Pi font Sans Serif' 14 codepage AFTC0363)
.dv special font pifont /&x'fc
.hl &special. Words to the Wise

The result of these lines is that the telephone character will be printed as the first charac-
ter in the heading.

Chapter 21. Processing Symbols 251

Chapter 22. Processing Logical Statements

SCRIPT/VS provides several methods for processing input logically or conditionally.
You can write input files and macros that are capable of making simple decisions and
taking action based on the result. With logical processing techniques, you can do the
following:

e Select the alternative input lines to be processed in a particular run.

e Construct loops that process the same material several times to provide several
copies of the formatted output. (Each copy can, of course, contain different specific
information.)

¢ Write macros that cause different formatting based on the logical output device or
other variables.

¢ Provide processing based on the content of an input line.

These capabilities use basic logical processing techniques in conjunction with other tech-
niques that are not discussed here. “Chapter 23. Processing Macros” on page 261 con-
tains information about the mechanics of writing macros, and “Chapter 21. Processing
Symbols” on page 223 discusses symbol substitution. Individual control words are de-
scribed in the SCRIPT/VS control word description section of the Document Composi-
tion Facility: SCRIPT|VS Language Reference.

There are three basic logical processing techniques:
e The .IF control word family
¢ Conditional sections

e Conditional processing with symbols.

The IF Control Word Family

SCRIPT/VS allows you to test a symbol value to determine whether to process an input
line or ignore it. To make this conditional test, you can use the .IF [If] control word
alone or in conjunction with the .AN [And], .OR [Or], .-TH [Then], and .EL [Else] con-
trol words. Using the .IF [If] control word alone is the simplest way of specifying a con-
ditional statement. This control word is specified in the form:

. if comparandl test comparand2 target-line

Chapter 22. Processing Logical Statements 253

Each comparand can be up to 255 characters long,* and the shorter comparand will be
padded with blanks to match the length of the longer comparand.

The conditions you can test for and the codes you can use are:

Code Meaning
= or eq equal to
~= or ne not equal to
> or gt greater than
< or 1t less than
>= or ge greater than or equal to
<= or le less than or equal to

The target-line part of the .IF [If] control word can be any valid SCRIPT/VS input line:
a control word, a symbol, a macro, or text. The first nonblank character after
comparand? is treated as the first character of the input line. If the condition is true, the
input line is processed by SCRIPT/VS. Otherwise, it is ignored.

Alternative Processing

254

There may be times when, depending on the results of a comparison, alternative process-
ing can occur. You can use multiple .IF [If] control words to handle this situation or
you can use the .TH [Then] or .EL [Else] control words in conjunction with an .IF con-
trol word. For example,

Commercial
Warehouse

.if &street eq Broadway .se branch
.if &street ne Broadway .se branch

causes the same results as:

.if &street eq Broadway
.th .se branch = Commercial
.el .se branch = Warehouse

Both of these examples result in the symbol &branch being set to the value Commercial
if the comparison is equal and to the value Warehouse if it is not.

The .TH [Then] and the .EL [Else] control words cause their targets to be executed or
ignored based on the results of the most recently executed comparison in the current file
or macro. Therefore, a series of conditionally cxecuted lines can follow a single compar-
ison. For example,

8 The entire input line, after substitution, cannot be longer than 235 characters. When compar-
ing symbols that can potentially have long values or contain blanks, we recommend that the
IF control word be performed with substitution off, as described in “Special Techniques for
Conditional Processing” on page 256.

DCF: SCRIPT/VS Text Programmer’s Guide

.if &job eq chimney-sweep
.th .sp 2

.th .notes height of roof
.el .us salary

.el .in 5
.el .im salary &job
.th .sp 2
.el .sp &4

causes all of the .TH and .EL control words that follow the .IF control word to be exe-
cuted or ignored based on the result of its comparison. Other .IF control words that can
be contained in the .NOTES macro or the SALARY file do not affect this series of con-
trol words because the result of the most recent comparison is preserved across macro
calls and imbedded files.

There may also be times when you want to test for multiple conditions. This can be
accomplished by using the .AN [And] and .OR [Or] control words in conjunction with
the .IF control word. For example, you might have a situation where two conditions
have to be true before a certain type of processing can occur. In this situation, specify

.1if &city = Fayetteville .an &state = Arkansas .se zip = 72701

which causes the symbol &zip to be set to 72701 if both conditions are true.

Similarly, you can have a situation where only one of multiple conditions must be true
for one type of processing to be done. In this case, you might specify

.1f &city eq Knob Noster .or &city eq Warrensburg
.th .carpool &city
.el .se city =

The macro .CARPOOL will be invoked if the value of the variable &city is either Knob
Noster or Warrensburg; if it is neither, the variable &city will be reset to null.

Bypassing Part of an Input File

When you want to bypass a part of your current input file, you can use the .GO [Goto]
and ... [Set Label] control words. For example:

.if &type = 1 .go bypass

... bypass

In the above example, if the symbol &type has a value of 1, all the control words and
text between the .IF and the ... [Set Label] control words (which sets the label bypass)
are skipped.

Conditional processing with the .IF [If] control word can be especially convenient when
one file is imbedded in several different master files. You can provide for slight differ-
ences among the files by setting the same symbol to a different value in each master file
and using that symbol to determine how processing is to be done in the imbedded file.

The .GO function, on the other hand, can be relatively inefficient. You should restrict its
use to situations where it best achieves the required results. When the label follows the
.GO in your input file, processing is most efficient if that label is not far from the .GO;

Chapter 22. Processing Logical Statements 255

when the label comes before the .GO in your input file, processing is most efficient if
that label is near the beginning of the file.

Label processing in macros is much more efficient than in files. However, it is most effi-
cient to branch to a label that is early in a macro because the search for labels always
begins at the top of the macro.

The SYSPAGE and SYSOUT Comparands

There are two comparands that you can use with the .IF [lf] control word family:
SYSPAGE and SYSOUT. They are keywords, not symbols. Therefore, they should not
be prefaced with an ampersand (&).

SYSPAGE tests whether the page currently being formatted is an even- or odd-
numbered page (EVEN or ODD). You can use SYSPAGE to place text on an out-
put page, based on whether the output page is even-numbered or odd-numbered:

. if SYSPAGE
.if SYSPAGE

EVEN .sx /Evenpage Top Line///
ODD .sx ///0Oddpage Top Line/

SYSOUT tests whether the destination of the output is the line printer (PRINT),
page printer (PAGE), or the terminal (TERM). This keyword is provided for com-
patibility with SCRIPT/370. The SCRIPT/VS system symbols &$LDEV and
&S$PDEV provide a better way to test which of the many logical and physical out-
put devices possible with SCRIPT/VS is currently in use.

Special Techniques for Conditional Processing

There are several techniques you should be aware of when using the .IF [If] family of
control words.

Comparing Null-Value Symbols

When you specify the name of a symbol value that might be null, you should prefix
the symbol name with a character-prefix to avoid a possible syntax error. For exam-
ple, the input line

.sea=""

.if &a = ON . go next

results in a SCRIPT/VS error because the symbol &a was set to a null value. The
conditional statement resolves to:

.if = ON .go next

The = character is treated as the first comparand, and ON is not a valid compar-
ison. However, the input line

.if /&a = /ON .go next
resolves to
.if / = /ON .go next
When the symbol &a has the value ON, it resolves to

.if /ON = /ON .go next

256 DCF: SCRIPT/VS Text Programmer’s Guide

That is, the prefix / is concatenated with the value of &a to result in /ON, which
satisfies the test. When the symbol &a is null, /&a results in / and the test fails, but
no error results.

¢ Comparing Symbols Containing Special Characters

The .IF [If] control word family, like the .SE [Set Symbol] control word, is capable
of resolving symbols in its comparands even if symbol substitution is off. This is
essential when comparing symbols whose values might contain special characters,
such as blanks and control word separators, or whose values might be very long.
For example, with symbol substitution on, the input line

.1f &needle eq &haystack .th .im lost

might result in

.if Rachel's MG eq Parking Lot .th .im lost

after symbol substitution has occurred. This would result in an error because
Rachel’s would be interpreted as the first comparand and MG would be interpreted
as an invalid comparator. With substitution off, the symbols &needle and
&haystack will be recognized as the comparands, and symbol substitution will be
performed on the two comparands separately before they are compared.

¢ Comparing Potentially Long Comparands

After substitution, an input line cannot be longer than 255 characters. If your input
line might exceed 255 characters after substitution has been performed, the .IF con-
trol word should be processed with substitution off.

Conditional Sections

When a document might be read by several different audiences, you can customize it for
each. To do this, you identify those sections of the input file that are to be processed
conditionally.

SCRIPT/VS processes a conditional section, or ignores it, based on the setting of a .CS
[Conditional Section] control word. Each conditional section number, from 1 to 9, can
be used many times in a document. You can associate each type of information to be
processed conditionally with its own conditional section number. For example,

Conditional

Section

Number Conditional Section Applies To
1 Only Class A Widgets
2 Only Class B Widgets
3 Only Class C Widgets
4 Either Class B or Class C (Not Class A)
5 Either Class A or Class C (Not Class B)
6 Either Class A or Class B (Not Class C)

At the beginning of the document, specify that SCRIPT/VS is to bypass all conditional
sections with the IGNORE parameter of the .CS [Conditional Section] control word.
The SCRIPT/VS default is to process all conditional sections not specifically bypassed.

Chapter 22. Processing Logical Statements 257

.cs 1 ignore
.cs 2 ignore

.

.cs 6 ignore

Before you issue the SCRIPT command to process the document, change some of the
.CS [Conditional Section] IGNORE control words to .CS [Conditional Section] IN-
CLUDE control words, to process each desired conditional section. For example, to
print all material appropriate for readers interested in Class B Widgets, specify

.cs 2 include
.¢cs 4 include
.cs 6 include

In the body of your input file, you identify each conditional section by preceding it and
following it with the .CS [Conditional Section] control words, using the ON and OFF
parameters. For example,

.cs 2 on

This material applies only
to Class B Widgets.

It does not apply to either
of the other types.

.cs 2 off

Because you can only specify one conditional section number with the .CS [Conditional
Section] control word, you must use a separate number to identify sections that apply to
either one of two (but not the third) type of device.

Because the .CS [Conditional Section] control word does not cause a break, you can
process small units of text conditionally. For example, the input lines

.cs 1 ignore

.cs 2 ignore

.cs 3 dinclude

This book is written specifically
for the operator of a
.cs 1 on

Class A

.cs 1 off

.cs 2 on

Class B

.cs 2 off

.cs 3 on

Class C

.cs 3 off

Widget.

are printed as:
This book is written

specifically for the operator
of a Class C Widget.

258 DCF: SCRIPT/VS Text Programmer’s Guide

The input lines (GML tags, control words, and text) between the .CS ON and the .CS
OFF control words are included unless explicitly bypassed as a result of a preceding .CS
IGNORE control word. Such a bypass is not a total one: macros and GML tags are
resolved.

Logical Processing With Symbols

With set symbols, you can do logical processing in several ways. The simplest of these is
to have a symbol that resolves to one control word or another depending on the specific,
applicable conditions. For example, the symbol xim could be set to either .CM or .IM to
cause the input line

&xim filename

to be treated as an .IM [Imbed] control word or a .CM [Comment] control word. If your
file has several places at which another file should be imbedded conditionally, the sym-
bol xim could be defined once to control all occurrences of the symbolic control word.

Another technique uses the existence attribute (&E’) of a symbol to generate a macro
name according to whether a symbol exists or not. See “Chapter 21. Processing
Symbols” on page 223 for details on symbol attributes. The existence attribute causes a
string to be substituted with 0 if a symbol does not exist, and with 1 if it does. You
could write a macro called X0 to provide the appropriate processing when a given sym-
bol does not exist, and another called X1 for when it does exist. Now, the expression:

. X&E ' &name

will resolve to .X0 if the symbol &name. does not exist and .X/ if it does.

You can also use the symbol length attribute (&L’) to perform logical processing. The
length attribute and the following string or symbol are replaced with the length of the
string or symbol during substitution. See “Chapter 21. Processing Symbols” on page 223
for details. If a symbol called &num contains a number that is from one to five digits
long, you can develop a 5-digit number by adding the correct number of leading zeros to
&num. First, you need to define symbols that contain the number of zeros needed for
each possible length the number might be:

.se 5z =

.se 4z =0
.se 3z = 00
.se 2z = 000
.se 1z = 0000

If the number is five digits long, zeroes need not be added. If it is four digits long, you
need one zero, and so on. Now, the expression

&&L' &num. z. &num

concatenates the correct number of zeros to the number to form a 5-digit number. One
part of the expression, &L’&num, is resolved to the number 1, 2, 3, 4, or 5, whatever the
length of the number in the symbol &num happens to be. If it is 3, the expression be-
comes &3z.&num. The symbol &3z is now replaced with 2 zeros, the proper number of
zeros for a 3-digit number and is concatenated with the number itself when &num is
substituted.

Chapter 22. Processing Logical Statements 259

Chapter 23. Processing Macros

SCRIPT/VS allows you to define your own processing controls, called macro in-
structions. A macro instruction can consist of SCRIPT/VS control words, GML
markup, symbols, text lines, and other macros.

You can define macros for GML processing, to provide additional formatting controls,
or to modify the action taken by a SCRIPT/VS control word.

To process macros, you must explicitly specify .MS [Macro Substitution] ON in your
document before SCRIPT/VS encounters any of the macros. If SCRIPT/VS encounters
a macro when macro substitution is off, the first two characters of the macro are treated
as a control word.

When to Use Macros

Many macro-like functions can be performed by symbols that are defined as control
word strings. Sometimes, though, you may need to define a macro to perform a function
that symbol processing alone cannot provide. For example, the control word sequence

.se x = & + 1;.se y = &x

is intended to increment the symbols x and y. But because SCRIPT/VS performs sym-
bol substitution before control word execution, &y is set equal to the current value of
&x and only &x is incremented.

You can perform this sequence properly by defining a macro. For example,

.su off
.dm increment /.se x = & + 1 /.se y = &x
.su on

After SCRIPT/VS processes the macro

. increment

&x and &y have equal values, because the two .SE [Set Symbol] control words are proc-
essed sequentially.

Macros also allow you to redefine the meaning of SCRIPT/VS control words. For ex-
ample, you can use the macro facility to define new head levels. Although seven head
levels, .HO - .H6 [Head Level 0 - 6], are provided with SCRIPT/VS, you might want to
define additional head levels.

Chapter 23. Processing Macros 261

How to Define a Macro

262

Use the .DM [Define Macro] control word to define macros. Because SCRIPT/VS proc-
esses macros as control words, an undefined SCRIPT/VS macro may be treated as an
invalid control word.

When you define a SCRIPT/VS macro, you must name the macro and specify the input
lines to be processed whenever the macro is called. You can write the following para-
graph macro:

.su off
.dm para /.sk /.in 3 for 2 /&%
.sSu on

The macro definition elements (usually control words) are separated by delimiters. The
delimiter is the first nonblank character that follows the blank after the macro name. It
can be any character that does not appear in the line itself.

The symbol &* represents the entire macro argument (that is, the line passed to the
macro for processing). For example, when the input line

.para On second thought,

is processed, &* has a value of On second thought,.

The form of the .DM [Define Macro] control word shown above is restricted to one
input line. The input line is broken at delimiter characters into separate macro lines.

The simplest way of defining a macro within a document is this:

.dm echo on
Lty ==

Lty &%

.ty ===

.dm off

The inline form (ON/OFF) of the .DM [Define Macro] control word allows you to de-
fine macro lines on separate input lines. For example, you could define the .PARA
macro as follows:

.dm para on
.sk

.in 3 for 2
.dm off

All of the input lines between the .DM PARA ON and the .DM OFF will be put into
the macro definition. Substitution and input translation will not be performed on these
lines until the macro is invoked. The .DM OFF control word line must begin in column
