HARDWARE HANDBOOK
dliglit[all

dlilg ltal] VAXT1/780 HARDWARE HANDBOOK 1979-80

Y 20 040 6L/81 €€8L1 83 VSN NI QILNI¥d

CORPORATE PROFILE

Digital Equipment Corporation designs, manufactures, sells and ser-
vices computers and associated peripheral equipment, and related
software and supplies. The Company'’s products are used world-wide
in a wide variety of applications and programs, including scientific
research, computation, communications, education, data analysis. in-
dustrial control. timesharing, commercial data processing, word proc-
essing, health care. instrumentation, engineering and simulation.

VAXII
780

HARDWARE HANDBOOK

ol

The information in this document is subject to change without notice
and shouid not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibili-
ty for any errors that may appear in this manuai.

VAX, VMS, SBI, PDP, UNIBUS, MASSBUS
are trademarks of
Digital Equipment Corporation

This handbook was designed, produced and typeset
by DIGITAL's Sales Support Literature Group
using an In-house text-processing system
operating on a DECSYSTEM-20.

Copyright © 1979, by Digital Equipment Corporation

CONTENTS

CHAPTER1 VAX-11/780 HARWARE INTRODUCTION

SYSTEMINTRODUCTION....... ..o

THE VAX-11/780 CENTRAL PROCESSING UNIT

THE CONSOLE SUBSYSTEM.................o.
THE MEMORY SUBSYSTEM
THE INPUT/OUTPUT SUBSYTEMS

CHAPTER2 CONSOLE SUBSYSTEM

INTRODUCTION e
CONSOLE INTERFACEBOARD.
CONSOLEBUS STRUCTURE...................
CONSOLE/VAX-11INTERACTION
READ ONLY MEMORY (ROM)
THE CONSOLE COMMAND LANGUAGE
CONSOLE ERRORMESSAGES.................

CHAPTER 3 CENTRAL PROCESSOR

INTRODUCTION ... o
HARDWARE ELEMENTScoviitt
PROCESSOROPERATION ...ttt
USER PROGRAMMING CONCEPTS
USER PROGRAMMING ENVIRONMENT
SYSTEM PROGRAMMING CONCEPTS
SYSTEM PROGRAMMING ENVIRONMENT

CHAPTER 4 PROCESS STRUCTURE

PROCESSDEFINITIONccoovvvinnnn
PROCESS CONTEXTciiiiiiiinennannns
ASYNCHRONOUS SYSTEM TRAPS (AST)
PROCESS STRUCTURE INTERRUPTS
PROCESS STRUCTURE INSTRUCTIONS
USAGEEXAMPLE............coiiviiiiiinn

CHAPTER 5 EXCEPTIONS AND INTERRUPTS

INTRODUCTION
INTERRUPTS e
SERIOUS SYSTEMFAILURES
SYSTEM CONTROL BLOCK(SCB)
STACKS

SERIALIZATION OF EXCEPTIONS AND

INTERRUPTIONS ...t
INITIATE EXCEPTION ORINTERRUPT

CHAPTER6 MEMORY MANAGEMENT

INTRODUCTION e 101
VIRTUALADDRESSSPACE..................ccvvutn 102
VIRTUALADDRESScccoiiiiiiiinnns. 104
ADDRESS TRANSLATIONcciiviuinn., 105
ACCESSCONTROLcciiviiiiiiiianinn... 107
SYSTEM SPACE ADDRESS TRANSLATION 109
PROCESS SPACE ADDRESS TRANSLATION 111
MEMORY MANAGEMENT CONTROL 115
FAULTS AND PARAMETERS 117
PRIVILEGED SERVICES AND ARGUMENT
VALIDATION i, 118
ISSUES ... 119
CHAPTER7 SYNCHRONOUS BACKPLANE INTERCONNECT
INTRODUCTION e, 125
SBISTRUCTURE. ...ttt 126
SYNCHRONOUS BACKPLANE INTERCONNECT
THROUGHPUT i, 145
CHAPTER 8 MAIN MEMORY SUBSYSTEM
INTRODUCTION ... 147
MEMORY CONTROLLER 148
BASIC MEMORY OPERATIONS 149
INTERLOCKCYCLES. ..., 152
ERROR CHECKING AND CORRECTION (ECC) 153
MEMORY CONFIGURATION REGISTERS 153
MEMORY INTERLEAVING 159
ROMBOOTSTRAPot 160
CHAPTER9 UNIBUS SUBSYSTEM
INTRODUCTIONt 163
UNIBUS SUMMARYo..e. 163
UNIBUSADAPTER ..ottt 168
SBIACCESS TO UNIBUS ADDRESS SPACE 170
UNIBUS ACCESS TO THE SBI ADDRESS SPACE 175
UNIBUS ADAPTER DATA TRANSFER PATHS 178
INTERRUPTS i, 190
UNIBUS ADAPTER (NEXUS) REGISTER SPACE.......... 194
SBI ADDRESSABLE UNIBUS ADAPTER REGISTERS ..196
POWER FAIL AND INITIALIZATION 216
CHAPTER 10 MASSBUS SUBSYSTEM
INTRODUCTION 223
MASSBUS ADAPTER OPERATION 227

CONTROLPATH ... 229

MBAACCESS .. . it 229
INTERNALREGISTERS 231
CHAPTER 11 PRIVILEGED REGISTERS
INTRODUCTION ...t iiienaiene e 245
SYSTEM IDENTIFICATION REGISTERS (SID) 245
CONSOLE TERMINAL REGISTERSc...ene 246
CLOCKREGISTERSoiiiiiiiiiie e 247
VAX-11/780 ACCELERATOR i 250
VAX-11/780 MICRO CONTROLSTORE................ 252
CHAPTER 12 PRIVILEGE INSTRUCTIONS
INTRODUCTION ..t 257
CHAPTER 13 SYSTEM ARCHITECTURAL IMPLICATIONS
INTRODUCTION ..ttt 269
DATA SHARING AND SYNCHRONIZATION 269
[07-Yo] = | T 270
RESTARTABILITY ... 271
INTERRUPTS . \iiiiiiiiiieaneaaninaa e e 272
[=321=T0) =1 J 272
IJOSTRUCTURE . ..ottt 272

CHAPTER 14 RELIABILITY AVAILABILITY
MAINTAINABILITY PROGRAM

INTRODUCTION .. ees 275

HARDWARE RAMP FEATUREScovvennns 275
APPENDIX A

COMMONLY USED MNEMONICSccoivieiinnns 281
APPENDIX B

INSTRUCTIONINDEXo i 285
APPENDIXC

I/OSPACERESTRICTIONSo 297
APPENDIXD

INTERNAL DATA (ID) BUS REGISTERS 299
APPENDIXE

ADDRESS VALIDATIONRULESchviivinnn 313

APPENDIX F
VIRTUAL TO PHYSICAL ADDRESS TRANSLATION317

APPENDIX G

OPERAND SPECIFIERNOTATION 321
GLOSSARYot 325
INDEX ... 353

vi

PREFACE

VAX-11/780 is DIGITAL’s 32 bit extension to its 11 family of minicom-
puters. VAX-11/780 is a fully integrated computer system featuring
state-of-the-art hardware technology coupled with a powerful virtual
memory operating system, VAX/VMS (Virtual Address Exten-
sion/Virtual Memory system). VAX-11 hardware is characterized by its
flexible instruction set, 32 bit capability, byte addressability, stack or-
ientation, and highly efficient page-oriented memory management
scheme. VAX/VMS is a high-performance operating system designed
to complement the VAX-11 hardware. VAX/VMS encompasses a high-
ly sensitive scheduling algorithm, extensive record and file manage-
ment capabilities, and virtual memory features achieved by an ex-
tremely efficient paging algorithm.

VAX-11/780 is general purpose in nature, with the inherent capability
to deal with a multitude of user environments. Designed to optimize
throughput, the system enables enormous amounts of data to flow
through it swiftly and unobstructed. Data transfers are accomplished
via the 32 bit high speed Synchronous Backplane Interconnect (SBI).
This hardware mechanism ties the system components together by
providing a common point of interface including the communications
protocol. The SBI interconnects the central processor, main memory
(8 million bytes maximum), the UNIBUS subsystem and a mass stor-
age subsystem comprising a maximum of 4.3 billion bytes. VAX-
11/780 supports a 32 bit word architecture, thereby establishing a
virtual address space of 2% or 4.3 billion bytes for user application.
The VAX-11 instruction set consists of 243 instructions including gen-
eral-purpose, special function, commercial, and floating point. An op-
tional high-speed floating point accelerator is available for user appli-
cations demanding superior floating point performance.
The VAX/VMS operating system is flexible in supporting many user
environments such as time-critical, interactive program development,
and batch. either concurrently, independently, or in any combination.
The VAX-11 handbook documentation set is presented in three books:
e The VAX-11 Architecture Handbook introduces VAX-11 system ar-
chitecture, addressing modes, and the native mode instruction set.
e The VAX-11 Software Handbook introduces the VAX/VMS virtual
memory operating system, it operation, haraware interaction, daia
structures, features, and capbilities.

vil

e This book, the VAX-11/780 Hardware Handbook, introduces the
VAX-11 hardware elements, including the high-speed synchronous
backpiane interconnect, the central processor unit, intelligent
console subsystem, MASSBUS and UNIBUS subsystems, main
memory, and memory management.

This book describes the first of a series of VAX-11 Processors, there-
fore, certain chapters pertain to system wide architecture as well as
processor specific information. :

viii

- |
!
|

i
i
i

W
B

A
%ﬁgx‘ﬂmmummmmummm

I
M

uunmuumuummnnunmmn

llIllllllllllllllllllIll_ll!lll“lllllllﬂl Lk

)

l
IllllllllllllllIllIllllllllllllllllllllll!

11

i"mnmmmmmnumummmm
L

i
i
i
i

H
1

CHAPTER 1
VAX-11/780 HARDWARE INTRODUCTION

SYSTEM INTRODUCTION

VAX-11/780 is a high-performance multiprogramming computer sys-
tem. The system combines a 32 bit architecture, efficient memory
management, and a virtual memory operating system to provide es-
sentially unlimited program address space.

The processor’s variable length instruction set and variety of data
types, including decimal and character string, promote high bit effi-
ciency. The processor hardware and instruction set specifically imple-
ment many high-level language constructs and operating system
functions.

VAX-11/780 is a multiuser system for both program development and
application system execution. It is a priority-scheduled, event-driven
system: the assigned priority and activities of the processes in the
system determine the level of service they need. Time-critical jobs
receive service according to their priority and ability to execute, while
the system manages allocation of CPU time and memory residency for
normal executing processes.

VAX-11/780 is a highly reliable system. Built-in protection mecha-
nisms in both the hardware and software ensure data integrity and
system availability. On-line diagnostics and error detecting and log-
ging verify system integrity. Many hardware and software features
provide rapid diagnosis and automatic recovery should the power,
hardware, or software fail. :

The system is both flexible and extendable. The virtual memory oper-
ating system enables the programmer to write large programs that can
execute in both small and large memory configurations without requir-
ing the programmer to define overlays or later modify the program to
take advantage of additional memory. The command language
enables users to modify or extend their command repertoire easily,
and allows applications to present their own command interface to
users.

Appendix A contains a table of commonly used VAX-11/780 system
mnemonics.

Introduction

Architecture Overview

VAX is the architecture for the VAX-11/780. The goals of the VAX
architecture were to provide a significant enhancement to the virtual
addressing capability of the PDP-11 series consistent with small code
size, easy exploitation by higher-level languages, and a high degree of
compatibility with the PDP-11 family of minicomputers. While VAX-11
is not strictly binary-compatible with the PDP-11 binary code, it does
implement a compatibility mode which executes most PDP-11 instruc-
tions.

VAX-11 architecture is characterized by a powerful and complete in-
struction set of 244 basic instructions, a wide range of data types, an
elegant set of addressing modes, full demand paging memory man-
agement, and a very large virtual address space of over four billion
bytes. The native mode instruction set is found in Appendix B. 1/0
space restrictions on the use of the native mode instruction set is
defined in Appendix C. Arithmetic and logical operations can be per-
formed on byte integers (8 bits), word integers (16 bits), and 32-bit
longword integers; plus, some instructions ¢an perform operations on
64-bit quadword integers. Additionalily, the Native Mode instruction
set includes floating point operations, character string manipulations,
packed decimal arithmetic, and many instructions which improve the
performance and memory utilization of systems and applications
which can be performed on variable-length bit fields—a new data type
for the 11 family.

Another significant feature of the VAX-11 architecture is that instruc-
tion addressing is virtually arbitrary. This means that there are no fixed
formats, and no restrictions as to the location of an operand for a
particular instruction or even the instruction itself. Thus, operands and
instructions can begin on any byte address, odd or even. The result of
this flexibility is that higher-level language compilers, such as
FORTRAN, can generate code that is optimally smaller in size, very
efficient, and easy to manipulate in the compiler’s data structures. This
resuits in greater performance and lower memory utilization. The
VAX/VMS operating system makes the hardware work together as
one unit to provide the VAX-11/780 with its multiuser, muitiprogram-
ming, virtual memory capabilities. For further information concerning
VAX architecture, refer to the ARCHITECTURE HANDBOOK.

Software Overview

VAX/VMS is the general-purpose operating system for the VAX-
11/780. It provides a reliable, high-performance environment for the
concurrent execution of multiuser timesharing, batch, and time-criti-
cal applications. VAX/VMS provides:

2

Introduction

e virtual memory management for the execution of large programs

e event-driven priority scheduling

e shared memory, file, and interprocess communication data protec-
tion based on ownership and application groups

e programmed system services for process and subprocess control
and interprocess communication

VAX/VMS uses the VAX-11/780 memory management features to
provide swapping, paging, and protection and sharing of both code
and data. Memory is allocated dynamically. Applications can control
the amount of physical memory allocated to executing processes, the
protection of pages, and swapping. These controls can be added after
the application is implemented.

CPU time and memory residency are scheduled on a pre-emptive
priority basis. Thus, time-critical processes do not have to compete
with lower priority processes for scheduling services. Scheduling ro-
tates among processes of the same priority.

VAX/VMS includes system services to control processes and process
execution, control time-critical response, control scheduling, and ob-
tain information. Process control services allow the creation of sub-
processes as well as independent detached processes. Processes can
communicate and synchronize using mailboxes, shared areas of
memory, or shared files. A group of processes can also communicate
and synchronize using multiple common-event flag clusters.

Memory access protection is provided both between and within
processes. Each process has its own independent virtual address
space which can be mapped to private pages or shared pages. A
process cannot access another process’s private pages. VAX/VMS
uses the four processor access modes to read and/or write-protect
individual pages within a process. Protection of shared pages of mem-
ory, files, and interprocess communication facilities such as mailboxes
and event flags, is based on User ldentification Codes individually
assigned to accessors and data.

A complete program development environment is offered. In addition
to the native assembly language, it offers optional high-level program-
ming languages commonly used in developing both scientific and
commercial applications: FORTRAN, COBOL, and BASIC. It provides
the tools necessary to write, assemble or compile, and link programs,
as well as to build libraries of source, object, and image modules.
VAX/VMS data management inciudes a file system that provides vol-
ume structuring and protection, and record management services that
provide device-independent access to the VAX-11/780 peripherals.

3

Introduction

The VAX/VMS on-disk structure provides a multiple-level hierarchy of
named directories and subdirectories. Files can extend across multi-
ple volumes and can be as large as the volume set on which they
reside. Volumes are mounted to identify them to the system.
VAX/VMS also supports multivolume ANS format magnetic tape files
with transparent volume switching.

The VAX/VMS record management input/output system (RMS) pro-
vides device-independent access to disks, tapes, unit record equip-
ment, terminals, and mailboxes. RMS allows users and application
programs to create, access, and maintain data files with efficiency and
economy. Under RMS, records are regarded by the user program as
logical data units that are structured and accessed in accordance with
application requirements.

RMS provides sequential record access to sequential file organiza-
tions, and sequential, random, or combined record access to relative
file organizations.

For further information concerning VAX-11 software and the
VAX/VMS operating system, refer to the VAX-11 SOFTWARE HAND-
BOOK.

Hardware Overview

The VAX-11/780 computer system consists of the central processing
unit (with integral floating point and decimal and character string in-
structions), the console subsystem, the main memory subsystem, and
the 1/0 subsystem. The 1/0 subsystem includes the Synchronous
Backplane Interconnect (SBI), the UNIBUS and the MASSBUS sub-
system.

The SBI is the internal connection path that links the CPU with its
subsystems. The VAX-11/780 hardware configuration is illustrated in
Figure 1-1.

THE VAX-11/780 CENTRAL PROCESSING UNIT

The VAX-11/780 processor is a 32-bit high-speed microprogrammed
computer that executes instructions in native mode, and nonprivileged
PDP-11 instructions in compatibility mode.

The processor can directly address four gigabytes of virtual address
space, and provides a complete and powerful instruction set that in-
cludes integral decimal, character string, and floating point instruc-
tions. The VAX-11/780 includes an 8K byte cache, integral memory
management, sixteen 32-bit general registers, 32 interrupt priority lev-
els, and an intelligent console (LSi-1 1).

CENTRAL PROCESSING UNIT

w -
S cPy i
> WITH FULL !
I FLOATING POINT, [¢!
Wi DECIMAL , AND P
D! CHARACTER STRING | A |
g : INSTRUCTIONS :
t
|
F-bo—mmm oo -1 MEMORY_SUBSYSTEM
%&SQTL&M CACHE MEMORY ! 8
| ,___—_l‘ - Ao
"
MEMORY 256K8 | i1
CONTROLLER ECC MOs|
PORT FOR — | LSI-1 FLOPPY UP TO 8 M BYTES
REMOTE MICRO- DISK MAXIMUM
DIAGNOSIS — | COMPUTER F-——=—--- N e 1
SI="T7 MEMORY k=== 256KB |
BlL 1! CONTROLLER | ---1ECC MOS!
1 e — | | B
SNSOLE 1/0 SL:?SSY:‘LE/MS)
. sec
TERMINAL UNIBUS L.3m8s
ADAPTOR
" B(/\3.3) MASSBUS {2.0MB/sec)
sec
ADAPTOR MASSBUS >
FPA = FLOATING POINT ACCELERATOR ;
WDCS = WRITABLE DIAGNOSTIC CONTROL STORE ‘
WCS = WRITABLE CONTROL STORE UP TO 4 TOTAL

Figure 1-1

VAX-11/780 Hardware Configuration

uononponu|

Introduction

Figure 1-2 illustrates the elements of the central processing unit.

'

H CPU WITH

I FULL
| FLOATING POINT,
|
i
]

DECIMAL , AND
CHARACTER STRING
INSTRUCTIONS

SUBSYSTEM

CONSOLE b4
C
S

>»omn
S S |

CACHE MEMORY

S
B
I

Figure 1-2 Central Processor

Native Instruction Set — The VAX-11 instructions are an extension of

the PDP-11 instruction set. The VAX-11 instruction set provides 32-bit

addressing, 32-bit 1/0 operations, and 32-bit arithmetic. Instructions

can be grouped into related classes based on their function and use:

1) Instructions to manipulate arithmetic and logical data
types—These include integer and floating pointinstructions,
packed decimal instructions, character string instructions, and bit
and field instructions.

The data type identifies how many bits of storage are to be treated
as a unit and how the unit is to be interpreted. Data types that may
be used are:

Data Type Represented As

Integer byte (8 bits), word (16 bits), longword
(32 bits), quadword (64 bits)

Floating point 4-byte floating or 8-byte double floating

Packed decimal string or bytes (up to 31 decimal digits,
2 digits per byte)

Character string string of bytes interpreted as character

codes; a numeric string is a character
string of codes for decimal numbers
(up to 64K bytes)

Bits and bit-fields field length is arbitrary and is defined
by the programmer (0 to 32 bits in
length)

6

2)

3)

4)

Introduction

Integer, floating point, packed decimal, and character data are
stored starting on an arbitrary byte boundary. Bit and bit field data
do not necessarily start on a byte boundary. A collection of data
structures can be packed together to use less storage space.

Instructions to manipulate special kinds of data—These include
queue manipulation instructions (i.e., those that insert and re-
move queue entries), address manipulation instructions, and
user-programmed general register load and save instructions.
These instructions are used extensively by the VAX operating sys-
tem.

Instructions to provide basic program flow control—These in-
clude branch, jump, and case instructions, subroutine call in-
structions, and procedure call instructions.

Instructions to quickly perform special operating system func-
tions—These include process control instructions (such as two
special context switching instructions which allow process context
variables to be loaded and saved using only one instruction for
each operation), and the Find First instruction which (among other
uses) allows the operating system to locate the highest priority
executable process. These instructions contribute to rapid and
efficient rescheduling.

Instructions provided specifically for high-level language con-
structs—During the design of the VAX-11 architecture, special
attention was given to implementing frequently-used, higher-level
language constructs as single VAX-11 instructions. These instruc-
tions contribute to decreased program size and increased execu-
tion speed. Some of the constructs which have become single
instructions on the VAX-11/780 include:

- the FORTRAN-computed GOTO statement (translates into
the VAX-11/780 CASE instruction)

- the loop construct (e.g., add, compare, and branch translates
into the VAX-11/780 ACB instruction)

- an extensive CALL facility (which aligns the stack on a long-
word boundary, saves user-specified registers, and cleans up
the stack on return. The CALL facility is used compatibly
among all native mode languages and operating system ser-
vices.)

VAX-11/780 instructions and data are of variable length. They need
not be aligned on longword boundaries in physical memory, but may
begin at any byte address (odd or even). Thus, instructions that do not
require arguments use only one byte, while other instructions may

7

Introduction

take two, three, or up to 30 bytes depending on the number of argu-
ments and their addressing modes. The advantage of byte alignment
is that instruction streams and data structures can be stored in much
less physical memory.

The VAX-11/780 processor offers nine addressing modes that use the
general registers to identify the operand location. Seven of these are
essentially the same as for the PDP-11:

register
register deferred
autoincrement

autoincrement deferred

autodecrement

displacement (similar to the PDP-11 index
mode)

displacement deferred (similar to the PDP-11 index de-

ferred mode)

The two new addressing modes are:

indexed
literal

Because the instruction set is so flexible, fewer instructions are re-
quired to perform any given function. The result is more compact and
efficient programs, faster program execution, faster context switching,
more precise and faster math functions, and improved compiler-gen-
erated code.

General Registers and Stacks — The VAX-11/780 CPU provides 16
32-bit general registers which can be used for temporary storage, as
accumulators, index registers, and base registers. Although all can be
used as general-purpose registers, four have special significance de-
pending on the instruction being executed: Register 12 (the CALL
argument pointer); Register 13 (the CALL frame pointer); Register 14
(the stack pointer); and Register 15 (the program counter).

Stacks are associated with the processor’s execution state. The
processor may be in a process context (in one of four modes, kernel,
executive, supervisor, or user) or in the system-wide interrupt service
context. A stack pointer is associated with each of these states. When-
ever the processor changes from one state to another, Register 14 (the
stack pointer) is updated accordingly.

Introduction

Caches — The VAX-11/780 CPU provides three “cache’” sys-
tems—the memory cache, an address translation buffer, and an in-
struction buffer.

MEMORY CACHE

The memory cache (typically 95% hit rate) provides the central proc-
essor with high-speed access to main memory. The memory cache
reduces main memory read access time from 1800 nanoseconds to an
effective 290 nanoseconds, and has a cycle time of 200 nanoseconds.
The memory cache also provides 32 bits of lookahead. On a cache
miss, 64 bits are read from main memory—32 bits to satisfy the miss
and 32 bits of lookahead.

INSTRUCTION BUFFER

The instruction buffer consists of an 8-byte buffer that enables the
CPU to fetch and decode the next instruction while the current
instruction completes execution. The instruction buffer in combination
with the parallel data paths (which can perform integer arithmetic,
floating point operations, and shifting all at the same time) significantly
enhances the VAX-11/780’s performance.

TRANSLATION BUFFER

The VAX-11/780 provides an address translation buffer that elimi-
nates extra memory accesses during virtual-to-physical address
translations most of the time (typically 97% hit rate). The address
translation buffer contains 128 likely-to-be-used virtual-to-physical
address translations.

Clocks — The standard VAX-11/780 CPU includes two clocks—a pro-
grammable real-time clock used by system diagnostics and by the
VAX operating system for accounting and scheduling, and a time-of-
year clock, which insures the correct time-of-day and date. The time-
of-year clock is used by the operating system to enable unattended
automatic restart following any service interruption, including a power
failure.

Writable Diagnostic Control Store (WDCS) — 12K bytes (plus parity)
of WDCS are provided to allow the Diagnostic Console Processor to
verify crucial parts of the system, (i.e., the CPU, the intelligent console,
the SBI, and the memory adapter). In addition, the WDCS can be used
to implement updates to the VAX-11/780’s microcode.

Memory Management — The VAX-11/780 memory management
hardware enables the VAX operating system to provide a flexible and
efficient virtuai memory programming environment. Hardware memo-
ry management, in conjunction with the operating system, provides
facilities for paging (with user control) and swapping.

Introduction

in addition, the VAX-11/780 memory management provides four hier-
archical modes: kernel, executive, supervisor, and user, with
read/write access control for each mode.

The memory management hardware facilitates the sharing of pro-
grams and data, and allows larger program size and increased per-
formance.

THE CONSOLE SUBSYSTEM

The VAX-11/780's integrated console consists of an LSI-11 microcom-
puter with 16K bytes of read/write memory and 8K bytes of ROM
(used to store the LSI diagnostic, the LS| bootstrap, and fundamental
console routines), a floppy disk (for the storage of basic diagnostic
programs and software updates), a terminal, and an optional remote
diagnosis port.

Figure 1-3 illustrates the console subsystem.

The console subsystem serves as a VAX operating system terminal, as
the system console, and as a diagnostic console. As a VAX terminal, it
is used by authorized system users for normal system operations. As
the system console, it is used for operational control (i.e., bootstrap-
ping, initialization, software update). As a diagnostic console, it can
access the central processor's major buses and key control points
through a special internal diagnostic bus. The console allows operator
diagnostic operations through simple keyboard commands.

CENTRAL
PROCESSOR
4
LSI-11
M
N\ MICRO - FLOPPY
PREMOTE | compuTeR | DISK
DIAGNOSIS Y

TERMINAL
Figure 1-3 Console Subsystem

The floppy disk serves many useful purposes. During system
installation, the floppy disk is used as a load device. The hardware
bootstrap reads a file from the floppy; this file in turn loads the operat-
ing system from the system volume.

10

Introduction

In addition, hard core diagnostics (i.e., those that test “crucial” system
components) are stored on floppy. Testing of the LSI-11 is performed
at power up; microdiagnostics are performed on command.

Because the floppy device is standard on all VAX-11/780 systems,
software updates are distributed on this device. Simple commands
typed at the console terminal automatically update the system soft-
ware from the floppy.

THE MEMORY SUBSYSTEM

The main memory subsystem consists of ECC MOS memory, which is
connected to the SBI via the memory controller, as illustrated in Figure
1-4.

CENTRAL
PROCESSOR
LT 1
L L
MEMORY 256KB |,
CONTROLLER ECC MOS |+
S UP TO 8 M BYTES
28— MAXIMUM
| L _. [
r 1 r i
==1 MEMORY E-—-d 256KB !}
- ——4 CONTROLLER L ___-ECC MOS W
J - 4 Lo = J

Figure 1-4 Memory Subsystem

The VAX-11/780 physical memory is built using either 4K or 16K MOS
RAM chips. Memory is organized in quadwords (64 bits) plus an 8-bit
ECC (Error Correcting Code), which allows the correction of all single-
bit errors, and the detection of all double-bit errors.

MOS memory may be added in increments of either 128K or 256K
byte units to a maximum of either one or four million bytes per con-
troller (depending upon chip capacity). Two memory controllers may
be connected to a VAX-11/780 system, for a total of either two or eight
million bytes of physical memory. (The minimum memory requirement
is 128K bytes utilizing 4K RAM chips and 256K bytes utilizing 16K RAM
chips.)

The memory cycle time is 600 nanoseconds. This is equal to the mem-
ory access time since MOS memory has nondestructive read-out.
Read access time at the central processor (including SBI overhead) is
1800 nanoseconds. This is measured from the time the processor
transmits a read request until the processor receives all 64 bits of
data. (The central processor always reads 64 bits from memory.) In

11

Introduction

spite of the 1800 nanosecond memory access time, the VAX-11/780
processor realizes an effective average operand access time of 290
nanoseconds, due to the large optimized memory cache.

The memory controllers allow the writing of data in full 32 and 64 bit
units.

Each memory controller buffers up to four memory access requests.
This “request buffer” substantially increases memory throughput and
overall system throughput and decreases the need for interleaving for
most configurations.

Interleaving is possible with two controllers and equal amounts of
memory on each. Interleaving for VAX-11/780 systems should be
used when more than two MASSBUS adapters are connected and the
MASSBUS and UNIBUS devices are transferring at very high rates,
greater than one million bytes/second. Interleaving is en-
abled/disabled under program control. It is performed at the quad-
word level (each 64 bits) due to the memory organization. Note that in
most cases interleaving will not be required due to the memory con-
troller’s request buffer.

THE INPUT/OUTPUT SUBSYSTEMS

The VAX-11/780’s I/0 subsystem consists of the SBI, and the UNIBUS
and MASSBUS devices connected to the SBI through special buffered
interfaces called adapters. As illustrated in Figure 1-5, each VAX-
11/780 system has one UNIBUS adapter and can have up to four
MASSBUS adapters.

The Synchronous Backplane Interconnect — The SBl is the primary
control and data transfer path in the VAX-11/780 system. The SBI has
a physical address space of one gigabyte (30 bits of address).

CENTRAL
PROCESSOR
1.5M BYTES/SECOND
| UNIBUS e UNIBUS
s ADAPTOR
B
N
MASSBUS 2.0M BYTES/SECOND
ADAPTOR MASSBUS

V[{e] 4l TOTAL
Figure 1-5 1/0 Subsystem
12

Introduction

Physical address space is all possible memory and I/0 addresses that
a processor can access. In the VAX-11/780 system, half of the physical
address space is for memory addresses and half for I/0 addresses, as
illustrated in Figure 1-6.

512MB

(8MB AVAILABLE
FOR PHYSICAL
ADDRESSING)

PHYSICAL MEMORY

1G8 512
(30 BITS)

1/0 REGISTERS 512MB

— 1GB

Figure 1-6 SBI Physical Address Space

Presently, VAX-11/780 will support up to either two or eight million
bytes of main memory (depending upon storage chip capacity).

Each SBI device (i.e., CPU, MASSBUS adapter, UNIBUS adapter,
memory controller) has a unique priority. When a device wants to
transmit on the SBI, it asserts a unique request line. At the end of the
next 200 nanosecond cycle, each SBI device wanting to use the SBI
examines the SBI request lines for higher priority devices. The highest
priority device uses the next cycle, while other devices must wait.
Whenever possible, an SBI device currently in control of the SBI will
free the SBI so that a new transaction may occur on the next cycle.
This communication protocol enables:

1) Distributed arbitration. Since each device connected to the SBI
determines whether or not it will receive the next cycle (rather
than a central arbitrator making the decision), signals need travel
only one times the length of the SBI, with the advantage of in-
creased speed. Additionally, devices perform a parity check on
the control information, assuring that the arbitration is proceeding
correctly.

2) Single 32-bit and two back-to-back 32-bit transfers. The SBl data
path is 32 bits wide. The protocol allows single (32-bit) and double
(64-bit) data transfer as transactions. (The i/0 adapters always try
to transfer data in 64-bit quadwords).

Every transaction on the SBI (i.e., data transfer, address transfer, or
command transfer) is parity-checked and confirmed by the receiver.

13

Introduction

In addition, substantial protocol checking occurs on évery cycle, re-
sulting in high data integrity.

The UNIBUS — General-purpose and customer-developed devices
are connected to the VAX-11/780 system via the VAX-11/780's UNI-
BUS. Since the SBI deals in 30-bit addresses (one gigabyte), 18-bit
UNIBUS addresses must be translated to 30-bit SBI addresses. This
mapping function is performed by the UNIBUS adapter, a special
interface between the SB! and the UNIBUS, which translates UNIBUS
addresses, data, and interrupt requests to their SBI equivalents, and
vice versa.

The UNIBUS adapter does priority arbitration among devices on the
UNIBUS, a function handled by logic in the PDP-11 CPUs. The
address translation map permits contiguous disk transfers to and
from noncontiguous pages of memory (these are called scatter/gather
operations).

The UNIBUS adapater allows two kinds of data transfer: program in-
terrupt and direct memory access (DMA). To make the most efficient
use of the SBI bandwidth, the UNIBUS adapter facilitates high-speed
DMA transfers by providing buffered DMA data paths for up to 15
high-speed devices. Each of these channels has a 64 bit buffer (plus
byte parity) for holding four 16 bit transfers to and from UNIBUS de-
vices. The result is that only one SBI transfer (64 bits) is required for
every four UNIBUS transfers. The maximum aggregate transfer rate
through the Buffered Data Paths is 1.5 miillion bytes/second. In addi-
tion, on SBI-to-UNIBUS transfers, the UNIBUS adapter anticipates up-
coming UNIBUS requests by prefetching the next 64-bit quadword
from memory as the last 16-bit word is transferred from the buffer to
the UNIBUS. The result is increased performance. By the time the
UNIBUS device requests the next word, the UNIBUS adapter has it
ready to transfer.

Any number of unbuffered DMA transfers are handled by one direct
DMA data path. Every 8 or 16-bit tranfer on the UNIBUS requires a 32-
bit tranfer on the SBI (although only 16 bits are used). The maximum
transfer rate through the Direct Data Path is 500 thousand
bytes/second.

The UNIBUS adapter permits concurrent program interrupt, unbuf-
fered and buffered data transfers. The aggregate throughput rate of
the Direct Data Path, plus the 15 Buffered Data Paths, is 1.5 million
bytes/second.

The MASSBUS(es) — High-performance mass storage devices, such
as the RP series moving head disks, are connected to the VAX-11/780
system using a MASSBUS adapter. The MASSBUS adapter is the

14

Introduction

interface between the MASSBUS and the SBI, and performs all con-
trol, arbitration, and buffering functions. Address mapping is similar to
that performed by the UNIBUS adapter.

There may be a totai of four MASSBUS adapters on each VAX-11/780
system. Each adapter can accommodate data transfers of 128K bytes
maximum to and from noncontiguous pages in physical memory
(scatter/gather). The VAX operating system supports transfers of 64K
bytes maximum to be consistent with other devices.

Each MASSBUS adapter uses a 32-byte silo data buffer, which per-
mits transfers at rates up to two million bytes/second to and from
physical memory (8M bytes/second with all four). As in the UNIBUS
adapter, data is assembled in 64-bit quadwords (plus byte parity) to
make maximum efficient use of the SBl bandwidth.

On memory-to-MASSBUS transfers, as on memory-to-UNIBUS trans-
fers, the adapter anticipates upcoming MASSBUS data transfers by
prefetching the next 64 bits.

Optional Hardware Equipment
Prewired mounting space is available within the VAX-11/780 CPU
chassis for mounting the following optional equipment:

1) A High-Performance Floating Point Accelerator. The FPA is an
independent processor that works in parallel with the base CPU to
execute the standard floating point instruction set with substantial
performance improvement. The FPA takes advantage of the
CPU’s instruction buffer to prefetch instructions, and the memory
cache to access main memory. Once the CPU has the required
data, the FPA overrides the normal execution flow of the standard
floating point microcode and forces use of its own code. Then,
while the FPA is executing, the CPU can be performing other
operations in parallel, for example, fetching the third operand of a
three-address instruction. The result is much greater throughput
and decreased execution time.

2) Up to two million bytes (total) of MOS Memory with ECC.

3) Main Memory Battery Backup for ten minutes for each one million
bytes of memory.

4) 12K bytes (plus parity) of user writable control store (WCS). The
user can modify or add to the native mode instruction set by
programming the WCS.

15

16

CHAPTER 2
CONSOLE SUBSYSTEM

INTRODUCTION

The Console Subsystem serves as the interface between the operator
and the VAX-11/780 system. The console subsystem provides the
user with improved system maintenance features and greater operat-
ing system flexibility. The user interface to the subsystem is via the
console command language, which is quite similar to the system com-
mand language. The traditional lights and toggle switch functions have
been replaced by simple English language commands entered into
the system terminal. The system terminal (TTAO) is the logical first
terminal of the system. The floppy disk , an integral part of the subsys-
tem, stores microdiagnostics and system software. This facilitates fast
diagnosis (initiated both locally and remotely), simplified system boot-
strapping and initialization, and improved software update
distribution. Figure 2-1 functionally illustrates the console subsystem.

ID BUS +——r— ———— CLOCK CONTROL

———— V BUS

CONSOLE/CPU
INTERFACE C&'}’\IT;‘LOL
YT
0 ROM
Q-BUS
4 4
RXV-11
LSI-11 4K MEM FLOPPY DLV-T1 DEVP'T”
CONTROL (OPT)
]
1
T
| RXO1 | RX01 TERMINAL EIA CONNECTION
| (OPTIONAL) ! T T FOR REMOTE
b __ 4 TERMINAL

Figure 2-1 Console Subsystem

17

Console Subsystem

The console subsystem is comprised of six major components:

e an LSI-11 microprocessor (KD11-F) including a 4K by 16-bit semi-
conductor random access memory (RAM).

e a floppy disk drive (RX01) and controller (RXV11); a second optional
floppy disk drive is also available.

e a system terminal and two serial line interface units (DLV11-E), one
serial line unit provided for optional remote diagnosis port.

e console interface board (CIB) including 4K by 16-bit read only mem-
ory (ROM) for the LSI-11 microprocessor.

e the control panel on the VAX-11/780 cabinet.

e bus structure. The internal data (ID) bus is a high speed data path
connecting major functional areas of the VAX-11/780 CPU.

CONSOLE INTERFACE BOARD

The Console Interface Board links the console subsystem to the VAX-
11/780 central processor. The CIB contains interfaces to the console
subsystem bus structures; registers accessible to each bus; and all the
hardware necessary to implement the console functions. In addition,
the CIB contains a 4K by 16-bit ROM which provides the core of the
console LSI-11 software.

All data transfer operations between the VAX-11/780 processor and
the console LSI-11 are routed via the TO Internal Data and FM Internal
Data privileged registers on the CIB. The interaction of the console
subsystem and the VAX-11/780 processor, however, is directly related
to the states of the two processors. The VAX-11/780 processor may be
either running or halted. When running, the VAX processor is execut-
ing normal VAX-11 code. The processor can then be halted in one of
two ways:

e internal system error

e halt command via console (console must be in console command
mode to activate halt command)

If the processor is halted via an error detection, the console subsystem
automatically enters the console command mode (e.g., CPU double-
error halt).

The LSI may perform in either the program I/O mode or the console
command mode. When the LSI-11 is in the program 1/0 mode, it
passes console terminal input character by character to the VAX-
11/780 software. Data sent from the VAX-11/780 software to the con-
sole terminal is passed by the LSI-11 software directly to the terminal.
When the LSI-11 is in the console command mode, it interprets all
console terminal output in order to perform diagnostic and
maintenance functions and to implement the console command lan-
guage (CCL). Therefore, four possible system states could exist. They
are: 18

Console Subsystem

e VAX-11/780 running—LSI-11 program I/0 mode

e VAX-11/780 running—LSI-11 console command mode
e VAX-11/780 halted—LSI-11 program 1/0 mode

e VAX-11/780 halted—LSi-11 console command mode

Figure 2-2 illustrates the VAX-11/780 and LSI-11 interaction and oper-
ating mode combinations.

VAX11/780 cIs
cPU LS
VAX-11 PASSING ASCIL CHARACTERS I"ngRAM
SOFTWARE MODE
T “SET
“CONTINUE" TERMINAL
PROGRAM"

“HALT*

AT
COMMAND MODE CONSOLE
fggg?“ WAIT CONSOLE COMMAND LANGUAGE
(.. EXAMINE)

Figure 2-2 VAX-11/780 and LSI-11 Interaction and System
Operating States

VAX-11/780 Running — LSI-11 in Program |/O

In this mode of operation, the console terminal acts like any other user
terminal and may be used in conjunction with normal user application
programming. The Console Interface Board (CIB) passes character
data between both processors. In this mode, the LSI-11 console soft-
ware does not interpret commands typed at the console terminal.

VAX-11/780 Running — LSI-11 in Console Command Mode

In this mode, the operator is able to halt the VAX-11/780 processor via
the console terminal by typing the HALT command, and resume exe-
cution of the processor by entering the CONTINUE command. How-
ever, by entering the CONTINUE command, the console is automati-
cally updated to program i/O mode. When the VAX-11/780 is
executing instructions and the LSI-11 is in the program 1/0 mode, to
halt the VAX processor. the operator must change console modes

19

Console Subsystem

from program 1/0 mode to console command mode and then input
the HALT command.

The system operator can enter the console command mode from the
program 1/0 mode by typing control-P (tP). Similarly, the operator can
change from console command mode to program 1/0 mode by typing
“Set Terminal Program”. While the VAX processor is executing code,
only the following subset of commands are permitted:

e SHOW

e SET

o WAIT DONE

e HELP

e EXAMINE /VBUS

e CLEAR

Note that the functions which may be performed by the console are
limited to those requiring no direct response by the VAX-11/780 proc-
essor (except HALT). The console software does not pass commands
to the executing VAX processor software. Conversely, the console will
not accept output from the executing software of the VAX-11/780
processor. Therefore, the VAX-11/780 software cannot communicate
with the console floppy disk or console terminal.

VAX-11/780 Halted — LSI-11 in Program 1/O Mode
This mode of operation contains no system functionality and should
not be utilized.

VAX-11/780 Halted — LSI-11 in Console Command Mode

In this mode, the full functionality of the console command set is avail-
able to the system operator. Through the use of the console command
language, the system operator has the capability to:

e Initiate and terminate software being executed by the VAX-11/780
processor.

¢ Display and modify memory elements including main memory, 1/0,
general register and process register address space.

e Control the processor clock to provide single step clock modes for
use in basic hardware or program development.

e Initiate macro and micro diagnostics.
For further information regarding the console language, a complete
listing of the console commands is included in this chapter.

CONSOLE BUS STRUCTURE
Communication between the elements of the console is achieved by
three separate bus configurations. The ID (Internal Data) Bus links

20

Console Subsystem

together the major functional areas of the central processor. The V
bus interfaces the LSI-11 microprocessor and its peripheral hardware
to the VAX-11 CPU via the CIB (Console Interface Board). The V bus is
utilized by the console, while the LSI-11 is in the console 1/0 mode, to
access the Central Processor’s major buses and key control points.

INTERNAL DATA BUS

The Internal Data Bus is a high speed data path between the major
functional areas of the CPU. The ID bus may be controlled from the
console interface logic in a maintenance mode operation. This allows
access to writable control store and internal registers from the con-
sole.

When the Console Interface Board generates the ID MAINT signal, it
inititates a maintenance operation, allowing the console to assert ID
bus address and control signals (and data, if appropriate). The ID Bus
Registers are located in Appendix D.

QBUS

The Q bus (LSI-11 bus) connects the LSI-11 processor (and its ROM
and RAM memories), the console terminal interfaces, and the floppy
disk interface to the Console Interface Board, and thus to the VAX-11
CPU. The 16 address signals and 16 data signals share the same bus
lines. Fourteen other LSI-11 signal lines are used in the VAX-11/780
configuration for control signals (note that the DMA control lines are
not used).

Note that the serial line interface and the floppy disk interface cannot
communicate directly with the Console Interface Board, nor can the
CIB communicate directly with them. All transfers initiated from the
interfaces begin with interrupts to the LSI-11 processor.

VBUS

The V bus consists of eight serial data lines, a load signal line, a clock
signal line, and a self test line. Each of the participating VAX-11 CPU
modules contains a V bus shift register. The data input lines to the shift
register monitor specific test points on the CPU module, as shown in
Figure 2-3. The LOAD signal causes the shift register to paraliel load
from the test points when the VAX-11 CPU is in a stable condition. The
clock signal can then be used to read the latched data serially from
each of the shift registers into a register on the CIB. The LSI-11 must
read the register before clocking in the next serial bit from each of the
shift registers.

21

Console Subsystem

MODULE TEST POINTS

SELF TEST !
|
D D D

i

|
i
i

SHIFT REGISTER
PARALLEL
LOAD

‘*’ US REGISTER

SELF
TEST LOAD | CLOCK

|

Figure 2-3 V Bus Block Diagram

CONSOLE/VAX-11 INTERACTION

All data transfer operations between the VAX-11 CPU and the console
LSI-11 are routed via the TO and FM ID Registers on the CIB. The LSI-
11 Console may look at various points in the VAX-11 CPU via the V
Bus or it may look at data on the ID Bus. The TO ID Register is a data
buffer, serving two functions. First, it may be loaded by the LSI-11 with
data from the console terminal, one ASCII character to be read by the
VAX-11 microcode. The low order eight bits of the TO ID register
contain the ASCII character (RXDB <7:0>). Bits <11:8> specify the
console unit at which the data originated. Logical unit 00 is reserved
for the operator terminal. Second, the LSI-11 may write to any ID bus
address through the TO ID register by executing an ID maintenance
cycle.

The terms TO and FR (FROM) are used with respect to the VAX-11
CPU.

The FM ID Register is also a data buffer, serving a dual function. First,
it may be loaded by the VAX-11 microcode with data to be passed to
the console subsystem. The low order eight bits of the FM ID register
contain the ASCII character to be passed to the LSI-11. Bits <11:8>
specify one of the logic units in the console subsystem. Second, the
LSI-11 may read any ID bus register through the FM ID register by
executing an ID maintenance cycle when the VAX-11 CPU is halted.

The TO and FM internal data registers are illustrated in Figure 2-4.

22

M ID{TXDB) l

Console Subsystem

31 2”1 8 7]

i RX SEL <3.0> 1 RX DATA]

3 20 87 0

T
X SEL<3.0> l TX DATA J

Figure 2-4 TO and FM ID Registers

READ ONLY MEMORY (ROM)

The Console interface Board contains 4K words of ROM. This ROM
contains the core of the LSI-11 console operating system, including
the power up routines, the terminal and the floppy drivers. The LSI-11
begins executing instructions in the ROM when power is applied to the

THE CONSOLE COMMAND LANGUAGE
The console command language commands are listed and described
below in alphabetical order.

SYNTAX: ALL COMMANDS ARE TERMINATED BY CARRIAGE RE-

TURN.
'EXAMINE’ AND ‘DEPOSIT’ <QUALIFIERS > SWITCHES FOR
ADDRESS SPACE:
4P = PHYSICAL MEMORY (THE DE-
FAULT)
4V = VIRTUAL MEMORY
‘g = INTERNAL (PROCESSOR)
REGISTERS
Y& = GENERAL REGISTERS 9 THRU F
(RO THRU PC)
VR = VBUSREGISTERS
“IF = IDBUS REGISTERS

‘EXAMINE’ AND ‘DEPOSIT' <QUALIFIERS> SWITCHES FOR
DATA-LENGTH:

‘B’ = BYTE (8 BITS)

YW = WORD (2 BYTES)

viN = LONGWORD (2 WORDS)
yiey = QUADWORD (4 WORDS)

<ADDR> IS A <NUMBER>, OR ONE OF THE FOLLOWING
SYMBOLIC ADDRESSES

23

Console Subsystem

‘RO,R1,R2,.....,R11,AP,FP,SP,PC’ (GENERAL

REGISTERS)

‘PSL’ = PROCESSORSTATUS WORD

- = LAST ADDRESS

+’ = ADDRESS FOLLOWING ‘LAST
ADDRESS

' = ADDRESS PRECEDING ‘LAST’
ADDRESS

‘@’ = USES LAST EXAMINE/DEPOSIT
DATA FOR ADDRESS

<NUMBER> = STRING OF DIGITS IN CURRENT DEFAULT

RADIX,

STRING OF DIGITS PREFIXED WITH A DEFAULT RADIX
OVERRIDE (%0 FOR OCTAL, %X FOR HEX).

‘BOOT

‘BOOT <DEVNAM>'

‘CLEAR SOMM’

‘CLEAR STEP’
‘CONTINUFE’

‘DEPOSIT
[/ <SWITCH(ES)>]
<ADDR> <DATA>’

‘DIAGNOSFE’

‘DIAGNOSE <DEV-
NAM>’

‘ENABLE DX17

‘EXAMINE
[/ <SWITCH(ES)>]
<ADDR>’

-BOOTS THE CPU FROM DEFAULT DE-
VICE

-TAKES THE FIRST THREE ALPHANU-
MERIC CHARACTERS OF <DEVNAM>,
AND EXECUTES THE INDIRECT FILE
‘<DEVNAM>BOO.CMD’

-CLEAR ‘STOP ON MICRO-MATCH’ EN-
ABLE. NOTE: ID REGISTER 21 IS THE
MICRO-MATCH REGISTER

-ENABLE NORMAL (NO STEP) MODE
-ISSUES A CONTINUE TO THE ISP

-DEPOSIT <DATA> TO <ADDR>

-BOOTS THE DIAGNOSTIC SUPERVISOR
FROM DEFAULT DEVICE

-TAKES THE FIRST THREE ALPHANU-
MERIC CHARACTERS OF <DEVNAM>,
AND EXECUTES THE INDIRECT FILE
‘<DEVNAM>SUP.CMD’

-ENABLES CONSOLE SOFTWARE TO AC-
CESS FLOPPY DRIVE 1 ON THOSE SYS-
TEMS WITH DUAL FLOPPIES

-DISPLAY CONTENTS OF <ADDR>

24

‘EXAMINE IR’

‘HALT’
‘HELP’
‘INITIALIZE’
‘LINK’

‘LOAD[/START:
<ADDR>]
<FILENAME>’

‘LOAD/WCS
<FILENAME>’

‘NEXT <NUMBER>’

‘PERFORM’

‘QCLEAR
<ADDRESS>’

‘REBOOT’

‘REPEAT <ANY-
CONSOLE-
COMMAND>’

‘SET CLOCK SLOW’
‘SET CLOCK FAST’

‘SET CLOCK NORMAL'

Console Subsystem

-EXAMINES INSTRUCTION REG (IR), DIS-
PLAYS OP-CODE, SPECIFIER, & EXECU-
TION POINT COUNTER

-HALTS THE ISP
-PRINTS THIS FILE
-INITIALIZES THE CPU

-CAUSES CONSOLE TO BEGIN
COMMAND LINKING. CONSOLE PRINTS
REVERSED PROMPT TO INDICATE LINK-
ING. ALL COMMANDS TYPED BY USER
WHILE LINKING ARE STORED IN AN INDI-
RECT COMMAND FILE FOR LATER EXE-
CUTION. TYPING CONTROL C TERMI-
NATES LINKING. (ALSO REFERENCE THE
PERFORM COMMAND)

-LOAD FILE TO MAIN MEMORY, START-
ING AT ADDRESS 0, OR DDR> IF SPECI-
FIED

-LOAD FILE SPECIFIED TO WCS

-<NUMBER> STEP CYCLES ARE
DONE,TYPE OF STEP DEPENDS ON LAST
‘SET STEP’ COMMAND

-EXECUTE A FILE OF LINKED COMMANDS
PREVIOUSLY GENERATED VIA A ‘LINK’
COMMAND.

-DOES A QUAD CLEAR TO <ADDRESS>,
WHICH IS FORCED TO A QUAD WORD
BOUNDARY (CLEARS ECC ERRORS)

-CAUSES A CONSOLE SOFTWARE RE-
LOAD

-CAUSES THE CONSOLE TO REPEATED-
LY EXECUTE THE <CONSOLE-COM-
MAND>, UNTIL STOPPED BY A (CON-
TROL C)4C

-SET CPU CLOCK FREQ TO SLOW
-SET CPU CLOCK FREQ TO FAST
-SET CPU CLOCK FREQ TO NORMAL

25

‘SET DEFAULT
<OPTION>
[,.... <OPTION>]

‘SET RELOCATION:
<NUMBER>’

‘SET SOMM’
‘SET STEP BUS’

‘SET STEP
INSTRUCTION’

‘SET STEP STATE’

‘SET TERMINAL FILL:
<NUMBER>’

‘SET TERMINAL
PROGRAM’

‘SHOW’
‘SHOW VERSION’

‘START<ADDRESS>’

“TEST’

‘TEST/COM’

‘UNJAM’
‘'WCS’

‘WAIT DONE’

Console Subsystem

-SET CONSOLE DEFAULTS. NOTE:
<OPTIONS> ARE: OCTAL, HEX, PHYSI-
CAL, VIRTUAL, INTERNAL GENERAL,
VBUS, IDBUS, BYTE, WORD, LONG, QUAD

-PUT <NUMBER> INTO CONSOLE RELO-
CATION REGISTER. RELOCATION REGIS-
TER IS ADDED TO EFFECTIVE ADDRESS
OF PHYSICAL AND VIRTUAL EXAMINES
AND DEPOSITS

-SET ‘STOP ON MICRO-MATCH’ ENABLE

-ENABLE SINGLE BUS CYCLE CLOCK
MODE

-ENABLES SINGLE INSTRUCTION MODE

-ENABLE SINGLE TIME STATE CLOCK
MODE

-SET FILL COUNT FOR # OF BLANKS
WRITTEN TO THE TERMINAL AFTER
<CRLF>

-PUT CONSOLE TERMINAL INTO ‘PRO-
GRAM /0 MODFE’

-SHOWS CONSOLE AND CPU STATE

-SHOWS VERSIONS OF MICROCODE AND
CONSOLE

-INITIALIZES THE CPU, DEPOSITS <AD-
DRESS> TO THE PC, ISSUES A CONTIN-
UE TO THE ISP

-RUNS MICRO-DIAGNOSTICS

-LOADS MICRO-DIAGNOSTICS, AWAITS
COMMANDS

-UNJAMS THE SBI

-CALLS MICRODEBUGGER. (FOR DEBUG-
GERHELP, TYPE ‘@WCSMON.HLP’)

-WHEN EXECUTED FROM AN INDIRECT
COMMAND FILE, THIS COMMAND WILL
CAUSE COMMAND FILE EXECUTION TO
STOP UNTIL: A) A ‘DONE’ SIGNAL IS RE-

26

Console Subsystem

CEIVED FROM THE PROGRAM RUNNING
IN THE VAX-11/780 (COMMAND FILE EXE-
CUTION WILL CONTINUE), OR B) THE
VAX-11/780 HALTS, OR OPERATOR
TYPES A {C (COMMAND FILE EXECUTION
WILL TERMINATE)

4P’(CONTROL-P) -PUT CONSOLE TERMINAL INTO ‘CON-
SOLE I/0’ MODE

(UNLESS MODE SWITCH IN ‘DISABLE’)
‘@ <FILENAME>’ -PROCESS AN INDIRECT COMMAND FILE

CONSOLE ERROR MESSAGES

This section lists all console error messages and defines their format
and meaning. All console error messages are prefixed by a question
mark, to distinguish them from informational messages. Where user
interaction is required, the necessary steps appear in parentheses
following the respective error description.

Syntactic Errors
2 <TEXT-STRING>'IS The <TEXT-STRING> is nota complete

INCOMPLETE console command.

2 <TEXT-STRING>'1S The <TEXT-STRING > is not recognized as
INCORRECT avalid command.

? FILE NAME ERR A <FILENAME> given with a command

cannot be translated to RAD50. (<FILE-
NAME> is invalid)

?IND-COM ERR The console detected an error in the format
of an indirect command file. Possible errors
are:

1) More than 80 characters in an indirect
command line or

2) An indirect command line did not end
with a CARRIAGE-RETURN and LINE
FEED.

Command Generated Errors

?FILE NOT FOUND A <FILENAME> given with a ‘\LOAD’ or ‘@’
command does not match any file on the
currently loaded floppy disk. This error can
also be generated by a ‘HELP’, ‘BOOT oran
attempted WCS load if HELP FILE, BOOT
FILE or WCS FILE is missing from Floppy.

27

?NO CPU RESPONSE

?CPUNOTIN
CONSOLE WAIT
LOOP,COMMAND
ABORTED

?CPU CLOCK
STOPPED,COMMAND
ABORTED

CANT DISABLE BOTH
FLOPPY’s, FUNCTION
ABORTED

Micro-Routine Errors

Console Subsystem

The console timed out waiting for a re-
sponse from the CPU. (Retry, indicates pos-
sible CPU-related hardware fault)

A console command requiring assistance
from the CPU was issued while the CPU was
not in the console service loop. (HALT CPU,
re-issue command)

A console command that requires the CPU
clock to be running was issued with the
clock stopped. (Clear step mode; re-issue
command)

An attempt was made to disable both the
remote and local floppy.

The console uses various micro-code routines in the CPU’s control
store to perform console functions. The following errors are generated
by micro-routine failures:

?MIC-ERR ON
FUNCTION

?INT-REG ERR

?MICRO-ERROR,
CODE=X

?MEM-MAN FAULT,
CODE=XX

A micro-error occurred in the CPU while
servicing a console request. SBI error regis-
ters are dumped after this message is print-
ed. (Action dependent upon error)

A micro-error occurred while attempting to
reference a CPU internal (processor) regis-
ter. An illegal address will cause this error.

An unrecognized micro-error occurred. The
code returned by the CPU is not in the
range of recognized error codes. ‘X’ is the
code returned by the CPU.

A virtual examine or deposit caused an er-
ror in the memory management micro-rou-
tine. ‘XX’ is a one byte error code returned
by the routine, with the following bit assign-
ments:

Bit 0 = Length violation (bits numbered
from right)

Bit 1 = Fault was on a PTE reference
Bit 2 = Write or modify intent

28

Console Subsystem

Bit 3 = Access violation

Bits 4 through 7 should be ignored

CPU Fault Generated Error Messages

?INT-STACK INVALID

?CPU DOUBLE-ERR
HALT

?ILL I/E VECTOR
?NO USRWCS
?CHM ERR

INT PENDING

?MICRO-MACHINE
TIME OUT

The CPU halted because the interrupt stack
was marked invalid.

A machine check occurred before a previ-
ous machine check had been handled,
causing the CPU to execute a ‘Double Error’
Halt. (Examine 1D Registers 30-3F (hex);
contents will aid in locating cause of ma-
chine check).

The CPU detected an illegal Inter-
rupt/Exception vector.

CPU detected an Interrupt/Exception vec-
tor to user WCS and no user WCS exists.

A change mode instruction was attempted
from the interrupt stack.

This is not actually an error, but indicates
that an error was pending at the time thata
console-requested halt was performed.
(Continue CPU to clear interrupt).

Indicates that the VAX-11/780 micro-ma-
chine has failed to strobe interrupts within
the max time period allowed.

Messages Generated by Floppy Errors

?FLOPPY
ERROR,CODE=X

?FLOPPY NOT READY

The console Floppy driver detected an er-
ror. Codes are as follows: (Codes always
printed in HEX Radix).

CODE 1-Floppy hardware error. (CRC, Pari-
ty, etc.)

CODE 2-File not found.
CODE 3-Floppy driver queue overfull.

CODE 4-Console software requested an
illegal sector number.

TySr

The console floppy drive failed to become
ready when booting. (Retry)

29

Console Subsystem

?NO BOOT ON Console attempted to boot from a floppy
FLOPPY that does not contain a valid boot block.
(Change floppy disk)

?FLOPPY ERROR ON A floppy error was detected while attempt-
BOOT ing a console boot. (Retry)

Messages Related to Version Compatibility

?WARNING-WCS & The microcode in WCS is not compatible

FPLA VER MISMATCH with FPLA. This message is printed on each
ISP START or CONTINUE, but no other ac-
tion taken by console.

?FATAL-WCS & PCS The microcode in PCS is not compatible

VER MISMATCH with thatin WCS. ISP START and CONTIN-
UE are disabled by console.

?REMOTE ACCESS Printed when console mode switch enters a

NOT SUPPORTED ‘REMOTE! position, and the remote support
software routines are not included in the
console.

Console Generated Errors
?TRAP-4, RESTART- The console took a time-out trap. Console

ING CONSOLE will restart, :
?PUNEXPECTED TRAP Console trapped to an unused vector. Con-
MOUNT CONSOLE sole reboots when 1C typed.

FLOPPY, THEN TYPE

e

?Q-BLKD Console’s terminal output queue is blocked.

Console will reboot.

30

31

32

CHAPTER 3
CENTRAL PROCESSOR

INTRODUCTION

The VAX-11/780 Central Processing Unit (CPU) is the hardware re-
sponsible for performing the logic and arithmetic operations request-
ed of the computer system. The processor is a high-performance,
microprogrammed computer that executes a large set of variable-
length instructions in native mode, and non-privileged PDP-11 in-
structions in compatibility mode.

The CPU maintains 32-bit addressing and data capability, thereby
allowing it direct access to four billion bytes of virtual address space
(2%2). That is, the CPU references a location in terms of a 32-bit virtual
address. This address is termed virtual because it is not the actual
address in physical memory. The processor's memory management
hardware translates a virtual address to a physical address under
operating system control.

The processor provides 16 32-bit registers that can be used for tem-
porary storage, as accumulators, index registers, and base registers.
Four registers have special significance: the Program Counter, and
three registers that are used to provide an extensive CALL facility. The
processor offers a variety of addressing modes that use the general
registers to identify instruction operand locations, including an
indexed addressing mode that provides true post-indexing capability.

The native instruction set is highly bit efficient. it includes integral
decimal, character string, and floating point instructions, as well as
integer, logical, and bit field instructions. Instructions and data are
variable length and can start at any arbitrary byte boundary or, in the
case of bit fields, at any arbitrary bit in memory. Floating point
instruction execution can be enhanced by an optional floating point
accelerator.

The processor’s instruction set is defined by the microcode loaded
into the programmable read-only memory (control store).

33

Central Processor

The VAX-11/780 processor includes the following functional hardware
components:

o 8K byte two-way set associative memory cache

e 8 byte prefetch instruction buffer

e 128 entry address translation buffer

® 12K byte writable diagnostic control store (WDCS)

e time-of-year clock

® programmable real time clock

¢ integral memory management

e optional floating point accelerator (FPA)

® optional 12K byte customer writable control store (WCS)

This chapter is divided into three sections. The first section discusses
processor hardware, functionality and example processor operation.
The second section discusses the programming characteristics of the
processing system from the user’s point of view. And the iast section

looks at the processing system, but from an operating system
viewpoint.

HARDWARE ELEMENTS

The VAX-11/780 CPU is a fast, high-performance, 32-bit micropro-
grammed computer. The CPU derives its speed and performance
from the fact that it can handle several independent functions simulta-
neously.

The CPU can process both 32-bit data and addresses while maintain-
ing the ability to manipulate:

® bits (up to 32)

e bytes

® words

® longwords

® quadwords

® 32-bit floating point (single precision)

® 64-bit floating point (double precision)

® packed decimal (up to 31 digits)

® character strings (up to 64K bytes)

The following sections describe the VAX-1 1/780 processor hardware:
Control Store

The control store is a read-only memory containing 4K 96 bit micro-

words plus 3 parity bits per microword. The control store contains the
program that describes the operation and sequencing of the central

34

Central Processor

processing unit. It also contains the native, compatibility, and floating
point instruction sets. The control store contains a 96 bit buffer, en-
abling it to execute one microword while simuitaneously fetching the
next.

Data Paths

The data path subsystem consists of four independent and paraliel
sections used to process addresses and data specified by the
instruction set. The arithmetic section is used to perform both ar-
ithmetic and logical operations on data and addresses. The exponent
and sign section is used for fast exponent processing of floating point
instructions. The data shift and rotate section packs and unpacks
floating point and decimal string data. And finally, the address section
calculates virtual addresses for the transiation buffer.

8K Byte Two-Way Set Associative Memory Cache

The memory cache is the primary cache system for all data coming
from memory, including addresses, address translations, and instruc-
tions. The memory cache is an 8K byte, two-way set associative, write-
through cache.

Write-through provides reliability because the contents of main mem-
ory are updated immediately after the processor performs a write.
Most write-through cache systems tie up the processor while main
memory is updated. However, this processor buffers its commands to
avoid waiting while main memory is updated from the cache. There-
fore, while providing the reliability of a write-through cache, this
system also provides much the same performance as a write-back
cache.

The memory cache also reduces the average time the processor waits
to receive main memory data by reading eight bytes at a time from
main memory, and transferring four bytes to the CPU data paths, or
instruction buffer. Since the remaining four bytes are already avail-
able, the memory cache also provides pre-fetching. The cache memo-
ry system carries byte parity for both data and addresses for in-
creased integrity. Cache locations are allocated when data is read
from memory. When both of the possible locations for a particular
datum are already filled, one of the previously cached data is random-
ly replaced.

Address Translation Buffer

The address transiation buffer is a cache of likely-to-be-used physical
address translations. It significantly reduces the amount of time spent
by the CPU on the repetitive task of dynamic address translation. The
cache contains 128 virtual-to-physical page address translations

35

Central Processor

which are divided into equal sections: 64 system space page transia-
tions and 64 process space page translations. Each of these sections
is two-way associative. There is byte parity on each entry for increased
integrity.

8 Byte Prefetch Instruction Buffer

The 8 byte instruction buffer improves CPU performance by prefetch-
ing data in the instruction stream. The control logic continously fetch-
es data from memory to keep the 8 byte buffer full. It effectively elimi-
nates the time spent by the CPU waiting for two memory cycles where
bytes of the instruction stream cross 32-bit longword boundaries. In
addition, the instruction buffer processes operand specifiers in ad-
vance of execution and subsequently routes them to the CPU.

12K Byte Writable Diagnostic Control Store (WDCS)
The writable diagnostic control store consists of 1024 96-bit (12K byte)
control words plus three parity bits per controf word. These locations
are used to contain basic instruction microcode, diagnostic
microcode, and reserved space to accommodate future additions or
improvements made by DIGITAL to the instruction set.

Processor Clocks

The VAX-11/780 processor contains a programmable real-time clock
and a time-of-year clock. The interval or real-time clock was designed
to permit the measurement of finely resolved variable intervals which
are identified by interrupts (i.e., scheduling, diagnostics, etc.). The
real-time clock is based upon a crystal oscillator with an accuracy of
0.01%, and a resolution of one usec. The time-of-year clock is used by
software to perform various timekeeping functions. Its major function
is to provide the correct time to the system after power failure or other
system interruptions.

Optional Floating Point Accelerator

The floating point accelerator is an optional high-speed processor
extension. When included in the processor, the floating point acceler-
ator executes the addition, subtraction, multiplication, and division
instructions that operate on single- and double-precision floating
point operands, including the special EMOD and POLY instructions in
both single- and double-precision formats. Additionally, the floating
point accelerator enhances the performance of 32-bit integer multiply
instructions.

The processor does not have to include the floating point accelerator
to execute floating point operand instructions. The floating point ac-
celerator can be added or removed without changing any existing
software.

36

Central Processor

When the floating point accelerator is included in the processor, a
floating point operand register-to-register add instruction takes as
littie as 800 nanoseconds to execute. A register-to-register multiply
instruction takes as little as one usec. The inner loop of the POLY
instruction takes approximately one usec per degree of polynomial.

Optional 12K Byte User Writable Control Store (WCS)

The user writable control store consists of 1024 96-bit (12K byte) con-
trol words plus three parity bits per control word. These locations are
optionally available to the customer for augmenting the speed and
power of the basic machine with customized functions.

Figure 3-1 illustrates the central processing unit.

PROCESSOR OPERATION

For those interested in the hardware opérations and interfaces of the
VAX-11/780 CPU elements, the execution of a sample piece of code is
described below. A FORTRAN IV DO LOOP is first expanded into its
VAX-11 MACRO equivalent, and then into VAX machine specific im-
plementation. For the purposes of this description, virtual to physical
translation values, although valid, have been assumed.

Example: FORTRAN IV DO LOOP

J=0
Do 1001=1,10

100 J=J+N(I)
VAX MACRO EXPANSION
1000 CLRL RO
1002 MOVL #1,R1
1005
1$: ADDL2 N<R1>, RO
100B AOBLEQ #10,R1, 18
1FFC
N: .BLKL 11
CENTRAL PROCESSOR IMPLEMENTATION

cPU Operation
Component
ALU,R 1000 - PC
TB Translate virtual 1000 to physical 1F600
Cache Does Cache presently contain address 1F6007 (NO)

therefore,

37

8¢e

1/0 SUBSYSTEM

lle CONSOLE SUBSYSTEM N CENTRAL PROCESSOR
CONSOLE . TRANSLATION
TERMINAL Lsi-n sorrEn | | oA cacne
-+
— |
]
! MEMORY MOS v
T MEMORY DATA| 8US [MD) [CONTROLLER]
a| 1 se:
o ARITHMETIC/ | INTERFACE
REMOTE 3 2 weicunr, AL
DIAGNOSIS[& INTERNAL
[<] 5 REGISTERS)
- 3 |
g ! MassBUS MASSBUS
x | ADAPTER
s |
F4
| ' w
FLOPPY cPu INSTRUCTION | ,'
DISK INTERFACE BUFFER |
I
H I :
! ! UNIBUS
L | — R Y S UNIBUS
' DIAGNOSTICS BUS ADAPTER
1
H
* PCS - PROGRAMMABLE READ ONLY MEMORY CONTROL STORE UN1BUS
FLOATING WCS - WRITABLE CONTROL STORE DEVICES
POINT
ACCELERATOR WDCS~ WRITABLE DIAGNOSTIC CONTROL STORE

“* INFORMATION TO INSTRUCTION BUFFER ONLY FROM SBI INTERFACE

Figure 3-1

The Central Processing Unit

1088800.14 [eluay

CPU
Component

SBI
Cache

(IB)

ALU,R
ALU,R
(IB asks
Cache for

more)

ALU,R
ALU,R
(IB asks
Cachefor
more)
SBI
ALU,R
ALU,R
ALU,R
ALU,R

B
Cache

SBI

Central Precessor

Operation

Fetch 1F600-1F607 from memory

Store address range 1F600-1F607 and correspond-
ing contents in Data Cache

Obtain instructions from physical addresses 1F600-
1F603

Ask IB for instruction -- (CLRL)
Clear RO

IB retrieves physical addresses 1F604-1F607 from
Cache

Ask IB for next instruction -- (MOVL)
Ask IB for destination specifier -- (R1)

Cache asks SBI for 1F608

Asks memory for physical addresses 1F608-1F60F
Store 1in R1

Ask IB for next instruction -- (ADDL2)

Calculate base address of N (virtual 1FFC)

Adds 4*R1 to address of N to yield virtual address
2000

Look up address of N[1] : physical address AOO

Searches for physical address A0O, but finds it not
there, therefore,

The SBI enters a wait mode because it is currently
completing the fetch operation of physical ad-
dresses 1F608-1F60F

Finishes the prefetch operation of physical ad-

dresses 1F608-1F60F
Grabs 1F608-1F60B
39

CPU
Component
Cache
SBl
Cache
ALU,R
ALU,R
(IB asks
for 1F60C)
ALU,R
ALU,R
(1B asks for
more data)
ALU,R
ALU,R

ALU,R
B
ALU,R

SBi
Cache

ALU,R

Central Processor

Operation

Gets 1F608-1F60F

Starts fetch of physical addresses A00-A07
Gets A00-A07

A00-A03

Asks IB for destination specifier (R6)

Cache sends 1F60C-1F60F to IB
Add (A00-A03) (i.e., N[1]) to RO
Ask IB for instruction (AOBLEQ)

Cache asks SBI to get 1F610 from memory
Asks IB for next specifier (R1)

Add 1to R1, compare to 10, if less than or equal to
10 then branch

Flush (clear) IB, load virtual 1005 into PC
Fetch 1005 from cache (resumption of loop)
Ask IB for next instruction (ADDL2)

Memory data (1F610) arrives
Takes data, but IB doesn't grab it

on the 11th increment,

Add 1to R1, compare to 10, now however R1 = 11

40

Central Processor

CPU Operation
Component
and do not branch, but fall through to the next in-
struction
ALU,R Ask IB for next instruction

USER PROGRAMMING CONCEPTS

A program is a stream of instructions and data that a user can request
the operating system to transiate, link, and execute. An executable
program is called an image. When a user runs an image, the contextin
which the image is executed is called a process. A process is the
complete unit of execution in this computer system. Process coniext
includes the state of the image it is currently executing and it includes
the limitations on what an image is allowed to do, which primarily
depend on the privileges of the user who runs the image.

Process Virtual Address Space

Most data are located in memory using the address of an 8-bit byte.
The programmer uses a 32-bit virtual address to identify a byte loca-
tion. A virtual address is not a unique address of a location in memory,
as are physical memory addresses. Two programs using the same
virtual address might refer to two different physical memory locations,
or refer to the same physical memory location using different virtual
addresses.

The set of all possible 32-bit virtual addresses is called virtual address
space. Virtual address space (mass storage) can be viewed as an
array of byte “locations” (232 or over four billion bytes in length). Virtual
address space is divided into two halves. The set of virtual addresses
designated for use by a process, including an image it executes, is one
half of the total virtual address space. Addresses in the remaining half
of virtual address space are used to refer to locations maintained and
protected by the operating system.

Instruction Sets

The VAX-11/780 processor is capable of executing instructions in ei-
ther of two modes: native or compatibility. In native mode the proces-
sor executes a large set of variable-length instructions, recognizes a
variety of data types, and uses 16 32-bit general purpose registers. In
compatibility mode the processor executes a set of PDP-11
instructions, recognizes integer data, and uses 8 16-bit general pur-
pose registers. Both instruction sets are closely related and their pro-
gramming characteristics are similar. Thus, a user process can exe-
cute both native mode and compatibility mode images. However, the
native mode instruction set is considerably more extensive than that of

41

Central Processor

compatibility mode execution. The native made instruction set con-
sists of 244 basic instructions, many of which correspond directly to
high-level language statements. Additionally, the native mode
instruction set includes floating point operations, character string
manipulations, packed decimal arithmetic, and many instructions
which improve the performance and memory utilization of systems
and applications software.

A native instruction consists of an operation code (opcode) and zero
Oor more operands, which are described by data type and addressing
mode.

Data Types

The data type of an instruction operand identifies how many bits of
storage are to be treated as a unit, and what the interpretation of that
unit is. The processor’s native instruction set recognizes four primary
data types: integer, floating point, packed decimal, and character
string. In addition, the processor can also manipulate a fifth data type,
the variable bit field, in which the programmer defines the size of the
field and its relative position. Table 3-1 illustrates the VAX-11/780 data
types.

The address of any data item is the address of the first byte in which
the item resides. All integer, floating point, packed decimal, and char-
acter data can be stored starting on an arbitrary byte boundary. A bit
field, however, does not necessarily start on a byte boundary. A field is
simply a set of contiguous bits (0-32) whose starting bit location is
identified relative to a given byte address. The native instruction set
can interpret a bit field as a signed or unsigned integer.

Registers and Addressing Modes

A register is a location within the processor that can be used for
temporary data storage and addressing. The assembly language pro-
grammer has 16 32-bit general registers available for use with the
native instruction set. Some of these registers have special signifi-
cance. One register is designated as the Program Counter, and it
contains the address of the next instruction to be executed. Three
general registers are designated for use with routine linkages: the
Stack Pointer, the Argument Pointer, and the Frame Pointer.

An instruction operand can be located in main memory, in a general
register, or in the instruction stream itself. The way in which the pro-
grammer chooses to specify an operand location is called the operand
addressing mode. The processor offers a variety of addressing modes
and addressing mode optimizations. There is one addressing mode
that locates an operand in a register. There are six addressing modes

42

ey

DATATYPE l SIZE RANGE (decimal)

Integer Signed Unsigned
Byte 8 bits -128'to +127 0to 255
Word 16 bits -32768 to +32767 01065535
Longword 32 bits -2%"to +23%'-1 0 to 232-1
Quadword 64 bits -2%3 to +2%%-1 0 to 2¢*-1

Floating Point +2.9 X% 10-37to 1.7 X 10%®
Floating 32 bits approximately seven decimal

digits precision
Double Floating 64 bits approximately sixteen decimal

digits precision

Packed Decimal

0to 16 bytes

numeric, two digits per byte

String (31 digits) sign in low half of last byte
Character String 0 to 65535 bytes one character per byte
Variable-length 0 to 32 bits dependent on interpretation

Bit Field

L-g alqel

sadA] ejeg

1088800.d [B1JU8D)

Central Processor

that locate an operand in memory using a register to:
e point to the operand

e point to a table of operands

e point to a table of operand addresses

There also are six addressing modes that are indexed modifications of
the addressing modes that locate an operand in memory. Finally,
there are two addressing modes that identify the iocation of the oper-
and in the instruction stream: one for constant data, and one for
branch instruction addresses.

Stacks, Subroutines, and Procedures

A stack is an array of consecutively addressed data items that are
referenced on a last-in, first-out basis using a general register. Data
items are added to and removed from the low address end of the
stack. A stack grows toward lower addresses as items are added, and
shrinks toward higher addresses as items are removed.

A stack can be created anywhere in user program address space and
can utilize any register to point to the current item on the stack. The
operating system, however, automatically reserves portions of each
process address space for stack data structures. User software refer-
ences its stack data structure, called the user stack, through a general
register designated as the Stack Pointer.

A stack is a powerful data structure because it is able to pass argu-
ments to a routine in a highly efficient manner. In particular, the stack
structure enables the programmer to write reentrant routines because
the processor can handle routine linkages automatically, using the
Stack Pointer. Routines can also be recursive because arguments can
be saved on the stack for each successive call of the same routine.

The processor provides two kinds of routine call instructions: those for
subroutines, and those for procedures. In general, a subroutine is a
routine entered using a Jump to Subroutine or Branch to Subroutine
instruction, while a procedure is a routine entered using a Call instruc-
tion.

The processor provides more elaborate routine linkages for pro-
cedures than for subroutines. The processor automatically saves and
restores the contents of registers the programmer wants preserved
across procedure calls. The processor provides two methods for
passing argument lists to called procedures: by passing the argu-
ments on the stack, or by passing the address of the arguments else-
where in memory. The processor also constructs a list or record of
procedure call nesting by using a general register as a pointer to the
place on the stack where a procedure has its linkage data. This record

44

Centrai Processor

of each procedure’s stack data, known as its stack frame, enables
proper returns from procedures even when a procedure leaves data
on the stack. In addition, user and operating system software can use
the stack frame to trace back through nested calls to handle errors or
debug programs.

Condition Codes

A user program can test the outcome of an arithmetic or logical opera-
tion. The processor provides a set of condition codes and branch
instructions for this purpose. The condition codes indicate whether the
previous arithmetic or logical operation produced a negative or zero
result, or whether there was a carry or borrow, or an overflow. There
are a variety of branch on condition instructions: those for overflow
and carry or borrow, and those for signed and unsigned relational
tests.

Exceptions

There are some situations in which the programmer may not want to
test the outcome of an operation. The processor recognizes many
events for which testing is not necessary,and automatically changes
normal program flow when they occur. These events, called excep-
tions, are the direct result of executing a specific instruction.
Exceptions also include errors automatically detected by the proces-
sor, such as improperly formed instructions.

All exceptions trap to operating system software. There are essentially
no fatal exceptions. All exceptions either wait for the instruction that
caused them to complete before trapping or they restore the proces-
sor to the state it was in just prior to executing the instruction that
caused the exception. In either case, the instruction can be retried
after the cause of the exception is cleared. Depending on the excep-
tion, it may be desirable to correct the situation and continue. If not,
the operating system issues an appropriate message and aborts the
instruction stream in progress. To continue, the programmer can re-
quest the operating system software to start execution of a condition
handler automatically when an exception occurs.

USER PROGRAMMING ENVIRONMENT

A process context includes the definition of the virtual address space
in which it executes an image. An image executing within a process
context controls its execution through the use of one of the instruction
sets, the general purpose registers, and the Processor Status Word.
These hardware resources are discussed in detail in the following

csSe 4 TOSLVIVES =200

sections.

45

Central Processor

Process Virtual Address Space Structure

The processor and operating system provide a multiprogramming
environment by dividing virtual address space into two halves: one
half for addressing context-dependent code and data, and one half for
addressing context-independent code and data.

The first half, termed per-process space, is capable of addressing
approximately two billion bytes. An image executing in the context of a
process and the operating system on behalf of the process use ad-
dresses in process space to refer to code and data particular to that
process context. A process cannot represent virtual addresses in any
process space but its own. Thus, code and data belonging to a proc-
ess are automatically protected from other processes in the system.

The second half of virtual address space is called system space. The
operating system assigns the meanings to addresses in system space.
The significance of any address in system space is the same for every
process, independent of process context.

Per-process space is further subdivided into two regions. Addresses
in the first region, called the program region, are used to identify the
location of image code and data. Addresses in the second region,
called the control region, are used to refer to stacks and other tempo-
rary program image and permanent process control information
maintained by the operating system on behalf of the process. Program
region addresses are allocated from address 0 and up, and control
region addresses are allocated from address 2*'—1 and down.

System space is also subdivided into two regions. The operating sys-
tem assigns the system region addresses for linkages to its service
procedures, for memory management data, and for 1/0 processing
routines. The second region is reserved for future use.

General Registers

Instruction operands are often either stored in the processor’s general
registers or accessed through them. The 16 32-bit programmable
general registers are labelled RO through R11 (decimal). Registers can
be used for temporary storage, accumulators, base registers, and
index registers. A base register contains the address of the base of a
software data structure such as a table or queue, and an index register
contains a logical offset into a data structure.

Whenever a register is used to contain data, the data are stored in the
register in the same format that would appear in memory. If a quad-
word or double floating datum is stored in a register, it is actually
stored in two adjacent registers. For example, storing a doubie float-
ing number in register R7 loads both R7 and R8.

46

Central Processor

Some registers have special significance depending on the instruction

being executed. Registers R12 through R15 have special significance

for many instructions, and therefore have special labels. These special

registers are:

e The Program Counter (PC or R15), which contains the address of
the next byte to be processed in the instruction stream.

e The Stack Pointer (SP or R14), which contains the address of the
base (or top) of a stack maintained for subroutine and procedure
calls.

e The Frame Pointer (FP or R13), which contains the address of the
base of a software data structure stored on the stack called the
stack frame, which is maintained for procedure calls.

e The Argument Pointer (AP or R12), which contains the address of
the base of a software data structure called the argument list, which
is maintained for procedure calls.

A register’s special significance does not preclude its use for other
purposes, except for the Program Counter. The Program Counter
cannot be used as an accumulator, as a temporary register, or as an
index register. In general, however, most users do not use the Stack
Pointer, Argument Pointer, or Frame Pointer for purposes other than
those designated.

Addressing Modes

The processor’s addressing modes allow almost any operand to be
stored in a register or in memory, or as an immediate constant. There
are seven basic addressing modes that use the general registers to
identify the operand location. They include:

o Register mode

e Register Deferred mode

e Autodecrement mode

e Autoincrement mode

e Autoincrement Deferred mode

e Displacement mode

o Displacement Deferred mode

Of these seven basic modes, all except register mode can be modified
by an index register. When an index register is used with a basic mode
to identify an operand, the addressing mode is the name of the basic
mode with the suffix “indexed”. For example, the indexed addressing
mode for register deferred is called “register deferred indexed” mode.
Therefore, in addition to the seven basic addressing modes, the proc-
essor recognizes six indexed addressing modes.

47

Central Processor

The processor also provides literal mode addressing, in which an
unsigned 6-bit field in the instruction is interpreted as an integer or
floating point constant. Table 3-2 summarizes the VAX-11/780 ad-
dressing modes.

Program Counter

The program counter contains the address of the next byte to be
processed in the instruction stream. That is, just before the processor
begins to execute an instruction, the program counter contains the
address of the first byte of the next instruction. General register 15
contains this address. The program counter update is totally transpar-
ent to the programmer.

The Program Counter itself can be used to identify operands. The
assembler translates many types of operand references into address-
ing modes using the Program Counter. Autoincrement mode using the
Program Counter, or immediate mode, is used to specify in-line
constants other than those available with literal mode addressing. Au-
toincrement Deferred mode using the Program Counter, or absolute
mode, is used to reference an absolute address. Displacement and
Displacement Deferred modes using the Program Counter are used to
specify an operand using an offset from the current location.

Addressing using the Program Counter enables the programmer to
write position independent code. Position independent code can be
executed anywhere in virtual address space after it has been linked,
since program linkages can be identified as absolute locations in virtu-
al address space and all other addresses can be identified relative to
the current instruction.

The Stack Pointer, Argument Pointer, and Frame Pointer

The Stack Pointer is a register specifically designated for use with
stack structures. To place items on a stack, the programmer can use
autodecrement mode addressing through the Stack Pointer, and to
remove them, use Autoincrement mode. The programmer can refer-
ence and modify the top element on a stack without removing it by
using Register Deferred mode, and can reference other elements of
the stack using Displacement mode addressing.

The processor designates Register 14 as the Stack Pointer for use with
both the subroutine Branch or Jump instructions, and the procedure
Call instructions. On routine entry, the processor automatically saves
the address of the instruction that follows the routine call on the stack.
It uses the Program Counter and the Stack Pointer to perform the
operation. Before entering the subroutine, the Program Counter con-
tains the address of the instruction following the Branch, Jump, or Call

48

6v

:-l'rt:r:waeldiate) {S;;} # constant

Register Rn

Register Deferred (Rn)

Autodecrement -(Rn)

Autoincrement (Rn) +

Autoincrement Deferred @ (Rn) + Indexed
(Absolute) @ # address [Rx]

Displacement

\?\;T displacement (Rn)
L address

i

Displacement Deferred

V?IT displacement (Rn)
@ LTt address

n = 0 through 15
x = 0 through 14

sapoi Buissaippy 2-€ 8|qel

10SS8200.d [ejud)d

Central Processor

instruction. The Stack Pointer contains the address of the last item on
the stack. The processor pushes the contents of the Program Counter
on the stack. On return from a subroutine, the processor automatically
restores the Program Counter by popping the return address off the
stack.

Also for the procedure Call instructions, the processor designates
Register 12 as an Argument Pointer, and Register 13 as a Frame
Pointer. The Argument Pointer is used to pass the address of the
argument list to a called procedure, and the Frame Pointer is used to
keep track of nested Call instructions.

An argument list is a formal data structure that contains the arguments
required by the procedure being called. Arguments may be actual
values, addresses of data structures, or addresses of other
procedures. Figure 3-2 illustrates the argument pointer and list. An
argument list can be passed in either of two ways: by passing only its
address, or by passing the entire list on the user stack. The first
method is used to pass long argument lists, or lists that you want to
preserve. The second method is generally used when calling pro-
cedures that do not require arguments, or when building an argument
list dynamically.

NN e

ARG 1

ARG 2

.

0
N
5

Figure 3-2 Argument Pointer and List

The importance of the way the Call instructions work is that nested
calls can be traced back to any previous level. The Call instructions
always keep track of nested calls by using the Frame Pointer register.
The Frame Pointer contains the address on the stack of the items
pushed on the stack during the procedure call. The set of items
pushed on the stack during a procedure cail is known as a call frame
or stack frame. Figure 3-3 illustrates the Call Frame. Since the previ-
ous contents of the Current Frame register are saved in each call
frame, the nested frames form a linked data structure which can be
unwound to any level when an error or exception condition occurs in
any procedure.

50

Central Processor

CALL FRAME
STACK
GROWTH
-« 5P
CONDITION HANDLER - FP
REGISTER
CONTR. Sk PSW
oLD AP
OLD FP
RETURN PC
7 OLDRO-..--R1 2
*———OLD SP
Figure 3-3 Call Frame
Processor Status Word

The Processor Status Word (a portion of the Processor Status Long-
word) is a special processor register that a program uses to check its
status and to control synchronous error conditions. The Processor
Status Word, illustrated in Figure 3-4, contains two sets of bit fields:

e the condition codes
e the trap enable flags

15 8 7 3 S 4 3 2 1 0

r NOT USED I ‘ I \ \ I l l J
DECIMAL OVERFLOW TRAP ENABLE JJ I I

FLOATING UNDERFLOW TRAP ENABLE
INTEGER OVERFLOW TRAP ENABLE
TRACE TRAP ENABLE
NEGATIVE CONDITION CODE
ZERO CONDITION CODE
OVERFLOW CONDITION CODE
CARRY (BORROW) CONDITION CODE

Figure 3-4 Processor Status Word

The condition codes indicate the outcome of a particular logical or
arithmetic operation. For example, the Subtract instruction sets the
Negative bit if the result of the subtraction operation produced a nega-
tive number, and it sets the Zero bit if the result produced zero. The

51

Central Processor

programmer can then use the Branch on Condition instructions to
transfer control to a code sequence that handies the condition.

There are two kinds of traps that concern the user process: trace traps

and arithmetic traps. The trace trap is used for debugging programs.

Arithmetic traps include:

e integer, floating point, or decimal string overfiow, in which the resuit
was too large to be stored in the given format

e integer, floating point, or decimal string divide by zero, in which the
divisor supplied was zero '

e floating point underflow, in which the result was too small to be
expressed in the given format

Handling Exceptions

When an exception occurs, the processor immediately saves the cur-
rent state of execution and traps to the operating system. The
operating system automatically searches for a procedure that wants to
handle the exception. Procedures that respond to exceptions are
called condition handlers. The user can declare a condition handier
for an entire image and for each individual procedure called. In addi-
tion, because the processor keeps track of nested calls using the
Frame Pointer register, it is possible to declare condition handlers for
procedures that call other procedures in which exceptions might oc-
cur. The operating system automatically traces back through call
frames to find a condition handler that wants to handle an exception
that occurs.

SYSTEM PROGRAMMING CONCEPTS

The processor is specifically designed to support a high-performance
multiprogramming environment. The characteristics of the hardware
system that support multiprogramming are:

& rapid context switching

e priority dispatching

e virtual addressing and memory management

As a multiprogramming system, VAX-11/780 not only provides the
ability to share the processor among processes, but also protects

processes from one another while enabling them to communicate with
each other and to share code and data.

Context Switching
In a multiprogramming environment, several individual streams of
code can be ready to execute at any one time.

To support multiprogramming for a high-performance system, the
52

Central Processor

processor enables the operating system to switch rapidly between
individual streams of code. A process is a stream of instructions and
data defined by a hardware context. Each process has a unique identi-
fication in the system. At any one time, the stream of code being
executed is determined by its hardware context. Hardware context
includes the information loaded in the processor’s registers that iden-
tifies:

o where the stream’s instructions and data are located

e which instruction to execute next

e what the processor status is during execution

The operating system switches between processes by requesting the
processor to save one process hardware context and load another.
Context switching occurs rapidly because the processor instruction
set includes save hardware context and load hardware context in-
structions. The operating system’s context switching software does
not have to individually save or load the processor registers which
define the hardware context.

Priority Dispatching

To share processor, memory, and peripheral resources among many
processes, the processor provides two arbitration mechanisms that
support high-performance multiprogramming: exceptions and inter-
rupts. Exceptions are events that occur synchronously with respect to
instruction execution, while interrupts are external events that occur
asynchronously.

The flow of execution can change at any time, and the processor
distinguishes between changes in flow that are local to a process and
those that are system-wide. Process-local changes occur as the resuit
of a user software error or when user software calls operating system
services. Process-local changes in program flow are handled through
the processor's exception detection mechanism and the operating
system’s exception dispatcher.

System-wide changes in flow generally occur as the result of
interrupts from devices or interrupts generated by the operating sys-
tem software. Interrupts are handled by the processor’s interrupt de-
tection mechanism and the operating system’s interrupt service rou-
tines.

System-wide changes in flow take priority over process-local changes
in flow. Furthermore, the processor uses a priority system for servicing
interrupts. To arbitrate between all possible interrupts, each kind of
interrupt is assigned a priority, and the processor responds to the
highest priority interrupt that is pending.

53

Central Processor

The processor services interrupts between instructions, or at well-
defined points during the execution of long, iterative instructions.
When the processor acknowledges an interrupt, it switches rapidly to
a special system-wide context to enable the operating system to ser-
vice the interrupt. System-wide changes in the flow of execution are
totally transparent to individual processes.

Virtual Addressing and Virtual Memory

The processor’s memory management hardware enables the operat-
ing system to provide an environment that allows users to write pro-
grams without having to know where the programs are loaded in
physical memory, and to write programs that are too large to fit in the
physical memory allocated.

The processor provides the operating system with the ability to pro-
vide virtual addressing. A virtual address is a 32-bit integer that a
program uses to identify storage locations in virtual memory. Virtual
memory is the set of all physical memory locations in the system plus
the set of disk blocks that the operating system designates as exten-
sions to physical memory.

A physical address is an address that the processor uses to identify
physical memory storage locations and peripheral controller registers.
It is the address that the processor sends out on the SBI bus to which
the memory and peripheral adapters respond.

The processor must be able to translate the virtual addresses provid-
ed by the programs it executes into the physical addresses recognized
by the memory and peripherals. To provide virtual to physical address
mapping, the processor has address mapping registers controlled by
the operating system and an integrated address translation buffer.

The mapping registers enable the operating system to relocate pro-
grams in physical memory, to protect programs from each other, and
to share instructions and data between programs transparently or at
their request. The address translation buffer ensures that the virtual
address to physical address transiation takes place rapidly.

SYSTEM PROGRAMMING ENVIRONMENT

Within the context of one process, user-level software controls its
execution using the instruction sets, the general registers, and the
Processor Status Word. Within the multiprogramming environment,
the operating system controls the system’s execution using a set of
special instructions, the Processor Status Longword, and the internal
processor registers.

54

Central Processor

Processor Status Longword

A processor register called the Processor Status Longword (PSL) de-
termines the execution state of the processor at any time. The low-
order 16 bits of the Processor Status Longword is the Processor Stat-
us Word available to the user process. The high-order 16 bits provide
privileged control of the system. Figure 3-5 illustrates the Processor
Status Longword.

The fields can be grouped together by functions that control:
e the instruction set the processor is executing

e the access mode of the current instruction

e interrupt processing

INSTRUCTION FIRST PART DONE
TRACE PENDING
COMPATABILITY MODE

kil 20 16 15 0
Nﬁ ‘ ‘ l § PROCESSOR STATUS WORD
AN
INTERRUPT PRIORITY LEVEL
PREVIOUS ACCESS MODE
CURRENT ACCESS MODE
'l EXECUTING ON THE INTERRUPT STACK

Figure 3-5 Processor Status Longword

The instruction set the processor executes is controlled by the
compatibility mode bit in the Processor Status Longword. This bit is
normally set or cleared by the operating system. The initial environ-
ment is established by the operating system but any process, includ-
ing user, can change it. In particular, compatibility mode processes
switch to native mode with EMTs and native processes can perform an
REl instruction to get into compatibility mode.

Processor Access Modes

In a high-performance multiprogramming system, the processor must
provide the basis for protection and sharing among the processes
competing for the system’s resources. The basis for protection in this
system is the processor’s access mode. The access mode in which the
processor executes determines:

e instruction execution privileges: what instructions the processor will
execute

e memory access privileges: which locations in memory the current
instruction can access

55

Central Processor

At any one time, the processor is executing code in the context of a
particular process, or it is executing in the system-wide interrupt ser-
vice context. In the context of a process, the processor recognizes four
access modes: kernel, executive, supervisor, and user. Kernel is the
most privileged mode and user the least privileged.

The processor spends most of its time executing in user mode in the
context of one process or another. When user software needs the
services of the operating system, whether for acquisition of a
resource, for 170 processing, or for information, it calls those services.

The processor executes those services in the same or one of the more
privileged access modes within the context of that process. That is, all
four access modes exist within the same virtual address space. Each
access mode has its own stack in the control region of per-process
space, therefore each process has four stacks: one for each access
mode. Note that this makes it easy for the operating system to context
switch a process even when it is executing an operating system ser-
vice procedure.

In any mode except kernel, the processor will not execute instructions
that:

e halt the processor
e load and save process context

e access the internal processor registers that control memory man-
agement, interrupt processing, the processor console, or the proc-
essor clock

These instructions are privileged instructions that are generally re-
served to the operating system.

In any mode, the processor will not allow the current instruction to
access memory unless the mode is privileged to do so. The ability to
execute code in one of the more privileged modes is granted by the
system manager and controlled by the operating system. The memory
protection the privilege affords is enforced by the processor. In
general, code executing in one mode can protect itself and any portion
of its data structures from read and/or write access by code executing
in any less privileged mode. For example, code executing in executive
mode can protect its data structures from code executing in supervi-
sor or user mode. Code executing in supervisor mode can protect its
data structures from access by code executing in user mode. This
memory protection mechanism provides the basis for system data
structure integrity.

Protected and Privileged Instructions
The processor provides three types of instructions that enable user

56

Central Processor

mode software to obtain operating system services without jeopardiz-
ing the integrity of the system. They include:

e the Change Mode instructions
e the PROBE instructions
e the Return from Exception or Interrupt instruction

User mode software can obtain privileged services by calling operat-
ing system service procedures with a standard CALL instruction. The
operating system’s service dispatcher issues an appropriate Change
Mode instruction before actually entering the procedure. Change
Mode allows access mode transitions to take place from one mode to
the same or more privileged mode only. When the mode transition
takes place, the previous mode is saved in the Previous Mode field of
the Processor Status Longword, allowing the more privileged code to
determine the privilege of its caller.

A Change Mode instruction is simply a special trap instruction that can
be thought of as an operating system service call instruction. User
mode software can explicitly issue Change Mode instructions, but
since the operating system receives the trap, non-privileged users
cannot write any code to execute in any of the privileged access
modes. User mode software can include a condition handler for
Change Mode to User traps, however, and this instruction is useful for
providing general purpose services for user mode software. The sys-
tem manager ultimately grants the privilege to write any code that
handles Change Mode traps to more privileged access modes.

For service procedures written to execute in privileged access modes
(kernel, executive, and supervisor), the processor provides address
access privilege validation instructions. The PROBE instructions en-
able a procedure to check the read (PROBER) and write (PROBEW)
access protection of pages in memory against the privileges of the
caller who requested access to a particular location. This enables the
operating system to provide services that execute in privileged modes
to less privileged callers and still prevent the caller from accessing
protected areas of memory.

The operating system'’s privileged service procedures and interrupt
and exception service routines exit using the Return from Exception or
Interrupt (REI) instruction. REI is the only way in which the privilege of
the processor’'s access mode can be decreased. Like the procedure
and subroutine return instructions, REI restores the Program Counter
and the processor state to resume the process at the point where it
was interrupted.

REI performs special services, however, that normal return instruc-

57

Central Processor

tions do not. For example, REI checks to see if any asynchronous
system traps have been queued for the currently executing process
while the interrupt or exception service routine was executing, and
ensures that the process will receive them. Furthermore, REI checks to
ensure that the mode to which it is returning control is the same as, or
less privileged than, the mode in which the processor was executing
when the exception or interrupt occurred. Thus REI is available to all
software, including user-written trap handling routines, but a program
cannot increase its privilege by altering the processor state to be re-
stored. .

When the operating system schedules a context switching operation,
the context switching procedure uses the Save Process Context
(SVPCTX) and Load Process Context (LDPCTX) instructions to save
the current process context and load another. The operating system’s
context switching procedure identifies the location of the hardware
context to be loaded by updating an internal processor register.

Internal processor registers include not only those that identify the
process currently executing, but also the memory management and
other registers, such as the console and clock control registers. The
Move to Processor Register (MTPR) and Move from Processor Regis-
ter (MFPR) instructions are the only instructions that can explicitly
access the internal processor registers. MTPR and MFPR are
privileged instructions that can be issued only in kernel mode.

Memory Management

The processor is responsible for enforcing memory protection
between access modes. Memory protection, however, is only a part of
the processor's memory management function. In particular, the
memory management hardware enables the operating system to pro-
vide an extremely flexible and efficient virtual memory programming
environment. Virtual and physical address space definitions provide
the basis for the virtual memory available on a system.

Virtual address space consists of all possible 32-bit addresses that
can be exchanged between a program and the processor to identify a
byte location in physicai memory. The memory management hard-
ware translates a virtual address into a 30-bit physical address. A
physical address is the address exchanged between the processor
and the memory and peripheral adapters over the SBI bus. Physical
address space is the set of all possible physical addresses the proces-
sor can use to express unique memory locations and peripheral con-
trol registers.

Physical address space is an array of addresses which can be used to

58

Central Processor

represent 23° byte locations, or approximately one billion bytes. Half of
the addresses in physical address space can be used to refer to real
memory locations and the other half can be used to refer to peripheral
device control and data registers. The lowest addressed half of
physical address space is called memory space, and the highest-
addressed half /0 space.

Chapter 6, Memory Management, describes the way in which the
memory management hardware enables the operating system to map
virtual addresses into physical addresses to provide the virtual memo-
ry available to a user process.

Virtual to Physical Page Mapping

Virtual address space is divided into pages, where a page represents
512 bytes of contiguously addressed memory. The first page begins at
byte zero and continues to byte 511. The next page begins at byte 512
and continues to byte 1023, and so forth. The first eight pages of
virtual address space, and their addresses in both decimal and hexa-
decimal are:

PAGE ADDRESS(10) ADDRESS(16)
0 0000-0511 0000-01FF
1 0512-1023 0200-03FF
2 1024-1535 0400-05FF
3 1536-2047 0600-07FF
4 2048-2559 0800-09FF
5 2560-3071 0A00-0BFF
6 3072-3583 0CO00-0DFF
7 3584-4095 0EQ00-OFFF

The size of a virtual page exactly corresponds to the size of a physical
page of memory, and the size of a block on disk.

To make memory mapping efficient, the processor must be able to
translate virtual addresses to physical addresses rapidly. Two features
providing rapid address translation are the processor’s internal ad-
dress translation buffer, which is described later, and the translation
algorithm itself.

Figure 3-6 compares the virtual and physical address format. The
high-order two bits of a virtual address immediately identify the region
to which the virtual address refers. Whether the address is physical or
virtual, the byte within the page is the same. Thus, the processor has to
know only which virtual pages correspond to which physical pages.

59

Central Processor

VIRTUAL ADDRESS
31 3029 28 9 8 4]

il | |

l l @—————VIRTUAL PAGE NUMBER ———— o« RYTE WITHIN PAGE —o
00
00

O MEMORY ADDRESS
1 1/0 SPACE ADDRESS
PHYSICAL ADDRESS

31302928 9 8

m |]
&

‘ @————————PAGE FRAME NUMBER ———————»«—BYTE WITHIN PAGE —»
0
0

0 MEMORY ADDRESS
1 /0 SPACE ADDRESS

Figure 3-6 Virtual and Physical Address Format

The processor has three pairs of page mapping registers, one pair for
each of the three regions actively used. The operating system’s mem-
ory management software loads each pair of registers with the base
address and length of data structures it sets up called page tables.
The page tables provide the mapping information for each virtual page
in the system. There is one page table for each of the three regions.

A page table is a virtually contiguous array of page table entries. Each
page table entry is a longword representing the physical mapping for
one virtual page. To translate a virtual address to a physical address,
therefore, the processor simply uses the virtual page number as an
index into the page table from the given page table base address.
Each translation is good for 512 virtual addresses since the byte within
the virtual page corresponds to the byte within the physical page.

Exception and Interrupt Vectors

The processor can automatically initiate changes in the normal flow of
program execution. The processor recognizes two kinds of events that
cause it to invoke conditional software: exceptions and interrupts.
Some exceptions affect an individual process only, such as arithmetic
traps, while others affect the system as a whole, for example, machine
check. Interrupts include both device interrupts, such as those signal-
ing 1/0 completion, and software-requested interrupts, such as those
signaling the need for a context switch operation.

The processor knows which software to invoke when an exception or
interrupt occurs because it references specific locations, called vec-
tors, to obtain the starting address of the exception or interrupt dis-
patcher. The processor has one internal register, the System Control
Block Base Register, which the operating system loads with the physi-
cal address of the base of the System Control Block, which contains

60

Central Processor

the exception and interrupt vectors. The processor locates each
vector by using a specific offset into the System Control Block. Figure
3.7 illustrates the vectors in the System Control Block. Each vector
tells the processor how to service the event, and contains the system
region virtual address of the routine to execute. Note that vector 14
(hex) can be used as a trap to writable control store to execute user-
defined instructions, and the vector contains information passed to
microcode.

Interrupt Priority Levels

Exceptions do not require arbitration since they occur synchronously
with respect to instruction execution. Interrupts, on the other hand,
can occur at any time. To arbitrate between interrupt requests that
may occur simuitaneously, the processor recognizes 31 interrupt pri-
ority levels.

The highest 16 interrupt priority levels are reserved for interrupts gen-
erated by hardware, and the lowest 16 interrupt priority levels are
reserved for interrupts requested by software. Table 3-3 lists the as-
signment of each level, from highest to lowest priority. Normal user
software runs at process jevel, which is interrupt priority level zero.

To handle interrupt requests, the processor enters a special system-
wide context. In the system-wide context, the processor executes in
kernel mode using a special stack called the interrupt stack. The inter-
rupt stack cannot be referenced by any user mode software because
the processor only selects the interrupt stack after an interrupt, and all
interrupts are trapped through system vectors.

The interrupt service routine executes at the interrupt priority level of
the interrupt request. When the processor receives an interrupt
request at a level higher than that of the currently executing software,
the processor honors the request and services the new interrupt at its
priority level. When the interrupt service routine issues the RE! (Return
from Exception or Interrupt) instruction, the processor returns control
to the previous level.

1/0 Space and /O Processing

An 1/0 device controller has a set of control/status and data registers.
- The registers are assigned addresses in physical address space, and
their physical addresses are mapped, and thus protected, by the oper-
ating system’s memory management software. That portion of physi-
cal address space in which device controller registers are located is
called 1/0 space.

I/0 space occupies the highest-addressed half of physical address

61

84
88
BF
co

100
101

13F
140

17F
180

1BF
1C0

1FF

Central Processor

Machine Check

Kernel Stack Not Valid

Power Fail

Reserved or Privileged Instruction

Customer Reserved Instruction

Reserved or Illegal Operand

Reserved or Iliegal Addressing Mode

Access Violation

Translation Not Valid (page fault)

Trace Trap

Breakpoint Trap

Compatibility Mode Trap

Arithmetic Trap

Change Mode to Kernel

Change Mode to Executive

Change Mode to Supervisor

Change Mode to User

Software Level 1

Software Level 2

Software Level F

Interval Timer

Device Level 14, device 0

Device Level 14, device 1

Device Level 14, device 15

Device Level 15, device 0

Device Level 15, device 15

Device Tevel 16, device 0

Device Level 16, device 15

Device Level 17, device 0

Device Level 17, device 15

P EXCEPTION VECTORS

? INTERRUPT VECTORS

Offset from System Control Block Base Register (HEX)

J

Figure 3-7 System Control Block

62

Central Processor

Table 3-3 Interrupt Priority Levels

PRIORITY HARDWARE EVENT
Hex Decima

1F 31 |Machine Check, Kernel Stack Not Valid
1E 30 |Power Fail

1D 29 Processor,
1C 28 ‘

1B 27 Memory, or
1A 26

19 25 Bus Error
18 24 _|Clock

17 23 |UNIBUS BR7

16 22 |UNIBUS BR6

15 21 |UNIBUS BR6

14 20 |UNIBUS BR4 Device Interrupt
13 19

12 18

11 17

10 16

PRIORITY SOFTWARE EVENT
OF 15

0OE 14 Reserved for
0D 13 DIGITAL

0C 12

0B 11

0A 10 Device

09 09 Drivers

08 08

07 07 |[Timer Process

06 06 |Queue Asynchronous System Trap (AST)
05 05 |Reserved jor DIGITAL

04 04 |I/0 Post

03 03 |Process Scheduler

02 02 |AST Delivery

01 01 |Reserved for DIGITAL

00 00 [User Process Level

63

Central Processor

space, and is 22° bytes in length. A portion of I/0 space is specifically
mapped into UNIBUS addresses, and is cailed UNIBUS space.

No special processor instructions are needed to reference 1/0 space.
The registers are simply treated as locations containing integer data.
An 1/0 device driver issues commands to the peripheral controller by
writing to the controller's registers as if they were physical memory
locations. The software reads the registers to obtain the controller
status. Note that accesses to UNIBUS registers may be made with byte
or word instructions only. The driver controls interrupt enabling and
disabling on the set of controllers for which it is responsible. When
interrupts are enabled, an interrupt occurs when the controller re-
quests it. The processor accepts the interrupt request and executes
the driver’s interrupt service routine if it is not currently executing on a
higher priority interrupt level.

Process Context

For each process eligible to execute, the operating system creates a
data structure called the software process control block. Within the
software process control block is a pointer to a data structure called
the hardware process control block. It contains the hardware process
context, i.e., all the data needed to load the processor's
programmable registers when a context switch occurs. To give control
of the processor to a process, the operating system loads the proces-
sor’s Process Control Block Base register with the physical address of
a hardware process control block and issues the Load Process Con-
text instruction. The processor loads the process context in one oper-
ation and is ready to execute code within that context.

A process control block not only contains the state of the
programmable registers, it also contains the definition of the process
virtual address space. Thus, the mapping of the process is automati-
cally context-switched.

Furthermore, the process control block provides the mechanism for
triggering asynchronous system traps to user processes. The Asyn-
chronous System Trap field enables the processor to schedule a soft-
ware interrupt to initiate an AST routine and ensure that it is delivered
to the proper access mode for the process.

64

65

66

CHAPTER 4
PROCESS STRUCTURE

PROCESS DEFINITION

A process is the basic entity schedulabled for execution by the VAX-
11/780 processor. A process consists of an address space and both
hardware and software context. The hardware context of a process is
defined by a Process Control Block (PCB) that contains images of the
14 general purpose registers, the processor status longword (PSL),
the program counter (PC), the four per-process stack pointers, the
process virtual memory defined by the base and length registers
POBR, POLR, P1BR, and P1 LR, and several minor control fields. In
order for a process to execute, the majority of the PCB must be moved
into internal registers. While a process is being executed, some of its
hardware context is being updated in the internal registers. When a
process is not being executed, its hardware context is stored in the
process control block. Saving the contents of the privileged registers
in the PCB of the currently executing process and then loading a new
set of context in the privileged registers from another PCB is termed
context switching. Context switching occurs as one process after
another is scheduled for execution.

PROCESS CONTEXT

Process Control Block Base (PCBB)

The process control block for the currently executing process is point-
ed to by the content of the Process Control Block Base (PCBB) regis-
ter, an internal privileged register. The Process Control Block Base
register is illustrated in Figure 4-1.

32302 210
T
MBZ l PHYSICAL LONGWORD ADDRESS OF PCB MBZ

Figure 4-1 Process Control Block Base Register (Read/Write)

67

Process Structure

Process Control Block (PCB)

The process control block (PCB) contains all of the switchable process
context collected into a compact form for ease of movement to and
from the privileged internal registers. Although in any normal operat-
ing system there is additional software context for each process, the
following description is limited to that portion of the PCB known to the
hardware. The process control block is illustrated in Figure 4-2.

PROCESS CONTROL BLOCK (PCB)

31 0

KSP *PCB

ESP +4

SSP +8

usp 212

RO 216

R1 120

R2 124

R3 128

R4 132

RS 136

R6 140

R7 144

R8 148

R : 52

RIO 156

RN 160

AP({R12} 164

FP(R13) : 68

PC 172

PSL 176

POBR 180

MBZ AST-LVL | MBZ POLR 184
P1BR 188

n;n MBZ PILR 192

Figure 4-2 Process Control Block

68

Process Structure

A description of the process control block follows;

Long

word Bits Mnemonic Description

0 <31:0> KSP Kernel Stack Pointer. Contains the
stack pointer to be used when the
current access mode field in the
Processor Siatus Longword (PSL) is
zero and Interrupt Stack (IS) is
zero.

1 <31:0> ESP Executive Stack Pointer. Contains
the stack pointer to be used when
the current access mode field in the
PSLis 1.

2 <31:.0> SSP Supervisor Stack Pointer. Contains
the stack pointer to be used when
the current access mode field in the
PSLis 2.

3 <31:0> USP User Stack Pointer. Contains the
stack pointer to be used when the
current access mode field in the PSL
is 3.

4-17 <31:0> RO-R11, General registers RO-R11, AP, and

AP,FP FP.

18 <31:0> PC Program Counter.

19 <31:0> PSL Program Status Longword.

20 <31:0> POBR Base register for page table de-

scribing process virtual addresses
from zero to 2%°—1.

21 <21:0> POLR Length register for page table
located by POBR. Describes effective
length of page table.

2i <23:22>MBZ Must be zero.

69

21

21

22

23

23

23

<26:24> ASTLVL

ASTLVL

0

1

2

3

4
5-7
<31:27>MBZ
<31:0> P1BR
<21:.0> PILR
<30:22> MBZ
<31> PME

Meaning

Process Structure

Contains access mode number estab-
lished by software of the most
privileged access mode for which an
Asynchronous System Trap is pending.
(ASTs will be discussed in the next
section.) Controls the triggering

of the AST delivery interrupt dur-

ing REI (return from interrupt or
exception) instructions.

AST pending for access mode 0 (kernel)
AST pending for access mode 1 (executive)
AST pending for access mode 2 (supervisor)
AST pending for access mode 3 (user)

No pending AST

Reserved to DIGITAL

Must be zero.

Base register for page table de-
scribing process virtual addresses
from 230t0 23'—1.

Length register for page table lo-
cated by P1BR. Describes effective
length of page table.

Must be zero.

Performance Monitor Enable. Controls
a signal visible to an external
hardware performance monitor. This
bit is set to identify those proc-

esses for which monitoring is de-

sired and to permit their behavior

to be observed without interference
from other system activity.

70

Process Structure

Software symbols are defined for these locations by using the prefix
PTX$L_ and the mnemonic shown above. For example, the PCB offset
to R3is PTX$L_R3. The following are also defined:

PTX$L_POLRASTL Longword 21
PTX$L_P1LRPME ' Longword 23

To alter its POBR, P1BR, POLR, P1LR, ASTLVL or PME, a process
must be executing in kernel mode. It must first store the desired new
value in the memory image of the PCB, then move the value to the
appropriate privileged register. This protocol results from the fact that
these are read-only fields (for the context swiich instructions) in the
process control block.

Process Privileged Registers

The ASTLVL and PME fields of the PCB are contained in registers
when the process is running. In order to access them, two privileged
registers are provided. These are the AST Level register and the PME
register. The AST Level register is illustrated in Figure 4-3.

3 3 2 0

IGNORED ; RETURNS O AST-LVL

Figure 4-3 AST Level Register (Read/Write)

An MTPR src, #ASTLVL with src<2:0> GEQU 5 results in a reserved
operand fault. At bootstrap time, the content of ASTLVL is 4. The
Performance Monitor Enable register is illustrated in Figure 4-4.

3l 1

mZvlo

MBZ

Figure 4-4 Performance Monitor Enable Register (Read/Write)

At bootstrap time, PME is cleared.

71

Process Structure

ASYNCHRONOQUS SYSTEM TRAPS (AST)

Asynchronous System Traps are a technique for notifying a process of
events that are not synchronized with its execution and initiating proc-
essing for asynchronous events with the least possible delay. The
delay in delivery may be due to either process nonresidence or an
access mode mismatch. The efficient handling of ASTs in VAX-11
requires some hardware assistance to detect changes in access mode
(current access mode in PSL). Each of the four execution access
modes, kernel, executive, supervisor, and user, may receive ASTs;
however, an AST for a less privileged access mode must not be per-
mitted to interrupt execution in a more protected access mode. Since
outward access mode transitions occur only in the REI instruction,
comparison of the current access mode field is made with a privileged
register (ASTLVL) containing the most privileged access mode num-
ber for which an AST is pending. If the new access mode is greater
than or equal to the pending ASTLVL, an IPL 2 interrupt is triggered to
cause delivery of the pending AST.

General Software Flow for AST processing:

1. Anevent associated with an AST causes software enqueuing of an
AST control block to the software PCB, and the software sets the
ASTLVL field in the hardware PCB to the most privileged access
mode for which an AST is pending. If the target process is cur-
rently executing, the ASTLVL privileged register also has to be
set.

2. The (IPL2) interrupt service routine should compute the correct
new value for ASTLVL that prevents additional AST delivery inter-
rupts while in kernel mode, and move that vaiue to the PCB and
the ASTLVL register before lowering IPL and actually dispatching
the AST. This interrupt service routine normally executes on the
kernel stack in the context of the process receiving the AST.

3. The (IPL2) interrupt service routine should compute the correct
new value for ASTLVL that prevents additional AST delivery
interrupts while in kernel mode and move that value to the PCB
and the ASTLVL register before lowering IPL and actually dis-
patching the AST. This interrupt service routine normally exe-
cutes on the kernel stack in the context of the process receiving
the AST.

4. At the conclusion of processing for an AST, the ASTLVL is recom-
puted and moved to the PCB and ASTLVL register by software.

PROCESS STRUCTURE INTERRUPTS
Two of the software interrupt priorities are reserved for process struc-
ture software.

Th :
ey are 72

Process Structure

(1PL2) — AST delivery interrupt.

This interrupt is triggered by an REI that detects PSL<current mode>
GEQU ASTLVL and indicates that a pending AST may now be
delivered for the currently executing process.

(IPL3) — Process scheduling interrupt.

This interrupt is only triggered by software to aliow the software run-
ning at IPL 3 to cause the currently executing process to be blocked
and the highest priority executable process to be scheduled.

PROCESS STRUCTURE INSTRUCTIONS

Process scheduling software must execute on the interrupt stack
(PSL<IS> set) in order to have a noncontext-switched stack available
for use. If the scheduler were running on a process’s kernel stack, then
any state information it had there would disappear when a new proc-
ess is selected. Running on the interrupt stack can occur as the result
of the interrupt origin of scheduling events; however, some synchro-
nous scheduling requests such as a WAIT service may cause resche-
duling without any interrupt occurrence. For this reason, the Save
Process Context (SVPCTX) instruction can be executed while on ei-
ther the kernel or interrupt stack and forces a transition to execution
on the interrupt stack.

All of the process structure instructions are privileged and may only be
executed in kernel mode. In the following description of the load and
store process context instructions, the following notation conventions
are used:

Notation Meaning

tmp tmp1 and tmp2 are pseudo registers which are not
normally implemented in hardware

! indicates comment statement

- the back arrow is an assignment operator, i.e., the
value indicated on the right is copied to the register
or pseudo register indicated on the left

() this indicates the contents of the address specified
by the included expression

<N:M> this notation indicates the field consisting of bits N
thru M of the immediately preceding value

{1 indicate an exception

[] used to group terms for clarity, and usually appear in
logical expressions

73

Process Structure

LDPCTX Load Process Context
Purpose: restore register and memory management context
Format: Opcode
Operation:
if PSL<current mode> NEQU 0 then
{privileged instruction fault};
{invalidate per-process translation buffer entries};
IPCB is located by physical address in PCBB

KSP<(PCB);

ESP<«(PCB+4);

SSP<«(PCB+38);

USP<«(PCB+12);

RO<(PCB+16);

R1<«(PCB+20);

R2«(PCB+24);

R3<«(PCB+28);

R4<(PCB+32);

R5<«(PCB+36);

R6<(PCB+40);

R7«(PCB+44);

R8<«(PCB+48);

R9<(PCB+52);

R10<(PCB+56);

R11<(PCB+60);

AP<(PCB+64);

FP<(PCB+68);

tmp1<—(PCB+80);

if [tmp1<31:30> NEQU 2] OR [tmp1<1:0> NEQU 0] then
{reserved operand abort};

POBR<«tmp1;

if (PCB+84)<31:27> NEQU 0 then {reserved operand abort};
if (PCB+84)<23:22> NEQU 0 then {reserved operand abort};
POLR<(PCB+84)<21:0>;

if (PCB+84)<26:24> GEQU 5 then {reserved operand abort};
ASTLVL<«(PCB+84)<26:24>;

tmp1<—(PCB+88);

tmp2<«tmp1 + 22

if tmp2<31:30> NEQU 2] OR [tmp2<1:0> NEQU 0] then
{reserved operand instruction};

P1BR<tmp1;

if (PCB +92)<30:22> NEQU 0O then

{reserved operand fault};

P1LR«(PCB+92)<21:0>;

74

Process Structure

PME<«(PCB+92)<31>;
if (PCB+92)<30:22> NEQU 0 then {reserved operand abort};
if PSL <IS> EQLU 1 then

begin
ISP<-SP;
{interrupts off};
PSL<IS><0;
SP<(PCB); Iget KSP
{interrupts on};
end;
—{SP)<(PCB+76), Ipush PSL
—(SP)«(PCB+72); Ipush PC
Condition Codes:
N<N;
Z<Z;
V<V,
C<C;
Exceptions:
reserved operand
reserved instruction
Opcodes:
06 LDPCTX Load Process Context
Description:

The Process Control Block is specified by the privileged register
Process Control Block Base. The general registers are loaded from
the PCB. The memory management registers describing the process
address space are also loaded and the process entries in the transla-
tion buffer are cleared. Execution is switched to the kernel stack. The
PC and PSL are moved from the PCB to the stack, suitable for use by a
subsequent REI instruction.

NOTE

Some processors keep a copy of each of the per-
process stack pointers in internal registers. In those
processors that do, LDPCTX loads the internal regis-
ters from the PCB. Those processors that do not
keep a copy of all four per-process stack pointers in
internal registers keep only the current access mode
register in an internal register and switch this with
the PCB contents whenever the current access
mode field changes.

75

Process Structure

SVPCTX Save Process Context

Purpose: Save register context

Format: Opcode

Operation:

if PSL<current mode> NEQU 0 then
{privileged instruction fault};

IPCB is located by the physical address in PCBB

(PCB)<KSP;
(PCB+4)<ESP;
(PCB+8)<SSP;
(PCB+12)«USP;
(PCB+16)<R0;
(PCB+20)«Rt1;
(PCB+24)«R2;
(PCB+28)<«R3;
(PCB+32)«R4;
(PCB+36)«R5;
(PCB-+40)<R6;
(PCB+44)«R7;
(PCB+48)<«-R8;
(PCB+52)«R9;
(PCB+56)«R10;
(PCB+60)<«R11;
(PCB+64)«AP;
(PCB+68)<«FP;
(PCB+72)«(SP)+; Ipop PC
(PCB+76)<(SP)+; Ipop PSL
Iif PSL<IS> EQLU 0 then
begin

PSL<IPL><MAXU(1, PSL<IPL>);

(PCB)<SP; Isave KSP
{interrupts off};

PSL<IS> «1;

SP < ISP;

{interrupts on};

end;

Condition Codes:

N<N;
Z<Z,
VeV,
C<C;

76

Process Structure

Exceptions:

reserved instruction
Opcodes:
07 SVPCTX Save Process Context

Description:

The Process Control Block is specified by the privileged register Proc-
ess Control Block Base. The general registers are saved into the PCB.
The PC and PSL currently on the top of the current stack are popped
and stored in the PCB. If a SVPCTX instruction is executed when IS is
clear, then IS is set, the interrupt stack pointer activated, and IPL is
maximized with 1 because of the switch to the interrupt stack.

Notes:

1. The map, ASTLVL, and PME contents of the PCB are not saved
because they are rarely changed. Thus, not writing them saves
overhead.

2. Some processors keep a copy of each of the per-process stack
pointers in internal registers. In those processors that do,
SVPCTX stores the internal registers into the PCB. Those proces-
sors that do not keep a copy of all four per-process stack pointers
in internal registers, keep only the current access mode register in
an internal register and switch this with the PCB contents when-
ever the current access mode field changes.

3. Between the SVPCTX instruction that saves the state for one proc-
ess and the LDPCTX that loads the state of another, the internal
stack pointers may not be referenced by MFPR or MTPR instruc-
tions. This implies that interrupt service routines invoked at a
priority higher than the lowest one used for context switching
must not reference the process stack pointers.

USAGE EXAMPLE

The following example is intended to illustrate how the process struc-
ture instructions can be used to implement process dispatching soft-
ware. It is assumed that this simple dispatcher is always entered via an
interrupt.

; ENTERED VIA INTERRUPT
; IPL=3

RESCHED: SVPCTX ;Save context in PCB

<set state to runnable>

77

Process Structure

<and place current PCB>
<on proper RUN queue>

<Remove head of highest>
<priority, nonempty,>
<RUN queue.>

MTPR @#PHYSPCB,PCBB

LDPCTX

REI

78

;Set physical PCB
address in PCBB
;Load context from
PCB

;For new process
;Place process in
execution

79

IO
IIIIIIllllllllll{lllllﬂlImllmjlllllll

=
A8 iy

CHAPTER 5
EXCEPTIONS AND INTERRUPTS

INTRODUCTION

At certain times during the operation of a system, events within the
system require the execution of particular pieces of software outside
the explicit flow of control. The processor transfers control by forcing a
change in the flow of control from that explicitly indicated in the cur-
rently executing process.

Some of the events are relevant primarily to the currently executing
process and normally invoke software in the context of the current
process. The notification of such events is termed an exception.

Other events are relevant to other processes, or to the system as a
whole, and are therefore serviced in a system-wide context. The notifi-
cation process for these events is termed an interrupt, and the system-
wide context is described as “executing on the interrupt stack” (IS).
Further, some interrupts are of such urgency that they require high
priority service, while others must be synchronized with independent
events. To meet these needs, the processor has priority logic that
grants interrupt service to the highest priority event at any point in
time. The priority associated with an interrupt is termed its interrupt
priority level (IPL).

The processor arbitrates interrupt requests according to priority. Only
when the priority of an interrupt request is higher than the current IPL
(Bits <20:16> of the processor status longword) will the processor
raise the IPL and service the interrupt request. The interrupt service
routine is entered at the IPL of the interrupt request and will not usually
change the IPL set by the processor. Note that this is different from the
PDP-11 where the interrupt vector specifies the IPL for the ISR.

Interrupt requests can come from devices, controllers, other proces-
sors, or the processor itself. Software executing in kernel mode can
raise and lower the priority of the processor by executing MTPR src, #
IPL where src contains the new priority desired. However, a processor
cannot disable interrupts on other processors. Furthermore, the pri-
ority level of one processor does not affect the priority level of the
other processors. Thus, in multiprocessor systems, interrupt priority
Jevels cannot be used to synchronize access to shared resources.
Even the various urgent interrupts including those exceptions that run
at IPL 1F (hex) do so on only one processor. Thus, special software
action is required to stop other processors in a multiprocessor system.

81

Interrupts and Exceptions

Most exception service routines execute at IPL 0 in response to
exception conditions caused by the software. A variation from this is
serious system failures, which raise IPL to the highest level (1F, hex) to
minimize processor interruption until the problem is corrected. Excep-
tion service routines are usually coded to avoid exceptions; however,
nested exceptions can occur.

Processor Interrupt Priority Levels (IPLs)

The processor has 31 interrupt priority levels (IPLs), divided into 15
software levels (numbered, in hex, 01 to OF), and 16 hardware levels
{10 to 1F, hex). User applications, system calls, and system services all
run at process level, which may be thought of as IPL 0. Higher num-
bered interrupt levels have higher priority; that is to say, any requests
at an interrupt level higher than the processor’s current IPL will inter-
ruptimmediately, but requests at a lower or equal level are deferred.

interrupt levels 01 through OF (hex) exist entirely for use by software.
No device can request interrupts on those levels, but software can
force an interrupt by executing MTPR src. #SIRR (Software Interrupt
Request Register). Once a software interrupt request is made, it will be
cleared by the hardware when the interrupt is taken.

Interrupt levels 10 to 17 (hex) are for use by devices and controllers,
including UNIBUS devices. UNIBUS levels BR4 to BR7 correspond to
VAX-11 interrupt levels 14 to 17 (hex).

Interrupt levels 18 to 1F (hex) are for use by urgent conditions, includ-
ing the interval clock, serious errors, and power fail.

Contrast Between Exceptions And interrupts

Generally exceptions and interrupts are very similar. When either is

initiated, both the processor status (PSL) and the program counter

(PC) are pushed onto a stack. However there are seven important

differences:

1. An exception condition is caused by the execution of the current
instruction, while an interrupt is caused by some activity in the
computing system that may be independent of the current
instruction.

2. An exception condition is usually serviced in the context of the
process that produced the exception condition, while an interrupt
is serviced independently from the currently running process.

3. The IPL of the processor is usually not changed when the proces-
sor initiates an exception, while the IPL is always raised when an
interrupt is initiated.

82

Interrupts and Exceptions

Exception service routines usually execute on a per-process
stack, while interrupt service routines normally execute on a per-
CPU stack.

Enabled exceptions are initiated immediately no matter what the
processor IPL is, while interrupts are held off until the processor
IPL drops below the IPL of the requesting interrupt.

Most exceptions cannot be disabled. However, if an exception-
causing event occurs while that exception is disabled, no excep-
tion is initiated for that event even when enabled subsequently.
This includes overflow, which is the only exception whose occur-
rence is indicated by a condition code (V). If an interrupt condition
occurs while overflow is disabled, or the processor is at the same
or higher IPL, the condition will eventually initiate an interrupt
when the proper enabling conditions are met if the condition is
still present.

The previous mode field in the PSL is always set to kernel on an
interrupt, but on an exception it indicates the mode of the excep-
tion.

INTERRUPTS

The processor services interrupt requests between instructions. The
processor also services interrupt requests at well-defined points dur-
ing the execution of long, iterative instructions such as the string
instructions. For these instructions, in order to avoid saving additional
instruction state in memory, interrupts are initiated when the instruc-
tion state can be completely contained in the registers, PSL, and PC.

The following events cause interrupts:

N oA

10.
11.

Device completion (IPL 10-17 hex)

Device error (IPL 10-17 hex)

Device alert (IPL 10-17 hex)

Device memory error (IPL 10-17 hex)

Console terminal transmit and receive (IPL 14 hex)
Interval timer (IPL 18 hex)

Recovered memory or bus or processor errors (implementation-
specific, IPL 18 to 1D hex). The VAX-11/780 processor interrupts
at 1B on memory errors.

Unrecovered memory or bus or processor errors (implementa-
tion-specific, IPL 18 to 1D hex)

Power fail (IPL 1E hex)
Software interrupt invoked by MTPR #SIRR (IPL 01 to OF hex)

AST delivery when REI restores a PSL with IS clear and mode
greater than or equal to ASTLVL.

83

Interrupts and Exceptions

Each device controller has a separate set of interrupt vector locations
in the system control block (SCB), thus eliminating the need to poll
controllers in order to determine which controller originated the inter-
rupt. The vector address for each controller is fixed by hardware.

In order to reduce interrupt overhead, no memory mapping informa-
tion is changed when an interrupt occurs. Thus the instructions, data,
and contents of the interrupt vector for an interrupt service routine
must be in the system address space or present in every process at
the same address.

Urgent Interrupts—Levels 18-1F (Hex)

The processor provides eight priority levels for use by urgent
conditions including serious errors (e.g., machine check) and power
fail. Interrupts on these levels are initiated by the processor upon
detection of certain conditions. Some of these conditions are not inter-
rupts. For example, Machine Check is usually an exception but it runs
at a high priority level on the interrupt stack.

Interrupt level 1E (hex) is reserved for power fail. Interrupt level 1F
(hex) is reserved for those exceptions that must lock out all processing
until handled. This includes the hardware and software “disasters”
(machine check and kernel stack not valid). It might also be used to
allow a kernel mode debugger to gain control on any condition.

Device Interrupts—Levels 10-17 (Hex)

The processor provides eight priority levels for use by peripheral de-
vices. Any given implementation may or may not implement all eight
levels of interrupts. The minimal implementation is levels 14-17 (hex)
that correspond to the UNIBUS levels BR4 to BR7 if the system has a
UNIBUS.

Software-Generated Interrupts—Levels 01-0F (Hex)
The processor provides 15 priority interrupt levels for use by software.

Software Interrupt Summary Register

Pending software interrupts are recorded in the Software Interrupt
Summary Register (SISR). The SISR contains 1’s in the bit positions
correponding to levels on which software interrupts are pending. All
such levels, of course, must be lower than the current processor IPL,
or the processor would have taken the requested interrupt. Figure 5-1
illustrates the software interrupt summary register.

84

Interrupts and Exceptions

3 16 15 1
PENDING SOFTWARE INTERRUPTS

F,E,0,CBA9 87654321

MBZ

NoZ|o

Figure 5-1 Software Interrupt Summary Register (Read/Write)

At bootstrap time, the contents of SISR are cleared. The mechanism
for accessing itis:

MFPR #SISR,dst Reads the software interrupt summary
register.
MTPR src,#SISR Loads it, but this is not the normal way of

making software interrupt requests. It is
useful for clearing the software interrupt
system and for reloading its state after a
power fail, for example.

Software Interrupt Request Register

The software interrupt request register (SIRR) is a write-only four-bit
privileged register used for making software interrupt requests. Figure
5-2 illustrates the software interrupt request register.

3 43 [¢]
IGNORED REQUEST

Figure 5-2 Software Interrupt Request Register (Write Only)

Executing MTPR src,#SIRR requests an interrupt at the level specified
by src<3:0>. Once a software interrupt request is made, it will be
cleared by the hardware when the interrupt is taken. If src<3:0> is
greater than the current IPL, the interrupt occurs before execution of
the following instruction. If src<3:0> is less than or equal to the cur-
rent IPL, the interrupt will be deferred until the IPL is lowered to less
than src<3:0>, with no higher interrupt level pending. This lowering of
IPL is by either REI or by MTPR x,#IPL. If src<3:0> is 0, no interrupt
will occur or be requested.

Note that no indication is given if there is already a request at the
selected level. Therefore, the service routine must NOT assume that
there is a one-to-one correspondence of interrupts generated and
requests made. A valid protocol for generating such a correspon-
dence is:

85

Interrupts and Exceptions

1. The requester uses INSQUE to place a control block describing
the request onto a queue for the service routine.

2. The requester uses MTPR src,#SIRR to request an interrupt at the
appropriate level.

3. The service routine uses REMQUE to remove a control block from
the queue of service requests. If REMQUE returns failure (nothing
in the queue), the service routine exits with REI.

4. If REMQUE returns success (an item was removed from the
queue), the service routine performs the service and returns to
step 3 to look for other requests.

Interrupt Priority Level Register

Writing to the IPL with the MTPR instruction will load the processor
priority field in the Program Status Longword (PSL), that is,
PSL<20:16> is loaded from IPL<4:0>. Reading from IPL with the
MFPR instruction will read the processor priority field from the PSL.
On writing IPL, bits <31:5> are ignored, and on reading IPL, bits
<31:5> are returned zero. Figure 5-3 illustrates the interrupt priority
level register.

<l 5 4 0
IGNORED ; RETURNS 0 PSL<20:16>

Figure 5-3 Interrupt Priority Level Register (Read/Write)

At bootstrap time, IPL is initialized to 31 (1F, hex).

Interrupt service routines must follow the discipline of not lowering IPL
below their initial level. If they do, an interrupt at an intermediate level
could cause the stack nesting to be improper. This would result in RE!
faulting. Actually, a service routine could lower the IPL if it ensured
that no intermediate levels could interrupt. However, this would result
in unreliable code.

Interrupt Example

As an example, assume the processor is running in response to an
interrupt at IPL5; it then sets IPL to 8, and then posts software requests
at IPL3, IPL7, and IPL9. Then a device interrupt arrives at IPL11 (hex).
Finally IPL is set back to IPL5. The sequence of execution is:

86

Interrupts and Exceptions

state after event IPLin

contents of SISR PSL on
event IPL (hex) (hex) stack
(initial) 5 0 0
MTPR #8,#IPL 8 0 0
MTPR #3,#SIRR 8 8 0
MTPR #7,#SIRR 8 88 0
MTPR #9, #SIRR interrupts to 9 88 8,0
device interrupts to 1 88 9,8,0
device service routine REI 9 88 8,0

IPL9 service routine REI 8 88 0
MTPR #5,#IPL changes IPLto 5

and the request for 7 is

granted immediately 7 8 5,0

IPL7 service routine REI 5 8 0
initial IPL5 service routine
REIl back to IPLO and the
request for 3 is granted
immediately 3 0 0
IPL3 service routine REIl 0

SERIOUS SYSTEM FAILURES

Although serious system failures are exceptions, they are discussed
here rather than in the Architecture Handbook because they are not
linked to user software, but rather are processed by priviieged soft-
ware.

Kernel Stack Not Valid Abort

Kernel stack not valid abort is an exception that indicates that the
kernel stack was not valid while the processor was pushing informa-
tion onto the kernel stack during the initiation of an exception or inter-
rupt. Usually this is an indication of a stack overflow or other executive
software error. The attempted exception is transformed into an abort
that uses the interrupt stack. No extra information is pushed on the
interrupt stack in addition to PSL and PC. IPL is raised to 1F (hex).
Software may abort the process without aborting the system. How-
ever, because of the lost information, the process cannot be
continued. If the kernel stack is not valid during the normal execution
of an instruction (inciuding CHMK or REI), the normai memory man-
agement fault is initiated. If the exception vector <1:0> for Kernel
Stack Not Valid is 0 or 3, the behavior of the processor is UNDEFINED.

87

Interrupts and Exceptions

Interrupt Stack Not Valid Halt

An interrupt stack not valid halt is an exception that indicates that the
interrupt stack was not valid or that a memory error occurred while the
processor was pushing information onto the interrupt stack during the
initiation of an exception or interrupt. No further interrupt requests are
acknowledged on this processor. The processor leaves the PC, the
PSL, and the reason for the halt in registers so that it is available to a
debugger, the normal bootstrap routine, or an optionai watchdog
bootstrap routine. A watchdog bootstrap can cause the processor to
leave the halted state.

Machine Check Exception

A machine check exception indicates that the processor detected an
internal error in itself. As usual for exceptions, this exception is taken
independently of IPL. IPL is raised to 1F (hex). Implementation-specif-
ic information is pushed on the stack as longwords. The processor
specifies the number of bytes pushed by placing the number of bytes
pushed as the last longword pushed (0 if none, 4 if one,...). This count
excludes the PC, PSL, and count longwords. Software can decide, on
the basis of the information presented, whether to abort the current
process if the machine check came from the process. Machine check
includes uncorrected bus and memory errors anywhere, and any oth-
er processor-detected errors. Some processor errors cannot ensure
the state of the machine at all. For such errors, the state will be pre-
served on a “best effort’ basis. If the exception vector <1:0> for
machine check is 0 or 3, the behavior of the processor is UNDEFINED.

SYSTEM CONTROL BLOCK (SCB)

The System Control Block is a page containing the vectors by which
exceptions and interrupts are dispatched to the appropriate service
routines.

System Control Block Base (SCBB)

The SCBB is a privileged register containing the physical address of
the System Control Block, which must be page-aligned. Figure 5-4
illustrates the system control block base register.

313029 9 8 0
MBZ SCBB MBZ

Figure 5-4 System Control Block Base Register (Read-Only)

88

Interrupts and Exceptions

At bootstrap time, the contents of SCBB are UNPREDICTABLE. SCBB
must specify a valid address in physical memory or the processor
operation is UNDEFINED.

Vectors

A vector is a longword in the SCB that is examined by the processor
when an exception or interrupt occurs, to determine how to service the
event.

Separate vectors are defined for each interrupting device controller
and each class of exception. Each vector is interpreted as follows by
the hardware. The contents of bits <1:0> can be interpreted as:

0 Service this event on the kernel stack unless already running on
the interrupt stack, in which case service on the interrupt stack.

1 Service this event on the interrupt stack. If this event is an excep-
tion, the IPL is raised to 1F (hex).

2 Service this event in writable control store, passing bits <15:2> to
the installation-specific microcode there. If writable control store
does not exist or is not loaded, the operation is UNDEFINED. On
the VAX-11/780 processor, the operation in this case is a HALT.

3 Operation UNDEFINED. Reserved to DIGITAL. On the VAX-
11/780 processor, the operation is a HALT.

For codes 0 and 1, bits <31:2> contain the virtual address of the
service routine, which must begin on a longword boundary and will
ordinarily be in the system space. CHMx is serviced on the stack
selected by the new mode. Bits <1:0> in the CHMx vectors must be
zero or the operation is UNDEFINED. On the VAX-11/780 processor,
these bits are ignored in the CHMx vectors.

System Control Block (exception and interrupt vectors)

Vector Name Notes

(hex)

00 Unused Reserved to DIGITAL.

04 Machine Check Processor-and error-specific in-

formation is pushed on the stack,

if possible. Restartability is
processor-specific. Vector<1:0>
must be 1 for meaningful operation.
IPL is raised to 1F (hex). The
number of bytes of parameters is
pushed on the stack and is impie-
mentation-dependent. This vector
causes an abort/fault/trap.

89

Vector
(hex)
08

oC

10

14

18

1C

20

24

28

Interrupts and Exceptions

Name

Kernel Stack
Not Valid

Power Fail

Reserved/
Privileged
Instruction

Customer
Reserved
Instruction

Reserved
Operand

Reserved Ad-
dressing Mode

Access
Control
Violation

Translation
Not Valid

Trace Pending
(TP)

Notes

Vector<1:0> must be 1 for mean-
ingful operation. IPL is raised to
1F (hex). This vector causes an
abort. There are zero parameters.

IPL is raised to 1E (hex). This
vector causes an interrupt. There
are zero parameters.

Opcodes reserved to DIGITAL and
privileged instructions. This
vector causes a fault. There are
zero parameters.

XFC instruction. This vector causes
afault. There are zero parameters.

This vector causes a fault/abort.
There are zero parameters.

This vector causes a fault. There
are zero parameters. For greater
detail refer to the Architecture
Handbook.

Virtual address, etc., causing
faultis pushed onto stack. This
vector results in a fault. There
are two parameters.

Virtual address, etc., causing
fault is pushed onto stack. This
vector results in a fault. There
are two parameters.

This vector results in a fault.
There are zero parameters. For
greater detail refer to the
Architecture Handbook.

90

Vector
(hex)

2C

30

34

38-3C

40

44

48

4C

50-80

84

Interrupts and Exceptions

Name

Breakpoint
Instruction

Compatibility

Arithmetic

Unused

CHMK

CHME

CHMS

CHMU

Unused

Software
Level 1

Notes

This vector results in a fault.
There are two parameters. For
greater detail refer to the
Architecture Handbook.

A type code is pushed onto the
stack. This vector results in a
fault/abort. There is one para-
meter.

A type code is pushed onto the
stack. This vector results in a
trap. There is one parameter.

Reserved to DIGITAL.

The operand word is sign-extended
and pushed onto the stack. Vector
<1:0> MBZ. This vector results in
atrap. There is one parameter.

The operand word is sign-extended
and pushed onto the stack. Vector
<4:0> MBZ. This vector results in
atrap. There is one parameter.

The operand word is sign-extended
and pushed onto the stack. Vector
<1:0> MBZ. This vector results

in a trap. There is one parameter.

The operand word is sign-extended
and pushed onto the stack. Vector
<1:0> MBZ. This vector results

in atrap. There is one parameter.
Reserved to DIGITAL.

This vector results in an inter-
rupt. There are zero parameters.

91

Interrupts and Exceptions

Vector Name Notes

(hex)

88 Software Ordinarily used for AST delivery.
Level 2 This vector results in an inter-

rupt. There are zero parameters.

8C-BC Software This vector results in an inter-
Levels 3-F rupt. There are zero parameters.

Co Interval IPL is 18 (hex). This vector
Timer results in an interrupt. There are

zero parameters.

C4-F4 Unused Reserved to DIGITAL.

F8 Console IPL is 14 (hex). This vector
Terminal results in an interrupt. There are
Receive zero parameters.

FC Console Ter- IPL is 14 (hex). This vector
minal results in an interrupt. There are
Transmit zero parameters.

100-1FC Device This vector results in an
Vectors interrupt. There are zero

parameters.

In the VAX-11/780 processor, only hardware levels 14 to 17 (hex) are
available to a NEXUS external to the CPU, and there is a limit of 16
such NEXUSs. A NEXUS is a connection on the SBI, which is the
internal interconnection structure. The NEXUS vectors are assigned
as follows:

100-13C IPL 14 (hex) NEXUS 0-15
140-17C IPL 15 (hex) NEXUS 0-15
180-1BC IPL 16 (hex) NEXUS 0-15
1C0-1FC IPL 17 (hex) NEXUS 0-15

STACKS

At any time, the processor is either in a process context (IS=0) in one
of four modes (kernel, executive, supervisor, user), or in the system-
wide interrupt service context (IS=1) that operates with kernel privi-
leges. There is a stack pointer associated with each of these five
states, and any time the processor changes from one of these states to
another, SP (R14) is stored in the process context stack pointer for the

92

Interrupts and Exceptions

old state and loaded from that for the new state. The process context
stack pointers (KSP=kernel, ESP=executive, SSP=supervisor, USP=
user) are allocated in the PCB, although some hardware implementa-
tions may keep them in privileged registers. The interrupt stack point-
er (ISP) is in a privileged register.

Stack Residency

The USER, SUPER, and EXEC stacks do not need to be resident. The
kernel can bring in or allocate process stack pages as address trans-
lation not valid faults occur. However, the kernel stack for the current
process and the interrupt stack (which is process-independent) must
be resident and accessible. Translation not valid and access control
violation faults occurring on references to either of these stacks are
regarded as serious system failures, from which recovery is not possi-
ble.

If either of these faults occurs on a reference to the kernel stack, the
processor aborts the current sequence and initiates kernel stack not
valid abort on hardware level 1F (hex). If either of these fauits occurs
on a reference to the interrupt stack, the processor halts. Note that this
does not mean that every possible reference is checked, but rather
that the processor will not loop on these conditions.

It is not necessary that the kernel stack for processes other than the
current one be resident, but it must be resident before a process is
selected to run by the software’s process dispatcher. Further, any
mechanism that uses Translation Not Valid or Access Control
Violation faults to gather process statistics, for instance, must exercise
care not to invalidate kernel stack pages.

Stack Alignment

Except on CALLx instructions, the hardware makes no attempt to align
the stacks. For best performance on all processors, the software
should align the stack on a longword boundary and allocate the stack
in longword increments. The following instructions are recommended
for pushing bytes and words on the stack and popping them off in
order to keep it longword-aligned:

e convert byte to long (CVTBL)

e convert long to byte (CVTLB)

e convert long to word (CVTLW)

e convert word to long (CVTWL)

e move zero-extended byte to long (MOVZBL)
¢ move zero-extended word to long (MOVZWL)

93

Interrupts and Exceptions

Stack Status Bits

The interrupt stack bit (IS) and current mode bits in the privileged
Processor Status Longword (PSL) specify which of the five stack
pointers is currently in use as foows:

] MODE REGISTER
1 0 ISP

0 0 KSP

0 1 ESP

0 2 S§SpP

0 3 USP

The processor does not allow current mode to be nonzero when IS=1.
This is achieved by clearing the mode bits when taking an interrupt or
exception, and by causing reserved operand fault if REI attempts to
load a PSL in which both IS and mode are nonzero.

The stack to be used for an interrupt or exception is selected by the
current PSL<IS> and bits <1:0> of the vector for the event as follows:

VECTOR<1:0>

00 O

0 | KSP | 15P
PSLLIS>

1] ISP | ISP

Values 10 (binary) and 11 (binary) of the vector<1:0> are used for
other purposes.

Accessing Stack Registers

The processor implements five privileged registers to allow access to
each stack pointer. These registers always access the specified point-
er even for the current mode. If the process stack pointers are imple-
mented as registers, then these instructions are the only method for
accessing the stack pointers of the current process. If the process
stack pointers are kept in the PCB, the MTPR and MFPR of these
registers access the PCB. The register numbers were chosen to be the
same as PSL <26:24>. The previous stack pointer is the same as PSL
<23:22> unless PSL <IS> is set. Note that interrupt service routines
invoked at a priority higher than the lowest one used for context
switching must not reference the process stack pointers. At bootstrap
time, the contents of all stack pointers are UNPREDICTABLE. Figure
5-5 illustrates the process stack pointer.

%4

Interrupts and Exceptions

31 0
VIRTUAL ADDRESS OF TOP OF STACK

Figure 5-5 Process Stack Pointer Implemented As Read/Write

Register
Kernel Stack Pointer KSP =0
Executive Stack Pointer ESP =1
Supervisor Stack Pointer SSP =2
User Stack Pointer USP =3
Interrupt Stack Pointer ISP =4

SERIALIZATION OF EXCEPTIONS AND INTERRUPTIONS
The sequence in which recognition of simultaneously occurring inter-
rupts and exceptions takes place is indicated in the following list.

Machine check exception

Arithmetic exceptions

*Console halt or higher priority interrupt

Trace fauit (only one per instruction)

Start instruction execution or restart suspended instruction

oA N2

*the order in which console halt and interrupt recognition occur is not
dictated by the VAX architecture (i.e., some future VAX machines may
not take these in the same order as the VAX-11/780, which takes
console halts before interrupts).

~ NOTE

The VAX architecture allows certain instructions to
be suspended at well-defined intermediate points in
their execution in order to take memory manage-
ment faults, console halts, or interrupts. In this case,
the hardware uses PSL<TP> and PLS<T> to en-
sure that no additional trace faults occur when the
suspended instruction is resumed.

As an example, if an instruction is started with T=1, it gets an
arithmetic trap and an interrupt request is recognized. The following
sequence occurs: :

1. Theinstruction finishes, storing all its results.

95

8.

Interrupts and Exceptions

The overflow trap sequence is initiated, pushing the PC and PSL
(with TP=1), loading a new PC from the vector, and creating a
new PSL.

The interrupt sequence is initiated, pushing the PC and PSL ap-
propriate to the trap service routine, loading a new PC from the
vector, and creating a new PSL.

If a higher priority interrupt is noticed, the first instruction of the
interrupt service routine is not executed. Instead, the PC and PSL
appropriate to that routine are saved as part of initiating the new
interrupt. The original interrupt service routine will then be
executed when the higher priority routine terminates via REI.

The interrupt service routine runs and exits with REI.

The trap service routine runs and exits with REI, which finds a PSL
having TP=1.

The trace occurs, again pushing PC and PSL, but this time with
TP=0.

Trace service routine runs and exits with REI

INITIATE EXCEPTION OR INTERRUPT

The following pseudo algol describes the sequence of events which
occurs on initiation of exceptions and interrupts. If a higher priority
interrupt condition occurs after the start of this sequence, the interrupt
will not be taken until the sequence completes. On the VAX-11/780, all
UNDEFINEDs shown in the pseudo algol are HALTs.

if vector < SCBJvector]; Iget correct vector
if vector<1:0> EQLU 3 then {UNDEFINED};
if vector<1:0> EQLU 0 and {machine-check or

kernel-stack-not-valid} then {UNDEFINED};

if vector <1:0> NEQU 0 and {CHMX} then {UNDEFINED};
if vector<1:0> EQLU 2 then

begin

if {writable control store exists and is loaded}
then {enter writable control store}

else {UNDEFINED};

end;

if PSL<IS> EQLU 0 then Iswitch stacks

begin

PSL<current-mode>-SP «SP; Isave old SP

if vector<1:0> EQLU 1 then

SP «ISP;
else

96

Iinterrupts and Exceptions

SP « new-mode-SP; lkernel-SP unless CHMx

end;
—(SP) < PSL; lon a fault or abort, the saved
! condition codes are UNPREDICTABLE
—(SP) < PC; las backed up, if necessary

{push parameters if any};
PSL<CM,TP,FPD,DV,FU,IV,T,N,Z,V,C> <« 0; !Icleanout PSL
if {interrupt} then
PSL<previous-mode> <« 0; tkernel mode
else
PSL<previous-mode> <« PSL<current-mode>;
PSL <current-mode> <new-mode; !kernel-mode unless CHMXx
if {interrupt} then Iset new IPL
PSL<IPL> < new-IPL

else
if vector<1:0> EQLU 1 then
PSL<IPL> <« 31; 11F (hex)
if vector <1:0> EQLU 1then PSL<IS> <« 1; otherwise keep old IS
PC <« vector<31:2>°0<1:0>; llongword-aligned

{enable interrupts};
Condition Codes (if vector<1:0> code is 0 or 1):

N<O0;
Z<0;
V<«0;
C «0;
Exceptions:

interrupt stack not valid
kernel stack not valid

Description:

The handling is determined by the contents of a longword vector in the
system control block that is indexed by the exception of the interrupt
being processed. If the processor is not executing on the interrupt
stack, then the current stack pointer is saved and the new stack point-
er is fetched. The old PSL is pushed onto the new stack. The PC is
backed up (unless this is an interrupt between instructions, a trace
pending fault, or a trap) and is pushed onto the new stack. The PSL is
initialized to a canonical state. IPL is changed if this is an interrupt or if
it is an exception with vector<1:0> code 1. Any parameters are
pushed. Except for interrupts, the previous mode in the new PSL is set
to the old value of the current mode. Finally, the PC is changed to point
to the longword indicated by the vector <31:2>.

97

Interrupts and Exceptions

Notes:

1.
2.
3.

Interrupts are disabled during this sequence.
If the vector<1:0> code is invalid, the behavior is UNDEFINED.

On a fault or abort or interrupt, the saved condition codes are
UNPREDICTABLE. On an abort or fault or interrupt that sets FPD,
the general registers except PC, SP and (unless modified by the
instruction) FP are UNPREDICTABLE unless the instruction de-
scription specifies a setting. On a Kernel Stack Not Valid abort,
both SP and FP are UNPREDICTABLE. In this case, UNPREDICT-
ABLE means unspecified; upon REI the instruction behavior and
results are predictable. This implies that processes stopped with
FPD set cannot be resumed on processors of a different type or
engineering change level.

If the processor gets an access control violation or a translation
not valid condition while attempting to push information on the
kernel stack, a kernel stack not valid abort is initiated and IPL is
changed to 1F (hex). The additional information, if any, associated
with the original exception is lost. However, PSL and PC are
pushed on the interrupt stack with the same values as would have
been pushed on the kernel stack.

If the processor gets an access control violation or a translation
not valid condition while attempting to push information on the
interrupt stack, the processor is halted and only the state of ISP,
PC, and PSL is ensured to be correct for subsequent analysis.
The PSL and PC have the values that would have been pushed on
the interrupt stack.

As usual for faults, if the processor gets an Access Violation or
Translation Not Valid fault during the execution of a CHMx in-
struction, it saves PC, PSL, and leaves SP as it was at the begin-
ning of the instruction except for any pushes onto the kernel
stack.

The value of PSL<TP> that is saved on the stack is as follows:

fault clear
trace clear
interrupt from PSL<TP> (if after

traps, before trace) clear
(otherwise)

abort from PSL<TP>
trap from PSL<TP>
CHMx from PSL<TP>

98

Interrupts and Exceptions

BPT, XFC clear

reserved instruction clear

The value of PC that is saved on the stack points to the following:

fault instruction faulting
trace next instruction to execute
interrupt instruction interrupted or

next instruction to execute

abort instruction aborting or de-
tecting Kernel Stack Not Val-
id (not ensured on machine

check)
trap next instruction to execute
CHMx next instruction to execute
BPT, XFC BPT, XFC instruction
reserved instruction first byte of the reserved in-
struction

The non-interrupt stack pointers may be fetched and stored by
hardware in either privileged registers or in their allocated slots in
the PCB. Only LDPCTX and SVPCTX always fetch and store in the
PCB (see Chapter 7). MFPR and MTPR always fetch and store the
pointers whether in registers or the PCB.

99

00l

il
il

Il
I

EOSE080 vax w0

T
Ly

CHAPTER 6
MEMORY MANAGEMENT

INTRODUCTION

Memory management describes the hardware and software that con-
trol the allocation and use of physical memory. Typically, in a multipro-
gramming system, several processes may reside in physical memory
at the same time. Therefore, to ensure that one process will not affect
other processes or the operating system, memory protection is pro-
vided. To further improve software reliability, four hierarchical (privi-
lege) modes are provided to control memory access. They are, from
most to least privileged: kernel, executive, supervisor, and user.
Protection is specified at the individual page level, where a page may
be inaccessible, read-only, or read/write for each of the four access
modes. Any location accessible to a lesser privileged mode is also
accessible to all more privileged modes. Furthermore, for each access
mode, any location that is writable is also readable.

While an image is being executed by the CPU, virtual addresses are
generated. However, before these addresses can be used to access
instructions and data, they must be translated into physical addresses.
Memory management software maintains tables of mapping informa-
tion (page tables) that keep track of where each 512-byte virtual page
is located in physical memory. The CPU utilizes this mapping informa-
tion when it translates virtual addresses to physical addresses.

Therefore, memory management is the scheme that provides both the
memory protection and memory mapping mechanisms of the VAX-
11/780. The memory management scheme has been designed and
implemented to achieve the following goals:

Provide a large address space for instructions and data.

Allow data structures up to one gigabyte.

Provide convenient and efficient sharing of instructions and data.
Contribute to software reliability.

> -

101

Memory Management

A virtual memory system is used to provide a large address space,
while allowing programs to run on small memory size hardware con-
figurations. Programs are executed in an execution environment
termed a process. The software operating system uses the mecha-
nisms described in this chapter to provide each process with a 4-
biltion-byte virtual address space.

The virtual address space is divided into two equal address spaces,
the process-address space and the system address space. The system
address space is common for all processes and is not context
switched. The operating system is located in system address space
and is implemented as a series of callable procedures. Thus, all of the
system code is available to all other system and user codes via a
simple CALL. Process address space is separate for each process.
However, several Processes may have access to the same page, thus
providing controlled sharing.

VIRTUAL ADDRESS SPACE

The address space seen by the programmer is a linear array of
4,294,967,296 bytes. This results from the fact that a virtual address is
32 bits in length. The virtual address space is broken into 512-byte
units called pages. The page is the basic unit of both relocation and
protection.

This virtual address Space is too large to be contained in any presently
available main memory. Therefore memory management provides the
mapping mechanism to map the active part of the virtual address
Space to the available physical address space. Memory management
also provides page protection between processes. The operating sys-
tem controls the memory management tables that map virtual ad-
dresses into physical memory addresses. The inactive but used parts
of the virtual address Space are mapped into external storage media
via the operating system,

The virtual address space is divided into two parts. The lower half,
known as “per-process space,” is distinct for each process running on
the system. The upper half, known as “system space”, is shared by ali
processes. Furthermore, the per-process virtual address space is di-
vided into two equal parts, program space (PO space) and control
space (P1 space). Virtual address space is illustrated in Figure 6-1.

102

Memory Management

VIRTUAL ADDRESS VIRTUAL ADDRESS
{32 BITS) SPACE
~ 0000 0000 A
PO REGION
(PROGRAM)
GROWTH DIRECTION
PER
3FFF_FFFF l
__3FFF_FFFF PROCES
4000 0000 SPACCEE >
GROWTH DIRECTION
P1 REGION
(CONTROL)
_7fFF_FFFE <
8000 0000 D
SYSTEM REGION
GROWTH DIRECTION
__ BFFF_FFFF ¥ SYSTEM
C000 0000 SPACE
RESERVED
FFFF_ FFFF J

Figure 6-1 Virtual Address Space

Process Space

The lower half of virtual address space is termed “process space.”
Each process has a separate address translation map for per-process
space, so the per-process spaces of all processes are completely
disjoint. The address map for per-process space is context-switched
when the process running on the system is changed.

System Space

The upper half of virtual address space is termed “system space.” All
processes use the same address translation map for system space, so
system space is shared among all processes. The address map for
system space is not context-switched.

Page Protection

Independently of its location in the virtual address space, a page may
be protected according to its use. Thus, even though all of the system
space is shared, in that the program may generate any address, the
program may be prevented from modifying or even accessing por-

103

Memory Management

tions of it. A program may also be prevented from accessing or
modifying portions of per-process space.

For example, in system space, scheduling queues are highly protect-
ed, whereas library routines may be executable by code of any privi-
lege. Similarly, per-process accounting information may be in per-
process space, but highly protected, while normal user code in per-
process space is executable at low privilege.

VIRTUAL ADDRESS

in order to reference each instruction and operand in memory, the
processor generates a 32-bit virtual address. As the process executes,
the system translates virtual addresses to physicai addresses. The
virtual address format is illustrated in Figure 6-2.

VIRTUAL ADDRESS VIRTUAL ADDRESS
SPACE

N 29 98 0
VIRTUAL PAGE NO. IO,?FYgET
%;’_/R’J

VIRTUAL PAGE \\\\\\\\\\\ i ‘

DN

Figure 6-2 Virtual Address

Bits <31:9> Virtual Page Number

The virtual page number field specifies the virtual page to be
referenced. There are 8,388,608 pages of 512 bytes each in the virtual
address space. When bit 31 is set, the address is system virtual. Bit 30
is used in conjunction with process virtual addresses to distinguish
between the program and control regions. When bit 30 is set, the
control region is referenced, and when it is clear, the program region
is referenced.

104

Memory Management

Bits<8:0> Byte
The byte number field specifies the byte address within the page. A
page contains 512 bytes.

Virtual Address Space Layout

Access to each of the three regions (PO, P1, System) is controlled by a
length register (POLR, P1LR, SLR). Within the limits set by the length
registers, the access is controlled by a page table that specifies the
validity, access requirements, and location of each page in the region.

ADDRESS TRANSLATION

The action of translating a virtual address to a physical address is
governed by the setting of the Memory Mapping Enable (MME) bit.
When MME is 0, the low order bits of the virtual address are the
physical address and there is no page protection. The number of bits
is implementation-dependent. This section describes the address
translation process when MME is 1.

The address translation routine is presented with a virtual address, an
intended access (read or write) and a mode against which to check
that access. If the access is allowed and the address maps without
faulting, the output of this routine is the physical address correspond-
ing to the specified virtual address.

The mode that is used is normally the current mode field of the PSL,
but per-process page table entry references use kernel mode.

The intended access is read if the operation to be performed is a read.
The intended access is write if the operation to be performed is a write.
If, however, the operation to be performed is a modify (i.e., read fol-
lowed by write) the intended access for the read portion is specified as
a write.

Page Table Entry (PTE)

All virtual addresses are translated to physical addresses by means of
a Page Table Entry (PTE). The page table entry is described in Figure
6-3.

31 30 272625 24 32221 20 0
v PROT [M|O|OWN, O PFN

Figure 6-3 Page Table Entry

105

Memory Management

Bit<31> Valid bit

The operating system uses the V bit to indicate whether the corre
sponding page is part of the process working set (i.e., the set of physi-
cal pages currently being used by the process). If the V bit = 0 (not
valid), the page is not in the working set. The hardware then issues a
Translation Not Valid fault (i.e., “page fault”) during address transia-
tion. The pager retrieves this page and brings it into physical memory
allowing continued execution of the process image. The V bit governs
the validity of the M bit and PFN field.

Bits <30:27> Protection code

The protection code specifies read-write access to each page. This
field is explained more fully under the ACCESS CONTROL section of
this chapter. This field is always valid and is used by the hardware
even when V=0,

Bit<26> Modify bit

Set if page has already been recorded as modified. M=0 if page has
not been recorded as modified. Used by hardware only if V=1.
Hardware sets this bit on a valid, access-allowed memory access as-
sociated with a modify or write access, and optionally on a PROBEW
or implied probe-write. If a write or modify reference crosses a page
boundary and one page faults, it is UNPREDICTABLE whether the
page table entry M bit for the other page is set before the fault. It is
UNPREDICTABLE whether the modification of a process PTE M bit
causes modification of the system PTE that maps that process page
table. Note that the update of the M bit is not interlocked in a multipro-
cessor system.

Bit<25> Reserved to DIGITAL

This bit is reserved to DIGITAL and must be zero. The hardware does
not necessarily test that this bit is zero because the PTE is established
only by privileged software.

Bits <24,23> Reserved

Reserved for software use as the access mode of the owner of the
page (i.e., the mode allowed to alter the page); not examined or al-
tered by hardware.

Bits <22,21> Reserved to DIGITAL

These bits are reserved to DIGITAL and must be zero. The hardware
does not necessarily test that these are zero because the PTE is
established only by privileged software.

106

Memory Management

Bits <20:0> Page Frame Number (PFN)
The upper 21 bits of the physical address of the base of the page.
Used by hardware only if V=1.

Software symbols are defined for the described fields using PTES$ as
the prefix.

ACCESS CONTROL

Access control is the function of validating whether a particular type of
memory access is to be allowed to a particular page. Every page has
associated with it a protection code that specifies for each mode
whether or not read or write references are allowed. Additionally, each
address is checked to make certain that it lies within the PO, P1, or
system region.

Mode

There are four hierarchically ordered modes in the processor. The

modes, in the order of most to least privileged, are:

0 Kernel. Used by the kernel of the operating system for page man-
agement, scheduling, and I/0 drivers.

1 Executive. Used for many of the operating system service calls
including the record management system.

2 Supervisor. Used for such services as command interpretation.

3 User. Used for user level code, utilities, compilers, debuggers,
etc.

The mode at which the processor is currently running is stored in the
Current Mode field of the Processor Status Longword (PSL).

Protection Code

Associated with each page is a protection code (located within the
page table entry for that page) that describes the accessibility of the
page for each mode. The protection codes available allow choice of
protection for each access level within the following limits:

1. Each level's access can be read/write, read-only, or no access.

2. If any level has read access then all more privileged levels also
have read access.

3. if any level has write access then all more privileged levels also
have write access.

The protection code is encoded in a 4-bit field in the Page Table Entry
described in Table 6-1. Associated with each protection code is the
access status for each of the access modes. During address transia-
tion, the protection code is the first field in the PTE that is checked.

107

Memory Management

Table 6-1 Protection Codes

CODE MNEMONIC
DECIMAL BINARY K E S U COMMENT
0000 NA - - - - NOACCESS
0001 UNPREDICTABLE RESERVED
0010 KW RwW - - -
0011 KR R

0100 UW RW RW RW RW ALL ACCESS
0101 EW RW RW

0

1

2

3

4

5 -

6 0110 ERKW RW R - -

7 0111 ER R R - -

8 1000 SW RW RW RW -

9 1001 SREW RW RW R -

10 1010 SRKW RW R R -

11 1011 SR R R R -

12 1100 URSW RW RW RW R

13 1101 UREW RW RW R R

14 1110 URKW RW R R R

15 1111 UR R R R R
- =No access K=Kernel
R=read only E=Executive
RW =read/write S=Supervisor

U=User

Software symbols are defined using PTE$K _as a prefix to the mne-
monics listed in Table 6-1.

This code was chosen to keep the complexity of hardware access
checking reasonable for implementations not using a table decoder.
The access is allowed if:

(CODE NEQU 0) AND

((CODE EQLU 4) OR (CM LSSU WM) OR (READ AND (CM LEQU RM)))

CM is current mode
RM is left two bits of code
WM is 1's complement of right two bits of code

Length Violation

Every virtual address is constrained to lie within one of the valid ad-
dressing regions (PO, P1, or System). The algorithm for making these
checks is a simple limit check. The formal notation for this check is:

108

Memory Management

case VAddr <31:30>

set
(0): PO region
if ZEXT (VAddr<29:9>) GEQU POLR
then (length violation);
(1): IP1 region
if ZEXT (VAddr<29:9>) LSSU P1LR
then (length violation);
(2): 1S region
if ZEXT (VAddr<29:9>) GEQU SLR
then (length violation);
(3): Ireserved region

(length violation);

Access Control Viotation Fault

An access control fault occurs if the current mode of the PSL and the
protection field(s) for the page(s) about to be accessed indicate that
the access would be iliegal. A fault of this type will occur if the address
causes a length violation to occur.

SYSTEM SPACE ADDRESS TRANSLATION
A virtual address with <31:30>=2 (i.e., binary 10) is an address in the
system virtual address space as illustrated in Figure 6-4.

313029 9 8 0
2 VIRTUAL PAGE NO. {VPN} BYTE #

Figure 6-4 System Space Address

109

Memory Management

The system virtual address space is defined by the System Page Table
(SPT), which is a vector of page table entries (PTEs). The system page
table is always located in physical address space. Therefore the base
address of the SPT is a physical address and is located in the System
Base Register (SBR) described in Figure 6-5. The size of the SPT in
longwords, i.e., the number of PTEs, is contained in the System Length
Register (SLR) described in Figure 6-6. The SBR points to the first PTE
in the SPT. In turn, this PTE maps the first page of system virtual
space, i.e., virtual byte address 80000000 (hex).

313029 210
MBZ PHYSICAL LONGWORD ADDRESS M8z

Figure 6-5 System Base Register

31 22 21 0

mBZ LENGTH OF SPT IN LONGWORDS

Figure 6-6 System Length Register

The virtual page number is contained in bits <29:9> of the virtual
address. Thus, there could be as many as 2?' pages in the system
region. (Typically the value is in the range of a few hundred to a few
thousand system pages.) A 22 bit length field is required to express
the vaiues 0 through 2?' inclusive. At bootstrap time, the content of
both registers is UNPREDICTABLE. The translation from system virtu-
al address to physical address is illustrated in Figure 6-7.

Thus, the arithmetic necessary to generate a physical address from a
system region virtual address is:

SYS_PA = (SBR+SVA<29:9>"4)<20:0>'8VA<8:0> ISystem Region

NOTE
For all occurrences within this chapter, the pa-
rentheses indicate contents of, the angle brackets
indicate referenced bits, and the apostrophe
indicates concatenation.

110

Memory Management

33 2
109 98 0
SVA: 2 BYTE
(SYSTEM VIRTUAL ﬂ |
ADDRESS) i !
3 212 EXTRACT
1 312 210
Lo | 0
CHECK LENGTH
ADD
SBR: [PHrs BASE ADR OF SPT o]
YIELDS
PHYS ADR OF PTE 1o]
FETCH
33 22
10 10 0
PTE:) l PEN
CHECK ACCESS ! ,
i
33)2 '
1019 9ls 0
PHYS ADR OF DATA: [ﬂ []

Figure 6-7 System Virtual To Physical Translation

PROCESS SPACE ADDRESS TRANSLATION

The process virtual address space is split into two separately mapped
regions according to the setting of bit 30 in the process virtual ad-
dress. If bit 30 is 0, the PO region of the address space is selected, and
if bit 30 is 1, the P1 region is selected.

The PO region of the address space maps a virtually contiguous area
that begins at the smallest address (0) in the process virtual space and
grows in the direction of larger addresses. In contrast, the P1 region of
the address space maps a virtually contiguous area that begins at the
largest address (2%'—1) in the process virtual space and grows in the
direction of smaller addresses.

Each region (PO and P1) of the process virtual space is described by a
virtually contiguous vector of page table entries. In contrast with the
system page table, which is located in physical address space, the two
process page tables are located in system virtual address space.
Thus, for process space, the address of a PTE is a virtual address in

system space, and the fetch of a PTE is simply a fetch of a longword
using a system virtual address.

111

Memory Management

There is a significant reason to address process page tables in virtual
rather than physical space. A physically addressed process page table
that required more than a page of PTEs (i.e., that mapped more than
64K bytes of process virtual space) would require physically contigu-
ous pages. Such a requirement would make dynamic allocation of
process page table space very awkward.

A process space translation that causes a translation buffer miss will
usually cause one memory reference for a PTE. If the virtual address
of the page containing the process PTE is also missing from the trans-
lation buffer, a second memory reference is required.

When a process page table entry is fetched, a reference is made to
system space. This reference is made as a kernel read. Thus, the
system page containing a process page table is either “No Access”
(i.e., protection code zero) or will be accessible (protection code non-
zero). Similarly, a check is made against the system page table length
register (SLR). Thus, the fetch of an entry from a process page table
can result in access or length violation faults.

PO Space

The PO region of the address space is mapped by the PO page table
(POPT) that is defined by the PO base register (POBR) and the PO
tength register (POLR). POBR contains a virtual address in the system
half of virtual address space which is the base address of the PO page
table. The PO base register is illustrated in Figure 6-8. POLR contains
the size of the PO page table in longwords, i.e., the number of page
table entries. The PO length register is illustrated in Figure 6-9. The
page table entry addressed by the PO base register maps the first
"page of the PO region of the virtual address space, i.e., virtual byte
address 0.

31 30 29 2.1 0

2 SYSTEM VIRTUAL LONGWORD ADDRESS mBZ

Figure 6-8 PO Base Register

31 2720 24232221 [¢]
MBZ IGN [MBZ LENGTH OF POPT IN LONGWORDS

Figure6-9 PO Length Register
112

Memory Management

The virtual page number is contained in bits <29:9> of the virtual
address. Thus, there could be as many as 2°! pages in the PO region. A
22.bit length field is required to express the values 0 through 2*
inclusive. POLR<26:24> is ignored on MTPR and read back 0 on
MFPR. At bootstrap time, the content of both registers is UNPREDICT-
ABLE. An attempt to load POBR with a value less than 23' results in a
reserved operand fault. The translation from PO virtual address to
physical address is illustrated in Figure 6-10.

332
109 98 0
PVA: [ol I BYTE J
{PROCESS VIRTUAL | !
ADDRESS)] |
3 212 EXTRACT "
1 312 210
Lo | o]
CHECK LENGTH
ADD
POBR: [svs VIRT BASE ADR OF POPT M

YIELDS

r SYS VIRT ADR OF PTE M

FETCH-REFERS TO SYSTEM SPACE
ADDRESS TRANSLATION SECTION
OF THIS CHAPTER

33 2
10 1

PTE: m

CHECK ACCESS |
i
|

oN
o

PFN 4]

—W

ow
ON

Z]
L

PHYS ADR OF DATA:

Figure 6-10 PO Virtual To Physical Translation

Thus, the arithmetic necessary to generate a physicai address from a
PO region virtual address is:

PVA_PTE= (PVA<29:9>*4)+POBR PO Region
PTE_PA= (SBR+PVA_PTE<29:9>*4)<20:0>'PVA_PTE<8:0>
PROC_PA= (PTE_PA)<20:0>'PVA<8:0>

113

Memory Management

P1 Space

The P1 region of the address space is mapped by the P1 page table
(P1PT) that is defined by the P1 base register (P1BR) and the P1
length register (P1LR). Because P1 space grows backwards, and be-
cause a consistent hardware interpretation of the base and length
registers was desired, P1BR and P1LR describe the portion of P1
space that is not accessible. P1BR contains a virtual address of what
would be the PTE for the first page P1, i.e., virtual byte address
40000000 (hex). The P1 base register is illustrated in Figure 6-11.
P1LR contains the number of nonexistent PTEs. The P1 length register
is illustrated in Figure 6-12.

Note that the address in P1BR is not necessarily an address in system
space, but all addresses of PTEs must be in system space.

3 210
VIRTUAL LONGWORD ADDRESS MBZ

Figure 6-11 P1 Base Register (Read/Write)

31 30 22 2 0
I MBZ 2**2]-LENGTH OF PIPT IN LONGWORDS

Figure 6-12 P1 Length Register (Read/Write)

P1LR<31> is ignored on MTPR and reads back 0 on MFPR. At boot-
strap time, the content of both registers is UNPREDICTABLE. An at-
tempt to load P1BR with a value less than 2%'—223 (7F800000, hex)
results in a reserved operand fault. The translation from P1 virtual
address to physical address is illustrated in Figure 6-13.

Thus, the arithmetic necessary to generate a physical address from a
P1 region virtual address is:

PVA_PTE= (PVA<29:9>*4)+POBR IP1 Region

PTE_PA= (SBR+PVA_PTE<29:9>*4)<20:0>'PVA_PTE<8:0>
PROC_PA= (PTE_PA)<20:0>'PVA<8:0>

114

Memory Management

332
10 98 0
PVA: O] [evre |
{PROCESS VIRTUAL .
ADDRESS) v |
3 212 EXTRACT
] 312 210
Lo | l°]
CHECK LENGTH
ADD
P1BR: [SYs VIRT BASE ADR OF P1PT 0]
YIELDS
SYS VIRT ADR OF PTE JEJ
FETCH-REFER TO SYSTEM SPACE
ADDRESS TRANSLATION SECTION
OF THIS CHAPTER
33 22
10 1 0 0
PTE: [1[] PEN
CHECK ACCESS !
33l2 I
10!9 918 ¢ O
PHYS ADR OF DATA: 0 [

Figure 6-13 P1 Virtual To Physical Translation

MEMORY MANAGEMENT CONTROL

There are three additional privileged registers used to control the
memory management hardware. One register is used to enable and
disable memory management, the other two are used to clear the
hardware’'s address transiation buffer when a page table entry is
changed.

Memory Management Enable

The map enable register, MAPEN, contains the value of 0 or 1 accord-
ing to whether memory management is disabled or enabled respec-
tively. The map enable register is a privileged register and is illustrated
in Figure 6-14.

115

Memory Management

k]l 1
MBZ

mTT|o

Figure 6-14 Map Enable Register (Read/Write)

At bootstrap time, this register is initialized to 0.

When memory management is disabled, virtual addresses are
mapped to physical addresses by ignoring their high order bits. All
accesses are allowed in all modes and no modify bit is maintained.

Translation Buffer

In order to save actual memory references when repeatedly referenc-
ing pages, a hardware implementation may include a mechanism to
remember successful virtual address translations and page statuses.
Such a mechanism is termed a translation buffer.

Whenever the process context is loaded with LDPCTX, the translation
buffer is automatically updated (i.e., the process virtual address trans-
lations are invalidated). However, whenever a page table entry for the
system or current process region is changed, other than to set the
page table entry V bit, the software must notify the transiation buffer of
this by moving an address within the corresponding page into the
translation buffer invalidate single register (TBIS). The TBIS register is
illustrated in Figure 6-15.

Whenever the location or size of the system map is changed (SBR,
SLR) the entire translation buffer must be cleared by moving 0 into the
translation buffer invalidate all register (TBIA). The TBIA register is
illustrated in Figure 6-16.

Since the content of the translation buffer at bootstrap time is UN-
PREDICTABLE, the entire translation buffer must be cleared by mov-
ing 0 into TBIA before enabling memory management.

3! 0
VIRTUAL ADDRESS

Figure 6-15 Translation Buffer Invalidate Single (write only)

116

Memory Management

3 0

MBZ

Figure 6-16 Translation Buffer Invalidate All (write only)

FAULTS AND PARAMETERS

There are two types of faults associated with memory mapping and
protection. A Translation Not Valid fault is taken when a read or write
reference is attempted through an invalid PTE (PTE<31>=0). An
Access Control Violation fault is taken when the protection field of the
PTE indicates that the intended access to the page for the specified
mode would be illegal. Note that these two faults have distinct vectors
in the system control block. If both Access Control Violation and
Translation Not Valid faults could occur, then the Access Control Vi-
olation Fault takes precedence. An Access Control Violation fault is
also taken if the virtual address referenced is beyond the end of the
associated page table. Such a “length violation” is essentially the
same as referencing a PTE that specifies “No Access” in its protection
field. To avoid having the fault software redo the length check, a
“length violation” indication is stored in the fault parameter word de-
scribed in Figure 6-17.

0 BN

SOME VIRTUAL ADDRESS IN THE FAULTING PAGE

PC OF FAULTING INSTRUCTION

PSL AT TIME OF FAULT

Figure 6-17 Fault Parameter Word

The same parameters are stored for both types of fault. The first
parameter pushed on the kernel stack after the PSL and PC is the
initial virtual address that caused the fault. A process space reference
can result in a system space virtual reference for the PTE. If the PTE
reference faults, the virtual address that is saved is the process virtual
address. In addition, a bit is stored in the fault parameter word indicat-
ing that the fault occurred in the PTE reference.

117

Memory Management

The second parameter pushed on the kernel stack contains the follow-
ing information:

L<0> Length Violation. Set to 1 to indicate that an Access
Control Violation was the result of a length violation
rather than a protection violation. This bit is always 0
for a Translation Not Valid fault.

P<1> PTE Reference. Set to 1 to indicate that the fault
occurred during the reference to the process page
table associated with the virtual address. This can be
set on either length or protection faults.

M<2> Write or Modify Intent. Set to 1 to indicate that the
program’s intended access was a write or modify.
This bit is 0 if the program’s intended access was a
read.

PRIVILEGED SERVICES AND ARGUMENT VALIDATION

Change Modes

There are four instructions provided to allow a program to change the
mode at which it is running to a more privileged mode and transfer
control to a service dispatcher for the new mode.

CHMK Change mode to kernel

CHME Change mode to executive

CHMS Change mode to supervisor

CHMU Change mode to user
(Refer to the Architecture Handbook for greater detail.) These
instructions provide the only mechanism for the less privileged code
to call the more privileged code. When the mode transition takes
place, the previous mode is saved in the Previous Mode field of the
PSL, thus allowing the more privileged code to determine the privilege
of its caller.

Validating Address Arguments

Two instructions are provided to allow privileged services to check
addresses passed as parameters. To avoid protection holes in the
system a service routine must always validate that its less privileged
caller could have directly referenced the addresses passed as param-
eters. This validation is done with the PROBE instructions.

Notes on the PROBE Instructions

1. The valid bit of the page table entry mapping the probed address
isignored.

2. Alength violation gives a status of “not-accessible.”

118

Memory Management

3. On the probe of a process virtual address, if the valid bit of the
system page table entry is clear, then a Translation Not Valid fault
occurs. This allows for the demand paging of the process page
tables.

4. On the probe of a process virtual address, if the protection field of
the system page table entry indicates no access, then a status of
“not-accessible” is given. Thus, a single no access page table
entry in the system map is equivalent to 128 no access page table
entries in the process map.

5. It is UNPREDICTABLE whether the modify bit of the examined
page table entry is set by a PROBEW.

ISSUES

During the system design stage, the following question was raised:
Would a physically based, physically contiguous system page table
require a large amount of memory to handle a reasonable number of
very big processes?

Size Of System Page Table

To examine the size of the system page table, note first that one page

of the SPT maps 64K Bytes of system virtual address space. The

system virtual address space contains the following mapped quanti-
ties:

1. Operating system code and data (excluding memory manage-
ment data): 64 to 96K Bytes, 1to 1.5 pages.

2. Memory management data for physical page management: 4t06
longwords per physical page of memory. One longword of page
table maps one page of memory management data which handles
24 physical pages of memory. One page of page table handles 3K
physical pages = 1.5M Bytes of physical memory.

3. Shared code
— command interpreter
— debugger
— record manager
— OTSes, FORTRAN, COBOL, BASIC

Allowing 16K Bytes for each of the above items, the total is 96K Bytes

or 1-Y2 pages of system page table.

4, Process page tables. One longword of SPT maps one page of
process page table which in turn maps 65K Bytes of process
virtual address space. 16 longwords of SPT maps 1M Byte of
process virtual address space. One page of SPT maps 8M Bytes.
A very straightforward balance set management design that re-

119

Memory Management

served a fixed (SYSGEN) number of balance set slots, each with a
fixed (also SYSGEN) maximum virtual address space, would use
only 2 pages of SPT to allow 16 processes of up to 1M Byte each
in the balance set.

It would appear from the foregoing analysis that a 6-page SPT would
handle a very reasonable system, and that increasing the 1M Byte
process virtual space to 4M Bytes and 16 processes in the balance set
would add only 6 more pages of SPT for a total of 12. A smaller system
with 256K Bytes of memory and 8 balance set processes, each 512K
Bytes maximum size, would need about 3 pages of SPT.

Sharing

To discuss sharing, it is useful to assume a section in the operating
system. A section is a collection of pages that have some relationship
to each other. Though units as small as pages may indeed be shared,
sections are the usual unit of sharing.

Shared Sections In Pracess Space — Sharing in the process half of
the virtual address space requires that the page table fragments for
the sections being shared be replicated in the process page tabie(s).

Clearly this introduces multiple PTEs for the same physical page. This

is a problem traditionally avoided by one or more levels of indirection,

i.e., the PTE points to the shared PTE that points to the page. We can

avoid introducing this level of indirection in the hardware by observing

the following software rules:

1. A share count is maintained for each shared page in memory and
in effect counts the number of direct pointers to that page.

2. When a process releases a page from its working set, and itis a
shared page as indicated in the working set data base, the private
PTE must be changed to point to the shared PTE for the page, and
the private copy of the modify bit must be ORed into the shared
PTE. Then the share count is decremented, and if the count is now
0, the page is released and the shared PTE is updated to reflect
that. Note that the process’s working set data base allows it to find
its private PTE, and the physical page data base points to the
shared PTE.

3. When a process gets an invalid page fault, one of the possible
states of the “invalid” PTE is that it points to a shared PTE. Of
course, that PTE might say that the page was not resident and
required a page read. Whether or not the read was necessary, the
shared PTE is eventually copied to the private PTE and the share
count of the page is incremented.

120

Memory Management

4. Note that throwing a process out of the balance set is the
equivalent of releasing aii its pages.

5. The use of the indirect page pointer as a software-only mecha-
nism seems to be adequate for this form of sharing. It should be
noted that it is very difficult to change the PFN of a page in memo-
ry when it is actively being shared. That would require a scan of
the page tables for all the processes in the balance set.

Shared Sections In System Space — When a process is using a
shared section in the system region of the address space, it is refer-
encing a single shared page table. Since it is possible for a process
simply to reference such a shared section without ever having de-
clared its intention to do that, the operating system must be prepared
to do something reasonable when such a reference faults. A
straightforward design for this kind of sharing is:
1. Have programs explicitly declare their intention to use each
shared system section. This could be done statically at compile or
link time or dynamically at runtime.

2 Have the balance set manager swap in and lock down the entire
section when the process intending to use it is swapped in.

3. Of course, the balance set manager maintains share counts on
the section and discards its pages only when no process in the
balance set wants it.

4. If a process faults such a page because it failed to declare its
intention to use the section, then that is considered a program-
ming error.

Another approach for shared system sections allows a process to
reference pages of the section with no prior declaration of its intent to
use them. Such pages would be demand paged within a pool of pages
reserved for that purpose. There would be a list of the pages in use in
that pool, and a fault for a new one would cause one in the pool to be
replaced. This would use the same sort of working set management
that is used for the process address space, but it would be global
across processes.

Protection Check Before Valid Check

The page table entry has been defined as having a valid bit that only
controls the validity of the modify bit and page frame number field.
The protection field is defined as always being valid and checked first.

The motivation for this design is the behavior the PROBE instruction
would exhibit if the valid bit had to be set before it could check
protection. PROBE would actually have to fault in the page to make it
valid, so that it could check the protection and then indicate whether

121

Memory Management

or notthe intended access was permissible. For the vast percentage of
PROBE instructions, the access is permitted and faulting the page in
the PROBE is reasonable. But a program could be run in user mode
that would PROBE all around in the system region of the virtual ad-
dress space faulting all the swappable pages of the system. Though
this would not violate the integrity of the operating system, it certainly
would mess up any statistics that the system might be gathering about
the relative worth of the swappable pages.

EXAMPLE
Appendix F contains a virtual to physical address translation.

122

123

o

CHAPTER 7
SYNCHRONOUS BACKPLANE INTERCONNECT

INTRODUCTION

The Synchronous Backplane Interconnect (SBl) is the data path that
links the central processor, the memory subsystem, and the hardware
adapters provided for the UNIBUS and MASSBUS. The VAX-11/780
bus structure is illustrated in Figure 7-1.

SYNCHRONOUS BACKPLANE INTERCONNECT

UNIBUS MASSBUS
ADAPTER ADAPTER

UNIBUS MASSBUS
DEVICES DEVICES

Figure 7-1 Basic Bus Configuration

When interfaced to the SBI, the central processor, memory subsys-
tem, and /0 controllers are known as NEXUSs.

A NEXUS is a physical connection to the SBI and is capable of acting
as any of the foliowing:

Commander — A NEXUS which transmits command and address
information.

Responder — A NEXUS which recognizes command and address
information as directed to it and requiring a response.

Transmitter — A NEXUS which drives the signal lines.

Receiver — A NEXUS which samples and examines the signal lines.

125

Synchronous Backplane Interconnect

A NEXUS also performs priority arbitration for its access to the SBI.

A NEXUS may perform more than one function, as illustrated in the
two following examples.

When the CPU issues a read command it is a commander since it
issues command/address information. At the same time it is a trans-
mitter since it is driving the signal lines. When the device (responder)
returns the requested data, the CPU is considered a receiver since it
examines the signal lines.

In the case of a memory read exchange, memory is the responder
since it recognizes and responds to command/address information.
Also, since it examines the signal lines, it is a receiver. When memory
returns the requested data by driving the signal lines, it is a transmit-
ter.

All NEXUSs receive every SBI transfer. Logic in each NEXUS deter-
mines whether the NEXUS is the designated receiver for this transfer.
Data may be exchanged between the following system elements:

® The central processor and memory subsystem.

® 1/0 controllers and memory subsystem.

¢ Central processor and 1/0 controllers.

The communication protocol allows the information path to be time-

multiplexed in such a way that up to 32 data exchanges may be in
progress simultaneously.

The SB! provides checked, parallel information transfer synchronous
with a common system clock. In each clock period or cycle (duration
of 200 nsec) interconnect arbitration, information transfer and transfer
confirmation may occur. Utilizing the 200 nsec clock period, the SBI
achieves a maximum information transfer rate of 13.3 million bytes per
second.

SBI STRUCTURE

The SBI is comprised of 84 signal lines as illustrated in Figure 7-2. Its
maximum physical length may not exceed 3 Mmeters (9.8 ft). The lines
of the SBI are divided into the following functional groups:

® Arbitration
¢ Information
® Response

¢ Interrupt

® Control

126

Synchronous Backplane Interconnect

ARBITRATION

TR<15'00>

INFORMATION TRANSFER

P<1:0> [PARITY)

TAG<2:0> (TAG)

1D<4:0> (IDENTIFIER]

M<3:0> (MASKI

8<31:00> (INFORMATION)

RESPONSE
FAULT

TRANSMIT/ TRANSMIT/

RECEIVE CNF<1:0> (CONFIRMATION) RECEIVE

AR
I{SERIRRIRRY!

NEXUS CONTROL NEXUS
UNJAM

FAIL

DEAD

INTLK {(INTERLOCK]

CLOCK (6 LINES)

INTERRUPT REQUEST

REQ <7:4> (REQUEST)

ALERT

MP1-2

T
SUiy U

SPARE (2 LINES)

Figure 7-2 SBI Signal Description

Arbitration Lines

There are 16 bus arbitration lines. Each arbitration line, TR (transfer

request) <15:01>, is assigned to one NEXUS, thereby establishing a

fixed priority access to the information path (refer to Figure 7-3).

Access priority increases from TR15 to TROO, where TROO is reserved

for use as a hold signal for the following reasons:

1. NEXUS requires two or three adjacent cycles for a write type
exchange.

2. NEXUS requires two adjacent cycles for an Extended Read ex-
change.

3. Central processors for Interrupt Summary Read exchanges.

4. TROOis reserved for an SBI UNJAM operation.

127

Synchronous Backplane Interconnect

- HOLD LINE

- MEMORY CONTROLLER #1
= MEMORY CONTROLLER # 2
- UNIBUS ADAPTER

* \RESERVED FOR
¢ (FUTURE USE

8 - MASSBUS ADAPTER # |
9 - MASSBUS ADAPTER # 2
10 - MASSBUS ADAPTER #3
11 - MASSBUS ADAPTER #4

RESERVED FOR
FUTURE USE

[SEN I e)

INCREASING PRIORITY

CENTRAL PROCESSOR

Figure 7-3 SBI Priority Access

To acquire control of the information path, a NEXUS asserts its as-
signed (transfer request) line at the beginning of a cycle.

At the end of the cycle, the NEXUS examines the state of all transfer
request lines of higher priority. If no higher priority NEXUS is arbitrat-
ing for control of the SBI, the NEXUS will remove its transfer request
and assert information path signals. The lowest priority NEXUS arbi-
trating for control of the SBI is the central processing unit. The CPU
does not require a transfer request signal, since by default it will gain
control of the SBI when no higher priority NEXUS is arbitrating.

Information Lines

The information transfer group exchanges command/addresses,
data, and interrupt summary information. Each exchange consists of
one to three information transfers.

For write commands, the commander uses two or three successive
SBI cycies. The number of successive cycles required depends on
whether one or two data words are to be written in the exchange. In the
first case, the commander transmits the command/address in the first
cycle, and a data word in the second cycle. In the second case, the
commander transmits the command/address in the first cycle, data
word 1 in the second cycle, and data word 2 in the third cycle.

Read commands are also initiated with a command/address transmit-
ted from the commander. However, since data emanates from the
responder, the requested data may be delayed by the characteristic
access time of the responder. As in a write exchange, the read ex-
change will transmit data using one or two successive cycles depend-
ing on whether one or two data words were requested.

128

Synchronous Backplane Interconnect

An interrupt summary exchange is in response to a device-generated
interrupt to the CPU. The exchange is initiated with an interrupt sum-
mary read transfer from the CPU. The exchange is completed two
cycles later with an interrupt summary response transfer containing
the interrupt information.

The Information Transfer Group is subdivided into the following five
fields:

Field Length in Bits
Parity check 2 (P <1:0>)
Information Tag 3 (TAG <2:0>)
Source/Destination ldentity 5 (ID <4:0>)
Mask 4 (M <3:0>)
Information 32 (B <31:00>)
PARITY FIELD

The parity field (P<1:0>) provides even parity for detecting single bit
errors in the information transfer group. A transmitting NEXUS
generates PO as parity for the Tag, Indentifier, and Mask fields and P1
as parity for the Information field. The parity field is illustrated in Fig-
ure 7-4.

[‘f | |

o~ N — -
P1 | PO
PARITY TAG IDENTIFIER MASK
INFORMATION FIELD
lFIELD | | FIELDl |F|ELD l FIELD N
) e e —— & —
P<1:0> TAG<2:0> ID<4:07> M<3:0> B8<31:00>
~— ~
COMMAND FORMAT
FUNCTION ADDRESS
FIELD FIELD
N I\ J—
F<3:0> A<27:00>

Figure 7-4 Parity Field Configuration

PO and P1 are generated in such a way that the sum of all logical one
bits in the checked field, including the parity bit, is even.

When the SBI is idle, the information transfer path assumes an all-zero
state, therefore, the parity field should always carry an even parity.
TAG FIELD

The tag field (TAG<2:0>) is asserted by a transmitting NEXUS to
ingicate the information type being transmitted on the information

129

Synchronous Backplane interconnect

lines. The tag field determines the interpretation of the ID and B fields.
In addition, the tag field, in conjunction with the mask field, further
defines special read and write data conditions.

Four tag fields and four reserved fields are defined as:

TAG <2:0> B<31:00> contents

000 READ DATA

011 COMMAND ADDRESS

101 WRITE DATA

110 INTERRUPT SUMMARY READ

The remaining tag fields, 001, 010, 100, and 11 1, are reserved.
® Read Data Tag

A tag field content of 000 specifies that the information field
B<31:00> contains data requested by a previous read type com-
mand. The retrieved data may be one of three types: read data, cor-
rected read data, and read data substitute. The retrieved data type is
identified by the mask field M<3:0>. Read data is the normal expect-
ed error-free data type, where M<3:0> = 0000. Corrected read data
(CRD,) is represented by M<3:0> = 0001, and read data substitute is
represented by M<3:0> = 0010. The recipient of the read data is
designated by ID<4:0>. The read data tag formats are illustrated in
figure 7-5.

{g B<31:00> ﬁ]|
DATA
Pl ‘PO{ 000 IPIENY—[0000 l READ DATA FORMAT
— —
PARITY <1:0>— 4
TAG <2:0>
ID<4:0>
MASK<3:0>
READ DATA <31:00>
IL 8<31:00> ="
Pr{Po| 000 . PATA 1 5001 CORRECTED READ DATA FORMAT
RECIPIENT
| — . J
PaRITY <1:0>—— 4 !
TAG <2:0>
D <4:0>
MASK<3:0>

READ DATA <31:00> 4

130

Synchronous Backplane Interconnect

’-————‘— B<31:00> _——”-l
i

i

ﬂ ?0 | 000 ngm’ém 0010 SUBSTITUTE READ DATA FORMAT J
— PN S
PARITY <1:0> ——3
TAG <2:0>
1D <4:0>
MASK <3:0>

READ DATA <31:00>

Figure 7-5 Read Data Tag Formats

e Command/Address Tag

A tag field content of 011 specifies that the data lines contain a
command/address word, and that ID<4:0> is a unique code identify-
ing the logical source (commander) of that command. As illustrated in
Figure 7-6, B<31:00> is divided into a function field and an address
field to specify the command and its associated address.

B<31:00>
——
Ve ~
TAG ID MASK FUNCTION ADDRESS
TAG<2:0> ID<4:0> M<3:0> F<3:0> A<27:00>

TAG<2:0> = 011 = COMMAND/ADDRESS FORMAT
|D<4:0> = LOGICAL COMMAND SOURCE

M<3:0> = COMMAND DEPENDENT

F<3:0> = COMMAND CODE

A<27:00> = READ/WRITE, ADDRESS OF INTENDED NEXUS

Figure7-6 Command/Address Format

The ID field code represents the logical source of the data in a write
command, and the address field specifies the address of where the
data is to be written. For a read command, the ID field represents the
logical destination of the data at the location specified in the address
field.

The 28 bits of the address field define a 268, 435, 456 longword ad-
dress space (1, 073, 741, 824 bytes) which is divided into two sections.
Addresses 0-7FFFFFF (hex) (A27=0) are reserved for primary memo-
ry. Addresses 8000000 {hex) - FFFFFFF (hex) (A27=1) are reserved
for device contro! registers. Primary memory begins at address 0, the
address space is dense and consists only of storage elements. Figure
7_7 illustrates the VAX-11/780 physical address space. Note that both

physical and SBI addresses are provided.
131

Synchronous Backplane Interconnect

28-BIT SBI

LONGWORD 30-BIT PHYSI
ADDRESSES BYTE ADDRESCS%

000 0000 0000 0000 1-4M BYTE }MEMORY CONTROLLER 1
1-4M BYTE } MEMORY CONTROLLER 2
ADDRESS
9FF FFFF LFEF_FEFF SPACE
800 0000 2000 0000 | 10 oK Bries|)
800 0800 2000 2000 | 1q, 8K BYTES
800 1000 2000 4000 [145 8K BYTES
ADAPTOR OR
800 1800 2000 6000 | 1q5 8K BYTES NEXUSOREGL?STER
: , ADDRESS SPACE
i i A TOTAL OF
| ! 128 K BYTES
| i
1 1
300 7000 2007 €000 [7am4 8K BYTES
800 7800 2007 E0OD | rars 8K BYTES J
128K RESERVED
ADDRESS SPACE
804 0000 2010 0000 | NiBys 0 ADDRESS SPacE)
805 0000 2014 0000 THE UNIBUS ADAPTOR
UNIBUS| ADDRESS SPACE | | THE UNIBUS A ARG
806 0000 2018 0000 | ynigys2 ADDRESS SPaCE DR e
807 0000 210C 0000 | ynigus3 ADDRESS SPACE
FFFE FFEF 3FFF FFFF

Figure 7-7 SBI Physical Address Space

The user has access to the physical address space via the 30-bit
physical byte address. However, since NEXUS registers are accessible
only as longword addresses, system hardware converts the physical
byte address (30 bits) to the SBI longword address (28 bits). This
transiation is described in Figure 7-8.

132

Synchronous Backplane interconnect

VIRTUAL ADDRESS FOR OPERAND OR INSTRUCTION REFERENCE
3 3029 98 210

\
[
— \\ \\
g [PCI) \\\ \\
N N \
VIRTUAL ADDRESS
10=5sYs N(BITS B2 ARE N\
1 1 = RESERVED ALWAYS PHYSICAL \
RESERVE ~ADDRESS BITS
\\(!:2) Y
N
TRANSLATED FROM N N
TRANSLATION BUFFER AN N
N N
330 27225 2 20 CIRN 2,10
LONGWORD [
vi PROT llM| 0 l PAGE FRAME NUMBER ONONE I
// /,// // o
S ///’I -

/s A)
Ve - 7 BITS ONE

- AND ZERO
Va - ARE USED TO

,
.
//
9/8 2,10, ALIGN DATA
ADDRESS ON T ReAD BACK,
CPU PHYSICAL i BUT ARE NOT
ADDRESS BUS -3 RELEVANTAS
‘\
\
\

1S CONCERNED

\
\27
ADDRESS
ON SBI

BIT 29 BECOMES BIT 27 ON SBI BECAUSE MEMORY 1S LONGWORD ORIENTED AND
FETCHES ARE QUADWORDS

Figure 7-8 Physical To SBI Address Translation

The low order two bits of the physical to SBI translation are not lost,
but are represented by the mask field adjoining the SBI command
address format.

The control address space is sparse with address assignments based
on device type. Each NEXUS is assigned a 2048, 32-bit longword
address space for control and status. The addresses assigned are
determined by the TR number as shown in Figure 7-9.

SPECIFIES ONE OF THE
SPECIFIES ONE 2048 LOCATIONS
OF 16 NEXUS ASSIGNED TO EACH NEXUS
A
f M \
27 26 15 14 11 10 00

1 MUST
BE ZERO

(ADDRESS ADDRESS
SPACE
BLOCK)

Y'
A<27:00>

|
TR# REGISTER |

o — — —

Figure 7-9 Control Address Space Assignment

133

Synchronous Backplane Interconnect

The command/address tag formats are illustrated in figure 7-10.

—T
PYPO| 011 F,’g“ DR 0001 ! READ MASKED FORMAT—

4 —

REaD pATA [BETESIO, READ DATA AT THIS ADDRESS
—
paRiy <1:0>— 4
TAG <2:0>

1D <4:0> l
MASK <3:0>

FUNCTION<3:0>
PHYSICAL ADDRESS < 27:00>

P lrolon INATON DRI~ 0100 READ INTERLOCKED MASKED FORMAT-
FAD Dara BIESTO READ DATA AT THIS ADDRES$

[N [N—
PARITY <1:0> —?
TAG<2:0>
ID<4:0>
MASK<3:0>

FUNCTION<3:0>
PHYSICAL ADDRESS <27:00>

1000 READ EXTENDED FORMAT -

KIGTCAT —TRApss
2E A A ICOMMA READ DATA AT THIS ADDRESS
- \
PARITY <1:0>— 4
TAG <2:0>

ID<4:0>
MASK <3:0 > IGNORED BY MEMORY

FUNCTION <3:0>
PHYSICAL ADDRESS <27:00>

L B<31:00>

Ldl:?ﬁ)‘-—& B<27:00> —_—

Sioloo1 0 WRITE MASKED FORMAT-
ADDRESS WHERE DATA IS TO BE WRITTEN

E
A ATA
N \ J
PARITY <|10>——f
TAG <2:0>

ID<4:0>
MASK <3:0>
FUNCTION <3:0
PHYSICAL ADDRESS <27:00>

8<31:00>

patash— 87005 —_

Gl [INI
Pl pol 011 [SO0RCE lsrﬁaog- 011 WRITE MASKED INTERLOCKED FORMAT-
ITE DATA ATA N

ADDRESS WHERE DATA 1S TO BE WRITTE

N [N)]
PARITY <1:0> — ¢ f
TAG <2:0> [T

1D <4:0> '

MASK <3:0> ‘
FUNCTION <3:0> !
PHYSICAL ADDRESS <27:00> I

134

Synchronous Backplane Interconnect

l————8<31200>—————-l

}561528'>|.——B<27100> -_—
T TOGICAL [INDICATES
Ipol 1 ISOURCE ST - WRITE EXTENDED FORMAT-
P POY O EITE DATA A 1011 ADDRESS WHRERE DATA IS TO BE WRITTEN
— N . /)
PARITY <1:0> S
TAG <2:0>

1D<4:0>
MASK<3:0>
FUNCTION<3:0>
PHYSICAL ADDRESS <27:00>

Figure 7-10 Command/Address Tag Formats

e Write Data Tag

A tag field content of 101 specifies that B<31:00> contains the write
data for the location specified in the address field of the previous write
command. The write data will be asserted on B<31:00> in the SBl
cycle immediately following the command/address cycle. The ID field
transmitted is that of the commander. Figure 7-11 illustrates the write
data tag format.

|
RS ,lll ¥ 1
3 PO! 101 *‘m"‘m'i'?'i'E" BYTE 3 ’ BYTE 2 l BYTE 1 l BYTE OJ
PARITY(“O)——J

TAG <2:0>

ID<4:0>
MASK<3:0>
WRITE DATA <31:00>

* MASK=1 IF THAT PARTICULAR BYTE IS TO BE WRITTEN

Figure 7-11 Write Data Tag Format

e Interrupt Summary Tag

A tag field content of 110 defines B<31:00> as the interrupt level
mask for an interrupt summary read command. The ievel mask
(B<07:04>) is used to indicate the interrupt level being serviced as the
result of an interrupt request. In this case, the ID field identifies the
commander, which is the CPU. Although unused, M<3:0> is to be
transmitted as zero.

135

Synchronous Backplane interconnect

The interrupt sequence consists of two exchanges:

The first exchange indicates the interrupt level being serviced.
The interrupt level is determined by:

I/0 controller asserts interrupt

CPU strobes the interrupt, and if level 7 is the current level,
interrupt code is called which performs the Interrupt Service
Request
The second exchange is the response, where the device re-
questing the interrupt identifies itself. From the identity of the
device and the interrupt level the starting address of the service
routine can be determined.

Figure 7-12 illustrates the interrupt summary tag format.

U
P PO[110 lsoukce !oooo lo O\EVEL T o000
113222 z:’}

7 |

PARITY <1:0> ——f
TAG <2:0>
1D <4:0>
MASK<3:0>
REQUEST LEVEL<3:0>

2% 20

NEER==ED] g

= |

©

PARITY <1:0> — 3
TAG <2:0>
1D<4:0>
MASK<3:0>
VECTOR GENERATING PAIR

Figure 7-12 Interrupt Summary Tag Format

® Reserved Tags

Tag (<2:0>=111) is reserved for diagnostic purposes. Tag codes 001,
010, and 100 are unused and reserved for future definition.

136

Synchronous Backplane Interconnect

SOURCE/DESTINATION IDENTITY FIELD

The ID field (ID<4:0>) contains a code which identifies the logical
source or logical destination of the information contained in
B<31:00>. ID codes are assigned only to commander and responder
NEXUSs (which issue/recognize command/address information).
Each NEXUS is assigned an ID code which corresponds to the TR line
which it operates. For example, a NEXUS assigned TR05 would also
be assigned |D code=5.

MASK FIELD

The mask field (M<3:0>) has two interpretations. In the primary inter-
pretation, M<3:0> is encoded to specify operations on any or all bytes
appearing on B<31:00>. The mask is used with the read masked,
write masked, interlock read masked, interlock write masked, and
extended write masked commands. As shown in Figure 7-13 each -bit
in the mask field corresponds to a particular byte of B<31:00>.

/

MASK
3 2 1 O

/N

BYTE 3 BVTE 2 BYTE 1 BVTE OJ ADDRESS LONGWORD LOCATION

SELECTS BYTE(S) FOR AN OPERATION

COMMAND /ADDRESS

| P l TAG INFORMATION OR WRITE DATA

MASK AS BYTE SPECIFIER
Figure 7-13 Mask Field Format

As previously mentioned, the secondary interpretation is used when
Tag<2:0> = 000 (read data). Figure 7-14 illustrates the read data
mask field.

DESCRIBES DAT)
/ DaTA DATA DESCRIBED

210 DATA LONGWORD

g » [1AG I 0 lll I ! [E | i JREADDAYA

READ DATA -DATA IS CORRECT
CORRECTED READ DATA-DATA HAD A ONE-BIT ERROR WHICH HAS BEEN CORRECTED
READ DATA SUBSTITUTE-DATA CONTAINS AN UNCORRECTABLE ERROR

m

MASK AS DATA INTEGRITY SPECIFIER

Figure 7-14 Read Data Mask Format
137

Synchronous Backplane Interconnect

Response Lines

There are three response lines, broken down into two fields, confirma-
tion CNF<1:0> and Fault (FAULT). CNF <1:0> informs the transmit-
ter whether the information was correctly received, or if the receiver
can process the command. FAULT is a cumulative error indication of
protocol or information path malfunction, and is asserted with the
same timing as the confirmation field. The CPU latches the fault signal,
which in turn latches all the fault status registers and the SBI silo. The
silo is a hardware mechanism used to record the last 16 SBI transac-
tions. The silo aids in rapid error detection. The fault is then cleared by
the software.

Either field is transmitted to the receiver two cycles after the
associated information transfer. Confirmation is delayed to aliow the
information path signals to propagate, be checked, decoded by all
receivers, and to be generated by the responder. During each cycle
every NEXUS in the system receives, latches, and makes decisions on
the information transfer signals. Except for multiple bit transmission
errors or NEXUS malfunction, one of the NEXUSs receiving the infor-
mation path signals will recognize an address or ID code. This NEXUS
then asserts the appropriate response in CNF. The confirmation codes
and their definitions are listed in Table 7-1.

Table 7-1 Confirmation Code Definitions

CNF Code Definitions

00, No Re- The unasserted state and indicates no response to a

sponse (N/R) commander’s selection.

01, Acknowl- The positive acknowledgement to any transfer.

edge (ACK)

10, Busy The response to a command/address transfer, and

(BSY) indicates successful selection of a NEXUS which is
presently unable to execute the command.

11, Error The response to a command/address transfer, and

(ERR) indicates selection of a NEXUS which cannot exe-

cute the command.

A BSY (10) or ERR (11) response to transfers other than com-
mand/address transfers will be considered as no response from the
transmitter.

138

Synchronous Backplane Interconnect

Interrupt Request Lines

The interrupt request group consists of four request iines
(REQ <7:4>) and an alert (ALERT) line. A request line is assigned to
each NEXUS that interrupts and represents its assigned CPU interrupt
level. The lines are used by NEXUS to invoke a CPU to service a
condition requiring processor intervention. The request lines are pri-
ority encoded in an ascending order of REQ4-REQ7. A requesting
NEXUS asserts its request lines synchronously with the SBI clock to
request an interrupt. Any of the REQ lines may be asserted simulta-
neously by more than one NEXUS, and any combination of REQ lines
may be asserted by the collection of requesting NEXUSs.

The alert signal is asserted by NEXUSs which do not implement
interrupt request lines. Its purpose is to indicate to the CPU a change
in NEXUS status of power condition or operating environment. NEX-
USs which implement the REQ lines report these changes by request-
ing an interrupt.

Control Lines

The control group functions synchronize system activities and provide
specialized system communications. The group includes the system
clock which provides the universal timebase for any NEXUS connect-
ed to the SBI. The group also provides initialization, power fail, and
restart functions for the system. In addition, a path is provided for
coordinating memories to assure access to shared structures.

The control lines are comprised of the following subgroups: clock
functions, interlock line, dead signal function, fail function, and the
UNJAM function.

CLOCK FUNCTIONS

Six control group lines are clock signals and are used as a universal
time base for all NEXUSs connected to the SBI. All SBI clock signals
are generated on the CPU clock module and provide a 200 nsec clock
period.

INTERLOCK LINE
The interlock line will be discussed in the command code description
section.

DEAD SIGNAL FUNCTION

The Dead signal indicates an impending power failure to the clock
circuits on bus terminating networks. NEXUSs will not assert any SBI
signal while Dead is asserted. Thus, NEXUSs prevent invalid data from
being received while the bus is in an unstable state.

The assertion of the power supply DC LO to the clock circuits or
terminating networks causes the assertion of Dead. Dead is asserted

139

Synchronous Backpiane Interconnect

asynchronously to the SBI clock and occurs at least two usec before
the clock becomes inoperative. With power restart, the clock will be
operational for at least two usec before DC LO is negated. The nega-
tion of DC LO negates Dead.

FAIL FUNCTION

A NEXUS asserts the Fail (FAIL) function asynchronously to the SBI
clock when the power supply AC LO signal is asserted to that NEXUS.
The assertion of Fail inhibits the CPU from initiating a power up
service routine. Fail is negated asynchronous to the SBI clock when all
NEXUSs that are required for the power up operation have detected
the negation of AC LO. The CPU samples the Fail line following the
power down routine (assertion of FAIL) to determine if the power down
routine should be initiated.

UNJAM FUNCTION

The UNJAM function restores (initializes) the system to a known, well
defined state. The UNJAM signal is asserted only by the console of the
CPU, and is detected by all NEXUSs. The CPU asserts UNJAM only
when a console key is selected. The duration of the UNJAM puise is 16
SBI cycles and is negated at T0.

When the CPU intends to assert UNJAM it will assert TROO for 16 SBI
cycles. The CPU will continue to assert TROO for the duration of UN-
JAM and for 16 SBI cycles after the negation of UNJAM. This use of
TROO insures that the SBI is inactive preceding, during, and after the
UNJAM operation.

COMMAND CODE (Function <3:0>) DESCRIPTION

Information bits B<31:00> carry most of the information on the SBI.
Information appears on these lines in command/address format, data
format, interrupt summary read format, or interrupt summary re-
sponse format. In command/address format, information is grouped
in three fields: M<3:0>, the byte mask; F<3:0>, the function code;
and A<27:00>, a 28-bit physical address. Function codes are shown
in Figure 7-15. Bit 27 of the SBI address field determines whether the
longword address A<27:00> is located in memory or I/0 space (refer
to Chapter 8, figure 2).

Read Mask Function (F=0001)

Once the commander has arbitrated for and gained control of the SBl,
it asserts the information transfer lines at TO. The receiver latches
open at T2 and closes at T3. Information in these latches is stable from
T3 to the next T2.

140

Synchronous Backplane Interconnect

MASK FUNCTION | ADDRESS
M<3:0> F<3:0> A<27:00>
MASK FUNCTION FUNCTION
USE CODE DEFINITION
IGNORED 0000 RESERVED
USED 0001 READ MASKED
USED 0010 WRITE MASKED
IGNORED 0011 RESERVED
USED 0100 INTERLOCK READ MASKED
IGNORED 0101 RESERVED
IGNORED 0110 RESERVED
USED 0111 INTERLOCK WRITE MASKED
IGNORED 1000 EXTENDED READ
IGNORED 1001 RESERVED
IGNORED 1010 RESERVED
USED 1011 EXTENDED WRITE MASKED
IGNORED 1100 RESERVED
IGNORED 1101 RESERVED
IGNORED 1110 RESERVED
IGNORED 1111 RESERVED

Figure 7-15 SBI Command Codes

The command/address format instructs the NEXUS selected by
A<27:00> to retrieve the addressed data word, and transfer it to the
logical destination specified in the ID field. The addressed NEXUS will
respond to the command/address transfer with ACK (assuming the
NEXUS can perform the command at this time) two SBI cycles after
the assertion of command/address. Figure 7-16 illustrates the SBI
read function.

Write Masked Function (F=0010)

The write masked function instructs the NEXUS selected by A<27:00>
to modify the bytes specified by M<3:0> in the storage element ad-
dressed by A<27:00>, using data transmitted in the next succeeding
cycle. Figures 7-13 and 7-14 illustrate SBI write functions. Figure 7-17
illustrates a single SBI write transaction while Figure 7-18 iliustrates
two SBI write transactions from devices A and B.

141

Synchronous Backplane Interconnect

s8I
ACTIVITY { EVENTS -
READ
ARBITRATION MASK MEMORY HOLD
A
INFORMATION COMMAND DATA
TRANSFER ADDRESS (10 A)
CONFIRM CONFIRM
CONFIRMATION (BY (BY A)
MEMORY)
| | | | | | .
I T T 1 T T T
200 nsec 4.|_—i‘__sar CYCLE
Figure 7-16 SBI Read Transaction
SBI
ACTIVITY | EVENTS -
1 —>
ACQUIRE
ARBITRATION comnRoL | HOWD
WRITE
MASK
‘T’:Z?\',‘S"';:;'ON COMMAND | DATA
ADDRESS
(C/A)
CONFIRMATION CO('(\:‘,FSM C%‘Aﬁf;“
I 1] l | | TIME
I T T 1 T >
_.' I.___ 200nsec
SBI CYCLE

L

SBI TRANSACTION

Figure 7-17 Single SBI Write Transaction

142

Synchronous Backplane Interconnect

sBI
ACTIVITY = EVENTS o
ARBITRATION A HOLD, B HOLDg
s i
INFORMATION commiano] DATA |commasip| DATA
ANSFE ADDRESS a ADDRESS 8
A B
CONFIRM | CONFIRM | CONFIRM | CONFIRM
CONFIRMATION (c/a-A) |ipata-a)|(c/a-8) |iDATA-B)
| | l 1 | TIME
i
IL 1" } T T I T T bl
__ﬁ 200 nsec
SBI CYCLE

Figure 7-18 Two SBI Write Transactions

Interlock Read Masked (F=0100)

This command, used to insure exclusive access to a particular memo-
ry location, causes the NEXUS selected by A<27:00> to retrieve and
transmit the addressed data as for Read Masked. In addition, this
command causes the selected memory controller NEXUS to set an
interlock flip-flop. Only memory NEXUSs have the ability to assert
interlock. While this flip-flop is set the NEXUS wiil assert the INTLK
signal synchronously at time TO0. Interlock is asserted during the same
cycle as the confirmation signal. In the preceding cycle, the command-
er must assert Interlock. While the INTLK signal is asserted, the NEX-
US will respond with BSY confirmation to Interlock read masked com-
mands. The Interlock flip-flop is cleared on receipt of an Interlock
write masked function. Interlock read masked and Interlock write
masked are always paired by commanders utilizing them.

Interlock Write Masked (F=0111)

The Interlock write masked function instructs the NEXUS selected by
A<27:00> to modify the bytes specified by M<3:00> in the storage
element addressed, using data transmitted in the succeeding cycle
with TAG=101. Additionally, the Interlock flip-flop is cleared.

Extended Read (F=1000)
The Extended Read function instructs the NEXUS selected by
A<27:00> to retrieve the addressed 64-bit data and transmit it to the

143

Synchronous Backplane Interconnect

ID accompanying the command as in the read masked function. The
responder transmits the data in two successive cycles with the low 32
bits (A00=0) preceding the high 32 bits (A00=1). Two data words are
always transmitted. M<3:0> and A00 of the received com-
mand/address word are ignored. M<3:0> must be transmitted as
0000 by the commander. Figure 7-19 illustrates extended read trans-
actions by two separate devices, A and B, reading memory via a single
memary controller.

Bl
ACTVITY . EVENTS >
t
ARBITRATION A [] MEMORY[HOLD MEMORY | HOLD
EXT EXT
INFORMATION READ | READ DATA | DaTA DATA D‘;"
TRANSFER ca | cra
A 8 (7O A} | (TO A) (To 8) | {TO B}
ICONF R JoONEFRM] One R~ ICONFIRMICONE RM|
CONFIRMATION 1o a) {10 B} By A)fiBY A) Y 8 sy 8
L 1 | | I 1 | 1 I 1 I ML
r T T T B T T T T T LS T

i 1
T T
_,i o 00
581 CYCLE

Figure 7-19 Extended Read Transactions Via Single Memory
Controller

Figure 7-20 illustrates extended read transactions by two separate
devices, A and B, reading memory via separate memory controllers,
M1 and M2.

ACTIVITY N EVENTS
" >
ARBITRATION A [m; | How | My | HOD
EXT EXT L] " M2 M2
R ks S L
’y 3 {TO A |TO A}|{TO) |(TO B
CONFIRMICONFIRM| ICONFIRM |CONFIRMICONFIRMICONARM|
CONFIRMATION o A}lito 8 8Y A [iBY A)|fsy 8 [8v 8

1 } | | Il
T T T T T
- - 200 nsec
i SBI CYCLE

Figure 7-20 Extended Read Transactions Via Separate Memory
Controllers

144

Synchronous Backplane interconnect

Extended Write Masked (F=1011)

The Extended Write Masked function instructs the NEXUS selected by
A<27:00> that 64 bits of data are to be written. The receiver ignores
A0O of the command/address transfer. A<27:00> indicates the low 32
bit word address. The write data is transmitted in two 32 bit words. The
first word corresponds to AO0=0 and the second word corresponds to
A00=1. M<3:0> that accompanies the command address transmis-
sion indicates bytes to be written in the first write data word. M<3:0>
that accompanies the first write data word transmission indicates
bytes to be written in the second write data word. The M<3:0> field of
the second data word cycle is ignored by receivers but must be trans-
mitted as zeros. The assertion of a particular mask bit signifies that the
byte corresponding to that mask bit is to be modified. The NEXUS
implementing the Extended Write Masked function must implement all
combinations of M<3:0>.

SYNCHRONOUS BACKPLANE INTERCONNECT THROUGHPUT
The following is a derivation of the aggregate throughput rate of the
SBl:

200 nanoseconds/cycle = 5 million cycles/second.

Each cycle can carry an address (memory request) or four bytes of
data.

Thus, one cycle is used to request eight bytes of data (to be read or
written), and two cycles are used to carry data (at four bytes/cycle).

5 million cycles/second x 4 bytes/cycle = 20 million bytes/second.

20 x 2/3 (1 of every 3 cycles is an address) = 13.3 million
bytes/second.

145

CHAPTER 8
MAIN MEMORY SUBSYSTEM

INTRODUCTION

Main Memory is a dynamic MOS (metal oxide semiconductor), ran-
dom access memory designed to interface with the VAX-11/780 syn-
chronous backplane interconnect.

The memory subsystem consists of a controller and one to sixteen
array boards utilizing either 4K or 16K N-channel MOS IC storage
elements. Each array board can contain 64K or 256K bytes of memory,
giving the system a capacity of either one or four megabytes, depend-
ing upon size of storage chips used.

Memory is capable of random access read and write operations to a
single 32-bit longword or extended 64-bit quadword. Memory is also
capable of random access write to an arbitrary byte, series of contigu-
ous bytes, or a series of noncontiguous bytes. The memory array
board has been organized to optimize eight byte read/write access.

Memory features an error checking and correcting scheme (ECC)
which can detect all double bit errors and detect and correct all single
bit errors. The error detection and correction algorithm requires an
entire quadword of data and thus during any type of read or write
operation an entire quadword of data is fetched from the array.

Eight ECC check bits are stored with each quadword and accessed
with the data to determine its integrity. Therefore, a total of 72 bits are
accessed at once.

The basic memory subsystem is illustrated in Figure 8-1.

147

Main Memory Subsystem

cPu
< S8l >
MEMORY
CONTROLLER
ARRAY ARRAY | | arrar
BOARD | BOARD 2 BOARD 16

Figure 8-1 Main Memory Configuration

MEMORY CONTROLLER

The memory controller is the NEXUS interfacing main memory to the
SBI. The controller examines the command and address lines of the
SBI for each SBI cycle. To initiate and complete a memory write
masked, interlock write masked, or extended write masked transac-
tion, the controller must receive a recognizable command or address
and data in two or three SBI cycles. However, to perform a read
masked, extended read, or interlock read masked operation, the con-
troller need only recognize an appropriate command/address. The
controlier provides the necessary timing and control to complete all
memory transactions. The controller informs a commander, via a con-
firmation, of a successful write operation and contends and arbitrates
for SBI bus control to transmit information during a read masked,
extended read, or interlock read operation. However, before the con-
troller will initiate a memory cycle operation, it checks for bus
transmission parity errors and other fault conditions and reports these
conditions to the commander, conforming to the SBI protocol. Data
transfers to and from main memory are protected by ECC logic, I.e.,
main memory contains single bit error detection and correction and
double bit error detection logic to improve system reliability.

Error reporting provides an early warning to protect the system from
performance degradation. The system error logging feature requires
tagging single bit errors and uncorrectable errors during memory
read transmission from the memory subsystem. Also saved in the
memory controller are the syndrome bits for the first memory read
error and the error address for error logging and servicing. The mem-
ory controller retains this information until the first error is serviced.

148

Main Memory Subsystem

There are ten bits in register B that are used for ECC diagnostics only.
In addition to its error detection capabilities, the controller provides
the logic to buffer commands, addresses, and data, thus improving
memory throughput.

A system may require more than one memory controller. If the system
requires a two-controller interleaved memory configuration, the mem-
ory controllers must have consecutive TR selects. The interleave bit
will be cleared on power up and must be set by writing to configuration
register A in each controller. Each controlier must have the same array
size and be issued the same starting address. In the case of multiple
memory controllers, (up to four) each controller will assume a different
starting address on power up. The proper starting address will be
written into the configuration B register from the SBI bus.

A read-only memory that can be addressed on the SBI bus resides in
the memory subsystem. The address, timing, and control logic to read
the information from the ROM for booting the system is also contained
in the subsystem.

The memory controller provides power up initialization logic and re-
fresh control logic for the dynamic MOS memory devices. The dynam-
ic MOS memory cell is a capacitor in which the stored charge
represents a data bit. As the stored charge tends to diminish over a
period of time, each cell requires a refresh cycle every 2 msec to retain
the charge reliability.

BASIC MEMORY OPERATIONS

The memory subsystem operates synchronously with the SBI clock
cycles, satisfying the system communication protocol. As discussed in
Chapter 7, SYNCHRONOUS BACKPLANE INTERCONNECT, the
physical address space is divided into two equal areas, memory ad-
dress space, and I/0 address space. Figure 8-2 illustrates the physical
address space.

The 28-bit (A<27:00>) SBI longword address field (refer to figure 8-2)
is capable of accessing up to 512 M bytes of main memory. The hard-
ware, however, will currently support a maximum of 2 Mbytes of main
memory utilizing the 4K chip design and 8 Mbytes utilizing the 16K
chip design. Physical memory operations are performed when bit
<27> of Figure 8-2 is zero. 1/0 operations occur when bit <27> is
one. The operation field identifies one of the following six transactions
performed by the memory subsystem:

® Read Masked
e Extended Read

e Interlock Read Masked

149

Main Memory Subsystem

“—— A<27:00> _——]

3 27 o]
[OPERATION /0] LONGWORD ADDRESS

0
PHYSICAL
MEMORY
ADDRESSES
512 M8
/0 s
ADDRESS
OPERATION =READ MASKED DORESSE
WRITE MASKED
ETC..
1,000 MB

SBI PHYSICAL
ADDRESS SPACE

Figure 8-2 Physical Address Space

e Write Masked
e Extended Write Masked
e Interlock Write Masked

A write mask operation is executed to transfer one to four bytes of
data to memory. A read mask operation, however, is only capable of
transferring four bytes of data from memory.

An Extended Read is executed to transfer eight bytes of data (two
longwords) from memory to a requesting NEXUS. An Extended Write
Masked, on the other hand, provides a byte-selectable transfer of up
to eight bytes to memory. Interlock Read Masked and Interlock Write
Masked perform the same function as Read Masked and Write
Masked but also provide process synchronization.

Read Cycle

The read cycle will fetch 32 bits of data from the addressed location in
the memory subsystem, will check for a single or double bit error, will
correct a single bit error if it exists, and will transmit the data word
along with the proper tag and ID code of the commander that request-
ed the data. In the event a single bit error occurs during the read

150

Main Memory Subsystem

operation, corrected data would be rewritten into the memory in a
subsequent memory cycle. In the case of a double bit error, the exact
data and check code read is rewritten to ensure that the double bit
error recurs on subsequent reads. In either case, an indication of the
error condition woulid be tagged and transmitted with the corrected
data or uncorrectable bad data during the next available bus cycle to
the requester. The sequence of events that initiates a read cycle in a
memory subsystem is as follows:

Any commander on the SBI (central processor or I/O controller) that
wants to initiate a read cycle in any one of the memory subsystems on
the bus will arbitrate and gain control of the bus. Having gained con-
trol, the commander then transmits a command or address tag and
identification code information on the bus. All subsystems on the bus
monitor and decode the tag and command or address lines prior to
initiating any action. If the decoded address corresponds to the mem-
ory subsystem and if no faults are detected, it would immediately
(unless already busy) initiate a memory cycle. If the memory is pre-
sently executing a cycle, the command will be stored in the queue, if
there is room in the buffer, until the present cycle is complete. Either
way, the memory will notify the commander that the message has
been received. The address under interrogation would be fetched
from the memory, while the memory controller in the meantime would
request, arbitrate, and gain control of the bus to transmit the data
along with the commander’s identification code. Read cycles with sin-
gle bit errors require an extra bus cycle to correct the error, and
therefore the controller would re-request the bus and transmit data
after gaining control of the bus.

Extended Read

The extended read cycle is the same as the read cycle, except that it
fetches 64 bits of data from the addressed location. Also, the data
would be transmitted on the SBI in two successive bus cycles; the
lower 32 bits are transmitted first and then the upper 32 bits. In the
event a single bit error occurs, the start of data transmission would be
delayed until the memory controller re-requests the bus and gains
control of the bus.

Write Masked

The write masked function instructs the memory controller selected by
the address (A <27:00>) to modify the bytes specified by (M<3:0>)in
the storage element addressed, using data transmitted in the next
succeeding cycie.

This is accomplished in the memory subsystem in two successive
memory cycles, a read followed by a write cycle as the memory is

151

Main Memory Subsystem

organized as an 8K x 72, with an ECC over 64-bit width. During the
read portion of the cycle, the 64-bit word is retrieved, the error code
checked, and the appropriate bytes are modified in the upper or lower
half of the word. New check bits are then encoded and the modified
word is written into the memory. If a single bit error occurs during the
read portion of the cycle it would be corrected. In the case of an
uncorrectable error the bad data would be rewritten into the memory
with the bad check code and the new data would not be used.

Up to four bytes in the upper or lower word can be modified in a write
masked cycle.

Extended Write Masked

The extended write masked function instructs the memory controller
selected by the address (A <27:00>) to first modify the bytes specified
by (M<3:0>) in the low 32 bits of storage element addressed, using
data transmitted in the next succeeding cycle. Then the controller is to
modify the bytes of the high 32-bit storage element specified by the
masks (M<3:0>) field found in the first data word cycle, using data
transmitted in the next succeeding cycle. The mask field in the second
data word transmission is ignored.

The implementation of this cycle is similar to write masked except in

the following areas:

e One to eight bytes of an address can be modified during this opera-
tion in the upper and lower word.

e An extended write masked that specified modification to all eight
bytes does not execute a read cycle first but unconditionaily writes
the new 64 bits and eight check bits to the designated address. This
is described as a full write cycle.

INTERLOCK CYCLES

The interlock cycles are special memory cycles used for process syn-
chronization. They consist of the interlock read cycle and the interlock
write cycle. The memory controller treats the interlock cycles as a pair
of cycles, with an interlock read masked always followed (an arbitrary
number of cycles after) by an interlock write masked. Interlock read
and write cycles are 32-bit operations. The interlock line on the SBl is
used to coordinate activity between memory controllers. An interlock
timer of 512 bus cycles is started with the acceptance of an interlock
write. If the interlock write is not found, after 512 bus cycles, the inter-
lock line is cleared.

Interlock Read
The interlock read masked cycle is implemented in the same manner
as the read masked cycle, with the following exception. The interlock

152

Main Memory Subsystem

read has a special function code which the memory controller de-
codes and also monitors the interlock line on the bus to verify any
interlock activity elsewhere in the system. If the interlock line is not
asserted, the memory controller addressed would acknowledge the
cycle and set its interlock line on the SBI until a valid interlock write
has been received.

In the case of a single bit error, the controller corrects the data and
transmits it with the proper tag. If an uncorrectable error occurs, the
read data substitute tag with the bad data would be transmitted and
the memory would rewrite the bad data and bad ECC.

Every commander on the SBI capable of issuing an interlock
command should also assert the interlock line on the bus for one cycle
immediately following the interlock read mask command. This is to
insure cooperation among memory controllers responding to interlock
reads without ambiguity.

Interlock Write

The interlock write masked cycle is similar to the write masked cycle
with the following exceptions:

The set state of the interlock line on the SBI would verify the integrity of
the command prior to acknowledging the cycle and implementing it.
The interlock flip-flop would be cleared and consequently the interlock
line on the bus would be deasserted.

If the interlock line was not asserted, the write interlock command
would not be executed and the interlock sequence fault would be set.

ERROR CHECKING AND CORRECTION (ECC)

The ECC scheme used in the memory subsystem is capable of detect-
ing a single or double bit error. It is also capable of correcting all single
bit errors. This is accomplished by storing eight parity bits, calied
check bits, along with the 64 data bits in each memory location. Each
check bit'is generated by parity-checking selected groups of data bits
in the given data quadword. When parity is again checked during a
read, an incorrect bit will be detected by the parity-checking logic and
will develop a unique 8-bit syndrome which will identify the bitin error.
Error correction logic may thus correct the bit in error. There are 72
unigue syndromes pointing to individual bits in the coded quadword.

MEMORY CONFIGURATION REGISTERS

There are three configuration registers in the memory controller to
provide configuration-dependent information to the operating system
and diagnostic software. These are addressable registers with read
and write access.

153

Main Memory Subsystem

Memory Configuration Register A
Figure 8-3 illustrates memory configuration register A.

31 3029 28 27 26 2524 B 2 2] 6 15 9 8 7 5 432 4]
MEMORY SIZE 000 |TYPE| ILV
L—PWR UP ILv
PWR DWN EN
XMT FLT
MLT XMT
INTLK SEQ ERR
WR SEQ ERR
PAR ERR

Figure 8-3 Memory Configuration Register A

Register A contains the following information:
Bits <31:26> SBI Fault Status

Bits <23:22> Power Up Power Down Status

These bits work in conjunction with the Alert line. If the memory is
strapped to inhibit ROM decode, the assertion of AC LO will set the
power down status, clear the power up status and activate the Alert
line. The deassertion of the AC LO signal will set power up status, clear
power down status and assert the Alert line. Writing a one to the active
status bit will clear it and deassert Alert.

Bits <15:09> Memory Size

These bits contain the binary representation of the memory size in 64K
byte increments, zero inclusive. For the 4K chip, bits <12:09> are
used. For the 16K chip, bits <14:09> are used. These bits are read-
only.

Bits <04:03> Memory Type

These bits specify the memory type. This refers to the 4K MOS chip
implementation or the 16K MOS chip implementation. These bits are
read-only.

Bit <4> Bit<3> Description

0 0 Error condition, no array cards plugged
in.

0 1 4K chip

1 0 16K chip

1 1 Error condition, both 4K and 16K chip

array boards are being used.

154

Main Memory Subsystem

Bits <02:00> Interleave

These bits contain interleave information. If bit 00 is 0, the memory is
not interleaved. If bit 00is a 1, the system is interleaved. Bits 01 and 02
are not used at this time and should be 0. Bit 08 is the interleave write
enable bit. When bit 08 is written to with a one, bit 00 will take on
whatever state bit 00 in the written data is. Bit 08 will always read as a
0. If bit 08 is written to with a 0, interleave bit 00 will be unchanged. The
interleave flip-flop receives its power from the +5V BAT supply so it
retains its state during battery backup. On a cold start, this bit will
come up "0".

Memory Configuration Register B
Figure 8-4 illustrates memory configuration register B.

31 302928 27 54131211109 8 7 0
MEMORY STARTING ADDRESS SUBSTITUTE ECC

4
REFRESH L—ECC BYPS
BIT FORCE ERR
MEM INIT STATUS

ENABLE WRITE TO MEMORY
STARTING ADDRESS

FILE INPUT POINTER

FILE OUTPUT POINTER

Figure 8-4 Memory Configuration Register B

Register B contains the following information:

Bits <31:30> File Output Pointer (File Read Address Counter)
These two bits point to the address that would be read from the
command and data file and operated on by the timing and control
logic for starting a new memory cycle at the appropriate time, depend-
ing on the state of the memory busy line. This information is also
useful for diagnosing the file control logic problems in the file read
. path. Bit <31> is the most significant bit, bit <30> is the least signifi-
cant bit.

Bits <29:28> File Input Pointer (File Write Address Counter)

The memory controlier command buffer (File) is four addresses deep
and the Write Address Counter state can be read via these two bits.
These bits point to the next available file address into which the com-
mand address or data information will be written after accepting the
command address and data from the SBi. These bits assist in diag-
nosing the file control logic problems in the file write path. Bit <29> is
the most significant bit, bit <28> is the least significant bit.

155

Main Memory Subsystem

Bits <27:15> Memory Starting Address

These bits indicate the starting address of the memory controller in
64K byte granularity or increments. These bits are writable and can be
altered by the system after power up. During a cold start the memory
controller would come up with a default starting address depending
on the starting address jumpers in the memory backplane. A cold start
is defined as a CPU power up from inactive battery backup and mem-
ory power supply. There are two starting address jumpers in the mem-
ory controller backplane, and in a four controller system the default
starting address assignments are as follows for cold starts.

Controller No. Starting Address Starting Address
Jumpers
SA01SA 00

1 OPEN OPEN zero

2 OPEN GND 4 Megabyte

3 GND OPEN 8 Megabyte

4 GND GND 12 Megabyte

Also during battery backup the contents of the starting address bits
are saved.

Bit <14> Write Enable to Memory Starting Address

This bit must be at a one state during a write to register B in order to
alter the state of the memory starting address. If bit <14> is a zero,
writes to register B will leave the starting address unchanged.

Bits <13:12> Memory Initialization Status

These are read-only bits and contain the recovery mode information
necessary to determine whether or not the memory has recovered
from battery backup and therefore contains valid data.

Bit <12> Bit<13> Description

0 0 Initialization cycle in process. This
means the memory is presently writing a
known data pattern and check code
throughout the storage area. A command
issued to the array at this time will
receive a busy response.

0 1 Invalid state

156

Main Memory Subsystem

Bit <12> Bit <13> Description

1 0 This state means the memory contains
valid data. This state after a CPU Power
Fail implies that all memory data was
saved.

1 1 This state signifies that initialization
is complete and that the power resto-
ration was from a cold state. No data was
preserved.

Bit <10> Refresh Indication
This bit is used for diagnostic purposes only, and will verify the access
time delay due to refresh collision.

Bit <09> Force ERR

This bit is used in conjunction with bits <07:00>. When it is set, it will
enable the ECC substitute bits to replace the actual check bits for the
ECC computation when operating on an address with SBI bits 3and 12
active. Writing a one sets this bit and writing a zero clears it.

Bit <08> ECC BYPS

This bit is set to totally bypass (BYPS) the ECC check function. If this
bit is set, the data that is read from the memory will be placed on the
SBI exactly as it is found. Also, no CRD or RDS flag will accompany the
data if it is in error but the error log will continue to operate normally
(register C).

Writing a one sets this bit, writing a zero clears it. This bit is used for
diagnostics only.

Bits <07:00> Substitute ECC Bits

These bits can be substituted for the eight check bits read from the
memory, providing that bit <09> in Register B is set to a one and the
address read contains SBI bits 3 and 12 active. These bits are for
diagnostics only and can be used to simulate any single bit or multiple
bit error, thereby checking the entire ECC path. Writing a one sets the
bits, writing a zero will clear them.

MEMORY CONFIGURATION REGISTERC
Figure 8-5 illustrates memory configuration register C.

157

Main Memory Subsystem

31 3029 28 27 8 7 0

ERROR ADDRESS ERROR SYNDROME
LERROR LOG REQ
HIGH ERR RATE

INH CRD

Figure Figure 8-5 Memory Configuration Register C
This register gathers all the ECC error information:

Bit <30> Inhibit CRD

This bit is used to prevent constant CRD flags from being sent to the
commander when working in sequential memory locations with single
cell failures, thus preventing repeated error service invocation by the
operating system. Writing a one to this bit prevents subsequent CRD
flags from being transmitted to the commander until such a time as the
commander writes a zero to bit <30>. However, in the event an uncor-
rectable error occurs in the memory it would be reported right away
regardless of the state of this bit.

BIT <29> HIGH ERROR RATE
This bit flags the high error rate in the memory by setting this bit if an
error occurs between the time the first error message was sent and the
time the error service subroutine was invoked by the operating sys-
tem. This bit can be cleared by writing a one.

BIT <28> ERROR LOG REQUEST FLAG

This bit is set when the first error occurs during the memory controi-
ler's response to an SBI read cycle. This would indicate to the error
service subroutine whether the controller has logged an error during
its operation or not. When this bit is set, any subsequent CRD reports
to the bus commander will be inhibited. In a multiple memory control-
ler system, this is needed in determining which controller sent the
error message. This can be cleared by writing a one.

BIT <27:08> ERROR ADDRESS

The SBI longword address at which the first read error occurred
during memory controller response to an SBI read command is saved
in these bits. Subsequent error addresses, if they occur, are not saved
until the first one is serviced.

The address field is described as follows:
(bit order is least to most)

158

Main Memory Subsystem

Bit <08> indicates the word in error.
0 = lower word
1 = upper word

Bits <20:09> indicate the 4K chip address in error.
Bit <21> indicates the 4K chip array bank in error.
0 = lower 4K chip
1 = upper 4K chip

Bits <23:22> are unused for 4K chip.

Used in 16K chip for two necessary extra chip address bits. All chip
address and bank address bits shift left two.
Bits <27:24> indicate the array card in error.

BIT <7:00> ERROR SYNDROME

These eight bits store the error syndrome of the first error word that
was read from memory in response to an SBI read command. The
syndrome will be saved until the error service routine has serviced the
error. Subsequent error syndromes will not be saved but will be indi-
cated by bit <29>.

MEMORY INTERLEAVING
The memory subsystem is capable of operating in the non-interleaving
or two-way interleaved mode. Interleaving improves memory subsys-
tem throughput on the bus.

In a single memory controller system the starting address is assigned
by the ROM bootstrap. The size of the memory subsystem is encoded
from the number of array cards plugged into the backplane. Array
boards must be contiguous. |f boards are misplugged an indicator
light would indicate configuration error.

interleaving can be used to increase the overall speed of the memory
subsystem when there are two memory controllers with equal
amounts of MOS memory on each. The effectiveness of interleaving is
based on the principle that most memory operations are performed on
consecutive memory locations. While one controlter is fetching data,
the other controller is available to decode an address for the next
operation. On VAX-11/780, the two memory controllers access alter-
nate quadwords.

With an interleaved memory system, both controllers must have con-
tiguous bus TR select levels (odd and even pairs), the same array size,
the same starting address, and both controllers must have their inter-
leaved bits set.

159

Main Memory Subsystem

It is also possible to have two two-way interleaved memory systems,
four controllers, by following the rules just listed and assigning the
second interleaved memory system a starting address that is one lo-
cation above the final address of the first interleaved set.

Four memory controllers on one bus may require reassigning of bus
TR select levels of the other SBI NEXUS.

ROM BOOTSTRAP

A four kilobyte programmable read-only memory to boot the system
resides in the memory controller and it uses a 1K x 4, bipolar, high
speed device. The memory is organized as a 1K x 32 and is assigned
4K byte I/0 address space. The ROM can be addressed via the SBI
interface in the memory controlier during system initialization. All the
address, data and control logic for addressing the ROM bootstrap is in
the memory controller. The ROM is packaged in such a way that ECOs
can be easily handled by providing sockets in the PROM locations.

ROM access time = 5 bus cycles (with respect to the commander).

160

161

CHAPTER 9
UNIBUS SUBSYSTEM

INTRODUCTION

The UNIBUS Subsystem is the hardware developer's primary interface
to VAX-11/780. All devices other than the high-speed disk drives and
magnetic tape transports are connected to the UNIBUS, an asynchro-
nous bidirectional bus. The UNIBUS is connected to the SBI through
the UNIBUS adapter. The UNIBUS adapter does priority arbitration
among devices on the UNIBUS.

The UNIBUS adapter provides access from the processor to the UNI-
BUS peripheral device registers and to UNIBUS memory by transiat-
ing UNIBUS addresses, data, and interrupt requests to their SBI equi-
valents, and vice versa. The UNIBUS adapter address translation map
translates an 18-bit UNIBUS address to a 30-bit SBl address. The map
provides direct access to system memory for nonprocessor request
UNIBUS peripheral devices and permits scatter/gather disk transfers.

The UNIBUS adapter enables the processor to read and write the
peripheral controller status registers. In the case of processor
interrupt request devices, this constitutes the transfer.

This chapter is organized to provide the reader with an understanding
of the UNIBUS and the VAX-11/780 UNIBUS Adapter. The UNIBUS
subsystem is comprised of the UNIBUS adapter logic, the UNIBUS,
and associated peripheral devices. Figure 9-1 illustrates the UNIBUS
subsystem configuration.

UNIBUS SUMMARY

The UNIBUS, a high-speed communication path, links together 1/0
devices to the UNIBUS adapter. Device-related address, data, and
control information are passed along the 56 lines of the UNIBUS. The
UNIBUS adapter handles all communications between the UNIBUS
and the SBI, and fields device-generated interrupis.

The following UNIBUS summary description takes into account the
presence of the UBA, which performs the following UNIBUS functions:
e arbitration

e interrupt fielding

e power fail/restart

e initialization

163

UNIBUS Subsystem

A00-Al7 [ADDRESS)

D00 -DI5 {DATA))

CO0-CO1 {CONTROL)
MSYN (MASTER SYNC)
SSYN (SLAVE SYNC)

T

PA-PB [PARITY)
UNIBUS BR4-BR7 (BUS REQUEST) U
DEVICE BG4-BG7 (BUS GRANT)

NPR (NONPROCESSOR REQUEST)
NPG (NONPROCESSOR GRANT)
SACK { SLAVE ACKNOWLEDGE)
INTR {INTERRUPT)

BBSY (BUS BUSY)

INIT (INITIALIZE)

AC LO (AC LINE LOW)

DC LO (DC LINE LOW)

Figure 9-1 UNIBUS Configuration

For example, the UBA enables the system to accept device interrupts
and transfer the iequests from the UNIBUS to the SBI. However, UBA
and SBI operations between the VAX-11/780 CPU and UNIBUS are
transparent to the UNIBUS devices.

Communications And Contro!

A master/slave relationship defines all communications between de-
vices on the UNIBUS. The device in control of the bus is considered
the master; the device being addressed is the slave. Communication
on the UNIBUS is interlocked, that is, each control signal issued by the
master device must be acknowledged by a corresponding response
from the slave to complete the transfer.

Bus Request Levels

Each device uses one of five priority levels for requesting bus control:
Non-Processor Requests (NPR) and four Bus Requests (BR). The NPR
is used when a device requests a direct access data transfer to memo-
ry or another device (i.e., a transfer not requiring processor interven-
tion). Normally, NPR transfers are made between a mass storage de-
vice (e.g., disk drive) and memory. Two bus lines are associated with
the NPR priority level. The device issues its request on the NPR line;
the UBA responds by issuing a grant on the Non-Processor Grant
(NPG) line.

164

UNIBUS Subsystem

A BR level is used when a device interrupts the VAX-11/780 CPU in
order to request service. The device may require the CPU to initiate a
transfer. Or it may need to inform the CPU that an error condition
exists. Two lines are associated with each of four BR levels. The bus
request is issued on a BR line (BR7-BR4); the bus grant is issued on
the corresponding Bus Grant line (BG7-BG4).

Priority Structure And Chaining

When a device requests use of the bus, the handling of that request
depends on the location of that device in a two-dimension device-
priority structure. Priority is controlied by the priority arbitration logic
of the CPU and the UBA.

The device-priority structure consists of five priority levels: NPR and
BR7-4. Bus requests from devices can be made on any one of the
request lines. The NPR has highest priority; BR7 is the next highest
priority, and BR4 is the lowest. The priority arbitration logic is struc-
tured so that if two devices on different BR levels issue simultaneous
requests, the priority arbitration logic grants the bus to the device with
the highest priority. However, the lower priority device keeps its re-
quest up and will gain bus control when the higher-priority device
finishes with the bus (providing that no other higher-priority device
issues a BR).

Since there are only five priority levels, more than one device may be
connected to a specific request level. If more than one device makes a
request at the same level, the device closest (electrically) to the UBA
has highest priority. The grant for each BR level is connected to all
devices on that level in a daisy-chain arrangement (chaining). When a
corresponding BG is issued it goes to the device closest to the UNI-
BUS adapter. If that device did not make the request it permits the BG
to pass to the next closest device. When the BG reaches the device
making the request, that device captures the grant and prevents it
from passing on to any subsequent device in the chain. Functionally,
NPG chaining is similar to BG chaining.

Device Register Organization

The actual transfer of data and status information over the UNIBUS is
accomplished between status, control, and data buffer registers locat-
ed within the peripheral devices and their control units. All device
registers are assigned addresses similar to memory addresses. These
registers can therefore be accessed by word type memory reference
instructions {i.e., MOVW, BITW, etc.}.

Control and status functions are assigned to the individual bits within
the corresponding addressable registers. Since the register content

165

UNIBUS Subsystem

can be controlled, setting and clearing register bits can control service
operations. Internal device status may be loaded into the appropriate
register and retrieved when a program instruction addresses that reg-
ister. Depending on the function, register bits may be read/write, read
only, or write only. The number of addressable registers in a device
(and control unit) varies depending on the device’s function.

UNIBUS Line Definitions

The UNIBUS consists of 56 signal lines which may be divided into
three function groups: bus control, data transfer, and miscellaneous
signals. The 13 lines of the bus control group comprise those signals
required to gain bus control through an NPR/BR or for a priority
arbitration to select the next bus master while the current bus master
is still in control of the bus. The 40 bidirectional lines of the data
transfer group are those signals required during data transfers to or
from a slave device. The miscellaneous group are the initialization and
power fail signals required on the UNIBUS. Table 9-1 describes the
bus signals within each group.

Table 9-1 UNIBUS Signal Descriptions

SIGNAL LINE DESCRIPTION

Data Transfer Group

Address Lines These lines are used by the master device to select

(A<17:00>) the slave (actually a unique memory or device regis-
ter address). A <17:01> specifies a unique 16-bit
word; SA00 specifies a byte within the word.

Data Lines These lines transfer information between master and
(D<15:00>) slave.

Control These signals are coded by the master device to
(C1,C0) control the slave in one of the four possible data

transfer operations specified below. Note that the
transter direction is always designated with respect
to the master device.

Data Transfer Designation Description
C1 co

0 0 Data in (DATI): a data word or byte transferred into
the master from the siave.

166

0 1

Parity A-B
(PA,PB)

Master Syn-
chronization
(MSYN)

Slave Syn-
chronization
(SSYN)

Interrupt
(INTR)

UNIBUS Subsystem

Data in Pause (DATIP): similar to DATI except that it
is always followed by a DATO or DATOB to the same
location. The master keeps control of the UNIBUS
during the entire DATIP-DATO sequence.

Data Out (DATO): a data word is transferred out of
the master to the slave.

Data Out Byte (DATOB): identical to DATO except
that a byte is transferred instead of a full word. Ad-
dress bits A0O determine which byte will be written.
A00=0, iow byte (D07-00) is written. AO0O=1, high
byte (D15-08) is written.

These signals transfer UNIBUS device parity infor-
mation. PA is currently unused and not asserted. PB,
when true, indicates a device parity error.

MSYN is asserted by the master to indicate to the
slave that valid address and control information (and
data on a DATO or DATOB) are present on the UNI-
BUS.

SSYN is asserted by the slave. On a DATO it indi-
cates that the slave has latched the write data. Ona
DATI or DATIP it indicates that the slave has assert-
ed read data on the UNIBUS.

This signal is asserted by an interrupting device, af-
ter it becomes bus master, to inform the UBA thatan
interrupt is to be performed, and that the interrupt
vector is present on the data (D) lines. INTR is negat-
ed upon receipt of the assertion of SSYN by the UBA
at the end of the transaction. INTR may be asserted
only by a device which obtained bus mastership un-
der the authority of a BG signal.

Priority Arbitration Group

Bus Request
(BR7-BR4)

Bus Grant
(BG7-BG4)

Nonprocessor
Request
(NPR)

These signals are used by peripheral devices to re-
quest control of the bus for an interrupt operation.

These signals form the UBA’s response to a bus re-
quest.

Only one of the four will be asserted at any time.

This is a bus request from a device for a transfer not
requiring CPU intervention (i.e., direct memory ac-
cess).

167

Nonprocessor
Grant (NPG)

Select Ac-
knowledge
(SACK)

Bus Busy
(BBSY)

UNIBUS Subsystem

This is the grant in response to an NPR.

SACK is asserted by a bus-requesting device after
having received a grant. Bus control passes to this
device when the current bus master completes its
operation.

BBSY indicates that the data lines of the UNIBUS are
in use and is asserted by the UNIBUS master.

tnitialization Group

Initialize (INIT)

AC Line Low
(AC LO)

DC Line Low
(DC LO)

This signal is asserted by the UBA when DC LO is
asserted on the UNIBUS, and it stays asserted for
ten msec following the negation of DC LO. It is used
to initialize UNIBUS peripherals.

This is a signal which indicates that a power failure is
about to occur on the UNIBUS. The assertion of this
signal initiates the UNIBUS power fail sequence of
the UBA and can cause an interrupt to the VAX-
11/780 CPU. It may also be used by peripheral de-
vices to terminate operations in preparation for
power loss.

This signal is available from each system power sup-
ply and remains clear as long as all DC voltages are
within the specified limits. If an out-of-voltage condi-
tion occurs, DC LO is asserted.

THE UNIBUS ADAPTER

The UNIBUS Adapter provides the interface between the asynchro-
nous UNIBUS and the Synchronous Backplane Interconnect in the
VAX-11/780. The UNIBUS Adapter provides the following functions:

® Access to UNIBUS address space (i.e., UNIBUS device registers)

from the SBI

® Mapping of UNIBUS addresses to SBI addresses for UNIBUS DMA
transfers to SBI memory

Data transfer paths for UNIBUS device access to random SBI mem-

ory addresses and high-speed transfers for UNIBUS devices that
transfer to consecutive increasing memory addresses

e UNIBUS interrupt fielding
e UNIBUS priority arbitration
e UNIBUS power fail sequencing

The UNIBUS Subsystem is illustrated in Figure 9-2.

168

UNIBUS Subsystem

SBI
MEMORY

780

cPU SYNCHRONOUS BACKPLANE INTERCONNECT

UNIBUS
ADAPTER
UNIBUS
DEVICE !
UNIBUS
DEVICE 2
v
2
=
z
2
UNIBUS
DEVICE n
UNIBUS
TERMINATOR

Figure 9-2 UNIBUS Subsystem

VAX-11/780 hardware will support a UNIBUS Adapter in one of four
physical address spaces. The UNIBUS adapter maintains two inde-
pendent address spaces within the Synchronous Backplane
Interconnect I/0 address space. The first area of addressable space is
within the area reserved for all NEXUSs (i.e., UBA, MBA, memory
controller) internal registers. Each NEXUS (UBA) register address
space occupies 8K bytes (16 pages of 512 bytes/page). This address
space contains all control and status registers of the UBA, registers
required for UNIBUS interrupt fielding, and registers required for
mapping UNIBUS device transfers to the SBI address space. The sec-
ond address space is the UNIBUS address space associated with the
UBA. The UNIBUS address space occupies a total of 256K bytes (512
pages of 512 bytes/page). Figure 9-3 illustrates the SBI I/O address
space.

169

UN!BUS Subsystem

CONFG REG
STATUS REG
S5 MEMORY CONTROL REG
DIAG CONT. REG
ADDRESS SPACE PMER
FUBAR
OTHER ADAPTE R BRRVRS
REGISTERS BRSVRS
DATA PATH REG'S
UBA INTERNAL MAP REG'S
REGISTERS
SBI ADDRESS / OTHER ADAPTER
SPACE CONTROLLED REGISTERS
BY THE UBA
\ UNIBUS 1/0 006000
ADDRESS SPACE AND UNIBUS MEM
UNIBUS MEMORY ADDRESS ADORESS SPACE
SPACE 757777(8)
OTHER
I/0 ADDRESS
o 760000(8)
UNIBUS 1/0
ADDRESS SPACE
777777(8)

Figure 9-3 SBI /0 Address Space

SBI ACCESS TO UNIBUS ADDRESS SPACE

The UNIBUS Address Space (248K bytes of memory space and 8K
bytes of device register space) is accessible as part of the SBI I/0
Address Space. The UBA translates SBl command/addresses to UNi-
BUS command/addresses, thereby giving the software the ability to
read and write UNIBUS device registers using word type memory
reference instructions (MOVW, BITW, etc.).

Device Registers are assigned 1/0 addresses within the UNIBUS Ad-
dress Space spanning 760000,—777777,. In VAX-11/780 physical
byte address terms, the device registers occupy address space
201XE000,,—201XFFFF,,. The hexadecimal digit 3,7,B or F,, is substi-
tuted in place of the X value within the physical address, depending
upon which one of four UNIBUS address spaces the UBA is configured
for (refer to Figure 7-7, SBI Physical Address Space, Chapter 7). Table
9-2 illustrates the UNIBUS device register address structure.

170

UNIBUS Subsystem

Table 9-2 UNIBUS Device Address Space

UNIBUS I/0 UNIBUS ADDRESS PHYSICALBYTE
ADDRESS SPACE (OCTAL) LOCATIONS (HEX)
UNIBUS 0 Address 760000-777777 2013E000-2013FFFF
Space

UNIBUS 1 Address 760000-777777 2017E000-2017FFFF
Space

UNIBUS 2 Address 760000-777777 201BE000-201BFFFF
Space

UNIBUS 3 Address 760000-777777 201FE000-201FFFFF
Space

Table 9-3 illustrates the translation of SBI to UNIBUS transfer opera-
tions involved in accessing the UNIBUS address space.

Table 9-3 CPU-Initiated Transfer

SBI FUNCTION TRANSFER UNIBUS FUNCTION
DIRECTION

Read-masked (word device to UBA DATI

or byte)

Write-masked (word UBA to device DATO or DATOB

or byte)

Interlock Read- device to UBA then DATIP then DATO or

masked then Inter- UBA to device DATOB

. locked Write-masked

During such transfers, the UNIBUS Adapter becomes the highest pri-
ority UNIBUS Non-Processor request (NPR) device.

Address And Function Translation

Figure 9-4 shows the SBI command/address format for accessing the
UNIBUS address space for UBAs 0 through 3. Each SBl address (long-
word address) covers two 16-bit UNIBUS addresses (word ad-

dresses). In addition to the SBI address being decoded, the SBI func-
tion and byte mask is decoded to determine the word or byte to be
accessed. The SBI to UNIBUS address and command translation is
shown below.

171

UNIBUS Subsystem

3 03 28 27 22524232221 2019 B 1716 15 0
MASK FUNC
I s I 296> 1[010’0[0’0{0‘0‘0’1]510 LONG WORD ADDRESS W
|, W — . J
UBA UNIBUS
ADDRESS DECODE b a
UNIBUS ADDRESS SPACE 0 0 0
UNIBUS ADDRESS SPACE 1 0 1
UNIBUS ADDRESS SPACE 2 1 o
UNIBUS ADDRESS SPACE 3 1 1
UNIBUS
CONTROL
AND
BYTE ADDRESS
ENCODER
UNIBUS
CONTROL ADDRESS
1.0 17 210

UNIBUS ADDRESS BITS 17:02 l ‘ l

I

g<nop UA <17:00> .

Figure9-4 SBI To UNIBUS Control Address Translation

Table 9-4 iliustrates the translation from SBI Mask and Function fields
to UNIBUS Control and Address fields.

Only the function byte mask combinations shown will be valid. All
other function byte mask combinations addressed to the UNIBUS
address space will be given an ERR confirmation. The UNIBUS ad-
dress space will respond only to word or byte SBI references. Note
that extended transfers cannot be made to either the UNIBUS address
space or the UNIBUS Adapter Registers.

The translation from SBI Mask and Function to UNIBUS control and
byte address is handled by the UNIBUS control and byte address
encoder illustrated in Figure 9-4.

When the VAX-11 software initiates a data transfer, reading from or
writing to a UNIBUS device register, the UBA will recognize the ad-
dress as being an address within the UNIBUS address space and will
pass the lower 16 SBI address bits through to the UNIBUS as UNIBUS
address bits UA <17:02>. The UNIBUS Adapter generates UNIBUS
address bits UA <1:0> and control bits C <1:0> by decoding the SBI
mask and function bits. Table 9-5 shows the relationship of the UNI-
BUS space controlled by UBA #0 to the SBI address space.

172

UNIBUS Subsystem

Table 9-4 SBI Function-Mask Translation To UNIBUS
Control-Address

SBI Unibus

Function Mask Control Address
<3:0> 3210 C<1:0> UA<1:0>
Read Mask 0001 DATIL 00
0011 DATI 00
0010 DATI 00
0100 DATI 10
1100 DATI 10
1 000 DATI 10
Write Mask 0001 DATOB 00
0010 DATOB 01
0100 DATOB 10
1 000 DATOB 11
0011 DATO 00
1100 DATO 10
Interlock Read Mask 0001 DATIP 00
(Sets Interlock 0010 DATIP 00
Flip Flop for 0100 DATIP 10
DATIP-DATO 1 000 DATIP 10
Sequence) 0011 DATIP 00
1100 DATIP 10
Interlock Write Mask 0001 DATOB 0 0
0010 DATOB 01
0100 DATOB 1 0
1 000 DATOB 11
0011 DATO 00
1100 DATO 1 0

SBI To UNIBUS Transfer Failures

If, during a read sequence to the UNIBUS address space, data is
received from the UNIBUS device with UNIBUS PB asserted (UNIBUS
Device Parity Error) then the data will be sent to the SBI as a Read
Data Substitute.

If, for some reason, an access is made to the UNIBUS address space
and the transfer is not completed on the UNIBUS (i.e., nonexistent
device), the following will occur:

1. Anall-zeroes word will be sent as a read data for a read transfer.

2. The UNIBUS address bits <17:02> will be stored in the Failed
UNIBUS Address Register(FUBAR).

3. The bit indicating the cause of failure (UBA Select Time Out or
SSYN Time Out) will be set in the UBA Status Register. Note that
in the case of a Write Transfer to the UNIBUS, the error bit is set at

173

it

System
Address Space
(not to scale)

Memory
Address

Space

Other

Adaptor

Registers
Unibus

Adaptor
Registers

Other
Adaptor

Registers

Unibus
1/0

Address Space

Other
o
Address Space

Table 9-5 UNIBUS And SBI Address Space

30 bit 18 bit 18 it
Physical Byte Address Unibus Address Space Unibus Address Space
(Iexr (Hex) (Octal)

20100002 20100000 00002 00000 000002 000000
20100006 2010000+ 00006 00004 000006 000004 Unibus
2010000A 2010000% 0000A 00008 000012 000010 Memary
20100001 2019000C 0000E 0000C 000016 000014 Address
20100012 20100010 00012 00010 000022 000020 Space

. Reserved

. For

. Ixpansion
2013DFF6 2013DFF4 iIDFF6 3DFF4 757766 757764 (496 pages)
2013DFFA 2013DFFR IDFFA 3DFF8 757772 757770 1 page 512 bytes
2013DFFF 2013DFFC IDFFE 3IDFFC 757776 757774
2013F002 20131000 38002 3E000 760002 760000 Unibus
2013006 2013F004 IF006 31004 760006 760004 1/0
2013E00A 2013100k IE00A 3F008 760012 760010 Address

. Space

SOI3EOIS 2013K012 20131011 2013K010 [3K013 3012 3KOIT 3K010 | 760023 760022 760021 760020 Si"’%’c‘)‘ge for

. Upper 4 K (10)

. . X i . 16 bit words
2013FFF6 2013FFI4 IFFF6 3FFF4 777766 777764
2013FFFA 2013FFFK IFFFA 3FFF8 777772 777770

3SFFFC 777776 777774

2013FFFF. 2013FFFC

Note: These addresses refer to UBA o,

3FFFF

woysAsans SNGINN

UNIBUS Subsystem

least 13 usec after the command was issued and acknowledged
by the UBA. It will therefore not be immediately known to the
software. If the software has set the SUFFIE (SBI to UNIBUS Error
Interrupt Enable), the setting of UB select Time Out or SSYN Time
Out will initiate an adapter interrupt request (13 usec for SSYN
timeout, 50 usec for select Time Out).

This method gives the VAX-11 software an opportunity to exit grace-
fully from a transfer failure rather than being trapped out of a program
due to a Read Data timeout. The method is also consistent for read
and write failures.

UNIBUS ACCESS TO THE SBI ADDRESS SPACE

UNIBUS initiated transfers to UNIBUS memory addresses are mapped
by the UBA to SBI addresses on a page-by-page basis, allowing UNI-
BUS data transfers to discontiguous pages of SBI memory. The SBI
uses a 30-bit addressing scheme and a 32-bit wide data path, while
the UNIBUS uses an 18-bit addressing scheme and a 16-bit data path.
The SBI is synchronous, supporting a maximum of 16 NEXUSs while
UNIBUS functions are asynchronous, supporting a large number of
devices.

The UNIBUS Adapter accepts one of two forms of input from the
UNIBUS:

e Hardware-generated interrupts
e Direct memory access transfers

Terminal input, for example, is an interrupt-driven process in which
the DZ-11 (terminal interface) initiates an interrupt sequence. The in-
terrupt service routine for the terminal driver will accept and process
the data resulting from the terminal input. This process is therefore
classified as a non-direct memory transfer.

In contrast, once initiated by the software, an RK06 disk will transfer its
data directly to or from SBI memory via the UBA without processor
intervention. The RKO08, therefore, is a direct memory access (DMA)
device. The direct memory access transfer may be further divided into
two groups:

e Random access - access of noncontiguous addresses

e Sequential access - access of sequentially increasing addresses

The UNIBUS adapter can channel data through any one of 16 data
paths for UNIBUS devices performing DMA transfers. The UBA pro-
vides a direct data path to allow UNIBUS transfers to random SBI
addresses. Each UNIBUS transfer through the direct data path is
mapped directly to an SBI transfer, thereby allowing only one word of
information to be transferred during an SBI cycle. The UBA provides

175

UNIBUS Subsystem

15 buffered data paths (BDP), each of which allows a sequential ac-
cess device on the UNIBUS (a device that transfers to consecutive
increasing addresses) access to the SBI in a more efficient manner
than that offered by the direct data path. Each of the BDPs stores data
for the UNIBUS, so that four UNIBUS transfers are performed for each
SBI transfer, making more efficient use of the SBI and memory. Using
the BDPs, the UBA can support high-speed DMA block transfer de-
vices such as the RKO06 disk subsystem and the DMC-11. The Buffered
Data Paths also allow a UNIBUS device to operate on random long-
word aligned 32-bit data.

UNIBUS To SBI Address Translation

The UNIBUS Adapter provides for direct memory access transfers to
main memory via the memory controllers connected to the Synchro-
nous Backplane Interconnect. The UNIBUS Adapter translates
UNIBUS memory addresses to SBI addresses through a UNIBUS to
SBI address translation map. The UNIBUS Adapter physically con-
tains 496 (decimal) hardware map registers utilized in mapping UNI-
BUS memory page addresses to SBI page addresses (longwords).
Each map register is assigned an SBI longword address. The map
register contains the SBI page address and the data path required to
transfer data between the UNIBUS and the SBI.

Each UNIBUS address is mapped to an SBI address in three sections:
1. SBl page address. (one page equals 512 bytes)

2. Longword within an SBI page. (one longword equals four bytes)
3. Word or byte within a longword.

NOTE
To avoid confusion between UNIBUS and SBI ad-
dress bits, UNIBUS address bits will be shown as UA
<bit num> and SBI address bits will be shown as SA
<bitnum>.

As illustrated in Figure 9-5, the UNIBUS to SBI page map translates
UNIBUS memory page addresses to any SBI page address. The map
allows the transfer of data to discontiguous pages of SBI memory. The
map translates the nine UNIBUS page address bits (UA<17:09>) to
the 21 SBI page address bits (SA<27:07>).

There are 496 map registers provided to map the entire UNIBUS
memory address space at once, thereby reducing the problem of
register allocation. Each map register corresponds to the UNIBUS
page which is to be mapped. The map registers are available to the
VAX-11 software as part of the SBI1/0 address space. These registers

176

UNIBUS Subsystem

CONTROL ADDRESS
7 98 2

0
l 1 0 l MAP REG NUMBER BYTE WITHIN PAGE
1

N — I\)H/_J
o]
o H

UNIBUSTO SBI
ADDRESS
TRANSLATION
MAP

v s w N -

- $81 PAGE ADDRESS —
{PAGE FRAME NUMBER}
i2181TS) .
494
495

FUNC
MASK SBI COMMAND ADDRESS
ENCODE

3 40131} 27 76 0

T
MASK J FUNC SB! PAGE ADDRESS (PFNI LONG WORD ADD

Figure 9-5 UNIBUS To SBI Address Translation

are discussed in detail in the section titled SB! ADDRESSABLE UNI-
BUS ADAPTER REGISTERS.

UNIBUS address bits UA <08:02> determine the longword within a
page and are seen by the SBI as address bits SA <06:00>. These
seven bits are concatenated with the mapped page address to form
the 28-bit SBI address.

The two low order UNIBUS address bits (UA<01:00>) and the two
control bits (C<1:0>) determine the SBI function and byte mask (F<3:
0>, M<3:0>).

The mask field points to either one or two bytes within the longword
address. The function field selects either read or write and the
associated qualifier. The mask and the function fields are illustrated in
the following table. Table 9-6 illustrates the translation from the UNI-
BUS control and byte address fields to the SBI function and mask
fields.

177

UNIBUS Subsystem

Table 9-6 UNIBUS Field To SBI Field Translation

UNIBUS SBI
BYTE MASK
CONTROL ADDRESS FUNCTION M<3:0>
C<1:0> A<1:0> FUNC<3:0>> 3210
DATI 0 0 READ MASK 0 0 1 1
10 1100
DATO 0 0 WRITE MASK 00 11
10 11 00
DATOB 0 0 WRITE MASK 0 0 0 1
0o 1 0010
10 0100
11 1.0 00
DATIP 00 INTERLOCK READ MASK 0 0 1 1
10 11 00
followed by INTERLOCK WRITE MASK
DATO 00 0 011
10 11 00
OR
DATOB 0 0 INTERLOCK WRITE MASK 0 0 0 1
0 1 00 1O
10 01 00
11 1000

UNIBUS ADAPTER DATA TRANSFER PATHS
Data is transferred between the UNIBUS and the SBI through one of
the 16 data paths of the UNIBUS Adapter:

1.

The direct data path (DDP) translates each UNIBUS data transac-
tion (DATI, DATIP, DATO, DATOB) directly to an SBI function for
each UNIBUS word (or byte) transfer, thereby transferring data
between SBI memory and a UNIBUS device in 16-bit quantities.

The Buffered Data Paths atlow fast, sequential access UNIBUS
devices to access the SBI in a more efficient manner than is of-
fered by the Direct Data Path. Each buffered data path (BDP1-15)
accumulates data and transfers the data as words or bytes to or
from the UNIBUS device. The BDPs perform quadword transfers
(64 bits) to SBI memory addresses. The BDPs will respond to
UNIBUS DATI, DATO, and DATOB functions but will not respond
to the DATIP function.

178

UNIBUS Subsystem

3. The Buffered Data Paths also allow a UNIBUS device to operate
on random 32-bit longword-aligned data.

The data path to be used by a particular device is assigned by the
software when setting up the map registers. The data paths are num-
bered from DPOQ to DP15. DPO is the direct data path (DDP) and DP1
through DP15 are the buffered data paths, BDP1 through BDP15 re-
spectively. One or more transferring UNIBUS devices can be assigned
to DPO. No more than one transferring UNIBUS device, however, can
be assigned to any one of the BDPs at any time. If, during a DMA
transfer, the UNIBUS address points to an invalid map register or a
map register that has a parity error within the high order 16 bits, the
UNIBUS transfer will be aborted (SSYN Timeout in the UNIBUS
device), and the bit indicating the problem will be set in the UBA status
register (IVMR or MRPF). Note that for this implementation, the low
order 16 bits of the map register are accessed only when an SBI
transfer is required, and only at that time is parity checked on the low
16 bits of the map register.

Direct Data Path (DDP)

The Direct Data Path (DPO) translates each UNIBUS data transfer
function (DATI, DATO, DATOB) to a unique SBI function (Read Mask,
Write Mask). The DDP can transfer words or bytes directly between
the UNIBUS and SBI memory. In addition, the DDP allows a UNIBUS
device to interlock its operation with the system by translating a
DATIP-DATO/DATOB UNIBUS sequence to an Interlock Read Mask -
Interlock Write Mask SBI sequence, thereby setting and clearing the
memory interlock.

Each UNIBUS word (or byte) transfer is translated by the UNIBUS
adapter to an SBI transfer. The UNIBUS transfer does not complete
until the SBI transfer has been completed. The SBI address, function
and byte mask are mapped directly from the UNIBUS address and
control lines, and the state of an internal interlock flip flop in the case
of a DATIP-DATO sequence.

Use of the Direct Data Path

e The Direct Data Path can be assigned to more than one transferring
UNIBUS device.

e The DDP must be used by any device wanting to execute an inter-
lock sequence (DATIP-DATO/DATOB) to the SBI.

e The Direct Data Path must be used by devices not transferring to
consecutive increasing addresses or devices that mix read and write
functions.

e The maximum throughput via the DDP is approximately 400K words
per second:

179

UNIBUS Subsystem

e The DDP is the simplest data path, as far as programming goes,
since the map registers are the only UNIBUS adapter registers re-
quired to be accessed when initiating a UNIBUS device transfer.

Table 9-7 illustrates the translation of UNIBUS to SBI data transfer
operations.

Table 9-7 UNIBUS-Initiated Transfer Via The Direct Data Path

UNIBUS FUNCTION TRANSFER SBI FUNCTION
DIRECTION

DATI UBA to device Read-masked (16

bits)

DATO or DATOB device to UBA Write-masked (8 or

(byte) 16 bits)

DATIP then DATO or UBA to device then Interlock Read-

DATOB device to UBA masked then Inter-

lock Write-masked

Buffered Data Path (BDP)
There are 15 Buffered Data Paths, DP1-DP15. The Buffered Data
Paths are provided for the following reasons:

1. To be used by fast DMA block transfer devices such as the RKO86,
DMC-11, etc. The BDPs aliow UNIBUS devices to make more
efficient use of the SBI and memory and therefore improve sys-
tem performance. The use of BDPs improves the effective UNI-
BUS bandwidth.

2. To enable word-aligned block transfer devices to begin and end
on an odd byte of SBI memory. (Byte offset operation will be
discussed under Byte Offset Data Transfers).

3. To allow a UNIBUS device to operate on random longword-
aligned 32-bit data from SBI memory so that all 32 bits of the
longword are read or written at the same time.

The software assigns a UNIBUS Transfer to a Buffered Data Path when
it sets up the map registers corresponding to the transfer.

The software must assure that no more-than one active transfer is
assigned to a particular BDP at any time.

A UNIBUS device transfer using the Buffered Data Path must have the
following properties:

1. It must be a block transfer. (A block is greater than or equal to one
byte). BDP maintenance (purge) will be initiated by the software

180

UNIBUS Subsystem

following each block transfer. The purge operation is a software-
initiated function of the UBA that clears the BDPs of any remaining
bytes of data. These bytes will be transferred to SBI Memory for
UNIBUS to Memory Write operations or cleared for UNIBUS to
Memory Read Operations.

2. All transfers within a block must be to consecutive increasing
addresses.

3. All transfers within a block must be of the same function type,
Memory Read (DATI) or Memory Write (DATO or DATOB). The
DATIP UNIBUS function will not be recognized by the BDP. A
SSYN Timeout will result in a device attempting a DATIP to a BDP.

Each BDP contains eight bytes of DATA buffering, forming a quad-
word-aligned memory image. DATA is transferred between the UNI-
BUS and a BDP as words or bytes. Data is transferred between the
BDP and SBI memory as quadwords or between the BDP and an SBI
I/0 register as longwords.

The Buffered Data Paths are transparent to the UNIBUS device. The
device will perform its transfer as if transferring directly to memory.

The operation of the BDPs is described in the following section:

UNIBUS Data Transfers To Memory

As a UNIBUS device transfers data to memory (DATO,DATOB) via a
BDP, the BDP will store the data and compiete the UNIBUS cycle. The
Buffered Data Paths are implemented so that a quadword image is
formed in the BDP before an SBI cycle is initiated. When the UNIBUS
device addresses the last byte or word of a physical quadword, the
UBA will complete the data cycle and the BDP will perform an extend-
ed write operation, thereby transferring the stored bytes of data. The
SBI transfer will be completed before recognizing additional UNIBUS
transfers. The BDP will set its Buffer Not Empty (BNE) bit whenever a
UNIBUS Write to the BDP is performed, and clear the BNE bit each
time the SBI transfer is executed. The BNE bit indicates whether or not
valid data is contained in the BDP. Figure 9-6 illustrates a Buffered
Data Path transfer. In this illustration, a Buffered Data Path transfer of
four 16-bit data words to the Buffered Data Path takes place. The
fourth data transfer initiates the extended write transfer of all 64 bits to
memory.

The BDP stores the UNIBUS address of data contained in the BDP.
The BDP stores the UNIBUS address of the current transfer in order to

transfer the remaining bytes to memory at the end of a block transtfer.
This is the purge function that will be discussed in a later section.

181

UNIBUS Subsystem

BDP BYTES
UNIBUS TRANSFERS BNE STATE EMPTY
T
DATA TO ADDRESS 7 6 5 4 5
(HEX) T
3] 2) 0
DATO XXXXO0 ,
. :
6 BITS | WORb 0
DATO XXXX2 1
16 BITS WORD 1 WORD 0
WORD 2
DATO XxXXx4 i
16 BITS
WORD 1 WORD 0
WOHD 3 WORD 2
DATOM :)T(sxxo \ \SI%I TEEXTTEONDED
|
WORD 1 WORD 0 MAPPED UNIBUS
ADDRESS{MEMORY)
64 BITS >
} T [+] EMPTY
j |
DATO XXXX8 1
16 BITS WOHD 4
1
DATO _XXXXA ,
16 BITS
WORD § WOTD 4
WORD 6
DATO XXXXC '
1
6 BITS WORD 5 WORD 4
woaL: 7 WORD 6
DATO XXXXE SBI EXTENDED
EBITS ! WRITE TO
WORD § WORD 4 MAPPED UNIBUS
ADDRESS [MEMORY)
64 BITS >
EMPTY 0

Figure 9-6 UNIBUS Transfer To Memory
182

UNIBUS Subsystem

The BDP also stores the type of function and the state of each byte of
the data buffer (buffer state). The buffer state is transmitted as the SBI
mask bits during the BDP to SBI write cycle so that only the correct
bytes will be written into memory.

UNIBUS Data Transfers From Memory

As a UNIBUS device performs Memory Read operations (DATI) via a
BDP, the BDP tests the state of its data buffers. If the buffers do not
contain data for the UNIBUS transfer, the BDP will initiate an Extend
Read operation to memory. The BDP will then transfer data for the
current cycle to the UNIBUS, thereby completing the UNIBUS cycle,
store the remaining bytes in its buffers, and set the BNE bit. If the data
for the current UNIBUS cycle is available in the data buffers, then the
BDP will pass the data to the UNIBUS and complete the cycle. The
BDP will prefetch the next quadword of data (Extended Read Transfer)
after each UNIBUS access to the last word of a quadword-aligned
group. The Buffer Not Empty (BNE) bit is cleared by the BDP before
the prefeich and set when the Read Data returns, thereby indicating
the state of the BDP. Figure 9-7 illustrates the Buffered Data Path
transfer from memory to the UNIBUS.

Software Note:

Since the prefetch allows the possibility of the UBA crossing a page
boundary into nonexistent memory, resulting in a 100 usec timeout, it
is recommended that the software allocate an additional map register
following a block. This map register must be invalidated. When the
prefetch crosses this page boundary to the invalid map register, the
prefetch will be aborted immediately, thereby eliminating the 100 usec
timeout. The UBA does not record any UBA or SBI errors that may
occur during the prefetch operations since this is an anticipatory
function based on the next probable address. If an error does occur
then the prefetch will be aborted and the BDP will not be filled with
data. If the UNIBUS device accesses the same BDP again, then the
BDP to SBI read will be initiated and any errors that occur will be
logged at this time.

Byte Offset Data Transfers

The BDPs enable word-aligned UNIBUS devices (devices beginning
transfers on word boundaries and transferring an integral number of
words) to begin and end a block transfer at an ODD byte of SBI memo-
ry. To use this feature, the software will set the Byte Offset bit of the
map registers involved during the devices transfer.

183

UNIBUS Subsystem

BNE BIT
T
DATI 7 6 s SBI 0 (EMPTV)
ADDRESS XXXX0 > READ ! :
3 2 1 |
i 3 WORD 2 ,/
paTt | womo oan |
XXXX0 L WORD 1 I WORD 0
WORD
worD 3 WORD 2
DATIL 1
xxon 1 j WORD 0
WORD WORD 2
WOHD 3 WORD 2
DATI 1
XXXX4 WORD | WORD 0
WORD 3
WORD 3] WORD 2
DATI !
XXX X6 WO?D 1 WORD 0
T
LAST DATA WORD s8I
TRANSFER CAUSES READ 0
NEW SBI READ
/
7 WORD 6
DATI WORo READ
XXxx8 WORD 5 L WORD 4 Data
BNE BIT
.
wOoRD 7 WORD 6
DATI of t !
WORD 7 WORD 6
DATI L + !
XXXXC WORD $ l wo*oa
WORD 7 WORD 6
DATI ° j l
XXXXE WORD 5 ! wo»flw
5
7
i i SBl
} } ~» READ
| | {PREFETCH)
. !
(WORD 11 WORD 10 | Reap .
1
! WORD 9 WORD 8 e

Figure 9-7 UNIBUS Transfers From Memory

184

UNIBUS Subsystem

When the Byte Offset bit is set for a transfer using the BDPs, the BDP
will, in effect, increase the SBI memory address by one byte. The data
will apppear on the UNIBUS in the byte or word indicated by the
UNIBUS Address. The data will appear on the SBI shifted to the left
(increased) by one byte. The UNIBUS adapter will distribute the data,
and adjust the SBI address and byte mask so that the data will get to
or come from the correct memory location. This operation is transpar-
ent to the UNIBUS device.

Figure 9-8 shows the relative position of data being transferred
between a UNIBUS device and SBI memory. Figure 9-8 top shows the
relative positions without Byte Offset and Figure 9-8 bottom shows the
position with Byte Offset.

RELATIVE POSITION OF DATA BETWEEN UNIBUS AND SBI

UNIBUS SBI MEM
ADDRESS ADDRESS
SPACE SPACE

WITHOUT BYTE OFFSET

n m C 18

| k A 14
UBA

1 i 8 -+— 80P ——» | | 10
BO=0 | !

h 9 6 n m | C

f e 4 | k i i 8

d c |2 h g f e |4

b a | O d c b s |0

WITH BYTE OFFSET

n m | C 18

| k | A 14
UBA

i i B BDP — 10
BO=1

h g |6 n m | C

t e |4 k j i h 8

SB! = S
4 R 2 I ADD LAI\SISU g f e d a

Ll
b a |O 1BYTE L ¢ b o 0

EACH LETTERED BOX REPRESENTS 1 BYTE (8 BITS)

Figure 9-8 Relative Position Of Data Between UNIBUS And SBI

185

UN!IBUS Subsystem

Purge Operation
The purge operation is a software-initiated function of the UBA in
which the Buffered Data Paths are purged of data and initialized. The
Buffered Data Path used by a UNIBUS device must be purged at the
completion of the device’s transfer. The software initiates the purge by
writing a one to the BNE bit of the data path register (DPR) corres-
ponding to the Buffered Data Path to be purged. The UBA will perform
the following, depending on the transfer function that was being
performed by the BDP:

1. Writes to memory. If there are any remaining bytes of data in the
BDP, this data will be transferred to memory. The UBA will then
clear the BNE bit, function bit and buffer state bits and leave the
BDP in its initialized state. If an error occurs during this transfer,
the Buffer Transfer Error bit of the data path register will be set,
indicating that the data was not successfully transferred to memo-
ry. Software must clear this bit before the BDP can be used again.

If there were no data remaining in the Buffered Data Path, then the
buffer is left in its initialized state.

2. Reads from memory. The UBA will initialize the BDP by clearing
the BNE bit of the DPR.

Longword-Aligned 32-Bit Random Access Mode

The UNIBUS adapter can be used in a mode so that a UNIBUS device
can operate on random longword-aligned 32-bit quantities without
requiring purge operations. This mode is selected by setting the long-
word access enable (LWAE) bit 26 of the map register corresponding
to the UNIBUS transfer. A Buffered Data Path must be selected for this
operation.

In this mode, a UNIBUS device must first operate on the low order
word of the longword and then the high order word. An operation is
considered to be a read from memory (DATI) or a write to memory
(DATO) or a read/write (DATI/DATO). The UNIBUS DATIP function
code is not valid for transfers using Buffered Data Paths, and any
device performing the DATIP through a Buffered Data Path will receive
an SSYN timeout (NXM).

The Buffered Data Path will not perform the prefetch operation when
this mode is enabled, thereby allowing for random access of long-
word-aligned 32-bit quantities. This mode eliminates the need for the
purge operation at the completion of the transfer, providing the UNI-
BUS device operates on both words of the longword and operates on
them in order (i.e., low word, then high word).

Maximum throughput in this mode is approximately 1.7 Mbyte/sec as
illustrated in Figure 9-9.

186

UNIBUS Subsystem

FIRST WORD TO BDP SECOND WORD TO BDP TO SBI
[¢————800 ns 2.6 US MIN—————— ™
REC REC REC

MSYN MSYN MSYN
3.4 US MIN. PER WORD (4 BYTES) = 1.17 MBYTE/SEC. MAX. .

Figure 9-9 Random Access Mode Throughput

The operation of the UBA for the longword-aligned 32-bit access
mode is determined by the function (DATI, DATO/DATOB) and ad-
dress (A1, AD) received from the UNIBUS and the state of the buffer
not empty (BNE) bit of the data path register, corresponding to the
Buffered Data Path being used for this operation, within the UBA.
(BNE SET = buffer not empty, BNE CLEAR = buffer empty).

The following statements summarize the operation of the UBA for the
longword-aligned 32-bit random access mode of operation.

DATI Functions
1. SBI reads will ocour when a DAT! operation is received and the

Buffered Data Path is empty (BNE = 0).

2. The BNE bit will be set in response to a successful SBI read
generated by a DATI operation to the low order word (A1 = 0).
Longword data from memory is stored in the Buffered Data Path.

3. The BNE bit will be cleared by a DATI operation to the high order
word (A1 =1).

4. If the BNE bit is set, data from the Buffered Data Path will be
returned to the UNIBUS device.

DATO/DATOB Functions
1. The BNE bit will be set by a DATO or DATOB operation. The data

from the UNIBUS device will be stored in the Buffered Data Path
and the byte mask bit is set within the data path register to
indicate the bytes or words that have been written by the UNIBUS
device.

2. SBI writes will occur when a DATO operation occurs to the high
order word or when a DATOB operation occurs to the high order
byte. The bytes or words that were written (i.e., those for which the
byte mask bits are set) are written into main memory.

3 The BNE bit will be cleared after a SBI write operation.

187

UNIBUS Subsystem

The UBA operations per UNIBUS access, as a function of BNE and
received UNIBUS function and address for this mode of operation are:

PRESENT NEXT
BNE BNE
STATE FUNCTIONA1,A0 UBA OPERATIONS STATE
0 DATI 0 X SBIREAD,RETURN LOW

WORD, STORE DATA 1
0 DATI 1 X SBI READ, RETURN HIGH

WORD 0
1 DATI 0 X RETURN LOW WORD 1
1 DATI 1 X RETURN HIGH WORD 0
0 DATO 0 X STORE LOW WORD 1
0 DATO 1 X STORE HIGH WORD,SBI

WRITE 0
1 DATO 0 X STORE LOW WORD 1
1 DATO 1 X STORE HIGH WORD,SBI

WRITE 0
0 DATOB 0 0 STOREBYTEO 1
0 DATOB 0 1 STOREBYTE 1 1
0 DATOB 10 STOREBYTE2 1
0 DATOB 11 STORE BYTE 3,88l

WRITE 0
1 DATOB 0o STOREBYTEO 1
1 DATOB 0 1 STOREBYTE 1 1
1 DATOB 10 STOREBYTE 2 1
1 DATOB 11 STORE BYTE 3,SBI

WRITE 0
0 DATIP X X UBA DOES NOT

RESPOND (NXM TO

UNIBUS DEVICE) NO

CHANGE 0
1 DATIP X X UBA DOES NOT

RESPOND (NXM TO

UNIBUS DEVICE) NO

CHANGE 1

To enable this mode of operation, Bit 26 of the map register has been
changed to the Longword Access Enable (LWAE) bit. This bit when set
and when a buffered data path is selected, will enable the longword-
aligned 32-bit random access mode. It is a read/write bit and is
cleared on initialization.

188

UNIBUS Subsystem

Programming the UBA for longword-aligned random access mode
requires loading the map registers with the following data:

BIT<31> MRV Map register valid, must be set.

BIT<30:27> Must be zero.

BIT<26> LWAE Longword access enable, must be set.
ignored during Direct Data Path
transfers.

BIT<25> BO Byte offset, must be zero.

BIT<24:21> DPDB Data path designator bits, mustuse a
buffered data path, BDP1-BDP15. LWAE bit
is igniored when DPDB = 0 (Direct Data
Path).

BIT<20:00> PFN Page frame number, SBI page address.

The allowed UNIBUS sequences for this mode of operation are:

A1,A0
1. DATI 0 0 SBIREAD—Lowword is returned to UNI-
BUS device. Both words are stored in BDP.
BNE bit is set.
DATI 1 0 Highword from BDP is returned to UNIBUS
device. BNE is cleared.

2. DATO 0 0 Low word is written to BDP. BNE bit is set.

DATO 1 0 SBIWRITE—Highword is written to BDP—
then low word and high word are trans-
ferred to memory. BNE bit is cleared.

3. DATOB 0 0 Byte0iswrittento BDP, BNE is set.
DATOB 0 1 Byte 1 is written to BDP, BNE is set.
DATOB 1 Q0 Byte2iswritten to BDP, BNEis set.
DATOB 11 Byte 3 is written to BDP, SBI WRITE

4. DATI 0 0 SBI READ-Low word is returned to UNI-

BUS device. Both words are stored in BDP.
DATO 0 0 Low word of BDP is written by
UNIBUS device.

DATI 10 High word from BDP is returned to UNIBUS
device.
DATO 1 0 SBIWRITE-High word of BDP is written by

UNIBUS device and modified longword
is returned to the memory.

189

UNIBUS Subsystem

Additional BDP Software Information

1. For purge operations in which data is transferred to memory, the
SBI transfer takes about 2 usec. The UBA will not respond to Data
Path Register Read during this period (Busy Confirmation), thus
preventing a race condition when testing for the BNE bit to be
cleared.

2. The Buffer Transfer Error bit (BTE) of the data path registers
indicates that an error occurred during an operation involving a
buffered data path. Once this bit is set, UNIBUS transfers using
the BDP will be aborted until the bit is cleared by the software. The
purge operation does not clear the BTE bit.

3. Any purge operations initiated by the software to BDPs for which
the purge or initialization is not required are treated by the UBA as
a NO-OP.

4. A purge operation to Data Path Register 0 (Direct Data Path) is
treated by the UBA as a NO-OP.

INTERRUPTS
SBI interrupts can be generated from two sources within the UNIBUS
subsystem: either from a UNIBUS device or from the UNIBUS adapter.

interrupts from the UNIBUS can occur at any one of the four request
levels, as determined by the UNIBUS BR lines. Interrupts from the
UNIBUS adapter will occur at one assigned request level. This level is
assigned by backplane jumper.

The UNIBUS adapter contains one request sublevel. The UBA will
therefore require four of the 64 possible SBI interrupt vectors (1 for
each of the 4 required levels). The four vectors will each “point” to a
UBA Service Routine corresponding to an interrupt request level.
Each UBA service routine must read and test the BR Receive Vector
Register corresponding to the level of interrupt:

BRRVR 7 for Req Level 7
BRRVR 6 for Req Level 6
BRRVR 5 for Req Level 5
BRRVR 4 for Req Level 4

From the contents of the BRRVRs, the UBA service routine will deter-
mine whether the interrupt was generated from within the UBA Status
Register, from the UNIBUS device,or from both. The UBA service rou-
tine can then service the interrupt as determined by testing the con-
tents of the BRRVR.

180

UNIBUS Subsystem

Bit <31> Bits <15:00>
0 0 No service required.

0 \ UNIBUS service as indicated by
vector V received from the
UNIBUS device (UNIBUS device
Interrupt Service Routine).

1 0 UNIBUS Adapter service required.
Read configuration register and
status register to determine
the service required.

1 \ UNIBUS and UNIBUS Adapter service
required.
1. Save the vector V (received
from the UNIBUS device).
2. Read UBA configuration regis-
ter and status register.
3. Perform UBA service as indica-
ted by configuration and
status register.)
4. Index into UNIBUS device ser-
‘ vice routine with vector V.
V is the vector field of the BRRVR received from the UNIBUS device.
Zero is the null vector indicating that a vector was not received from
the UNIBUS device.
Software Note: The zero vector resulting from an SB! Interrupt Sum-
mary Read must be reserved and interpreted as a Passive Release
Condition.

Interrupts From The UNIBUS

The UBA will translate the UNIBUS BR interrupts to SBI request inter-
rupts, providing the Interrupt Fielder Switch (IFS) bit and the BR Inter-
rupt Enable (BRIE) bit of the UBA control register are set. The asser-
tion of the SBI request lines will initiate an SBI interrupt transaction
vectoring to the UBA interrupt service routine. This routine will then
read the BR Receive Vector Register (BRRVR) corresponding to the
jevel of the interrupt. On receiving the read BRRVR command, the
UBA will test that the following conditions are true:

1. The UNIBUS BR line corresponding to the BRRVR number is as-
serted.

2 The BRRVR does not contain an already valid vector.
3. UNIBUS AC LO is not asserted.
If all of the three conditions are met, then the UBA will issue the

191

UNIBUS Subsystem

UNIBUS Bus Grant and complete the UNIBUS interrupt transaction.
The BRRVR is loaded with the interrupt vector by the successful com-
pletion of the interrupt transaction. The device vector received during
the transaction will be sent as the read data to the BRRVR Read Com-
mand. If a UBA interrupt is active then the vector will be sent as a
negative quantity (bit 31 sent as a one).

The BRRVR is cleared by the successful completion of the SBI Read
Data Cycle, otherwise the vector is saved and the BRRVR remains full.

If conditions 1,2,3 are not met then the contents of the BRRVR (either
the stored vector, from a previously failing SBI read data cycle, or
zero) will be sent as read data. If a UBA interrupt is active then bit 31
will be sent as a one.

The following sequence is performed for UNIBUS device interrupts:

1. Abusrequestline is asserted by the UNIBUS device.

2. The UNIBUS adapter asserts the SBI request line, corresponding
to the UNIBUS BR line, to initiate the interrupt transaction in the
CPU.

3. When the interrupt summary read corresponding to the above
request level is seen by the UNIBUS adapter, the UNIBUS adapter
asserts the request sublevel assigned to the UBA.

4. The CPU will then transfer control to the UNIBUS adapter
interrupt service routine.

5. The UNIBUS interrupt service routine will execute aread to the BR
receive vector register corresponding to the level of interrupt.

6. The UNIBUS adapter will issue the UNIBUS Bus Grant corres-
ponding to the level of the interrupt being serviced providing the
foliowing conditions are met: Adapter interrupt is not pending; BR
line corresponding to the BRRVR is asserted; the BRRVR does not
contain a previous vector.

7. The UNIBUS interrupt transaction is completed, the vector is
loaded into the corresponding BRRVR, and the vector is given to
the UNIBUS Interrupt Service Routine as a Read DATA.

8. The BRRVR will be cleared when the ACK Confirmation is re-
ceived for the Read DATA.

9. The UNIBUS interrupt service routine will then dispatch to the
UNIBUS device service routine (or service the UBA) as indicated
by the received interrupt vector.

192

UNIBUS Subsystem

NOTE
The UNIBUS adapter interrupt service routine
(UBASR) is the routine that will interface the CPU
interrupt process to the individual UNIBUS device
service routines. This routine will provide the addi-
tional level of dispatch required for UNIBUS-initiated
interrupts.

Failure To Complete The UNIBUS Interrupt Transaction

If for some reason, the UNIBUS initiated an interrupt transaction and
then fails to complete (i.e., passive release), the interrupt vector will
not be loaded into the interrupt vector register. The following mecha-
nism will allow the UNIBUS interrupt service routine to gracefully exit.

The idle state of the BRRVR is zero. If, when reading the interrupt
vector register, the UNIBUS interrupt service routine receives the zero
vector, it will log an error (if desired) and return from the service
routine.

Once successfully loaded, the BRRVR will maintain the interrupt vec-
tor until an ACK confirmation to the BRRVR Read Data has been
received, or an Adapter Init sequence is initiated. If the ACK
confirmation is not received for the Read Data then the BRRVR full bit
will not be cleared, and subsequent reads to that BRRVR will result in
the stored vector being returned for the Read Data until ACK is re-
ceived-for the Read Data.

interrupts From The UNIBUS Adapter To The SBI

When the UNIBUS adapter interrupt enable bit is set, and a condition

warranting an interrupt occurs in the UNIBUS Adapter, the following

sequence occurs:

1. The UNIBUS adapter asserts its assigned request line.

2. When the Interrupt Summary Read, corresponding to the above
request level, is seen by the UNIBUS adapter, the request
sublevel assigned to the UNIBUS adapter is sent to the CPU as an
Interrupt Summary Response.

3. With this information, request level and request sublevel, the CpPU
can dispatch to the UNIBUS adapter service routine, which will
then read the BR Receiver Vector Register corresponding to the
level of interrupt. The BRRVR will contain a negative value (bit 31
set).

4. The UBA service routine will detect the negative value and branch
to a routine that will read the Configuration Register and Status
Register to determine the service required.

193

UNIBUS Subsysiem

The request line will remain asserted until all conditions (bits of the
UNIBUS adapter status register) have been cleared by the software.

UNIBUS ADAPTER (NEXUS) REGISTER SPACE

Each NEXUS register address space occupies 16 pages (512
bytes/page) of Synchronous Backplane Interconnect 1/0 address
space. The address location of the UNIBUS adapter is determined by
the transfer request priority number assigned to the adapter. The
transfer request number is determined by electrical jumpers on the
NEXUS backplane and may vary from one system configuration to the
next.

Table 9-8 illustrates the physical base address and SBI base address
for a NEXUS assigned to any one of the SBI transfer request numbers.

Table 9-8 Transfer Number Address Assignments

SBI TRANSFER ADDRESS BASE
REQUEST NUMBER PHYSICAL(HEX)

0 20000000

1 20002000

2 20004000

3 20006000

4 20008000

5 2000A000

6 2000C000

7 2000E000

8 20010000

9 20012000

10 20014000

11 20016000

12 20018000

13 2001A000

14 2001C000

15 2001E000

Table 9-9 lists each of the UNIBUS Adapter registers and its associat-
ed physical address offset.

Table 9-9 UNIBUS Adapter Register Address Offset

UNIBUS BYTE OFFSET
ADAPTER REGISTER (PHYSICAL HEX)
Configuration Register 000

UNIBUS Adapter Control Register 004

194

UNIBUS Subsystem

UNIBUS Adapter Status Register 008
Diagnostic Control Register 00C
Failed Map Entry Register 010
Failed UNIBUS Address Register 014
Failed Map Entry Register 018
Failed UNIBUS Address Register 01C
Buffer Selection Verification Register 0 020
Buffer Selection Verification Register 1 024
Buffer Selection Verification Register 2 028
Buffer Selection Verification Register 3 02C
Buffer Receive Vector Register 4 030
Buffer Receive Vector Register 5 034
Buffer Receive Vector Register 6 038
Buffer Receive Vector Register 7 03C
Data Path Register 0 040
Data Path Register 1 044
Data Path Register 14 078
Data Path Register 15 07C
Reserved 080
Reserved 7EC
Map Register 0 800
Map Register 1 804
Map Register 494 EB8
Map Register 495 EBC
Reserved ECO
Reserved EFC

The offset within the UNIBUS Adapter Address Space is shown for
each of the UNIBUS adapter registers with respect to the physical
address. As described in Table 9-9, the addresses of all other UNIBUS
Adapter Registers are relative to the configuration register address by

195

UNIBUS Subsystem

an offset. The base address of the configuration register is the physi-
cal base address described in Table 9-8. Therefore, the byte offset for
the configuration register in Table 9-9 is 000.

SBI ADDRESSABLE UNIBUS ADAPTER REGISTERS

The UNIBUS adapter registers occupy eight pages of the SBI I/0
address space. These registers fall into four categories: map registers,
data path registers, interrupt vector registers and control and status
registers. The UNIBUS adapter registers are all 32-bit registers and
can only be written as longwords. These registers will, however, re-
spond to byte or word read commands. These registers will also re-
spond to the Interlock Read—Interlock Write sequence but will not
affect the interlock of the SBI. The following sections discuss the func-
tion and content of each of the UNIBUS adapter registers.

Configuration Register (CNFGR)

The configuration register contains the SBI fault bits, the UNIBUS
adapter and UNIBUS environment status bits, and the UNIBUS adap-
ter code. This register is required to interface with the SBI. Figure 9-10
illustrates the configuration register.

313029282726 2322 1817 16 7 65 43210

UNIBUS ADAPTOR CODE
UNIBUS INIT COMPLETE
UNIBUS POWER DOWN
UNIBUS INIT ASSERTED
ADAPTOR POWER UP
ADAPTOR POWER DOWN
TRANSMIT FAULT
MULTIPLE TRANSMITTER FAULT
INTERLOCK SEQUENCE FAULT
UNEXPECTED READ DATA FAULT
WRITE SEQUENCE FAULT
PARITY FAULT

Figure 9-10 Configuration Register Bit Configuration

The contents of the Configuration Register are as follows:

Bits <31:27> SBl faults

These bits are set when the UNIBUS adapter detects specific fault
conditions on the SBI. These bits cannot be set once FAULT has been
asserted. The negation of FAULT and the disappearance of the fault
conditions clear the bits. The setting of any of the bits <31:26> will
Cause the UNIBUS adapter to assert the FAULT signal on the SBI.

196

UNIBUS Subsystem

Bit <31> Parity Fault (PARFLT)
PAR FLT is set when the UNIBUS adapter detects an SBl parity error.

Bit <30> Write Sequence Fault (WSQ FLT)

WSQ FLT is set when the UNIBUS adapter receives a Write Masked,
Extended Write Masked, or interlock Write Masked command which is
not immediately followed by the expected write data.

Bit <29> Unexpected Read Data Fault (URD FLT)

URD FLT is set when the UNIBUS adapter receives data for which a
Read Masked, Extended Read, or Interlock Read Masked command
has not been issued.

Bit <28> Interlock Sequence Fault (ISQFLT)

1SQ FLT is set when an Interlock Write Masked command or a UNIBUS
address space is received by the UNIBUS adapter without a previous
Interlock Read Masked command.

Bit <27> Multiple Transmitter Fault (MXT FLT)

MXT FLT is set when the UNIBUS adapter is transmitting on the SBI
and the IB bits transmitted by the UNIBUS adapter do not match those
latched from the SBI. The lack of correspondence indicates a multiple
transmitter condition.

Bit <26> Transmit Fault (XMT FLT)

XMT FLT is set if the UNIBUS adapter was the transmitter during a
detected fault condition. When the software subsequently reads the
configuration and status registers of each of the NEXUSs on the SBi in
order to identify the source of the fauit, the UNIBUS adapter will be
identified as that source if bit 26 is set.

Bits <25:24> Reserved and Zero

Bits<23,22,18,17,16> are UNIBUS Subsystem Environmental Status
Bits. If any of these bits are set and the Configuration Interrupt Enable
bit (CNFIE) of the control register is also set, then the UNIBUS adapter
will initiate an SBI interrupt request at the level assigned to the UNI-
BUS adapter.

Bit <23> Adapter Power Down (AD PDN)

This bit is set when the UNIBUS Adapter power supply asserts AC LO.
it is cleared by writing a one to the bit location or when the Adapter
Power Up bit is set.

Bit <22> Adapter Power Up (AD PUP)

This bit is set by the negation of power supply AC LO. ltis cleared by
writing a one to the bit location or by the setting of the Adapter Power
Down bit.

Bits <21:19> Reserved and Zero

197

UNIBUS Subsystem

Bit <18> UNIBUS INIT Asserted (UB INIT)

The assertion of UNIBUS Init will set this bit. It is cleared by the setting
of the UNIBUS Initialization Complete bit (UBIC) or by the writing of a
one to this bit location.

Bit <17> UNIBUS Power Down (UB PDN)

This bit is set when UNIBUS AC LO is asserted. It indicates that the
UNIBUS has initiated a power down sequence. The setting of the
UNIBUS initialization complete bit or writing a one to this location will
clear UB PDN.

Bit <16> UNIBUS Initialization Complete (UBIC)

This bit is set by a successful completion of a power up sequence on
the UNIBUS. It is the last of the status bits to be set during a UNIBUS
adapter initialization sequence, and it can be interpreted to mean that
the UNIBUS adapter and the UNIBUS are ready. The assertion of
UNIBUS AC LO or UNIBUS INIT, or the writing of a one to this bit
focation will clear UBIC.

Bits <15:08> Reserved

Bits <7:0> Adapter Code
These bits define the code assigned to the UNIBUS adapter. Table 9-
10 shows the bit assignment.

Table 9-10 Adapter Code Bit Assignment

BIT NUMBER 71615 alal2air]o
ADoRESs | 0 [0 | 1] o1 o ,
SPACE i

0 oo

| o | 1

2 1| o

3 1o

Adapter code bits 1 and 0 are determined by backplane jumpers and
indicate the starting address of the UNIBUS Address space associated
with the UNIBUS Adapter, as shown in Table 9-11.

198

UNIBUS Subsystem

Table 9-11 Selectable UNIBUS Starting Addresses

UNIBUS STARTING ADDRESS OF THE UNIBUS
ADDRESS ADDRESS SPACE, BASE 16 {PHYSICAL
SPACE BYTE ADDRESS)
0 20100000(16)
1 20140000 (16}
2 20180000(16)
3 201C0000(16)

Note that the lowest two bits of the Configuration Register (Vb and Va)
correspond to SBI address bits 16 and 17.

Control Register (UACR)

The UNIBUS Adapter Control Register enables the software to control
operations both on the UNIBUS Adapter and on the UNIBUS. All bits
except for the Adapter INIT bit are set by writing a 1 and cleared by
writing a 0 to the bit location. The Adapter INIT bit is set by writing a
one to the bit location and is self clearing. Figure 9-11 shows the
Control Register bit configuration.

313029282726 6 5 43210

413|2|1}0

MAP REGISTER
DISABLE BITS INTERRUPT FIELD SWITCH

BR INTERRUPT ENABLE
UNIBUS TO SBI ERROR INTERRUPT ENABLE
SBI TO UNIBUS ERROR INTERRUPT ENABLE
CONFIGURATION INTERRUPT ENABLE
UNIBUS POWER FAIL

ADAPTOR INIT

Figure 9-11 Control Register Bit Configuration

The contents of the control register are as follows:
Bit <31> Reserved and zero.

Bits <30:26> Map Register Disable <4:0> (MRD)

This field of five read/write bits disables map registers in groups of 16,
according to the binary value contained in the field. The MRD bits
prevent double addressing if UNIBUS memory is used. This field is
loaded with a binary value equal to the number of 4K word units of
memory attached to the UNIBUS, as shown in Table 9-12.

199

UNIBUS Subsystem

Table 8-12 Map Register Disable Bit Functions

MRD <4:0> AMOUNT OF UNIBUS MAP REGISTERS
MEMORY (WORDS) DISABLED

00000 0K NONE
00001 4K 0 TO 15 (10)
00010 8K 0 1O 31 (10)
00011 12K 0 7O 47 (10}
o 120K 0 TO 480 (10}
i 124K 0TO 495 (10)

DMA transfers to addresses controlled by disabled map registers are
not recognized by the UNIBUS adapter. No error bits are set and no
transfers are initiated. However, SBI access to disabled map registers
is permitted. The MRD field is initialized as zero, with all map registers
enabled.

Bit <25:07> Reserved and Zero

Bit <6> Interrupt Field Switch (IFS)

This bit determines whether interrupts from a UNIBUS device on the
UNIBUS outside of the UNIBUS adapter will be fielded by the VAX-11
CPU or passed to the UNIBUS inside of the UNIBUS adapter. If the bit
is set (1), then the interrupt will be passed to the SBI, if the BR Interrupt
Enable bit of the control register is set. If the bit is cleared (0), then the
interrupt will be passed to the UNIBUS inside of the UNIBUS adapter,
where it is in effect ignored.

The power up state of the IFS bit is 0. The bit is also cleared by the
adapter unit and SBI dead signais. This bit and BRIE must be set by
the software to receive UNIBUS device interrupts.

Bit <5> Bus Request Interrupt Enable (BRIE)

When this bit is set it allows the UNIBUS adapter to pass interrupts
from the UNIBUS to the VAX-11 CPU. The power up state of the BRIE
bit is 0. The bit is aiso cleared by the Adapter INIT, SBI UNJAM, and
8Bl Dead signals. This. bit and IFS must be set by the software to
receive UNIBUS device interrupts.

Bit <4> UNIBUS to SBI Error Field Interrupt Enable (USEFIE)

The USEFIE bit enables an interrupt request to the VAX-11 CPU when-
ever any of the following Status Register bits is set on a DMA transfer.
RDTO (Read Data Time Out)

RDS (Read Data Substitute)

200

UNIBUS Subsystem

CXTER (Command Transmit Error)

CXTO (Command Transmit Time Out)

DPPE (Data Path Parity Error)

IVMR (Invalid Map Register)

MRPF (Map Register Parity Failure)

The power up state of the USEFIE (UNIBUS Error Field Interrupt
Enable) bit is zero. SBI UNJAM and Adapter Init will clear the bit.

Bit <3> SBI To UNIBUS Error Field Interrupt Enable (SUEFIE)

If this bit is set, the UNIBUS adapter will generate interrupt requests to
the VAX-11 CPU when one of the two bits in the SB! to UNIBUS data
transfer error field is set.

UBSTO (UNIBUS Select Time Out)

UBSSYNTO (UNIBUS Slave Sync Time Out)

The power up state of this bit is zero. SBI UNJAM, SBI Dead, and
Adapter INIT will clear the bit.

Bit <2> Configuration Interrupt Enable (CNFIE)

if this bit is set, the UNIBUS adapter will initiate an interrupt request to
the VAX-11 CPU whenever any one of the environmental status bits of
the configuration register is set.

AD PDN (Adapter Power Down)

AD PUP (Adapter Power Up)

UB INIT (UNIBUS INIT Asserted)

UB PDN (UNIBUS Power Down)

UBIC (UNIBUS Initialization Complete)

The power up state of this bit is set (1). The bitis cleared by Adapter
INIT, SBI UNJAM, and SBi Dead.

Bit <1> UNIBUS Power Fail (UPF)

When this bit is set, it initiates a power fail sequence on the UNIBUS,
asserting AC LO, DC LO, and INIT. The software uses this bit to initial-
ize the UNIBUS. The UNIBUS will remain powered down as long as
UPF is set. Thus the software can initialize the UNIBUS by setting and
then clearing the UPF bit.

Bit <0> Adapter INIT (ADINIT)

When this bit is set it will completely initialize the UNIBUS adapter and
the UNIBUS. The map registers, the data path registers, the status
register, and the control register wilt be cleared. The UNIBUS adapter
will initialize all of its control logic, and will generate a power fail se-
quence on the UNIBUS. The adapter initialization sequence takes only
500 usec to complete, while the UNIBUS power fail sequence requires
25 msec.

Only the configuration register and the diagnostic control register can
be read during the adapter initialization sequence. And only the con-

201

UNIBUS Subsystem

figuration register, the diagnostic control register, and the control reg-
ister can be written during the adapter initialization sequence.

Once the sequence has been completed, all UNIBUS adapter registers
can be accessed. However, the UNIBUS cannot be accessed until the
UNIBUS initialization sequence has been completed as well. The soft-
ware can test for this condition by reading the UBIC bit of the configu-
ration register, or by setting the configuration interrupt enable bit of
the control register and looking for the interrupt generated by the
setting of the UBIC bit. Note that the assertion of UNIBUS INIT (UBIN-
IT) can also initiate an interrupt . The Adapter INIT bit can be set by
writing a one to the bit location, and it is self-clearing.

Status Register (USAR)

The UNIBUS Adapter Status Register contains program status and
error information. Bits <27:24> are read only bits which are set and
cleared by operations within the UNIBUS adapter. Bits <10:00> can
be read and cleared by writing a one to the appropriate bit location.
Specific conditions which occur on the UNIBUS adapter will set these
bits. Writing a zero has no effect on any of the bits. Figure 9-12 shows
the Status Register bit configuration.

31 27262524 10898 76 54 3210

BRRVR 7 FULL
BRRVR 6 FULL
BRRVR & FULL
BRRVR 4 FULL

READ DATA TIMEOUT
READ DATA SUSTITUTE
CORRECTED READ DATA
COMMAND TRANSMIT ERROR
COMMAND TRANSMIT TIMEQUT
DATA PATH PARITY ERROR
INVALID MAP REGISTER

MAP REGISTER PARITY FAIL
LOST ERROR BIT

UNIBUS SEL TIMEOUT

UNIBUS SSYN TIMEOUT

Figure 9-12 Status Register Bit Configuration

202

UNIBUS Subsystem

The contents of the status register are:
Bits <31:28> Reserved and Zero

Bits <27:24> BR Receive Vector Register Full

These bits indicate-the state of the SBI addressable BR receive vector
registers. Each bit is set when the interrupt vector is loaded into the
corresponding BRRVR during a UNIBUS interrupt transaction, provid-
ing that the SBI processor is fielding UNIBUS device interrupts.

Each bit is cleared by the successful completion of a read data
transmission following a read BRRVR command. The software will see
these bits set only after a read data failure has occurred during the
execution of the read BRRVR command, and the UNIBUS interrupt
vector has been saved by the UNIBUS adapter.

Bit 27=BRRVR 7 Fuli
Bit 26=BRRVR 6 Full
Bit 25=BRRVR 5 Full
Bit 24=BRRVR 4 Full

Bits <23:11> Reserved and Zero
The remaining bits identify specific data transfer errors. They are read
and write-one-to clear bits.

Bit <10> Read Data Time Out (RDTO)

The UNIBUS Adapter sets the Read Data Time Out bit when the follow-
ing conditions are met: When a UNIBUS device has initiated a DMA
read transfer, when the UNIBUS adapter has successfully transmitted
a read command on the SBI, and the SBI memory has not returned the
requested data within 100 usec, and when the UNIBUS device has not
timed out. Note that the normal UNIBUS timeout is 10-20 usec, and
that after 10-20 usec, the UNIBUS device will set its nonexistent mem-
ory bit. Thus, the Read Data Time Out bit will be set on the UNIBUS
adapter status register only if the UNIBUS device timeout function is
inoperative, or takes more than 100 usec.

Bit <9> Read Data Substitute (RDS)

This bit is set if a read data substitute is received in response to a
UNIBUS to SBI read command (DMA read transfer). No data will be
sent to the UNIBUS device, and when the device timeout occurs, the
nonexistent memory bit will be set within the UNIBUS device.

Bit <8> Corrected Read Data (CRD)

The UNIBUS adapter sets this bit when it receives corrected read data
in response to an SBl read command during a DMA read transfer. The
setting of this bit has no effect on the completion of the UNIBUS
transfer.

203

UNIBUS Subsystem

Bit <7> Command Transmit Error (CXTER)

The UNIBUS adapter sets this bit when it receives an error confirma-
tion in response to an SBI command transmission during a DMA
transfer.

Bit <6> Command Transmit Timeout (CXTO)

This bit is set when a command transmission times out during a UNI-
BUS to SBI data transfer or during a BDP to SBI write or purge.

Note that the normal UNIBUS timeout is 10 usec, which will resuit in
the UNIBUS device setting its nonexistent memory bit and will also
abort the UBA to SBI transfer. The CXTO bit will therefore only be set
for a UNIBUS to SBI transfer if the device’s timeout mechanism is
inoperative. The UBA will, however, attempt to perform a BDP to SBI
write or purge operation for the full 100 usec timeout period if busy or
no response confirmation is received, thereby setting the CXTO bit.
The bit is not set for a prefetch operation since the prefetch works by
anticipated addresses (i.e., the next address) and any errors resulting
from the prefetch are considered to be invalid.

Bit <5> Data Path Parity Error (DPPE)

This bit is set when a parity error occurs in the Buffered Data Path
during either a UNIBUS to BDP DATI, a BDP to SBI write, or a purge.
Note that during a purge operation the address to be mapped is also
obtained from the BDP and it is possible for a parity error to occur
when fetching the address from the BDP. This parity error will also set
the DPPE bit and abort the SBI transfer that would have taken place.
Also note that any condition that sets the DPPE bit will also set the
buffer transfer error bit in the DPR of the Buffer Data Path in which the
error occurred, thereby aborting any SBI transfers in progress and
any future UNIBUS transfers through that BDP untif the buffer transfer
error is cleared.

Bit <4> Invalid Map Register (IVMR)

The UNIBUS adapter sets this bit during a DMA transfer or purge
operation when the UNIBUS address points to a map register which
has not been validated by the software, or when the DMA transfer
crosses an SBI page boundary for which the map register has not
been validated.

Bit <3> Map Register Parity Failure (MRPF)

This bit is set with the occurrence of a map register parity failure when
a UNIBUS address is being mapped to an SBI address on a DMA
transfer operation or a purge operation.

Seven of the bits just listed (RDTO, RDS, CXTER, CXTO, DPPE, IVMR,
and MRPF) form an error-locking field. If any one of these bits is set,
the field is locked until the bit indicating the error is cleared. The Failed

204

UNIBUS Subsystem

Map Entry Register (FMER) is also locked and unlocked with this field.
And the setting of any of these bits will cause the UNIBUS adapter to
initiate an interrupt request if the interrupt enable bit for the UNIBUS to
SBI data transfer error field (USEFIE) in the control register is set.

Bit <2> Lost Error Bit (LEB)

The UNIBUS adapter sets this bit if the locking error field is locked and
another error within this field occurs. The lost error bit does not initiate
an interrupt request.

Bit <1> UNIBUS Select Time Out (UBSTO)

The UNIBUS adapter sets this bit if it cannot gain access to the UNI-
BUS within 50 usec in the execution of a software initiated transfer
(SBI to UNIBUS transfer). When UBSTO is set it indicates that the
UNIBUS Adapter has issued NPR on the UNIBUS but has not become
bus master. This condition indicates the presence of a hardware prob-
lem on the UNIBUS. The UNIBUS may be inoperative, or one device
may be holding it for extended periods. Note that if the UNIBUS does
become inoperative, it may be possible to clear the problem with the
assertion of UNJAM on the SBI, by setting and clearing of the UNIBUS
power fail bit (control register bit 1) or by setting Adapter INIT (control
register bit 0).

Bit <0> UNIBUS Slave Sync Time Out (UBSSYNTO)

This bit is set when an SBI to UNIBUS ftransfer (software-initiated
transfer) times out during the data transfer cycle on the UNIBUS. The
timeout occurs after 12.8 usec. UBSSYNTO indicates a transfer failure
resulting when a nonexistent memory or device on the UNIBUS is
addressed.

The two bits just discussed, UBSTO and UBSSYNTO, form an SBI to
UNIBUS transfer error-locking field. They are set by the occurrence of
the conditions mentioned and cleared by writing a (1) to the bit loca-
tion. The setting of either bit will cause the UNIBUS adapter to make
an interrupt request on the SBI if the SBI to UNIBUS error interrupt
enable bit (SUEFIE) in the control register is set. The setting of either
UBSTO or UBSSYNTO will lock the failed UNIBUS address register
(FUBAR), thus storing the high 16 bits of the UNIBUS address
identified with the failure. The FUBAR will remain locked until the
UBSTO and UBSSYNTO bits are cleared.

Diagnostic Control Register (DCR)

The Diagnostic Control Register provides control and status bits which
aid in the testing and diagnosis of the UNIBUS adapter. The bits of this
register, when set, wiii defeat certain vital functions of the UNIBU
adapter. The DCR is therefore not intended for use during normal
system operation. Figure 9-13 shows the bit configuration of the DCR.

205

UNIBUS Subsystem

313029282726 242322 21 1918 1615 8 7 0

UNUSED UNUSED UNUSED

(- v J
SAME AS CONFIGURATION REGISTER BITS <23:00>

SPARE MICROSEQUENCER OK

DISABLE | DEFEAT
INTERRUPT | DATA
PATH
PARITY

DEFEAT
MAP
PARITY

Figure 9-13 Diagnostic Control Register Bit Configuration

Bit <31> Spare

This read/write bit has no effect on any UNIBUS adapter operation. It
can be set by writing a one and cleared by writing a zero to the bit
location. SBI Dead, Adapter INIT, and a power up sequence on the
UNIBUS adapter will clear this bit.

Bit <30> Disable Interrupt (DINTR)

When it is set, this bit will prevent the UNIBUS adapter from recogniz-
ing interrupts on the UNIBUS. It is useful in testing the response of the
UNIBUS adapter to the passive release condition during a UNIBUS
interrupt transaction. This bit is set by writing a one and cleared by
writing a zero to the bit location. SBI Dead, Adapter INIT, and the
power up sequence on the UNIBUS adapter will aiso clear DINTR.

Bit <29> Defeat Map Parity (DMP)

When it is set, this read/write bit will inhibit the parity bits of the map
registers from entering the map register parity checkers. The map
register parity generator checkers generate and check parity on eight
bit quantities. Each parity field (eight data bits and one parity bit) is
implemented so that the total number of ones in the field is odd.

For example, if bits <7:0> of a map register equal zero, then the parity
bit equals one. However, if the DMP bit is set, then the parity bit is
disabled and the parity checkers will see all zeros. This results in a
map register parity failure. Then, if the DMP bit is set, the parity check-
ers will see correct parity. Note, however, that if bits <7:0> of the map
register contain an odd number of ones, the generated parity bit will
be zero. The state of the DMP bit will therefore have no effect on the
parity resuit in this case.

When the integrity of the parity generator checkers is to be tested, the
map register must contain data so that at least one of the bytes con-

206

UNIBUS Subsystem

tains an even number of ones. The DMP bit, when set, will disable the
parity bit, and the map register parity failure can be detected during a
DMA transfer. SBI Dead, Adapter INIT, and the power up sequence on
the UNIBUS adapter will clear this bit.

Bit <28> Defeat Data Path Parity (DDPP)

The DDPP bit functions in the same way as the DMP bit. When it is set,
the DDPP bit will inhibit the parity bits of the data path RAM from
entering the parity checkers. The data path parity generator checkers
generate and check parity on eight bit data units. Each parity field
(eight data bits and one parity bit) is implemented so that the total
number of ones in the field is odd. When the integrity of the parity
generator checkers is to be tested through use of the DDPP bit, the
total number of ones in at least one of the bytes of data must be even.
With the parity bit disabled by the DDPP bit, a data path parity failure
will result during a DMA transfer via that buffered data path. SBI Dead,
Adapter INIT, and the power up sequence on the UNIBUS adapter will
clear the DDPP bit.

Bit <27> Microsequencer OK (MIC OK)

The MIC OK bit is a read-only bit which indicates that the UNIBUS
adapter microsequencer is in the idle state. The microsequencer will
enter the idle state after it has completed the initialization sequence or
once it has completed a UNIBUS adapter function.

The MIC OK bit can be used by diagnostics to determine whether or
not the microsequencer has completed a successful power up se-
quence and whether or not it is caught up in any loops. Note that SBI
dead, UNIBUS adapter power supply DC LO, and Adapter INIT force
the microsequencer into the initialization routine. Once the routine has
been completed and the microsequencer has entered the idle state,
MIC OK will be true (1).

Bits <26:24> Reserved and Zero
Bits <23:00> Same as bits <23:00> of the Configuration Register

Failed Map Entry Register (FMER)

The Failed Map Entry Register contains the map register number used
for either a DMA transfer or a purge operation which has resuited in
the setting of one of the following error bits of the status register:
IVMR, MRPF, DPPE, CXTO, CXTER, RDS, RDTO. This register is
locked and unlocked with the UNIBUS to SBI data transfer error field
of the status register. The contents of the FMER are valid only when
the register is loaded. The FMER is a read-only register. Attempts to
write to the FMER will result in an SBI error confirmation. No signals or
events will clear the register.

207

UNIBUS Subsystem

The software can read the FMER to obtain the map register number
associated with the failure. It can then read the contents of the failing
map register to determine the number of the data path which failed.

Figure 9-14 shows the bit configuration for the Failed Map Entry Regis-
ter.

31 9 8 0

UNUSED

“ v
Y

MAP REGISTER NUMBER

Figure 9-14 Failed Map Entry Register Bit Configuration

Bit <31:09> Reserved and Zero

Bits <08:00> Map Register Number (MRN)

These bits contain the number of the map register which was in use at
the time of a failure. Bits <08:00> correspond to bits <17:09> of the
UNIBUS address.

Failed UNIBUS Address Registers (FUBAR)

The FUBAR contains the upper 16 bits of the UNIBUS address trans-
lated from an SBI address during a previous software-initiated data
transfer. The occurrence of either of two errors indicated in the status
register will lock the FUBAR: UNIBUS Select Time Out (UBSTO) and
UNIBUS Slave Sync Time Out (UBSSYNTO). When the error bit is
cleared, the register will be unlocked.

The FUBAR is a read-only register. Attempting to write to the register
will result in an error confirmation. No signals or conditions will clear
the register. Figure 9-15 shows the bit configuration of the FUBAR.
The contents of the FUBAR are listed below.

31 16 15 [

UNUSED

— J

V”
FAILED UNIBUS TO SBI ADDRESS
UNIBUS ADDRES BITS <17:02>

Figure 9-15 Failed UNIBUS Address Register Bit Configuration
208

UNIBUS Subsystem

Bits <31:16> Reserved and Zero

Bits <15:00> Failed UNIBUS to SBI Address
These bits correspond to UNIBUS Address bits <17:02>.

Buffer Selection Verification Registers 0-3 (BRSVR)

These four read/write do-nothing registers are provided in order to
give the diagnostic software a means of accessing and testing the
integrity of the data path RAM. Four spare locations in the data path
RAM have been assigned to these registers. Writing and reading the
BRSVRs has no effect on the behavior of the UNIBUS adapter. The
BRSVR bit configuration is shown in Figure 9-16.

31 16 15 0

UNUSED

v
TEST DATA

Figure 9-16 Buffer Selection Verification Register Bit Configuration

The contents of the BRSVRs are listed below.
Bits <31:16> Always Zero
Bits <15:00> Read/Write Bits

BR Receive Vector Registers 4-7 (BRRVR)

The UNIBUS adapter contains four BR receive vector registers:
BRRVR 7, BRRVR 6, BRRVR 5, and BRRVR 4. Each BRRVR corre-
sponds to a UNIBUS interrupt bus request level: 7, 6, 5, 4. Each
BRRVR is a read-only register and will contain the interrupt vector of a
UNIBUS device interrupting at the corresponding BR level. Each
BRRVR is read by the software as a part of the UNIBUS adapter inter-
rupt service routine. Note that the UNIBUS adapter interrupt service
routine is the routine to which the VAX-11 CPU will transfer control
once it has determined that the UNIBUS adapter has transmitted an
interrupt request on the SBI.

If the IFS and BRIE bits on the control register are set, so that UNIBUS
interrupt requests are passed to the SBI, then the VAX-11 CPU re-
sponds with an Interrupt Summary Read command. The UBA sends
its request sublevel as an Interrupt Summary Response. The software
then invokes the UBA interrupt service routine, initiating a read trans-
fer to the appropriate BRRVR. The UNIBUS adapter will assert the
contents of the BRRVR on the SBI as read data if the corresponding

209

UNIBUS Subsystem

BRRVR Full bit in the status register is set. If the BRRVR Full bit is not
set, the Read BRRVR command causes the UNIBUS adapter to fetch
the interrupt vector from the interrupting UNIBUS device. The inter-
rupt vector is loaded into the BRRVR only at the successful completion
of a UNIBUS interrupt transaction. The UNIBUS adapter will then send
the contents of the BRRVR to the SBI as read data. The BRRVR used is
cleared only when the UNIBUS adapter receives an ACK confirmation
for the read data. Following this exchange, the UNIBUS adapter
interrupt service routine will use the contents of the BRRVR to branch
to the appropriate UNIBUS device service routine.

Four types of failure conditions can occur when the software is reading
a BRRVR and the VAX-11 CPU is servicing a UNIBUS device interrupt:

1. If the software attempts to read a BRRVR for which a BR interrupt
line is not asserted, and BRRVR is not full, the zero vector (all
zeroes data) will be sent as read data.

2. If the BR line asserted by the interrupting UNIBUS device is re-
teased during the interrupt summary read transfer, and the vector
is not received from the device (passive release), then the zero
vector will be sent as read data.

3. It the vector has been received from the interrupting device, but
an ACK confirmation is not received following the read data
transmission, then the BRRVR will not be cleared, and the BRRVR
Full bit will remain set. Subsequent read commands to the full
BRRVR will cause the UNIBUS adapter to send the stored vector,
but the BRRVR will remain full until the UNIBUS adapter receives
an ACK confirmation for the read data. Note that the BRRVR Full
bits always reflect the state of the BRRVRs.

4. If the IFS bit in the control register is cleared and the software
reads a BRRVR, then the zero vector will be sent as read data.

The contents of the BRRVR are also used by the software to determine
whether or not the UNIBUS adapter itself has an interrupt pending. Bit
31 of the BRRVR is the Adapter Interrupt Request Indicator. Although
the bitis present in all four BRRVRs, it will be active only in the BRRVR
corresponding to the interrupt request level that has been assigned to
the UNIBUS adapter. If bit 31 is set when the software reads the
BRRVR, then an adapter interrupt request is pending.

Figure 9-17 shows the BR Receive Vector Register bit configuration.

210

UNIBUS Subsystem

31 % 28 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

EEESINEERNEREARRNREEREEERERREEE

J

UNIBUS DEVICE INTERRUPT VECTOR
Figure 9-17 BR Receive Vector Register Bit Configuration

The contents of the four BRRVRs are as follows:

Bit <31> Adapter Interrupt Request Indicator.
0=No UBA interrupt pending.
1=UBA interrupt pending.

Bits <30:16> Reserved and zero

Bits <15:00> Device Interrupt Vector Field
These bits contain the device interrupt vector loaded by the UNIBUS
adapter during a UNIBUS interrupt transaction.

Data Path Registers 0-15 (DPR)

The UNIBUS adapter contains 16 data path registers (DPR 0 to DPR
15), each of which corresponds to one of the 16 data paths. DPR 0,
corresponding to the direct data path, is always 0.

Figure 9-18 shows the Data Path Register bit configuration.

31302928 24 23 16 15 0

UNUSED

- - —

Y Yo
BUFFER STATE BITS BUFFERED UNIBUS ADDRES (2-17)

BUFFER | DATA
NOT PATH
EMPTY FUNCTION

BUFFER
TRANSFER
ERROR

Figure 9-18 Data Path Register Bit Configuration

The DPR bit functions are as follows.
e Buffer Not Empty and the Purge Operation

Bit <31> Buffer Not Empty (BNE)

Each DPR contains a data path status bit called Buffer Not Empty. This
bitis Read-Write one to clear bit.

0=Buffer empty.

1=Buffer not empty.

211

UNIBUS Subsystem

If this bit is set (1), the BDP contains valid data. If clear, then the BDP
does not contain valid data. The UNIBUS adapter uses the bit to deter-
mine the proper action for DMA transfers via the BDP. If bit 31 is set as
a DATI transfer begins, the data in the BDP will be asserted on the
UNIBUS. If bit 31 is clear on a DATI, the UNIBUS adapter will initiate a
read transfer to SBI memory, load the read data into the BDP, thereby
setting bit 31, and gate the addressed data to the UNIBUS.

For a DMA write transfer via the associated BDP, the BNE bit is set
each time UNIBUS data is loaded into the BDP. The bit is then cleared
when the contents of the BDP are transferred to SBI memory.

The software will write a one to this bit to initiate the purge operation.
The purge operation is required at the completion of a UNIBUS device
block transfer and is performed in the following way:

1. Write transfers to memory. If any bytes of data remain in the
corresponding BDP (BNE is set), the UNIBUS adapter will transfer
this data to memory. The UNIBUS adapter will then initialize the
BDP and clear the BNE bit. If no data remains to be transferred
(BNE is cleared), the purge operation will be treated as a no-op (it
is a legal do-nothing function).

2. Read transfers to memory. If any bytes of data remain in the BDP,
the UNIBUS adapter will initialize the BDP by clearing the BNE bit.
If no data remains, the purge will be treated as a no-op.

In addition, the following considerations apply to the purge operation:

e For purge operations in which data are transferred to memory, the
SBI transfer takes about 2 usec. The UBA will not respond to Data
Path Register read transfers during this period (busy confirmation),
thereby preventing a race condition when testing for BNE bit.

® A purge operation to Data Path Register Zero (Direct Data Path) is
treated by the UBA as a no-op.

Bit <30> Buffer Transfer Error (BTE)

This is a read-write one to clear bit. The UNIBUS adapter sets the BTE
bit if a failure occurs during a DMA write transfer, or a purge, or for a
data path parity failure during a DMA read transfer via the associated
BDP. If bit 30 is set, any additional DMA transfers via the BDP will be
aborted until the bit is cleared by the software. Note that if a parity
error on the UNIBUS occurs during a DMA read, the UNIBUS signal
PB will be asserted, giving the UNIBUS device the opportunity to abort
its own DMA transfer. The purge operation does not clear the BTE bit.

Bits <29:00> Read-Only Bits
Bit <29> Data Path Function (DPF)

212

UNIBUS Subsystem

This bit indicates the function of the DMA transfer using this data path.

0=DMA Read
1=DMA Write

Bits <28:24> Unused

Bits <23:16> Buffer State (BS)

These eight bits indicate the state of each of the eight byte buffers of
the associated BDP during a DMA write transfer. They are included in
the Data Path Register for diagnostic purposes only. The UNIBUS
adapter generates the SBI mask bits from the BS bits during a DMA
write transfer or purge operation. The bits are set as each byte is
written from the UNIBUS. The bits are cleared during the SBI write
operation.

0=Empty.
1=Full.

Bits <15:00> Buffered UNIBUS Address (BUBA)

This portion of each DPR contains the upper 16 bits of the UNIBUS
address, UA <17:02>, asserted during the DMA transfer using the
associated BDP. If the transfer through the associated BDP is in the
byte offset mode, and the last UNIBUS transfer has spilled over into
the next quadword, then these bits contain UA <17:02>. This is the
UNIBUS address from which the SBI address will be mapped should a
purge operation occur before the next UNIBUS transfer.

Map Registers 0-495(10)

The UNIBUS adapter contains 496 map registers, one for each UNI-
BUS memory page address (a page = 512 bytes).

REG Offset
MRO 800
MR1 804
MR2 808
MR3 80C
MR494 FB8
MR495 FBC

213

UNIBUS Subsystem

When a DMA transfer begins, the upper nine address bits asserted by
the UNIBUS device select one of the map registers which the software
has set up. The map register in turn tests for the validity of the current
UNIBUS transfer, steers the transfer through one of the 16 data paths,
determines whether or not the transfer will take place in the byte offset
mode if a BDP has been selected, and maps the UNIBUS page ad-
dress to an SBI page address.

The map registers are numbered sequentially from 0 through 495(10).

There is a one to one correspondence between each map register and

UNIBUS memory page address (i.e., MRO corresponds to UNIBUS

memory page 0, MR1 to UNIBUS Memory Page 1.....MR495 to UNI-

BUS memory page 495). Each map register contains the information

required to effect the data transfer of the UNIBUS device addressing

that page:

1. The fact that the software has loaded the map register (map regis-
ter valid).

2. The number of the data path to be used by the transfer and, if a
BDP is used, whether it is in byte offset mode.

3. The SBI page to which the transfer will be mapped.

Since the map register is implemented with a bipolar RAM, the
contents of the map registers will be checked by parity. If, during a
UNIBUS transfer, the parity test fails, the map register parity fail bit of
the UNIBUS adapter status register will be set and the UNIBUS trans-
fer will be aborted.

Figure 9-19 illustrates the map register bit configuration.

31 30 27 2 25 24 21 20 19
UNUSED

U

[Ny -
RESERVED DATA SBI PAGE ADDRESS
AND PATH
ZERO DESIGNATOR
MAP BYTE ADDRESS
REGISTER OFFSET IT 27
VALID BIT BIT 110 DESIGNATOR

LONGWORD
ACCESS
ENABLE

Figure 9-19 Map Register Bit Configuration

NOTE
In the interest of brevity, for the map register de-
scription, “this UNIBUS page” refers to “The UNI-
BUS memory page corresponding to this map regis-
ter.”

214

~

UNIBUS Subsystem

The contents of a map register are as follows:

Bit <31> Map Register Valid (MRV)
0=not valid - initialized state.
1=valid.

The MRYV is set by the software to indicate that the contents of the map
regnster are valid. The MRV is tested each time that “this UNIBUS
page’ is accessed. If the bit is set (1), the transfer continues. If the bit is
not set, the UNIBUS transfer is aborted (nonexistent memory error in
the UNIBUS device) and the invalid map register bit is set in the UNI-
BUS adapter status register.

The MRV can be set and cleared by the software.

Bits <30:27> Reserved Read/Write Bits

Bit <26> Longword Access Enable (LWAE)

This is a read/write bit. If set, and the map register selects a BDP, then
the longword-aligned 32-bit random access mode is enabled for the
BDP. The longword-aligned 32-bit random access mode has been
discussed above. This bit has no effect if the Direct Data Path is
selected by the map register. This bit is cleared on initialization.

Bit <25> Byte Offset Bit (BO)

This is a read/write bit. If set, and “this UNIBUS page” is using one of
the BDPs, and the transfer is to an SBI memory address, then the
UNIBUS adapter will perform a byte offset operation on the current
UNIBUS data transfer. The software can interpret this operation as
increasing the physical SBI memory address, mapped from the UNI-
BUS address, by one byte. This allows word-aligned UNIBUS devices
to transfer to odd byte memory addresses.

UNIBUS transfers via the DDP or to SBI 1/0 addresses will ignore the
Byte Offset bit.

This bit is cleared on initialization.

Bits <24:21> =Data Path Designator Bits (DPDB)

0000= Direct Data Path (DDP)
0001= Buffered Data Path 1
1111= Buffered Data Path 15

The DPDBs are read/write bits that are set and cleared by the software
to designate the data path that “this UNIBUS page” will be using.

215

UNIBUS Subsystem

The software can assign more than one UNIBUS transfer to the DDP.

The software must assure that no more than one active UNIBUS trans-
fer is assigned to any BDP.

The DPDBs are cleared on initialization.

Bits <20:00> SBI Page Address (SPA 27:07, also known as Page
Frame Number, PFN)

The SPA bits contain the SBI page address to which “this UNIBUS
page” will be mapped. These bits perform the UNIBUS to SBI page
address translation. When an SBI transfer is initiated the contents of
SPA<27:07> are concatenated with UNIBUS address bits UA<8:2>
to form the 28-bit SBI address.

POWER FAIL AND INITIALIZATION

The UNIBUS adapter controls the UNIBUS power fail, power up, and
initialization sequences of the UNIBUS. This section explains the be-
havior of the UNIBUS subsystem for each of the following:

1. System Power Up

2. System Power Down

3. UNIBUS Power Down

4. Programmed Power Down

5. SBIUNJAM

System Power Up

The UNIBUS remains in a powered down state as long as the UNIBUS
adapter is in a powered down state. During System Power Up, the
UNIBUS adapter will initiate the UNIBUS power up sequence, provid-
ed the UNIBUS has power. Once the power up sequence has been
completed, the UNIBUS Initialization Complete bit of the UNIBUS
adapter status register is set and an interrupt request is initiated to the
CPU. If the UNIBUS power was not on at the time that the system
powered up, the power up sequence will not continue until the UNI-
BUS power has been turned on. The power up sequence will com-
pletely initialize all registers and functions of the UNIBUS adapter. The
deassertion of power supply AC LO will set the adapter power up bitin
the Configuration Register and initiate an interrupt request.

SBI Power Fail

The UNIBUS adapter will initiate a UNIBUS power fail sequence when-
ever an SBI power failure is detected (SBI Dead asserted). The UNI-
BUS will remain powered down as long as SBI Dead is asserted. The
UBA will initiate the UNIBUS power up sequence when SBI Dead is
released.

216

UNIBUS Subsystem

UNIBUS Power Fail

A power loss on the UNIBUS will initiate a UNIBUS power fail se-
quence. The UNIBUS power down bit of the status register will be set
and the UNIBUS adapter will initiate an interrupt request (providing
the CNFIE bit is set). The UNIBUS will remain in a powered down state
until UNIBUS power has been restored, at which time a UNIBUS power
up sequence is initiated. The UNIBUS initialization complete bit of the
status register will be set on a successful power up sequence and the
UBPDN bit will be cleared. The UNIBUS power fail lines will not affect
the state of the SBI power fail lines.

Programmed UNIBUS Power Fail

The software can induce a power fail sequence on the UNIBUS by first
setting and then clearing the UNIBUS power fail bit of the control
register. The UNIBUS adapter will initiate a power fail sequence when
the UPF is set. Once it has been initiated, the power fail sequence will
continue to completion independent of the state of the UPF. On com-
pletion of the power down sequence, the UNIBUS adapter will initiate a
power up sequence if or when the UPF is cleared, provided power is
normal for both the UNIBUS and UNIBUS adapter.

Setting the AD INIT bit will also initiate a power fail and initialization
sequence on the UNIBUS as well as completely initialize all registers
and functions of the UBA.

SBI UNJAM

The assertion of SBI UNJAM will initiate the UNIBUS power fail and
initialization sequence. It will also clear all interrupt enable bits of the
UBA control register. It will initialize the UBA SBl logic so that the UBA
is available for an SBI Command.

EXAMPLE

Presented is a program to read data from the RK06 disk subsystem
into memory. The program full documented and is designed to de-
monstrate the loading of the UBA map registers, the use of a buffered
data path (including the purge), access to UNIBUS device registers,
and initialization of the UNIBUS. in order to run the progra, it must be
loaded from the floppy disk by the console into memory. Initially, the
program can be assembled and linked under VAX/VMS and then
transferred to the floppy disk using the RSX-11M utility program FLX.
" The file structure of the floppy is RT-11 format.

217

i RK&1

FROGRAM TO READ FROM THE RKO& INTD MEMORY

THIS FROGRAM WILL TRANSFER 3210 BYTES FROM THE RK

DISK TO MEMORY STARTING AT ADNDRESS 4567. THE TRANSFEFR

WILL USE A BLOCK OF MAF REGISTE
WILL USE A BU

MAF REGISTER 25

ANI

TARTING AT
ED DATA FATH (DRS),

IT WILL READ DATA FROM DRIVE 0 TRACK 2, CYLINLER 4: SECTOR 6.

IT WILL RING THE EELL OF THE CONSOLE IF NO ERRORS

DETECTED.

THE FROGRAM IS DESIGNED TO DEMONSTRATE THE LOADING OF THE
UBA MAF REGISTERS, USE OF A BUFFERED DATA FATH (INCLUDING
THE PURGE)» ACCESS TO UNIBUS DEVICE REGISTERSs AND
INITIALIZATION OF THE UNIRUS., NO CLAIM IS MALE FOR
ELEGANCE OF FROGRAMMING STYLE.

SYMBOL DEFINITIONS

RELATED SYMEOLS?
URA..BASE = "X20006000
UBA_CNFR = X0
UBA_URIC = "X10000
4

UBRA_CR = X
UBA_ADINIT = ~X1

UBA_SR = 7X8

UBA_DFO “X40

UBA_DF_ENE = ~X80000000

UBA_LIIF_RTE = "X40000000
UBA_MRO = ~X800
MAF_VALID = "XB0000000
BYTE_.OFST = "X2000000

1 RELATED SYMBOLS:
UNIBUS_EASE = ~X20100000
DK_BASE_ADID = ~0777440

DK.CS1 = ~00
DR.CS2 = "010
DR.IS = ~012
IDK_nc = ~020
OK_[A ~0é
DR_WC ~o2
DN.BA ~04
SCLR ~040
PACACK = ~03
REAT = "021
MISC SYMBOLS:
BELL = 707
TXDR = 3G

UBA AT TR = 3

OFFSET TO UBA CONFIGURATION REGISTER
UNIRUS INITIALIZATION COMFLETE

OFFSET TO UBRA CONTROL REGISTER

ADAFTOR INIT AND UNIEUS INITIALTIZATION

OFFSET TO UBA STATUS REGISTER
QFFSET TO UEA DATA FATH REGISTER 9
BUFFER NOT EMFTY RIT
USED TO PURGE EUFFER DATA
FATH AT END OF XFER.
BUFFER TRANSFER ERROR EIT
OFFSET TO UEA MAF REGISTER O
VALIDL EIT IN MAF REGISTER
RYTE OFFSET RIT IN MAF REGISTEK

BASE ADDRESS FOR UNIRUS ALDRESS ©
UNIEUS BASE ADDRESS OF IIK411
RRé611 CONTROL STATUS REGISTER 1
RK&11 CONTROL STATUS REGISTER 2
kK611 DRIVE STATUS REGISTER

RKé611 DESIRED CYLINDER REGISTER
RKé11 DISK ADDRESS REGISTER

RRK&11 WORD COUNT REGISTER

RRKé11 BUS ADDRESS REGISTER

RKé11 SUBSYSTEM CLEAR

RK&11 FACK ACKNOWLEDGE AND GO RIT SET

RkKé&11 DISK READ AND GO BIT SET.

ASCII RELL
CONSOLE TRAANSMIT DATA BUFFER

THIS SECTION LOADS THE URA_BASE ADLRESS INTO RO ANDY THEN INITIALIZES

i

i THE
BEGIN:
INIT:
i THE
¥ ANY
i BUT

UNIRUS,

MOVL #UBA_BASE»s RO

MOVL #UBA_ADINITsURA_CR(RO)

i
i

LOAD UEA’S ADDRESS INTO RO
INIT URA AND UNIRUS

UBA AND UNIBUS ARE BEING INITIALIZED, THE FROGRAM CANNOT MAKE
ACCESSES TO THE URA DR THE UNIEUS DURING THIS FERIOD OF TIME.
THAT’S OK BECAUSE WE HAVE LOTS TO DO IN THE MEAN TIME..,

i THIS SECTION WILL SET UF THE MAF REGISTERS TO FE USED FOR THE TRANSFEF.

¥ FINDN THE OFFSET OF THE INITIAL MAF RE

ASHL ¥2r MAF_REG, R1

ADLL FUBA_MRO» K1

AL FUBA_FAGE, Ri

B
§

218

GISTER AND FUT INTO K1,

MULTIFLY THE MAF REGISTER RY 4
T FIND L16 OFFSE1 AND FUT INTO R

Al THE EASE ADDRESS OF THE MAF REGISTERS
T

TR OTHE OF AND FUT IN RIL.
ALL IN THE URA RASE ADDRESS AND RUT

el

K1 NOW CONTAINS THE ALDRESS OF THE FIRST MAF REGISTER TO BE LOADED.

THIS SECTION wlLl DETERMINE THE CONTENTS OF THE MAF ANT)
STORE IT IN RZ.
THIS SECTION WILL DETERMINE THE FAGE FRAME NUMBEK OF THE FIRST

MEMORY FAGE TO BE ACCESSED. THE FHYSICAL MEMORY AL
RIGHT NINE RITS TO BECOME THE FAGE FRAME NUMEBER.

18 §HIF

i INTO THE DATA FATH DESIGNATOR FIELD AN THE vaLID RIT IS 8ET.

ASHL #-9y MEMSAL, R2 3 TURN START ADDRESS INTO THE
5 FAGE FRAME NUMEER.

INSV DF_NUMy 215 4y R2 5 INSERT RITS 0-3 OF DF.NUM INTI
5 RITS 21-24 OF R2.
B

RISL FMAF_VALID, R2 SET MAF VALID EIT.

{ DETERMINE IF THE BYTE ALIGNMENT BIT OF THE BUFFERED DATA FATHE 1§
5 REQUIRED. THE KK&11 ONLY KNOWS AEOUT WORD ALIGNED TRANSFEI IF
3 THE START MEM ADDRESS IS OOD' THEN THE BYTE OFFSET EIT OF THE

5 MAF REGISTERS MUST BE SET.

RITL “X1s MEMSAD i 1S MEM ADDRESS OLD?
REQL. CONT$ # IF NOT THEN CONTINUE.
RISL #RYTE_OFST, R2 H YES -- SET EBYTE QFFSET BIT

CONT$: NOF F CONTINUE

THIS SECTION COMPUTES THE CONTENTS OF THE RKé1l BUS ADDRESS REGISTER
AND THE EXTENDED ADDRESS EITS OF CONTROL STATUS REGISTER 1.

THE RESULT OF THIS SECTION WILL EE THAT WHEN THE RKé&11 ASSERTS THE
ALDRESS ONTO THE UNIRUSs UNIEUS ADDRESS BITS 1780 WILL FOINT TO
THE MAF REGISTER THAT CONTAINS THE PAGE FRAME NUMEER FOR THE TRAMSFE
AND UNIEUS ADDRESS BITS <8:0» WILL CONTAIN THE BYTE OFFSET WITHIN THE
FAGE .
THE CONTENTS OF THE REGISTERS WILL BE AS FOLLOWS?

DK_CS1 RA <17 & 163 AND

UR-EA BA WILL CONTAIN THE FOINTER
0 TGTER THAT CONTAINS THE FAGE FRAME NUMEER

FOR THE TRANSFER.

DK.EA ma <08 ¢ 00> WILL CONTAIN THE EYTE OFFSET WITHIN
k3 WILL BE USED TO SET UF TO CONTAIN THE INITIAL UNIRUS ADL
THE TRANSFER.

THE FAGE.
aF

SHIFT MAF K 3TER NUMBER TO FORM
MAF REGISTER FU

CLEAR ALL EBUT BYTE OF
THE FAGE

ANII COMEINE WITH MAF REGIS
IN R3.

ASHL. ¥9, MAF_REGs R3

BICL3 $~XFFFFFEOQ» MEMSAD, R4

RISL R4 R3

THIS SECTION WILL DETERMINE THE WORD COUNT FOR THE TRANSFE
CONVERT EYTE COUNT TO WORD COUNT FOR THE RKé1t. IF BYTE C
THEN THE WORD! COUNT MUST BE INCREMENTED TO CONTAIN ALL BYT
TRANSFER.

UNT I& 0In
QOF THE

INCL ECOUNT § INCREMENT EYTE COUNT TQO ACCOUNT
5 FOR QDI BYTE COUNT,

ASHL -1y BCOUNTy R4 5 CONVERT TO WORD COUNT AND LOAD
i

INTO R4.

THIS SECTION WILL - UF DISK ANNRESS TRACK ANIN SECTOR - WILL

MOVL SECTOR, RY
INGV TRACK: #8s #3s RI

AT THIS FOINT ALL OF THE VALU REQUIRED
DETERMIN THE VALUES OF Tt &

K{ = UBA_RASE ALIR
R1 IDORESS OF FI
k2 -: CONTENTS FOR THE INITIAL MAF
K3 - INTTIAL UNTEUS ADDREGS FOR

[RIT COUNT
R FOTOR AND TRACK FCR DN

§T MAF REGIS L TRANSEER

219

THE DATA FATH NUMBER TO BE USED FOR THE TRANSFER WILL THEN EE INSERTED

i
i
i
¥

3%

THIS SECTION WILL LETERMINE THE WORD COUNT FOR THE TRANSFER.

CONVERT BYTE COUNT TO WOKL COUNT FOR THE RKé11. IF EYTE COUNT IS OLD
THEN THE WORD COUNT MUST BE INCREMENTED TO CONTAIN ALL BYTES OF THE
TRANSFER .

INGL ECOUNT i INCREMENT EBYTE COUNT TO ACCOUNT
i FOR ODD' BYTE COUNT.

ASHL. #-1y BCOUNT,» R4 7 CONVERT TO WORD COUNT AND' LOAD
H

INTO R4,

THIS SECTION WILL SET UF DISK ANDRESS TRACK ANI' SECTOR -~ WILL USE RS,

MOVL SECTOR» RS
INSV TRACK» #8y #3, RS

GET SECTOR NUMEER. *
INSERT BITS 0-2 OF TRACK INTO
i BITS 8-10 OF R4.

AT THIS FOINT ALL OF THE VALUES REQUIRED FOR THE TRANSFER HAVE EREEN
DETERMINED. THE VALUES OF THE REGISTERS ARE:

RO = UBA_EASE ALDRESS

ADDRESS 0F FIRST MAF REGISTER TO EE USED FOR TRANSFER
CONTENTS FOR THE INITIAL MAF REGIST
INITIAL UNIBUS ADDRESS FOR TRANSFER
WORD COUNT

= SECTOR AND TRACK FOR DK_DA REGISTER

THE FEMAINING SECTIONS INVOLVE ACCESSES TO THE UNIBUS AND THE UEA.
THE INITIALIZATION SEQUENCE MUST RE COMFLETE BEFORE MAKING ACCESSES
TO THE UBA (OTHER THAN THE CONFIGURATION REGISTER) OR THE UNIRUS,

BITL #UBA_UEIC: UBA_CNFR(RO) i IS UNIEUS INITIALIZATION COMPLETE?
BEQL 1s i NO - KEEF TESTING
i YES - CONTINUE

THIS SECTION WILL LOAL THE URA MAF REGISTERS THAT WILL BE USED FOR THE
TRANSFER. THE MAF REGISTERS USEL FOR THE ELOCK TRANSFER MUST BE
CONTIUOUS. THIS FROGRAM ASSUMES THAT CONTIGUOUS FHYSICAL MEMORY

FAGES ARE USED FOR THE TRANSFER. THE CONTENTS OF THE INITIAL MAF
REGISTER WAS FREVIOUSLY DETERMINED AN STORED' IN R2. THE FHYSICAL
AIDRESS OF THE INITIAL MAF REGISTER WAS DETERMINED AEOQVE AND STORED

IN R1.

MOVL BCOUNTy Ré& LOALY BYTE COUNT INTD Ré

MOVL R2y (R1)+ LOAIY MAF REGISTER WITH CONTENTS
0F R2.
INCL R2 INCREMENT PAGE FRAME NUMEER.

(ASSUMES CONTIGUOUS FAGES OF
FHYSICAL MEMORY).
THERE ARE 200(HEX) BYTES FER FAGE.
ARE ALL MAFS SET UF?
NO SET UF NEXT MAF REGISTER.
SET UF ONE MORE SINCE TRANSFER
TRANSFER MAY NOT RE FAGE ALIGNEID.
INVALIDATE NEXT MAF REGISTER TO
STOF THE UEA SHOULL THE TRANSEER
GO EEYOND ITS EXFECTED LIMIT.

SUBL #+7X200, Ré

BGTR 2%
MOVL R2r» (R1)+

CLRL (R1)

THIS SECTION WILL FERFORM THE DISK TRANSFEK SEQUENCE,
A SURSYSTEM CLEAR WILL EE ISSUSEL TO THE RKé11y THE FACK AKNOWLEDGE
FUNCTION WILL EE [SSUEDs AND THE DISK TRANSFER WILL BE INITIATED.

NOTE THAT ALL UNIBUS ACCESSES MUST EE OF WORD OR EYTE FORMAT..

WE ARE NOW FINISHEL' WITH K1 AND R2,
FINI' RASE ADDRESS OF RK611 AND LOAD INTO R1,

ADDLZ #IK_EASE_ADL #UNIBUS_EASE, R1 ;EASE ALNDRESS OF RK611 TO R1
MOvVW #SCLRY DIK.CS2(R1) i ISSUE A RK611 SUESYSTEM CLEAR

HOVW DRIVEs DK_CS2(R1) SELECT DRIVE NUMBER

MOVW Ry DK.DIA(RLY LOAD TISK ADDRESS SECTOR AND TRACK
STORED IN RS FROM AEROVE.

MOVW #FACACK sy DK.CSLC(RL) ISSUE FACK ACKNOWLEDGE FUNCTION

TSTE DK.CS1(R1) WAIT FOR READY

BGER 33 NOT READY KEEF WAITING

MOVW CYLINDER, DK_DS(RL)Y i LOAD CYLINDER ADDRESS

MNEGW R4y UK_WC(R1) P LOALN 275 COMPLIMENT OF WORD COUNT

MOVW R3y DE_EBACRLY 7 LOAD LOW ORDER 14 BITS OF UNIRUS
i

START AN

2GS INTO UK.EA REG

220

ASHL $-16y R3, R3
MOVL OK_FUNC: R4
INSY R3, #8, #2r R4

SHIFT UNIEUS ADDRESS RIGHT 16 EITS

LOAD FUNCTION INTO R4 AND

INSERT ALDRESS RITS 17 AND 15 FROM
K3 BITS 1:0 INTO RITS 9318 OF
R4, EXTENDED UNIEUS ADDRESS
RITS.

MOVW K4y DK.CS1(R1) ISSUE FUNCTION ANDI GO TO RKé611
44 TSTE IK.-CS1(R1) 5 WAIT FOR TRANSFER TO COMFLETE
EBGEQ 4% $ NOT COMFLETE - KEEF WAITING.

THE KKé11 HAS EBEEN COMFLETED ~ THE UKA RUFFERED! DATA FATH MUST NOW EE
FURGEL. THE FURGE IS REQUIREL TO MOVE ANY DATA REMAINING IN THE URa
TO MEMORY AND TO INITIALIZE THE BUFFERED DIATA FATH FOR ANY SURSEQUENT
TRANSFERS THE FURGE IS ACCOMFLISHED RY SETTING THE BNE RIT OF THE
LATA FATH REGISTER USEl EY THE TRANSFER.

5 COMFUTE OFFSET OF DIATA FATH REGISTER USED FOK TRANSFER AND FUT IN R2

ASHL $2, DP_NUMs R2 3 MULTIPLY DF_NUM BY 4 -* R2

AL #UBA.DFOy R2 5 ADD IN OFFSET OF DATA Fﬂ1H REG 0O

MOVL $URA_DF_ENE» URA.EASE(R2)5 SET ENE EIT OF DATA FATH REGISTER
i USED EY THE TRANSFER.

BITL $URA_DIF _BTEs UBA_BASE(R2)
; TEST FOR ANY ERRORS THAT MAY HAVE
i OCCURRED WITHIN THE UBA BUFFER
i TRANSFER.

REQL. S¢ i CONTINUE IF THERE WERE NO ERRORS

HALT i HALT FOR ERROR DETECTED EY DATA
i FATH REGISTER. UEA STATUS REGISTER
3 SHOUL.D! CONTAIN ERROR RIT.

588 TSTW DK.CS1 (k1) 5 T FOR RK611 O
BGEQ 4% i CONMTINUE IF THERE WEKE NO ERRORS
HALT i HALT FOR FRROR DETECTED' IN RKé&11
ITH MTFR #BELL, FTXUE ; RING BELL ON CONSOLE IF NO ERROKS
HALT

5 THE TRANSFER PERAMETERS ARE SPECIFIED EELOW?

MEMSAD? +LONG 4567 3 MEMORY START ADNIRESS

BCOUNT? +LONG 3210 3 NUMEER OF ERYTES OF TRANSFER

MAF_REG? +LONG 25 3 STARTING MAF REGISTER TD BE USED FOR TRANSFER.
TIF_NUM: +LONG 5 3 UBA DATA FATH TO BE USEL FOR TRANSFER.

DRIVE? +LONG [} ¢ DRIVE NUMEBER TO BE USED FOR TRANSFER

TRACK? +LONG 2 3 STARTING TRACK

CYLINDER? +LONG 4 i STARTING CYLINDER

SECTOR? +LONG é i STARTING SECTOR

DK_.FUNC: +LONG REAT! 5 DISK FUNCTION

+END REGIN

221

¢ce

CHAPTER 10
MASSBUS SUBSYSTEM

INTRODUCTION

The MASSBUS adapter (MBA) is the hardware interface between the
synchronous backplane interconnect and the high speed MASSBUS
storage devices. The MASSBUS is the communication path linking the
MASSBUS adapter to the mass storage device drives.

The MASSBUS adapter performs the following functions:
e Mapping of addresses from virtual (program) to physical (SBI).

e Data buffering between main memory transfer to the MASSBUS and
vice versa.

e Transfer of interrupts from MASSBUS device to the SBL.

The VAX-11/780 will support a maximum of four MASSBUS adapters,
each adapter supporting up to eight device controllers. A MASSBUS
adapter will support any combination of mass storage devices. Each
magnetic tape controller will support up to eight tape drives. Each disk
controller will support a single disk drive. Only one controller can
transfer data at any one given time. The data transfer rate is depend-
ent upon the particular mass storage device being accessed. Figure
10-1 illustrates a typical MASSBUS subsystem configuration.

The MASSBUS is comprised of 54 signal lines divided into two inde-
pendent groups: the asynchronous control path (bus) and the syn-
chronous data path (bus). Table 10-1 describes individual MASSBUS
signal line function.

Table 10-1 MASSBUS Line Descriptions

SIGNAL LINE DESCRIPTION

CONTROL BUS

Control and Status Transfers 16 parallel control or status bits to
(C00-15) or from the drive.

223

Massbus Subsystem

CPU

MASSBUS
ADAPTOR

MASSBUS
{DATA AND
CONTROL PATHS)

SYNCHRONOUS BACKPLANE INTERCONNECT r;

DEVICE 0O DISK
CONTROLLER

DEVICE 1 MAGTAPE MAGTAPE
CONTROLLER | 1
I
] '
|: :
L. - | MAGTAPE
7

DEVICE 7 DEVICE » STORAGE
CONTROLLER MEDIUM

Figure 10-1 MASSBUS Subsystem Configuration

SIGNAL LINE
CONTROL BUS

Control Bus Parity
(CPA)

Drive Select (DS0-2)

Register Select
(RSO-4)

Table 10-1 (cont.)
DESCRIPTION

Transfers odd control bus parity to or from
the drive. Parity is simultaneously trans-
ferred with control bus data.

Transfers a 3-bit binary code from the MBA
to select a controller. The drive responds
when the (unit) select switch in the controi-
ler corresponds to the transmitted binary
code.

Transfers a 5-bit binary code from the MBA
to select a particular drive register.

224

SIGNAL LINE
CONTROL BUS

Controller to Drive
(CTOD)

Demand (DEM)

Transfer (TRA)

Attention (ATTN)

Initialize (INIT)

Fail (FAIL)

Massbus Subsystem

Table 10-1 (cont.)
DESCRIPTION

indicates in which direction information is to
be transferred on the control bus. For a
controlier-to-drive transfer, the MBA as-
serts CTOD:; for a drive-to-controller trans-
fer, the MBA negates CTOD.

Asserted by the MBA to indicate a transfer
is to take place on the control bus. For a
controller-to-drive transfer, DEM is assert-
ed by the MBA when data is present. Fora
drive-to-controller transfer, DEM is assert-
ed by the MBA to request data and is
negated when the data has been strobed
from the control bus. In both cases, the RS,
DS, and CTOD lines are asserted and al-
lowed to settle before assertion of DEM.

Asserted by the drive in response to DEM.
For a controller-to-drive transfer, TRA is as-
serted when the data is strobed and negat-
ed when DEM is removed. For a drive-to-
controller transfer, TRA is asserted when
the data is asserted on the bus and negated
when the negation of DEM is received.

The drive asserts this line to signal the MBA
of any change in drive status or an abnor-
mal condition. ATTN is asserted any time a
drive’s ATA status bit is set. ATTN is com-
mon to all drives and may be asserted by
more than one drive at a time.

Asserted by the MBA to initialize all drives
on the bus. This signal is transmitted when-
ever the MBA receives an initialize com-
mand.

When asserted, this line indicates a power
tail condition has occurred in the MBA or
the MBA is in maintenance mode.

225

Massbus Subsystem

Table 10-1 (cont)

SIGNAL LINE DESCRIPTION
DATA BUS
Data (D00-15) These bidirectional lines transfer 16 parallel

data bits between the MBA and drives.

Data Bus Parity (DPA) Transfers an odd parity bit to or from the
drive. Parity is simultaneously transferred
with bits on the data bus.

Sync Clock (SCLK) Asserted by the drive during aread
operation to indicate when data on the data
bus is to be strobed by the MBA. During a
write operation SCLK is asserted to the
MBA to indicate the rate at which data
would be presented by the MBA on the data

bus.

Write Clock (WCLK) Asserted by the MBA to indicate when data
written to the drive is to be strobed.

Run (RUN) Asserted by the MBA to initiate data trans-

fer command execution. During a data
transfer, the drive samples RUN at the end
of each sector. If RUN is still asserted, the
drive continues the transfer into the next
sector; if RUN is negated, the drive termi-
nates the transfer.

End-of-Block (EBL) Asserted by the drive at the end of each
sector. For certain error conditions where it
is necessary to terminate operations im-
mediately, EBL is asserted prior to the nor-
mal time. In this case, the transfer is termi-
nated prior to the end of the sector.

Exception (EXC) Asserted by the drive or MBA to indicate an
error condition during a data transfer
command. EXC remains asserted until the
trailing edge of the last EBL pulse.

Occupied (OCC) indicates acceptance of a valid data trans-
fer command.

Figure 10-2 illustrates the MASSBUS signal line configuration.

226

Massbus Subsystem

MASSBUS CONTROL BUS
K C00-15 (CONTROL /STATUS)

CPA{CONTROL BUS PARITY

DS00-02 {DRIVE SELECT)

RSO0-04 {REGISTER SELECT)
CTOD (TRANSFER DIRECTION)
DEM (DEMAND)

TRA (TRANSFER)

ATTN {ATTENTION)

INIT (INITIALIZE)

DATA BUS
K D00-15 (DATA)

DPA (DATA BUS PARITY)
SCLK (SYNC CLOCK)

WCLK (WRITE_CLOCK)

RUN (START,CONTINUE, STOP)
EBL (END OF BLOCK)
EXC(EXCEPTION)

OCC (OCCUPIED}

MASSBUS
ADAPTER

MASSBUS
DRIVE

U

Figure 10-2 MASSBUS Signal Line Configuration

MASSBUS ADAPTER OPERATION

The MASSBUS adapter consists of an SBI/MBA interface, internal
registers, control paths and data paths. Figure 10-3 is a simplified
block diagram of the MBA. A tristate internal bus connects the SBI
module to the internal registers, control paths, and data paths, and
provides for the passage of data to the various functional blocks.

The MBA accepts and executes commands from the CPU and reports
the necessary status changes and fault conditions to the CPU. The
MBA can transfer register data or a block of data to or from a MASS-
BUS device. A 256 X 32-bit (bits <30:21> are not writable) RAM stores
the physical page addresses of the block of data to be transferred. The
memory data (64 bits) will be sent in words (16 bits) to the MASSBUS
drive in the order of the first word (bits 15 to 0), followed by the second
word (bits 31 to 16) of a long word. Special diagnostic features are
built in the hardware to allow on-line diagnosis of the MBA and MASS-
BUS drives.

The MBA is capable of handling a MASSBUS drive with a maximum
data transfer rate of 16 bits per usec via the 16-bit wide MASSBUS
data path. The MASSBUS adapter controls data transfers between
MASSBUS devices and physical memory. A MASSBUS adapter can

227

Massbus Subsystem

T T T T ASSADS ADAPTER T T T VAN

|
conreor |
PATH N ———

I
ATk L
INTERNAL BUS MASSBUS
SBI BUS INTERFACE |\ —] rATH N

‘ !
' |
' l
| INTERNAL |
| REGISTERS |
l |
| |

Figure 10-3 MASSBUS Adapter

transfer 16 bits at a time to a mass storage device or it can receive 16
bits at a time from a MASSBUS drive. The MBA contains a 32-byte
buffer used to store data enroute to either main memory or mass
storage. Transfers (data only) along the SBI, to or from main memory,
occur in 64-bit (8-byte) increments. Therefore, there are four MASS-
BUS transfers (16 bits each) per SBI transaction. The MASSBUS
adapter will accept only aligned longword reads and writes to its exter-
nal or internal registers. An attempt to address a nonexistent register
in the MASSBUS adapter will prompt a no-response confirmation.

MBA Registers

There are two sets of registers in the MBA address space: internal and

external. The MBA internal registers are the registers which are physi-

cally located in the MBA. The external registers are located in the

MASSBUS drives and are drive-dependent.

There are eight internal registers and a 256 X 32-bit RAM. The internal

register is primary function is to monitor MBA and operating status

conditions. The internal registers aiso control certain phases of the

data transfers between the SBI and the MASSBUS device such as:

® maintaining a byte count to ensure that all of the data to be trans-
ferred has been accounted for

® converting virtual addresses to physicai addresses for referencing
data in memory

228

Massbus Subsystem

The eight internal registers are:
MBA Configuration Register (CSR)
MBA Control Register (CR)
MBA Status Register (SR)
MBA Virtual Address Register (VAR)
MBA Byte Count Register (BCR)
MBA Diagnostic Register (DR)
MBA Selected Map Register (SMR)
MBA Command Address Register (CAR)

NOTE
The selected map register and the command
address register are read only and are valid only
during data transfers.

The MBA contains 256 32-bit map registers which are used to map
program virtual addresses into SBI physical addresses. Bits <30:21>
of the map register are reserved and are not writable. The mapping
registers allow transfers to or from contiguous or non-contiguous
physical memory. Figure 10-4 illustrates the mapping of a virtual ad-
dress to an SBl address.

CONTROL PATH

The control path handles the transfer of contro! data to and from the
MASSBUS devices. Certain sections of the MBA address space map
into registers physically located within MASSBUS devices. The MASS-
BUS control path is used to communicate with these data path regis-
ters.

The data path controls the data transferred to and from the MASSBUS
device and the SBI. The 32-bit SBI data word is divided into 16-bit (2
byte) segments required as data on the MASSBUS. When performing
a read from MASSBUS device the data path assembles the two 8-bit
bytes from the MASSBUS into the 32-bit SBI format. A silo and in-
put/output data buffer provide the means for smoothing the data
transfer rate. The data path also contains a write check circuit which
can be used under program control to verify the accuracy of the data
transfer function.

MBA ACCESS
Each SBI device (NEXUS) is assigned a 2048, 32-bit longword (8K
byte) control address space. This space is accessible as part of the

229

Massbus Subsystem

1 17 16 9 8 210
VIRTUAL
ADDRESS MAP POINTER , LONG WORD BYTE
REGISTER
%/——/ —_—
INDEX INTO MAP REGISTERS I

MAP REGISTERS

3 30 2 20 0
—v| RESERVED PHYS PAGE ADDRESS
|
DIRECT
DIRECT TRANSFER
TRANSFER
27 % o
SBI PHYSICAL PAGE ADDRESS 1
ADDRESS

Figure 10-4 Virtual To SBI Address Translation

SBI 1/0 longword address space. The command/address format used
to access the MBA registers is iliustrated in Figure 10-5.

29 28 17 16 31211109 0
TRANSFER M
0-------.-._._.09 REQUEST |0 |A VARIABLE
LEVEL P
*—INI OR EXT.

Figure 10-5 MASSBUS Adapter Addressing Format (Physical Byte
Address)

230

Massbus Subsystem

Bit <29>=1 1/0 Address space
Bits <28:17> All zeros
Bits <16:13> Transfer request number of this
MBA
Bits <11:10>
00 MBA internal register

Bits<9:5>=must be zero
Bits<4:0> =register select offset
01 MBA external register
Bits<9:7>=device select
Bits<6:0> =register select

10 MBA MAP
Bits<9:0>=MAP address
11 Invalid (No response to an ad-

dress with these bits on)
INTERNAL REGISTERS
The MBA internal registers are described as follows:
MBA Configuration/Status Register (Byte Offset=0)

31 24 23 16 15 8 7 0

ALERT OR ADAPTER
INTERRUPT STATUS DEPENDENT STATUS ADAPTER CODE

FAULT STATUS

Bit <31> SBI parity error

Set when an SBI parity error is detected. Cleared by power fail or the
deassertion of fault signal. Setting of this bit will cause fault to be
asserted on SBI.

Bit <30> Write data sequence(WS)

Set when no write data is received (neither tag=write data nor ID)
following a write command. Cleared by power fail or the deassertion of
fault signal. The setting of this bit will cause the assertion of fault on
SBI.

Bit <29> Unexpected read data (URD)

Set when read data is received when it is not & .
power fail or the deassertion of fault signal. The setting of this bit will
cause assertion of fault on SBI.

231

Massbus Subsystem

Bit <28> This bit must be zero.

Bit <27> Muitiple transmitter (MT)

Set when the ID on the SBI does not agree with the ID transmitted by
MBA while MBA is transmitting information on the SBI. Cleared by
power fail or the deassertion of fault signal. The setting of this bit will
cause the assertion of fault on SBI.

(Fault signal will be asserted at the normal confirmation time for one
cycle if MBA detects one of the fauit conditions. The negation of the
fault signal on the SBI will clear all the fault status bits).

Bit <26> XMTFLT

Set when SBI fault is detected at the second cycle after MBA transmits
information to the SBI. Cleared by power fail or the deassertion of fault
signal.

Bits <25:24> Zeros
Reserved for future use.

Bit <23> Adapter power down (PD)

Set when the MBA receives assertion of AC LO. Clear when MBA
power goes up. Cleared by assertion of INIT, UNJAM, DC LO, or writ-
ing one to this bit. The setting of this bit will cause interrupt to CPU.

Bit <22> Adapter power up (PU)

Set when MBA receives the deassertion of AC LO. Reset when MBA
power goes down. Cleared by assertion of INIT, UNJAM, DC LO or
writing a one to this bit. The setting of this bit will set IE bit and
interrupt CPU.

Bit <21> Over temperature (OT)
Zero

Bits <20:8> All zeros
Reserved for future use.

Bits <7:0>
Each adapter is assigned a unique code identifying it.
MBA adapter code is:

Bits <7:0>=00100000

232

Massbus Subsystem

MBA Control Register (Byte Offset =4)

3 43210

Bits <31:4> All zeros
Reserved for future use.

Bit <3> MB Maintenance Mode

The setting of this bit will put MBA in the maintenance mode which will
allow the diagnostic programmer to exercise and examine the MASS-
BUS operations without a MASSBUS device. When this bit is set, MBA
will block RUN, DEM, and assert FAIL to MASSBUS so that all the
devices on MASSBUS will detach from the MASSBUS. The MBA can-
not be put in maintenance mode while a data transfer is in progress.

Bit <2> Interrupt Enable
Set by writing a one or power up which allows MBA to interrupt CPU
when certain conditions occur. Cleared by writing zero or INIT.

Bit <1> ABORT

Abort data transfer. Write one to set. The setting of this bit will initiate
the data transfer abort sequences which will stop sending commands,
stop address and byte counter.

Negate'Run.

Assert EXEC to MASSBUS.

Wait for EBL.

Set DTABT to one at the trailing edge of EBL.

interrupt CPU if IE bitis one.

This bit will be cleared by writing a zero, INIT or UNJAM.
Bit <0> Initialization (INIT)

The bit is self-clearing. It will always read as zero. The setting of this bit
will:

Clear status bits in MBA Configurator register.

Clear ABORT and IE in MBA Control register.

Clear MBA Status register.)

Clear MBA Byte Count register.

Clear control and status bits of diagnostic registers.

233

Massbus Subsystem

Cancetl all pending commands except Read Data Pending.
Abort data transfer.
Assert MASSBUS INIT.

MBA Status Register (Byte Offset=8)
31 o}

Bit <31> DTBUSY

Data transfer busy. Bit is set when a data transfer command is
received. It is cleared when data transfer is terminated normally or
when a data transfer is aborted.

Bit <30> NRCONF

No response confirmation. This bit is set when the MBA receives a no
response confirmation for the read command or write command and
write data sent to the SBI. It is cleared by writing a one to the bit or
INIT. The setting of this bit will cause retry of the command.

Bit <29> CRD
Corrected read data. This bit is set when TAG of read data received
from memory is CRD. It is cleared by writing a one to this bit or by INIT.

Bits <28:20>
All zeros. Reserved for future use.

Bit <19> PGE
The PGE bit is set when one or more of the following conditions exists:

Program ftries to initiate a Data Transfer when MBA is currently per-
forming one.

Program tries to load MAP, VAR, or Byte counter when MBA is cur-
rently performing a Data Transfer operation.

Program tries to set MB Maintenance Mode during a Data Transfer
operation.

The bit is cleared by writing a one. The setting of this bit will cause an
interrupt to the CPU if IE is set.

Bit <18> NFD)

Nonexisting drive. This bit is set when drive fails to assert TRA within
1.5 usecs after assertion of DEM. The bit is cleared by writing a one to
the bit. The setting of this bit will send zero read data back to the SBI,
and interrupt CPU if [E is set.

234

Massbus Subsystem

Bit <17> MCPE

MASSBUS control parity error. This bit is set when a MASSBUS con-
trol parity error occurs. It is cleared by writing a one to the bit. The
setting of this bit will cause an interrupt to CPUIf IE is set.

Bit <16> ATTN .

Attention from MASSBUS. Asserted when the attention line in the
MASSBUS is asserted. The assertion of this bit will cause an interrupt
to the CPU if IE is set.

Bits <15:14>
All zeros. Reserved for future use.

Bit <13> DT CMP

Data transfer completed. This bit is set when the data transfer is termi-
nated either due to an error or normal completion. It is cleared by
writing a one to this bit or INIT. The setting of this bit will cause an
interrupt to the CPU if IE bitin control register is set.

Bit <12> DTABT

Data transfer aborted. This bit is set with the trailing edge of the EBL
when data transfer has been aborted. It is cleared by writing a one to
this bit or INIT. The setting of this bit will cause an interrupt to the CPU
if IE bit is set.

Bit <11> DLT

Data late. This bit is set when:

1) for a write data transfer or write check data transfer, data buffer is
empty when WCLK is sent to MASSBUS or

2) for a read data transfer, the data buffer is full while SCLK is
received from MASSBUS. This bit is cleared by writing a one to it
or INIT. The setting of this bit will cause the data transfer operation
to be aborted.

DLT will most likely be set if the system is in single step operation and
if the MBA is not in maintenance mode.

Bit <10> WCK UP ERR

Write Check Upper Error. This bit is set when a compare error is
detected in the upper byte while MBA is performing a write check
operation. It is cleared by writing a one to this bit or INIT. The setting of
this bit will cause the data transfer operation to be aborted.

Bit <09> WCK LWR ERR
Write Check Lower Error. This bit is set when a compare error is
detected in the lower byte while MBA is performing a write check

235

Massbus Subsystem

operation. It is cleared by writing a one to this bit or INIT. The setting of
this bit will cause the data transfer operation to be aborted.

Bit <08> MXF

Miss transfer error. This bit is set when an SCLK or OCC is not re-
ceived within 500 usec after data transfer busy is set. It is cleared by
writing a one to this bit or INIT. The setting of this bit will cause an
interrupt to the CPU if IE bit in control register is set.

Bit <07> MBEXC

MASSBUS Exception. This bit is set when EXC is received from
MASSBUS. It is cleared by writing a one to this bit or INIT. The setting
of this bit will cause the data transfer operation to be aborted.

Bit <06> MDPE

MASSBUS data parity error. This bit is set when the MASSBUS data
parity error is detected during a read data transfer operation. It is
cleared by writing a one to the bit or INIT. The setting of this bit will
cause the data transfer operation to be aborted.

Bit <05> MAPPE

Page Frame Map Parity Error. This bit is set when a parity error is
detected on the page frame number read from the PF map. It is
cleared by writing a one to this bit or INIT. The setting of this bit will
cause the data transfer operation to be aborted.

Bit <04> INVMAP

Invalid map. This bit is set when the valid bit of the next page frame
number is zero when byte count is not zero. It is cleared by writing a
one to this bit or INIT. The setting of this bit will cause the data transfer
operation to be aborted.

Bit <03> ERR CONF

Error Confirmation. This bit is set when the MBA receives an error
confirmation for the read command or write command. ltis cleared by
writing a one to this bit or INIT. The setting of this bit will cause the data
transfer operation to be aborted.

Bit <02> RDS

Read Data Substitute. This bit is set when the tag of the read data
received from memory is read data substitute. It is cleared by writing a
one to this bit or INIT. The setting of this bit will cause the data transfer
operation to be aborted.

Bit <01> IS TIMEOUT
Interface Sequence Timeout. An interface sequence is defined as the

236

Massbus Subsystem

time from when arbitration for the SBl is begun until:

1) ACK is received for a command address transfer that specifies
read or, .

2) ACK is received for a command address transfer that specifies
write and ACK is also received for each transmission of write data

. or,

3) ERR confirmation is received for any command/address transfer.
The maximum timeout is 102.4 usecs. The setting of this bit will
cause data transfer abort. Cleared by writing a one to this bit or
INIT.

Bit <00> RD TIMEOUT

Read Data Timeout is defined as the time from when an interface
sequence that specifies a read command is completed to the time that
the specified read data is returned to the commander. The maximum
time out is 102.4 usecs. The setting of this bit will cause data transfer
abort. Cleared by writing a one to this bit or INIT.

MBA Virtual Address Register (Byte Offset=12)

31 17 16 9 8 0
0 [MAP SELECT BYTE OFFSET

The program must load an initial virtual address (pointing to the first
byte to be transferred) into this register before a data transfer is initiat-
ed. Bits 9 through 16 select one of 256 map registers. The contents of
the selected map register and the values in bits 0 through 8 are used to
assemble a physical SBI address to be sent to memory. Bits 0 through
8 indicate the byte offset into the page of the current data byte. Note
the MBA virtual address register is incremented by 8 after every mem-
ory read or write and will not point to the next byte to be transferred if
the transfer does not end on a quadword boundary. (It will point 8
bytes ahead.) Also upon a write check error, the virtual address regis-
ter will not point to the failing data in memory due to the preloading of
the silo data buffer. The virtual address of the bad data may be found
by determining the number of bytes actually compared to the MASS-
BUS (the difference between bits 16 to 31 of RS04 and their initial
value) and adding that difference to the initial virtual address.

237

Massbus Subsystem

MBA Byte Counter (Byte Offset=16)

3 16 15 0
MASSBUS BYTE COUNTER (READ ONLY) SBI BYTE COUNTER (READ/WRITE)

Program loads the 2's complement of the number of bytes for the data
transfer to bits <15:0> of this register. MBA hardware will load these
16 bits into bits <31:16>. Bits <31:16> serve as the byte counter for
the number of bytes transferred through the SBl interface. The starting
byte count with 16 bits of 0's is the maximum number of bytes of a data
transfer.

Diagnostic Register (Byte Offset=20)

3 0

The diagnostic register may only be read or written while in mainte-
nance mode. Care must be taken while reading or bit-setting this
register to insure that the data path is not loading the silo. If the data
path is loading the silo while this register is read, the data may be
altered.

Bit <31> IMDPG
Invert MASSBUS Data Parity Generator.

Bit <30> IMCPG
Invert MASSBUS Control Parity Generator.

Bit <29> IMAPP
Invert Map Parity. N

Bit <28> BLKSCOM
Block Sending Command to SBI. During a data transfer, the setting of
this bit will eventually cause a DLT bit set and CPU interrupt.

Bit <27> SIMSCLK
Simulate SCLK. When MMM bit is set, writing a one to this bit will
simulate the assertion of SCLK, and writing a zero to this bit will simu-
late the deassertion of SCLK.

Bit <26> SIMEBL
Simulate EBL. When MMM bit is set, writing a one and writing a zero to

238

Massbus Subsystem

this bit will simulate the assertion and deassertion of EBL.

Bit <25> SIMOCC
Simulate OCC. When MMM bit is set, writing a one and writing a zero
to-this bit will simulate the assertion and deassertion of OCC.

Bit <24> SIMATTN
Simulate ATTN. When MMM bit is set, writing a one and writing a zero
to this bit will simulate the assertion and deassertion of ATTN.

Bit <23> MDIB SEL

Maintenance MASSBUS Data Input Buffer Select. When the bit is set
to one, the upper eight bits (B<15:8>) of MDIB will be sent out from
B<7:0> of Diagnostic Register if the Diagnostic Register is read.
When this bit is zero, the lower eight bits (B<7:0>) of MDIB will be sent
out from B<7:0> of Diagnostic Register if a bit is read.

Bits <22:21> MAINT ONLY
Read/write with no effect. (Used to test writability of these bits).

Bit <20> MFAIL
MASSBUS Fail (read-only). Fail is asserted when MMM is set.

Bit <19> MRUN
Maintenance MASSBUS Run (read-only).

Bit <18> MWCLK
Maintenance MASSBUS WCLK (read-only).

Bit <17> MFXC
Maintenance MASSBUS FXC (read-only).

Bit <16> MCTOD
Maintenance MASSBUS MCTOD (read-only).

Bits <15:13> MDS
Maintenance MASSBUS Device Select (read-only).

Bits <12:8> MRS
Maintenance MASSBUS Register Select (read-only).

Bits <7:0> U/L MDIB
Maintenance Upper/Lower MDIB.

Selected Map Register {Byte Offset =24)

This register is read-only and has the same format as a map register
but is valid only when DT Busy is set. This is the contents of the map
register pointed to by bits 16 through 9 of the virtual address register.

238

Command Address Register (Byte Offset=28)

This register is read-only and valid only when DT Busy is set. It is the
value of bits <31:0> of the SBI during the Command/Address part of
the MBA’s next data transfer cycle.

MBA External Register (Byte Offset=400 to 7FC)
External registers are MASSBUS device-dependent. Each device has
a maximum of 32 registers.

MBA Map (Byte Offset=800 to BFC)

31 30 2 20 0
vio - - - - oo 0

Bit <31>

Valid Bit

Bits <30:21>
Zeros. Reserved for future use.

Bits <20:0>
Physical Page Frame Number.

The MBA contains 256 map registers, each of which may be selected
by address bits 0 to 9 when bits <11:10> are 10. Map registers can
only be written when there is no data transfer operation in progress. A
write to a map register during a data transfer will be ignored and cause
the setting of PGE.

Data Transfer Program Fiow

1) Initialize MASSBUS Adapter.

2) Mount pack into drive.

3) Startdrive spinning.

) Wait for ready light.

5) lIssue Pack ACK to drive.

6) Load desired cylinder, sector, track, and registers in drive.

Load starting virtual address into MBA'’s virtual address register.

8) Load 2's complement of number of bytes to be transferred into
byte count register in MBA.

9) Load starting map (pointed to by bits <9:16> of VAR) with physi-
cal page address.

10) Load successive maps with physical addresses to rest of pages.
11) Issue read/write command to drive.

1N

~
~

240

Massbus Subsystem

EXAMPLE

Presented is a program to read data from the RP05/RP06 disk subsys-
tem into memory. The program is written in the VAX-11 MACRO as-
sembly language. It is not meant to run with memory management
enabled, and will not run under VAX/VMS. This program illustrates the
procedures involved in setting up the MASSBUS adapter to transfer
bytes of data to memory. In order to run the program, it must be
loaded from the floppy disk by the console into memory. Initially, the
program can be assembled and linked under VAX/VMS and then
transferred to the floppy disk using the RSX-11M utility program FLX.

V FROGKAM TO REAL FROM THE RIFOG/& TNTO MLMORY
§ GSYMBOL DEFINLTIONSG
20010000 MiA AT TR:8
T T SRT STATUS i
TO MEA tllllll 0L ke
TTALTZE R
TO MBA
STATUS KT
T STATUS BIT
TO MRA VIKML
0 MEA BY II
»[l J

T OYOLUME Uﬁl III (l]hﬂr‘aNI\

(RMAT ="
“X4ne

"X1000

N s e e e e N R W s M N s N @ 6

RED CYLTNTE

THLIS SE
L TIAL

ON Ll.lﬁll@ O WITH THE ALDK
vaL.

3 OF THE HMEBAy
1 AND THE LORIN

FORMAT RLT CSE OFERATIONS (SET WU
AND 16RIT) ONLY ¢ T WHEN A NEW PACK IS

3 MOUNTED OR WHEN F l)Ut R COMES UF.

BEGINT MOVL EMRA RO RO 5L0OAD MEBA S ADNNMRESS [NTO RO
MOUVL. 17 HMIA

NITsMEALCR(RO) § INI IJ
SET..VV. L LCSRIROY §
CLABITLFORMAT s RF1LOF (RQY

T VOLUME VUALID
ET 16RIT FORMAT

MOVL.
MOVL

TION l[lﬁIlc THF MAFS, THE ST

T 9 B[I"

THEN THE WIRTUAL ADDR
WITH THE OFFSET TO THE FIRST
AREA .

LATA

THE

MOVL. BOOUNT yR2 H

MOUL v TRANSITRIR
MOVAL 5 L [MERA AR

HEHL i TURN § T'l\l’\ TING ANDNERE [0 'atGE ALK

241

i
v
i
v
3

SUuL,
KGTHR
RISL3

Lk

MNEGI
MOV
1OvI
THGY
MOV

o

FHERE

FMAFL VAL TIORAY QUL 5 8L T VALTIC BLT aND MOW 11TG Her
K4 H ke ADURE.SG

v ARED D00 (HEX) BYTES PERCFAGE
FOX200R2 H i v
1 i NEXT MnFe
A VAL T, R4y (R1 OHE MORE. MAF SIHCF
i TRANSELER MAY NOT BE FAC Al LGHET
ey 7 CLEAR VnLID uir A Teli
¥ THIS W STOF THE MBA IF TT SHOULDO
i 0 SOMETHING WRONG AND TRY T0O U&:
i THIS MAF ENTRY
FTAFFFFFEQOYRI 3 ILEAVE UNLY BYTE OF T OINTO FAGE
K3y MBA VAKIKO) PoOLUOAIN VIRTUAL ADDRESS REGISTE K.

THE MEA RYTE COUNT REGISTERs AND T4,
IN THE DISC

OUNT » MEBALRCK (RO
7Ly RF ICCRG)

© ¥ RYTFS 10 XFFE

4
STF Nr¥8y #8y R

3 CREATE
ROy R L LA TRO)

STOAR/TRAUK REGHSTRE
Loan K [VE

NOW READY 10 TRANSFEK. THE COMMAND WILL Ml WRITTEN
[0, E

KUSY RIT IN TH
THE TRANSFER
Was AN

ANT THE
MRA

KROGRAM WILL MONTTOR
STATUS REGISKTER. WHEN THE K .
THE ARORT RIT WILL RE CHECKED TO
MR 117 THE TRANS N FULL THE

BIT WILL BE CLEAK.

MOUL
B
LNEQ
Iehil
B G

DR IR TE RN E AN

SN
o ONG
o UNG
i Dy
o ONG

ERELCREAT 5 INITIATE READ OFERATICON

AMEA DT &) v DTRUSY &TT1 [ETT

O TRANSITER ¢ Lo IN FROGE
PMBA T ARDKT vHA SKORO)Y 5 XFER ARORTEDY

51 yores

ON. SUCESS
N, MEA STATHE REGT:
INFORMATION,

STFIED RELOW

3456 i MEMORY STARTING annr
" ; . OF !
j i3
; TING
H

STARTING

CENT BN

242

243

244

CHAPTER 11
PRIVILEGED REGISTERS

INTRODUCTION

The processor register space provides access to many types of CPU
control and status registers such as the memory management base
registers, the PSL, and the multiple stack pointers. These registers are
explicitly accessible only by the Move to Processor Register (MTPR)
and Move from Processor Register (MFPR) instructions which require
kernel mode privileges. This chapter describes those privileged proc-
essor registers not found elsewhere in this handbook.

Appendix D contains a description of the ID Bus registers of which the
privileged processor registers are a subset. Therefore, those registers
containing a processor address are privileged and can be accessed
via the MTPR and MFPR instructions only. Chapter 2, Console Sub-
system, contains a description of the ID Bus.

SYSTEM IDENTIFICATION REGISTERS (SID)

The system identification register is a read-only constant register that
specifies the processor type. The entire SID register is included in the
error log and the type field may be used by software to distinguish
processor types. Figure 11-1 illustrates the system identification regis-
ter.

31 24 23 9]
TYPE TYPE SPECIFIC

Figure 11-1 System Identification Register

Type A unique number assigned by engineering to identify
a specific processor:
0 Reserved to DIGITAL (error)
1 VAX-11/780

245

Privileged Registers

2 through 127 Reserved to DIGITAL

128 through 255 Reserved to CSS
and customers
Type specific Format and content are a function of the value in
type. They are intended to include such information
as serial number and revision level.

For the VAX-11/780, the type specific format is:

23 16 15 ” N 0

ECO LEVEL PLANT SERIAL NUMBER

CONSOLE TERMINAL REGISTERS

The console terminal is accessed through four internal registers. Two
are associated with receiving from the terminal and two with writing to
the terminal. In each direction there is a control/status register and a
data buffer register. Figure 11-2 illustrates the console receive con-
trol/status register.

3 8
~—
MBZ

ZQO90|~
me jo

MBZ

Figure 11-2 Console Receive Control/Status Register (RXCS)

Figure 11-3 illustrates the read-only console receive data buffer
register.

31 1514 1”21 8 7 0
E
0 s 0 D DATA

Figure 11-3 Console Receive Data Buffer Register (RXDB)

At bootstrap time, RXCS is initialized to 0. Whenever a datum is re-
ceived, the read-only bit DONe is set by the console. If IE (interrupt
enable) is set by the software, then an interrupt is generated at inter-
rupt priority level (IPL) 20. Similarly, if DONe is aiready set and the

246

Privileged Registers

software sets IE, an interrupt is generated (i.e., an interrupt is generat-
ed whenever the function (IE and DON) changes from 0 to 1). If the
received data contained an error such as overrun or loss of connec-
tion, then ERR is set in RXDB. The received data appears in DATA.
When an MFPR #RXDB,dst is executed, DONe is cleared as is any
interrupt request. If ID is 0 then the data is from the console terminal. If
ID is non-zero, then the entire register is implementation dependent.
In the case of the VAX-11/780, if ID = 1, data is from the floppy disk.

At bootstrap time, TXCS is initialized with just the RDY bit set (ready).
Whenever the console transmitter is not busy, it sets the read-only bit
RDY. If IE (interrupt enable) is set by the software, then an interrupt is
generated at IPL 20. Similarly, if RDY is already set and the software
sets IE, an interrupt is generated (i.e., an interrupt is generated
whenever the function (IE AND RDY) changes from 0 to 1). The soft-
ware can send a datum by writing it to DATA. When an MTPR sre,#
TXDB is executed, RDY is cleared as is any interrupt request. If ID is
written 0, then the datum is sent to the console terminal. If ID is non-
zero, then the entire register is implementation dependent. In the case
of VAX-11/780, if ID = 1, data is sent to the floppy disk. Figure 11-4
illustrates the console transmit control/status register.

3 8

MBZ MBZ

Om|<Om|~
gx| M o

Figure 11-4 Console Transmit Control/Status Register (TXCS)

Figure 11-5 illustrates the read-only console transmit data buffer
register.

N 73] 8 7 0

MBZ 1D DATA

Figure 11-5 Console Transmit Data Buffer Register (TXDB)

CLOCK REGISTERS
The clocks consist of an optional time-of-year clock and a mandatory
interval clock. The time-of-year clock is used to measure the duration

247

Privileged Registers

of power failures and is required by the operating system for unattend-
ed restart after a power failure. The interval clock is used for account-
ing, for time-dependent events, and to maintain the software date and
time.

Time-of-Year Clock (optional)

The time-of-year clock consists of one longword register. The register
forms an unsigned 32-bit binary counter that is driven by a precision
clock source with at least .0025% accuracy (approximately 65 seconds
per month). The counter has a battery back-up power supply sufficient
for at least 100 hours of operation, and the clock does not gain or lose
any ticks during transition to or from stand-by power. The battery is
recharged automatically. The least significant bit of the counter repre-
sents a resolution of 10 milliseconds. Thus, the counter cycles to 0
after approximately 497 days.

If the battery has failed, so that time is not accurate, then the register is
cleared upon power up. It then starts counting from 0. Thus, if software
initializes this clock to a value corresponding to a large time (e.g., a
month), it can check for loss of time after a power restore by checking
the clock value. The time-of-year clock register is illustrated in Figure
11-6.

kil 0
TIME OF YEAR SINCE SETTING

Figure 11-6 Time-of-Year Clock Register (TODR)

A value written to TODR with <27:0> non-zero results in an UNPRE-
DICTABLE value in TODR. If the clock is not installed, then the clock
always reads out as 0 and ignores writes.

Interval Clock

The interval clock provides an interrupt at IPL 24 at programmed
intervals. The counter is incremented at 1 usec intervals, with at least
.01% accuracy (8.64 seconds per day). The clock interface consists of
three registers in the privileged register space: the read-only interval
count register, the write-only next interval count register, and the
interval clock control/status register.

Figure 11-7 illustrates the interval count register.

248

Privileged Registers

3N 0
INTERVAL COUNT

Figure 11-7 Interval Count Register (ICR)

Figure 11-8 illustrates the next interval count register.

31 0
NEXT INTERVAL COUNT

Figure 11-8 Next Interval Count Register (NICR)

Figure 11-9 illustrates the interval clock control/status register.

31 30 8
R MBZ

mr O

MBZ

Az~
—Quwu|wt
o)
zc=m|o

Figure 11-9 Interval Clock Control/Status Register (ICCS)

Interval Count Register

The interval register is a read-only register incremented once every
microsecond. it is automatically loaded from NICR upon a carry out
from bit 31 (overflow) which also interrupts at IPL 24 if the interrupt is
enabled.

Next Interval Count Register

The reload register is a write-only register that holds the value to be
loaded into ICR when it overflows. The value is retained when ICR is
loaded. NICR is capable of beiﬁg loaded regardless of the current
values of ICR and ICCS.

Interval Clock Control/Status Register (ICCS)
The ICCS register contains control and status information for the inter-
val clock.

ERR<31>

Whenever ICR overflows, if INT is already set, then ERR is set. Thus,
ERR indicates a missed clock tick. Attempt to set this bit via MTPR
clears ERR.

249

Privileged Registers

MBZ<30:8>
Must Be Zero.

INT<7>

Set by hardware every time ICR overflows. If IE is set then an interrupt
is also generated. An attempt to set this bit via MTPR clears INT,
thereby re-enabling the clock tick interrupt (if IE is set).

IE<6>

When set, an interrupt request at IPL 24 is generated every time ICR
overflows (INT is set). When clear, no interrupt is requested. Similarly,
if INT is already set and the software sets IE, an interrupt is generated
(i.e., an interrupt is generated whenever the function (IE AND INT)
changes from 0to 1).

SGL<5>
A write-only bit. If RUN is clear, each time this bit is set, ICR is
incremented by one.

XFR<4>
A write-only bit. Each time this bit is set, NICR is transferred to ICR.

MBZ<3:1>
Must Be Zero.

RUN<O0>
When set, ICR increments each microsecond. When clear, ICR does
notincrement automatically. At bootstrap time, run is cleared.

Thus, to set up the interval clock, load the negative of the desired
interval into NICR. Then an MTPR #4X51,#ICCS will enable interrupts,
reload ICR with the NICR interval and set run. Every “interval count”
microseconds will cause INT to be set and an interrupt to be request-
ed. The interrupt routing should execute an MTPR #{XC1,#ICCS to
clear the interrupt. If INT has not been cleared (i.e., if the interrupt has
not been handied) by the time of the.next ICR overflow, the ERR bit will
be set.

At bootstrap time, bits <6> and <0> of ICCS are cleared. The rest of
ICCS and the contents of NICR and ICR are UNPREDICTABLE.

VAX-11/780 ACCELERATOR

The VAX-11/780 processor has an optional accelerator for a subset of
the instructions. Two internal registers control the accelerator: ACCS
and ACCR.

ACCS is the accelerator control/status register. It indicates whether an
accelerator exists, controls whether it is enabled, identifies its type and

250

Privileged Registers

reports errors and status. At bootstrap time, the type and enable are
set: the errors are cleared. Figure 11-10 illustrates the accelerator
control/status register.

31 30 29 28 27 26 16 15 14 8 7 0
ER ABA erl \C/) E MBZ S MBZ TYP
R|Z|F|FIV § YPE
R R R R R RO
O 000 w

Figure 11-10 Accelerator Control/Status Register (ACCS)
ERR<31>

Read-only bit specifying that at least one of bits RSV, OVF, and UNF is
set. Note that bits <31:27> are normally cleared by the main proces-
sor microcode before starting the next macro instruction.

MBZ<30>
Must Be Zero.

UNF<29>
Read-only bit specifying that the last operation had an underflow.

OVF<28>
Read-only bit specifying that the last operation had an overflow.

RSV <27>
Read-only bit specifying that the last operation had a reserved
operand. '

MBZ<26:16>
Must Be Zero.

ENB<15>

Read/write field specifying whether the accelerator is enabled. At
bootstrap time, this is set if the accelerator is installed and functioning.
An attempt to set this is ignored if no accelerator is installed.

TYPE<7:0>
Read-only field specifying the accelerator type as follows:

0 = No accelerator
1 = Floating point accelerator

Numbers in the range 2 through 127 are reserved to DIGITAL. Num-
bers in the range 128 through 255 are reserved to CSS/customers.

251

The accelerator maintenance register (ACCR) controls the accelera-
tor's microprogram counter. At bootstrap time its contents are UN-
PREDICTABLE. Figure 11-11 illustrates the accelerator maintenance
register.

31 30 24 23 16 15 14 13 9 8 0
E M
$ MBZ TRAP ADDRESS hLA & MBZ MICROC PC
L
w RW W R RW
o 00
Figure 11-11 Accelerator Maintenance Register (ACCR)
ETL<31>

Enable Trap Address Load. A write-only bit that when set causes <23:
16> to be loaded into the accelerator’s trap address register. Subse-
quently, the main processor’'s microcode can force the accelerator to
trap to this location by asserting an internal signal.

MBZ<30:24>
Must Be Zero.

TRAP<23:16>
Trap Address. A read/write field used by the main processor to force
the accelerator to a specified micro location.

EML<15>
Enable Micro PC Match Load. A write-only bit that when set causes
<8:0> to be loaded into the accelerator’s micro PC match register.

MPM<14>

Micro PC Match. A read-only bit that is set whenever the accelerator’s
micro PC matches the micro PC match register. This is useful
primarily as a scope sync signal.

MBZ<13:9>
Must Be Zero.

PC<8:0>
Next Micro PC on read. This contains the next micro address to be
executed.

Match Micro PC on write. If EML is also set, then this updates the
micro PC match register.

VAX-11/780 MICRO CONTROL STORE
The VAX-11/780 processor has three registers for control/status of its

252

Priviieged Registers

microcode. Two are used for writing into any writable control store
(WCS) and one is used to control micro breakpoints. Figure 11-12
illustrates the writable control store address register.

31 1615 14 13 12 0
P
MB2Z LI c® WCS ADDR
R RW RW
w

Figure 11-12 Writable Control Store Address Register (WCSA)
Figure 11-13 illustrates the writable control store data register.

31 0
WCS DATA

kil 8 7 0
0 PRESENT

Figure 11-13 Writable Control Store Data Register (WCSD)

Reading WCSD indicates which control store addresses are writable.
If WCSD<n> is set, then addresses n*1024 through n*1024+1023 are
writable (i.e., that WCSA<12:10> EQLU n corresponds to writable
control store). n=4 corresponds to WCS that is reserved to DIGITAL
for diagnostics and engineering change orders. Other fields corre-
spond to blocks of control that can be used to implement customer or
CSS specific microcode. Each word of control store contains 96 bits
plus 3 parity bits. To write one or more words, initialize WCS ADDR to
the address and CTR to 0. Then each MTPR to WCSD will write the
next 32 bits and automatically increment CTR. When CTR becomes 3,
it is automatically cleared and WCS ADDR is incremented. If PIN is set,
then any writes to WCSD are done with inverted parity. An attempt to
execute a microword with bad parity results in a machine check. At
bootstrap time, the contents of WCSA are UNPREDICTABLE. Figure
11-14 illustrates the microprogram breakpoint address register.

3 13 12 0
Mz MICRO PC l

Figure 11-14 Microprogram Breakpoint Address Register (MBRK)

253

Privileged Registers

Whenever the microprogram PC matches the contents of MBRK, an
external signal is asserted. If the console has enabled stop on micro-
break, then the processor clock is stopped when this signal is assert-
ed. If the console has not enabled microbreak, then this signal is
available as a diagnostic scope point. Many diagnostics use the NOP
instruction to trigger this method of giving a scope point. At bootstrap
time, the contents of MBRK are UNPREDICTABLE.

254

255

96¢

BERA vax /mo

,;': ' - -
W -3
I 4

CHAPTER 12
PRIVILEGE INSTRUCTIONS

INTRODUCTION

The privilege instructions allow access to privilege operations within
the VAX-11 system. The change mode instructions provide a con-
trolled mechanism for unprivileged software to request services of
more privileged software. In particular, the change mode instructions
are the only normal way for code executing at executive, supervisor, or
user access modes to change to a more privileged mode. In all cases,
the change mode results in transferring control to a fixed location
depending upon contents of the System Control Block.

The probe instructions allow software executing in response to a
change mode to probe the accessibility of specified virtual locations
by the program that changed moe. Thus, privileged software can veri-
fy that the arguments passed to it represent locations that couid be
accessed by its caller.

The extended function instruction provides a controlled mechanism
for software to request services of non-standard microcode in the
writable control store or simulator software running in kernel mode.
The request is controlled by the contents of the System Control Block.

The move to and from processor register instructions provide soft-
ware executing in kernel mode access to the internal control registers
of the processor. This allows such operations as control of the memo-
ry management system and selection of the address of the Process
Control Block of the next process to execute. The load and save proc-
ess context instructions allow kernel mode software to save and
restore the general register and memory management status of a
proccess when switching between processes.

Refer to Appendix G for a description of the symbolic notation associ-
ated with the instruction descriptions.

257

Privilege Instructions

CHM

CHANGE MODE

Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

request services of more privileged software
opcode code.rw

if{PSL<IS> EQLU 1{then HALT; lilegal from
Interrupt stack

{switch stack pointer from current-mode to MINU (opcode-

mode, PSL<current-mode>) b

—(SP) «<PSL; linitiate CHMx

~(SP) «PC; exception

—(SP) <SEXT (code);

PSL <CM, TP, FPD, Dv, FU,IV,T,N,Z, V,C> «o0:

Iclean out PSL
PSL<previous-mode> <—PSL<current-mode>;
PSL<current-mode> <MINU (opcode-mode,

PSL<current-mode>);

!maximize
privilege
PC <—{SCB vector for opcode-modej;
Z<0;
N «0;
V«0;
C«0;
hait
BC CHMK Change Mode to Kernel
BD CHME Change Mode to Executive
BE CHMS Change Mode to Supervisor
BF CHMU Change Mode to User

Change Mode Instructions allow Processors to change their
access mode in a controlled manner. The instruction only in-
Creases privilege (i.e., decreases the access mode).

A change in mode also results in a change of stack pointers;
the old pointer is saved, the new pointer is loaded. The PSL,
PC, and code passed by the instruction are pushed onto the
stack of the new mode. The saved PC addresses the instruc-
tion following the CHMx instruction. The code is sign extend-
ed. After execution, the new stack’s appearance is:

sign extended code :(sP)

PC of next instruction

old PSL

258

Notes:

Example:

Privilege Instructions

CHM

The destination mode selected by the opcode is used to select
a location from the System Control Block. This location
addresses the CHMx dispatcher for the specified mode.

By software convention, negative codes are reserved to CSS
and customers.

CHMK #7 :request the kernel mode service
;specified by code 7
CHME #4 :request the executive mode service
:specified by code 4
CHMS #-2 :request the supervisor mode ser-
vice

;specified by customer code —2

259

PROBE

PROBE ACCESSIBILITY

Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

Example:

verify that arugments can be accessed
Opcode mode.rb, len.rw, base.ab

probe-mode < MAXU(mode<1 0>, PSL<previousr-mode>);
condition codes <} faccessibility of (base) | and {accessiblity
of (base + ZEXT(len)-1)} using probe-mode|;

N<«Q;

Z - if both accessible then 0; else 1;
V <«0;

C<0;

translation not valid

OC PROBER Probe Read Accessibility
OD PROBEW Probe Write Accessibility

The PROBE instruction checks the read or write accessibility
of the first and last byte specified by the base address and the
zero extended length. Note that the bytes in between are not
checked. System software must check all pages between the
two end bytes it they are to be accessed.

The protection is checked against the mode specified in bits
<1:0> of the mode operand that is restricted (by maximiza-
tion) from being more privileged than the previous access
mode field of the PSL. Note that probing with a mode operand
of 0 is equivalent to probing the mode specified in
PSL<previous-mode>.

Probing an address only returns the accessibility of the
page(s) and has no affect on their residency. However, probing
a process address may cause a page fault in the system ad-
dress space on the per-process page tables.

MOVL 4(AP),R0 ;Copy address of first arg so
;that it can’t be changed
PROBER #0,#4,R0 ;verify that the longword pointed
;to by the first argument could be
;read by the previous access
mode
;Note that the argument list
itself
smust already have been probed
MovQ 8(AP),RO ;copy length and address
;of buffer arguments so that
:they can’t change

260

Privilege Instructions

PROBE

PROBEW $0,R0,R1 :verify that the buffer described

;by the second and third argu-
ments

:could be written by the previous

;access mode

:Note that the argument list must

:already have been probed and
that

:the second argument must be
known

;to be less than 514

261

XFC

EXTENDED FUNCTION CALL

Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

provide for customer extensions to the instruction set
opcode

{XFC fault};

N «0;

Z<0;

V<0

C<«0;

opcode reserved to customer
customer reserved exception

FC XFC Extended Function Call

This instruction requests services of non-standard microcode
or software. If no special microcode is loaded then an excep-
tion is generated to a kernel mode software simulator (see
Chapter 12). Typically, the next byte would specify which of
several extended functions are requested. Parameters would
be passed either as normal operands, or more likely in fixed
registers.

262

Privilege Instructions

MFPR
MTPR
MOVE FROM PRIVILEGED REGISTER
MOVE TO PRIVILEGED REGISTER
Purpose: provide access to the internal privileged regsters
Format: opcode src.rl, regnumber.rl MTPR
opcode regnumber.rl, dst.wl MFPR
Operation: if PSL<current-mode> NEQU kernel then {reserved instruc-
tion falt};
PRS [regnumber] < src; IMTRP
dst <PRS[regnumber]; IMFPR
Condition N < dst LSS 0;
Codes: Z < dstEQLO;
V<«0;
C<C;

Exceptions: reserved operand
reserved instruction

Opcodes: DA MTPR Move to Privileged Register
DB MFPR Move from Privileged Register

Description: The specified register is loaded or stored. The regnumber op-
erand is a longword that contains the privileged register
number. Execution may have register-specific side effects.

Notes: 1. A reserved operand fault occurs if the privileged register

does not exist or is read only for MTPR or write-only for
MFPR. It also occurs on some invalid operands to some
registers.

2. A reserved instruction fault occurs if instruction execution
is attempted in other than kernel mode.

The following table is a summary of the registers accessible in the privileged
register space.

The “type” column indicates read-only (R), read/write (R/W), or write-only (W)
characteristics.

“Scope” indicates whether a register is per-CPU or per-process. The implica-
ton is that, in general, registers labeled “CPU" are manipulated only through
software via the MTPR and MFPR instructions. Per-process registers, on the
other hand, are manipulated implicity by context switch instructions. The “init”
column indicates that the register is (“yes”) or is not (“no”) set to some pre-
defined value (note: not necessarily cleared) by a processor initialization com-
mand. A “—” indicates initialization is optional.

The number of a register, once assigned, will not change across implementa-
tions or within an implementation. Implementation-dependent registers are

263

MFPR
MTPR

assigned distinct addresses for each implementation. Thus, any privileged reg-
ister present on more than one implementation will perform the same function
whenever implemented. All unsigned positive numbers are reserved to
DIGITAL; all negative numbers (i.e., with bit 31 set) are reserved to CSS and
customers.

Each register number has a symbol formed as PR$_ foliowed by the register’s
mnemonic.

VAX-11 Series Registers

Mne- Num-

Register Name monic ber Type Scope Init?
Kernel Stack Pointer KSP 0 R/W PROC —
Executive Stack Pointer ESP 1 R/W PROC —
Supervisor Stack Pointer SSP 2 R/W PROC —
User Stack Pointer USP 3 R/W PROC —
Interrupt Stack Pointer ISP 4 R/W CPU —
PO Base Register POBR 8 R/W PROC —
PO Length Register POLR 9 R/W RPOC —
P1 Base Register P1BR 10 R/W RPOC —
P1 Length Register P1LR 11 R/W PROC —
System Base Register SBR 12 R/W CPU —_
System Length Register SLR 13 R/W CPU —
Process Control Block Base PCBB 16 R/W PROC —
System Control Block Base SCBB 17 R/W CPU —
Interrupt Priority Level IPL 18 R/W CPU yes
AST Level ASTLVL 19 R/W PROC vyes
Software Interrupt Request SIRR 20 W CPU —
Software Interrupt Summary SISR 21 R/W CPU yes
Interval Clock Control ICCS 24 R/W CPU yes
Next Interval Count NICR 25 W CPU —
Interval Count ICR 26 R CPU —
Time of Year (optional) TODR 27 R/W CPU no
Console Receiver C/S RXCS 32 R/W CPU yes
Console Receiver D/B RXDB 33 R CPU —
Console Transmit C/S TXCS 34 R/W CPU yes
Console Transmit D/B TXDB 35 W CPU —
Memory Management Enable MAPEN 56 R/W CPU yes
Trans. Buf. Invalidate All TBIA 57 W CPU —
Trans. Buf. Invalidate Single TBIS 58 W CPU —
Performance Monitor Enable PMR 61 R/W PROC vyes
System Identification SID 62 R CPU no

264

Privilege Instructions

MFPR
MTPR
VAX-11 Series Registers
Mne- Num-
Register Name monic ber Type Scope Init?
Accelerator Control/ ACCS 40 R/W CPU yes
Status
Accelerator Maintenance ACCR 41 R/W CPU no
WCS address WCSA 44 R/W CPU no
WCS data WCSD 45 R/W CPU yes
SBI Fault/Status SBIFS 48 R/W CPU yes
SBI Silo SBIS 49 R CPU no
SBI Silo Comparator SBISC 50 R/W CPU yes
SBI Maintenance SBIMT 51 R/W CPU yes
SBI Error Register SBIER 52 R/W CPU yes
SBI Timeout Address SBITA 53 R CPU —
SBI Quadword Clear SiBQC 54 W CPU —
Micro Program Breakpoint MBRK 60 R/W CPU no

265

Privilege Instru

LDPCTX
SVPCTX
LOAD PROCESS CONTEXT
SAVE PROCESS CONTEXT
Purpose: save and restore register and memory management context
Format: opcode
Operation: if PSL<current-mode>NEQU 0
then {opcode reserved to DIGITAL fault;
{invalidate per-process translation buffer entries};
ILDPCT}
{load process general registers from Process Control
Blocki;
{load process map, ASTLVL, and PME from PCB};
{save PSL and PC on stack for subsequent REI};
{save process general registers into Process Control
Block};
{remove PSL and PC from stack and save in PSBY;
{switch to Interrupt Stack;
Condition N <«N;
Codes: Z<«2Z
VeV,
C<«C;
Exceptions: reserved operand
reserved instruction
Opcodes: 06 LDPCTX Load Process Context
07 SVPCTX Save Process Context
Description: The Process Control Block is specified by the internal proces-

sor register Process Control Block Base. The general registers
are loaded from or saved to the PCB. In the case of LDPCTX,
the memory management registers describing the process ad-
dress space are also loaded and the process entries in the
translation buffer are cleared. If SVPCTX is executed while
running on the kernel stack, execution is switched to the inter-
rupt stack. When LDPCTX is executed, execution is switched
to the kernel stack. The PC and PSL are moved between the
PCB and the stack, suitabie for use by a subsequent REI in-
struction.

266

267

268

CHAPTER 13
SYSTEM ARCHITECTURAL IMPLICATIONS

INTRODUCTION

Portions of the VAX-11 architecture have implications on the hardware
system structure. The areas of interaction are: data sharing and syn-
chronization, restartability, interrupts and errors, and the 1/0 struc-
ture. Of these, data sharing is most visible to the programmer.

DATA SHARING AND SYNCHRONIZATION

Data (or instructions) may be shared among various entities including
programs, processors and /0O devices. Entities sharing data may do
so explicitly by referencing the same datum or implicitly by referenc-
ing different items within the same physical memory location.

In the VAX-11 architecture, implicit sharing is transparent to the pro-
grammer. The memory system must be implemented so that the basis
of access for independent modification is the byte. Note that this does
not imply a maximum reference size of one byte but only that
independent modifying accesses to adjacent bytes produce the same
results regardless of the order of execution. For example, locations 0
and 1 contain the values 5 and 6 respectively, and one processor
executes INCB 0 and another executes INCB 1. Then, regardiess of
the order of execution, including effec'tively simultaneous, the final
contents mustbe 6 and 7.

Access to explicitly shared data that may be written must be synchron-
ized by the programmer or hardware designer. Before accessing
shared writable data, the programmer must acquire control of the data
structure. Five instructions are provided to permit interlocked access
to a control variable. BBSSI and BBCCI instructions use hardware-
provided primitive operations to make a read and then a write refer-
ence to a single bit within a single byte in an interlocked sequence.
The ADAWI instruction uses a hardware-provided primitive operation
to make a read and then a write operation to a single aligned word in
an interlocked sequence to allow counters to be maintained without
other interlocks. The INSQUE and REMQUE instructions use a hard-
ware-provided primitive operation to make a series of aligned long-

269

Systern Architectural impiications

word reads and writes in an interlocked method to allow queues to be
maintained without other interlocks. Use of the hardware primitives
guarantees that no read operation that is within the synchronizing part
of these instructions can occur between the synchronized reads and
the writes of these instructions. Hardware designers must use these
primitive operations dlrectly when making references in an interlocked
sequence. Hardware faults during an interlocked sequence must not
hang any processor. On the VAX-11/780, only interlocking instruc-
tions are locked out by the interlock.

The SBI primitive operations are interlock read and interlock write.

In order to provide a functionality upon which some UNIBUS
peripheral devices rely, processors must insure that all instructions
making byte- or word-sized modifying references (.mb and .mw) use
the DATIP - DATO/DATOB functions when the operand physical ad-
dress selects a UNIBUS device. This constraint does not apply to
longword, quadword, field, floating, double or string operations if im-
plemented using byte- or word-modifying references. This constraint
also does not apply to instructions precluded from 1/0 space refer-
ences.

The operation of the ADAWI instruction is interlocked against similiar
operations on other processors in a multiprocessor system.

In a multiprocessor system, any software clearing the V bit, or chang-
ing the protection code of a page table entry for system space that it
issues an MTPR xxx,#TBIS, must arrange for all other processors to
issue a similar TBIS. The original processor must wait until all the
other processors have completed their TBIS before it allows access to
the system page.

CACHE

A hardware implementation may include a mechanism to reduce

access time by making local copies of recently used memory contents.

Such a mechanism is termed a cache. A cache must be implemented

in such a way that its existence is transparent to software (except for

timing and error reporting/control). In particular, the following must be

true:

1. Program writes to memory, followed by starting a peripheral out-
put transfer, must output the updated value.

2. Completing a peripheral input transfer followed by the program
reading of memory must read the input value.

3. A write or modify followed by a HALT on one processor followed
by a read or modify on another processor must read the updated
value.

270

System Architectural Implications

4. A write or modify followed by a power failure, followed by restora-
tion of power, followed by a read or modify, must read the updat-
ed value provided that the duration of the power failure does not
exceed the maximum nonvolatile period of the main memory.

5. In multiprocessor systems, access to variables shared between
processors must be interlocked by software executing BBxxl,
ADAWI, or xxxQUE instructions. In particular, the writer must exe-
cute an interlocking instruction after the write to release the inter-
lock, and the reader must execute a successful matching interlock
instruction before the read.

6. Valid accesses to i/0 registers must not be cached.

On the VAX-11/780, this is achieved by a cache that writes through to
memory and watches the memory bus for all external writes to memo-
ry.

At bootstrap time, the cache must be either empty or valid.

RESTARTABILITY

The VAX-11 architecture requires that all instructions be restartable
after a fault or interrupt that terminated execution before the instruc-
tion was completed. Generally, this means that modified registers are
restored to the value they had at ‘the start of execution. For some
complex or iterative instructions, intermediate results are stored in the
general registers. In the latter case, memory contents may have been
altered but the former case requires that no operand be written unless
the instruction can be completed. For most instructions with only a
single modified or written operand, this implies special processing
only when a multibyte operand spans a protection boundary, making it
necessary to test accessibility of both parts of the operand.

In order that instructions which store intermediate results in the
general registers not compromise system integrity, they must insure
that any addresses stored or used are virtual addresses, subject to
protection checking, and that any state information stored or used
cannot result in a noninterruptable or nonterminating sequence.

Instruction operands that are peripheral device registers being ac-
cessed, may produce UNPREDICTABLE results because of instruction
restarting after faults. In order that software may dependably access
peripheral device registers, instructions used to access them must not
permit device-interrupts during their execution.

Memory modifications produced as a byproduct of instruction execu-
tion, e.g., memory access statistics, are specifically excluded from the
constraint that memory not be altered until the instruction can be
completed.

27

Instructions that abort are constrained only to insure memory protec-
tion (e.g., registers can be changed).

INTERRUPTS

Underlying the VAX-11 architectural concept of an interrupt is the
notion that an interrupt request is a static condition, not a transient
event, which can be sampled by a processor at appropriate times.
Further, if the need for an interrupt disappears before a processor has
honored an interrupt request, the interrupt request can be removed
(subject to impiementation-dependent timing constraints) without
consequence.

It is necessary that any instruction changing the processor priority
(IPL), so that a pending interrupt is enabled, must allow the interrupt to
occur before executing the next waiting instruction.

Similarly, instructions that generate requests at the software interrupt
levels must allow the interrupt to occur, if processor priority permits,
before executing the apparently subsequent instruction.

ERRORS

Processor errors, if not inconsistent with instruction completion, must
create high-priority interrupt requests. Otherwise, they must terminate
instruction execution with a fault, trap, or abort.

Error notification interrupts may be delayed by the apparent comple-
tion of the instruction in execution at the time of the error, but if en-
abled, the interrupt must be requested before processor context is
switched.

1/0 STRUCTURE

The VAX-11 1/0 architecture is very similar to the PDP-11 structure,
the principal difference being the method by which processor regis-
ters (such as the PSL) are accessed (reference the Architecture Hand-
book). Peripheral device control/status and data registers appear at
locations in the physical address space, and can therefore be manipu-
lated by normal memory reference instructions. On the VAX-11/780
implementaton, this /0 space occupies the upper half of the physical
address space and is 22 bytes in length. Use of general instructions
permits all the virtual address mapping and protection mechanisms
described in Chapter 6, Memory Management, to be used when
referencing I/0 registers.

NOTE
implementations that include a cache feature must
suppress caching for references in the I/0 space.

272

System Architectural Implications

For any member of the VAX-11 series implementing the UNIBUS,
there will be one or more areas of the 1/0 physical address space,
each 2'® bytes in length, which “maps through” to the UNIBUS ad-
dresses. The collection of these areas is referred to as the UNIBUS
space.

Constraints on I/O Registers
The following is a list of both hardware and programming constraints
on 1/0 registers. These items affect both hardware register design and
programming considerations.

1.

The physical address of an 1/0 register must be an integral multi-
ple of the register size in bytes (which must be a power of two),
i.e., all registers must be aligned on natural boundaries.
References using a length attribute other than the length of the
register and/or unaligned reference may produce UNPREDICT-
ABLE results. For example, a byte reference to a word-length
register will not necessarily respond by supplying or modifying
the byte addressed.

In all peripheral devices, error and status bits that may be asyn-
chronously set by the device must be cleared by software writing a
“9”. This is to prevent clearing bits that may be asynchronously
set between reading and writing a register.

Only byte and word references of a read-modify-write (i.e., “.mb”
or “.mw") type in UNIBUS 1/0 spaces are guaranteed to interlock
correctly. References in the 1/0 space other than in UNIBUS
spaces are UNDEFINED with respect to interlocking. This includes
the BBSSI and BBCCI instructions.

String, quad, double, floating, and field references in the 110
space result in UNDEFINED behavior.

273

o S et

CHAPTER 14

RELIABILITY AVAILABILITY
MAINTAINABILITY PROGRAM

INTRODUCTION

A significant factor guiding the development of the VAX-11/780 com-
puter system was an extensive reliability, availability, maintainability
program (RAMP). This program affected all aspects of the product,
from the design of the basic hardware and software architectures
through the final product, the VAX-11/780.

The first goal of the RAMP program was to utilize system design crite-
ria that would effectively increase the mean time between failure rate
(MTBF) of the system. Product reliability therefore implies a design
that minimizes hardware, software, and system failures.

The second goal of the RAMP program was to incorporate a design
that provided fewer and less time consuming maintenance steps, per-
formed with greater ease and better diagnostic tools. System main-
tainability can be measured in terms of mean time to repair (MTTR).
The objective of the RAMP program was to decrease the MTTR
through better diagnostic programs and procedures, and packaging
that facilitates repairs. The VAX-11/780 computer system was de-
signed and built with integral hardware and software features that
continually monitor and verify system integrity.

HARDWARE RAMP FEATURES

A summary of the VAX-11/780 hardware RAMP features contributing

to the overall reliability of the system follows:

e Four Hierarchical Access Modes (kernel, executive, supervisor,
and user) protect system information and improve system reliability
and integrity.

e A Diagnostic Console, consisting of an LSI-11 microcomputer,
floppy disk, and console terminal, provides both local and remote
diagnosis of system errors and simplifies system bootstrap and soft-
ware updates. Simple console commands replace lights and switch-
es. The diagnostic console provides faster and easier maintenance
procedures and increases availability.

275

® Automatic Consistency and Error Checking detects abnormal in-
struction uses and illegal arithmetic conditions (overflow, underflow,
and divide by zero). Continual checking by the hardware (and uni-
form exception handling by the software) increases data reliability.

e Special Instructions, such as CALL and RETURN, provide a
standard program-caliing interface for increased reliability.

¢ Integral Fault Detection and Maintenance Features, including:

ECC on memory detects all double-bit errors and corrects all single-
bit errors to increase availability and aid in maintenance.

ECC on the RP05, RP06, and RK06 disks detects all errors up to 11
bits and corrects errors in a single error burst of 11 bits.

An SBI history silo maintains a history of the 16 most recent cycles
of bus activity and may be examined to aid in problem isolation.

Maintenance registers permit forced error conditions for diagnostic
purposes.

A high resolution interval timer permits testing of time-dependent
functions.

Extensive parity checking is performed on the SBI, MASSBUS and
UNIBUS adapters, memory cache, address translation buffer,
microcode, and writable diagnostic control store.

A watchdog timer in the LSI-11 diagnostic console detects hung
machine conditions and allows crash/restart recovery actions.

Clock margining provides diagnostic variation of the clock rate and
aids in problem isolation.

Disabling of the memory management and the cache aids in isolat-
ing hardware problems.
® Fault Tolerance Features, including:

Detection and recording of bad blocks on disk surfaces increase the
reliability of the medium.

Write-verify checking hardware in peripherals is available to verify
all input and output disk and tape operations and to ensure data
reliablity.

Track offset retry hardware enables programmed software recovery
from disk transfer errors.

An in-depth description of each of the hardware RAMP features fol-
lows:

276

Reliability Availabiiity Maintainabiiity Program

Hierarchical Access Modes

The memory management hardware defines four hierarchical modes
of access privilege: kernel, executive, supervisor, and user. Read and
write access to memory is designated separately for each access
mode. The VAX operating system is designed so that only the most
critical components run in highly privileged access modes (kernel and
executive). This “layered” design increases protection, and conse-
quently, data reliability and integrity, for the system and for users.

Diagnostic Console

The diagnostic console is an integral part of the VAX-11/780 proces-
sor. It includes an LSI-11 microcomputer, floppy disk, and console
terminal and is used for both remote and local diagnosis and system
maintenance activities.

The diagnostic console is an integral part of the system. If the LSI-11
console terminal is inoperative, another terminal may be substituted.
However, the microcomputer and the floppy diskette are crucial sys-
tem components; if these units are inoperative, the reliability of the
system is seriously impaired. The LSI-11 performs a self-test on
power-up.

Consistency and Error Checking

During the execution of many instructions, consistency checks are
performed on the operands specified. If these checks fail, an excep-
tion is signalled and the current instruction sequence is suspended.
The exception handler is entered and the system software or the
user's program provides an appropriate response to the condition.
Such checks increase data reliability by preventing various error con-
ditions from propagating through a data base or a system. Some of
the checking performed includes:

e Arithmetic Traps Traps occur when overflow, underflow, and divide
by zero arithmetic conditions are detected. Hardware detection of
these error conditions allows checking to be used in high perfor-
mance software, where software checking would be prohibitively
slow. Several of the arithmetic traps, integer overflow, index, and
decimal string, are new on the VAX-11/780. Overflow and underflow
traps may be enabled or disabled by setting bits in the Processor
Status Longword, allowing the arithmetic exception conditions to be
ignored, if appropriate.

e Limit Checking Traps Decimal string instructions all have length
limit checks (0-31 decimal digits) performed on output strings to
ensure that instructions do not overwrite adjacent data.

277

Reliability Availability Maintainabili ty Program

® Reserved Operand Traps “Reserved-to-customer” and “reserved-
to-DIGITAL” fields and opcodes ensure that customer extensions to
the VAX-11/780 architecture (e.g., user-defined instructions or data
structures) do not conflict with future DIGITAL expansions.

Special Instructions

The CALL and RETURN instructions have hardware-implemented reg-
ister save/restore and consistency checking. The use of these instruc-
tions provides a standard interface which is identical on user routine
calls and system calls.

The CRC (Calculate Cyclic Redundancy Check) instruction provides
powerful block checking error code calculations, such as are needed
in communications applications.

Integral Fault Detection and Maintenance Features

These features aid in the diagnosis of hardware errors and in the

efficient maintenance of the system. Specific features include the

following:

® Memory error correcting code (ECC) will correct all single-bit mem-
ory errors, and will detect double-bit memory errors. ECC provides
protection for non-repeatable errors by automatically correcting
data. Detections and corrections are noted in the error log as a
preventive maintenance aid.

® Disk error correcting code detects all errors up to 11 bits and cor-
rects errors in a single error burst of 11 bits. Detections and correc-
tions are noted in the error log as a preventive maintenance aid.

® A System Identifications (SID) hardware register maintains informa-
tion pertinent to the system processor: type and serial number. This
information may be examined (during the software logging process,
for example) to determine the engineering status of the processor.

® A sixteen-level silo monitors SBI activity and contains a history of
the 16 most recent cycles of bus activity. If an error or
predetermined special condition occurs, the silo is latched (i.e., the
error or condition can cause the silo contents to “freeze”: see the
SBI Silo Comparator, in the following paragraph) and the contents
of the silo can be examined to help determine the cause of the
problem.

e Several maintenance registers contain bus-specific maintenance in-
formation and can be examined at the time of an error to help
determine the cause. These registers are:

— SBI Fault/Status Register, which detects faults and conditions of
the SBI

278

Reliability Availability Maintainability Program

— SBI Silo Comparator, used to lock the SBI silo on predetermined
conditions (e.g., specific number of cycles after an event)

— SBI Error Register, which indicates the type of error detected by
SBl hardware '

— SBI Timeout Address, which contains the physical address that
caused a timeout condition on the SBI

— Cache Parity Register, which indicates where parity errors were
detected

— SBI Maintenance Register, used to force error conditions in the
cache or SBI for diagnostic and simulation purposes (e.g., forced
bus timeout or cache miss)

— Translation Buffer Parity Register, which indicates where parity
errors were detected

e A high resolution interval timer (1 usec) is used by diagnostics to test
time-dependent functions without requiring machine-specific timing
loops in programs.

e Parity and protocol checks are performed on SBI data and address.
Parity checks are performed on: MASSBUS data, control and ad-
dress translation; UNIBUS address translation; memory cache data
and address; address translation buffer transaction; microcode; wri-
table user diagnostic control store (1 parity bit for each 32 bits); and
CPU internal buses.

e A watchdog timer in the LSI-11 detects hung machine conditions
(such as a hang in the microcode or a halt condition). Indicator lights
on the front panel show whether the VAX-11/780 CPU is running or
in a halt state. If the auto/restart switch on the processor console is
set, automatic crash/restart recovery actions are initiated after ei-
ther a hang condition or a halt.

e Clock margining is provided and causes the SBI clock rate to be
varied by console commands to aid the field service engineer in
diagnosing intermittent hardware problems.

e Memory management and the cache may be disabled by
diagnostics to aid in isolating hardware problems.

Fault Tolerance Features

These features provide the means to continue processing without loss

of information, even though hardware errors may be occurring. Spe-

cific features include the following:

e The VAX-11/780 pertorms dynamic bad block handling. Bad blocks
may occur when a disk surface becomes worn, or as a resuit of a
failure in the hardware that performed the data transfer. When the
VAX-11/780 hardware detects a bad block during a read, the VAX

279

Reliability Availability Maintainability Program

operating system marks the header of the file in which the error
occurred. When thefile is eventually de-allocated, the system
checks the file header to see if any bad blocks exist in the fiie. If so,
they are designated “permanently in use” and are not allocated for
use by other files.

Verify checking hardware for mass storage peripherals is supported
by the VAX device drivers. The hardware compares each block for
errors immediately after the block is read or written. Checking may
be performed on all reads or writes to a file or volume, or specified
for a single read or write. This capability increases readability (but
also increases the time to complete the read or write operation).
Track offset retry hardware is used (by the operating system) to
attempt recovery from disk transfer errors. If an error occurs during
a read operation, the error is signalled by the disk hardware and the
operation retried. If the retry fails, the disk head may be reposi-
tioned slightly (offset) on either side of the normal track location in
an attempt to read the data correctly.

280

APPENDIX A

COMMONLY USED MNEMONICS

Ancillary Control Process

American National Standard

American Standard Code for Information Interchange
Asynchronous System Trap

Asynchronous System Trap Level

Channel Control Block

Compatibility Mode bit in the hardware PSL
Channel Request Block

Cyclic Redundancy Check

Data Access Protocol

Device Data Block

DIGITAL Data Communications Message Protocol
Driver Data Table

Decimal Overflow trap enable bit in the PSW
Exit Control Block

Error Correction Code

Executive Mode Stack Pointer

Exception Service Routine

Files-11 Ancillary Control Process

File Access Block

Fixed Control Area

File Control Block

File Control Services

Function Decision Table

Frame Pointer

First Part (of an instruction) Done

Floating Underflow trap enable bit in the PSW
Global Section Descriptor

Global Symbol Table

Interrupt Dispatch Block

Interrupt Priority Level

I/0 Request Packet

Image Section

Image Section Descriptor

Interrupt Stack Pointer

Interrupt Stack bit in PSL

Interrupt Service Routine

Iinteger Overflow trap enable bit in the PSW
Kernel Mode Stack Pointer

281

Anpendix A
pendix A

AR

MASSBUS Adapter

Must Be Zero

Monitor Console Routine

Master File Directory

Move From Process Register instruction
Memory Mapping Enable

Move To Process Register instruction
Mutual Exclusion semaphore
Network Services Protocol

Operator Communication Manager
Program region Base Register
Program region Length Register
Program region Page Table

Control region Base Register
Control region Limit Register
Control region Page Table

Program Counter

Process Control Block

Process Controt Block Base register
Page Frame Number

Process ldentification Number
Performance Monitor Enable bit in PCB
Program Section

Processor Status Longword
Processor Status Word

Page Table Entry

Queue Input/Output Request system service

Record Access Block

Record’s File Address

Record Management Services
Read, Write, Execute, Delete
Synchronous Backplane Interconnect
System Base Register

System Control Block

System Control Block Base register
System Length Register

Stack Pointer

System Page Table

Supervisor Mode Stack Pointer
System Virtual Address

Trace trap Pending bit in PSL
UNIBUS Adapter

Unit Control Block

User Environment Test Package
User File Directory

User Identification Code

282

UspP
vCB
VPN
WCB

wDCS

Appendix A

User mode Stack Pointer

Volume Control Block

Virtual Page Number

Window Control Block

Writeable Control Store

Writeable Diagnostic Control Store

283

284

APPENDIX B

INSTRUCTION INDEX

B.1. MNEMONIC LISTING

MNEMONIC

ACBB
ACBD
ACBF
ACBL
ACBW
ADAWI
ADDB2
ADDB3

ADDD2
ADDD3
ADDF2
ADDF3
ADDL2
ADDL3
ADDP4
ADDP6

ADDW2
ADDW3
ADWC
AOBLEQ
AOBLSS
ASHL
ASHP
ASHQ

BBC
BBCC
BBCCI
BBCS
BBS
BBSC
BBSS
BBSSI

BCC
BCS
BEQL
BEQLU
BGEQ
BGEQU

INSTRUCTION

Add compare and branch byte
Add compare and branch double
Add compare and branch floating
Add compare and branch long
Add compare and branch word
Add aligned word interlocked
Add byte 2 operand

Add byte 3 operand

Add double 2 operand
Add double 3 operand
Add floating 2 operand
Add floating 3 operand
Add long 2 operand

Add long 3 operand

Add packed 4 operand
Add packed 6 operand

Add word 2 operand

Add word 3 operand

Add with carry

Add one and branch on less or equal
Add one and branch on less
Arithmetic shift long

Arithmetic shift and round packed
Arithmetic shift quad

Branch on bit clear

Branch on bit clear and clear

Branch on bit clear and clear interlocked
Branch on bit clear and set

Branch on bit set

Branch on bit set and clear

Branch on bit set and set

Branch on bit set and set interlocked

Branch on carry clear

Branch on carry set

Branch on equal

Branch on equal unsigned

Branch on greater or equal

Branch on greater or equal unsigned

285

MNEMONIC

BGTR
BGTRU

BICB2
BICB3
BICL2
BICL3
BICPSW
BICWZ2
BICW3
BISB2

BISB3
BISL2
BISL3
BISPSW
BISW2
BISw3
BITB
BITL

BITW
BLBC
BLBS
BLEQ
BLEQU
BLSS
BLSSU
BNEQ

BNEQU
BPT
BRB
BRW
BSBB

BSBW

BVC
BvVS

CALLG
CALLS
CASEB
CASEL
CASEW
CHME
CHMK
CHMS

CHMU
CLRB
CLRD

Appendix B

INSTRUCTION

Branch on greater
Branch on greater unsigned

Bit clear byte 2 operand

Bit clear byte 3 operand

Bit clear long 2 operand

Bit clear long 3 operand

Bit clear program status word
Bit clear word 2 operand

Bit clear word 3 operand

Bit set byte 2 operand

Bit set byte 3 operand

Bit set long 2 operand

Bit set long 3 operand

Bit set program status word
Bit set word 2 operand

Bit set word 3 operand

Bit test byte

Bit test long

Bit test word

Branch on low bit clear

Branch on low bit set

Branch on less or equal

Branch on less or equal unsigned
Branch on less

Branch on less unsigned

Branch on not equal

Branch on not equal unsigned

Break point fault

Branch with byte displacement

Branch with word displacement

Branch to subroutine with byte
displacement

Branch to subroutine with word
displacement

Branch on overfiow clear

Branch on overflow set

Call with general argument list
Call with stack

Case byte

Case long

Case word

Change mode to executive
Change mode to kernel
Change mode to supervisor

Change mode to user
Clear byte
Clear double

286

MNEMONIC

CLRF
CLRL
CLRQ
CLRW
CMPB

CMPC3
CMPC5
CMPD
CMPF
CMPL
CMPP3
CMPP4
CMPV

CMPW
CMPZV
CRC
CVTBD
CVTBF
CVTBL
CVTBW
cviDB

CVTDF
CVTDL
CVTDW
CVTFB
CVTFD
CVTFL
CVTFW
CVTLB

CVTLD
CVTLF
CVTLP
CVTLW
CVTPL
CVTTP
CVTPT
CVTPS

CVTRDL
CVTRFL
CVTSP
CVTWB
CVTWD
CVTWF
CVTWL

DECB
DECL
DECW

Appendix B

INSTRUCTION

Clear float
Clear long
Clear quad
Ciear word
Compare byte

Compare character 3 operand
Compare character 5 operand
Compare double

Compare floating

Compare long

Compare packed 3 operand
Compare packed 4 operand
Compare field

Compare word

Compare zero-extended field
Calculate cyclic redundancy check
Convert byte to double

Convert byte to float

Convert byte to long

Convert byte to word

Convert double to byte

Convert double to float
Convert double to long
Convert double to word
Convert float to byte
Convert float to double
Convert float to long
Convert float to word
Convert long to byte

Convert long to double

Convert long to float

Convert long to packed

Convert long to word

Convert packed to long

Convert trailing numeric to packed
Convert packed to trailing numeric

OPCODE

Convert packed to leading separate numeric 08

Convert rounded double to long
Convert rounded float to long

Convert leading separate numeric to packed 09

Convert word to byte
Convert word to double
Convert word to float
Convert word to long

Decrement byte
Decrement long
Decrement word

287

MNEMONIC

DIvB2
DIvB3
DIVD2
DIVD3
DiIVF2

DIVF3
DivL2
DIVL3
DIvP

Divw2
DIvw3

EDITPC
EDIV
EMODD
EMODF
EMUL
EXTV
EXTZV

FFC
FFS

HALT

INCB
INCL
INCW
INDEX
INSQUE
INSV

JMP
JSB

LDPCTX
LOCC

MATCHC
MCOMB
MCOML
MCOMwW
MFPR
MNEGB
MNEGD
MNEGF

MNEGL
MNEGW
MOVAB
MOVAD
MOVAF
MOVAL

INSTRUCTION

Divide byte 2 operand
Divide byte 3 operand
Divide double 2 operand
Divide double 3 operand
Divide floating 2 operand

Divide floating 3 operand
Divide long 2 operand
Divide long 3 operand
Divide packed

Divide word 2 operand
Divide word 3 operand

Edit packed to character
Extended divide

Extended modulus double
Extended modulus floating
Extended multiply

Extract field

Extract zero-extended field

Find first clear bit
Find first set bit

Halt

Increment byte
Increment long
Increment word
Compute index
Insert into queue
Insert field

Jump
Jump to subroutine

Load process context
Locate character

Match characters

Move complemented byte
Move compiemented long
Move complemented word

Move from privileged register

Move negated byte
Move negated double
Move negated floating

Move negated long
Move negated word
Move address of byte
Move address of double
Move address of float
Move address of long

288

MNEMONIC

MOVAQ
MOVAW

MOVB
MOVC3
MOVC5
MOVD
MOVF
MOVL
MOVP
MOVPSL

MOVQ
MOVTC
MOVTUC
MOVW
MOVZBL
MOVZBW
MOVZWL
MTPR

MULB2
MULB3
MULD2
MULD3
MULF2
MULF3
MULL2
MULL3

MULP
MULW2
MULW3

NOP

POLYD
POLYF
POPR
PROBER
PROBEW
PUSHAB
PUSHAD
PUSHAF

PUSHAL
PUSHAQ
PUSHAW

PUSHL
PUSHR

REI
REMQUE

Appendix B

INSTRUCTION

Move address of quad
Move address of word

Move byte

Move character 3 operand

Move character 5 operand
Move double

Move float

Move long

Move packed

Move processor status longword

Move quad

Move translated characters

Move transiated until character
Move word

Move zero-extended byte to long
Move zero-extended byte to word
Move zero-extended word to long
Move to privileged register

Multiply byte 2 operand
Multiply byte 3 operand
Multiply double 2 operand
Multiply double 3 operand

. Multiply floating 2 operand

Multiply floating 3 operand
Multiply long 2 operand
Multiply long 3 operand

Multiply packed
Multiply word 2 operand
Multiply word 3 operand

No operation

Evaluate polynomial double
Evaluate polynomial floating
Pop registers

Frobe read access

Probe write access

Push address of byte

Push address of double
Push address of float

Push address of long
Push address of quad
Push address of word
Push long

Push registers

Return from exception or interrupt
Remove from queue

289

MNEMONIC

RET
ROTL
RSB
SBWC
SCANC
SKPC

SOBGEQ
SOBGTR
SPANC
SUBB2
SUBB3
SUBD2
SUBD3
SUBF2

SUBF3
SUBL2
SUBL3
SUBP4
SuUBP6
SuBw2
sSuUBw3
SVPCTX

TSTB
TSTD
TSTF
TSTL
TSTW

XFC
XORB2
XORB3
XORL2
XORL3
XORW2
XORW3

ESCD
ESCE
ESCF

Appendix B

INSTRUCTION

Return from called procedure
Rotate long

Return from subroutine
Subtract with carry

Scan for character

Skip character

Subtract one and branch on greater or equal
Subtract one and branch on greater

Span characters

Subtract byte 2 operand
Subtract byte 3 operand
Subtract double 2 operand
Subtract double 3 operand
Subtract floating 2 operand

Subtract floating 3 operand
Subtract long 2 operand
Subtract long 3 operand
Subtract packed 4 operand
Subtract packed 6 operand
Subtract word 2 operand
Subtract word 3 operand
Save process context

Test byte
Test double
Test float
Test long
Test word

Extended function call

Exclusive OR byte 2 operand
Exclusive OR byte 3 operand
Exclusive OR long 2 operand
Exclusive OR long 3 operand
Exclusive OR word 2 operand
Exclusive OR word 3 operand

Reserved to DEC
“Reserved to DEC*
“Reserved to DEC*
“Reserved to DEC*
Reserved to DEC
“Reserved to DEC*
“Reserved to DEC*
“Reserved to DEC*
Reserved to DEC

Reserved to DEC

“Reserved to DEC*
“Reserved to DEC*

290

B.2. OPCODE LISTING

OPCODE

MNEMONIC

HALT
NOP
REI
BPT
RET
RSB
LDPCTX
SVPCTX

CVTPS
CVTSP

INDEX
CRC
PROBER
PROBEW
INSQUE
REMQUE

BSBB

BRB
BNEQ, BNEQU

BEQL, BEQLU

BGTR
BLEQ
JsB
JMP

BGEQ

BLSS
BGTRU
BLEQU

BVC

BVS

BGEQU, BCC

BLSSU, BCS

ADDP4
ADDP6

suRP4

peiv g =g

SUBP6
CVTPT
MULP

Appendix B

INSTRUCTION

Halt

No operation

Return from exception or interrupt
Break point fault

Return from called procedure
Return from subroutine

Load process context

Save process context

Convert packed to leading separate
numeric

Convert leading separate numeric to
packed

Compute index

Calculate cyclic redundancy check
Probe read access

Probe write access

Insert into queue

Remove from queue

Branch to subroutine with byte dis-
placement

Branch with byte displacement
Branch on not equal unsigned, Branch
on not equal

Branch on equal, Branch on equal un-
signed

Branch on greater

Branch on less or equal

Jump to subroutine

Jump

Branch on greater or equal

Branch on less

Branch on greater unsigned

Branch on less or equal unsigned
Branch on overflow clear

Branch on overflow set

Branch on greater or equal unsigned,
Branch on carry clear

Branch on less unsigned, Branch on
carry set

Add packed 4 operand

Add packed 6 operand

Subtract packed 4 operand
Subtract packed 6 operand
Convert packed to trailing numeric
Multiply packed

291

OPCODE

26
27

Appendix B

MNEMONIC INSTRUCTION

CVTTP Convert trailing numeric to packed

DivpP Divide packed

MOvC3 Move character 3 operand

CMPC3 Compare character 3 operand

SCANC Scan for character

SPANC Span characters

MOVC5 Move character 5 operand

CMPC5 Compare character 5 operand

MOVTC Move translated characters

MOVTUC Move translated until character

BSBW Branch to subroutine with word dis-
placement

BRW Branch with word displacement

CVTWL Convert word to long

CVTwB Convert word to byte

MOVP Move packed

CMPP3 Compare packed 3 operand

CVTPL Convert packed to long

CMPP4 Compare packed 4 operand

EDITPC Edit packed to character

MATCHC Match characters

LOCC Locate character

SKPC Skip character

MOVZWL Move zero-extended word to long

ACBW Add compare and branch word

MOVAW Move address of word

PUSHAW Push address of word

ADDF2 Add floating 2 operand

ADDF3 Add floating 3 operand

SUBF2 Subtract floating 2 operand

SUBF3 Subtract floating 3 operand

MULF2 Multiply floating 2 operand

MULF3 Multiply floating 3 operand

DIVF2 Divide floating 2 operand

DIVF3 Divide floating 3 operand

CVTFB Convert float to byte

CVTFW Convert float to word

CVTFL Convert float to long

CVTRFL Convert rounded float to long

CVTBF Convert byte to float

CVTWF Convert word to float

CVTLF Convert long to float

ACBF Add compare and branch floating

MOVF Move float

CMPF Compare floating

MNEGF Move negated floating

292

Appendix B

MNEMONIC

TSTF
EMODF
POLYF
CVTFD

ADAWI

ADDD2
ADDD3
SUBD2
SUBD3
MULD2
MULD3
DIvD2

DIVD3

CvTDB
CVTDW
CVTDL
CVTRDL
CVvTBD
CVTWD
CVTLD
ACBD

MOVD
CMPD
MNEGD
TSTD
EMODD
POLYD
CVTDF

ASHL

ASHQ

EMUL

EDIV

CLRQ, CLRD
MOVQ

MOVAQ, MOVAD

PUSHAQ, PUSHAD

INSTRUCTION

Test float

Extended modulus floating
Evaluate polynomial floating
Convert float to double
RESERVED to DEC

Add aligned word interlocked
RESERVED to DEC
RESERVED to DEC
RESERVED to DEC
RESERVED to DEC
RESERVED to DEC
RESERVED to DEC
RESERVED to DEC

Add double 2 operand

Add double 3 operand
Subtract double 2 operand
Subtract double 3 operand
Multiply double 2 operand
Multiply doubie 3 operand
Divide double 2 operand
Divide double 3 operand

Convert double to byte
Convert double to word
Convert double to long
Convert rounded double to long
Convert byte to double
Convert word to double
Convert long to double
Add compare and branch double

Move double

Compare double

Move negated double

Test double

Extended modulus double
Evaluate polynomial double
Convert double to float
RESERVED to DEC

Arithmetic shift long

Arithmetic shift quad

Extended multiply

Extended divide

Clear quad, Clear double

Move quad

Move address of quad, Move address of
double

Push address of quad, Push address of
double

293

MNEMONIC

ADDB2
ADDB3
SUBB2
SuBB3
MuLB2
MULB3
DIvVB2

DIVB3

BISB2
BISB3
BICB2
BICB3
XORB2
XORB3
MNEGB
CASEB

MOvVB
CMPB
MCOMB
BITB
CLRB
TSTB
INCB
DECB

CVTBL
CvTBW
MOVZBL
MOvVZBW
ROTL
ACBB
MOVAB
PUSHAB

ADDW2
ADDW3
SUBW2
SUBW3
MuULw2
MULW3
DIvw2

DIvw3

BISW2
BISW3
BICw2
BICW3
XORW2
XORW3

Appendix B

INSTRUCTION

Add byte 2 operand

Add byte 3 operand
Subtract byte 2 operand
Subtract byte 3 operand
Multiply byte 2 operand
Multiply byte 3 operand
Divide byte 2 operand
Divide byte 3 operand

Bit set byte 2 operand

Bit set byte 3 operand

Bit clear byte 2 operand

Bit clear byte 3 operand
Exclusive OR byte 2 operand
Exclusive OR byte 3 operand
Move negated byte

Case byte

Move byte

Compare byte

Move complemented byte
Bit test byte

Clear byte

Test byte

Increment byte
Decrement byte

Convert byte to long
Convert byte to word

Move zero-extended byte to long
Move zero-extended byte to word

Rotate long

Add compare and branch byte
Move address of byte

Push address of byte

Add word 2 operand
Add word 3 operand
Subtract word 2 operand
Subtract word 3 operand
Muitiply word 2 operand
Multiply word 3 operand
Divide word 2 operand
Divide word 3 operand

Bit set word 2 operand

Bit set word 3 operand

Bit clear word 2 operand

Bit clear word 3 operand
Exclusive OR word 2 operand
Exclusive OR word 3 operand

294

Appendix B

MNEMONIC INSTRUCTION

MNEGW Move negated word

CASEW Case word

MOVW Move word

CMPW Compare word

MCOMW Move complemented word
BITW Bit test word

CLRW Clear word

TSTW Test word

INCW Increment word

DECW Decrement word

BISPSW Bit set processor status word
BICPSW Bit clear processor status word
POPR Pop registers

PUSHR Push register .

CHMK Change mode to kernel
CHME Change mode to executive
CHMS Change mode to supervisor
CHMU Change mode to user
ADDL2 Add long 2 operand

ADDL3 Add long 3 operand

SUBL2 Subtract long 2 operand
SUBL3 Subtract tong 3 operand
MuULL2 Multiply long 2 operand
MULL3 Multiply long 3 operand
DIVL2 Divide long 2 operand

DIVL3 Divide long 3 operand

BISL2 Bit set long 2 operand
BISL3 Bit set long 3 operand
BICL2 Bit clear long 2 operand
BICL3 Bit clear long 3 operand
XORL2 Exclusive OR long 2 operand
XORL3 Exclusive OR long 3 operand
MNEGL Move negated long

CASEL Case long

MOVL Move long

CMPL Compare long

MCOML Move complemented long
BITL Bit test long

CLRL, CLRF Clear long, Clear float

TSTL Test long

INCL Increment fong

DECL Decrement long

ADWC Add with carry

SBWC Subtract with carry

MTPR Move to processor register
MFPR Move from processor register

295

OPCODE

DC
DD
DE

DF

MNEMONIC

MOVPSL
PUSHL
MOVAL, MOVAF

PUSHAL, PUSHAF

BBS
BBC
BBSS
BBCS
BBSC
BBCC
BBSSI
BBCCI

BLBS
BLBC
FFS
FFC
CMPV
CMPzv
EXTV
EXTZV

INSV
ACBL
AOBLSS
AOBLEQ
SOBGEQ

SOBGTR
CVTLB
CVTLW

ASHP

CVTLP
CALLG
CALLS

XFC

ESCD to DEC
ESCE to DEC
ESCF to DEC

Appendix B

INSTRUCTION

Move processor status longword

Push long

Move address of long, Move address of
float

Push address of long, Push address of
float

Branch on bit set

Branch on bit clear

Branch on bit set and set

Branch on bit clear and set

Branch on bit set and clear

Branch on bit clear and clear

Branch on bit set and set interlocked
Branch on bit clear and clear interlocked

Branch on low bit set
Branch on low bit clear

Find first set bit

Find first clear bit

Compare field

Compare zero-extended field
Extract field

Extract zero-extended field

Insert field

Add compare and branch long

Add one and branch on less

Add one and branch on less or equal
Subtract one and branch on greater or
equal

Subtract one and branch on greater
Convert long to byte

Convert long to word

Arithmetic shift and round packed
Convert long to packed

Call with general argument list
Call with stack

Extended function call

- 296

APPENDIX C
1/0 SPACE RESTRICTIONS

A subset of native mode instructions is not used to reference 1/0
space. The reasons for this are:

1. String instructions are restartable via PSL<FPD>.
2. The PG, SP, or PCBB cannot point to I/0 space.

3. 1/0 space does not support operand types of quad, floating, dou-
ble, field, or queue; nor can the position, size, length, or base of
them be from I/O space.

4. The instruction may be interruptable because it is potentially a
slow instruction in some implementations.

5. Only instructions with a maximum of one modify or write destina-
tion can be used. The destination must be the last operand.

In any case, the programmer is responsible for ensuring that any
memory reference to 1/O space is in an instruction which cannot take
an exception after the first 1/0 space reference. This includes deferred
references to |/O space.

Instructions for which any explicit operands can be in 1/0 space are:

MOV{B,W,L}, PUSHL, CLR{B,W,L}, MNEG{B,W L}, MCOM{B,W,L},
MOVZ{BW,BL,WLj}, CVT{BW,BL,WB,WL,LB,LW}, CMP{B,W L},
TST{B,W,L}, ADD{B,W,L{2, ADD{B,W,L{3, ADAWI, INC{B,W,L}, ADWC,
SUBI{B,W,L}2, SUB{B,W,L{3, DEC{B,W,L}, SBWC, BIT{B,W,L]},
BIS{B,W,L}2, BIS{B,W,L}3, BIC{B,W,L}{2, BIC{B,W,LI3, XOR{B,W,L}2,
XOR{B,W,L}3, MOVA{BW, L}, MOVAQ, PUSHA{B,W,L}, PUSHAQ,
CASE{B,W,L}, MOVPSL, BISPSW, BICPSW, CHM{K,E,S U},
PROBE|{R,W}, MTPR, MFPR

Instructions for which all operands except the branch displacement
can be in I/0 space are:

BLB {S,C}
Instructions for which some operand can be ini/O space are:

XFC (depending on implementation)
REMQUE addr (destination)

In spite of the above rules, it is possible for a specific hardware im-
plementation to execute macro code from the 1/0 space and/or to
allow the stack or PCB to be in I/O space. This might, for exampie, be
used as part of the bootstrap process. If this is done, then it is valid for
software to transfer to this code.

297

298

APPENDIX D

INTERNAL DATA (ID) BUS REGISTERS

Instruction Buffer Register

1D Address 00
Processor Address —

3 24 23

16 15

L

)
[.

U\

DATA BYTE 3 ————J

DATA BYTE 2

DATA BYTE 1

DATA BYTE O

Time of Day Register

ID Address 01
Processor Address 1B

1 2423

16 15

3
P
! |
<

TIME BYTE 3 ————,

TIME BYTE 2

TIME BYTE 1

TIME BYTE O

Reserved Register

ID Address 02
Processor Address —

299

Appendix D

System Identification Register

ID Address 03
Processor Address 3E
31 24 23 16 15 12 11 0
L. | I |
P M N P PR i N | N
— : J
TYPE\—’ I]]
ECO LEVEL
PLANT
SERIAL NUMBER

Console Receive Control/Status Register

ID Address 04
Processor Address 20

31 2423 16 15 8 7 6 0
CLelelele[lefoloPLofelelelelo[elelelelelele [[o[e[e[efel]
READY T I
INTERRUPT ENABLE
Console Receive Data Buffer Register
ID Address 05
Processor Address 21
3 2423 16 1S 8 7 0
DU T N S
DATA BYTE 3 -————1 T [l
Sai B §
DATA BYTE O

As defined in the software, bits <7:0> define the data field, bits
<11:8> define the ID field and bit <15> is the error bit. However, the
hardware is not restricted to this convention.

300

Appendix D

Console Transmit Control/Status Register

ID Address 06
Processor Address 22

o[

READY
INTERRUPT ENABLE

oloz?lﬁolololoxo!ofﬂ’iwolololo\ololiQ“»o\olotoW?J

|

Console Transmit Data Buffer Register

ID Address 07
Processor Address 23
31 24 23 6 15 8 7 0
paTA gYTE3 — 4
DATﬁ gYTE 2 J T 1
DATA BYTE 1
DATA BYTE O

As defined in the software, bits <7:0> define the data field, and bits
<11:8> define the ID field. However, the hardware is not restricted to

this convention.

DQ Register

ID Address 08
Processor Address —

Next Interval Register

ID Address 09
Processor Address 19

Interval Clock Control/Status Register

1D Address 0A
Processor Address 18

(T TRl o] [T TR
reo e ’] ’ ' (

Interval Counter Register
ID Address 0B
Processor Address 1A

3 24 23 16 15 8 7 9]

[N IR D D O D O

PRI
COUNT IN MICROSECONDS

ID Address 0C
Processor Address 13 (Accesses AST level bits <2:0>)

Processor Address 3D (Accesses Performance Monitor Enable
bit <3>)

(Tl o T, [T o T

rwl”‘lvv

NESTED ERROR T
CONTROL STORE PARITY ERROR

EXPONENT ARITHMETIC LOGIC UNIT N BIT
EXPONENT ARITHMETIC LOGIC UNIT Z BIT

ARITHMETIC LOGIC UNIT N BIT
ARITHMETIC LOGIC UNIT Z BIT
ARITHMETIC LOGIC UNIT CARRY BIT 31

ARITHMETIC TRAP CODE

PERFORMANCE MONITOR ENABLE
AST LEVEL

Vector Register

ID Address 0D
Processor Address —

LRl
R

PRRFRRE

2423 21 20 16

— - 7
PRIORITY VALID
PRIORITY
NUMBER OF ONES
VECTOR

302

Appendix D

Software Interrupt Register

ID Address OE
Processor Address 15

3 223 20 1615 8 7 0
0|0 0[0'0‘0]0‘0]0‘0‘0‘ FEDCBA987 6543210
] L N | PP R
L T -
INTERRUPT PRIORITY LEVEL ACTlVE—————, 1
SOFTWARE INTERRUPT REGISTER

Processor Status Longword Register

ID Address OF
Processor Address 12

31 302928 27 26 25 24 23 22 21 20 16 1

B LI o[TFFI PR g

szcl

PR

INTERRUPT STACK
CURRENT MODE

PREVIOUS MODE
INTERRUPT PRIORITY LEVEL
DECIMAL OVERFLOW TRAP ENABLE
FLOATING UNDERFLOW TRAP ENABLE
INTERIOR OVERFLOW TRAP ENABLE
TRACE
CONDITION CODES

Translation Buffer Data Register

ID Address 10
Processor Address —
262524 23 21 20 16 15 8 7 0
H . I ‘0|0|0‘0‘0J?0|19|817 %1514 1312N109 87 65 432 l‘_OJ
Tt " PR PR SR | I | i

___1) —
VALID

PROTECTION CODE

MODIFY

PAGE FRAME NUMBER

Reserved Register

1D Address _1 1
Processor Address —
31 24 23 ¥ 15 87 0

T N N

Appendix D

Translation Buffer Control Register 0

ID Address 12

Processor Address —

EERREEARE

TR 1)

Lol |
r

REPLACE BOTH

REPLACE GROUP 1

I 1

REPLACE GROUP 0

FORCE MISS GROUP 1

FORCE MISS GROUP O

FUNCTION SELECT

ADDRESS SELECT

MEMORY CONTROL 3

MEMORY CONTROL 2

MEMORY CONTROL 1

MEMORY CONTROL 0
INSTRUCTION BUFFER WRITE CHECK

AUTO RELOAD

TRANSLATION BUFFER HIT GROUP |

TRANSLATION BUFFER HIT GROUPO

FORCE TRANSLATION BUFFER PARITY ERROR

MEMORY MANAGEMENT ENABLE

Translation Buffer Control Register 1

ID Address 13

Processor Address —

4

INSTRUCTION
PHYSICAL
ADDRESS

——

TRANSLATION BUFFER
PARITY ERROR BITS

e
23 1615

BOEEEERE

l°l°l°I|HHHHHTI;Hr’HHEO

GROUP 1 *DM
GROUP 1 DM
GROUP ' DM
GROUP 0 DM

BYTE 2 PARITY ERROR
BYTE | PARITY ERROR
BYTE O PARITY ERROR
BYTE 2 PARITY ERROR

—]

GROUP O DM BYTE | PARITY ERROR

GROUP O DM BYTE O PARITY ERROR

GROUP 1 *AM
GROUP 1 AM

BYTE 2 PARITY ERROR
BYTE 1 PARITY ERROR

GROUP | AM BYTE O PARITY ERROR

GROUP 0 AM BYTE 2 PARITY ERROR

GROUP O AM BYTE | PARITY ERROR

GROUP 0 AM
CPU TRANSLATION BUFFER PARITY ERROR

BYTE O PARITY ERROR

LAST TRANSLATION BUFFER WRITE PULSE

BAD INSTRUCTION PHYSICAL ADDRESS

PARITY ERROR

CHECK
AUTO RELOAD

|
|
INSTRUCTION BUFFER TRANSLATION BUFFER MISS {

Accelerator Control Register 0

ID Address 14

Processor Address —

2428

Appendix D

Accelerator Control Register 1

ID Address 15
Processor Address —

3 42 16 15 8 7 9

Accelerator Maintenance Register

ID Address 16
Processor Address —

31 2423

1615 8

7

0000000[
PO P PN |

[To oo

[k

[N —
WRITE TRAP ADDRES S 1
TRAP ADDRESS
LOAD MICROBREAK
MICROMATCH

MICROBREAK MATCH

Accelerator Control/Status Register

1D Address 17
Processor Address 28

ERROR ———T
RESERVED OPERAND

(L |olol’o‘|’fto|o\olozololﬁl‘ilo;owoo\3|ilo\o\o|1;;ﬂ

ACCELERATOR ENABLE

|

ACCELERATOR TYPE

SBI Silo Register
ID Address 18
Processor Address 31
8 7]
] HHT]

AFTER FAULT
SBI INTERLOCK
10
TAG
MASK BIT 3 OR DATA BIT 31

MASK BIT 2 OR DATA BIT30 —————’
MASK BIT 1 OR DATA BIT 29
MASK BIT O OR DATA BIT 28

CONFIRMATION |

|
|

CONFIRMATION 0

SBI TRANSFER REQUEST NO:-

305

Appendix D

SBI Silo Register

ID Address 19
Processor Address 34

16 15 8 7

TPl TR T T

READ DATA SUBSTITUE INTERRUPT ENABLE \—f

Freo
CORRECTED READ DATA J !l ‘ ! ‘
‘ |

e
-

READ DATA SUBSTITUE
CENTRAL PROCESSOR TIME OUT

CENTRAL PROCESSOR TIME QUT STATUS 1

CENTRAL PROCESSOR TIME OUT STATUS 0 l
CENTRAL PROCESSOR ERROR CONFIRM ACTION

INSTRUCTION BUFFER READ DATA SUBSTITUTE
INSTRUCTION BUFFER TIME OUT
INSTRUCTION BUFFER TIME OUT STATUS ! 4 I
INSTRUCTION BUFFER TIME OUT STATUS 0
INSTRUCTION BUFFER ERROR CONFIRMATION
DOUBLE BUS ERROR
SBI NOT BUSY 4

SBI Time Out Address Register

ID Address 1A
Processor Address 35

28 27 0

l l (o1 PR 1 1 1
J
MODE]
MODEO
PROTECTION CHECK

PHYSICAL ADDRESS<29:02 >

SBI Fault Signal Register

ID Address 1B
Processor Address 30

°l BD0EEE RN Baa o e Eee

PARITY FAULT T T
|
1

[}

UNEXPECTED READ

DATA

MULTIPLE TRANSMITTER FAULT

TRANSMITTING DURING FAULT !
FAULT LATCH *
FAULT INTERRUPT ENABLE
FAULT SIGNAL !
FAULT LOCK

Appendix D

SB! Silo Comparator Register

ID Address 1C
Processor Address 32
31 3029 24 23 16 15 . 8 7

t T T T
I | I 0,0 OlolO'OlO OIO‘O o|oMo‘o‘o
1 L R A Lo 11 -t i

SILO LOCK ——T 4 }
3ILO INTERRUPT ENABLE ; ;
LOCK UNCODITIONAL
LOCK CODE
|
|

MASK OR COMMAND
TAG S
COUNT

SBI/Cache Maintenance Register
ID Address 1D

Processor Address 33
3 16 15 8 7 0
(e e T Elelelolelelele
] [L1 1|
? T oo — ;ﬁ,_Jf r Y i ‘
REVERSE PARITY BITO b |
FORCE WRITE SEQUENCE ‘ o |
FORCE_UNEXPECTED READ_J | | \ | ‘ l Vi
DATA FAULT |t l |
FORE MULTIPLE TRANSMITTER FAULT l | ; ‘ ’ l L |
MAINTENANCE DENTIFICATION——— 1 L |
FORCE INVALIDATE \
ENABLE SBI INVALIDATE \
REVERSE CACHE PARITY | !
FORCE MISS GROUP 0
FORCE MISS GROUP 1 — | ‘
FORCE REPLACE GROUP O |
FORCE REPLACE GROUP 1
DISABLE SBI
REVERSE PARITY BIT 1 |
GROUP 1 MATCH |
GROUP 0 MATCH]
FORCE TIME OUT
Cache Parity Register
ID Address 1E
Processor Address —
31 16 15 8 7 0
olo o«ol \ lo\o‘ Mo ololo o‘ol . iaom szaziaom 82 a:a\ecen az“aoen sz!
- 1 | I)
T T T~
ANT ERROR L]) } 4
CPU ERROR J J : ‘ i
GROUIP 1 DATA PARITY OK i i |
GROW:) DATA PARITY OK — ! |

GROUP O ADDRESS PARITY OK
GROUP 1 ADDRESS PARITY OK

307

Appendix D

Reserved Register

ID Address 1F
Processor Address —

31 2423 16 15 8 7 [¢]

U N

Micro Stack Register

ID Address 20
Processor Address —

0388428 05300002 Don I

CONTROL STORE ADDRESS L]

Micro Match Register

ID Address 21
Processor Address 3C

31 423 16 15 8 7 0
T
HOIO)OIO’0,0IOIO]O[OIOIO‘OIOiOIO’O{OIIZ M09 87 65432 0
L) S | I | P
—

CONTROL STORE ADDRESS r'

Writable Control Store Address Register

ID Address 22
Processor Address 2C

31 24 23 1615 8 7 (]
MO’O’OI0,0[0,0IO!0[0’0'0!0‘0’0’ ’ In nNio9e7zé6s543210
1 P PR B
?R.M J
INVERT PARITY

MODULO THREE COUNTER 1 T
CONTROL STORE ADDRESS

Writable Control Store Data Register

ID Address 23
Processor Address 2D

31 16 15) 0

L 1] 1 1 1 | IR
—

DATA TO WRITEABLE CONTROL STORE 4

308

Appendix D

PO Base Register

1D Address 24
Processor Address 08

3 ¥ 15

| - | NI S | P PR |

AN

BASE VIRTUAL ADDRESS FOR PO SPACE PAGE TABLE ENTRIES———!

P1 Base Register

ID Address 25
Processor Address 0A

3t
(| PR | - | I | P |
N

BASE VIRTUAL ADDRESS FOR P1 SPACE PAGE TABLE ENTRIES——’

System Base Register

ID Address 26
Processor Address 0C

31 16 15

.
BASE PHYSICAL ADDRESS FOR SYSTEM SPACE f

PAGE TABLE ENTRIES

Reserved Register

ID Address 27
Processor Address —

31 2423 16 15 8 7

Kernel Stack Pointer Register

ID Address 28
Processor Address 00

3 EIZJ 1615 8 7

309

Appendix D

Executive Stack Pointer Regster

ID Address 29
Processor Address 01

3 2423 16 15 8 7 1]

Supervisor Stack Pointer Register

ID Address 2A
Processor Address 02

31 2423 16 15 8 7 [¢]

Lo T

User Stack Pointer Register

ID Address 2B
Processor Address 03

31 24 23 16 15 $ 7 Q

interrupt Stack Pointer Register

ID Address 2C
Processor Address 04

31 24 23 16 15 - Q

First Part Done Address Register

ID Address 2D
Processor Address —

Appendix D

D Save Register

ID Address 2E
Processor Address —

N 2423 16 15 8 7 90

Q Save Register

ID Address 2F
Processor Address —

31 42 16 15 8 7 0

...l.i.l.|ll..| PREYONS N S S NN S SRS

Temp 0 to Temp 9 Registers

1D Address (30 to 39)
Processor Address —

3 2423 1615 8 7 0

Process Control Block Base Register

ID Address 3A
Processor Address 10

31 16 15

(Ll

1 | B | | I R | 1
N -

PHYSICAL ADDRESS OF PROCESS CONTROL BLOCK————“

System Control Block Base Register

ID Address 3B
Processor Address 11

I31 2423 1615 8 7 0
1
P 1 1 1 1 -] 1
\ _J

PHYSICAL PAGE ADDRESS OF THE SYSTEM CONTROL BLOCK—“

31

Appendix D

PO Length Register

ID Address 3C
Processor Address 09

3 242322 21 1615

00000 00’
1

—

LENGTH OF PO PAGE TABLE (IN LONGWORDS)'“—’

P1 Length Register

ID Address 3D
Processor Address 0B

3] 242322 21 16 15

LOOOOO OO!
. 1 1

—

LENGTH OF P1 PAGE TABLE {IN LONGWORDS)

System Length Register

ID Address 3E
Processor Address 0D

1l 2423 222 1615

[
[OOOOOOOOOOI
N 1 L. 1 |

& o

—
LENGTH OF SYSTEM PAGE TABLE{IN LONGWORDS) %3

Reserved Register

ID Address 3F
Processor Address —

e

[P

312

APPENDIX E
ADDRESS VALIDATION RULES

The memory management system described in Chapter 6 separates
validation from the access of arguments. It is necessary to adopt cer-
tain coding conventions to prohibit unauthorized user access to sensi-
tive data. Specifically it must not be possible for a user to call aninner
access mode in such a way that will corrupt system integrity (e.g.,
cause supervisory code to write over itself) or incorrectly allow access
to data that would otherwise have been inaccessible (e.g., the reading
of a password table).

The following discussion sets forth operating system requirements
that must be adhered to when accessing arguments from an inner
access mode to avoid a breach of security.

The following requirements are made concerning operating system
software:

1. Operating system software (kernel and executive mode) is trust-
worthy and does not maliciously attempt to break down the pro-
tection mechanisms (e.g., change the mapping or protection of
pages at arbitrary times).

2. The protection of a shared page may not be changed unless the
share count (a software construct) is one and the process at-
tempting the change is that sharer. Share count=a software
maintained record of the number of processes sharing a page.

3. The protection of a page with a nonzero 1/0 pending count (a
software construct) may not be changed until the count goes to
zero.

4. Operating system software will not deliver ASTs to outer access
modes while the process is executing in an inner access mode.

5. Arguments passed to an inner access mode can be maliciously
destroyed asynchronously by another process (e.g., shared data)
or by an 1/0 transfer, but not by a less privileged mode of the
executing process itself.

6. Kernel and executive stacks are never allocated in shared memo-
ry or accessible to other than their respective access modes.

The following summarizes related aspects of the VAX hardware:
1. Four access modes are provided and there is a stack per-process

per-access mode.
2. Protection is hierarchical with the innermost access mode being
the least restricted and the outermost the most restricted.

313

Appendix E

Four instructions are provided to change the processor mode to
the four access modes (CHMU, CHMS, CHME, and CHMKY); furth-
ermore, when a process is executing a change mode instruction
the access mode can only be decreased (changed to a more
privileged mode) or left the same.

Two instructions are provided to validate the accessibility of argu-
ments: Probe Read (PROBER) and Probe Write (PROBEW).
These instructions validate the accessibility of arguments using
the maximization of the Previous Mode field of PSL and a speci-
fied access mode. Thus only current and more restricted access
modes can be probed.

The Return from Interrupt instruction (REl) insures that the cur-
rent mode field of the restored PSL is greater than or equal to the
current mode field of the current PSL and that the previous mode
field of the restored PSL is greater than or equal to the current
mode field of the restored PSL.

Given the previous operating system requirements, the following ruies
guarantee that less privileged modes cannot pass erroneous ad-
dresses to more privileged modes.

1.

All addresses (including indirect addresses) passed as arguments
to an inner access mode must be copied (preferably to a register,
but in any case to an area of memory that is not modifiable by less
privileged modes) before the accessibility of the actual argument
is validated. In some programs such an address will later be used
to asynchronously post information back to an outer access
mode. In such cases, the least privileged access mode that can
perform the specified read or write operation must be copied
from the corresponding page table entry and stored with the argu-
ment address.

NOTE

Using least privileged does not work properly when
the data structure resides in pages with different
protection and the first page has a lesser protection
value than the others. When checking the accessibil-
ity of such a structure in the context of the serial
execution of the process, the check will succeed, but
later when the accessibility is checked again during
the asynchronous posting of information, the check
will fail. This situation is considered to be an operat-
ing system bug (may cause the generation of a bug
check) and merely causes no information to be post-
ed.

314

Appendix E

2. The synchronous validation of argument addresses (i.e., as the
result of serial program execution) must be explicitly coded using
Probe instructions specifying an access mode of zero (i.e., cause
maximization o previous access mode).

3. The asynchronous validation of argument addresses (i.e., as the
result of software interrupts) must be explicitly coded using Probe
instructions specifying the least privileged access mode stored
when the argument address was saved (see 1) and with a previous
access mode field equal to or greater than that of the current
mode field of PSL (i.e., cause maximization to least privileged
access mode).

4. All arguments to be written must be PROBEWed before they are
written (otherwise there would be a potential protection violation).

5. All arguments to be read must be PROBERed before they are
read to defend against arguments mapped to 1/0 space and
thereby causing an 1/0 side effect.

6. All addresses passed from an outer access mode to an inner
access mode must be copied and validated before being passed
as arguments in a call to a more inner access mode. This insures
the integrity of intermediate modes.

This discussion is centered on the validation of argument addresses.
There are other arguments that also deserve similar handling. Such
arguments are typically address modifiers (e.g., a buffer length) and in
most cases must also be copied to insure system integrity.

315

316

LIE

m EXAMINE VIRTUAL ADDRESS 7] F l 0 l 0|5 I 1 I F l 4 l USER VIRTUAL ADDRESS

31 (3029 [28 [27 [26 [25 [2a [23 [22|21 {20 | w | we f v [we s [uajs{n|{n]olo|s|7lef{s][a]a3j2]1]0
Bl It Rl Bl ol el A
ol [y i]oflolololojolo]ofo|r|olr|lofoflo|r|r]rir]rjo]r]o}o
Nl 4 | 4 1 F 4 BYTE
-
Pl SPACE o DISPLACEMENT
v
) F 8 0 2 8 VIRTUAL PAGE NUMBER (LONGWORD)
« 4 (SHIFT LEFT 2 POSITIONS W/ZERO FILL)
L—— E 0 0 A O l_———": BYTE DISPLACEMENT
[(PIBRI——=~+7 ¢ 8 3 0© 0 o&’///__’/° CONTENTS OF PIBR
_— = P
[ZJCALCULATE VIRTUAL ADRS 8|0 [0 |) [0 I I alol vaewerme — VIRTUAL ADDRESS OF PIPTE
FOR PIPTE : N
\\\‘
\\\\\\
—
31 (3029 28|27]26]25]2a (23|22 |21 [20|w |8 |17 |16 |15 |14 |3r2|n]|w0o|fejs|7]e]|s|al3f2]1]0
\Loooooooooooooonoooooooo10100000
! E | 4) 0 A 0
VPN
0 0 0 0 8 0
s spack 6 0 0 2 o o VIRTUAL PAGE NUMBER
fsBRI—/——=+ 0 0 0 0 1 0 0 O = BYTE DISPLACEMENT
o 'I"o‘[o [o l . I) l ool easere 20:0 + CONTENTS OF BASE REGISTER
[3JcALCULATE PHYSICAL ADRS .

= PHYSICAL ADDRESS OF SPTE
OF SPTE

NOILVISNVHL $S3HAAVv 1vOISAHd OL TVN1HIA

4 XION3ddVv

8ie

ASSUME CONTENTS OF LOCATION
(00001200) 9l4a]o0

[alreTcH sere

0 0»[1 lc|o}‘_Z—sprE

31130129 128 |27 (26 125 |24 |23 |22 |21 (20|19 w8 [[w{isful|r|n|lwiele|7] 6 S|4i3(2|1]o0
vfojojriojrjojlofofojofojolo|o]ofo]olofoflo]olo]|1] 1]j]ojofofojo|oO
NOT USED
v PROT M _BY HARDWARE B PEN
~—

PROTECTION =2 WHICH
IS KERNEL READ/WRITE

BITS 8:0 OF VA FOR PIPTE
FROM STEP 2 IS THE BYTE
OFFSET FOR THE SPTE

BITS 20:0 OF PTE = PFN, THESE
FORM THE Hi ORDER BITS OF
PHYSICAL ADDRESS 29:9

0O(AajO
31 (30|29 28|27 120 | 25|24 |23 (22|21 20|10 18{17 |16 |15 14 (IJ 2Zfnjio|lefs|7i6(5)4a|3 2|110
ojojojofofojofo|o]ofo]o]n 1 lrojfojojojoflojo|1|o|rvfofojo|o]o

PA PIPTE

4 xipusaddy

61€

ASSUME CONTENTS OF LOCATION e — T
{ooo JeOAm’Z,’P 440 o} 0 ﬂzm"\ZfP|PIE

: FETCH PIPTE

31130 |29 |28 |27 |26 |25 |24 [23 |22 |21 |20 |19 |18 {17 {16 |15 104 |13 02|11 |10 9 s|7|6ls]aj3l2jr]o
| M S] J e T o h 4
111oo|oooooooooooooo1o‘1oololl1LI
NOT USED -]
v PROT M | By HARDWARE PEN
T

PROTECTIONIC WHICH BITS 8:0 USER VA FROM

STEP | FORM THE BYTE
IS USER READ OFESET OF PA WITHIN

THE PAGE ~_

SUPERVISOR WRITE
BITS 20:0 OF PTE = PFN, THESE
FORM THE HI ORDER BITS OF*
PHYSICAL ADDRESS 29:9

31 |30]29 |28 |27 26| 252423 |22 |21 |20 19] 8 il lisluwlnlzntioleis)7zlels 413]12|1]0
ololojojlojolofofojrfog 1{olofr]ofr | VY 111 111 1jo|1f{of0
[0 l 0] 1 ‘ 6|5 FI1F |48

CALCULATE PHYSICAL ADDRESS OF OPERAND

4 xipuaddy

320

APPENDIX G

OPERAND SPECIFIER
NOTATION

OPERAND SPECIFIERS
Operand specifiers are described in the following way:

where:

<name> <access type> <data type>

Name is a suggestive name for the operand in the context of the
instruction. The name is often abbreviated.

Access type is a letter denoting the operand specifier acces type:

a

Calculate the effective address of the specified
oprand. Address is returned ina longword which is
the actual instruction operand. Context of address
calculation is given by <data type>

No operand reference. Operand specmer isa
branch displacement. Size of branch displacement
is given by <data type>.

Operand is read, potentially modified and written.
Note that this is NOT an indivisible memory opera-
tion. Also note that if the operand is not actually
modified, it may not be written back. However, modi-
fy type oprands are always checked for both read
and write accessibility.

Operand is read only.

Calculate the effective address of the specified oper-
and. If the effective address is in memory, the ad-
dress is returned in a longword which is the actual
instruction operand. Context of address calculation
is given by <data type>.

If the effective addres is Bn, then the operand actual-

ly appears in R[n], or in R[n+17TR[n].

Operand is written only.

321

Appendix G

Data type is a letter denoting the data type of the operand;

byte

double floating

floating

longword

quadword

word

first data type specified by instruction
second data type specified by instruction

< Xsg0——=ao0o

OPERATION DESCRIPTION NOTATION

The operation of each instruction is given as a sequence of control and
assigment statements in an ALGOL-like syntax. No attempt is made to
define the syntax formally; it is assumed to be familiar to the reader.

+ addition

- ubtraction, unary minus

* multiplication
/ division (quotient only)
b exponentiation

concatenation

- is replaced by
= is defined as
Rnor R[n] contents of register Rn

PC,SP,FP,or the contents of register R15, R14, R13, or R12
AP respectively

PSW the contents of the processor status word

PSL the contents of the processor status long word

(x) contents of memory location whose address is x
(x)+ contents of memory location whose address is X; X

incremented by the size of operand referenced at x

=(x) x decremented by size of operand to be referenced
at x; contents of memory location whose address is x

<xiy> a modifier which delimits an extent from bit position
x to bit position y inclusive

<x1,X2,...xn> amaodifier which enumerates bits x1,x2...,xn

322

Appendix G

X...y x through y inclusive

{ arithmetic parentheses used to indicate precedence

AND jogical AND

OR logical OR

XOR logical XOR

NOT logical (ones) conplement

LSS less than signed

LSSU less than unsigned

LEQ less than or equal signed

LEQU less than or equal unsigned

EQL equal signed

EQLU equal unsigned

NEQ - not equal signed

NEQU not equal unsigned

GEQ greater than or equal signed

GEQU greater than or equal unsigned

GTR greater than signed

GTRU greater than unsigned

SEXT (x) is signed extended to size of oprand needed
ZEXT (x) is zero extended to size of operand needed
REM (x, y) remainder of x divided by y

MINU (x, Y) minimum unsigned of xand y

The following conventions are used:

e Other than that caused by () +,0r —(), and the advancement of
PC, only oprands or portions of operands appearing on the left side
of assignment statements are affected.

e No operator precedence is assumed, other than that replacement
(<) has the lowest precedence. Precedence is indicated explicityly
by{ }

e All arithmetic, logical, and relational operators are defined in the
context of their operand. For example “+” applied to floating oper-
ands means a floating add while “+” applied to byte operads is an
integer byte add. Similarly, “LSS" is a floating comparison when

323

Appendix G

applied to floating operads while “LSS” is an integer byte compari-
son when applied to byte operands.

Instruction operands are evaluated according to the operand speci-
fier conventions. The order in which operands appear in the instruc-
tion description has no effect on the order of evaluation.

Condition codes are in general affected on the value of actual stored
results, not on “true” resuits (which might be generated internally to
greater precision). Thus, for example, 2 positive integers can be
added together and the sum stored, because of overfiow, as a
negative value. The condition codes will indicate a negative value
even though the “true” result is clearly positive.

324

GLOSSARY

abort An exception that occurs in the middle of an instruction and
potentially leaves the registers and memory in an indeterminate state,
so that the instruction cannot necessarily be restarted.

absolute indexed mode An indexed addressing mode in which the
base operand specifier is addressed in absolute mode.

absolute mode In absolute mode addressing, the PC is used as the
register in autoincrement deferred mode. The PC contains the ad-
dress of the location containing the actual operand.

absolute time Time values expressing a specific date (month, day,
and year) and time of day. Absolute time values are always expressed
in the system as positive numbers.

access mode 1. Any of the four processor access modes in which
software executes. Processor access modes are, in order from most to
least privileged and protected: kernel (mode 0), executive (mode 1),
supervisor (mode 2), and user (mode 3). When the processor is in
kernel mode, the executing software has complete contro! of, and
responsibility for, the system. When the processor is in any other
mode, the processor is inhibited from executing privileged instruc-
tions. The Processor Status Longword contains the current access
mode field. The operating system uses access modes to define pro-
tection levels for software executing in the context of a process. For
example, the executive runs in kernel and executive mode and is most
protected. The command interpreter is less protected and runs in
supervisor mode. The debugger runs in user mode and is not more
protected than normal user programs.

access type 1.Thewayin which the processor accesses instruction
operands. Access types are: read, write, modify, address, and branch.
2. The way in which a procedure accesses its arguments.

access violation An attempt to reference an address that is not
mapped into virtual memory or an attempt to reference an address
that is not accessible by the current access mode.

325

address A number used by the operating system and user software
to identify a storage location. See also virtual address and physical
address.

address access type The specified operand of an instruction is not
directly accessed by the instruction. The address of the specified op-
erand is the actual instruction operand. The context of the address
calculation is given by the data type of the operand.

addressing mode The way in which an operand is specified; for
example, the way in which the effective address of an instruction
operand is calculated using the general registers. The basic general
register addressing modes are called: register, register deferred, au-
toincrement, autoincrement deferred, autodecrement, displacement,
and displacement deferred. In addition, there are six indexed ad-
dressing modes using two general registers, and literal mode ad-
dressing. The PC addressing modes are called: immediate (for regis-
ter deferred mode using the PC), absolute (for autoincrement deferred
mode using the PC), and branch.

address space The set of all possible addresses available to a
process. Virtual address space refers to the set of all possible virtual
addresses. Physical address space refers to the set of all possible
physical addresses sent out on the SBI.

allocate a device To reserve a particular device unit for exclusive
use. A user process can allocate a device only when that device is not
allocated by any other process.

alphanumeric character An upper or lower case letter (A-Z, a-z), a
dollar sign ($), an underscore (=), or a decimal digit (0-9).

American Standard Code for Information Interchange (ASCII) A
set of 8-bit binary numbers representing the alphabet, punctuation,
numerals, and other special symbols used in text representation and
communications protocol.

Ancillary Control Process (ACP) A process that acts as an interface
between user software and an I/0 driver. An ACP provides functions
supplemental to those performed in the driver, such as file and direc-
tory management. Three examples of ACPs are: the Files-11 ACP
(F11ACP), the magnetic tape ACP (MTACP), and the networks ACP
(NETACP).

Argument Pointer General register 12 (R12). By convention, AP
contains the address of the base of the argument list for procedures
initiated using the CALL instructions.

asynchronous A mode of activity that operates without respect to a
clock. For example, asynchronous hardware uses ready and done

326

Glossary

signals to schedule operations rather than time intervals. If two activi-
ties are asynchronous, the second can begin before the first is com-
plete.

Asynchronous System Trap A software-simulated interrupt to a
user-defined service routine. ASTs enable a user process to be noti-
fied asynchronously with respect to its execution of the occurrence of
a specific event. If a user process has defined an AST routine for an
event, the system interrupts the process and executes the AST routine
when that event occurs. When the AST routine exits, the system re-
sumes the process at the point where it was interrupted.

Asynchronous System Trap level (ASTLVL) A value kept in an in-
ternal processor register that is the highest access mode for which an
AST is pending. The AST does not occur until the current access
mode drops in priority (rises in numeric value) to a value greater than
of equal to ASTLVL. Thus, an AST for an access mode will not be
serviced while the processor is executing in a higher priority access
mode.

autodecrement indexed mode An indexed addressing mode in
which the base operand specifier uses autodecrement mode address-
ing.

autodecrement mode in autodecrement mode addressing, the con-
tents of the selected register are decremented, and the result is used
as the address of the actual operand for the instruction. The contents
of the register are decremented according to the data type context of
the register: 1 for byte, 2 for word, 4 for longword and floating, 8 for
quadword and double floating.

autoincrement deferred indexed mode An indexed addressing
mode in which the base operand specifier uses autoincrement de-
ferred mode addressing.

autoincrement deferred mode In autoincrement deferred mode
addressing, the specified register contains the address of a longword
which contains the address of the actual operand. The contents of the
register are incremented by 4 (the number of bytes in a longword). If
the PC is used as the register, this mode is called absolute mode.

autoincrement indexed mode An indexed addressing mode in
which the base operand specifier uses autoincrement mode address-
ing.

autoincrement mode In autoincrement mode addressing, the con-
tents of the specified register are used as the address of the operand,
then the contents of the register are incremented by the size of the
operand.

327

balance set The set of all process working sets currently resident in
physical memory. The processes whose working sets are in the bal-
ance set have memory requirements that balance with available mem-
ory. The balance set is maintained by the system swapper process.

base operand address The address of the base of a table or array
referenced by index mode addressing:

base operand specifier The register used to calculate the base
operand address of a table or array referenced by index mode ad-
dressing.

base priority The process priority that the system assigns a process
when it is created. The scheduler never schedules a process below its
base priority. The base priority can be modified only by the system
manager or the process itself.

base register A general register used to contain the address of the
first entry in a list, table, array, or other data structure.

BBCCI Branch on Bit Clear and Clear Interlock instruction. One can
think of it as a Clear Interlock Bit instruction with a branch side-effect if
the bit is already clear. This instruction permits interlocked access to a
control variable.

BBSSI Branch on Bit Set and Set Interiock instruction. One can
think of it as a Set Interlock Bit instruction with a branch side-effect if
the bit is already set. This instruction permits interlocked access to a
control variable.

binary A number system using two symbols: 0 and 1.

bit Binary digit. Any two-state device. A bit is said to be set (or on)
when it represents the value 1, to be clear (or off) when it represents
the value 0.

bit string See variable-length bit field.

bits per inch A measure of the recording density of magnetic tape,
indicating the number of bits that can fit in one inch of the recording
surface.

block 1. The smallest addressable unit of data that the specified
device can transfer in an 1/0 operation (512 contiguous bytes for most
disk devices). 2. An arbitrary number of contiguous bytes used to
store logically related status, control, or other processing information.

block I/0 A data accessing technique in which the program manipu-
lates the blocks (physical records) that make up a file, instead of its
logical records.

328

Glossary

bootstrap block A block in the index file on a system disk that con-
tains a program that can load the operating system into memory and
start its execution.

buffer A temporary data storage area in a process address space.

Buffered Data Path (BDP) A data path supporting block transfer
devices on the UNIBUS. A block transfer device is one that transfers
data to consecutive increasing addresses.

byte A byte is eight contiguous bits starting on an addressable byte
boundary. Bits are numbered from the right, 0 through 7, with bit 0 the
low-order bit. When interpreted arithmetically, a byte isa two’s
complement integer with significance increasing from bits 0 through 6.
Bit 7 is the sign bit. The value of the signed integer is in the range -128
to 127 decimal. When interpreted as an unsigned integer, significance
increases from bits 0 through 7 and the value of the unsigned integer
is in the range 0 to 255 decimal. A byte can be used to store one ASCII
character.

cache memory A small, high-speed memory placed between slower
main memory and the processor. A cache increases effective memory
transfer rates and processor speed. It contains copies of data recently
used by the processor, and fetches several bytes of data from memory
in anticipation that the processor will access the next sequential series
of bytes.

call frame See stack frame.

call instructions The processor instructions CALLG (Call Procedure
with General Argument List) and CALLS (Call Procedure with Stack
Argument List).

call stack The stack, and conventional stack structure, used during
a procedure call. Each access mode of each process context has one
call stack, and interrupt service context has one call stack.

central processor The collection of interconnected logic modules
that execute the control and arithmetic functions of a computer sys-
tem. A central processor includes the logic which fetches and decodes
instructions stored in main memory, an arithmetic logical unit for com-
putation, and the primary /O interfaces for the computer system.

Change Mode instruction The processor instruction that raises the
access mode of the currently executing procedure by trapping to the
operating system’s change mode handlers. Procedures can only issue
a GHM to a more protected access mode. An RE! issued from within
that access mode changes the mode back to a less protected access
mode.

329

Giossary

channel A logical path connecting a user process to a physical de-
vice unit. A user process requests the operating system to assign a
channel to a device so the process can transfer data to or from that
device.

character A symbol represented by an ASCll code. See also alphan-
umeric character.

character string A contiguous set of bytes. A character string is
identified by two attributes: an address and a length. Its address is the
address of the byte containing the first character of the string.
Subsequent characters are stored in bytes of increasing addresses.
The length is the number of characters in the string.

command An instruction, generally an English word, typed by the
user at a terminal or included in a command file which requests the
software monitoring a terminal or reading a command file to perform
some well-defined activity. For example, typing the COPY command
requests the system to copy the contents of one file into another file.

compatibility mode A mode of execution that enables the central
processor to execute non-privileged PDP-11 instructions. The operat-
ing system supports compatibility mode execution by providing an
RSX-11M programming environment for an RSX-11M task image. The
operating system compatibility mode procedures reside in the control
region of the process executing a compatibility mode image. The pro-
cedures intercept calls to the RSX-11M executive and convert them to
the appropriate operating system functions.

compiler A program that translates a program written in a high-level
language (such as FORTRAN or BASIC) into an object program.

condition An exception condition detected and declared by soft-
ware. For example, see failure exception mode.

condition codes Four bits in the Processor Status Word that indi-
cate the results of previously executed instructions.

condition handler A procedure that a process wants the system to
execute when an exception condition occurs. When an exception
condition occurs, the operating system searches for a condition
handler and, if found, initiates the handier immediately. The condition
handler may perform some action to change the situation that caused
the exception condition and continue execution for the process that
incurred the exception condition. Condition handlers execute in the
context of the process at the access mode of the code that incurred
the exception condition.

condition value A 32-bit quantity that uniquely identifies an excep-
tion condition.

330

Glossary

context The environment of an activity. See also process context,
hardware context, and software context.

context switching Interrupting the activity in progress and switching
to another activity. Context switching occurs as one process after
another is scheduled for execution. The operating system saves the
interrupted process’ hardware context in its hardware process control
block (PCB) using the Save Process Context instruction, loads another
process’ hardware PCB into the hardware context using the Load
Process Context instruction, scheduling that process for execution.

contiguous Physically adjacent and/or consecutively numbered
units of data.

contiguous area A space allocation on disk where the reserved area
for all blocks in a file is physically adjacent on the recording medium.

console The manual control unit integrated into the centrai proces-
sor. The console includes an LSI-11 microprocessor and a serial line
interface connected to a hard copy terminal. It enables the operator to
start and stop the system, monitor system operation, and run diagnos-
tics.

console terminal The hard copy terminal connected to the central
processor console.

control region The highest-addressed half of per-process space
(the P1 region). Control region virtual addresses refer to the process-
related information used by the system to control the process, such
as: the kernel, executive, and supervisor stacks, the permanent 1/0
channels, exception vectors, and dynamically used system pro-
cedures (such as the command interpreter and RSX-11M program-
ming environment compatibility mode procedures). The user stack is
also normally found in the control region, although it can be relocated
elsewhere.

Control Region Base Register (P1BR) The processor register, or its
equivalent in a hardware process control block, that contains the base
virtual address of a process control region page table.

Control Region Length Register (P1LR) The processor register, or
its equivalent in a hardware process control block, that contains the
number of nonexistent page table entries for virtual pages in a process
control region.

copy-on-reference A method used in memory management for
sharing data until a process accesses it, in which case it is copied
before the access. Copy-on-reference allows sharing of the initial val-
ues of a global section whose pages have read/write access but con-

tain pre-initialized data available to many processes.
331

current access mode The processor access mode of the currently
executing software. The Current Mode field of the Processor Status
Longword indicates the access mode of the currently executing soft-
ware.

cylinder The tracks at the same radius on all recording surfaces of a
disk.

data structure Any table, list, array, queue, or tree whose format
and access conventions are well-defined for reference by one or more
images.

data type In general, the way in which bits are grouped and in-
terpreted. In reference to the processor instructions, the data type of
an operand identifies the size of the operand and the significance of
the bits in the operand. Operand data types inciude: byte, word,
longword, and quadword integer, floating and double floating, charac-
ter string, packed decimal string, and variable-length bit field.

delta time A time value expressing an offset from the current date
and time. Delta times are always expressed in the system as negative
numbers whose absolute value is used as an offset from the current
time.

demand paging One technique that enables a program to execute
without having all of its pages resident in physical memory. In demand
paging, a program page is not brought into physical memory until it is
actually needed. If there is insufficient physical memory, the least re-
cently used page in the system is moved out of memory to make room
for the needed page. The page moved out may belong to any program
in the system residing in physical memory. For the technique used in
this system, see paging.

device The general name for any physical terminus or link connect-
ed to the processor that is capable of receiving, storing, or transmit-
ting data. Card readers, line printers, and terminals are examples of
record-oriented devices. Magnetic tape devices and disk devices are
examples of mass storage devices. Terminal line interfaces and
interprocessor links are examples of communications devices.

device interrupt An interrupt received on interrupt priority level 16
through 23. Device interrupts can be requested only by devices, con-
trollers, and memories:

device name The field in a file specification that identifies the device
unit on which a file is stored. Device names also include the mnemon-
ics that identify an 170 peripheral device in a data transfer request. A
device name consists of a mnemonic followed by a controller identifi-
cation letter (if applicable), followed by a unit number (if applicable),
and ends with a colon (:).

332

Glossary

device queue See spool queue.

device register A location in device controller logic used to request
device functions (such as I/0 transfers) and/or report status.

device unit One drive, and its controlling logic, of a mass storage
device system. A mass storage system can have several drives con-
nected to it.

diagnostic A program that tests logic and reports any faults it
detects.

Direct Data Path (DDP) A data path allowing UNIBUS transfers to
random SBI addresses. Each UNIBUS transfer through the direct data
path is mapped directly to an SBI transfer, thereby allowing only one
word of information to be transferred during an SBI cycle.

direct /O An /O operation in which the system locks the pages
containing the associated buffer in memory for the duration of the 1/0
operation. The 1/0 transfer takes place directly from the process
buffer.

direct mapping cache A cache organization in which only one ad-
dress completion is needed to locate any data in the cache because
any block of main memory data can be placed in only one possible
position in the cache. Contrast with fully associative cache.

displacement deferred indexed mode An indexed addressing
mode in which the base operand specifier uses displacement deferred
mode addressing.

displacement deferred mode In displacement deferred mode ad-
dressing, the specifier extension is a byte, word, or longword displace-
ment. The displacement is sign-extended to 32 bits and added to a
base address obtained from the specified register. The result is the
address of a longword which contains the address of the actual oper-
and. If the PC is used as the register, the updated contents of the PC
are used as the base address. The base address is the address of the
first byte beyond the specifier extension.

displacementindexed mode Anindexed addressing modein
which the base operand specifier uses displacement mode address-
ing.

displacement mode In displacement mode addressing, the specifi-
er extension is a byte, word, or longword displacement. The
displacement is sign-extended to 32 bits and added to a base address
obtained from the specified register. The result is the address of the
actual operand. If the PC is used as the register, the updated contents
of the PC are used as the base address. The base address is the
address of the first byte beyond the specifier extension.

333

Giossary

Distributed Priority Arbitration Each device connected to the SBI
decides whether or not it has access to the bus (rather than a central
arbitrator making the decision). That is, each device on the SBI main-
tains its own priority arbitration logic.

double floating datum Eight contiguous bytes (64 bits), starting on
an addressable byte boundary, which are interpreted as containing a
floating point number. The bits are labeled from right to left, 0 to 63. A
four-word floating point number is identified by the address of the byte
containing bit 0. Bit 15 contains the sign of the number. Bits 14 through
7 contain the excess 128 binary exponent. Bits 63 through 16 and 6
through 0 contain a normalized 56-bit fraction with the redundant most
significant fraction bit not represented. Within the fraction, bits of
decreasing significance go from 6 through 0, 31 through 16, 47
through 32, then 63 through 48. Exponent values of 1 through 255 in
the 8-bit exponent field represent true binary exponents of -128 to
127. An exponent value of 0 together with a sign bit of 0 represent a
floating value of 0. An exponent value of 0 with a sign bit of 1 is a
reserved representation; floating point instructions processing this
value return a reserved operand fault. The value of a floating datum is
in the approximate range (+ or -) 0.29 x 10**-38 to 1.7 x 10**38. The
precision is approximately one part in 2**55 or sixteen decimal digits.

drive The electro-mechanical unit of a mass storage device system
on which a recording medium (disk cartridge, disk pack, or magnetic
tape reel) is mounted.

driver The set of code that handles physical I/0 to a device.

echo A terminal handling characteristic in which the characters
typed by the terminal user on the keyboard are also displayed on the
screen or printer.

effective address The address obtained after indirect or indexing
modifications are calculated.

error correction code (ECC) Single bit error detection and correc-
tion, double bit error detection.

error logger A system process that empties the error log buffers
and writes the error messages into the error file. Errors logged by the
system include memory system érrors, device errors and timeouts,
and interrupts with invalid vector addresses.

exception An event detected by the hardware (other than an inter-
rupt or jump, branch, case, or call instruction) that changes the normal
flow of instruction execution. An exception is always caused by the
execution of an instruction or set of instructions (whereas an interrupt
is caused by an activity in the system independent of the current

334

Glossary

instruction). There are three types of hardware exceptions: traps,
faults, and aborts. Examples are: attempts to execute a privileged or
reserved instruction, trace traps, compatibility mode faults, break-
point instruction execution, and arithmetic traps such as overflow,
underflow, and divide by zero.

exception condition A hardware- or software-detected event other
than an interrupt or jump, branch, case, or call instruction that
changes the normal flow of instruction execution.

exception enables See trap enables.
exception vector See vector.

executable image An image that is capable of being run in a proc-
ess. When run, an executable image is read from afile for execution in
a process.

executive The generic name for the collection of procedures includ-
ed in the operating system software that provides the basic control
and monitoring functions of the operating system.

executive mode The second most privileged processor access
mode (mode 1). The record management services (RMS) and many of
the operating system’s programmed service procedures execute in
executive mode.

failure exception mode A mode of execution selected by a process
indicating that it wants an exception condition declared if an error
occurs as the result of a system service call. The normal mode is for
the system service to return an error status code for which the process
must test.

fault A hardware exception condition that occurs in the middle of an
instruction and leaves the registers and memory in a consistent state,
so that eliminating the fault and restarting the instruction will give
correct results. ’

field 1. See variable-length bit field. 2. A set of contiguous bytes in
a logical record.

floating (point) datum Four contiguous bytes (32 bits) starting on an
addressable byte boundary. The bits are labeled from right to left from
0 to 31. A two-word floating point number is identified by the address
of the byte containing bit 0. Bit 15 contains the sign of the number. Bits
14 through 7 contain the excess 128 binary exponent. Bits 31 through
16 and 6 through 0 contain a normalized 24-bit fraction with the redun-
dant most significant fraction bit not represented. Within the fraction,
bits of decreasing significance go from bit 6 through 0, then 31
through 16. Exponent values of 1 through 255 in the 8-bit exponent

335

Glossary

field represent true binary exponents of -128 to 127. An exponent
value of 0 together with a sign bit of 0 represent a floating value of 0.
An exponent value of 0 with a sign bit of 1 is a reserved representation;
floating point instructions processing this value return a reserved op-
erand fault. The value of a floating datum is in the approximate range
(+or-)0.29 x 10**-38 to 1.7 x 10**38. The precision is approximately
one part in 2% or seven decimal digits.

foreign volume Any volume other than a Files-11 formatted volume
which may or may not be file structured.

frame pointer General register 13 (R13). By convention, FP contains
the base address of the most recent call frame on the stack.

fully associative cache A cache organization in which any block of
data from main memory can be placed anywhere in the cache. Ad-
dress comparison must take place against each block in the cache to

find an;\Qa\rt:ular block. Contrast with direct mapping cache.

general renjster Any of the sixteen 32-bit registers used as the pri-
mary operarids of the native mode instructions. The general registers
include 12 general purpose registers which can be used as accumula-
tors, as counters, and as pointers to locations in main memory, and
the Frame Pointer (FP), Argument Pointer (AP), Stack Pointer (SP),
and Program Counter (PC) registers.

generic device name A device name that identifies the type of
device but not a particular unit; a device name in which the specific
controller and/or unit number is omitted.

giga Metric term used to represent the number 1 followed by nine
zeros.

hardware context The values contained in the following registers
while a process is executing: the Program Counter (PC); the Processor
Status Longword (PSL); the 14 general registers (RO through R13); the
four processor registers (POBR, POLR, P1BR and P1LR) that describe
the process virtual address space; the Stack Pointer (SP) for the cur-
rent access mode in which the processor is executing; plus the con-
tents to be loaded in the Stack Pointer for every access mode other
than the current access mode. While a process is executing, its
hardware context is continually being updated by the processor. While
a process is not executing, its hardware context is stored in its hard-
ware PCB.

hardware process control block (PCB) A data structure known to
the processor that contains the hardware context when a process is
not executing. A process’ hardware PCB resides in its process header.

336

Glossary

Hit Rate (cache-main memory) The percentage of times the CPU
requests data and that data appears in cache, therefore not requiring
a main memory access.

image An image consists of procedures and data that have been
bound together by the linker. There are three types of images: execu-
table, sharable, and system.

image privileges The privileges assigned to an image when it is
linked. See process privileges.

immediate mode In immediate mode addressing, the PC is used as
the register in autoincrement mode addressing.

indexed addressing mode Inindexed mode addressing, two
registers are used to determine the actual instruction operand: an
index register and a base operand specifier. The contents of the index
register are used as an index (offset) into a table or array. The base
operand specifier supplies the base address of the array (the base
operand address or BOA). The address of the actual operand is calcu-
lated by multiplying the contents of the index register by the size (in
bytes) of the actual operand and adding the result to the base operand
address. The addressing modes resulting from index mode address-
ing are formed by adding the suffix “indexed” to the addressing mode
of the base operand specifier: register deferred indexed, autoincre-
ment indexed, autoincrement deferred indexed (or absolute indexed),
autodecrement indexed, displacement indexed, and displacement de-
ferred indexed.

index register A register used to contain an address offset.

instruction buffer An 8-byte buffer in the processor used to contain
bytes of the instruction currently being decoded and to prefetch in-
structions in the instruction stream. The control logic continously
fetches data from memory to keep the 8-byte buffer full.

interleaving Assigning consecutive physical memory addresses ai-
ternately between two memory controllers.

interrupt An event other than an exception or branch, jump, case, or
call instruction that changes the normal flow of instruction execution.
Interrupts are generally external to the process executing when the
interrupt occurs. See also device interrupt, software interrupt, and
urgent interrupt.

interrupt priority level (IPL) The interrupt level at which the proces-
sor executes when an interrupt is generated. There are 31 possible
interrupt priority levels. IPL 1 is lowest, 31 highest. The levels arbitrate
contention for processor service. For example, a device cannot inter-
rupt the processor if the processor is currently executing at an inter-

337

fal P e
Giossaiy

rupt priority level greater than the interrupt priority level of the device’s
interrupt service routine.

interrupt service routine The routine executed when a device
interrupt occurs.

interrupt stack The system-wide stack used when executing in in-
terrupt service context. At any time, the processor is either in a proc-
ess context executing in user, supervisor, executive or kernel mode,
or in system-wide interrupt service context operating with kernel privi-
leges, as indicated by the interrupt stack and current mode bits in the
PSL. The interrupt stack is not context-switched.

interrupt stack pointer The stack pointer for the interrupt stack.
Unlike the stack pointers for process context stacks, which are stored
in the hardware PCB, the interrupt stack pointer is stored in an internal
register.

interrupt vector See vector.
1/O driver See driver.

I/0 space The region of physical address space that contains the
configuration registers, and device control/status and data registers.
The space is located in physical address space, but can be addressed
virtually through the SCBB register using the MTPR and MFPR in-
structions.

job queue A list of files that a process has supplied for processing
by a specific device, for example, a line printer.

kernel mode The most privileged processor access mode (mode 0).
The operating system’'s most privileged services, such as 1/0 drivers
and the pager, run in kernel mode.

linker A program that reads one or more object files created by
language processors and produces an executable image file, a
sharable image file, or a system image file.

literal mode In literal mode addressing, the instruction operand is a
constant whose value is expressed in a 6-bit field of the instruction. If
the operand data type is byte, word, longword, or quadword, the oper-
and is zero extended and can express values in the range 0 through 63
(decimal). If the operand data type is floating or double floating, the 6-
bit field is composed of two 3-bit fields, one for the exponent and the
other for the fraction. The operand is extended to floating or double
floating format.

locality See program locality.

338

Glossary

logical block A block on a mass storage device identified using a
volume-relative address rather than its physical (device-oriented) ad-
dress or its virtual (file-relative) address. The blocks that constitute the
volume are labeled sequentially starting with logical block 0.

longword Four contiguous bytes (32 bits) starting on an addressable
byte boundary. Bits are numbered from right to left with 0 through 31.
The address of the longword is the address of the byte containing bit
0. When interpreted arithmetically, a longword is a two’s complement
integer with significance increasing from bit 0 to bit 30. When in-
terpreted as a signed integer, bit 31 is the sign bit. The value of the
signed integer is in the range -2,147,483,648 to 2,147,483,647. When
interpreted as an unsigned integer, significance increases from bit 0 to
bit 31. The value of the unsigned integer is in the range 0 through
4,294,967,295.

macro A statement that requests a language processor to generate
a predefined set of instructions.

main memory See physical memory.

mass storage device A device capable of readlng and writing data
on mass storage media such as a disk pack or a magnetic tape reel.

MASSBUS adapter The NEXUS connecting the MASSBUS subsys-
tem to the SBIl. The MASSBUS adapter provides virtual to physical
address mapping functionality, data transfer buffering between the
MASSBUS and main memory, and transfer of interrupts from the
MASSBUS device to the SBI.

memory controller The NEXUS interfacing main memory to the SBI.
The memory controller provides the necessary timing and control to
complete all memory transactions.

memory management The system functions that include the hard-
ware’s page mapping and protection and the operating system’s im-
age activator and pager.

Memory Mapping Enable (MME) A bit in a processor register that
governs address translation.
modify access type The specified operand of an instruction or pro-

cedure is read, and is potentially modified and written, during that
instruction’s or procedure’s execution.

Monitor Console Routine (MCR) The command interpreter in an
RSX-11 system.

mount a volume 1. To logically associate a volume with the physical
unit on which it is loaded (an activity accomplished by system software
at the request of an operator). 2. To load or piace a magnetic tape or

339

Glossary

disk pack on a drive and place the drive on-line (an activity accom-
plished by a system operator).

native mode The processor’s primary execution mode in which the
programmed instructions are interpreted as byte-aligned, variable-
length instructions that operate on byte, word, longword, and quad-
word integer, floating and double floating, character string, packed
decimal, and variable-length bit field data. The instruction execution
mode other than compatibility mode.

network A collection of interconnected individual computer
systems.

NEXUS SBlinterface logic.
nibble The low-order or high-order four bits of a byte.
node Anindividual computer system in a network.

numeric string A contiguous sequence of bytes representing up to
31 decimal digits (one per byte) and possibly a sign. The numeric
string is specified by its lowest addressed location, its length, and its
sign representation.

offset A fixed displacement from the beginning of a data structure.
System offsets for items within a data structure normally have an asso-
ciated symbolic name used instead of the numeric displacement.
Where symbols are defined, programmers always reference the sym-
bolic names for items in a data structure instead of using the numeric
displacement.

opcode The pattern of bits within an instruction that specify the op-
eration to be performed.

operand specifier The pattern of bits in an instruction that indicate
the addressing mode, a register and/or displacement, which, taken
together, identify an instruction operand.

operand specifier type The access type and data type of an instruc-
tion’s operand(s). For example, the test instructions are of read access
type, since they only read the value of the operand. The operand can
be of byte, word, or longword data type, depending on whether the
opcode is for the TSTB (test byte), TSTW (test word), or TSTL (test
longword) instruction.

operator’s console Any terminal identified as a terminal attended
by a system operator.

packed decimal A method of representing a decimal number by
storing a pair of decimal digits in one byte, taking advantage of the fact
that only four bits are required to represent the numbers zero through
nine.

340

Glossary

packed decimal string A contiguous sequence of up to 16 bytes
interpreted as a string of nibbles. Each nibble represents a digit ex-
cept the low-order nibble of the highest addressed byte, which
represents the sign. The packed decimal string is specified by its
lowest addressed location and the number of digits.

page 1. A set of 512 contiguous byte locations used as the unit of
memory mapping and protection. 2. The data between the beginning
of file and a page marker, between two markers, or between a marker
and the end of afile.

page frame number (PFN) The address of the first byte of a page in
physical memory. The high-order 21 bits of the physical address of the
base of a page.

pager A setof kernel mode procedures that executes as the result of
a page fault. The pager makes the page for which the fault occurred
available in physical memory so that the image can continue execu-
tion. The pager and the image activator provide the operating system’s
memory management functions.

page table entry (PTE) The data structure that identifies the location
and status of a page of virtual address space. When a virtual pageisin
memory, the PTE contains the page frame number needed to map the
virtual page to a physical page. When it is not in memory, the page
table entry contains the information needed to locate the page on
secondary storage (disk).

paging The action of bringing pages of an executing process into
physical memory when referenced. When a process executes, all of its
pages are said to reside in virtual memory. Only the actively used
pages, however, need to reside in physical memory. The remaining
pages can reside on disk until they are needed in physical memory. in
this system, a process is paged only when it references more pages
than it is allowed to have in its working set. When the process refers to
a page not in its working set, a page fault occurs. This causes the
operating system’s pager to read in the referenced page if it is on disk
(and, optionally, other related pages depending on a cluster factor),
replacing the least recently faulted pages as needed. A process pages
only against itself.

parity A count maintained to check the reliability of a group of bits.
Even parity refers to the use of a parity bit appended to a group of bits
which is set to make the sum of all the bits an even value, where odd
parity makes the sum of all the bits an odd value.

per-process address space See process address space.

341

Glossary

physical address The address used by hardware to identify a loca-
tion in physical memory or on directly-addressable secondary storage
devices such as a disk. A physical memory address consists of a page
frame number and the number of a byte within the page. A physical
disk block address consists of a cylinder or track and sector number.

physical address space The set of all possible 30-bit physical ad-
dresses that can be used to refer to locations in memory (memory
space) or device registers (I/0 space).

physical block A block on a mass storage device referred to by its
physical (device-oriented) address rather than a logical (volume-rela-
tive) or virtual (file-relative) address.

physical I/0 functions A set of I/0 functions that allow access to all
device level I/0 operations except maintenance mode.

physical memory The memory modules connected to the SBI that
are used to store: 1) instructions that the processor can directly fetch
and execute, and 2) any other data that a processor is instructed to
manipulate. Also called main memory.

position dependent code Code that can execute properly only in
the locations in virtual address space that are assigned to it by the
linker.

position independent code Code that can execute properly without
modification wherever it is located in virtual address space, even if its
location is changed after it has been linked. G;)nerally, this code uses
addressing modes that form an effective address relative to the PC.

primary vector A location that contains the starting address of a
condition handler to be executed when an exception condition occurs.
If @ primary vector is declared, that condition handler is the first
handler to be executed.

privilege See process privilege, user privilege, and image privilege.

privileged instructions In general, any instructions intended for use
by the operating system or privileged system programs. In particular,
instructions that the processor will not execute uniess the current ac-
cess mode is kernel mode (e.g., HALT, SVPCTX, LDPCTX, MTPR, and
MFPR).

process The basic entity scheduled by the system software that pro-
vides the context in which an image executes. A process consists of an
address space and both hardware and software context.

process address space See process space.
process context The hardware and software contexts of a process.

342

Glossary

process control block (PCB) A data structure used to contain proc-
ess context. The hardware PCB contains the hardware context. The
software PCB contains the software context, which includes a pointer
to the hardware PCB.

process header A data structure that contains the hardware PCB,
accounting and quota information, process section table, working set
list, and the page tables defining the virtual layout of the process.

process header slots That portion of the system address space in
which the system stores the process headers for the processes in the
balance set. The number of process header slots in the system deter-
mines the number of processes that can be in the balance set at any
one time.

process identification (PID) The operating system’s unique 32-bit
binary value assigned to a process.

process page tables The page tables used to describe process
virtual memory.

process priority The priority assigned to a process for scheduiing
purposes. The operating system recognizes 32 levels of process pri-
ority, where 0 is low and 31 high. Levels 16 through 31 are used for
time-critical processes. The system does not modify the priority of a
time-critical process (although the system manager or process itself
may). Levels O through 15 are used for normal processes. The system
may temporarily increase the priority of a normal process based on
the activity of the process.

process privileges The privileges granted to a process by the
system, which are a combination of user privileges and image privi-
leges. They include, for example, the privilege to: affect other
processes associated with the same group as the user’s group, affect
any process in the system regardless of UIC, set process swap mode,
create permanent event flag clusters, create another process, create a
mailbox, perform direct 1/O to a file-structured device.

process space The lowest-addressed half of virtual address space,
where per-process instructions and data reside. Process space is di-
vided into a program region and a control region.

processor register A part of the processor used by the operating
system software to control the execution states of the computer sys-
tem. They include the system base and length registers, the program
and control region base and length registers, the system control block

P

base register, the software interrupt request register, and many more.

343

Glossary

Processor Status Longword (PSL) A system programmed proces-
sor register consisting of a word of privileged processor status and the
PSW. The privileged processor status information includes: the cur-
rent IPL (interrupt priority level), the previous access mode, the
current access mode, the interrupt stack bit, the trace trap pending
bit, and the compatibility mode bit.

Processor Status Word (PSW) The low-order word of the Processor
Status Longword. Processor status information includes: the condition
codes (carry, overflow, zero, negative), the arithmetic trap enable bits
(integer overfiow, decimal overflow, floating underfiow), and the trace
enable bit.

Program Counter (PC) General register 15 (R15). At the beginning
of an instruction’s execution, the PC normally contains the address of
a location in memory from which the processor will fetch the next
instruction it will execute.

program locality A characteristic of a program that indicates how
close or far apart the references to locations in virtual memory are
over time. A program with a high degree of locality does not refer to
many widely scattered virtual addresses in a short period of time.

program region The lowest-addressed half of process address
space (PO space). The program region contains the image currently
being executed by the process and other user code called by the
image.

Program Region Base Register (POBR) The processor register, or
its equivalent in a hardware process control biock, that contains the
base virtual address of the page table entry for virtual page number 0
in a process program region.

Program Region Length Register (POLR) The processor register,
or its equivalent in a hardware process control block, that contains the
number of entries in the page table for a process program region.

pure code Seereentrant code.

quadword Eight contiguous bytes (64 bits) starting on an address-
able byte boundary. Bits are numbered from right to left, 0 to 63. A
quadword is identified by the address of the byte containing the low-
order bit (bit 0). When interpreted arithmetically, a quadword is atwo’'s
compiement integer with significance increasing from bit 0 to bit 62.
Bit 63 is used as the sign bit. The value of the integer is in the range -
2%%t0 2%%.1,

queue 1. n. A circular, doubly-linked list. See system queue. v. To
make an entry in a list or table, perhaps using the INSQUE instruction.
2. See job queue.

344

Glossary

queue priority The priority assigned to a job placed in a spooler
queue or a batch queue.

read access type An instruction or procedure operand attribute in-
dicating that the specified operand is only read during instruction or
procedure execution.

reentrant code Code that is never modified during execution. It is
possible to let many users share the same copy of a procedure or
program written as reentrant code.

register A storage location in hardware logic other than main mem-
ory. See also general register, processor register, and device register.

register deferred indexed mode An indexed addressing mode in
which the base operand specifier uses register deferred mode ad-
dressing.

register deferred mode In register deferred mode addressing, the
contents of the specified register are used as the address of the actual
instruction operand.

register mode In register mode addressing, the contents of the
specified register are used as the actual instruction operand.

return status code See status code.

scatter/gather The ability to transfer in one 1/0 operation data from
discontiguous pages in memory to contiguous blocks on disk, or data
from contiguous blocks on disk to discontiguous pages in memory.

secondary storage Random access mass storage.

secondary vector A location that identifies the starting address of a
condition handler to be executed when a condition occurs and the
primary vector contains zero or the handler to which the primary vec-
tor points chooses not to handle the condition.

section A portion of process virtual memory that has common
memory management attributes (protection, access, cluster factor,
etc.). Itis created from an image section, a disk file, or as the result of a
Create Virtual Address Space system service.

sharable image An image that has all of its internal references re-
solved, but which must be linked with an object module(s) to produce
an executable image. A sharable image cannot be executed. A shara-
ble image file can be used to contain a library of routines. A sharable
image can be used to create a global section by the system manager.

slave terminal A terminal from which it is not possible to issue com-
mands to the command interpreter. A terminal assigned to application
software.

345

software context The context maintained by the operating system
that describes a process. See software process control block (PCB).

software interrupt An interrupt generated on interrupt priority level
1 through 15, which can be requested only by software.

software process control biock (PCB) The data structure used to
contain a process’ software context. The operating system defines a
software PCB for every process when the process is created. The
software PCB includes the following kinds of information about the
process: current state; storage address if it is swapped out of memory;
unique identification of the process, and address of the process
header (which contains the hardware PCB). The software PCB resides
in system region virtual address space. It is not swapped with a proc-
ess.

software priority See process priority and queue priority.

spooling Output spooling: The method by which output to a low-
speed peripheral device (such as a line printer) is placed into queues
maintained on a high-speed device (such as disk) to await transmis-
sion to the low-speed device. Input spooling: The method by which
input from a low-speed peripheral (such as the card reader) is placed
into queues maintained on a high-speed device (such as disk) to await
transmission to a job processing that input.

spool queue The list of files supplied by processes that are to be
processed by a symbiont. For example, a line printer queue is a list of
files to be printed on the line printer.

stack An area of memory set aside for temporary storage, or for
procedure and interrupt service linkages. A stack uses the last-in,
first-out concept. As items are added to (“pushed on”) the stack, the
stack pointer decrements. As items are retrieved from (“popped off”)
the stack, the stack pointer increments.

stack frame A standard data structure built on the stack during a
procedure call, starting from the location addressed by the FP to lower
addresses, and popped off during a return from procedure. Also
called call frame.

Stack Pointer General register 14 (R14). SP contains the address of
the top (lowest address) of the processor-defined stack. Reference to
SP will access one of the five possible stack pointers, kernel, execu-
tive, supervisor, user, or interrupt, depending on the value in the cur-
rent mode and interrupt stack bits in the Processor Status Longword
(PSL).

state queue A list of processes in a particular processing state, The
scheduler uses state queues to keep track of processes’ eligibility to

346

Glossary

execute. They include: processes waiting for a common event flag,
suspended processes, and executable processes.

status code A longword value that indicates the success or failure of
a specific function. For exampie, system services always return a sta-
tus code in RO upon completion.

store through See write through.

supervisor mode The third most privileged processor access mode
(mode 2). The operating system’s command interpreter runs in super-
visor mode.

synchronous Refers to a mode of activity that operates using an
external timing mechanism. For example, synchronous data
transmission hardware uses fixed time intervals to frame characters,
where as asynchronous data transmission hardware uses start and
stop codes. If two activities are synchronous, the second cannot take
place until the first is complete.

Synchronous Backplane Interconnect (SBI) The part of the hard-
ware that interconnects the processor, memory controllers, MASS-
BUS adapters, the UNIBUS adapter.

system In the context “system, owner, group, world,” the system
refers to the group numbers that are used by operating system and its
controlling users, the system operators and system manager.

system address space See system space and system region.

System Base Register (SBR) A processor register containing the
physical address of the base of the system page table.

System Control Block (SCB) The data structure in system space
that contains all the interrupt and exception vectors known to the
system.

System Control Block Base register (SCBB) A processor register
containing the base address of the system control block.

system device The random access mass storage device unit on
which the volume containing the operating system software resides.

System Identification Register A processor register which contains
the processor type and serial number.

system image The image that is read into memory from secondary
storage when the system is started up.

_System Length Register (SLR) A processor register containing the
fength of the system page table in longwords, that is, the number of
page table entries in the system region page table.

347

Giossary

System Page Table (SPT) The data structure that maps the system
region virtual addresses, including the addresses used to refer to the
process page tables. The system page table (SPT) contains one page
table entry (PTE) for each page of system region virtual memory. The
physical base address of the SPT is contained in a register called the
SBR.

system queue A queue used and maintained by operating system
procedures. See also state queue.

system region The third quarter of virtual address space. The low-
est-addressed half of system space. Virtual addresses in the system
region are sharable between processes. Some of the data structures
mapped by system region virtual addresses are: system entry vectors,
the system control block (SCB), the system page table (SPT), and
process page tables.

system space The highest-addressed half of virtual address space.
See also system region.

system virtual address A virtual address identifying a location
mapped by an address in system space.

system virtual space See system space.

terminal The general name for those peripheral devices that have
keyboards and video screens or printers. Under program control, a
terminal enables people to type commands and data on the keyboard
and receive messages on the video screen or printer. Examples of
terminals are the LA36 DECwriter hard-copy terminal and VT52 video
display terminal.

time-critical process A process assigned to a software priority level
between 16 and 31, inclusive. The scheduling priority assigned to a
time-critical process is never modified by the scheduler, aithough it
can be modified by the system manager or process itself.

track A collection of blocks at a single radius on one recording sur-
face of a disk.

transfer address The address of the location containing a program
entry point (the first instruction to execute).

transfer request number (TR) The data transfer request priority as-
signed to a device interfacing to the SBI.

transiation buffer An internal processor cache containing transia-
tions for recently used virtual addresses.

Translation Buffer Invalidate Single A processor register used in
controlling memory management address translation buffers.

348

Glossary

trap An exception condition that occurs at the end of the instruction
that caused the exception. The PC saved on the stack is the address of
the next instruction that would normally have been executed. All soft-
ware can enable and disable some of the trap condition with a single
instruction.

trap enables Three bits in the Processor Status Word that control
the processor’s action on certain arithmetic exceptions.

two’s complement A binary representation for integers in which a
negative number is one greater than the bit complement of the
positive number.

two-way associative cache A cache organization which has two
groups of directly mapped blocks. Each group contains several blocks
for each index position in the cache. A block of data from main memo-
ry can go into any group at its proper index position. A two-way asso-
ciative cache is a compromise between the extremes of fully associa-
tive and direct mapping cache organizations that takes advantage of
the features of both.

UNIBUS adapter The hardware interface between the UNIBUS and
the synchronous backplane interconnect. The UNIBUS adapter
provides the mapping function allowing access to UNIBUS address
space from the SBI, and mapping of UNIBUS addresses to SBI ad-
dresses for UNIBUS DMA transfers to SBI memory. The UNIBUS
adapter provides the data paths for UNIBUS device access to random
SBI memory addresses, and high-speed transfers for UNIBUS devices
that transfer to consecutive increasing memory addresses. The UNI-
BUS adapter also provides interrupt fielding, priority arbitration, and
UNIBUS power fail sequencing.

unit record device A device such as a card reader or line printer.

unwind the call stack To remove call frames from the stack by
tracing back through nested procedure calls, using the current con-
tents of the FP register and the FP register contents stored on the
stack for each call frame.

urgent interrupt An interrupt received on interrupt priority levels 24
through 31. These can be generated only by the processor for the
interval clock, serious errors, and power fail.

user authorization file A file containing an entry for every user that
the system manager authorizes to gain access to the system. Each
entry identifies the user name, password, default account, User ldenti-
fication Code (UIC), quotas, limits, and privileges assigned to individu-
als who use the system.

349

Glossary

user mode The least privileged processor access mode (mode 3).
User processes and the Run Time Library procedures run in user
mode.

user privileges The privileges granted a user by the system
manager. See process privileges.

utility A program that provides a set of related general purpose
functions, such as a program development utility (an editor, a linker,
etc.), a file management utility (file copy or file format translation pro-
gram), or operations management utility (disk backup/restore, diag-
nostic program, etc.).

value return registers The general registers RO and R1 used by
convention to return function values. These registers are not pre-
served by any called procedures. They are available as temporary
registers to any called procedure. All other registers (R2, R3,..., R11,
AP, FP, SP, PC) are preserved across procedure calls.

variable-length bit field A set of zero to 32 contiguous bits located
arbitrarily with respect to byte boundaries. A variable bit field is speci-
fied by four attributes: 1) the address A of a byte, 2) the bit position P
of the starting location of the bit field with respect to bit 0 of the byte at
address A, 3) the size, in bits, of the bit field, and 4) whether the field is
signed or unsigned.

vector 1. An interrupt or exception vector is a storage location
known to the system that contains the starting address of a procedure
to be executed when a given interrupt or exception occurs. The sys-
tem defines separate vectors for each interrupting device controller
and for classes of exceptions. Each system vector is a longword. 2.
For the purposes of exception handling, users can declare up to two
software exception vectors (primary and secondary) for each of the
four access modes. Each vector contains the address of a condition
handler. 3. A one-dimensional array.

virtual address A 32-bit integer identifying a byte “location” in
virtual address space. The memory management hardware translates
a virtual address to a physical address. The term virtual address may
also refer to the address used to identify a virtual block on a mass
storage device. '

virtual address space The set of all possible virtual addresses that
an image executing in the context of a process can use to identify the
location of an instruction or data. The virtual address space seen by
the programmer is a linear array of 4,294,967,296 (2%) byte ad-
dresses.

350

Glossary

virtual block A block on a mass storage device referred to by its file-
relative address rather than its logical (volume-oriented) or physical
(device-oriented) address. The first block in a file is always virtual
block 1.

virtual memory The set of storage locations in physical memory and
on disk that are referred to by virtual addresses. From the program-
mer’s viewpoint, the secondary storage locations appear to be loca-
tions in physical memory. The size of virtual memory in any system
depends on the amount of physical memory available and the amount
of disk storage used for non-resident virtual memory.

virtual page number The virtual address of a page of virtual memo-
ry.

volume A mass storage medium such as a disk pack or reel of
magnetic tape.

volume set The file-structured collection of data residing on one or
more mass storage media.

word Two contiguous bytes (16 bits) starting on an addressable byte
boundary. Bits are numbered from the right, 0 through 15. A word is
identified by the address of the byte containing bit 0. When interpreted
arithmetically, a word is a two’s complement integer with significance
increasing from bit 0 to bit 14. If interpreted as a signed integer, bit 15
is the sign bit. The value of the integer is in the range -32768 to 32767.
When interpreted as an unsigned integer, significance increases from
bit 0 through bit 15 and the value of the unsigned integer is in the
range 0 through 65535.

working set The set of pages in process space to which an
executing process can refer without incurring a page fault. The work-
ing set must be resident in memory for the process to execute. The
remaining pages of that process, if any, are either in memory and not
in the process working set or they are on secondary storage.

working set swapper A system process that brings process working
sets into the balance set and removes them from the balance set.

write allocate A cache management technique in which cache is
allocated on a write miss as well as on the usual read miss.

write back A cache management technique in which data from a
write operation to cache is copied into main memory only when the
data in cache must be overwritten. This results in temporary inconsis-
tencies between cache and main memory. Contrast with write through.

write through A cache management technique in which data from a
write operation is copied in both cache and main memory. Cache and
main memory data are always consistent. Contrast with write back.

351

352

Accelerator control registers 304,
305

Accelerator control/status register
(ACCS) 250,251, 305

Accelerator maintenance register
(ACCR) 252,305

Access Control Violation fault 109,
117,118

Access Modes 55, 16, 101, 107,
118, 119, 275, 277
see also CPU, access modes

Address

see also Physical address

see also Virtual address space
assignments

UNIBUS adapter
space

see also Physical address

space

see also Virtual address space
UNIBUS adapter 169
translation

overview 105to0 107

194,195

physical to SBI 122,133
SBIto UNIBUS 17110173
UNIBUS to SBI 17610 178

virtual to physical

to 115,317 to 319

virtual to SBl 230
validation 313to315

59, 60, 109,

Addressing modes 8,42,44,4710
49

Address translation buffer 9, 35,36

Arbitration
UNIBUS priority

Arbitration iines
SBI 127,128

Architecture 2, 269 to 273

165, 167, 168

353

INDEX

Argumentlist 50
Argument pointer (AP) 47, 50
Arguments
passing 44,45
Arithmetic traps 277
AST Level (ASTLVL) register 71
Asynchronous System Traps
(AST) 72
Bad block handling 279 280
Base register 46
Battery backup 15
Bootstrap 160
BR Receive Vector registers 4-7
(BRRVR) 209 to 211
Buffered data paths
Buffers 9
Bus
see also Names of specific
buses
see also MASSBUS
see also UNIBUS
arbitration lines 127,128
configuration 125

structure
console 20to 22

Bus Request (BR) 164, 165, 167
Byte offset data transfers 183, 185

178 to 181

Cache parity register 307
Caches 9, 35,270,271
CallFrame 50, 51

Calls
nested 50

CCL (console command

language) 23t027

Central Processing Unit
see CPU

Index

Change mode (CHM)
instructions 57, 257 to 259

Character string data type 42, 43
Clock margining 279

Clock registers 247 to 250
Clocks 9, 36, 248 to 250

Clock signals
SBI 139

Command Address register 240

Command codes
SBl 140to 145

Commander 125

Communication

see MASSBUS

see UNIBUS
Compatibility mode instruction
set 41

Condition codes 45
Condition handlers 52

Configuration register (CNFGR) 196
to 199

Confirmation codes (CNF)
information transfer 138

Consistency checking 276 to 278

Console command language
(CCL) 23to27

Console command mode 18
Console interface Board 18 to 20

Console receive control/status
register 300

Console receive buffer register 300

Console subsystem
bus structure 20to 22
command language 23to 27
components 18
datatransfer 22
error messages 27 to 30
interaction combinations
overview 10,11, 17, 18

Console terminal registers 2486, 247

Console transmit control/status
register 301

18t0 20

354

Console transmit data buffer
register 301

Context
process 41,64,67to71
switching 52, 53, 58

Control bus

signal lines 223 to 225
Control lines

SBI 139, 140

Control register (UACR) 199 to 202

Control space (P1 region) 46, 102,
103, 111, 114, 115

Control store 34,35

CPU
access modes 55, 56
see also Access modes
operation 37, 39 to 41
overview 4to 12,33, 34

CPU hardware 34to 38

CPU programming concepts 41to
64

Cycle time
memory
SBi 145

Data
management
paths

see also Synchronous Backplane
Interconnect
CPU 35
UNIBUS adapter
sharing 269, 270
transfer
see also MASSBUS
see also UNIBUS
memory to UNIBUS
program flow 240
SBlto UNIBUS 170to 175
UNIBUS to memory 181 to 183
UNIBUSto SBI 175t0 178
transfer rate 126, 145
types 6,42,43

Data bus
signal lines 226

11,12

3,4

178 to 181

183 to 190

index

Data Path registers (DPR) 211to

213

Data transfer signal lines
DATI operation 186, 187
DATO operation 186, 187
Dead signal SBI 139, 140
Definitions of terms 325 to 357

Device address space
UNIBUS 171
interrupts 84
registers 165, 166

166, 167

Diagnostic
console 275,277

Diagnostic Control register
(DCR) 205 to 207

Diagnostic register
MASSBUS adapter

Diagnostics
system 275to 280

Direct data path (DDP) 178to 180

Direct memory access (DMA)
transfers 175,176

DQ register 301
D saveregister 311
Error checking 27610278

Error Correcting Code (ECC) 11,
153,278

Error notification interrupts 272

238,239

Error reporting 148
Errors 272

Exceptions
discussion 45,53,81t083
handling 52
initiating 96 to 99
sequence 95,96
vectors 60, 61,8910 92
Executive mode 107
Executive stack pointer register 310
Extended functions caii (XFC)
instruction 257, 262

Extended read cycle 151

355

Extended write masked
function 152

Failed Map Entry register
(FMER) 207,208

Failed UNIBUS Address register
(FUBAR) 208, 209

Fail function
SBlI 140 .
Fault detection 276, 278 to 280
First part done address register 310
Floating point accelerator (FPA) 15,
37
Floating point datatype 42, 43
Frame Pointer (FP) 47,50
Function codes
SB! 140to 145
General registers 8
Glossary 325to 351
Hardware
context 53, 64
CPU 34to38
memory management
see also Memory,
management
optional 15
overview 4,5
1D (internal data) Bus 20, 21
ID (internal data) Bus register
312

image 41

9,10

299 to

Indexed addressing modes 47

Information lines
SBI 128to 137

Initialization signals
UNIBUS 168

input/Output
seel/O

Instruction buffer 9, 36

Instruction buffer register 299

Instructions
index
by mnemonics 285 to 290

Index

by opcode 291 to 296
native mode 6108, 41, 42
privilege 257 to 266
restartability 271, 272
Integer datatype 42, 43
12,159, 160
Interlock cycles 152, 153
Interlocked access 269, 270
Interlock read masked cycle 152,
153
Interlocked write masked cycle 153
Interrupt priority level (IPL) 81,82
Interrupt priority level (IPL)
register 86
Interrupt request lines
SBI 139

Interrupts
architectural implications 272
discussion 53, 54, 81 to 87
initiating 96 to 99
priority 61,63,72, 73
sequence 95,96
UNIBUS 190to 194
vectors 60, 61, 89 to 92

Interrupt stack not valid hault 88
Interrupt stack pointer register 310

Interleaving

Interrupt summary exchange 129
Interval clock 9, 36, 248 to 250

Interval Clock Control/Status register
(ICCS) 249, 250, 302

Interval count register 249, 302
Interval timer 279

170
address space
SBI 170
processing 61, 64
structure 272,273
subsystems 12to 14
I/0 space restrictions 297
Kernel mode 107
Kernel stack not valid abort 87

Kernel stack pointer register 309

Length violation 109
Limitcheckingtraps 277

Load Process Control (LDPCTX)
instruction 74,75, 266

Longword aligned 32-bit random
access mode 186to 189

LSI-11 microprocessor 18to 20
Machine check exception 88

Main memory subsystem
see Memory

Maintenance
system 275to 280

Map enable register (MAPEN) 115,
116

Map registers 213 t0 216

MASSBUS
adapter 227 to 240
control path 229
data transfer
example 240 to 242
overview 14, 15,223
signallines 223 to 226

MBA Byte Counter 238

MBA Configuration/Status
register 231, 232

MBA Control register 233,234
MBA external registers 240
MBAmap 240

MBA Status register 234 to 237
MBA Virtual Address register 237

Memory

access 101, 107 to 109, 118, 119
battery backup 15
cache 9,35
configuration registers
controller 148, 149
cycletime 11,12
data transfer

UNIBUS 181to 190
error checking and
correction 153
interlock cycles 152, 153
interleaving 159, 160

153 t0 159

356

index

management
see also Hardware, memory
management
address translation
109to 115
control 115to 117
faults 117,118
overview 3,9, 10,58,59,101,
102
privileged services 118,119
protection 107 to 109
shared sections 120, 121
system page table 119,120
virtual address space 102to
105

mapping 59, 60, 105to 107,117,

105 to 107,

118
operations 149to 152
overview 11,12, 147,148

protection 3, 55, 56, 107 to 109
ROM bootstrap 160
virtual 54

see also Virtual address space

Memory Mapping Enable (MME)
bit 105

Micro control store 252 to 254
308
308

Microprogram breakpoint address
register (MBRK) 253

MME bit 105
Mnemonics
instructions 285 to 280
terms 28110283
11,15
Move from privileged register (MFPR)
instruction 257, 263 to 265

Move to privileged register (MTPR)
instruction 257, 263 to 265

Multiprocessor systems interrupt
priority level 81
Multiprogramming hardware
support 52to 54
Native instruction set
285 to 296

Micro match register
Micro stack register

MOS memory

6108,41,42,

357

Next Interval Count register
301

NEXUS 125,126
NEXUS register space

249,

194

Non-Processor Requests
(NPR) 164,167

Notation 321to 324

Operand
specifier notation 321, 322

Operation description notation 322

to 324
PO base register 309
PO length register 312

PO region
see Program space

P1 base register 309

P1 length register 312

P1 region
see Control space

Packed deimal data type 42,43

Page
description 59, 102
mapping 59, 60
protection 103, 104,107 to 109

Pagetable 60
Page Table Entry (PTE)
Parity checks 279

PCBB (Process Control Block
Base) 67

PCB (Process Control Block)
71

PDP-11instructions 41

Performance Monitor Enable (PME)

register 71

Per-process space 46, 102,103
see also Process space

105 to 107

68 to

Physical address
description 54, 58, 59
memory mapping 10510
translation 109to 115

Physical address space
memory 149, 150
SBI 131,132

Physical memory 11
PME register 71

Power fail
UNIBUS 216, 217
Priority
dispatching 53, 54
exception service routines 82
interrupts 61, 63, 72, 73, 81, 84
UNIBUS 164, 165, 167, 168
Privilege
instructions 56 to 58, 227 to 266
memory access 56 to 58, 107,
118, 119

Privileged processor registers 245
to 254

Privileged registers 263 to 265

PROBE instruction 57, 121, 122,
257, 260, 261

Procedure 44,45

Process

Asynchronous System Traps 72
context 64,67 to71

definition 41,53, 67

interrupt priorities 72, 73
privileged registers 71
structure 67to 78

structure instruction 73to 78

Process Control Block Base
(PCBB) 67

Process Control Block Base
register 311

Process Control Block (PCB)
71

Processor
see also CPU
errors 272
interrupt priority levels 61, 63,72,
73
Status Longword (PSL) 55, 303

Processor Status Word 51, 52

68 to

358

Process space
address translation 111 to 115
description 41, 46, 102, 103
shared sections 120, 121

Program 41

Program counter addressing
modes 48

Program Counter (PC)
Program I/0 mode 18

Programmable real-time clock 9,
36, 248 to 250

Programming
concepts 41to 45
envirnoment 45 to 52

Program space (P0 region) 46, 102,
103, 111t0 113

Protection
faults 117,118
memory 3, 55, 56, 107 to 109,
118,119
page 103, 104, 107 to 109

Protocol checks 279
Purge operation 186
Qbus 21

Q saveregister 311
Quadword 11

RAMP 275 to 280

186 to 189
150, 151

Read only memory
Console Interface Board 23

Real-time clock 9, 36, 248 to 250
Receiver 125
Record management 4

42, 47

Random access
Read cycle

Registers
see also names of specific
registers
definition 42
device 165, 166
general 8, 46, 47
internal data (ID) bus 299 to 312

Index

interrupt control 84 to 86
1/0

constraints 273
maintenance 278,279
MASSBUS adapter 228 to 240
memory configuration 153 to 159
privileged 263 to 265
privileged processor
process privileged 71
UNIBUS adapter 194 to 216

Reliability availability maintainability
program (RAMP) 275 t0 280

Reserved operand traps 278

24510 254

Responder 125

Response lines
SBlI 138

Restartability 271,272

Return from Exception or Interrupt
(REI) instruction 57, 58

ROM Console Interface Board 23

Save Process Context (SVPCTX)
instruction 73,76 to 78, 266

SBI
see Synchronous Backplane
Interconnect

SBl/cache maintenance
register 307

SBI fault signal register 306

SBI silo compactor register 307
SBI silo registers 305, 306

SBI time out address register 306
SBIUNJAM 217

Sections

shared 120, 121
Selected Map register
Shared data 269, 270
Shared sections 120, 121

Signal lines
MASSBUS 223 to 226
SBI 126
UNIBUS 166to 168

Silo 138,278

359

Software
overview 2to4
Software-generated interrupts 84
Software Interrupt Request register
(SIRR) 85,86
Software Interrupt Summary register
(SISR) 84, 85,303
Stack frame 50, 51
Stack pointer (SP) 44,47, 48,50
Stacks 8, 44, 45,92t0 95
Status register (USAR) 202 to 205
Subroutine 44
Supervisor mode 107
Supervisor stack pointer
register 310
Synchronization 269, 270
Synchronous Backplane Interconnect
(SBI)
address space 170, 175t0 178
command code description 140
to 145
data transfer
UNIBUS 170to 181
overview 12to 14,125, 126
physical address space 131, 132
structure 126 to 140
throughput 145
System failures 87, 88

System maintenance 275 to 280

System
programming 52 to 64
services 3

System base register 309

System Control Block Base (SCBB)
register 60, 62, 88, 89, 311

System Control Block (SCB)
88 t0 92

System identification register
(SID) 245, 246, 278, 300

System length register 312
119, 120

60, 62,

System page table

System space 46, 102, 103, 109 to
111,121

Temp registers 311
Terminology 325to0 351
Time-of-day register 299
Time-of-year clock 9, 36, 248
Tracetrap 52

Translation buffer 9,116, 117

Translation buffer control
registers 304

Translation buffer data register 303
Translatiori Not Valid fault 117,118
Transmitter 125

Traps 52,277,278

UNIBUS
adapter
description
registers 194 to 216
address space 169to 175
configuration 164
data transfer
memory 181 to 190
SBI 170to 181
example 217to211
initialization 216
interrupts 190 to 194
line definitions 166 to 168
overview 14,163
power failure 216, 217
request levels 164, 165
summary 163 to 168

UNJAM function 140, 217
Urgentinterrupts 84

User mode 107

User stack pointer register 310
User writable control store

(WCS) 15,37

Variable bit field data type 42, 43
VAX-11 architectural

implications 269 to 273
seriesregisters 264, 265

168to 170

VAX/VMS
data management 3,4
record management 4
software overview 2to 4

Vbus 21

Vector register 302
Vectors 60, 61, 89 to 92
Virtual address 54

Virtual address space
discussion 41,58, 59, 102 to 105
memory mapping 105to 107
structure 46
transiation 59, 60, 109to 115, 317
to 319

Virtual memory 54

Virtual page 59

Watchdog timer 279

WCS (writable control store) 15, 37

WDCS (writable diagnostic control
store) 9,36

Writable control store address
register WCSA) 253, 308

Writable control store data register
(WCSD) 253, 308

Writable control store (WCS) 15, 37

Writable diagnostic control store
(WDCS) 9,36

Write masked function
Write-through 35

151, 152

360

VAX-11/780 HARDWARE HANDBOOK READER'S COMMENTS

Your comments and suggestions will help us in our continuous effort to im-
prove the quality and usefulness of our handbooks.

What is your general reaction to this handbook? (format, accuracy, complete-

ness, organization, etc.)

What features are most useful?

Does the publication satisfy your needs?

What errors have you found?

Additional comments

Name

Company Dept.
Title

City State Zip

(staple here)

' " || | FIRST CLASS

PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY
IF MAILED IN THE UNITED STATES

5

Postage will be paid by:

DIGITAL EQUIPMENT CORPORATION
SALES SUPPORT LITERATURE GROUP
PK3-2/M-88

MAYNARD, MASS. 01754

{staple here)

	000001
	000002
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	replyA
	replyB

