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1.1 MANUAL SCOPE 

CHAPTER 1 
INTRODUCTION 

This manual provides a comprehensive description of the functional and operational characteristics of 
the Translation Buffer, Cache, and SBI Control of the VAX-11/780 system. The manual is written at 
two levels of detail to provide a resource for appropriate branch and support level courses of the Field 
Service training program and to provide a field reference. The two levels are: 

1. Introduction 

2. Functional/Logic Description. 

The introduction gives a brief description of the architecture of the Translation Buffer, Cache, and SBI 
Control and a simplified exptanation of their functions. It also contains an explanation of the memory 
management scheme, defining the virtual-to-physical address relationship. 

The functional/logic description provides a more detailed explanation of the operational character­
istics of each device. It also contains a detailed explanation of address translation. 

Table 1-1 is a list of related hardware manuals and their avaifability. 

1.2 OVERVIEW 
In the VAX-11/780 system, over four billion bytes of virtual memory space are mapped to over one 
billion bytes of physical memory space. Virtual-to-physical address translations are performed by the 
CPU microcode. The Translation Buffer provides a buffer store for translations and associated mem­
ory protection information. In addition the VAX-11/780 system provides a Cache to reduce the aver­
age memory access time. The SBI Control provides an interface between the CPU system and the SBI. 

Figure 1-1 illustrates these three functional areas and their interconnection in the CPU: 

l. The Translation Buffer is a two-way set associative buffer which stores virtual-to-physical 
address translations and corresponding memory access protection information. The ad­
dressing and protection data contained in the Translation Buffer (TB) is only for the process 
currently executing on the system. In the TB a virtual address (from an address source in the 
data path) selects the correct physical address for reference. If the TB does not contain the 
translation, the firmware performs the translation and the results are placed in the TB for 
future use. 

2. Cache is a two-way set associative buffer for the storage of data which will most likely be 
required by the process(es) currently executing on the system. In Cache a physical address is 
compared against a stored address to select the correct data. If Cache does not contain the 
data, it is fetched from memory and placed in Cache for possible reuse. Data in Cache may 
be accessed in 200 ns to speed system operations. 

3. SB/ Control is the CPU interface to the SBI (Synchronous Backplane Interconnect). The 
SBI Control transfers data between the SBI and the internal components of the CPU system. 

1-1 



Table 1-1 Related Hardware Manuals 

Title Document Number 

VAX- I I KA 780 Central Processor 
Technical Description EK-KA780-TD-PRE 

VAX-I I MS780 Memory System 
Technical Description EK-MS780-TD-PRE 

VAX-II DW780 Unibus Adaptor 
Technical Description EK-DW780-TD-PRE 

VAX-I I /780 Console Interface Board 
Technical Description EK-KC780-TD-PRE 

VAX-I I /780 Architecture Handbook EB07466 

*For information concerning microfiche libraries, contact: 

Digital Equipment Corporation 
Micropublishing Group (PK3-2/Tl2) 
129 Parker Street 
Maynard, MA 01754 

tThis document can be ordered from: 

Digital Equipment Corporation 
444 Whitney Street 
Northboro, MA 01532 
Attention: Communication Services (NR2/M 15) 

Customer Services Section 

I-2 

Comment 

In microfiche library* 

In microfiche library* 

In microfiche library* 

In microfiche library* 

Available on hard 
copyt 
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1.3 ADDRESS SPACE 
VAX-11/780 employs a memory management scheme to map the user's virtual space of 4 billion bytes 
to a physical space of 1 billion bytes. (Memory management also provides protection.) When a process 
is executing on the system, some of its pages are in memory while others may be resident on disk. The 
system software ensures the correct information is transferred from disk to main memory as required 
for program execution (Figure 1-2). The address space available to a process is a linear array of 4 
billion bytes. 

r-----~~;:-i 

I ADDRESS I 
SPACE 

I I 
I L MAIN I DISK .... I y ~MEMORY I 
I PROCESS TRANSFERS I I BY SOFTWARE 

L _______ J 

ACTUAL ADDRESS 
SPACE 

VIRTUAL 
ADDRESS 
SPACE 

ADDRESS SPACE AS 
REFERENCED BY THE 
CPU 

TK-0027 

Figure 1-2 Virtual/Physical Relation 

1.3.1 Virtual Space 
The virtual address space (Figure 1-3) is defined by a 32-bit address and extends from address 0 to 
address FFFFFFFF16. It has two parts. The lower half (per process space) is distinct for each process 
executing on the system and extends from address 0 to address 7FFFFFFF16· A context switch 
changes the mapping of all locations in process space to accommodate the current process (Paragraph 
1.6). The upper half (system space) is shared by all processes (remains the same during context switch­
ing) and extends from address 8000000016 to address BFFFFFFF 16· Note that the highest quarter of 
virtual space (COOOOOOO-FFFFFFFF16) is reserved and not currently used. 
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FFFFFFFF 16 
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Figure 1-3 Virtual Address Space 

SYSTEM 
VIRTUAL 
SPACE 

PER PROCESS 
VI RT UAL SPACE 

TK-0036 

Furthermore, the per process space has two sections. The program space (PO) occupies the lower half 
of the process space and contains process image(s) currently executing on the system. The control 
space (Pl) occupies the upper half of the process space and contains user stacks and 1/0 buffers for the 
process currently executing on the system. The distinction between upper and lower process space 
allows software to allocate one section for programs which grow from lower to higher addresses and 
one section for user stacks which grow from higher to lower addresses. 

1.3.2 Physical Space 
Each virtual address generated by the CPU must be translated into a physical address to locate the 
information in main memory. The translated physical address corresponds to an actual memory loca­
tion. 

As shown in Figure 1-4, the physical address space is defined by a 30-bit address (1 billion bytes) and 
extends from address 0 to address 3FFFFFFF 16· The physical space has two parts. Device control 
registers are assigned to the upper half which extends from address 2000000016 to 3FFFFFFF16. The 
lower half is reserved for primary memory and extends from address 0 to lFFFFFFF16· 
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I 30 ADDRESS BITS I 
3FFF FFFF 16 

1/0 
SPACE 

20000000 16...-----------1 
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MEMORY 
SPACE 

0000000016 __________ _. 

TK-0037 

Figure 1-4 Physical Address Space 

1.4 VIRTUAL PAGES AND PHYSICAL FRAMES 
The entire virtual address space is divided into 512-byte pages whose boundaries are invisible to the 
executing process(es). As seen in Figure 1-5, each region of the virtual address space (system, program, 
and control) is divided into these virtual pages and numbered contiguously. Likewise the memory 
address space is divided into blocks, each of which can contain one virtual page. Each block of mem­
ory designatable to a virtual page is called a physical page frame. 

As in Figure 1-5, physical memory appears to contain disjointed virtual pages in contiguous page 
frames. Therefore, to reference this data, the virtual address is translated to a physical address which 
selects a page frame number and byte within the page. 

The virtual address format is shown in Figure 1-6. As seen in this figure a virtual address selects a 
section of virtual address space (system control or program), a page within that section, and a byte 
within the page. The portion of the address which selects a byte within the page can be used without 
modification once the page frame number has been determined. 

When system software relocates a page, a record of the page frame number is stored in memory. A 
collection of these records is kept for each region of virtual space. The collections are called page tables 
(paragraph 1.5). A unique pair of page tables map process space for each process. System space, 
however, is mapped by one page table for all processes. 

1.5 PAGE TABLES 
Maps of virtual page locations are stored in memory as page tables. Page tables are maps from virtual 
addresses to physical locations. Each entry on the page table (page table entry or PTE) contains 
translation and protection information for its corresponding virtual page (paragraph 1.5. l ). 

A separate page table is provided for each section of the virtual address space (i.e., a separate page 
table for system space, control space, and program space). Each process has a unique pair of page 
tables for the process space. This means that during a context switch, although the same system space 
page table remains in use, different program space and control space page tables become usable. 
Because all processes use the same system space map, this space is considered shared among all pro­
cesses. 
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Figure 1-5 Examples of Page Frame Allocation 
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THE SPECIFIED SPACE TO BE REFERENCED 

BYTE NUMBER FIELD - SPECIFIES THE BYTE ADDRESS WITHIN 
THE REFERENCED PAGE (PAGE= 512 BYTES) 

TK-0039 

Figure 1-6 Virtual Addr~ss Format 

Each page table is maintained by system software. Process page tables reside in (paged) system virtual 
space. The locations of the tables in physical memory are thus mapped by the system page table 
(Figure 1-7). The system page table always exists contiguously in physical space. Process page tables 
always exist in system virtual space but may not exist in physical memory (they may be out on disk). 

The system page table maps (allocates) system virtual addresses to physical locations. Likewise, the 
process page tables map process virtual addresses to physical locations. System virtual addresses typi­
cally contain system data, where process virtual addresses contain program and control data. 

Note that although the process page tables may exist on two or more contiguous virtual pages, their 
respective pages are mapped individually. Thus their pages may exist disjointly in physical space. The 
system page table, however, always exists in physical space contiguously, regardless of the number of 
pages. 

l.S.l Page Table Entry 
Each entry in a page table contains translation and p,rotection information for its, corresponding vir­
tual page. Figure 1-8 illustrates the format of a page table entry (PTE). As seen in this Figure, the page 
table entry contains the page frame number which is the physical address of the virtual page it repre­
sents. Together with the byte offset from the virtual address a physical reference can be made. 

The page table entry also contains a protection field for the page. The protection code describes the 
read/write accessibility of the associated page for each of the processor modes. This is accomplished 
by comparing the protection code against the current mode of the processor (from the processor status 
longword, PSL) and the intended access (read, write, etc.). 
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31 30 27 26 25 21 20 0 

PAGE FRAME NUMBER 

VALID BIT (V) GOVERNS VALIDITY OF M BIT AND PFN FIELD 
V = 1; PAGE CAN BE ACCESSED BY EXECUTING PROCESS 
V =O; PAGE CANNOT BE ACCESSED BY EXECUTING PROCESS 

PROTECTION FIELD (PROT) ALWAYS VALID AND USED BY 
HARDWARE EVEN WHEN V = 0 

MODIFY BIT (M) M = 1 IF PAGE HAS ALREADY BEEN 
RECORDED AS MOllFIED 
M = 0 IF PAGE HAS NOT BEEN RECORDED 
AS MODIFIED 
USED BY HARDWARE ONLY IF V = 1 

BITS<25:21> USED BY SYSTEM SOFTWARE 

PAGE FRAME NUMBER (PFN) UPPER 21 PHYSICAL ADDRESS 
BITS OF THE PAGE LOCATION 
USED BY HARDWARE ONLY IF V = 1. 

Figure 1-8 Page Table Entry Format 

The processor modes, ordered from most privileged to least privileged, are: 

TK-0040 

1. Kernel- Used by the kernel of the operating system for 1/0 drivers and page fault handling. 

2. Executive - Used for the majority of the operating system service calls. 

3. User - Used for user level code, utilities, compliers, etc. 

The mode at which the processor is currently running is stored in the current mode field of the PSL. If 
the processor mode and protection code for the page about to be accessed indicate that the access 
would be illegal, the page access is inhibited and an access control fault occurs. 

As seen in Figure 1-8, a PTE also contains a valid (V) bit. For the PTE in main memory, the condition 
of the V bit is set by the operating system to indicate the status of the page. This condition is examined 
when a PTE is fetched from main memory during a TB miss. If the V bit is not set, a macrofault 
routine is executed. During the routine, the operating system finds the correct page table and updates 
the PTE by setting the V bit. The memory reference is then retried. 

The V bit of a PTE in the TB indicates the validity of the PTE. If a PTE in the TB is accessed and the 
valid bit is not set, a TB miss microtrap occurs. 

All PTEs in the TB are invalidated during system initialization. This provides invalid PTEs with good 
parity. Similarly during a context switch all process PTEs are invalidated. This is because the mapping 
of each process virtual page changes when a context switch occurs. 
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Also all PTEs contain a modify (M) bit. The M bit of a PTE in main memory is an indication to the 
operating system that the page has or has not been modified while in main memory. With this informa­
tion the operating system can decide whether or not it must rewrite the page on disk when it elects to 
remove the page from main memory. If while in main memory the page is modified by the processor 
(written into), the page must be rewritten on disk when the operating system elects to remove it from 
main memory. Otherwise, without modification to the page, a rewrite to disk is not needed (i.e., the 
copy on disk continues to contain the most current copy of the page). 

When a PTE is loaded into the TB from main memory, a copy of the M bit is included. Each time a 
write is executed, the M bit of the PTE in the TB is examined. If the M bit is not set, a microtrap 
occurs. During the M bit microtrap, the PTE from main memory is fetched, the M bit is set, and the 
PTE is rewritten to memory. This is an indication to the operating system that the page has been 
modified. Likewise the M bit of the PTE in the TB is asserted. 

1.5.2 Base and Length Registers 
The base and length registers are accessed during an address translation. The base registers indicate the 
location of the page tables for the executing process. The length registers provide information for a 
length violation check. Figure 1-9 illustrates their respective formats. 

In all three base registers, bits 1 and 0 are always 00 indicating page tables are longword aligned. The 
contents of the process base registers are system virtual addresses (bit 30 and 31 are 10). The system 
base register contains a physical address. 

Generally, a length register contains the length of a page table in longwords. However, the Pl length 
register contains the page table length of a page table describing the unused portion of Pl space. In 
other words, the Pl length register contains 221 (number of virtual pages in the Pl space) minus the 
length of the Pl page table in longwords. This is due to the direction of growth in the Pl region. 

1.6 PCB AND CONTEXT SWITCHING 
A process is partially defined by the contents of its hardware process control block (HPCB). A HPCB 
is assigned to each process on the system. The HPCB contains all the switchable process context 
collected in a single contiguous block of address space for efficient transfer to/from the internal pro­
cessor registers. 

The major hardware-visible contents of the PCB are the contents of the general purpose registers, the 
PO and Pl base and length registers, the program counter, and the processor status longword. Figure 
1-10 illustrates the PCB contents. 

All HPCBs reside in system virtual space. For a process to execute on the system, the PCB content 
must be loaded in the processor internal registers. This is accomplished by a software instruction 
(LDPCTX). To context switch, the HPCB of the executing process is stored in memory and a new 
HPCB is loaded in the processor internal registers. This permits the CPU to execute a number of 
processes in a timesharing scheme. Note that a context switch changes the mapping of all process 
virtual addresses, because new process page tables are defined by new base and length registers (Figure 
1-11 ). As seen in this Figure, a reference to virtual page 1 will access the contents of page frame 5 
during the execution of process A. A reference to the same virtual page during the execution of process 
B, however, will access the contents of page frame 1. The mapping of all other virtual pages in this 
example may likewise be dissimilar for each process. 
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Figure 1-9 Base and Length Registers 
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Figure 1-10 Hardware-Visible PCB Content (HPCB) 
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1.7 ADDRESS TRANSLATION - INTRODUCTION 
To locate information in physical memory, virtual addresses generated by the CPU must be translated 
to physical addresses. All address translations are ~ctually performed by the CPU microcode. The TB 
merely stores the results of the translations to speed overall memory access time. Thus each time a TB 
miss occurs (the translation information is not in the TB), an address translation must be performed by 
the microcode. 

The translation results stored in the TB are page table entries which contain protection and relocation 
information for the accessed virtual page. Address translation is further defined in the following sec­
tion and the Functional/Logic Description. 

1. 7 .1 Address Translation - Simplified Operational Description 
This section provides a simplified description of the interaction of the Translation Buffer, Cache, and 
SBI Control. Memory access examples are examined and described in a simplified form for the sake of 
discussion. The Functional/Logic Description provides details. 

These paragraphs describe the sequence of address translation for each of the following CPU memory 
access cases: 

1. Reference to system virtual space with a TB hit 
2. Reference to system virtual space with a TB miss 
3. Reference to process virtual space with a TB hit 
4. Reference to process virtual space with a single TB miss 
5. Reference to process virtual space with a double TB miss. 

With each description a corresponding figure is provided, illustrating the sequence. 

1.7.1.1 Reference to System Virtual Space with a TB Hit (Figure 1-12, Part A) 

1. The CPU data path generates a system virtual address and sends it to the TB. The address 
matches a virtual address in the TB (TB hit) which indicates the corresponding system page 
table entry (S PTE) is in the TB. Note that a TB hit also indicates the valid bit is set 

2. The page table entry contains the upper bits of the physical address of the desired data. If the 
physical address is in Cache, the corresponding Cache data may be accessed. (A write to 
Cache results in a simultaneous update of main memory.) If the physical address is not in 
Cache, main memory must be accessed for the data. 

1.7.1.2 Reference to System Virtual Space with a TB Miss (Figure 1-12, Part B) 

1. The CPU data path generates a system virtual address and sends it to the TB. The address 
does not match a virtual address in the TB (TB miss), which indicates the corresponding 
system page table entry (S PTE) is not in the TB and must be fetched from main memory. 

2. The CPU microcode calculates the physical address of the system page table entry. 

3. The physical address locates the system page table entry in main memory (or Cache). 

4. The system page table entry is retrieved from main memory and placed in the TB (provided 
the V bit is set). The corresponding addressing information (TAG) is also placed in the TB. 

5. Having placed the system page table entry in the TB, the reference is retried for a guaranteed 
TB hit. The sequence described for a TB hit to system virtual space is then performed 
(Figure 1-12, Part A). 
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1.7.1.3 Reference to Process Virtual Space with a TB Hit (Figure 1-13, Part A) 

1. The CPU data path generates a process virtual address and sends it to the TB. The address 
matches a virtual address in the TB (TB hit) which indicates the corresponding process page 
table entry (PX PTE, where X = 1 or 0 indicating control or program) is in the TB. 

2. The page table entry contains the physical address of the desired data. If the physical address 
is in Cache, the corresponding cache data may be accessed. (A write to Cache results in the 
simultaneous update of main memory.) If the physical address is not in Cache, main mem­
ory must be accessed for the data. 

1.7.1.4 Reference to Process Virtual Space with a Single TB Miss (Figure 1-13, Part B) 

1. The CPU data path generates a process virtual address and sends it to the TB. The address 
does not match a virtual address in the TB (TB miss) which indicates the corresponding 
process page table entry (PX PTE, where X = 1 or 0 indicating control or program) is not in 
the TB. 

2. The CPU microcode calculates the system virtual address of the process page table entry. If 
in the TB, the corresponding system page table entry will contain the physical address of the 
process page table entry. (This is because all process page tables exist in system space, and all 
system space is mapped by the system page table. See Paragraph 1.5). 

3. The microcode-generated system virtual address is sent to the TB and a TB hit occurs. (A TB 
miss at this point is examined in the following sequence example.) 

4. The corresponding system page table entry contains the physical address of the process page 
table entry. 

5. The process page table entry is fetched from main memory (or Cache) and placed in the TB 
along with its corresponding address information (provided the V bit is set). 

6. Having placed the process page table entry in the TB, the original reference is retried for a 
guaranteed TB hit. The sequence described for a TB hit to process virtual space is then 
performed (Figure 1-13, Part A). 

1.7.1.S Reference to Process Virtual Space with a TB Double Miss (Figure 1-13, Part C) 

1. The CPU data path generates a process virtual address and sends it to the TB. The address 
does not match a virtual address in the TB (TB miss), which indicates the corresponding 
process page table entry (PX PTE, where X = 1or0 indicating control or program) is not in 
the TB. 

2. The microcode calculates the system virtual address of the process page table entry. If in the 
TB, the corresponding system page table entry will contain the physical address of the pro­
cess page table entry. (This is because all process page tables exist in system space, and all 
system space is mapped by the system page table. See Paragraph 1.5). 

3. The microcode-generated system virtual address is sent to the TB and another TB miss 
occurs. 

4. Under microcode control, the physical address of the system page table entry is calculated 
from its virtual address. 

5. The physical address locates the system page table entry in main memory (or Cache). 
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Figure 1-13 Sequence for Reference to Process Virtual Space (Sheet I) 
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6. The system page table entry is retrieved from main memory and placed in the TB along with 
its addressing information. 

7. Having placed the system page table entry in the TB, the system virtual reference is retried 
for a guaranteed TB hit. (The system virtual reference was previously generated by the 
microcode.) 

8. The system page table entry contains the physical address of the process page table entry. 
Thus the process page table entry is fetched from memory (or Cache). 

9. The process page table entry is placed in the TB with its address information. 

10. Having placed the process page table entry in the TB, the original reference is retried for a 
guaranteed TB hit. The sequence described for a TB hit to process virtual space is then 
performed (Figure 1-13, Part A). 

1.8 BUS SUMMARY 
As shown in Figure 1-1, the major buses interconnecting the Translation Buffer, Cache, SBI Control, 
and the remaining portion of the CPU are: 

Synchronous Backplane Interconnect (SBI) 
Physical Address Bus (PA Bus) 
Control Store Bus (CS Bus) 
Internal Data Bus (ID Bus) 
Memory Data Bus (MD Bus) 
Visibility Bus (V Bus). 

These buses are briefly described next and further described in the Functional/Logic Description. 

1.8.1 Synchronous Backplane Interconnect 
The Synchronous Backplane Interconnect (SBI) is the bidirectional information path and commu­
nication protocol for data exchanges between the CPU, memory, and adapters of the VAX-11/780 
system. The SBI provides checked, parallel information exchanges synchronous with a common sys­
tem clock. 

The communications protocol allows the information path to be time multiplexed, so that a number of 
information exchanges may be in progress simultaneously. During each clock period (or cycle), inter­
connect arbitration, information transfer, and transfer confirmation may occur in parallel. 

SBI signals are clocked into data latches. All checking and subsequent decision making is based on 
these latched signals. Error checking logic detects single failures in the information path. However, 
multiple SBI system failures are not necessarily detected. 

Table 1-2 lists the basic SBI characteristics. 

1.8.1.1 SBI Unit Definitions - A nexus, which is any physical connection to the SBI, is capable of 
performing one or more of the functions listed: 

1. Commander - A nexus which transmits command and address information. 

2. Responder - A nexus which recognizes command and address information as directed to it 
and transmits a response. 

3. Transmitter - A nexus which drives the information lines. 

4. Receiver - A nexus which samples and examines the information lines. 
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Table 1-2 Basic SDI Characteristics 

Characteristic 

Number of signal lines 

Data path width 

Physical address space 

Bus cycle time 

Arbitration logic 

Maximum SBI length 

Interface chip 

Bus Cable Properties 
Characteristic impedance 
Propagation delay 

Backplane Properties 
Characteristic impedance 
Propagation delay 

Definition 

84, including check bits 

32 bits 

230 bytes 

200ns 

Decentralized; simultaneous 
on each interface 

3 m (9.84 ft) 

DEC 8646, 4-bit transceiver 
DEC DClOl, priority arbitration chip 

75 ± 7U 
1.1 ± 0.1 ns/ft 

75 Q 

2.0 ns/ft 

As an example, consider a CPU which issues a read-type command. It may be considered one of three 
nexus types, depending on the point in the information exchange. 

When the CPU issues the read command, it is a commander since it is issuing command/address 
information. At the same time it is a transmitter since it is driving the information lines. When the 
device (responder) returns the requested data, the CPU is considered a receiver, since it examines the 
information lines and the data is specifically directed to it. In the strict sense, each nexus is a receiver 
(i.e., examining information lines) in every SBI cycle. 

In the case of a memory read exchange, the memory is the responder since it recognizes and responds 
to a command/address signal. Also, since it examines the information lines, it is a receiver (along with 
every other nexus on the SBI). When the memory returns the requested data by driving the informa­
tion lines, it is a transmitter. 

1.8.1.2 SDI Signal Groups - The 84 lines of the SBI are divided into these functional groups: 

1. Arbitration 
2. Information 
3. Confirmation 
4. Interrupt 
5. Control. 
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1.8.1.2.1 Arbitration Grotap - The arbitration group sets nexus priority to access the SBI. It deter­
mines which nexus of those requesting access to the SBI in a particular cycle will perform an informa­
tion transfer in the following cycle. 

1.8.1.2.2 Information Group - The information group exchanges command/ address, data, and inter­
rupts summary information. Each exchange consists of one to three information transfers. 

For write-type commands, the commander uses two or three successive SBI cycles. The number of 
successive cycles required depends on whether one or two data longwords are to be written in the 
exchange. In the first case, the commander transmits the command/ address in the first cycle, and a 
data longword in the second cycle. In the second case, the commander transmits the com­
mand/ address in the first cycle, data longword 0 in the second cycle, and data longword 1 in the third 
cycle. 

Read-type commands are also initiated with a command/ address transmitted from the commander. 
However, since data emanates from the responder, the requested data may be delayed by the charac­
teristic access time of the responder. As in a write exchange, the read data will be transmitted using one 
or two successive cycles depending on whether one or two data longwords were requested. 

An interrupt summary exchange is response to a device-generated interrupt to the CPU. The exchange 
is initiated with an interrupt summary read transfer from the CPU. The exchange is completed two 
cycles later with an interrupt summary response transfer containing the interrupt information. 

1.8.1.2.3 Confirmation Group - The confirmation group provides a path to inform the transmitter 
whether the information transfer was correctly received and, in the case of a command/address trans­
fer, whether the receiver can process the command. 

Each command/ address or information transfer is confirmed by the responder (or receiver) two cycles 
after transmission by the commander. During a write-type exchange, command/address and data 
transfers are confirmed by the responder. During a read-type exchange, the command/address transfer 
is confirmed by the responder; the reception of read data is confirmed by the commander. 

Interrupt summary transfers are not confirmed. 

1.8.1.2.4 Interrupt Request Group - The interrupt request group provides a path for nexus to inter­
rupt the CPU to service a condition requiring processor intervention. In addition, the group includes a 
special line for nexus which interrupts the CPU only for changes in power or operating conditions. 

1.8.1.2.S Control Group - The control group provides a path to synchronize system activity and 
provides specialized system communication. The group includes the system clock which provides the 
universal time base for any nexus connected to the SBI. The group also provides initialization, power 
fail, and restart functions for the system. In addition, an interlock line is provided for coordination of 
memory sharing in multiprocessor systems. 

1.8.2 Physical Address Bus 
The physical address (PA) bus is a bidirectional internal bus 28 bits wide [PA (29:02)]. The PA bus 
transfers the translated physical address from the TB to the Cache and SBI Control. In the case when 
the memory management enable function is off, the address transferred is not translated. The PA bus 
is also used to tr an sf er a physical address from the SBI Control to Cache for Cache refill and SBI 
invalidated sequences. 
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1.8.3 Control Store Bus 
The control store (CS) bus is a 96-bit wide control bus which is essentially the output of the control 
store microword. 

The Translation Buffer receives control from a microcode field consisting of six lines. Although the 
SBI Control is not connected to this microcode field directly, the field is buffered and received from 
receivers in the TB. 

1.8.4 Internal Data Bus 
The internal data (ID) bus is a high speed, bidirectional data path connection between the TB, SBI 
control, and other functional areas of the CPU. The ID bus consists of 32 data lines, 6 address lines, 
and 1 direction line. ID bus control is derived from a control field in the microword during normal 
operation and from the console interface logic during maintenance operation. The ID bus is further 
discussed in the VAX-11 KA780 Central Processor Description (EK-KA780-TD-PRE). 

1.8.5 Memory Data Bus 
The memory data (MD) bus is the bidirectional information path for longword aligned data exchanges 
which connects the data path portion of the CPU and the instruction buffer to the Cache and SBI 
Control (Figure 1-14). The bus consists of 40 lines: 32 data lines, 4 parity lines, and 4 mask lines. The 
parity lines provide parity for each of the four data bytes (i.e., parity bit 0 associated with byte 0, bits 7-
0, etc.). The mask bits are associated with the data bytes similar to the parity bits. The mask bits 
inform the system which bytes are to be read or written. 

DATA 
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MD BUS 

SBI 

SBI 
CONTROL 

INSTRUCTION 
BUFFER 
& 
DECODE 

Figure 1-14 MD Bus 
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The MD bus transfers data for these general cases: 

I. Data path requested read data is found in Cache (hit) and transferred back to the data path 
via the MD bus. 

2. Instruction buffer read data is found in Cache (hit) and transferred back to the instruction 
buffer via the MD bus. 

3. Data path requested read data is not found in Cache (miss) and is retrieved from main 
memory. The data is transferred from the SBI Control to the data path and Cache simulta­
neously via the MD bus. 

4. Data requested by the instruction buffer is not found in Cache (miss) and is retrieved from 
main memory. The data is transferred from the SBI Control to the instruction buffer and 
Cache simultaneously via the MD bus. 

5. CPU write data is transferred to the SBI control via the MD bus and sent over the SBI to be 
written in memory. If it is in Cache, the data is also updated in Cache simultaneously via the 
MD bus. 

6. Interrupt Summary Read Responses are transferred over the MD bus to the data path. 

1.8.6 Visibility Bus 
Various signals from the TB, Cache, and SBI Control are interfaced to the V bus for diagnostic 
isolation of CPU subsystem failures. Refer to the Console Technical Description (EK-KC780-TD­
PRE) for a detailed explanation of the V bus and its operation. 

1.9 TRANSLATION BUFFER OVERVIEW 
The TB is a two-way set associative cache used to store page table entries. The TB is constructed of two 
major parts: TB data matrix and TB address matrix, where each matrix consists of 128 entries. The 
components of the TB, in conjunction with the firmware translation routines, perform the virtual-to­
physical address translation. 

1.9.1 TB Structure 
As shown in Figure 1-15, the TB address and data matrices are each divided into two groups. Since 
each group contains 64 locations, the TB has a total capacity of 128 locations. Each entry of the group 
0 address matrix corresponds to an entry in the group 0 data matrix. Likewise, each entry of the group 
I address matrix corresponds to an entry in the group I data matrix. 

1.9.2 TB Functions 
Portions of each PTE in the TB are stored in the address matrix and portions are stored in the data 
matrix. The address matrix stores addressing information (virtual tag field) and protection informa­
tion for the corresponding pages. The data matrix contains the translated physical page frame number 
(i.e, the high-order address bits) of each PTE. 

As shown in Figure 1-15, the virtual address (VA) is divided into three fields. The index field selects a 
location in both groups of the address and data matrices. Once selected, the tag from both groups of 
the address matrix is compared against the tag of the virtual address. 

1-24 



-I lV 
v. 

VA 

VIRTUAL 
PAGE 
NUMBER 

BYTE 
OFFSET 

,---------~.__---------...(-------------, 

31 30 14 13 9 8 2 0 
TAG 

\.----~----
COMPARED TO THE TAG AT THE 
INDEXED LOCATION OF BOTH GROUPS 
OF THE ADDRESS MATRIX 

31 13 9 

NOT USED IN 
ADDRESS TRANSLATION 

I INDEX I 
~ 

SELECT A LOCATION IN BOTH GROUPS OF THE 
ADDRESS MATRIX AND DATA MATRIX 

ID BUS 

1--------r----..---------------------t--------i FROM D REGISTER 

DATA 
PATH 

INDEX 
-FIELD 

ACCESS 
CONTROL 

BYTE OFFSET (8:2) 

TAG 
FIELD 

PROT 

G1 G1 

PFN 

IN CPU 

IPA 
REGISTER 

Figure 1-15 Basic Translation Buffer Structure 

PFN 

BYTE 
OFFSET 

TO CACHE 
AND SBI 
CONTROL 

TK-0028 



If a match is found between either group tag and the VA tag field, the reference is considered a TB hit 
and portions of the associated PTE are retrieved from the corresponding group of the address and data 
matrices. The PFN of the page table entry is enabled to the PA bus, combined with the byte offset from 
the virtual address, and transferred to Cache as the physical address for a data word lookup. The 
protection part of the PTE is checked for possible access violation. If there is no match between the TB 
tags of the indexed location and the VA tag, the reference is considered a TB miss and a microtrap 
occurs. During the microtrap, the microcode fetches the PTE from the page table in memory and 
writes it in the TB via the ID bus. The reference is then retried. If the V bit of the PTE within the page 
table is not set, a trap to system software occurs. (System software then locates the page, updates 
memory and the PTE, and retries the reference.) 

1.9.3 IPA Operation (Instruction Physical Address) 
Whenever any type of branch is executed, the microcode must calculate the new address, translate it, 
and load it in the IPA register. The IPA register is then incremented to generate consecutive addresses 
until another branch is executed. 

When the IPA register is incremented across a page boundary, the address of the new page must be 
translated and checked for accessibility. An auto-reload feature in the hardware automatically trans­
lates the new address and loads it in the IPA without the need of microcode control. 

1.10 CACHE OVERVIEW 
The Cache is two-way set associative and is used to store data quadwords retrieved from memory via 
the SBI Control during processing to speed system operations. As shown in Figure 1-16, the Cache has 
two major parts: cache data matrix and cache address matrix. Each matrix is divided into two groups 
(Group 0 and Group 1), with the matrix groups having the same general relationships as in the TB. 
The address matrix stores the tag field (high-order physical address bits) of one associated data quad­
word stored in the data matrix. Each address matrix entry corresponds to one data matrix entry 
consisting of two longwords. 

The Cache address matrix has two groups with 512 entries in each group. Correspondingly, the Cache 
data matrix consists of two groups with 512 entries in each group. Since each data entry consists of two 
longwords, the total data capacity of Cache is 2048 longwords. 

1.10.1 Cache Function 
The physical address presented to cache is divided into the fields shown in Figure 1-16. The index fields 
are used to retrieve the referenced index position in both groups of the address and data matrices. 
However, the index fields are of different lengths. A 9-bit index field [PA (11:3)] is required to refer­
ence the 512 locations of the address matrix. The data matrix requires a 10-bit index field [PA (11 :2)], 
since a data entry has two longwords. PA bit 2 selects the longword of the quadword entry. 

During a Cache operation, the tag fields (retrieved from Group 0 and 1 of the address matrix) are 
compared with the tag field of the physical address from the PA bus. If a match is found between either 
group tag and the physical address tag field, the reference is considered a hit. In a read operation the 
data longword stored in the associated group of the data matrix is enabled to the instruction buffer or 
D register in the data path via the MD bus. In a write operation, a hit updates the indexed data 
location. 

NOTE 
The location in main memory is updated on a write, 
whether or not a cache hit occurs. 
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In the case of a read miss (reference not in Cache), the entire quadword containing that location is 
retrieved from main memory (an Extended Read operation). Both longwords are written into the 
cache, and the referenced data is sent to the instruction buffer or D register in the data path. In the case 
of a write miss, the referenced location is updated in main memory only (Paragraph 1.10.2.). 
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1.10.2 Cache Strategies 
The cache uses a random replacement strategy. That is, when new data is written in the cache from 
main memory, the group used is chosen in a pseudo random manner rather than overwriting on a least 
recently used or first-in, first-out basis. A flip-flop is used as the random bit which complements every 
cycle until a cache miss occurs. 

The Cache uses a modified write-through updating strategy. When the CPU does a write cycle, that 
location is updated in Cache (if in Cache) and also updated in main memory. However, since the SBI 
Control can buffer one command, the CPU is not forced to wait for the write cycle to complete before 
continuing processing (assuming no error conditions). The CPU is forced to wait in the case of two 
successive write cycles or an instruction buffer read miss followed by a write (Paragraph 1.12.2). 

The miss strategy implemented in the Cache is not write allocate. In the case where the CPU does a 
write cycle and has a write miss (reference not in Cache), that location is updated in memory. The 
location, however, is not stored in Cache. 

1.11 SDI CONTROL OVERVIEW 
The major function of the SBI Control is to transfer data between the CPU and other system com­
ponents on the SBI. It has the capability to initiate interrupts and microtraps as determined by condi­
tions on the SBI or in other areas of the CPU (Figure 1-17.) 

The SBI control logic is implemented on two extended hex-height boards. In addition to the associated 
control logic, the 32-bit data path is evenly divided between the two boards (16 bits/board). 

1.11.1 Basic Operations 
The SBI Control firmware commands are buffered in the TB. On a read operation having a Cache read 
miss, the SBI Control initiates an SBI cycle to retrieve the quadword containing the referenced loca­
tion from main memory. Having received the address simultaneously with Cache over the PA bus, the 
address may be enabled from the PA register to the SBI. When the quadword is retrieved, the SBI 
Control assumes control of the PA and MD buses. The contents of the PA register are then enabled 
back to the PA bus and the retrieved data quadword is transferred to Cache to be written in the 
indexed locations of the randomly selected group. 

On a write operation the address and write data are transferred to buffers in the SBI Control. As soon 
as the SBI Control gains control of the SBI, the write data is transferred to main memory. (The write 
data buffer allows the CP to resume processing without waiting for the SBI write cycle to complete.) 

1.12 COMBINED OPERATIONAL OVERVIEW 
The following subsections provide an overview of the combined basic operations of the Translation 
buffer, Cache, and SBI Control. Refer to Figure 1-18. 

1.12.1 Basic Read Operation 
Initially, the CP data path section transfers a virtual address (VA) generated during process execution, 
over the VA lines to the TB together with a firmware command from the control store. Note that the 
firmware command is simultaneously applied to the Cache and SBI Control. In this case the firmware 
command directs the subsystem to execute a virtual read operation. 
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The VA tag and index fields are applied to both groups of the TB address and data matrices (Figure 1-
18). The tag fields retrieved from Groups 0 and 1 of the address matrix are compared with the tag field 
of the VA presented to the TB for translation. 

If there is no match between either group tag field and the VA tag field (TB miss), the microcode 
retrieves the associated PTE from memory, places it in the TB, and then causes the reference to be 
retried. 

If a match is found (TB hit) between either group tag field and the VA tag field, the associated PTE 
information (translated page frame number) in the TB data matrix is enabled to the PA bus. Since the 
index fields are simultaneously applied to the TB address and data matrices, when a hit occurs in the 
address matrices, the corresponding contents of the data matrix is available for transfer at hit time. 
The page frame number and byte offset are then transferred over the PA bus to Cache for a data word 
lookup and the SBI Control, in case a Cache miss occurs. 

The cache control logic initiates a lookup to determine if the referenced data is stored in Cache. The 
physical address from the PA bus is applied to both groups of the cache address and data matrices as 
shown in Figure 1-18. The index fields are used to retrieve the referenced index position in both groups 
of the address and data matrices. The tag fields retrieved from Groups 0 and 1 of the address matrix 
are compared with the tag field of the physical address from the TB. If a match is found (Cache hit) 
between either group tag field and the PA tag field, the referenced data word is in the associated group 
of the data matrix. 

As in the TB, the index fields are simultaneously applied to the cache address and data matrices. Thus, 
the associated data matrix content is available for transfer at hit time. If the referenced data is in the 
matrix, it is enabled to the MD bus and transferred back to the D register in the data path or the 
instruction buff er. 

If the data is not present in Cache, the cache control logic notifies the SBI control that the data is not 
available. Since the PA and firmware command were applied to the SBI Control at the same time they 
were applied to Cache, the SBI Control initiates an SBI read "cycle to retrieve the referenced data from 
main memory. CPU normal execution is suspended until this data is retutned from main memory. 
When the data is returned from main memory, the SBI Control assumes control of both the PA and 
MD buses. The PA is enabled back to the PA bus and the retrieved data is transferred to the data path 
or instruction buffer and also written into the indexed location of a randomly selected group in the 
cache data matrix. 

Note that the SBI read cycle to main memory retrieves two longwords (quadword) rather than only the 
longword that was requested (an extended read operation.) This is in anticipation that the CPU will 
reference the next sequential longword during the current processing. 

1.12.2 Basic Write Operation 
As in the read operation, the CP transfers a VA to the TB and a firmware command to the TB, Cache, 
and SBI Control. Following address translation, the PA is transferred over the PA bus to the Cache 
and SBI Control. The Cache then performs a lookup in the address matrix for the referenced data (tag 
field compare). 
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If the Cache data matrix contains the referenced address, the content of that location is updated in the 
Cache and an SBI write cycle is initiated to update the referenced location in main memory. If the 
reference is not in the address matrix, no write to the data matrix will be executed. Having latched the 
address from the PA bus simultaneously with Cache, the SBI Control initiates an SBI write cycle to 
update the referenced location in main memory only. Note that, in keeping with the not write allocate 
cache strategy, the missed location is not brought to the data matrix. 

The data buffering in the SBI Control improves CPU performance during writes. The CP is not forced 
to wait for the SBI write cycle to complete before proceeding with its normal processing. However, the 
CPU is forced to wait during: 

I. Two successive write cycles or 

2. An instruction buffer read miss followed by a write. 

For two successive write cycles, the PA register and Write Data register of the· SBI Control initially 
became filled with the address and data of the first write. In this case the second write must wait until 
these registers are emptied onto the SBI. For the case of an instruction buffer read miss followed by a 
write, the PA register must not only hold the address for transmission over the SBI, but also must 
retain the address until the requested read data is latched from the SBI. When the read data is received, 
the PA register places the address on the PA bus for a Cache update. With this, the PA register 
becomes available for the write address. Thus, when an instruction buffer read miss is followed by a 
write, the write must wait until the read data is retrieved. 

1.13 MODULE LOCATIONS 
The six extended hex-height boards of the TB, Cache, and SBI Control are listed in Table 1-3. The 
table also includes their slot location in the KA 780 backplane. 

Table 1-3 TB, Cache, and SBI Control Modules 

Module Type 

M8222 
M8221 
M8220 
M8219 
M8218 
M8237 

TBM 
CDM 
CAM 
SBH 
SBL 
TRS 

Module Title 

Translation Buffer Matrix 
Cache Data Matrix 
Cache Address Matrix 
SBI High Bit Interface 
SBI Low Bit Interface 
SBI Terminator plus Silo 
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Location 

6 
5 
4 
3 
2 
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CHAPTER 2 
FUNCTIONAL/LOGIC DESCRIPTION 

The organization of the Function/Logic Description is similar to that of the Overview. The TB struc­
ture and logic is discussed first with a more detailed description of the address translation process. 
General Cache concepts are also provided as an introduction to the discussion of the Cache of the 
V AX-11 /780. The Cache discussion is followed by a description of the SBI Control (including SBI 
protocol) and its various ID bus registers. Finally, the microcode initiated memory control functions 
are discussed as a summary of the overall operation. 

2.1 TRANSLATION BUFFER DESCRIPTION 

2.1.1 Translation Buffer Matrix Structures 
As mentioned previously, the Translation Buffer is actually a cache of page table entries. In the trans­
lation buffer, a virtual address (consisting of index and tag fields) selects a PTE. The PTE contains the 
upper 21 bits of a physical address and protection information. The organizations of the address and 
data matrices are illustrated in Figure 2-1. 

As seen in Figure 2-1, portions of each PTE are stored in the address matrix and portions are stored in 
the data matrix. The V bit, M bit, and protect field are located in the address matrix and the 21 
physical address bits are located in the data matrix. Each address matrix and data matrix entry also 
contains parity bits. 

Each address and data matrix is divided into two identical groups, Group 0 and 1. Each group con­
tains 64 locations. Every location in the address matrix corresponds to a location in the data matrix. 
Half of the 64 locations are reserved for system PT Es and half are reserved for process PT Es. This 
organization makes it possible to clear all process PTEs in the buffer for a context switch without 
clearing system PTEs. With this, recalculations of system PTEs are not required for every context 
switch. 

2.1.2 TB Operation - General 
The address translation algorithms are actually executed by the CPU microcode. The TB merely stores 
the results of the translation algorithm for reuse, thereby saving time when the address is needed again. 
Figures 2-2 and 2-4 contain flow diagrams of address translation. Figure 2-2 illustrates the translation 
of a reference to system virtual space. Figure 2-4 illustrates the translation of a reference to process 
virtual space. As seen in these figures, a translation begins when the data path presents the TB with a 
virtual address. If the TB contains a tag identical to that of the incoming address (and the valid bit is 
set), the reference is a hit which indicates the TB also contains the page table entry. If the TB does not 
contain an identical tag, the reference is a miss and a microtrap occurs. 

Although only valid PTEs are loaded into the TB, the TB may contain invalid PTE's due to 
invalidation by the operating system. A TB entry is invalidated by the operating system when the 
corresponding page is removed from memory and placed on disk (i.e., removed from the working set). 
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2.1.2.1 System Virtual Reference, TB Hit - For references to system space, bit 31 of the incoming 
address equals 1. As seen in the flow diagram in Figure 2-2, if the TB contains the tag, the reference is a 
hit (TB contains the SPTE) and the protect field of the SPTE is compared against the current mode of 
the CPU (Paragraph 2.1.3). An access violation in this case causes a microtrap and a macrofault which 
aborts the translation. If there is no access violation, an M bit check is executed. 

An M bit microtrap occurs if the access is a write and the M bit is not set. This indicates the write is the 
first modification to the page. The M bit microtrap fetches the SPTE from main memory, sets the M 
bit, and then rewrites the SPTE back to main memory and the TB. (This is done to notify the operating 
system that the page has been modified while in main memory and must be rewritten on disk when it 
exits the working set.) When the M bit microtrap is complete, the virtual address is again sent to the 
TB to restart the translation. 

If an M bit microtrap does not occur, the TB enables multiplexers to output the proper physical 
address to the PA bus. 

2.1.2.2 System Virtual Reference, TB Miss - If the TB does not contain the tag of the incoming 
address, the reference is a miss (TB does not contain the SPTE) and a microtrap occurs. During the 
microtrap routine the microcode first executes a page length check which verifies that the system 
virtual address (SV A) is within the range specified by the system length register (SLR). If it is beyond 
the page table length, the microcode causes an access macrofault and the translation ends. Otherwise 
the translation continues under the control of the microcode. 

Because the TB does not contain the required SPTE, it must be fetched from main memory (or Cache). 
The microcode calculates the physical address of the SPTE by adding the virtual page number (VPN) 
of the SVA to the contents of the System Base register (SBR). Figure 2-3 illustrates this procedure. As 
seen in this Figure, once the S PTE is retrieved, the byte offset (BO) from the SY A may be added to the 
page frame number (PFN) to generate the requested physical address. 

When the CPU retrieves the S PTE, it is loaded in the TB. The microcode then uses the TB logic to 
check if the access is allowed for the current processor mode. This is accomplished by using a test 
operation which checks access but does no memory cycle. If an access violation is detected, however, 
the microcode only causes a macrofault and the translation ends. Because a test operation is used, 
there is no microtrap. An access microtrap is not desirable in this case because the violation occurred 
during a microtrap routine. (A microtrap during a microtrap routine would be difficult for the micro­
code to handle. Therefore, it is avoided by proper coding.) 

With the access of the S PTE verified for the current processor mode, the V bit is checked. The V bit 
indicates the validity of the S PTE. The V bit is not set if the S PTE is invalid. For this case a page fault 
to the macro software occurs and the translation ends. If the V bit is set, an M bit check is executed. 

An M bit check examines the condition of the M bit. If it is not set and the access is a write, the M bit is 
set and the S PTE is written back into the TB and main memory. Otherwise the S PTE is only written 
in the TB. Note that an M bit violation during a miss micro trap does not initiate another microtrap. (A 
microtrap cannot occur during a microtrap.) 

With the correct S PTE in the TB, the address translation is retried. For this, the data path again sends 
the virtual address to the TB. With the corresponding S PTE just loaded, a TB hit is guaranteed. The 
sequence described in Paragraph 2.1.2.l is then followed. 
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2.1.2.3 Process Virtual Reference, TB Hit - For references to process virtual space, bit 31 of the 
incoming address equals 0. As seen in the flow diagram of Figure 2-4, if the TB contains the tag of the 
incoming address, the reference is a hit (TB contains the PTE) and a procedure similar to the one 
described for a hit on a system space reference is followed (Paragraph 2.1.2.1 ). 

2.1.2.4 Process Virtual Reference, TB Miss (Single and Double)- If the TB does not contain the tag of 
the incoming address, the reference is a miss (TB does not contain the PTE) and a microtrap occurs. 
During the microtrap routine, the microcode first executes a page length check which verifies that the 
virtual address is within the range specified by the corresponding process length register (POLR for 
program space, Pl LR for control space). If it is beyond the page table length, the microcode causes an 
access macrofault and the translation ends. Otherwise the translation continues under the control of 
the microcode. 

Because the TB does not contain the required PTE, it must be fetched from main memory (or Cache). 
The microcode calculates the system virtual address (SV A) of the process PTE by adding the virtual 
page number (VPN) of the process virtual address to the contents of the corresponding base register 
(POBR for program space, Pl BR for control space). This system virtual address is then presented to 
the TB for translation to a physical address. 

As illustrated in Figure 2-4, the procedure described for a reference to system virtual space is followed 
when the TB is presented with the system virtual address generated by the microcode. However, 
because this entire procedure occurs during a microtrap, the microcode performs look-ahead tests to 
eliminate the possibility of a microtrap during a microtrap. If a condition which would normally cause 
a microtrap should occur, the microcode executes a microbranch. During the microbranch, microcode 
similar to the microtrap routine is performed. 

At the completion of the translation of the system virtual address, the resultant physical address is used 
to fetch the process PTE from memory (or Cache). When the PTE is retrieved, the TB checks if the 
access is allowed for the current processor mode. Likewise the V bit check and M bit check are 
performed just as described for a retrieved system page table entry (Paragraph 2.1.2.3). Assuming no 
macrofaults occurred, the process PTE is written in the TB end the original reference is retried. With 
the TB loaded with the correct process PTE, a hit is guaranteed. The procedure for a hit to process 
space is then performed (Paragraph 2.1.2.3). 

2.1.2.4.1 Address Calculation During a Miss Microtrap - During the miss microtrap routine on a 
reference to process virtual space, the TB is presented with the system virtual address of the process 
PTE as calculated by the microcode. A TB hit or miss can result. Figure 2-5 illustrates the procedure 
for a TB hit and Figure 2-6 illustrates the procedure for a TB miss. 

As seen in Figure 2-5, the S PTE is read out of the TB when the TB hit occurs. The page frame number 
(PFN) from the S PTE and byte offset from the SV A are used to generate the physical address of the 
process PTE. With this physical address, the process PTE is fetched from main memory (or Cache). 
When retrieved, the PFN of the process PTE and the byte offset of the original process virtual address 
are used to generate the physical address of the data. 

If the system virtual address presented to the TB had resulted in a TB miss, the system PTE would also 
have had to be fetched from memory (or Cache) just as the process PTE. This is illustrated in Figure 2-
6. As seen in this Figure, the VPN of the SV A is added to the contents of the System Base register to 
yield the physical address of the system PTE. With this physical address the S PTE is fetched from 
main memory (or Cache). The PFN of the retrieved S PTE is used with the byte offset from the SV A to 
generate the physical address of the process PTE. The process PTE is then fetched. When retrieved, the 
PFN of the process PTE and the byte offset of the original process virtual address are used to generate 
the physical address of the data. 
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2.1.3 Page Protection 
Every PTE contains a protection code for the corresponding page. The protection code of the PTE 
specifies whether or not read or write references are allowed to the corresponding page. The mode in 
which the processor is currently running is stored in the current mode field of the processor status 
longword (PSL). The mode specified for each field content is shown below: 

CM Field Content 

00 
01 
10 
11 

Mode Specified 

Kernel 
Executive 
Supervisor 
User 

Page accessibility is shown in Table 2-1 for each protection code during each mode. A protection check 
is executed by the TB whenever a PTE is read from the TB. 

2.1.4 IP A Introduction 
The Translation Buffer is used to translate addresses from the VA (Virtual Address) register for data 
references and addresses from the VIBA (Virtual Instruction Buffer Address) register for instruction 
references. Use of the IPA (Instruction Physical Address) register eliminates the unnecessary trans­
lation of each of the consecutive addresses during a string of instructions. The VA register and VIBA 
register are located in the data path and the IPA register is located in the Translation Buffer (Figure 2-
7). 

A string of instructions occupies a number of consecutive memory locations. For this reason, the IPA 
register is loaded with a pretranslated copy of the address of the first longword of an instruction stream 
and then incremented to obtain consecutive longword addresses of instructions. This eliminates the 
unnecessary translation process for each consecutive longword of instructions. Once loaded the IPA 
register is incremented coincidentally with the VIBA register. 

The IPA register is loaded under microcode control by the READ. V. NEWPC command. This is 
normally done when a macrocode transfer of control occurs resulting from a branch, jump, or jump to 
subroutine. 

When the IPA register is incremented across a page boundary, an auto-reload feature automaticaly 
reloads the IPA register with the next address of the instruction without theneed of microcode control. 
For this, the IPA is reloaded with a translated copy of the address in the VIBA register from the TB 
matrices (or an untranslated address if mapping is not enabled). The reload is controlled by hardware 
sequencing logic which is capable of starting the reload during any ALLOW.ID.READ microcycle. 
The actual reload is executed in the following microcycle. If the following microcycle requests a mem­
ory operation, the memory operation is stalled for 200 ns. 

If a TB miss, access violation, or parity error occurs during the IPA reload, a cancel signal is asserted. 
This signal indicates that the IPA address is invalid. In this case the microcode is notified of the 
error(s) when the instruction buffer runs out of data. The appropriate microtrap routine is then exe­
cuted. 

If the CPU tries to use the VA register during an IPA reload, the CPU is stalled until the current 
ALLOW.ID.READ is complete. 

As seen in Figure 2-7, the appropriate page address is enabled from the VA register, IPA register, or 
TB matrices to the PA bus via the PA mux. Similarly, the byte offset (which is not used in the trans­
lation process) is selected from the VA register for a data reference or the IPA register for an instruc­
tion reference. 
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Table 2-1 Page Accessibility for Each Processor Mode 

Protect Code 

Hex Binary 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

A 1010 

B 1011 

c 1100 

D 1101 

E 1110 

F 1111 

K =Kernel 
E = Executive 
S = Supervisor 
U =User 

Access Allowed 

K E s u 

None None None None 

(Reserved) (Reserved) (Reserved) (Reserved) 

RW None None None 

R None None None 

RW RW RW RW 

RW RW None None 

RW R None None 

R R None None 

RW RW RW None 

RW RW R None 

RW R R None 

R R R None 

RW RW RW R 

RW RW R R 

RW R R R 

R R R R 

R= Read Only 
RW = Read or Write 
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Figure 2-8 and 2-9 contain a block diagram of the logic associated with the TB address matrix. The 
following paragraphs describe this logic. 

As seen in Figure 2-8, the TB address matrix and associated logic is located on the Cache address 
matrix board (CAM). Here, the index portion of an incoming address [DDP VAMX (31,13:09)] selects 
a location in both groups of the TB address matrix. The contents of these locations are enabled to 
parity checking logic and comparators. The tag portion of the incoming address [DEP VAMX (30: 14)] 
is buffered and also input to the comparators as TBMA VA MUX (30: 14) BUFF. In addition, two 
parity bits are generated for the incoming tag and input to the comparators. If the incoming tag and 
parity bits match the contents of the indexed location of either group, a TB hit occurs. This indicates 
that the corresponding location in the data matrix contains the page frame number for the address 
translation. The protection codes and modify bits of the matrix locations are input to a mux in antici­
pation of a TB hit. The output of the mux is connected to protection decode logic on the TB data 
matrix board (TBM). If a TB hit occurs and parity is good, CAMU TB G RPO MATCH or CAMU TB 
G RP 1 MATCH is generated and sent to the data matrix along with the corresponding protection 
code. 
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If a TB miss occurs (no tag match), the PTE is fetched from main memory and placed on the ID bus 
under microcode control. The V bit, protect code, and M bit are then received from the ID bus and 
input to the address matrix. (Likewise, the page frame number is received from the ID bus and stored 
in the corresponding data matrix location.) With the index still asserted by the data path, TBMF GRP 
0 WPL or TBMF GRP 1 WP L·is asserted with ID address IO by the microcode to write the informa­
tion into a randomly selected group of the address matrix. A parity bit for this information is also 
received from the ID bus and stored in the matrix location. Note a parity check on this information is 
not executed until the information is read from the matrix. 

When the index of an incoming address is sent to the address matrix, a copy is also sent to the data 
matrix in anticipation of a TB hit. Figure 2-9 illustrates the logic associated with the TB data matrix. If 
a TB hit occurs and parity is good, the protection code [CAMV PROTECT CODE (3:0)) from the 
address matrix is enabled to decode logic on the TBM board. If access to the page is not allowed, 
TBMB CAUSE PROT TRAP is generated and a microtrap occurs. 

In addition to the protection check, the contents of the indexed location in the corresponding group of 
the data matrix are buffered and transferred to the PA mux logic. The PA mux logic and IPA logic 
select the data matrix, IPA register, or data path itself as the source of the physical page address. The 
operation of the PA mux logic and IPA logic is described in Paragraph 2.1.4. Note that the output of 
the data matrix is also sent to parity checking logic. 

As mentioned previously, if a TB miss occurs, the PTE is fetched from main memory and transferred 
over the ID bus to be stored in the TB. Portions of the PTE are received from the ID bus and stored in 
the address matrix. Similarly, the page frame number (physical page address) is received from the ID 
bus and stored in the data matrix. When the PFN is received, three parity bits [TBME REC ID PAR 
(2:0)] are generated and also stored. 

2.1.5.1 TB Data Register - The TB Data Register is addressable over the ID bus. When the micro­
code has retrieved a PTE from memory during a TB miss, the PTE is placed on the ID bus with the 
proper address and control information. The ID bus control logic on the TBM board decodes the ID 
bus address and enables the data matrix appropriately to latch the PTE. 

2.1.5.2 TB Register 0 and 1 - The ID transceivers used to receive the PFN from the ID bus are also 
used to transmit information from TB Register 1 and TB Register 0. These registers are readable over 
the ID bus and contain TB related information and status. Figure 2-10 illustrates each register format. 
Table 2-2 describes the bits of TB Register 0 and Table 2-3 describes the bits of TB Register 1. 

2.2 CACHE DESCRIPTION 

2.2.1 General Cache Concepts 
This section explains the purpose of cache memory systems and describes various methods used to 
implement such systems. Parameters and strategies involved in cache memory design are introduced, 
described, and analyzed to facilitate the reader's understanding of the specific Cache implemented in 
the KA780. 

2.2.1.1 Overall Organization of a Cache Memory System - The cache memory system is intended to 
simulate a system having a large amount of fast memory. To do this, the cache system relies on a small 
amount of very fast memory (the cache), a large amount of slower memory (the main memory), and 
the statistics of program behavior. 
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Bit 

20 

19,18 

17 

16 

15:8 

7 

6 

Table 2-2 TB Register 0 Bit Assignment 

Function 

Replace Both 

TB Force Replace Code 

Force TB Gl Miss 

Force TB GO Miss 

Last Reference 

TB Gl Hit 

TB GO Hit 

Description 

If set, both groups in the TB address and data matrices are 
written with data from the TB Data register. This bit is 
normally used when clearing the TB and is read/write. 

Selects a group in the TB address and data matrices for a 
TB write. The contents of the TB Data register are written 
in the selected group. 

19 18 

0 0 
0 1 
1 0 
1 1 

Selected Group 

Random Group 
GroupO 
Group 1 
Unused 

These bits are read/write. 

If set, prevents any TB hits in group 1. This bit 1s 
read/write. 

If set, prevents any TB hits in group 0. This bit is 
read/write. 

These bits contain the following information about the 
most recent memory request by the microcode. These bits 
are read-only. 

15 UFS 
14 UADS 
13 UMCT3 
12 UMCT2 
11 UMCTl 
10 UMCTO 
09 IB WCHK from the instruction buffer 
08 The cycle was delayed one cycle by an auto­

reload of the IPA. 

If set, indicates a TB hit in group 1. This bit is the latched 
output of the group 1 address comparator. It is used for 
diagnostics and is read-only. 

If set, indicates a TB hit in group 0. This bit is the latched 
output of the group 0 address comparator. It is used for 
diagnostics and is read-only. 

2-17 



Table 2-2 TB Register 0 Bit Assignment (Cont) 

Bit Function Description 

4:1 Force TB Parity Error 
Code Forces a parity error in the group selected as shown here. 

These bits are read/write. 

Bits Group Adrs/Data 

4 3 2 1 Matrix Byte 

0 0 0 0 - -

0 0 0 I - -

0 0 I 0 0 DO 

0 0 I I 0 DI 

0 I 0 0 0 D2 

0 I 0 I I DO 

0 I I 0 I DI 

0 I I I I D2 

I 0 0 0 0 AO 

l 0 0 I 0 Al 

I 0 1 0 0 A2 

1 0 1 1 1 AO 

1 1 0 0 1 Al 

I 1 0 I 1 A2 

I 1 I 0 - -

1 1 1 1 - -

0 Memory Management If not set, all addresses are placed on the PA bus directly 
Enable from the data path. The TB miss, parity, page protection, 

M-bit, and page boundary microtraps are also disabled. 
This bit is read/write. 
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Bit 

20:9 

8 

6 

4 

3:0 

Table 2-3 TB Register 1 Bit Assignment 

Function 

TB Par Bits 

CP TB Par Err 

Last TB Write Pulse 

Bad IPA 

IPA Info 

Description 

These bits are loaded when a TB parity error occurs while 
the IPA is being loaded or TB parity traps are enabled. If 
set, a parity error exists in the corresponding byte as fol­
lows: 

Bit 

20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
09 

Grou_e_ 

1 
1 
1 
0 
0 
0 
1 
1 
1 
0 
0 
0 

Adrs/Data 
Matrix B_.ite 

D2 
Dl 
DO 
D2 
Dl 
DO 
A2 
Al 
AO 
A2 
Al 
AO 

If set, this bit indicates that the TB has requested a TB 
parity error microtrap. This bit is read-only and is cleared 
by any write to TB Register 1. 

This bit is read-only and indicates which TB group was 
most recently written. If both groups were modified, it is 
in determinant. 

1 = Group 1 
0 =Group 0 

If set, the information in the IPA register and the IPA info 
bits of TB Register 1 are invalid. This bit is read-only and 
is set by counting across a page boundary (or by FLUSH), 
and cleared by loading the IPA register. 

These bits contain the following information about the 
most recent loading of the IPA register. 

3 MISS, A TB miss occurred during the loading. 

2 PARITY, A parity error occurred during the 
loading. 

1 PROTECT, A protection violation occurred 
during the loading. 

0 AUTO LOAD, The loading was automatic and 
not the result of READ.V.NEWPC. 
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The basic idea is to store some data in the fast memory and some in the slow memory. If it can 
somehow be arranged that data is in the fast memory when the processor needs it, the program will 
execute quickly, slowing down only occasionally for main memory operations. Conventional, mixed 
MOS-core systems attempt to achieve this goal by having the programmer guess beforehand which 
sections of his program should go in each memory. This is often awkward and usually only moderately 
successful. The cache memory system tries to achieve the same goal by automatically, dynamically 
shuffling data between the two memory types in a way which gives a high probability that useful data 
will be in the fast memory. All of the following discussions of cache organizations and strategies are 
intended to show implementable methods of shuffling data, so that the data most likely to be needed 
next will be in the fast memory instead of the slower main memory. 

2.2.1.2 Program Locality - A cache memory works because it can usually predict successfully which 
words a program will require soon. If programs used words completely at random from all of memory, 
it would be impossible to predict which words would most likely be needed next. Under these circum­
stances, a cache memory system could perform no better than a conventional mixed memory system 
with a small amount of bipolar memory. 

Fortunately, programs do not generate random addresses. Instead, programs have a tendency to make 
most accesses in the neighborhood of locations accessed in the recent past. This is the basis of the 
principle of program locality. The fact that programs display this type of behavior makes cache mem­
ory systems possible. 

An understanding of why the principle of program locality is true can be obtained by examining the 
small scale behavior of typical program data structures. Code execution itself generally proceeds in 
straight lines or small loops; the next few accesses are most likely to be within a few words, ahead or 
behind. Stacks grow and shrink from one end, with the next few accesses near the current top. Charac­
ter strings and vectors are often scanned through sequentially. 

The principle of program locality is a statement of how most programs tend to behave, not a law which 
all programs always obey. Jumps in code sequences, seemingly random access of symbol tables by 
assemblers, and context switching between programs are examples of behavior which can adversely 
affect the locality of addresses generated by a processor. The process of guessing which words a pro­
gram will reference next can never be completely successful. The percentage of correct guesses is a 
statistical measure affected by the size and organization of the cache, the algorithms it uses, and the 
behavior of the program driving it. 

2.2.1.3 Block Fetch - The principle of program locality states that for the cache to have the best 
chance of having the word the program needs next, the cache should have words near those recently 
used. The basic method of accomplishing this is the block fetch. When the cache controller finds it 
necessary to move a word of data from slow memory to fast memory because the data was not in the 
fast memory when needed, the controller will move not just the word required, but a block of several 
adjacent words at once. Typically, the block will contain one (degenerate case}, two, four, or eight 
words starting on an even block boundary. 

The block fetch can provide either look-behind, look-ahead, or both, depending on the position of the 
originally requested word within the block. Since many important generated address sequences (e.g., 
most code) tend to move in increasing order, the originally requested word is usually the first in the 
block, so the block fetch generally provides look-ahead. 

The block size is one of the most important parameters in the design of a cache memory system. If the 
block size is too small, the system will have insufficient look-ahead and performance will suffer 
slightly, particularly for programs which do not contain many loops. Also, as will be discussed later, 
small block sizes require the system to store more addresses than large blocks, for the same total 
memory size. 
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If the block is too large, there may not be room for enough blocks in the cache to provide for adequate 
look-behind. Large blocks also tend to mean more memories operating in parallel within the slow 
memory and therefore wider buses between slow and fast memory, resulting in increased cost. As the 
block gets larger, each additional word in the block is less likely to be useful, since it is further from the 
originally requested word and less likely to be needed soon by the program. It has been found empir­
ically that while a block size of two words increases memory system performance dramatically, further 

· increases in block size produce much smaller improvements which are seldom worth implementing. 

2.2.1.4 The Fully Associative Cache - If a cache memory system was designed so that the fast memory 
held one contiguous block of 1000 words, it would fail miserably. Most programs make reference to 
code segments, subroutines, stacks, lists, and buffers located in scattered parts of the whole address 
space. Ideally, a 1000-word cache would hold the 1000 words the controller estimated as most likely to 
be needed, no matter how scattered these words were throughout the address space of main memory. 

Since there would be no relation of all the addresses of these thousand words to each other or to any 
single register or mapping function, each of the 1000 data words in the fast memory would have to 
carry its address with it. Then, when the processor requested a word from memory, the cache would 
simply compare (associate) the address from the processor with each of the thousand addresses of 
words in the fast memory. If a match were found, the data for that address would be sent to the 
processor. This is the principle of an associative memory (Figure 2-11). 
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Figure 2-11 A Fully Associative Cache Memory System 

2-21 



This system, called fully associative because the incoming address must be compared (associated) with 
all the stored addresses, gives the cache controller maximum flexibility in deciding which words it 
wants in fast memory; i.e., any words at all until the memory is full. Unfortunately, 1000 address 
comparisons would be unacceptably slow and/ or expensive. One of the basic issues of cache organiza­
tion is how to provide minimum restrictions on what groups of words may be present in fast memory, 
while limiting the number of address comparisons required. 

2.2.1.S 1be Direct Mapping Cache - At the opposite extreme from the fully associative cache is the 
direct mapping cache. Instead of one address comparison on every block, the direct mapping cache 
requires only one address comparison. 

The many address comparisons of the fully associative cache are necessary because any block from 
main memory can be placed in any block of fast memory. Thus, every block of fast memory must be 
checked to see if it has each requested address. The direct mapping cache allows each block from main 
memory only one possible location in fast memory (Figure 2-12). Consider each incoming address as 
having three parts. The first part (address field) starts at bit 0 and contains enough bits to specify which 
byte out of a block is being requested. The next field, called the index field, starts where the first field 
leaves off and contains enough bits to specify any block in fast memory. The third field, called the 
address field, contains the rest of the bits. 
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As an example, consider an 18-bit PDP-11 byte address as input to a 256-word, 4-word-per-block, 
direct mapping cache. (This cache would thus be 4 words wide and 64 blocks deep. Assuming 4 words 
per block, allows us to break down the address conveniently, using octal notation.) As illustrated in 
Figure 2-13, the word field in this case comprises bits 2, 1, and 0, where bit 0 indicates the byte and bits 
2 and 1 indicate the word. The index field comprises bits 8 through 3, and indicates the block. The 
address field comprises bits 17 through 9. 

17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

I I I I I I I I I I 
--~~~~~~~--~~~~~~~-J'--~~~~---~~~~~J'-~~---J.__......, 

ADDRESS FIELD INDEX FIELD 

Figure 2-13 18-Bit Byte Address Breakdown 
( 4 Words per Block, 64 Blocks) 

WORD BYTE 

INDICATE WORDS 
AND BYTES 

WITHIN A BLOCK 

11·2836 

If the processor requests word 274356, the cache controller looks at the address which goes with the 
information currently in block number 35 in fast memory. If this address field is 274, the controller 
sends the third word in that block to the processor. If the stored address field is not 274, the controller 
must fetch block 27435 (located at address 274350) from main memory, transmit the third word in the 
block to the processor, load the block into block 35 of fast memory, replacing whatever was there 
previously, and change the address field stored with block 35 to 274. 

Any address whose index field is 3 5 will be loaded in block 35 of fast memory, and therefore this is the 
only place the cache controller has to look if the processor requests the data from an address whose 
index field is 35. 

Notice also that only the address field of the address need be stored with each block, because only the 
address field of the address is required for comparison. The index field need not be compared because 
anything stored in fast memory block 35 has an index field of 35. The word field need not be compared 
because if the block is there, every word in the block is there. 

This is how the direct mapping cache uses inexpensive direct addressing of fast memory to eliminate 
almost all comparison operations. 

Of course there are disadvantages to this simple scheme. If the processor in the example makes fre­
quent references to both locations 274356 and location 6352, there will be frequent references to slow 
memory, because only one of these locations can be in the cache at one time. Fortunately, this sort of 
program behavior is infrequent, so that the direct mapping cache (although offering significantly 
poorer performance than fully associative) is adequate for some applications. Usually the system of 
choice is a compromise between a direct mapping cache and fully associative cache, called the set 
associative cache. 
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2.2.1.6 The Set Associative Cache - The set associative organization is a compromise between the 
extremes of fully associative and direct mapping. This type of cache has several directly mapped 
groups (Figure 2-14). For each index position in fast memory there is not one block, but a set of several 
- one in each group. (The set of blocks corresponding to an index position is called a "set.") A block of 
data arriving from main memory can go into any group at its proper index position. 
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Figure 2-14 Set Associative Cache Memory System (Two-Way) 

Since there are several places for data with the same index field in their addresses to be stored, the type 
of excessive main memory traffic possible in a direct mapping organization is less likely to occur. This 
gives a set associative cache higher performance. In fact, a four-way set associative cache (four groups) 
will normally perform very nearly as well as a fully associative cache. 
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The price that is paid for higher performance is some increase in complexity. There are several places 
in fast memory where any given piece of data can be stored, so the controller must do several compares 
(i.e., must associate) to determine in which place (if any) the requested data is located. The number of 
times it must compare (associate) is of course equal to the number of groups, usually two, three, or 
four. A set associative cache can be classified as an n-way set associative cache, where "n" is the 
number of compares performed (i.e., the number of groups). 

Another aspect of the increased complexity becomes apparent when a block of fast memory must be 
overwritten. There are now several locations in fast memory where the new data from main memory 
may be written (one in each group), so the controller must have some means of deciding which block 
will be overwritten. The decision could be made using any of the following considerations. 

Least Recently Used (LR U) - The block least recently used is replace. 

First-In, First-Out (FIFO) - The block which has been stored the longest time is replaced. 

Random - Blocks are replaced in a random manner. 

A replacement strategy based on LRU or FIFO information requires the storage of LRU or FIFO 
bits, along with the address fields in the address memory and the logic necessary to generate and 
decode these bits. The random strategy is far easier and cheaper to implement, yet provides perform­
ance only slightly lower than that obtainable by the other strategies. 

The extra performance of a set associative cache usually justifies the slightly extra complexity of at 
least two-way associativity in all but low performance applications. 

2.2.1.7 Write-Through and Write-Back - Assume that the following sequence of events occurs. First, 
the processor does a read of location 200, resulting in the block with this address being copied into fast 
memory. Then the processor writes new data into location 200, updating this location in fast memory. 
Next the processor does a reference which causes the cache controller to overwrite the block in fast 
memory containing location 200. If the processor reads location 200 again, the obsolete data in main 
memory will be loaded into fast memory. This is unacceptable, and two methods have been devised to 
deal with this problem of stale data. The methods are called write-through and write-back. 

With write-through, whenever a write reference occurs, the data is not only stored in fast memory, but 
is also immediately copied into main memory. This means that the main memory always contains a 
valid copy of all data. 

The advantages of write-through are its relative simplicity and the fact that the main memory always 
has correct data. The primary disadvantage is some reduction of speed due to the need to access the 
slow memory on every write reference. This is offset somewhat by the fact that write references are a 
small fraction of all references to memory. In addition the cache does not have to wait for the main 
memory to finish before starting the next cycle. 

The other method of handling the stale data problem in a cache system is called write-back. Under this 
method, data written by the processor is only stored in the fast memory, leaving the main memory 
unaltered and obsolete. A bit in the address field of the block in fast memory, called the altered bit, is 
set to indicate that this block contains new information. When the controller wants to overwrite a 
block of fast memory, the altered bit is inspected first. If this bit is set, the controller must write the 
block into main memory before overwriting it. 
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The primary advantage of write-back is higher performance. For almost any program, the number of 
times an altered block must be copied into main memory is less than the number of write references, so 
write-back is noticeably higher performance than write-through. One disadvantage of write-back is 
increased complexity. A write-back system must have the ability to regenerate addresses from tags and 
the extra sequencing logic to do double cycles. 

Another disadvantage of write-back is the power fail problem. When power fails, fast memory will be 
holding the only valid copies of some arbitrary set of locations. If these are not copied into main 
memory, they will be lost. Since there is no way of knowing which locations were lost, the entire 
memory must be considered volatile. If main memory is volatile anyway, there is no problem; other­
wise, steps must be taken. One possibility is to require the power fail program to do a sequence of reads 
calculated to ensure that every block in the cache has been overwritten. A more reliable, but more 
expensive system would automatically ensure that all altered blocks are copied into main memory, 
after the program halts, but before power disappears. 

2.2.2 The Cache of the KA 780 
The following paragraphs describe the Cache which has been implemented in the KA 780. The reader 
should be familiar with the cache concepts described in the previous paragraphs. 

As mentioned in the Introduction, the Cache used In the KA 780 is two-way set associative. It consists 
of two groups of 1024 longword entries. Thus the total capacity of the fast memory is 2K longwords. 
The Cache is implemented using a random replacement strategy. The write strategy is write-through 
and not-write-allocate. 

One address is stored for each pair of longwords (one address for each quadword). If a cache hit 
occurs, the appropriate longword is transmitted to or from Cache over the MD bus. If a cache read 
miss occurs, the quadword containing the requested data is brought from memory via the SBI Control 
and placed in Cache. Coincidentally the appropriate longword is transmitted to the requestor. If a 
cache write miss occurs, the appropriate longword is updated in main memory only. For all writes (hit 
or miss), a memory operation is executed. 

2.2.3 Cache Matrix Structures 
The organization of the Cache data matrix (CDM) of the KA 780 is illustrated at the bottom of Figure 
2-15. Note that the CDM is divided into two equal groups (Group 0 and Group I). Each group 
contains 512 blocks or 1024 longwords. Four parity bits are also stored with each longword of data. 
Bits ( 11 :3) of the incoming address index into the CDM and select a block from group 0 and the same 
block from group I. Bit 2 of the incoming address enables either the low (even) longword and its parity 
bits or the high (odd) longword and its parity bits from both groups to a multiplexer. One of these 
longwords is selected if a hit is detected in the Cache address matrix. The longword selected is from the 
group in which the hit occurred. 

The organization of the Cache address matrix is also illustrated in Figure 2-15. Its structure is deter­
mined by that of the Cache data matrix. Note that it also is divided into two equal parts: Group 0 
corresponding to Group 0 in the data matrix and Group I corresponding to Group I in the data 
matrix. Since a tag must be stored to identify each block in the data matrix, 1024 locations are 
required; 512 in group 0 and 512 in group I. Each location contains a valid bit, 17 tag bits, and 3 parity 
bits. The valid bit indicates the integrity of the data quadword in the CDM corresponding to the tag. 
Just as in the data matrix, bits ( 11 :3) select a tag from both groups. The two tags are read from the 
address matrix and compared with the tag field (bits 29: 12) of the incoming address. If either com­
parison results in a match, if the corresponding valid bit is set, and if no parity error is detected, a hit 
occurs. A read hit selects the corresponding longword and parity bits in the CDM for output from the 
matrix. A write hit enables a write pulse to the corresponding group in the CDM. 
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2.2.4 Cache Logic Description 
Figures 2-16 and 2-17 contain a block diagram of the logic associated with the Cache address and data 
matrices. The following paragraphs describe this logic and Cache operation in general. 

2.2.4.1 Address Path - As seen in Figure 2-15, for any Cache operation the address is latched from 
the PA bus and transferred to the cache address matrix for a data look-up. The index portion [BUS PA 
(11:03)] is buffered and sent to the address matrix where it selects a location in both groups. The 
corresponding tags, valid bits, and parity bits at these locations are enabled to comparators along with 
the latched tag, valid bit, and parity bits from the PA bus. A match between the tag from the PA bus 
and the tag from either group indicates the corresponding location in the data matrix contains the data 
for the operation. If a tag and parity match occurs and the valid bit is set, CAMK GO MATCH or 
CAM K G 1 MATCH is generated indicating a cache hit. These signals control the MD mux in the 
Cache data matrix. The absence of both signals indicates a Cache miss; that is, the requested data is 
not in the data matrix. 

When a read miss occurs, the indexed block of Group 0 or Group 1 is rewritten with data from main 
memory. The group is arbitrarily selected by logic in the SBI Control. This logic arbitrarily generates 
SBLN MISS DAT A GO or SBLN MISS DAT A G l H to enable a write pulse (CAMP GO WRITE EN 
H or CAMP GI WRITE EN H) to the corresponding group. 

2.2.4.2 Data Path - When the address is latched from the PA bus in the Cache address matrix, it is 
also latched to select a location in the Cache data matrix (Figure 2-17). This is done in anticipation of a 
Cache hit. Bus PA 02 is also latched for the Cache data matrix to select a longword of the quadword 
block. Data may be read from or written into the matrix via the MD bus. 

During a read the data longword at the indexed location in both groups of the data matrix are enabled 
to the MD mux. Both longwords are parity checked. A match signal from the Cache address matrix 
selects the output from the corresponding GO or GI for transfer to the MD bus. 

During a read miss, the quadword containing the requested data is fetched from main memory by the 
SBI Control (two successive SBI cycles). The SBI Control performs SBI protocol checks and a parity 
check on the data. If a parity error is detected, the retrieved data is not placed on the MD bus and an 
SBI timeout occurs. Only data retrieved with good parity is placed on the MD bus for transfer to 
Cache and the requestor (data paths or instructions buffer). When the longword containing the 
requested data is placed on the MD bus, the requestor is notified. If the data was requested by the data 
path, the CPU is stalled (Paragraph 2.2.4.5) until the requested data is placed on the MD bus. 

To update Cache, the indexed block of Group 0 or Group I is also rewritten with data from the MD 
bus. The group is arbitrarily selected by the SBI Control which generates SBLN MISS DATA GOH or 
SBLN MISS DATA GI H. These signals enable write pulses to the corresponding group. 

For a write, the data longwords are latched from the MD bus by Cache along with their parity bits. 
BUS MD BYTE (3:0) MASK H is also latched to provide the proper selection of write pulses. The 
data and parity bits are written into the indexed location of the group selected by CAMP GO WRITE 
EN H or CAMP G 1 WRITE EN H. One of these signals is produced by a tag match in the address 
matrix (write hit). Whether or not a tag match occurs, the data and write pulses are also simultane­
ously latched by the SBI Control which updates the location in main memory in accordance with the 
write-through strategy. The CPU is not stalled during this SBI cycle unless the SBI write buffer is full 
with a previous request. 

The first longword of the Cache update is always written into Cache as invalid data; that is, the valid 
bit is not set. When the second longword is transferred, however, the valid bit is set for both long­
words, provided a parity error did not occur. This prevents the writing of both valid and invalid data in 
the same block (only one valid bit describes both longwords of the block). If a parity error or access 
violation occurs for either longword, the valid bit remains unset. 
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2.2.4.3 Address Parity - Cache generates parity bits for the valid and tag bits which are stored in the 
address matrix as a result of a read miss. The parity bits [CAMB TAG PAR (2:0)EV] are stored with 
the corresponding tag and valid bit. When the address matrix is accessed to determine whether a Cache 
hit or miss occurred, the contents of the indexed location in both groups are parity checked. Detection 
of a parity error on a read results in a Cache parity microtrap. If a parity error occurs on a write miss, 
the SBI Control writes arbitrary data with good parity into the location and marks the block invalid by 
dropping the valid bit. 

2.2.4.4 Data Parity - When data is written into Cache, parity bits [CDMA BYTE (3:0)] for the data 
are latched from the MD bus and stored with the data. Cache checks for correct parity when a location 
is indexed. Data from the indexed location of both groups is parity checked. If a parity error is 
detected on a read, a Cache parity microtrap occurs. If a parity error is detected during a write miss, 
the SBI Control writes arbitrary data with good parity into the location and marks the block invalid by 
dropping the valid bit. 

2.2.4.S Stall Signal - Whenever a Cache read miss occurs, the requested data must be fetched from 
main memory by the SBI Control. In accommodation, the SBI Control generates a stall signal (SBL T 
ST ALL L) and sends it to the microsequencer to delay CPU operation. This signal temporarily pre­
vents the execution of the next microinstruction until the data is fetched (Paragraph 2.3.2.8). 

The CPU is also stalled for all writes by the data paths when the SBI Control write buffer is full. In this 
case the stall signal is asserted until the buffer becomes available. 

2.3 SDI CONTROL DESCRIPTION 
The SBI Control interfaces the CPU to the SBI and thus conforms to SBI protocol. A description of 
SBI protocol is provided in the following paragraphs as an introduction to the operation and logic of 
the SBI Control. 

2.3.1 SDI Protocol 
The SBI interconnects the KA 780 with the memory system and all adapters in the system. The follow­
ing subsections describe all interconnect lines and their associated communication protocol. 

2.3.1.1 Interconnect Synchronization - Six control group lines are clock signals and are used as a 
universal time base for all nexus connected to the SBI. All SBI clock signals are generated on the CPU 
clock module and provide a 200 ns clock period. 

The clock signals, in conjunction with the standard nexus clock logic, provide the derived blocks 
within an attached nexus to synchronize SBI activity. Two clock signals (TPH and TPL) produce the 
basic nexus time states. The remaining four (PCLKH, PCLKL, PDCLKH, and PDCLKL) are phased 
clocks and help compensate for the clock distribution skew due to cable, backplane, and 
driver /receiver propagation delays. 

2.3.1.1.1 Derived Time States - The derived clocks (within the nexus) define four, 50 ns (nominal) 
time states in one clock period. The time states (TO, Tl, T2, and T3) determine the transmit and receive 
times on the SBI, with TO representing the start of a particular clock period. Figure 2-18 illustrates the 
phase and timing relationships required to generate the individual derived time states. Note that TO 
internal to the CPU (CPTO) is not the same as SBI TO. CPTO corresponds to SBI Tl. All nexus need a 
minimum of TO and T2. 

2.3.1.1.2 Transmit Data - Immediately prior to TO, a transmitting nexus enables its transmit enable 
inputs to the SBI transceivers. At TO, the data buffer is clocked and its content enabled to the informa­
tion path of the SBI. Figure 2-19 is a basic block diagram for one SBI information path line. 
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2.3.1.1.3 Receive Data - In the case of receive data, nexus receiver latches are opened at T2 and 
latched at T3. Figure 2-20 shows the basic one-line receiver latch logic. Note that the information may 
be considered undefined between T2 and T3; only after T3 is information considered valid. Nexus 
checking, decoding, and subsequent decision making are then based on these latched signals. 
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2.3.1.1.4 Single Time States - In single time states, the time between any TO-Tl, Tl-T2, T2-T3, and 
T3-TO may vary from 50 ns (nominal) to an indefinitely long period of time. SBI operation and 
protocol will proceed normally. Nexus implement the SBI timeout functions by counting SBI cycles. 
Memory nexus operation must be normal even though the timing may be different. Nexus that derive 
timing from an external source (e.g., a mass storage device) set data late and overrun error bits as 
appropriate. However, the SBI operation of these nexus remains normal. 

2.3.1.2 SBI Summary - Table 2-4 summarizes the signal fields associated with each functional group. 
Figure 2-21 shows the SBI configuration. The following subsections provide detailed descriptions of 
the individual group field layouts and functions. 
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Field 

Arbitration Group 

Arbitration Field 
[TR (15:00)] 

Information Transfer Group 

Information Field 
[B (31:00)] 

Mask Field 
[M(3:0)] 

Identifier Field 
[ID (4:0)] 

Tag Field 
[TAG (2:0)] 

Function Field 
[F (3:0)] 

Parity Field 
[P (1:0)] 

Response Group 

Confirmation Field 
[CNF (1:0)] 

Fault Field 
(FAULT) 

Table 2-4 SDI Field Summary 

Description 

Establishes a fixed priority among nexus for access to and con­
trol of the information transfer path. 

Bidirectional lines that transfer data, command/ address, and 
interrupt information between nexus. 

Primary function: Encoded to indicate a particular byte within 
the 32-bit information field [B (31:00)]. 

Secondary function: In conjunction with the Tag field, indicates 
a particular type of read data. 

Identifies the logical source or destination of information con­
tained in B(3 I :00). 

Defines the transmit or receive information types and the inter­
pretation of the content of the ID and information fields. 

Specifies the command code, in conjunction with the Tag field. 
This field is valid as part of the 32-bit information ·field only 
when the Tag equals command/ address. 

Provides even parity for all information transfer path fields. 
P( I) is generated as parity for the information field. P(O) is gen­
erated as parity for the Tag, ID, and mask fields. 

Asserted by a receiving nexus to specify one of four response 
types and indicate its capability to respond to the transmitter 
request. 

A cummulative error line which indicates one of several errors 
on the SBI. 
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Field 

Interrupt Request Group 

Request Field 
[REQ (7:4)] 

Alert Field 
(ALERT) 

Control Group 

Clock Field 
(CLOCK) 

Fail Field 
(FAIL) 

Dead Field 
(DEAD) 

Unjam Field 
(UNJAM) 

Interlock Field 
(INTLK} 

Table 2-4 SBI Field Summary (Cont) 

Description 

Allows a nexus to request an interrupt to service a condition 
requiring CPU intervention. Each request line represents a level 
of nexus request priority. 

A cummulative status line which allows those nexus not equip­
ped with an interrupt mechanism to indicate a change in power 
or operating conditions. 

Six control lines which provide the clock signals necessary to 
synchronize SBI activity. 

A single line from nexus required to initiate a system bootstrap 
operation. 

A single line to the CPU to indicate an impending clock circuit 
or SBI terminating network power failure. 

A single line from the CPU to attached nexus which restores the 
nexus to a known state. 

A single line which provides coordination among nexus 
responding to certain read/write commands to ensure exclusive 
access to shared data structures. 

2.3.1.3 Arbitration Group Functions and Assignments - The arbitration lines [Transfer Request TR 
(15:00)] allow up to 16 nexus to arbitrate for the information lines (information transfer group). One 
arbitration line is assigned to each nexus to establish the fixed priority access. Priority increases from 
TR15 to TROO, where TROO is the highest. The lowest priority level is reserved for the CPU, and it 
requires no actual TR signal line. The other 15 nexus are assigned TR15 through TROl. 

The highest priority level, TROO, is reserved as a hold signal for those nexus that require more than one 
successive SBI cycle. TROO may only be used by nexus that require: 

1. Two or three adjacent cycles for a write-type exchange. 

2. Two adjacent cycles for an extended read exchange. 

3. Adjacent cycles for interrupt summary read exchanges. 
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Figure 2-21 SBI Configuration 
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A nexus requests control of the information path by asserting its assigned TR line at TO of an SBI 
cycle. At T3 of the same SBI cycle, the nexus examines (arbitrates) the state of all higher priority TR 
lines. If no higher priority TR lines (lower TR number) are asserted, the requesting nexus assumes 
control of the information path at TO of the following SBI cycle. At this TO time state, the nexus 
negates its TR line and asserts command/address or data information on B(31:00). In addition, if a 
write-type exchange is specified, the nexus asserts TROO to retain control of adjacent SBI cycles. 

If higher priority TR lines are asserted, the requesting nexus can not gain control of the information 
path. The nexus keeps its TR line asserted and, again, examines the state of higher priority lines at T3 
of the next SBI cycle. As before, if no higher TR lines are asserted, the nexus assumes information path 
control at TO. 

2.3.1.4 Information Transfer Group Description - Each information group field is described in detail 
in the following subsections. 

2.3.1.4.1 Parity Field - The parity field [P(l:O)] provides even parity for detecting single bit errors in 
the information group (Figure 2-22). 

l I ! 
P1 PO 
PARITY rnkJ IDENTI - MASK 
FIELD D FIER FIEL FIELD INFORMATION FIELD 

'---...---' '---...---' \--..,---J \--..,---J 
p <1:0> TAG <2:0> ID <4:0 > M <3:0> B <31 :OO> 

COMMAND FORMAT 

FUNCTION ADDRESS 
FIELD FIELD 

\.._ __ """' ____ ,t ____ ~-----

F <3:0> A <27:00> 

TK-0166 

Figure 2-22 Parity Field Configuration 

A transmitting nexus generates PO as parity for TAG (2:0), ID (4:0), and M(3:0). The Pl parity bit is 
generated for B(31:00). PO and Pl are generated so that the sum of all logic one bits in the checked 
field, including the parity bit, is even. With no SBI transmissions, the information transfer path 
assumes an all zeros state; thus, P(l:O) should always carry even parity. Any transmission with odd 
parity is considered an error. 

2.3.1.4.2 Tag Field - The Tag field [TAG (2:0)] is asserted by a transmitting nexus to indicate the 
information type being transmitted on the information lines. The tag field determines the contents of 
the B field. The following subsections describe each information type, tag code, and associated field 
content. 
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Command/Address Tag - A tag field content of 011 indicates that the content of B(31:00) is a com­
mand/address word. ID(4:0) asserted at this time is a unique code identifying the logical source (com­
mander) of the command. As shown in Figure 2-23, B(31 :00) is divided into a function field and an 
address field to specify the command and its associated address. 

B <31 :OO> 

G ~ 8 FUNCTION ADDRESS 

TAG <2:0> ID <4:0> M <3:0> F <3:0> A <27:00> 

TAG <2:0> = 011 = COMMAND/ADDRESS FORMAT 
ID <4:0> = LOGICAL COMMAND SOURCE 
M <3:0> = COMMAND DEPENDENT 
F <3:0> = COMMAND CODE 
A <27:00> = READ/WRITE. ADDRESS OF INTENDED NEXUS 

TK-0167 

Figure 2-23 Command/ Address Format 

In a write-type command, the ID field code represents the logical source and the address field specifies 
the logical command destination. For a read-type command, the addressed nexus holds the trans­
mitted ID for transmission with the requested data. The ID is sent with the read data to indicate 
destination. 

The 28 bits of the SBI address field define a 268, 435, 456 long word address space, which is divided 
into two sections. Addresses 0-7FFFFFF16 are reserved for primary memory. Addresses 800000016 and 
-FFFFFFF 16 are reserved for device control registers. Generally, primary memory begins at address O; 
the address space is dense and consists only of storage elements. The control address space is sparse 
with address assignments based on device type. Each nexus is assigned at 2048, 32-bit longword ad­
dress space for control. The addresses assigned are determined by the TR number as shown in Figure 
2-24. 

27 26 

MUST BE ZERO 

SPECIFIES ONE OF THE 
SPECIFIES ONE 2048 LOCATIONS 
OF 16 NEXUS ASSIGNED TO EACH NEXUS 

~--~----~------~~--
1514 11 10 

TR# (ADDRESS 
SPACE BLOCK) 

A <27:00> 

REGISTER 
ADDRESS 

00 

TK-0168 

Figure 2-24 Control Address Space Assignment 
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Read Data Tag - A tag field content of 000 indicates that B(31 :00) contains data requested by a 
previous read-type command. In this case, ID( 4:0) is a unique code which was received with the read 
command and identifies the logical destination of the requested data. The retrieved data may be one of 
three types: read data, corrected read data, and read data substitute where the particular type is identi­
fied by M(3:0). 

Read data is the normally expected error-free data having M(3:0) = 0000. See Figure 2-25. 

~LOGICAL ~ 
~ DESTINATION ~ 

TAG <2:0> ID <4:0> M <3:0> 

~ LOGICAL r::::-1 
~ DESTINATION ~ 
TAG <2:0> ID <4:0> M <3:0> 

~ LOGICAL r::::l 
L..::::_j DESTINATION ~ 
TAG <2:0> ID <4:0> M <3:0> 

ERROR-FREE DATA 

B<31:00> 

CORRECTED DATA 

B <31:00> 

UNCORRECTED DATA OR OTHER 
MEANINGFUL INFORMATION 

B <31 :OO> 

Figure 2-25 Read Data Formats 

TK-0169 

Corrected read data is data in which an error was detected and subsequently corrected by the error 
correction code logic (ECC) of the device transmitting the read data. In this case, the mask field flags 
the corrected data with M(3:0) = 0001. 

Read data substitute represents data in which an error was detected but could not be corrected. In this 
case, B(3 l :00) will contain the substitute data in the form of uncorrected data or other meaningful 
information. The mask field flags the uncorrected data with M(3:0) = 0010. As with the other read 
data types, the ID field identifies the read commander. 

Write Data Tag - A tag field content of 101 indicates that B(l:OO) contains the write data for the 
location specified in the address field of the previous write command (Figure 2-26). The write data will 
be asserted on B(31:00) in the SBI cycle immediately following the command/address cycle. The mask 
field specifies bytes within B(31 :00) for the operation. 

Interru.pt Summary Tag - A tag field content of 110 defines B(31:00) as the interrupt level mask for an 
interrupt summary read command. The level mask [B(07:04)] is used to indicate the interrupt level 
being serviced as the result of an interrupt request. In this case, the ID field identifies the commander, 
which is usually a CPU. Although unused, M(3:0) must be transmitted as zero. 

2-39 



0 
TAG <2:0> 

LOGICAL 
SOURCE 

ID <4:0> 

8 WRITE DATA 

M <3:0> B <31:00> 
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Figure 2-26 Write Data Format 

The interrupt sequence consists of two exchanges: 

1. The first exchange indicates the interrupt level being serviced. 

2. The second exchange is the response, where the device requesting the interrupt identifies 
itself. 

The interrupt summary read and response formats are illustrated in Figure 2-27. Note that the inter­
rupt summary response encodes TAG (2:0) = 000. 

FIRST EXCHANGE: B31 08 07 0403 00 

INTERUPT SUMMARY ~ 1~~MMAND-1 8 ~ ZERO 1~~~~cs}ZERo-I READ 

TAG<2:0> ID<4:0> M<3:0> RE0<7:4> 

SECOND EXCHANGE: 831 171615 01100 
INTERUPT SUMMARY 6 LO ICAL 8 I 1°1 lol RESPONSE DESTINA-

TION 

TAG<2:0> ID<4:0> M<3:0> t t f 
r 

BIT PAIRS 
(BIT PAIRS= B17 AND B01 - 831 AND B15) 

TK-0171 

Figure 2-27 Interrupt Summary Formats 

Reserved Tag Codes - Tag Code 111 is reserved for diagnostic purposes. Tag codes 001, 010, and 100 
are unused and reserved for future definition. 

2.3.1.4.3 Identifier Field -The ID field [ID(4:0)] contains a code which identifies the logical source or 
logical destination of the information contained in B(31:00). Each nexus is assigned an ID code which 
corresponds to the TR line which it operates. For example, a nexus assigned TR05 would also be 
assigned ID code = 5. More than one ID code may be assigned to a nexus. 

Nexus using more than one code take the first code from the standard ID code assignment (0-15). The 
second code is taken from the range 17-30 (i.e., first ID code + 16). 
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Certain ID codes are reserved: ID = 16, unit processors; ID = 31, diagnostic purposes. ID = 0 is 
reserved so that the idle state of the SBI (read data, destination ID = 0) will not cause a nexus 
selection. Note that even though a nexus is not selected, all nexus are checking for correct SBI parity. 

2.3.1.4.4 Mask Field - The mask field [M(3:0)] has two interpretations. For the first interpetation, 
M(3:0) is encoded to specify particular data bytes of an addressed location for an operation. This mask 
interpretation is used with the masks of Read Masked, Write Masked, Interlock Read Masked, Inter­
lock Write Masked, and Extended Write Masked commands and also with masks of Write Data 
formats. As shown in Figure 2-28, each bit in the mask field corresponds to a particular byte on 
B(31:00). 

The second interpretation of the mask field is used when TAG (2:0) = 000 (Read Data). This inter­
pretation defines the data types as specified in Table 2-5. All other mask field codes (0011-1111) are 
reserved and are interpreted as Read Data Substitute by receiving nexus. 

2.3.1.S Response Group Description - The three response lines are divided into two fields: Con­
firmation [CNF(l:O)] and Fault [FAULT]. CNF(l:O) informs the transmitter whether or not the infor­
mation was correctly received or if the receiver can process the command. FAULT is a cumulative 
error indication of protocol or information path malfunction and is asserted with the same timing as 
the confirmation field. 

B<31:00> 

Figure 2-28 Mask Field Format 

Table 2-5 Read Data Types 

M (3:0) 

0000 
0001 
0010 

Data Type 

Read Data 
Corrected Read Data 
Read Data Substitute 
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Either field is transmitted two cycles after each information transfer. Confirmation is delayed to allow 
the information path signals to propagate, be checked, and be decoded by all receivers and to be 
generated by the responder. During each cycle, every nexus in the system receives, latches, and makes 
decisions on the information transfer signals. Except for multiple bit transmission errors or nexus 
malfunction, one (or more) of the nexus receiving the information path signals will recognize an ad­
dress or ID code. This nexus then asserts the appropriate response in CNF. 

Any (or all) nexus may assert FAULT after detecting a protocol or information path failure. However, 
a nexus asserting FAULT may not assert CNF (1:0). 

2.3.t.5.1 Confirmation Codes - Table 2-6 lists the confirmation codes and their interpretation. 

A BSY ( 10) or ERR ( 11) response to transfers other than command/ address transfers will be consid­
ered as no response from the responder. 

CNF Code 

00, No Response (N/R) 

01, Acknowledge (ACK) 

10, Busy (BSY) 

11, Error (ERR) 

Table 2-6 Confirmation Code Definitions 

Definitions 

The unasserted state; it indicates no response to a commander 
selection. 

The positive acknowledgment to any transfer. 

The response to a command/ address transfer which indicates 
successful selection of a nexus which is presently unable to 
execute the command. 

The response to a command/ address transfer which indicates 
selection of a nexus which cannot execute the command. 

2.3.t.5.2 Response Handling - The transmitting nexus samples the CNF and FAULT lines at T3 of 
the third cycle following transmission. ACK is the expected confirmation response (i.e., command will 
be executed, or information has been correctly received). 

Should a command/address transfer receive a BSY confirmation, the commander must repeat the 
transmission (after a nominal waiting period) until it is accepted or a timeout occurs. 

An N /R confirmation should be treated the same as BSY except that its occurrence may be flagged in 
a status bit. ERR confirmation is the result of a programming error and should abort the command 
and invoke the appropriate recovery routine. 
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Some nexus may be unable to determine within two SBI cycles whether a function will be successfully 
completed. For these cases, the nexus presumes success and responds with ACK confirmation. If it is 
later determined that a read-type function cannot be completed, a read data transfer of all zeros is 
transmitted and an interrupt requested. If a write-type request cannot be completed, the command is 
aborted and an interrupt requested. In either case, the cause of the interrupt is indicated in a Con­
figuration or Status register. 

2.3.1.S.3 Successive Cycle Confirmation - Since Write Masked, Extended Write Masked, and 
Extended Read operations consist of successive transfers, acknowledgment is more complex. 

1. If the command/address transfer is confirmed with N /R or BSY, then no notice will be 
taken of the data transfer confirmation and the entire sequence will be repeated. 

2. If the command/address transfer receives ERR, the sequence is aborted and recovery rou­
tines are invoked. 

3. If ACK is not received as confirmation for a Write Data command, the command is 
repeated. 

4. Transmissions of read data are confirmed with ACK by the receiver of that data. The read 
data transmitter may ignore this confirmation, since only commanders execute retry 
sequences. 

2.3.1.S.4 SBI Sequence Timeouts - All commanders implement two timeout functions: Interface 
sequence timeout and read data timeout. Both timeouts are specified as 102.4 µs (or 512 SBI cycles). 

The interface sequence timeout determines the maximum time allowed to complete an interface 
sequence. The sequence interval is defined as the time from: 

1. When SBI arbitration is initiated, until ACK is received for a command/address transfer 
that specifies read, or 

2. When SBI arbitration is initiated, until ACK is received for a command/address transfer 
that specifies write and ACK is also received for each transmission of write data, or 

3. When SBI arbitration is initiated, and an ERR confirmation is received for any 
command/ address transfer. 

The read data timeout is defined as the time from when an interface sequence that specified a read 
command is completed to the time that the specifies read data is returned to the commander. In the 
case of an Extended Read function both longwords must be retrieved prior to timeout (102.4 µs). 

If the last command/address transfer prior to an interface sequence timeout receives an N/R con­
firmation, it is recorded in a status bit. Certain nexus may terminate their requests for SBI control due 
to an unusual occurrence in those nexus. When this occurs, both timeouts are cancelled (e.g., when a 
nexus detects a data late error). 

When a timeout occurs, the commander provides the actual address or reconstructed address for 
which the timeout occurred. In addition, the commander records the type of timeout received (i.e., 
interface sequence or read data). Either timeout will terminate a command transmission retry. 

2.3.1.S.S Fault Detection - Each nexus is equipped with a 32-bit Configuration and Fault Status 
register (register 0). The fault status portion of this register contains flags which cause the assertion of 
the FAULT line. The fault status portion is described in Figure 2-29. 
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Figure 2-29 Fault Status Flags 
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A nexus detecting one of the fault conditions will assert the FA ULT signal for one cycle. FA ULT then 
causes each nexus on the system to latch its fault status. The fault status bits thus latched refer to the 
cycle during which the fault occurred. The CPU examines the FAULT signal and latches the signal on 
the leading edge of FAULT. The CPU then continues to assert FAULT until the software has exam­
ined the fault status bits of all nexus and has specified the negation of FA ULT. Figure 2-30 shows the 
timing involved. 

Figure 2-31 illustrates the confirmation and fault decision flow for all responses and error conditions. 
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Figure 2-30 Fault Timing 
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Figure 2-31 Confirmation and Fault Decision Flow 



2.3.1.6 Interrupt Request Group Description - The interrupt request group consists of four request 
lines [REQ (7:4)] and an alert [ALERT] line. Request lines are assigned to some of the nexus and 
represent assigned CPU interrupt levels. The lines are used by nexus to invoke a CPU to service a 
condition requiring processor intervention. The request lines are priority encoded in an ascending 
order of REQ4-REQ7. A requesting nexus asserts its request lines (or line) synchronously with respect 
to the SBI clock to request an interrupt. Any of the REQ lines may be asserted simultaneously by more 
than one nexus, and any combination of REQ lines may be asserted by the collection of requesting 
nexus. 

The ALERT signal is asserted by nexus which do not implement interrupt request lines. Its purpose is 
to indicate to the CPU a change in the nexus power condition or operating environment. Nexus which 
implement the REQ lines report such changes by requesting an interrupt. 

2.3.1.6.1 Interrupt Operation - When a nexus requires an interrupt, it asserts its REQ line on the SBI. 
At a time judged appropriate, the CPU will recognize the interrupt request and issue an Interrupt 
Summary Read command [TAG (2:0) = 110). The command will have a single bit set in its interrupt 
level mask [B (7:4)) which corresponds to the REQ line being serviced. For example, B 04 set to a logic 
one indicates that the REQ 4 level is being serviced. Note that the remaining information path fields 
[i.e., B(31:08), ID (03:00), and M(3:0)] are transmitted as zero. 

Nexus receiving the Interrupt Summary Read command without error and asserting the REQ line 
specified in the interrupt level mask will assert a 2-bit code in B(31 :00). This code, which identifies the 
requesting nexus, is asserted with the timing of CNF (1:0). However, the responding nexus does not 
assert any CNF, TR, ID, or TAG line; nexus that detect incorrect parity will assert FAULT. 

As shown in Figure 2-32, the asserted bits are in corresponding positions in the upper and lower 16 bits 
of B(31 :00). The bit pair uniquely identifies the nexus among those using the particular REQ line. Only 
15 bit pairs in the information field are used (i.e., B31 and B15 through B17 and BOl). Since only pairs 
of bits are asserted, parity remains correct regardless of the number of responding nexus. The two bits 
asserted by the requesting nexus are equal to the nexus TR number and the nexus TR number plus 16. 

INTERRUPT I 
SUMMARY -·•-------------ZERO----------•l~i~EULESTrzERO, 
READ · - -

831 08 07 04 03 00 

INTERRUPT 
831 1716 15 01 00 

SUMMARY I iol lol RESPONSE :, 

f f J 
BIT PAIRS 
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Figure 2-32 Request Level and Nexus Identification 
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While holding control of the SBI with TROO, the CPU waits two cycles after the Interrupt Summary 
Read command is transmitted before latching B(31:00) into an internal register. By encoding the REQ 
level and the bit pair received from responding nexus, the CPU generates a vector unique to that level 
and nexus. The vector in turn is used to invoke the nexus service routine. The service routine will take 
explicit action by writing a device register to clear the interrupt condition. Clearing the interrupt causes 
the nexus to negate the REQ line, provided the nexus does not have any other outstanding interrupts at 
this level. The negation of REQ occurs within two cycles of the write data transmission. 

Normally, the CPU will service requests in the descending order REQ7 through REQ4. Similarly, 
nexus are identified in descending order beginning with the nexus which asserts bits B3 l and Bl5 and 
ending with the nexus which asserts bits B 17 and B 1. If mulitple nexus are requesting interrupts on the 
same REQ line, multiple Interrupt Summary Read commands are issued until all nexus have been 
serviced and the REQ line is no longer asserted. 

Figure 2-33 is a functional timing chart for the interrupt operation. 

2.3.1.6.2 Status Register Alert Flags - As shown in Figure 2-34, each nexus maintains bits in its 
Configuration register to indicate conditions which cause assertion of ALERT (or the appropriate 
REQ line if implemented). Power down and power up status bits are provided, but additional ALERT 
status bits are present if other conditions such as over-temperature are detectable. 

The ALERT line is the logical OR of the ALERT status bits and is asserted synchronously to the SBI 
clock. ALERT status bits are cleared when written as logic one; when written as logic zero, they are 
not changed. These status bits are also cleared when the UNJAM signal is received. 

2.3.1.6.3 Alert Flag Operation - A nexus asserts ALERT or an interrupt request when any of its 
ALERT status bits are set. The bits are set during the following events: 

1. During power failure at the nexus when the assertion of power supply AC LO is recognized. 

2. During the restoration of power when the negation of AC LO is recognized. 

3. When other environmental conditions such as over-temperature are detected. 

The alert status bits are only set on the transition of the event that caused them to set. 

The power down status bit is set when there is a transition of the nexus AC LO from the negated to the 
asserted state. Setting the power down status bit clears the power up status bit; likewise, setting the 
power up bit clears the power down bit. The over-temperature bit is set when there is a transition from 
the normal to the over-temperature state. 

A nexus asserting ALERT or asserting an interrupt request due to an Alert status bit set, continues to 
assert ALERT until: 

1. All ALERT status bits are cleared (written with a logic on). 

2. UNJAM signal is received. 

3. Nexus loses de power. 

The negation of ALERT (or REQ) is synchronous to the SBI clock and occurs within two cycles of the 
write data transmission used to clear the ALERT condition. 
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2.3.1.7 Command Code Description - The operations executed over the SBI are specified in 
command/address (C/ A) format using the mask, function, and address fields. Figure 2-35 summarizes 
the command/address formats and lists the command codes. Several function codes are unused and 
reserved for future use. All nexus must respond to these reserved codes with an N/R confirmation. 

MASK I I FUNCTION ADDRESS 

M <3:0> F <3:0> A <27:00> 

MASK FUNCTION FUNCTION 
USE CODE DEFINITION 

IGNORED 0000 RESERVED 
USED 0001 READ MASKED 
USED 0010 WRITE MASKED 
IGNORED 0011 RESERVED 
USED 0100 INTERLOCK READ MASKED 
IGNORED 0101 RESERVED 
IGNORED 0110 RESERVED 
USED 0111 INTERLOCK WRITE MASKED 
IGNORED 1000 EXTENDED READ 
IGNORED 1001 RESERVED 
IGNORED 1010 RESERVED 
USED 1011 EXTEN OED WRITE MASKED 
IGNORED 1100 RESERVED 
IGNORED 1101 RESERVED 
IGNORED 1110 RESERVED 
IGNORED 1111 RESERVED 

TK-0083 

Figure 2-35 SBI Command Codes 

2-49 



2.3.1.7.1 Read Masked Function - The read masked function is specified in Figure 2-36. 

Prior to issuing the command, the commander asserts its TR line to arbitrate for SBI Control. When 
the commander gains control of the SBI, it asserts the information transfer lines at TO. At T3 of the 
same cycle, the receiver nexus strobes the command/address information into its receiver latches for 
decoding. The C/ A format presented on the SBI instructs the nexus selected by the address field, A 
(27:00), to retrieve the data addressed by A (27:00) and the mask and transfer it to the logical destina­
tion specified in the ID field. The addressed nexus will respond to the C/ A transfer with ACK (assum­
ing no errors), two or more SBI cycles after the assertion of C/ A. 

COMMAND/ c=J 
ADDRESS 011 
FORMAT 

TAG <2:0> 

READ c:J 
DATA 000 
FORMAT 

TAG <2:0> 

LOGICAL 
SOURCE 

ID <4:0> 

DATA 
DESTINATION 

ID <4:0> 

BYTE 
COMBINATION 

M <3:0> 

TYPE 
OF 

DATA 

M <3:0> 

Figure 2-36 Read Masked Function Format 

0001 

F <3:0> 

PHYSICAL 
ADDRESS 

A <27:00> 

RETRIEVED DATA 

B <31:00> 
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The addressed data is retrieved in a time frame which is dependent on the nexus response time. Follow­
ing the response delay, the responding nexus must arbitrate for control of the SBI. After ARB OK is 
true on the responder, the information fields are asserted on the SBI to TO. TAG (2:0) is coded as 000 
specifying the read data format and ID (4:0) is coded to identify the logical destination. The read data 
is asserted on B(3 l :00) and transferred to its destination as read data [M(3:0) = 000] or as corrected 
read data [M(3:0) = 0001]. In the case of uncorrectable read data, the addressed nexus transmits read 
data substitute [M(3:0) = 0010]. 

After the assertion of read data, the commander latches the content of B(31 :00) at T3 of the same SBI 
cycle. At TO two cycles later, the commander confirms the successful transfer by asserting ACK. 

Figure 2-37 is a functional timing chart for the read masked operation. 

2.3.1.7.2 Extended Read Function - The Extended Read function is similar to the Read Masked 
function in operation. The function format is shown in Figure 2-38. 

The mask field and bit AOO of the received command/address word are ignored. However, the mask 
field must be transmitted as zero. 

In the Extended Read function, 64 bits (two data longwords) are always transmitted and thus require 
two SBI data transfer cycles. In this case, F(3:0) instructs the nexus selected by A(27:01) to retrieve the 
addressed 64-bit data and transfer it to the logical destination (specified in the ID field) as in the Read 
Masked function. The first transmission transfers the even longword (AOO = 0), and the second trans­
fers the odd longword (AOO = 1 ). 
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COMMANDG LOGICAL 0000 PHYSICAL 
ADDRESS 011 SOURCE 

(LOGICALLY 1000 ADDRESS 
FORMAT IGNORED) 

TAG<2:0> ID<4:0> M<3:0> F<3:0> A<27:01> 
(AOO LOGICALLY IGNORED) 

FIRST DATA TRANSFER 

G DATA TYPE OF FIRST 32 BITS OF 
DESTINA- DATA RETRIEVED DATA TION 

READ DATA 
FORMATS SECOND DATA TRANSFER 

G DATA TYPE OF SECOND 32 BITS OF 
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DATA RETRIEVED DATA 
TION 

TAG<2:0> ID<4:0> M<3:0> B<31 :OO> 
TK-0173 

Figure 2-38 Extended Read Function Format 

When the commander gains control of the SBI, it asserts the C /A information at TO. At T3 of the same 
cycle, the receiver nexus strobes the C/ A information into its receiver latches for decoding. The 
addressed nexus confirms the C/ A transfer by returning ACK two cycles after the assertion of C/ A. 
Following the response delay and arbitration, the responder asserts the first 32-bit data longword (AOO 
= 0) on B(3 l :00). The other information fields are coded as in the Read Masked operation. The second 
data longword (AOO = 1) is asserted on B(31:00) at TO of the succeeding cycle. The mask field describ­
ing the data type will be asserted with each read data longword. 

The commander latches B(31:00) (first data word) at T3 of the cycle when it was transmitted. At T3 of 
the next cycle, the commander again latches B(3 l :00) (second data word). Then at TO of the following 
cycle, the commander confirms the first data transfer with ACK. The commander confirms the second 
data transfer with ACK at TO of the cycle after that. 

Figure 2-39 is a functional timing chart showing the Extended Read operation. 

2.3.1.7.3 Write Masked Function - The write masked function format is shown in Figure 2-40. F(3:0) 
instructs the selected nexus to modify the bytes specified by M(3:0) in that storage element addressed 
by A(27:00) using data transmitted in the succeeding cycle. 

When the commander gains control of the SBI, it asserts the C/ A information at TO. The mask selects 
the bytes to be written. The commander also asserts TROO at TO to retain control during the succeeding 
SBI cycle. At T3 of the same cycle, the receiving nexus strobes the C/ A information into its receiver 
latches for decoding. At TO of the succeeding cycle, the commander asserts data on B(3 l :00) and, at T3 
of the same cycle, the nexus strobes the data into its receiver latches. T AG(2:0) which accompanies the 
data is coded 101 (write data format). The successsful C/ A transfer is confirmed by the receiving nexus 
with ACK at TO of the succeeding cycle. The successful data transfer is confirmed by ACK at TO one 
cycle later. 

Figure 2-41 is a functional timing chart for the Write Masked operation. 
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COMMAND/0 LOGICAL BYTE PHYSICAL 
ADDRESS 011 0010 
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TAG <2:0> ID <4:0> M <3:0> B <31 :OO> 
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Figure 2-40 Write Masked Function Format 
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2.3.1.7.4 Extended Write Masked Function - The Extended Write Masked function format is illus­
trated in Figure 2-42. F(3:0) is coded 1011 to specify the Extended Write Masked function. In the 
Extended Write Masked transfer, the number of bits written depends on the mask but two SBI data 
transfer cycles are always required. When the commander gains control of the SBI, it asserts the C/ A 
information at the mask for the first write data at TO. The commander also asserts TROO to retain 
control during the succeeding SBI cycle. At T3 of the same cycle, the receiver nexus strobes the C /A 
information into its latches for decoding. The mask that accompanies the C /A indicates the bytes to be 
written in the first data longword, corresponding to AOO = 0. 

COMMAND/ ['.] ADDRESS 

WRITE DATA 
FORMAT 

TAG <2:0> 

['.] 
TAG <2:0> 

LOGICAL BYTE 
SOURCE COMBINATION 

ID <4:0> M <3:0> 

FIRST DATA TRANSFER. 

LOGICAL 
SOURCE 

BYTE 
COMBINATION 

SECOND DATA TRANSFER 

LOGICAL 
0000 
(LOGICALLY 

SOURCE 
IGNORED) 

ID <4:0> M <3:0> 

1011 
PHYSICAL 
ADDRESS 

F <3:0> A <27:00> 

FIRST 32 BITS OF 
WRITE DATA 

SECOND 32 BITS OF 
WRITE DATA 

B <31 :OO> 

TK-0081 

Figure 2-42 Extended Write Masked Function Format 

At TO of the succeeding cycle, the commander asserts data on 8(31:00) and codes TAG (2:0) as 101 
(write data format). At T3 of the same cycle, the receiver nexus strobes the data into its latches. In 
addition, the commander holds TROO asserted to retain SBI Control for the second data word (AOO = 
l) transfer. Note that the mask that accompanies the first data word indicates the bytes to be written in 
the second data word. At the end of this cycle the commander negates TROO. 

At TO of the succeeding cycle, the second data word is asserted on B(31 :00), and TAG (2:0) is coded 
l 0 l. At the same time (TO), the receiver nexus confirms the C /A transfer with ACK, if there is no 
error. At T3 of the same cycle, the receiver nexus strobes the data into its latches. The mask that 
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accompanies the second data word is ignored by the receiver nexus; however, the field must be trans­
mitted as 0000. During the two succeeding cycles, the receiver nexus confirms the two data transfers 
with an ACK in each cycle. 

Figure 2-43 is a functional timing chart for the Extended Write Masked operation. 

2.3.1.7.5 Interlock Function Description - The interlock function is used to provide coordination 
between nexus to ensure exclusive access to shared data structures. The Interlock functions operate 
like the Read and Write functions. However, not all nexus implement the interlock function. Those 
nexus which do not, respond to the Interlock Read and Write Masked functions exactly as Read and 
Write Masked functions. 

All memory nexus implement the interlock functions and cooperate through the use of the interlock 
signal (INTLK). The INTLK line is asserted by the commander nexus which issued the Interlock Read 
Masked function for that SBI cycle following the C/ A transfer. The Interlock flip-flop is then set in 
memory. When the memory nexus confirms the Interlock Read function, it asserts the interlock signal 
in the same cycle as ACK. With Interlock asserted, the nexus responds with a BSY confirmation to 
subsequent Interlock Read Masked commands only. 

Interlock Read Masked Function Operation -The Interlock Read Masked function format is the same 
as that shown in Figure 2-36 except that F(3:0) is coded 0100. F(3:0) causes the nexus selected by 
A(27:00) to retrieve and transfer the addressed data exactly as in the Read Masked operation. In 
addition, if the selected nexus is memory, its interlock flip-flop is set. With the interlock flip-flop set, 
memory will assert the SBI interlock line at TO of the ACK confirmation cycle. 

The interlock flip-flop is cleared on receipt of an Interlock Write Masked function. Interlock Read 
Masked and Interlock Write Masked functions are always paired by commanders. If the flip-flop 
remains set for more than 102.4 µs, memory assumes that the commander has had a catastrophic error. 
In this case, memory clears the flip-flop at TO of the next cycle. 

Interlock Write Masked Function Operation -The Interlock Write Masked function format is the same 
as that illustrated in Figure 2-40 except that F(3:0) is coded 0111, specifying the interlock write func­
tion. F(3:0) instructs the nexus selected by A(27:00) to modify the bytes specified by M(3:0) in the 
addressed storage element, using data transmitted in the succeeding cycle with TAG (2:0) = 101. In 
addition, if the operation was with memory, the write data clears the interlock flip-flop set by the 
previous Interlock Read Masked function. 

2.3.1.8 Control Group - The control group functions synchronize system activities and provide 
specialized system communications. The clock functions provide SBI activity synchronization and are 
described in Paragraph 2.3.1.1. The interlock control, also one of the system communication func­
tions, is described in Paragraph 2.3.1.7. The remaining control lines are described in the following 
paragraphs. 

2.3.1.8.1 DEAD - The DEAD signal indicates a de power failure in the clock circuits or bus termi­
nating networks. Nexus will not assert any SBI signal while DEAD is asserted. Thus, nexus prevent 
invalid data from being received while the SBI is in an unstable state. 

The assertion of the power supply DC LO to the clock circuits or terminating networks causes the 
assertion of DEAD. DEAD is asserted asynchronously to the SBI clock and occurs at least 2 µs before 
the clock becomes inoperative. With power restart, the clock will be operational for at least 2 µs before 
DC LO is negated. The negation of DC LO negates DEAD. 

2-58 



COMMANDER 

SBI 
TIME 
FRAMES 

C1 + C2 + C3 I· C4 I· cs--j 
TRANSMITTER TRANSMITTER TRANS/REC RECEIVER 
NEXUS NEXUS NEXUS NEXUS 
(INFORMATION) (INFORMATION) (INFO/CONFIRM) (CONFIRMATION) 

ASSERTS 
DATA 1 AND 

HOLD 

ASSERTS 
DATA2 

STROBES 
C/A ACK INTO 

LATCHES 

STROBES 
DATA 1 ACK 

INTO LATCHES 

STROBES 
DATA2ACK 

INTO LATCHES 
ASSERTS 
C/AAND 

HOLD 

T3 TO T1 T2 T3 TO T1 T2 T3 TO T1 T2 T3 TO T1 T2 T3 TO T.1 T2 T3 TO 

SBI LINE 
SAMPLING 

STROBES 
C/A INTO 
LATCHES 

RECEIVER 
NEXUS 
(INFORMATION) 

ASSERTS 
C/AACK 

ASSERTS 
DATA 1 ACK 

STROBES 
DATA 1 

INTO LATCHES 

RECEIVER 
NEXUS 
(INFORMATION) 

STROBES 
DATA2 

INTO LATCHES 

ASSERTS 
DATA2ACK 

TRANS/REC. TRANSMITTER TRANSMITTER 
NEXUS NEXUS NEXUS 
(INFO/CONFIRM) (CONFIRMATION) (CONFIRMATION) 

START 

SBI 
CYCLEO 

SBI 
CYCLE 1 

1 
COMMANDER 
ASSERTS HOLD 
ANDC/AON 
INFO. LINES AT TO 

J 
RESPONDER 
STROBES INFO. 
LINES INTO 
LATCHES AT T3 

1 
SBI 
CYCLE 2 

COMMANDER 
ASSERTS DATA 1 
AND HOLD ON 
INFO LINES AT TO 

RESPONDER 
STROBES DATA 1 
INTO LATCHES 
ATT3 

Figure 2-43 Extended Write Masked Timing and Flow 

YES• TEST TR LINE 
ATT3 ON NEXT 
SBI CYCLE 

_2_ 
SBI 
CYCLE 3 

COMMANDER 
ASSERTS DATA 2 
ON INFO. LINES 
ATTO 

RESPONDER 
ASSERTS CIA 
ACK ON 
CONFIRMATION 
LINES AT TO 

COMMANDER 
STROBES C/A 
ACK INTO 
LATCHESATT3 

SBI 
CYCLE4 

I 
RESPONDER 
ASSERTS DATA 1 
ACK ON 
CONFIRMATION 
LINES ATTO 

l 
COMMANDER 
STROBES DATA 1 
ACK INTO 
LATCHESATT3 

I 
SBI 
CYCLE 5 

RESPONDER 
ASSERTS DATA 2 
ACK ON 
CONFIRMATION 
LINES AT TO 

COMMANDER 
STROBES DATA 2 
ACK INTO 
LATCHESATT3 

TERMINATE 

TK-0078 



2.3.1.8.2 FAIL - A nexus enables the Fail (FAIL) signal asynchronously to the SBI clock when the 
power supply AC LO signal is asserted on that nexus. The assertion of FAIL inhibits the CPU from 
initiating a power-up service routine. FAIL is negated asynchronously with respect to the SBI clock 
when all nexus that are required for the power-up operation have detected the negation of AC LO. The 
CPU samples the FAIL line following the power-down routine (assertion of FAIL) to determine if the 
power-up routine should be initiated. (This case occurs during transient power failures.) 

2.3.1.8.3 UNJAM - The UNJAM signal restores (initializes) the system to a known, well defined 
state. The UNJAM signal is asserted only by the CPU through a console function and is detected by all 
nexus connected to the SBI. The duration of the UNJAM pulse is 16 SBI cycles and is negated at TO. 

For the assertion of UNJAM, the CPU asserts TROO for 16 SBI cycles. The CPU continues to assert 
TROO for the duration of UNJAM and for 16 SBI cycles after the negation of UNJAM. This use of 
TROO ensures that the SBI is inactive preceding, during, and after the UNJAM operation. TROO may 
be asserted without arbitration. 

If asserted, UN JAM is received by every nexus at T3 and a restore sequence is begun. Any current 
operation of short duration is not aborted, if that operation might leave the nexus in an undefined 
state. Nexus do not perform operations using the SBI during the assertion of UNJAM. In addition, the 
nexus is in an idle state (with respect to SBI activity) at the conclusion of the UNJAM pulse. 

While UNJAM is asserted, nexus cannot assert FAULT. However, a CPU asserting FAULT prior to 
UNJAM will continue to do so to preserve the content of the nexus Configuration/Fault Status regis­
ters. The restore sequence (UNJAM asserted) should not cause a nexus to pass through any states 
which will assert any SBI lines. All read commands issued before the UNJAM are cancelled. 

In the event of a power failure during UNJAM, some nexus will assert FAIL and/or DEAD. The 
restore sequence should cause the nexus to clear any existing Alert status bits and subsequently negate 
ALERT. 

2.3.2 SBI Control Logic Description 
The logic of the SBI Control is divided on two extended hex boards. Figure 2-44 provides a block 
diagram of the logic on the M8218 (SBL) module. This board contains logic associated with the lower 
16 SBI bits [BUS SBI B(15:00)]. The logic associated with the higher 16 SBI bits [BUS SBI B(31:16)] is 
contained on the M8219 (SBH) module. A block diagram of this logic is provided in Figure 2-45. Note 
from these figures, sections of various registers and muxes exist on both boards. 

The logic of the SBI Control can also be divided into three basic sections for descriptive purposes. The 
three sections are: Address Logic, Data Transfer Logic, and ID Bus Logic. The following paragraphs 
describe each of these sections of logic. The reader should keep in mind that each section is comprised 
of logic from both the SBL and SBH boards. 

2.3.2.1 Address Logic-The following paragraphs describe the address logic of the SBI Control. 

PA Register - Figure 2-46 illustrates the address logic of the SBI Control. As seen in this Figure, 
the PA Address register latches an address from the PA bus at T2 of every CPU cycle. BUFFER 
FULL H is generated to latch the address and data when an SBI cycle is to be performed. This 
signal causes the PA register to hold the physical address for the transmit mux or address mux. 

Transmit Mux - The transmit mux is shared by the PA register and the Write Data register. For 
the transmission of a Command/ Address, XMIT MUX SEL I H remains low to select the PA 
register for the SBI transceivers. Similarly, XMIT MUX SEL I H goes high to send write data 
and its mask to the SBI transceivers during Write Data transmissions. The transmit mux is dis­
abled when XMIT MUX SEL 0 H is asserted for the transmission of JSR (Interrupt Summary 
Read) information. 
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Address Mux - The output of the PA register is also connected to the address mux. This mux is 
shared by the Read Data register. For transmission of any SBI information formats, SELECT 
SBI ADR L remains unasserted (high) to disable this mux. This creates a high output impedance 
for the tristate PA bus. In the case of a Cache update, the address from the PA register must be 
reasserted to the PA bus when the data is retrieved from main memory. For this, SELECT SBI 
ADR L is asserted and WRITE INVALID L remains negated to select the contents of the PA 
register for transmission to the PA bus. 

An address is selected from the Read Data register when WRITE INVALID L is asserted. 
WRITE INVALID L is generated by the SBI Control when a nexus (other than the CPU) writes 
to memory. A cycle to invalidate the Cache entry (if any) is initiated by channeling the SBI 
address to the PA bus. The actual invalidation cycle only occurs if Cache contains the entry. If the 
CPU attempts to use the PA bus during the invalidation cycle, the CPU is stalled until the cycle is 
complete. 

SB/ Transceivers - The SBI transceivers in Figure 2-46 are used to transmit Command/ Address, 
Write Data, and Interrupt Summary Read formats to the SBI. They are also used to latch Read 
Data and Interrupt Summary Response formats from the SBI. All information latched from the 
SBI is channeled to the Read Data register whose output is connected to MD bus drivers and the 
address mux. 

Information is latched from the SBI and presented to the Read Data register at T3 every SBI cycle 
via the SBI transceivers. Information is transmitted at SBI TO only if TRANSENABLE L is 
generated. TRANSENABLE Lis generated as a result of SBI function decode (Paragraph 2.3.3) 
for the transmission of a command/ address, write data, or a maintenance format. 

Timeout Address Register - The address logic includes a Timeout Address register which latches 
the address from the PA register when a timeout occurs on the SBI as a result of a 
Command/ Address transmission by the SBI Control. The output of the Timeout register is conrp 
nected to the ID bus mux which makes it readable over the ID bus. The register format is de­
scribed in Paragraph 2.3.2.6. Paragraph 2.3.2.3 provides a description of the ID mux logic. 

2.3.2.2 Data Transfer Logic - The following paragraphs describe the data transfer logic of the SBI 
Control. 

Write Data Register - Figure 2-47 illustrates the data transfer logic of the SBI Control. As seen in 
this Figure, the Write Data register latches data and its mask from the MD bus at T3 of every SBI 
cycle. Just as for the PA Register, BUFFER FULL His generated to latch the data when an SBI 
cycle is to be performed. This signal causes the Write Data register to hold the data and mask for 
the transmit mux and mask mux. 

Transmit Mux (See paragraph 2.3.2.1). 

Mask Mux -The mask mux selects the mask field for an SBI transmission. MASK MUX SEL H 
is generated to select a mask from the Write Data register. (This mask is originally generated by 
the CPU data path and placed on the MD bus.) For the transmission, which requires a mask of 
0000, DISABLE MASK MUX H is asserted to disable the mux. Likewise, a mask of 1111 can be 
selected by the negation of DISABLE MASK MUX Hand MASK MUX SEL H. Table 2-7 lists 
the required mask for various transmissions. 

Read Data Register - At T3 of every SBI cycle, an address or data is latched from the SBI and 
enabled to the Read Data register. One parity bit is generated for every four bits latched and 
likewise input to the register. The Read Data register is loaded with the latched address or data at 
the following T 1 of every SBI cycle. The address or data is then available to the MD bus drivers 
for transfer to the MD bus or the address mux for transfer to the PA bus. 
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Table 2-7 Mask Mux Selection 

Operation Format Selected Mask 

Read Masked Command/ Address From Write Data register 

Extended Read Command/ Address 0000 

Write Masked Command/ Address From Write Data register 
Write Data 0000 

Extended Write Command/ Address From Write Data register 
Masked Write Data (first) From Write Data register 

Write Data (second) 0000 

Extended Write Command/ Address 1111 
Masked (full) Write Data (first) 1111 

Write Data (second) 0000 

IB References 1111 
Interrupt Summary 0000 
Read 

MD Bus Drivers - The MD bus drivers transmit data from the Read Data register to the MD bus. 
The signal EN SBI DAT A L is generated to enable these drivers. When EN SBI DAT A L is 
negated, the MD bus drivers are inhibited. This frees the MD bus for data transfers between the 
CPU data path (or instruction buffer) and the Write Data register. 

2.3.2.3 ID Bus Logic - Figure 2-48 illustrates the ID bus logic of the SBI Control. The following 
paragraphs describe each section of this logic. A detailed description of each ID register of the SBI 
Control is also included. 

ID Transceivers -The ID bus transceivers enable ID bus data to the input of the ID buffer as long 
as EN ID DRIVERS L remains unasserted (high). With the generation of EN ID DRIVERS L, 
the transceivers become transmitters for the ID register data selected by the ID bus mux. The 
generation of this signal is controlled by the ID control decode logic and the ID RIGHT WRITE 
signal. 

ID Buffer - As seen in Figure 2-48, the ID buffer latches data received by the ID transceivers for 
input to the ID registers. Control signals from the ID control decode logic are generated to enable 
the proper ID registers to receive the data. ID data is latched by the ID buffer at CPTl (high bits) 
and CPT2 (low bits). 

ID Bus Mux - The ID bus mux is used to select an ID register for transmission to the ID bus via 
the ID transceivers. The select lines, ID ADDR (2:0), are generated in the ID control decode 
logic. The ID bus mux is always enabled. 

ID Control Decode - The ID control decode logic receives and decodes an ID bus address and 
control signal during every CPU cycle. The decode generates control signals for the ID trans­
ceivers, buffer, and bus mux. Table 2-8 summarizes the resultant data flow for each condition of 
the control line. Table 2-9 lists the addressable ID registers of the SBI Control. 
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Table 2-9 ID Register Addresses (of the SBI Control) 

ID Right Addr 

Binary 

543210 

OIOOlO 
OIOOII 
OlOIOO 
OlOIOI 
OlOI 10 
OlOI I I 
OI 1000 

Hex 

I8 
I9 
IA 
IB 
IC 
ID 
IE 

ID Register 

SBISilo 
SBI Error 
Timeout Address 
Fault/Status 
SBI Silo Comparator 
Maintenance 
Cache Parity 

2.3.2.3.1 SBI Silo - The SBI silo is a read-only register file which provides temporary storage of 
various SBI signals for the last I 6 SBI cycles. Figure 2-49 illustrates the SBI signals stored. This 
information is latched during every SBI cycle and held for I6 cycles. Thus the silo always contains 
records of the previous I 6 SBI cycles. 
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Figure 2-49 SBI Silo Data 

2-68 



Without the assertion of FAULT, the SBI information is written in the silo and its 4-bit address 
counter is advanced. The assertion of FA ULT by any nexus prevents writes in the silo and inhibits 
advancement of its address counter. The silo remains locked until FAULT is cleared. When FAULT is 
deasserted, bit 31 is set for the first silo write. This provides a fault marker for diagnostics. 

Writing in the silo may also be inhibited through the use of the SBI Comparator register. The SBI 
Comparator register is described in Paragraph 2.3.2.3.2. 

Figure 2-50 illustrates the SBI FAULT and silo timing. As shown in this Figure, when a parity error 
occurs, SBHL SBI FAULT H is asserted in the following cycle. The generation of this signal sets 
FAULT on the SBI (BUS SBI FAULT L). With FAULT asserted on the SBI, SBHE SBI FAULT R 
H is generated at T3 of the same SBI cycle to inhibit writing in the silo and incrementing the silo 
address counter. This sequence ensures the assertion of FAULT to the SBI before the silo is locked. 
SBHL SEND FAULT 1 H is then generated so that the CPU continues to assert FAULT which 
inhibits the silo and latches all Fault Status registers. 

The ID bus is used to read the silo and clear the Fault register. With the silo address counter locked, a 
silo read operation is initiated and the contents of the locked location are transferred to the ID bus. 
This reasserts SBHK SILO COUNT EN H which frees the silo address counter. With SBHK SILO 
COUNT EN H again enabled, the address counter is incremented at the next counter clock when the 
silo is read. This provides the contents of the next silo location for an ID bus transfer. Each subsequent 
read increments the counter providing the contents of the next silo location. 

When sufficient information has been read, SBHK SILO COUNT EN H again goes low to inhibit the 
address counter. Once the Fault register is cleared, SBHL SEND FAULT 1 His dropped to deassert 
SBHL SBI FAULT H. Without SBHL SBI FAULT H, FAULT is removed from the SBI at the 
following TO (BUS SBI FAULT L goes high). SBHE SBI FAULT RH also goes low at the next T3. 
Coincidentally, the address counter is again enabled for writes to the silo, provided no other nexus is 
asserting FAULT. Note the writes begin at the silo address which follows the last address read. 

2.3.2.3.2 SDI Comparator Register - The SBI Comparator register is a maintenance tool which pro­
vides another means to lock the SBI silo other than the assertion of FAULT on the SBI. The Com­
parator register may lock the silo under two modes of operation. 

The first mode of operation is the unconditional lock mode. In this mode the SBI silo can be locked 
anytime within 15 cycles after writing in the Comparator register. The number of cycles is dictated by 
contents of the count field. This field is always set in the l's complement form of the desired number of 
cycles and is incremented automatically for each SBI cycle. The silo locks when the count field is equal 
to all ls. For example, to unconditionally lock the silo in one cycle, the count field is loaded with 1110. 

The second mode of operation is the conditional lock mode. In this mode, the incrementation of the 
count field is started only after certain conditions on the SBI are detected. Once these conditions are 
detected, the count field is incremented and used just as it is during unconditional lock mode operation 
(described above). Table 2-10 lists the selectable lock condition(s). The Maintenance ID bits referenced 
in the table are located in the Maintenance register (Paragraph 2.3.2.3.7). Note also that for compare 
mode ID. TAG. Cmd Fnc, the command/mask field is compared against SBI B (31:28) if the compare 
tag field indicates Command/ Address (equals 011). In this case the field is interpreted as a command 
function. Otherwise the command/mask field is compared against SBI M(3:0) and the field is assumed 
to contain a mask. 

In either mode of operation, the SBI silo is unlocked by loading the count field of the Comparator 
register with a number other than 1111. 
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Table 2-10 Conditional Lock Codes 

Bits 
28 27 Compare Mode Lock Conditions 

0 0 No Compare -

0 1 ID only SBI ID = Maintenance ID 

1 0 ID.TAG SBI ID = Maintenance ID and 
SBI TAG= Comparator TAG 

1 1 ID.TAG.Cmd Fnc SBI ID = Maintenance ID and SBI TAG = 
Comparator TAG and either SBI Function [SBI 
B(31:28)] = Comparator Command or SBI Mask 
[SBI M(3:0)] = Comparator Mask. 

The Silo Comparator register is located on the SBL board. Figure 2-51 illustrates the register format. 
The mode of operation is selected by setting or clearing bit 29. This bit is set for unconditional lock and 
cleared for conditional lock. Bits 28 and 27 contain the conditional lock codes. Bits (22:20) contain the 
compare tag and bits (26:23) contain the compare command or compare mask. The count field is 
contained in bits ( 19: 16). If COMP silo lock (bit 31) and silo lock interrupt enable (bit 30) are set, an 
interrupt request is generated when the count field equals 1111. 
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Figure 2-51 Silo Comparator Register 

2-71 

TK-0324 



2.3.2.3.3 Timeout Address Register - The Timeout Address register is a read-only holding register 
which latches the transmitted physical address when BUFFER FULL L is asserted or a timeout occurs 
on the SBI. The address remains latched until the timeout error bit (bit 12) in the SBI Error register is 
cleared (Paragraph 2.3.2.3.5). The address is not latched, however, if the timeout occurs during a data 
fetch for the instruction buffer. This register is addressable over the ID bus. 

Figure 2-52 illustrates the Timeout Address register format. Bits (27:00) contain the physical address of 
the timeout. Bit 29 is set if the reference underwent a hardware protection check and remains 
unasserted if the reference was not subject to a hardware protection check. Bits 31 and 30 provide the 
mode of the reference that resulted in the timeout. 
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Figure 2-52 Timeout Address Register 

2.3.2.3.4 Cache Parity Error Register - Although located on the SBL board, the Cache Parity Error 
register stores results from parity checks on the CAM and CDM boards. Figure 2-53 illustrates the 
register format. Each bit is described in Table 2-11. 

2.3.2.3.5 SBI Error Register - The SBI Error register provides a record of various SBI error condi­
tions. This register is located on the SBL board. Figure 2-54 illustrates the register format. Each bit is 
described in Table 2-12. 

2.3.2.3.6 Fault/Status Register - The Fault/Status register provides bits to indicate conditions which 
cause the assertion of FAULT. Figure 2-55 illustrates the register format. Each bit is described in 
Table 2-13. 
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Figure 2-53 Cache Parity Error Register 

Table 2-11 Cache Parity Error Register 

Function 

Any Parity Error 

CP Parity Error 

Parity OK 

Description 

If set, indicates a Cache parity error has been de­
tected on an IB or CP read operation. This bit is 
read/write 1 to clear. When this bit is cleared, bit 
(14:00) is also cleared. 

With bit 15 set, this bit indicates whether the Cache 
parity error occurred on a reference by the CP or 
IB. 

1 = CP 
0 = IB 

With bit 15 set, these bits identify the Cache bytes 
which do not contain a parity error ( 1 = no error, 0 
= error). These bits are cleared when bit 15 is 
cleared. 

NOTE 
If this register contains a parity error for the instruc­
tion buffer, this register is automatically cleared 
when the instruction buffer is flushed. 
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Table 2-12 SBI Error Register 

Description 

TK-0351 

RDS /CRD Interrupt Enable If set and an RDS or CRD occurs, an interrupt 
request is initiated. This bit is read/write. 

CRD 

RDS 

CPTimeout 

Set when CRD (Corrected Read Data) is returned 
to the CPU. An interrupt request is initiated if bit 
15 is also set. This bit is read/write 1 to clear. 

Sets when RDS (Read Data Substitute) is returned 
to the CPU. An interrupt request is initiated if bit 
15 is also set. This bit is read/write 1 to clear. 

Sets when a timeout occurs for a CPU requested 
cycle. While this bit is set, an interrupt is requested. 
This bit is read/write 1 to clear. When cleared, bits 
11, 10, and 8 are also cleared. 
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Table 2-12 SDI Error Register (Cont) 

Bit Function Description 

11, 10 CP Timeout Status These bits describe the type of timeout and are 
valid only if bit 12 is set. The types of timeouts are 
listed below. These bits are read-only. 

Bits Type of 
11 10 Timeout 

0 0 Device No Response 
0 1 Device Was Busy 
1 0 Waiting for Read Data 
1 1 (Not used) 

8 CP SBI Error Confirmation Sets when a CP requested cycle receives an error 
confirmation on a Command/ Address transmis-
sion. While this bit is set, an interrupt is requested. 
This bit is read-only. 

7 IBRDS Sets if an RDS is received while the SBI Control is 
fetching data for the instruction buffer. This bit is 
read/write 1 to clear. It is also cleared when the 
instruction buff er is flushed (cleared). 

6 IB Timeout Sets when a timeout occurs during a cycle re-
quested by the instruction buffer. While this bit is 
set, an interrupt is requested. This bit is read/write 
1 to clear. It is also cleared when the instruction 
buffer is flushed (cleared). When cleared, bits 5 and 
4 are also cleared. 

5,4 IB Timeout Status These bits describe the type of timeout and are 
valid only if bit 6 is set. The types of timeouts are 
listed below. These bits are read-only. 

Bits Type of 
s 4 Timeout 

0 0 Device No Response 
0 1 Device Was Busy 
1 0 Waiting for Read Data 
1 1 (Not used) 
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Bit 

3 

2 

Table 2-12 SDI Error Register (Cont) 

Function Description 

IB SBI Error Confirmation Sets when a cycle requested by the instruction 
buffer receives an error confirmation on a Com­
mand/ Address transmission. While this bit is set, 
an interrupt is requested. This bit is read-only. 

Multiple CP Error Sets when a CP timeout or CP SBI error con­
firmation occurs and the CP timeout or CP SBI 
error confirmation bit is already set. This bit is also 
cleared when bit 12 is cleared. 

SBI Interface Not Busy This bit is set when the SBI control is not busy 
executing an SBI transfer. 
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Figure 2-55 FAULT /Status Register 
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Bit 

31 

29 

27 

26 

25,24,20 

19 

18 

17 

16 

Table 2-13 Fault/Status Register 

Function Description 

Parity Fault If set, indicates an information path parity error 
was detected on the SBI. This bit is read-only. 

Unexpected Read Data Fault If set, indicates a read-type response has been re­
ceived without a previously issued read masked, 
extended read masked, or interlock read masked 
command. This bit is read-only. 

Multiple Transmitter Fault If set, indicates the CPU has detected multiple 
transmitters in the same cycle. This bit is read-only. 

Transmitter During Fault Cycle If set, indicates the SBI Control was the transmitter 
during the cycle in which FA ULT was asserted. 
This bit is read-only. 

Spare Bits 

Fault Latch 

Fault Interrupt Enable 

SBI Fault 

Fault Silo Lock 

Unused by hardware. 

If set, indicates the SBI Fault signal has been 
asserted. While this bit is set, the CPU asserts 
FAULT on the SBI. An interrupt request is 
initiated when this bit is set if bit 18 is also asserted. 
This bit is read/write 1 to clear. 

If set, enables an interrupt when bit 19 is asserted. 
This bit is read/write. 

If set, indicates SBI FAULT is being asserted on 
the SBI. This bit is read-only. 

If set, indicates the SBI silo has locked due to the 
assertion of SBI FAULT. (If the Comparator reg­
ister locked the silo simultaneously, a bit in the 
Comparator register is also set (Paragraph 2.3.2.5). 
This bit is read/write 1 to clear. 
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2.3.2.3.7 Maintenance Register - The Maintenance register contains maintenance and status infor­
mation of Cache and the SBI Control for diagnostic use. Half of the maintenance register is located on 
the SBL board and half is located on the SBH board. Figure 2-56 illustrates the register format. Each 
bit is described in Table 2-14. 

2.3.2.4 SBI Cycle Initiation Logic - An SBI cycle is initiated by the SBI Control for any of the 
following, provided SBI cycles are not prohibited (conditions which prohibit SBI cycles are listed 
below): 

1. A write by the CP. 

2. A read by the CP in which a Cache miss occurs. The SBI cycle is inhibited in this case if a 
Cache parity error occurs. 

3. An Interrupt Summary Read command (ISR). 

4. An instruction buffer request during an ALLOW .IB cycle in which a Cache miss occurs. The 
SBI cycle is inhibited in this case if a Cache parity error occurs. 

5. An Interlock Read command. The SBI cycle is inhibited in this case if a Cache parity error 
occurs. 
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Bit 

31 

30 

29 

28 

27:23 

Table 2-14 Maintenance Register 

Function 

Force P(O) Reversal on SBI 

Force Write Sequence Fault 

Force Unexpected Read 
Data Fault 

Force Multiple Transmitter 
Fault 

Maintenance ID (4:0) 

Description 

If set, the appropriate parity generator in the SBI 
interface is reversed. The fault does not occur until 
the interface transmits information to the SBI. This 
bit is read/write. 

With this bit set, all writes by the SBI Control re­
sult in a write sequence fault. This is accomplished 
by changing the Write Data tag to the tag reserved 
for diagnostic use. This bit is read/write. 

With this bit set, the SBI Control transmits the fol­
lowing information format: 

Tag = Read Data (000) 
ID =Maintenance ID 
Data = undefined. 

The information is transmitted with good parity 
and will result in an unexpected read data fault in 
the nexus selected by the maintenance ID. This bit 
is read/write. 

With this bit set, a multiple transmitter fault can be 
forced in any nexus. For any nexus other than the 
CPU, the fault is forced by reading its con­
figuration register. Once the Command/ Address 
specifying the read has been transmitted, the fol­
lowing information format is transmitted by the 
CPU: 

Tag = 111 (reserved tag) 
ID = Maintenance ID 
Data = undefined. 

When the nexus transmits the read data (with ID= 
CPU ID), a multiple transmitter fault occurs, pro­
vided the maintenance ID was set to a value other 
than that of the CPU. 

A multiple transmitter fault is forced in the CPU 
by executing a write command in which the 
maintenance ID is transmitted with the write data. 
When the received ID is compared against the 
CPU ID, the ID mismatch results in a multiple 
transmitter fault. This bit is read/write. 

These bits are used to force unexpected read data 
faults, multiple transmitter faults, and as a com­
pare field for the SBI Silo Comparator register. 
These bits are readlwrite. 
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Bit 

22 

21 

20:17 

Table 2-14 Maintenance Register (Cont) 

Function 

Force SBI Invalidate 

Enable SBI Invalidate 

Reverse Cache Parity Field 

Description 

If set, any write executed by the CPU on the SBI 
becomes a write invalidate to Cache. This bit is 
read/write. 

If set, write invalidates from the SBI are allowed 
(normal system operation). If not set, write 
invalidates are ignored. This bit is read/write. 

With this field set to one of the following codes, a 
parity error will occur in the selected byte when a 
Cache location is indexed. This can only occur if 
the selected byte has odd parity. 

20 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

Bits 
19 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

18 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

17 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

Group 

1 

1 

0 

0 

0 

1 

1 

0 

0 

0 

0 

Adrs/Data 
Byte 

Al 

A2 

A3 

Al 

A2 

A3 

D3 

D2 

Dl 

DO 

D3 

D2 

Dl 

DO 

To force a parity error trap, the appropriate Cache 
operation must be initiated. These bits are 
readLwrite. 
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Bit 

16, 15 

14, 13 

12 

Table 2-14 Maintenance Register (Cont) 

Function 

Force Miss Group 0:1 

Description 

When these bits are set to one of the following 
codes, a Cache miss is forced: 

Bits Function 
16 IS 

0 0 No misses forced 
0 1 Force miss on Group 1 
1 0 Force miss on Group 0 
1 l Force miss on Group 1 and 0. 

Forced misses are only permitted during read 
requests by the data path or instruction buffer. 
Forced misses are ignored for any write or in­
validate operations (Cache must always contain 
the most current data). Parity errors are ignored 
during a forced miss. These bits are read/write. 

Force Replacement Group 0:1 Group selection for replacement is normally ran­
dom in Cache. These bits override the random bit 
and select replacement as follows: 

Bits 
14 13 Cache Replacement 

0 0 Random 
0 1 Group 1 always 
1 0 Group 0 always 
1 1 Undefined 

Disable SBI Cycles If set, SBI cycles are inhibited. For read operations 
with a Cache miss, the data in the D register of the 
data path will be unpredictable. This bit is 
read/write. 
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Bit 

10,9 

8 

Table 2-14 Maintenance Register (Cont) 

Function 

Group 1:0 Match 

Force Timeout 

Description 

-
These bits indicate the status of the match signals 
during the last read reference. 

The code is interpreted as follows: 

Bits 
10 9 Indication 

0 0 No Tag Match (SBI cycle initiated) 
0 1 Match Indicated in Group 1 
1 0 Match Indicated in Group 0 
1 1 Does not occur under normal 

operation 

These bits are read-only. 

-

If set, enables a forced timeout during a read oper­
ation. To generate the timeout, the timeout counter 
is loaded with the value FF after acknowledge of 
the read command is received. This bit is 
read/write. -

Figure 2-57 illustrates the decision logic. As seen in this figure, the SBI cycle may be inhibited for any 
of the following: 

1. The SBI Control is busy executing a previous SBI request (SBLN BUFFER FULL FF Lis 
asserted). 

2. The SBI Control is using the PA and MD buses during this cycle to either transfer read data 
to the instruction buffer or execute an 1/0 write invalidate cycle (Paragraph 2.3.2.11). 
(SBLS SBI CYCLE LTH His asserted.) 

3. The Translation Buffer determines the SBI cycle should be aborted (TBMU CANCEL Lis 
asserted). 

4. A maintenance function (SBLN DISABLE SBI CYC H is asserted). 
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2.3.2.S State Generator Logic - The state generator provides timing pulses to decode confirmation 
and ISR responses from the SBI. Figure 2-58 illustrates the associated logic. 

Initially, the SO and S 1 inputs are low for the assertion of a transfer request. This holds the state 
generator, which is basically a shift register, in an initial state (contents all Os). 

When ARB OK is returned, a command/address is transmitted generating SBLL TRANSMIT CA H. 
This signal generates SBLE START PULSE Hand SBLK BUSY Lat CPTO. SBLK BUSY L enables 
the SO input which shifts the start pulse to generate the first timing pulse. This pulse, SBLL TIMING 
PULSE 0 H, is generated at CPTI. When SBLU ARB OK Lis dropped, SBLE START PULSE His 
negated at the following CPTO. This causes SBLL TIMING PULSE 0 H to be negated at CPT 1. 
Coincidentally, SBLL TIMING PULSE 1 His generated. Each subsequent CPTl shifts the pulse to 
the next output. The resulting timing pulses are shown in Figure 2-59. 

The timing pulses continue to be generated until: 

1. A retry is initiated on the SBI (i.e., the Command/ Address receives BSY or NR, or the 
Write Data receives BSY, NR, or ERR). 

2. The last acknowledgment of the operation is received, an error confirmation is received, or a 
timeout occurs. 

If a retry is initiated on the SBI, SBLK SET RETRY H is asserted and, at the following CPTO, SBLL 
RETRY FF Lis generated. With SBLK BUSY L still asserted, the shift register is loaded with all Os. 
SBLL RETRY FF L remains asserted until the next transmission on the SBI or until BUSY is reset. 

The state generator is also cleared when the last acknowledgment of an SBI operation is received. 
When this occurs, SBLK CLEAR BUSY L is generated by the State ROM (described next). This 
signal asserts SBLK RESET BUSY H to clear SBLK BUSY Land the state generator. SBLK RESET 
BUSY H is also generated when a timeout occurs (SBLM SET TO OR CNF L asserted). 

The State Control ROM which generates SBLK CLEAR BUSY L is located on sheet SBLK of the 
engineering print set. This ROM is also responsible for generating SBLK SET RETRY H. 

2.3.2.6 Expect Read Data - During a read operation, the Expect Read Data flag is set so that a 
timeout can be generated if the read data does not return. The Expect Read Data flag is also used as 
part of SBI protocol to set fault when read data is received but not expected. The logic is shown in 
Figure 2-60. As seen in this Figure, the Expect Read Data flag is the output of a shift register. As long 
as SBLK EXPECT RD H is set, SBLK BUFFER FULL remains asserted. SBLK BUFFER FULL is 
used during a read to hold the address for Cache, prohibit the initiation of another SBI cycle, and 
remember if the Read Data is for the IB or data path. 

The Expect Read Data flag (SBLK EXPECT RD H) is set when acknowledge (ACK) is received for a 
read command. This flag is set for two decrements if the read command was an Extended Read. (The 
Extended Read operation is used for all reads by the SBI Control except 1/0 and interlock.) Similarly, 
Read Masked and Interlock Read Masked commands set the flag for one decrement. 

Each time a read data format is decoded, BHM ANY READ DAT A L is generated and the Expect 
Read Data flag is decremented. When the flag has cleared, SBLK BUFFER FULL is removed. The 
Expect Read Data flag is unconditionally cleared when a timeout occurs on the SBI (SBLM SET TO 
OR CNF Lis asserted). The flag is also cleared when UNJAM is asserted on the SBI (SBLP FORCE 
HOLD L is generated). 
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2.3.2.7 Timeout Counter - Two types of timeouts may occur on the SBI. The first type of timeout 
limits the time it takes for the SBI Control to receive acknowledgment (ACK) for the transmission of a 
command. The second type is associated with read commands. This timeout limits the time between 
acknowledgment of a read command and the reception of the requested data. Both timeouts provide a 
time limit of 512 SBI cycles. 

Figure 2-61 illustrates the timeout counter of the SBI Control. As seen in this Figure, SBLN BUFFER 
FULL His generated when a transfer request is asserted by the SBI Control. On write commands this 
signal is cleared at the same time SBLK RESET BUSY L is generated. This resets the counter because 
SBLE BUFFER FULL FF Lis connected to the counter clear line. Each subsequent CPTl clocks the 
counter until acknowledgment (ACK) of the transmitted command is received. When acknowledge is 
received, SBLK CLEAR BUSY Lis asserted by the state generator to generate SBLK RESET BUSY 
H. This signal is used to assert SBLE RESET BUSY FF H which initializes the counter by presetting it 
to 0. 

If the command was a read command, the counter is again incremented until the read data is received. 
SBLE READ DAT A FF L is generated for each read data format received. The return of the last read 
data clears SBLN BUFFER FULL FF H to clear the counter. 

A timeout occurs in either case if the counter is permitted to overflow. If acknowledgment does not 
return within 512 cycles for the transmission of a command, SBLK TIMEOUT CARRY His asserted 
and a timeout occurs. This asserts SBLK BUFFER FULL and aborts the cycle. Similarly, should read 
data not be returned within 512 SBI cycles after acknowledge is received, SBLK TIMEOUT CARRY 
H is asserted and a timeout occurs. This resets SBLK BUFFER FULL and clears the counter. 

2.3.2.8 ST ALL Signal Logic - Whenever a Cache read miss occurs, the requested data must be 
fetched from main memory by the SBI Control. In accommodation, the SBI Control generates a stall 
signal (SBL T ST ALL ·L) and sends it to the microsequencer to delay CPU operation. This signal 
temporarily prevents the execution of the next microinstruction until the data is fetched. 

The CPU is also stalled for a number of other reasons. The decision logic is provided on SBLT of the 
engineering print set. Sheets 24 and 25 of the print set provide an explanation of the conditions. The 
basic cases in which stall is generated and cleared are listed in Table 2-15. As seen from the examples 
listed, a ST ALL is asserted because the requested Cache operation cannot be executed at that time. 
During the stall, the CPU waits until the operation can be done. 

NOTE 
A stall can only be generated during requests by the 
data path. Stall is never generated for an IB ref er­
ence. 
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Table 2-15 Stall Conditions 

Condition Which Generates ST ALL Condition Which Clears ST ALL 

The VA mux selects the VIBA register The VA m ux selects the VA register. 
instead of the VA register during an 
auto-reload of the IPA register. 

The SBI Control is using the PA or MD The CPU executes an operation over the PA 
bus for: and MD buses. 

1. An 1/0 Write Invalidate cycle 

2. For transfer of read data to 
Cache. 

A Cache read miss occurs on a reference The requested read data is fetched from mem-
by the data path. ory, an error confirmation is returned, or a 

timeout occurs. 

The data path requests the SBI for a The SBI Control's write buffer is available. 
write and the SBI Control's write buffer 
is full. 

An ISR is issued by the CPU. A data response is returned to the CPU or a 
timeout occurs. 

A write to I/O space is issued by the Acknowledgment (ACK) is received by the 
CPU. CPU for the write data, an error confirmation 

is returned, or a timeout occurs. 

2.3.2.9 Cache Valid Bit Logic - A Cache entry is marked invalid by enabling the Cache write pulses 
while the valid bit input to Cache (SBLR VALID H) is held low. The Cache valid bit input is dropped 
for any of the following. 

1. The first of two longwords during a Cache update. 

2. An I/O Write to main memory (Paragraph 2.3.2.11). 

3. An I/O Write to main memory during a CPU read to the same address (Paragraph 
2.3.2.11.1) 

4. An explicit Invalidate cycle by the MCT microfield. 

5. An Interlock Read Masked operation by the CPU. 

6. An Extended Write Masked operation by the CPU. (The CPU uses Extended Write Masked 
operations only when it intends to clear parity errors in memory.) 
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The selection of an Invalidate cycle (case 4) unconditionally executes a dedicated cycle to mark a 
Cache entry invalid. This cycle is selected by the MCT microfield for clearing Cache by microcode 
during power up and for diagnostic purposes. Similarly, an 1/0 Write to main memory (step 2) in­
itiates a dedicated cycle to mark the Cache entry (if in Cache) invalid. This cycle (called 1/0 Write 
Invalidate) is initiated by the SBI Control when the condition occurs. 

Figure 2-62 illustrates the logic associated with setting or clearing the valid bit input. 

SBLE READ DATA FF H 

SBLK EXPECT RD L 
SBLJ MARK INVALID L 

EB2 

Figure 2-62 Cache Valid Bit Input Logic 

SBLR VALID H (CAMB) 

TK-0355 

For the case of the first of two longwords during a Cache update, SBLK EXPECT RD L remains low 
for the first longword and is negated for the second. This ensures the first longword is always marked 
as invalid. SBLE READ DATA FF H, SBLJ MARK INVALID L, and SBLE SBI CYCLE FF H are 
high for both longwords. 

When an 1/0 write to memory is detected during a CPU read to the same location, SBLJ MARK 
INVALID Lis generated to mark the returning data invalid. During any 1/0 write to main memory, 
SBLE SBI CYCLE FF H is set and SBLE READ DAT A FF H remains unasserted to drop the valid 
bit input. 

SBLU WRITE NOT VALID His asserted to invalidate an entry when an explicit Invalidate cycle is 
initiated by the microcode. This signal is also generated when a Cache parity error occurs during a 
write (Paragraph 2.3.2.10). 
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SBLP INTLK READ H is asserted to invalidate the returning data for Cache when an Interlock Read 
Masked operation is executed by the CPU. 

Extended Write Masked operations are used by the CPU only when it intends to clear parity errors in 
memory. As seen in Figure 2-62, this operation is selected under microcode control. 

2.3.2.10 Cache Parity Errors During Writes- If a parity error is detected in a Cache tag during a write 
hit, a miss occurs and the write pulses are inhibited. The entry is then marked invalid to avoid the 
problem of stale data in Cache. This is accomplished by the SBI Control which: 

1. Presents the address to Cache 

2. Drops the valid bit input. 

3. Enables write pulses to the address matrix. 

The associated logic is shown in Figure 2-63. A discussion of the logic is provided next. 

SBLS CPU WRITE L ~ SET WHEN CACHE PARITY 
ERROR OCCURS ON CPU WRITE 

/ 
SBLP GO PAR ERR H 

SBLP Gl PAR ERR H 

SBLE 
WAIT INV FF H 

S8LP ISR H 

S8LL TIMING 
PULSE 2 H 

SBLW +3 VD H 

S8LR SET FORCE 581 L J 

S8LW 581 Tl CPTO B L 

S8LR SET FORCE 581 H -__..­
(S8LE) 

S8LW CLEAR 8 L 

882 

SBLR SET WAIT 
INV H (S8LE) 

SBLR FORCE 581 L (SBLM)(S8HM) 

TK-0354 

Figure 2-63 Write Parity Error Logic 
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The address is presented to Cache by enabling the contents of the address register to the PA bus. SBLR 
SET WAIT INV H is generated and sent to SBLE for deskewing. The result, SBLE WAIT INV FF L, 
is used to generate SBLR SET FORCE SBI L providing an I/O Write Invalidate cycle is not in 
progress. (1/0 Write Invalidate cycles have priority on the PA bus, paragraph 2.3.2.11.) SBLR SET 
FORCE SBI L asserts SBLR FORCE SBI L to gain control of the MD and PA buses. This signal 
generates SBHM SELECT SBI ADR L which enables the address mux to select the address register for 
the PA bus. 

With the address available to Cache, SBLR FORCE SBI L is also deskewed on SBLE to generate 
SBLE FORCE SBI FF L. This signal asserts SBLU WRITE NOT VALID H. SBLU WRITE NOT 
VALID H is one of the conditions which negate the valid bit, SBLR VALID H. With SBLR VALID H 
negated, the valid bit input to the indexed Cache location is dropped (Paragraph 2.3.2.9). 

With the Cache location indexed and the valid bit input negated, the Cache write pulses can be 
enabled. For this SBLU WRITE NOT VALID H generates SBLN SBI MISS DAT A GOH and SBLN 
SBI MISS DATA Gl H. These signals enable write pulses to both groups of the address matrix 
whether or not a Cache hit occurs. 

2.3.2.11 1/0 Writes to Memory - If any nexus other than the CPU executes a write to a memory 
location which is also contained in Cache, the Cache entry is invalidated. This is done to avoid the 
problem of stale data in Cache. (Stale data is defined as a valid Cache entry which differs from main 
memory.) Each time an 1/0 write command is sent to memory, the address is also latched by the SBI 
Control and presented to Cache via the PA bus. This is accomplished by an 1/0 Write Invalidate cycle. 
If a Cache hit occurs, a write pulse is generated and the Cache entry becomes invalidated. 

Figure 2-64 contains the associated decision logic. A discussion of the logic is provided below. 

The SBI Control monitors the SBlfor 1/0 writes to memory. SBHN BUS WRITE COM His gener­
ated as a result of function decoding on SBHN. This signal indicates a write command/address is 
being transferred on the SBI. As seen in the Figure, this signal is ANDed with SBHD RECEIVE 
DATA 27 H which remains low for addresses of main memory. In addition, SBHM MY ID H remains 
low for commands initiated by a nexus other than the CPU. As a result, when a write is executed to 
main memory (not 1/0 space) by an 1/0 device, SBHM SET INVALID L is generated. 

SBHM SET INVALID L is asserted to initiate an 1/0 Write Invalidate cycle. This signal generates 
SBHM WRITE INVALID L and SBHM SELECT SBI ADR L for the address mux. The assertion of 
these two signals selects the contents of the Read Data register for output to the PA bus. The Read 
Data register, which is loaded with SBI information every cycle, contains an address during this cycle. 
This presents the address to Cache for the invalidation of the Cache entry. 

If Cache contains a valid entry corresponding to the address, a write pulse is generated in the appro­
priate group. With the valid bit input (SBLR VALID H) held low, the Cache entry is marked invalid. 

2.3.2.11.1 1/0 Write to Memory (Special Case) - The SBI Control also monitors the SBI for an 1/0 
write during a CPU read to the same address. This is necessary because of memory's command buffer. 
Figure 2-65 illustrates the problem. An explanation follows. 

Under normal operation, when memory is busy, all incoming commands are stored in memory's 
buffer. For this example assume memory is busy and a read command by the CPU is stored in the 
buffer. A write command to the same address is then issued by an 1/0 device. The write command 
along with the write data is likewise stored in the buffer. The transfer of the 1/0 write command is 
detected by the monitoring SBI Control which initiates an 1/0 Write Invalidate cycle (Paragraph 
2.3.2.11). Cache, however, does not contain the entry at this time, so no write pulses are generated. 
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Eventually, memory becomes available and the read command is removed from the silo for processing 
by memory. The requested data is then fetched from the array and transferred to the CPU for use and 
also for storage in Cache (normal Cache operation). 

With the read operation complete, memory removes the write command from the buffer and executes 
a write to the same memory location. This results in a stale data situation. 

To avoid this situation of stale data in Cache, the SBI Control monitors the SBI for the circumstances 
described. When these circumstances are detected, the Cache entry is marked invalid. Figure 2-66 
illustrates the associated logic and a discussion is provided next. 

The logic is primarily implemented with a comparator which compares the SBI address from the Read 
Data register with the address of the address register. This occurs when an I/O write to main memory 
is executed. (SBHM SET INVALID Lis set when an I/O write to main memory is detected, paragraph 
2.3.2.9.) Only a portion of the addresses are compared. If the addresses match, SBLJ MARK 
INVALID L is generated. This indicates the situation described has occurred. SBLJ MARK 
INVALID L holds the valid bit input low. As a result, the read data is marked invalid when it returns 
from memory. 

2.3.3 Memory Control Functions 
The CPU initiates various memory functions during normal operations. CPU-initiated memory func­
tions are selected by part of the microword. CS bits ( 47:42) are used to control the Translation Buffer 
(TB) and SBI Control during a CPU memory access or internal register access (via the ID bus). The CS 
bus receivers are located in the TB. Copies of the signals received are sent to the SBI Control (SBH and 
SBL) (Figure 2-67). 

Figure 2-68 shows the memory control microcode fields. As seen in this Figure, CS bits ( 46:43) provide 
control for both the MD bus and ID bus, depending on the condition of CS bit 42. The MD bus 
control is described next. For a description of the ID bus control, refer to the Data Path Technical 
Description (EK-KA 780-TD-PRE). 

When CS bit 42 equals 0, CS bits (46:43) define the UMCT field (memory control field). This field, 
together with the ADS field, selects a memory function. Table 2-16 lists the various memory control 
functions as selected by the CS bits and explains each function. 

NOTE 
Although not all functions perform a memory oper­
ation, the functions are referenced as memory con­
trol functions because they are selected by the 
memory control field of the microword. 

In Table 2-16, the column labled INTENDED ACCESS CHECK actually refers to page accessibility. 
This check determines if a read or write access is allowed during the current processor mode. The 
protection check (and M bit check) is executed only during functions which include address trans­
lations. 
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Table 2-16 Microcode Selected Memory Control Functions 

Micro field 

MCT Memory Function Intended Access 
ADS 3 2 1 0 FS Mnemonic Address Type Check SBICommand Retryable Comment 

0 0 0 0 0 0 TEST.RCHK Virtual For Read (No Trap) None No See Note l 
0 0 0 0 l 0 MEN.NOP Virtual None No 
0 0 0 1 0 0 TEST.WCHK Virtual For Write (No Trap) None No See Note 1 
0 0 0 1 l 0 RESERVED 
0 0 1 0 0 0 RESERVED 
0 0 1 0 1 0 WRITE.V.NOCHK Virtual None Write Masked No See Note 2 
0 0 1 1 0 0 WRITE.V.WCHK Virtual For Write Write Masked Yes 
0 0 1 1 l 0 LOCKWRITE. V.XCHK Virtual Unspecified Interlock Write Masked No 
0 l 0 0 0 0 READ.V.RCHK Virtual For Read Extended Read Yes See Note 3 
0 1 0 0 1 0 READ.V.NOCHK Virtual None Extended Read No See Note 2 & 3 
0 1 0 1 0 0 READ.V.WCHK Virtual For Write Extended Read Yes See Note 3 
0 l 0 l 1 0 READ. V.IBCHK Virtual For Read or Write Extended Read Yes See Note 3 & 4 
0 1 1 0 0 0 READ. V.NEWPC. Virtual For Read (No Trap) Extended Read No See Note 3 & 5 
0 l l 0 1 0 LOCKREAD.V.NOCHK Virtual None Interlock Read Masked No See Note 6 
0 l 1 l 0 0 LOCKREAD.V.WCHK Virtual For Write Interlock Read Masked Yes See Note 6 
0 l l l l 0 RESERVED 
l 0 0 0 0 0 SBI.HOLD Assert Hold No 
l 0 0 0 l 0 SBI.HOLD+UNJAM Assert Hold and Unjam No 
l 0 0 l 0 0 INVALIDATE Physical None No See Note 7 
l 0 0 l l 0 VALIDATE Physical None No See Note 8 
l 0 l 0 0 0 EXTWRITE.P Physical Extended Write Masked No See Note 9 
l 0 l 0 1 0 WRITE.P Physical Write Masked No See Note IO 
l 0 1 l 0 0 RESERVED 
l 0 1 l 1 0 LOCKWRITE.P Physical Interlock Write Masked No 
l l 0 0 0 0 RESERVED 
l l 0 0 1 0 READ.P Physical Extended Read No See Note 3 & 11 
l 1 0 l 0 0 RESERVED 
l 1 0 1 l 0 READ.INT.SUM Interrupt Summary Read No 
l 1 1 0 0 0 RESERVED 
l l 1 0 1 0 LOCKREAD.P Physical Interlock Read Masked No See Note 6 
1 1 1 l 0 0 RESERVED 
l 1 l l 1 0 ALLOW.ID.READ Physical from IPA Extended Read No See Note 3 & 12 
0 xx xx 1 NO MEMORY OPERATION None No 
l xx xx 1 DEFAULT: Physical from IPA Extended Read No See Note 3 & 12 

ALLOW.IB.READ 
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Table 2-16 Microcode Selected Memory Control Functions (Cont) 

NOTES 

I. These functions provide TB condition testing to prevent a microtrap within a microtrap. 
They enable branch code bits to the branch enable muxes from the TB. These conditions are 
then available if a branch enable ID (Translation Test, BEN ID) is performed in the next 
microinstruction. The branch code bits for each TB condition are listed here: 

Branch Code 
1 0 

0 

0 

0 

0 

TB 
Condition 

TB miss 

Protection violation, not TB miss 

M bit violation, not protection violation or TB miss 

No problem 

2. This function is used for cycles that are prechecked by microcode, such as writing page table 
entries. 

3. This function initiates an Extended Read on the SBI only if a Cache miss occurs and the 
reference is not to 1/0 space. If the reference is to 1/0 space, a Read Masked is initiated. 

4. During this function a protection read check or write check is performed as specified by the 
instruction buffer. This function is retryable as READ.V.RCHK or READ.V.WCHK. 

5. During this function the read data obtained from memory is sent to the instruction buffer 
(IB). All errors are handled by the IB error circuitry. This function is used whenever the 
microcode wishes to reload the IPA register. The IPA must be reloaded when a macropro­
gram transfer of control occurs or to restart instruction prefetching after loading the TB 
with a translation of a previously missing page (required PTE). 

6. During this function, a Cache miss is forced to initiate the SBI command. 

7. This function writes a tag and data with good parity into the indexed location in both groups 
of Cache and marks these locations inYalid by dropping the valid bit. This function is used 
when loading all Cache locations during power-up. It is also used for microdiagnostic pur­
poses and certain error routines. 

8. This function writes a tag and data into the indexed location in the Cache group specified by 
the normal replacement logic (usually the FORCE REPLACE bits in the Maintenance reg­
ister on SBL) and then marks the location valid by setting the valid bit. This function is used 
for microdiagnostic purposes. 

9. The data written during this function is unpredictable. This function is used to clear uncor­
rectable errors in main memory. The corresponding location in Cache, if any, is also 
invalidated when this function is executed. 

10. This function is typically used during STPCTX. 

11. This function is typically used during LDPCTX. 

12. This function enables the initiation of read cycles by the instruction buffer (while performing 
the ID bus operation specified for one of the two codes.) It is used when an explicit memory 
operation is not required (i.e., I stream bytes are sent to the 18). 
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2.3.3.1 Retryable Memory Control Functions - A memory control function is retried by: 

1. Performing a last reference micro branch (BEN 11) to determine which retryable memory 
control function was just executed. 

2. Asserting the memory control function again in combination with the proper saved context 
in the miscellaneous field (UMSC field). 

When a retryable memory control function is to be executed, two code bits from the TB [TBMD LAST 
REF CODE (1:0) H] are enabled to the branch enable muxes. An indication of the selected memory 
control function is then available if a branch enable 11 (last reference microbranch, BENl 1) is per­
formed. 

The retryable memory control functions are listed here with their corresponding code bits: 

Memory Control Function 

READ.V.RCHK 

LOCK READ.V.WCHK 

WRITE.V.WCHK 

READ.V.WCHK 

Last Reference Code 

1 0 

0 0 

0 

0 

READ.V.IBCHK is also retryable as READ.V.RCHK or READ.V.WCHK. 

2.3.3.2 Microtraps During Memory Control Functions - During the execution of a memory control 
function, a microtrap may occur. Table 2-17 lists the possible microtraps for each memory control 
function. The conditions for each of these microtraps are given below. 

If a microtrap occurs during the execution of a memory control function, the reference is usually 
aborted. This is true for all microtraps except for the unaligned data microtrap and the Cache parity 
error microtrap. In the case of the unaligned data microtrap, the microtrap is executed as soon as all of 
the data of the aligned longword is accessed. For a Cache parity error microtrap, the reference is only 
aborted if it is a read reference. Otherwise, the function is executed regardless of the cache parity error. 

TB Miss - A TB miss microtrap occurs when a requested page table entry is not found in the TB. 
During the TB Miss microtrap service routine, the PTE is fetched from main memory and placed in the 
TB. 

Protection Violation - A protection violation microtrap occurs if the current processor mode and/or 
intended page access violates the assigned protection for the page as dictated by the protection code of 
the PTE. 

Cross Page Boundary - A cross page boundary microtrap occurs when a cycle which crosses a page 
boundary is attempted. During the cross page boundary microtrap service routine, the intended access 
to the new page is checked before the cycle can be executed. This prevents the possibility of writing the 
first part of a data stream, after which the writing of the second part is prohibited (i.e., eliminates the 
possibility of half updated data). 
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Table 2-17 Microtraps During Memory Control Functions 

Micro traps 

TB Protection Cross Unaligned TBM Odd TB Cache SBI 
Memory Control Function Mi~ Violation Page Data Bit Address Parity Parity Error 

Boundary Error Error 

TEST.RCHK N N N N N N y N N 
MEM.NOP N N N N N N N N N 
TEST.WCHK N N N N N N y N N 
WRITE.V.NOCHK y N - - N - y N y 

WRITE. V.WCHK y y * * y y y N y 

LOCKWRITE.V.XCHK - - - - - - y N y 

READ.V.RCHK y y * * N y y y y 

READ.V.NOCHK y N - - N - y y y 

READ.V.WCHK y y * * y y y y y 

READ.V.IBCHK y y y y y y y y y 

READ.V .NEWPC N N N N N y N N N 
LOCKREAD. V.NOCHK y N - - N - y y y 

LOCKREAD.V.WCHK y y - - y - y y y 

SDI.HOLD N N N N N N N N N 
SBI.HOLD+UNJAM N N N N N N N N N 
INVALIDATE N N N N N N N N N 
VALIDATE N N N' N N N N N N 
EXTWRITE.P N N N N N N N N y 

WRITE.P N N N N N N N N y 

LOCKWRITE.P N N N N N N N N y 

READ.P N N N N N N N y y 

READ.INT.SUM N N N N N N N N y 

LOCKREAD.P N N N N N N N y y 

ALLOW.IB.READ N N N N N N N N N 

N =Do not rnicrotrap on condition, 
- =Hardware behavior undefined; microcode must prevent condition. 

Y = Microtra p on condition, 
* = Microtrap on condition unless MSC/SECOND.REF. or RETRY.NO.TRAP. 
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Unaligned Data - An unaligned data microtrap occurs when a reference is across a longword bound­
ary. During the microtrap service routine, the microcode retrieves the portion of the data which was 
not part of the original longword. 

TB M Bit -A TB M bit microtrap occurs when a write is attempted to a page whose PTE contains an 
unasserted M bit. During the microtrap service routine, the M bit of the PTE is set in the TB and in 
memory. To accomplish this, the PTE in memory is fetched, modified, and rewritten. 

Odd Address - An odd address microtrap occurs when a 16-bit reference is made to an odd byte 
boundary in compatibility mode. The microtrap service routine performs an abort. 

TB Parity Error - A TB parity error microtrap occurs when a parity error is detected in the TB. The 
information from both groups of the address matrix and data matrix is parity checked as soon as an 
address is sent to the TB matrices. 

Cache Parity Error - A Cache parity error microtrap occurs when a parity error is detected in Cache. 
The output of both groups of the address matrix and data matrix is parity checked as soon as a Cache 
reference is made. 

SB/ Error - An SBI error microtrap occurs when an SBI protocol error occurs. 

2.3.4 Typical Write Timing 
Figure 2-69 illustrates the timing of a typical CPU initiated Write Masked cycle.Note that the diagram 
is divided into CPU cycles rather than SBI cycles. 

As seen in Figure 2-69 the write is initiated by part of the microword (memory control field) which 
controls the transfer of the address and data to Cache and the SBI Control. The Cache write pulse 
occurs at CPT 3. Note an SBI cycle must be initiated to update main memory whether or not a Cache 
hit occurs. This is true for all write cycles. 

With SBLU ARB OK L low at the following CPT2, SBLK BUSY L is asserted. SBL U ARB OK L 
indicates no other nexus with higher priority has arbitrated for the SBI. SBK BUSY L begins the 
information transmission sequence [SBLL TIMING PULSE (0:3) H] by starting the state generator. 
When Acknowledge is received for the Write Data, SBLK RAISE TR FF H, SBLK BUFFER FULL 
H, and SBLK BUSY L are dropped indicating the cycle has ended. 

2.3.5 Typical Read Miss Timing 
Figure 2-70 illustrates the timing of a typical read miss in which an SBI cycle is executed to fetch the 
requested data for the data path and to update Cache. Note that the diagram is divided into CPU 
cycles rather than SBI cycles. 

As seen in this Figure, the read is initiated by part of the microword. Without the generation of a 
Cache tag match signal, SBLL ST ALL L is generated to stall the CPU until the data can be retrieved 
from main memory. At CPTO of the following cycle, SBLD RAISE TR FF H is asserted to start an 
SBI cycle. SBLK BUFFER FULL H is raised to lock the PA register and disable further latching from 
the PA bus. Using the address from the PA register, a command/address is transmitted to the SBI at 
TO. At SBI T 1, SBLK BUSY L is asserted to start the state generator and remove the transfer request. 
SBLL TIMING PULSE (2:0) H are generated to properly space memory acknowledgement of the 
command. When acknowledge is received, SBLD RAISE TR FF His dropped along with SBLK 
BUSY L. Coincidentally, SBLK EXPECT RD His asserted in anticipation of the requested read data. 
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At SBI TO/CPT3 following acknowledgement, memory's transfer request is transmitted. With mem­
ory in control of the bus, the first of two data longwords is transmitted from memory to the SBI at SBI 
TO /CPT3 and latched by the SBI control at SBI T3 /CPT2. SBHM ANY READ DATA is generated 
as a result of SBI decoding. This signal asserts SBLE READ DATA FF H which generates SBLR 
WANTED DAT A H to indicate the requested read data has been received and placed on the MD bus. 
(In this example, the requested read data is the first of the two longwords.) SBLR WANTED DAT A 
H also unstalls the CPU. SBLP MD TO D L is negated when the requested data is latched from the 
MD bus by the D register in the data paths. This data is likewise needed for a Cache update and, for 
this reason, SBLN SBI MISS DATA G 1 H is generated. SBLN SBI MISS DAT A G 1 H enables write 
pulses to group 1 of the Cache data matrix. 

When the second longword is latched from the SBI, SBLK EXPECT RD H is dropped and SBHM 
ANY READ DAT A L is negated. Likewise the unrequested data (indicated by the absence of SBLR 
WANTED DAT A H) is placed on the MD bus for a write to Cache. With SBLN SBI MISS DAT AH 
still asserted, write pulses are again enabled to group 1 of the Cache data matrix. 
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