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Preface

Manual Scope

This manual is a technical description of the central
processing unit (CPU) used in the MicroVAX I system.
The MicroVAX I can have either the KD32-AA CPU
(F_ and G_floating point) or the KD32-AB CPU (F_ and
D_floating point). Both processors consist of two quad-
height modules:

® The data path module (M7135 for the KD32-AA
CPU, M7135-YA for the KD32-AB CPU), and

® The memory controller module (M7136).

This technical description is intended as a field refer-
ence for DIGITAL Field Service personnel and a re-
source for training programs conducted by Educational
Services and Manufacturing. A knowledge of VAX
architecture is assumed.

Chapter 1 is a general description of the MicroVAX I
system.

The next two chapters comprise a user’s guide for the
KD32-AA and KD32-AB processors. Chapter 2,
“Programming Interface,” contains information a
MicroVAX I programmer needs to know such as the
system physical address space, the macrolevel regis-
ters, the boot EPROM, and machine checks. Chapter 3,
“Module Configuration,” describes the factory configu-
ration of the processor and how to change it, plus power
and cooling specifications.

Beginning with Chapter 4, the remaining chapters
provide a “theory of operation” description of the



processor modules. Chapter 4 is a functional overview
of the CPU, Chapters 5 and 6 describe the data path
module microcode and hardware, Chapters 7 and 8
describe the memory controller module microcode and
hardware, and Chapter 9 describes the Q22 bus
controller.

The MicroVAX I Field Service Print Set, MP-01896-01,
contains schematic diagrams for the processor modules.
Signal names in the MicroVAX I CPU Technical
Description are prefaced by four-letter codes which
reference pages in the Print Set. You may find it
helpful to refer to the Print Set as you read the
Technical Description.

Related Documentation

The MicroVAX I CPU Technical Description is part of
the hardware documentation set for the MicroVAX I
system. Related manualsthat may be of interest are:

® MicroVAX I Owner’s Manual, EK-KD32A-OM.
This book contains installation, operation, diag-
nostics, troubleshooting, removai and replacement

procedures, and system configuration information
for the MicroVAX I system.

® MicroVAX Handbook, EB-25156-47. This book
contains descriptions of the MicroVAX I system
and related products: peripherals, interfaces, oper-
ating systems, and communications software.

® VAX Architecture Handbook, EB-19580-20. The
MicroVAX I system design is based on the VAX
architecture described in this handbook.

® Microcomputer Interfaces Handbook, EB-20175-20.
This handbook is a reference guide for the inter-
face and peripheral hardware options that can be

XX11



installed on the Extended LSI-11 Bus used in the
MicroVAX I system.

® Microcomputers and Memories, EB-20912-20. This
manual contains a detailed description of the
Extended LSI-11 Bus.
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Chapter 1
Introduction

This chapter introduces the MicroVAX I system. It
contains information about the system necessary for

understanding the MicroVAX I central processing unit
(CPU).

System Overview

The MicroVAX I system is a 32-bit, high-performance,
microprogrammed computer. The processor executes
the VAX-11 instruction set and contains an interface to
the extended LSI-11 bus (Q22 bus). PDP-11 compatibil-
ity mode is not supported.

The major components of the MicroVAX I system,
shown in Figure 1-1, are:

® The processor, which consists of two modules:
— data path module (DAP)

— memory controller module (MCT)

Q22 bus

RQDX1 controller

RX50 diskette drives

RD51 or RD52 fixed disks

Q22 memory, with block mode capability
Console terminal

Front control panel

‘Rear patch panel assembly

1-1



The Q22 bus-compatible system box also contains a
backplane and power supply.

Processor

The processor consists of two quad-height modules and
contains:

An interface to the Q22 bus which supports block
mode transfers and up to four megabytes of
physical memory

An 8 KB direct-mapped cache

A 512 entry (longword) translation buffer
A 10 ms nonprogrammable interval timer
An interface to a console serial line unit
An 8 KB or 16 KB boot EPROM

Interfaces to the front control panel and rear patch
panel assembly.

Two processors are available for the MicroVAX I
system. The KD32-AA processor contains microcode to
handle F_ and G-floating point instructions. The
KD32-AB processor contains microcode to handle F_
and D_floating point instructions.

Introduction 1-2
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Figure 1-1. MicroVAX I System
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Q22 Bus

The MicroVAX I system backplane uses the extended
LSI-11 bus (also called the Q22 bus), which has 22-bit
addressing. The Q22 bus consists of 42 bidirectional
and 2 unidirectional signal lines. These are the lines
along which the processor, memory, and I/O devices
communicate with each other. MicroVAX I performs
the following Q22 bus data transfer functions:

DATI read word

DATO write word

DATOB write byte

DATIO read, modify, write word
DATIOB read, modify, write byte
DATBI read block '

DATBO write block

RQDX1 Controller

The RQDX1 controller (M8639) is a quad-height
module that occupies the last-used slot in the
backplane. It is the interface between the Q22 bus and
the RX and RD disk drives. The controller is a direct
memory access (DMA) interface and uses mass storage
control protocol (MSCP). It also provides support for
gather-read and scatter-write operations; that is,
transfers do not have to be physically contiguous.

RX50 Diskette Drive

The RX50 is a random access storage device with two
diskette drives. It uses single-sided 5.25 inch (13.34
cm) diskettes. The total drive capacity is 800K bytes of
formatted data. Each drive has an access door and slot
for inserting and removing diskettes. A head load LED

1-5 System Overview



for each diskette slot informs the user when that unit is
busy.

The RX50 is a field replaceable unit (FRU) that mounts
in the MicroVAX I system box. Cables connect the
RX50 to the RQDX1 controller and the power supply.
See the MicroVAX I Owner’s Manual for removal and
replacement procedures.

RD51 and RD52 Fixed Disk Drives

The RD51 is a random access storage device which uses
two nonremovable 5.25 inch (13.34 cm) disks as storage
media. One movable head per disk surface services 153
data tracks. The total formatted capacity of the four
heads and surfaces is 10 megabytes.

The RD52 is a random access storage device which also
uses nonremovable 5.25 inch (13.34 cm) disks as stor-
age media. The total formatted capacity of the RD52 is
31 megabytes.

The RD51 and RD52 are field replaceable units (FRUs)
that mount in the MicroVAX I system box. A control
cable and one data cable connect the RD51 or RD52
drive to the RQDX1 controller. Another cable connects
the RD51 or RD52 drive to the power supply. See the
MicroVAX I Owner’s Manual for removal and replace-
ment procedures.

The RD51 is also available as the RD51-D (desk top) or
RD51-R (rack mount) disk subsystem. Similarly, the
RD52 is available as the RD52-D (desk top) or RD52-R
(rack mount) disk subsystem. The RD51-D, RD51-R,
RD52-D, and RD52-R are freestanding, outboard fixed
disk subsystems that contain their own power, cooling,
console, and I/0 cable. The RQDX1 controller plus the
RQDX1-E bus extender card are the interface between
the Q22 bus and the disk subsystem.
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Memory

MicroVAX I relies on block mode Q22 bus data transfer
functions to realize its performance goals. Therefore,
MicroVAX I systems are configured with MSV11-P
memory modules, which have block mode capability.

The MSV11-P family of memory modules are quad-
height modules that implement an 18-bit wide random
access memory array (16 data bits and 2 parity bits),
parity generation and detection, and on-board refresh
circuitry. There are two variations:

MSV11-PL. 512 KB of storage using 64K MOS
RAMs

MSV11-PK 256 KB of storage using 64K MOS
RAMs

Console Terminal

The console terminal may be any member of the VT100
or VT200 family of terminals. A cable connects the
terminal to an EIA connector on the CPU patch panel,
located at the back of the MicroVAX I system box.
Appendix C lists the pinout for the EIA connector.

An internal cable attaches the EIA connector on the
CPU patch panel to a 10-pin connector on the data path
module. A terminal interface UART and an RS232/423
driver and receiver pair are located on the data path
module.

Front Control Panel

The front panel provides control and status of the
various components of the system. The switches and
indicators are shown in Figure 1-2. The switches and
their functions are listed in Table 1-1. The indicators
and their meanings are listed in Table 1-2.

1-7 System Overview



The front control panel is a field replaceable unit
(FRU). See the MicroVAX I Owner’s Manual for
removal and replacement procedures.

Patch Panel Assembly

External option cables and serial lines connect to the
MicroVAX I through the rear patch panel assembly.
The patch panel assembly provides shielding for EMI
and accommodates a variety of connectors by providing
six areas for patch panel inserts; the connectors are an
integral part of the patch panel inserts. The inserts
mount in cutouts in the sheet-metal frame of the patch
panel assembly. Four screws hold each insert in place.
When an area is not occupied by an insert, a metal plate
covers the cutout for the insert.

Four of the patch panel areas are 2 X3 inches; the other
two areas are each 1X4 inches. An alternate configu-
ration can be created by removing the divider post
between the third and fourth patch panel areas and
installing three 1 X4 inch inserts.

The 2 X3 inch patch panel areas can each accommodate
an insert with four 25-pin EIA connectors. The 1X4
inch areas can each accommodate an insert with one
40-pin or one 50-pin EIA connector.

The insert for the KD32-AA or KD32-AB CPU is
installed in the first 2X3 inch patch panel area. This
CPU patch panel contains one 25-pin EIA connector,
one rotary baud rate select switch, and a two-digit LED
display. The rotary switch sets the system baud rate;
the choices are 300, 1200, 9600, and 19,200 baud.
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Table 1-1. Front Panel Switches

dilaliftia ]

MicroVAX
I
Run DCOK
o) (o)
Halt Restart
0 (0]
Fixed Disk 0
Write
Protect Ready
(0] (0]
Removable Disk
Write
Protect o 0
1 2
Front Panel

Floor Mount Version

Switch Position Function
1,0 1 Turns on the system power.
0 Turns off the system power.
Halt In (LED lit) The processor halts and responds to
console commands.
Out (LED off) Enables the processor to run.
Restart In When the halt switch is out (LED off),
(momentary the processor carries out a power-up
switch) sequence.
When the halt switch is in (LED lit),
this button has no effect.
Write Protect In (LED lit) Write protects fixed disk 0.
Out (LED off) Enables writing to fixed disk 0.
Ready In (LED off) Places fixed disk 0 off-line.
Out (LED lit) Places fixed disk 0 on-line.
Table 1-2. Front Panel indicators
LED Function
Run The Run LED is on when the processor is operating;
the LED goes off when the processor is not executing
instructions.
DC OK This LED is on when the power supply is generating

1
2

correct DC power output voltages.
Removable Disk Write Protect

When lit, the diskette in drive 1 is write protected.

When lit, the diskette in drive 2 is write protected.
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Figure 1-2. MicroVAX I Front Panel
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Backplane

The backplane (H9278-A) is a four-row by eight slot
backplane capable of accepting either quad- or double-
height modules. The backplane uses the Q22 bus
structure in the A and B connectors of slots 1 through 8,
and in the C and D connectors of slots 4 through 8. A
slot-to-slot interconnection scheme (referred to as the
CD interconnect) is wired in the C and D connectors of
slots 1 through 3. The CD interconnect connects
selected side two pins in rows C and D of a given slot to
side one pins of the slot immediately following. There
are 32 such connections per slot.

The backplane receives and distributes two voltages
and ground. Maximum ratings are +5 volts at 36
amps, and + 12 volts at 6 amps.

The backplane includes four connectors, J1 through J4,
which are mounted on side two of the backplane. J1
(eighteen pins), J3 (four pins), and J4 (four pins),
connect power supply outputs to the backplane. J2 (ten
pins) connects the backplane to the front panel.

The backplane also includes provision for the insertion
of four resistor packs (p/n 1318110-00) into positions
X71, X72, XZ3, and XZ4. In a MicroVAX I system
(single backplane), these resistor packs are inserted to
terminate the Q22 bus lines. (Characteristic imped-
ance is 220 ohms).

Figure 1-3 shows the backplane organization. The
numbers in the parentheses following the Q22 designa-
tions show the path of interrupt and direct memory
access grant continuity for options installed in the
backplane; increasing value denotes lower priority.
Each slot requires the insertion of a module or a bus
grant continuity card to pass these grant signals on as
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no jumpers are provided on the backplane for this
purpose.

n
:
A-B c-D
1 Q22(1) cD
2 Q22(2) cD
3 Q22(3) D
18 4 Q22(4) Q22(5)
2 5 Q22(7) Q22 (6)
0 6 Q22 (8) Q22(9)
7 Q22(11) Q22(10)
1 2 8 Q22(12) Q22(13)
XZ1|XZ2 | XZ3 | XZ4
Figure 1-3. MicroVAX I Backplane
Power Supply

The power supply (H7864) is a modular, 230-watt
power supply that supplies from 4.5 amps minimum to
36 amps maximum at +5 volts, and 0 to 7 amps at +12
volts. There are also two outputs designed to accom-
modate DC brushless fans, not included in the 230-watt
power specification. These outputs supply 0.45 amps at
+12 voltsand +9 volts.
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Other power supply features include thermal shut
down, overvoltage and overcurrent protection, AC
input transient suppression, and three Q22 bus signals
(BPOK, BDCOK, BEVNT; see Appendix A for signal
definitions). In addition, the power supply has a full
cycle ride-through feature; that is, the power supply
maintains the output voltages at operating level for a
minimum of one 60 Hz cycle if the AC input voltage
drops.

The power supply includes connectors that provide the
necessary power and signal interfaces to the logic
backplane, mass storage units, front panel, and fans.

The power supply is a field replaceable unit (FRU). See
the MicroVAX I Owner’s Manual for removal and
replacement procedures.

System Architecture

The VAX architecture is an architecture designed by
DIGITAL for its family of 32-bit, virtual memory
minicomputers. DIGITAL has also defined a subset of
the VAX architecture called the MicroVAX architec-
ture.

MicroVAX Architecture

The MicroVAX architecture is tailored to facilitate low-
end implementations of the VAX family of computers.
The features of the MicroVAX architecture are:

® A four gigabyte virtual address space
32-bit word size
Sixteen 32-bit general purpose registers

32 interrupt levels

Vectored hardware and software interrupts
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® 21 addressing modes

® Variable instruction size

® [ull memory management
~ virtual to physical address translation
- page protection mechanism

® Stack processing

e Full VAX instruction set (except PDP-11
compatibility mode)

The MicroVAX architecture specifies a subset of in-
structions that must be implemented in hardware. The
remaining instructions may optionally be implemented
in hardware, or emulated in software. The instructions
that do not have to be implemented in hardware are:

® decimal string instructions

® character string instructions except MOVC3 and
MOVC5

e EDITPC or CRC instructions

e D_floating, F_floating, G_floating, and H_floating
instructions.

Thus, any machine implementing the MicroVAX archi-
tecture can execute the full VAX instruction set (minus
PDP-11 compatibility mode).

For those instructions that do not have to be imple-
mented in hardware, the MicroVAX architecture speci-
fies two kinds of emulation support: instructions emu-
lated strictly in software, and instructions emulated in
software with a hardware assist.

The MicroVAX architecture specifies that all floating
point instructions (D, F, G, and H) are emulated strictly
in software (if they are not implemented in hardware).
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The MicroVAX architecture specifies that the following
instructions are emulated in software with a hardware
assist (if thely are not implemented in hardware):

® decimal string: MOVP, CMPP3, CMPP4, ADDP4,
ADDP6, SUBP4, SUBP6, MULP, DIVP, ASHP,
CVTPL, CVTLP, CVTPS, CVTSP, CVTTP,

CVTPT

® character string: MOVTC, MOVTUC, SKPC,
LOCC, SCANC, SPANC, MATCHC, CMPC3,

CMPC5

® cyclic redundancy check: CRC

e cdit: EDITPC

The MicroVAX architecture supports a subset of VAX
processor registers. The following internal processor
registers (IPRs) are either not required by the
MicroVAX architecture, or are specified differently by

MicroVAX architecture:

ICCS interval clock control/status
register

NICR next interval count register
ICR interval count register
TODR time of year register
RXCS console receive control status
RXDB console receive data buffer
TXCS console transmit control status
TXDB console transmit data buffer
TBIS translation buffer invalidate single
PMR performance monitor enable
TBCHK translation buffer check
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MicroVAX I Implementation

The MicroVAX I system implements a superset of the
MicroVAX architecture in that it implements more
than the specified subset of instructions in hardware,
and implements some IPRs not required by the
MicroVAX architecture. The differences between the
MicroVAX architecture, and the MicroVAX I imple-
mentation of it, are as follows.

® The MicroVAX architecture specifies emulation
support for the following character string and
floating point instructions, whereas MicroVAX I
implements them in hardware:

- CMPC3

- LOCC

- SCANC

- SKPC

- SPANC

- F_floating point instructions

— G_floating point instructions (KD32-AA CPU)
— D_floating point instructions (KD32-AB CPU)

® The MicroVAX architecture does not specify the
implementation of the following six IPRs.
MicroVAX I implements them as defined by the

VAX architecture:
RXCS console receive control status
RXDB console receive data buffer
TXCS console transmit control status
TXDB console transmit data buffer
TBIS translation buffer invalidate single
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TBCHK translation buffer check
® MicroVAX Iimplements these IPRs uniquely:

ICCS interval clock control/status
register

CADR cache disable
MCESR machine check error summary

IORESET initialize bus

® The MicroVAX architecture specifies that physical
addresses can be up to 30 bits long. A physical
address on MicroVAX I is 23 bits long, allowing a
physical address space of eight megabytes. (The
MicroVAX I physical address space is covered in
more detail in Chapter 2 of this manual.)

The differences between the VAX and MicroVAX
architectures have been outlined here. The differences
between the MicroVAX architecture, and the
MicroVAX I implementation of that architecture have
also been discussed. For more information about VAX
architecture, see the VAX Architecture Handbook,
EB-19580-20.

For more information about the MicroVAX I implemen-
tation of the MicroVAX architecture, see Chapter 2 of
this manual, “Programming Interface.” The Micro-
VAX instruction set is listed in Appendix E.

System Timing

The MicroVAX I system clocks are generated on the
CPU memory controller module (MCT). A basic clock
with a 64 MHz frequency is generated by a crystal
oscillator. All the other clocks in the data path (DAP)
and memory controller (MCT) modules are derived
from this basic clock.
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MicroVAX I is a pipelined, microprogrammed machine.
The basic microcycle is 250 ns, and the pipeline is one
deep. A new microinstruction on the DAP module is
accessed every 250 ns, and requires two 250 ns
microcycles to complete. The first 250 ns is DECODE,
and the second 250 ns is EXECUTE. The EXECUTE
microcycle of the first microinstruction is overlapped
with the DECODE microcycle of the next microinstruc-
tion. Thus, one microinstruction is retired every 250
ns.

The main clock on the data path module (CPU CLOCK)
has a symmetrical 250 nanosecond period. The start of
a microcycle is defined as occurring on the leading edge
of this clock and is referred to as T0. The trailing edge
of the clock occurs 125 ns later.

This timing is illustrated in Figure 1-4.

The memory controller module implements a separate
micromachine which cycles at 125 ns to accomplish
memory-related activities.
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CPU CLOCK H l

microinstruction 1

DECODE

EXECUTE

microinstruction 2

microinstruction 3 :

DECODE

EXECUTE

DECODE

EXECUTE

.................................................................................................................................................................................

Figure 1-4. Microinstruction Timing
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System Bus Summary

The system buses which interconnect the modules in
the MicroVAX I system are the memory data bus
(MDB), the memory control bus (MCB), and the
extended LSI-11 bus (Q22 bus). (Those buses that are
completely contained within a module are not discussed
in this section.)

The memory data bus and the memory control bus
connect the two CPU modules (DAP and MCT). The
memory data bus is implemented using an over-the-top
50-pin cable. It is a 32-bit bidirectional data bus. The
8-bit memory control bus is implemented using the CD
interconnect on the backplane. The remaining lines on
the CD interconnect are used for clock distribution,
status, and miscellaneous control logic. Slots 1 and 2 on
the backplane are reserved for the two CPU modules as
both must be placed in Q22/CD slots (see Figure 1-3).

The Q22 bus connects the CPU to the system’s memory
and peripheral I/0 devices. Four basic kinds of
transactions take place on the bus:

Power up/down signal sequencing

Transfer of bus mastership from the CPU to a
direct memory access (DMA) device

Transfer of data between a bus master and a slave
Interrupts to the CPU

Most of the bus interface logic is located on the memory
controller module. The data path module contains logic
to handle power up and down signal sequencing and
interrupts. Chapter 9 of this manual, “Q22 Bus
Controller,” describes the bus transactions in more
detail.
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For more information about extended LSI-11 bus
signals and protocols in general, see the handbook
Microcomputers and Memories, EB-20912-20.

This chapter is a brief overview of the MicroVAX I
system components. For more detail about the
MicroVAX I system, see the MicroVAX I Owner’s
Manual, EK-KD32A-OM, or the MicroVAX I Field
Service Print Set, MP-01896-01.

The rest of this manual describes the MicroVAX 1
processor.
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Chapter 2
Programming Interface

This chapter contains programming information for the
KD32-AA and KD32-AB CPUs. It describes the
physical address space, the internal processor registers
available to the software, how the bootstrap works,
what Microverify and the console microcode do, and
what happens during exceptions and interrupts.

Physical Address Space

The MicroVAX architecture specifies that physical
addresses may be up to 30 bits long. A physical address
on MicroVAX I is 23 bits long, providing a physical
address space of eight megabytes; four megabytes are
in memory space, and four megabytes are in I/O space.
Address bit <29> is used to select memory or I/O
space, and bits <21:0> select an address within
memory or I/O space. Address bit <28> is not part of
the 23-bit physical address, but it is used as an internal
state flag, called the no-cache flag, to indicate that the
address is located in shared memory and should not be
cached. Address bits <27:22> are ignored. Physical
memory starts at address 00000000 (hex) and is
contiguous to the end of installed memory (up to 4
megabytes, address 00400000 hex).

The I/0 space is largely empty, containing only Q22 bus
I/0 space, which is the first 8K bytes (20000000 to
20001FFF). Bit <29> is set in physical address
references to I/O space, and bits <21:13> are ignored.
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0000 0000: Installed memory

Memory address space

003F FFFF: beyond installed memory
0040 0000:
Reserved
WEFFFFF:| _
2000 0000:
Q22 bus I/0 space
2000 1FFF:
2000 2000: | T TTTTTTTTTTTTTTTTTTTTT
Reserved
3FFF FFFF:

Figure 2-1. MicroVAX I Physical Memory

Address Translation

MicroVAX I implements full VAX memory manage-
ment, so virtual addresses are translated to physical
addresses just as they are for the VAX minicomputers.

MicroVAX I virtual addresses are 32-bits long,
allowing a virtual address space of 4 gigabytes. Virtual
address space is divided into process space (low-
addressed half) and system space (high-addressed half).
Process space is again divided into the PO region and
the P1 region.

When memory management is enabled, system and
process space virtual addresses are translated into
physical addresses by means of page table entries
(PTEs). Virtual memory is partitioned into 512-byte
pages; there is one PTE for each page of virtual
memory. Each PTE has this format;:
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31 30 27 26 25 21 20 0

valid | protection | modify | reserved | page
bit field bit frame
number

A physical address is formed for a given virtual address
as follows. Bits <31:30> of a virtual address select one
of three page tables, each of which contains PTEs for
that region of memory:

<31:30> =2 selects the system page table (SPT)
<31:30> =1 selects the P1 page table (P1PT)
<31:30> =0 selects the PO page table (POPT)

Bits <29:9> of the virtual address, called the virtual
page number (VPN), are used as a longword index into
the selected page table to select the corresponding PTE.
Each page table has a length associated with it for
determining virtual addresses that are out of bounds.

Once the PTE for the page that contains the given
virtual address is found, bits <20:0> of the PTE (the
page frame number, or PFN) form bits <29:9> of the
physical address. Bits <8:0> of the given virtual
address form bits <8:0> of the physical address. Thus,
bit <29> of the physical address comes from bit <20>
of the PTE, and bit <28 > of the physical address comes
from bit <19> of the PTE.

Figure 2-2 shows the translation from a system virtual
address to a physical address, Figure 2-3 shows the
translation from a PO virtual address to a physical
address, and Figure 2-4 shows the translation from a P1
virtual address to a physical address.
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SVA:
system 31 30 29 9 8 0
virtual 2 | virtual pagenumber | byte
address ' ,
E extract VPN i
31 23122 211 0
0 ‘ 0

check length against system length register (SLR)
and add to contents of system base register (SBR)

SBR: Physical base address of SPT 0

yields
Physical address of PTE 0
fetch PTE
3130 21 20 0
PTE: |1 PFN

check access

1
E extract PFN !

physical 31 30;29 9 '8 0
address | 0 byte

Figure 2-2. System Virtual to Physical Translation

Programming Interface 2-4



PVA:

virtual 0 virtual page number byte
address , :
E extract VPN !
31 23122 2 110
0 0

check length against PO length register (POLR)
and add to contents of PO base register (POBR)

POBR: |System virtual base address of POPT | 0

yields

System virtual address of PTE 0

fetch PTE-refer to system space
address translation; see
Figure 2-2

3130 2t 20 0
PTE: 1 PFN

check access
extract PFN

| v
31 30,29 9.8 0
0 byte

physical
address

Figure 2-3. PO Virtual to Physical Translation
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PVA:

process 3130 29 9 8 0
virtual 1 virtual page number byte
address ! ,
E extract VPN E
31 23122 2 110
0 0

check length against P1length register (P1LR)
and add to contents of P1 base register (P1BR)

P1BR: |System virtual base address of PIPT | 0

yields

System virtual address of PTE 0

fetch PTE-refer to system space
address translation; see
Figure 2-2

3130 21 20 0
PTE: 1 PFN

check access

1
extract PFN E
1
i

31 30,29 9

physical
address

0 byte

Figure 2-4. P1 Virtual to Physical Translation
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I/0 Space Programming Constraints

If either bit <29> or bit <28> of a MicroVAX I phys-
ical address is set, certain programming constraints
apply. Again, note that bit <28> is not used as part of
the physical address, but as the no-cache flag. If this
flag is set, the physical address is subject to the same
constraints that apply to an I/O space address. The
following considerations apply when bit <29> or bit
< 28> isset in a physical address:

® The data at the specified physical address are not
cached.

e Only byte and word-aligned accesses are allowed.
Thus, the physical address must be on a byte
boundary for instructions using a length attribute
of byte, and on an even-byte boundary for
instructions using a length attribute of word.
Instructions using a length attribute other than
byte or word are not allowed.

® In certain devices, byte accesses to word-length
registers produce unpredictable results.

® String, quad, floating point, and field references
result in undefined behavior.

Internal Processor Registers

There are 64 internal processor registers (IPRs) in the
MicroVAX I processor register space. These registers
can only be accessed by a Move to Processor Register
(MTPR) instruction, or a Move from Processor Register
(MFPR) instruction. MTPR and MFPR instructions
must be executed in kernel processor mode.

The MicroVAX I internal processor registers can be
grouped into four categories, as follows.
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1. Registers that are implemented as defined by the
VAX architecture.

2. Registers that are implemented uniquely by the
MicroVAX I system.

3. Registers to which access is allowed, but which
have no effect on the MicroVAX I system; these
registers are read as zero, and no operation is
performed for writes.

4. Registers to which access is not allowed; an access
results in a reserved operand fault.

Table 2-1 lists each internal processor register and its
category.

The following paragraphs describe all of the registers
that are uniquely implemented in MicroVAX I
(category 2). The System Identification (SID) register
and the four console terminal registers are also
described. Although these are in category 1 (imple-
mented as defined by the VAX architecture), some of
the bits are uniquely defined for MicroVAX I where
allowed by the architecture.
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Table 2-1. Internal Processor Registers

Regq. Cate-
No. Register Name Mnemonic Type gory
0 Kernel Stack Pointer KSP R/W 1
1  Executive Stack Pointer ESP R/W 1
2  Supervisor Stack Pointer SSP RW 1
3  User Stack Pointer USP R/W 1
4 Interrupt Stack Pointer ISP R/W 1
5 Reserved 4
6 Reserved 4
7 Reserved 4
8 PO Base Register POBR R/W 1
9 PO Length Register POLR R/W 1
A P1 Base Register P1BR R/W 1
B P1 Length Register. P1LR R/W 1
C System Base Register SBR R/W 1
D System Length Register = SLR R/W 1
E Reserved 4
F  Reserved 4
10 Process Control Block Base PCBB R/W 1
11 System Control Block Base SCBB R/W 1
12 Interrupt Priority Level IPL R/W 1
13 AST Level ASTLVL RW 1
14 Software Interrupt RequestSIRR w 1

Category Key:

1 = implemented as defined by VAX architecture
2 = implemented by MicroVAX I uniquely

3 = read as zero, no operation on writes

4 = access not allowed; results in reserved operand
fault
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Table 2-1. Continued

Reg. Cate-

No. Register Name Mnemonic Type gory

15 Software Interrupt SISR RW 1
Summary

16 Reserved 4

17 CMI Error Register CMIERR 4

18 Interval Clock Control ICCS R/W 2

19 Next Interval Count NICR W 3

1A Interval Count ICR R 3

1B Time of Year TODR R/W 3

1C Console Storage Receiver CSRS RW 4
Status

1D Console Storage Receiver CSRD R 4
Data

1E Console Storage Transmit CSTS RW 4
Status

1F Console Storage Transmit CSTD w 4
Data

20 Console Receive C/S RXCS R/W 1

21 Console Receive D/B RXDB R 1

22 Console Transmit C/S TXCS R/W 1

23 Console Transmit D/B TXDB W 1

24 Translation Buffer Disable TBDR R/W 3

Category Key:

1 = implemented as defined by VAX architecture
2 = implemented by MicroVAX I uniquely

3 = read as zero, no operation on writes

4 = access not allowed; results in reserved operand
fault
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Table 2-1. Continued

Reg. Cate-
No. Register Name Mnemonic Type gory
25 Cache Disable CADR R/W 2
26 Machine Check Error MCESR R/W 2
Summary
27 Cache Error CAER R/W 3
28 Accelerator Control/Status ACCS 4
29 Accelerator Maintenance ACCR 4
2A Reserved 4
2B Reserved 4
2C Writable Control Store WCSA 4
Address
2D Writable Control Store WCSB 4
Data
2E Reserved 4
2F Reserved 4
30 SBI Fault/Status SBIFS R/W 3
31 SBISilo SBIS R 3
32 SBI Silo Comparator SBISC RW 3
33 SBI Maintenance SBIMT R/W 3
34 SBI Error Register SBIER RW 3
35 SBITimeout Address SBITA R 3
36 SBIQuadword Clear SBIQC w 3
Category Key:

1 = implemented as defined by VAX architecture
2 = implemented by MicroVAX I uniquely
3 = read as zero, no operation on writes

= access not allowed; results in reserved operand
fault
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Table 2-1. Continued

Reg. Cate-

No. Register Name Mnemonic Type gory

37 Initialize Bus IORESET W 2

38 Memory Management MAPEN R/W 1
Enable

39 Translation Buffer TBIA W 1
Invalidate All

3A Translation Buffer TBIS W 1
Invalidate Single

3B Translation Buffer Data TBDATA R/W 3
3C Microprogram Breakpoint MBRK RW 3

3D Performance Monitor PMR R/W 3
Enable
3E System Identification SID R 1

[y

3F Translation Buffer Check TBCHK W

Category Key:

1 = implemented as defined by VAX architecture
2 = implemented by MicroVAX [ uniquely

3 = read as zero, no operation on writes

4 = access not allowed; results in reserved operand
fault
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Interval Clock Control/Status Register

The MicroVAX I processor includes a 10 millisecond
interval timer. The Interval Clock Control/Status
Register (ICCS) contains the interrupt enable bit for
the timer. The interrupt enable bit is bit <6>. It is
cleared when the system is booted.

31 7 6 5 0
0 interrupt enable 0

When the interrupt enable bit is set, an interrupt
request is generated at interrupt priority level 16 (hex)
when the 10 ms timer overflows. When the interrupt
enable bit is clear, the timer overflow is ignored; no
interrupt is generated.

Cache Disable Register

The memory controller module of the processor
contains an 8 KB cache. The Cache Disable Register
(CADR) contains the disable bit for the cache. The
disable bit is bit <0>. It is cleared during machine
initialization so that the cache is enabled.

31 1 0
0 cache disable

When the cache disable bit is set, the cache is disabled.
When the cache disable bit is clear, the cache is
enabled.
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Machine Check Error Summary Register

The Machine Check Error Summary Register (MCESR)
is always read as zero. A write to this register clears
the machine-check-in-progress flag. This flag is an
internal state flag that is set when a machine check
occurs.

This flag should be cleared by software when a machine
check has been handled. If a second machine check
occurs while this flag is set, the CPU halts with a halt
code of 5, indicating that a double machine check has
occurred. (See Table 2-6 in this chapter for a descrip-
tion of the console halt codes.)

31 0

Initialize Bus Register

The Initialize Bus Register (IORESET) is write-only;
an attempt to read this register causes a reserved
operand fault.

Any write to this register causes a system reset which
initializes the processor and causes a Q22 bus initial-
ization sequence.

31 0
write-only
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System Identification Register

The System Identification Register (SID) is a read-only
constant register that specifies the processor type. The
information in the SID register is used for error logs
and to check engineering change order (ECO) levels.

The SID register is four bytes wide. The three high-
order bytes are built by the processor microcode and the
low-order byte is set by an eight-switch DIP on the data
path module. The high-order byte contains a number
that uniquely identifies the processor; the MicroVAX I
processor is identified by the number 7.

If the processor is the KD32-AA CPU with F_ and
G-_floating point, bit 16 of the SID register is a 0. If the
processor is the KD32-AB CPU with F_ and D_floating
point, bit 16 of the SID registerisa 1.

31 24 23 17 16 15 8 7 0

microcode | hardware

7 reserved |D| revision revision
level level

Console Terminal Registers

The console terminal is accessed through four internal
registers. Two registers are associated with receiving
from the terminal, and two with writing to the
terminal. In each direction there is a control/status
register and a data buffer register. The bit assignments
for each register are described in the following
paragraphs.
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Console Receive Control/Status Register (RXCS)

Bits <31:8> and <5:0> of the RXCS register are
read as zero and ignored on writes.

Bit 7 is the done bit. It is a read-only bit that is set by
the console whenever a character is received. The done
bit is initialized to 0 at bootstrap time and is cleared
when the RXDB (console receive data buffer) register is
read.

Bit 6 is the interrupt enable bit. When this bit is set, an
interrupt is generated at interrupt priority level 14
(hex) when the done bit is set. An interrupt is also
generated if the done bit is already set when the
software sets the interrupt enable bit. The interrupt
enable bit is set to 0 at bootstrap time, and can be read
or written by software.

31 8 7 6 5 0
0 done |interrupt 0
enable

Console Receive Data Buffer Register (RXDB)

This register is a read-only register.

Bits <31:16> and <14:8> of the RXDB register are
read as zero.

Bit 15 is the error bit. If the received character
contains an error, this bit is set.

Bits <7:0> are the data field. This field contains the
actual character received by the console.
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31 16 15 14 8 7 0
0 error 0 data

Console Transmit Control/Status Register (TXCS)

Bits <31:8> and <5:0> of the TXCS register are read
as zero and ignored on writes.

Bit 7 is the ready bit. It is a read-only bit that is set at
bootstrap time, and whenever the console transmitter
is not busy. The ready bit is cleared when the TXDB
(console transmit data buffer) register is written.

Bit 6 is the interrupt enable bit. If this bit is set by
software, an interrupt is generated at interrupt priority
level 14 (hex) when the ready bit becomes set. If the
ready bit is already set and software sets the interrupt
enable bit, an interrupt is also generated.

31 8 7 6 5 0
0 ready | interrupt 0
enable

Console Transmit Data Buffer Register (TXDB)

This register is a write-only register.

Bits <31:12> of the TXDB register are ignored.

Bits <11:8> form the ID field. The encoding in this
field determines whether characters are written to the
console terminal, or whether internal functions are
executed. If <11:8> =0, the character contained in

bits <7:0> of the TXDB register is written to the
console terminal. If <11:8> =F, the internal function
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specified by bits <7:0> of the TXDB register is
performed. If <11:8>=1-E, a reserved operand fault

occurs.

Bits <7:0> are the data field. This field contains the
actual character transmitted to the console if the ID
field is 0. If the ID field contains the value F, the data
field specifies the internal function to be performed.
The internal functions are encoded as shown in Table

2-2.

31

12

1" 8

7 0

ignored

ID field

character or
function
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Table 2-2. TXDB Register Encoding

TXDB
<11:0> Internal Function

FO0 nooperation

FO01 nooperation

F02 boot the system

F03 clear the restart-in-progressflag
F04 clear the boot-in-progress flag

F05 causesthe system to enter console mode (halt
code 2; see Table 2-6)

F06 illegal; causes a machine check

F07 illegal; causes a machine check

F08 write 000 to the diagnostic LEDs (all LEDs on)
F09 write 001 to the LEDs (on, on, off)

FOA write 010 to the LEDs (on, off, on)

FOB write 011 to the LEDs (on, off, off)

FOC write 100 to the LEDs (off, on, on)

FOD write 101 to the LEDs (off, on, off)

FOE write 110 to the LEDs (off, off, on)

FOF write 111 to the LEDs (all LEDs off)

MicroVAX I System Bootstrap

The data path module of the processor contains an
EPROM (erasable programmable read-only memory).
The EPROM contains the primary bootstrap. The
purpose of the primary bootstrap is to load a secondary
bootstrap. In some cases, the secondary bootstrap is the
entire system image. In other cases, the secondary
bootstrap loads the system image. The primary
bootstrap, then, is a set of instructions that cause
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additional instructions to be loaded until the complete
computer program is stored in memory.

The primary bootstrap checks each device that could
contain the secondary bootstrap or a system image. It
checks these devices in a predetermined order. When
the primary bootstrap finds the first device (usually a
disk drive) that contains a secondary bootstrap or an
appropriate system image, the primary bootstrap
causes the secondary bootstrap or system image
supplied by the device to be copied into memory and
executed.

In short, the primary bootstrap provided with the
MicroVAX I system does the following:

® Initializes the machine to a known state

® Locates, determines the size of, and tests the
memory

® Locates and reads the secondary bootstrap or
system image into memory

® Begins execution of the secondary bootstrap or
system image

Note: The last 16-bit word of the primary bootstrap
must be the twos complement of the sum of all previous
16-bit words. See the section titled “Microverify” in
this chapter for more information about this checksum.

Bootstrapping Methods
There are five ways to bootstrap a MicroVAX I system.

® The data path module contains an eight-switch
DIP called the option switches. Option switches 3
and 4 determine the series of activities that the
processor attempts during power on. If either
“boot, halt” or “warm start, boot, halt” is the action
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set in the switches, the system boots when system
power is turned on.

® If “boot, halt” is the action set in the switches, the
system boots when a Halt instruction is executed
in kernel mode. If “warm start, boot, halt” is the
action set in the switches and warm start fails, the
system boots when a Halt instruction is executed
in kernel mode.

® The system boots when the boot command is
entered from console mode. (Pressing the Halt
button on the front panel places the system in
console mode. The Halt button must be pressed
again to unlatch it before the boot command is
entered.) The boot command is described below.

® When the Restart button on the front panel is
pressed, the system examines option switches 3
and 4 for the recovery action. If “boot, halt” is the
action set in the switches, the system boots when
the Restart button is pressed. If “warm start, boot,
halt” is the action set in the switches and warm
start fails when the Restart button is pressed, the
system boots. (The Halt button must be latched
out for the Restart button to work.)

Note: With all software currently sold by
DIGITAL for the MicroVAX I, pressing the Restart
button always causes the system to reboot.

® The system boots when the value F02 (hexadeci-
mal) is written to the console transmit data buffer
register (TXDB).

When the MicroVAX I system is booted by one of these
methods, the console microcode searches for 64K bytes
of good memory. If 64K bytes of good memory cannot be
found, the boot fails and a message is displayed on the
console terminal.
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If sufficient memory is found, the primary bootstrap
stored in the EPROM is read into successive locations
in memory, starting at the base address of the found
memory plus 0200 (hexadecimal) and continuing for 8K
or 16K bytes (depending on whether an 8K or 16K
EPROM is installed). When the transfer is complete, a
jump to the beginning of the primary bootstrap is
executed (that is, a jump to the base address plus 0200).
The primary bootstrap is then executed using the
information in the following general registers:

RO zero, or the four character device name
specified in the boot command

R1 settings of the option switches

R5 zero, or the flag value specified in the
boot command

R10 program counter at the time boot was
requested

R11 processor status at the time boot was
requested

AP halt code (see Table 2-6)

SP base address of the found memory plus
0200 (hexadecimal)

When the primary bootstrap is executed, it locates the
appropriate secondary bootstrap or system image and
reads it into memory.

Boot Command

The format of the console boot comand is:
Bl[/n]<sp><xxxx>]<cr>
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The two acceptable forms of the command, therefore,
are:

B<cr>
BI/n]<sp> <xxxx><cr>

where /n is an optional hexadecimal flag value that is
passed to the primary and secondary bootstrap in
general register R5, and xxxx is an optional device
name that is passed to the primary bootstrap in general
register RO. If no flag value or device name is specified,
the value zero is passed to R5 and RO.

The device name must be exactly four characters.
Table 2-3 lists the allowable device names.

Table 2-3. Device Names

Name Device

DUAO disk or diskette unit 0
DUA1 disk or diskette unit 1
DUA2 disk or diskette unit 2
DUA3 disk or diskette unit 3
PRAO MRV11 PROM
XQAO0 DEQNA

Table 2-4 lists the hexadecimal flags for the boot
command parameter /n that are meaningful to the
primary bootstrap. Leading zeros need not be supplied.

Note: Other flags not listed in Table 2-4 may be
meaningful to various operating systems available for
the MicroVAX I. For example, the boot command B/1
invokes a conversational boot when the operating
system software is MicroVMS.
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Table 2-4. Boot Command Flags

Bit

No.

Hex Flag
Value

Flag Name and Meaning

00000008

00000010

00000040

00000080

00000100

Programming Interface

BOOTBLOCK - Secondary boot from
bootblock. When this bit is set, the
primary bootstrap skips the normal
operation, which is to search the
volume as a Files-11 volume.
Instead, the primary bootstrap reads
logical block number 0 of the volume
and tests it for conformance with the
bootblock format.

DIAGNOSTIC - Diagnostic boot.
When this bit is set, the secondary
bootstrap is the image called
[SYSO.SYSMAINT]DIAGBOOT.EXE.

HEADER - Image header. If this bit
is not set, the primary bootstrap
transfers control to the first byte of
the secondary bootstrap file. If this
bit is set, the primary bootstrap
transfers control to the address of the
secondary bootstrap obtained from
that file’s image header.

NOTEST - Memory test inhibit.
This flag disables parity checking
during boot.

SOLICT - Solicit file name. When
this bit is set, the primary bootstrap
prompts for the name of a secondary
bootstrap file.
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Table 2-4. Continued

Bit HexFlag
No. Value Flag Name and Meaning

9 00000200 HALT - Halt before transfer. When
this bit is set, it causes a Halt
instruction to be executed before
transferring control to the secondary
bootstrap.

31:28 X0000000 TOPSYS. X can be any value from 0
through F (hex). The TOPSYS flag
changes the top level directory name
for system disks with multiple
operating systems. For instance, if
X =1, the top level directory name is
[SYS1. ...].

Bootstrap Operation

The primary bootstrap stored in the EPROM contains
code that:

® initializes the system control block (SCB),
® initializes the restart parameter block (RPB),

® initializes a PFN (page frame number) bit map and
the relevant RPB fields,

® selects a boot device, and

® performs a Files-11 ODS2, bootblock, PROM, or
down-line load boot.

The primary bootstrap finds the device which contains
the secondary bootstrap in one of two ways.

1. If a device name is specified in the boot console
command, that device is searched for the secondary
bootstrap.
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2. If no device name is specified, and option switch
number 1 is off (which is the default position), the
following devices are searched in the order listed
here until the secondary bootstrap is found, or the
list is exhausted.

All diskette drives in ascending unit order
All fixed disk drives in ascending unit order
MRV11 PROM

DEQNA for down-line loading

If option switch number 1 is on, the primary
bootstrap bypasses the diskettes and disks and
searches only the MRV11 PROM and the DEQNA

for the secondary bootstrap.

Booting from Disk

For the system to boot successfully from diskette or
disk, the RQDX1 controller must be configured at Q22
bus address 772150 (octal). The module is shipped this
way from the factory. (For more information about
configuring the RQDX1 module, see the “System
Configuration” section of the MicroVAX I Owner’s
Manual, EK-KD32A-OM.)

The primary bootstrap begins by searching the diskette
drives for the secondary bootstrap. (This is assuming
that if the boot console command is used to bootstrap
the system, none of the optional parameters are
specified.) The primary bootstrap checks the first
diskette drive to determine if a diskette is installed. If
no diskette is present, the next diskette drive is
checked.
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If a diskette is present, the primary bootstrap deter-
mines if it is a Files-11 volume. If it is, the primary
bootstrap searches for the file

[SYS0.SYSEXEISYSBOOT.EXE

which contains the secondary bootstrap. If this file is
found, the system boots. If this file is not found, the
primary bootstrap checks the next diskette drive.

If a diskette is present on the diskette drive being
checked but it is not a Files:11 volume, the primary
bootstrap checks for the bootblock format in logical
block number (LBN) 0 of the diskette. Figure 2-5 shows
the bootblock format.

If LBN 0 of the diskette contains the bootblock format,
the system boots. If the bootblock format is not present,
the primary bootstrap checks the next diskette drive.

If the primary bootstrap cannot find the secondary
bootstrap on any diskette, it checks the fixed disk
drives in the same manner. First, it checks whether the
fixed disk drives are on-line. Then, for every drive on-
line, it checks if the disk is a Files-11 volume. If it is,
and the file [SYSO0.SYSEXE]SYSBOOT.EXE is

present, the system boots.

If the disk is not a Files-11 volume, the primary
bootstrap checks for the bootblock format in LBN 0. If
the bootblock format is present, the system boots.

The sequence just described occurs unless the boot
console command is used with any of these hexadecimal
flags specified in the /n parameter:

bit <3>=BOOTBLOCK
bit <4> =DIAGNOSTIC
bits <31:28 > =TOPSYS

(Table 2-4 summarizes the functions of the /n
parameter bits.)
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If the BOOTBLOCK bit (bit <3>) is set in the /n
parameter of the boot console command, the primary
bootstrap does not test the volume for the Files-11
format but just reads LBN 0. If LBN 0 contains the
bootblock format shown in Figure 2-5, the secondary
bootstrap is located at the LBN specified in the
bootblock format, and loaded into memory at the
specified offset from the default load address. (The
default load address is the base address of the restart
parameter block plus 5000 hex.) Execution of the
secondary bootstrap begins with the instruction that is
located at the offset specified in the bootblock format.

If the DIAGNOSTIC bit (bit <4>) is set in the /n
parameter of the boot console command and the volume
is a Files-11 volume, the primary bootstrap searches for
the secondary bootstrap in the file named

[SYSO0.SYSMAINT|DIAGBOOT.EXE.

If the TOPSYS bits (bits <31:28>) contain a nonzero
value in the /n parameter of the boot console command
and the volume is a Files-11 volume, the primary
bootstrap searches for the secondary bootstrap in the
file named

[SYSn.SYSEXE]SYSBOOT.EXE

(or [SYSn.SYSMAINTIDIAGBOOT.EXE if the DIAG-
NOSTIC bit is set), where n is the hexadecimal value of
bits <31:28>.

For instance, if the TOPSYS value is 4, then the
primary bootstrap searches for the secondary bootstrap
in the file named [SYS4.SYSEXE]SYSBOOT.EXE (or
[SYS4.SYSMAINTIDIAGBOOT.EXE).

Figure 2-6 is a flowchart diagramming the sequence
used by the primary bootstrap to find the secondary
bootstrap when the secondary bootstrap is located on
diskette or disk.
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Identification

Area

BB + 0:
BB + 2:
BB + 3:
BB + 4:

BB +(2*n) + 0:
BB +(2*n) + 1:
BB + (2*n) + 2:
BB +(2*n) + 3:
BB +(2*n) + 4:
BB +(2*n) + 5:

BB +(2*n) + 6:
BB+ (2*n) + 8:
BB +(2*n) + C:
BB +(2*n) + 10:
BB + (2*n) + 14:

OFFSET (hex)

1 ! n E any value ‘BB + 0
———————————————————————————————— e, — e, _————————— - ——— — ]
1
low-word LBN of secondary bootstrap ! high-word LBN of secondary bootstrap | :BB + 4
S et Tmomosommmm oo
check byte 1 k ' 0 ! 18 (hex) :BB+(2*n) +0
———————————————————————————————— +———-—-—--——————-—1————---————————-1
any value E 1or81 (hex) | 0 :BB +(2*n) + 4
t

:BB+(2*n) + 8
----------------------- BB+ (2*n) + C
_________________________________________________________ :BB +(2*n) + 10

sum of the previous three longwords BB+ (2%n) + 14

any value. These two bytes can be any value.

n. The value n is the word offset from the start of the block to the identification area described below.

1. This byte must be one.

This entry is a longword containing the logical block number (LBN) where the secondary bootstrap is located. Note that the
low- and high-words of the LBN are interchanged.

18 (hex). This byte defines the expected instruction set; 18 means VAX.

0. This byte defines the expected controller type; 0 means unknown.

k. This byte identifies the file structure on the volume. K can be any value.

check byte. This byte is the ones complement of the sum of the previous three bytes.

0. This byte must be zero.

10r 81 (hex). This byte defines the version number of the format standard and the type of disk. The versionis 1. The high bit
is 0 for single-sided and 1 for double-sided.

any value. These two bytes can be any value.

This entry is a longword containing the size in blocks of the secondary bootstrap.

This entry is a longword containing the offset from the default load address where the secondary bootstrap is to be loaded.
This entry is a longword containing the byte offset into the secondary bootstrap where execution is to begin.

This entry is a longword containing the sum of the previous three longwords.

Figure 2-5. Bootblock Format
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Note: This flow is true when option switch 1 is off, and none of the
optional parameters are used with the Boot command.

check first diskette drive

check next

check next disk drive

diskette drive

Have

Is

diskettg no al! diskette yes | check first | S ?|| disk yes
present in > drives been disk drive drives been
checked? checked?

drive?

Bootblock

Files-11
volume?

Files-11
volume?

in LBN 0?

Correct
file
present?

Correct
file
present?

no

\ 4

\ 4

check for secondary
bootstrap in MRV 11
boot boot PROM, or via DEQNA

Figure 2-6. Bootstrap Flowchart
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Booting from an MRV11-D PROM Module

An MRV11-D PROM module (M8578) can contain the
secondary bootstrap or an operating system. To boot-
strap from an MRV11-D module, the base address of the
module must be on a 16 KB boundary, and the first six
longwords of the PROM must contain the following hex
values:

OFFSET (hex)
check ! any E 0 E 18 :base address
byte | value ! ! (16 KB boundary)

anyvalue S 1 E 0 ‘base address + 4
___________________ | Y T S

size of PROM in pages :base address + 8

must be zero :base address + C

offsetinto PROM to begin execution | :base address + 10

sum of the previous three longwords | :base address + 14

The check byte is the ones complement of the sum of the
previous three bytes.

If the specified boot device is PRAO, or if none of the
diskettes or disks contain the secondary bootstrap, the
primary bootstrap searches each 16 KB boundary in all
4 MB of memory for this footprint. If this footprint is
found, the primary bootstrap passes control to the
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PROM code at the specified offset from the base address
where execution is to begin.

The PROM is marked as “not valid” in the PFN bit map
built by the primary bootstrap.

The documentation shipped with the MRV11-D module
explains how to configure the jumpers and switches on
the module. However, the following jumpers and
switches must be set as noted for the MRV11-D to work
correctly as a boot device within the MicroVAX I
system:

® The system size jumper, W3, must be set to select a
22-bit system.

® The bootstrap jumper, W4, must be set to disable
bootstrap.

® The page/direct mode DIP switch (switch 1 in the
5-switch DIP) must be set to the on position to
select direct mode.

Note: 16K by 8 bit and 32K by 8 bit PROMs are not
supported by the array address decoder PROM that is
shipped with the MRV11-D module. However, the
MRV11-D documentation describes how a decoder
PROM can be made to support these larger PROMs.

Booting from DEQNA

If the specified boot device is the DEQNA (Ethernet to
QBUS adapter), the secondary bootstrap is supplied by
a host on the Ethernet. The primary bootstrap contains
a bootstrap loader to downline load the secondary
bootstrap via the Ethernet, using the DEQNA. The
selection of the secondary bootstrap is the responsibil-
ity of the host.

The bootstrap loader implements the DECnet Low-
level Maintenance Protocol (MOP) Version 3.0.
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Complete details of the protocol are available from
DIGITAL in the DNA Maintenance Operations
Functional Specification, AA-X436A-TK.

The DEQNA module must be configured at Q22 bus
address 774440 (octal). The module is shipped this way
from the factory. (For more information about
configuring DEQNA modules, see the “System
Configuration” section of the MicroVAX I Owner’s
Manual, EK-KD32A-OM.)

The downline load process consists of the following
steps.

1. The bootstrap loader in the primary bootstrap
performs loopback testing of the DEQNA and
transceiver to ensure that the Ethernet hardware is
functioning properly. After the loopback tests
complete, the three LED indicator lights on the
DEQNA module are turned off. If one or more of the
LEDs remain on, the loopback test has not completed
successfully, and the downline load is not attempted.

All LEDs on: DEQNA could not be initialized
Two LEDs on: internal loopback failed; DEQNA
not functioning completely
One LED on: external loopback failed;
transceiver or cable is bad

2. The bootstrap loader transmits a Program Request
MOP message on the Ethernet. The message
destination address is the Load Assistant Multicast
address (AB-00-00-01-00-00). The message source
address is the DEQNA’s station address (supplied by
a PROM on the DEQNA module). The program type
requested is Operating System. (In MOP terminol-
ogy, the bootstrap loader in the MicroVAX [ primary
bootstrap is the primary, secondary, and tertiary
loader, and therefore it can perform the complete
downline load process.)
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3. The bootstrap loader waits for approximately 30
seconds to receive an Assistance Volunteer response
message from a load server at the host. If it does not
receive a message, the bootstrap loader retransmits
the Program Request every 30 seconds. If a response
isnot received in two minutes, the load fails.

4. Once the bootstrap loader receives the Assistance
Volunteer response message, it retransmits the
Program Request message directly to the load server
that sent the response message. It then waits for a
Memory Load message.

When the bootstrap loader receives a valid Memory
Load message, it copies the load data into the
memory location specified by the message (relative
to the first good memory found by the primary
bootstrap memory test). The bootstrap loader then
transmits a Request Memory Load message, which
acknowledges the previous Memory Load message
and requests the next Memory Load message.

The bootstrap loader waits for 30 seconds for the
next Memory Load message. If the message is not
received, the bootstrap loader restarts the downline
load process by transmitting a Program Request
message. The load server at the host normally waits
for the Request Memory Load acknowledgement
message for approximately 4 seconds. If the load
server does not receive the message, it retransmits
the last Memory Load message. Since Memory Load
messages have unique sequence numbers, the
bootstrap loader can ignore out-of-order or duplicate
messages and can acknowledge the last message it
correctly received.

5. The beotstrap loader continues to receive Memory
Load messages, copy the received data into memory,
and transmit Request Memory Load messages, until
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it receives the final message, which is a Parameters
with Transfer Address message. The parameters are
stored in the restart parameter block (RPB) and
control is transferred to the loaded program at the
received transfer address.

The downline load parameters stored in the RPB are
as follows:

Offset Value

28 (hex) Node address (48 bit Ethernet address)
68 (hex) Node name string (word count followed
by string)

These parameters can then be used by the loaded
operating system for system communication via the
DEQNA.

Interface Between Primary and Secondary Bootstrap

Once the primary bootstrap locates the secondary
bootstrap and loads it into memory, the machine is in
the following state.

The machine is running in kernel mode on the
interrupt stack at IPL 31.

The register contents are:

® R11: base address of the RPB (restart parameter
block)

® AP: base address of the argument list prepared by
the primary bootstrap for the secondary bootstrap

® SP: current stack pointer and lowest address of
secondary bootstrap.

Note: The lowest address of the secondary boot-
strap is either the default load address, which is
the base address of the RPB + 5000 hex, or if a
bootblock boot is performed, it is the default load
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address plus the offset specified in LBN 0. If the
secondary bootstrap is contained in an MRV11-D
PROM, the lowest address of the secondary boot-
strap is the base address of the PROM plus the
offset into the PROM where execution is to begin.

® SCBB processor register: SCB address

Figure 2-7 shows the argument list prepared by the
primary bootstrap for the secondary bootstrap.

OFFSET (hex)

(AP) +0: 12

(APY+4: | T reserved 7]

(APY+8: [T reserved |

(AP)+C: | T lowestvalid PEN_ ]
(AP)+10: | highestvalid PFN |
(AP)+14: | PFNmap bytesize |
(AP)+18: | address of the PFN bitmap
(AP)+1C: | T reserved
(AP)+20: | T reserved
(APY+24: | T reserved T
(AP)+28: | " 7(processoriD) |
(AP)+2C: | T reserved ]
(APY+30: [ reserved T

Figure 2-7. Secondary Bootstrap Argument List
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Figure 2-8 shows what memory looks like when the
secondary bootstrap gains control.

R11:
+200:

+4200:

+4600:
+4A00:
+ 5000 + k:

RPB used by primary bootstrap

_______________________________

2 pages of SCB
used by primary bootstrap

secondary bootstrap

SCBB value

SP value

Note: In most cases, k =0. If a bootblock boot is performed,
k is the offset specified in LBN 0, and LBN 0 containsthe
bootblock format shown in Figure 2-5.

Figure 2-8. Memory Layout for Secondary Bootstrap

The primary bootstrap creates a PFN bit map which
contains a bit set for each page in physical memory that
is both present and contains correct parity at the time
of the bootstrap.
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The primary bootstrap also creates an RPB (restart
parameter block). Figure 2-9 shows the contents of the
RPB when the primary bootstrap transfers control to
the secondary bootstrap.

OFFSET
00: address of the RPB
o4:[ T o
os:[ T o
oc:[ T o T
10T PCatrestart/hait |
14: 77T PSLatrestarthalt |
18:1 restart reason from microcode
| saved boot parameterR0 |
20: | saved boot parameterR1 ]
24: saved boot parameter R2
28: saved boot parameterR3° |
2. saved boot parameterR4
30| saved boot parameterR5 |
34:[7 " twolongwordsreserved
3¢ disk block address of secondaryimage
a0:| size of secondary bootstrap file |
44: | " descriptor for PFN bitmap (two longwords) |
ac:| T countof good physical pages |
s0: reserved
54:|  physical CSR address of boot device
58:| _________fourlongwordsreserved ]
68: boot file name in ASCil, up to 40 characters
________________ (tenlongwords) |
90: eight longwords reserved
go: | system control block base address |

Figure 2-9. Restart Parameter Block
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Microverify

Microverify is a microcoded internal test that runs
automatically when the system is powered on. In
addition, the TEST console command runs Microverify.
The purpose of Microverify is to isolate module level
errors and return error status to the main data path
microcode. It indicates status by lighting LEDs on the
data path module and by displaying messages on the
console terminal.

In the MicroVAX I system, the LEDs on the data path
module are connected to an LED display on the rear
patch panel assembly. Thus, if an error occurs during
Microverify, the system user can glance at the back of
the system to obtain the error code.

Microverify runs under control of the data path
microcode and tests the data path module, the memory
controller module, and the interface between them.
The successful completion of Microverify indicates that
the CPU works and can run macrocode. Therefore, the
primary bootstrap in the EPROM can be loaded and
executed.

Microverify also tests for the checksum in the primary
bootstrap by adding all of the 16-bit words in the
primary bootstrap together and checking for a sum of
zero. (The last 16-bit word in the primary bootstrap
must be the twos complement of the sum of all previous
16-bit words.) If the sum is not zero, Microverify fails
and displays the error code 6 in the data path module
LEDs and in the LED display on the rear patch panel.

Microverify does not test the Q22 bus, external
memory, or any devices.
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Console Terminal Messages

When Microverify begins running and determines that
the console terminal is usable, it displays the message
“MICROVERIFY STARTED” on the console terminal.

Within five seconds after the “MICROVERIFY
STARTED” message is displayed, Microverify
completes either successfully or unsuccessfully. If it
completes successfully, the message “MICROVERIFY
PASSED” is displayed on the console terminal. If it

does not complete successfully, the message
“MICROVERIFY FAILED” is displayed.

Two other situations are also possible. The
“MICROVERIFY STARTED” message may never
appear because the “MICROVERIFY FAILED” mes-
sage is displayed immediately. The second situation is
that “MICROVERIFY STARTED?” is displayed, but no
other message appears. You should not wait any longer
than ten seconds for a second message. If either of these
situations occurs, Microverify has failed and the data
path module is probably at fault.

LEDs

When Microverify begins, all three LEDs on the data
path module are lit. In the system, the LED display on
the rear patch panel assembly shows the number 7.

If Microverify fails, it lights the LEDs in certain combi-
nations to indicate where the error occurred, and it
sends an error code to the rear patch panel assembly
LED display. Table 2-5 lists the light combinations, the
corresponding error code displays, and their meanings.

If Microverify completes successfully, it sets the LEDs
to 3 and passes control to the console microcode.
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Normally, Microverify is invoked because the system is
powered on, and “warm start, boot, halt” is the default
action set in the option switches. Assuming the normal
case, the console microcode searches for 64K bytes of
contiguous good memory after it receives control. If the
console microcode finds 64K bytes of good memory, it
loads the primary bootstrap from the boot EPROM into
the found memory, and transfers control to the primary
bootstrap.

If the console microcode does not find 64K bytes of
contiguous good memory, the LEDs remain set to 3 (off,
on, on).

If control passes to the primary bootstrap, the primary
bootstrap also lights the LEDs on the DAP module, and
the LED display on the rear patch panel assembly, to
indicate its progress. If the primary bootstrap fails, an
error code of 3, 2, or 1 is displayed in the LEDs to
indicate the problem. If the primary bootstrap detects a
parity error when it tests memory, it leaves the LEDs
set at 3. Table 2-5 also lists the light combinations, the
corresponding error code displays, and their meanings
for the error codes controlled by the primary bootstrap.

When the primary bootstrap completes successfully and
passes control to the secondary bootstrap, all three
LEDs on the DAP module are turned off, and the LED
display is blank except for a lighted dot in the lower
right-hand corner of the display.
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Table 2-5. LEDs and Patch Panel Display

DAP LED

LEDs Display Meaning

on,on,on 7 Microverify failed before com-
pleting the data path microse-
quencer test. (The error is most
likely on the DAP module.)

on,on,off 6 Error found on DAP module.

on,offfon 5 Error found on MCT module.

on, off, off 4 Undetermined error in
DAP/MCT interface.

off, on,on 3 Microverify worked as expected.
If bootstrapping was attempted,
bad memory was found. (An
error code of 3 in the LEDs has
several meanings. Please read
the section titled “LEDs” on the
previous two pages for a more
exact description.)

off, on, off 2 No boot device was found.

off, off on 1 Unable to boot from selected
device.

off, off, off Control has passed to the

secondary bootstrap.

Note: A number displayed in the LEDs is meaningful
only if the system is in console halt mode, as indicated
by the system prompt > > >.

Modes of Operation

Microverify can run in one of two modes: single pass
mode, or infinite loop mode. A jumper on the data path
module selects the mode.
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The DAP module is shipped with the Microverify
jumper in the correct position (in) for single pass mode.
This is the normal operating mode. The messages,
lights, and error codes appear in single pass mode.

Infinite loop mode can be used to isolate intermittent
failures. However, Microverify never returns control to
the main microcode in this mode.

Figure 2-10 shows the location and proper placement of
the Microverify jumper for single pass mode, and the
correct orientation for reading the LEDs. The LEDs
may be seen by looking at the data path module edge-on
from the edge of the board that the connectors are
mounted on.

For more information about Microverify, see Appendix
D.
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LEDs can be seen by viewing the Note: The error code displayed in the LEDs

module edge-on from this direction matches the error code on the rear patch panel.
l l'——ll; {_\
LEDs
1 33} &I a A A
» COf| . B3 \
3 C1) 3 3 T
s % a % \ Connector for cable
e 00|l e ca| High-orderBit Connector for cable between data path
7 7
s 5| s E5 to console terminal module and memory
controller module

* oo

Microverify Jumper
Correct position for
single pass mode

I

Figure 2-10. Location of LEDs and Microverify Jumper on Data Path Module
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Console Microcode

The MicroVAX I console microcode provides the follow-
ing functions.

® It controls bootstrapping, and initializes the state
of the machine and the processor registers.

® It controls restart and halt procedures, and
responds to internal halts.

® It provides a means to view the internal state of
the machine for diagnostics and debugging.

Console Terminal Modes

The MicroVAX I console operates in one of two modes:
program [/O mode, or console I/O mode.

In program I/0 mode, normal user and system
programs are running, and any characters typed at the
console terminal are transmitted directly to the
processor console registers.

In console I/O mode, characters typed at the console
terminal are handled directly by the console microcode.

The following events all place the MicroVAX I system
in console I/O mode:

® The Halt button on the MicroVAX I system front
panel is pressed.

® A Halt instruction is executed in kernel mode with
the “halt” action selected in the data path module
DIP switches.

® The system is powered on or the Restart button is
pressed with any action selected in the data path
module DIP switches that results in a Halt. For
example, if “warm start, boot, halt” is the action
set in the switches (the default), and both warm
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start and bootstrap fail when the system is
powered on or when the Restart button is pressed,
the system halts in console [/O mode.

® The BREAK key is pressed on the console terminal
keyboard when break detect is enabled in the data
path module option DIP switches.

® The hex value F05 is written to the TXDB register.
® One of the errors listed in Table 2-6 below occurs.

A user can return the MicroVAX I system to program
[/O mode from console mode by issuing the boot, start,
or continue console commands with the Halt pushbut-
ton in the “out” (released) position. For more informa-
tion about these console commands, see Chapter 6 of
the MicroVAX I Owner’s Manual, EK-KD32A-OM.

Console Halt Codes

The console microcode displays a halt code and the
contents of the program counter on the console terminal
when a halt occurs. Table 2-6 shows the available
console halt codes and their meanings.
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Table 2-6. Console Halt Codes

Code Meaning

00 Reserved

01 Microverify succeeded.
02 Console halt/break

03 Power up

04 The interrupt stack was not valid when the
CPU tried to push the PC/PSL during an
exception or an interrupt.

05 A second machine check occurred while the
CPU was processing an existing machine
check.

06 A Halt instruction was executed while the

processor was in kernel mode.

07 Reserved

08 Reserved

09 Reserved

0A A CHMzx instruction was executed when the
CPU was executing on the interrupt stack.

0B Reserved

0C A hard memory error occurred while the CPU
was trying to read a system control block
vector.

0D-10 Reserved
FF Microverify failed.

Bit-mapped Video Interface

The MicroVAX I processor is also used in other
DIGITAL products; for example, as the processor for a
bit-mapped video workstation. The workstation
includes a video controller, monitor and keyboard. For
this monitor to work with the MicroVAX I processor as
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the console terminal, the following requirements must
be met.

® The MicroVAX I data path module must have the
16 KB boot EPROM (rather than the 8 KB
EPROM). The additional 8K holds the font table,
the keyboard translation tables, and the video
controller parameter tables.

® Option switch number 2 in the data path module
option switch pack must be set on.

® The base address for the video controller’s control
and status registers (CSRs) must be 777200 octal
(2000 1E80 hex), located in Q22 bus I/O space.

® The starting address of the video controller’s
bitmap RAM must be 3840K decimal (003C 0000
hex).

When option switch 2 on the data path module is set on,
the console microcode assumes that a 16 KB boot
EPROM is present on the data path module, and
translates keyboard input and output using the tables
supplied in the second 8K bytes of the boot EPROM.

When the MicroVAX I system is powered on, the
console microcode initializes the processor, then tests
option switch number 2 on the data path module. If
option switch 2 is on, communication between the pro-
cessor and the user is through the monitor and key-
board. The console microcode then does the following.

® [t loads the display screen parameters from the
boot EPROM into the video controller.

It initializes the scan line map RAM.
It clears the bitmap RAM.

It initializes the keyboard UART.

It enables the video logic.
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The console microcode assumes the starting address of
the video controller’s scan line map RAM is 003F F800
(hex), and reserves hexadecimal addresses 003F F7EO
and 003F FTE2 to store the current row and column of
the cursor position.

After the video controller is initialized, Microverify
runs. Microverify does not check the bit-mapped video
interface. The Microverify success or failure messages
are displayed on the monitor (and indicated in the DAP
module and patch panel LEDs in case the monitor or
video controller is not working). Once Microverify
completes successfully, the console microcode regains
control.

Assuming that the default action “warm start, boot,
halt” is set in the option switches, the console microcode
searches for 64K bytes of contiguous good memory and
upon finding it, loads the complete boot EPROM (the
entire 16K) into memory. The console microcode also
does an I/O reset, and then reinitializes the video
controller and the keyboard.

Control then transfers to the primary bootstrap, which
is the first 8K bytes copied into memory from the boot
EPROM. The primary bootstrap also examines option
switch 2 and if it is on, uses the monitor for console 1/0.
Therefore, all error messages are displayed on the
monitor as well as any interactive input and output.
The primary bootstrap does not reinitialize the video
controller; it assumes that the console microcode has
already done this.

The primary bootstrap locates the secondary bootstrap,
loads it into memory, and transfers control. When the
system finishes bootstrapping, it is in program I1/O
mode, and the video controller is no longer under
control of the console microcode.
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Note: The MicroVAX I console terminal registers
always communicate with the data path UART.

If the system is placed in console I/0 mode, the monitor
is again used by the console microcode as the console
terminal. The console microcode does not reinitialize
the video controller; it assumes it is still initialized.

Interrupts and Exceptions

Interrupts and exceptions divert execution from the
normal flow of control. An interrupt is caused by some
activity outside the CPU, while an exception is caused
by the execution of the current instruction.

Interrupts

The MicroVAX architecture specifies 31 interrupt
priority levels (IPLs), which occur in MicroVAX I as
shown in Table 2-7.
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Table 2-7. Interrupt Priority Levels

IPL Interrupt

1F unused

1E power fail

1D memory write error
1C-18 unused

17 Q22 bus IRQ7

16 interval timer
16 Q22 bus IRQ6

15 Q22 bus IRQ5

14 console receive
14 console transmit
14 Q22 bus [RQ4

13-10 unused
01-0F software interrupts

Interrupts from Q22 bus devices are arbitrated by
comparing the level of the interrupting device to the
current processor [PL. However, when an interrupt
from a bus device is serviced, the interrupt priority
level is raised to 17 (hex). Software may choose to
subsequently lower the IPL to the level of the inter-
rupting device. Subsequent interrupts lower than the
current IPL of the processor are blocked, including
other interrupts from the bus device being serviced.

The interrupt subsystem is controlled by the Interrupt
Priority Level (IPL) processor register, the Software
Interrupt Request Register (SIRR), and the Software
Interrupt Summary Register (SISR). These registers
are implemented as defined by the MicroVAX architec-
ture, which is identical to the VAX architectural speci-
fication for these registers.
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Exceptions

The MicroVAX architecture recognizes seven classes of
exceptions:

1. Arithmetic Traps/Faults

Memory Management Exceptions
Operand Reference Exceptions
Instruction Execution Exceptions

Trace Faults

A A R ol o

Instruction Emulation Exceptions

~

7. System Failure Exceptions

The MicroVAX architecture specifications for classes 1
through 5 are the same as the VAX architecture specifi-
cations.

Arithmetic Traps/Faults

Arithmetic traps/faults occur as the result of an
arithmetic or conversion operation. They are mutually
exclusive and are assigned the same vector in the
system control block (SCB). Each indicates that an
exception occurred during the last instruction and that
the instruction has been completed (trap) or backed up
such that the instruction can be restarted (fault). An
appropriate distinguishing code is pushed on the stack
as the first of three longwords:
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type code :SP

PC of next instruction to execute*

processor statuslongword

*same as the instruction causing
the exception in the case of a fault

The arithmetic traps/faults and the corresponding type
codes pushed on the stack are shown in Table 2-8.

Table 2-8. Arithmetic Traps/Faults

Type Code (hex) Exception Type

1 integer overflow
TRAPS 2 integer divide by zero

7 subscript range

8 floating overflow
FAULTS 9 floating divide by zero

A floating underflow

Memory Management Exceptions

Two types of faults are associated with memory
mapping and protection: access control violation and
translation not valid.

An access control violation fault is an exception
indicating that the process attempted a reference not
allowed at the access mode at which the process is
operating. An access control violation fault is also
taken if a length violation is detected; that is, if the
virtual address is beyond the end of the applicable page
table.
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A translation not valid fault is an exception indicating
that the process attempted a reference to a page for
which the valid bit in the page table entry was not set.

These faults have distinct vectors in the system control
block, and two longword parameters are pushed on the
stack in each case, in addition to the PC and PSL. The
first parameter contains zero in bits <31:3>.

Bit <1> of the first parameter is set if the fault
occurred during the reference to the process page table
(as opposed to the system page table reference, which
could also fault during a process space reference).

Bit <2> when set indicates that the intended access
was a write or modify; when bit <2> is clear, the
intended access was a read.

Bit <0> when set indicates that an access control
violation was the result of a length violation rather
than a protection violation; this bit is always clear for a
translation not valid fault.

The second parameter pushed is the virtual address
which caused the fault.

If a process attempts to reference a page for which the
page table entry specifies both not valid and access
violation, an access control violation fault occurs.

Operand Reference Exceptions

There are two types of exceptions that can occur during
operand reference: reserved addressing mode fault and
reserved operand exception (fault or abort).

A reserved addressing mode fault is an exception
indicating that an operand specifier attempted to use
an addressing mode that is not allowed in the situation
in which it occurred. No parameters are pushed on the
stack.
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A reserved operand exception indicates that an operand
accessed has a format reserved for future use by
DIGITAL. No parameters are pushed on the stack.
This exception always backs up the PC to point to the
opcode.

The exception service routine may determine the type
of operand by examining the opcode using the stored
PC. Only the changes made by instruction fetch and
because of operand specifier evaluation are guaranteed
to be restored. Therefore, some instructions are not
restartable. These exceptions result in aborts rather
than faults. The PC is always restored properly unless
the instruction attempted to modify it in a manner that
results in unpredictable results.

Instruction Execution Exceptions

There are three types of instruction execution excep-
tions: reserved/privileged instruction fault, extended
function fault, and breakpoint fault.

A reserved or privileged instruction fault occurs when
the CPU encounters an opcode that is not specifically
defined, or that requires higher privileges than the
current mode. No parameters are pushed on the stack.

An extended function fault occurs when an opcode
reserved to the customer or to DIGITAL’s Computer
Special Systems (CSS) group is executed. The opera-
tion is identical to the reserved/privileged instruction
fault except that the event is caused by a different set of
opcodes, and faults through a different vector. All
opcodes reserved to customers and CSS start with FC
(hex), which is the XFC instruction.

A breakpoint fault is an exception that occurs when the
breakpoint instruction (BPT) is executed. No para-
meters are pushed on the stack.
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Trace Faults

A trace is an exception that occurs between instructions
when trace is enabled. Tracing is used for tracing
programs, for performance evaluation, or for debugging
purposes. It is designed so that one and only one trace
fault occurs before the execution of each traced
instruction. The saved PC on a trace is the address of
the next instruction that would normally be executed.
The trace fault for an instruction takes precedence over
all other exceptions.

To ensure that exactly one trace occurs per instruction
despite other traps and faults, the PSL contains two
bits: trace enable (T), and trace pending (TP). The trap
is implemented by copying PSL <T> to PSL <TP>.
PSL <TP> is the bit that actually generates the excep-
tion; the fault is generated before any other processing
at the start of the next instruction.

Instruction Emulation Exceptions

The MicroVAX architecture specifies emulation sup-
port for instructions that are not implemented in
hardware.

The MicroVAX architecture specifies two kinds of
emulation support: software emulation, and software
emulation assisted by hardware.

When an instruction is executed that is emulated
strictly in software, a reserved instruction fault occurs.

When an instruction is executed that is emulated in
software with a hardware assist, an instruction emula-
tion exception occurs.

Of those instructions emulated by software with a
hardware assist, there are five character string
instructions that the MicroVAX I implements in

Programming Interface 2-58



hardware; emulation is not required for these
instructions. Thus, on the MicroVAX I, the following
instructions are emulated in software with a hardware
assist:

decimal string:

ADDP4, ADDP6, ASHP, CMPP3, CMPP4,
CVTLP,CVTPL, CVTPS, CVTPT, CVTSP,
CVTTP, DIVP, MOVP, MULP, SUBP4, SUBP6

character string:
CMPC5, MATCHC, MOVTC, MOVTUC

integer:

CLRO, MOVO

address manipulation:
MOVAO,PUSHAO

EDITPC and CRC

If one of these instructions is executed, the emulation
process consists of the following steps, assuming that
the TP (trace pending) and FPD (first part done) bits in
the PSL are clear:

1.

2.

The operand specifiers are evaluated as they occur
in the instruction stream. The address is saved for
address and modify access types; the operand is
saved for read access types.

Ten longword parametérs are pushed on the stack
(in addition to the PC and PSL to be restored on
returning from this exception):
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opcode :SP
old PC

operand specifier #1

operand specifier #2

operand specifier #3

operand specifier #4

operand specifier #5

operand specifier #6

operand specifier #7

operand specifier #8

new PC
saved PSL

The opcode parameter contains the faulting
opcode; that is, the opcode of the instruction to be
emulated. The old PC points to the location of the
faulting instruction.

The specifier parameters contain the address of the
operand or the operand itself: for an .rx specifier,
the parameter is the operand value; for .wx and .ax
specifiers, the parameter is the operand address. A
register is indicated by a reserved system space
address corresponding to the ones complement of
the register number. The parameter correspond-
ing to a specifier that does not exist is unpredict-
able. The new PC points to the instruction follow-
ing the faulting instruction.
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3. An exception is initiated in the current mode
through the emulated instruction vector using C8
(hex) as the system control block offset. The FPD
(first part done) bit in the saved PSL is clear. The
TP bit in the saved PSL is set if T was set. The TP
bit and bits <7:0> in the new PSL are cleared.
All other bits in the new PSL are unchanged from
their previous state.

If the FPD bit was set, a suspended emulated instruc-
tion fault is taken in the current mode through a vector
at system control block offset CC (hex). No parameters
are pushed on the stack other than the PC and PSL.
The TP bit in the saved PSL is set if T was set; all other
bits are unchanged. The TP bit, the FPD bit, and bits
<7:0> in the new PSL are cleared. All other bits in
the new PSL are unchanged from their previous state.

System Failure Exceptions

There are three types of system failure exceptions:
kernel stack not valid abort, interrupt stack not valid
halt, and machine check.

A kernel stack not valid abort indicates that the kernel
stack was not valid while the processor was pushing
information onto it during the initiation of an exception
or interrupt. Usually, this is an indication of a stack
overflow or other executive software error. The
attempted exception is transformed into an abort that
uses the interrupt stack. No extra information is
pushed on the interrupt stack in addition to the PSL
and PC. The IPL is raised to 1F (hex). If the kernel
stack is not valid during the normal execution of an
instruction (including CHMK or REI), the normal
memory management fault is initiated.

An interrupt stack not valid halt indicates that the
interrupt stack was not valid or that a memory error
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occurred while the processor was pushing information
onto it during the initiation of an exception or
interrupt. No further interrupt requests are acknowl-
edged, and the processor halts.

A machine check exception indicates that the CPU
detected an internal error. All machine checks have a
common format and always push twelve bytes of data.
The pushed information consists of a machine check
code and two parameters. The location addressed by
the stack pointer always contains the hexadecimal
value 0000000C to indicate that twelve bytes of data
are on the stack. Figure 2-11 shows the general format
of the machine check stack.

0000000C :SP
machine check code +4
parameter 1 +8
parameter 2 +C
program counter +10
processor statuslongword | + 14

Figure 2-11. Machine Check Stack

The machine check microroutine tests the internal
machine-check-in-progress flag. If the state of the flag
is true, then another machine check has occurred while
a previous machine check was being processed. A
double error halt (console halt code 05) is initiated.

If the state of the flag is false, then it is set true. It is
the responsibility of the software to clear the flag by
writing to the machine check error summary register
(MCESR) when processing of the machine check is
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complete. Table 2-9 describes the machine checks that
can occur, and the parameters associated with them.

These parameters are preserved on a “best effort” basis
since some processor errors cannot guarantee the state
of the machine.
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Table 2-9. Machine Checks

Error Code

Name

Description

0

memory controller bug check

unrecoverable read error

nonexistent memory

illegal operation

An invalid state was reached in the memory controller and it was unable to

successfully complete the last function.

parameter 1: The contents of the memory controller register “virtual.”
This register usually holds the physical address of the last
function (see Note 1 below).

parameter 2: The address presented to the memory controller at the start
of the function.

An unrecoverable read error occurred on the last memory controller

function. The error may have been a parity error or an ECC error,

depending on the type of memory present.

parameter 1: The physical address of the page containing the error (see
Notes 1 and 2 below).

parameter 2: The address presented to the memory controller at the start
of the function.

A bus timeout occurred during the last memory controller read function.

parameter 1: The physical address of the nonexistent memory (see Notes 1
and 2 below).

parameter 2: The address presented to the memory controller at the start
of the function.

An attempt was made to access an unaligned word or a longword in /O

space.

parameter 1: The physical address of the illegal I/O reference (see Notes 1
and 2 below).

parameter 2: The address presented to the memory controller at the start
of the function.
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Table 2-9. Continued

Error Code Name Description
4 unrecoverable page table An unrecoverable error occurred while attempting to read a
read error page table entry. The error may have been a parity, ECC, or timeout error.
parameter 1: The physical address of the page table entry (see Note 1
below).

parametef 2: The virtual address associated with the page table entry;
that is, the address that caused the page table entry to be

read.
5 unrecoverable page table An unrecoverable error occurred while attempting to write the
write error modify bit in a page table entry. This error reflects hardware thatisin an

unrunnable state and should be treated as a write timeout error.

parameter 1: The physical address of the page table entry (see Note 1
below).

parameter 2: The virtual address associated with the page table entry;
that is, the address that caused the page table entry to be
read.

6 control store parity error A control store parity error has occurred. Thisis a fatal data path module
error.

parameter 1: zero
parameter 2: zero

7 micromachine bug check An invalid state has been reached in the micromachine. Thisis a fatal
hardware or microcode error.

parameter 1: zero
parameter 2: zero
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Table 2-9. Continued

Error Code Name Description
8 Q22 bus vector read error An error was encountered while attempting to read an interrupt vector
address from the Q22 bus.

parameter 1: zero
parameter 2: zero

9 write parameter error An error was encountered during an exception while attempting to write
the user, supervisor, or executive stack after having verified that the write
would succeed (that is, CHMx and emulation).
parameter 1: The virtual address that was being written (see Note 2

below).
parameter 2: zero

Note 1: Only the I/O space flag (bit <29>) and the low 22 bits of the physical address in parameter 1 are meaningful.

Note 2: Physical and virtual addresses returned on memory controller errors may not be the actual address of the error ifa
page crossing occurs. If the page offset (that is, bits <8:0>)is:

000000001 binary and the data length was word, or
000000001 binary and the data length was long, or

000000010 binary and the data length was long, or

000000011 binary and the data length was long

then the page in which the error occurred could be the one addressed or the one logically preceding the one
specified.
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System Control Block

The system control block (SCB) is a page containing the
vectors by which exceptions and interrupts are dis-
patched to the appropriate service routines.

System Control Block Base Register

The system control block base (SCBB) is a processor
register containing the physical address of the system
control block, which must be page-aligned.

31 30 29 9 8 0
X | physical page addressof SCB| 0

At bootstrap time, the contents of the SCBB are
unpredictable. On writes, bits <8:0> are ignored.
These bits are always read as zero.

System Control Block Vectors

A system control block vector is a longword in the SCB
that is examined by the CPU when an exception or
interrupt occurs to determine how to service the event.

Bit <1> of each vector is ignored. Bit <0> of each
vector contains a code interpreted by the hardware as
follows:

0 Service this event on the kernel stack unless
already running on the interrupt stack, in which
case, service on the interrupt stack.

1 Service this event on the interrupt stack. If this
event is an exception, raise the IPL to 1F (hex).
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Bits <31:2> of each vector contain the virtual address
of the service routine, which must begin on a longword
boundary. Table 2-10 shows the organization of the
system control block including the offset into the SCB,
a description of the type of event, and the number of
longword parameters pushed on the stack in each case
in addition to the PC and PSL.

This concludes the description of the programming
interface for the KD32-AA and KD32-AB CPUs. The
next chapter describes the CPU configuration.
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Table 2-10. System Control Block Organization

Offset Parameters
(hex) Implementation Type Pushed Notes
00 unused - - reserved
04 machine check abort/fault/trap 3 The parameters are dependent on the type of error
(see Table 2-9, “Machine Checks”).
08 kernel stack not valid abort 0 This event is serviced on the interrupt stack. The IPL
is raised to 1F (hex).
0C power fail interrupt 0 The IPL is raised to 1E (hex).
10 reserved/privileged fault 0
instruction
14 customer reserved fault 0 This is the XFC instruction.
instruction
18 reserved operand fault/abort 0
1C reserved addressing fault 0
mode
20 access control violation fault 2 The parameters are the virtual address causing the
fault and a status code.
24 translation not valid fault 2 The parameters are the virtual address causing the
fault and a status code.
28 trace pending (TP) fault 0
2C breakpoint instruction fault 0
30 unused
34 arithmetic trap/fault 1 The parameter is the type code.
38-3C unused reserved
40 CHMK trap 1 The operand word is sign-extended and pushed on the
stack.
44 CHME trap 1 The operand word is sign-extended and pushed on the
stack.
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Table 2-10. Continued

Offset Parameters

(hex) Implement>*ion Tyne Pushed Notes

48 CHMS trap 1 The operand word is sign-extended and pushed on the
stack.

4C CHMU trap 1 The operand word is sign-extended and pushed on the
stack.

50-5C reserved

60 write bus timeout interrupt 0 The IPL is raised to 1D.

64-80 unused reserved

84-BC software levels 1-F interrupt 0

Co interval timer interrupt 0 The IPL is raised to 16 (hex).

C4 reserved

C8 emulated instruction fault 10 This vector is used when the FPD (first part done) bit
in the PSLis clear.

CC emulated instruction fault 10 This vector is used when the FPD bit in the PSL is set.

D0-DC reserved

E0-EC reserved These vectors are reserved for CSS and customers.

FO-FC reserved

100-1FC reserved

200-3FC device vectors interrupt 0 These vectors are used by MicroVAX I to directly
vector device interrupts from the Q22 bus. The vector
is determined by adding 200 to the vector supplied by
the device. Only device vectors in the range from 0 to
1FC (hex) are allowed. Interrupt priority levels 14 to
17 (hex) correspond to Q22 bus levels IRQ4 to IRQT.
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Chapter 3
Processor Configuration

The KD32-AA and KD32-AB processors are configured
at the factory for normal operation before they are
shipped. This chapter describes the normal configura-
tion and how to change it if necessary. Also described
are the power and cooling specifications for the board
set.

Processor Configuration Overview

The KD32-AA or KD32-AB processor consists of two
printed circuit boards that plug into the system
backplane. The two boards are:

® the data path module, M7135 (KD32-AA) or
M7135-YA (KD32-AB), and

® the memory controller module, M7136.

Two sets of dual-in-line package (DIP) switches are
mounted on the data path module. Each package con-
tains eight switches. One package is the low-order byte
of the system identification (SID) register. These
switches identify the hardware revision level and
should not be changed.

The other package is the option switches. These
switches determine the baud rate, break detect enable,
the system recovery action, the console terminal type,
and the bootstrap search order.

The option switches are set at the factory for normal
operation. There is no need to change the setting of the
option switches unless you have a special situation that
calls for a different setting in the switches. The follow-
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ing sections in this chapter explain how to reset the

switches.

Option Switches

Figure 3-1 shows the data path module and the location
of the option switch pack.

The option switches have these functions:

8:7

4:3

baud rate selection

These switches specify the rate of data
transmission between the processor and the
console terminal.

reserved

break detect enable

This switch determines whether or not a
break condition on the serial line causes a
halt.

recovery action

These switches determine the series of
activities that the processor attempts during
power on.

console terminal type
This switch identifies the type of console
terminal connected to the system.

bootstrap search order
This switch determines which devices are
searched when the system bootstraps.

Table 3-1 shows what the switch settings mean. The
settings listed in bold are the switch positions set at
the factory. For normal operating conditions, all
switches should be set off.
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Figure 3-1. Location of Switch Packs on Data Path Module
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Table 3-1. Option Switch Settings

Switch On/Off Meaning
8:7 both off 9600
baud rate 8off, 7on 19,200
select 8on,7off 300

both on 1200
6 off no effect
5 off break key disabled
break on break key enabled
detect
4:3 both off warm start, boot, halt
recovery 4 off,3on boot, halt
action 4 on,3 off warmstart, halt

both on halt
2 off VT100 compatible
console on bit-mapped graphics terminal
terminal
1 off all devices searched

bootstrap  on disk/diskette drives bypassed

search order

Each switch setting is explained in more detail in the
following paragraphs.

Baud Rate Select

When the system is powered on, the processor examines
option switches 7 and 8 to set the data transmission
speed between itself and the console terminal.

If option switches 7 and 8 are both set to the off position,
data are transmitted between the system and the
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terminal at a rate of 9600 bits per second. The switches
are set for this rate at the factory.

If option switch 8 is off and switch 7 is on, data are
transmitted at 19,200 bits per second.

If option switch 8 is on and switch 7 is off, data are
transmitted at 300 bits per second.

If option switches 7 and 8 are both set to the on position,
data are transmitted between the system and the
terminal at a rate of 1200 bits per second.

Option switches 7 and 8 are logically ORed with the
rotary baud rate select switch on the MicroVAX I
system patch panel assembly. The encoding for the
rotary switch is as follows:

Rotary Switch Setting Baud Rate Selected

3 9600
2 19,200
1 300
0 1200

The rotary switch settings apply as long as DIP
switches 7 and 8 are both set off. Thus, for the rotary
baud rate select switch to have the desired effect, DIP
switches 7 and 8 must be left in their default setting:
both off.

Break Detect

The MicroVAX I system is designed to be connected to
any of the console terminals in DIGITAL’s VT100 or
VT200 family of terminals. The keyboard that comes
with these terminals has a key marked BREAK. Switch
number 5 in the option switch pack determines whether
the BREAK key on the console terminal keyboard has
any effect on the MicroVAX I system.
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If switch number 5 is on, the BREAK key has the same
effect as the HALT button on the system front panel,
that is, pressing BREAK halts the processor.

The KD32-AA and KD32-AB processors are shipped
with switch number 5 set to the off position so that the
BREAK key is disabled.

Recovery Action

The processor examines option switches 3 and 4 to
determine what actions to take next when one of the
following situations occurs.

® The system is powered on.

® The RESTART button on the front panel is
pressed. (The RESTART button is a momentary
switch and releases automatically.)

® A Halt macroinstruction is executed in kernel
mode.

Warm Start, Boot, Halt

If option switches 3 and 4 are both set to the off position,
and one of the situations listed above occurs, the
MicroVAX I system attempts a warm start. If the
warm start fails, the system tries to bootstrap. If
bootstrap fails, the system enters console mode and
waits for a command to be entered from the console
terminal.

The difference between a warm start and a bootstrap is
that when the processor is able to perform a warm start,
the program it was running is still in memory and the
processor can resume executing the program. When
the processor bootstraps, it begins by loading the
secondary bootstrap or system image into memory.
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The processor is shipped with switches 3 and 4 off;
warm start, boot, halt is the default recovery action.

Note: With all software currently sold by DIGITAL for
the MicroVAX I, a warm start will not succeed when
the Restart button on the front panel is pressed.
Pressing the Restart button will always bootstrap the
system.

Boot, Halt

If switch 4 is off, switch 3 is on, and one of the situations
listed above occurs, the MicroVAX [ system tries to
bootstrap by searching the available devices for the
secondary bootstrap or a system image. If bootstrap
fails, the system enters console mode and waits for a
command to be entered from the console terminal.

Warm Start, Halt

If switch 4 is on, switch 3 is off, and one of the situations
listed above occurs, the MicroVAX [ system attempts a
warm start. If the warm start fails, the system enters
console mode and waits for a command to be entered
from the console terminal.

Halt

If option switches 3 and 4 are both set to the on position,
and one of the situations listed above occurs, the
MicroVAX I system enters console mode and waits for a
command to be entered from the console terminal. The
console commands are described in Chapter 6, “The
Console Interface” of the MicroVAX I Owner’s Manual.
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Console Terminal Type

When the processor bootstraps, the bootstrap examines
option switch 2 to determine what type of console termi-
nal it is attached to.

If option switch 2 is set to the off position, a console
terminal that is compatible with DIGITAL’s
VT100/VT200 family is connected, and the processor
uses the CPU patch panel for console command input
and output. The processor is shipped with switch 2 set
off.

The MicroVAX I processor is also used in other
DIGITAL products; for example, as the processor for a
bit-mapped video workstation. When option switch 2 is
set to the on position, a bit-mapped graphics terminal is
connected, and the processor uses this bit-mapped
graphics terminal for console command input and
output.

This switch is set correctly at the factory for the system
that the processor is installed in, so there is normally
no requirement for this switch setting to be changed.

Bootstrap Search Order

Option switch 1 controls which devices are searched
when the system bootstraps.

If option switch 1 is set to the off position, the following
devices (if present) are searched in the order listed here
until the secondary bootstrap or a system image is
found: diskette drives, disk drives, MRV11 PROM, and
DEQNA. The processor is shipped with switch 1 set off.

If option switch 1 is set to the on position, the primary
bootstrap bypasses the diskette and disk drives, and
searches only the MRV11 PROM and the DEQNA (if
these devices are present) for the secondary bootstrap.
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(This switch setting would be useful, for example, if you
always wanted the secondary bootstrap to be provided
by a host computer over the Ethernet.)

Resetting the Option Switches

If you need to enable the BREAK key on the console
terminal keyboard, change the bootstrap search order,
or select a different baud rate or recovery action, you
can change the option switch settings. The following
paragraphs describe how to do this.

Locate the option switch pack on the data path module,
as shown in Figure 3-1.

The data path module can have one of three types of
DIP switches: rocker, modified rocker, or slider. These
three types are illustrated in Figure 3-2. Use Figure
3-2 to determine the type of switch pack mounted on the
data path module. Then, use Table 3-1 to determine the
switch settings you need, and set the switches
according to the instructions in the following
paragraphs.
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rocker: modified rocker: slider:

off position off position

red band here

off position

on position

on position red band here on position

Note: In each picture, switches 1 through 7 are shown in the off position, and switch 8 is shown in the on position.

Figure 3-2. Three Types of DIP Switches
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Rocker Switches

A rocker switch pivots from the center and has two
sides: an on side and an off side. Each side has a small
depression in it, just large enough for the tip of a
ballpoint pen. When one side of the switch is pressed
down into the plastic switch casing, the opposite side is
up, flush with the top of the casing. The word “open” is
printed on the bottom edge of the casing. The switch
numbers: “1,” “2,” and so on, are printed in white across
the top edge of the casing. Think of the “open” side as
the off side, and the numbered side as the on side.

A rocker switch is off when the side nearest the word
“open” is depressed; that is, pushed down into the
casing so that the depression on the opposite side is up.
A rocker switch is on when the side nearest the switch
number is pushed down into the casing so that the
depression on the “open” side is up.

For example, to turn rocker switch number 8 off
(assuming it is on to begin with), place the point of a
pen (or any small pointed object except a pencil) in the
depression of switch number 8 that is closest to the
word “open” and press firmly. The side you are
pressing on goes down into the switch casing, and the
side nearest the number “8” comes up flush with the
casing. Similarly, to turn switch number 8 on again,
place the pen in the depression nearest the number “8”
and press firmly so that this side of the switch goes
down into the casing.

Modified Rocker Switches

A modified rocker switch also pivots from the center
and has two sides: an on side and an off side. Each side
has a red mark on it. When one side of the switch is
pressed down into the plastic switch casing, the
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opposite side is up, flush with the top of the casing, and
the red mark on that side shows. The switch numbers:
“1,” “2,” and so on, are printed in white across the top
edge of the casing. The word “on” is printed on the
upper left edge of the casing. The word “off” is printed
on the lower left edge of the casing.

A modified rocker switch is off when the side nearest
the word “off” is depressed; that is, pushed down into
the casing so that the red mark on the “on” side is up. A
rocker switch is on when the side nearest the word “on”
is pushed down into the casing so that the red mark on
the “off” side is up.

For example, to turn modified rocker switch number 8
off (assuming it is on to begin with), place the point of a
pen (or any small pointed object except a pencil) on the
side of switch number 8 that is closest to the word “off”
and press firmly. The side you are pressing on goes
down into the switch casing, and the side nearest the
number “8” comes up flush with the casing. Similarly,
to turn switch number 8 on again, place the pen on the
switch side nearest the number “8” and press firmly so
that the “on” side of the switch goes down into the
casing.

Slider Switches

A slider switch slides in the plastic casing. It has a
bump in the middle that is flush with the top of the
casing. The switch numbers: “1,” “2,” and so on, are
printed across the top edge of the casing. The word “on”
is printed near the upper left edge of the casing, and an
arrow indicates the on direction.

A slider switch is on when the bump is pushed toward
the side of the casing labeled “on,” in the direction of
the arrow. A slider switch is off when the bump is
pushed in the direction opposite to the arrow.
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Place the pointed end of a pen behind the bump and
slide the switch in the direction the arrow is pointing to
set the switch to the on position. To turn the switch off,
slide the switch in the opposite direction.

Power and Cooling

The data path module (M7135 or M7135-YA)) of the
MicroVAX I processor draws a maximum of 7.0 amps at
+5 volts (¥ 5%) and 0.5 amps at + 12 volts (£ 5%).

The memory controller module (M7136) draws a
maximum of 7.0 amps at + 5 volts (£5%).

The processor (both modules) presents 1.0 DC load and
4.0 AC loads on the Q22 bus.

The operating and storage temperature specifications
for the KD32-AA or KD32-AB processor are shown in
Table 3-2. Note: These specifications apply only to the
processor; they do not apply to the MicroVAX I system.

Table 3-2. Processor Temperature Specifications

Mode Temperature and Humidity
Operating 5°C to 60°C
(41° F to 140° F)

10% to 90% relative humidity,
non-condensing

Storage —40°Cto66°C
(—40°Fto 151°F)
up to 95% relative humidity,
non-condensing

This concludes the description of the MicroVAX I
processor configuration and specifications. The next
chapter is a functional description of the processor.
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Chapter 4
Functional Overview

This chapter is a functional overview of the major
processor components. The general flow of data is
discussed using several instructions as examples.

Figure 4-1 is a high-level block diagram of the
MicroVAX I processor.

Data Path

The data path module (M7135 or M7135-YA) contains
the main data path, register file, instruction decode,
microsequencer and miscellaneous logic needed to
implement the MicroVAX instruction set. It is con-
tained on a single quad-height printed circuit board
and has connectors to interface to the memory con-
troller, the console terminal, and the rear patch panel.

The major components implemented on the data path
module are:

® a32-bit-wide ALU data path and register file
implemented as a custom VLSI chip

an 8K-deep by 40-bit-wide control store
a 13-bit-wide microsequencer

instruction decode logic

a byte-wide internal data path which provides
visibility to various processor states

® an 8K or 16K by 8-bit-wide boot EPROM

® a console interface
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Each of these components is discussed briefly in the
following paragraphs.

Data Path Chip

The execution of each microinstruction takes place in
the data path chip. This 68-pin custom VLSI chip
contains the main 32-bit data path. The chip is
controlled by the microprogram. Twenty-one bits of the
40-bit microinstruction control the chip operations.
The chip consists of:

® A 21-bit control store register

A 32-bit bidirectional I/O port

Two 32-bit internal buses

A 32-bit ALU

A 64-bit barrel shifter (32-bit output)
Forty-eight 32-bit registers

Thirty-two 32-bit constants

A 10 ms nonprogrammable interval timer
Two register file pointer registers

Hardware to accomplish parallel program counter
and register maintenance

Hardware support for multiply

The chip is pipelined; each microinstruction requires
500 ns to execute, but microinstructions are retired
every 250 ns (see Figure 1-4 in Chapter 1).
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Control Store

The data path microinstruction is 40 bits wide, imple-
mented in five 8K by 8 PROMs. This provides 8K
microinstructions, which constitute the microprogram.
In addition to implementing the instructions defined in
Chapter 1, the microprogram includes the console
microcode, and a microdiagnostic called Microverify.

Microsequencer

The microsequencer controls the execution flow of the
microcode in the CPU. It decodes a portion of the micro-
instruction and performs condition testing and
branching to generate the microaddress of the next
microinstruction to be executed. Thus, it generates a
13-bit microaddress every 250 ns. The functions
provided by the microsequencer are described further
in the next chapter.

Instruction Decode Logic

The instruction decode logic decodes macroinstruction
stream bytes. The outputs of this logic provide portions
of the next microaddress at the start of macroinstruc-
tion execution.

Internal Data Bus

The internal data bus is an 8-bit-wide bus completely
contained within the data path module. This bus is the
interface between the main data path elements in the
data path chip, and control and status information
available in the remainder of the machine. The
internal data bus is also used during instruction decode
to pass operand specifier information to the data path
chip.
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Boot EPROM

The boot EPROM is 8K by 8-bits-wide, and stores the
VAX macrocode necessary to bootstrap the system. The
boot EPROM is accessible only to the microcode.

To allow for future expansion, the data path module is
designed to accept a 16K by 8-bit-wide EPROM as well.

Console Interface

The data path module contains the hardware and the
microcode to provide the interface to a single console
terminal, implementing a console protocol which is a
subset of the VAX protocol. The hardware is a standard
EIA RS232/423 line interface. The external connection
to this interface is a 10-pin cable mounted on the data
path board.

A UART is connected through a buffer to the internal
data bus on the data path module and can be read or
written directly by the microcode. The console terminal
registers always communicate with the data path

UART.

The baud rate is selectable from a switch pack on the
DAP module, or from the rotary switch on the CPU
patch panel, and can be set for 300, 1200, 9600, or
19,200 baud. Both transmitter and receiver always
operate at the same speed. The microcode reads the
switch pack and the rotary switch on power up and
programs the UART for the selected baud rate.

Memory Controller

The memory controller module (M7136) is the interface
between the main data path and micromachine, and the
Q22 I/0O and memory subsystem.
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Each microcycle on the memory controller module is
125 ns while each microcycle on the data path module is
250 ns.

The memory controller is an asynchronous subsystem
that provides the following services to the data path
micromachine.

® It controls and maintains a translation buffer and
a data and instruction cache to reduce the number
of memory accesses and increase the effective
speed of those accesses.

® The memory controller implements functions that
allow Q22 bus memory to be accessed as byte,
word, or longword without regard to data align-
ment; [/O devices can also be accessed for byte and
aligned-word data transfers.

® The memory controller module generates all
system clocks.

® It maintains a 16-byte instruction prefetch buffer
to allow data path opcode and operand specifier
decodes to occur rapidly and at the same time as
memory accesses.

The memory controller is contained on a single quad-
height printed circuit board ‘and has connectors to
interface to the data path module. The main interface
to the Q22 bus is also implemented on the memory
controller module. The major memory controller
components are:

® An 8 KB direct-mapped cache
® A 512-entry translation buffer

® A micromachine which consists of a micro-
sequencer and a 1K by 64 control store

® Q22 bus interface logic
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Each of these components is discussed briefly in the
following paragraphs.

Cache

The data and instruction cache consists of a 2K by 32-
bit-wide data store, and a 2K by 16-bit-wide tag store.
The cache is the main element of the mechanism that
transparently translates 16-bit data from the Q22 bus
into 32-bit data that the data path micromachine needs.
The cache also provides increased system throughput.
The cache is a direct-mapped, write-through cache.

Translation Buffer

The translation buffer contains the corresponding
physical addresses for recently used virtual addresses.
It has a total of 512 entries: 256 entries for mapping
system space addresses and 256 entries for mapping
process space addresses.

Memory Controller Micromachine

The memory controller micromachine consists of a 1K
by 64 control store and a simple microsequencer which,
in most instances, generates microaddresses directly
from the previous microinstruction. The memory
controller microsequencer accepts memory request
commands issued by the data path micromachine and
sequences the memory controller data path to carry out
the command. A wide, parallel microinstruction allows
virtually all of the memory controller elements to be
used every microcycle.

Q22 Bus Interface Logic

The Q22 bus interface logic allows the MicroVAX I
processor to communicate with the Q22 bus. Although
most of the interface logic is physically located on the
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memory controller module, it is discussed as a separate
controller in the next section.

Q22 Bus Interface

The Q22 bus interface consists of a state sequencer, a
write register and a read register. The sequencer
handles the bus sequencing and arbitration, freeing the
memory controller from this task.

Interrupts from Q22 bus devices go directly to the data
path module. The data path module arbitrates device
interrupts according to their interrupt priority levels
(IPLs), and raises the machine IPL to 17 (hex) upon
honoring an interrupt from a bus device. Software may
subsequently lower the IPL to the level of the
interrupting device.

MicroVAX I allows only byte and aligned-word accesses
to Q22 I/0 space. All other attempted accesses result in
a machine check. Additionally, aligned-longword
writes to memory are atomic; that is, no other bus
operations are allowed between the two 16-bit-writes
executed on the Q22 bus to accomplish an aligned
longword write.

Memory parity errors are reported to the CPU via the
Q22 bus.

Data Flow Overview

This section takes the prefetch operation and two
macroinstructions as examples, and describes an
overview of the data transfers executed by the CPU at
the microprogram level to accomplish these operations.
This should illustrate how the major functional
components, described above, interact.

4-9 Q22 Bus Interface



Prefetch Operation

The memory controller contains a prefetch buffer and
associated logic to prefetch bytes from the instruction
stream. The prefetch logic maintains its own program
counter, which always contains the physical address of
the last instruction stream byte that was loaded into
the prefetch buffer.

The prefetch buffer can hold up to 16 bytes of
instruction stream data; the memory controller always
tries to keep the buffer full so that it can rapidly supply
the data path with the next instruction stream byte for
decoding. The memory controller accomplishes this by
incrementing the prefetch program counter to sequen-
tially access memory; this counter can only be incre-
mented within a 512-byte page.

If a program flow change or a page crossing occurs, the
data path module sends the memory controller a new
virtual address, so that the memory controller can
update its program counter and refill the prefetch
buffer starting with the new address. The following
steps describe the data transfers that take place
between the data path and the memory controller in
order to do this. Figure 4-2 illustrates the data path
elements that correspond to the steps.

1. After a program flow change or a page crossing,
the program counter (PC) located on the data path
chip contains the virtual address of the next byte
in the instruction stream.

2. The virtual address is transferred to the memory
controller along the memory data bus (MDB).

3. The translation buffer on the memory controller
translates the virtual address to a physical
address. (Assume a translation buffer hit; that is,
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the translation buffer contains the PTE for the
given virtual address.)

The physical address is sent to the cache. (Itis also
copied into a Q22 bus register in case the address is
not in the cache and Q22 memory must be accessed
to obtain the data.) Assume a cache hit; that is, the
cache contains the data for that physical address.
The cache contains the byte of data plus the
adjacent bytes in the instruction stream because
each cache entry is 32 bits wide. Assume the
physical address is longword-aligned so that the
accessed cache entry contains the desired
instruction stream byte plus the next three bytes
in the instruction stream.

The cache data (in this case, the four instruction
stream bytes) are sent through the rotate/merge
logic to the prefetch logic a byte at a time (see
Figure 4-1). From the prefetch logic, the first
instruction stream byte is sent out the memory
control bus to the IBYTE register. As the byte is
clocked into the IBYTE register, the prefetch logic
drives the next instruction byte onto the memory
control bus.

From the IBYTE register, the instruction byte is
sent to the decode logic and the data path micro-
sequencer for decoding. The proper microinstruc-
tions are invoked to interpret it. The hardware on
the data path chip increments the program counter
(PC) by one. This cycle ends with the PC
containing the virtual address of the next byte in
the instruction stream.

While the data path was busy with steps 5 and 6,
the memory controller continued to fill the
prefetch buffer with successive instruction stream
bytes. The prefetch PC now contains the physical
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address of the last instruction stream byte that the
memory controller loaded into the prefetch buffer.
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Move Byte

A move byte (MOVB) macroinstruction copies the byte
at the address specified by the first operand into the
location specified by the second operand. A sample
move byte instruction is: MOVB (R0O), R1. This
instruction means: locate the byte of data at the
address contained in RO (general processor register 0),
and move it to R1 (general processor register 1). At an
assigned virtual address in memory, say 0200, the
instruction looks like this:

5116090 |:0200

where 90 is the opcode for move byte, 60 is the operand
specifier for register deferred mode specifying RO, and
51 is the operand specifier for register mode specifying
R1. The following steps describe the data transfers that
take place as this instruction is fetched and executed.

Assume that the first byte of the MOVB macroinstruc-
tion (the opcode) is already present in the IBYTE
register, the next instruction byte (60) is stable on the
memory control bus, and the remainder of the macroin-
struction is located in the memory controller prefetch
buffer. The program counter (PC), located on the data
path chip, contains the virtual address of the MOVB
opcode (0200). Figure 4-3 illustrates the data path
elements used during the corresponding steps.

1. From the IBYTE register, the opcode (90) is sent
through the decode logic to the data path
microsequencer, causing the first microinstruction
in the MOVB microprogram to be executed during
the next microcycle.

2. The hardware on the data path chip increments
the program counter (PC) by one. The PC now
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contains the virtual address of the next byte in the
instruction stream; in this case, the virtual address
(0201) of the first operand specifier (60).

3. At the start of the next microcycle, the instruction
byte sitting on the memory control bus (in this
case, 60), is loaded into the IBYTE register and the
prefetch logic drives the next instruction byte (51)
onto the memory control bus.

4. From the IBYTE register, the operand specifier
(60) is sent through the decode logic to the data
path microsequencer to define the microprogram
flow necessary to process the operand specifier.

5. The hardware on the data path chip increments
the PC so that it now contains the virtual address
(0202) of the second operand specifier, 51.

6. The contents of RO are examined. RO is located on
the data path chip and contains some virtual
address, say 0100. The 0100 is sent over the
memory data bus to the memory controller for
address translation.

7. The translation buffer on the memory controller
translates the virtual address to a physical address
(assuming a translation buffer hit).

8. The physical address is sent to the cache. (It is also
copied into a Q22 bus register in case the address is
not in the cache and memory must be accessed to
obtain the data.) This time, assume a cache miss;
that is, the cache does not contain the data at that
physical address.

9. The memory controller microsequencer detects the
cache miss condition and informs the Q22 bus
controller that a data transfer operation is needed.

10. Since the physical address is already conveniently
stored in a Q22 bus register, the Q22 bus controller
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11.

12.

13.

takes over and initiates two read word data
transfers, sending the physical address over the
Q22 bus to Q22 bus memory. (Two read word data
transfers are necessary to retrieve the 32 bits
needed to fill the cache.)

The first word of data at the physical address is
located in a memory array and sent over the Q22
bus to the Q22 bus read register on the memory
controller module.

From the Q22 bus read register, the word is sent to
the rotate/merge logic (see Figure 4-1) where it is
rotated and latched in the two low-order bytes of
the merge register. (The rotate/merge logic
includes a rotator and a 32-bit-wide merge
register). The purpose of the rotation is to position
the requested byte of data (the first operand) in the
low-order byte of the merge register. From the
merge register, the word is sent over the memory
data bus to the data path chip on the DAP module.
Because this is a move byte instruction, only the
low-order byte on the memory data bus (the first
operand) is saved in the data path chip. Steps 6
through 12 have all happened as a result of the
microinstructions invoked from decoding and
interpreting the first operand specifier, 60.

After the word containing the desired byte is sent
to the DAP module, the second word is sent over
the Q22 bus and latched in the Q22 bus read
register. As with the first word, it is rotated and
latched in the merge register, but in the upper two
bytes. The first word is still saved in the lower two
bytes. Once both words are latched in the merge
register in the proper order, all 32 bits are written
into the cache.
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14.

15.

16.

17.

At this point, the byte to be moved into R1 has
been obtained from memory and stored in a
temporary register on the data path chip. As a
result of the decode executed in step 4, the next
instruction byte, 51, which was sitting on the
memory control bus, was clocked into the IBYTE
register.

From the IBYTE register, the second operand
specifier (51) is sent through the decode logic to the
data path microsequencer to define the micro-
program flow necessary to process this operand
specifier.

Decoding and interpreting the operand specifier 51
causes the first operand, which was stored in a
temporary register, to be moved into R1. The move
byte macroinstruction is now complete.

The hardware on the data path chip increments
the PC to point at the next byte in the instruction
stream (in this case, the opcode of the next instruc-
tion).
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Subtract One and Branch

The subtract one and branch on greater (SOBGTR)
macroinstruction maintains a loop count and a branch
address, causing the macroprogram to loop on a set of
instructions a desired number of times. The loop count
is decremented by 1 each time the instruction is
executed and a branch is taken to the starting address
of the loop until the loop count is less than or equal to 0.
As long as the loop count is greater than 0, the sign-
extended branch displacement is added to the PC and
the PC is replaced by the result to cause the branch to
the first instruction in the loop.

At an assigned virtual address in memory, say 0203, a
SOBGTR instruction might look like this:

E0(52|F5 |:0203

where F5 is the opcode for SOBGTR, 52 is the operand
specifier for register mode specifying R2, and EO is the
displacement value —32. R2 contains the loop count
that is decremented each time the loop is executed;
assume 1t contains the number 10. The —32 is sign-
extended and added to the PC to compute the branch
destination which is the start of the loop.

Assume that the SOBGTR instruction follows right
behind the MOVB instruction in the instruction
stream, and that the memory controller had success-
fully prefetched the entire SOBGTR instruction.

Then, as a result of the execution of the MOVB as
described in the previous section, the PC contains 0203,
the SOBGTR opcode is in the IBYTE register, the next
byte of the instruction (52) is stable on the memory
control bus, and the last byte (E0) is available in the
prefetch buffer.
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The following steps describe the data transfers that
now take place as the SOBGTR instruction is executed.
Figure 4-4 illustrates the data path elements that
correspond to the steps.

1.

From the IBYTE register, the opcode (F5) is sent
through the decode logic to the data path micro-
sequencer causing the first microinstruction in the
SOBGTR microprogram to be executed during the
next microcycle.

The hardware on the data path chip increments
the program counter (PC) by one. The PC now
contains the virtual address of the next byte in the
instruction stream; in this case, the virtual address
(0204) of the first operand specifier (52).

At the start of the next microcycle, the instruction
byte sitting on the memory control bus (in this
case, 52), is driven into the IBYTE register and the
prefetch logic drives the next instruction byte (E0)
onto the memory control bus.

From the IBYTE register, the first operand
specifier (52) is sent through the decode logic to the
data path microsequencer to define the micro-
program flow necessary to process the operand
specifier.

The hardware on the data path chip increments
the PC to 0205 (the virtual address of EO, the next
instruction byte), and EO is loaded into the IBYTE
register from the memory control bus.

The data path chip hardware causes the contents of
R2 to be decremented by 1. R2 now contains the
loop count 9. Since 9 is greater than 0, the condi-
tion codes are cleared; that is, set to zeros. (Z is set
to 1 when the loop count equals 0; N is set to 1
when the loop count is less than 0.)

Functional Overview 4-22



10.

11.

12.

13.

From the IBYTE register, EO is driven over the
internal data bus (see Figure 4-1), and sign-
extended on the data bus to FFFFFFEOQ. From the
data bus, FFFFFFEQ is sent to the data path chip.

The microinstructions invoked from the opcode
decode compute the virtual address for the start of
the loop as: PC+1+FFFFFFEQ0=01E6 (the PC
contains 0205). This branch destination address is
stored in a temporary register on the data path
chip.

Next, the condition codes are tested. Since condi-
tion codes Z and N are clear, the loop count con-
tained in R2 is still greater than O (in fact, it is 9).
Therefore, the virtual address 01E6 stored in a
temporary register is moved into the PC to cause
the program to branch back to the beginning of the
loop.

The virtual address 01E6 (the new virtual program
counter) is sent to the memory controller over the
memory data bus, and the memory controller
prefetch buffer is purged.

The translation buffer on the memory controller
translates the virtual address to a physical address
(assuming a translation buffer hit).

The physical address is sent to the cache. (It is also
copied into a Q22 bus register in case the address is
not in the cache and memory must be accessed to
obtain the data.) Assume a cache hit; that is, the
cache contains the instruction bytes at the physical
address for the start of the loop.

The cache data is sent through the rotate/merge
logic to the prefetch logic a byte at a time. The first
byte is then sent out onto the memory control bus
tothe IBYTE register.
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14.

15.

16.

17.

The memory controller continues to fetch
additional instruction stream data to refill the pre-
fetch buffer, while instruction execution proceeds
on the DAP module.

From the IBYTE register on DAP, the first byte is
sent to the decode logic and the data path microse-
quencer for decoding. The proper microinstruc-
tions are invoked to process this instruction stream
byte.

This flow continues: moving the next byte from
the instruction stream into the IBYTE register,
decoding and executing it, until the opcode for the
SOBGTR instruction, F5, is once again loaded into
the IBYTE register. Steps 1 through 14 are
repeated nine more times until the loop count,
when decremented at step 6, is zero. When this
occurs, condition code Z is set.

When the condition codes are tested at step 9, Z is
found to be set indicating that the loop should be
exited. The branch destination address, 01E6, is
left in the temporary register and not moved into
the PC. Instead, the hardware on the data path
chip increments the PC to 0206. This is the virtual
address of the next byte in the instruction stream;

in this case, the opcode of the macroinstruction
that follows SOBGTR.

If the memory controller successfully prefetched
the opcode of the macroinstruction that follows
SOBGTR, that opcode is available in the IBYTE
register, and the process of decoding and executing
continues.
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Microcode

The microcode controls all the functions on both
modules. Each macroinstruction in the MicroVAX
instruction set is implemented by an associated routine
of microinstructions. All of the macroinstruction data
transfers described above, for example, happen as a
result of their associated microinstructions.

The microinstruction routines are stored in two places:
the control store on the DAP module, and the control
store on the MCT module. The flow from one microin-
struction to the next is controlled by two micro-
sequencers, one for each control store: the data path
microsequencer, and the memory controller micro-
sequencer. Understanding these two microsequencers
and the microinstructions they execute is the key to
understanding the MicroVAX I processor.

The data path microsequencer and control store are the
master source of control. The microinstructions in the
data path control store are invoked to execute the
decoded macroinstruction. The data path micro-
sequencer controls the microinstruction flow.

The memory controller microsequencer acts as a slave
receiving commands from the data path microsequenc-
er, performing the desired function, and delivering data
or status back to the data path micromachine. The
control store for the MCT microsequencer contains the
microinstructions that enable the MCT microsequencer
to perform the desired memory control function.

The Q22 bus controller (located mostly on the MCT
module) contains sequencing logic that enables it to
accept commands for data from the MCT microsequenc-
er, and handle the bus sequencing and arbitration to

4-27 Microcode



get the requested data. The Q22 bus controller returns
data and status back to the MCT microsequencer.

The remainder of this manual describes these three
micromachines, and the hardware that implements and
surrounds them, in detail. Chapter 5 describes the data
path microcode and Chapter 6 describes the data path
hardware. Similarly, Chapter 7 describes the memory
controller microcode and Chapter 8 describes the
memory controller hardware. Finally, Chapter 9
describes the Q22 bus controller.
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Chapter 5
Data Path Microcode

All of the functions that occur in the KD32-AA or
KD32-AB processor happen as the result of microin-
structions. This chapter describes the microinstruc-
tions that control the data path module.

Microinstruction Format

The data path microinstruction is forty bits wide. The
bits are divided into four fields that accomplish
different functions. These fields are parity, condition
code/data type, data path control, and next address
control. Memory controller functions are encoded
within the data path control field.

39 38 37 36 16 15 0
Data Path | Next Address
PICC/DT Control Control

4
t—condition code and data type field

microinstruction parity bit

Figure 5-1. DAP Microinstruction Format

The following sections describe each of these fields in
more detail.
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Parity Field

The highest order bit (bit 39) of the microinstruction
contains the parity bit. It is used to detect single bit
errors across the entire microinstruction. Odd parity is
used; that is, the parity bit is a one when the sum of the
one bits in the remainder of the microinstruction is
even.

Condition Code/Data Type Field

This field has two functions. It controls the setting of
the condition codes, and it determines the data type to
be used for the current operation. (Data type is also
referred to as size.)

For Memory Request and I-stream Request microin-
structions, bits <38:37> are interpreted as data type.
Decode microinstructions are a special case. For all
other microinstructions, bits <38:37> control the
setting of the condition codes, and implicitly specify the
data type. Table 5-4 in this chapter summarizes the
microinstruction types and which way the CC/DT field
is interpreted for each.

Table 5-1 below shows the encoding for bits <38:37>
when they are interpreted as the condition code field,
which is the case for most microinstructions.
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Table 5-1. Condition Code Field Encoding
<38:37> CCFunction

0 condition codes are unaffected; data typeis
long

1 set ALU condition codes; data type is long

2 set ALU and PSL condition codes; data type
islong

3 set ALU and PSL condition codes; data type

is determined by the size register

For Memory Request and I-stream Request microin-
structions, bits <38:37> are interpreted as the data
type field and encoded as shown in Table 5-2.

Table 5-2. Data Type Field Encoding
<38:37> Data Type

0 byte
1 word
2

determined by size register

3 longword

The Decode microinstruction decodes macroinstruction
opcodes and macroinstruction operand specifiers.
When a Decode microinstruction decodes an opcode,
bits <38:37> of the Decode microinstruction are
ignored. When a Decode microinstruction decodes an
operand specifier, bits <38:37> control the loading of
the size register and are encoded as shown in Table 5-3.
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Table 5-3. Operand Specifier Decodes: CC/DT Field

Encoding
Value Loaded in Data
<38:37> Size Register Type
0 0 byte
1 word
2 size register existing
unaffected data type
3 3 longword

Data Path Control Field

The data path control field is the 21 bits that are sent to
the data path chip to control its functions. The data
path control field for all microinstructions (except
Memory Requests and I-stream Requests) is divided
into six function fields, as shown in Figure 5-2. (The
encoding of the data path control field for Memory
Request and I-stream Request microinstructions is
shown in Figure 5-4 later in this chapter.)

36 32 31 30 29 28 23 22 16

Short Long
Operand | Operand

Opcode [R1|RS|L

Figure 5-2. Data Path Control Field

The opcode field, bits <36:32>, defines the microin-
struction type. Table 5-4 shows the available opcodes
and their functions.

The result register bit, bit <31>, selects the destina-
tion result register for the current ALU operation. The
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result of any ALU operation is stored in one of two
result registers on the data path chip: result register 0
or result register 1. If bit <31> is clear, the result of
the current ALU operation is stored in result register 0.
If bit <31> is set, the result of the current ALU
operation is stored in result register 1.

The register save bit, bit <30>, determines whether or
not a register save operation occurs. (This is true
unless the microinstruction is a NOP, Decode, Restore,
Clear Save Stack, Multiply Step, I-stream Request, or
Memory Request; bit <30> is ignored in these micro-
instructions.)

The data path chip contains a register save stack,
which is a pushdown stack capable of holding seven 36-
bit items. When bit <30> is set, the contents of the
register specified by the short operand, plus the low
four bits of the register address, are pushed onto the
register save stack. When bit <30> is clear, no
register save operation occurs. (For a register save
operation to occur, the short operand cannot be a literal
and must specify a register address from 0 through F.)

The literal bit, bit <29>, determines the inter-
pretation of the short operand field. If bit <29> is
clear, the short operand field specifies a register. If bit
<29> is set, the short operand field is literal data. If
the short operand is literal data, the data path chip
zero-extends the data to 32 bits for use inside the chip.

The short operand field, bits <28:23>, is the first
operand of the data path control field. The short
operand field can specify register addresses 0 to 3F and
may designate a register directly or indirectly. If the
literal bit is set, the short operand field is a 6-bit literal
value. The short operand field is encoded uniquely for
the Decode microinstruction; the encoding is described
later in this chapter.
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The long operand field, bits <22:16>, is the second
operand of the data path control field. It can specify
any register address that the short operand can, and in
addition, specify addresses 40 to 7F. Thus, the long
operand can designate any internal or external regis-
ter, or any constant (the constants are implemented as
ROM on the data path chip).

The encodings for long and short operands are
described further in the section titled “Operand Field
Encoding” in this chapter.
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Table 5-4. Opcode Assignments

Opcode CC/DT Function

Interpretation

HEDOWE > © 0 90 A W -

Pt e
LN ~ O

CC
CC
CC
CC
CC
CC
CC
CC
CC
CC
CC
CcC
CC
CC
CC
CC
CC
CC
CC
CC

NOP

AND

OR

XOR

Mask

Reverse Mask
NOT

Reverse NOT
Add

Add+1
Addwe

Sub

Sub-1
Reverse Sub
Reverse Sub—1
Compare
Shift Left
Shift Right

Shift Right Arithmetic

Double Shift

no operation

dest < short operand AND long operand

dest < short operand OR long operand

dest < short operand XOR long operand

dest < (NOT short operand) AND long operand

dest < short operand AND (NOT long operand)

dest « NOT short operand

dest < NOT long operand

dest < short operand +long operand

dest < short operand + long operand + 1

dest < short operand + long operand + ALU carry

dest < short operand —long operand

dest < short operand —long operand — 1

dest < long operand —short operand

dest < short operand —long operand — 1

CCs « short operand —long operand (The result registers are unaffected.)
dest < long operand shift left logical by shift count register

dest < long operand shift right logical by shift count register
dest < long operand shift right arithmetic by shift count register

dest < 32 bits from 64-bit quantity formed from short operand and long operand,
shift right by shift count register
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Table 5-4. Continued

Opcode CC/DT Function

Interpretation

14
15
16
17
18

19

1A
1B
1C

1D
1E

1F

CcC
CcC
CC

See
Note

CC

CC
CC
DT

CC
DT

CC

Shift Left Literal
Shift Right Literal
Shift Right Arith. Lit.
reserved

Decode

Restore

Clear Save Stack
Multiply Step
I-stream Request

Move
Memory Request

Moveout

dest < long operand shift left logical by literal

dest < long operand shift right logical by literal
dest < long operand shift right arithmetic by literal
undefined

Decode generates a new microaddress for the current
macroinstruction opcode or operand specifier.

The top entry in the register save stack is moved to the register whose address is
stored in the entry.

All entries in the register save stack are marked as being empty.
Multiply Step controls the “shift and add” algorithm for multiplication.

A memory request in which the long operand specifies IB.BYTE,IB.WORD,
IB.LONG, or IB.SIZE.

Move from long operand to short operand.

A memory request in which the long operand is the memory address of the
desired data.

Move from short operand to an external destination specified by the long
operand.

Note: The CC/DT field is ignored for opcode Decodes,
and used to control the loading of the size register for
operand specifier Decodes. See Table 5-3 for the CC/DT
field encoding.
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Next Address Control Field

The next address control field determines the next
microinstruction address. As each microinstruction is
retrieved from control store, the microsequencer
decodes this field and generates the next microaddress.
The next microaddress is used to access control store to
retrieve the next microinstruction.

The control store address space is divided into 32 pages;
each page is 256 words. The next address control field
of some microinstructions specifies an address within
the current page. Other next address control fields
specify a full 13-bit address. The next address control
field always has one of the nine formats shown in
Figure 5-3.

A next address control field must be specified for every
microinstruction. In the microcode listing, there are
microinstructions with no explicit next address control
field given. For these instances, an unconditional jump
to the current microaddress plus 1 is supplied by
default.

Six of the nine formats shown in Figure 5-3 have jump
control fields, either JC<3:0> or JC<1:0>, corre-
sponding to next address control field bits <11:8> and
<9:8>, respectively. The return format has a split
jump control field, consisting of JC<2> (bit 12), and
JC<1:0> (bits 9:8).

The jump control field is used to specify conditions
which are being tested by the microcode. If the condi-
tion is not met, the next microaddress is the current
microaddress plus 1. If the condition is met, the next
address is within the current page at the offset specified
by the jump address field, JA<7:0>. This is true
unless the next address control field format is trap or
branch to subroutine. If the condition specified by the
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jump control field is met for a trap or a branch to
subroutine, the next address is within page zero at the
offset specified by JA<T7:0>.

The jump control field encoding is shown in Table 5-5.
A jump control field value of 0 means there are no jump
conditions to be tested and the next microaddress is
conditioned only by the output of the OR MUX.

Five of the nine formats shown in Figure 5-3 use the OR
field, either OR<2:0> or OR<1:0>, corresponding to
next address control field bits <12:10> and <11:10>,
respectively. The OR bits control the OR MUX, one of
the hardware components of the data path microse-
quencer. The OR MUX is discussed in Chapter 6, but
some information about it is called for here.

Conceptually, there are eight sets of inputs to the OR
MUX, and each set contains four signals which are used
to conditionally affect the low-order four bits of the
microaddress. Table 5-6 shows the eight sets of inputs
with four signals in each set. The value of the OR field
selects one set of four signals, thereby determining the
output of the OR MUX.
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15,14 13 12 11 10 09 08 07 06 ,05 04 03 02 01 00

Y R S N Y R i D D
JMP| 0 |0 |oO JA12:0>
JSBio [0 |1 JA<12:0>
BRjo |1 ]0 |X JC<3:0> JA<7:0> JC= jump
control
CASEf o0 [ 1 |1 OR<2:0> [IC<1:0> JAL7:0> field
JA= jump
BSB| 1 ]0 |0 OR<2:0> |JC<1:0> JA<7:0> address
field
TRAP| 1 |0 | 1 OR<2:0> [IJC<1:0> JA<7:0>
RET | 1 1 0 [JC210R<1:0>JC<1:0> Not Used
IRD | 1 1 1 OR<2:0> |IJC<1:0> Not Used
SPECDEC| 1 } 1 |1 JA<12:8> Not Used
Figure 5-3. Next Address Control Field Formats
Table 5-5. Jump Control Field Table 5-6. OR<2:0>
iC Condition IC Condition 2:0 ORMUX3 ORMUX2 ORMUX1 ORMUXO0
<3:0> Tested <3:0> Tested
0 0 0 ] 0
0 Use OR MUX 8  Console Halt 1 0 0 0 IB invalid
1 ORMUX=0 9 Interrupt 2 0 0 1 0
2 ORMUX =0 A Stack Register 3 MEMERR PageCrossing TB Miss Modify Refuse
3 IB OK B Register Dest. (not PC) 4 0 0 BR False IB invalid
4 ALU N clear C ALU V clear 5 Overflow & Chk Interrupt T Bitor IB invalid
5 ALU Z clear D ALU C clear ortraprequest  Request Console halt
6 ALU N set E ALU V set 6 INDEX<3> INDEX<2> INDEX<1> INDEX<0>
7 ALU Z set F ALU C set 7 0 0 SIZE<1> SIZE< 0>
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For example, one of the inputs to the OR MUX has
these four signals on it: MEM ERR, page crossing, TB
miss, and modify refuse (see the fourth row in Table
5-6). Suppose that just after a memory request com-
pletes, the MEM ERR signal is set (a one), and the other
three are clear (zeros). This input to the OR MUX,
then, is 1000 binary. Now, if the value of the OR field
in the microinstruction at this same point in time is 3,
this input is selected. Therefore, the output from the
OR MUX is 1000 binary and this output is ORed with
the low four bits of the next microaddress.

Given this general information about the next address
control field, each of the nine formats is described in
more detail in the following paragraphs.

Jump and Jump to Subroutine

The jump (JMP) format causes an unconditional jump
to any address in control store. The 13-bit control store
address is supplied by next address control field bits,
labeled JA <12:0>.

The jump to subroutine (JSB) format causes an uncon-
ditional jump to any address in control store. The 13-
bit control store address is supplied by next address

control field bits, JA <12:0>. A JSB also saves the
current microaddress plus 1 on the microstack.

Branch

The branch (BR) format causes a jump to a destination
within the current page, if the jump condition specified
is met. The jump condition is specified in next address
control bits <11:8>. These bits are labeled JC<3:0>
in Figure 5-3.

There is no OR field in the branch format, so when the
next address control field format is branch, the OR

5-13 Microinstruction Format



MUX input is forced to zero. As a result, if the jump
control field of a branch format contains the value 0
indicating “use OR MUX?” (see Table 5-5), the output of
the OR MUX (0000 binary) is ORed with the low four
bits of JA<T7:0>.

If the jump control field of a branch format contains the
value 1, the condition OR MUX=0 is tested. Because
the OR MUX input is forced to zero for the branch
format, this condition is true, and again, the output of
the OR MUX (0000 binary) is ORed with the low four
bits of JA<T7:0>.

If the jump control field of a branch format contains the
value 2, the condition OR MUX=0 is tested. Because
the OR MUX input is forced to zero, this condition is
false, and the branch is not taken.

Thus, if the jump condition is met, the next micro-
address is constructed from the current page, and next
address control bits <7:0>. Bits <12:8> of the
address come from the current page, and bits <7:0>
specify the address within that page.

If the jump condition is not met, the next microaddress
is the current microaddress plus 1.

Case

The case format causes a branch to a destination within
the current page if the condition specified in JC <1:0>
is met. The value of the field OR <2:0> determines the
output of the OR MUX.

If the jump condition is met, the next microaddress is
JA <7T7:4> and the logical sum of the OR MUX output
and JA<3:0>. The current page is specified in bits
<12:8>.

If the jump condition is not met, the next microaddress
is the current microaddress plus 1.
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Branch to Subroutine

The branch to subroutine format (BSB) causes a branch
to a microaddress within page zero if the jump condition
specified in JC<1:0> is met. The value of OR<2:0>
determines the output of the OR MUX. A BSB also
saves the current microaddress plus 1 on the micro-
stack.

If the jump condition is met, the next microaddress is
<12:8> =0, JA<T7:4>, and the logical sum of the OR
MUX output and JA <3:0>.

If the jump condition is not met, the next microaddress
is the current microaddress plus 1.

Trap

The trap format causes a trap to a destination within
page zero if the jump condition specified in JC<1:0> is
met. The value of OR<2:0> determines the output of
the OR MUX. A trap also saves the current microad-
dress on the microstack.

If the jump condition is met, the next microaddress is
<12:8>=0,JA<7:4>, and the logical sum of the OR
MUX output and JA <3:0>.

If the jump condition is not met, the next microaddress
is the current microaddress plus 1.

Return

The return format causes a return to the microaddress
at the top of the microstack if the jump condition
specified in JC<2:0> is met. The JC field is split for
the return format: JC<1:0> correspond to next
address control field bits <9:8>, and JC<2> corre-
sponds to bit <12>. The value of OR<1:0> deter-
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mines the output of the OR MUX (OR<2> is defined
as zero for the return format).

If the jump condition is met, the next microaddress is
the logical sum of the top entry in the microstack and
the OR MUX output.

If the jump condition is not met, the next microaddress
is the current microaddress plus 1.

Instruction Read and Decode (IRD)

The Decode microinstruction (opcode 18 in Table 5-4) is
used to decode macroinstruction opcodes and macroin-
struction operand specifiers. A macroinstruction op-
code decode is also called IRD: instruction read and
decode. When the Decode microinstruction is used for
IRD, its next address control field has the IRD format
shown in Figure 5-3. A jump condition is specified in
JC<1:0> and the value of OR<2:0> determines the
output of the OR MUX.

If the jump condition is met, the next microaddress is
<12:4> =0 and the OR MUX output as bits <3:0>.
The current microaddress is saved on the microstack.

If the jump condition is not met, the next microaddress
is <12> =0 and decode ROM <11:0>. The address of
the current microinstruction plus 1 is pushed on the
microstack.

The decode ROMs (shown in Chapter 4, Figure 4-1) are
used to select the proper microcode routine to process
the macroinstruction specified by the IBYTE register.
There are two decode ROMs; one for single byte op-
codes, and one for two-byte opcodes. Bits <24:23> of
the Decode microinstruction select one of these two
ROMs, and the content of the IBYTE register is used as
a direct address into the selected ROM. The output
from the decode ROM is twelve bits of microaddress.
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Chapter 6 contains more information about the decode
ROMS.

Operand Specifier Decode

When the Decode microinstruction is used to decode a
macroinstruction operand specifier, its next address
control field has the SPEC DEC (specifier decode)
format shown in Figure 5-3. Operand specifier decode
microinstructions have three possible sources for the
next microaddress.

If the content of the IBYTE register is valid and the
operand is not contained in a general register, or the
register is PC, the next microaddress is JA<12:8> and
decode ROM <7:0>. When the IBYTE register con-
tains a macroinstruction operand specifier, the decode
ROMs supply eight bits of microaddress and four bits of
control information. Again, the contents of the IBYTE
register and bits <24:23> from the Decode microin-
struction are used as a direct address into the decode
ROMs. The address of the current microinstruction
plus 1 is pushed on the microstack.

If the content of the IBYTE register is valid and the
operand is contained in a general register other than
the PC, the decode ROM generates a control signal that
causes the next microaddress to be the address of the
current microinstruction plus 1.

If the content of the IBYTE register is not valid, the
next microaddress is JA<12:4>=0 and OR MUX
<3:0>. The OR MUX encoding is defined as 1 for this
condition, so ORMUX <3:0>is 0, 0, 0, IB invalid, and
IB invalid=1 (see Table 5-6). Thus, a trap to microad-
dress 0001 (hex) occurs. The address of the current
microinstruction is saved on the microstack.
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Data Path Microinstructions

The microinstructions listed in Table 5-4 are grouped
by function and discussed in more detail in the
following paragraphs.

ALU Microinstructions

Data path microinstructions involving the ALU are
those with opcodes 0 through F. The ALU is located on
the data path chip. The result of an ALU operation is
written into one of two registers on the data path chip:
RESULTO or RESULT1. Each destination (“dest”)
listed in Table 5-4 is one of these two result registers.
The ALU microinstructions also set the N, Z, V, and C
condition codes.

When a NOP microinstruction is executed (opcode 0),
no operations occur in the data path chip; bits <31:16>
of the microinstruction are ignored.

Shift Microinstructions

Shift microinstructions are those with opcodes 10
through 16. For these microinstructions, the shift
count can come from either the shift count register
which is located on the data path chip, or from a literal
in the short operand field. The range of the shift count
is limited to 0 through 31. Different opcodes are used to
select the type of shift and the source of the shift count.
The result of the shift is always placed in the RESULT2
register, also located on the data path chip. The shift
microinstructions set the Z condition code when bit
<0> of the RESULT2 registerisa 1.

A Double Shift microinstruction (opcode 13) concate-
nates the short operand and the long operand, and
selects 32 bits from this 64-bit quantity. The long
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operand specifies the lower-order longword. The shift
count comes from the shift count register. A rotate
operation is obtained by making the long and short
operands the same.

Move Microinstructions

The two move microinstructions are Move, opcode 1D,
and Moveout, opcode 1F.

Move transfers the contents of the location specified by
the long operand to the location specified by the short
operand. The short operand cannot be a literal. The
data transfer takes place within the data path chip.

Moveout transfers the contents of the location specified
by the short operand to the external data pins of the
data path chip. The external destination is specified by
the long operand. The range of the destination address
must be 60 to 7F.

Other Microinstructions

The following microinstructions don’t fit in any of the
categories listed above.

17 Reserved

18 Decode

19 Restore

1A Clear Save Stack
1B Multiply Step
1C I-stream Request
1E Memory Request

Reserved is simply an unassigned opcode. Clear Save
Stack causes all of the entries in the register save stack
to be marked as empty. The register save bit (bit
<30> in the data path microinstruction) is ignored.
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The remaining microinstructions are described in the
following paragraphs.

Decode

The Decode microinstruction selects the routine of
microinstructions to be executed to process the macro-
instruction opcode or operand specifier in the IBYTE
register. For the Decode microinstruction, the low five
bits of the short operand are redefined as shown in
Table 5-7.

Table 5-7. Decode Microinstruction Short Operand

Bit  Function Explanation

27 Enable V This bit enables the OR MUX
bit and input signal “overflow and check,
check, or or trap request.”
trap request

26 Pointer This bit selects which of the two
Register pointer registers is loaded from

the data bus.
25 Register When set, this bit resets the

Save Stack  register save stack to empty and
Initialize pushes the old PC onto the stack.

24 IFUNC 1 This bit is used by the decode
ROMs to distinguish an opcode
decode from'an operand specifier
decode.

23 IFUNCO This bit is used with bit 24 to
define the type of decode selected.

Redefining these bits in this manner enables the
following functions to be performed during a Decode:

e If the Decode is for an operand specifier, and the
operand specifier is a short literal, bits <5:0> of
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the byte in the IBYTE register are extracted from
the data bus (see Figure 4-1) and written into one
of two 6-bit pointer registers located on the data
path chip: pointer 1 or pointer 2.

If the Decode is for an operand specifier, and the
operand specifier is not a short literal, bits <3:0>
from the IBYTE register are written into one of the
two pointer registers.

The pointer registers are used to hold register
numbers and literals. The bits from the IBYTE
register are written into pointer 1 if bit <26> of
the microinstruction is a zero, and into pointer 2 if
bit <26> is a one.

If bit <25> of the Decode microinstruction is a
one, the register save stack is cleared, and the
unincremented content of the PC is pushed on the
register save stack.

Bits <24:23 > of the Decode microinstruction form
a two-bit control field which is part of the input to
the decode ROMs. (The rest of the input is the
macroinstruction byte from the IBYTE register.)
Bits <24:23> are encoded as follows:

24 23 Selected Decode
0 0 operand specifier decode type 1

o

1 operand specifier decode type 2

[
o

IRD for single byte opcodes
1 1 IRD onsecond byte of two byte opcode

Operand specifier decode type 1 and type 2 refer to
different ways the short operands are handled.
Basically, type 1 indicates that an integer macro-
instruction operand specifier is to be decoded.
Type 2 indicates that a floating-point macroin-
struction operand specifier is to be decoded.
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® The macroprogram counter (PC) on the data path
chip is incremented by one.

® If the Decode is an IRD, microinstruction bits
<31:28> are ignored, and bits <22:16> always
specify RO so that nothing is driven onto the
internal data bus. (For operand specifier decodes,
bits <22:16> specify IB.BYTE so that the con-
tents of the IBYTE register are driven onto the
internal data bus.)

The next address control field of the Decode microin-
struction then generates the next microaddress, which
is the address of the appropriate microinstruction rou-
tine for executing the current macroinstruction byte.

Restore

The register save stack, located on the data path chip, is
a pushdown stack capable of holding seven 36-bit items.
When bit <30> of a microinstruction is set, both the
contents of the register specified by the short operand
and the low four bits of the register address are pushed
on the stack in this format:

35 4 3 0

short operand register contents | address

The following microinstructions are exceptions to this
in that bit <30> (the RS bit) is ignored: NOP, Decode,
Restore, Clear Save Stack, Multiply Step, I-stream
Request, and Memory Request.

The Restore microinstruction pops the top entry off the
register save stack; that is, the top entry in the register
save stack is moved to the register whose address is
stored in bits <3:0> of the stack. If the register save
stack is empty, a Restore microinstruction is effectively
aNOP.
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Multiply Step

The Multiply Step microinstruction performs multipli-
cation using a “shift and add” algorithm. The two ALU
result registers, RESULT0 and RESULT1, are com-
bined to form a 64-bit shift register with RESULT1 the
lower order longword. The required setup conditions

are:

The multiplier is placed in RESULT1. RESULTO
is cleared, or may contain an initial addend.

The multiplicand is specified by the long operand
(range =0:95).

The data type is longword.

Multiply Step is actually called a total of thirty-two
times to complete one multiplication of two longwords.
The following functions are performed for each
Multiply Step microinstruction.

1.

2.

If RESULT1<0>=1, add the multiplicand to
RESULTO.

Right shift RESULTO and RESULT1 by one bit,
such that RESULT0<0> becomes RESULT1
<31>.

. If the add in step 1 was executed, set RESULTO

<31> equal to the sign bit (bit <31>) of the
multiplicand. If the add was not executed,
RESULTO0 <31> isunchanged.

. Set the data path chip condition code bits according

to the result of the addition of the multiplicand and
RESULTO in step 1. (If RESULT1 <0> is not
equal to one in step 1, the addition does not
actually happen and the Multiply Step consists of
steps 2 through 4.)
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Once these four parts of the Multiply Step microin-
struction are executed thirty-two times, the longword
multiplication is complete.

Memory Request

The Memory Request microinstruction is an explicit
request from the data path to the memory controller to
read and write instruction data. The microinstruction
supplies a 9-bit function code and 32 bits of data. The
32 bits of data are a virtual address, a physical address,
or the actual data to be written.

The 9-bit function code is encoded in bits <31:23> of

the Memory Request microinstruction. These nine bits

describe the memory function to be performed. The

function code is described in more detail in the section

titled “Memory Function Encoding” later in this
- chapter.

The 32 bits of data are contained in a register on the
data path chip. The register address is specified by the
long operand of the Memory Request microinstruction.
The 32 bits of data are driven from the register onto the
data bus, and sent to the memory controller over the
memory data bus (see Figure 4-1). The 32 bits of data
are also saved in a temporary register TEMP(0)] on the
data path chip. If the 32 bits of data are a physical or
virtual address, the data located at this address are the
data to be read or written.

A Memory Request microinstruction is followed by one
intervening cycle, and then the proper microinstruction
(either a Move or a Moveout) is executed to move the
requested data to or from the data path. The long
operand of the appropriate move instruction specifies
MEMORY.DATA to indicate that the data to be moved
are the 32 bits currently on the memory data bus. If the
requested data are not available at this time, the
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microsequencer stalls the execution of the micropro-
gram by continuously repeating the Move or Moveout
microinstruction until the requested data are available.

The status of the memory function is available at the
same time the requested data are available, and
remains valid until the next memory function. The
memory function status consists of the four signals on
the fourth OR MUX input: MEM ERR, Page Crossing,
TB Miss and Modify Refuse (see Table 5-6).

I-stream Request

The I-stream Request microinstruction acts as a
command from the data path to the memory controller
to read bytes, sign-extended words, and longwords from
the instruction stream. It can be thought of as a special
case of the Memory Request microinstruction where the
9-bit function code can only be an instruction stream
read (IB.READ) and the 32 bits of data are the unincre-
mented contents of the PC on the data path chip. The
data located at this 32-bit address in the instruction
stream are the data to be read.

The long operand of the [-stream- Request microinstruc-
tion specifies IB.BYTE, IB.WORD, IB.LONG, or
IB.SIZE to indicate the amount of data to be read from
the instruction stream. The unincremented contents of
the PC on the data path chip are driven onto the data
bus, and sent to the memory controller over the
memory data bus. The PC on the data path chip is then
incremented by 1, 2, or 4, depending on the amount of
data read from the instruction stream.

The prefetch logic on the memory controller keeps the
prefetch buffer filled with instruction stream bytes. An
I-stream Request first clears the prefetch buffer, then
reads a byte, word, or longword from the cache or
memory, sends it to the data path module via the
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memory data bus, and refills the prefetch buffer
beginning with the next byte in the instruction stream
following this byte, word, or longword.

After the I-stream Request microinstruction, one inter-
vening microinstruction is executed. Then a microin-
struction, such as Move, is executed to return the byte,
word, or longword from the cache to the data path over
the memory data bus. If a word is read from the cache
or memory, it is returned over the memory data bus and
sign-extended on the data bus. If a byte is read from the
cache or memory, it is returned over the memory data
bus and not sign-extended on the data bus. (The data
bus is shown in Figure 4-1.)

Operand Field Encoding

The short and long operands of the microinstructions
can specify addresses 0 through 3F. In addition, the
long operand can specify addresses 40 through 7F.
Table 5-8 shows the address space organization.
Chapter 6 describes the registers in more detail.
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Table 5-8. Register Address Organization

ADDR +0 +1 +2 +3

00 RO R1 R2 R3

04 R4 RS R6 R7

08 R8 R9 R10 R11

0oC R12 R13 R14 PC

10 TEMP(0) TEMP(1) TEMP(2) TEMP(3)

14 TEMP(4) TEMP(5) TEMP(6) TEMP(7)

18 TEMP(8) TEMP(9) TEMP(10) TEMP(11)

1C TEMP(12) TEMP(13) TEMP(14) TEMP(15)

20 TEMP(16) TEMP(17) TEMP(18) TEMP(19)

24 TEMP(20) TEMP(21) TEMP(22) TEMP(23)

28 TEMP(24) TEMP(25) TEMP(26) TEMP(27)

2C TEMP(28) TEMP(29) TEMP(30) TEMP(31)

30 RESULTO RESULT1 RESULT2 Shift Count

34 PTR 1 PTR 2 *Pointer 1 *Pointer 2

38 Timer Control/Status (TMRCSR)  Reserved Reserved Reserved

3C Reserved Reserved Reserved Reserved

40 ROM Constant (hex): 1 ROM Constant (hex): 4 ROM Constant (hex): 4000 ROM Constant (hex): 14

44 ROM Constant (hex): 16 ROM Constant (hex): OFF ROM Constant (hex): OFF00 ROM Constant (hex): 3000
48 ROM Constant (hex): OFFF ROM Constant (hex): OEQ ROM Constant (hex): OFFFF ROM Constant (hex): OFFFFFF
4C ROM Constant (hex): 8000 ROM Constant (hex): 7FFF ROM Constant (hex): 2000 ROM Constant (hex): 1FF

50 ROM Constant (hex): 1F0000 ROM Constant (hex): 1E ROM Constant (hex): 7FF ROM Constant (hex): 08020FF00
54 ROM Constant (hex): 80 ROM Constant (hex): 7FFFFF ROM Constant (hex): 800000 ROM Constant (hex): 7F80
58 ROM Constant (hex): 10 ROM Constant (hex): 0 ROM Constant (hex): OFFFFF ROM Constant (hex): 100000
5C ROM Constant (hex): 7FF0 ROM Constant (hex): 400 ROM Constant (hex): 80000000 ROM Constant (hex): OFFFFFFFF
60 CON.DATA (UART data) CON.STATUS (UART status) CON.MODE (UART mode) CON.CMD (UART command)
64 Reserved Reserved Reserved Reserved

68 Size register Index register PSL.MODE MISC register, bits <3:0>

oC PSL.EN (write), REQ.ST (read) PSL.IPL (write), INT.SRC (read) PSL.CC ALU.CC

70 System ID Option switches MISC register, bits <7:4> Boot ROM

74 Reserved Reserved Reserved Reserved

78 IB.BYTE IB.WORD IB.SIZE IB.LONG

7C MEMORY.DATA MEMORY.DATA MEMORY.DATA MEMORY.DATA
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Memory Controller Interface Microcode

The data path has three ways in which it requests data
from the memory controller.

1. The memory controller prefetch logic keeps the
prefetch buffer filled with instruction stream bytes
so there is a valid byte on the memory control bus
as often as possible. The data path signals the
memory controller when it needs the next
instruction stream byte, so the data path implicitly
fills the IBYTE register from the memory control
bus as a side effect of instruction and operand
specifier decodes.

If the long operand of a microinstruction (other
than an I-stream Request) specifies IB.BYTE,
which is the unique address of the IBYTE register,
the byte is read from the IBYTE register and sign-
extended on the data bus. In this manner, the data
path also implicitly fills the IBYTE register from
the memory control bus. ’

2. The data path executes Memory Request microin-
structions to explicitly read and write instruction
data.

3. The data path executes I-stream Request microin-
structions to explicitly read bytes, sign-extended
words, and longwords from the instruction stream.

The first item is actually a function of the data path
hardware and is discussed further in Chapter 6. The
Memory Request and I-stream Request microinstruc-
tions are described earlier in this chapter. The memory
functions that can be encoded within these microin-
structions are described in more detail in the following
paragraphs.
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Memory Function Encoding

The microinstruction format is different for Memory
Request and I-stream Request microinstructions. Bits
<31:23> of these microinstructions form a 9-bit
function code field which is used by the DAP micro-
sequencer to specify a function for the memory
controller to perform.

The format of memory request microinstructions is
shown in Figure 5-4. The data size is specified
separately in the data type field (bits<38:37>) of the

microinstruction.
39 38 37 36 16 15 0
Data Path | Next Address
PCC/DT Control Control

36 32 31 30 29 28 27 23 22 16

modify | data | memory | long
intent | flow | function | operand

| l

9-bit function code field

opcode |latch | mode

Figure 5-4. Memory Request Format

Bits <31:23 > are formatted as follows:

<31> latch function parameters:
When this bit is set, the microsequencer
latches the state of the other eight bits of
the function code field in a register called
the previous function latch. These eight
bits, plus one bit provided by the data
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<30>

<29>

<28>

path hardware, are referred to as the
function parameters.

access mode:

When this bit is set, the access mode is
kernel. A zero bit specifies current mode.
The current access mode is obtained from
the PSL.MODE register on the internal
data bus. The access mode is used to
check that the protection allows the
specified operation to be performed.

modify intent:

When this bit is set, the intended access is
write. A zero bit specifies read intent.
Modify intent does not signify whether
data will be read or written, but rather
which access intent is to be checked.

data flow:

When this bit is set, data flows from the
data path chip to the memory controller
(write). A zero bit specifies that data
flows from the memory controller to the
data path chip (read).

<27:23> memory function:

This is a 5-bit encoded value that speci-
fies which memory function to execute.

The data path hardware expands the 9-bit function code
field from the microinstruction into a 10-bit function
code. This 10-bit function code, plus the two bits speci-
fying the data size, are what is actually delivered to the
memory controller. The 10 bits have the format:

<9:8>

access mode: these two bits indicate the
mode for which all accesses are to be
checked. When bit <30> of the memory
request microinstruction is a 1, these bits
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<7>

<6>

<5:1>

<0>

DAP Microcode

are 00 to indicate kernel mode. When bit
<30> of the memory request microin-
struction is a 0, these bits are encoded for
the current mode, as specified by the
PSL.MODE register.

modify intent: this bit indicates the
intended access type as specified by the
modify intent bit, bit <29>, of the
memory request microinstruction.

data flow: this bit indicates the direction
in which data will flow on the data bus as
specified by the data flow bit, bit <28>,
of the memory request microinstruction.

memory function code: the 5-bit encoded
value from memory request microinstruc-
tion bits <27:23> that specifies the
memory function to be performed.

second part: This is the function
parameter bit supplied by the data path
hardware. When clear, this bit specifies
that the first part of a memory function is
to be executed. When set, it specifies that
the second part of a memory function is to
be executed. The second part bit is set
when a Memory Request with the
REPEAT.SECOND function code is
executed. It is cleared when a Memory
Request microinstruction is executed that
has the latch bit (bit <31>) set. The
second part bit is used only during
memory management error recovery for
unaligned reads and writes across page
boundaries.
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Memory Functions

The following describes each memory function as
specified by microinstruction bits <27:23>. The
descriptions give the hex values for bits <29:23> (see
Figure 5-4) because the state of the data flow and
modify intent bits is the only difference between some
memory functions.

READ.VECTOR

Memory Request microinstruction bits <29:23> have
the hex value 00. This memory function grants bus
mastership to the highest level interrupting device and
reads its vector from the Q22 bus. The memory
controller completes the bus grant cycle and transmits
the vector address to the data bus on the data path
module.

The contents of the register specified by the long
operand are ignored as a physical or virtual address is
meaningless for this memory function. The microin-
struction data type field must specify byte even though
a word of data is returned.

VREAD.RCHECK

This is a virtual read with read check Memory Request
microinstruction; bits <29:23 > have the hex value 01.
This memory function requests that a virtual read
operation, with a check for read access, be performed.

The data type field of the microinstruction specifies the
amount of data to be read; byte, word, longword, or use
size register may be specified.

The register specified by the long operand contains a
32-bit virtual address. If mapping is not enabled, then
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no access check is performed and the virtual address is
interpreted as a physical address.

VREAD.WCHECK

This is a virtual read with write check Memory Request
microinstruction. Bits <29:23> have the hex value
41; that is, the 5-bit memory function code is the same
as for VREAD.RCHECK (a value of 01) but the modify
intent bit is set. This memory function requests that a
virtual read operation, with a check for write access, be
performed.

The data type field of the microinstruction specifies the
amount of data to be read; byte, word, longword, or use
size register may be specified.

The register specified by the long operand contains a
32-bit virtual address. If mapping is not enabled, then
no access check is performed and the virtual address is
interpreted as a physical address.

If the resultant physical address has bit <29> set, itis
a reference to I/0 space. Only word and byte references
to I/0O space are legal, and all word references must be
word aligned. If bit <29> is set, the memory
controller converts the read to an interlocked read on
the Q22 bus (a DATIO—read, modify, write word, or
DATIOB—read, modify, write byte).

VWRITE.WCHECK

This is a virtual write with write check Memory
Request microinstruction. Bits <29:23> have the hex
value 61; that is, the 5-bit memory function code has
the value 01 but the modify intent bit and the data flow
bit are set. This memory function requests that a
virtual write operation, with a check for write access,
be performed.
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The data type field of the microinstruction specifies the
amount of data to be written; byte, word, longword, or
use size register may be specified.

The register specified by the long operand contains a
32-bit virtual address. If mapping is not enabled, then
no access check is performed and the virtual address is
interpreted as a physical address.

If the previous operation was an interlocked read, this
function is effectively a write unlock.

VREAD.LOCK

This is a virtual read with write check interlocked
Memory Request microinstruction. Bits <29:23>
have the value 42; that is, the 5-bit memory function
code has the value of 02 but the modify intent bit is set.
This memory function requests that a virtual read
operation, with a check for read access, be performed.

The data type field specifies byte or word. The register
specified by the long operand contains a 32-bit virtual
address. If mapping is not enabled, then no access
check is performed and the virtual address is inter-
preted as a physical address.

This microinstruction causes a byte or word to be read
from memory with a locked Q22 bus cycle; that is,
either a DATIOB or a DATIO data transfer takes place.
The memory controller is bus master and will not
release the bus until a write is performed. The
VREAD.LOCK memory function must be followed by a
VWRITE.WCHECK function or by a PWRITE function.

IB.REFILL

This is an instruction stream refill Memory Request
microinstruction. Bits <29:23> have the hex value
03. This memory function requests that a new origin in

5-35 Memory Functions



the instruction stream be selected. The data type field
must specify byte.

The register specified by the long operand contains a
32-bit virtual address which is the address of the new
origin in the instruction stream. No data are delivered
on the move in from memory.

If mapping is enabled, a read access check is performed
for the specified mode. As subsequent sequential bytes
are read from the instruction stream, no access check is
necessary until a page boundary crossing. If mapping
is not enabled, then no access check is performed.

PREAD

This is a physical read Memory Request microinstruc-
tion. Bits <29:23> have the hex value 04. This
memory function requests a physical read operation.
The data type field of the microinstruction specifies the
amount of data to be read; byte, word, longword, or use
size register may be specified. The register specified by
the long operand contains a 32-bit physical address that
is the address of the data to be read.

PWRITE

This is a physical write Memory Request microinstruc-
tion. Bits <29:23 > have the hex value 64; that is, the
5-bit memory function code has the value 04 but the
modify intent bit and the data flow bit are set. This
memory function requests a physical write operation.
The data type field of the microinstruction specifies the
amount of data to be written; byte, word, longword, or
use size register may be specified. The register
specified by the long operand contains a 32-bit physical
address that is the address of the data to be written.
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If the previous function was an interlocked read, this
function is effectively a write unlock.

XLATE.RCHECK

This is a translate virtual address with read check
Memory Request microinstruction. Bits <29:23>
have the hex value 05. This memory function
translates virtual addresses to physical addresses to
check if certain operations such as pushing onto the
stack can be performed without a fault. This memory
function insures that the page is accessible and that the
appropriate entry is in the translation buffer.

The data type is specified by the data type field of the
microinstruction. The register specified by the long
operand contains the 32-bit virtual address to be
translated.

The data returned to the data path is the physical
address of the first byte corresponding to the translated
virtual address. Both the address and the address plus
the data size — 1 are checked for read access. If mapping
is not enabled, then no access check is performed and
the virtual address is treated as a physical address.

XLATE.WCHECK

This is a translate virtual address with write check
Memory Request microinstruction. Bits <29:23>
have the hex value 45; that is, the 5-bit memory
function code has the value 05, the modify intent bit is
set and the data flow bit is clear. (A zero data flow bit
specifies that the data flows from the memory
controller to the data path chip—a read.) This memory
function translates virtual addresses to physical
addresses to check if certain operations such as pushing
onto the stack can be performed without a fault. This
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memory function insures that the page is accessible and
that the appropriate entry is in the translation buffer.

The data type is specified by the data type field of the
microinstruction. The register specified by the long
operand contains the 32-bit virtual address to be
translated.

The data returned to the data path is the physical
address of the first byte corresponding to the translated
virtual address. Both the address and the address plus
the data size—1 are checked for write access. If
mapping is not enabled, then no access check is
performed and the virtual address is treated as a
physical address.

IB.READ

This is the only memory function allowed for the
I-stream Request microinstruction. Bits <29:23 >
have the hex value 0D. This memory function reads a
byte, sign-extended word, or longword from the
instruction stream. The instruction stream PC is
implicitly incremented so that the next instruction
stream read addresses the correct data. A new

instruction stream origin is established as with the
IB.REFILL function.

The amount of data to be read from the instruction
stream is specified as IB.BYTE, IB.WORD, IB.SIZE, or
IB.LONG in the long operand. The data type field also
specifies byte, word, size, or longword and must match
the data type specified in the long operand. The data
read from the instruction stream is returned to the data
path over the memory data bus. (Sign-extended bytes
can also be read via the data path by specifying
IB.BYTE as the long operand specifier.)
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REPEAT.FIRST

This is a Memory Request microinstruction that
repeats a previous memory function. REPEAT.FIRST
is only meaningful when preceded by an error condi-
tion. It is intended for use in memory management
error recovery microcode that fills the translation
buffer and handles memory modify refuse. Bits
<29:23> have the hex value 06.

When the latch bit, bit <31>, of a Memory Request
microinstruction is set, the data path microsequencer
latches the current function parameters (except for the
second part bit) in a register. REPEAT.FIRST refer-
ences this register, enabling the previous Memory
Request microinstruction to be repeated. The data type
field in the REPEAT.FIRST microinstruction is ig-
nored; the data type field from the previous Memory
Request microinstruction is used.

When any Memory Request microinstruction is
executed, the 32 bits of data it supplies are saved in a
register on the data path chip. The long operand of the
REPEAT.FIRST microinstruction specifies the address
of this register. Thus, the 32 bits of data supplied by
the REPEAT.FIRST microinstruction are the same 32
bits supplied by the previous Memory Request microin-
struction.

If mapping is not enabled, then no access check is
performed and the virtual address is treated as a
physical address. Note that the REPEAT.FIRST
memory function is only meaningful for virtual
functions since the failure of a physical function is
never retried.
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REPEAT.SECOND

This Memory Request microinstruction acts just like
REPEAT.FIRST in that it repeats the previous memory
function. In addition, it sets the second part flag.
REPEAT.SECOND is only meaningful when preceded
by a page crossing error condition. It is intended for use
in memory management error recovery microcode for
unaligned reads or writes across page boundaries. Bits
<29:23> have the hex value 07.

REPEAT.SECOND references the previous function
latch, enabling the previous Memory Request microin-
struction to be repeated. (The previous function latch is
the register used to save the function parameters when
the latch bit of a Memory Request microinstruction is
set.) The data type field in the REPEAT.SECOND
microinstruction is ignored. The REPEAT.SECOND
memory function is used specifically for memory
operations that read or write across a page boundary.

The desired virtual address in the next page is stored in
a result register on the data path chip. It is computed
by adding 4 to the 32-bit virtual address supplied by the
previous Memory Request microinstruction; that is, 4 is
added to the address in the last page.

The long operand of the REPEAT.SECOND microin-
struction specifies the address of the result register
where the computed virtual address is stored.
Therefore, the 32-bit address supplied by the
REPEAT.SECOND microinstruction is the desired
virtual address in the next page.

If mapping is not enabled, then no access check is
performed and the virtual address is treated as a

physical address. Note that the REPEAT.SECOND
memory function is only meaningful for virtual
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functions since the failure of a physical function is
never retried.

READ.CACHE

This is a Memory Request microinstruction that reads a
cache entry. Bits <29:23> have the hex value 0B.
This memory function requests a read operation. The
data type field must specify byte, even though a
longword of data is returned.

The register specified by the long operand contains a
32-bit physical address that is the address of the data to
be read from the cache. The cache RAM contents at
that address are returned whether or not a cache hit
occurs.

WRITE.CACHE

This is a Memory Request microinstruction that writes
a cache entry and its associated tag, and marks the
entry valid. Bits <29:23> have the hex value 2C; that
is, the 5-bit memory function code has the value 0C but
the data flow bit is set. This memory function requests
a write operation.

The data type field must specify byte, even though a
longword of data is written. The register specified by
the long operand contains a 32-bit physical address that
is the address of the data to be written to the cache.

WRITEP

This is a Memory Request microinstruction that is used
in the memory management microcode to write a page
table entry (PTE) with the modify bit set. Bits
<29:23> have the hex value 60; that is, the 5-bit
memory function code has the value 00 but the modify
intent bit and the data flow bit are set. This memory
function requests a write operation and writes an
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aligned longword to the translated address that was
used for the previous memory function.

The data type field must specify longword, and a
longword of data is written. The long operand is
ignored.

Read MCT Registers

This function represents a group of Memory Request
microinstructions that read the memory controller
internal registers. The internal register number is
supplied as part of the function code; bits <29:23 >
have the hex values 10 through 17. The data type field
must specify byte, even though a longword of data is
returned. The contents of the register specified by the
long operand are ignored. Table 5-9 shows the values
for bits <29:23> and the corresponding functions
performed.

Table 5-9. Read MCT Function Codes

<29:23> Function
10 READ MAP.ENABLE
11 READ.CACHE.ENABLE
12 READ.ERROR.FLAG
13 READ.IB.ERROR
14 READ.VIRTUAL
15 READ.PHYSICAL
16 READ.ISTREAM.PC
17 READ.ERROR.CODE

WRITE MCT Registers

This function represents a group of Memory Request
microinstructions that write data to the memory
controller internal registers. The internal register
number is supplied as part of the function code; bits
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<29:23> have the values 18 through 1F. The data
type field must specify byte, even though a longword of
data is written. The register specified by the long
operand contains the actual data to be written. Table
5-10 shows the values for bits <29:23> and the
corresponding functions performed.

Table 5-10. Write MCT Function Codes
<29:23> Function

18 WRITE.MAP.ENABLE

19 WRITE.CACHE.ENABLE

1A WRITE.ERROR.FLAG

1B WRITE.IB.ERROR

1C WRITE.VIRTUAL

1D WRITE.PHYSICAL

1E WRITE.ISTREAM.PC

1F WRITE.ERROR.CODE
READ.TB

This Memory Request microinstruction reads a
translation buffer entry. Bits <29:23> have the hex
value 08. The data type field must specify byte, even
though a longword of data is returned. The register
specified by the long operand contains a 32-bit virtual
address. The translation buffer entry specified by the
virtual address is read regardless of whether a tag
match occurs or whether mapping is enabled or not.

WRITE.TB

This Memory Request microinstruction writes a
translation buffer entry and its associated tag, and
marks the entry valid. Bits <29:23> have the hex
value 29; that is, the 5-bit memory function code has
the value 09 but the data flow bit is set. The data type

5-43 Memory Functions



field must specify byte, even though a longword of data
is written. The register specified by the long operand
contains a 32-bit virtual address. The translation
buffer entry specified by the virtual address is written
regardless of whether mapping is enabled or not.

INVALID.SINGLE

This is an invalidate single Memory Request microin-
struction. Bits <29:23> have the hex value OE. This
memory function invalidates a single translation buffer
entry. The data type field must specify byte.

The register specified by the long operand contains a
32-bit virtual address. If the specified virtual addressis
in the translation buffer, then that entry is set invalid.
Otherwise, no operation is performed. No useful data
are returned by the memory controller on the move in
from memory.

INVALID.MULTIPLE

This is an invalidate multiple Memory Request micro-
instruction. Bits <29:23> have the hex value OF.
This memory function invalidates all of the translation
buffer entries. The data type field must specify byte.

The register specified by the long operand contains a
32-bit virtual address. Translation buffer entries are
unconditionally invalidated. Bit <10> of the virtual
address selects whether the process or system
translation buffer is invalidated. Translation buffer
entries are invalidated starting with the specified
address and continuing until a page crossing occurs.
No useful data are returned by the memory controller
on the move in from memory.
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RCHECK

This is a read check Memory Request microinstruction.
Bits <29:23> have the hex value 0A. This memory
function performs a read check to determine the
accessibility of the first byte of a virtual address. The
data type field must specify byte.

The register specified by the long operand contains the
32-bit virtual address of the byte to be checked. If this
virtual address is not in the translation buffer, a
translation buffer miss is reported in the error
summary register as the TB-Check code. If mapping is
not enabled, then no access check is performed. No
useful data are returned by the memory controller on
the move in from memory. The purpose of RCHECK
and of WCHECK is to determine the accessibility of
data without forcing the translation buffer to be filled.

WCHECK

This is a write check Memory Request microinstruc-
tion. Bits <29:23> have the hex value 4A; that is, the
5-bit memory function code has the value OA but the
modify intent bit is set. This memory function performs
a write check to determine the accessibility of the first
byte of a virtual address. The data type field specifies
byte.

The register specified by the long operand contains the
32-bit virtual address of the byte to be checked. If this
virtual address is not in the translation buffer, a
translation buffer miss is reported in the error
summary register as the TB-Check code. If mapping is
not enabled, then no access check is performed. No
useful data are returned by the memory controller on
the move in from memory.
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Memory Controller Status

After a Memory Request microinstruction and an
intervening microinstruction have been executed, the
next microinstruction executed can test the results of a
memory function. The status of a memory function is
available at the same time that the data requested by
the memory function are available on a read, or at the
same time that the data are presented on a write. This
status remains available until another memory
function is executed.

Memory controller status is returned to the data path
via four bits of status, available as microsequencer OR
MUX inputs:

® TB Miss. The memory controller cannot complete
the current virtual function because the appro-
priate page table entry is not in the translation
buffer.

® Memory Modify Refuse. The memory controller
cannot complete the current virtual function
because the modify bit is not set in the translation
buffer copy of the page table entry.

® Page Crossing. The memory controller cannot
complete the current virtual read/write function
because a page crossing is necessary.

® Error Summary. An error code has been written
into the memory controller’s error code register,
indicating one of the following errors:

- Access Violation. The memory controller cannot
complete the current virtual function because
the desired access is not allowed.

- Parity Error. A memory read error that is not
correctable has been detected.
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- Nonexistent Memory. An attempt has been
made to read a nonexistent memory location.

— Illegal Operation. An attempt has been made to
access I/0 space as a longword or as an unaligned
word, or an attempt has been made to execute an
interlocked read/write to a longword or an
unaligned word.

— Translation Buffer Check. A read or write check
function encountered a translation buffer miss.

The DAP microcode determines which of these errors
occurred by reading the error code register. This is

accomplished by issuing the READ.ERROR.CODE
Memory Request microinstruction.
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Chapter 6
Data Path Module

This chapter is a detailed description of the components
on the data path module and how they interact. First,
the major logic elements and their hardware compo-
nents are described. Then, the basic transfers of data
between the logic elements are described on a micro-
program level.

Overview of DAP Functions

The data path module contains hardware to perform
the following eight functions:

control microinstruction flow

decode macroinstructions

execute microinstructions

transfer data within the data path module
process interrupts

communicate with the console terminal
power on

communicate with the memory controller

The next eight sections describe these functions, and
the hardware components that implement them, in
detail. The hardware components are illustrated in the
DAP block diagram, Figure 6-1.



Controlling the Microinstruction Flow

Controlling the microinstruction flow is the main
function of the data path module, and much of the
hardware is dedicated to it. The hardware components
are the CPU clocks, the control store, the control store
address register, the parity checker, the index register,
the microsequencer, and the microstack and microstack
pointer. These components, plus some control signals,
determine which microinstruction is executed next.
The following paragraphs describe each of these
components in turn.

Clock Signals

The clocks for the system are generated on the MCT
module. A basic clock with a 64 MHz frequency is
generated by a crystal oscillator and is used to derive
all the other clocks in the system.

The CPU clock (DAPL CPU CLOCK) consists of a
symmetrical 250 ns period clock. The start of a
microcycle is defined as occurring on the leading edge of
this clock and is referred to as TO. All the internal data
bus registers are written on this edge. The trailing
edge of the clock occurs 125 ns later.

The signal DAPL CPU PHASE is a clock with the same
timing as CPU CLOCK, but it is not affected by stall
conditions.

The delayed CPU clock (DAPL DLYD CPU CLK) is
asserted from T62.5 to T187.5. This clock is used to
clock PALs which first decode the microinstruction and
generate discrete control signals.
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The control store address clock (DAPL CPU PHASE) is
asserted from T125 to T250. This signal clocks the
control store address register.

Control Store

The control store consists of five 8K by 8-bit PROMs.
The address space within the control store is organized
as 32 pages, each page containing 256 words. Each
word is one data path microinstruction and is 40 bits
wide. All the data path microinstructions are stored in
this control store.

The input to the control store is a 13-bit microaddress
supplied by the control store address register (DAPB
CSA <12:00>). The high-order five bits specify the
page, and the low-order eight bits select the word
within the page.

The control store output is a 40-bit microinstruction
(DAPA CS <39:00>). The various microinstruction
bits are sent different places.

® Nineteen bits are sent from the control store to the
parity checker: CS <39>, CS <38:37>, and CS
<15:00>.

® CS <36:16> are sent to the data path chip (the
data path control field).

® The thirteen low-order bits of the next address
control field, CS <12:00>, are sent to the jump
register in the microsequencer.

® The eight high-order bits of the next address
control field, CS <15:08>, and CS <24 >, are sent
to the jump MUX control logic and the OR MUX
control logic in the microsequencer. The logic
decodes CS <15:08> and generates various
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control signals and selects to govern the micro-
sequencer elements.

® Microinstruction bits CS <38:37>, the CC/DT
field, are sent to a flip-flop and then to the PAL
that contains the size register; they are also sent to
the condition code control logic.

® Microinstruction bits CS <24:23> are sent to the
decode ROMs to indicate the type of opcode or
operand specifier decode.

® The microinstruction opcode CS <36:32>, CS
<24>, and the long operand CS <22:16>, are
sent to the block of logic labeled ID bus address
decode. This block of logic controls the driving of
the appropriate data on the internal data bus when
a Move or Moveout microinstruction is executed,
and the long operand specifies an address external
to the data path chip.

® The microinstruction memory function bits CS
<31:23> are sent to the block of logic labeled
memory function control in case the microinstruc-
tion is a memory request. Information about the
microinstruction opcode is sent to the memory
function control logic from the ID bus address
decode logic.

® Microinstruction bits CS <28:24> are sent to the
IBYTE control logic. Information about the micro-
instruction opcode is sent to the IBYTE control
logic from the ID bus address decode logic.
Information about the long operand is sent to the
IBYTE control logic from the memory function
control logic.
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Control Store Address Register

The control store address (CSA) register holds the
microaddress used to access the control store. While
the inputs to the control store are held stable in this
register, the outputs can be used to control the
operation of the data path.

The input to the CSA register is the thirteen
microaddress bits from the next microaddress MUX in
the microsequencer. The output from the CSA register
is the input to the control store: CSA <12:00>. The
control store address register is clocked at T2.

Parity Checker

The parity checker consists of three chips that check
the parity of the 40-bit microinstruction. If a parity
error is found, the next microaddress is forced to zero,
and a flag is set. The microinstruction causing the
parity error is executed but produces undefined results.
The microinstruction executed at location zero reads
the flag by reading bit 5 at the same address as the
index register. (The index register itself is four bits
wide.)

The input to the parity checker is bits <39:37> and
<15:0> from the control store, and one parity bit from
the data path chip. When the data path chip receives
control store bits <36:16 > (the data path control field),
it generates a parity bit for these bits; this data path
chip parity bit is sent to the parity checker.

If no parity error is found, there is no output from the
parity checker. If a parity error is detected, the output
from the parity checker generates the signal JAM PC,
which forces the next microaddress to zero.
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Index Register

The index register is a four bit register used to store
and test the microcode state. The input to the index
register is the low four bits from the internal data bus
(BUS ID <03:00>). The four bits in the index register
are sent as one of the four-signal inputs to the OR MUX
(INDEX <3:0>, see Table 5-6), or they can be driven
back onto the ID bus through the index buffer (BUS ID
<03:00>).

Microsequencer

The microsequencer generates a 13-bit microaddress
every 250 ns. It accomplishes this by decoding certain
bits in the previous microinstruction while monitoring
certain control and status lines.

The microsequencer consists of these components: the
page register, the microprogram counter (uPC), the
conditional decrementer, the microstack, the
microstack pointer, the jump register, the OR MUX,
the jump MUX, and the next microaddress MUX (NuA
MUX). These components are described briefly in the
following paragraphs. Figure 6-2 is a block diagram of
the data path microsequencer.
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Page Register and Microprogram Counter

These two components together hold the next 13-bit
microaddress. The page register contains bits <12:8>;
these form the page address. The uPC contains bits
<7:0>; these form the address of the word within the
page. The uPC is loaded with the address of the current
microinstruction plus one, and cannot count beyond the
end of the current page. The uPC is clocked at TO of
each microcycle.

Conditional Decrementer

The conditional decrementer is an adder located in the
microsequencer logic between the uPC and the micro-
stack. All eight bits from the uPC run through the dec-
rementer. When a microtrap is taken, the decrementer
adds a negative one to the uPC bits. Otherwise, the
uPC bits pass through unaffected.

Microstack

The microstack is a 16 deep, LIFO (last-in-first-out)
stack used to save return microaddresses when sub-
routine calls or microtraps are executed. The address of
the current microinstruction plus 1 is also saved on the
microstack when a valid operand specifier decode is
executed and the operand is not contained in a general
register.

If the current microinstruction is a subroutine call or
an operand specifier decode (not register mode), the
conditional decrementer adds zeros to the address in
the microprogram counter, causing the microaddress of
the current instruction plus 1 to be saved on the stack.
If the current microinstruction is a trap, or a Decode
and the OR MUX is not equal to zero, the conditional
decrementer subtracts one from the address in the
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microprogram counter, causing the microaddress of the
current instruction to be saved on the stack.

The input to the microstack is supplied by the
conditional decrementer. The decrementer always
supplies a microaddress to the microstack, but the
microaddress does not get written into the microstack
unless the current operation is a subroutine call, a trap,
an operand specifier decode (not register mode), or an
IRD and the OR MUX is not equal to zero. The
microstack is written at T250 of the microcycle (TO of
the next cycle).

The signal DAPC STACK PUSH is asserted by the
microsequencer control logic when it decodes microin-
struction bits CS <15:08> and <24 > and determines
that the next address control field format is a sub-
routine call, a trap, or an operand specifier decode.
STACK PUSH enables writes to the microstack.

The output from the microstack is the top entry in the
stack which is driven onto the next microaddress bus
when the operation is a return.

Microstack Pointer

The microstack pointer (uSP) always points to the top
entry in the microstack; that is, the microstack pointer
contains the address of the microstack location that
contains the most recently stored microaddress.

When the operation is a “push” (a subroutine call or a
microtrap), the address of the next location in the
microstack is calculated and used to address the micro-
stack so that the microaddress from the conditional
decrementer is written into the microstack at that
location. If the branch is taken, the calculated
microstack address is stored in the microstack pointer.
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When the operation is a “pop” (a return), the current
microstack location address in the microstack pointer is
used to address the microstack so that the microaddress
at that location is written onto the next microaddress
bus. Then the microstack pointer is updated at the next
TO clock edge to contain the previous microstack
location address.

The inputs to the microstack pointer are signals to
indicate when the current operation is a push or a
return. Another input to the microstack pointer is the
TAKE BRANCH signal which is asserted during
conditional subroutine calls and returns. The outputs
from the microstack pointer are four microstack
address lines.

Jump Register

This register is used to allow the outputs from control
store to be driven onto the next microaddress bus (NuA
bus). The jump register is open from TO to T125.

The input to the jump register is the microinstruction
next address control field, CS <12:0>, from the control
store. When enabled, the jump register drives these
same thirteen bits onto the next microaddress bus (NuA
bus).

OR MUX

The OR multiplexer allows the microcode to “case”
(that is, perform a multiway branch) on certain signals
in the data path, based on the value of the OR field in
the current microinstruction. Conceptually, there are
eight inputs to the OR MUX, each with four signals.
Some signal values are fixed, others reflect the
microcode state (see Table 5-6 in Chapter 5).
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The OR MUX is enabled when the microinstruction
next address control field format is CASE, BSB, TRAP,
RET, IRD, or SPEC DEC. (Although there is no OR
field in the SPEC DEC next address control field
format, the OR MUX is enabled to test for IB invalid.)
The OR MUX logic decodes the format and OR fields,
and enables the appropriate input. The value of the
four signals on that input then becomes the value of the
OR MUX output. (For an example, see the section
titled “Next Address Control Field” in Chapter 5.) The
OR MUX output is then logically ORed with the low
four bits of the microaddress on the next microaddress
bus (NuA bus). The result is the low four bits of the
address of the next microinstruction.

The input to the OR MUX logic is bits <24> and
<15:8> of the microinstruction; the input to the OR
MUX itself is the various microcode state signals listed
in Table 5-6. The OR MUX output is the value of the
signals on the selected input line. This value is sent to
the NuA bus.

Jump MUX

The jump MUX is part of the jump control logic that
controls the next microaddress multiplexer (NuA
MUX). The jump MUX selects input signals according
to the JC (jump control) field of the current microin-
struction (see Figure 5-3). The JC field specifies
conditions to be tested (see Table 5-5).

~ If the specified condition is met, the jump control logic
enables the NuyA MUX to select the address specified in
JA <T7:0> of the current microinstruction as the next
microaddress. If the specified condition is not met, the
jump control logic enables the NuA MUX to select the
current microaddress plus one for the next micro-
address.
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The input to the jump control logic is next address
control field bits <24> and <15:8> of the current
microinstruction, and the current values for the
conditions that could be tested. The output of the jump

control logic is the select lines to the next microaddress
MUX.

Next Microaddress MUX

This multiplexer provides the inputs to the CSA
register. It is used to select either the contents of the
page register and the microprogram counter (uPC), or
the contents of the next microaddress bus (NuA bus).

When performing conditional jumps, the desired jump-
to address is driven onto the NuA bus early in the
microcycle. Later in the cycle, the NyA MUX select
lines are changed by the jump control logic depending
on whether the jump is to be taken.

The NuA MUX actually consists of two 2-to-1 MUXSs
and three 4-to-1 MUXs. Two of the 4-to-1 MUXs make
up the low 4-bit slice of the NuA MUX. One of following
three inputs to the NuA MUX is selected by the j Jump
control logic as the NyA MUX output:

® the current microaddress contained in the page
register and the microprogram counter, which is
the current microaddress plus one, or

® the microaddress currently on the NuA bus, but
with the value of the low four bits determined by
the OR MUX output ORed with NuA bus <3:0>,
or

® microaddress bits <12:4> forced to zero and the

value of the low four bits determined directly by
the output of the OR MUX.

These inputs to the NuA MUX are stable at TO+112.
The third case described above allows traps which may
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be taken during decode instructions to use the output of
the OR MUX directly. For all other instances, the low
four bits of the NuA MUX input are determined by the
OR MUX output ORed with the address supplied from
the NuA bus (the second case described above), or by
uPC + 1 (the first case described above).

In short, the inputs to the NyA MUX are: NuA bus
<12:0>, OR MUX <3:0>, and yPC <12:0>. The
output of the NuA MUX is referred to as NuyA <12:0>;
these bits have the same value as the bits of the
selected input.

When a microinstruction has a BR or CASE next
address control field format (see Figure 5-3), the
destination microaddress must be within the current
page. The NuA MUX has separate selects for bits
<12:08> and bits <07:00> so that for BR and CASE,
the select for bits <12:08> is not changed even if the
branch is taken.

During certain microinstructions, it is necessary to
force zeros to be output from the NyA MUX. Table 6-1
lists these conditions.
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Table 6-1. Forced Zeros on NyA MUX Output
Bits Conditions |

12 IRD
BSB
trap
control store parity error
power up

11:08 BSB
trap
decode and trap
control store parity error
power up

07:04 Decode microinstruction when a trap is
being taken
control store parity error
power up

03:00 control store parity error
power up

Figure 6-3 lists the possible next address control field
formats, and shows which hardware components of the
microsequencer provide the bits for the next
microaddress.
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Next Microaddress Bits

Next Address
Control Field
Formats 12 1 10 9 8 7 6 5 4 3 2 1 0 comments
IMP <12:0> of current microinstruction, through jump register, onto NpA bus
. . . . current microaddress + 1
JSB <12:0> of current micrainstruction, through jump register, onto NpA bus saved on microstack
BR: JC true <12:8> from page register <7:0> of microinstruction, through jump register to NpA bus
. . <7:0> of microinstruction, through jump register to NpA bus;
CASE: JC true <12:8> from page register <3:0> modified by OR MUX output
. ) <7:0> of microinstruction, through jump register to NpA bus; current microaddress + 1
BSB: JC true <12:8> =0 <3:0> modified by OR MUX output saved on microstack
TRAP: JC true <12:8> =0 <7:0> of microinstruction, through jump register to NpA bus; current microaddress

<3:0> modified by OR MUX output

saved on microstack

RET: JC true

<12:0> from top entry in microstack onto NpA bus; <3:0> modified by OR MUX output

JC not true for BR,
CASE, BSB, TRAP, RET

<12:0> from page register and microprogram counter

IRD: JC true

<12:4> =0

<3:0> = OR MUX output

current microaddress
saved on microstack

IRD: JC not true

0

<11:0> from decode ROMs onto NpA bus

current microaddress + 1
saved on microstack

SPECDEC: IBYTE valid,
operand not in GPR

<12:8> of microinstruction, through
jump register to NpA bus

<7:0> from decode ROMs onto NpA bus

current microaddress + 1
saved on microstack

SPEC DEC: IBYTE valid,
operand in GPR

<12:0> from page register and microprogram counter

SPECDEC:
IBYTE not valid

<12:4> =0

<3:0> = OR MUX output
= 0001 (binary)

current microaddress
saved on microstack

control store parity error,
or power up

<12:0> =0

Figure 6-3. Next Microaddress Sources
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Decoding Macroinstructions

Decoding macroinstructions is the second of the eight
functions that the data path module performs. The
hardware components are the IBYTE register, IBYTE
control, the decode ROMS, condition code control,
condition code class register, condition code PALs,
macrolevel branch control, PSL enable, and the size
register. These components decode macroinstruction
opcodes and operand specifiers. The following para-
graphs describe each of these components in turn, and
the ALU and PSL condition codes.

IBYTE Register

The instruction byte register is an eight-bit register
that holds the next byte of instruction stream data to be
evaluated at the inputs to the decode ROMs; that is, it
contains the macrolevel instruction byte currently
being processed.

The IBYTE register is read on the internal data (ID)
bus when the long operand of the current microinstruc-
tion specifies IB.BYTE, which is the IBYTE register’s
unique address. The contents of the IBYTE register are
also driven on the ID bus during operand specifier
decodes and stored in one of the two pointer registers in
the data path chip. If the operand specifier mode is not
short literal, bits <5:4> of the IBYTE register are
forced to zero to extract the register number. The high
two bits need not be set to zero because the pointer
registers are only six bits wide.

The IBYTE register is loaded at TO from the memory
control bus whenever the signal DAPR LOAD I BYTE
is asserted. LOAD I BYTE asserted means that the
next byte from the instruction stream is needed at the
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end of the current microcycle. There are two reasons
why the next I-stream byte is needed. The first reason
is that the byte currently in the IBYTE register is
valid, but the current microinstruction uses that byte,
so at the end of this microcycle, the byte in the IBYTE
register will no longer be needed. The second reason is
that the byte currently in the IBYTE register is not
valid. The signal DAPR IB INVALID is asserted to
indicate when this is the case.

The input to the IBYTE register is the byte from the
memory control bus, BUS MEM CTL <7:0>. The
output from the IBYTE register is eight bits labeled
DAPF I BYTE <T7:0>. These bits go two places; they
are the input to the decode ROMs, and they are latched
in the IBYTE buffer (see Figure 6-1).

IBYTE Control

The IBYTE register is controlled by the IBYTE control
PAL. The IBYTE control logic informs the memory
controller when the next instruction stream byte is
needed by asserting DAPR IB TAKEN. The next
instruction stream byte is needed either because the
byte currently in the IBYTE register is valid and is
used by the current microinstruction, or because the
byte in the IBYTE register is not valid.

When DAPR LOAD I BYTE is asserted, and the clock
signal DAPL CPU PHASE is asserted, the signal
DAPR CLOCK I BYTE is generated. DAPR CLOCK I
BYTE clocks the bits BUS MEM CTL <7:0> off the
memory control bus into the IBYTE register at TO.

When the IBYTE control logic asserts DAPR LOAD I
BYTE and the clock signal DAPL ALLOW STALL is
asserted, the signal DAPR IB TAKEN is generated.
DAPR IB TAKEN informs the memory controller that
the instruction stream byte that was on the memory
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control bus has been loaded into the IBYTE register,
and another instruction stream byte needs to be sent
from the prefetch logic to the memory control bus.

Thus, DAPR IB TAKEN causes the memory controller
prefetch logic to drive an instruction stream byte onto
the memory control bus. DAPR LOAD I BYTE, DAPR
CLOCK I BYTE, and DAPR IB TAKEN are the signals
asserted when the next instruction stream byte is
needed because the byte currently in the IBYTE
register is valid but is no longer needed because it was
just used by the current microinstruction.

If the byte in the IBYTE register is not valid, the
IBYTE control logic assserts the signal DAPR IB
INVALID. The memory controller continues to send
instruction stream bytes to the memory control bus as
long as IBINVALID is asserted; that is, LOAD I BYTE
is always true when DAPR IB INVALID is asserted.
When IB INVALID is deasserted, this means the byte
in the IBYTE register is valid, and the memory
controller stops sending instruction stream bytes from
the prefetch logic.

The memory controller, meanwhile, generates the
signal MCTT NXT VALID REG, which when asserted
means that the byte on the memory control bus is valid
data. The memory controller deasserts MCTT NXT
VALID REG when the byte on the memory control bus
becomes invalid for any reason; for example, the
prefetch buffer becomes empty, an I-stream Request
microinstruction (which flushes the prefetch buffer) is
executed, a Memory Request microinstruction with the
IB.REFILL function is executed, or the microinstruc-
tion long operand specifies IB.BYTE.

IB INVALID is deasserted by the signal NXT VALID
REG from the memory controller. As long as the
memory controller can supply valid instruction stream
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bytes from the prefetch logic to the memory control bus,
NXT VALID REG remains asserted.

IB INVALID is asserted by any of the following micro-
instructions if the NXT VALID REG signal from the
memory controller is deasserted: Decode, [-stream
Request, Memory Request specifying IB.REFILL, a

microinstruction in which the long operand specifies
IB.BYTE.

Figure 6-4 illustrates the timing relationship between
these signals for both cases:

Case 1: The IBYTE register needs to be refilled
because the current byte is valid but a
Decode microinstruction was just executed.

Case 2: The IBYTE register needs to be refilled
because the current byte is not valid.
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CASE1
Loading of IBYTE reg;
byte from MCT is always
available when needed.

CASE2
Loading of IBYTE reg;
byte from MCT is not
available when needed.

CPU PHASE H —
IBYTE registe;contents

BUS MEM C1:L <7:0>

LOAI‘)I BYTE H

NXT VALID REG H

B I;\IVALID H

IBTAKEN L

................ 125 250 375 500 625 750 875 1000 112 1250
Decode Add Decode Decode
x AB ! D
3 '\_./—
. Decode : Decode Decode Decode

CPUPHASEH ==

IBYTE register contents
BUS MEM CT-L <7:0>
LOAIS IBYTEH

NXT VAL!D REGH

1B INVALID H

IBTAKEN L

Figure 6-4. IBYTE Register Loading
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Decode ROMs

The decode ROMs are logically 1K by 16 bits. They are
used to select the microcode routine to be executed
depending on the current contents of the IBYTE
register. When the current microinstruction is a
Decode, the output from the decode ROMs is driven
onto the NuA bus.

The inputs to the ROMs are bits <7:0> from the
IBYTE register (DAPF [ BYTE <7:0>), and the two
bit control field from the current Decode microinstruc-
tion, bits <24:23> (DAPA CS <24:23>). Bits
<24:23> are encoded as follows:

24 23 Selected Decode
0 0 operand specifier decode type 1

o

1 operand specifier decode type 2

[y

0 IRD for single byte opcodes
1 1 IRD on second byte of two byte opcode

If the decode operation is an IRD, the outputs from the
ROMs are:

® two bits of condition code class (DAPF CC CLASS
<1:0>). For all instructions except conditional
branches, these two bits define how the PSL
condition codes are set. The encoding is shown in

Table 6-2.

® two bits of data type (DAPF DT1/RMODE and
DAPF DTO0/SP). For all instructions except condi-
tional branches, these two bits are encoded as

follows:
00 byte 10 not used
01 word 11 longword

® twelve bits of microaddress (BUSNUA <11:00>)
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® if the instruction is a macrolevel conditional
branch, the low-order bit of the condition code class
(CC CLASS <0>) and the data type field are
combined to form a code that indicates which
condition codes need to be tested for that specific
branch. The encoding is listed in the section titled
“Macrolevel Branch Control” in this chapter.

If the decode operation is an operand specifier decode,
the outputs from the ROMs are:

® ecight bits of microaddress (BUS NUA <07:00>)

® one bit to specify register mode and not PC (DAPF
DT1/RMODE)

® one bit to indicate that the stack pointer (R14) is
specified (DAPF DT0/SP)

® one bit to indicate that the operand specifier being
decoded is not a short literal (DAPF CC CLASS 0).

ALU and PSL Condition Codes

There are two separate sets of condition codes stored in
the data path. The first set is the ALU condition codes
which are used at the microprogram level. These
condition codes result from the last ALU operation in
the data path chip. They are available as jump condi-
tions to the microcode and are also used to load the PSL
condition codes.

The other set of condition codes is the PSL condition
codes. These are part of the PSL and are available to
the macrolevel code. They are used to determine if a
macrobranch should be taken.

Both sets of condition codes (ALU and PSL) can be read
or written on the internal data bus as bits <3:0>.
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Condition Code Control

The setting of the condition codes is controlled by the
CC/DT field of the microinstruction, the microinstruc-
tion opcode, and the condition code class register.

For microinstruction opcodes Move, Moveout, Memory
Request, [-stream Request, Multiply Step, Restore,
Clear Save Stack, and Decode, the condition codes are
never set and the CC/DT field is used only for data type.

For all other microinstruction opcodes, the condition

codes are set as follows for the given values of the
CC/DT field:

0 data type is long, CCs not affected

1 data typeislong, set ALU CCs

9 data type is long, set ALU and PSL CCs
3 data type is SIZE, set ALU and PSL CCs

Condition Code Class Register

The condition code class register is part of the logic that
sets the condition codes. It is loaded from the decode
ROMs at the end of every macroinstruction opcode
decode (also referred to as an instruction read and
decode, or IRD). The bits DAPF CC CLASS 1, DAPF
CC CLASS 0, and DAPF DT0/SP are loaded into this
register from the decode ROMs. The first two, CC
CLASS <1:0>, contain an encoded value; the encoding
is shown in Table 6-2. These register encodings are
essentially setup conditions; when the value of the two
bits is as given, the PSL condition codes will be set as
defined in the Function column.
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Table 6-2. Condition Code Class Register Encoding

<1:0> CC Class Function

0 Logical ALU N to PSLN
ALUZto PSLZ
ALU Vto PSLV
PSL Cto PSL C

1 Arithmetic ALU N to PSLN
ALUZtoPSL?Z
ALUVtoPSLV
ALUCtoPSLC

2 Compare  ALU N to PSLN
ALUZto PSLZ
Clear PSLV
ALUCtoPSLC

3 Floating ALUNtoPSLN
Point ALUZtoPSLZ
ALUVtoPSLV
Clear PSL C

The output of the condition code class register is the

same two CC CLASS bits, labeled DAPE CC CLASS
<1:0>.

Condition Code PALs

The ALU and PSL condition codes are stored in two
PALs. One PAL stores the ALU and PSL N and V bits,
and the other stores the ALU and PSL Z and C bits.
PSL <3:0> are contained in these two PALs; that is,
these two PALs contain the low four bits of the PSL
register. The PALs are controlled by a four-bit
condition code function field, DAPE CC <F3:F0>.
This CC function field is the output of another PAL,
called the CC Function, or CC Pipeline PAL. The CC
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function field is generated from the following five bits:
DAPE CC CLASS <1:0>, DAPC CS REG <38:37>,
and DAPC NO CC OP (1). This last bit indicates
whether the current microinstruction is one that affects
the condition codes. When NO CC OP is low, the CC
function field is 0000 binary. The encoding of the CC
function field is shown in Table 6-3.

Table 6-3. CC Function Field Encoding

DAPE CC

<F3:F0> Function
0000 no operation, CCs unaffected
0100 load ALU CCslogical
0101 load ALU CCs arithmetic
0110 load ALU CCs compare
0111 load ALU CCs floating
1100 load ALU/PSL CCs logical
1101 load ALU/PSL CCs arithmetic
1110 load ALU/PSL CCs compare
1111 load ALU/PSL CCs floating

Because the data path chip is pipelined (that is, the
microcycles overlap; see Figure 1-4 in Chapter 1), the
condition codes are affected by the previous microin-
struction and not the current one. The first microin-
struction is decoded and the control information (the
CC function field) stored until the following T0. The
stored information is then used to directly control the
PALs that store the condition codes. Figure 6-5 shows
when the ALU condition codes are available and when
they are loaded into the PALs from the data path chip
for a Compare microinstruction.

Condition codes are set as follows. The signals DAPF
CC CLASS <1:0> are the output from the decode
ROMS during IRDs. These signals are the input to the
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condition code class register, and also the output from
the condition code class register as DAPE CC
CLASS<1:0>. These two bits, plus DAPC CS REG
<38:37> and DAPC NO CC OP (1) generate the CC
function field, labeled DAPE SET CC <F3:FO0>. The
CC function field bits are sent through a flip-flop to
delay them one microcycle. As the output from the flip-
flop, they are labeled DAPE CC <F3:FO>. From
there, the CC function field bits become part of the
input to the two condition code PALs that store the
ALU and PSL condition codes. The other inputs to
these two PALs are the N, Z, V and C condition codes
themselves from the last data path chip operation
(DAPH DPC <N,Z,V,C>). The PSL condition codes
that are stored in these PALs (PSL <3:0>) are set
according to the encoding of the CC function field and
the values of DAPH DPC <N,Z,V,C> from the data
path chip.
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: NOP; branch if Z is set

Compare

CPUCLOCKH

¢ Decode Compare
©  microinstruction opcode
in data path chip

® Necessary information
available to generate
function code field F3:F0

® Execute Compare
: microinstruection
in data path chip

® F3:F0available as
DAPE SET CC <F3:F0>
from CC Pipeline PAL

T

ALU condition codes are :
available from data path chip

. ® F3:.F0 available as DAPE CC

<F3:F0> from flip-flop

ALU and PSL condition codes are
loaded into ALU and PSL PALs

This is the first
microinstruction
that may branch

on the condition codes.

Figure 6-5. Condition Code Setting Timing Diagram

6-33

Timing of Condition Code Setting




The ALU condition codes available as the output of
these PALs (DAPE ALU <N,Z,V,C>) are the stored
ALU condition codes, and are available as jump
conditions to the microcode, along with DAPH DPC
<N,Z,V,C>. These eight signals are the inputs to a
multiplexer (ALU BR MUX) that allows microbranches
to be taken on either the result of the current data path
chip operation (DAPH DPC <N,Z,V,C>) or the stored
ALU condition codes (DAPE ALU <N,Z,V,C>). Both
the true and the inverted output of this MUX (DAPE
ALU BR H and DAPE ALU BR L) go to the jump MUX
as part of the microbranch control logic.

Macrolevel Branch Control

The condition code test for the macrobranch
instructions is performed in the CC Class & Branch
PAL. (This is the same PAL that contains the
condition code class register.) The inputs to this PAL
are:

® the same three bits from the decode ROMs used for
the condition class register: DAPF CC CLASS 1,
DAPF CC CLASS 0, and DAPF DTO0/SP,

® bit zero from the IBYTE register, and

® the PSL condition code bits, DAPE PSL
<N,Z,V,C> from the output of the condition code
PALs.

The three bits in the first category of inputs listed
above are output bits 15, 14, and 12 from the decode
ROMs. These three bits form a hex code to indicate
what PSL condition code bits need to be checked:
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Decode Hex
ROMs Code CCs
<15:12> to PAL Checked Opcodes (hex)

0 0 N BGEQ, BLSS (18, 19)

1 1 Z BNEQ/BNEQU (12),
BEQL/BEQLU (13)

4 2 \% BVC, BVS(1C, 1D)

5 3 C BGEQU, BCC (1E, 1F)

8 4 NORZ BGTR, BLEQ (14, 15)

9 5 CORZ BGTRU, BLEQU (1A, 1B)

Bit zero from the IBYTE register is the low-order bit of
the macroinstruction opcode and indicates whether or
not the branch should be taken if the tested condition is
met.

The PSL condition code inputs are the current values of
the conditions being checked.

The output from this CC Class & Branch PAL is the
signal DAPE BR FALSE. This signal is one of the
inputs to the OR MUX, indicating that the branch is
not to be taken. At IRD, thissignal isalways true.

PSL Enable

The PSL enable logic is contained in a PAL. This PAL
stores PSL bits 5 and 4: the integer overflow enable bit
(IV) and the trace trap bit (T).

These two bits are shown on the DAP block diagram,
Figure 6-1, as PSL enable. The bits are written at T0
with internal data bus <5:4 >,

Size Register

The size register is used to control the data type of
operations being performed in the data path chip, or the
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size of a datum to be transferred during a memory
request operation.

Size Register Value Data Type

0 byte (8 bits)

1 word (16 bits)

2 not used

3 longword (32 bits)

The size register is loaded at T0 of the next cycle from:

® internal data bus <1:0> when the size register is
explicitly specified in the long operand of a
Moveout microinstruction.

® the decode ROMs during macroinstruction opcode
decodes (IRDs).

® microinstruction bits <38:37> (the data type
field) during macroinstruction operand specifier
decodes if the data type field specifies byte, word,
or long. If an encoding of 2 is specified, then the
size register is unaffected.

The outputs of the size register are:

e DAPE DPC DT1 and DAPE DPC DTO0. These bits
are sent to the data path chip.

e DAPE SIZE 1 and DAPE SIZE 0. These two
signals are two of the OR MUX inputs (see Table
5-6).

e BUS ID 01 and BUS ID 00. These signals are
driven through the PSL.ENABLE PAL onto the
internal data bus.

The size register is controlled by read and write signals
from the ID bus address decode logic.
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Executing Microinstructions

Executing microinstructions is the third of the eight
functions that the data path module performs. The
execution phase of almost all microinstructions takes
place in the data path chip (DPC). The data path chip
consists of a 32-bit data path, register file, and ALU,
and is implemented in 3 micron NMOS technology.
Figure 6-6 is a block diagram of the data path chip. The
chip components are described in the following
paragraphs.

Clock Signal

Internally, the chip runs on a two-phase clock system
consisting of Phase 1 (PH1) and Phase 2 (PH2). The
clock phases are derived by dividing the clock input
signal, DAPL DPC CLK, by two internally on the chip.
-The clock circuitry external to the chip synchronizes
the internal clock phases with the signal DAPL DPC
RESET. The low going edge of DPC CLK that occurs
immediately after DPC RESET is deasserted forces the
internal clock phases to PH1.

DPC RESET is an active low signal which has the
following effects on the data path chip:

® itdisablesthe data bus tri-state drivers,

® it presets the timer, and clears bits 0 and 1 in the
timer control/status register (TMRCSR), and

® it clears the control store register, so the chip will
execute NOPs.

The DPC RESET signal is typically used on power up or
testing. Parity and condition code signals are
undefined during this time. The DPC RESET signal

must be active for at least eight clock periods (four
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microcycles). It can be asserted asynchronously to DPC
CLK, but is deasserted synchronously to DPC CLK.
Figure 6-7 shows the timing relationship between the
chip clock signals and phases.
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Figure 6-6. Data Path Chip Block Diagram
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Control Store Register

The control store register (CSR) is the 21-bit register
that holds the data path control field (bits <36:16>) of
the current microinstruction. The data path control
field (DAPA CS <36:16>) is loaded into the CSR at the
leading edge of every PH1.

Parity Generator

The parity generator on the data path chip computes
parity on the 21-bit data path control field contained in
the control store register. The result is driven on the
parity output pin to the parity checker external to the
chip. Odd parity is generated; the parity bit is set to
one if the sum of the one bits in the data path control
field iseven.

Size Control

The chip supports three data types: byte, word, and
longword. The size of the operation performed in the
data path chip is controlled by the CC/DT field of the
current microinstruction and the size register.

For all microinstructions except three, the CC/DT field
determines the size information that is sent to the data
path chip, and is encoded as follows:

0,1,or2 data typeislongword
3 data type is determined by the size register

The three microinstructions that are the exceptions are
Memory Request, [-stream Request, and Decode. For
Memory Request and I-stream Request microinstruc-
tions, the CC/DT field determines the size information
that is sent to the data path chip, but the field encoding
is interpreted this way:
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0 byte

1 word

2 determined by size register
3 longword

For Memory Requests and I-stream Requests, the size
information in the CC/DT field is also sent to the
memory controller as the data type of the memory
request.

For opcode Decode microinstructions, the CC/DT field
(bits <38:37>) is ignored, and the size register is
loaded from the decode ROM signals DAPF
DT1/RMODE and DAPF DTO0/SP.

For operand specifier Decode microinstructions, the
size register may be loaded from the CC/DT field, signal
names DAPC CS REG <38:37>. In this case, the
CC/DT field controls the loading of the size register and
is encoded this way:

0 load 0 into size register, data type byte

1 load 1 into size register, data type word
2 size register unaffected
3 load 3 into size register, data type longword

At the leading edge of every PH1, the data type for the
current microinstruction is sent to the data path chip
via the size control pins, SIZE1 and SIZEO. The signals
DAPE DPC DT1 and DAPE DPC DTO carry the
encoded data type to the pins. The encoded data type on
the size control pins is longword for all microinstruc-
tions (except the special group of three) if the CC/DT
field does not contain the value 3.

If the current microinstruction CC/DT field does
contain the value 3, or the current microinstruction is
one of the special three and the CC/DT field contains
the value 2, the data type on the size control pins is the
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same as the data type currently stored in the size
register and is encoded as follows:

Size
Register SIZE1 SIZEO DataType
0 0 0 byte
1 0 1 word
2 1 0 not used
3 1 1 longword

The data type specified by the size control pins affects
the writing of the general purpose registers and the
setting of the ALU condition codes; the shift microin-
structions are not affected.

Data Path Chip Buses

The data path is 32 bits wide and contains two 32-bit
buses called bus A and bus B. The buses are precharged
during PH2 and are selectively discharged during PH1.

Bus A is used for short operand sources, with the
following exceptions:

® During the Multiply Step microinstruction, bus A
transfers RESULTO back to the ALU.

® During the Decode microinstruction for a macroin-
struction opcode (IRD), bus A transfers the PC to
the register save stack if bit <25>, the register
save stack initialize bit, is set.

Bus B is used for long operand sources and short
operand destinations, with the following exceptions:

® During the Moveout microinstruction, bus B is
used for the short operand source.

® During the Decode microinstruction, bus B
transfers the data on the external data bus to the
pointer registers.
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® During the Restore microinstruction, bus B
transfers the contents of the register save stack to
the specified general purpose register (GPR).

® During the I-stream Request microinstruction, bus
B transfers the PC to the external data bus.

Arithmetic and Logic Unit

The ALU reads two input longwords, one from bus A
and one from bus B, operates on the longwords, and
writes the result into one of the result registers: either
RESULTO or RESULT1. The ALU microinstructions
are those with opcodes 0 through F (hex) and are
defined in Table 5-4.

Barrel Shifter

The barrel shifter provides four primitive functions:
left shift, right shift, arithmetic right shift, and double
right shift (extract).

The barrel shifter concatenates two longwords, one
from bus A, bits A<31:0>, and one from bus B, bits
B<31:0>, to form a quadword. The higher-order
longword is B<31:0>. The longword result,
R<31:0>, is extracted as 32 consecutive bits from the
quadword and is written in register RESULT2. The
bit-offset of the 32 consecutive bits extracted from the
quadword is determined by the shift count, which can
come from either the shift count register, or from a
literal in the short operand field. The range for the
shift count is 0-31. Table 6-4 summarizes the input
configurations and extract counts for the four primitive
functions of the barrel shifter. “LOP” means long
operand, “SOP” means short operand, and N represents
the shift count.
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Table 6-4. Barrel Shifter Functions

Extract
Function B<31:0> A<31:0> Count
left shift LOP Zeros 32—N
right shift ZEeros LOP N
arith. right shift signext. LOP N
double shift SOP LOP N

Register File

The register file is a RAM array containing 47
registers, each 32 bits wide. The registers can be read
from bus A and bus B, and can be written from bus B.
The register addresses are 00 through OE and 10
through 2F; register address OF is the program counter.
Registers with addresses 00-OE are general purpose
registers (GPRs) and may be written as bytes, words, or
longwords. When a GPR is written with a length less
than longword, the higher order portion is not affected.
Registers with addresses 10-2F are always written as
entire longwords.

Table 6-5 briefly describes the registers contained on
the data path chip. Registers with addresses 30-5F are
described in more detail later in this section.
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Table 6-5. DPC Registers

Address Register Name B bus A bus Description

00-0E GPR(0)-GPR(14) R/W R Macrolevel general purpose registers; writable as B, W, L

OF PC R/'W R program counter

10-2F TEMP(0)-TEMP(31) R/W R General purpose temporary registers

30 RESULTO R R Result register 0 from ALU

31 RESULT1 R R Result register 1 from ALU

32 RESULT2 R R Result register from barrel shifter

33 SC R/W shift count register

34 PTR1 R/W R Pointer register for first operand specifier; pointer registers are zero-
extended when read

35 PTR2 R/W R Pointer register for second operand specifier; pointer registers are
zero-extended when read

36 *PTR1 indirect indirect Select working register specified by PTR1 register

37 *PTR2 indirect indirect Select working register specified by PTR2 register

38 TMRCSR R/W timer control and status register

39-3F RSVD Reserved internal to chip

40-5F ROM R Constants ROM
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Program Counter

The macrolevel program counter (PC) is GPR(15); it is
readable from both buses and writable from bus B. An
entire longword must always be written to the PC.

The PC can be incremented by 1, 2, or 4. It is
incremented by hardware on the data path chip for each
of the following situations:

® An opcode Decode microinstruction is executed.
® An operand specifier Decode is executed.

® The long operand of the current microinstruction
specifies IB.BYTE

® An [-stream Request microinstruction is executed.

Result Registers

The result of any ALU operation (except Compare) is
stored in one of two 32-bit ALU result registers,
RESULTO or RESULT]1, as specified by the result bit
(bit<31>) in the microinstruction (see Figure 5-2).
RESULTO and RESULT1 can be addressed using the
short or long operand, and the register contents driven
onto either bus A or bus B.

RESULTO0 and RESULT1 combine to form a 64-bit wide
shift register which is used for Multiply Step microin-
structions. RESULTO is the high-order longword.
During a Multiply Step microinstruction, RESULTO
and RESULT1 are shifted right so that the least
significant bit (LSB) of RESULTO becomes the most
significant bit (MSB) of RESULT1. (For more infor-
mation about Multiply Step, see the section titled
“Multiply Step” in Chapter 5.)

The result of any barrel shifter operation is stored in
the 32-bit wide shift result register: RESULT?2.
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ROM

There are 32 constants stored in ROM. ROM locations
are addressed by the long operand and are read onto
bus B. (See Table 5-8, addresses 40-5F'.)

Register Save Stack
The register save stack is a pushdown stack capable of
holding seven 36-bit items.

When bit <30 > of the microinstruction is set, both the
contents of the register specified by the short operand,
and the low four bits of the register address are pushed
onto the register save stack in the following format:

35 43 0
short operand register contentsjaddress

The following microinstructions are exceptions to this:
Decode, NOP, Restore, Clear Save Stack, Multiply
Step, I-stream Request, and Memory Request. During
these microinstructions, bit <30> is ignored, and
nothing is saved on the register save stack.

The register save stack is popped using the Restore
microinstruction, and is initialized by the Clear Save
Stack microinstruction or by setting the register save
stack initialize bit (<25>) in a Decode microinstruc-
tion. (For more information about the register save
stack initialize bit, see Table 5-7.)

Pointer Registers

Two 6-bit pointer registers, PTR1 and PTR2, can be
used to indirectly address registers 00-1F.
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The pointer registers can also be used directly as source
operands. When this is the case, their contents are
zero-extended.

PTR1 and PTR2 can be written from bus B, and read on
either bus A or bus B. One of the pointer registers is
always written during a Decode microinstruction with
the number of the register specified in the operand
specifier, or with literal data if the operand specifier is
a short literal; bit <26 > of the microinstruction selects
which one (see Table 5-7). During a Decode microin-
struction, data from the DBUS (data bus, Figure 6-1),
are written into PTR1 for bit <26> =0, and into PTR2
for bit <26> =1.

Shift Count Register

The shift count register is a 5-bit register that controls
the shift amount in a barrel shifter operation. The shift
count register is readable and writable via bus B, and it
is zero-extended when read.

Interval Timer and TMRCSR

The data path chip contains an interval timer that is
available for use by any macrolevel software running
on the system. The interval timer is controlled by the
timer control/status register, TMRCSR.

The interval timer is a 16-bit counter which is clocked
once every microcycle. (One microcycle is 250 ns.) The
counter is loaded with the constant 40,000, which
causes the counter to overflow once every 10 msec.
Every time the counter overflows, TMRCSR <1> is
set, and the counter reloads itself with the constant.
TMRCSR < 1> stays set until it is written with a zero
via microcode.
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TMRCSR <0> is the interrupt enable bit. The timer
interrupt pin of the data path chip is the logical AND of
TMRCSR <0> and TMRCSR <1>. When TMRCSR
<0> and TMRCSR <1> are both set, the signal
DAPH TIMER REQ is sent from the timer interrupt pin
to the interrupt control logic on the external data path.
DAPH TIMER REQ is the signal represented by the
label “timer req” in Figure 6-1.

Writing a zero to TMRCSR <1> clears the interrupt.
Writing the timer control/status register has no effect
on the contents of the counter. The Reset signal loads
the constant into the counter, and clears TMRCSR
<0> and TMRCSR <1>.

Condition Codes

The condition codes are the N, Z, V, and C bits. The N,
Z,V and C bits are set when an ALU microinstruction
(opcodes 1-F) or a Multiply Step microinstruction
(opcode 1B) is performed.

During a logical microinstruction (opcodes 1-7 hex),
both the V bit and the C bit are cleared. The Z bit is set
for a Shift microinstruction (opcodes 10-16 hex).

The N, Z, V, and C bits are set according to the size of
the operand as specified by the size control pins. Table
6-6 describes how the condition codes are set.
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Table 6-6. Data Path Chip Condition Codes

Affected by

CC Opcodes

Description

N 1-For 1B

Z 1-For 1B
Z 10-16
Vv 1-For 1B

C 1-For 1B

N is set when the MSB of the result
=1; that is, the result is negative.
For Compare, N is set if N XOR V is
true.

7 is set when the result=0.
Z is set when RESULT2<0> =1.

V is set when an overflow on arith-
metic operations (opcodes 8-F and 1B)
occurs. Overflow is implemented by
taking the XOR of the carry in and
carry out of the MSB of the ALU.

V is cleared on logical operations
(opcodes 1-7).

For addition and multiplication
(opcodes 8-A and 1B), C is the carry
out from the MSB of the ALU. For
subtraction and Compare (opcodes
B-F), C is the complement of the
carry out.

Cis cleared on logic operations
(opcodes 1-7).

/0 Port

The external registers (addresses 3C-7F) are located
outside the data path chip in the external data path;
they can only be referenced in the microinstruction
long operand. The I/O port is the interface between the
external data path and the data path chip. The I/O port
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is connected to bus B. Table 6-7 briefly describes the
registers located outside the data path chip.

There are 32 data path chip pins that connect the chip
to the external data bus (DBUS). These pins carry the
bidirectional tri-state signals labeled BUS DBUS
<31:00>. The outputs from these pins are disabled
during Reset. The'T/O port drives the DBUS pins only
for the Moveout, I-stream Request, and Memory
Request microinstructions.
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Table 6-7. External Registers

Address Register Name Read/Write Description
60 CON.DATA R/W UART data register
61 CON.STATUS R/W UART status register
62 CON.MODE R/W UART mode register
63 CON.CMD R/W UART command register
68 size register R/W Bits <1:0> only; zero-extended when read
69 index register R/W Bits <3:0> are index register, read/write.
On writes only, bits <7:0> are the low eight address bits of the boot EPROM.
Onreadsonly: bit7 transmit done
bit6  receiverready
bit5  control store parity error
bit4  Microverify jumper
6A PSL.MODE R/W Bits <1:0> only; zero-extended on reads.
6B MISC.WR Write Bits<T7:5> diagnostic LEDs Bit 2 UART receive interrupt enable
Bit 4 break detect enable Bit1 request arithmetic trap
Bit 3 UART transmit interrupt enable Bit 0 send Q22 bus init.
Reading address 6B clears console mode.
6C PSL.EN Write only Writing bits <5:4> to this register sets the PSL IV and T bits, respectively.
6C FUNCTION Read only These bits indicate the status of the saved memory request:
Bit 1 When set, the memory request mode is kernel; when clear, the mode is current.
Bit 0 When set, access type is DAP to MCT (write); when clear, MCT to DAP (read).
6D PSL.IPL Write only Bits <4:0>. Also, writing the low-order six bits to address 6D selects the high six address bits for the
boot EPROM.
6D INT.SRC Read only Interrupt source register; encoding:
0,1 reserved 7 power failure 12 Q22 bus level 5
2,3,10 timer request 8 write timeout 13 console receive
4,5 reserved 9 Q22 bus level 7 14 console transmit
6 Q22 bus level 4 11 Q22 bus level 6 15  nointerrupt
6E PSL.CC R/W Bits <3:0>; zero-extended when read.
6F ALU.CC R/W Bits <3:0>; zero-extended when read.

Writing bit <4> to address 6F sets console mode.
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Table 6-7. Continued

Address Register Name Read/Write Description

70 HD.SID Read System ID register switch pack, bits <7:0> only.

1 SWITCHES Read Option switch pack, bits <7:0> only.

72 MISC.RD Read See 6B.

13 BOOT.ROM Read A single byte from the boot EPROM.

74-17 RSVD Reserved

8 IB.BYTE Read Read a byte from the I-stream; PC incremented by one.

79 IB.WORD Read Read a word from the I-stream; PC incremented by two.

TA IB.SIZE Read Read from the I-stream and increment the PC; data type determined by current contents of size
register.

8B IB.LONG Read Read a longword from the I-stream; PC incremented by four.

7C-7F MEMORY.DATA R/W External memory.
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Transferring Data

Transferring data within the data path module is the
fourth of the eight functions that the data path module
performs. The hardware components are the internal
data bus (ID bus) and the data bus (DBUS), the sign-
extension logic, the ID bus latch, the ID MUX, the
IBYTE buffer, the miscellaneous register, ID bus
control, and zero-generator. These components transfer
data within the DAP module. The following
paragraphs describe each of these components in turn,
and the ID bus timing.

Internal Data Bus

There is an 8-bit data path on the DAP module used to
access the registers that must be visible to external
hardware, such as the console UART and the switch
packs. This data path is also used during instruction
decode to pass operand specifier information into the
data path chip. The information transfer portion of this

data path is a tri-state bus called the internal data bus
(ID bus).

All of the tri-state enables on the ID bus are disabled
during T1. The control outputs are changed during this
time and the bus re-enabled at T2. Data are always
clocked into the ID bus destination at TO.

Data may be driven onto the ID bus from one of several
sources, and may be written from the ID bus to one of
several destinations. The following components can be
sources or destinations: size register, ALU and PSL
condition code PALs, index register, console UART,
MISC register, and the data path chip (via the ID bus
latch when it is a source and via the ID bus input latch
when it is a destination).
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These components can only be sources: the boot
EPROM and two switch packs which are inputs to the
ID MUX, the interrupt source register, and the IBYTE
register. The three separate registers that make up the
hardware PSL: the current mode register
(PSL.MODE), PSL enable, and the IPL register, can

only be destinations.

Data Bus

The DAP module communicates with the MCT module
over a 32-bit tri-state bus called the memory data bus,
implemented in a 50-pin, over-the-top cable. The
extension of this bus on the DAP module is the data
bus, or DBUS. The DBUS transfers data between the
data path chip and the memory controller, and between
the data path chip and the rest of the DAP module.
There is buffering between the DBUS and the memory
data bus (the MD bus latches in Figure 6-1) to provide
the required drive for the signals transmitted over the
cable.

Sign-Extension

The DBUS may also be driven by the sign-extenders.
The sign-extend logic is used when displacements from
the instruction stream are read into the data path chip.
Word displacements are read from the memory
controller over the memory data bus, while byte
displacements are read from the IBYTE register
directly. The sign-extension control enables the sign-
extenders for a read from the ID bus, or for a word
displacement read during an I-stream Request microin-
struction.

The input to the sign-extenders is bit 7 from the
internal data bus (ID bus), bit 15 from the data bus, and
information about the data type. The output is data bus
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bits <31:16> for words (BUS DBUS <31:16>) or data
bus <31:08> for bytes (BUS DBUS <31:08>).

ID Bus Latch

This latch holds data being driven from the low eight
bits of the data path chip. The ID bus latch is needed
because of the data hold times required by the UART.

ID MUX

The ID bus multiplexer gates one of the following sets
of inputs onto the ID bus:

® miscellaneous register <7:0>
® boot EPROM <7:0>

® option switches <7:0>

® system ID switches <7:0>

The output of the ID MUX is ID bus bits <7:0>,
labeled BUS ID <07:00>.

IBYTE Buffer

The IBYTE buffer is a latch located between the IBYTE
register and the ID bus. The contents of the IBYTE
register are driven onto the ID bus through the IBYTE
buffer.

The contents of the IBYTE register are read on the ID
bus when the long operand of the current microinstruc-
tion specifies IB.BYTE, which is the IBYTE register’s
unique address.

The contents of the IBYTE register are also driven on
the ID bus during operand specifier decodes, and stored
in one of the two pointer registers on the data path chip.
When the operand specifier mode is not short literal,
bits <5:4> of the IBYTE register are forced to zero to
extract the register number. (Except for literal mode,
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operand specifier bits <3:0> always specify a register
number. The register number is always saved for an
operand specifier decode.) The high two bits of the
IBYTE register contents (the operand specifier) do not
need to be set to zero because the pointer registers are
only six bits wide.

The input to the IBYTE buffer is DAPF I BYTE
<7:0>. The output is BUSID <07:00>.

Miscellaneous Register

This is a read/write register that contains various
control bits. When a write to this register is performed,
the register address specified is 6B; when a read from
the MISC register is performed, the register address
specified is 72. The register bit definitions are the same
regardless of the operation.

The input to this register is the ID bus bits: BUS ID
<07:00>. The output is eight lines to the ID MUX;
some of these lines are also used for various control
functions. The MISC register bit definitions are as
follows.

07:05 LED bits
Diagnostic LEDs 1, 2, and 3 are lit by
writing zeros to these bits.

04 break detect enable
When this bit is set, a break condition on
the serial line causes a HALT.

03 UART transmit interrupt enable.
02 UART receive interrupt enable.
01 arithmetic trap request

When this bit is set, a trap is taken at the
next instruction decode.
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00 send Q22 bus init
This bit is used to initialize the I/O bus
when requested by a MTPR instruction.

ID Bus Address Decode Logic

The operation of the ID bus is controlled by the opcode
and long operand field of the microinstruction. The ID
bus address decode logic receives bits CS <36:32>
from control store (the microinstruction opcode), bits
DT1/RMODE and CC CLASS 0 from the decode ROMs,
and CS<20:16> from control store (the microinstruc-
tion long operand). With these inputs, the ID bus
address decode logic generates signals to control read
and write operations on the ID bus. The microinstruc-
tion opcode specifies the direction of the data transfer,
and the long operand is used as an address to determine
if an ID bus register is the source or the destination of
the data to be transferred.

Because of the pipeline in the data path chip, the
timing on the ID bus is different for reads and writes.
On a read operation, the data are driven onto the ID bus
at T2 of the microinstruction requesting the read. The
difference on write operations is that the data are not
available from the data path chip until just before T2 of
the microinstruction following the one requesting the
write. The long operand and some of the control
information is stored in a pipeline register which then
provides the necessary write enable signals to the
destination registers one cycle later. Figure 6-8 shows
the timing for reads from ID bus registers. Figure 6-9
shows the timing for writes to ID bus registers.

Logic to decode the microinstruction opcode is part of
the ID bus address decode logic; the microinstruction
opcode needs to be decoded to allow the data path
elements to behave differently depending on the
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operation required. For example, the data path needs
to detect Memory Request and I-stream Request
opcodes. The inputs to the microinstruction opcode
decode logic are the microinstruction opcode field CS
<36:32>, and CS <24> to differentiate between
operand specifier and opcode decodes. The outputs are
as follows.

® A signal named NO CC OP informs the condition
code logic that the condition codes are not changed
for this instruction.

® A signal named DECODE indicates that the
current microinstruction is a Decode.

® A signal named MEMORY OP informs the
memory controller that the current microinstruc-
tion is a memory function.

® A signal named MOVEOUT indicates that the
current microinstruction (Moveout, Memory
Request, or I-stream Request) causes data to be
driven out of the data path chip.

® A signal named NOT LIT indicates that the
current operand specifier is not a short literal.

® A signal named CLR IB VALID informs the
IBYTE control PAL that the contents of the IBYTE
register will not be valid at the end of the current
microinstruction.

® A signal named SET OPEN LATCHES controls
the data latches driving the memory data bus and
the internal data bus.

® A signal named DECODE & RMODE indicates
that the current operand specifier is register mode
and not PC.
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Figure 6-8. Timing of Read from ID Bus Register
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Figure 6-9. Timing of Write to ID Bus Register
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Zero-Generator

Several of the readable registers on the ID bus contain
less than eight bits. The microcode requires that these
registers be zero-extended when read, so a zero-
generator is connected to the ID bus. The zero-
generator is implemented as a PAL. It is enabled when
any register containing less than eight bits is read; the
zero-generator drives zeros on the unimplemented bits
of that register.

The input to the zero-generator is the low-order three
bits of the microinstruction long operand and some
control signals. The output is bits BUSID <07:02>. If
the ID bus register being read is INT.SRC (interrupt
source), PSL.CC, or ALU.CC, BUS ID <07:04> are
driven onto the ID bus as zeros. If the ID bus register
being read is the size register, PSL.MODE (current
mode register), or FUNCTION (memory function
status), BUSID <07:02> are driven onto the ID bus as
Zeros.

Processing Interrupts

Processing interrupts is the fifth of the eight functions
that the data path module performs. The hardware
components are the interrupt priority level (IPL)
register, the interrupt control logic, the priority
encoder, and the interrupt source register. The follow-
ing paragraphs describe each of these components in
turn.

IPL Register

The interrupt priority level regiéter stores the current
processor priority. This priority is used by the
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interrupt control logic to determine if an interrupt
request is to be granted.

The IPL is changed when an interrupt is taken, when a
MTPR to IPL or REI macroinstruction is executed, or
during certain exception conditions. These instructions
use a temporary register on the data path chip to store
the new IPL until it is written into the IPL register.
The IPL register is written at TO from ID bus bits
<4:0>.

Interrupt Control Logic

The interrupt control logic on the data path module
informs the microcode of pending interrupt requests.
These requests can be generated by local hardware (for
example, power fail) or can come from the Q22 bus. The
priority encoder and the interrupt source register are
actually part of the interrupt control logic; this logic is
always enabled.

The interrupt request lines from the Q22 bus are
received in a bus receiver, synchronized to the CPU
clock (DAPL CPU CLOCK) and sent to the priority
encoder. Interrupt request signals from internal
sources are also sent to the priority encoder.

The hardware compares the IPL of the Q22 bus device
requesting the interrupt with the current processor
[PL. If the IPL of the Q22 bus device is higher, the
interrupt is served at IPL 17 (hex). The microcode that
services Q22 bus interrupts then reads the interrupt
source register to determine which Q22 bus device
actually caused the interrupt.

Priority Encoder

All active interrupt requests are prioritized in the
priority encoder. The encoded output value is compared
with the interrupt priority level (IPL) from the
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hardware PSL. If the priority of the request is greater
than the current IPL, the interrupt request flag (DAPN
INT REQ) is sent to the OR MUX and jump control
logic in the microsequencer.

If an interrupt request is pending during an IRD
(macroinstruction opcode decode), it causes a microtrap.
INT REQ is one of the OR MUX inputs (see Table 5-6).
Since the OR MUX is enabled for an IRD, the OR MUX
output is 0100 (binary) if an interrupt request is
pending and no other condition is present; the other
next microaddress bits are forced to zeros (see Table
6-1). Thus, if an interrupt request is pending and an
IRD is executed, a microtrap is taken to control store
address 0004 (hex). A microinstruction routine to
handle interrupt requests starts at this address.

The comparison between the encoded output value from
the priority encoder and the current IPL is done in a
PAL; this PAL also contains the interrupt source
register (INT.SRC).

Interrupt Source Register

The encoded output value from the priority encoder is
the input to the interrupt source register. This value is
compared with the processor IPL; the comparison
produces a 4-bit code which is loaded into the interrupt
source register if the request priority is higher than the
current processor [PL. The microcode identifies the
source of an interrupt request by reading this 4-bit code
in the interrupt source register. The register encoding
is shown in Table 6-8.
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Table 6-8. Interrupt Source Register Encoding

Interrupting IPL INT.SRC
Event (hex) Register
none 1111
power failure 1E 0111
write timeout 1D 1000
Q22 bus level 7 17 1001
timer request 16 1010
timer request 16 0010
timer request 16 0011
Q22 bus level 6 16 1011
Q22 bus level 5 15 1100
console receive 14 1101
console transmit 14 1110
Q22 bus level 4 14 0110

When the interrupt source register is read by the
microcode, the following interrupt requests are cleared
by the hardware if they are the highest priority: write
timeout, console receive, and console transmit.

The output from the interrupt source register is bits
BUS ID <03:00> and the interrupt request signal to
the microsequencer.

Communicating with the Console Terminal

Communicating with the console terminal is the sixth
of the eight functions that the data path module
performs. The console port consists of an EIA standard
RS232/423 line interface and a 2661 UART. The
external connection to this interface is through a 10-pin
cable header mounted on the DAP board. The
hardware components are the console UART and
registers, the UART buffer, option switches, the charge
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pump, and break and halt detection. The following
paragraphs describe each of these components in turn.

Console UART

The console UART and the RS232/423 line interface
provide the connection to the console terminal. The
UART is connected through the UART buffer to the ID
bus, and can be read or written directly by the
microcode. The baud rate is selected in the option
switches and can be set for 300, 1200, 9600 or 19,200
baud. The transmitter and receiver always operate at
the same speed. The microcode reads the option
switches during power up and programs the UART for
the selected baud rate.

The console UART can request interrupts for either
“transmit done” (DAPP XMIT DONE) or “input ready”
(DAPP RECRDY).

The UART clock (DAPP UART CLK) comes from a
5.0688 MHz crystal oscillator that is driven directly
into the UART.

Console UART Registers

The UART has programmable mode and status
registers to select different speed and character length
options. There is also a break detect; the signal DAPP
BREAK is asserted when the BREAK key on the

console terminal is pressed.

The UART mode and status registers are written by the
microcode on power up to allow the UART to correctly
interface with the console terminal. Four addresses,
60-63 hex, are assigned to the UART in the long
operand address space. On power up, the microcode
initializes the UART to operate in the mode required.
Once the UART is initialized, it is accessed only to read
and write characters to the console terminal. Table 6-9
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gives the UART register addresses and a brief

description.
Table 6-9. UART Registers
Address
(hex) Register Description

60 CON.DATA Contains character
received or to be
transmitted

61 CON.STATUS Contains UART status

62 CON.MODE Consists of two mode
registers that set operating
conditions

63 CON.CMD UART command register;

sets operating mode

The following paragraphs describe these registers in
more detail.

UART Data Register

CON.DATA is an eight bit register that contains the
ASCII character to be transmitted to the console
terminal, or the ASCII character received from the
console terminal.

If an ASCII character is to be transmitted to the console
terminal, the character written into CON.DATA is ID
bus bits <07:00>; BUS ID <07:00> are written into
the UART buffer from the ID bus, then transmitted to
CON.DATA in the console UART.

Similarly, an ASCII character received from the
console terminal and stored in CON.DATA is read onto
the ID bus as BUS ID <07:00> through the UART
buffer.
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UART Status Register

CON.STATUS contains bits that indicate the status of
the receiver and transmitter. The bits are defined as

follows.
7:6

data set status

MicroVAX I does not use the modem control
feature of the 2661 UART, so these bits are
ignored by the microcode.

framing error

This bit is set when a stop bit is not received
following the last data bit of a received
character. Bit 5 is cleared by writing a one to

the reset error bit in the command register
(CON.CMD <4>).

overrun error
This bit is set when an incoming character is
received before the previous received
character has been read by the microcode.
This bit is cleared by writing a one to the
reset error bit in the command register

(CON.CMD <4>).

parity error
This bit is not used.

data set change
This bit is not used.

receiver ready

This bit is set when a character is received
from the serial line. It is cleared when the
UART data register (CON.DATA) is read.

transmit done
This bit is set when the transmitter has
completed transmission of a character. It is
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cleared when the UART data register
(CON.DATA) is written.

External forms of CON.STATUS bits <1> and <0>
are available as the signals REC RDY and XMIT
DONE. These signals generate the interrupt requests
for “input ready” and “transmit done,” respectively.

UART Mode Registers

Mode registers 1 and 2 define the general operational
characteristics of the UART and are accessed only
during power up. The two mode registers are accessed
by performing either the read or the write operation at
that address twice. The first operation accesses mode
register 1, and the second accesses mode register 2.

Mode Register 1. This register is initialized to 4E (hex)
in the MicroVAX I system to define the following setup
conditions:

bits <7:6>  stop bitlength
These bits are initialized to 01 to define
one stop bit at the end of the eight-bit
character being sent or received.

bits <5:4>  parity control
These bits are initialized to 00 to define
no parity checking.

bits <3:2>  characterlength
These bits are initialized to 11 to define
8-bit characters.

bits <1:0>  baud rate multiplier
These bits are initialized to 10 to define
an asynchronous, 16X clock rate.

Mode Register 2. This register is used to set operating
conditions and the baud rate of the UART. Only four
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baud rates are supported. The bit definitions for mode

register 2 are:

bits <7:4>

bits <3:0>

clock source, break enable

This bit is initialized to 1111 to define
the internal baud rate generator as the
clock source, and to enable break
detection.

baud rates:

0101 300 baud
0111 1200 baud
1110 9600 baud
1111 19200 baud

UART Command Register

CON.CMD is used to enable the UART and set the
operating mode to either normal or self-test. The bits
are defined as follows.

7:6

operating mode

00
01
10

11

normal operation

not used

local loop back

In this mode, a character written to the
transmitter will be received by the
receiver.

not used

request to send (RTS)
This bit is initialized to a one.

reset error

Writing a one to this bit clears the receive
error flags in the status register
(CON.STATUS).

force break
This bit is initialized to zero.
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2 receiver enable
This bit is initialized to a one.

1 data terminal ready (DTR)
This bit is initialized to a one.

0 transmitter enable
This bit is initialized to a one.

Initializing the UART

The correct sequence must be used to set up the UART
initial conditions. The sequence is:

1. write mode register 1
2. write mode register 2
3. write command register

If the baud rate is to be changed, the UART must first
be disabled by clearing the receiver and transmitter
enable bits in the command register (CON.CMD <2>
and <0>). The UART must then be reset following the
above sequence.

UART Buffer

The UART buffer is a bus transceiver. The input to the
UART buffer is bits BUS ID <07:00> when a write to
the UART occurs. The eight bits stored in the UART
buffer are then written into the UART.

When a read from the UART occurs, the input to the
UART buffer is the eight bits from the UART register.
The eight bits stored in the UART buffer are then
driven onto the ID bus as BUSID <07:00>.

Option Switches

The option switches (an eight-switch DIP) select the
baud rate, break detect enable, the system recovery
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action, the console terminal type, and the bootstrap
search order. The output from the switches is eight
data lines to the ID bus MUX. The switch definitions
are as follows; the default switch settings are in bold.

<8:7>

<6>
<bh>

<4:3>

<2>

baud rate selection
These switches specify the console terminal
baud rate:

0 9600

1 19200
2 300

3 1200
0, reserved

break detect enable
This switch determines the state of bit <4>
in the MISC register:
0 Dbreak disabled
MISC <4>=0)
1 breakenabled
(MISC <4>=1)

recovery action

These switches specify the actions to be taken
when the machine powers on:

0 warm start, boot, halt

1  boot, halt
2  warmstart, halt
3 halt

console terminal

This switch identifies the type of console
terminal connected to the system.

0 VTI100 compatible

1  bit-mapped graphics terminal
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<1> bootstrap search order
This switch determines which devices are
searched during bootstrap.
0 search order: diskettes, disks,
MRV11 PROM,DEQNA
1 search order: MRV11 PROM, DEQNA

The recovery actions are explained in more detail in the
section titled “Powering Up” in this chapter.

- 12 Volt Generator

The RS232/423 drivers require a —12 volt power
source; —12 volts is not available from the system
power supply. Therefore, the DAP module contains a
charge pump circuit to generate this voltage. The
circuit operates by alternately charging two capacitors
to +12V and using them to charge a third capacitor;
the — 12 volt output is taken from this third capacitor.

Break and Halt Detection

There are three situations in which break or halt
detection needs to occur.

® The HALT button on the MicroVAX I system front
panel is pressed.

e The BREAK key on the console terminal is
pressed.

® A Halt macroinstruction is executed in kernel
mode.

Pressing the HALT button on the front panel asserts
the Q22 bus halt line, BHALT. This is received by a
bus receiver. The output of the receiver is the signal
DAPP RCVD HALT. DAPP RCVD HALT generates
the signal DAPS HALT REQ.
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Pressing the BREAK key on the console terminal
asserts the signal DAPP BREAK. If the break detect
enable bit in the MISC register is set (bit <4>), DAPP
BREAK generates the signal DAPS HALT REQ. (The
setting of option switch 5 determines the state of bit
<4> in the MISC register.)

Once DAPS HALT REQ is asserted because either the
HALT button or the BREAK key was pressed, it
generates two signals: DAPE CONSOLE MODE which
is one input to the jump MUX, and DAPE T BIT OR
CON which is one input to the OR MUX.

When DAPE T BIT OR CON is asserted, output bit
<1> from the OR MUX is set. At the next IRD, a
decode trap is taken to address 0002 (hex) in control
store (see Table 6-1). From this location, a jump is
taken to the address of the “T-bit or Console Halt”
microroutine. This microroutine backs up the PC, and
checks if CONSOLE MODE is asserted. If CONSOLE
MODE is asserted, the microcode branches to the
console stop microroutine.

The console stop microroutine displays a halt code on
the console terminal, and the system enters console
mode. Thus, pressing the BREAK key has the same
effect as pressing the HALT button, if MISC register bit
<4> is set (that is, if BREAK is enabled). If MISC
<4> isnot set, pressing the BREAK key has no effect.

When a Halt macroinstruction is decoded, the output
from the decode ROMs is the address of a microroutine
that checks if the PSL mode is kernel. If the mode is not
kernel, a jump to the reserved instruction fault micro-
routine is taken. If the mode is kernel, a jump is taken
to the address of the console stop routine. The console
stop microroutine displays a halt code on the console
terminal, and examines the option switches to deter-
mine the recovery action.
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Powering Up

Powering up is the seventh of the eight functions that
the data path module performs. This section describes
the power up signals, power failure, the initialization
state of the CPU, initialization signals on power up, the
option switches, and the boot EPROM.

Power Up Signals

A power up sequence is usually the result of turning the
MicroVAX I system power switch on; however, a power
up sequence is also initiated on the Q22 bus when the
RESTART button on the system front panel is pressed,
or when power fails then returns.

When DC voltages are first supplied to the Q22 bus
from the power supply, the power supply logic negates
the signal BDCOK, and then asserts it 3 ms after DC
voltages have reached their specified levels.

The signal DAPL INIT is asserted by the DAP module
as soon as DC voltages appear, synchronized with the
62.5 ns clock (MCTM BASE CLOCK), and deasserted

two clock cycles (125 ns minimum) after BDCOK is
asserted. DAPL INIT is generated from BDCOK.

The signal BINIT is asserted by the DAP board as soon
as any DC voltages appear; it is deasserted as soon as
DAPL INIT is deasserted. BINIT initializes the Q22
bus.

Another power supply logic signal, BPOK, is negated
when DC voltages first appear, and is asserted 70 ms
after BDCOK is asserted. If power does not remain
stable for 70 ms, BDCOK is negated; therefore, Q22 bus
devices must suspend critical actions until BPOK is
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asserted. BPOK must remain asserted for a minimum
of 3 ms.

Power Failure

The DAP module monitors the Q22 bus power status
signals: BPOK and BDCOK. A power failure occurs
when the AC voltage to the power supply drops below
75% of the nominal voltage for one full line cycle (15-24
ms). When a power failure is detected, BPOK is
negated. Once BPOK is negated, the entire power
down sequence, as follows, must be completed.

BPOK is synchronized with the CPU clock (CPU
CLOCK) to generate the signal DAPK PWR DWN;
DAPK PWR DWN is asserted when BPOK is negated.
DAPK PWR DWN is an input to the interrupt control
logic. A power fail interrupt is initiated if the current
IPL is less than 1E (see Table 6-8).

The microcode sets bit <0> of the MISC register; bit
<0> is the “send Q22 bus initialization” flag. This
occurs no later than 3 ms after the negation of BPOK,
and causes BINIT to be asserted for 8 to 20 us.

Once BPOK is negated, the power supply guarantees a
minimum of 4 ms before BDCOK is negated. This 4 ms
allows mass storage and similar devices to protect
themselves against erasures and erroneous writes
during a power failure.

DAPL INIT is a synchronized version of BDCOK; it is
asserted two clock cycles (125 ns minimum) after
BDCOK is deasserted.

The DAP module asserts BINIT again, no later than 1
us after the negation of BDCOK.

DC power must remain stable for a minimum of 5 us
after BDCOK is negated.
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Figure 6-10 shows the power up and power down
sequences, and the signal states for normal power.
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Initialization State

The initial state of the processor is set by the INIT
signals: DAPL INIT, DAPL INIT A, and DAPL MCT
INIT, which are the buffered outputs of DAPL INIT.
(DAPL INIT is generated by the Q22 bus signal
BDCOK.) The initial state of the processor is defined as
follows.

® The current microaddress is ZERO; that is, the
first microinstruction executed following the deas-
sertion of DAPL INIT will be from location 0000 in
control store.

The control store parity error flag is cleared.
No interrupt requests are pending.

The index register is cleared.

The IPL register is cleared.

The MISC register is cleared, causing the three
diagnostic LEDs to be lit.

® The memory request signal (DAPR MEM
REQUEST) is in the deasserted state.

® Q22 bus signal BINIT is asserted during the deas-
sertion of BDCOK.

In addition, all of the flip-flops that synchronize the
DAP clock signals are set to a known state. This
guarantees that the clock signals have the correct
relationship to each other.

Initialization Signals on Power Up

When the signal DAPL INIT is asserted during power
up, it generates the signal JAM UPC, which causes the
microprogram to jump to the microinstruction located
at control store address 0000.

6-85 Power Up



The signal BPOK is synchronized with the CPU clock
(CPU CLOCK) to generate the signal DAPK PWR
DWN. The signal DAPB PUP is generated by DAPK
PWR DWN, but is synchronized with the low-going
edge of CPU clock.

The assertion of DAPB PUP causes the deassertion of
the signal DAPL SET DPC INIT, which in turn causes
the deassertion of the signal DAPL DPC RESET on the
next leading edge of the 125 ns data path chip clock,
DPC CLK.

The deassertion of DAPL SET DPC INIT also causes
the signal DAPC DPC INIT to be deasserted on the next
low-going edge of DPC CLK.

DAPC DPC INIT generates the signal DAPC DLY
STRTUP. The deassertion of DAPC DPC INIT causes
the signal DAPC DLY STRTUP to be deasserted on the
next leading edge of CPU CLOCK. The deassertion of
DAPC DLY STRTUP marks TO of the first microin-
struction to be executed by the data path chip.

On the next leading edge of the CPU clock following the
deassertion of DLY STRTUP, the first microinstruction
executed by the data path chip is executed in the chip
again, and this time, executed by the entire data path
module as well; that is, the data path module is
synchronized to TO of the first microinstruction. The
data path chip executes the first microinstruction twice
to deliver correct parity to the data path module.

Figure 6-11 shows all of these power up and
initialization signals, and their relationship to the
various clock signals.
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Option Switches

In addition to specifying the baud rate, break enable,
console terminal type, and the bootstrap search order,
the option switches select the recovery action.

When a halt condition is encountered, the console stop
microroutine prints a halt code on the console terminal.
The microcode then examines option switches 3 and 4 to
determine the recovery action. These switches are also
examined during power up after the successful com-
pletion of Microverify to determine the power up action.
The switches select one of four possible strategies:

® Warm start, Boot, Halt
If <4:3> =0, the system attempts a warm start. If
the warm start fails, the system tries to boot. If
bootstrap fails, the system enters console mode.
This is the default configuration for the switches.

® Boot, Halt
If <4:3> =1, the system tries to boot. If bootstrap
fails, the system enters console mode.

® Warm start, Halt
If <4:3> =2, the system attempts a warm start. If
the warm start fails, the system enters console
mode.

e Halt
If <4:3> =3, the system enters console mode and
waits for input from the console terminal.

Boot EPROM

This is an 8192 by 8-bit-wide EPROM used to store the
VAX macrocode necessary to boot the MicroVAX I
system. (An EPROM that is 16,384 locations long by 8
bits wide may also be used.)
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The macrocode stored in the EPROM is the primary
bootstrap. The EPROM is addressed by loading the low
eight bits into the index register and the high six bits
into the PSL.IPL register. The proper address bits are
loaded into the index and PSL.IPL registers by the
initialization microcode routine. Thus, a byte at a time
is addressed in the primary bootstrap.

As each byte is accessed, it is driven onto the ID bus,
into the data path chip, and then out the memory data
bus to the memory controller. From there, the byte is
written into the Q22 bus memory. In this manner, the
entire primary bootstrap from the EPROM is copied
into main memory. Once it is copied, the main memory
address of the first byte is loaded into the program
counter, and the bootstrap macrocode executed.

The bootstrap macrocode locates the device that con-
tains the secondary bootstrap and loads the secondary
bootstrap into main memory. The primary bootstrap
then sets the stack pointer and the program counter to
the starting address of the secondary bootstrap, and
execution of the secondary bootstrap begins. It is the
responsibility of the secondary bootstrap to complete
the bootstrap process. (For more information about
bootstrapping, see the section titled “MicroVAX I
System Bootstrap” in Chapter 2.) :

Communicating with the MCT

Communicating with the memory controller is the
eighth of the eight functions that the data path module
performs. This section describes the data interface, the
control interface, interface control signals, stalls, the
MD bus latches, memory function latches, memory
function control, the sign extenders, the PSL.MODE
register, and memory reference timing.
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Data Interface

The data interface between the data path and memory
controller modules is the memory data bus (MDB)
which carries 32 tri-state signals. The memory data
bus is part of the 50-pin, over-the-top cable that
connects the two boards. The tri-state signals are
named BUS MEM DATA <31:00>. The tri-state
enables for these data bus signals are controlled by
either the DAP module or the MCT module, depending
on the direction of data transfer.

The following situation causes BUS MEM DATA
<31:00> to be sent from the memory controller to the
data path module over the memory data bus: a memory
request microinstruction is executed, followed two
cycles later by the execution of a microinstruction that
is not a Moveout and that has MEMORY.DATA
specified as the long operand. (MEMORY.DATA is
selected by addresses 7C-7F; these addresses are
allocated as a block. MEMORY.DATA can be thought
of as the address of the memory data bus. When the
long operand of a microinstruction specifies MEMO-
RY.DATA the data to be operated on are the 32 bits
currently on the memory data bus.)

There are three microinstructions that cause BUS
MEM DATA <31:00> to be sent from the data path
module to the memory controller over the memory data
bus. They are:

® a Memory Request; BUS MEM DATA <31:00>
represent a virtual address.

® an [-stream Request; BUS MEM DATA <31:00>
are the unincremented contents of the program
counter.
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® a Moveout; the long operand specifies MEMO-
RY.DATA.

Control Interface

The control interface between the data path and
memory controller modules consists of eight bidirec-
tional signals, seven unidirectional lines from DAP to
MCT, and eleven unidirectional lines from MCT to
DAP, which return the status of the memory controller
to the DAP microsequencer. All of these control signals
and the clocks are carried on the CD slots of the
backplane (see Figure 1-3 in Chapter 1). The eight
bidirectional signals are the memory control bus (MCB)
and are named BUS MEM CTL <7:0>.

The memory control bus is a time-multiplexed tri-state
bus which may be driven from either the DAP or the
MCT module. Control information from the DAP
microinstruction is driven in the first half of the
microcycle (during T1). Instruction stream bytes are
driven from the memory controller to the IBYTE
register during the second half of the microcycle
(during T3).

Interface Control Signals

When a microinstruction specifying a memory request
function is decoded, the data path module drives the
contents of the register specified by the long operand
(usually a virtual address, but possibly a physical
address or the actual data) out the data bus and onto
the memory data bus. The encoded memory function is
driven onto the memory control bus. The data path
module then asserts the memory request line, DAPR
MEM REQUEST. This signal informs the memory
controller that a new function code is on the control bus.
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The memory controller responds by accepting the 32
bits on the memory data bus (a virtual address,
physical address, or data), starting the appropriate
cache or bus cycle, and asserting the request acknowl-
edge signal, MCTN REQ ACK. When the data path
sees the request acknowledge signal, it removes the 32
bits from the data bus. If the memory function is a
read, the data path also disables the tri-state drivers to
allow the data being read to be driven from the memory
controller to the data path.

The microcode does not expect a response from the
memory controller until the microcycle following the
next microcycle; the memory controller error status
signals are in an undefined state until then. After this
intervening microcycle, a Move or Moveout microin-
struction to read or write the data may be executed, and
a microbranch taken to test the status of the operation.
(The data to be read or written are the data currently
on the memory data bus; this is specified by
MEMORY.DATA in the long operand of the Move or
Moveout microinstruction.)

Byte displacements are read from the instruction
stream by enabling the IBYTE register onto the ID bus;
the Memory Request microinstruction is not used. For
this case, the microcode must always test whether the
byte in the IBYTE register is valid, to insure that valid
data has been read. The byte in the IBYTE register is
valid when the signal DAPR IB INVALID is not
asserted.

Stalls

Stalls are caused by one of three situations. If the
microcode executes a Move or Moveout microinstruc-
tion following a Memory Request or an I-stream
Request and REQ ACK has not been received from the
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memory controller, the data path hardware stalls the
operation for one full cycle (250 ns) by delaying the
clock edges to the data path control logic. At the end of
this cycle, REQ ACK is tested again and the stall
repeated if REQ ACK is still not asserted. Thus, the
DAP hardware stalls the execution of the micropro-
gram by continuously repeating the Move or Moveout
microinstruction until REQ ACK is asserted. Note that
this type of stall only occurs when a microinstruction
with MEMORY.DATA specified in the long operand is
executed following a memory request microinstruction.

The second situation causing a stall occurs when the
memory controller asserts the signal MCTN MEM
BUSY. If the memory controller is unable to deliver
status or data in the cycle in which the information is
expected, the memory controller asserts MEM BUSY.
Upon receiving MEM BUSY, the DAP hardware causes
a stall until MEM BUSY is negated.

A stall also occurs when a microinstruction selects one
of the console UART registers. A stall condition is
generated for a single cycle. This is because of the long
write pulse and read time needed by the UART.

MD Bus Latches

The 32 signals on the data bus are latched into four
latches, collectively named the MD bus latch. From
this latch, the signals are driven onto the memory data
bus and then to the memory controller. Similarly,
signals coming into the DAP module from the memory
controller on the memory data bus are latched into four
more latches, collectively named the MD bus input
latch. From the MD bus input latch, the signals are
driven onto the data bus.

The MD bus latch and the MD bus input latch are
needed because the memory controller uses a 125 ns
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cycle and may not be in the correct half of the 250 ns
DAP cycle when data are being sent to the memory
controller or received by the data path.

The signal DAPK OPEN LATCHES controls the MD
bus latch, opening it to capture the data that are to be
driven from the data bus onto the memory data bus.
The memory controller module controls the MD bus
input latch with the signal MCTN MD BUS IN LE,
opening it to capture the data that are to be driven from
the memory data bus onto the data bus.

Memory Function Latches

The memory function latches are part of the memory
function control block shown in Figure 6-1. There are
two latches: the first one holds the current memory
function code and the second holds a previous memory
function code.

The bits saved in the first memory function latch are
microinstruction bits DAPA CS <38:37> and
<28:23> when a Memory Request microinstruction is
decoded. Bits <38:37> actually come from the size
register but still represent the data type. Bit <28> is
the data flow bit, and <27:23> are the memory
function code (see Figure 5-4).

These eight bits are saved in the first memory function
latch until the memory controller is available. The
latch is normally open and is closed when a memory
request is started. When the memory controller is
ready for the function code, the latched bits are driven
from the first memory function latch onto the memory
control bus as BUS MEM CTL <7:0>.

If the latch bit, bit <31>, of a Memory Request micro-
instruction is set when the microinstruction is decoded,
bits <38:37> and <28:23> are also saved in the
second memory function latch. If a page crossing or

6-95 MCT Interface



memory management fault occurs when this microin-
struction is executed, the microcode retries the microin-
struction after it fixes the condition that caused the
failure. The memory request information needed by
the microcode to retry the microinstruction that failed
is the information latched in the second memory
function latch.

Thus, when a Memory Request microinstruction is
repeated, the contents of this second memory function
latch are driven onto the memory control bus as BUS
MEM CTL <7:0> instead of the contents of the first
memory function latch. (The first memory function
latch contains memory request information from the
most recent Memory Request microinstruction in the
microroutine invoked to fix the failure condition.)

Memory Function Control

When a Memory Request or I-stream Request microin-
struction is decoded and executed, twelve bits of control
information are sent to the memory controller from the
data path module. These twelve bits inform the
memory controller about the requested memory
function.

Eight of the twelve bits are the microinstruction bits
latched in the memory function latch and driven over
the memory control bus as BUS MEM CTL <7:0>.
These eight bits consist of the microinstruction data
type field (bits <38:37>), the 5-bit memory function
field (bits <27:23 >), and the data flow bit (<28>).

The other four bits of control information are sent to the

memory controller over the backplane. They are:
DAPT MEM REQ MODE <1:0>, DAPT MODIFY, and
DAPT SECOND PART.

The two MEM REQ MODE bits indicate the access
mode, which is used for protection checking. If the
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access mode bit in the Memory Request microinstruc-
tion (bit <30>) is set, the value of MEM REQ MODE
<1:0> is 0 to indicate kernel. If the access mode bit in
the Memory Request microinstruction is clear, MEM
REQ MODE <1:0> have the same value as the current
mode bits (DAPR CUR MODE <1:0>) in the current
mode register (PSL.MODE).

The signal DAPT MODIFY is asserted when the modify
intent is write; that is, when bit <29> in the Memory
Request microinstruction is a one.

The signal DAPT SECOND PART is the second part
flag. This signal is used to inform the memory
controller that it has already completed part of a
function that is being repeated. This occurs when the
data being read or written do not all reside in the same
page of memory.

If a page crossing or memory management fault occurs
when a microinstruction is executed, the microcode
traps to a routine to fix the condition that caused the
failure. The microroutines that fix these conditions
contain Memory Request microinstructions with
REPEAT.FIRST or REPEAT.SECOND memory func-

tions.

When a REPEAT.FIRST Memory Request is executed,
the signal DAPR REPEAT is asserted. When DAPR
REPEAT is asserted, the previous memory function
bits latched in the second memory function latch are
driven onto the memory control bus as BUS MEM CTL
<T7:0>.

When a REPEAT.SECOND Memory Request is exe-
cuted, DAPR REPEAT is also asserted and with the
same effect. But in addition, the second part flag is set;
that is, the signal DAPT SECOND PART is asserted.
The second part flag is cleared when a Memory Request
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microinstruction is executed with the latch bit (<31>)
set.

When the memory controller receives these twelve
signals, it reassembles them into a control word and
uses this control word to access its own control store.
The selected memory controller microcode routine then
carries out the requested memory function.

PSL.MODE Register

PSL.MODE is the current mode register, address 6A.
The current mode bits of the processor status longword
(PSL bits <25:24>) are stored here. The current mode
register is used to inform the memory controller of the
access mode of the current memory request.

PSL.MODE can be read or written. The register is
written when an REI (return from exception or
interrupt), or a CHM (change mode) macroinstruction
is executed. The PSL.MODE register is also written for
interrupts and some exceptions. The new current mode
is computed in the data path chip and written to the
PSL.MODE register from the low two bits of the
internal data bus, BUSID <01:00>.

The output from the PSL.MODE register is the signals
DAPR CUR MODE <1:0>. These signals carry the
encoding for the current mode and are sent to a memory
request control PAL. Other inputs to the memory
request control PAL include:

® the signal DAPR REPEAT, which is asserted by
the IBYTE control PAL when a Memory Request
function code is REPEAT.FIRST or
REPEAT.SECOND,

® the latch bit, <31>, from a Memory Request or
I-stream Request microinstruction, and
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® the mode bit, <30>, from a Memory Request or
[-stream Request microinstruction.

When bit <31> of a Memory Request or I-stream
Request microinstruction is set, indicating that the
memory function is to be latched, the memory request
control PAL saves the state of microinstruction bit
<30> as the signal DAPT SAVED MODE.

When the signal DAPR REPEAT is not asserted, the
memory request control PAL examines microinstruc-
tion bit <30>. If bit <30> is clear, indicating current
mode, the PAL sends the input signals from the
PSL.MODE register (DAPR CUR MODE <1:0>) to
the memory controller as the signals DAPT MEM REQ
MODE <1:0>.

When DAPR REPEAT is not asserted and bit <30> is
set, the signals DAPT MEM REQ MODE <1:0> carry
the encoding 00 (binary) to the memory controller to
indicate an access mode of kernel.

If DAPR REPEAT is asserted, the memory request
control PAL examines the SAVED MODE bit. If
SAVED MODE is set, DAPT MEM REQ MODE <1:0>
carry the encoding for kernel access mode. If SAVED
MODE is clear, DAPT MEM REQ MODE <1:0> carry
the encoding from the PSL.MODE register.

Sign-Extenders

If an I-stream Request microinstruction is executed and
the long operand specifies IB.WORD, a word of data is
read from the instruction stream and returned to the
data path module over the memory data bus.

The signal MCTN SEXT from the memory controller
informs the data path module that the data needs to be
sign-extended. The state of bit <15> is copied into bits
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<31:16> and driven by the sign-extenders onto the
data bus.

For more information about sign-extension, see the
paragraphs titled “Sign-Extension” in the “Data
Transfers” section of this chapter.

Memory Request Timing

Figure 6-12 shows the timing of a read from memory,
and Figure 6-13 shows the timing of a write to memory.
Both diagrams assume a cache hit. The signal DAPK
OPEN LATCHES is asserted to open the MD bus latch.
This latch is opened once for a read, to capture the
contents of the location specified by the long operand
before those contents are driven onto the memory data
bus. (The contents are usually a virtual address, but
can also be a physical address or the actual data.)

DAPK OPEN LATCHES is asserted twice for a write to
memory; first to capture the virtual address (or
physical address or data) to be driven onto the memory
data bus, and second to capture the data to be written to
memory before the data are driven onto the memory
data bus. The data to be written appear at the output
pins of the data path chip 80 ns into the EXECUTE
cycle of the Moveout microinstruction.

Table 6-10 summarizes the DAP/MCT interface signals
and briefly describes the functions of the signals.
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: Memory Request : NOP : Move memory data

CPUCLOCKH |

DAPR MEM REQUESTL N

MCTN REQ ACK L

/
4
DAPK OPEN LATCHES H ‘ /—\

DAPE DRIVE MD BUS L

DAPR EN MD BUS IN L ; ; ; : \ : : 4 Z'

MCTT MEM BUSY H / \

Data on memory data bus

VA out

data in

Figure 6-12. Timing of a Read from Memory
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: Memory Request : NOP . Move memory data

CPUCLOCKH

DAPR MEM REQUEST L -—-\

MCTN REQ ACK L —— ; § /

DAPK OPEN LATCHESH ! : anNYaEN : § : TN

DAPE DRIVE MD BUS L ; : : : § § g ; /—

MCTT MEM BUSY H

Data on /

: . “ VA out data out
memory data bus : : : : : : : : .

Figure 6-13. Timing of a Write to Memory
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Table 6-10. DAP/MCT Interface Signals

Signal Name

Function

DAPL MCTINITL

DAPL MCT 250 L

MCTM BASE CLOCK H
MCTM DPC SRC L

BUS MEM DATA <31:00> H

BUSMEMCTL <7:0> H

DAPR MEM REQUEST H

DAPT MEM REQ MODE <1:0> H
DAPT MODIFY H

DAPT SECOND PART H

MCTN REQACK L

MCTT MEM ERR H

Initialize system to a known state; asserted asynchronously, negated 12 ns
following low-high edge of 16 MHz clock.

Memory controller copy of the CPU clock.
Basic clock source used on DAP module.

Inverted version of clock needed for data path chip.

Data or address from DAP to MCT.
Data from MCT to DAP.

Memory function code from DAP to MCT.
Instruction stream byte from MCT to DAP.

Informs memory controller of new function code on control bus,
Access mode used for protection check; encoding as defined in PSL.
A write will be attempted to the current address.

The first part of this request has already been attempted. This signal is asserted
when a Memory Request microinstruction with the REPEAT.SECOND function is
executed. The signal is deasserted when a Memory Request microinstruction with
the latch bit (<31>) set is executed.

Request acknowledged; the MCT has accepted the command and the address or
data.

A memory error has occurred.
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Table 6-10. Continued

Signal Name Function

MCTN MEM BUSY H The memory controller is busy.

MCTN MD BUSINLEH MD bus input latch control for incoming data; needed to keep the data stable
across a 250 ns edge for the data path chip. This signalis asserted as long as the
MCT memory data bus transceivers are directed out.

MCTSTB MISS H Translation buffer miss.

MCTS MOD REF H Modify request refused.

MCTT NXT VALID REG H IBYTE valid; the IBYTE register may be loaded when this signal is active.

MCTE PAGE CROSS H A memory reference across a page boundary has occurred.

MCTB WRT TMO H A Q22 bus timeout occurred on the last write operation; valid for a single cycle.

MCTTIB ERRORH MCT cannot supply the next byte from the I-stream due to an error or a page
crossing.

MCTN SEXT WORD H Sign-extend control; this signal is asserted when a word displacement is read from
the I-stream.

DAPRIBTAKENL The microsequencer has used the current contents of the IBYTE register; asserted
during decode microinstructions, I-stream requests, IB refills and microinstruc-
tions specifying IB.BYTE as the source.

DAPE CONSOLE MODE H The system has entered console mode; this signal is used to prevent write timeouts
in console mode.

DAPLTINITH The Q22 bus initialization flag has been asserted; this signal is sent to the MCT to

initialize the Q22 bus controller.
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Microprogram Level Flow: ADDWS3

Now that all of the hardware components and control
signals of the data path module have been described in
detail, this section takes an ADDW3 (add word 3
operand) macroinstruction and describes the decoding
and execution of this instruction at the microprogram
level.

An ADDW3 macroinstruction adds the word (16 bits) at
the address specified by the first operand specifier to
the word at the address specified by the second operand
specifier, and stores the sum in the location specified by
the third operand specifier. A sample ADDW3 instruc-
tion is:

ADDW3 B*5(R0O)[R1], (R5), R2

This instruction uses several addressing modes. The
first operand specifier uses byte displacement indexed
addressing; the second operand specifier uses register
deferred, and the third operand specifier uses register
mode.

At some virtual address (VA) in memory, this
instruction looks like this:

52165|05|A0|41 |Al|:VA

where Al is the opcode, 41 specifies index mode using
R1, 05A0 is byte displacement mode using RO (05 is the
displacement), 65 is register deferred mode using R5,
and 52 is register mode using R2. The 05A0 specifies
the base address of an array of words, and the content of
R1 is an index into this array. Before the micro-
program level description begins, the next few
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paragraphs summarize the steps needed to execute this
ADDWS3 instruction.

Step 1. Evaluate the opcode to select the proper
microroutine for this macroinstruction.

Step 2. Evaluate the first operand specifier and obtain
the first operand. This is accomplished as follows:

a. Add 5 to the contents of RO; the sum is called the
base operand address.

b. Multiply the contents of R1 by 2 (because there are
two bytes per word).

c. Add the result from step b to the base operand
address from step a to get the address of the first
operand.

d. Use the address computed in step c to read the first
operand from memory and store it in a working
register on the data path chip.

Step 3. Evaluate the second operand specifier and
obtain the second operand. This is accomplished as
follows:

a. R5 contains the longword address of the operand.

b. Read the operand and store it in a working register
on the data path chip.

Step 4. Add the first operand to the second operand, set
the PSL condition codes, and store the sum in a result
register.

Step 5. Evaluate the third operand specifier to deter-
mine where the result is to be stored.

Step 6. Move the contents of the result register to R2.

The remainder of this chapter describes the micro-
program steps necessary to decode and execute the
ADDW3 macroinstruction. Assume that the six bytes
of the instruction are already in the prefetch buffer,
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that all virtual addresses are in the translation buffer,
and that all requested data are located in the data
cache. Figure 6-14 at the end of this chapter diagrams
all of the microinstructions.

Evaluating the Opcode: Decode A1

As a result of the execution of the previous macroin-
struction, the current conditions are: the PC on the
data path chip contains the virtual address of the first
byte (A1) of the ADDW3 instruction, the microprogram
counter (uPC) contains the microaddress of a Decode
microinstruction that decodes macroinstruction op-
codes (IRD), and the IBYTE register contains Al (the
ADDWa3 opcode).

The contents of yPC are driven onto the NuA bus,
selected by the NuA MUX and latched into the CSA
register at T2 (125 ns into the microcycle). Control
store is accessed with this microaddress and the IRD
microinstruction is the output. (IRD means a Decode
microinstruction that decodes macroinstruction op-
codes.) The microinstruction bits are distributed on the
data path: bits <36:16 > are sent to the data path chip;
bits <24:23 > (the IFUNC field, see Table 5-7) are sent
to the decode ROMs; bits <15:08> and <24 > are sent
to the OR MUX control logic; bits <36:32> (the micro-
instruction opcode) and bit <24 > are sent to the ID bus
address decode logic; bits <28:24> are sent to the
IBYTE control logic.

Bits <24:23> are available at the input to the decode
ROMs 20 ns before the next clock edge (T0). The
IBYTE control logic detects that an IRD is executing
(as opposed to an operand specifier decode) because
DAPA CS 24 is asserted; that is, bit <24 > of the
current microinstruction is set. The bits in the IBYTE
register are accessing the decode ROMs as soon as the
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new byte is loaded into the IBYTE register, but the
decode ROMs are not enabled until the rising edge of
DLYD CPU CLOCK (62.5 ns into the current micro-
cycle). The decode ROMs are enabled by the signal
DAPC EN ROMS, which is generated from the OR
MUX control logic. Bits <15:08> and <24 > asinputs
to the OR MUX control logic PAL determine that an
IRD microinstruction is executing and assert DAPC EN
ROMS as the output.

When the decode ROMs are enabled, the contents of the
location being accessed by the byte in the IBYTE
register are driven onto the NuA bus. The contents are
12 bits of microaddress (<11:0>) because this is an
IRD (an opcode decode). The NuA MUX selects these 12
bits and forces a zero as the high-order bit, bit <13>
(see Table 6-1). These 13 bits are the microaddress of
the first microinstruction in the microroutine for
ADDW3. This microaddress is latched into the CSA
register at T2 (125 ns).

In addition to 12 bits of microaddress, the output from
the decode ROMs includes 2 bits of condition code class,
and 2 bits of data type. The condition code class bits are
sent to the condition code class register; the data type
bits are sent to the size register.

The condition code class is arithmetic because the two
condition code class bits contain the encoded value 1
(see Table 6-2).

The data type bits from the decode ROMs for this IRD
are 01 (binary) to indicate word. This value is loaded
into the size register at the next TO. Thus, the size
register contains a value of 1, specifying word.

Meanwhile, the signal DAPR LOAD I BYTE is asserted
by the IBYTE control logic because a Decode microin-
struction has just been executed. At the next rising

edge of CPU CLOCK, (the next T0), DAPR CLOCK I
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BYTE is generated from DAPR LOAD I BYTE and the
next byte in the instruction stream is clocked into the
IBYTE register from the memory control bus. The PC
on the data path chip is incremented by one because a
Decode microinstruction was just executed.

At the next rising edge of DLYD CPU CLK (T1), the
signal DAPR IB TAKEN is generated from LOAD I
BYTE. This signal when asserted informs the memory
controller that the next instruction stream byte is
needed, so the memory controller drives the third byte
of the ADDW3 instruction (A0) from the prefetch logic
onto the memory control bus.

At this point, the PC on the data path chip contains the
virtual address of the second byte (41) of ADDWS3, the
IBYTE register contains the second byte, 41, and the
microaddress of the first microinstruction in the
ADDW3 microroutine is latched in the CSA register.

Step 1 is now complete; the macroinstruction opcode
has been evaluated and the proper microroutine
selected.

Evaluating the First Operand Specifier

Decode 41

The contents of the CSA register select a microinstruc-
tion in control store; the microinstruction selected is
the first microinstruction in the microroutine for
ADDWS3. This microinstruction is an operand specifier
Decode. The Decode microinstruction bits are distrib-
uted to the proper data path elements. Bits <24:23>
of this microinstruction (the IFUNC field) have the
value 0, indicating an operand specifier decode type 1.

The IFUNC field and the contents of the IBYTE
register (41) are used to access the decode ROMs. Since
this is an operand specifier decode, the output from the
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ROMs to the NuA bus is the low eight bits of the
microaddress. The high five bits are driven onto the
NuA bus from the jump register. The NuA MUX selects
the bits on the NuA bus and latches them into the CSA
register.

The size register is loaded at TO from the CC/DT field of
the microinstruction when operand specifier Decodes
are executed, unless the CC/DT field contains the
encoding 2 to specify the size register. Bits <38:37> of
this Decode do contain the value 2, so the size register is
unaffected; that is, the size register still contains the
value 01, specifying word.

Any time an operand specifier decode is executed, bits
<5:0> of the IBYTE register are passed through the
IBYTE buffer, driven onto the ID bus, then to the data
bus, and into one of the two pointer registers on the
data path chip. Bit <26> (the pointer register select
bit) of the Decode microinstruction just decoded is zero,
so bits <5:0> of the IBYTE register (= 000001) are
saved in pointer 1 on the data path chip. Thus, pointer
1 is pointing to R1. Assume that R1 contains the value
3; that is, the contents of R1 will select the third entry
in the array of words defined by the base address.

Another result of this operand specifier decode is that
the current microaddress plus 1 is pushed on the
microstack. This happens for every operand specifier
decode when the addressing mode is not register mode,
and the content of the IBYTE register is valid.

The PC on the data path chip is incremented by one
because a Decode was just executed.

shift by 2

Next, the 13 microaddress bits latched in the CSA
register select a Shift microinstruction from control
store. Bits <36:16> of this Shift microinstruction are
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latched in the control store register on the data path
chip. The CC/DT field of this Shift is 00, so data path
chip pins SIZE1 and SIZEO are both zero. This encod-
ing means that the chip operation (shift) uses data type
long. (The data path chip size pins are determined by
the CC/DT field of the current microinstruction when
the microinstruction is not a Memory Request or an
I-stream Request and the CC/DT field does not contain
the value 3.)

This Shift microinstruction causes the contents of R1 to
be shifted left by two bits, and stores the result in the
RESULT2 register. A left shift by two effectively mul-
tiplies the contents of R1 by 4. This Shift is executed in
case the array to be indexed is an array of longwords.
But the next address control field of this Shift microin-
struction uses the CASE format; this Shift microin-
struction cases on the contents of the size register. The
result is that the next microaddress is the address of
another Shift microinstruction, but one that multiplies
by 2 instead of by 4.

To further explain how this happens, assume that the
first Shift microinstruction is located at control store
address 1603, and that the next address control field
(bits <15:0>) of this Shift microinstruction is 7C30, or
0111/1100/0011/0000. Bits <15:13> have the value
011, which specifies the CASE format (see Figure 5-3).
Bits <9:8> are defined as the jump control field
(JC<1:0>); the value of 0 in this field specifies that the
output of the OR MUX is to be ORed with the low four
bits on the NuA bus to obtain the next microaddress.
Bits <12:10> are defined as the OR<2:0> field; the
value of 7 in this field selects the OR MUX input line
with these four signals: 0, 0, SIZE1, SIZEO. SIZE1 and
SIZEOQ are signals from the size register (DAPE SIZE 1
H and DAPE SIZE 0 H) and have the value 01.
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The microsequencer computes the next microaddress as
follows. The control logic determines from bits
<15:13> that the next address control field format is a
CASE, and enables the output of the OR MUX because
of the value in the jump control field. Bits <7:0> of
the Shift microinstruction (30 hex) are driven onto the
NuA bus from the jump register. The output from the
OR MUX: 0001 (binary), is ORed with <7:0> (=30
hex) from the jump register; thus, the value of the low
eight bits on the NuA bus is 31 (hex). The NyA MUX
selects these eight bits off the NuA bus, and combines
them with the bits in the page register to generate the
next microaddress. The page register contains the
value 16 from the high-order five bits of the current
Shift microinstruction; thus, the next microaddress is
1631.

Shift by 1

Control store location 1631 contains the second Shift
microinstruction. This Shift microinstruction shifts the
contents of the register pointed to by pointer 1, left by 1.
Pointer 1 is still pointing at R1, which still contains the
value 3. Shifting the value 3 left by one bit effectively
multiplies by 2; the result 6 is stored in the RESULT2
register on the data path chip. This is now the correct
index value because in the array of words (that is, each
array entry is two bytes wide) that will be accessed
shortly, the sixth byte from the base address of the
array is the address of the third entry.

The CC/DT field of this Shift is also 00, so data path
chip pins SIZE1 and SIZEO are zero, and therefore the
chip operation uses data type long.

While these two Shift microinstructions were execut-
ing, the IBYTE control logic has caused the third byte
(A0) of the ADDW3 instruction to move off the memory
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control bus into the IBYTE register, and the memory
controller has driven the next instruction byte, 05, onto
the memory control bus. Thus, the IBYTE register
contains AQ, the PC contains the virtual address of the
third byte of ADDW3 (A0; the PC was incremented by
one when the Decode for 41 was executed), and the
microcode is ready to compute the base address of the
array of words.

Decode AO

The next microaddress generated from the execution of
the second Shift microinstruction selects another
Decode microinstruction in control store. This Decode
is part of a microroutine used to calculate base
addresses. As this Decode microinstruction is evaluat-
ed and executed, the same steps that happened when 41
was decoded are repeated:

® The [FUNC field and the contents of the IBYTE
register (A0Q) are used to access the decode ROMs.

® The size register is unaffected because the CC/DT
field of this Decode contains the value 2; thus, the
contents of the size register is still 01, specifying
word.

® Bits <5:0> of the IBYTE register are latched into
the IBYTE buffer, driven onto the ID bus, then to
the data bus, and into pointer 1 on the data path
chip (bit <26 > of this Decode microinstruction is
also a zero); pointer 1 now contains the value 0,
that is, pointer 1 now points to RO.

® The current microaddress plus 1 is pushed on the
microstack. This happens for every operand
specifier decode when the addressing mode is not
register mode, and the content of the IBYTE
register is valid.
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® The PC on the data path chip is incremented by
one because a Decode was just executed.

® The microsequencer calculates the address of the
next microinstruction using the low eight bits from
the decode ROMs and the high five bits from the
jump register. The NuA MUX selects these com-
bined 13 bits off the NuA bus and latches them into
the CSA register.

Since the Decode just completed, LOAD I BYTE is
asserted, the next instruction byte, 05, is loaded into
the IBYTE register, and the memory controller drives
the fifth byte of ADDW3 (65) onto the memory control
bus. Thus, the IBYTE register contains 05, the PC
contains the virtual address of 05, and the CSA register
contains the microaddress of the next microinstruction.

Add

The microaddress in the CSA register selects an Add
microinstruction in control store. This Add computes
the base operand virtual address. The short operand of
this Add microinstruction specifies xpointer 1; that is,
use the contents of the register pointed to by pointer 1.
The long operand of the Add specifies IB.BYTE; that is
use the contents of the IBYTE register.

Pointer 1 points to RO; RO contains a virtual address,
say, 0200. The IBYTE register contains the byte dis-
placement, 05. Any time the long operand of a microin-
struction specifies IB.BYTE, the byte currently in the
IBYTE register is driven over the ID bus, to the data
bus, and into the data path chip, having been sign-
extended on the data bus. IB.BYTE as the long operand
also causes the data path chip to increment the PC by
one.
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The CC/DT field of this Add is 00 (binary), so data path
chip pins SIZE1 and SIZEO are zero, and therefore the
chip operation uses data type long.

The execution of the Add microinstruction within the
data path chip happens as follows. The internal data
path chip logic decodes the 21 bits of the Add microin-
struction stored in the chip’s CSR. As a result, the
contents of the register pointed to by pointer 1
(00000200) are driven from the register file (where RO
is) over bus A to the ALU. The sign-extended byte
displacement (05) from the IBYTE register is driven
from the data bus over the internal chip bus B, and to
the ALU. The ALU adds 00000200 and 00000005, and
stores the result in the RESULT1 register. The sum is
stored in the RESULT1 register because bit <31> in
the Add microinstruction is set.

While the data path chip is executing the Add, the data
path microsequencer uses the next address control field
of the microinstruction to compute the next micro-
address. This field of the Add has the hex value A601;
that is, the next address control field format is TRAP.
The OR MUX condition that would cause a trap is IB
invalid. Since the signal IB INVALID is not asserted at
this time, no trap occurs, and the NuA MUX selects the
contents of the uPC (microprogram counter), which is
the microaddress of the Add microinstruction plus 1, as
the next microaddress.

When IB.BYTE is specified as the long operand, the
IBYTE control logic asserts the same series of signals
as when a Decode has just been executed, to load the
next instruction stream byte into the IBYTE register
from the memory control bus. So at this point, the
IBYTE register contains the next byte of ADDW3: 65,
and the PC contains its virtual address; the last byte of
ADDW3 (52) is on the memory control bus, and the
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CSA register contains the microaddress of the Add
microinstruction plus 1.

Move

The microinstruction following the Add is a Move. This
Move stores the computed base operand address in a
temporary register. The CC/DT field of this Move is 10
(binary), so data path chip pins SIZE1 and SIZEO are 1
and 0, respectively. Therefore, the chip operation uses
data type long.

A Move microinstruction moves the contents of the
location specified by the long operand to the location
specified by the short operand. The long operand of this
Move is RESULT1, and the short operand specifies a
temporary register, labeled VIRTUAL. When bits
<36:16> of this microinstruction are clocked into the
CSR on the data path chip, decoded and executed,
00000205 (the contents of RESULT1), is driven over
bus B and stored in VIRTUAL in the register file.

Meanwhile, the data path microsequencer computes
the address of the next microinstruction from the next
address control field of the Move, which is a return.
The microaddress at the top of the microstack is the
address of the last Decode microinstruction plus 1. So
the data path microsequencer pops this microaddress
off the stack to generate the address of the next micro-
instruction. The microaddress now at the top of the
microstack is the microaddress plus 1 of the Decode
microinstruction that decoded 41 (the second byte of
ADDWS3).

The IBYTE register still contains 65, 52 is still on the
memory control bus, the PC still contains the virtual
address of 65, and the CSA register contains the
microaddress that was just popped off the top of the
microstack.
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Add

The microinstruction following the Move is another
Add. This Add computes the final effective address of
the first operand by adding the base address to the
scaled index value. The short operand of this Add
microinstruction specifies RESULT2, which contains
the value 6 from the second Shift operation. The long
operand specifies VIRTUAL, which contains 0205.

The CC/DT field of this Add is 00, so data path chip pins
SIZE1 and SIZEO are zero, and therefore the chip
operation uses data type long. The result registers are
all 32 bits wide, so this Add operation is manipulating
longwords of data.

The value 6 (actually 00000006) is driven over bus A to
the ALU, 00000205 is driven over bus B to the ALU,
and the sum 0000020B is stored in RESULT1 because
bit <31> isset in the Add microinstruction.

The data path microsequencer computes the address of
the next microinstruction using the next address
control field of the Add, which is a branch. The
specified branch condition being tested for is register
mode. Since this condition is not met, the branch is not
taken, and the next microaddress generated is the
current microaddress plus 1.

The IBYTE register still contains 65, 52 is still on the
memory control bus, the PC still contains the virtual
address of 65, and the CSA register latches the contents
of yPC, which is the microaddress of the Add plus 1.

Memory Request

The microinstruction following the Add is a Memory
Request. This microinstruction sends the computed
address of the first operand to the memory controller.
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The memory controller will then return the data at that
address.

The memory function specified in bits <27:23> of the
microinstruction is VREAD.RCHECK. The data flow
bit is a zero (bit <28>) as the data flow will be from the
memory controller to the data path (a read). Thus, a
value of 01 (hex) is assembled in the low-order six bits
of the memory function latch. The other two latch bits
are set by signals from the size register. The last time
the size register was loaded was during the Decode for
A1; the size register still contains the value 01, which is
therefore also the value of the two high-order memory
function latch bits. Thus, the value of the output
signals BUS MEM CTL <7:0> from the memory
function latch is 41 (hex).

Four additional signals are sent to the memory
controller over the backplane: DAPT MEM REQ
MODE <1:0>, DAPT MODIFY, and DAPT SECOND
PART. For this Memory Request, DAPT MEM REQ
MODE <1:0> have the value of the current access
mode from the PSL.MODE register, and neither
MODIFY or SECOND PART is asserted.

The CC/DT field of this Memory Request is 10 (binary).
A value of 2 in the CC/DT field of a Memory Request
causes the data path chip size control pins to carry the
encoding from the size register. Since the size register
contains 01 indicating word, the data path chip pins
SIZE1 and SIZEO are 0 and 1, respectively. Therefore,
the memory controller will return a word of data at the
specified address.

The long operand specifies the address of the RESULT1
register, so the virtual address 0000020B is driven from
RESULT1I, over bus B, latched into the MD bus latch,
and driven over the memory data bus as BUS MEM
DATA <31:00> to the memory controller.
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The memory controller asserts the signal MCTN REQ
ACK when it accepts the virtual address 0000020B off
the memory data bus and the memory function request
information off the memory control bus.

The data path microsequencer computes the address of
the next microinstruction using the next address
control field of the Memory Request, which is a jump;
that is, the next microaddress is supplied in bits
<12:0> of the Memory Request microinstruction.

The IBYTE register still contains 65, 52 is still on the
memory control bus, the PC still contains the virtual
address of 65, and the CSA register latches bits
<12:0> of the Memory Request microinstruction,
which were driven onto the NuA bus from the jump
register.

Move

The microinstruction following the Memory Request is
a Move. This Move sets a register number in pointer 1.
The CC/DT field of this Move is 10 (binary), so data
path chip pins SIZE1 and SIZEO are 1 and 0, respective-
ly. Therefore, the chip operation uses data type long.

A Move microinstruction moves the contents of the
location specified by the long operand to the location
specified by the short operand. The long operand of this
Move i$ hex 43, which is a location in the constants
ROM. The contents of location 43 is the value 14 (hex);
hex 14 is the address of a temporary register, labeled
OPERANDI1. The short operand specifies the address
of pointer 1. When bits <36:16 > of this microinstruc-
tion are clocked into the CSR on the data path chip,
decoded and executed, 14 (the contents of location 43),
is driven over bus B and stored in pointer 1. Thus,
pointer 1 points to OPERAND1.
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The data path microsequencer computes the address of
the next microinstruction from the next address control
field of the Move, which is a jump; that is, the next
microaddress is supplied in bits <12:0> of the Move
microinstruction.

The IBYTE register still contains 65, 52 is still on the
memory control bus, the PC still contains the virtual
address of 65, and the CSA register latches bits
<12:0> of the Move microinstruction, which were
driven onto the NuA bus from the jump register.

Move

Bits <12:0> of the Move microinstruction are the
microaddress of another Move. The previous Move was
the one intervening cycle between the Memory Request
and the availability of the requested data; this Move
microinstruction moves the data supplied by the
memory controller into the data path chip. The CC/DT
field of this Move is 10 (binary), so data path chip pins
SIZE1 and SIZEO are 1 and 0, respectively. Therefore,
the chip operation uses data type long.

The long operand of this Move is MEMORY.DATA
which is essentially the address of the memory data
bus. The requested data (the first operand) are current-
ly on the memory data bus and latched in the MD bus
input latch. The short operand specifies OPERANDI.
When bits <36:16> of this microinstruction are
clocked into the CSR on the data path chip, decoded and
executed, the first operand is driven onto the data bus,
into the data path chip over bus B, and stored in
OPERANDI.

The data path microsequencer computes the address of
the next microinstruction from the next address control
field of the Move, which is a return; the return is
executed if no memory error occurred. The microad-
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dress currently at the top of the microstack is the one
that was stored when the Decode for 41 was executed,
which is the microaddress of that Decode microinstruc-
tion plus 1. (The microaddress that was stored when
the Decode for AO0 was executed, was popped for the
return from the Move microinstruction that stored the
base address in VIRTUAL.)

The data path microsequencer pops the microaddress
off the top of the microstack to generate the address of
the next microinstruction. The microstack is now
empty.

The IBYTE register still contains 65, 52 is still on the
memory control bus, the PC still contains the virtual
address of 65, and the CSA register latches the micro-
address from the top of the microstack.

Step 2 is now complete; the first operand of the macro-
instruction has been evaluated and fetched from
memory.

Evaluating the Second Operand Specifier

Decode 65

The popped microaddress selects an operand specifier
Decode microinstruction. This Decode is for the current
contents of the IBYTE register: 65. As this Decode
microinstruction is evaluated and executed, the same
steps that happened when 41 was decoded are repeated:

® The IFUNC field and the contents of the IBYTE
register (65) are used to access the decode ROMs.

® Bits <38:37> of this Decode have the value 2; that
is, use the size register, which still contains the
value 01 for word.

® Bits <5:0> of the IBYTE register are latched into
the IBYTE buffer, driven onto the ID bus, then to
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the data bus, and into pointer 2 on the data path
chip (bit <26> of this Decode microinstruction is
a one). Pointer 1 still points to OPERANDI1, and
pointer 2 points to R5.

® The current microaddress plus 1 is pushed on the
microstack. This happens for every operand
specifier decode when the addressing mode is not
register mode, and the content of the IBYTE
register is valid.

® The PC on the data path chip is incremented by
one because a Decode was just executed.

® The microsequencer calculates the address of the
next microinstruction using the low eight bits from
the decode ROMs and the high five bits from the
jump register. The NyA MUX selects these
combined 13 bits off the NuA bus and latches them
into the CSA register.

Since the Decode just completed, LOAD [ BYTE is
asserted, the next instruction byte, 52, is loaded into
the IBYTE register, and the memory controller drives
the next byte in the instruction stream onto the
memory control bus. (The next byte is the opcode of the
next macroinstruction in the I-stream.) Thus, the
IBYTE register contains 52, the PC contains the virtual
address of 52, and the CSA register contains the
microaddress of the next microinstruction.

Memory Request

The contents of the CSA register select a Memory
Request microinstruction from control store. The
second operand is located at the virtual address
contained in R5. This microinstruction sends the
virtual address in R5 to the memory controller.
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The memory function specified in bits <27:23> of the
microinstruction is VREAD.RCHECK. The data flow
bit is a zero (bit <28>) as the data flow will be from the
memory controller to the data path (a read). Thus, a
value of 01 (hex) is assembled in the low-order six bits
of the memory function latch. The other two latch bits
are set by signals from the size register. The size
register still contains the value 01, which is therefore
also the value of the two high-order memory function
latch bits. Thus, the value of the output signals BUS
MEM CTL <7:0> from the memory function latch is
41 (hex).

Four additional signals are sent to the memory
controller over the backplane: DAPT MEM REQ
MODE <1:0>, DAPT MODIFY, and DAPT SECOND
PART. For this Memory Request, DAPT MEM REQ
MODE <1:0> have the value of the current access
mode from the PSL.MODE register, and neither
MODIFY or SECOND PART is asserted.

The CC/DT field of this Memory Request is 10 (binary).
A value of 2 in the CC/DT field of a Memory Request
causes the data path chip size control pins to carry the
encoding from the size register. Since the size register
contains 01 indicating word, the data path chip pins
SIZE1 and SIZEOQ are 0 and 1, respectively. Therefore,
the memory controller will return a word of data at the
specified address.

The long operand specifies xpointer 2, so the longword
virtual address contained in R5 is driven over bus B,
latched into the MD bus latch, and driven over the

memory data bus as BUS MEM DATA <31:00> to the
memory controller.

The memory controller asserts the signal REQ ACK
when it accepts the virtual address off the memory data
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bus and the memory function request information off
the memory control bus.

The data path microsequencer computes the address of
the next microinstruction using the next address
control field of the Memory Request, which is a jump;
that is, the next microaddress is supplied in bits
<12:0> of the Memory Request microinstruction.

The IBYTE register still contains 52 and the PC still
contains its virtual address, the next byte in the
[-stream is still on the memory control bus, and the
CSA register latches bits <12:0> of the Memory
Request, which were driven onto the NuA bus from the
jump register.

Move

Bits <12:0> of the Memory Request microinstruction
are the microaddress of a Move. The purpose of the
Move is to store a new address in pointer 2.

The CC/DT field of this Move is 10 (binary), so data
path chip pins SIZE1 and SIZEOQ are 1 and 0, respective-
ly. Therefore, the chip operation uses data type long.

The long operand of this Move is hex 44, which is a
location in the constants ROM. The contents of location
44 is the value 16 (hex); hex 16 is the address of a
temporary register, labeled OPERAND2. The short
operand specifies pointer 2. When bits <36:16> of this
microinstruction are clocked into the CSR on the data
path chip, decoded and executed, 16 (the contents of
location 44) is driven over bus B and stored in pointer 2.
Thus, pointer 2 now points to OPERAND2.

The data path microsequencer computes the address of
the next microinstruction using the next address
control field of the Move, which is a jump; the next
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microaddress is supplied in bits <12:0> of the Move
microinstruction.

The IBYTE register still contains 52 and the PC still
contains its virtual address, the next byte in the
I-stream is still on the memory control bus, and the
CSA register latches bits <12:0> of the Move, which
were driven onto the NuA bus from the jump register.

Move

Bits <12:0> of the Move microinstruction select
another Move. The previous Move was the one inter-
vening cycle between the Memory Request and the
availability of the requested data; this Move microin-
struction moves the data supplied by the memory
controller into the data path chip.

The CC/DT field of this Move is also 10 (binary), so data
path chip pins SIZE1 and SIZEO are 1 and 0, respective-
ly. Therefore, the chip operation uses data type long.

The long operand of this Move is MEMORY.DATA
which represents the “address” of the memory data bus.
The requested data (the second operand) are currently
on the memory data bus and latched in the MD bus
input latch. The short operand specifies OPERAND2.
When bits <36:16> of this microinstruction are
clocked into the CSR on the data path chip, decoded and
executed, the second operand is driven onto the data
bus, into the data path chip over bus B, and stored in
OPERAND2.

The next address control field format of this Move is a
return; the return is executed if no memory error
occurred. The microaddress currently at the top of the
microstack is the one that was stored when the Decode
for 65 was executed, which is the microaddress of that
Decode microinstruction plus 1.
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The data path microsequencer pops the microaddress
off the top of the microstack to generate the address of
the next microinstruction. The microstack is now
empty.

The IBYTE register still contains 52 and the PC still
contains its virtual address, the next byte in the
[-stream is still on the memory control bus, and the
current microaddress plus 1 is latched in the CSA
register.

Step 3 is now complete; the second operand of the
macroinstruction has been evaluated, read from memo-
ry, and stored in a working register (OPERANDZ2) on
the data path chip.

Adding the Operands

Add

The popped microaddress selects an Add microinstruc-
tion. This Add handles the actual addition of the
operands.

The CC/DT field of this Add is 11 (binary). A value of 3
in the CC/DT field of an Add means use the data type in
the size register. Thus, data path chip pins SIZE1 and
SIZEO reflect the contents of the size register, which is
still 01 to indicate word. Therefore, the chip operation
uses data type word, which is appropriate since this is
the add operation of the Add Word macroinstruction.

The short operand of the Add specifies «pointer 1; that
is, us¢ the contents of the register pointed to by pointer
1. Pointer 1 is still pointing to OPERANDI1, which
contains the first operand. The long operand specifies
xpointer 2; that is, use the contents of the register
pointed to by pointer 2. Pointer 2 is still pointing to
OPERANDZ, which contains the second operand.
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When bits <36:16> of this microinstruction are
clocked into the CSR on the data path chip, decoded and
executed, the first operand is driven over bus A to the
ALU, the second operand is driven over bus B to the
ALU, and the sum is stored in RESULTO0 because bit
< 31> isclear in the Add microinstruction.

When the opcode for ADDW3 was decoded, the signals
DAPF CC CLASS <1:0> were part of the output from
the decode ROMs; the value of this field was 1, meaning
arithmetic (see Table 6-2). The CC/DT field value of 3
and CC CLASS value of 1 are combined and encoded in
the condition code PALSs to generate the field DAPE CC
<F3:F0>. The result is a value for <F3:FO> that
means load ALU and PSL CCs arithmetic. Conse-
quently, when this Add microinstruction is executed in
the data path chip, the ALU condition codes are set
depending on the result, and the PSL condition codes
are set from the ALU condition codes. Thus, step 4 is
completed: adding the operands, storing the sum in a
result register, and setting the condition codes.

The data path microsequencer computes the address of
the next microinstruction using the next address
control field of the Add, which is a jump; the next
microaddress is supplied in bits <12:0> of the Add
microinstruction.

The IBYTE register still contains 52 and the PC still
contains its virtual address, the next byte in the
[-stream is still on the memory control bus, and bits
<12:0> of the Add microinstruction are latched in the
CSA register.

Decode 52

Bits <12:0> of the Add microinstruction are the
microaddress of an operand specifier Decode. This
Decode is for the current contents of the IBYTE
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register: 52. As this Decode microinstruction is
evaluated and executed, the following steps occur:

The IFUNC field and the contents of the IBYTE
register (52) are used to access the decode ROMs.

Bits <38:37 > of this Decode have the value 2; that
is, use the size register, which still contains the
value 01 for word.

Bits <5:0> of the IBYTE register are latched into
the IBYTE buffer, driven onto the ID bus, then to
the data bus, and into pointer 2 on the data path
chip (bit <26> of this Decode microinstruction is
a one). Pointer 1 still points to OPERANDI, and
pointer 2 now points to R2.

The current microaddress plus 1 is not pushed on
the microstack because the addressing mode is
register mode. Thus, the microstack remains
empty.

The PC on the data path chip is incremented by
one because a Decode was just executed, and now
contains the virtual address of the next byte in the
instruction stream.

The microsequencer calculates the address of the
next microinstruction as uPC plus 1 because the
operand specifier, 52, specifies register mode. The
NuA MUX selects uPC plus 1 off the NuA bus and
latches this address into the CSA register.

Since the Decode just completed, LOAD I BYTE is
asserted, the next byte in the [-stream is loaded into the
IBYTE register (the opcode of the next macroinstruc-
tion), and the memory controller drives the next byte in
the instruction stream onto the memory control bus.
Thus, step 5 is completed: evaluating the third operand
specifier.
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Move

The microaddress latched in the CSA register selects a
Move. The purpose of the Move is to move the sum
computed in the Add to the location specified by the
instruction byte, 52.

The CC/DT field of this Move is 11 (binary). A value of
3 in the CC/DT field of a Move selects the data type
specified in the size register, which is still 01, indicat-
ing word. Therefore, the chip operation uses data type
word.

The long operand of this Move specifies RESULTO,
which is where the sum from the Add microinstruction
is stored. The short operand specifies *pointer 2;
pointer 2 is pointing to R2 because of the operand
specifier decode just executed. When bits <36:16> of
this Move microinstruction are clocked into the CSR on
the data path chip, decoded and executed, the sum in
RESULTO is driven over bus B and stored in R2. Step 6
is now complete: the sum of the operands is stored in
the destination register.

The data path microsequencer computes the address of
the next microinstruction using the next address
control field of the Move, which is a jump; the next
microaddress is supplied in bits <12:0> of the Move
microinstruction.

The microaddress supplied in bits <12:0> of the Move
selects an opcode Decode microinstruction (an IRD),
and the decoding and execution of the next macroin-
struction in the [-stream begins.

Figure 6-14 summarizes the microinstructions used to
decode and execute the ADDW3 macroinstruction. It
also completes this discussion of the data path micro-
program level flow.
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Chapter 5 describes the data path microcode and this
chapter describes the data path hardware. Similarly,
the next two chapters describe the memory controller
microcode and hardware.
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0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750
IBYTE register contains Al :
@ :<24:23> todecode ROMs

Decode Al (IRD) Step 1
® decode ROMs enabled for IRD

@ CSA register loaded with address of Decode for 41
e §<24:23 > to decode ROMs

@ sizeregister loaded

@ CLOCKIBYTE H is asserted, 41 loaded into IBYTE register

Decode 41 Step 2

@ decode ROMs enabled for operand specifier decode
@ CSA register loaded with address of Shift

‘ CLOCK I BYTE H is asserted, A0 loaded into IBYTE register

Shift by 2
: @ CSA register loaded with address of Shift
Shift by 1 : :
: @ CSA register loaded with addréss of Decode for AO

. <24:23 > to decode ROMs
Decode AO

@ decode ROMs enabled for operand specifier decode
@ CSA register loaded with address of Add :

. CLOCK I BYTE H is asserted, 05 loaded into IBYTE register

Add computes the base operand address

Figure 6-14. ADDW3 Microinstructions
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1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000

® CSA register loaded with address of Move

.’ CLOCK IBYTE H is asserted, 65 loaded into IBYTE register

Move stores the base operand addressin a temporary register

@® CSA register loaded with addressof Add

Add computes the effective address of the first operand

@ CSAregister loaded with address of Memory Request

Memory Request sends the first operand address to the memory controller

® CSA register loaded with address of Move

@ virtual address sent to memory controller

Move stores a register number in pointer 1

® CSA register loaded with address of Move

@ requested data available todata path

Move moves the first operand into the data path chip

@ CSA register loaded with address of Decode for 65
@® <24:23> todecode ROMs

Decode 65 Step 3

@ decode ROMs enabled for operand specifier decode
@ CSA register loaded with address of Memory Request

. CLOCK I BYTE H is asserted, 52 loaded into IBYTE register

Figure 6-14. Continued
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3000 3250 3500 3750 4000 4250 4500 4750 5000 5250 5500 5750

Memory Request sends the address of the second operand to the memory controller

@ CSA register loaded with address of Move

@ virtual address sent to memory controller

Move stores a register number in pointer 2 :

® CSAregister loaded with address of Move

@ requested data available todata path

Move moves the second operand into the data path chip

@® CSA register loaded with address of Add

Add Step 4 adds the first and second operahds
@ CSA register loaded with address of Decode for 52 :

® <24:23> todecode ROMs

Decode 52 Step 5

@ decode ROMs enabled for operand specifier decode
@ CSA register loaded with address of Move

Q' CLOCK I BYTE H is asserted, IBYTE register loaded with next byte in I-stream

Move Step 6 stores the sumin R2

@ CSA register loaded with address of Decode for macroinstruction opcode

® <24:23 > todecode ROMs

decodes the next byte in the I-stream,

Decode A . :
which is a macroinstruction opcode

Figure 6-14. Continued
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Chapter 7
Memory Controller Microcode

The memory controller module accepts memory request
commands issued by the data path micromachine and
sequences the necessary functional blocks to carry out
the command. The memory controller has its own set of
microcode, stored in the MCT control store, to imple-
ment the commands from the data path module. Each
memory controller microinstruction allows simulta-
neous activity of several functional blocks. This
chapter describes these memory controller microin-
structions.

Memory Controller Function Parameters

Every memory controller function involves a set of
parameters; that is, the memory controller must know
the following information to carry out the memory
request from the data path module:

® Address A virtual or physical memory address, or
sometimes the actual data to be written.

® Access The mode used to check if the operation
Mode can be performed. The access mode is
specified as either the current mode or
kernel mode.

® Data The direction that data will flow on the
Flow memory data bus during the memory
operation; that is, whether the operation
is aread or a write.

® Data The size of the data to be read or written.
Type The size is specified as byte, word, or
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longword, or determined by the contents
of the size register.

e Map A memory controller state flag that spec-
Enable ifies whether the translation buffer is to
be used. It is set via an MTPR instruc-

tion at the macromachine level.

® Modify Indicates whether the data accessis to
Intent be checked for read or write access
intent. Modify intent does not signify
whether data are read or written, but

rather which access intent is checked.

® Previous The previously latched memory func-
Function tion, data flow, and data type bits. These
bits are saved in the second memory
function latch when bit <31>, the latch
bit, of a Memory Request is set.

® Second A flagthat specifies whether the first or
Part second part of a function is being
Flag executed.

When the data path module executes a Memory
Request or I-stream Request microinstruction, eight
bits of information are latched in the memory function
latches and delivered to the memory controller over the
memory control bus: the 5-bit memory function code,
two bits of data type, and one data flow bit. An addi-
tional four bits are delivered over the backplane: two
access mode bits, a modify intent bit, and the second
part bit.

These twelve bits are recombined on the memory
controller module. The following eight bits are pre-
sented to the MCT control store as the low-order bits of
the 10-bit microaddress: second part flag, two bits of
data type, and the 5-bit memory function code. Figure
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7-1 shows the format of the memory controller
microaddress.

9 8 7 6 514 0

second | data | memory
111 part |type| function
flag code

Figure 7-1. MCT Microaddress

The MCT microsequencer forces the two high-order bits
of the microaddress to ones. The remaining four bits
now are the data flow bit, the two access mode bits
(MEM REQ MODE < 1:0>), and the modify intent bit
(MODIFY).

The signals generated by the data flow and modify
intent bits are two of the inputs to the MCT branch
MUX. The modify intent bit is also one input to the
access violation logic, and the two access mode bits are
inputs to the access violation logic.

The address (or data) needed by the memory controller
is specified by the long operand of the data path micro-
instruction that is making the memory request. Thus,
the address is delivered to the memory controller over
the memory data bus.

The memory controller stores the state of the map
enable flag in the MAP.ENABLE control and status
register (CSR). This bit is cleared or set when the data
path issues a WRITE.MAP.ENABLE Memory Request
microinstruction. (The map enable flag is generally set
during system bootstrap to enable memory manage-
ment, and then memory management is left enabled.)
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So for each memory request from the data path, the
memory controller receives the proper function
parameters: four bits from the backplane, eight bits
from the memory control bus, 32 bits of address or data
over the memory data bus, and has access to the

MAP.ENABLE CSR.

When the memory controller receives these function
parameters, the proper bits are presented to control
store as the next microaddress, and the first microin-
struction is accessed in the microroutine that handles
the requested memory function.

Microinstruction Format

The memory controller microinstruction is 64 bits wide,
but only 63 bits are used. The bits are divided into four
major functional fields:

® a 6-bit Q22 bus interface control field that allows -
communications with and control of the asynchro-
nous Q22 bus interface,

® a 39-bit functional block control field that provides
clocking and output enables for each functional
block in the memory controller,

® a 3-bit status control field that controls two status
signals, and

® a2 15-bit microprogram control field consisting of 10
bits of next address, 3 bits of branch control, and 2
bits of branch, dispatch and trap control.

Figure 7-2 shows the format of the memory controller
microinstruction. Bit <55> is unused and causes no
action in the memory controller module. The Q22 bus
interface control field consists of bit <63> and bits
<50:46 >. The functional block control field consists of
bits <62:51> and <45:18>. The status control field is
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bits <17:15>. The microprogram control field is bits
<14:0>. The sections following Figure 7-2 describe
these major functional fields in more detail.
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Q22 Bus Interface Control Field
63 50 48 47 46

go bit | function | read data | write
code output | enable
enable

Functional Block Control Field

62 61 60 59 58 57 56 55 54 53 52 51
merge PAR | adder |register | transceiver |unused | TB/cache | prefetch
register | output | output file control index MUX FIFO
output | enable | enable | output field bit 6 control
enable enables select field
45 44 43 42 39 38 37 36 33 32 31 29 28 27 26 24 23 22 21 18
PAR |reverse | reverse | merge | byte T8/ TB/ TB/ | adder | adder adder [register | register
latch pass pass |register | rotate | cache | cache| cache | latch |subtract | constant| file file
enable | output | latch | selects | select | RAM | valid | access | enable | enable | select write | address
enable | enable control | bit | select enables
Status Control Field MicrOprogram Control Field
17 16 15 14 13 1210 9 0
busy | sign-extend microsequencer | branch | next
control | word control control control | address
field field field field field

Figure 7-2. MCT Microinstruction
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Q22 Bus Interface Control Field

The Q22 bus interface control field allows the memory
controller to communicate with and control the Q22 bus
interface. This field consists of:

® the gobit, <63>,

® three bits of function code, <50:48 >,

® theread data output enable bit, <47>, and
® the write enable bit, <46>.

Q22 Bus Go Bit

Bit <63> of each memory controller microinstruction
is the go bit, active high. This bit allows the writing of
a function code (MCT microinstruction bits <50:48>)
to the Q22 bus interface. (Referencing Figure 4-1 in
Chapter 4, the Q22 bus interface is the Q22 bus
controller and the Q22 bus registers.)

For all Q22 bus operations, bus arbitration begins with
the posting of the function code. When the Q22 bus
controller acquires the bus, it asserts the address
provided by the memory controller and waits for the go
bit before proceeding with the Q22 bus cycle.

For operations such as I/O space accesses, interrupt
vector reads, and memory writes, the go bit may be
posted at the same time as the function code to cause a
bus cycle to begin immediately. For operations such as
a read from memory following a cache miss, the go bit
may be sent as late as two cycles after the function code.
The go bit remains asserted for the entire bus opera-
tion.
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Q22 Bus Function Code

Bits <50:48 > select the type of Q22 bus operation to be
performed. The encoding for this field is shown in
Table 7-1. When the function code is delivered to the
Q22 bus controller, the controller begins arbitration for
the bus. When the controller gains control of the bus, it
drives an address onto the bus and holds the bus until it
receives the go bit or a function code of 000, which
specifies no operation. (The go bit must be asserted no
later than two cycles after the function code is posted.)

Table 7-1. Function Code Field

<50:48> Operation Mnemonic
000 no operation
001 write word DATO
010 write byte DATOB
011 write block DATBO
100 read word DATI
101 read interlocked DATBI
110 read interrupt vector
111 read block DATIO

Q22 Bus Read Data Output Enable

Bit <47> is active high and allows data from the Q22
bus interface to be driven onto the memory controller
data bus as MCD <21:00>. These 22 bits may
represent a 16-bit datum read from the Q22 bus, a 9-bit
Q22 bus interrupt vector, or a 22-bit cache invalidate
address.
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Q22 Bus Write Enable

Bit <46> is active high and causes the data stable on
MCA <29> and MCA <21:00> to be written to the
Q22 bus write register. (See Figure 8-1 in Chapter 8 for
the location of the write register). The data written
may represent a 22-bit physical address, a 13-bit I/O
space address (if MCA <29> is a one), or a 16-bit
datum to be written to Q22 bus memory or an /O
device.

Functional Block Control Field

The functional block control field, shown in Figure 7-2,
consists of microinstruction bits <62:51> and
<45:18>. This field provides clocking and output
enables for each functional block in the memory
controller. In addition, seven of the bits (<62:56>)
select which MCA bus sources drive the MCA bus.

The following sections describe the bits in the
functional block control field in more detail. The
sections are organized by functional blocks; that is, all
of the bits that control a particular functional block are
discussed together, even though they may not be
contiguous in the microinstruction. For example, the
first section below, “Rotate/Merge Block Control,”
describes bits <62>, <42:39>, and <38:37> as all of
these bits control the rotate/merge logic.

Rotate/Merge Block Control

The merge register output enable (bit <62>), the
merge register selects (bits <42:39>), and the byte
rotate select (bits <38:37>) control the rotate/merge
logic. This logic consists of a byte rotator, and a merge
register.
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Merge Register Output Enable. Bit <62> of each
memory controller microinstruction is the merge
register output enable bit, active high. This bit enables
the current contents of the merge register onto the
memory controller address (MCA) bus (see Figure 4-1).
The merge register is the only MCA bus source that can
return a full longword to the data path module.

Merge Register Selects. Bits <42:39> of each memory
controller microinstruction are the merge register
select bits, active low. These bits control the clocking of
data into the four bytes of the rotator and merge
register. (See Figure 8-1 in Chapter 8 for the location of
these components). Since each byte is individually
enabled, bytes from separate sources can be merged to
accomplish nonlongword-aligned reads and writes to
memory.

Bits <42:39> correspond to merge register bytes 3
through 0, respectively; that is, bit 42 controls the
clocking of data into merge register byte 3, and so on.
Byte 3 of the merge register is the most significant byte
of the output longword. Table 7-2 shows the encoding
for the merge register selects.
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Table 7-2. Merge Register Selects

<42:39> Action

1111 =0F load no bytes
1110=0E load byte 0
1101=0D load byte 1
1100=0C load bytes 1 and 0
1011=0B load byte 2
1010=0A load bytes 2 and 0
1001 =09 load bytes 2 and 1
1000=08 load bytes 2,1,and 0
0111=07 load byte 3
0110=06 load bytes 3 and O
0101=05 load bytes 3 and 1
0100=04 load bytes 3,1,and 0
0011=03 load bytes 3 and 2
0010=02 load bytes 3,2,and 0
0001=01 load bytes 3,2, and 1
0000=00 load all bytes

Byte Rotate Select. Bits <38:37> of each memory

controller

microinstruction are the byte rotate select

bits. This two bit field controls the circular byte shift
performed on the data from the MCD bus that are

presented to the merge register. The encoding is shown
in Table 7-3.

Table 7-3. Byte Rotate Select

<38:37> Action
00 circulate longword 0 bytes right
01 circulate longword 1 byte right
10 circulate longword 2 bytes right
11 circulate longword 3 bytesright
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Physical Address Register Control

The physical address register (PAR) output enable (bit
<61>), and the PAR latch enable (bit <45>) are the
two bits that control the physical address register.

PAR Output Enable. Bit <61> of each memory
controller microinstruction is the physical address
register output enable bit, active high. This bit enables
the current contents of the physical address register
(PAR) onto the memory controller address bus as MCA
<29:28> and MCA <21:09>.

MCA <29> when set indicates that the physical
address is located in the I/O space portion of physical
memory. MCA <28> when set indicates that the
physical address is not to be saved in the cache because
itis an address in a shared physical memory.

MCA <21:09> are the translated physical address bits
after a TB/cache access. (MicroVAX [ physical
addresses are 22 bits long plus the [/O space flag; the
remaining nine bits—the page offset bits—are supplied
from either the 9-bit adder or the page offset portion of
the register file. See Figure 8-1 for the locations of the
adder and the register file. MCA <31:30> and
<27:22> are pulled high by bus pull-up resistors.)

PAR Latch Enable. Bit <45> of each memory
controller microinstruction is the physical address
register latch enable bit, active low. This bit enables
the PAR to latch the page table entry (PTE) informa-
tion or test data on its inputs. This signal also latches
the 4-bit protection field and the modify bit. The
protect field and the modify bit are read from the PTE
in the translation buffer (TB) and are used to perform
the access violation and modify refused checks.
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Adder Logic Control

The adder logic consists of a 9-bit adder and a register.
These components are controlled by the adder output
enable (bit <60>), the adder latch enable (bit <28>),
the adder subtract enable (bit <27>), and the adder
constant select (bits <26:24>).

Adder Output Enable. Bit <60> of each memory
controller microinstruction is the adder output enable
bit, active high. This bit enables the current contents of
the 9-bit adder (some previously incremented and saved
value) onto the memory controller address bus as MCA
<8:0>.

Adder Latch Enable. Bit <28> of each memory
controller microinstruction is the adder latch enable
bit, active low. This bit enables the adder register to
latch the output of the 9-bit adder. (See Figure 8-1 in
Chapter 8 for the location of the adder and register.)

Part of the adder logic also contains the page crossing
flag. A page cross occurs when an adder operation
results in a carry into the tenth bit. An asserted adder
latch enable bit also causes the page cross flag to be
captured when a page crossing occurs.

Adder Subtract Enable. Bit <27> of each memory
controller microinstruction is the adder subtract enable
bit. This bit selects whether the 9-bit adder adds or
subtracts, in effect.

If bit <27> is a zero, a 3-bit value between 0 and +7
inclusive is supplied to the adder by bits <26:24> of
the microinstruction; the adder adds this supplied
value to MCA <8:0>. (The supplied 3-bit value is
zero-extended to nine bits.) A carry into the tenth bit of
the adder is used as the page crossing flag.
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If bit <27> is a one, a 4-bit value between —1 and —8
inclusive is supplied to the adder by bits <26:24> of
the microinstruction; the adder adds this supplied
value to MCA <3:0>. MCA <8:4> are unchanged,
and the page crossing flag is negated.

Adder Constant Select. Bits <26:24> of each memory
controller microinstruction are the adder constant
select bits; that is, they provide the 9-bit adder with a
value between —8 and + 7 (inclusive) to be added to the
bits on the MCA bus. Only a 9-bit value is
incremented; a carry into the tenth bit is flagged as the
page crossing branch condition. Table 7-4 lists the
effective values added to MCA <8:0> or MCA <3:0>
for the various states of microinstruction bits <27>
and <26:24>.

Table 7-4. Adder Control

Effective
<27> <26:24> Value Added To
0 111 +7  MCA <8:0>
0 110 +6  MCA <8:0>
0 101 +5  MCA <8:0>
0 100 +4  MCA <8:0>
0 011 +3  MCA <8:0>
0 010 +2  MCA <8:0>
0 001 +1  MCA <8:0>
0 000 0  MCA <80>
1 111 —1  MCA <3:0>
1 110 —_2  MCA <3:0>
1 101 —3  MCA <3:0>
1 100 —4  MCA <3:0>
1 011 —5  MCA £3:0>
1 010 —6  MCA <3:0>
1 001 -7  MCA <3:0>
1 000 —_8  MCA <3:0>
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Register File Control

Eight microinstruction bits control the operation of the
register file which is used for storing memory controller
working addresses and partially assembled data.
Additionally, these eight bits control the reading and
writing of the memory controller CSRs (control and
status registers). These eight bits are the register file
output enables (<59:58>), the register file write
enables (<23:22>), and the register file address bits
(<21:18>).

Register File Output Enables. Bits <59:58> of each
memory controller microinstruction are the register file
output enable bits, active high. These bits cause the
addressed location of the register file to be driven onto
the memory controller address (MCA) bus.

The register file is divided into a 23-bit page portion
and a 9-bit offset portion. The page portion, the offset,
or both may be driven onto the MCA bus. Microinstruc-
tion bit <59> enables the offset portion onto the MCA
bus; bit <58> enables the page portion onto the MCA
bus.

The register file can be used as the source of physical
and virtual addresses. When addresses are supplied
from the register file to the MCA bus to access the
translation buffer or cache, the register file must be
addressed the cycle before the TB/cache access is made
and the address maintained into the next cycle.

Microinstruction bit <59> is also the output enable for
the CSRs. The four CSRs control memory management
functions and reflect error status; they share the
register file address space but are read and written over
the memory controller data (MCD) bus. When bit
<59> is a zero, the CSRs are enabled as well as the
offset portion of the register file.
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Register File Write Enables. Bits <23:22> of each
memory controller microinstruction are the register file
write enables, active low. These bits cause the data
that are stable on the MCA bus to be written into the
addressed location of the register file.

Bit <23> is the offset register file write enable; bit
<22> is the page register file write enable. When bit
<23> is asserted, data on the MCA bus are written
into the 9-bit offset portion of the register file. When
bit <22> is asserted, data from the MCA bus are
written into the page portion of the register file.

Additionally, if the register file address is 8 through F
inclusive, and the offset write enable is asserted
(<28>), the datum MCD < 0> is also written into the
selected control and status register (CSR).

Register File Address Field. Bits <21:18> of each
memory controller microinstruction are the register file
address field, active high. These bits specify a 4-bit
register file address which defines an address space
shared by the register file and the control and status
registers (CSRs). The encoding is listed in Table 7-5.
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Table 7-5. Register File Address Space
<21:18> Register File

(hex) Location Content
00 0 virtual address
01 1 physical address
02 2 I-stream PC
03 3 error code
04 4 Zero
05 5 unused
06 6 unused
07 7 unused
08 do not use
09 do not use
0A do not use
0B do not use
0C map enable control register
0D cache enable control register
OE error flag status register
OF instruction prefetch error (IB.ERROR)
status register

When a CSR is read, its register file address is specified
In microinstruction bits <21:18> and its content
enabled onto the memory controller data bus as MCD
<0>. The microcode guarantees that no source is
enabled on the MCD bus for one microcycle before, and
one microcycle after, a CSR read.

For addresses 04 through OF, bit <8> of the register
file is not implemented, and always reads 0. The

remaining 31 bits are read and written as usual from
the MCA bus.
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Transceiver Control

Bit <57> of each memory controller microinstruction
is the transceiver enable bit, and bit <56> specifies
the transceiver direction. These two bits control the
operation of the MCT transceiver, which isolates the
memory data bus (the 32-bit bus between the two
modules) from the MCA bus (the 32-bit bus internal to
the MCT; see Figure 4-1). The MCT transceiver is the
data communication port to the DAP module for all
data transfers except bytes from the I-stream. Table
7-6 shows the encoding for the transceiver control field
of the MCT microinstruction.

Table 7-6. Transceiver Control Field

Transceiver Transceiver

Enable Direction
<57> <56> Result
1 0 DAP to MCT
1 1 MCT to DAP
0 X no operation
TB/Cache Control

The translation buffer and the cache share a 4K
location by 48-bit-wide RAM. Ten bits control whether
the cache or the translation buffer is accessed, and how.
These bits are the TB/cache index MUX bit <6> select
(<54:53>), TB/cache RAM control (<36:33>),
TB/cache valid bit (<32>), and the TB/cache access
select (<31:29>).

TB/Cache Index MUX Bit <6> Select. Bits <54:53> of
each memory controller microinstruction determine the
source for index MUX bit <6>.
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The index MUX selects the correct bits from the MCA
bus to access the desired TB or cache location. In other
words, the index MUX forms an address that selects a
location in the translation buffer or the cache.

Bit 6 of the address supplied by the index MUX is
sourced from various places; microinstruction bits
<54:53> control the selection of the source for index
MUX bit <6>. In addition, the register file output
enable bit for the offset portion of the register file
(microinstruction bit <59>), affects the selection of
the source for index MUX <6>. Table 7-7 summarizes
the sources for index MUX bit <6> and under what
conditions each source is selected.

Table 7-7. Index MUX <6> Select

Bit Bits
<59> <54:53> Source for Index MUX Bit <6>
0 00 bit <8> from the adder
1 00 bit <8> from register file location 0
0 01 MCA<8>
1 01 bit <8> from register file location 1
0 10 unused
1 10 bit <8> from register file location 2
0 11 MCA<15>

1 11 bit <8> from register file location 3

TB/Cache RAM Control. Bits <36:33 > of each memory
controller microinstruction are the TB/cache RAM
control bits. These four bits control the read and write
operations of the TB/cache RAM. All data are read
from, and written to, the MCD bus. The encoding is
shown in Table 7-8.
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Table 7-8. TB/Cache RAM Control
<36:33> Action

1111 no operation (and power down)
1100 translation buffer write

1010 cache write (normal or conditional)
0101 translation buffer read

0011 cache read

TB/Cache Valid. Bit <32> of each memory controller
microinstruction is the TB/cache valid bit, active high.
This bit directly controls a hardware TB/cache valid bit
that is written into the TB/cache as part of the tag.

If bit <32> is a one, the hardware valid bit in the tag
is written high to indicate that the associated informa-
tion being stored in the TB or cache is a valid copy of
the same information in memory. If bit <32> is a zero,
the hardware valid bit is written low to indicate that
the associated TB or cache entry is invalid.

If the hardware valid bit is written high, it enables a
comparison between the tag for the cached entry and
the presented address; this comparison may then pro-
duce a TB/cache hit. If the valid bit is written low, the
comparison is disabled and a TB/cache miss is forced.

TB/Cache Access Select. Bits <31:29> of each memory
controller microinstruction are the TB/cache access
select bits. These bits select the type of TB/cache access
to be performed. The encoding is shown in Table 7-9.
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Table 7-9. TB/Cache Access Select

<31:29> Access Type

000 normal TB access read or write
101 normal cache read or write

110 TB invalidate via adder

111 conditional cache invalidate

When <31:29> are 110, a translation buffer invalidate
all (TBIA) operation occurs. For a TBIA, the transla-
tion buffer is accessed by MCA <10:2>, which select
one of the 512 entries in the translation buffer. MCA
< 8:2> are supplied by the adder and <10:9 > are read
from the page portion of a register file location. (MCA
<10:9> are supplied to a register file location by the
data path microcode. MCA <31:11> and <1:0> are
ignored for a TBIA.)

When the TBIA operation begins, MCA <10:2> select
the first entry in the process portion of the translation
buffer, or the first entry in the system portion of the
translation buffer. The selected entry is in the process
TB if MCA <10> is 0, and in the system TB if MCA
<10> is 1. MCA <9> is set to zero and 128 entries
are then accessed by using the adder to increment the
value in MCA <8:2>. As each entry is accessed, it is
marked invalid by clearing the hardware valid bit in its
associated tag.

When the page crossing flag is set, the first 128 entries
have been invalidated and the memory controller sets
MCA <9> to 1 to select the second block of 128 entries.
When these entries are invalidated the TBIA function
is complete.

When <31:29> are 111, and a cache write operation is
selected (microinstruction bits <36:33>=1010), the
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cache is accessed for a conditional cache invalidate. If a
cache hit occurred in the previous cycle, the hardware
valid bit is cleared as specified by bit <32>, the
TB/cache valid bit; that is, if a cache hit occurred, that
cache entry is marked invalid. All other bits in that
cache entry are written to an undefined state. If a
cache hit did not occur in the previous cycle, this cycle
is a no operation.

Prefetch FIFO Control

Bits <52:51 > of each memory controller microinstruc-
tion are the instruction prefetch FIFO control bits. The
RAM and the associated control logic provide first-in-
first-out storage for up to 16 bytes of prefetched data
from the instruction stream. The control logic asserts
the prefetch enable flag whenever less than 8 bytes of
I-stream data are contained in the prefetch FIFO.

Prefetch FIFO Clear. Microinstruction bit <52> is
active low and causes the entire contents of the
I-stream prefetch FIFO to be cleared. This direct clear
function is used to synchronize the FIFO to the
instruction stream after program flow changes.

Prefetch FIFO Load Clock. Microinstruction bit <51 >
is active high and controls the clocking of data from the
low byte of the MCA bus into the I-stream prefetch
FIFO. This clock occurs at the end of the current MCT
microcycle so that data are fetched and written into the
FIFO in one cycle.

Reverse Pass Latch Control

The reverse pass latch allows data on the MCA bus to
be driven onto the MCD bus. (See Figure 4-1 in
Chapter 4 for the location of the reverse pass latch.)
The reverse pass output enable (bit <44>) and the
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reverse pass latch enable (bit <43>) are the two bits
that control the reverse pass latch.

Reverse Pass Output Enable. Bit <44> of each
memory controller microinstruction is the reverse pass
output enable bit, active low. This bit causes the

current contents of the reverse pass latch to be enabled
onto the MCD bus.

Reverse Pass Latch Enable. Bit <43 > of each memory
controller microinstruction is the reverse pass latch
enable bit, active low. This bit causes the data on the
MCA bus to be latched into the 32-bit-wide reverse pass
latch. The reverse pass latch is transparent, allowing
data from the merge register to be passed back to the
MCD bus, rotated, and presented to the merge register
inputs in one cycle.

Status Control Field

The 3-bit status control field is shown in Figure 7-2 and
consists of:

® the busy control field, bits <17:16>,and
® the sign-extend bit, <15>.

Busy Control

Bits <17:16 > of each memory controller microinstruc-
tion are the busy control field bits. These bits deter-
mine the state of the MEM BUSY signal to the data
path module. Together, these bits synchronize data
transfers between the memory controller module and
the data path module. The encoding is shown in Table
7-10.
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Table 7-10. Busy Control Field Encoding

<17:16> Function
00 unconditionally clear busy
01 no operation
10 not used
11 conditionally clear busy

The conditionally clear busy state causes the MEM
BUSY signal to be cleared if a TB miss, modify refused
error, or access violation occurs during a TB access.
Similarly, the conditionally clear busy state causes the
MEM BUSY signal to be cleared if a cache hit occurs
during a cache access.

The unconditionally clear busy state is not dependent
on any conditions; if bits <17:16> are both zeros, the
MEM BUSY signal is explicitly cleared. Uncondition-
ally clear busy is used, for example, when the microcode
determines that it has reached the end of an extended
memory request.

Sign-Extend Word Control Field

This single bit field causes the sign-extend word flag to
be asserted to the sign-extend logic on the data path
module. This bit (<15>) indicates that the memory
request from the data path was an I-stream Request
with IB.WORD specified so that a word is read from the
instruction stream, and should therefore be sign-
extended to a longword.

The particular case for which this bit is needed is when
the requested instruction stream word is a word
displacement, and will be added directly to the program
counter on the data path chip.

Once the sign-extend bit is set in a memory controller
microinstruction, the sign-extend word flag remains set
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until the memory controller accepts the next memory
request dispatch from the data path module.

Microprogram Control Field

The 15-bit microprogram control field provides the
information for the MCT microsequencer to determine
the address of the next MCT microinstruction. The
generated microaddress is then used to access control
store and retrieve the next MCT microinstruction.

The control store address space consists of 1,024 loca-
tions; each location contains a 64-bit microinstruction.
A 10-bit microaddress is presented to the MCT control
store to access the next microinstruction.

Figure 7-2 shows the microprogram control field
divided into three subfields: microsequencer control,
branch control, and next address. The following
sections describe these subfields in more detail.

Microsequencer Control

Bits <14:13> of each memory controller microinstruc-
tion are the microsequencer control field bits. These
bits control the next microaddress to be executed by the
MCT micromachine. The encoding for these bits is
shown in Table 7-11.

Table 7-11. Microsequencer Control Field Encoding
<14:13> Function

00 enable trap, disable dispatch, jump
01 disable trap, disable dispatch, jump
10 enable trap, enable dispatch, jump

11 enable trap, disable dispatch, return from
trap
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Trap is defined as a cache invalidate trap to address
3FF; dispatch means dispatch on the memory request
supplied by the data path; jump is the microaddress
created by bits <9:0> of the microinstruction, with
bits <3:0> modified by branch conditions.

Branch Control

Bits <12:10> of each memory controller microinstruc-
tion are the branch control field bits. This field selects
one of eight groups of status conditions that can be
ORed with the four least significant bits of the next
address field to cause conditional microprogram
branches. The branch control field influences the next
microaddress in the same way that the OR <2:0> field
does in the data path microcode. Figure 7-3 shows the
encodings for the branch control field.

Next Address

Bits <9:0> of each memory controller microinstruc-
tion are the next address field. These bits specify the
next microaddress that the microsequencer will execute
if no conditional branching, dispatch, or trap occurs.

The four lowest bits, <3:0>, can be modified by the
branch conditions as selected by the branch control
field. Figure 7-3 shows the branch control field and
corresponding branch conditions. The result is that
two, four, eight, or sixteen-way branching can occur.

When a two-way branch is coded in a memory control-
ler microinstruction, one of the four lowest bits in the
microinstruction is zero; when a four-way branch is
coded, two of the four lowest bits in the microinstruc-
tion are zero; when an eight-way branch is coded, three
of the four lowest bits in the microinstruction are zero;
when a sixteen-way branch is coded, the low four bits
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are all zeros. The bits that are zeros can be changed by
selected branch conditions.

Branch Conditions

When a branch condition signal is asserted, it causes a
branch to the address of the memory controller micro-
routine that handles that branch condition. There are
sixteen branch conditions that can influence the
address of the next MCT microinstruction; these branch
conditions are listed in Figure 7-3, and described
further in the following paragraphs.
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branch

control
field next address control field

121111009 |08 |07 |06 |05 |04 03 02 01 00
0 0 0 <9:4> NO.MAP DATAFLOW MCA <1> MCA <0>
o o0 1 <9:4> PAGE.CROSS MODIFY MCA <1> MCA <0>
0 1 0 <9:4> 0 0 QBUS.SYNCH QBUS.BLK.OK
0 1 1 <9:4> 0 0 TB.ERROR NON.CACHE.REF
100 <9:4> 0 0 0 0
1 0 1 <9:4> 0 0 QBUS.TIMEOUT QBUS.ERROR
1 1 0 <9:4> 0 0 0 TBC.MISS
1 1 1 <9:4> 0 0 PREFETCH.DIS {B.ERROR

Figure 7-3. Branch Control Field and Next Address Field Formats
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NO.MAP

When this signal is asserted, memory management is
turned off; that is, no address translation takes place so
all addresses are treated as physical addresses, no
access checking is performed and there is no memory
protection.

The map enable bit is one bit in an internal processor
register (IPR) on the data path chip; this bit is set and
cleared by executing a MTPR macroinstruction. The
data path then places a copy of the map enable bit in
the memory controller map enable control register (one
of the CSRs in the register file) by executing a
WRITE.MAP.ENABLE Memory Request; the address
of the CSR is specified as part of the function code.

DATAFLOW

This branch condition signal is asserted directly from
bit <28> in the data path microinstruction that is
making the memory request. Ifbit <28> is a zero, the
requested memory operation is a read; a one indicates a
write.

This bit is latched in the memory function latch on the
data path module, and transmitted to the memory
controller as BUS MEM CTL 5. On the memory
controller module, this signal is one of the inputs to the
branch MUX.

MCA <1> and MCA <0>

These bits are the low two bits of the virtual or physical
address currently on the MCA bus. They are used to
indicate what data alignment must be performed.
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PAGE.CROSS

If the adder is enabled and the add operation results in
a carry into the tenth bit, the page crossing signal is
asserted.

MODIFY

This branch condition signal is asserted directly from
bit <29> in the data path microinstruction that is
making the memory request. If bit <29> is a zero, the
access intent is read; a one indicates an access intent of
write.

The modify intent signal (DAPT MODIFY) is
transmitted from DAP to MCT over pin DP1 in the
backplane. Once on the memory controller module, this
signal is one of the inputs to the branch MUX.

QBUS.SYNCH

The Q22 bus controller sends the SYNCREADY signal
to the memory controller branch condition logic to
indicate Q22 bus controller status.

On a read operation, SYNCREADY means that the
requested data are available and can be driven onto the
memory controller MCD bus. On a write, SYNC-
READY means that the Q22 bus controller is ready to
receive the write-to address or the data to be written.

QBUS.BLK.OK

The Q22 bus controller sends the BLOCK MODE OK
signal to the memory controller branch condition logic
when the physical memory on the Q22 bus supports
block mode; that is, when data can be read or written in
blocks of 1 to 16 words (each word is 16 bits) within one
Q22 bus cycle. The words are transferred one at a time
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but the Q22 bus controller only needs to drive one
address onto the bus at the beginning of the operation,
and the cycle does not end until the desired number of
words are transferred.

If the physical memory does not support block mode,
the Q22 bus controller must drive a new address onto
the Q22 bus for each word to be read or written.

TB.ERROR

This signal is asserted when anything goes wrong
during a translation operation. It is actually the OR of
the signals that indicate a page crossing, a TB miss, an
access violation, or modify refused.

NON.CACHE.REF

This branch condition is generated if either bit <29>
or bit <28> of a physical address is set.

Bit <29> is the high-order bit of the physical address
currently on the MCA bus. MicroVAX I physical
addresses are 23 bits long, with the address specified in
<21:00> and the I/O space flag, bit <29>, appended
as bit <22>. Bit <29> becomes part of the physical
address in the address translation procedure.

When bit <22> of a physical address is a one, that
address is located in I/O space, and is therefore not in
the cache. (No [/O space address is cached.)

Bit <28> is one of the fifteen bits latched in the
physical address register after an address translation
operation. When set, it indicates that the address is
located in a physical memory that can be shared by Q22
bus processors, and therefore, the address should not be
cached. Although bit <28> is driven on the MCA bus
as MCA <28>, it is an internal flag and is not sent
over the Q22 bus as part of the physical address.
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Thus, if either bit <29> or bit <28> is set, the
address should not be cached, and the branch condition
input signal NON CACHE REF is generated.

QBUS.TIMEOUT

The Q22 bus controller sends this signal to the memory
controller branch condition logic when a Q22 bus device
does not reply within the allowed time limit of 10
microseconds. This signal generally means that a read
or write to a nonexistent memory location was
attempted.

QBUS.ERROR

The Q22 bus controller sends this signal to the memory
controller branch condition logic when either a timeout
or a parity error occurs on the Q22 bus. This signal
causes the current memory request to be aborted.

TBC.MISS

This signal is asserted when an address translation or
cache access fails. It is not available until the cycle
after the one in which the actual translation or cache
access took place.

PREFETCH.DIS

This is the disable prefetch signal. It is asserted when
the prefetch FIFO is full. It is deasserted when the
FIFO content falls below the target value of eight bytes.
This deassertion causes the memory controller to reload
the prefetch FIFO from the [-stream.

IB.ERROR

When a page crossing occurs during prefetch, a bit is set
in the IB.ERROR CSR. The IB.ERROR signal is then
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asserted to the memory controller branch condition
logic. The assertion of this signal causes the prefetch
operation to halt until the correct page address can be
supplied by the data path module.

Q22 Bus Controller Interface

Just as the memory controller module executes
commands delivered by the data path, the Q22 bus
controller executes commands delivered by the memory
controller. The memory controller microcode communi-
cates with the Q22 bus controller via four microcode
bits: three bits of function code and the go bit. The Q22
bus controller sends back five status flags to communi-
cate its state to the memory controller microcode. All of
the microcode bits and most of the status flags are
described earlier in this chapter, but are also summa-
rized here for convenience.

Interface Microcode

The memory controller sends four microcode bits to the
Q22 bus controller. They are:

® the go bit, which is microinstruction bit <63>.
After the Q22 bus controller receives the function
code in bits <50:48>, it acquires the bus and
asserts an address. It then waits for the go bit
before proceeding with the bus cycle.

® the function code, microinstruction bits <50:48>.
These bits select the Q22 bus operation to be
performed: no operation, write word, write byte,
write block, read word, read block, read interrupt
vector, or read interlocked. These Q22 bus opera-
tions are described in Chapter 9. See Table 7-1 for
the encoding of the function code field.
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The Q22 bus controller uses the 3-bit function code to
determine the sequence of microstates needed to accom-
plish the given function.

Q22 Bus Controller Status

The Q22 bus controller communicates its state to the
memory controller through five status flags. They are:

e QBUS.BLK.OK. This signal is asserted during a
write block or read block operation to signify that
the memory will be able to handle the next data
transfer as a block mode transfer.

e QBUS.SYNCH. The signal SYNCREADY is
asserted when data are available on a read from a
Q22 bus device, and when data or address is
needed for a write to a Q22 bus device.

o QBUS.TIMEOUT. This signal is asserted when
the address of a nonexistent memory location is
driven on the bus.

® QBUS.ERROR. This signal is the OR of the two
error signals, bus timeout and parity error. It
causes the current memory request to be aborted.

® Cache Invalidate. This signal is asserted when-
ever a bus device writes to physical memory. It
alerts the memory controller to invalidate its copy
of the written-to memory location if that address is
in the cache.

This chapter describes the memory controller micro-
code and the memory controller/Q22 bus controller
interface. The next chapter describes the hardware
that implements the memory controller microcode.
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Chapter 8
Memory Controller Module

This chapter is a detailed description of the components
on the memory controller module and how they inter-
act. First, the major logic elements and their hardware
components are described. Then, the basic transfers of
data between the logic elements are described on a
microprogram level.

Overview of MCT Functions
The memory controller module contains hardware to
perform the following eight functions:
® generate clock signals
control MCT microinstruction flow
translate virtual addresses
access the data cache
transfer data within the memory controller module
prefetch instruction stream bytes

track and report status

communicate with the Q22 bus controller to read
and write data

The next eight sections describe these functions, and
the hardware components that implement them, in
detail. The hardware components are illustrated in the
MCT block diagram, Figure 8-1.

8-1



Generating the Clock Signals

All of the clocks for the MicroVAX I CPU are generated
from a single 64 MHz clock on the memory controller
module. The clock generator logic produces clocks for
the data path module, the memory controller module,
and the Q22 bus interface. The major clocks for the
memory controller module are described in the next
section.

MCT Clocks

The master clock on the memory controller module is a
16 MHz clock MCTM BASE CLOCK (62.5 ns period).
This clock signal goes to the data path module over
backplane pin CN2, and is the source for all the clock
signals on the data path module. BASE CLOCK also
synchronizes DAPL DCOK to generate the DAPL INIT
signals. One of the DAPL INIT signals is DAPL MCT
INIT. DAPL MCT INIT initializes the memory control-
ler module to a known state and synchronizes the clock
signals between the DAP and MCT modules.

MCTM CLK125 is the 125 ns period clock that controls
the memory controller microcycle. Thus, two memory
controller microcycles occur for every one data path
microcycle. (DAPL CPU CLOCK is the 250 ns period
clock that controls the data path microcycle.)

MCTM CLK62 simply divides the CLK125 signal in
half, providing clocking control for each half of a
memory controller microcycle.

MCTM MEMCLK is asserted for the first 31 ns of a
microcycle, and deasserted for the remaining 94 ns.
This clock signal controls TB and cache reads.
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Figure 8-1. Memory Controller Block Diagram
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MCTM DPC SRC is sent to the DAP module over
backplane pin CP2. This clock signal is inverted to
generate the signal DAPL DPC CLK. DPC CLK is the
input clock signal to the data path chip.

MCTM DLYD CLK125 delays the CLK125 signal by 31
ns. This delayed clock enables writes to the register file
and latches the reverse pass latch.

MCTM ADV CLK125 advances the CLK125 signal by
15 ns. This advanced clock is used to clock or latch data
into MCA bus destinations.

Timing
A memory controller microcycle begins at the rising
edge of MCTM CLK125 when the MCT microinstruc-
tion is available as the output of the control store. At
this point, the microinstruction clock gating logic takes

over to distribute the microinstruction control bits to
their respective functional blocks.

Branch conditions are available to the MCT micro-
sequencer by 50 ns into the current microcycle.

For reads from the translation buffer or the cache, the
access address becomes available on the MCA bus
between 0 and 28 ns into a microcycle, and the read
occurs between 28 and 125 ns.

All MCA bus destinations are written by 110 ns into
the current microcycle. If the bus destination is a latch
part, the latch is open between 47 ns and 110 ns. If the
bus destination is an edge sensitive part, data are
clocked into the destination at 110 ns, which is the
rising edge of MCTM ADV CLK125.
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Controlling the MCT Microinstruction Flow

The memory controller module has its own set of
hardware components to sequence the flow of memory
controller microinstructions. These components are the
memory request latch, the CSA bus, pull-up resistors,
the control store, microinstruction clock gating, branch
condition logic, and the microsequencer. The following
paragraphs describe each of these components in turn.

Memory Request Latch

When the data path module executes a Memory
Request or I-stream Request microinstruction, eight
bits of control information are sent to the memory
controller over the memory control bus, and four
additional bits are sent over the backplane. These
twelve bits are recombined on the memory controller
module and the following eight bits are latched in the
memory request latch:

® the second part flag, bit <7>
® thedatatype, bits <6:5>
® the memory function code, bits <4:0>.

The control store address (CSA) PAL in the MCT
microsequencer supplies ones for bits <9:8> on a
memory request dispatch.

The memory request latch is a tri-state latch located at
the memory controller end of the memory control bus.
The signal DAPR MEM REQUEST is asserted by the
data path to inform the memory controller when a new
memory function code is on the memory control bus.

This signal is synchronized with two clock signals to
generate the signal MCTN MRL LE (memory request
latch, latch enable). This signal causes the proper eight
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bits to be latched into the memory request latch. If
dispatches are enabled in the current MCT microin-
struction, the contents of the memory request latch,
plus the two high-order ones from the CSA PAL, are
presented to the control store as the next microaddress.

CSA Bus

The control store address bus conveys the next
microaddress to be executed to the control store. The
CSA busis 10 bits wide.

The low eight bits of the CSA bus are sourced from the
next address buffer, the save address register, or the
memory request latch, or they are passively asserted by
pull-up resistors. The upper two bits are multiplexed

through the CSA PAL.

The CSA bus destination is the address inputs to the
control store.

Pull-up Resistors

When no other source is driving the bus, the pull-up
resistors cause the default condition on the bus to be a
logical high; that is, they pull up the bus. Thus, CSA
bus bits <7:0> are all ones when the next address
buffer, the save address register, and the memory
request latch are not enabled.

MCT Control Store

The control store for the memory controller microin-
structions is 1K deep by 64 bits wide. Each of the 1K
locations contains one MCT microinstruction. Only 63
of the 64 bits are used.

The input to the control store is a 10-bit microaddress,
which selects one location, and therefore one microin-
struction.
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The output from the control store is a 64-bit microin-
struction that controls the MCT microsequencer, the
Q22 bus interface, and all functional blocks of the
memory controller. The encoding of the microinstruc-
tion bits is detailed in Chapter 7, but basically:

® Bit <63> and bits <50:46 > control the Q22 bus
interface.

® Bits <62:51> and <45:18> are the clocking and
output enables for every functional block in the
memory controller.

® Bits <17:15> control two status signals.

® Bits <14:0> control the memory controller micro-
sequencer.

Microinstruction Clock Gating

This block of logic uses 39 of the 64 microinstruction
bits from control store as input, and gates the appropri-
ate latch and output enables to the proper functional
blocks. Thus, the microinstruction clock gating logic
controls when the various bus sources are enabled onto
the MCA and MCD buses.

Branch Condition Logic

The branch condition logic monitors a group of condi-
tions that affect the MCT status as reported to the data
path, and can affect the MCT microprogram flow. Part
of the logic is a group of flip-flops that act as a pipeline
to save status for one additional cycle before it is dis-
carded. The signals saved are:

e MCTL TBC HIT, which indicates a translation
buffer or cache hit,

e MCTN MEM BUSY, which is asserted when the
MCT is busy processing a memory request,
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e MCTP NEXT IB VALID, which is the signal from
the prefetch logic indicating the next byte in the
prefetch FIFO is valid,

® MCTP PREFETCH EN, which is another signal
from the prefetch logic indicating the prefetch
FIFO contains less than eight bytes, and

® DAPR MEM REQUEST, which is the signal from
the data path indicating a new memory function
code is on the memory control bus.

The branch condition logic sends these three signals to
the branch MUX in the MCT microsequencer:

® MCTT NO MAP, which indicates when memory
management is disabled and sets up the branch
condition NO.MAP,

e MCTT REG PREFETCH EN, which indicates the
prefetch FIFO contains less than the desired
number of bytes; when REG PREFETCH EN is

deasserted, it sets up the branch condition
PREFETCH.DIS, and

® MCTT IB ERROR, which indicates to the data path
that the MCT cannot supply the next instruction
stream byte because a page crossing has occurred,
and sets up the branch condition IB.ERROR.

MCT Microsequencer

The memory controller microsequencer generates the
next 10-bit microaddress every 125 ns. It provides
conditional branching based on MCT internal and
external conditions. Branch conditions are assumed to
be stable no later than 50 ns before the next clock edge.

The MCT microsequencer consists of these components:
the microinstruction decode logic, CSA PAL, the
branch MUX, save address register, and next address
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buffer. These components are described in the follow-
ing paragraphs. Figure 8-2 is a block diagram of the
MCT microsequencer.

Microinstruction Decode Logic

The 10-bit microaddress used to access the control store
comes from one of the following sources: the memory
request latch, the save address register, or the next
address buffer. The next microaddress can also be 3FF
which is the address of the first microinstruction in the
trap microroutine. The microinstruction decode logic
selects which of these sources provides the next micro-
address.

There are basically three inputs to this decode logic:
the microsegencer control field (microinstruction bits
<14:13>), the signal MCTT MEM REQ DLYD which
is generated from a pipelined version of DAPR MEM
REQUEST, and the signal MCTB CACHE INV which
is a signal from the Q22 bus.

Microinstruction bits <14:13> enable traps, dis-
patches on memory requests from the data path, and
returns from traps. (See Table 7-11 in Chapter 7 for the
encoding of this field.)

MCTT MEM REQ DLYD is asserted when the data
path drives a new memory function code onto the
memory control bus.

MCTB CACHE INV is asserted when a Q22 bus device
writes to physical memory.
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When dispatches are enabled and MEM REQ DLYD is
asserted, the microinstruction decode logic asserts the
signals MCTJ TAKE DISPATCH, and MCTJ MRL OE
(memory request latch output enable).

When MCTJ MRL OE is asserted, the eight memory
function bits in the memory request latch are presented
to the control store as the low-order eight bits of the
next microaddress. The high-order two bits are both
ones, and they are driven onto the CSA bus by the CSA
PAL in the microsequencer whenever the signal TAKE
DISPATCH is asserted.

When traps are enabled and CACHE INV is asserted,
the microinstruction decode logic asserts the signals
MCTJ TAKE TRAP and MCTJ SAR LE (save address
register latch enable), and the pull-up resistors control
the bus. The pull-up resistors force next microaddress
bits <7:0> to ones. TAKE TRAP also causes the CSA
PAL in the microsequencer to force the high-order two
bits of the next microaddress to ones. Therefore, the
next microaddress is 3FF.

The signal MCTJ SAR LE enables the save address
register (SAR). So when a trap is taken, the low eight
bits of the microaddress that would have been
presented to control store next if the trap had not

occurred, are saved in the SAR. The two high-order bits
are saved in the CSA PAL.

Bits <14:13> of an MCT microinstruction are 11
(binary) to enable returns when a return from trap is
needed. For example, the last microinstruction in the
trap microroutine located at 3FF has bits <14:13> set.
The signal SAR OE is asserted as the output of the
microinstruction decode logic when bits <14:13> are
set. SAR OE enables the contents of the save address
register onto the CSA bus to be presented to the control
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store as the low eight bits of the next microaddress.
Bits <14:13> set also causes the CSA PAL to drive the
two high-order bits that it saved when the trap was
taken, onto the CSA bus. Thus, a return from trap is
executed.

When jumps are enabled, and traps and dispatches are
either not enabled or don’t occur, the next microaddress
is 'bits <9:0> of the current microinstruction from
control store. If any branch conditions are in effect,
they are ORed with the low four bits <3:0>. This
microaddress, modified as appropriate, is passed
through the next address buffer and presented to
control store as the next microaddress.

CSA PAL

The next address buffer, save address register, and

memory request latch drive microaddress bits <7:0>
onto the CSA bus. The CSA PAL provides the two high-
order bits, MCTN CSA <09:08>.

On a cache invalidate trap or memory request dispatch,
the CSA PAL forces bits <09:08> to ones.

When a trap is taken, the two high-order bits of what
would have been the next microaddress are saved in the
CSA PAL. On a return from trap, the CSA PAL drives
these saved bits onto the CSA bus. The low eight bits
are driven onto the CSA bus from the save address
register, which is enabled by the microinstruction
decode logic.

For a normal operation where the next microaddress is
provided by bits <9:0> of the current microinstruc-
tion, bits <9:8> are driven onto the CSA bus from the
CSA PAL. Bits <7:0> are provided by the next
address buffer; the low four bits are modified by any
asserted branch conditions.
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Save Address Register

When a trap occurs, the save address register stores
microaddress bits <7:0> of the microinstruction that
would have executed next. The signal MCTJ SAR LE
asserted by the microinstruction decode logic causes the
save address register to latch the microaddress bits.

When a return from trap is executed, the microinstruc-
tion decode logic asserts the signal MCTJ SAR OE to
enable the save address register to drive the saved bits
onto the CSA bus.

Next Address Buffer and Latch

The next address buffer latches bits <7:0> of the next
microaddress by 94 ns into the current microcycle.

Bits <7:4> come from the current microinstruction,
and bits <3:0> are the low four bits of the current
microinstruction after they have passed through the
branch MUX and been modified by any asserted branch
conditions. These eight bits are then presented to con-
trol store as the low-order bits of the next microaddress
if a trap or a dispatch does not occur.

When trapping and dispatching are not enabled or do
not occur, the microinstruction decode logic generates
the signal MCTJ NAB OE (next address buffer output
enable). MCTJ NAB OE causes the bits that are
latched in the next address buffer (next microaddress
bits <7:0>) to be presented to control store.

Branch MUX

The branch MUX consists of two 4:1 multiplexers, two
8:1 multiplexers, and four OR gates. The branch condi-
tions described in Chapter 7 and listed in Figure 7-3 are
the inputs to the branch MUX.
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Each 4:1 and 8:1 MUX selects one branch condition
that is ORed with one of the low four bits of the microin-
struction from the control store. The ORed signals are
then passed through the next address buffer and
become the low four bits of the next microaddress if the
next address buffer is enabled by the microinstruction
decode logic.

Translating Virtual Addresses

One of the main functions of the memory controller is to
translate virtual addresses supplied by the data path
module into physical addresses. The components used
to do this are the index MUX, the tag MUX, the tag
RAM, the TB/cache RAM, the write isolation buffer, the
TB/cache comparator, the physical address register, the
register file, and the 9-bit adder. The following para-
graphs describe each of these components in turn, and
the different kinds of TB accesses.

Index MUX

The index MUX selects the correct bits from the MCA
bus to access the TB location that is to be read, written
or invalidated. The twelve bits selected from the MCA
bus by the index MUX form an address that accesses a
location in the tag RAM; the same address is used to
access a location in the translation buffer.

If a single translation buffer entry is being read,
written, or invalidated, the index MUX selects virtual
address bits <31> and <16:9> off the MCA bus. The
index MUX supplies zeros for the high-order three bits,
thus selecting the translation buffer portion of the tag
RAM and of the TB/cache RAM. The address then
presented to the tag RAM and to the TB/cache RAM by
the index MUX is:
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1110 9 8 7 0
0|0|0|VA <31>|VA <16:9>

If VA <31> is a zero, the presented address selects a
process space tag entry and translation buffer entry. If
VA <31> is a one, the presented address selects a
system space tag entry and translation buffer entry.

If the entire translation buffer is being invalidated by a
Memory Request microinstruction with the INVAL-
ID.MULTIPLE function code, the index MUX selects
virtual address bits <10> and <8:1> off the MCA
bus. The index MUX again supplies zeros for the high-
order three bits. The address then presented to the tag
RAM and to the translation buffer by the index MUX

1S:

1110 9 8 7 0
0/|0|0|VA 10> |VA<8B:1>

MCA <8> is not bused as the other MCA bits are; it is
implemented via a hardwired multiplexer. The output
of the multiplexer is bit <6> of the index MUX (MCTF
INDEX 06). Thus, for any translation buffer access,
index MUX <6> comes from one of seven possible
sources: adder bit <8>, register file locations 0, 1, 2,
or 3 bit <8>,MCA <8>,or MCA <15>. MCT micro-
instruction bits <59> and <54:53> select the source
for index MUX <6>. (See Table 7-7 in Chapter 7 for
the encoding of these microinstruction bits.)

Tag MUX

The tag MUX selects virtual address bits <30:17>
from the MCA bus to form the low-order fourteen tag
bits for the translation buffer entry being read, written
or invalidated.
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When the data path issues a Memory Request microin-
struction with a function code that requires a transla-
tion buffer read or invalidate, the tag MUX passes bits
<30:17> of the virtual address on the MCA bus to the
TB/cache comparator.

When the data path issues a Memory Request microin-
struction with a function code that requires a transla-
tion buffer write, the tag MUX passes bits <30:17> of
the virtual address on the MCA bus to the write isola-
tion buffer, which in turn passes them to the tag RAM,
where they are written into the location accessed by the
index MUX.

Tag RAM

The tag RAM is a 4K locations by 16-bit-wide memory
array that stores the address tag bits associated with
each translation buffer and cache entry. The first 512
locations in the tag RAM contain the translation buffer
tags for process and system space, the next 1.5K loca-
tions are unused, and the last 2K locations contain the
translation buffer tags for the data and instruction

cache. Figure 8-3 shows the organization of the tag
RAM.
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256 process space tags

2K locations | 256 system space tags

for translation | 512 ynused locations
buffer tags

512 unused locations

512 unused locations

2K locations
for cache

cache tags
tags

Figure 8-3. Organization of Tag RAM

Each translation buffer tag is 16 bits wide, consisting of
one valid bit controlled by bit <31> of every memory
controller microinstruction, one spare bit, and 14 tag
bits which are virtual address bits <30:17>. Figure
8-4 shows the organization of one tag entry in the
translation buffer:

15 14 13 0

valid | spare | virtual address
bit |bit bits <30:17>

Figure 8-4. Translation Buffer Tag
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The tag RAM is written whenever the TB/cache RAM is
written. When a new TB tag is written into the tag
RAM, bits <30:17> of the virtual address on the MCA
bus are stripped off by the tag MUX, passed through
the write isolation buffer, and written into the tag RAM
location selected by the index MUX. Tag bit <15>,
the tag valid bit, is set or cleared by the memory
controller microinstruction executing the write to the
translation buffer, to mark the entry as valid or invalid.

The tag RAM is read whenever the TB/cache RAM is
read. For a read, the tag MUX passes bits <30:17> of
the virtual address on the MCA bus to the TB/cache
comparator. The tag at the tag RAM location selected
by the index MUX is also sent to the comparator. If tag
bit <15> is clear, indicating an invalid tag, the com-
parator generates a TB miss indication. If tag bit
<15> is set and tag bits <13:0> match virtual
address bits <30:17> stripped off the MCA bus by the
tag MUX, the comparator generates the signal MCTL
TBC HIT.

When a Memory Request microinstruction from the
data path requests a translation buffer invalidate func-
tion, the tag MUX selects virtual address bits <30:17>
from the MCA bus and passes them through the write
isolation buffer to the tag RAM, where they are written
into the tag RAM location accessed by the index MUX
bits. Asthe tagis written, the valid bit is cleared mark-
ing the tag invalid.

TB/Cache RAM

The TB/cache RAM is a 4K locations by 32-bit wide
memory array. It is organized the same way the tag
RAM is organized, with the lower 2K locations contain-
ing process and system space page table entries (PTEs),
and the upper 2K locations containing data and in-
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struction cache entries. Figure 8-5 shows the organiza-
tion of the TB/cache RAM.

2K 000-0FF | 256 process space TB entries

locations 10_1ff
for
translation

buffer  500_7¢¢ 1536 unused locations

256 system space TB entries

2K locations
for cache

800-FFF | data and instruction cache

Figure 8-5. Organization of TB/cache RAM

Each translation buffer location contains a PTE (page
table entry). Figure 8-6 shows the organization of one
page table entry in the translation buffer:

31 30 27 26 25 21 20 0

valid | protection | modify [reserved | page
bit field bit frame
number

Figure 8-6. Translation Buffer PTE
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PTEs are read from or written to the translation buffer
from the MCD bus when a Memory Request from the
data path specifies a function requiring a translation
buffer access. Bits <36:33> of the MCT microinstruc-
tion that is executed to implement the requested func-
tion, determine whether the current TB access is a read
or a write. (See Table 7-8 for the encoding of these bits).
Bits <31:29> of the MCT microinstruction determine
whether the current TB access is a normal access (that
is, a read or a write), or a translation buffer invalidate.
(See Table 7-9 for the encoding of these bits).

The TB/cache RAM address selected by the index MUX
bits on a TB access is the same address selected in the
tag RAM by these same index MUX bits. For example,
if the address presented to the tag RAM by the index
MUX is OCD (hex), then location OCD in the TB/cache
RAM is accessed at the same time.

Write Isolation Buffer

This 16-bit-wide tri-state isolator allows the tag portion
of a TB entry to be written into the tag RAM during a
translation buffer write access or a translation buffer
invalidate operation. For a read from the translation
buffer, the write isolation buffer is disabled to allow the
tag from the tag RAM to be read to the comparator.

TB/Cache Comparator

The TB/cache comparator is a 16-bit comparator that
asserts a TB/cache hit indication for a translation
buffer read when the stored address tag from the tag
RAM equals the search address tag supplied by the tag
MUX. When the comparison results in a match, the
comparator asserts the signal MCTL TBC HIT. If this
signal is not asserted, the compared tags did not match.
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Physical Address Register

The physical address register is hardwired to form the
physical page address from the page frame number
(PFN) of the PTE read during a translation buffer
access.

A total of fifteen bits are latched in the physical address
register (PAR) following an address translation. Bits
<12:0> of the PTE PFN are latched as the low-order
thirteen bits of the PAR; these bits form physical
address bits <21:09> when driven onto the MCA bus.

Bit <19> from the PTE is the next highest-order bit in
the PAR; it is driven onto the MCA bus as MCA <28>.
This bit indicates whether the address is located in
shared memory.

The logical AND of PFN <20> and the TB/cache hit
signal is latched as the high-order bit in the PAR; this
bit forms physical address bit <29> when driven onto
the MCA bus. When <29> is a one, the physical
address is located in I/O space.

When the PAR output enable bit (bit <61>)isa zeroin
the current MCT microinstruction, the PAR contents
are driven onto the MCA bus as MCA <29:28> and
MCA <21:09>.

Register File

The register file is a 16-location by 32-bit-wide block of
general storage within the memory controller. It is
organized into a 9-bit-wide offset address portion and a
23-bit-wide (virtual or physical) page address portion;
that is, the 23 bits select the memory page, and the 9
bits select the byte offset within the memory page. The
register file address space is shared with the control
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and status registers (CSRs). Table 7-5 shows the
register file address space.

Although there are sixteen locations, only the first four
are accessible as longwords. Bit 8 of locations 5
through 15 (addresses 04 through OF) is not imple-
mented and reads as 0.

Virtual addresses are stored at register file address 0,
which is the first of the register file locations, and
physical addresses are stored at address 1, the second
location. (These addresses are assigned by the micro-
program, not fixed by the hardware.) Virtual and
physical addresses can be sourced onto the MCA bus
from the register file.

The third location stores the instruction stream pre-
fetch program counter, which always points to the last
instruction stream byte that was stored in the prefetch
FIFO.

Location four stores error codes, location five is the
longword constant zero, and the next seven locations
are not used. The addresses of the last four locations
overlap the addresses of the CSRs and are not used.

The register file is written from the MCA bus when the
register file write enable bits (<23:22>) in the current
MCT microinstruction are asserted; microinstruction
bits <21:18> determine the register file location that
is written.

The contents of the addressed location in the register
file are driven on the MCA bus when the register file
output enable bits (<59:58>) in the current MCT
microinstruction are asserted; microinstruction bits
<21:18> determine the register file location that is
addressed. A buffer/isolator passes the output from the
register file to the MCA bus. Like the register file, the
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buffer/isolator is divided into a 23-bit page portion, and
a 9-bit offset portion.

Adder and Adder Register

The 9-bit adder contains page-crossing detection, and
has a tri-state register associated with it. The adder
and register provide 9-bit counts by successive incre-
ments of —8 through +7 inclusive, and the means for
modifying virtual or physical page offset addresses.
The adder and register are controlled by six bits in the
MCT microinstruction: the three adder constant select
bits (<26:24 >), the adder subtract enable bit (<27>),
the adder output enable (<60>), and one latch enable
bit (<28>) for the register.

The source for the adder is always data bits <8:0>
from the MCA bus. The output from the adder is the
modified data bits <8:0> which are driven onto the
MCA bus.

The adder is used for generating the multiple memory
addresses required by unaligned data accesses, and for
probing the last bytes of word and longword data types
to insure access privilege for the entire datum during
writes. For translation buffer accesses, the adder
provides successive TB entry addresses when the entire
translation buffer must be invalidated.

Translation Buffer Operations

Each translation buffer entry can be read, written, or
invalidated. The following paragraphs describe how
these accesses are accomplished.

Address Sources

Virtual addresses for translation buffer operations can
come from any of the following: the data path, the
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register file, or the register file modified by the 9-bit
adder.

TB Reads

There are two kinds of translation buffer reads. The
translation buffer is read for an address translation
operation, and it is read when the data path issues a
Memory Request with the READ.TB function specified.

For an address translation TB read, the selected PTE is
driven onto the MCD bus and fourteen of the page
frame number (PFN) bits are latched into the physical
address register to form physical address bits
<21:09>. The contents of the PAR are then driven
onto the MCA bus and to the data path via the memory
data bus. The TB hit or miss status is available to the
data path the same cycle and the data on the memory
data bus are used or ignored accordingly.

When a READ.TB Memory Request is issued by the
data path, the PTE is read out of the addressed location
in the translation buffer and latched in the merge
register, without any rotation. From the merge regis-
ter, the PTE is delivered directly to the data path over
the memory data bus.

TB Writes

For a TB write operation, the PTE is driven onto the
MCD bus from the reverse pass latch and written into
the addressed location in the translation buffer.

Meanwhile, the corresponding tag bits are selected
from the virtual address on the MCA bus by the tag
MUX and written into the tag RAM at the same
address that the PTE is written into in the TB/cache
RAM.
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TB Invalidates

The translation buffer can also be accessed to
invalidate a single entry, or to invalidate the entire
buffer. A TB invalidate function (single or multiple)
writes the valid bit, bit <15>, invalid. The remaining
tag bits and the associated PTE in the translation
buffer are undefined.

For an invalidate multiple operation, the index MUX
selects bits <10:2> from the virtual address on the
MCA bus. Bits <8:2> are supplied by the 9-bit adder.
Bits <10:9> are supplied by a register file location.

One INVALID.MULTIPLE Memory Request invali-
dates 256 translation buffer entries at a time. The
INVALID.MULTIPLE request specifies an address; bit
<10> of this address selects the process space TB
entries or the system space TB entries. If bit <10> is
0, the process space TB entries are invalidated. If bit
<10> is 1, the system space TB entries are invali-
dated. The MCT microcode enables the adder and
supplies it with a constant, and from that point on, the
adder provides the low-order seven bits of the virtual
address on the MCA bus. The 256 tags in the tag RAM
are invalidated by clearing bit <15> in each tag using
sequential TB writes.

Thus, one Invalidate Multiple request marks all of the
TB locations in process or system space invalid.

Accessing the Cache

Another main function of the memory controller is to
supply the data path with the requested data. The
memory controller accesses the data and instruction
cache first to try to supply the requested data. If the
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data is not in the cache, the memory controller initiates
a Q22 buscycle.

A cache access uses much of the same hardware as an
address translation operation: the index MUX, the tag
MUX, the tag RAM, the TB/cache RAM, the write
isolation buffer, and the TB/cache comparator. The
following paragraphs describe each of these compo-
nents in turn, and the different kinds of cache accesses.

Index MUX

The index MUX selects the correct bits from the MCA
bus to access the location in the cache that is to be read,
written or invalidated. The twelve bits selected from
the MCA bus by the index MUX form an address that
accesses a location in the cache portion of the tag RAM,
and the same location in the cache.

For any cache access, the index MUX selects physical
address bits <12:2> off the MCA bus. The index MUX
supplies a one for the high-order bit. The address then
presented to the tag RAM and to the cache by the index
MUX is:

1110 0
11PA <12:2>

Again, index MUX bit <6> is the output of a
multiplexer that has the following inputs: bit <8> of
register file locations 0, 1, 2, and 3, adder <8>, MCA
<8>, and MCA <15>. Microinstruction bits <59>
and <54:53> select one of these seven sources as index
MUX bit <6>.

Tag MUX

The tag MUX selects physical address bits <21:13>
from the MCA bus and supplies zeros for the five high-
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order bits to form the low-order fourteen tag bits for the
cache entry being read, written or invalidated.

When the cache is accessed for a read or an invalidate
operation, the tag MUX passes bits <21:13> of the
physical address on the MCA bus, plus the five high-
order zeros, to the comparator.

For a cache write, the tag MUX passes bits <21:13> of
the physical address on the MCA bus, plus the five
high-order zeros, to the write isolation buffer. The
write isolation buffer in turn passes them onto the
cache portion of the tag RAM, where they are written
into the location accessed by the index MUX.

Tag RAM

The tag RAM stores the address tag bits associated
with each translation buffer and cache entry. The first
2K locations in the tag RAM contain the tags for
process and system space addresses, and the last 2K
locations contain the tags for the data and instruction

cache. Figure 8-3 shows the organization of the tag
RAM.

Each cache tag is sixteen bits wide, consisting of one
valid bit controlled by bit <32> of every memory
controller microinstruction, one spare bit, five zeros,
and nine tag bits which are physical address bits
<21:13>. Figure 8-7 shows the organization of one tag
entry in the cache portion of the tag RAM.

15 14 13 9 8 0
valid |spare | 00000 | physical address
bit |bit bits <21:13>

Figure 8-7. Cache Tag
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The tag RAM is written whenever the TB/cache RAM is
written. When a new tag is written into the cache
portion of the tag RAM, the tag is assembled by the tag
MUX, passed through the write isolation buffer, and
written into the tag RAM location selected by the index
MUX. Tag bit <15> is set or cleared by the memory
controller microinstruction executing the write to the
cache.

The tag RAM is read whenever the TB/cache RAM is
read. For a read, the cache tag assembled by the tag
MUX is passed to the comparator. The cache tag at the
tag RAM location selected by the index MUX is also
sent to the comparator. If tag bit <15> is clear,
indicating an invalid tag, the comparator generates a
cache miss indication. If tag bit <15> is set and tag
bits <8:0> match physical address bits <21:13>
stripped off the MCA bus by the tag MUX, the
comparator generates the signal MCTL TBC HIT.

When the cache invalidate signal is sent to the memory
controller from the Q22 bus, the tag MUX passes
physical address bits <21:13> from the MCA bus to
the comparator. The cache tag at the tag RAM location
accessed by the index MUX is also sent to the
comparator. Ifthe two tags match, the cache tag at the
location accessed by the index MUX is marked invalid
by clearing bit <15>.

TB/Cache RAM

The cache portion of the TB/cache RAM is the upper 2K
locations. Figure 8-5 shows the organization of the
TB/cache RAM. Each cache location contains data or
an instruction.

Data are read from or written to the cache from the
MCD bus when a Memory Request from the data path
specifies a function requiring a cache access. Bits
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<36:33> of the MCT microinstruction that is executed
to implement the requested function, determine
whether the current cache access is a read or a write.
(See Table 7-8 for the encoding of these bits). Bits
<31:29> of the MCT microinstruction determine
whether the current cache access is a normal access
(that is, a read or a write), or a conditional cache
invalidate. (See Table 7-9 for the encoding of these
bits).

Write Isolation Buffer

The write isolation buffer is used the same way for
cache operations as for translation buffer accesses: it
allows the tag portion of a cache entry to be written into
the tag RAM during a cache write, and is disabled to
allow the tag from the tag RAM to be read into the
comparator during a cache read or a cache invalidate.

TB/Cache Comparator

The TB/cache comparator asserts a TB/cache hit
indication for a cache read or invalidate operation when
the stored address tag from the tag RAM equals the
search address tag supplied by the tag MUX. When the
comparison results in a match, the comparator asserts
the signal MCTL TBC HIT. If this signal is not
asserted, the compared tags did not match.

Cache Operations

Each cache entry can be read, written, or conditionally
invalidated. The following paragraphs describe how
these accesses are accomplished.

Address Sources

Physical addresses for cache operations can come from
any of the following: the data path, the register file, the
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register file modified by the adder, the physical address
register, or the merge register.

For cache accesses, the adder and its register are used
to supply modified physical addresses for unaligned
data accesses, and for probes to check access privilege
(RCHECK and WCHECK Memory Request functions).

Cache Reads

For a cache read operation, the selected data are driven
onto the MCD bus, through the byte rotator, and
latched into the merge register. From the merge
register, the data are driven over the memory data bus
to the data path. The TB/cache hit or miss status is
available to the data path in the same cycle and the
data on the memory data bus are used or ignored
accordingly.

Cache Writes

If the physical address presented to the TB/cache RAM
during a cache read access results in a miss, the
physical address is driven on the Q22 bus, and the data
at that address obtained from physical memory. The
Q22 bus delivers the data to the MCD bus for a cache
write operation, and the data are written into the
addressed location in the cache. Meanwhile, the
corresponding tag bits are selected from the physical
address on the MCA bus by the tag MUX and written
into the tag RAM at the same address that the data are
written into in the TB/cache RAM.

If either bit <29> or bit <28> is set in the physical
address on the MCA bus, a cache write does not occur.
Bit <29> set means that the physical address is
located in I/O space, and no I/O space addresses are
cached.
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Physical address bit <28> is part of the PTE stored in
the translation buffer. It is latched in the access
violation PAL from the MCD bus after a translation
buffer cycle. (See Figure 8-1 for the location of the
access violation PAL). When bit <28> is set, the
physical address is located in that part of physical
memory that can be shared by another processor on the
Q22 bus. The addresses in the shared portion of
physical memory are not cached either. Thus, no cache
write occurs if either bit <29> or <28> isset.

The cache is a write-through cache: any macroinstruc-
tion that causes a write updates physical memory. The
write to physical memory is handled by a Q22 bus cycle.

Conditional Cache Invalidates

A cache invalidate operation is conditional: the
addressed data cache location is invalidated if there is a
match between the stored tag and the search tag. Only
one cache entry at a time can be invalidated. For a
cache invalidate operation, the valid bit, bit <15>, is
cleared in the associated cache tag; the actual data in
the cache entry are undefined.

Since the cache invalidate signal arrives from the Q22
bus asynchronously, conditional logic is implemented
in hardware to enable the write to cache as soon as
possible after the cache invalidate signal arrives. The
cache invalidate signal is generated whenever an 1/O
device on the bus writes to physical memory and causes
a cache invalidate trap in the memory controller.
When bits <31:29> of the current MCT microinstruc-
tion are all ones, the TB/cache access selected is
conditional cache invalidate. This condition plus the
signal MCTT TBC HIT DLYD enables the cache write.
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Transferring Data

Transferring data within the memory controller
module is the fifth of the eight functions that the
memory controller module performs. The hardware
components are the MCA bus, the MCD bus, the
memory data bus transceiver, the memory control bus,
the merge register and byte rotator, and the reverse
pass latch. The following paragraphs describe each of
these components in turn.

MCA Bus

The memory controller address (MCA) bus is complete-
ly contained on the MCT module. It is a 32-bit, tri-state
bus that normally supplies virtual and physical
addresses to the TB/cache and to the Q22 bus write
register. It is also the path used to transfer read data to
the data path module, and write data from the data
path module.

Addresses or data are asserted onto the MCA bus by 28
ns into the MCT microcycle, and are held until the end
of the microcycle. The MCA bus destinations are
clocked or latched by 110 ns into the microcycle. The
MCT microcode guarantees that only one driver is
enabled onto the bus during every cycle.

Table 8-1 lists the possible MCA bus sources and Table
8-2 lists the possible MCA bus destinations. When the
physical address register (PAR) is driving the MCA
bus, it only drives bits MCA <29:28> and <21:09>.
MCA bits <31:30> and <27:22> are passively
asserted by pull-up resistors, and <8:0> are provided
by the offset register file or the adder.
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Table 8-1. MCA Bus Sources

Sources Data written to bus:

MDB transceiver MCA <31:00>

page register file MCA <31:09>

offset register file MCA <08:00>

adder MCA <08:00>

PAR MCA <29:28>, <21:09>
merge register MCA <31:00>

pull-up resistors MCA <31:30>, <27:22>

Table 8-2. MCA Bus Destinations

Destinations Data written from bus:
MDB transceiver MCA <31:00>
page register file MCA <31:09>
offset register file MCA <08:00>
adder MCA <08:00>
TB/cache MUXs MCA <31:00>
reverse pass latch MCA <31:00>
Q22 bus write register MCA <29>, <21:00>
prefetch FIFO MCA <07:00>
MCD Bus

The memory controller data (MCD) bus is also com-
pletely contained on the MCT module. It is normally
used to transfer data to and from the TB/cache RAMs,
transfer data from the Q22 bus read register, and
transfer data to the PAR. It is also passively asserted
by pull-up resistors. Table 8-3 lists the possible sources

8-35 MCT Data Transfers



for the MCD bus and Table 8-4 lists the possible
destinations.

Table 8-3. MCD Bus Sources

Sources Data written to bus:

TB/cache RAM MCD<31:00>

reverse pass latch MCD<31:00>

Q22 bus read register MCD<15:00> or MCD<29>,
<21:00>

control and status MCD< 00>

registers (CSRs)

pull-up resistors MCD<07:00>

Table 8-4. MCD Bus Destinations

Destinations Data written from bus:
merge register MCD<31:00>

via rotator

TB/cache RAM MCD<31:00>

control and status MCD< 00>

registers (CSRs)

PAR MCD<20:19>,<12:00>

access violation latch MCD<30:26>

Memory Data Bus Transceiver

The MDB transceiver is located between the memory
controller and the data path modules. It isolates the
interboard memory data bus from the memory
controller MCA bus and consists of both receive and
transmit buffers.
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Bits <57:56> in the MCT microinstruction control the
transceiver direction, and enable the output. Table 7-6
shows the transceiver control field encoding.

Memory Control Bus

This 8-bit bidirectional bus is physically part of the CD
interconnect on the backplane. The memory control
bus conveys memory function requests from the data
path module to the memory controller. The memory
function requests are then latched in the MCT memory
request latch. In addition, instruction stream bytes
from the memory controller prefetch FIFO are time-
multiplexed over the memory control bus and latched
into the IBYTE register on the DAP module.

Merge Register and Rotate Logic

The merge register actually consists of four registers,
each one byte wide. Each byte-wide register is enabled
by one bit in the MCT microinstruction (the merge
register selects, bits <42:39>). The entire 32 bits in
the merge register are driven onto the MCA bus when
bit <62> in the current MCT microinstruction is
asserted.

The byte rotator consists of eight shifters; each shifter
handles four bits. The 32 bits from the MCD bus are
the inputs to the shifters and are driven onto the MCD
bus from the cache, the reverse pass latch, or from the
Q22 bus read register. The shifters are controlled by
the byte rotate select field (bits <38:37>) in the MCT
microinstruction. The byte rotator shifts the longword
into the desired alignment (see Table 7-3).

Data to be read or written across byte or word
boundaries are rotated by 0, 1, 2, or 3 bytes in the byte
rotator, and latched in the merge register. Since the
byte-wide registers in the merge register are individu-
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ally enabled, any number and combination of the
rotated bytes can be latched (see Table 7-2). If data
from a previous rotate/merge operation are still in the
selected register, the data are written over. This is
exactly how data are updated on write-through cache
operations, for example.

Reverse Pass Latch

The reverse pass latch allows data from the MCA bus to
be latched and presented to the MCD bus. From the
MCD bus, the data may be written to the translation
buffer, the cache, or presented to the rotate/merge logic
for alignment.

The input to the reverse pass latch is MCA BUS
<31:00> and the output is MCD bus <31:00>. The
reverse pass latch is controlled by one latch enable bit
(<43>) and one output enable bit (<44>) in the MCT
microinstruction.

Prefetching Instruction Stream Bytes

Prefetching bytes from the instruction stream is the
sixth of the eight functions that the memory controller
module performs. Three hardware components handle
the prefetching: the prefetch FIFO, the FIFO control
logic, and the prefetch program counter. The following
paragraphs describe these components and how the
prefetching operates.

Prefetch FIFO

The prefetch FIFO is a 16-locations-deep by 8-bits-wide
RAM that holds the next 0 to 16 bytes from the
instruction stream. The prefetch FIFO is loaded from
the low byte of the MCA bus. The FIFO is loaded at the
end of the current MCT microcycle if bit <51>, the
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prefetch FIFO load clock bit, is asserted in the current
microinstruction.

The output from the FIFO is the next byte in the
instruction stream,; it is sent to the IBYTE register on
the DAP module via the memory control bus.

When a change in the program flow occurs (for
example, because a Memory Request with IB.REFILL
is executed), an MCT microinstruction with bit <52>
asserted is executed to clear the entire contents of the
FIFO.

Prefetch FIFO Control Logic

The control logic is a counter that keeps track of how
many bytes have been loaded into the prefetch FIFO.
When the FIFO contains less than eight bytes, the
control logic asserts the prefetch enable flag, MCTP
PREFETCH EN. This signal is one of the inputs to the
branch MUX in the MCT microsequencer. When it is
asserted, the MCT microcode branches to a micro-
routine that refills the prefetch FIFO.

Prefetch Program Counter

The I-prefetch program counter is maintained in
location 2 of the register file. This PC always contains
the physical address of the last instruction stream byte
loaded into the FIFO.

The prefetch PC is incremented whenever a byte from
the MCA bus is loaded into the prefetch FIFO. The PC
is also incremented when an [-stream Request microin-
struction is executed by the data path. When the data
path executes a Memory Request with IB.REFILL, the
data path sends a 32-bit virtual address over the
memory data bus; this address is translated and saved
in location 2 of the register file as the new prefetch PC.
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Prefetch Operation

The IBYTE control logic on the DAP module asserts the
signal DAPR IB TAKEN to inform the memory
controller that the instruction stream byte that was on
the memory control bus is now latched in the IBYTE
register. DAPR IB TAKEN causes the prefetch control
logic to decrement the count by one, and causes the
prefetch FIFO to drive the next I-stream byte onto the
memory control bus.

When the prefetch FIFO drives another I-stream byte
onto the memory control bus, it asserts the signal
MCTP NEXT IB VALID to inform the DAP module
that a valid I-stream byte is on the memory control bus.
(This signal is transmitted over backplane pin DH2 as

MCTT NXT VALID REG.)

When the prefetch enable flag is asserted because the
prefetch FIFO contains less than eight bytes, a memory
controller microroutine is invoked to refill the prefetch
FIFO. The microroutine uses the physical address in
the prefetch PC and performs a cache access.

If there is a cache hit, the retrieved data are driven into
the byte rotator via the MCD bus, and rotated so that
the desired byte (that is, the next byte in the I-stream)
is in the low-byte position, and latched in the merge
register. All 32 bits are then driven onto the MCA bus,
but only the low eight bits are loaded into the prefetch
FIFO. The prefetch PC is incremented by one.

The 32 bits are then driven off the MCA bus, through
the reverse pass latch, to the MCD bus. From there,
they are driven into the rotator and shifted again so
that the next byte in the I-stream is in the low-byte
position, and latched in the merge register. From the
merge register, the rearranged 32 bits are driven onto
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the MCA bus, and the low-order eight bits loaded into
the next location in the prefetch FIFO.

This process continues until the prefetch FIFO contains
more than eight bytes and the prefetch enable flag is
negated. If there is a cache miss instead of a cache hit,
the data are retrieved from physical memory, written to
the cache, and then the same procedure carried out.

Thus, the prefetching is handled entirely by the
memory controller. The result is that the memory
controller always has the next byte of instruction
stream data ready to be latched into the IBYTE register
from the memory control bus.

Tracking and Reporting Status

Since the memory controller operates essentially as a
slave responding to commands from the data path
module, one of the memory controller’s functions is to
track status and report it to the data path. The
hardware components that are involved with tracking
and reporting status are the four CSRs (control and
status registers), the access protection latch, the access
violation PAL, the busy control logic, and the sign-
extend logic. The next paragraphs describe these
components and their activities.

Control and Status Registers

The four single-bit CSRs control memory management
functions performed by the MCT, and reflect error
status. The CSRs share the register file address space,
but they are read and written over the MCD bus as
MCD <0>.

The CSRs are selected by the MCT microinstruction
register file address bits <21:18>. (See Table 7-5 for
the encoding.) MCD <0> is loaded into the selected
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CSR when bit <23>, the offset register file write
enable, is asserted in the current MCT microinstruc-
tion. The content of the selected CSR is driven onto the
MCD bus as bit <0> when bit <59>, the offset
register file output enable, is asserted in the current
MCT microinstruction.

The four CSRs are the map enable control register, the
cache enable control register, the error flag status
register, and the IB error status register. Each of these
is described further in the following paragraphs.

Map Enable Control Register

This single-bit register is a copy of the Memory
Management Enable Register, as defined by VAX
architecture. (For more information about VAX archi-
tecture, see the VAX Architecture Handbook, order
number EB-19580-20.)

When the bit in the map enable control register is set,
address translation and access checking are enabled.
When this bit is clear, all addresses are assumed to be
physical addresses.

Cache Enable Control Register

The data and instruction cache is enabled when the bit
in this CSR is set.

Error Flag Status Register

The bit in this CSR is set when an error has been
detected during the execution of a Memory Request
from the DAP module which the hardware is unable to
report to the DAP micromachine directly. A code
indicating the cause of the error is stored in location 3
of the register file. The code is created by reading a zero
from location four of the register file, and adding a
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constant to it in the adder. Errors and their correspond-
ing codes are shown in Table 8-5.

Table 8-5. MCT Error Codes

Error Code Error

0 Invalid State
Parity Error

Q22 Bus Timeout
[llegal Operation
Access Violation

Ot b W N =

Translation Check Error

When one of the errors listed in Table 8-5 is detected,
the MCT microcode writes the corresponding error code
in the error code location in the register file, and sets
the error flag status bit by writing a 1 to the error flag
status register via MCD <0>.

The error flag status bit is set directly by the hardware
when an access violation is detected. The signal MCTT
MEM ERR is sent to the DAP module over the
backplane indicating a memory error has occurred.
This signal is one of the inputs to the data path OR
MUX.

Instruction Prefetch Error Status Register

The bit in this CSR is set by the prefetch microroutine
when an error has been detected during an I-stream
prefetch operation such that prefetching cannot
continue without intervention by the DAP micro-
machine; for example, the prefetching crosses a page
boundary. The signal MCTT IB ERROR is sent to the
DAP module over the backplane. MCTT IB ERROR is
ANDed with the signal DAPR IB INVALID to generate
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the signal DAPR IB ERROR; DAPR IB ERROR is one
of the inputs to the jump MUX.

The memory controller clears this CSR by an explicit
write during an IB.REFILL Memory Request.

Access Protection Latch

The memory controller checks for access violations
after every translation buffer access. The 8-bit access
protection latch captures memory access information
for determining access violations. The latch closes at
the same time as the PAR; it stores PTE bits <30:26 >
(the protection field and the modify bit) from the MCD
bus at the end of a translation buffer access. The latch
also saves the TB hit or miss indication from the TB
access. The PAR latch enable bit in the MCT microin-
struction (bit <45>) also enables the access protection
latch. The four protection field bits, the modify bit, and
the TB hit or miss bit are passed on as the inputs to the
access violation PAL.

Access Violation PAL

The access violation PAL decodes the necessary
memory management data and asserts an access
violation or modify refused indication when one of these
errors occurs.

There are ten inputs to the access violation PAL:
® the six bits from the latch,

® the two access mode bits DAPT MEM REQ MODE
<1:0> which are sent over the backplane on a
Memory Request and specify the mode (kernel,
executive, supervisor, or user) of the current
Memory Request,

® the modify intent bit, DAPT MODIFY, also sent
over the backplane, which specifies the modify
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intent (read or write) of the current Memory
Request, and

® the signal MCTS EN ACC CHECK; this signal is
asserted after each translation buffer access to
enable the access violation PAL.

The logic in the PAL does two comparisons. First, it
compares the protection field from the PTE with the
access mode bits and the modify intent bit from the
current Memory Request microinstruction. The PAL
asserts the signal MCTS ACC VIOL if the process that
issued the Memory Request does not have sufficient
privilege to access the page (corresponding to the PTE
just retrieved from the translation buffer) for the
intended read or write operation. MCTS ACC VIOL
generates the signal MCTT MEM ERR to the DAP
module, and causes an error code of 4 to be loaded in
register file location 3.

For convenience, Table 8-6 shows the encoding of the
PTE protection field, reproduced from the VAX
Architecture Handbook.

The second comparison is between the modify bit from
the PTE and the modify intent bit from the Memory
Request. If the PTE modify bit is a 0 (meaning the
associated page has not yet been modified), and the
modify intent bit is a 1 indicating a write intent, the
PAL asserts the signal MCTS MOD REF to indicate
modify refused. MCTS MOD REF is sent over the
backplane and is also one of the inputs to the data path
ORMUX.

If neither an access violation or a modify refused is
found, the next microcycle is the cache access.

If an access violation occurs, the DAP microcode traps
to a memory management fault service routine, and
generally, the process is aborted.
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If modify refused occurs, the DAP microcode takes a
modify refused trap and a new Memory Request micro-
instruction is issued to rewrite that translation buffer
entry (the PTE) with the modify bit set. Then a return
is executed to the microroutine containing the original
Memory Request, and the cache is accessed in the next
microcycle.

The translation buffer miss signal that is one of the
inputs to the access violation PAL, is passed through
the PAL and sent over the backplane to the data path
ORMUX as MCTS TB MISS.
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Table 8-6. Protection Codes

Protection

Field Mnemonic Kernel Executive Supervisor User Comment
0000 NA no access no access no access no access No Access
0001 unpredictable unpredictable unpredictable unpredictable Reserved
0010 KW read/write no access no access no access

0011 KR read only no access no access no access

0100 Uuw read/write read/write read/write read/write All Access
0101 EW read/write read/write no access no access

0110 ERKW read/write read only no access no access

0111 ER read only read only no access no access

1000 SwW read/write read/write read/write no access

1001 SREW read/write read/write read only no access

1010 SRKW read/write read only read only no access

1011 SR read only read only read only no access

1100 URSW read/write read/write read/write read only

1101 UREW read/write red/write read only read only

1110 URKW read/write read only read only read only

1111 UR read only read only read only read only
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Busy Control Logic

A group of AND and OR gates act together as a latch to
capture the current state of the memory controller; the
current state is either busy or not busy. The latch is set
and cleared by the busy control logic.

When the memory controller accepts a Memory
Request from the data path, the microsequencer asserts
the TAKE DISPATCH signal. TAKE DISPATCH
asserted causes the CSA PAL in the microsequencer to
assert the signal MCTN REQ ACK, and to deassert a
signal named MCTN DONE HOLD.

The REQ ACK signal is sent over the backplane to the
data path module to indicate that the memory control-
ler has accepted the Memory Request.

The DONE HOLD signal is one input to the busy
control logic. The deassertion of DONE HOLD causes
the busy control logic to assert the signal MCTN MEM
BUSY. This signal prevents the data path from issuing
a memory request.

When the memory controller completes the function
requested by the data path, the busy control logic clears
MEM BUSY, thereby asserting the signal MCTN
DONE. (The DONE signal is simply the MEM BUSY
signal inverted.) When MEM BUSY is deasserted, data
and status pertaining to the requested function are
available to the data path.

The MEM BUSY signal can be cleared several ways. If
bits <17:16> of the current microinstruction are 11
(binary) to allow the busy signal to be cleared condi-
tionally, any one of the following events causes the
busy control logic to deassert MEM BUSY during a
translation buffer access:

® atranslation buffer miss
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® a modify refused error
® an access violation

If a translation buffer hit occurs and no modify refused
or access violation errors are found, MEM BUSY
remains asserted because the memory controller con-
tinues with a cache access.

If bits <17:16> =11 (binary) when the memory con-
troller does a cache access, a cache hit causes the busy
control logic to deassert MEM BUSY. A cache miss
causes the memory controller to initiate a Q22 bus
cycle,and MEM BUSY remains asserted.

If bits <17:16> of a microinstruction are 00 (binary),
the busy control logic immediately clears the MEM
BUSY signal.

In summary, the signal MCTN DONE HOLD from the
CSA PAL causes the busy control logic to assert the
signal MCTN DONE as long as the memory controller
1s not servicing a memory request from the data path.
The signal MCTJ TAKE DISPATCH from the micro-
sequencer causes the busy control logic to deassert
DONE and assert MEM BUSY. MEM BUSY is then
cleared conditionally or unconditionally depending on
microinstruction bits <17:16 >, and DONE reasserted.

Sign-Extend Word Flag

The sign-extend word flag is the signal MCTH USEXT
WORD, which is asserted when MCT microinstruction
bit <15> is set. This signal is sent to the data path as
MCTN SEXT WORD. Once the SEXT WORD signal is
asserted, it remains asserted until cleared by the signal
MCTN MRL LE at the next memory request dispatch.

MCTN SEXT WORD tells the data path to sign-extend
the word being delivered over the memory data bus to
the data path from the memory controller. SEXT
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WORD is asserted whenever the data path has issued
an I-stream Request to read a word displacement from
the instruction stream.

In most cases, the data path knows it issued an I-stream
Request specifying IB.WORD, and the SEXT WORD
signal is unnecessary information. However, if the
word displacement in the instruction stream crosses a
page boundary, a page crossing error occurs and the
memory controller returns control to the data path
microcode.

The data path microcode determines the correct address
in the next page for the second byte of the desired word,
and issues a memory request with the REPEAT.SEC-
OND function specified; that is, the data path simply
reissues the memory request function parameters that
are stored in the previous memory function latch.

In this case, the data path does not know it is issuing an
IB.WORD I-stream Request. Therefore, the SEXT
WORD signal from the memory controller is necessary
information because the word displacement from the
instruction stream must be sign-extended before it can
be added to the program counter in the data path chip.

Communicating with the Q22 Bus Interface

Communicating with the Q22 bus interface is the
eighth of the eight functions that the memory
controller performs. The Q22 bus interface consists of
the controller, the Q22 bus write register, and the Q22
bus read register. This section describes these
components and how they interact with the memory
controller.
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Q22 Bus Controller

The controller handles the Q22 bus protocol, freeing the
memory controller from this task. It is implemented as
a programmable state machine and consists of several
logic PALs and registers. These Q22 bus controller
hardware components are described in more detail in
Chapter 9.

The Q22 bus controller handles all bus arbitration, and
is capable of executing block mode transfers to and from
memory, if block mode is supported by the memory. If
the Q22 bus is free, the arbitration logic in the
controller sets up the bus address while waiting for the
cache hit or miss signal.

The memory controller communicates with the Q22 bus
controller via four bits of the MCT microinstruction.
The controller reports status to the memory controller
via five status flags. The microcode bits and the status
flags are described in the section titled “Q22 Bus
Controller Interface” in Chapter 7. The Q22 bus con-
troller accepts function requests from the memory con-
troller microcode and carries them out through its own
set of microstates.

Q22 Bus Write Register

The write register latches addresses and data from the
MCA bus that need to be driven onto the Q22 bus. The
write register is actually one side of the bus trans-
ceivers that separate the memory controller module
from the Q22 bus.

The Q22 bus write register is controlled by bit <46 > in
the current MCT microinstruction. When this bit is
asserted, the data stable on MCA <29> and <21:00>
are latched in the write register. The data written can
be a 22-bit physical address, a 13-bit I/O space address,
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or 16 bits of data to be written to physical memory or an
I/0 device.

The outputs from the write register are BDAL
<21:00>; these are the Q22 bus data/address lines. If
MCA <29> is set, it is driven onto the Q22 bus as the
signal BBS7 to indicate that BDAL <12:00> represent
a physical adddress in I/O space.

Q22 Bus Read Register

The read register latches addresses and data from the
Q22 bus that need to be driven onto the MCD bus. The
read register is actually the other side of the bus trans-

ceivers that separate the memory controller module
from the Q22 bus.

The read register is controlled by bit <47> in the
current MCT microinstruction. When this bit is
asserted, the data on BDAL <21:00> are latched in
the read register. The data latched can be a 22-bit
cache invalidate address, a 9-bit Q22 bus interrupt
vector, or 16 bits of data read from physical memory or
an [/O device.

The outputs from the read register are MCD bus bits
<21:00>. If the signal BBS7 is asserted, it is driven
onto the MCD bus as MCD <29> to indicate that MCD
<12:00> represent a physical adddress in I/O space.

Microprogram Level Flow: MOVW

Now that the hardware components of the memory
controller module have been described, this section
takes a MOVW (move word) macroinstruction and
describes how the memory controller accomplishes the
translation buffer accesses, cache accesses and data
retrieval necessary to return the requested data to the
data path.
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A MOVW macroinstruction replaces the destination
operand with the source operand. A sample MOVW
instruction is:

MOVW (R0), R1

The first operand specifier, “(R0),” uses register de-
ferred address mode, and the second operand specifier,
“R1,” uses register mode. At some virtual address in
memory, this instruction looks like this:

51{60|BO|:VA

where B0 is the opcode, 60 specifies register deferred
mode using RO, and 51 specifies register mode using R1.
For this example, RO contains the virtual address
00000211 (hex). This instruction obtains the word of
data located at 00000211 and moves it into R1.

The next few paragraphs summarize the data path
steps needed to decode and execute this MOVW macro-
instruction.

Step 1. Evaluate the opcode to select the proper DAP
microroutine for this macroinstruction.

Step 2. Evaluate the first operand specifier (the source)
and obtain the first operand.

Step 3. Evaluate the second operand specifier (the
destination) and write the first operand to the destina-
tion.

The remainder of this chapter describes the micropro-
gram steps executed by the memory controller to trans-
late the virtual address in R0, obtain the data located at
the corresponding physical address, and return the data
to the data path.
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Whenever the memory controller is not doing anything,
it loops in an “idle state” microroutine. In the idle
state, the memory controller monitors the prefetch
branch condition. If the branch condition is asserted, a
jump is taken to the microroutine that refills the
prefetch FIFO.

Dispatches are enabled during portions of the idle
routine so that the correct location in control store can
be accessed if a memory function request is received
from the data path. Assume that the memory control-
ler is in the idle state, that the prefetch FIFO is full,
and that the entire MOVW macroinstruction is located
in the prefetch FIFO.

Evaluating the Opcode

The MOVW opcode, BO, is clocked into the IBYTE
register and decoded. The decode causes a dispatch to
the microroutine that handles MOVW macroinstruc-
tions in the DAP control store.

The data path asserts the signal DAPR IB TAKEN, the
prefetch FIFO drives the first operand specifier, 60,
onto the memory control bus, and the prefetch counter
is decremented by one. The memory controller asserts
the signal MCTT NXT VALID REG to inform the data
path that the next instruction stream byte is on the
memory control bus. The data path asserts DAPR
LOAD I BYTE and 60 is clocked into the IBYTE
register.

Evaluating the First Operand Specifier

Next, the first operand specifier is decoded. The decode
causes a dispatch to the DAP microroutine that handles
the evaluation of operand specifiers with register
deferred mode.
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Once the decode has completed, the data path asserts IB
TAKEN and the prefetch FIFO drives 51 (the second
operand specifier) onto the memory control bus. The
memory controller asserts NXT VALID REG, the data
path asserts LOAD I BYTE, and 51 is clocked into the
IBYTE register. So far, the memory controller has
remained idle except for supplying the next instruction
stream byte.

Meanwhile, the DAP microinstructions in the register
deferred mode routine begin executing. The first micro-
instruction is a Memory Request with the function
VREAD.RCHECK specified; the microinstruction in
hex is 1E80B61628, where 1E is the opcode. This
function asks the memory controller to perform a
virtual read operation, with a check for read access.
The data path assembles the twelve bits of information
to send the memory controller. It latches these eight
bits in both memory function latches because bit <31 >
in the Memory Request microinstruction is set:

® the two high-order bits are 01 from the size
register, indicating a data type of word;

® the next bit is the data flow bit (<28>) from the
Memory Request microinstruction which is a 0,
indicating the data flow will be from MCT to DAP;

® the low-order five bits are the function code from
the Memory Request microinstruction (bits
<27:23>), and they are 00001 (binary) indicating
the function VREAD. RCHECK.

The data path sends an additional four bits over the
backplane: two access mode bits, one modify intent bit,
and the second part flag. Since bit <30> (the mode
bit) in the microinstruction is a 0, the two access mode
bits sent over the backplane reflect the contents of the
PSL.MODE register. The MOVW is part of the pro-
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gram running in a User process, so the PSL.MODE
contains 11 (binary).

The modify intent bit in the Memory Request microin-
struction (bit <29>),is a 0 indicating read intent. The
second part flag is also a 0 because this is the first part
of this Memory Request to be executed.

The long operand of the Memory Request (bits
<22:16>), specifies xpointer 1; that is, use the contents
of the register pointed to by pointer 1. When 60 was
decoded, pointer 1 was loaded with the value 0, pointing
to RO. RO contains the virtual address 00000211.
Therefore, 00000211 is driven over the memory data
bus to the memory controller.

Meanwhile, the eight bits in the first memory function
latch are driven over the memory control bus, and the
additional four bits of memory request information are
driven over the backplane. The memory function
control logic on the DAP module asserts the signal
DAPR MEM REQUEST to inform the memory control-
ler that a new function code is on the memory control
bus. This signal generates the signal MCTN MRL LE
which is the latch enable for the memory request latch,
causing the following eight bits to be latched in the
memory request latch on the memory controller:

® the high-order bit is the second part flag from the
backplane, so it is a zero;

® the next two high-order bits are the data type bits,
and they are 01, indicating data type word;

® the low-order five bits are the function code: 00001
(binary), indicating VREAD.RCHECK.

The data flow bit from the DAP memory function latch
is one input to the branch MUX in the MCT microse-
quencer. The modify intent bit from the backplane is
an input to the branch MUX, and an input to the access
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violation PAL. The two access mode bits from the
backplane are also inputs to the access violation PAL.

Up to now, the memory controller has remained in the
idle state microroutine. Those microinstructions with-
in the idle microroutine that have dispatch enabled also
have 00 in the transceiver control field to enable the
transceiver to drive data from the memory data bus
onto the MCA bus. Thus, the virtual address 00000211
is now stable on the MCA bus.

The memory controller asserts the signal MCTN REQ
ACK to inform the data path that the 32 bits on the
memory data bus have been accepted, and the data path
stops driving 00000211 over the memory data bus:

At this point, dispatches are enabled, the correct eight
bits are latched in the MCT memory request latch, and
a virtual address is stable on the MCA bus. The micro-
instruction decode logic in the MCT microsequencer
sends 11 (binary) as the two high-order bits over the
CSA bus, and control store is accessed with the 10-bit
address 321 (hex). This is the address of the microrou-
tine that handles the reading and writing of data
words. The dispatch causes the MEM BUSY signal to
be asserted.

Obtaining the Operand

At the rising edge of MCTM CLK125, the first microin-
struction in the read/write data words microroutine is
available at the output of the MCT control store. This
first microinstruction causes:

® the data stable on the MCA bus (the virtual
address 00000211) to be written into the register
file at location O (the virtual address location),
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® the low nine bits of the virtual address to be
written into the adder, the constant 1 added to
them, and the sum latched in the adder register,

® the MEM BUSY signal to remain asserted,
® atranslation buffer read access, and

® the physical address register latch enable signal to
be asserted.

TB Access

To accomplish the translation buffer read access, the
tag MUX selects VA <30:17> from the MCA bus,
which is 0000 (hex), and passes it to the TB/cache
comparator.

At the same time, the index MUX selects VA <31>
and VA <16:9> from the MCA bus, and provides zeros
for the three high-order bits. For any normal read or

write translation buffer access, the source for index
MUX bit <6> is MCA <15>.

Thus, the output from the index MUX is the value 001
(hex), and so location 001 is accessed in the tag RAM
and in the TB/cache data RAM. The 16-bit tag at
location 001 in the tag RAM is passed to the TB/cache
comparator. The tag is not 0000 so it does not match
the search tag provided by the tag MUX, and the
comparator does not assert the signal MCTL TBC HIT.

Simultaneously, the PTE at location 001 in the
TB/cache RAM is driven onto the MCD bus. PTE bits
<12:0> from the MCD bus are latched into the PAR as
physical address bits <21:09>. PFN <19>is0,s00is
latched in the PAR as physical address bit <28>. The
AND of the TB/cache hit signal and PFN <20> is 0, so
0 is latched in the PAR as physical address bit <29>.

8-59 MOVW



The four-bit protection field and the modify bit from the
PTE are also latched in the access protection latch.

The microprogram control field of this first microin-
struction disables traps and dispatches, so the MCT
microsequencer selects bits <9:0> from the first
microinstruction, modified by any asserted conditions
in the branch MUX, as the next microaddress.

Bits <9:0> are 0F0. The branch MUX input that mod-
ifies bit 0 is MCA <0> (see Figure 7-3), which is a 1
because of the VA 00000211 currently on the MCA bus.
Thus, OF1 is passed through the next address buffer
and used to access control store as the next microad-
dress, and the first MCT microcycle ends.

Cache Access

At the rising edge of MCTM CLK125, the microinstruc-
tion at OF1 is available at the output of the control
store. This microinstruction causes:

® the 9-bit offset portion of the virtual address loca-
tion in the register file to be driven onto the MCA
bus as MCA <8:0>; thatis, 011 hex,

® the fifteen bits in the PAR to be driven onto the
MCA busas MCA <29:28> and <21:09>,

® MCA <31:09> to be written into the page portion
of the virtual address location in the register file
(MCA <31:30> and <27:22> are asserted by
pull-up resistors, MCA <29:28> and <21:09>
are from the PAR),

e MEM BUSY toremain asserted,
® acache read access,

® the data on the MCD bus from the cache access to
be rotated 1 byte to the right and all four bytes
latched into the merge register,
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® the physical address on the MCA bus to be latched
into the Q22 bus write register, and

® the Q22 bus function code for a read block opera-
tion (DATBI) to be sent to the Q22 bus controller;
the go bit is not sent.

To accomplish the cache read access, the tag MUX
selects physical address bits <21:13> from the MCA
bus, supplies five zeros for the high-order bits and
passes these fourteen bits to the TB/cache comparator.

At the same time, the index MUX selects PA <12:2>
from the MCA bus, and provides a one for the high-
order bit. The source for index MUX <6> is bit <8>
from register file location 0. The 16-bit tag at the
accessed location in the tag RAM is passed to the
TB/cache comparator. The tag does not match the
search tag provided by the tag MUX, and the compara-
tor does not assert the signal MCTL TBC HIT.

Simultaneously, the data at the accessed location in the
TB/cache RAM are driven onto the MCD bus, rotated
one byte to the right and latched into the merge
register.

The microprogram control field of this second microin-
struction also disables traps and dispatches, so the
MCT microsequencer selects bits <9:0> from the first
microinstruction, modified by any asserted conditions
in the branch MUX, as the next microaddress.

Bits <9:0> are 0D0. The branch MUX input that mod-
ifies bit 1 is TB.ERROR (see Figure 7-3), which is a 1
because of the miss on the translation buffer access.
Thus, 0D2 is passed through the next address buffer
and used to access control store as the next microad-
dress, and the second MCT microcycle ends.
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Q22 Bus NOP

At the rising edge of MCTM CLK 125, the microinstruc-
tion at 0D2 is available at the output of the control
store. This microinstruction causes:

® the offset and page portions of location four in the
register file, which contain zeros, to be driven onto
the MCA bus as MCA <31:0>,

® the constant 4 to be added to the low nine bits on
the MCA bus (currently zeros), and latched in the
adder register,

® no cache or TB access,

® the Q22 bus function code for no operation to be
sent to the Q22 bus controller.

The microprogram control field of this third microin-
struction disables dispatches, but enables traps and
jumps. The branch control field is 100 (binary), so the
MCT microsequencer selects bits <9:0> from the
microinstruction as the next microaddress (see Figure
7-3).

Bits <9:0> are 379 (hex). This is the microaddress of a
routine that sets error codes. Thus, 379 is passed
through the next address buffer and used to access
control store as the next microaddress, and the third
MCT microcycle ends.

Set Error Code

At the rising edge of MCTM CLK125, the microinstruc-
tion at 379 is available at the output of the control
store. This microinstruction causes:

® the value 4 from the adder register to be written
into the error code location of the register file, and

e the MEM BUSY signal to be cleared.
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The value 4 in the error code location of the register file
indicates an access violation (see Table 8-5). This code
is always set for TB.ERROR in case an access violation
is the cause.

Three conditions in addition to access violation cause
TB.ERROR: modify refused, page crossing, and TB
miss. The data path microcode is notified of these con-
ditions through inputs to the OR MUX. If TB.ERROR
occurs in the MCT and none of these inputs is asserted
in the DAP OR MUX, then access violation is the cause
and the DAP microcode examines the error code loca-
tion of the register file.

So even though the access violation error code is set by
this microinstruction, no access violation has oc-
curred—only a TB miss—and the TB MISS signal is
asserted as an input to the DAP OR MUX.

The microprogram control field of this microinstruction
causes a jump back to the MCT idle state microroutine
to wait for the next function request from DAP.

Servicing the TB Miss

While the memory controller was executing the five
MCT microinstructions described above, the data path
executed a Move microinstruction to set a register
number in a pointer register, then another Move to try
to move the requested data into the data path chip from
the memory controller. The requested data are not
available because of the TB miss. The DAP microcode
branches to a microroutine that handles TB misses
because of the TB miss input signal to the OR MUX.

The DAP microcode determines that the PTE for the
VA 00000211 must be read from cache or physical
memory since it wasn’t in the translation buffer. So the
DAP microcode completes an entire PO virtual to
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physical translation operation to obtain the PTE (full
memory management is enabled). Briefly, the steps
performed by the DAP microcode are:

® check the virtual address that was sent to the
memory controller (00000211) to determine
whether it is a system or process space address,
and since it is a process space address, whether it is
in PO or P1;

® rotate the virtual address to obtain the virtual
page number (VPN);

® check that the VPN is within the POLR limits;

® add the VPN to the virtual address in the PO base
register (POBR)—this sum is the virtual address of
the desired PTE;

® ask the memory controller to do a virtual read
using this computed virtual address (this reference
is made as a kernel read).

The virtual address of the PTE is located in system
space (where process page tables reside), so the memory
controller accesses the system space portions of the tag
and TB/cache RAMs for a translation buffer read.

Assuming a TB hit and a subsequent cache hit (that is,
the desired PTE was found in the cache), the memory
controller returns the PTE to the data path via the
memory data bus. The PTE is A4000000 (hex). Now
the data path has the PTE for the virtual address
00000211. (If the PTE was not in the cache, the
memory controller would have asked the Q22 bus
controller to perform a Q22 bus read, and the PTE
would have been returned from physical memory.)
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TB Write

Next, the PTE needs to be written into the translation
buffer. The memory management routine in the DAP
microcode sends the memory controller a Memory
Request with WRITE.TB specified. These eight bits are
latched in the first memory function latch:

® the two high-order bits are 00 (binary) indicating a
data type of byte (byte is always specified for
WRITE.TB even though a longword is written into
the translation buffer);

® the next bit is the data flow bit (<28>) from the
Memory Request microinstruction which is a 1,
indicating the data flow will be from DAP to MCT;

® the low-order five bits are the function code; they
are 01001 (binary) indicating WRITE.TB.

The following four bits are sent over the backplane:

® two access mode bits which indicate the mode of
the current process (access mode is ignored on
writes to the translation buffer);

® one modify intent bit from the microinstruction; (It
is a 0, indicating read intent even though the
intended function is a write; this is because the
modify intent does not matter on a WRITE.TB.)

® a second part flag of 0 because this is the first part
of this Memory Request to be executed.

The long operand of the WRITE.TB Memory Request
specifies the virtual address 00000211. The eight bits
in the first memory function latch are driven over the
memory control bus, and the additional four bits of
Memory Request information over the backplane. The
data path asserts the signal DAPR MEM REQUEST
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and these eight bits are latched in the memory request
latch on the memory controller:

® the second part flag, which isa 0,
® the data type bits, 00, and
® the function code, 01001.

The data flow and modify intent bits are sent to the
MCT branch MUX, and the modify intent bit and the
access mode bits are sent to the access violation PAL.

Since the memory controller is in the idle microroutine
and dispatches are enabled during certain portions of
the loop, the MCT microsequencer causes a dispatch on
the contents of the memory request latch plus two high-
order ones from the CSA PAL. Thus, the control store
address 309 (hex) is accessed. This is the address of the
MCT microroutine that handles writes to the transla-
tion buffer. The dispatch causes the MEM BUSY signal
to be asserted.

The transceiver between the memory data bus and the
MCA bus is also enabled in the idle routine, so the
virtual address 00000211 is now stable on the MCA
bus. The memory controller asserts REQ ACK to
inform the data path that the VA has been accepted.

Save Virtual Address. At the next rising edge of MCTM
CLK125, the first microinstruction in the MCT write
TB microroutine is available at the output of the
control store. This first microinstruction saves the
virtual address on the MCA bus in the virtual address
location of the register filee. MEM BUSY remains
asserted, and traps and dispatches are disabled. The
microprogram control field specifies a jump to microad-
dress 138 (hex).

Wait. At the next rising edge of MCTM CLK125, the
next microinstruction in the MCT write TB microrou-
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tine (the microinstruction at address 138) is available
at the output of the control store. This microinstruction
turns off the transceiver. MEM BUSY remains
asserted, and traps and dispatches are disabled. The
microprogram control field specifies a jump to micro-
address 13A.

Clear Busy. At the next rising edge of MCTM CLK125,
the microinstruction at microaddress 13A in the MCT
write TB microroutine is available at the output of the
control store. This microinstruction unconditionally
clears busy. Traps and dispatches are disabled, and the

microprogram control field specifies a jump to microad-
dress 164 (hex).

After the DAP microcode issues the WRITE.TB
Memory Request, it executes a Moveout microinstruc-
tion which puts the PTE——A4000000—for the VA
00000211 on the memory data bus.

Accept PTE. At the next rising edge of MCTM CLK125,
the microinstruction at microaddress 164 in the MCT
write TB microroutine is available at the output of the
control store. This microinstruction enables the trans-
ceiver to pass data from the memory data bus to the
MCA bus, so the PTE to be written is now stable on the
MCA bus.

The microinstruction also enables the reverse pass
latch, so the PTE is captured there. Traps and dis-
patches are disabled, and the microprogram control
field specifies a jump to microaddress 166 (hex).

Write PTE. At the next rising edge of MCTM CLK125,
the microinstruction at microaddress 166 is available
at the output of the control store. This microinstruction
causes:
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® the data in location 0 of the register file to be
driven onto the MCA bus (location 0 currently
contains the VA 00000211),

® the content of the reverse pass latch, which is the
PTE, to be driven onto the MCD bus, and

® atranslation buffer write access.

To accomplish the translation buffer write access, the
index MUX selects VA <31> and VA <16:9> from
the MCA bus, and provides zeros for the three high-
order bits. The source for index MUX <6> is MCA
<15>. Thus, location 001 (hex) is accessed in the tag
RAM and in the TB/cache data RAM.

The tag MUX selects VA <30:17> from the MCA bus,
which are 0000 (hex), and passes these fourteen bits
through the write isolation buffer to the tag RAM
location accessed by the index MUX—001. The 14 bits
are written as the low-order bits of the tag at location
001. The fifteenth bit in the tag is a spare, and the
high-order bit, the valid bit, is written as a 1 because
microinstruction bit <32> is asserted, indicating that
this is a valid tag.

Simultaneously, the PTE from the MCD bus is written
into location 001 in the TB/cache data RAM, and the TB
write is complete. Thus, location 001 in the TB/cache
now contains A4000000 (hex).

The microprogram control field of this microinstruction
disables dispatches, but enables traps and jumps. The
branch control field is 100 (binary), so the MCT micro-
sequencer selects bits <9:0> from the microinstruc-
tion as the next microaddress (see Figure 7-3). Bits
<9:0> are 002, so the memory controller returns to the
idle state.
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The last microinstruction executed by the DAP
microcode was the Moveout microinstruction that put
the PTE for the VA 00000211 on the memory data bus.

Next, the DAP microcode executes another Memory
Request; this time, the function code is
REPEAT.FIRST. This causes the contents of the
second memory function latch to be driven onto the
memory control bus. The second memory function latch
still contains the function code for the initial
VREAD.RCHECK that failed. Thus, the memory con-
troller is asked to retry the virtual read with read
check, and the virtual address 00000211 is driven over
the memory data bus again.

The data path asserts the signal DAPR MEM
REQUEST and these eight bits are latched in the
memory request latch on the memory controller:

® the second part flag, whichis a0,

® the data type bits, 01, indicating a word of data is
to be read,

® the function code, 00001 (binary), indicating
VREAD.RCHECK.

The data flow and modify intent bits are sent to the
MCT branch MUX, and the modify intent bit and the
access mode bits are sent to the access violation PAL.

Since the memory controller is in the idle microroutine
and dispatches are enabled during certain portions of
the loop, the MCT microsequencer causes a dispatch on
the contents of the memory request latch plus two high-
order ones from the CSA PAL. Thus, control store
address 321 (hex) is accessed again; this is the begin-
ning address of the MCT read/write data words micro-
routine. The dispatch causes the MEM BUSY signal to
be asserted.
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The transceiver between the memory data bus and the
MCA bus is also enabled in the idle routine, so the
virtual address 00000211 is now stable on the MCA
bus. The memory controller asserts REQ ACK to
inform the data path that the VA has been accepted.

TB Access Retried

At the next rising edge of MCTM CLK125, the first
microinstruction in the MCT read/write data words
microroutine is available at the output of the control
store. Once again, this microinstruction causes:

® the VA 00000211 from the MCA bus to be stored in
register file location O,

® the low nine bits of the VA to be incremented by 1
in the adder and the sum latched in the adder
register,

e MEM BUSY to remain asserted,
® atranslation buffer read access, and

® the physical address register latch enable signal to
be asserted.

This time, the translation buffer access is successful;
the index MUX accesses location 001 in the tag RAM,
the fourteen low-order bits of the tag are sent to the
comparator (0000 hex), and they match MCA bits
<30:17> supplied by the tag MUX. The comparator
asserts the signal MCTL TBC HIT.

Simultaneously, the PTE at location 001 in the
TB/cache RAM (A4000000) is driven onto the MCD bus.
PTE bits <12:0> from the MCD bus are latched into
the PAR as physical address bits <21:09>. PFN
<19> is 0, so 0 is latched in the PAR as physical
address bit <28>. The AND of the TB/cache hit signal
and PFN <20> is 0, so 0 is latched in the PAR as
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physical address bit <29>. So the PAR now contains
the 14-bit value 0000 (hex). The four-bit protection
field and the modify bit from the PTE are also latched
in the access protection latch.

The microprogram control field of this microinstruction
is decoded by the MCT microsequencer and OF1 is
passed through the next address buffer and used to
access control store as the next microaddress.

Cache Access Retried

At the rising edge of MCTM CLK125, the microinstruc-
tion at OF1 is available at the output of the control
store. Once again, this microinstruction causes:

® the value 011 (hex) to be driven from the offset
portion of the virtual address location in the
register file onto the MCA bus as MCA <8:0>;

® the fifteen bits in the PAR to be driven onto the
MCA bus as MCA <29:28> and <21:09> (MCA
<31:30> and <27:22> are ones via the pull-up
resistors); thus, the 32 bits on the MCA bus form
the hex value DFC00011, and the physical address
is the low 22 bits plus MCA <29>, or the hex
value 000011.

e MCA <31:09> (DCF000) to be written into the
page portion of the virtual address location in the
register file,

e MEM BUSY toremain asserted,
® g3 cache read access,

® the data on the MCD bus from the cache access to
be rotated 1 byte to the right and all four bytes
latched into the merge register (the data are
whatever happened to be in the accessed location),
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® the physical address on the MCA bus (000011) to
be latched into the Q22 bus write register, and

® the Q22 bus function code for a read block opera-
tion (DATBI) to be sent to the Q22 bus controller;
the go bit is not sent.

To accomplish the cache read access, the tag MUX
selects physical address bits <21:13> from the MCA
bus, supplies five zeros for the high-order bits and
passes these fourteen bits, which have the value 0000,
to the TB/cache comparator.

At the same time, the index MUX selects PA <12:2>
from the MCA bus, and provides a one for the high-
order bit. The source for index MUX <6> is bit <8>
from register file location 0. Thus, location 804 (hex) is
accessed in the tag RAM and in the TB/cache RAM.
The 16-bit tag at location 804 in the tag RAM is passed
to the TB/cache comparator. The tag does not match
the search tag 0000 provided by the tag MUX, and the
comparator does not assert the signal MCTL TBC HIT.

However, the data at location 804 in the TB/cache RAM
are driven onto the MCD bus anyway, rotated one byte
to the right and latched into the merge register.

The microprogram control field of the microinstruction
is decoded and the MCT microsequencer selects bits
<9:0> from the first microinstruction, modified by any
asserted conditions in the branch MUX, as the next
microaddress. Bits <9:0> are 0D0. This time, no
branch conditions are set, so 0DO0 is passed through the
next address buffer and used to access control store as
the next microaddress.
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Incorrect Data Returned

At the rising edge of MCTM CLK125, the microinstruc-
tion at 0DO is available at the output of the control
store. This microinstruction causes:

® the contents of the merge register (whatever was
stored in location 804 in the TB/cache RAM) to be
driven onto the MCA bus as MCA <31:0>, and

® the transceiver to drive the data on the MCA bus
over the memory data bus to the data path, even
though it is not the desired data.

The microprogram control field of this microinstruction
disables dispatches, but enables traps and jumps. The
branch control field is 110 (binary), so the MCT micro-
sequencer selects bits <9:0> from the microinstruc-
tion, modified by the branch condition TBC.MISS
which is asserted because of the cache miss in the
previous microcycle, as the next microaddress (see
Figure 7-3).

Bits <9:0> are 090 and modified by TBC.MISS, the
next address is 091. Thus, 091 is passed through the
next address buffer and used to access control store as
the next microaddress.

The cache miss signal is also sent to the data path, so
the incorrect data on the memory data bus are ignored.

Q22 Bus Go

At the rising edge of MCTM CLK125, the microinstruc-
tion at 091 is available at the output of the control
store. This microinstruction sends the go bit to the Q22
bus controller. This causes the controller to begin the
DATBI (read block) cycle using the physical address
(000011) saved in the Q22 bus write register two micro-
cycles earlier.
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Note that at this point, each successive memory con-
troller microinstruction must assert the DATBI func-
tion code and the go bit until SYNCREADY is received.
Once SYNCREADY is received, the next memory con-
troller microinstruction asserts a no operation function
code.

The microprogram control field of this microinstruction
disables dispatches, but enables traps and jumps. The
branch control field is 100 (binary), so the MCT micro-
sequencer selects bits <9:0> from the microinstruc-
tion as the next microaddress. Bits <9:0> are 1C5.
Thus, 1C5 is passed through the next address buffer
and used to access control store as the next microad-
dress.

Read Block

At the rising edge of MCTM CLK125, the microinstruc-
tion at 1C5 is available at the output of the control
store. This microinstruction causes:

® the contents of the virtual address location in the
register file to be driven onto the MCA bus; the
virtual address location currently contains the hex
value DCF00011,

® the adder to add the constant 1 to the low nine bits
on the MCA bus and latch the sum in the adder
register; so the adder register now contains 012,
and

® the contents of the Q22 bus read register to be
driven onto the MCD bus, rotated 1 byte to the
right in the rotator, and latched in the merge
register.

The microprogram control field of this microinstruction
causes the microprogram to loop on this instruction
until the SYNCREADY signal is received from the Q22
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bus, indicating that the data are available and latched
in the Q22 bus read register.

Q22 bus block reads use word-aligned addresses, so
although the physical address 000011 was latched in
the Q22 bus write register, the low byte is ignored, and
aword of data is read at address 000010.

Suppose the data at physical address 000010 in memory
is:

DD |CC|BB|AA |:000010

where the data requested by the data path is the word
CCBB. (For this example, each letter represents one
hex digit; AA, for instance, is one byte.) The first block
transfer from the Q22 bus read returns the bytes BBAA
and latches them in the Q22 bus read register.

This microinstruction moves the contents of the MCD
bus into the rotator. The value FFFFBBAA is stable on
the MCD bus at this point; the FFFF is provided by the
pull-up resistors, and the BBAA is from the Q22 bus
read register. When FFFFBBAA is rotated one byte to
the right and latched in the merge register, the merge
register contains AAFFFFBB, where BB is the low-
byte.

SYNCREADY is received as an input to the MCT
branch MUX, so when it is asserted, it causes a jump to
microaddress 1C7. Thus, 1C7 is passed through the
next address buffer and used to access control store as
the next microaddress.

Change Q22 Bus Function

At the rising edge of MCTM CLK125, the microinstruc-
tion at 1C7 is available at the output of the control

store. This microinstruction asserts the function code
for read word (DATI) instead of read block (DATBI) to
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indicate that this is the last Q22 bus cycle of the block
read. The microinstruction causes:

® aread word bus cycle to begin,

® the page portion of the virtual address location in
the register file to be driven onto the MCA bus;
that is, the hex value DCF000,

® the contents of the adder register to be driven onto
the MCA bus; that is, the hex value 012,

® the physical address on the MCA bus (000012) to
be latched into the Q22 bus write register, and

® the adder to subtract the constant 2 from the low
nine bits on the MCA bus and latch the sum in the
adder register; so the adder register now contains
010.

The microprogram control field of this microinstruction
disables dispatches, but enables traps and jumps. The
branch control field is 100 (binary), so the MCT
microsequencer selects bits <9:0> from the microin-
struction as the next microaddress, modified by the
branch conditions QBUS. TIMEOUT and QBUS.ER-
ROR (see Figure 7-3). Bits <9:0> are 0DA and neither
branch condition is asserted. Thus, 0DA is passed
through the next address buffer and used to access
control store as the next microaddress.

At the rising edge of MCTM CLK125, the microinstruc-
tion at O0DA is available at the output of the control
store. This microinstruction causes the contents of the
merge register (AAFFFFBB) to be driven onto the
MCA bus. This is an intermediate cycle to allow a bus
timeout error to be detected. The microprogram control
field causes a jump to address 1CD.
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Read Word

At the rising edge of MCTM CLK125, the microinstruc-
tion at 1CD is available at the output of the control
store. This microinstruction causes:

® the contents of the merge register (AAFFFFBB) to
be driven onto the MCA bus,

® the contents of the Q22 bus read register to be
driven onto the MCD bus, rotated 3 bytes to the
right in the rotator, and bytes 2 and 1 latched in
the merge register.

The microprogram control field of this microinstruction
causes the microprogram to loop on this instruction
until the SYNCREADY signal is received from the Q22
bus, indicating that the second word of data is available
and latched in the Q22 bus read register. This read
word bus cycle returns the bytes DDCC and latches
them in the Q22 bus read register.

This microinstruction also moves the contents of the
MCD bus into the rotator. The value FFFFDDCC is
stable on the MCD bus at this point; the FFFF is
provided by the pull-up resistors, and the DDCC is from
the Q22 bus read register.

When FFFFDDCC is rotated three bytes to the right
and bytes 1 and 2 latched in the merge register, the
merge register contains AADDCCBB, where BB is the
low-byte. (The AA and BB are still in the merge
register from before.) Notice that the requested data
CCBB are now aligned as the low-order word of the
merge register.

SYNCREADY is received as an input to the MCT
branch MUX, so when it is asserted, it causes a jump to
microaddress 1CF. Thus, 1CF is passed through the
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next address buffer and used to access control store as
the next microaddress.

At the rising edge of MCTM CLK125, the microinstruc-
tion at 1CF is available at the output of the control
store. This microinstruction causes the contents of the
merge register (AADDCCBB) to be driven onto the
MCA bus, and asserts a no operation Q22 bus function
code. This is also an intermediate cycle to allow bus
timeout errors to be detected. The microprogram
control field causes a jump to address OE2 if no bus
errors occur.

Return Correct Data

At the rising edge of MCTM CLK 125, the microinstruc-
tion at OE2 is available at the output of the control
store. This microinstruction causes:

® the contents of the merge register, AADDCCBB, to
be driven onto the MCA bus as MCA <31:0>,

® the transceiver to drive the data on the MCA bus
over the memory data bus to the data path,

® the reverse pass latch to be enabled for input and
output, so AADDCCBB is latched there from the
MCA bus and driven onto the MCD bus,

® the AADDCCBB from the reverse pass latch to be
rotated three bytes to the right and all four bytes
latched in the merge register; the merge register
now contains DDCCBBAA, where AA is the low-
order byte, and

® the MEM BUSY signal to be cleared.

The longword AADDCCBB is returned to the data path
over the memory data bus. Because the data path is
executing a macroinstruction with data type word
(MOVW), the data path will only read the low-order
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word off the memory data bus. The low-order word is
the desired data CCBB and it is, in fact, the first
operand.

After being rotated again by this microinstruction and
latched in the merge register as DDCCBBAA, the
longword is now restored to the correct order for a cache
write.

The microprogram control field of this microinstruction
disables dispatches, but enables traps and jumps. The
branch control field is 100 (binary), so the MCT micro-
sequencer selects bits <9:0> from the microinstruc-
tion as the next microaddress. Bits <9:0> are 382
(hex). Thus, 382 is passed through the next address
buffer and used to access control store as the next
microaddress.

Prepare for Cache Write

At the rising edge of MCTM CLK125, the microinstruc-
tion at 382 is available at the output of the control
store. This microinstruction causes:

® the contents of the merge register, DDCCBBAA, to
be driven onto the MCA bus as MCA <31:0>, and

® the reverse pass latch to be enabled for input, so
DDCCBBAA is once again written into the reverse
pass latch.

The microprogram control field of this microinstruction
only enables jumps. The branch control field is 100
(binary), so the MCT microsequencer selects bits
<9:0> from the microinstruction as the next microad-
dress. Bits <9:0> are 35C. Thus, 35C is passed
through the next address buffer and used to access
control store as the next microaddress.
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Cache Write

At the rising edge of MCTM CLK125, the microinstruc-
tion at 35C is available at the output of the control
store. This microinstruction causes:

® the contents of the adder register, 010, to be driven
onto the MCA bus as MCA <8:0>,

® the page portion of the virtual address location in
the register file to be driven onto the MCA bus; so
MCA <31:9> are the hex value DCF000,

® the reverse pass latch to be enabled for output, so
DDCCBBAA isdriven onto the MCD bus, and

® acache write access.

To accomplish the cache write access, the index MUX
selects PA <12:2> from the MCA bus, and provides a
one for the high-order bit. The source for index MUX
<6> is bit <8> from the adder. The twelve index
MUX bits form the hex value 804. Thus, location 804 is
accessed in the tag RAM and in the TB/cache data
RAM.

At the same time, the tag MUX selects physical address
bits <21:13> from the MCA bus, supplies five zeros for
the high-order bits and passes these fourteen bits,
which have the hex value 0180, to the write isolation
buffer. From the write isolation buffer, 0180 hex is
written into the low-order fourteen bits of tag RAM
location 804. The high-order bit—the valid bit—is
written as a one, indicating that this is a valid tag,
because bit <32> in the microinstruction is a one. The
next high-order bit is a spare. Tag RAM location 804
now contains the hex value 8180.

Simultaneously, the data on the MCD bus,
DDCCBBAA, are written into location 804 in the
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TB/cache RAM, and the cache write operation is
complete.

The microprogram control field of this microinstruction
disables dispatches, but enables traps and jumps. The
branch control field is 010 (binary), so the MCT
microsequencer selects bits <9:0> from the microin-
struction as the next microaddress, modified by the
branch conditions QBUS.SYNCH and QBUS.BLK.OK
(see Figure 7-3). Bits <9:0> are 0A6 and none of the
branch conditions are asserted. Thus, 0A6 is passed
through the next address buffer and used to access
control store as the next microaddress.

The microinstruction at 0A6 enables dispatches, starts
the prefetch sequence to refill the prefetch FIFO if the
FIFO contains less than eight bytes, and then jumps to
the idle state microroutine.

Move Data

After the memory controller clears MEM BUSY and
returns the data CCBB on the memory data bus, the
data path executes a MOVL microinstruction, which
moves CCBB off the memory data bus and into
temporary storage in the data path chip. The data path
has now obtained the first operand.

Evaluating the Second Operand Specifier

The second operand specifier, 51, was loaded into the
IBYTE register many cycles ago—soon after the decode
of the first operand specifier, 60, was completed. Now
the second operand specifier is decoded. The decode
causes the DAP microsequencer to use the current
microaddress plus one as the next microaddress since
the operand specifier 51 indicates register mode.

Once the decode has completed, the data path asserts IB
TAKEN and the prefetch FIFO drives the next byte in
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the instruction stream onto the memory control bus.
The memory controller asserts NXT VALID REG, the
data path asserts LOAD I BYTE, and the next I-stream
byte is clocked into the IBYTE register.

The microinstruction that follows the Decode is a Move
to xpointer 2. Pointer 2 is currently pointing to R1
because bit <26 > in the Decode microinstruction just
executed is a 1, causing bits <5:0> from the IBYTE
register to be stored in pointer 2. When this Move
microinstruction is executed, the word of data, CCBB,
in temporary storage in the data path chip, is moved
into R1. The entire MOVW macroinstruction is now
complete.

This completes the description of the memory controller
hardware and microprogram level flow example. The
next chapter describes the Q22 bus controller.
Although the Q22 bus controller hardware is physically
located on the memory controller module, it is described
separately because it is an independent micromachine.
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Chapter 9
Q22 Bus Controller

The Q22 bus controller handles the Q22 bus protocol,
freeing the memory controller microcode from this task.
The Q22 bus controller accepts function requests from
the memory controller microcode and carries them out
through its own set of microstates.

The first part of this chapter describes the hardware
components on the memory controller module that
make up the Q22 bus controller, and how they interact.
The second part of this chapter describes the Q22 bus
itself, and the bus operations that are handled by the
Q22 bus controller.

Overview of Q22 Bus Controller Functions
The Q22 bus controller performs the following five
functions.

® [t services function requests from the memory
controller.

It sequences bus cycles.
It arbitrates the bus.

It monitors direct memory accesses.

It communicates with the memory controller and
the data path module.

The Q22 bus controller is the default bus master. It
remains in an idle state unless it is servicing a request
from the Q22 bus or the memory controller. The Q22
bus controller uses the same 125 ns microcycle as the
memory controller.
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The next sections describe the five Q22 bus controller
functions, and the hardware components that imple-
ment them, in detail.

Servicing MCT Function Requests

One of the main functions of the Q22 bus controller is
carrying out requests from the memory controller. To
do this, the Q22 bus controller must receive the follow-
ing information from the memory controller.

® function A three bit field from the memory
code controller microinstruction that
defines the function requested.

® oo bit One bit from the memory controller
microinstruction that informs the
Q22 bus controller to proceed with the
current function request.

At 0 ns of each MCT microcycle, the MCT microinstruc-
tion is available at the output of the MCT control store.
If the microinstruction contains the go bit or a 3-bit
function code, these bits are sent to the Q22 bus control-
ler within the current microcycle; call it microcycle 1.
The address for the data to be read from or written to is
also latched in the Q22 bus write register during micro-
cycle 1.

The Q22 bus controller uses the 3-bit function code to
determine the sequence of microstates needed to accom-
plish the given function. A new microstate is entered
every 125 ns. The function code also determines the
control signals needed to accomplish the requested
function. The 3-bit function code is bits <50:48> from
the MCT microinstruction. The encoding is shown in
Table 9-1.

Q22 Bus Controller 9-2



Table 9-1. Function Code Field

<50:48> Operation Mnemonic
000 no operation NOP
001 write word DATO
010 write byte DATOB
011 write block DATBO
100 read word DATI
101 read interlocked DATIO
110 read interrupt vector
111 read block DATBI

As soon as the Q22 bus controller receives the function
code from the memory controller, it places the address
that is latched in the Q22 bus write register on the Q22
bus, if the bus is free. The memory controller microcode
then sends the go bit during any cycle up to the second
cycle following the one in which the request was initi-
ated. The go bit is bit <63> of the memory controller
microinstruction.

When the Q22 bus controller receives the go bit, it
generates the signal MCTA TSYNC. TSYNC tells the
slave device that a valid address is on the bus and a bus
cycle for the function requested by the memory control-
ler is in progress.

The memory controller microcode can cancel the re-
quested function up to the third microcycle by sending
the function code for no operation instead of the go bit.
The memory controller microcode does this, for exam-
ple, when a cache read access resultsin a hit, and a read
from memory is not necessary. (For every cache read,
the physical address used to access the cache is also
saved in the Q22 bus write register. A read from
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memory bus operation is started if a cache miss occurs.)

Thus, the Q22 bus controller begins bus operations for
the requested function as soon as it receives a function
code from the memory controller. By the second micro-
cycle after the one in which the request was initiated,
the memory controller microcode must send the go bit
to tell the Q22 bus controller to continue the bus cycle,
or a NOP function code to cancel the request.

Two PALs in the Q22 bus controller are the main
components that handle function requests from the
memory controller. These PALs are the function
decoder PAL and the sequencer PAL. Other compo-
nents involved are the two transceivers and a receiver
that form part of the Q22 bus interface, the cache
invalidate pipeline register, and the registered trans-
ceivers that form the data/address interface to the Q22
bus. (The data/address interface includes the Q22 bus
read and write registers.) These components are
described in the next paragraphs.

Function Decoder PAL

The function decoder PAL determines which operation
the memory controller is requesting. The 3-bit function
code and the go bit from the memory controller micro-
code are received at the input side of the function
decoder PAL. The three signals for the function code
are MCTH UQIF FUN2, MCTH UQIF FUN1, and
MCTH UQIF FUNO. The go bit is signal MCTN QBUS
GO.

If any one of the function code signals is asserted and no
bus device has requested a direct memory access, the
function decoder PAL generates the signal MCTA
MFUN GO, which is one input to the sequencer PAL.
MFUN GO causes the sequencer PAL to begin the set
up for the desired bus operation. If the function code is
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000 for no operation, the function decoder PAL
deasserts MFUN GO.

If a direct memory access request has been made when
the function decoder PAL receives a function request
from the memory controller, the PAL inhibits the
MFUN GO signal and the function code is ignored. The
memory controller must continue to assert the function
code and the go bit until it receives the SYNCREADY
signal from the Q22 bus controller. SYNCREADY
informs the memory controller that the requested Q22
bus operation is underway.

Sequencer PAL

The sequencer PAL generates the control signals that
sequence the bus cycles for the desired bus operation.
The function decoder PAL starts the sequencer PAL by
sending it MCTA MFUN GO. Bit <50> from the
memory controller microinstruction is also passed to
the sequencer PAL as the signal MCTH UQIF FUN2.
This signal when asserted indicates that the requested
function is a read operation rather than a write.

When the sequencer PAL receives MFUN GO and
UQIF FUNZ2, it generates the correct signals to control
the desired bus operation. For example, the sequencer
PAL generates the signals MCTA ENDALADD and
MCTA ENDAL to cause the contents of the Q22 bus
write register to be driven onto the Q22 bus.

Once the memory controller microcode sends the go bit,
the sequencer PAL receives the signal MCTB RRPLY
several microcycles later and continues asserting the
necessary control signals for the desired bus operation.
If the memory controller does not send the go bit by the
second microcycle after the one in which the function
request was initiated, it sends the no operation function
code and the function decoder PAL deasserts MFUN
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GO. As a result, the sequencer PAL returns the bus
control signals to their default states.

For more information about the sequencer PAL and the
control signals for the various bus operations, see the
section titled “Sequencing Bus Cycles” in this chapter.

Q22 Bus Interface

Two quad transceivers and one receiver are the
components that make up the interface between the
control signals asserted by the Q22 bus controller and
the Q22 bus signals.

The letter “T” in front of a Q22 bus signal name
indicates that the signal is generated by the Q22 bus
controller and transmitted to the Q22 bus. The letter
“R” in front of a Q22 bus signal name indicates that the
signal is generated by a Q22 bus device and received by
the Q22 bus controller. The letter “B” in front of a Q22
bus signal name indicates that the signal is the actual
bus signal on the backplane. Thus, the Q22 bus
interface transmits “T” signals from the controller onto
the bus as “B” signals, and receives “B” signals off the
bus as “R” signals.

For example, the controller signal MCTA TDIN is one
input to an interface transceiver and is sent out the bus
as the signal BDIN. TDIN is the data in control signal
transmitted from the Q22 bus controller to a bus device.
BDIN is the backplane version of TDIN. Similarly, the
bus signal BDMR is received by the interface receiver
and sent to the controller as MCTC RDMR. RDMR is
the request for a direct memory access (DMA) from a
bus device and is received by the Q22 bus controller.
BDMR is the backplane version of RDMR.
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Cache Invalidate Pipeline Register

The cache invalidate pipeline register is a 22-bit
register located between the MCD bus and the Q22 bus
read register. The cache invalidate pipeline register
latches DMA addresses and is a transparent latch for
data read from a Q22 bus device. Thus, the cache
invalidate pipeline register is always loaded from the
Q22 bus read register. The Q22 bus read register is
loaded with the address or data on the Q22 bus during
bus read operations.

Q22 Bus Transceivers

Six quad registered transceivers are the hardware
components that make up the Q22 bus read and write
registers. The transceivers are bidirectional, allowing
data and memory addresses to be transmitted to and
received from the memory controller.

The memory controller microcode controls the input
side of the write register transceivers, and the output
side of the cache invalidate pipeline register. Thus, the
memory controller microcode causes addresses and data
to be latched in the write register, and to be driven from
the cache invalidate pipeline register onto the MCD
bus.

The sequencer PAL controls the output side of the write
register with the signal MCTA ENDAL, which controls
bits <15:0>, and the signal MCTA ENDALADD,
which controls bits <21:16>.

For a read operation, data are latched in the Q22 bus
read register from the Q22 bus on the falling edge of the
signal MCTA TDIN, which is generated by the sequenc-
er PAL.
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For direct memory access (DMA) activity on the bus,
the read register is open when the signal RSACK is
asserted. (A bus device asserts RSACK to accept and
retain bus mastership.) The read register closes, latch-
ing the address on the bus data/address lines, when the
function decoder PAL has the signal DMA IN PROG
asserted and the bus master asserts RSYNC. (The
function decoder PAL asserts DMA IN PROG when bus
mastership has been granted to a bus device; a bus
device asserts RSYNC to indicate that it has placed an
address on the bus.)

Sequencing Bus Cycles

Sequencing the bus cycles is another major function of
the Q22 bus controller. This section describes the
control signals that sequence the bus cycles. The
sequencer PAL in the Q22 bus controller maintains
state and generates most of the signals that control the
Q22 bus protocol. The function decoder PAL supplies
the remaining bus control signals.

ENDAL and ENDALADD

When the Q22 bus controller is in an idle state, the
sequencer PAL continuously asserts these two signals.
MCTA ENDAL asserted causes bits <15:0> of the Q22
bus write register to be driven onto the Q22 bus as DAL
<15:0>. MCTA ENDALADD asserted causes bits
<921:16> of the write register to be driven onto the bus
as DAL <21:16>. Bit <29>, the I/O space flag, is also
loaded into the write register. If bit <29> is asserted,
the assertion of ENDALADD also causes bit <29> to
be driven onto the bus as the signal BBS7.

The sequencer PAL asserts ENDAL when the write
register contains data; it asserts ENDALADD and
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ENDAL when the write register contains an address.
Thus, the sequencer PAL deasserts ENDALADD for
the data cycle of a bus write operation, and it deasserts
ENDAL and ENDALADD for the data cycle of a bus

read operation.

The signal DMA IN PROG is asserted by the function
decoder PAL when bus mastership has been granted to
a bus device. When the sequencer PAL receives DMA
IN PROG asserted, it deasserts ENDALADD and
ENDAL.

Similarly, the function decoder PAL asserts the signal
EN IAKO when an interrupt acknowledge bus opera-
tion has started. This signal also causes the sequencer
PAL to deassert ENDALADD and ENDAL.

PRESYNC

The signal MCTA PRESYNC is asserted by the
sequencer PAL as an internal state bit. PRESYNC
marks when the memory controller changes the
function code. When the sequencer PAL receives
MFUN GO asserted, it asserts PRESYNC in the next
microcycle.

In addition to marking when the function code changes,
PRESYNC asserted also causes the signal TSYNC EN
to be asserted. When TSYNC EN is asserted and the go
bit is received from the miemory controller microcode,
the signal TSYNC is asserted. TSYNC is driven onto
the bus as BSYNC. BSYNC is asserted by the bus
master (in this case, the Q22 bus controller) to indicate
that it has placed an address on the bus and a transfer
1s 1n progress.

SYNCHOLD

The sequencer PAL asserts MCTA SYNC HOLD to
keep the BSYNC signal asserted on the bus. This is a
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necessary part of the bus protocol; BSYNC must remain
asserted to allow the bus master to keep the addressed
slave device selected. BSYNC stays asserted until the
entire bus operation is completed.

TDIN

The signal DIN stands for data input. The sequencer
PAL asserts the signal MCTA TDIN during bus read
operations to inform the slave bus device that the Q22
bus controller wants the requested data. The device
must respond with RRPLY to indicate that it is ready to
place the data on the bus. The assertion of RRPLY
causes the negation of TDIN; when TDIN negates, the
data on the bus data/address lines (DAL) are latched in
the Q22 bus read register.

TDOUT

The signal DOUT stands for data output. The
sequencer PAL asserts the signal MCTA TDOUT
during bus write operations to inform the slave bus
device that valid data are available on the bus
data/address lines. The device must respond with
RRPLY to indicate that it is ready to accept the data on
the bus. The assertion of RRPLY causes the negation of
TDOUT; when TDOUT negates, the controller removes
the data from the bus data/address lines after one cycle
of hold time.

TWTBT

If the 3-bit function code from the memory controller
specifies a write word, write byte or write block opera-
tion, the function decoder PAL asserts the signal
MCTA TWTBT (transmit write byte) during the
address portion of the cycle to indicate that an output
cycle is to follow rather than an input cycle. During the
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data portion of a write byte (DATOB) or a
read/modify/write byte (DATIOB) bus cycle, the func-
tion decoder PAL asserts TWTBT to indicate a byte
rather than a word transfer is to take place.

BM TBS?7

If the 3-bit function code from the memory controller
specifies a block mode read operation, the function
decoder PAL asserts the signal MCTA BM TBS7 (block
mode transmit bank select 7). The assertion of BM
TBS7 causes the assertion of BBS7 on the bus. BBS7
asserted while TDIN is asserted informs the Q22 bus
memory that the next word in memory is also desired.
The Q22 bus controller asserts BBS7 with the first data
transfer until the start of the last transfer to indicate to
the memory that there will be subsequent transfers.

EN IAKO

If the 3-bit function code from the memory controller
specifies read vector, the function decoder PAL asserts
the signal MCTA EN TAKO (enable interrupt acknow-
ledge output). EN IAKO is pipelined and ANDed with
TDIN to generate the signal MCTA TIAKO. TIAKO is
driven onto the bus as BIAKO which informs the bus
device with the highest priority interrupt request that
its interrupt is acknowledged.

Arbitrating the Q22 Bus

Another major function of the Q22 bus controller is to
arbitrate the Q22 bus; that is, the Q22 bus controller
monitors the bus as well as the memory controller and
decides when to assume bus mastership to execute a
function request from the memory controller, and when
to grant bus mastership to allow DMA transfers.
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The hardware involved in arbitrating the bus is the
function decoder PAL and the bus error logic. These
components are described in the next paragraphs.

Function Decoder PAL

When the Q22 bus controller is in an idle state, the
function decoder PAL asserts the signal MCTA EN
DMA. Thus, the default state of the controller is that
requests for direct memory accesses are enabled. A Q22
bus device requests bus mastership for a direct memory
access by asserting the bus signal BDMR.

BDMR is pipelined, synchronized, ANDed with EN
DMA, and presented to the input side of the function
decoder PAL as the signal MCTA DMGO EN (direct
memory access grant output enable). This signal
causes the PAL to inhibit the signal MCTA MFUN GO
and assert the signal MCTA DMA IN PROG. As a
result, the sequencer PAL disables the data/address
lines by deasserting MCTA ENDALADD and MCTA
ENDAL.

Two microcycles after BDMR is received, the signal
TDMGO goes out on the Q22 bus. TDMGO informs the
device that its DMA request is granted, and the device
then becomes bus master. The bus device cannot
proceed with the direct memory access until it receives
the signal TDMGO from the Q22 bus controller.

The bus device acknowledges the TDMGO signal and
assumes bus mastership by asserting RSACK. As long
as the bus device asserts RSACK, it retains bus

mastership. The bus device relinquishes bus master-
ship by negating RSACK.

When the function decoder PAL receives the RSACK
signal, it deasserts the EN DMA (enable DMA) signal.
As a result, both function requests from the memory
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controller and DMA requests from other Q22 bus
devices are inhibited.

Thus, when the Q22 bus controller is in the idle state, a
DMA request takes precedence over a function request
from the memory controller if the DMA request is
received first, or at the same time. Once a bus device
assumes bus mastership for DMA activity, function
requests from the memory controller are locked out
until the bus device relinquishes bus masterhip.
Similarly, once the Q22 bus controller assumes bus
mastership to execute a function request from the
memory controller, DMA requests are locked out until
the function request is completed.

Bus Error Logic

The Q22 bus controller contains hardware to respond to
memory parity errors and bus timeouts. The sequencer
PAL asserts the signal MCTA QBUS ERROR if a parity
error or a bus timeout occurs. QBUS ERROR is one
input to the memory controller branch MUX. The error
conditions are cleared at the start of any function
request from the memory controller.

Parity

On the Q22 bus, DAL <17> and <16 > are used for
parity error detection. During the portion of the data
transfer bus cycles in which data is being placed on the
bus by the slave for the bus master, DAL <17> is
asserted to enable parity error detection logic, and DAL
<16> is asserted when a parity error occurs.

DAL <17> and <16> are ANDed to form an input to
the sequencer PAL; when they are both asserted and
TDIN negates, the sequencer PAL asserts MCTB
QBUS ERROR. The bus operation then completes and
the Q22 bus controller returns to the idle state.
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Meanwhile, the memory controller microcode branches
to the post parity error microroutine. The memory
controller detects that this is a parity error because
only the QBUS ERROR signal is asserted. If a bus
timeout occurs, both QBUS ERROR and a signal called
TIMEOUT are asserted.

Bus Timeout

The bus timeout logic limits the length of time the Q22
bus controller waits for a reply from a slave or a DMA
device. The timeout limit is 10 microseconds. The
timer is started by the assertion of TDIN, TDOUT, or
TDMGO. The timer is reset by the assertion of RRPLY
(in response to TDIN or TDOUT) or by the assertion of
RSACK (in response to SDMGO).

If the expected response, RRPLY or RSACK, does not
appear within 10 microseconds, the timeout logic
asserts MCTA BUSERR, which locks out RRPLY and
RSACK. BUSERR is synchronized, then asserted as
MCTB EN TIMEOUT. EN TIMEOUT is passed to the
function decoder PAL as the signal MCTA ABORT and
causes MFUN GO to negate.

EN TIMEOUT is also an input to another PAL in the
Q22 bus controller called the control and status PAL.
When the control and status PAL receives EN
TIMEOUT, it asserts the signal MCTA TIMEOUT,
which is one input to the memory controller branch

MUX.

The negation of MFUN GO while either TDIN or
TDOUT is asserted causes the sequencer PAL to assert
QBUS ERROR and SYNCREADY, and to negate TDIN
or TDOUT, whichever was set. The sequencer PAL also
negates SYNC HOLD and asserts ENDAL and
ENDALADD. Essentially, the Q22 bus controller
returns to the idle state except that the QBUS ERROR
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and TIMEOUT signals are asserted and received by the
memory controller branch MUX, and SYNCREADY is
still asserted.

At the next microcycle, the sequencer PAL negates
SYNCREADY, which causes the control and status
PAL to assert the signal CLR TM ERR. This signal
resets the timeout detect circuit. QBUS ERROR and
TIMEOUT remain asserted until the memory control-
ler microcode sends a new function code.

Monitoring Direct Memory Accesses

The Q22 bus controller also contains logic that detects
direct memory access activity on the Q22 bus, and posts
the cache invalidate flag. The main components of this
logic are a binary counter, a MUX and a PAL. The
following paragraphs explain the process for a cache
invalidate because of a direct memory access (DATO,
DATOB or DATBO), and the process for a cache invali-
date because of a read interlocked (DATIO) operation.

DMA Cache Invalidates

The Q22 bus controller grants bus mastership to a bus
device by asserting TDMGO in response to the device’s
request for a direct memory access (RDMR). The device
assumes and retains bus mastership by asserting
RSACK. Once the device assumes bus mastership, it
begins a direct memory access. It first places the
address on the bus and asserts RSYNC and RWTBT.
The assertion of RSYNC indicates that an address is on
the bus and a transfer is in progress. RWTBT is
asserted during this address portion of the cycle to
indicate that an output cycle is to follow, rather than an
input cycle.
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When the monitoring logic detects the assertion of
RSYNC with DMA IN PROG from the function decoder
PAL, the input side to the Q22 bus read register closes
and the PAL negates the signal MCTB OPEN LATCH.
Negating OPEN LATCH causes the address in the Q22
bus read register to be latched in the cache invalidate
pipeline register. At the same time, bits <4:2> of the
address are latched in the binary counter that is part of
the DMA monitoring logic. In the next microcycle, the
counter increments bits <4:2> by one.

When RWTBT is asserted on the rising edge of RSYNC,
the signal MCTB CINV is asserted. When CINV is
asserted with RSACK, the PAL in the DMA monitoring
logic also asserts the signal MCTB CACHE INV, which
is the cache invalidate flag. The cache invalidate flag is
one input to the MCT microinstruction decode logic,
and causes the MCT to trap to the microroutine at
control store address 3FF. The microroutine reads the
address out of the cache invalidate pipeline register,
checks if that address is in the cache, and marks the
cache entry invalid if it is.

Next, the bus device asserts the signal RDOUT to indi-
cate that the data to be written into memory are now on
the Q22 bus. When RDOUT asserts, the PAL in the
DMA monitoring logic asserts SEL BLK (select block).

The cache invalidate pipeline register holds the DMA
address until it is read by the memory controller micro-
code. The microcode reads the cache invalidate pipeline
register by asserting MCTN QBUS RD OE. Once the
address is read and SEL BLK is asserted, the PAL
asserts OPEN LATCH and negates the cache invali-
date flag. On the next microcycle, OPEN LATCH ne-
gates, causing the cache invalidate pipeline register to
latch bits <29>, <21:5>, and <1:0> from the read
register, and the incremented bits <4:2> from the
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binary counter. Thus, the first incremented address,
which is the original DMA address plus four, is latched
in the cache invalidate pipeline register. This is done
in case the DMA is a block write, and successive
addresses need to be invalidated. The binary counter
again increments bits <4:2> of the original DMA
address.

At this point, if the bus device asserts RDOUT a second
time, the DMA is indeed a block write. If BDAL <1>
of the original address is a 1, the data being written are
the high-order word of a longword, and the cache invali-
date flag is posted again; that is, when RDOUT is as-
serted for the second time. If BDAL < 1> of the origi-
nal address is a 0, the data being written are the low-
order word of a longword and the cache invalidate flag
does not need to be posted again until RDOUT is as-
serted for the third time.

From the time the second cache invalidate flag is
posted, the following increment-address cycle continues
for every other RDOUT until the bus device negates
RSYNC.

® The PAL asserts the cache invalidate flag and the
PAL sets up to skip this 1ncrement-address cycle
for the next RDOUT.

® The memory controller reads the cache invalidate
pipeline register which contains the incremented
address.

® The PAL asserts OPEN LATCH and negates the
cache invalidate flag.

® The PAL negates OPEN LATCH capturing the
next incremented address.

® The binary counter increments bits <4:2> again.
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Figure 9-1 is a timing diagram of a cache invalidate
operation when the DMA is a block write and BDAL
<1> is 0. Figure 9-2 is the cache invalidate operation
timing when BDAL <1>is1.

If the bus device does not assert RDOUT a second time,
then the operation is not a block write, the bus device
negates RSYNC, and the DMA monitoring logic
returns to an idle state when the last cache invalidate
is acknowledged by the memory controller.

DATIO Cache Invalidates

The cache invalidate flag is also posted for DATIO (read
interlocked) bus cycles. A DATIO operation is a read
followed by a write. During the address portion of a
DATIO operation, RSYNC and RSACK are asserted,
but RWTBT is not asserted.

When the DMA monitoring logic detects the assertion
of RSYNC with DMA IN PROG from the function
decoder PAL, the input side to the Q22 bus read
register closes and the PAL in the monitoring logic
negates the signal MCTB OPEN LATCH. Negating
OPEN LATCH causes the address in the Q22 bus read
register to be latched in the cache invalidate pipeline
register.

Next, RDOUT is asserted. This signal indicates that
the data to be written to the address that was just read
from are now on the bus. The assertion of RDOUT
causes the PAL in the monitoring logic to assert the
cache invalidate flag. The address to be invalidated in
the cache is the address that is latched in the cache
invalidate pipeline register.
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Figure 9-1. Block Write Cache Invalidate Timing Diagram: BDAL<1> =0
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Figure 9-2. Block Write Cache Invalidate Timing Diagram: BDAL<1> =1
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Communicating with MCT and DAP

There are six status signals generated by various pieces
of the Q22 bus controller hardware. The Q22 bus
controller uses five of these signals to communicate its
progress to the memory controller during a function
request. The Q22 bus controller can also send a write
timeout status flag to the data path module (DAP).
These six signals are described in the following
paragraphs.

Block Mode

The control and status PAL asserts the signal MCTA
BLOCK MODE OK during a write block or read block
bus operation to signify that the memory is able to
handle the next data transfer as a block mode transfer.

This signal is one input to the memory controller
branch MUX.

During a read block transfer, the block mode OK flag is
only used by the Q22 bus controller since the memory
controller microcode always loads the next address
after the data from the previous transfer are latched.

SYNCREADY

The signal MCTA SYNCREADY is true 30 ns maxi-
mum after the rising edge of the 125 ns clock to allow
the Q22 bus controller to coordinate read and write
events on the bus with the memory controller. SYNC-
READY is asserted when data are available on a read
from the Q22 bus, when data or an address is needed for
a write to a Q22 bus device, and when an error is posted
by the Q22 bus controller. The signal is generated by
the sequencer PAL and is one input to the memory
controller branch MUX.
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For block read transfers, SYNCREADY is asserted
during the cycle that data are loaded in the Q22 bus
read register and remains asserted for one 125 ns
microcycle. If block mode is not asserted with SYNC-
READY, the next address that is always loaded by the
memory controller microcode for block read operations
is used to start another microcycle.

During a write cycle, the word to be written is placed in
the Q22 bus write register during the microcycle follow-
ing the first assertion of SYNCREADY. If any function
code from the memory controller is still asserted at this
time, the address of the next word is loaded during the
cycle following the next assertion of SYNCREADY.
The cycle is then repeated for each subsequent word
transfer.

During block write operations, the block mode OK
signal is used with SYNCREADY to coordinate the
loading of data or address into the Q22 bus write regis-
ter. The memory controller microcode loads the first
word in the Q22 bus write register during the micro-
cycle following the assertion of SYNCREADY. If block
mode is set when SYNCREADY is reasserted, the next
word is loaded into the write register during the next
microcycle. If block mode is not asserted, the next
address is loaded into the Q22 bus write register.

Q22 Bus Timeout

The signal MCTA TIMEOUT is true 40 ns maximum
after the rising edge of the 125 ns clock, when a non-
existent memory request bus timeout occurs. This
signal can be read at the assertion of SYNCREADY.
The signal remains asserted until another function
code is received from the memory controller. MCTA
TIMEOUT is generated by the timeout logic and is one
input to the memory controller branch MUX.
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Q22 Bus Error

The signal MCTA QBUS ERROR is the OR of the bus
timeout and parity error signals. Once set, it is cleared
at the start of a new function request. This signal
causes any single or multiple memory function request
to abort. MCTA QBUS ERROR is generated by the

sequencer PAL and is one input to the memory
controller branch MUX.

A Q22 bus memory parity error (MCTA QBUS ERROR
and not MCTA TIMEOUT) can be detected 25 ns after
the start of the microcycle following SYNCREADY for
a bus read transfer.

Cache Invalidate

The signal MCTB CACHE INV is asserted during DMA
write or read/write cycles. This signal is synchronized
to the 125 ns clock and remains asserted until the
memory controller microcode acknowledges the cache
invalidate signal by reading the address in the cache
invalidate pipeline register. (The cache invalidate
pipeline register contains the address written to the
Q22 bus read register from the Q22 bus.) MCTB
CACHE INV is generated by the DMA monitoring logic
and is one input to the memory controller microinstruc-
tion decode logic. This signal causes the memory
controller microcode to trap to control store address
3FF for a cache invalidate trap.

Write Timeout

The Q22 bus controller asserts the signal MCTB WRT
TMO when a bus timeout occurs during a write
function. This signal is one input to the interrupt
control logic on the data path module. When WRT
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TMO is asserted, an interrupt request is posted at IPL
1D (hex).

The data path module can disable write timeout
interrupts by asserting the signal DAPE CONSOLE
MODE.

Q22 Bus Operations

This section contains a brief summary of the bus sig-
nals and the master/slave relationship. This summary
is followed by descriptions of the bus operations that
are handled by the Q22 bus controller as the result of
function requests from the memory controller.

Q22 Bus Signals

The 42 signal lines used in the Q22 bus are:

® Sixteen data/addresslines—BDAL<15:0>
Two address/parity lines—BDAL<17:16 >
Four extended address lines—BDAL <21:18>

Six data transfer control lines—BBS7, BDIN,
BDOUT, BRPLY, BSYNC, BWTBT

® Six system control lines—BHALT, BREF, BEVNT,
BINIT, BDCOK, BPOK

® Eight interrupt control and direct memory access
control lines—BIAKO/BIAKI, BIRQ4, BIRQ5,
BIRQ6, BIRQ7, BDMGO/BDMGI, BDMR, BSACK

All Q22 bus signals are asserted low and negated high,
except BPOK and BDCOK, which are asserted high
and negated low to indicate an event such as impending
loss of power.

With the exception of DMA grant and interrupt
acknowledge signals, Q22 bus signals are bidirectional;
that is, they can be driven or received at any point
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along the signal line. When driven, bidirectional
signals travel from the driver to the near end termina-

tor, and from the driver to the far end terminator. The
exceptions are BIAKO, BIAKI, BDMGO, and BDMGI.

BIAKI (interrupt acknowledge) is received by a bus
device on one pin and conditionally transmitted out on
a different pin as BIAKO to the next bus device. (The
signal is not transmitted to the next bus device if the
receiving bus device has the highest priority interrupt
pending.)

Bus wiring connects BIAKO as output from one device
to BIAKI as input to the next device on the bus.
BDMGI and BDMGO form a similar priority daisy
chain for Bus Mastership Grant. Appendix A of this
manual contains functional descriptions of the Q22 bus
signals.

Devices connect to all Q22 bus lines through high
impedance receivers and gated, high current, open-
collector drivers. Receivers and drivers are actually
considered part of the bus.

Master/Slave Relationship

Communication between devices on the bus is asyn-
chronous. A master/slave relationship exists through-
out each bus transaction. At any time, there is one
device that has control of the bus. This controlling
device is called the bus master. The master device con-
trols the bus when communicating with another device
on the bus, called the slave. The bus master (typically
the Q22 bus controller or a DMA device) initiates a bus
transaction. The slave device responds by acknowledg-
ing the transaction in progress and by receiving data
from, or transmitting data to, the bus master. Q22 bus
control signals transmitted or received by the bus
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master or bus slave device must complete the sequence
according to bus protocol.

Read Word

The mnemonic for a read word bus operation is DATI.
The memory controller microcode latches an address in
the Q22 bus write register and sends the function code
for DATI to the Q22 bus controller. The read word
operation addresses the proper bus device and reads one
aligned word from the location specified in the address.
When the Q22 bus controller asserts SYNCREADY,
the word read at the specified address is stable in the
cache invalidate pipeline register. The following para-
graphs describe the sequence of bus cycles and control
signals that happen for a read word bus operation.

In the idle state, the Q22 bus controller asserts the
signals ENDALADD, ENDAL, and EN DMA. The
memory controller asserts the signal MCTN WR LE to
latch the address for the read in the Q22 bus write reg-
ister. Once the address is latched and the Q22 bus con-
troller receives the DATI function code from the mem-
ory controller, the function decoder PAL in the Q22 bus
controller negates EN DMA and asserts MFUN GO.
The address in the write register is now on the bus
because ENDALADD and ENDAL were asserted.

In the next microcycle, receiving MFUN GO causes the
sequencer PAL to assert PRESYNC. Receiving PRE-
SYNC causes the control and status PAL to assert
TSYNC EN.

In the third microcycle, the go bit arrives from the
memory controller. The assertion of TSYNC EN plus
the go bit causes the assertion of TSYNC. TSYNC
informs the addressed bus device that a valid address is
on the bus. Also in this third microcycle, the sequencer
PAL asserts SYNC HOLD.
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In the fourth microcycle, the sequencer PAL asserts
TDIN, and negates ENDALADD, ENDAL and
PRESYNC. Now the sequencer PAL waits for the
addressed bus device to assert RRPLY.

Some number of microcycles later, the bus device has
accessed the desired data and placed it on the bus
data/address lines. The device informs the Q22 bus
controller of this by asserting RRPLY.

Once the sequencer PAL receives RRPLY (2), whichis a
synchronized version of RRPLY, it negates TDIN. This
causes the data to be latched in the Q22 bus read
register. The sequencer PAL also negates SYNC
HOLD and TSYNC EN in this cycle, and asserts SYNC-
READY. SYNCREADY is one input to the memory
controller and informs the memory controller that the
requested data are available in the read register.

The sequencer PAL negates SYNCREADY one micro-
cycle later. In the same microcycle, it asserts ENDAL
and ENDALADD, then waits for the bus device to
negate RRPLY. When RRPLY negates, TSYNC
negates, and the Q22 bus controller returns to the idle
state. Figure 9-3 is a timing diagram of a typical read
word bus operation.
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Figure 9-3. Read Word Timing Diagram
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Read Block

The mnemonic for a read block bus operation is DATBI.
A read block operation is the same as a read word oper-
ation except that from one to four sequential words can
be read from memory. The memory controller micro-
code sends the function code for DATBI to the Q22 bus
controller and latches an address in the Q22 bus write
register for each word it wants read in case the memory
does not support block mode. However, if the memory
does support block mode transfers, the Q22 bus con-
troller only uses the first address posted in the write
register.

The read block operation reads one aligned word from
the location specified by the first address in the write
register. When the Q22 bus controller asserts SYNC-
READY, the word read at the specified address is stable
in the cache invalidate pipeline register. The block
mode OK flag is asserted and the next sequential word
in memory is returned. The following paragraphs
describe the differences between the bus cycles and con-
trol signals that happen for a read word bus operation
and those that happen for a read block bus operation.

The first three microcycles of a read block operation are
the same as those for a read word. The fourth micro-
cycle is also the same except in addition, the function
decoder PAL generates the signal MCTA BM TBS7.
This signal in turn generates the bus signal BBS7
which informs the Q22 bus memory that the current
operation is a block mode read and therefore the next
word in memory is also desired.

If the memory supports block mode transfers, it asserts
the signal MCTC RREF in addition to RRPLY. When
the control and status PAL receives MCTC RREF, it
asserts MCTA BLOCK MODE OK. For a read word
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operation, the sequencer PAL negates SYNC HOLD in
the microcycle after it receives RRPLY (2). For a read
block operation, the sequencer PAL keeps SYNC
HOLD asserted. As a result, TSYNC remains asserted.

The other difference between read word and read block
operations is that as long as the memory controller
continues to supply the DATBI function code, the Q22
bus controller repeats the microcycles and control
signals starting from the fourth microcycle on. The
controller returns to the state described earlier as that
of the fourth microcycle each time that RRPLY (2)
negates, indicating the end of a word read.

In the microcycle before the last read transfer, the
memory controller changes the function code to DATI
instead of DATBI. This causes the function decoder
PAL to negate BM TBS7. The Q22 bus controller then
completes the remaining microcycles as it would for
any read word operation. Figure 9-4 is a timing
diagram of a typical read block bus operation.
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Figure 9-4. Read BlockTiming Diagram
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Write Byte and Write Word

The mnemonic for a write byte bus operation is
DATOB; the mnemonic for write word is DATO. Write
byte writes a single byte of data to a bus device. Write
word writes one aligned word of data to a bus device.
The only other difference between these two bus opera-
tions is that for write byte, the signal TWTBT remains
asserted during the entire operation; that is, it is as-
serted for both the address and data portions of the bus
operation. For write word, TWTBT is negated in the
fourth microcycle; TWTBT is only asserted during the
address portion of the bus operation.

For both operations, the memory controller microcode
latches an address in the Q22 bus write register and
sends the function code to the Q22 bus controller.
When the Q22 bus controller asserts SYNCREADY,
the memory controller latches the byte or word to be
written in the Q22 bus write register. The memory
controller can request up to four successive write byte
or write word operations before it must allow the Q22
bus controller to rearbitrate the bus. The following
paragraphs describe the sequence of bus cycles and
control signals that happen for a write byte or write
word bus operation.

In the idle state, the Q22 bus controller asserts the
signals ENDALADD, ENDAL, and EN DMA. The
memory controller asserts the signal MCTN WR LE to
latch the address in the Q22 bus write register. Once
the address is latched and the Q22 bus controller
receives the write byte or write word function code from
the memory controller, the function decoder PAL in the
Q22 bus controller negates EN DMA and asserts
MFUN GO. The address in the write register is now on
the bus because ENDALADD and ENDAL were
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asserted. In addition, the function decoder PAL asserts
MCTA TWTBT.

In the next microcycle, receiving MFUN GO causes the
sequencer PAL to assert PRESYNC. Receiving
PRESYNC causes the control and status PAL to assert
TSYNC EN.

In the third microcycle, the go bit arrives from the
memory controller. The assertion of TSYNC EN plus
the go bit causes the assertion of TSYNC. TSYNC
informs the addressed bus device that a valid address is
on the bus. Also in this third microcycle, the sequencer
PAL asserts SYNC HOLD and SYNCREADY. The as-
sertion of SYNCREADY informs the memory controller
that the address has been taken, and the Q22 bus
controller is ready for the data that is to be written.

In the fourth microcycle, the sequencer PAL negates
PRESYNC and ENDALADD but continues to assert
ENDAL. The memory controller latches the data to be
written in the write register. If this is a write byte
operation, the function decoder PAL keeps TWTBT
asserted; if not, the function decoder PAL negates
TWTBT.

In the fifth microcycle, the sequencer PAL asserts
TDOUT to inform the bus device that valid data are on
the bus. The fact that ENDAL is asserted causes the
contents of the write register (the data to be written) to
be driven onto the bus. Now the sequencer PAL waits
for the addressed bus device to assert RRPLY.

Some number of microcycles later, the bus device has
written the data to the addressed location and asserts
RRPLY. Once the sequencer PAL receives RRPLY (2)
(the synchronized version of RRPLY), it negates
TDOUT. The sequencer PAL also negates SYNC
HOLD which causes TSYNC EN to negate, and it as-
serts SYNCREADY for one cycle only. SYNCREADY
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informs the memory controller that the data was
written to the addressed location.

In the next microcycle, the sequencer PAL negates

SYNCREADY, asserts ENDALADD, and waits for the
bus device to negate RRPLY.

Once RRPLY negates, the Q22 bus controller returns to
the idle state by negating TSYNC. Figure 9-5 is a
timing diagram of a typical write byte/write word bus
operation.
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Figure 9-5. Write Byte/Write Word Timing Diagram
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Write Block

The mnemonic for a write block bus operation is
DATBO. A write block operation is the same as a write
word operation except that from one to four sequential
words can be written to memory. The memory control-
ler microcode sends the function code for DATBO to the
Q22 bus controller and latches an address in the Q22
bus write register for the first word it wants written.

All of the requirements for the first word transfer are
the same as for a write word bus operation. During the
microcycle after the one in which the Q22 bus controller
first asserts SYNCREADY, the memory controller
loads the Q22 bus write register with the first word of
data to be written. If the block mode OK flag is
asserted when the Q22 bus controller asserts SYNC-
READY the second time, the memory controller latches
the next word of data to be written into the write
register.

If the block mode OK flag is not asserted when the
controller asserts SYNCREADY the second time, the
memory controller loads the address of the next word to
be written in the write register. The following para-
graphs describe the differences between the bus cycles
and control signals that happen for a write word bus
operation and those that happen for a write block bus
operation.

The first five microcycles of a write block operation are
the same as those for a write word. The first difference
is that when the bus device asserts RRPLY, it also
asserts RREF to indicate it can accept another block
mode transfer. When the control and status PAL
receives MCTC RREF, it asserts MCTA BLOCK MODE
OK.
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For a write word operation, the sequencer PAL negates
SYNC HOLD in the microcycle after it receives RRPLY
(2). For a write block operation, the sequencer PAL

keeps SYNC HOLD asserted. As a result, TSYNC
remains asserted.

The other difference between write word and write
block operations is that as long as the memory control-
ler continues to supply the DATBO function code, the
Q22 bus controller repeats the microcycles and control
signals starting from the fourth microcycle on. The
controller returns to the state described earlier as that
of the fourth microcycle each time that RRPLY (2)
negates.

In the microcycle before the last write transfer, the
memory controller changes the function code to DATO
instead of DATBO (write word instead of write block).
The Q22 bus controller then completes the remaining
microcycles as it would for any write word operation.
Figure 9-6 is a timing diagram of a typical write block
bus operation.
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Read Interlocked

The mnemonic for a read interlocked bus operation is
DATIO. A read interlocked operation is simply a read
followed by a write. The memory controller microcode
sends the function code for DATIO to the Q22 bus con-
troller and latches an address in the Q22 bus write
register. The Q22 bus controller initiates a read word
bus operation and a word of data is read from the
addressed bus device.

After reading the data, the Q22 bus controller retains
bus mastership and idles. It continues to hold the bus
until the memory controller microcode is ready to write
data back to the previously addressed bus device. To do
this, the memory controller microcode requests a write
word or write byte function. When the Q22 bus control-
ler receives the write function request, it asserts
SYNCREADY. The memory controller latches the data
to be written in the Q22 bus write register during the
next microcycle. The Q22 bus controller then continues
with the write word or write byte bus operation.

The sequence of bus cycles and control signals for a read
interlocked bus operation are identical to those for a
read word bus operation followed by a write word or
write byte bus operation. The following paragraphs
describe the additional signals involved for DATIO.

In the fourth microcycle of the read word portion, the
function decoder PAL asserts the signal MCTA READ
LOCK because of the DATIO function code from the
memory controller and because of the assertion of the
signal RSYNC (2). RSYNC (2) is simply a synchronized
version of TSYNC.

When the read word portion finishes, the control and
status PAL continues to assert TSYNC EN because
READ LOCK is asserted. TSYNC EN asserted causes
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TSYNC to remain asserted, allowing the Q22 bus con-
troller to retain bus mastership.

Some number of microcycles later, the memory control-
ler sends the write byte or write word function code to
start the write portion of DATIO. As always, it also
latches an address for the write in the Q22 bus write
register. Since ENDAL and ENDALADD are asserted,
the address is driven on the Q22 bus. However, the fact
that TSYNC has remained asserted causes the ad-
dressed bus device to ignore the address from the write
register. The sequencer PAL asserts SYNCREADY so
that the memory controller latches the data to be
written in the write register.

As for a normal write byte or write word bus operation,
ENDALADD negates in the fourth microcycle of the
write portion. This causes READ LOCK to negate.
TSYNC still remains asserted though because the
sequencer PAL asserted SYNC HOLD in the previous
microcycle. ENDAL remains asserted and the data to
be written are driven from the write register onto the
Q22 bus. The remaining bus cycles are carried out just
as they would be for any write byte or write word bus
operation.

Read Interrupt Vector

When a bus device posts an interrupt request, the
request is received by the data path module. The data
path microcode decides if the interrupt request is to be
granted. When the request is granted, the data path
sends the READ.VECTOR Memory Request microin-
struction to the memory controller. The memory
controller in turn sends the read interrupt vector
function code to the Q22 bus controller.

The Q22 bus controller acknowledges the interrupt
request and reads the interrupt vector off the bus. It
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places the vector in the low-order word of the Q22 bus
read register and also in the low-order word of the cache
invalidate pipeline register. The sequencer PAL
asserts SYNCREADY to notify the memory controller
that the vector it requested is available in the cache
invalidate pipeline register. The vector remains in the
cache invalidate pipeline register until 33 ns into the
microcycle in which SYNCREADY is asserted. The
following paragraphs describe the sequence of bus
cycles and control signals that happen for a read
interrupt vector bus operation.

In the idle state, the Q22 bus controller asserts the
signals ENDALADD, ENDAL, and EN DMA. The
memory controller posts the function code for read
interrupt vector, and generally sends the go bit in the
same microcycle. As soon as the function decoder PAL
receives the function code, it negates EN DMA and
asserts MFUN GO. The function decoder PAL also
asserts the signal MCTA EN IAKO (enable interrupt
acknowledge output).

In the second microcycle, the sequencer PAL asserts
TDIN, and negates ENDAL and ENDALADD.

In the third microcycle, the combination of TDIN and
EN IAKO asserted causes the signal EN IAKO BUF to
be asserted.

In the fourth microcycle, the combination of TDIN and
EN IAKO BUF asserted causes the signal MCTA
TIAKO to be asserted. TIAKO is the interrupt
acknowledge signal. The Q22 bus controller now waits
for the device with the highest priority interrupt
request pending to respond by asserting RRPLY.

Some number of microcycles later, the interrupting
device with the highest priority asserts RRPLY and
places its vector on the bus. Since TDIN is asserted, the
vector is latched in the cache invalidate pipeline
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register. When the sequencer PAL receives RRPLY (2)
(the synchronized version of RRPLY), it negates TDIN
and asserts SYNCREADY to inform the memory
controller that the vector is available in the cache

invalidate pipeline register. In this same microcycle,
TIAKO is negated.

Finally, the sequencer PAL asserts ENDAL and
ENDALADD in the next microcycle and the read
interrupt vector bus operation completes when the
interrupting device negates RRPLY. Figure 9-7 is a
timing diagram of a typical read interrupt vector bus
operation.
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Figure 9-7. Read Interrupt Vector Timing Diagram
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Appendix A
Q22 Bus Signals

This appendix describes the Q22 bus signals and their
functions, the associated bus pins, and the signal
mnemonics.

The backplane used in the MicroVAX I system is the
H9278-A backplane. Those Q22 bus signals not used in
the H9278-A backplane are noted.

Bus Signal

Pin Mnemonic Signal Function

AAl1 BIRQS5L Interrupt request priority level
5

AB1 BIRQ6L Interrupt request priority level
6

AC1 BDAL16 L Address line 16 during
addressing protocol; parity
control line during data
transfer protocol

AD1 BDAL17L Address line 17 during
addressing protocol; parity
control line during data
transfer protocol

AE1  SSPaRE1 Special spare; not assigned or

bussed in DIGITAL cable or
backplane assemblies; avail-
able for user connection.
(continued)



Bus Signal

Pin Mnemonic Signal Function
AE1  SSPARE1 Optionally, this pin may be
continued used for +5 V battery backup

- AF1  SSPARE2

AH1  SSPARES

AJ1 GND

Q22 Bus Signals

power to keep critical circuits
alive during power failures. A
jumper is required on LSI-11
bus options to open (disconnect)
the +5 V battery circuitin
systems that use this line as
SSPAREL1. This spare is not
used in the MicroVAX I
system.

Special spare; not assigned or
bussed in DIGITAL cable or
backplane assemblies. The
memory controller module
(M7136) in the MicroVAX I
uses this pin in slot 1 to indi-
cate its Run state. This pin is
unused in other slots and is
available for user connection.

Special spare; not assigned or
bussed in DIGITAL cable or
backplane assemblies; avail-
able for user interconnection.
This spare is not used in the
MicroVAX I system.

Ground; system signal and dc
return
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Bus
Pin

Signal
Mnemonic

Signal Function

AK1
ALl

AM1

AN1

AP1

AR1

MSPAREA
MSPAREB

GND

BDMR L

BHALT L

BREF L

Maintenance spares; normally
connected together on the back-
plane at each option location
(not a slot-to-slot bussed con-
nection). The H9278-A back-
plane connects these together,
but they are unused in the
MicroVAX I system.

Ground; system signal and dc
return

Direct memory access (DMA)
request; a device asserts this
signal to request bus
mastership.

Processor halt; when BHALT is
asserted, the processor
responds by going into its halt
state.

Memory refresh; used during
refresh protocol to override
memory bank selection
decoding and cause all banks to
be selected. Asserted or
negated with BRPLY L by
block mode slave devices to
indicate to the bus master if the
slave can accept another block
mode DIN or DOUT transfer.
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Bus Signal
Pin Mnemonic

Signal Function

AS1 +5Bor
+12B
battery

AT1  GND

AUl PSPARE1

AV1 +5B

Q22 Bus Signals

+5or +12 V dc battery backup
power to keep critical circuits
alive during power failures. A
Jumper is required on all
LSI-11 bus options to open
(disconnect) the backup circuit
from the bus in systems that
use this line at the alternate
voltage. This signal is not
bussed to BS1 in the H9278-A
backplane, and is unused in the
MicroVAX I system.

Ground; system signal and d¢
return

Power spare 1; not assigned a
function; not used in the
H9278-A backplane; not
recommended for use. Ifa
backplane is bussing —12 V
(on pin BB2) and a module is
inserted upsidedown in the
backplane, —12 V dc appears
on pin AU1L. If AU1 is unused
on the module, no damage
occurs.

+5 V battery backup power; to
keep critical circuits alive
during power failures. The
H9278-A backplane does not
bus this signal, and it is unused
in the MicroVAX I system.
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Bus Signal
Pin Mnemonic Signal Function

BA1 BDCOKH DC power OK; power supply
generated signal that is
asserted when there is
sufficient dc voltage available
to sustain reliable system
operation.

BB1 BPOKH AC power OK; asserted by the
power supply when primary
power is normal. When
negated during processor
operation, a power fail
interrupt is initiated.

BC1 BDAL 18 L Data/addressline 18
BD1 BDAL19L Data/address line 19
BE1 BDAL20L Data/address line 20
BF1 BDAL21L Data/address line 21

BH1  SSPARES Special spare; not assigned or
bussed in DIGITAL cable or
backplane assemblies; avail-
able for user interconnection.

This spare is not used in the
MicroVAX I system.

BJ1 GND Ground; system signal and dc
return
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Bus
Pin

Signal
Mnemonic

Signal Function

BK1
BL1

BM1

BN1

BP1

BR1

BS1

BT1

MSPAREB
MSPAREB

GND

BSACK L

BIRQ 7L

BEVNTL

+12B

GND

Q22 Bus Signals

Maintenance spares; normally
connected together on the back-
plane at each option location
(not a slot-to-slot bussed con-
nection). The H9278-A back-
plane connects these together,
but they are unused in the
MicroVAX [ system.

Ground; system signal and dc
return

This signal is asserted by a
DMA device in response to the
processor’s BDMGO L signal,
indicating the DMA device is
accepting bus mastership. The
device remains bus master
until it negates BSACK L.

Interrupt request priority level
7

External event interrupt
request; this signal is not used
by the MicroVAX I.

+12 V dc battery backup
power; this signal is not bussed
to AS1in the H9278-A back-
plane, and it is unused in the
MicroVAX I system.

Ground; system signal and dc
return
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Bus Signal
Pin Mnemonic Signal Function

BU1 PSPARE2 Power spare 2; not assigned a
function; not used in the
H9278-A backplane; not
recommended for use. If a
backplane is bussing —12V
(on pin AB2) and a module is
inserted upsidedown in the
backplane, —12V dc appears
on pin BU1. If BUlis unused
on the module, no damage

occurs.

BV1 +5 Normal +5 V dc system power

AA2 +5 Normal +5 V dc system power

AB2 —12 —12 V dc power for devices
requiring this voltage. The
MicroVAX I power supply

(H7864) does not provide —12
V dc and this signal is not
bussed on the H9278-A

A backplane.
AC2 GND Ground; system signal and dc
return
AD2 +12 Normal +12 V dc system
power

AE2 BDOUTL Data output; BDOUT, when
asserted, implies that valid
data are available on BDAL
<15:00> and that an output
transfer, with respect to the
bus master, is taking place.
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Bus Signal
Pin Mnemonic

Signal Function

AF2  BRPLYL

AH2 BDINL

AJ2 BSYNCL

Q22 Bus Signals

Reply; BRPLY L is asserted in
response to BDIN or BDOUT
and during interrupt acknowl-
edge transactions. It is gener-
ated by a slave device to indi-
cate that it will place its data
on the bus, or that it will accept
data from the bus, according to
the appropriate protocol.

Data input; BDIN is used for

two types of bus operations:

1. When asserted with
BSYNC, BDIN implies an
input transfer with respect
to the current bus master
and requires a response
(BRPLY) from the addressed
slave.

2. The interrupt fielding
processor initiates interrupt
service by asserting TDIN L
followed by TIACK L.

Synchronize; BSYNC is
asserted by the bus master
device to indicate that it has
placed an address on the bus.
The transfer is in process until
BSYNC is negated. In block
mode, BSYNC remains
asserted until the last transfer
cycle is completed.
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Bus
Pin

Signal
Mnemonic

Signal Function

AK2

AL2

AM2
AN2

BWTBT L

BIRQ 4L

BIAKIL
BIAKO L

Write/byte; BWTBT is used two

ways to control a bus cycle:

1. Itis asserted during the
address portion of a cycle to
indicate that an output cycle
is to follow (DATO, DATOB,
DATBO) rather thanan
input cycle.

2. Itis asserted during the data
portion of a DATOB or
DATIOB bus cycle to indi-
cate a byte rather thana
word transfer is to take
place.

Interrupt request priority level
4

Interrupt acknowledge; the
processor asserts BIAKO to
acknowledge an interrupt. The
bus transmits this to BIAKI of
the next priority device (elec-
trically closest to the proces-
sor). This device accepts the
interrupt acknowledge under
two conditions, as follows.
(continued)
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Bus Signal
Pin Mnemonic

Signal Function

AM2 BIAKIL
AN2 BIAKOL

continued

AP2  BBS7L

Q22 Bus Signals

1. The device requested the bus
by asserting an interrupt,
and

2. The device had the highest
priority interrupt request on
the bus at the time of the
previous BDIN L assertion.

If both of these conditions are
not met, the device asserts
BIAKO L to the next device on
the bus. This process continues
in a daisy-chain fashion until
the device with the highest
interrupt priority receives the
interrupt acknowledge (IAK)
signal and proceeds with the
interrupt protocol.

Bank 7 select; when the bus
master asserts TADDR, it
asserts BBS7 to reference the
I/O page. The address on
BDAL <12:0> when BBS7 is
asserted is the address within
the I/O page. During DATBI
transfers, the bus master
asserts this signal with the
first data transfer until the last
transfer to indicate to the block
mode slave that there will be
subsequent transfers.
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Bus
Pin

Signal
Mnemonic

Signal Function

AR2
AS2

AT2

BDMGIL
BDMGO L

BINIT L

Direct memory access grant;
the processor asserts this
signal to grant bus mastership
to a requesting device, accord-
ing to bus mastership protocol.
The signal is passed in a daisy-
chain from the processor (as
BDMGO) through the bus to
BDMGI of the next priority
device (electrically closest
device on the bus).

This device accepts the grant
only if it requested bus master-
ship (by asserting BDMRL). If
not, the device passes the grant
by asserting BDMGO to the
next device on the bus. This
process continues until the
requesting device acknowl-
edges the grant by asserting
BSACK L after BRPLY L and
BSYNC L are both negated.

Initialize; this signal is used for
system reset. All devices on
the bus are to returntoa
known, initial state; that is,
registers are reset to zero, all
bus drivers are disabled and
logic is reset to state 0, ready to
be addressed for operations.
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Bus Signal

Pin Mnemonic Signal Function

AU2 BDALOL Data/address line 00; specifies
high or low byte during address
for DATOB and DATIOB
cycles.

AV2 BDALI1L Data/address line 01

BA2 +5 +5 V dc power

BB2 —12 —12 V dc power. The
MicroVAX I power supply
(H7864) does not provide —12
V dc and this signal is not
bussed on the H9278-A
backplane.

BC2 GND Power supply return

BD2 +12 +12 V dc power

BE2 BDAL2L Data/address line 02

BF2 BDAL3L Data/address line 03

BH2 BDAL4L Data/address line 04

BJ2 BDALSL Data/address line 05

BK2 BDALG6L Data/address line 06

BL2 BDAL 7L Data/address line 07

BM2 BDALSL Data/address line 08

BN2 BDALS9L Data/address line 09

BP2 BDAL10L Data/address line 10

BR2 BDAL11L Data/address line 11

BS2 BDAL12L Data/address line 12
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Bus Signal

Pin Mnemonic Signal Function

BT2 BDAL13L Data/address line 13
BU2 BDAL14L Data/address line 14
BV2 BDAL15L  Data/addresslinel5
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Appendix B
Module Finger Pin Assignments

This appendix lists the backplane pin assignments for
the data path module (M7135 or M7135-YA) and the
memory controller module (M7136) of the MicroVAX I
CPU.

Data Path Module Pinout

Connector A
AAl1 BIRQS5L AJ2 BSYNCL
AA2 +5V AK1
AB1 BIRQ6L AK2 BWTBTL
AB2 ALl
AC1 BDAL16L AL2 BIRQ4L
AC2 GND AM1 GND
AD1 BDAL17L AM2 BIAKOL
AD2 AN1 BDMRL
AE1l AN2 BIAKOL
AE2 BDOUTL AP1 BHALTL
AF1 AP2 BBS7L
AF2 BRPLYL AR1 BREFL
AH1 AR2 BDMGOL
AH2 BDINL AS1
AdJ1 GND AS2 BDMGOL
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AT1 GND AU2 BDALOOL

AT2 BINIT L AV1

AU1 AV2 BDALO1L
ConnectorB

BA1 BDCOKH BL1

BA2 +5V BL2 BDALO7L

BB1 BPOKH BM1 GND

BB2 BM2 BDALO0SL

BC1 BDAL18SL BN1 BSACKL

BC2 GND BN2 BDALO9L

BD1 BDAL19L BP1 BIRQT7L

BD2 +12V BP2 BDALI1OL

BE1 BDAL20L BR1 BEVNTL

BE2 BDALO2L BR2 BDAL11L

BF1 BDALZ21L BS1

BF2 BDALO3L BS2 BDALI12L

BH1 BT1 GND

BH2 BDALO4L BT2 BDAL13L

BJ1 GND BU1

BJ2 BDALO5SL BU2 BDAL14L

BK1 BV1 45V

BK2 BDALO6L BV2 BDALI15L
ConnectorC

CA1l CB1 DAPL MCTINITL

CA2 +5V CB2
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CC1

CC2
CD1

CD2
CE1

CE2
CF1

CF2
CH1

CH2
CJ1

CJ2
CK1

CK2
CL1

CL2

DAPE CONSOLE

MODE H
GND

BUS MEM CTL
OH

BUS MEM CTL
1H

BUS MEM CTL
2H

BUS MEM CTL
3H

BUS MEM CTL
4H

BUS MEM CTL
5H

BUS MEM CTL
6H

B-3

CM1

CM2
CN1

CN2
CP1

CP2
CR1

CR2
Cs1

CS2
CT1

CT2
CU1

CU2
CVil

Cv2

BUSMEMCTL7H

MCTM BASE
CLOCKH

MCTM DPC SRC L.

DAPR MEM
REQUESTH

DAPT MEM REQ

MODEOH

GND

MCTN REQ ACK L

MCTT MEM ERR H

DAP Module Pinout



ConnectorD

DA1
DA2
DB1

DB2
DC1

DC2
DD1

DD2
DE1

DE2
DF1

DF2
DH1

DH2
DJ1

DdJ2
DK1
DK2

Module Finger Pin Assignments B-4

DL1
+5V DL2
DAPTMEM REQ DM1
MODE1H

DM2

DN1
GND DN2
MCTN MEM DP1
BUSY H

DP2
MCTSTBMISSH DR1

DR2
MCTS MOD REFH DS1

DS2
MCTT NXT DT1
VALID REGH

DT2
MCTE PAGE DU1
CROSSH

DU2
MCTBWRTTMOH DV1

DV2

DAPRIB TAKEN L

MCTT IB ERRORH

MCTN SEXT WORD
H

DAPT MODIFY H

DAPT SECOND
PART H

MCTN MD BUS IN
LEH

GND

SRUNL
DAPL MCT 250 L

DAPL TINIT H



Memory Controller Module Pinout

Connector A

AAl
AA2
AB1
AB2
AC1
AC2
AD1
AD2
AE1
AE2
AF1

AF2
AH1
AH2
AJl

AJ2

AK1
AK2

+5V

BDAL16 L
GND
BDAL 17L

BDOUTL
SRUNL
BRPLY L

BDIN L
GND
BSYNC L

BWTBT L

AL1
AL2
AM1
AM2
AN1
AN2
AP1
AP2
AR1
AR2
AS1
AS2
AT1
AT2
AU1
AU2
AV1
AV2

B-5

GND

BDMR L
BIAKOL

BBS7 L
BREF L

BDMGO L
GND

BDALOOL

BDAL 01 L

MCT Module Pinout



ConnectorB

BA1
BA2
BB1
BB2
BC1
BC2
BD1
BD2
BE1
BE2
BF1
BF2
BH1
BH2
BJ1

BJ2

BK1
BK2

Module Finger Pin Assignments B-6

+5V

BDAL 18 L
GND
BDAL19L

BDAL 20 L
BDAL 02 L
BDAL 21 L
BDAL 03 L

BDAL 04 L
GND
BDALO5L

BDAL 06 LL

BL1
BL2
BM1
BM2
BN1
BN2
BP1
BP2
BR1
BR2
BS1
BS2
BT1
BT2
BU1
BU2
BV1
BV2

BDALO7L
GND

BDAL 08 L
BSACK L
BDALO9L

BDAL10L

BDAL11L

BDAL 12 L

GND

BDAL 13 L

BDAL 14 L

+5V
BDAL15L



Connector C

CAl

CA2
CB1
CB2
CC1
CC2

CD1
CD2

CE1l
CE2

CF1
CF2

CH1
CH2

CJ1
CJ2

CK1
CK2

DAPE CONSOLE
MODEH

+5V

DAPL MCT INIT L

GND

BUS MEM CTL
OH

BUS MEM CTL
1H

BUS MEM CTL
2H

BUS MEM CTL
3H

BUS MEM CTL
4H

BUS MEM CTL
5H

B-7

CL1

CL2

CM1
CM2
CN1
CN2

CP1
CP2

CR1
CR2

Cs1
CS2

CT1
CT2

CU1
CU2

CVv1
Cv2

BUSMEMCTL 6 H
BUSMEMCTL 7H

MCTM BASE
CLOCK H

MCTM DPC SRC LL

DAPR MEM
REQUEST H

DAPT MEM REQ
MODE 0 H

GND
SRUNL

MCTN REQ ACK L

MCTT MEM ERR H

MCT Module Pinout



Connector D

DA1 DL1

DA2 +5V DL2 DAPRIBTAKENL

DB1 DM1

DB2 DAPTMEMREQ DM2 MCTTIBERRORH
MODE1H

DC1 DN1

DC2 GND DN2 MCTN SEXT WORD

H

DD1 DP1

DD2 MCTN MEM DP2 DAPTMODIFYH
BUSYH

DE1 DR1

DE2 MCTSTB DR2 DAPTSECOND
MISS H PART H

DF1 DS1

DF2 MCTS MOD DS2 MCTN MD BUS
REF H INLEH

DH1 DT1 GND

DH2 MCTT NXT DT2
VALID REGH

DJ1 DU1

DJ2 MCTE PAGE DU2 DAPL MCT 250 LL
CROSS H

DK1 DV1

DK2 MCTB WRT DV2 DAPLTINITH
TMO H
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Appendix C
Serial Line Cable Pinning

A 10-pin connector is mounted on the data path module
of the KD32-AA and KD32-AB CPUs. This connector is
for the cable to the console terminal.

In the MicroVAX I system, an internal cable connects
the 10-pin connector on the DAP module to the patch
panel insert at the rear of the system box. A 25-pin ETA
connector is mounted on the patch panel insert for the
cable to the console terminal, with 10 pins connected.

The pinout for these connectors is as follows.
1 EIA Data Terminal Ready (always asserted)
Ground
EIA Received Data (MicroVAX I Transmit Data)
Ground
Ground
Unused (no connection — used for cable key)
EIA Signal Ground
EIA Transmitted Data (MicroVAX I Receive Data)

Ground

© W =1 O Ut W N

10 Unused (no connection)
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Appendix D
Microverify

Microverify is a microcoded internal test that runs
automatically when the MicroVAX I system is powered
on. The “Microverify” section in Chapter 2 of this
manual provides a brief description of Microverify.
This appendix provides additional detail about Micro-
verify. It describes the two modes of Microverify, the
subtests within Microverify, and the two special Memo-
ry Request microinstructions used in Microverify.

References throughout this document are to pages in
the data path (DAP) and memory controller (MCT)
schematic drawings. These pages should point you
directly to the chip(s) being tested or to the subsystem
under test. Refer to these schematics when you require
this level of detail.

Operation

Microverify always runs on system powerup. In
addition, the TEST console command runs Microverify.
In either case, Microverify runs under control of the
main DAP microcode.

Microverify Assumes Nothing Works

Testing proceeds from the most basic elements on the
DAP board to the fully integrated two board set.
Microverify does not test any Q22 bus functions.

On successful completion of Microverify, the MicroVAX
I processor is capable of executing macroinstructions,
and control is passed to the console microcode.
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If the system was just powered on and is attempting
bootstrap, the console microcode locates 64 KB of
contiguous good memory, and copies the boot EPROM
code (the primary bootstrap) into this area. Control is
then passed to the primary bootstrap.

Microverify Operates in Two Modes

A jumper on the DAP board determines whether
Microverify runs in “single pass mode” or “infinite loop
mode.” The differences between these two modes are
the exit sequence, console output and error handling.
LED output is the same for both operating modes.

Single Pass Mode

If the jumper on the DAP board is in, Microverify runs
in single pass mode. The jumper is correctly installed
for this mode when the DAP module is shipped from the
factory. (See Figure 2-10 in Chapter 2 for the location
of this jumper.)

The purpose of single pass mode is to inform the user if
the machine is capable of running macrolevel pro-
grams. In addition, error status reported in the LEDs
isolates module level errors for field service personnel.
Microverify always returns error status and control to
the main DAP microcode upon completion.

Infinite Loop Mode

If the jumper on the DAP board is out, Microverify runs
in infinite loop mode. This mode is used for diagnosing
intermittent failures.

Infinite loop mode comes as close as possible to chip
level error isolation. In this mode, Microverify never
returns control to the main DAP microcode. If a console
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is present, a unique character is displayed every time a
major test completes successfully.

If no errors are detected in infinite loop mode, Micro-
verify repeats all tests.

If an error is detected, Microverify loops on the test that
produced the error, as well as indicating the error in the
LEDs. This test continues to repeat even if no error is
detected again.

LED Error Codes

The LED error codes and their meanings are as follows.
Note: A number displayed in the LEDs is meaningful
only if the system is in console halt mode, as indicated
by the system prompt >>>.

7 (on,on,on): Failed quick DAP microsequencer test,
or Microverify did not begin.

6 (on, on, off): Error found on DAP module.
5 (on, off, on): Error found on MCT module.

4 (on, off, off): Undetermined error in DAP/MCT
interface.

3 (off,on,on): Microverify worked as expected, and
control is transferred to the console
microcode. If bootstrapping is at-
tempted, control is transferred to the
primary bootstrap. If the LEDsremain
set to 3 (off, on, on) and bootstrapping
was attempted, bad memory was found
by either the console microcode or the
primary bootstrap.

The patterns fluctuate as Microverify tests different
components. An error in either operating mode causes
the current pattern to stay lit.
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Microverify Console Messages
The following messages are sent to the console as
indicated:

o “MICROVERIFY STARTED” when the console is
determined usable.

® A character indicating successful completion of
each test (infinite loop mode only).

e “MICROVERIFY FAILED” if Microverify fails
(single pass mode only).

e “MICROVERIFY PASSED” if Microverify passes.

Note: “MICROVERIFY PASSED (FAILED)” should
appear within five seconds after “MICROVERIFY
STARTED” appears.

Sample Output, Single Pass Mode

The following messages are displayed on the console
terminal when Microverify completes successfully in
single pass mode:

MICROVERIFY STARTED

MICROVERIFY PASSED
>>>

The following messages are displayed on the console
terminal when Microverify fails in single pass mode:

MICROVERIFY STARTED

MICROVERIFY FAILED
>>>

Sample Output, Infinite Loop Mode

If the diagnostic jumper is out, Microverify sends one
character to the console every time a test completes
successfully. A hexadecimal digit is displayed every
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time a major test completes, and a “+” every time a
subtest completes. All sixteen hexadecimal digits (0 to
F) are used. When the last subtest of a major test
completes, the hexadecimal digit is displayed instead of
the “+.” In the example below, tests 5 and 12 have
eight subtests, test 7 has four subtests, and the other
major tests have no subtests.

The following messages are displayed on the console
terminal when Microverify completes once successfully
in infinite loop mode:

0

MICROVERIFY STARTED

1234+ +++++ +56+ + +789AB+ + + + + + +CDEF
MICROVERIFY PASSED

These messages repeat continually as Microverify
loops.

If an error is encountered in test 5, subtest 3, for
example, the following messages are displayed on the
console terminal:

0
MICROVERIFY STARTED
1234+ +

Nothing else appears on the console as Microverify
loops on the failing subtest.

Major Functional Areas Tested

The actual testing is divided into seventeen major
functional areas, described below. Only those previous-
ly untested components are listed in each of the areas.
(The seventeen major areas are not necessarily tested
in the order they are listed here.)
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1. Quick Microsequencer Test
LEDs set to 7 (on, on, on)

® Test the microsequencer jump opcode

control store address register (DAPB)
control store memory (DAPA)

next microaddress (NuA) bus

next microaddress (NuA) MUX with select =
take branch (DAPB)

jump register (DAPB)

parity checker with parity = good (DAPA)
data path chip parity logic and output line
(DAPH)

® Test branch on condition codes

Microverify

jump MUX: all select lines pertaining to ALU
condition codes (DAPC)

data path from data path chip to internal data
(ID) bus (DAPH)

path from ALU.CC register to jump MUX
(DAPE, DAPC)

data path chip Moveout microinstruction with
destination = ALU.CC register (DAPH,
DAPE)

ALU.CC register (read/write/hold) DAPE

ID bus path to ALU.CC register (DAPH,
DAPE)

ID bus address decode (DAPK)

page register (DAPB)

microprogram counter (DAPB)

NuA MUX with select = not take branch
(DAPB)
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® Test case on index register

— data path chip Moveout with destination =
index register (DAPH, DAPE)

- ID bus path to index register (DAPH, DAPE)

- index register (read/write/hold) (DAPE)

-~ path from index register to OR MUX (DAPE,
DAPC)

- ORMUX: select = index (DAPC)

— conditional decrement: no decrement (DAPD)

® Test case on size register

- data path chip Moveout with destination =
size register (DAPH, DAPE)

— ID bus path to size register ( DAPH, DAPE)

— size register (read/write/hold) (DAPE)

—~ path from size register to OR MUX (DAPE,
DAPC)

- OR MUX: select = size (DAPC)

® JSB, Return, BSB
— microstack (DAPD)
—~ microstack pointer (DAPC)
— OR MUX: select = 0010 (DAPC)

. Test Most Data Path Chip Functions (DAPH)
LEDs set to 6 (on, on, off)

® Test all ALU opcodes
— path of size register to data path chip size pins
- all tested with size of 0,1, 3
— path of data path chip to ALU.CC through chip
condition code pins

® Test barrel shifter with all MUX combinations
and shift opcodes
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® Miscellaneous instructions and functions
— Multiply Step microinstruction
— short operand register backup
- Restore microinstruction
— Clear Save Stack microinstruction

® Verify all ROM constants

® Write/read all states with standard 32-bit
diagnostic patterns (shown in hex):
- AAAAAAAA
- 55555555
- 33333333
- 0000FFFF
- O0OFFOOFF
- OFOFOFOF
- FFFFFFFF
— 00000000

® Internal timer interrupt expected in 10 milli-
seconds

3. Test the Console
LEDs set to 6 (on, on, off)

® Write to UART and verify loop back

console UART (DAPP)

UART buffer (DAPP)

interrupt control (DAPN)

jump MUX select = interrupt

o Write “MICROVERIFY STARTED” on console if
OK

4. Simplest OR MUX Selects
LEDs set to 6 (on, on, off)

® Select = zero
® Select = OR2
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5. Write/Read Diagnostic Patterns Over ID Bus to
External Registers
LEDs set to 6 (on, on, off)

6. Basic MCT/DAP Interface
LEDs set to 4 (on, off, off)

® (Cache enable function

® Mapping disable function

® Memory control bus

Stall logic

7. Test Memory Board and MD Bus Interface, But
Not Q22 bus
LEDs set to 4 (on, off, off) or 5 (on, off, on) depending
on subtest

® Write/read standard diagnostic patterns through
all MCT state

adder

merge register (MCTK)

rotator

all cache and translation buffer locations
(MCTL, MCTN)

all registers in register file MCTD, MCTU)
test MCA and MCD busses

test the MD bus and latches (DAPJ, MCTE)

8. Test the MCT Powerup Sequence
LEDs set to 5 (on, off, on)

® Insure that the cache locations all have the same
low eight bits as the index used in a
WRITE.CACHE Memory Request.

adder carry
MCT page incrementer
MCT branch MUX
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9. Test the DAP/MCT I-stream Interface
This includes I-stream Requests and reading from
IB.BYTE.

® Check expected I-stream bytes
LEDs set to 4 (on, off, off)
- prefetch FIFO (MCTP)
- memory control bus
- IBYTE register (DAPF)

® Check data path chip actions performed
LEDs set to 6 (on, on, off)
- saveold PC
— increment current PC according to size or long
operand
- save long operand on Memory Request
10. IB.INVALID Indicator to OR MUX
LEDs set to 4 (on, off, off)

Select = ib.invalid

11. Decode Instructions
LEDs set to 6 (on, on, off)

® NuA bus from decode ROM (DAPF)
® CC/DT functions from IRD (DAPE)

12. Decode Dependent OR MUX Selects
LEDs set to 6 (on, on, off)

® Select = branch.state
— branch false
— ib.invalid
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13.

14.

15.

16.

Select = decode.state

- overflow and check

- arithmetic trap request

- interrupt request

- T-bit

- console halt

- ib.invalid

MCT Dependent OR MUX Selects (DAPC)
LEDs set to 4 (on, off, off)

Select = memory.error

- error summary

- translation buffer miss

— pagecrossing

- modify refused

Remaining Jump MUX Selects (DAPC)
LEDs set to 6 (on, on, off)

Interrupt

Stack register
Register destination
Console halt

Trap from MCT
LEDs set to 6 (on, on, off)

Conditional decrement (decrement = yes)

(DAPD)

Boot ROM (DAPF)
LEDs set to 6 (on, on, off)

Read boot EPROM and calculate/verify checksum
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17. MCT Control and Status Registers
LEDs set to 5 (on, off, on)

® Write, read and verify these states on the MCT
board
— mapenable
— iberror
— cache enable

Memory Request Microinstructions for
Microverify

Two special memory functions for the Memory Request
microinstruction are defined solely for use in Micro-
verify. They are VERIFY.ADDER and VERIFY.MCD.
(The section titled “Memory Functions” in Chapter 5 of
this manual contains descriptions of all the other
memory functions.) Both VERIFY.ADDER and VERI-
FY.MCD are issued in major functional area 7,
described above.

VERIFY.ADDER

This Memory Request microinstruction verifies the
operation of the 9-bit adder in the memory controller,
and the low eight bits of the MCA bus and the memory
data bus. Bits <29:23> of the microinstruction have
the hex value 10. This memory function causes an 8-bit
data pattern to be passed to the adder and returned to
the data path.

The data type field must specify word. The register
specified by the long operand contains a 32-bit data
pattern. The data pattern is sent to the memory con-
troller, but the data path checks only the low-order
eight bits that are returned.
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The VERIFY.ADDER Memory Request is actually
issued eight consecutive times with a different data
pattern each time. The data patterns used are listed in
the fifth bullet of major functional area 2, above.

VERIFY.MCD

This Memory Request microinstruction verifies the
operation of the MCA bus, the reverse pass latch, the
MCD bus, the byte rotator, and the merge register in
the memory controller, as well as bits <31:08> of the
memory data bus. Bits <29:23> of the microinstruc-
tion have the hex value 11.

The data type field must specify word. ' The register
specified by the long operand contains a 32-bit data
pattern.

This memory function first passes the low-order eight
bits of the issued data pattern through the memory
controller components and buses mentioned above, and
checks that the low-order eight bits of the data pattern
return to the data path unchanged. Next, all 32 bits of
the data pattern are passed to these memory controller
components.

The data patterns used for the VERIFY.ADDER
Memory Request are also used for VERIFY.MCD.
Thus, VERIFY.MCD is actually issued sixteen times.
The eight data patterns are each used once, and the
low-order eight bits checked. Then the eight data
patterns are used again, and all 32 bits are checked.
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Appendix E
MicroVAX Instruction Set

The MicroVAX instruction set as specified by the
MicroVAX architecture is the same as the VAX in-
struction set, minus PDP-11 compatibility mode in-
structions. This appendix lists the MicroVAX instruc-
tion set in alphabetical order by instruction mnemonic.

The MicroVAX architecture is tailored to facilitate low-
end implementations of the VAX family of computers.
As such, it specifies a subset of instructions that must
be implemented in hardware. Any machine using
MicroVAX architecture must implement at least this
subset of instructions in hardware, and may optionally
implement more in hardware. All remaining instruc-
tions are emulated in software.

The MicroVAX I system, for example, implements the
specified subset of instructions in hardware, plus these
additional instructions: all F_floating point instruc-
tions, D_ or G_floating point instructions, CMPC3,
LOCC, SCANC, SKPC, and SPANC. All remaining
instructions (except PDP-11 compatibility mode) are
emulated in software, or in software with a hardware
assist.

There are five footnotes that annotate the instructions
listed in this appendix. The set of all footnoted instruc-
tions are those instructions for which emulation sup-
port is specified by the MicroVAX architecture; these
are the instructions that are not part of the subset of
instructions that must be implemented in hardware.

The footnotes are as follows:
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1. Those instructions marked with footnote 1 are the
D_floating point instructions that are imple-
mented in hardware in the MicroVAX I KD32-AB
processor, and cause a reserved instruction fault in
the KD32-AA processor. Any time a floating point
instruction causes a reserved instruction fault, the
operating system can emulate the instruction in
software.

2. Those instructions marked with footnote 2 are
implemented in hardware on both MicroVAX I
processors, even though the MicroVAX architec-
ture specifies emulation support for these instruc-
tions. Those instructions with footnote 2 are the
difference between the MicroVAX instruction set
as specified by the MicroVAX architecture and the
implementation of this instruction set by the
MicroVAXI.

3. Those instructions marked with footnote 3 are the
G_floating point instructions that are imple-
mented in hardware in the KD32-AA processor,
and cause a reserved instruction fault in the
KD32-AB processor. Again, the operating system
can emulate any floating point instruction that
causes a reserved instruction fault in software.

Note: Those instructions with footnotes 1 or 3 are
the difference between the instruction set as imple-
mented by the MicroVAX I KD32-AA processor,
and as implemented by the KD32-AB processor.

4. Those instructions marked with footnote 4 are the
H_floating point instructions that cause reserved
instruction faults in both MicroVAX I processors.
As with the D_ and G_floating point instructions,
the operating system can emulate H_floating
instructions in software. All software supplied by
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DIGITAL for the MicroVAX I system emulates D_,
G-, and H_floating point instructions.

. Those instructions marked with footnote 5 cause
instruction emulation exceptions in both
MicroVAX I processors. These instructions are
then handled by software emulation with a
hardware assist, for all software supplied by
DIGITAL for the MicroVAX I.

E-3 Instruction Set



Mnemonic Opcode Description

ACBB 9D Add compare and branch byte
" ACBD 6F Add compare and branch
D_floating
2 ACBF 4F Add compare and branch
F_floating
3 ACBG 4FFD Add compare and branch
G_floating
4 ACBH 6FFD Add compare and branch
H_floating
ACBL F1 Add compare and branch
. longword
ACBW 3D Add compare and branch word
ADAWI 58 Add aligned word interlocked
ADDB2 80 Add byte 2-operand
ADDB3 81 Add byte 3-operand
' ADDD2 60 Add D_floating 2-operand
" ADDD3 61 Add D_floating 3-operand
2 ADDF2 40 Add F_floating 2-operand
2 ADDF3 41 Add F_floating 3-operand

' This instruction generates a reserved instruction fault in the
KD32-AA processor. The KD32-AB processor implements this
instruction in hardware.

2 The MicroVAX architecture specifies this as an emulated
instruction, but both MicroVAX I processors implement it in
hardware.

3 This instruction generates a reserved instruction fault in the
KD32-AB processor. The KD32-AA processor implements this
instruction in hardware.

4 This instruction generates a reserved instruction fault in both
MicroVAX I processors.
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Mnemonic

Opcode Description

3
3
4
4

ADDG2
ADDG3
ADDH?2
ADDHS3
ADDL2
ADDL3
ADDP4
ADDP6
ADDW?2
ADDW3
ADWC
AOBLEQ

AOBLSS
ASHL
ASHP

ASHQ
BBC
BBCC
BBCCI

This instruction generates a reserved instruction fault in the
KD32-AB processor. The KD32-AA processor implements this
instruction in hardware.

This instruction generates a reserved instruction fault in both
MicroVAX I processors.

This instruction generates an instruction emulation exception

40FD
41FD
60FD
61FD
Co
C1
20

21
A0
Al
D8
F3

F2
78
F8

79
El
E5
E7

Add G_floating 2-operand
Add G_floating 3-operand
Add H_floating 2-operand
Add H_floating 3-operand
Add longword 2-operand
Add longword 3-operand
Add packed 4-operand

Add packed 6-operand

Add word 2-operand

Add word 3-operand

Add with carry

Add one and branch on less or
equal

Add one and branch on less
Arithmetic shift longword

Arithmetic shift and round
packed

Arithmetic shift quad
Branch on bit clear
Branch on bit clear and clear

Branch on bit clear and clear
interlocked

in both MicroVAX I processors.
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Mnemonic Opcode Description

BBCS E3 Branch on bit clear and set

BBS EO Branch on bit set

BBSC E4 Branch on bit set and clear

BBSS E2 Branch on bit set and set

BBSSI E6 Branch on bit set and set
interlocked

BCC 1E Branch on carry clear

BCS 1F Branch on carry set

BEQL 13 Branch on equal

BEQLU 13 Branch on equal unsigned

BGEQ 18 Branch on greater or equal

BGEQU 1E Branch on greater or equal
unsigned

BGTR 14 Branch on greater

BGTRU 1A Branch on greater unsigned

BICB2 8A Bit clear byte 2-operand

BICB3 8B Bit clear byte 3-operand

BICL2 CA Bit clear longword 2-operand

BICL3 CB Bit clear longword 3-operand

BICPSW B9 Bit clear processor status word

BICW2 AA Bit clear word 2-operand

BICW3 AB Bit clear word 3-operand

BISB2 88 Bit set byte 2-operand

BISB3 89 Bit set byte 3-operand

BISL2 C8 Bit set longword 2-operand

BISL3 C9 Bit set longword 3-operand

BISPSW B8 Bit set processor status word

BISW2 A8 Bit set word 2-operand

BISW3 A9 Bit set word 3-operand

Instruction Set
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Mnemonic Opcode Description

BITB 93 Bit test byte

BITL D3 Bit test longword

BITW B3 Bit test word

BLBC E9 Branch on low bit clear

BLBS E8 Branch on low bit set

BLEQ 15 Branch on less or equal

BLEQU 1B Branch on less or equal
unsigned

BLSS 19 Branch on less

BLSSU 1F Branch on less unsigned

BNEQ 12 Branch on not equal

BNEQU 12 Branch on not equal unsigned

BPT 03 Break point fault

BRB 11 Branch with byte displacement

BRW 31 Branch with word
displacement

BSBB 10 Branch to subroutine with byte
displacement

BSBW 30 Branch to subroutine with

word displacement
BUGL FDFF  VMS bugcheck
BUGW FEFF VMS bugcheck

BVC 1C Branch on overflow clear

BVS 1D Branch on overflow set

CALLG FA Call with general argument
list

CALLS FB Call with argument list on
stack

CASEB 8F Case byte

CASEL CF Case longword
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Mnemonic Opcode Description

CASEW  AF Case word
CHME BD Change mode to executive
CHMK BC Change mode to kernel
CHMS BE Change mode to supervisor
CHMU BF Change mode to user
CLRB 94 Clear byte
' CLRD 7C Clear D_floating
2 CLRF D4 Clear F_floating
3 CLRG 7C Clear G_floating
4+ CLRH 7CFD Clear H_floating
CLRL D4 Clear longword
s CLRO 7CFD Clear octaword
CLRQ 7C Clear quad
CLRW B4 Clear word
CMPB 91 Compare byte
2 CMPC3 29 Compare character 3-operand
5 CMPC5 2D Compare character 5-operand

This instruction generates a reserved instruction fault in the
KD32-AA processor. The KD32-AB processor implements this
instruction in hardware.

The MicroVAX architecture specifies this as an emulated
instruction, but both MicroVAX I processors implement it in
hardware.

This instruction generates a reserved instruction fault in the
KD32-AB processor. The KD32-AA processor implements this
instruction in hardware.

This instruction generates a reserved instruction fault in both
MicroVAX I processors.

This instruction generates an instruction emulation exception
in both MicroVAX I processors.
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Mnemonic Opcode Description

' CMPD 71 Compare D_floating
2 CMPF 51 Compare F_floating
3 CMPG 51FD Compare G-floating
¢ CMPH 71FD Compare H_floating

CMPL D1 Compare longword
5 CMPP3 35 Compare packed 3-operand
s CMPP4 37 Compare packed 4-operand
CMPV EC Compare field
CMPW B1 Compare word
CMPZV ED Compare zero-extended field
5> CRC 0B Calculate cyclic redundancy
check
" CVTBD 6C Convert byte to D_floating
2 CVTBF 4C Convert byte to F_floating

3 CVTBG  4CFD Convert byte to G-floating
* CVTBH 6CFD Convert byte to H_floating
CVTBL 98 Convert byte to longword

This instruction generates a reserved instruction fault in the
KD32-AA processor. The KD32-AB processor implements this
instruction in hardware.

The MicroVAX architecture specifies this as an emulated
instruction, but both MicroVAX I processors implement it in
hardware.

This instruction generates a reserved instruction fault in the
KD32-AB processor. The KD32-AA processor implements this
instruction in hardware.

This instruction generates a reserved instruction fault in both
MicroVAX I processors.

This instruction generates an instruction emulation exception
in both MicroVAX I processors.
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Mnemonic Opcode Description

CVTBW 99 Convert byte to word

" CVTDB 68 Convert D_floating to byte

" CVTDF 76 Convert D_floating to
F_floating

¢ CVTDH 32FD Convert D_floating to
H_floating

" CVIDL  6A Convert D_floating to longword

" CVTDW 69 Convert D_floating to word

2 CVTFB 48 Convert F_floating to byte

" CVTFD 56 Convert F_floating to
D_floating

3 CVTFG 99FD Convert F_floating to
G-floating

4 CVTFH 98FD Convert F_floating to
H_floating

2 CVTFL 4A Convert F_floating to longword

2 CVTFW 49 Convert F_floating to word

* CVTGB  48FD Convert G_floating to byte

! This instruction generates a reserved instruction fault in the
KD32-AA processor. The KD32-AB processor implements this
instruction in hardware.

2 The MicroVAX architecture specifies this as an emulated
instruction, but both MicroVAX I processors implement it in
hardware.

3 This instruction generates a reserved instruction fault in the
KD32-AB processor. The KD32-AA processor implements this
instruction in hardware.

4 This instruction generates a reserved instruction fault in both
MicroVAX I processors.
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Mnemonic Opcode Description

3 CVTGF 33FD Convert G_floating to
F_floating

¢+ CVTGH 56FD Convert G_floating to
H_floating

3 CVTGL  4AFD Convert G_floating to longword
3 CVTGW  49FD Convert G_floating to word

* CVTHB 68FD Convert H_floating to byte

4+ CVTHD F7FD Convert H_floating to

Difloating

4+ CVTHF F6FD Convert H_floating to
F_floating

* CVTHG 76FD Convert H_floating to
G_floating

4+ CVTHL 6AFD Convert H_floating to
longword

4« CVTHW 69FD Convert H_floating to word

CVTLB F6 Convert longword to byte
" CVTLD 6E Convert longword to D_floating
2 CVTLF 4E Convert longword to F_floating

3 CVTLG  4EFD Convert longword to G_floating

This instruction generates a reserved instruction fault in the
KD32-AA processor. The KD32-AB processor implements this
instruction in hardware.

The MicroVAX architecture specifies this as an emulated
instruction, but both MicroVAX I processors implement it in
hardware.

This instruction generates a reserved instruction fault in the
KD32-AB processor. The KD32-AA processor implements this
instruction in hardware.

This instruction generates a reserved instruction fault in both
MicroVAX I processors.
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Mnemonic Opcode Description
4 CVTLH 6EFD Convert longword to

H_floating

> CVTLP F9 Convert longword to packed

CVTLW  F7 Convert longword to word

5 CVTPL 36 Convert packed to longword

s CVTPS 08 Convert packed to leading
separate

5 CVTPT 24 Convert packed to trailing

" CVTRDL 6B Convert rounded D_floating to

’ longword

2 CVTRFL 4B Convert rounded F_floating to
longword

3 CVTRGL 4BFD Convert rounded G_floating to
longword

4+ CVTRHL 6BFD Convert rounded H_floating to
longword

s CVTSP 09 Convert leading separate to
packed

' This instruction generates a reserved instruction fault in the
KD32-AA processor. The KD32-AB processor implements this
instruction in hardware.

2 The MicroVAX architecture specifies this as an emulated
instruction, but both MicroVAX I processors implement it in
hardware.

3 This instruction generates a reserved instruction fault in the
KD32-AB processor. The KD32-AA processor implements this
instruction in hardware.

4 This instruction generates a reserved instruction fault in both
MicroVAX I processors.

> This instruction generates an instruction emulation exception
in both MicroVAX I processors.
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Mnemonic Opcode Description

5

CVTTP 26 Convert trailing to packed
CVTWB 33 Convert word to byte
CVTWD 6D Convert word to D_floating
CVTWF 4D Convert word to F_floating

CVTWG 4DFD Convert word to G_floating
CVTWH 6DFD  Convert word to H_floating

CVTWL 32 Convert word to longword
DECB 97 Decrement byte

DECL D7 Decrement longword

DECW B7 Decrement word

DIVB2 86 Divide byte 2-operand
DIVB3 87 Divide byte 3-operand
DIVD2 66 Divide D_floating 2-operand
DIVD3 67 Divide D_floating 3-operand
DIVF2 46 Divide F_floating 2-operand
DIVF3 47 Divide F_floating 3-operand

DIVG2 46FD Divide G_floating 2-operand

This instruction generates a reserved instruction fault in the
KD32-AA processor. The KD32-AB processor implements this
instruction in hardware.

The MicroVAX architecture specifies this as an emulated
instruction, but both MicroVAX I processors implement it in
hardware.

This instruction generates a reserved instruction fault in the
KD32-AB processor. The KD32-AA processor implements this
instruction in hardware.

This instruction generates a reserved instruction fault in both
MicroVAX I processors.

This instruction generates an instruction emulation exception
in both MicroVAX I processors.
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Mnemonic Opcode Description

3 DIVG3 47FD Divide G_floating 3-operand
4 DIVH2 66FD Divide H-floating 2-operand
4 DIVH3 67FD Divide H_floating 3-operand

DIVL2 Ceé Divide longword 2-operand
DIVL3 C7 Divide longword 3-operand
> DIVP 27 Divide packed
DIVW2 A6 Divide word 2-operand
DIVW3 AT Divide word 3-operand
s EDITPC 38 Edit packed to character string
EDIV 7B Extended divide
" EMODD 74 Extended modulus D_floating
2 EMODF 54 Extended modulus F_floating

3 EMODG  54FD Extended modulus G_floating
* EMODH 74FD Extended modulus H_floating

EMUL 7A Extended multiply
ESCD FD Escape D
ESCE FE Escape E

This instruction generates a reserved instruction fault in the
KD32-AA processor. The KD32-AB processor implements this
instruction in hardware.

2 The MicroVAX architecture specifies this as an emulated
instruction, but both MicroVAX I processors implement it in
hardware.

This instruction generates a reserved instruction fault in the
KD32-AB processor. The KD32-AA processor implements this
instruction in hardware.

This instruction generates a reserved instruction fault in both
MicroVAX processors.

> This instruction generates an instruction emulation exception
in both MicroVAX I processors.
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Mnemonic Opcode Description

ESCF FF
EXTV EE
EXTZV EF
FFC EB
FFS EA
HALT 00
INCB 96
INCL Dé
INCW B6
INDEX 0A
INSQHI 5C
INSQTI 5D
INSQUE CE
INSV FO
JMP 17
JSB 16
LDPCTX 06
2 LOCC 3A
> MATCHC 39
MCOMB 92
MCOML D2

Escape F

Extract field

Extract zero-extended field
Find first clear bit

Find first set bit

Halt (kernel mode only)
Increment byte

Increment longword
Increment word

Index calculation

Insert at head of queue,
interlocked

Insert at tail of queue,
interlocked

Insert into queue
Insert field

Jump

Jump to subroutine

Load process context (only
legal on interrupt stack)

Locate character

Match characters

Move complemented byte
Move complemented longword

? The MicroVAX architecture specifies this as an emulated
instruction, but both MicroVAX I processors implement it in

hardware.

> This instruction generates an instruction emulation exception
in both MicroVAX I processors.
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Mnemonic Opcode Description

MCOMW B2 Move complemented word
MFPR DB Move from processor register
(kernel mode only)
MNEGB 8E Move negated byte
" MNEGD 72 Move negated D_floating
2 MNEGF 52 Move negated F_floating

3 MNEGG 52FD Move negated G-floating
* MNEGH 72FD Move negated H_floating

MNEGL CE Move negated longword
MNEGW AE Move negated word
MOVAB 9E Move address of byte
' MOVAD 7E Move address of D_floating
2 MOVAF DE Move address of F_floating
3 MOVAG T7E Move address of G_floating
* MOVAH 7EFD Move address of H_floating
MOVAL DE Move address of longword

s MOVAO 7EFD Move address of octaword

' This instruction generates a reserved instruction fault in the
KD32-AA processor. The KD32-AB processor implements this
instruction in hardware.

2 The MicroVAX architecture specifies this as an emulated
instruction, but both MicroVAX I processors implement it in
hardware.

3 This instruction generates a reserved instruction fault in the
KD32-AB processor. The KD32-AA processor implements this
instruction in hardware.

4 This instruction generates a reserved instruction fault in both
MicroVAX I processors.

5 This instruction generates an instruction emulation exception
in both MicroVAX I processors.

Instruction Set E-16



Mnemonic Opcode Description

MOVAQ T7E Move address of quadword
MOVAW 3E Move address of word
MOVB 90 Move byte
MOVC3 28 Move character 3-operand
MOVC5 2C Move character 5-operand
' MOVD 70 Move D_floating
2 MOVF 50 Move F_floating

3 MOVG 50FD Move G_floating
* MOVH 70FD Move H_floating

MOVL DO Move longword
> MOVO 7DFD Move octaword
5 MOVP 34 Move packed
MOVPSL DC Move processor status
longword
MOVQ 7D Move quadword
s MOVTC 2E Move translated characters

This instruction generates a reserved instruction fault in the
KD32-AA processor. The KD32-AB processor implements this
instruction in hardware.

The MicroVAX architecture specifies this as an emulated
instruction, but both MicroVAX I processors implement it in
hardware.

This instruction generates a reserved instruction fault in the
KD32-AB processor. The KD32-AA processor implements this
instruction in hardware.

This instruction generates a reserved instruction fault in both
MicroVAX I processors.

This instruction generates an instruction emulation exception
in both MicroVAX I processors.
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Mnemonic Opcode Description

s MOVTUC 2F Move translated until
character
MOVW BO Move word
MOVZBL 9A Move zero-extended byte to
longword
MOVZBW 9B Move zero-extended byte to
word
MOVZWL 3C Move zero-extended word to
longword
MTPR DA Move to processor register
(kernel mode only)
MULB2 84 Multiply byte 2-operand
MULB3 85 Multiply byte 3-operand
" MULD2 64 Multiply D_floating 2-operand
" MULD3 65 Multiply D_floating 3-operand
2 MULF2 44 Multiply F_floating 2-operand
? MULF3 45 Multiply F_floating 3-operand

3 MULG2  44FD Multiply G_floating 2-operand
3 MULG3  45FD Multiply G_floating 3-operand

' This instruction generates a reserved instruction fault in the
KD32-AA processor. The KD32-AB processor implements this
instruction in hardware.

2 The MicroVAX architecture specifies this as an emulated
instruction, but both MicroVAX I processors implement it in
hardware.

3 This instruction generates a reserved instruction fault in the
KD32-AB processor. The KD32-AA processor implements this
instruction in hardware.

5 This instruction generates an instruction emulation exception
in both MicroVAX I processors.
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Mnemonic Opcode Description

* MULH2 64FD Multiply H_floating 2-operand
* MULH3 65FD Multiply H_floating 3-operand

MULL2 C4 Multiply longword 2-operand
MULL3 Cs Multiply longword 3-operand
s MULP 25 Multiply packed
MULW2 A4 Multiply word 2-operand
MULW3 A5 Multiply word 3-operand
NOP 01 No operation
" POLYD 75 Evaluate polynomial
D_floating
2 POLYF 55 Evaluate polynomial
F_floating
> POLYG  55FD Evaluate polynomial
G_floating
* POLYH  75FD Evaluate polynomial
H_floating
POPR BA Pop registers

This instruction generates a reserved instruction fault in the
KD32-AA processor. The KD32-AB processor implements this
instruction in hardware.

The MicroVAX architecture specifies this as an emulated
instruction, but both MicroVAX I processors implement it in
hardware. :

This instruction generates a reserved instruction fault in the
KD32-AB processor. The KD32-AA processor implements this
instruction in hardware.

This instruction generates a reserved instruction fault in both
MicroVAX I processors.

This instruction generates an instruction emulation exception
in both MicroVAX I processors.

E-19 Instruction Set



Mnemonic Opcode Description

PROBER 0C Probe read access
PROBEW 0D Probe write access
PUSHAB 9F Push address of byte
" PUSHAD 7F Push address of D_floating
2 PUSHAF DF Push address of F_floating
3 PUSHAG T7F Push address of G_floating
4+ PUSHAH T7FFD Push address of H_floating
PUSHAL DF Push address of longword
s PUSHAO 7FFD Push address of octaword
PUSHAQ 7F Push address of quadword
PUSHAW 3F Push address of word
PUSHL DD Push longword
PUSHR BB Push registers
REI 02 Return from exception or
interrupt
REMQHI 5E Remove from head of queue,
interlocked

' This instruction generates a reserved instruction fault in the
KD32-AA processor. The KD32-AB processor implements this
instruction in hardware.

2 The MicroVAX architecture specifies this as an emulated

instruction, but both MicroVAX I processors implement it in

hardware.

This instruction generates a reserved instruction fault in the

KD32-AB processor. The KD32-AA processor implements this

instruction in hardware.

This instruction generates a reserved instruction fault in both

MicroVAX I processors.

5 This instruction generates an instruction emulation exception
in both MicroVAX I processors.
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Mnemonic Opcode Description

REMQTI 5F Remove from tail of queue,
interlocked
REMQUE OF Remove from queue
RET 04 Return from procedure
ROTL 9C Rotate longword
RSB 05 Return from subroutine
Reserved 57 Reserved
Reserved 5A Reserved
Reserved 5B Reserved
Reserved 77 Reserved
Reserved FE Reserved
Reserved FF Reserved
SBWC D9 Subtract with carry
2 SCANC 2A Scan for character
2 SKPC 3B Skip character
SOBGEQ F4 Subtract one and branch on
greater or equal
SOBGTR F5 Subtract one and branch on
greater
2 SPANC 2B Span characters
SUBB2 82 Subtract byte 2-operand
SUBB3 83 Subtract byte 3-operand
' SUBD2 62 Subtract D_floating 2-operand
" SUBD3 63 Subtract D_floating 3-operand

' This instruction generates a reserved instruction fault in the
KD32-AA processor. The KD32-AB processor implements this
instruction in hardware.

2 The MicroVAX architecture specifies this as an emulated
instruction, but both MicroVAX I processors implement it in
hardware.
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Mnemonic Opcode Description

2 SUBF2 42 Subtract F_floating 2-operand
2 SUBF3 43 Subtract F_floating 3-operand
3 SUBG2 42FD Subtract G_floating 2-operand
3 SUBG3 43FD Subtract G_floating 3-operand
4+ SUBH2 62FD Subtract H_floating 2-operand
4+ SUBH3 63FD Subtract H_floating 3-operand

SUBL2 C2 Subtract longword 2-operand
SUBL3 C3 Subtract longword 3-operand

s SUBP4 22 Subtract packed 4-operand

s SUBP6 23 Subtract packed 6-operand
SUBW2 A2 Subtract word 2-operand
SUBW3 A3 Subtract word 3-operand
SVPCTX 07 Save process context (kernel

mode only)

TSTB 95 Test byte

' TSTD 73 Test D_floating

2 TSTF 53 Test F_floating

' This instruction generates a reserved instruction fault in the
KD32-AA processor. The KD32-AB processor implements this
instruction in hardware.

2 The MicroVAX architecture specifies this as an emulated
instruction, but both MicroVAX I processors implement it in
hardware.

3 This instruction generates a reserved instruction fault in the
KD32-AB processor. The KD32-AA processor implements this
instruction in hardware.

4 This instruction generates a reserved instruction fault in both
MicroVAX I processors.

5 This instruction generates an instruction emulation exception
in both MicroVAX I processors.
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Mnemonic Opcode Description

3

4

3

4

TSTG 53FD Test G_floating
TSTH 73FD Test H_floating

TSTL D5 Test longword

TSTW B5 Test word

XFC FC Extended function call

XORB2 8C Exclusive OR byte 2-operand

XORB3 8D Exclusive OR byte 3-operand

XORL2 CC Exclusive OR longword
2-operand

XORL3 CD Exclusive OR longword
3-operand

XORW2 AC Exclusive OR word 2-operand

XORW3 AD Exclusive OR word 3-operand

This instruction generates a reserved instruction fault in the
KD32-AB processor. The KD32-AA processor implements this
instruction in hardware.

This instruction generates a reserved instruction fault in both
MicroVAX I processors.
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Glossary

abort An exception that occurs in the middle of an instruc-
tion and potentially leaves the registers and memory in an
indeterminate state, such that the instruction cannot
necessarily be restarted.

access mode Any of the four processor access modes in
which software executes. Processor access modes are, in
order from most to least privileged and protected: kernel,
executive, supervisor, and user. When the processor is in
kernel mode, the executing software has complete control
of, and responsibility for, the system. In any other mode,
the processor is inhibited from executing privileged
instructions. The Processor Status Longword contains the
current access mode field. The operating system uses
access modes to define protection levels for software
executing in the context of a process. For example, the
executive runs in kernel and executive mode and is most
protected. The command interpreter is less protected and
runs in supervisor mode. The debugger runs in user mode
and is not more protected than normal users programs.

access type The way in which the processor accesses
instruction operands. Access types are: read, write,
modify, address, and branch.

access violation An attempt to reference an address that
is not mapped into virtual memory or an attempt to
reference an address that is not accessible by the current
access mode.

ALU Arithmetic and logic unit. A device that performs
the basic mathematical and logical operations in a
processor.
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AND A logic operation with the property that if P and Q
are elements, then the AND of P and Q is true if both P and
Q are true, and false if P or Q is false.

array An arrangement of elements in one or more
dimensions.

ASCII American National Standard Code for Information
Interchange. A set of 8-bit binary numbers representing
the alphabet, punctuation, numerals, control, and other
special symbols, used in text representation and communi-
cations protocol.

asynchronous Lacking a regular time relationship;
hence, as applied to computer program execution, unex-
pected or unpredictable with respect to the instruction
sequence.

backplane The physical mounting blocks into which
modules are inserted; bus signals are connected on the
reverse side by wire or etch.

block mode A type of data transfer implemented by some
devices in which data can be read or written in blocks of
one to sixteen words within one bus cycle; that is, the bus
master does not need to arbitrate for control of the bus
between word transfers.

boot To boot a computer system is to get it initialized and
loaded with a system image so that it is ready to execute
user programs. Typically, the computer does most of this
by itself, using a bootstrap, so that the operator only has to
turn the system power on, or press a button, or enter a
command to get the computer started.

bootstrap 1. A set of instructions that cause additional
instructions to be loaded until the complete program is in
memory. 2. A technique or device designed to bring itself
into a desired state by means of its own action; for example,
a machine routine whose first few instructions are
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sufficient to bring the rest of the routine into memory from
an input device such as a disk.

bootstrap block A block in the index file on a system disk
that contains a program that can load the operating system
into memory and start its execution.

buffer 1. A routine or storage used to compensate for a
difference in rate of flow of data, or time of occurrence of
events, when transferring data from one device to another.
2. An isolating circuit used to prevent a driven circuit from
influencing the driving circuit.

bus One or more conductors used for transmitting signals
or power. See control bus and data bus.

byte A byte is eight contiguous bits starting on an
addressable byte boundary. Bits are numbered from right
to left, 0 through 7. Bit 0 is the low-order bit.

cache Special memory internal to the processor that
stores data the processor may need in the immediate
future.

central processing unit The functional unit in a
computer system that interprets and executes instructions.
Also referred to as the processor.

comparator A circuit which compares two signals and
supplies an indication of agreement or disagreement.

condition codes Four bits in the processor status word
that indicate the results of the previously executed
instruction.

console mode Also called console I/O mode. When the
system is in this mode, a user can enter commands from the
console terminal to start and stop the system, monitor
system operation, and run diagnostics.

console terminal A hard copy or video terminal that an
operator uses to communicate with and control the
system’s processor.
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control bus A bus carrying the signals that regulate
system operations.

controller A functional unit that controls one or more
units of peripheral equipment.

CPU See central processing unit.

daisy-chain 1. A bus signal that is broken at each module
slot. The signal may be terminated at the slot, or passed
along by the insertion of a module with the appropriate
circuitry. 2. A signal that is broken by pins on a module.
The signal terminates at the first pin, or is passed along by
jumpers connecting the pins sequentially.

data bus A bus used to communicate data internally and
externally to and from a central processing unit, memory,
and peripheral devices.

data type In general, the way in which bits are grouped
and interpreted. In reference to the processor instructions,
the data type of an operand identifies the size of the
operand and the significance of the bits in the operand.
Operand data types include: byte, word, longword and
quadword integer, floating and double floating, character
string, packed decimal string, and variable-length bit field.

default An implicit value or option that is assumed by the
system when no value or option is explicitly stated.

device The general name for any physical terminus or
link connected to the processor that is capable of receiving,
storing, or transmitting data.

diagnostic A program that tests logic and reports any
faults it detects.

DIP Dual in-line package. A type of housing, generally
molded plastic, for integrated circuits.

direct-mapped cache A cache organization in which only
one address comparison is needed to locate any data in the

Glossary-4



cache because any block of main memory data can be
placed in only one possible position in the cache.

direct memory access (DMA) A method of directly
accessing main memory for data transfer without involving
the CPU. For example, a disk with its own controller can
write data directly into memory, bypassing the processor.

displacement indexed mode An indexed addressing
mode in which the base operand specifier uses displace-
ment mode addressing.

displacement mode In displacement mode addressing,
the specifier extension is a byte, word, or longword dis-
placement. The displacement is sign-extended to 32 bits
and added to a base address obtained from the specified
register. The result is the address of the actual operand. If
the PC is used as the register, the updated contents of the
PC are used as the base address. The base address is the
address of the first byte beyond the specifier extension.

DMA See direct memory access.

down-line load A communications procedure between a
host computer and a target node where a program image is
transferred over a communications link from the host to
the node. Typically, this is done to bootstrap the target
node when, for example, the node does not have mass
storage media such as disks to store the image.

EIA interface A set of signal properties (time duration,
voltage, and current) specified by the Electronic Industries
Association for machine and data set connections.

EMI Abbreviation for electromagnetic interference.
Electromagnetic phenomena which can adversely affect
system performance.

EPROM An erasable PROM.

Ethernet A local area network that provides a communi-
cation facility for high speed data exchange among
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computers and other digital devices located within a
moderate-sized geographic area.

exception An event detected by the hardware (other than
an interrupt or jump, branch, case, or call instruction) that
changes the normal flow of instruction execution. An
exception is always caused by the execution of an
instruction or set of instructions. (In contrast, an interrupt
is caused by an activity in the system independent of the
current instruction.) There are three type of hardware
exceptions: traps, faults, and aborts. Examples are:
attempts to execute a privileged or reserved instruction,
trace faults, breakpoint instruction execution, and arith-
metic faults such as floating point overflow, underflow, and
divide by zero.

extended LSI-11 bus See Q22 bus.

fault A hardware exception condition that occurs in the
middle of an instruction and that leaves the registers and
memory in a consistent state, such that eliminating the
fault and restarting the instruction gives correct results.

FIFO First-in-first-out. A queuing technique in which the
next item to be retrieved is the item that has been in the
queue for the longest time.

Files-11 The name of the on-disk structure used by the
RSX-11, IAS and VAX/VMS operating systems. Volumes
created under this structure are transportable between
these operating systems.

finger The point of contact between a signal on a module
or a cable and the same signal on a backplane; also called a
pin contact, connector, or connection point.

flag 1. Any of various types of indicators used for identifi-
cation. 2. A character that signals the occurrence of some
condition, such as the end of a word. 3. Synonym for switch
indicator.
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floating-point A form of number representation in which
quantities are expressed in terms of a bounded number
(mantissa) and a scale factor (characteristic or exponent)
consisting of a power of the number base. For example,
127.6=0.1276 X 10° where the bounds are 0 and 1.

flip-flop A circuit or device containing active elements,
capable of assuming either one of two stable states at a
given time.

giga A metric term used to represent the number 1
followed by nine zeros.

halt To stop. Specifically, when the processor halts, it has
stopped executing macroinstructions.

Hz Abbreviation for hertz. A unit of frequency equal to
one cycle per second.

indexed addressing mode In indexed mode addressing,
two registers are used to determine the actual instruction
operand: an index register and a base operand specifier.
The contents of the index register are used as an index
(offset) into a table or array. The base operand specifier
supplies the base address of the array (called the base
operand address or BOA). The address of the actual
operand is calculated by multiplying the contents of the
index register by the size (in bytes) of the actual operand
and adding the result to the base operand address.

internal processor register A part of the processor used
by the operating system software to control the execution
states of the computer system. They include the system
base and length registers, the program and control region
base and length registers, the system control block base
register, the software interrupt request register, and many
more.

interrupt An event other than an exception or branch,
jump, case, or call instruction that changes the normal flow
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of instruction execution. Interrupts are generally external
to the process executing when the interrupt occurs.

interrupt priority level (IPL) The interrupt level at
which the processor executes when an interrupt is generat-
ed. There are 31 possible interrupt priority levels. IPL 1 is
lowest, 31 highest. The levels arbitrate contention for pro-
cessor service. For example, a device cannot interrupt the
processor if the processor is currently executing at an inter-
rupt priority level greater than the interrupt priority level
of the device’s interrupt service routine.

interrupt vector See vector.
I/O Input-output.

I/O space The region of physical address space that con-
tains the configuration registers, and device control/status
and data registers.

IPR See internal processor register.

jumper A short length of wire used to complete a circuit
temporarily or to bypass a circuit.

K When referring to storage capacity, two to the tenth
power, or 1024 (decimal).

kernel mode The most privileged processor access mode
(mode 0). The operating system’s most privileged services,
such as I/O drivers and the pager, run in kernel mode.

latch A simple logic storage element.

leading edge That transition of a pulse which occurs first.

LED Light emitting diode. An LED is a pn junction semi-
conductor device designed to emit light when forward
biased.

LIFO Last-in-first-out. A queuing technique in which the
next item to be retrieved is the item that has been in the
queue for the shortest time.
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logical block number (LBN) A number used to identify a
block on a mass storage device. The number is a volume-
relative address rather than its physical (device-oriented)
address or its virtual (file-relative) address. The blocks
that constitute the volume are labeled sequentially start-
ing with logical block 0.

longword Four contiguous bytes (32 bits) starting on an
addressable byte boundary. Bits are numbered from right
to left, 0 through 31. The address of the longword is the
address of the byte containing bit 0.

machine check A hardware error detected by the proces-
sor and reported to the operating system software.

macroinstruction An instruction of a macroprogram.

macroprogram A computer program consisting of a
series of instructions written in a source language.

mass storage control protocol MSCP) MSCP is the
protocol used by a family of mass storage controllers and
devices designed and built by Digital. In a system that
uses an MSCP storage subsystem, the controller contains
intelligence to perform the detailed I/O handling tasks.
This arrangement allows the host to simply send requests
for reads or writes to the controller and receive response
messages back. The host does not concern itself with
details such as device type, media geometry, media format,
and error recovery.

master The device, module or option that is currently con-
trolling bus transactions. There can only be one bus
master at a time.

mega (M) One million.

memory management The system functions that include
the hardware’s page mapping and protection, and the oper-
ating system’s image activator and pager.
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microcode A sequence of elementary instructions that
correspond to a specific computer operation. The microcode
is stored in special memory internal to the processor.
Execution of the microcode is initiated by the introduction
of a computer instruction into an instruction register of the
computer.

microinstruction An instruction of microcode.
microprogram See microcode.
microsecond One millionth of a second. Abbreviated us.

millisecond One thousandth of a second. Abbreviated ms.

mnemonic A symbol or abbreviation chosen to assist the
human memory.

module A board, made of plastic covered with an electrical

-conductor, on which logic devices such as transistors, resis-
tors, and memory chips, are mounted, and circuits connect-
ing these devices are etched.

MSCP See mass storage control protocol.

multiplexer (MUX) A device that can select one of a
number of inputs and pass the logic level of that input on as
the output.

nanosecond One billionth of a second. Abbreviated ns.

nominal voltage The voltage of a fully charged storage
cell when delivering rated current.

octaword Sixteen contiguous bytes (128 bits) starting on
an addressable byte boundary. Bits are number from right
to left, 0 to 127. An octaword is identified by the address of
the byte containing bit 0.

offset A fixed displacement from the beginning of a data
structure. System offsets for items within a data structure
normally have an associated symbolic name used instead of
the numeric displacement. Where symbols are defined,
programmers always reference the symbolic names for

Glossary-10



items in a data structure instead of using the numeric
displacement.

opcode The pattern of bits within an instruction that
specify the operation to be performed.

operand specifier The pattern of bits in an instruction
that indicate the addressing mode, a register and/or dis-
placement, which, taken together, identify an instruction
operand.

OR A logic operation with the property that if P and Q are
elements, then the OR of P and Q is true if either P or Q is
true, and false if P and Q are both false.

overcurrent/overvoltage protection A device which
automatically disconnects the circuit whenever the current
or voltage becomes excessive.

page A set of 512 contiguous byte locations used as the
unit of memory mapping and protection.

page frame number (PFN) The address of the first byte
of a page in physical memory. The high-order 21 bits of the
physical address of the base of a page.

page table entry (PTE) The data structure that identifies
the location and status of a page of virtual address space.
When a virtual page is in memory, the PTE contains the
page frame number needed to map the virtual page to a
physical page. When it is not in memory, the page table
entry contains the information needed to locate the page on
secondary storage (disk).

PAL Programmable array logic. A general purpose logic
structure consisting of an array of logic circuits. The way
in which these circuits are programmed determines how
input signals are processed. Programming is done on a
custom basis at the factory and permanently establishes
the functional operation of the PAL.
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parity check A check that tests whether the number of
ones (or zeros) in an array of bits is odd or even.

PC See program counter.

pipeline 1. A method of overlapping instructions such that
the decode phase of one instruction is executed at the same
time as the execute phase of the previous instruction. 2.
When a signal is pipelined, it is passed through a flip-flop
to delay it one cycle.

processor See central processing unit.

processor status longword (PSL) A system
programmed processor register consisting of a word of priv-
ileged processor status and the processor status word
(PSW). The privileged processor status information
includes: the current IPL (interrupt priority level), the
previous access mode, the current access mode, the inter-
rupt stack bit, and the trace fault pending bit. The PSW
includes: the condition codes (carry, overflow, zero, nega-
tive), the arithmetic trap enable bits (integer overflow,
decimal overflow, floating underflow), and the trace enable
bit.

program counter (PC) General register 15 (R15). At the
beginning of an instruction’s execution, the PC normally
contains the address of a location in memory from which
the processor will fetch the next instruction it will execute.

PROM Programmable read-only memory. An integrated
circuit memory array that is manufactured with a pattern
of either all logical zeros or ones and has a specific pattern
wirtten into it by the user. Once the pattern is written, the
PROM contents can only be read; writing is locked out.

protocol A set of rules that govern the operation of func-
tional units to achieve communication.

PSL See processor status longword.
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Q22 bus Any of a group of backplane and cable systems
that implement the QBUS signals and are capable of
handling 22 lines for address delimitation.

RAM Random-access memory. A storage device that
provides direct access to data.

- register A storage location in hardware logic other than
main memory.

register deferred mode In register deferred mode
addressing, the contents of the specified register are used
as the address of the actual instruction operand.

register mode In register mode addressing, the contents
of the specified register are used as the actual instruction
operand.

sign-extension An operation where less than 32 bits of
data are expanded to a longword by copying the state of the
high-order bit of the data into the high-order bytes of the
longword. For example, the word E030 (hex) becomes the
longword FFFFE030 when sign-extended.

slave A bus device that can be addressed by, and partici-
pate in, bus transactions with a bus master. It has the sub-
ordinate role in a data transfer.

slot One of several locations into which a modular inter-
face with the bus may be physically inserted.

stack An area of memory reserved for storing working
program data. Under control of a processor register called
the stack pointer, data are referred to as being pushed onto
and popped off of the stack, in a last-in, first-out sequence.

system image The image that is read into memory from
secondary storage when the system is started up; for
example, an operating system.
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tag One or more characters, attached to a set of data, that
contains information about the set, including its identifica-
tion.

trailing edge The transition of a pulse that occurs last,
such as the high-to-low transition of a high clock pulse.

transceiver A device that can transmit and receive data.

transfer To send data from one place and to receive the
data at another place. Synonymous with move.

transient suppression Transients are large voltage
spikes that occur on power lines when heavy electrical
equipment is switched. Transient suppression is a feature
of a computer system’s power supply that prevents these
spikes from interfering with the operation of the computer
system.

translation buffer An internal processor cache contain-
ing translations for recently used virtual addresses.

trap An exception condition that occurs at the end of the
instruction that caused the exception. The PC saved on the
stack is the address of the next instruction that would
normally have been executed. All software can enable and
disable some of the trap conditions with a single
instruction.

tri-state Logic systems using three conditions on one line:
a definitely applied high voltage (logic 1), a definite low
voltage (logic 0), and an open circuit or undefined state,
permitting another part of the circuit to determine whether
the line will be high or low.

UART Universal asynchronous receiver transmitter. A
device that connects a word-parallel controller or data
terminal to a bit-serial communication network.

vector An interrupt or exception vector is a storage loca-
tion known to the system that contains the starting address
of a procedure to be executed when a given interrupt or
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exception occurs. The system defines separate vectors for
each interrupting device controller and for classes of
exceptions. Each system vector is a longword.

virtual page number (VPN) The virtual address of a
page of virtual memory.

virtual memory The set of storage locations in physical
memory and on disk that are referred to by virtual
addresses. From the programmer’s viewpoint, the second-
ary storage locations appear to be locations in physical
memory. The size of virtual memory in any system
depends on the amount of physical memory available and
the amount of disk storage used for non-resident virtual
memory. ‘

VLSI Very large scale integration. A method of chip
design and layout such that thousands of gates are
packaged on one chip.

volume A mass storage medium such as a disk, diskette,
or reel of magnetic tape.

word Two contiguous bytes (16 bits) starting on an
addressable byte boundary. Bits are numbered from right
to left, 0 through 15. A word is identified by the address of
the byte containing bit 0.

write protect To protect programs recorded on tape, disks
or diskettes from being written over. When a recording
device is write protected, writing to that device is locked
out. Write protection can be achieved with software, or as
with diskettes, by taping or untaping the notch in the
diskette jacket.

write through A cache management technique in which
data from a write operation are copied in both cache and
main memory. Cache and main memory data are always
consistent.
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zero-extension The process of expanding less than 32 bits
of data to a longword by supplying zeros for the high-order
bits.
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Access mode, 5-31, 6-96 to
6-97,6-99, 7-1,7-2, 7-3, 8-44,
8-45

Access protection latch, 8-3,
8-44

Access violation, 2-55 to 2-56,
2-71,4-3,5-46,7-3,7-14,7-35,
8-3, 8-43, 8-44, 8-45, 8-50

Access violation PAL, 8-3, 8-33,
8-44 to 8-46

Adder

constant select, 7-7, 7-16,
8-25

description, 8-25

in block diagrams, 4-3, 8-3

latch enable, 7-7, 7-15, 8-25

output enable, 7-7, 7-15,
8-25

register, 7-15, 8-3, 8-25

subtract enable, 7-7, 7-15 to
7-16, 8-25

TB invalidate, 8-27

Address
modes, 4-15, 4-21, 6-105,
8-54
physical, 1-17, 2-1
translation, 1-14, 2-2 to 2-6,
5-37 to 5-38, 8-16 to 8-27
virtual, 2-2

Address manipulation
instructions, 2-59

Index

ADDW3 example, 6-105 to
6-135

ALU
condition codes, 6-28 to 6-35
in block diagrams, 6-41
microinstructions, 5-18
operation, 6-46
storage of results, 5-5

Architecture
MicroVAX, 1-13to 1-17
VAX, 1-13

Argument list for bootstrap,
2-36

Arithmetic traps/faults, 2-54 to
2-55,2-71

Backplane, 1-2,1-11t0 1-12
Barrel shifter, 6-41, 6-46 to 6-47

Baud rate, 1-8, 3-5to 3-6, 4-6,
6-71,6-75,6-77
Baud rate select switches, 3-2,
3-5t0 3-6, 6-77

Binary counter for cache
invalidate, 9-15,9-16, 9-17

Bit-mapped video interface,
2-49 to 2-52, 3-5, 3-9, 6-77
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Block diagrams
CPU, 4-3
DAP microsequencer, 6-9
data path chip, 6-41
data path module, 6-3
MCT microsequencer, 8-11
memory controller module,
8-3
MOVB data flow, 4-19
prefetch data flow, 4-13
SOBGTR data flow, 4-25
system, 1-3
Block mode, 1-7, 7-34, 9-21,
9-31
BLOCK MODE OKsignal, 7-34,
9-21,9-22,9-31,9-33,9-41

Block read. See Q22 bus
operations, read block

Block write. See Q22 bus
operations, write block

BM TBS7,9-11,9-31,9-32
Bootblock bit, 2-24, 2-27, 2-28
Bootblock format, 2-27, 2-28,
2-29,2-30

Boot command. See Bootstrap,
command

Boot command flags. See
Bootstrap, command flags

Bootdevice. See Bootstrap,
device

Boot EPROM, 1-2,2-19, 2-22,
2-25, 2-39, 2-41, 2-50, 2-51, 4-1,
4-3,4-6,5-27, 6-3, 6-58,6-89 to
6-90

Bootstrap

argument list, 2-36

bootblock format, 2-27,
2-28,2-29,2-30

command, 2-21, 2-22 to 2-25,
2-27,2-28

command flags, 2-22, 2-23,
2-24to 2-25,2-27 to 2-28

device, 2-20, 2-22, 2-23, 2-25,
2-26

flowchart, 2-30

from DEQNA, 2-32 t0 2-35

from disk, 2-26 to 2-30

from PROM, 2-31to 2-32,
2-36

methods, 2-20 to 2-21

operation, 2-25to 2-26

primary, 2-19, 2-20, 2-22 to
2-28,2-31, 2-32,2-33,2-35
to 2-39, 2-41, 2-51, 6-90

search order switch, 2-26,
3-2, 3-5, 3-9to0 3-10, 6-78

secondary, 2-19, 2-20, 2-22,
2-24to 2-28,2-31,2-32,
2-35to0 2-38,2-51,6-90

BR. See Branch
Branch (DAP microinstruction

format), 5-11, 5-13 to 5-14,
6-16,6-19

Branch condition logic (MCT),
8-3,8-8t0 8-9

Branch conditions (MCT), 7-29
to 7-37

Branch control field (MCT
microinstruction), 7-7, 7-28,
7-31

Branch MUX (MCT), 7-3, 8-3,
8-9,8-11,8-15t0 8-16
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Branch to subroutine (DAP
microinstruction format), 5-11,
5-15, 6-17,6-19

Break detect enable, 3-2, 3-5,
3-6to 3-7,6-62, 6-75, 6-77

Break key, 2-48, 3-6 to 3-7,
6-71,6-78,6-79

Breakpoint fault, 2-57
BSB. See Branch to subroutine

Buses A and B. See Data path
chip buses

Bus master, 9-25

Busy control, 7-7,7-25 to 7-26,
8-49 to 8-50

Byte rotator. See also Merge
register and Rotate/merge
logic

description, 4-17, 8-37 to

8-38

in block diagrams, 8-3

rotate selects, 7-7,7-13, 8-37

use with prefetch, 8-40

C

Cache. See also entries
beginning with TB/cache
accesses, 8-27 to 8-33
address sources for accesses,
7-17,8-31t0 8-32
disable register, 2-13
enable control register, 7-19,
8-42
function, 4-8, 4-11, 4-16, 4-23
invalidate, 7-23, 7-24, 7-38,
8-10,8-11, 8-13, 8-29, 8-30,
8-33,9-15t0 9-20, 9-23

invalidate pipeline register,
9-7,9-16,9-17,9-18,9-23,
9-26,9-31,9-47
operation, 5-25, 5-26, 8-33
read, 5-41,7-22,7-23,8-29,
8-32,9-3
tag, 8-29to0 8-30
valid bit
hardware, 7-22, 7-24, 8-20,
8-30, 8-33
microinstruction, 7-7, 7-22,
7-24
write, 5-41,7-22,7-23, 8-29,
8-32to0 8-33

CADR. See Cache disable
register

Case (DAP microinstruction
format), 5-11, 5-14, 6-16, 6-19
CCclass and branch PAL, 6-35,
6-36

CC function field, 6-30 to 6-33
CCpipeline PAL, 6-30, 6-33
CDinterconnect, 1-11, 1-12,
1-21,6-92,8-37

Character string instructions,
1-14, 1-15, 1-16, 2-59

Charge pump circuit, 6-78
Checksum

MRV 11 PROM, 2-31
primary bootstrap, 2-20, 2-39

Clear save stack, 5-5, 5-19, 5-22,
6-52

Clock signals
DAP, 1-17,1-18, 1-19, 6-2,
6-3,6-22,6-81
data path chip, 6-38 to 6-39,
6-42
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master clock, 8-2
MCT, 1-17, 1-18,4-7,7-24,
8-2,8-3,8-5

UART, 6-71
Compatibility mode, 1-1,1-14
CON.CMD register, 5-27, 6-57,
6-72,6-73,6-75t0 6-76
CON.DATA register, 5-27, 6-57,
6-72,6-73
Conditional decrementer, 6-9,
6-11
Condition code class, 6-3, 6-27
to 6-31, 6-35
Condition code class register,
6-29, 6-30, 6-32, 6-35

Condition code/data type field
in DAP microinstruction, 5-1,
5-2 to 5-4,5-7 to 5-8, 5-30, 6-6,
6-28, 6-29, 6-37, 6-43, 6-96

Condition code PALs, 6-3,6-30
to 6-35, 6-41

Condition codes, 4-23, 4-24,
5-11, 5-18, 6-28 to 6-36, 6-54 to
6-55

CON.MODE registers, 5-27,
6-57,6-72,6-74t0 6-75

Console commands, 3-8

Console halt codes, 2-48 to
2-49

Console interface, 4-1,4-3,4-6

Console I/0 mode, 2-19, 2-42,
2-47 to 2-48,2-52, 3-7, 3-8, 6-79

Console microcode. See
Microcode, console

Console mode. See Console I/10O
mode

Console receive control/status
register (RXCS), 2-16

Console receive data buffer
register (RXDB), 2-16 to 2-17

Console stop microroutine,
6-79, 6-89

Console terminal, 1-1, 1-3, 1-7,
2-39, 2-40, 2-50, 2-51, 3-5, 3-6,

4-3,6-3,6-70

Console terminal modes, 2-47

to 2-48

Console terminal registers, 2-8,
2-15t0 2-19,2-52,4-6

Console terminal type switch,
3-2,3-5,3-9,6-77

Console transmit control/status
register (TXCS), 2-17

Console transmit data buffer
register (TXDB), 2-17 to 2-19,
2-21,2-48

Console UART. See UART

Constants ROM. See Data path
chip ROM

CON.STATUS register, 5-27,
6-57,6-72,6-73t0 6-74

Control and status PAL (Q22
bus controller), 9-14, 9-15,
9-21,9-26,9-31, 9-41,9-45

Control and status registers
(MCT). See CSRs

Control interface between DAP
and MCT, 6-92
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Control panel. See Front
control panel

Control store
DAP, 4-3, 4-5,4-27,5-9, 6-3,
6-5to0 6-6, 6-9, 6-41
MCT, 4-3, 4-8,4-27,7-27, 8-3,
8-7t08-8,8-11

Control store address bus. See
CSA bus

Control store address PAL. See
CSA PAL

Control store address register
(DAP), 4-3,6-3, 6-5, 6-7, 6-9,
6-15

Control store parity error, 2-66,
6-17,6-19

Control store register (CSR),
6-41,6-43

Conversational boot, 2-23
Cooling specification, 3-15
CPU. See processor

CPU clock, 1-18, 1-19, 6-2, 6-81
CPU patch panel, 1-7, 1-8, 3-9,
4-6

CRCinstruction, 1-14, 1-15,
2-59

CSA bus (MCT), 8-3, 8-7

CSA PAL (MCT), 8-6, 8-7, 8-11,
8-13, 8-14,8-49

CSA register. See Control store
address register

CSRs (MCT), 7-17,7-18,7-19,
8-3,8-24,8-41t0 8-44

Current mode register. See
PSL.MODE register

D

DAP console interface, 4-6
DAP data bus. See DBUS

DAP internal data bus. See ID
bus

DAP module major
components, 4-1,4-3,6-3

Data bus. See DBUS

Data flow bit, 5-31, 5-32, 6-95,
6-96,7-1,7-2,7-3

DATAFLOW branch condition
(MCT), 7-31,7-33

Data flow examples, 4-9 to
4-25

Data interface between DAP
and MCT, 6-91 to 6-92

Data path chip, 4-2, 4-3, 5-4,
5-5,5-6, 6-3, 6-5, 6-37,6-38 to
6-56

Data path chip buses, 6-41,
6-45 to 6-46, 6-47,6-51, 6-53

Data path chip registers, 6-47,
6-49

Data path chip ROM, 5-6, 5-27,
6-41, 6-49, 6-52

Data path control field in DAP
microinstruction, 5-1, 5-4 to
5-6,5-30

Data type in DAP operations,
6-27, 6-37, 6-43 to 6-45,7-1 to
7-2,8-6
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Data type field in DAP
microinstruction. See
Condition code/data type field

DATBI. See Q22 bus
operations, read block

DATBO. See Q22 bus
operations, write block

DATI. See Q22 bus operations,
read word

DATIO. See Q22 bus
operations, read interlocked

DATO. See Q22 bus operations,
write word

DATOB. See Q22 bus
operations, write byte

DBUS, 4-3, 5-24, 6-3, 6-41, 6-53,
6-56, 6-60

Decimal string instructions,
1-14, 1-15, 2-59

DECnet low-level maintenance
protocol (MOP), 2-32,2-33
Decode microinstruction, 5-3,
5-5, 5-16, 5-20 to 5-22, 6-43 to
6-44, 6-45, 6-51, 6-52

Decode ROM, 4-3, 5-16, 5-17,
6-3, 6-6, 6-9,6-19,6-22, 6-27 to
6-28, 6-35, 6-37

Default load address, 2-28,
2-35

DEQNA, 2-23, 2-26, 2-30, 2-32
to 2-35, 3-9, 6-78

Diagnostic bit, 2-24, 2-27, 2-28

DIP switches. See Option
switches

Direct memory access (DMA),
1-21,9-4,9-5,9-7,9-8,9-12 to
9-13,9-15t09-20

Disk/diskette device names,

2-23

Disk drives
as boot devices, 2-26 to 2-30
RD51, 1-1,1-3, 1-6
RD51-D/R, 1-6
RD52,1-1,1-3,1-6
RD52-D/R, 1-6

Diskette drives (RX50), 1-1, 1-3,

1-5t0 1-6, 2-26 to 2-30

Displacements from I-stream,
5-29, 6-93, 8-51

Downline load, 2-25, 2-26, 2-32
to 2-35

E

EDITPC instruction, 1-14, 1-15,
2-59

Emulation of instructions, 1-14,
1-15, 2-58 to 2-61
ENDAL/ENDALADD, 9-8 to 9-9,
9-27,9-35,9-36, 9-46, 9-47,
9-48. See also Q22 bus,
data/address lines

ENIAKO, 9-11,9-47

Error flag status register, 7-19,
8-42 to 8-43

Exceptions, 2-52, 2-54 to 2-72
Extended function fault, 2-57,
2-71

Extended LSI-11 bus. See Q22
bus
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External registers, 6-55, 6-57 to
6-58

F
Floating point, 1-2, 1-14, 1-16,
2-7,2-15,5-21

Front control panel, 1-1, 1-3,
1-7t0 1-8,1-9, 1-11

Functional block control field
(MCT microinstruction), 7-4,
7-7,7-11to0 7-25

Function decoder PAL (Q22 bus
controller), 9-4 to 9-5, 9-9,
9-10,9-11,9-12,9-26,9-31,
9-32, 9-35, 9-45,9-47

Function latches, 5-30, 5-40,
6-95 to 6-96, 6-97

G

General purpose registers,
6-47,6-49

Go bit. See Q22 bus, go bit

H

Halt bit, 2-25

Halt button, 1-9, 2-21, 2-47,
2-48,6-78,6-79

Halt codes, 2-48, 2-49, 6-79,
6-89

Halt instruction, 2-21, 2-47, 3-7,
6-78,6-79

Header bit, 2-24

IB.BYTE, 5-22, 5-25, 5-27, 5-38,
6-21,6-24,6-51, 6-58. See also
IBYTE register

IB.ERROR, 7-19, 7-31,7-36 to
7-37,8-9,8-43t08-44

IB.LONG, 5-25, 5-27, 5-38, 6-58
IB.READ, 5-25, 5-38

IB.REFILL, 5-35 to 5-36, 5-38,
6-24,8-39,8-44

IB.SIZE, 5-25, 5-27, 5-38, 6-58

IB.WORD, 5-25, 5-27, 5-38,
6-58, 6-99, 7-26, 8-51

IBYTE buffer, 4-3, 6-3, 6-9, 6-61
10 6-62

IBYTE control logic, 6-6, 6-22 to
6-25, 6-98, 8-40

IBYTE register, 4-3, 4-11, 4-15,
4-18,4-22,4-24,5-16,5-17,
5-22,5-29,6-3,6-9,6-21to
6-27,6-62, 6-92

ICCS. See Interval clock
control/status register

ID bus, 4-3, 4-5, 6-3, 6-8, 6-21,
6-28, 6-37, 6-41, 6-59 to 6-60,
6-61

ID bus address decode, 6-3, 6-6,
6-37,6-63 to 6-66

ID bus latch, 4-3, 6-3, 6-61
ID MUX, 6-3, 6-61
IFUNC field, 5-20, 6-27

lllegal operation, 2-65,5-47,
8-43
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Index MUX, 7-21, 8-3, 8-16 to
8-17,8-20, 8-22, 8-28

Index MUX bit <6 > select,
7-7,7-20to0 7-21,8-17, 8-28

Index register, 4-3,5-27, 6-3,
6-8, 6-9, 6-57, 6-90

Infinite loop mode, 2-42, 2-43
Initialization signals, 6-85 to
6-87

Initialization state of CPU, 6-85
Initialize bus register, 2-14
Instruction decode logic, 4-5

Instruction emulation. See
Emulation of instructions

Instruction emulation
exceptions, 2-54, 2-58 to 2-61,
2-71

Instruction execution
exceptions, 2-54, 2-57

Instruction prefetch error
status register, 7-19, 7-36, 8-43
to 8-44. See also IB.ERROR

instruction read and decode
(IRD or opcode decode), 5-3,
5-11, 5-16, 5-21, 6-12, 6-17,
6-19, 6-27, 6-44, 6-45, 6-69

Instructions, 1-14, 1-15, 1-16,
2-59

Instruction stream refill, 5-35
to 5-36. See also IB.REFILL

Integer instructions, 2-59

interface signals between DAP
and MCT, 6-103 to 6-104

Internal data bus. See ID bus

Internal processor registers,
1-15,1-16, 1-17,2-7 t0 2-18
Interrupt enable, 2-16, 2-17

Interrupt priority level register.
See IPL register

Interrupt priority levels (IPLs),
2-52 to 2-53, 6-68 to 6-70

Interrupts, 2-52 to 2-53, 5-33,
6-54, 6-67 to 6-70,6-71, 6-74,
6-81,9-23t09-24, 9-46 to 9-49

Interrupt source register
(INT.SRC), 5-27, 6-3,6-57,6-69
t0 6-70

Interrupt stack not valid halt,
2-61t0 2-62

Interval clock control/status
register, 2-13

Interval timer, 2-13, 2-72, 6-3,
6-41, 6-53to 6-54

INVALID.MULTIPLE, 5-44, 8-17,
8-27

INVALID.SINGLE, 5-44

I/0 port of data path chip, 6-41,
6-55t0 6-56

IORESET. See Initialize bus
register

I/0 space, 2-1,2-2,2-7,5-47,
7-14,7-35,8-23,8-32,8-53,9-8

IPL register, 6-3, 6-67 to 6-68

IRD. See Instruction read and
decode
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I-stream Request microinstruc-
tion, 5-2, 5-3, 5-5, 5-22, 5-25,
5-29, 5-30, 6-43 to 6-44, 6-46,
6-51,6-52, 6-91

J

JAM uPC, 6-3, 6-7, 6-85, 6-87
JMP. See Jump
JSB. See Jump to subroutine

Jump (DAP microinstruction
format), 5-11, 5-13, 6-19

Jump address field, 5-9, 5-11
Jump control field, 5-9 to 5-11,
6-14

Jumper
microverify, 2-42, 2-43, 2-45
MRV11-D PROM, 2-32

Jump MUX, 6-5, 6-9, 6-14, 6-35

Jump register, 6-5, 6-9, 6-13,
6-19
Jump to subroutine (DAP

microinstruction format), 5-11,
5-13,6-19

K

KD32-AA/AB CPU, 1-2, 1-8,
1-16, 2-1, 2-15, 3-1. See also
processor

Kernel stack not valid abort,
2-61, 2-71

L

Latch function parameters bit,
5-30, 5-32, 5-39, 6-95, 6-98,
6-99,7-2

LEDs

DCOK, 1-9

on CPU patch panel, 1-11,
2-39to0 2-42

on DAP module, 2-39 to
2-42,2-43, 2-45, 6-62

on DEQNA module, 2-33

on diskette drive, 1-5to 1-6

run, 1-9

writing to DAP, 2-19, 6-62

Literal bit, 5-5

Logical block number (LBN),
2-27,2-28,2-29

Long operand field, 5-4, 5-6,
5-24,5-25,5-26 to 5-27, 6-6,
6-41,7-3

M
Machine check, 2-19, 2-61, 2-62
to 2-67, 2-71

Machine check error summary
register, 2-14, 2-62

Machine-check-in-progress
flag, 2-14, 2-62

Macroinstruction, 4-27, 5-3,
5-16, 6-21

Macrolevel branch control,
6-35to 6-36

Map enable, 7-2,7-3,7-33
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Map enable control register,
7-19,7-33,8-42

Mass storage control protocol
(MSCP), 1-5

Master/slave relationship, 9-25

MCA bus, 4-3, 8-3, 8-5, 8-23,
8-24,8-34t08-35

MCA<1> and MCA<0>,
7-31,7-33
MCA<8>,7-21,8-17,8-28

MCD bus, 4-3,7-17, 8-3, 8-22,
8-35to0 8-36, 8-41t0 8-42

MCESR. See Machine check
error summary register

MCT branch MUX. See Branch
MUX

MCT function parameters, 7-1
to7-4

MCT module major com-
ponents, 4-3, 4-6 to 4-9, 8-3
MD bus input latch, 6-3, 6-94 to
6-95

MD bus latch, 4-3, 6-3, 6-94 to
6-95, 6-100

Memory, 1-1,1-3,1-7
Memory busy, 6-94, 7-25 to
7-26, 8-8, 8-49 to 8-50
Memory control bus (MCB),
1-3,1-21, 4-3, 6-3,6-92, 8-3,
8-37

Memory controller address
bus. See MCA bus

Memory controller data bus.
See MCD bus

MEMORY.DATA, 5-24,5-27,
6-58,6-91,6-92,6-94

Memory data bus (MDB), 1-3,
1-21, 4-3,4-10, 5-24, 6-3,6-91,
8-3

Memory function code, 5-24,
5-30 to 5-32, 6-6, 6-95, 6-96,
7-2,8-6

Memory function latches. See
Function latches

Memory functions, 5-33 to 5-45

Memory function status, 5-25,
5-46 to 5-47

Memory management, 1-14,
2-2

Memory management
exceptions, 2-55to 2-56

Memory request acknowledge
signal, 6-93, 6-94, 8-49

Memory request control PAL,
6-99

Memory request latch, 8-3, 8-6
to0 8-7,8-10,8-11, 8-13

Memory Request microinstruc-
tion, 5-2, 5-3, 5-5, 5-22, 5-24 to
5-25, 5-29, 5-30, 6-43 to 6-44,
6-52,6-91

Memory request mode bits,
6-96 to 6-97, 8-44

Memory request signal, 6-92,
8-9

Merge register. See also Byte
rotator and Rotate/merge logic

description, 8-37 to 8-38
in block diagrams, 8-3
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output enable, 7-7,7-12
selects, 7-7,7-12t0 7-13
use with prefetch, 8-40
use with TB read, 8-26

Messages
downline load, 2-33to 2-35
Microverify, 2-39 to 2-40

Microaddress
DAP, 5-9, 6-5, 6-7, 6-19
MCT, 7-3,7-27,8-7,8-14

Microbranch control, 6-35

Microcode

console microcode, 2-21,
2-40 to 2-41, 2-47 to 2-52

memory controller interface,
5-29t0 5-47,9-3

overview, 4-27 to 4-28

Q22 bus controller interface,
7-37to 7-38

Microcycle
DAP, 1-18,4-2,4-7, 6-2
MCT, 1-18,4-7,8-2,8-5

Microinstruction

clock gating (MCT), 8-3, 8-8

control (DAP), 6-1to 6-19

DAP format, 5-1

decode logic (MCT), 8-3,8-10
to 8-16

execution of (DAP), 6-38 to
6-56

function of, 4-27

MCT format, 7-4to 7-7, 8-8

memory request format,
5-30to 5-31

opcode (DAP), 5-4, 5-7 to 5-8,
6-6, 6-41

Microprogram control field
(MCT microinstruction), 7-4,
7-7,7-27 to 7-31

Microprogram counter (uPC),
6-9,6-11,6-15,6-19

Microprogram level flows
ADDWS3, 6-105 to 6-135
MOVW, 8-53 to 8-82

Microsequencer
DAP, 4-3,4-5, 4-16, 4-18,
4-22,4-24,5-25, 6-3, 6-5,
6-8t0 6-19
MCT, 4-3,4-8, 4-16, 4-27, 7-3,
7-27,8-9t0 8-16

Microsequencer control field
(MCT microinstruction), 7-7,
7-27t0 7-28

Microstack, 4-3, 5-15, 5-16,
5-17,6-3,6-9,6-11t0 6-12, 6-19

Microstack pointer, 6-3, 6-9,
6-12t06-13

Microtrap, 6-12, 6-69

MicroVAX I

address translation, 1-14, 2-2
to 2-6, 5-37 t0 5-38,8-16 to
8-27

architecture, 1-14 to 1-17

backplane, 1-11to 1-12

bootstrap, 2-19 to 2-38

IPRs, 1-15to0 1-16, 1-17, 2-7
to 2-18

physical addresses, 1-17, 2-1

system box, 1-2, 1-3, 1-6, 1-7

system buses, 1-21

system components, 1-1, 1-3

system timing, 1-17 to 1-18

virtual addresses, 2-2

Microverify, 2-39 to 2-45, 2-51,
4-5,6-89
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Miscellaneous register, 5-27,
6-3, 6-57, 6-62 to 6-63, 6-79,
6-81

Modified rocker switch, 3-11,
3-13to 3-14

MODIFY branch condition
(MCT), 7-31,7-34

Modify intent, 5-31, 5-32, 6-97,
7-2,7-3,7-34,8-44,8-45
Modify refuse, 5-11, 5-39, 5-46,
7-14,7-35, 8-45, 8-46, 8-50
MOP. See DECnet low-level
maintenance protocol

Move byte, 4-15 to 4-19

Move microinstructions, 5-19,
5-24, 6-45, 6-92, 6-93

MOVW example, 8-53 to 8-82
MRV11 PROM, 2-23, 2-25, 2-26,
2-30,2-31to0 2-32, 2-36, 3-9,
6-78

MSV11 memories, 1-7
Multiply step microinstruction,

5-5,5-22,5-23 to 5-24, 6-45,
6-51,6-52

Next address buffer (MCT), 8-7,
8-10,8-11,8-15

Next address control field (DAP
microinstruction), 5-1, 5-9 to
5-17,6-5

Next address field (MCT micro-
instruction), 7-7, 7-28 to 7-31,
8-11

Next microaddress bus, 6-3,
6-9, 6-15,6-19

Next microaddress MUX, 6-7,
6-9, 6-14,6-15t0 6-17

No-cache flag, 2-1, 2-7,7-14,
7-35,8-23,8-33

NO.MAP, 7-31,7-33,8-9
NON.CACHE.REF branch
condition, 7-31, 7-35t0 7-36
Nonexistent memory, 2-65,
5-47

No operation (NOP), 5-5, 5-18,
5-22,6-52

Notest bit, 2-24

NpA MUX. See Next
microaddress MUX

o)

Opcode. See Microinstruction,
opcode

Opcode decode. See Instruc-
tion read and decode

Operand reference exceptions,
2-56to 2-57

Operand specifierdecode, 5-3,
5-11,5-17,5-21,6-19, 6-27,
6-28, 6-44,6-51

Option switches, 2-20 to 2-21,
2-47,2-50, 3-1 to 3-15,5-27,
6-3,6-58,6-71,6-76 10 6-78,
6-79, 6-89

OR field, 5-10, 5-11
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OR MUX, 5-10, 5-11, 5-13, 5-14,
5-17,5-46, 6-5, 6-8,6-9,6-13 to
6-14, 6-15, 6-19, 6-37, 6-69,
8-43

P

PAGE.CROSS branch condition,
7-31,7-34

Page crossing, 4-10, 5-11, 5-32,
5-40, 5-46, 6-95, 6-97,7-15,
7-23,7-34,7-35,7-36, 8-9, 8-25,
8-43,8-51

Page frame number (PFN), 2-3,
8-21,8-23

Page frame number (PFN) bit
map, 2-25, 2-32, 2-36, 2-37,
2-38

Page register, 6-9,6-11, 6-15,
6-19

Page table entry (PTE), 2-2 to
2-6,5-41,7-14,8-2110 8-22,
8-46

Page tables, 2-3

Parity checker, 6-3, 6-5, 6-7,
6-41,6-43

Parity error, 5-46, 6-7, 8-43. See
also Control store parity error,
and Q22 bus, parity

Parity field in DAP
microinstruction, 5-1, 5-2

Parity generator, 6-43

Patch panel assembly, 1-1, 1-3,
1-8,2-39

Patch panel inserts, 1-8

PDP-11 compatibility mode,
1-1,1-14

Physical address register (PAR)
description, 8-23
in block diagrams, 4-3, 8-3
latch enable, 7-7,7-14, 8-44
outputenable, 7-7, 7-14,
8-23

Physical address space, 2-1 to
2-7

Physical read, 5-36
Physical write, 5-36
Pipelining, 1-18to 1-19

Pointer registers, 5-20, 5-21,
5-27,6-21, 6-41,6-49, 6-52 to
6-53

Power failure, 6-81 to 6-83

Poweron
initialization signals, 6-85 to
6-87
next microaddress output,
6-17
signals, 6-80

Power specification, 3-15

Power supply, 1-2,1-11,1-12 to
1-13, 6-80, 6-81

PREAD, 5-36

Prefetch

disable, 7-31,7-36

enable signal, 8-9, 8-39, 8-40,
8-41

FIFO, 8-3, 8-38 to 8-39, 8-40,
8-41

FIFO control, 7-7,7-24, 8-3,
8-39

in block diagrams, 4-3
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next byte valid signal, 8-9,
8-40

operation, 4-10to 4-13, 4-23,
4-24,5-25,5-29, 8-40 to
8-41

program counter, 4-10, 4-11,
8-24, 8-39, 8-40

PREFETCH.DISbranch
condition, 7-31, 7-36, 8-9

PRESYNC, 9-9,9-27,9-36

Primary bootstrap, 2-19, 2-20,
2-2210 2-28, 2-31, 2-32, 2-33,
2-35to 2-39, 2-41, 2-51, 6-90

Priority encoder, 6-68 to 6-69

Privileged registers. See
internal processor registers

Processor, 1-1, 1-2, 1-3, 2-13,
2-15, 3-15

Processor registers. See
Internal processor registers

Process space, 2-2

Program counter, 4-10, 4-11,
4-15,4-16,4-22,5-21,5-22,
5-25,5-27,6-41, 6-49, 6-51

Program 1/O mode, 2-47, 2-48,
2-51

Protection codes, 8-47

PSL condition codes, 6-28, 6-29,
6-30to 6-36

PSL enable, 6-3, 6-36, 6-37, 6-57

PSL.IPL register, 5-27, 6-3, 6-57,
6-90

PSL.MODE register, 5-27, 5-31,
5-32,6-57,6-97, 6-98 to 6-99

Pull-up resistors, 8-3, 8-7, 8-11,
8-35, 8-36

PWRITE, 5-36

Q

QBUS.BLK.OK, 7-31, 7-34, 7-38.
See also BLOCK MODE OK
signal

QBUS.ERROR, 7-31, 7-36, 7-38,
9-13,9-23. See also Q22 bus,
error

QBUS.SYNCH, 7-31, 7-34,7-38

QBUS.TIMEOUT, 7-31, 7-36,
7-38,9-13,9-14. See also Q22
bus, timeout

Q22 bus

backplane, 1-2, 1-11to 1-12

data/address lines, 8-53, 9-8,
9-10,9-12,9-24,9-27. See
also ENDAL/ENDALADD

description, 1-5

device interrupts, 2-53

DMA grant, 1-11to 1-12,
9-24t09-25

error, 7-36,7-38,9-13,9-14,
9-23

function code, 7-7, 7-9, 7-10,
7-37,9-2,9-3,9-4,9-9,
9-32,9-42,9-46,9-47

go bit, 7-7,7-9,7-37,9-2,9-3,
9-4,9-26, 9-36,9-47

haltline, 6-78

initialization, 6-63, 6-81

interface, 4-9, 9-6

interface control field, 7-4,
7-7,7-9to 7-11

interrupt acknowledge, 9-9,
9-11,9-2410 9-25,9-47
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interrupt priority, 1-11 to
1-12,6-70

parity, 9-13,9-23,9-24

power, 6-80

read data output enable,
7-7,7-10

read register, 4-17, 8-3, 8-53,
9-7,9-10,9-16,9-47

signals, 9-24 to 9-25

timeout, 8-43,9-13 t0 9-15,
9-22,9-23

transactions, 1-21

transceivers, 9-7

write enable, 7-7, 7-11

write register, 8-3, 8-52 to
8-53,9-2,9-7,9-8,9-26,
9-31,9-41

write timeout, 9-23t0 9-24

Q22 bus controller

arbitrating the bus, 7-9, 8-52,
9-11t0 9-15

description, 4-27 to 4-28,
8-52,9-1

in block diagrams, 4-3, 8-3

interface microcode, 7-37 to
7-38

microstates, 9-2

monitoring DMA, 9-15 to
9-20

operation, 4-16to 4-17,9-3
to 9-4

sequencing bus cycles, 9-8 to
9-11

status, 7-38,9-21t0 9-24

Q22 busoperations

arbitration, 7-9, 8-52,9-11 to
9-15

list of, 1-5,7-10, 9-3

master/slave, 9-25

read block, 9-11,9-22, 9-31
t0 9-33

read interlocked, 5-34, 9-18,
9-45 to 9-46

read interrupt vector, 9-11,
9-46 to 9-49

read word, 9-26 to 9-29

write block, 9-10, 9-17 to
9-20,9-22,9-41t0 9-43

write byte, 9-10, 9-35to
9-39,9-45

write word, 9-10, 9-22, 9-35
t09-39,9-4

R

RCHECK, 5-45
RD51-D/R, 1-6
RDS1/RD52,1-1,1-3,1-6
RD52-D/R, 1-6

Read block. See Q22 bus
operations, read block

READ.CACHE, 5-41
Read check, 5-45

Read interlocked. See Q22 bus
operations, read interlocked

Read interrupt vector. See Q22
bus operations, read interrupt
vector

Read MCT registers, 5-42
READ.TB, 5-43,8-26
READ.VECTOR, 5-33, 9-46

Read word. See Q22 bus
operations, read word

Ready button, 1-9

Rear patch panel assembly. See
Patch panel assembly. See also
CPU patch panel
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Recovery action switches, 2-20,
2-21,2-41, 3-2,3-5,3-7 to 3-8,
6-77,6-89

Register file (data path chip),
6-41,6-47,6-49

Register file (MCT)

address field, 7-7, 7-18 to
7-19

description, 7-17,8-23 to
8-24

error codes, 8-43

in block diagrams, 4-3, 8-3

output enables, 7-7,7-17,
7-21,8-24

write enables, 7-7, 7-18, 8-24

Register save bit, 5-5

Register save stack, 5-5, 5-21,
5-22,6-41,6-52

Register save stack initialize
bit, 5-20, 6-52

REPEAT.FIRST, 5-39, 6-97, 6-98

REPEAT.SECOND, 5-32, 5-40,
6-97,6-98, 8-51

REQ ACK. See Memory request
acknowledgesignal

Reserved addressing mode
fault, 2-56, 2-71

Reserved operand exception,
2-56,2-57,2-71
Reserved/privileged instruction
fault, 2-57, 2-58, 2-71,6-79
Restart button, 1-9, 2-21, 2-47,
3-7,3-8,6-80

Restart parameter block, 2-25,
2-28,2-35,2-38

Restore microinstruction, 5-5,
5-22,6-46, 6-52

Result registers, 5-5, 5-18, 5-23,
5-27,6-41, 6-46, 6-49, 6-51
Result register select, 5-4, 5-5,
6-51

RET. See Return

Return (DAP microinstruction

format), 5-11, 5-15 to 5-16,

6-19

Return from trap (MCT), 8-13

to 8-14,8-15

Reverse pass latch
description, 7-24, 8-38
enable, 7-7,7-25, 8-38
in block diagrams, 4-3, 8-3
output enable, 7-7,7-25,

8-38
Rocker switch, 3-11.3-13

ROM constants, 5-27, 6-49. See
also Data path chip ROM

Rotary switch, 1-8, 3-6, 4-6

Rotate/merge logic, 4-3, 4-11,
4-17,4-23,7-11,8-37 to 8-38.
See also Byte rotator and
Merge register

Rotator. See Byte rotator
RQDX1 controller, 1-1, 1-3, 1-5,
1-6,2-26

RQDX1-E, 1-6

RS232/423 line interface, 1-7,
4-6,6-3,6-70,6-71,6-78

RXCS. See Console receive
control/status register
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RXDB. See Console receive
data buffer register

RX50 diskette drive, 1-1, 1-3,
1-5to 1-6, 2-26to 2-30

S

Save address register, 8-3, 8-7,
8-10,8-11, 8-13, 8-15

SCB. See system control block

Secondary bootstrap, 2-19,
2-20, 2-22, 2-24 to0 2-28, 2-31,
2-32,2-3510 2-38, 2-51,6-90

Second part bit, 5-32

Second part flag, 5-40, 6-97,
7-2,8-6

Sequencer PAL (Q22 bus
controller), 9-5to 9-6, 9-7, 9-8,
9-9,9-10,9-12,9-13,9-14,9-21,
9-26,9-27,9-32,9-36,9-37,
9-42,9-46,9-47
Shift count register, 5-19, 5-27,
6-41, 6-49, 6-53
Shift microinstructions, 5-18 to
5-19
Short operand field, 5-4, 5-5,
5-20, 5-26 to 5-27, 6-41
SID. See System identification
register
Sign-extend, 4-3, 4-23, 5-26,
5-38, 6-3,6-60to 6-61, 6-99 to
6-100, 8-50
Sign-extend word control
field, 7-7,7-26t0 7-27
flag, 8-50 to 8-51

Single pass mode, 2-42, 2-43

Size control pins, 6-41, 6-44 to
6-45, 6-54

Size register, 4-3, 5-3, 5-4, 5-27,
6-3, 6-6,6-36t0 6-37, 6-41,
6-44, 6-57

Slave device, 9-25

Slider switch, 3-11, 3-14 to 3-15
Solicit bit, 2-24

SPEC DEC. See Operand
specifier decode

Stack pointer, 2-22, 2-35, 2-37,
2-55, 2-60, 2-62

Stalls, 6-93 to 6-94

Status control field, 7-4, 7-7,
7-25t07-27

Subtract one and branch, 4-21
to 4-25

SYNC HOLD, 9-9t0 9-10, 9-27,
9-32,9-36,9-42,9-46
SYNCREADY signal, 7-34, 9-5,
9-14,9-15,9-21t0 9-22,9-26,
9-27,9-31,9-33,9-35, 9-36,
9-37,9-39,9-41,9-43, 9-45,
9-46,9-47,9-48,9-49

System architecture, 1-13 to
1-17

System buses, 1-21

System components, 1-1, 1-3

System control block, 2-25,
2-69t0 2-72

System control block base
register (SCBB), 2-36, 2-69

System control block vectors,
2-69to 2-70
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System failure exceptions, 2-61
to 2-67

System identification register
(SID), 2-8, 2-15, 3-1, 3-3, 5-27,
6-3,6-58

System image, 2-19 to 2-20,
2-22

System space, 2-2
System timing, 1-17 to 1-18

T

Tag MUX, 8-3, 8-17 to 8-18,
8-29

Tag RAM, 8-3, 8-18 to 8-20,
8-29to 8-30

TB/cache comparator, 8-3,
8-18, 8-20, 8-22, 8-30, 8-31

TB/cache control
access select, 7-7, 7-22 to
7-23,8-31, 8-33
index MUX bit <6> select,
7-7,7-20t0 7-21, 8-17, 8-28
RAM control, 7-7, 7-21 to
7-22
valid bit, 7-7, 7-22, 7-24
TB/cache hitsignal, 7-22, 8-8,
8-20, 8-22, 8-30, 8-31, 8-44. See
also TB miss

TB/cache RAM, 7-21, 8-3, 8-20
to 8-22, 8-30 to 8-31

TBC.MISS branch condition,
7-31,7-36

TB.ERROR branch condition,
7-31,7-35

TB miss, 5-11, 5-46, 7-22, 7-35,
7-36, 8-44, 8-46, 8-49

TDIN, 9-10, 9-27,9-47,9-48
TDOUT, 9-10,9-36
Terminals, 1-7, 2-50, 3-6, 3-9
TEST console command, 2-39

Timer control/status register
(TMRCSR), 5-27, 6-38, 6-49,
6-53 to 6-54

Timing diagrams

ADDW3 microinstructions,
6-131t06-135

block write cache invalidate,
9-19,9-20

condition code setting, 6-33

DAP initialization, 6-87

data path chip phases, 6-42

IBYTE register loading, 6-25

microcycles, 1-19

power up/power down, 6-83

read block, 9-33

read from ID bus register,
6-65

read from memory, 6-100,
6-101

read interrupt vector, 9-49

read word, 9-29

write block, 9-43

write byte/write word, 9-39

write to ID bus register, 6-66

write to memory, 6-100,
6-102

Timing of MCT operations, 8-5,
89

Topsys bits, 2-25, 2-27, 2-28
Trace fault, 2-58
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Transceiver, 7-20, 8-3, 8-36 to
8-37

Transceiver control, 7-7,7-20,
8-37

Translate virtual address, 5-37
to 5-38, 8-16 to 8-27

Translation buffer. See also
entries beginning with
TB/cache
address sources for accesses,
8-25t0 8-26
check, 5-45, 5-47, 8-43
function, 4-8, 4-10,4-16,4-23
hit. See TB/cache hitsignal
invalidate, 5-44, 7-23, 8-17,
8-20, 8-25, 8-27
miss. See TB miss
PTE. See Page table entry
read, 5-43, 8-26
tag, 8-19t0 8-20
valid bit, 7-7, 7-22, 8-20,
8-21, 8-27
write, 5-43, 8-26

Translation not valid fault,
2-56,2-71

Trap (DAP microinstruction
format), 5-11,5-15,6-19

Trap microroutine (MCT), 8-10,
8-13

TWTBT, 9-10t0 9-11,9-35,9-36

TXCS. See Console transmit
control/status register

TXDB. See Console transmit
data buffer register

U

UART, 1-7, 4-6, 6-3,6-62, 6-70
to 6-76

UART buffer, 6-3,6-76

UART registers
command register. See
CON.CMD register

data register. See
CON.DATA register
initialization, 6-76
mode registers. See
CON.MODE registers
overview, 6-711t0 6-72
stall condition, 6-94
status register. See
CON.STATUS register

Vv

Vectors, 2-69 to 2-70, 2-72,5-33

Video workstation. See Bit-
mapped video interface

Virtual addresses, 2-2
Virtual memory, 2-2

Virtual page number (VPN),
2-3,2-4,2-5, 2-6

Virtual read operations, 5-33 to
5-35

Virtual write operation, 5-34
VREAD.LOCK, 5-35
VREAD.RCHECK, 5-33
VREAD.WCHECK, 5-34
VWRITE. WCHECK, 5-34
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w y4

warm start, 3-7, 3-8 Zero-extend, 6-53, 6-67
WCHECK, 5-45 Zero-generator, 6-3, 6-67

Write block. See Q22 bus
operations, write block

Write byte. See Q22 bus
operations, write byte

WRITE.CACHE, 5-41
Write check, 5-45

Write isolation buffer, 8-3,
8-18, 8-20, 8-22, 8-29, 8-30,
8-31

Write MCT registers, 5-42 to
5-43

Write page table entry
(WRITEP), 5-41, 8-46

Write protect switch and
indicators, 1-9

WRITE.TB, 5-43, 8-26

Write word. See Q22 bus
operations, write word

X

XLATE.RCHECK, 5-37
XLATE.WCHECK, 5-37 to 5-38

Y
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READER'S COMMENTS
MicroVAX | CPU Technical Description
EK-KD32A-TD-002

Your comments and suggestions will help us in our
continuous effort to improve the quality and usefulness of
our publications.

What is your general reaction to this manual? in your
judgement is it complete, accurate, well organized, well
written, etc.? Is it easy to use?

What features are most useful?

What faults or errors have you found in the manual?

Does this manual satisfy your needs?

Why?

Additional copies of this document are available from:

Digital Equipment Corporation
444 Whitney Street
Northboro, MA 01532

Attn: Printing and Circulation Services (NRO2/M 15)
Customer Services Section
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