
TECHNICAL REPORT SERIES

NUMBER: TR-95-161

The Proceedings of
The Petaflops Frontier Workshop

February 6, 1995

Associated with the
IEEE Sponsored Frontiers '95 Conference

on Massively Parallel Computations

Thomas Sterling
and

Michael J. MacDonald

Center of Excellence in Space Data and Information Sciences

Center of Excellence in Space Data and Information Sciences
Goddard Space Flight Center

Code 930.5
Greenbelt, MD 20771

(301) 286-4403

Internet: cas@cesdis1.gsfc.nasa.gov

Operated by Universities Space Research Association in cooperation
with the National Aeronautics and Space Administration

Abstract

This report presents the proceedings of the The Petaflops Frontier (TPF)
Workshop conducted at the 1995 Frontiers of Massively Parallel Processing
in McLean, VA on February 6, 1995. A year after the first Pasadena Work­
shop on Enabling Technologies for Peta(FL)ops Computing, this workshop
was held to extend the findings of the first workshop through wide coverage
of related disciplines and involvement of a broader community. Over a hun­
dred participants attended the one-day workshop at which 18 presentations
were given on topics in technology, architecture, alogrithms and applications
related to petaflops-scale computing.

The architecture and technology presentations included discussions of het­
erogeneous mixed-machine and mixed-mode computing systems, processor­
in-memory (PIM) technology developments along with other approaches to
combining logic functions with memory, and several that dealt with the po­
tential of various optical technologies to ease the bandwidth bottleneck.

The applications and algorithms presentations focused primarily on the
existing need for various applications for petaflops-level computing perfor­
mance. These applications include the human genome project, modeling of
physiological functions, drug design, ecological studies, and computational
fluid dynamics (CFD), a discipline used in numerous applications.

The workshop showed progress in the thinking about petaflops architec­
ture and technology requirements, reinforced the need for algorithmic research
to enable effective management of petaflops-level computing systems, and,
finally, reinforced the findings of the first petaflops workshop in Pasadena in
1994.

ii

Executive Summary

Even as the federal HPPCIT program pushes the computing frontier to achieve
teraflops computing capabilities, researchers across a wide variety of disciplines
have been engaged in defining the generation beyond teraflops-petaflops. A peta­
flops equals a million billion (1015) floating point operations per second-more than
the entire computing power now existing in the U.S.

The first on Enabling Technologies for Peta(FL)OPS Computing workshop in
Pasadena, California in 1994 called for continuing efforts to refine the workshop
findings and to more accurately define the requirements for architecture, technol­
ogy, applications and algorithms. Also, that workshop participants' concluded that
developing a petaflops machine should be possible by the year 2013 and that a new
architecture paradigm should not be needed to achieve petaflops-level performance.
The Pasadena workshop was successful in bringing together an invited group of ex­
perts from many disciplines to address fundamental issues related to the feasibility
of petaflop computing.

The Petaflops Frontier (TPF) Workshop was a continuation of the work started
in Pasadena. The workshop was held in McLean, Virginia on February 6, 1995. This
workshop was designed to bring together a wider community of researchers in ar­
chitecture, technology, applications and algorithms who, using an open forum for­
mat, could present their work to a multidisciplinary audience for review and com­
ment. Many of the presenters had not participated in previous petaflops workshops,
but were actively working on parts of the problem. Their contributions were con­
sidered important to preserve what has been one of the fundamental motivations of
the Frontiers series: to provide a forum for researchers who may not be part of large,
organized research and development efforts. At the same time, the workshop was
fortunate to have researchers who are participating in the efforts to develop teraflops
computing capabilities and who contributed to the earlier petaflops workshops.

Of the 18 presentations given, about half were on the architecture and technol­
ogy and half were on applications and algorithms.

The Petaflops Frontier Workshop clearly reaffirmed the results of previous gath­
erings that addressed petaflops computing. The discussions on architecture and tech­
nology demonstrated that conceptually the problems (or challenges) are known and
that a dramatic paradigm shift will not be likely or needed. Possibilities in architec­
ture range from heterogeneous systems as proposed by Siegel et al., to distributed
instruction-set architectures. Several presenters, such as Kogge, Elliott and others
made the case for exploiting processor-in-memory (PIM) technologies in architec­
ture design. Others (Lukowicz, Qiao, and Dowd) addressed the potential for optical
technologies to help break the 110 bandwidth bottleneck.

iii

The presentations on applications and algorithms varied from Moore's discus­
sion on data-intensive applications based on empirical data from the San Diego Su­
percomputer center, to a futuristic look at strategic applications by Stevens et al.
The problems of virtual reality were addressed by Taylor et al. Presentations about
current applications that need petaftops computing include medical and biological
problems (Maize!); computational fluid dynamics (Deane); astrophysics (Fryxell
and Olson); ecosystem simulation (Zeigler et al.) and "real" engineering and sci­
entific problems (Robinson).

As a result of the workshop CESDIS along with NASA's Goddard Space Flight
Center has designed and implemented at Goddard and CESDIS an on-line refer­
ence index accessible by means of the world wide web for petafiops enabling tech­
nologies and applications (PETA). The index will be a central point of informa­
tion on petaftops research and development. (PETA can be accessed at the URL:
http://cesdis.gsfc.nasa.gov/petaflops/peta.html) In addition to this report and the es­
tablishment of PETA, other follow-on activities to the workshop will include a more
detailed examination of petafiops requirements for science, engineering, and infor­
mation management applications, and added effort in reviewing, defining, and fo­
cusing the requirements for possible architectures for petaftops computing.

iv

Contents

Abstract i

Executive Summary iii

1 Introduction 1
1.1 What is Petaflops? 1
1.2 Historical Perspective 1
1.3 The Petaftops Frontier Workshop . 4

1.3.1 Objectives 4
1.3.2 Workshop Approach . 5

1.4 Report Organization 5

2 Issues for Petaftops Computers 7
2.1 Introduction . 7
2.2 Workshop Findings on Enabling Technologies for Peta(FL)OPS Com-

puting 7
2.3 Important Issues and Implications 10
2.4 Summary 14

3 Workshop Organization 15
3.1 Organizing Committee . 15
3.2 Agenda 15
3.3 Workshop Presentations 15
3.4 Workshop Attendees . 17

4 Overview of Presentations 21
4.1 Architecture and Technology Overview 21
4.2 Applications and Algorithms Overview 23

5 Architecture and Technology Issues and Challenges 25
Introduction . 25
5.1 . Heterogeneous Computing: One Approach to Sustained Petaftops

Performance 27
5.1.1 Introduction 27
5.1.2 Examples of Mixed-Machine HC 30
5.1.3 A Conceptual Model for HC . 32
5.1.4 Open Problems . 35
5.1.5 Conclusions 36

v

5.1.6 Acknowledgments . 37
5.1.7 References . 37

5.2 Processors-In-Memory (PIM) Chip Architectures for Petaftops Com-
puting . 41
5.2.1 Introduction 41
5.2.2 SIA Projections and CPU Architecture. 43
5.2.3 Open Issues 45
5.2.4 References 45

5.3 A Petaops is Currently Feasible by Computing in RAM 47
5.3.1 Introduction 47
5.3.2 Power Limitations . 48
5.3.3 Computing in RAM 49
5.3.4 Overall Architecture 51
5.3.5 Conclusions . . . 51
5.3.6 Acknowledgments . 51
5.3.7 References 51

5.4 Design of a Massively Parallel Computer Using Bit Serial Process-
ing Elements 53
5.4.1 Introduction 53
5.4.2 Massively Paiallel SIMD Architecture . 53
5.4.3 Summary 56
5.4.4 Acknowledgment 56
5.4.5 References 56

5.5 Non von Neumann Instruction Set Architecture as an Enabling Tech-
nology in Grand Challenge Systems 57
5.5.1 Introduction 57
5.5.2 Distributed Instruction Set Architecture 58
5.5.3 Simulation Results . 60
5.5.4 Conclusions 61
5.5.5 References 61

5.6 Taming Massive Parallelism: The Prospects of Opto-Electronic CRCW-
Shared Memory . . . 63
5.6.1 Introduction . 63
5.6.2 Related Work 63
5.6.3 OCRCW-SM . 64
5.6.4 Principles . . 64
5.6.5 Memory Architecture 64
5.6.6 Technological Feasibility 65
5.6.7 Performance . . . 65

vi

5.6.8 System Architecture
5.6.9 Conclusion and Future Work .

66
66

5.6.10 References 68
5. 7 Lightning: A Scalable Dynamically Reconfigurable Hierarchical WDM

Network for High Performance Clustering 69
5.7.1 Introduction 69
5. 7 .2 Scalable Technique for Clustering 69
5.7.3 Lightning Network Architecture 70
5.7.4 Summary 71
5.7.5 Acknowledgements 71

5.8 PETAFLOPS: PErhaps Iake A Euturistic Look at Optical Erocessing
Systems . 73
5.8.1 Introduction . 73
5.8.2 Free-space Optics for Massively Parallel Machines 73
5. 8.3 Fiber-optic Interconnects for Parallel and Distributed Systems 75
5.8.4 References . 77

5.9 Easing the Burden oh Latency-Tolerance Mechanisms in Petaflops
Computers 79
5.9.1 Introduction 79
5.9.2 Locality Independence . 79
5.9.3 Summary 80

5.10 Petaflops Technology: Real Time Image Compensation 81
5.10.1 Introduction 81
5.10.2 Real Time Image Compensation 81
5.10.3 Real Time Atmospheric Compensation 82
5.10.4 References 83

6 Applications and Algorithms: Issues and Challenges 85
6.1 Enabling Data-intensive Applications through Petaflops Computing 87

6.1.1 Introduction 87
6.1.2 Data Assimilation 87
6.1.3 Architecture Implications 88
6.1.4 References 89

6.2 Some Applications Demonstrating the Existing Need for Petaflops
Computing In Biomedical Research 91
6.2.1 Introduction 91
6.2.2
6.2.3
6.2.4

Challenges from the Data of Genome Projects
Drug Design
Realistic 3-D Heart Models

vii

91
92
93

6.3 Hierarchical Distributed Genetic Algorithms Control of Simulation-
based Optimization: The Need for Petaftops 95
6.3.1 Introduction 95
6.3.2 Watershed Simulation 95
6.3.3 Hierarchical Distributed Genetic Algorithms . 96
6.3.4 Performance Limits and Petaftop Potential . . 97

6.4 Computational Requirements for Hydrodynamic Turbulence on Peta-
flop Computers 101
6.4.1 Introduction 101
6.4.2 Length and Time Scales 102
6.4.3 Minimum Modes . 104
6.4.4 Workload 106

'
6.4.5 Petaftops .. 108
6.4.6 Conclusion . 110
6.4.7 References . 111

6.5 Computational Astrophysics Calculations on Petaftop Computers 113
6.5.1 Introduction 113
6.5.2 General Properties of Astrophysical Simulations . ll4
6.5.3 Requirements for a Petaftop Computer . 115

6.6 Petaftops and the Gravitational N-body Problem 119
6.6.1 Introduction ... 119
6.6.2 The N 2 Problem . 119
6.6.3 Tree Codes 120
6.6.4 Disk Galaxies .. 122

6.7 Strategic Applications for Petaftops Computational Systems . 123
6.7.1 Introduction 123
6.7.2 Global Assumptions 123
6.7.3 Molecular Nanotechnology CAD Systems . 125
6.7.4 Multiuser Shared Immersive Environments 127
6.7.5 National Scale Data Mining Engines 128
6.7.6 Integrated Global Earth Systems Simulation Environment . 129
6.7.7 Global Lifelong Education and Training Resource . 130
6.7.8 International Design and Modeling Resource 131
6.7.9 Human Knowledge Repository 132
6.7.10 Lunar and Mars Bases HKR Backup Station 134
6.7.11 Conclusions 135

6.8 A Case Study of Interactive, Immersive Visualization for Scientific
Environments ... 137
6.8.1 Introduction ... 137

viii

6.8.2 Environment . 138
6.8.3 Methodology . 138
6.8.4 Summary . . 140

6.9 Parallel Computations for Scientific and Engineering Applications:
What Could We Do With Petaftops? What Must We Consider If We
Are To Exploit Petaftops? 141
6.9.1 Introduction 141
6.9.2 Typical Problem Magnitude 141
6.9.3 Problems With Equation Generation . 143
6.9.4 Problems With Solver Scaling 143
6.9.5 Problems of Display and Interaction . . 144
6.9.6 A Cautionary Note 144
6.9.7 The Design Cycle 145
6.9.8 Petaftops, The Hardware and Software . . 145
6.9.9 Conclusion 146
6.9.10 References 146

7 Discussion and Conclusions
7.1 Motivating Factors forTPF-1
7 .2 Some High Points
7 .3 Applications and Algorithms
7 .4 Architecture and Technology . . .
7 .5 Implications for Future Directions . .

ix

147
147
148
150
151
153

List of Figures

Section 5.1
1 Hypothetical Example of the Advantages of Heterogeneous Com-

puting . 29
2 Conceptual Model of the Automatic Assignment of Subtasks to Ma­

chines in an HC environment. 33
Section 5.2

1 The EXECUBE Processor-In-Memory Architecture 42
2 PIM Configurations for a PetaOP 44
3 PIM Configurations for a Petaftop 44

Section 5.3
1 C•RAM Processing Element . 50

Section 5.4
1 Registers and ALU of PE 54
2 3x3 Toroidal 2-D Mesh of Bit-Serial PEs 55

Section 5.6
1 Architecture of the Proposed Opto-Electronic Shared Memory Sys-

tem. 67
Section 5.8

1 Possible Topologies 74
2 Interconnection Patterns in an MPIC . 75
3 Fiber-optics in Distributed Computing 76

Section 6.3
1 Limit in Memory Per Node of the CM-5 98

Section 6.4
1 Range of scales in turbulence 103
2 Hierarchy of Dimensions in Turbulence 106
3 Memory and Storage Requirements for Incompressible Turbulence

Vs. Machine Speed 109

List of Tables

Section 5.5
1 Sample Instruction Set for von Neumann System
2 Sample Instruction Set for Distributed System
3 Processor Cycle Delays
4 Simulation Results

x

59
59
60
60

Section 6.1
1 Projections of I/O Requirements 88

Section 6.4
1 Parameters of a Variety of Hydrodynamic Problems 104
2 Large-scale Computations and Their Parameters 105
3 Scaling to Teraflop and Petaflop Computing 108

Section 6.9
1 Compute Time for a 3-D Problem 143

xi

xii

1 Introduction

Even as the Federal HPCC Program works towards achieving teraflops computing,
policy makers and future research program planners in government, academia and
industry concluded that teraflops-level computing systems will be inadequate to ad­
dress many scientific and engineering problems that exist now, let alone applica­
tions that will, arise in the future. As a result, the high performance computing com­
munity is examining the feasibility of achieving petaflops-level computing over a
20-year period.

1.1 What is Petaftops?

A petaflops is a measure of computer performance equal to a million billion float­
ing point operations per second. It is comparable to more than ten times all the net­
worked computing capability in America, and it is ten thousand times faster than
the world's most powerful massively parallel computer. In short, it is more than all
the world's computing power today. A petaflops computer is so far beyond anything
within contemporary experience that scientists and engineers confronting problems
that are essentially intractable today may in their lifetimes see significant progress
in problem solutions. Perhaps even more exciting about the concept of petaflops
computing is that applications that now are little more than dreams may become
realities.

Petaflops computing also offers the attraction of being the next far horizon on
the landscape of high performance computing. It offers the incentive of working at
the very boundaries of computing-of seeing the future and being part of its gene­
sis. In the push towards future computing capabilities, however, it is important to
understand how the vision of petaflops computing developed.

1.2 Historical Perspective

As early as December 1991 the challenge of petaflops computing was receiving se­
rious consideration at the Purdue Workshop on Grand Challenges in Computer Ar­
chitecture for the Support of High Performance Computing sponsored by the Na­
tional Science Foundation. The workshop co-chairs identified achieving petaops
performance as one of four grand challenge problems in computer architecture.1

The authors noted that, "This ... challenge [of achieving peta-ops computing] is

1 Siegel, H. J. et al, "Report of the Purdue Workshop on Grand Challenges in Computer Architec­
ture for the Support of High Performance Computing", J. Parallel and Distributed Computing, Vol.
16, No. 3, 1992, pp. 199-211.

1

to dramatically improve and effectively harness the base technologies into a fu­
ture computer system that will provide usable peta-ops of computer performance
to grand challenge application programmers."

, Following the Purdue workshop, the issue of petaflops computing was addressed
by the High Performance Computing, Communications and Information Technol­
ogy Subcommittee (HPCCIT)2 • The HPCCIT, comprised of representatives from
the major government agencies involved in the HPCC program, proposed that en­
abling technologies for petaflops computing be addressed in a workshop in the near
future.·

Soon after the meeting, the Administrator of NASA convened a special initia­
tive team to evaluate its existing and future high performance computing require­
ments. The NASA Supercomputing Special Initiative Team used a projected 10-
year period to assess the implications of the computational aerosciences and Earth
and space sciences grand challenges with respect to (1) established NASA require­
ments, (2) other U.S. govemmentHPC activities, including advanced architectures,
component technologies, and communications, (3) U.S. industry efforts, (4) activi­
ties in academia and other orgnaizations, and (4) the approach and progress of for­
eign efforts.

The team re-affirmed the findings of the earlier Pasadena workshop with respect
to the requirements to achieve teraflops computing. The team also concluded that
some NASA grand challenge problems would require petaflops computing perfor­
mance. In their assessment the team identified seven major technology barriers to
achieving petaflops-level performance:

1. Systems software

2. Memory speed

3. Aggregate 1/0

4. Interprocessor speed

5. Processor speed

6. Packaging

7. Power management

2The HPCCIT is a subcommittee of the Committee on Physical, Mathematical, and Engineering
Sciences (PMES), a committee of the Federal Coordinating Council on Science, Engineering and
Technology (FCCSET)

2

Other government agencies, academia and industry were no less aware of the
need to extend their horizons beyond the teraflops regime. The combination of this
awareness, the HPCCIT meeting, and the report of NASA's Supercomputing Spe­
cial Initiative Team, helped form the basis of the first workshop on petaftops com­
puting.

In February 1994 in Pasadena, California, Caltech hosted the first major work­
shop to address petaflops computing. The Workshop on Enabling Technologies for
Peta(FL)OPS Computing involved over 60 invited experts in all aspects of high per­
formance computing technology who met to establish the basis for considering fu­
ture research initiatives that could lead to the development, production, and applica­
tion of petaflops scaled computing systems. The objectives of the Pasadena work­
shop were to (1) identify applications that require petaflops performance and deter­
mine their resource demands, (2) determine the scope of the technical challenge to
achieving effective petaflops computing, (3) identify critical enabling technologies
that lead to petaflops computing capability, (4) establish key research issues, and
(5) recommend elements of a near-term research agenda.

Over a period of three days the Pasadena workshop focused on the following
major and inter-related topic areas:

• Applications and Algorithms

• Device Technology

• Architecture and Systems

• Software Technology.

The workshop results reflected the potential opportunities and the daunting chal­
lenges that will confront designers and users of future petaflops computing systems.

Despite the expected challenges, the participants concluded that a petaflops com­
puting system should be feasible in 20 years. This prediction was partly based on an
assumption that during the 20 years the semiconductor industry would continue ad­
vancing in speed enhancement and in cost reduction through improved fabrication
processes. And, although the workshop concluded that no paradigm shift would
be needed in systems architecture, managing active latency would be essential and
require a very high degree of fine-grain parallelism along with the mechanisms to
exploit it. Also, a mix of technologies might be required, including semiconductor
for main memory, optics for inter-processor (and possibly inter-chip) communica­
tions and secondary storage, and perhaps cryogenic (e.g., Josephson Junction) for

3

very high clock rate and very low power processor logic. Finally, dramatic per de­
vice cost reduction and innovative approaches to system software and programming
methodologies would be essential.

1.3 The Petaflops Frontier Workshop

The The Petaftops Frontier Workshop was held in McLean, Virginia on February
6, 1995. This first Frontiers petaftops workshop was part of a deliberate and on­
going process to define the long range future of high performance computing here
in the U.S. and, practically speaking, the rest of the world. The one-day workshop
included 18 presentations in architecture, technology, applications, and algorithms
from particpants ranging from recognized leaders in their fields to individual re­
searchers from government, academia and industry.

,:, If the notion of petaftops is ambitious, the technical challenges promise to be
staggering. The nature and scope of the challenges were identified by the Pasade1.1a
petaftops workshop. But, while the experts participating in that workshop were ac­
knowledged experts, missing were individuals who could be thought of as working
"on the edge": researchers working on bits and pieces of the technologies that even­
tually will be needed to advance beyond teraftops to petaftops.

Eliciting the participation of such individuals in the high performance comput~
ing community was and remains an overarching goal of the annual Frontiers ses­
sions. In this respect the The Petaftops Frontier Workshop was at least partially suc­
cessful because, while many participants and attendees had not been at Pasadena,
an appreciable number had. One obvious reason for this is that interest in working
towards a petaftops capability remains high.

1.3.1 Objectives

The Petaftops Frontier Workshop had five specific objectives

1. Help satisfy the recommendation of the working groups at the first Pasadena
petaftops workshop for further near term studies and more detailed examina­
tion of system requirements and technology extrapolation.

2. Open the emerging discipline of petaftops computing to a much broader com­
munity of science and technology. (As indicated earlier, this also is one of the
overarching goals of Frontiers.)

3,. Focus on identifying (and extending) science, engineering and information
management challenges that would be enabled by petaftops capabilities, and
determine resource requirements.

4

4. Widen the scope of technologies and architectures being considered for peta­
fiops computing.

5. Assess the feasibility and desirability of establishing PETA (Petafiops En­
abling Technologies and Applications), an on-line reference index as a central
point for cataloging information about petaflops-related research and devel­
opment accessible via the world wide web.

1.3.2 Workshop Approach

The workshop was organized to ensure continuity with the Pasadena petafiops work­
shop and to ensure that anyone who could contribute in any way had the opportunity
to do so. Consequently, an open invitation was extended to all interested colleagues.
This approach distinguished the Frontiers workshop from the "by invitation only"
participation at Pasadena.

A large number of brief presentations was scheduled with two preliminary cat­
egories considered:

• Architecture and Technology

• Applications and Algorithms

An open speaker forum format was used. This eased some of the constraints on
participation encountered in more structured events. The focus of the discussions
was the challenges, barriers, and opportunities to petafiops computing.

This report constitutes another aspect of the approach to the workshop. As a
result, the goal of the report is to clearly and succinctly capture the workshop de­
liberations and present it in a context that puts it into perspective with the on-going
HPCCIT program.

Finally, even before this report was published the petafiops database and elec­
tronic reference index, PETA, became operational. This index will considerably
enhance communication among those working on the various technologies suitable
for future petafiops development work.

1.4 Report Organization

This report is being published as a Technical Report of the Center of Excellence in
Space Data and Information Systems, Universities Space Research Association, in
cooperation with NASA's Goddard Space Flight Center.

5

Section 1 briefly describes several key events or activities that preceded the The
Petaftops Frontier Workshop, the objectives and approach of the workshop and the
report organization.

Section 2 summarizes the key issues of petaftops computing. Much of the dis­
cussion is based on the excellent work and report from the Workshop on Enabling
Technologies for Peta(FL)OPS Computing in Pasadena in 1994. The discussion
provides a synopsis of the important findings and conclusions from that workshop'.

Section 3 includes the The Petaftops Frontier Workshop agenda and information
about the organizers, the presenters and the participants.

Section 4 is a synthesis of the presentations at The Petaftops Frontier Workshop
in McLean, VA February 6, 1995. Eighteen presentations addressed various aspects
of architecture, technology, applications, and algorithms.

Section 5 consists of extended abstracts from the workshop presentations in the
areas of architecture and technology, and Section 6 includes the extended abstracts
from the applications and algorithms presentations. These are included both to en­
sure the technical content and to provide the reader with material directly by the
participants.

Section 7 distills the workshop results and presentations in a comprehensive dis­
cussion of conclusions and recommendations for follow-on activities.

6

2 Issues for Petaflops Computers

2.1 Introduction

The first Pasadena petafiops workshop represented major potential constituencies
for a long-term initiative to develop the enabling technologies that can lead to peta­
flops computing systems. Equally important, these representatives were, for the
most part, active users, innovators, and researchers in high performance comput­
ing and related technologies. Their specific findings and the issues they identified,
therefore, illuminate the important challenges facing the high performance comput­
ing community

2.2 Workshop Findings on Enabling Technologies for Peta(FL)OPS
Computing

Perhaps the two most important overriding conclusions of the first workshop on en­
abling technologies for petaftops computing were that, (1) although teraftops com­
puting has not yet been achieved, it was not too soon to assess the state-of-the-art
with respect to petaftops computing, and (2) the implications of such a capability
were too important to the nation's future to ignore.

The working groups of the workshop individually and collectively developed
twelve separate findings that can be categorized as follows:

Feasibility

Potential Use

Cost

Reliability

MIMD Model

Latency Management and Parallelism

Semiconductor Technology

Memory

Software Paradigm Shift

7

Merging of Technologies

A Role for Superconductivity

Optical Logic Unlikely

The findings are summarized in the paragraphs that follow.

Feasibility. Assuming that key technologies maintain recent rates of advance­
ment over the next 20 years, a petaftops computer is feasible. This also assumes
that appropriate software technology develops as well. The 20-year development
period will require appreciable work in several device technology areas to achieve
working systems.

Potential Use. Applications that will need petaftops computing include sci­
ence, engineering, economics, societal information infrastructure, and management
to name a few. The availability of petaftops-level computing will also engender ap­
plications that cannot be predicted now, but will determine the technologies of the
future. This cycle of technology push, requirements pull has historical precedence
in the computing community and there is no reason to expect that the next 20 years
will be different.

Cost. Cost will be the single most important factor affecting the development
of petaftops computing. In today's dollars and technology such a system would cost
over $100 billion. The best estimates for the cost of a petaftops system in 20 years
range from $100 million to $1 billion.

Reliability. Cost will place an upper limit on component count of between a
hundred thousand and a million for a petaftops computer and this will be achievable
only with significant advances in device integration density. But, this estimate of
components is within the range of the largest systems being manufactured today.
Consequently, using known techniques, a petaftops computing system should have
acceptable reliability; although some question exists concerning the reliability of
extremely high density on-chip devices.

MIMD Model. Achieving petaftops computing should entail no fundamental
paradigm shift in system architecture. A NUMA (Non-Uniform Memory Access)
MIMD structure with possible SIMD elements can satisfy the key resources and
control requirements. Many of the details, however, will be quite different from
conventional multiprocessors. This finding is considered valid for today's classes
of applications, but it is not clear what additional requirements may be imposed by
new applications once petaftops computing becomes available.

8

Latency Management and Parallelism. Compared to conventional MPPs, a
petaflops system will have a wide diameter1 . Unless the resulting latency can be
hidden, system efficiency will be unacceptable. Single-cycle context switching and
communication pipelining are methods of managing the latency, but this will re­
quire exploiting vast amounts of parallelism. Two possible alternatives are very low
latency systems with a few (1000) very high performance processors, and systems
with millions of processors where almost all accesses are to local memory. For ei­
ther, latency-hiding mechanisms would not be as critical.

Semiconductor Technology . The commercial semiconductor marketplace in­
vests the most in technology development, far exceeding any potential augmenta­
tion from government sources. Specialty chips are more costly than mass produced
commodity parts of equivalent complexity. The development of a petaflops com­
puter will have to rely heavily (although not exclusively) on commercially available
components. But the time to develop a petaflops computer will be determined by
the "technology wave" which is largely controlled by market forces.

Memory. Memory will drive cost as well as many of the architectural deci­
sions. The important findings relating to memory covered several topic areas that
are summarized below:

• Size. The predominant component of a petaflops computer will be memory.
Although it has been thought that memory should scale linearly with perfor­
mance, a scaling factor of the 3 / 4 root provides an upper bound for entire
classes of scientific and engineering applications, and for many applications
the storage requirement were considerably less. Consequently, the memory
size will be between 10 and 40 terabytes. In some instances, however, more
memory will be desirable.

• Bandwidth. Compared to today's standards, memory bandwidth will have to
be significantly increased with respect to memory size. While on-chip mem­
ory bandwidth is very high, its interface to external devices inhibits its use.
New memory organizations that expose this bandwidth will be essential in
the design of a petaflops system.

• Global Name Space. Having a common name space across the machine can
simplify both programming and implementing resource management software,
and (through hardware support) minimize overhead for fine grain remote ac­
cess requests. Support of a global name space is important for both human
and machine effectiveness.

1 Diameter is a measure of the number of clock cycles required for an access request to propagate
across the machine

9

• Petabyte Computer. Many information management applications of the fu­
ture may be more dependent on availability of main memory than on peak
performance. While a different class of computer than the petaftops computer
that was the focus of the workshop, such memory intensive systems will play
a significant role.

Software Paradigm Shift. Current programming methodologies and resource
management software are inadequate to exploit massive parallelism. An entirely
new programming paradigm may be essential for effective use of these systems,
and it must extend beyond the central computer to incorporate semantics that deal
with the information infrastructure. Complicated compile time analysis algorithms,
which have intense compute requirements, will benefit from a petaftops capability.

Merging of Technologies. Instead of the fairly exclusive and homogeneous
use of semiconductor technology today, the merging of several technologies could
give a stronger petaftops system. Likewise, superconductive devices could provide
extremely high speed logic with very low power. Very low power optics will pro­
vide internal bandwidth, while semiconductor technology will be used for the high
density mass main memory.

A Role for Superconductivity. Superconductor technology may be extremely
useful in a petaftops computer. While the potential two orders of magnitude clock
speed improvement over semiconductor speeds will be important, the low power
requirements may be crucial. In the U.S., however, cryogenic digital technology is
receiving relatively low support.

Optical Logic Unlikely. Optical technology is unlikely to provide a path to
high density, high speed, low latency logic that can be used in petaftops computers.
Such devices may play a part in very specialized hardwired computing systems, but
their use as constituent elements in the class of systems considered is not tenable.

2.3 Important Issues and Implications

The first Pasadena Workshop on Enabling Technologies for Peta(FL)OPS Comput­
ing identified 14 importantissues and implications that arose from the discussions
within and among the various workgroups. These issues and implications can be
categorized in three areas as follows:

• Policy and National Need Issues

- Why Petaftops Now?

- Role of a Petaftops Computer

- Side-effect Products

10

• Technology Issues

- SIA Predictions

- Impact of Exotic Technologies

- U.S. Capabilities in Memory Fabrication

- Performance Versus Efficiency

- Special Widgets, Where to Invest

- Programming Paradigms

• Architecture Issues

- A Range of Architectures

- Far-side Architectures

- Latency-hiding Techniques May Help Smaller Machines

- Long Versus Short Latency Machines

- I/O Scaling

Each of the categories is summarized in the paragraphs that follow.

Policy and National Need Issues. The report on the first petaftops workshop
stated that the fundamental issue of the workshop was, " ... the stakes are too high
for the U.S. to leave this future technology in the hands of other nations."2 For that
reason the participants believed the subject of petaftops computing was both a se­
rious and timely topic, especially since the U.S. appears to be lagging in certain
technologies that could be critical to a petaftops computer.

A petaflops computer is unlikely to be restricted to the classical role of super­
computers, i.e., few users working on scientific or engineering applications. More
likely, a petaflops computer will be shared by many and varied users working on di­
verse problems. Also it's possible that a petaflops computer may actually be a con­
federation of computers instead of a single computer. Such an arrangement would
simultaneously support numerous small computing problems but make available
the collective compute power when required for large problems. As more and more
computing power becomes available, it's likely that non-scientific applications will
avail themselves of the capability. These non-scientific applications could include
massive information databases and multimedia presentations for simultaneous ac­
cess by thousands of users, management services, etc.

2Thomas Sterling, Messina, P. C., Smith, P.H., Enabling Technologies for Peta(FL)OPS Comput­
ing, MIT Press, 1995, p. 159

11

Lastly, if history is any indicator, as the quest for more computing power heats
up along the road to petaftops capabilities, the technology developed will be applied
to "interim" products that will have dramatically increased computing power com­
pared to what is available today. It's not inconceivable that before 20 years have
passed a desktop workstation will be more powerful than today's.most powerful
computer.

Technology Issues. The technology issues and implications encompass both
hardware and software. In the hardware sector there seems to be no question that
semiconductor technology will reach the limits of physics long before petaftops ca­
pabilities can be achieved. At the same time the decades-long dominance of semi­
conductor technology has had a serious negative effect on the funding of other tech­
nologies: technologies that now seem to offer promise in solving some of the ob­
stacles to developing a petaflops computer. Two of these technologies are super­
conductor and optical technologies.

Software technology also lags the needs of the high performance computing
community. Indeed, this observation was the basis of the first Systems Software
and Tools for High Performance Computing Environments workshop in Pasadena
(hosted by Caltech) in 1992. Too much effort (time and dollars) is required to pro­
gram, debug and optimize applications code for massively parallel machines, With­
out significant improvement on all software technology fronts, programming for a
petaftops system may be unaffordable.

As a basis for its hardware technology discussions and projections, the work­
shop used raw extrapolations of existing SIA projections for the growth of semi­
conductors. The report noted that the workshop's petaftops projections shoull be
used with caution because detailed studies to extend the SIA projections had not
been done; thus, projections beyond the year 2000 are subject to considerable un­
certainty. Also, at the limits of the SIA projections for chip fabrication, new quan­
tum effects are expected. As a result, it's not at all clear how the semiconductor
technology will evolve at lithographic resolutions finer than 0.1µ.

Optical technology, while offering promise for intercommunications, appears
to be impractical for optical-only logic. But, the very high bandwidth available in
optical devices can be used to manage the tremendous message traffic between high­
speed processors and terabytes of global memory. Also, optical storage may be es­
sential for the emerging databases that are accessible world-wide. It may be that
superconducting technology can help solve the problems of massive power con­
sumption and heat dissipation that could make a semiconductor-only computer.

If the U.S. expects to play a dominant role in the development of a petaflops
computer, it must improve its capabilities to fabricate memory and processors and

12

especially to integrate them. With integrated memory and processors, as described
in one of the architectures postulated at the workshop, processor-to-memory band­
width is maximized. A petaflops computer will be much more memory intensive
than today's computers. Dependence on foreign suppliers for huge quantities of
memory does not seem to be a reasonable alternative.

A consistent theme of the workshop was that with respect to hardware a peta­
flops computer could be affordable only if most of its components were commer­
cially available. Yet, it also seems. inevitable that design and fabrication of some
custom components will be necessary. The issue then becomes the cost of such
custom components as a cost-driver. It would take only a few such components
to overwhelm the development cost curve. At the same time, to restrict component
selection to those commercially available could also severely restrict system design
and, ultimately, system performance.

Software technology issues are as important as hardware issues. Today's ma­
chines are built to maximize peak throughput-not time to solution. It's not unusual
for an application programmer to need months to develop, debug and optimize code
that eventually runs in just a few minutes or hours. Current systems are just too hard
to program and optimize because the adequate software tools are not available and
managing the distributed resources is too complex. Without a serious shift in em­
phasis in what is important in system design, a petaflops computer will be of little
practical value in addressing real-world problems.

Change is slow in the world of programming languages. The scientific com­
munity is slowly recognizing that Fortran may not be the most suitable language to
exploit the capabilities of massively parallel computers. But, if not Fortran, what?
Few replacement candidates seem strong. A petaftops computer will demand a new
language. And, the language must significantly ease the processes of programming,
debugging, and optimizing.

Architecture Issues. Architecture is the sine qua non: it will ultimately drive
(directly or indirectly) all other aspects of a petaflops computer. The Pasadena peta­
flops workshop examined three different architectures with respect to processor gran­
ularity, speed, and latency.

Each architecture imposed different requirements on technology and supported
applications. Per processor speeds ranged from 10 gigaflops at the low end to tera­
flops at the high end. At the high end, latency was assumed to be low: at the other
extreme, while local memory access and system-wide bandwidth was good due to
processor-in-memory chips, hardware support of shared-memory would be diffi­
cult.

13

The workshop also considered a heterogeneous system composed of the three
different architectures. The hybrid architecture achieved petaflops performance al­
though each separate comput~r was capable of only teraflops-level computing. The
architectures considered may, over time, prove to be the appropriate approach. But,
other parallel architectures might be feasible, especially for specific kinds of appli­
cations.

Latency will continue to be a significant problem for massively parallel ma­
chines. One result of the quest for petaftops computing could be that latency-hiding
techniques developed for the petaflops machine may be applicable to less powerful
machines as well. And, as density increases, another possibility is to develop meth­
ods to further exploit the advantages of short latency machines combined with very
high clock speeds.

Although clock speed and local memory or system memory access (depending
on the architecture chosen) will be crucial, the importance of I/O cannot be over­
stated. While I/O may not scale linearly as once anticipated, it is and will continue
to be a bottle neck until I/O bandwidth and bandwidth for secondary storage are
increased appreciably.

2.4 Summary

Clearly, the challenges to developing a petaftops computer are formidable. And,
that applies to the known challenges.The unknown will be confronted when they
emerge. They may-and probably will-fall into most of the distinct areas listed
earlier. Perhaps the most important point to be gleaned from this discussion is that
working experts think that petaftops computing within 20 years is feasible.

14

3 Workshop Organization

The Petaflops Frontier Workshop was held in McLean, Virginia on February 6, 1995
at the McLean Hilton hotel. This section includes the workshop organizing com­
mittee and their affiliations, the workshop agenda in chronological order along with
the presenters and affiliations, and the attendees.

3.1 Organizing Committee

• Thomas Sterling, USRA/CESDIS

• John Dorband, NASA Goddard Space Flight Center

• Michele O'Connell, USRA/CESDIS

3.2 Agenda

• Welcome-Michele O'Connell, USRA/CESDIS

• WhyPetaflops? Why Now? WhyHere?-Thomas Sterling, USRA/CESDIS

• Keynote Address-George Lake, University of Washington

• Review of Pasadena Petaflops Workshop-Thomas Sterling, USRA/CESDIS

• Introduction to Talks-John Dorband, NASA Goddard Space Flight Center

3.3 Workshop Presentations

Listed below in chronological order are the presentation topics, the presenters and
their affiliations 1

• Processors-In-Memory (PIM) Chip Architectures for Petaftops Computing,
Peter Kogge, Notre Dame

• A Case Study of Interactive, Immersive Visualization for Scientific Environ­
ments, Rick Stevens, Valerie Taylor and Meena Kandaswamy, Argonne Na­
tional Laboratory

1 Justin Porter, University of British Columbia, and Guy Robinson, Syracuse University, who
could not attend the workshop provided extended abstracts, "Non von Neuman Instruction Set Ar­
chitecture" and, "Parallel Computations for Scientific, and Engineering Applications: What Could
We Do With Petaflops", respectively, that are included in this report.

15

• Please Everyone, Take a Futuristic Look at Optical Processing Systems, Chun­
ming Qiao, SUNY

• Strategic Applications for Peta(FL)OPS Computational Systems, Rick Stevens
and Valerie Taylor, Agonne National Laboratory

• Taming Massive Parallelism: The Prospects of Opto-Electronic CRCW Shared
Memory, Paul Likowicz, University at Karlsruhe

• Enabling Data-Intensive Applications through SDSC Petaflops Computing,
Reagan Moore, San Diego Supercomputing

• Design of a Massively Parallel Computer Using Bit Serial Processing Ele­
ments, Maurice Aburdene, Bucknell University

• Hierarchical Distributed Genetic Algorithms Control of Simulation-based Op­
timization: The Need for Petaftops, George Ball, University of Arizona

• A PetaOp/s is Currently Feasible by Computing in RAM, Duncan Elliott,
University of Toronto

• Buffet Lunch and Poster Session

• Heterogeneous Computing: One Approach to Sustained Petaftops Performance,
H. J. Siegel, Purdue University

• Some Applications Demonstrating the Existing Need for Petaftops Comput­
ing in Biomedical Research, Jacob Maizel, National Cancer Institute

• Lightning: A Scalable Dynamically Reconfigurable Hierarchical WDM Net­
work for High-Performance Clustering, Patrick Dowd, NASA Lewis Research
Center/SUNY

• Petaftops and the Gravitational N-body Problem, Kevin Olson, George Ma­
son University

• Computational Astrophysics Calculations on Petaftop Computers, Bruce Fryx­
ell, NASA Goddard Space Flight Center

• Easing the Burden on Latency-Tolerance Mechanisms in Petaftops Comput­
ers, David Probst, University of Toronto

16

• Thoughts on Artificial Life in a Petaflop/Second Environment, John Thorp,
Cray Research. 2

• Petaflops Technology: Real Time Image Compensation, Rick Lyon, Hughes
STX

• Computational Requirements for Hydrodynamic Turbulence on Petaflops Com­
puters, Anil Deane, George Mason University

• Open Speakers Forum and Discussions

• Plenary Session with Workshops A and C

3.4 Workshop Attendees

The workshop attendees and their affiliations are shown below:
Maurice Aburdene (Bucknell University)
Robin Alford (CESDIS)
Von Backenstose (Department of Commerce)
David Bader (University of Maryland)
George Ball (University of Arizona)
F. D. Bedard (National Security Agency)
George Bell (Stanford University)
Simon Berkovich (George Washington University)
Mike Berry (Department of Defense/USAF)
Bruce Black (Cray Research Inc.)
Andrew Chien (University of Illinois)
Fabien Coelho (Ecole des Mines)
Jarrett Cohen (NASA Goddard Space Flight Center)
John Conery (University of Oregon)
Bob Cox (Cray Computer Corporation)
David Crawford (Electronic Trend)
Dave Curkendall (Jet Propulsion Laboratory)
Anil Deane (George Mason University)
David DiNucci (Computer Science Corporation)
John Dorband (NASA Goddard Space Flight Center)
Patrick Dowd (State University New York)
Duncan Elliott (University of Toronto)
Walter Ermler (Department of Energy)

2 An extended abstract of this presentation was not available for this report.

17

Hassan Fallah-Adl (University of Maryland)
Robert Ferraro (Jet Propulsion Laboratory)
Charles Fiduccia (Supercomputing Research Center)
Jim Fischer (NASA Goddard Space Flight Center)
Ian Foster (Argonne National Laboratory)
Bruce Fryxell (George Mason University)
Eugene Gavrilov (Los Alamos National Laboratory)
Norman Glick (National Security Agency)
Peter Gulko (Rebus Technolgies)
Yang Han (George Washington University)
Jim Harris (NASA HQ, Office of Mission to Planet Earth)
R. Michael Hord (BRIM)
Fred Johnson (National Institute of Standards and Technology)
Kamal Khouri (Bucknell University)
David Kilman (Los Alamos National Laboratory)
Steve Knowles (Naval Space Command)
Peter Kogge (Notre Dame University)
John Korab (NASA, EOSDIS)
Joydip Kundu (University of Oregon)
H. T. Kung (Harvard University)
George Lake (University of Washington)
William Leinsberger (Computer Devices International)
Paul Lukowicz (University at Karlsruhe)
Lou Lome (Ballistic Missile Defense Organization)
Serge Lubenec (George Mason University)
Rick Lyon (Hughes STX)
Jacob Maize! (National Cancer Institute)
Yossi Matias (AT&T Bell Labortories)
William Mattus (Villanova University)
Thomas McCormick III (National Security Agency)
Al Meilus (George Washington University)
A. Ray Miller (National Security Agency)
Jose Milovich (Lawrence Livermore National Laboratory)
Samin Mohammed (George Mason University)
Reagan Moore (San Diego Supercomputing Center)
Z. George Mou (Brandeis University)
Samiu Muhammed (George Mason University)
Chrisochoides Nikos (Syracuse University)
Michele O'Connell (CESDIS)

18

Kevin Olson (George Mason University)
Behrooz Parhami (University of California)
Jeff Pedelty (NASA Goddard Space Flight Center)
I vars Peterson (Science News)
Larry Picha (CESDIS)
Thierry Porcher (CEA)
David Probst (Concordia University)
Chunming Qiao (State University New York)
Donna Quammen (George Mason University)
Craig Reese (Supercomputing Research Center)
S. Repdauay (CPP)
Michael Rilee (Cornell University)
Allen Robinson (Sandia National Laboratory)
Subhash Saim (NASA Ames Research Center)
Subhash Saini (Computer Sciences Corporation)
Ray Sakardi (National Security Agency)
David Schaefer (George Mason University)
Judith Schlesinger (Supercomputing Research Center)
Vasili Semenov (State University New York)
Bruce Shapiro (National Cancer Institute)
H.J. Siegel (Purdue University)
Margaret Simmons (Los Alamos National Laboratory)
Burton Smith (Tera Computer)
Paul H. Smith (NASA HPCC Office)
Matteo Sonza-Reorda (Politecnico Di Torino)
Thomas Sterling (CESDIS)
Katja Stokley (George Mason University)
Valerie Taylor (Northwestern University)
John Thorp (Cray Research Inc.)
Joe Vaughn (Computing Devices International)
Chris Walter (WW Technology Group)
Pearl Wang (George Mason University)
Nancy Welker (National Security Agency)
Leonard Wisniewski (Dartmouth College)
Paul Woodward (University of Minnesota)
Bill Wren (Honeywell)
Richard Yentis (George Washington University)
Steve Zalesak (NASA Goddard Space Flight Center)
Bernard Zeigler (University of Arizona)

19

20

4 Overview of Presentations

This section provides an overview of the workshop presentations in two major cat­
egories: architecture and technology; and applications and algorithms. Extended
abstracts of the workshop presentations are included in Sections 5 and 6.

4.1 Architecture and Technology Overview

The architecture and technology presentations encompassed a variety of topics and
included subjects such as heterogeneous computing environments, developments
in processor-in-memory, and methods of employing optical technologies. The ex­
tended abstracts of the architecture and technology presentations are included in
Section 5.

The first article, by Siegel et al., discusses heterogeneous computing as one ap­
proach to sustained petaftops computing. In their presentation the authors discuss
the goal of heterogeneous computing, mixed-mode heterogeneous computing and
mixed-machine heterogeneous computing. They also present a conceptual model
of automatic heterogeneous computing and discuss several "open problems" related
to developing and implementing heterogeneous computing. In concluding, the au­
thors make the case that reaching sustained petaftops computing will be difficult
even if peak petaftops performance is achieved. They also note that because in het­
erogeneous computing each subtask of an application can be matched to the ma­
chine that can execute it most effectively, and multiple machines can be used con­
currently to process a single application, heterogeneous computing is one possible
approach to providing sustained petaftops computing.

Processor-in-chip (PIM) chip architectures are addressed by Kogge who dis­
cusses how they can contribute to the development of petaftops computing. Kogge
provides details about the EXECUBE PIM chip that merged lOOK custom circuits
and 4.5 Mbits of dynamic random access memory onto a single die. In address­
ing the potential tradeoffs of such developments, Kogge discusses the SIA technol­
ogy projections with respect to two CPU architectures. In concluding that the PIM­
based architecture offers the potential to achieve "huge" levels of performance with
far fewer chips and lower cost than other approaches, Kogge notes that a number
of open questions "absolutely" must be answered before PIM-based systems can
become a reality.

The feasibility of petaops computing in RAM is discussed by Elliott et al. by fo­
cusing on what might be possible using technology currently available. From their
slightly different perspective they support Kogge's position regarding integrating

. processing power into memory. They suggest radical changes to memory architec-

21

ture. And, while the majority of the computing power will reside in the SIMD pro­
cessing elements in memory, they propose a hybrid MIMD-SIMD machine because
of the flexibility of MIMD and the economics of SIMD.

Dorband, Aburdene et al. suggest that the shift in emphasis to MIMD machines
has been based on "inappropriately drawn" conclusions and that the full potential
of SIMD machines has not been fully explored. The objective of their work is to
design a massively parallel SIMD architecture having over one million processors.
They discuss the design of the processing element and simulating a 3 x 3 toroidal
2-D mesh architecture.

Porter contends that current superscalar/superpiplined architectures "sidestep"
the von Neumann bottleneck of moving data between processors and memory. He
addresses the concept by moving decoding and fetching from the processor to mem­
ory using a non von Neumann instruction set architecture. Porter also discusses his
simulation of a dual processor model to perform the Cooley-Tukey algorithm Fast
Fourier Transform benchmark to show the feasibility of distributed-instruction set
architectures.

Lukowicz and Tichy discuss the prospects of opto-electronic concurrent-read,
concurrent-write shared-memory. Their approach is to exploit the natural paral­
lelism of optical data storage and integrate it into the memory hierarchy of a mas­
sively parallel computer. With opto-electronic components 1J1ey project systems
with gigabytes capacity with a latency of~ Ins.

The theme of optical components is continued by Dowd who discusses Light­
ning, an architecture based on wavelength-division multiplexing (WDM). A hier­
archical structure is used to enable scalability while avoiding the need for multiple
wavelength-tunable devices per node. The communications requirements of the ar­
chitecture are achieved using wavelength-, space- and time-division multiplexing.
An advantage to this approach is that bandwidth can be reconfigured dynamically
and reallocated to adapt to shifts in traffic patterns.

Optical interconnection networks also are addressed by Chunming Qiao who
discussed free-space optical and fiber-optic interconnects. Chunming presents a fu­
turistic topology, Multi-Plane Interconnected Cube (MPIC), but notes that a num­
ber of issues such as routing, electronic and optical implementations, and fault­
tolerance are still being actively investigated. Chunming calls for increased accep­
tance of fiber-optic technology, a technology that so far has been largely fostered
by the telecommunications industry.

Latency tolerance remains an issue with large-scale systems. Probst addresses
the relationship between latency-tolerance and dependence on or independence from
data locality. His goal is for neither locality dependence nor cache behavior to con­
strain available parallelism or degrade the quality of memory bandwidth.

22

4.2 Applications and Algorithms Overview

The applications and algorithms presentations included topics such as medical and
biological requirements, computational fluid dynamics applications, image deblur­
ring in real time, and astrophysics. The extended abstracts are provided in Section
6.

In the first article, Moore argues that with petaflops computational power, data
assimilation will become as important to modeling as computational simulation is
today. Using data from the San Diego Supercomputer Center, he projects I/Ore­
quirements for giga, tera, and petaflops execution rates. Moore suggests that a peta­
flops computer can be used to process archived data sets that by the year 2000 will
be in the petabyte range.

Maizel shows in the next article that several classes of problems exist that have
an existing need for petaflops computing capabilities. These problems include the
DNA in Human Genome Project, drug design, and organ modeling. Beyond these
existing needs, petaflops computing could contribute significantly to the develop­
ment of virtual medicine and surgery, prosthesis design, and environmental research.

The existing need for petaflops-level computing power also is addressed by Zei­
gler et al. who discuss the intricacies of high resolution simulation of landscape
ecosystems. They present results of their work to support the view that current tech­
nology cannot support the large data sets needed to model such systems, or accom­
plish the work in a usable period of time.

Deane discusses the need for petaflops computing from the perspective of com­
putational fluid dynamics (CFD) problems. Deane discusses the cross-discipline
dependence on CFD for such problems as aircraft simulation, atmospheric studies,
oceanographic analyses, and studies of solar convection and supernova.

Fryxell's article on computational astrophysics provides additional definition
to the problems involved in analyzing astrophysics phenomena. He suggests that
in attempting to analyze the requirements for a petaflop computer (for astrophysics
problem), it is better to use a general approach for the analysis than one designed
for a specific problem

In the next article, Olson specifically addresses the gravitational N -body prob­
lem in cosmology. He approaches the problem from both the direct N 2 and tree
algorithms to show how petaflops computing capabilities could be applied.

Stevens and Taylor address the need for petaflops computing from the perspec­
tive of conceptualizing strategic applications for early in the 21st century. Their
applications range from molecular nanotechnology CAD systems to national-scale
data mining engines for a wide variety of purposes, to Lunar and Mars bases for
backing up a human knowledge repository. For each of the strategic applications,

23

they provide a requirements listing and research issues.
Taylor et al. focus on the work being done in virtual reality that may some­

day lead to one of the Stevens-Taylor strategic applications. This work uses a Cave
Automatic Virtual Environment (CAVE). A petaflops computer will be needed to
satisfy the requirements for real-time, high fidelity, interactive and immersive 3-D
virtual reality.

Robinson addresses the complications of discrete sets of equations representing
physical systems such as an automobile engine or climate modeling, and discusses
how a petaftops computer could be used to either improve the modeling or speed
up the solution time or both.

24

5 Architecture and Technology Issues and Challenges

Introduction

This section includes the papers from participants who made presentations on ar­
chitecture and technology issues and challenges of petaflops computing.

Listed below are the titles of the extended abstracts and their authors:

• Heterogeneous Computing: One Approach to Sustained Petaftops Performance,
H.J. Siegel, John K. Antonio, Min Tan, Richard C. Metzger, Richard F. Fre­
und, and Yan Alexander

• Processors-In-Memory (PIM) Chip Architectures for Petaflops Computing,
Peter M. Kogge

• A Petaops is Currently Feasible by Computing in RAM, Duncan Elliott

• Design of a Masssively Parallel Computer Using Bit Serial Processing, John
E. Dorband, Maurice F. Aburdene, Kamal S. Khouri, Jason E. Piatt, Jianqing
Zheng

• Non von Neumann ln~truction Set Architecture as an EnablingTechnology
in Grand Challenge Systems, Justin S. M. Porter (Note: Porter was unable to
make a presentation)

• Taming Massive Parallelism: The Prospects of Opto-Electronic CRCW-Shared
Memory, Paul Lukowicz, Walter F. Tichy

• Lightning: A Scalable Dynamically Reconfigurable Hierarchical WDM Net­
work for High Performance Clustering, Patrick W. Dowd

• PETAftops: PErhaps Take A Futuristic Look at Optical Processing Systems,
Chunming Qiao

• Easing the Burden on Latency-Tolerance Mechanisms in Petaftops Comput­
ers, David K. Probst

• Petaflops Technology: Real Time Image Compensation, Richard G. Lyon

25

26

5.1 Heterogeneous Computing: One Approach to Sustained
Petaflops Performance

Howard Jay Siegel1 John K. Antonio1, Min Tan1

Richard C. Metzger2 , Richard F. Freund*, and Yan Alexander Li1

1 Parallel Processing Laboratory, School of Electrical Engineering
Purdue University, West Lafayette, IN 47907-1285, USA

2Software Engineering Branch (C3CB), Rome Laboratory
Griffiss AFB, NY 13441-5700, USA

*NCCOSC RDTE, Div. 4221, 53140 Gatchell Road
San Diego, CA 92152-7463, USA

5.1.1 Introduction

A single application task often requires a variety of different types of computa­
tion (e.g., operations on arrays versus operations on scalars). Numerous application
tasks that have more than one type of computational characteristic are now being
mapped onto high-performance computing systems. Existing supercomputers gen­
erally achieve only a fraction of their peak performance on certain portions of such
application programs. This is because different subtasks of an application can have
very different computational requirements that result in different needs for machine
capabilities. In general, it is currently impossible for a single machine architecture
to satisfy all the computational requirements of various subtasks in certain appli­
cations equally well [9]. Thus, a more appropriate approach for high-performance
computing is to construct a heterogeneous computing environment.

A heterogeneous computing (HC) system provides a variety of architectural ca­
pabilities, orchestrated to perform an application whose subtasks have diverse ex­
ecution requirements. Two types of HC systems are mixed-mode machines and
mixed-machine systems [31]. A mixed-mode machine is a single parallel machine
that is capable of operating in either the SIMD or MIMD mode of parallelism and

1 Supported by Rome Laboratory under contract number F30602-94-C-0022 and by NRaD under
contract number N68786-91-D-1799. Some of the research discussed used equipment supported by
the National Science Foundation under grant number CDA-9015696.

2 Supported by AFOSR under RL JON 2304F2TK.

27

can dynamically switch between modes at instruction-level granularity with gen­
erally negligible overhead. There are various trade-offs between the SIMD and
MIMD modes of parallelism (see [12, 24, 25]), and mixed-mode machines can ex­
ploit these by matching each subtask with the mode that results in the best over­
all performance. Studies have shown that a mixed-mode machine can outperform
a single-mode machine with the same number of processors for a given algorithm
(e.g., [22]).

A number of prototype mixed-mode machines have been built that, to varying
degrees, incorporate the mixed-mode approach. These include PASM (Purdue Uni­
versity, USA) [24, 26], TRAC (University of Texas at Austin, USA) [19], OPSILA
(University of Nice, France) [4], Triton (University of Karlsruhe, Germany) [11,
21], and EXECUBE (IBM Federal Systems Division, USA) [15]. The reconfig­
urability of a mixed-mode system can increase the percentage of a machine's peak
performance that an application can attain.

A mixed-machine system is a heterogeneous suite of different types of indepen­
dent machines interconnected by a high-speed network. The goal is to match each
subtask to the machine that results in the lowest overall task execution time. Unlike
mixed-mode machines, switching execution among machines in a mixed-machine
system can require measurable overhead because data may need to be transferred
among machines. Thus, the mixed-machine systems considered in this paper are as­
sumed to have high-speed connections among machines that make decomposition
at the subtask level feasible. Also, in mixed-machine systems, the set of subtasks
may be executed as an ordered sequence or concurrently.

To exploit HC systems, a task must be decomposed into subtasks, where each
subtask is computationally homogeneous. As stated above, the subtasks are then as­
signed to and executed with the machines (or modes) that result in a minimal overall
execution time for the task. Typically, users must specify this decomposition and
assignment. One long-term pursuit in the field of heterogeneous computing is to do
this automatically.

Figure 1 shows a hypothetical example of an application program whose vari­
ous subtasks are best suited for execution on different machine architectures, i.e.,
vector, SIMD, MIMD, data-flow, and special purpose [7]. The execution time for
the heterogeneous suite includes inter-machine communications. Percentages are
based on 100% being the total execution time on the baseline serial system, but are
not drawn to scale. Executing the whole program on a vector supercomputer only
gives twice the performance achieved by a baseline serial machine. The vector por­
tion of the program can be executed significantly faster. However, the non-vector
portions of the program may only have a slight improvement in execution time due
to the mismatch between each subtask's unique computational requirement and the

28

machine architecture being used. Alternatively, the use of five different machines,
each matched to the computational requirements of the subtasks for which it is used,
can result in an execution 20 times as fast as the baseline serial machine, including
the overhead time for inter-machine communication.

Profiling Example on Baseline Serial Machine

30%

vector

1% 10% 15%

15%

MIMD

20%

SIMD

/:
xecution on a Vector

upercomputer

20% 4%

Two Times as Fast as Baseline

25%

dataflow

10%

special

purpose

~ Execution on a
~eterogeneous Suite

0.5% 1%

1% 2% 0.5%

20 Times as Fast as Baseline

Figure 1: Hypothetical Example of the Advantages of Heterogeneous Computing
[7].

One of the issues discussed at the workshop on "Grand Challenges in Computer
Architecture for the Support of High Performance Computing," reported in [23],
was achieving petafiops performance. Among the problems discussed, one that was
stressed was delivering "usable" (versus "peak") petafiops performance. Even if it
is assumed that machines with "peak" petafl.ops performance can be constructed,
reaching the goal of "sustained" (or usable) petafl.ops performance when executing
real applications is still a very difficult problem.

The use of both types of HC systems to achieve sustained petafl.ops performance
is proposed in this paper. Mixed-mode systems allow an application task to exploit
those aspects of SIMD and MIMD modes that will reduce its execution time. This
will help increase the average percentage of pe3.k. petafl.ops the application can sus­
tain.

Based on the history of commercial supercomputers, it is reasonable to expect
that a variety of different architectural designs will be represented in the set of ma-

29

chines constructed with peak petaftops performance in the future. Thus, mixed­
machine HC can help provide sustained petaftops performance because each sub­
task of an application can be matched to a machine or mode that can execute it most
effectively, and multiple machines can be used concurrently to process a single ap­
plication. The matching will increase the average percentage of a machine's peak
performance that can be achieved. The concurrent use of multiple machines will
allow the sustained FLOPS provided by each of the machines to be added together
when determining the total task sustained FLOPS during the overlap period. Thus,
the mixed-machine HC approach can help provide sustained petaftops.

The rest of this paper will focus on mixed-machine HC systems. Examples of
existing HC systems are presented in the next section. Following that a conceptual
model for automatic HC is introduced. The paper concludes with a discussion of
open problems in the field of HC. Much of the material given here is summarized
from [25].

5.1.2 Examples of Mixed-Machine HC

Overview

Three examples of existing HC systems are very briefly introduced here. In the first
two, the decomposition of tasks into subtasks and the assignment of subtasks to ma­
chines were user specified. The third, SmartNet, schedules tasks in an HC system.
The long-term goal of automatic HC is discussed in the next section.

Simulation of Mixing in Turbulent Convection at the Minnesota Supercom­
puter Center

In [14], the usefulness of an HC system developed at the Minnesota Supercomputer
Center is demonstrated through a particular application involving the simulation of
mixing in turbulent convection in three dimensions. The HC system consists of
Thinking Machines' CM-200 and CM-5, a CRAY 2, and a Silicon Graphics VGX
workstation, all interconnected over a high-speed HiPPI (high-performance parallel
interface) network. The required calculations for the simulation were divided into
three phases: (1) calculation of velocity and temperature fields, (2) calculation of
particle traces, and (3) calculation of particle distribution statistics and refinement
of the temperature field.

The velocity and temperature fields associated with the phase 1 calculations are
governed by two second order partial differential equations. These computations
were done on the CM-5. The particle traces were calculated by solving a set of or­
dinary differential equations that are dependent on the velocity field solution com-

30

puted in phase 1. Initially, this computation was attempted on the CM-200 by em­
ploying an Eulerian approach, but could not be done because a prohibitive amount
of memory was required. Instead, the three-dimensional simulations were imple­
mented using a vectorized Lagrangian approach on the CRAY 2, which required
substantially less memory than the parallel Eulerian scheme. The CM-200 was used
to calculate statistics of the particle distribution and to assemble a three-dimensional
temperature field from the associated spline coefficients (phase 3). The final results
were then sent to a SGI VGX workstation where they were visualized using an in­
teractive volume renderer.

Interactive Rendering of Multiple Earth Science Data Sets on the CASA Testbed

The CASA testbed interconnects several remote sites including the California In­
stitute of Technology, San Diego Supercomputer Center, Jet Propulsion Laboratory
(JPL), and Los Alamos National Laboratory [2, 27]. The computational resources
of the testbed consist of various parallel and vector machines including an Intel
Touchstone Delta, Thinking Machines' CM-5 and CM-200, CRAY Y-MP8/864, Y­
MP/264, and Y-MP/232, and a number of workstations and specialized visualiza­
tion engines.

One of the applications developed on the CASA testbed involves interactive
three-dimensional rendering of multiple Earth science data sets. Functional mod­
ules were identified and optimized for specific machines. Initially, raw data sets
are transferred to one of the two-dimensional functional modules for processing.
The two-dimensional modules manipulate image and/or elevation data via a num­
ber of different algorithms. Most of the two-dimensional modules were developed
for the CRAY Y-MP/232 at JPL and the CRAY Y-MP8/864 at the San Diego Super­
computer Center. Two of the two-dimensional modules were implemented on the
CM-5 and CM-200 located at Los Alamos. Output from the two-dimensional mod­
ules are sent over the network to the three-dimensional rendering process, which
was implemented on the Intel Touchstone Delta located at the California Institute
of Technology.

SmartNet

SmartNet is a "real-time" look-ahead/look-back, near optimal scheduler/planner for
heterogeneous systems being designed and developed at NRaD (NCCOSC RDTE)
[8]. It demonstrates marked improvement over opportunistic load-balancing and
other traditional methods of scheduling, even when only partial information on "af­
finities" is available.

31

The basic concept of SmartNet may be described as solving a mathematical pro­
gramming problem to minimize the objective function, total time on a task set, talc­
ing into account the times to compute task i on machine j, as well as the latency
time for any needed data transfers involved in computing task ion machinej. The
constraint in this formulation is the sum of the costs (of machines and networks).
A matrix (called an ETC matrix or Expected Time to Complete) is assumed to con­
tain the estimated time it would talce task i to execute on machine j, including any
latency time required fo(transfers of data. In addition, it is assumed that each ma­
chine may have previously scheduled tasks either executing or awaiting execution.
Given this scenario, the goal is to minimize the objective function of the total time
required for all new tasks to be finished on all machines. The objective function is
not to minimize the compute time for any specific job, but rather to maximize the
overall throughput.

SmartNet is currently operational and performs the functions discussed above.
Various extensions to SmartNet are under development.

S.1.3 A Conceptual Model for HC

A conceptual model for the automatic assignment of subtasks to machines in an HC
environment is shown in Figure 2. This model builds on the one presented in [9].
Figure 2 is referred to as a "conceptual" model because no complete automatic im­
plementation currently exists. As stated earlier, automatic decomposition and as­
signment is a long-term goal in the field of HC.

In stage 1 of the model, a set of descriptive parameters is generated that is rep­
resented as the general characteristics of both the computational requirements of
the applications and the machine capabilities of the HC system. These parameters
define the multidimensional decision space to be used for describing and matching
subtasks and machines. Information about the expected types of application tasks to
be executed and about the machines that currently exist in the heterogeneous suite
is used to generate these parameters.

For each parameter, a corresponding computational requirement and a corre­
sponding machine architecture feature are derived. For example, considering the
parameter "floating point operations," the computational requirements of the appli­
cation tasks to be quantified are the number and types of floating point operations
needed to perform the calculation.

The architecture feature of the machines in the heterogeneous suite to be quan­
tified is the speed for these different types of floating point operations.

A particular parameter is included for further consideration in the following
stages of the model only if both the architecture features and the related compu-

32

Applications

Stage 1

Generation of parameters that arc represented as
general characteristics of computational requirements

and general characlcristics of machine capabilities

Stage4

Assignment of subtasks to machines
execution schedule

Execution of the application on the
heterogeneous suite of machines

~
Action

Figure 2: Conceptual Model of the Automatic Assignment of Subtasks to Machines
in an HC environment [25]

tational requirements exist. For example, if the given applications have no floating
point operations, then it is not necessary to evaluate the machine capabilities for ex­
ecuting floating point operations in stage 2. As another example, if there is no vector
machine available in the heterogeneous suite, vectorizable code may be excluded
from the set of computational requirements that must be considered.

After stage 1, a collection of corresponding features of the application tasks and
machines in the heterogeneous suite can be enumerated. These features determine
the dimensions of this automatic assignment problem for the given applications and
the given HC system. Each of these dimensions represents a specific parameter,
which characterizes computational requirements and the related machine capabili­
ties that need to be considered in the later stages of the model. The total number of
features enumerated determines the complexity of this automatic problem. An im­
portant aspect of the chosen parameters is that they evolve dynamically when new
types of applications and/or new types of machines are added.

In stage 2, two characterization steps, task profiling and analytical benchmark­
ing, are used to quantify the features and transform them into quantitative data. Task

33

pro.filing is a method used to identify the types of computational requirements that
are actually present in a specific application program. The task is decomposed into
subtasks, such that the computational requirements for each subtask are homoge­
neous and quantified. The term often used for this characterization step in the ex­
isting literature is code profiling. The reason for using task profiling instead is that,
to identify the types of computational requirements present in a specific task, both
the code and characteristics of the data upon which the specified HC system will
operate must be examined. Analytical benchmarking is a procedure that provides
a measure of how effectively each of the available machines in the heterogeneous
suite performs on each of the types of computations being considered. Examples of
proposed approaches to task profiling and analytical benchmarking are in [10, 34,
35].

In stage 3, the results of previous stages and the information about the current
loading and "status" of the machines and inter-machine network are used to gener­
ate an assignment of the subtasks to machines in the HC system based on certain
cost metrics. The "status" could include such items as whether the machines and
network are fully or partially functioning due to faults, and when other tasks us­
ing the machines/network are expected to complete. The most common cost metric
for HC is minimization of the overall execution time (including the inter-machine
communication time) of a given application task on a particular HC system. An­
other interesting metric is finding the most appropriate suite of heterogeneous ma­
chines for a given collection of applications, such that the cost of the corresponding
HC system is minimized for a given .set of execution time constraints [6]. A variety
of techniques have been proposed in the literature for selecting a machine for each
subtask based on certain cost metrics (e.g., [3, 5, 6, 16, 17, 18, 20, 29, 30, 31, 32]).

Stage 4 of the model is the execution of the given applications on the machines
in the HC system. Because the loading of the machines and network may change
and some faults may occur, it is sometimes necessary to reallocate machines for
certain subtasks of the application program. Under such circumstances, the current
loading and status of the machines and network are updated and stage 3 is reacti­
vated to decide the new assignment of subtasks. Finding techniques for the actual
migration of a subtask from one type of machine to another during execution is a
difficult problem; one approach is described in [l].

It is important to note that the mathematical formulation and automatic assign­
ment of subtasks to a heterogeneous suite of machines connected by high-speed
links are relatively new fields in HC. Thus, most of the automatic methods that have
been proposed for stages 2 and 3 are frameworks that require further research before
they can be parts of a working system.

34

5.1.4 Open Problems

A great many open problems need to be solved before heterogeneous computing
can be made available to the average applications programmer in a transparent way.
Many (possibly even most) need to be addressed just to facilitate near-optimal prac­
tical use of real heterogeneous suites in a "visible" (i.e., user specified) way. Below
is a brief discussion of some of these open problems; it is far from exhaustive, but
it will convey the types of issues that need to be addressed. Others may be found
in [13, 28].

Implementation of an automatic HC programming environment, such as en­
visioned in Section 3, will require a great deal of research for devising practical
and theoretically sound methodologies for each component of each stage. A gen­
eral open question that is particularly applicable to stages 1 and 2 of the conceptual
model is: "What information should (must) the user provide and what information
should (can) be determined automatically?" For example, should the user specify
the subtasks within an application or can this be done automatically? Future HC
systems will probably not completely automate all of the steps in the conceptual
model. A key to the future success of HC hinges on striking a proper balance be­
tween the amount of information expected from the user (i.e., effort) and the level
of performance delivered by the system.

To program an HC system, it would be best to have machine-independent pro­
gramming languages [33] that allow the user to augment the code with compiler
directives. The programming language and user specified directives should be de­
signed to facilitate (a) the compilation of the program into efficient code for any of
the machines in the suite, (b) the decomposition of tasks into homogeneous sub­
tasks, and (c) the use of machine-dependent subroutine libraries.

Along with programming languages, there is a need for debugging and perfor­
mance tuning tools that can be used across an HC suite of machines. This involves
research in the areas of distributed programming environments and visualization
tools.

Operating system support for HC is needed. This includes techniques applica­
ble at both the local machine level and at the system-wide network level.

Ideally, information about the current loading and status of the machines in the
HC suite and the network that is linking these machines should be incorporated into
the matching and scheduling decisions. Many questions arise here: what informa­
tion to include in the status (e.g., faulty or not, pending tasks), how to measure cur­
rent loading, how to effectively incorporate current loading information into match­
ing and scheduling decisions, how to communicate and structure the loading and
status information in the other machines, how often to update this information, and

35

how to estimate task/transfer completion time?
There is much ongoing research in the area of inter-machine data transport. This

research includes the hardware support required, the software protocols required,
designing the network topology, computing the minimum time path between two
machines, and devising rerouting schemes in case of faults or heavy loads. Related
to this is the data reformatting problem, involving issues such as data type storage
formats and sizes, byte ordering within data types, and machines' network-interface
buffer sizes.

Another area of research pertains to methods for dynamic task migration be­
tween different parallel machines at execution time. This could be used to rebal­
ance loads or if a fault occurs. Current research in this area involves how to move
an executing task between different machines and determining how and when to use
dynamic task migration for load balancing.

Lastly, there are policy issues that require system support. These include what
to do with priority tasks, what to do with priority users, what to do with interactive
tasks, and security.

5.1.5 Conclusions

Even if it is assumed that machines with peak petaftops performance can be con­
structed, reaching the goal of sustained petaftops performance is still a very diffi­
cult problem. Heterogeneous computing can help through the reconfigurability of
mixed-mode machines and the flexibility of mixed-machine systems.

Based on the history of supercomputers, it is reasonable to expect a variety of
different architectural designs to be represented in the set of future petaftops ma­
chines. Thus, one possible approach to providing sustained petaftops performance
is through the use of HC, where each subtask of an application can be matched to
the machine that can execute it most effectively, and multiple machines can be used
concurrently to process a single application.

There is clearly a gap between the state-of-the-art in practical HC (illustrated
in Section 5.1.2) and automating all of the steps characterized by the conceptual
model of Section 5.1.3. In particular, stages 1 through 3 of the conceptual model
are typically done entirely by the user, while some aid is provided for the user for
stage 4 by existing tools and environments. Thus, although the uses of existing HC
systems demonstrate the significant potential benefit of HC, the amount of effort
currently required to implement an application on an HC system can be substantial.
Future research on the above open problems will improve this situation and make
HC more viable.

36

5.1.6 Acknowledgments

The authors thank J.M. Siegel for her valuable comments.

5.1.7 References

[1] J.B. Armstrong, H.J. Siegel, W. E. Cohen, M. Tan, H. G. Dietz, and J. A. B.
Fortes, "Dynamic Task Migration from SPMD to SIMD Virtual Machines,"
1994 Int'l Conf. Parallel Processing, Vol. II, Aug. 1994, pp. 160- 169.

[2] L. Bergman, H-W. Braun, B. Chinoy, A. Kolawa, A. Kuppermann, P. Lyster,
C.R. Mechoso, P. Messina, J. Morrison, D. Stanfill, W. St. John, and S. Ten­
brink, "CASA Gigabit Testbed 1993 Annual Report: A Testbed for Distributed
Supercomputing," Technical Report CCSF-33, Caltech Concurrent Supercom­
puting Facilities, Pasadena, CA, May 1993.

[3] S. Chen, M. M. Eshaghian, A. Khokhar, and M. E. Shaaban, "A Selection
Theory and Methodology for Heterogeneous Supercomputing," Workshop
on Heterogeneous Processing, Apr. 1993, pp. 15-22.

[4] P. Duclos, F. Boeri, M. Auguin, and G. Giraudon, "Image Processing on a
SIMD/SPMD Architecture: OPSILA," 9th lnt'l Conf. Pattern Recognition,
Nov. 1988, pp. 14-17.

[5] M. M. Eshaghian and R. F. Freund, "Cluster-M Paradigms for High-Order
Heterogeneous Procedural Specification Computing," Workshop on Hetero­
geneous Processing, Mar. 1992, pp. 47-49.

[6] R. F. Freund, "Optimal Selection Theory for Superconcurrency," Supercom­
puting '89, Nov. 1989, pp. 699-703.

[7] R. F. Freund, "SuperC or Distributed Heterogeneous HPC," Computing Sys­
tems in Engineering, Vol. 2, No. 4, 1991, pp. 349-355.

[8] R. F. Freund, "The Challenges of Heterogeneous Computing," Parallel Sys­
tems Fair at the 8th Int'l Parallel Processing Symp., Apr. 1994, pp. 84-91.

[9] R. F. Freund and H.J. Siegel, "Guest Editors' Introduction: Heterogeneous
Processing," IEEE Computer, Vol. 26, No. 6, June 1993, pp. 13-17.

[10] A. Ghafoor and J. Yang, "Distributed Heterogeneous Supercomputing Man­
agement System," IEEE Computer, Vol. 26, No. 6, June 1993, pp.78-86.

37

[11] C. G. Herter, T. M. Warschko, W. F. Tichy, and M. Philippsen, "Triton/I: A
Massively-Parallel Mixed-Mode Computer Designed to Support High Level
Languages," Workshop on Heterogeneous Processing, Apr. 1993, pp. 65-70.

[12] L. H. Jamieson, "Characterizing Parallel Algorithms," in The Characteristics
of Parallel Algorithms, L. H. Jamieson, D. B. Gannon, and R. J. Douglass,
eds., MIT Press, Cambridge, MA, 1987, pp. 65-100.

[13] A. Khokhar, V. K. Prasanna, M. Shaaban, and C. L. Wang, "Heterogeneous
Computing: Challenges and Opportunities," IEEE Computer, Vol. 26, No.
6, June 1993, pp. 18-27.

[14] A. E. Klietz, A. V. Malevsky, and K. Chin-Purcell, "A Case Study in Meta­
computing: Distributed Simulations of Mixing in Turbulent Convection," Work­
shop on Heterogeneous Processing, Apr. 1993, pp. 101-106.

[15] P. M. Kogge, "EXECUBE-A New Architecture for Scalable MPPs," 1994
Int'l Conf. Parallel Processing, Vol. I, Aug. 1994, pp. 77-84.

[16] C. Leangsuksun and J. Potter, "Problem Representations for an Automatic
Mapping Algorithm on Heterogeneous Processing Environments," Workshop
on Heterogeneous Processing, Apr. 1993, pp. 48-53.

[17] Y. A. Li, J. K. Antonio, H.J. Siegel, M. Tan, D. W. Watson, "Estimating the
Distribution of Execution Times for SIMD/SPMD Mixed-Mode Programs,"
Heterogeneous Computing Workshop, April 1995, to appear.

[18} D. J. Lilja, "Experiments with a Task Partitioning Model for Heterogeneous
Computing," Workshop on Heterogeneous Processing, Apr. 1993, pp. 29-
35.

[19] G. J. Lipovski and M. Malek, Parallel Computing: Theory and Comparisons,
John Wiley & Sons, New York City, NY, 1987.

[20] B. Narahari, A. Youssef, and H. A. Choi, "Matching and Scheduling in a Gen­
eralized Optimal Selection Theory," Heterogeneous Computing Workshop,
Apr. 1994, pp. 3-8.

[21] M. Philippsen, T. Warschko, W. F. Tichy, and C. Herter, "Project Triton: To­
wards Improved Programmability of Parallel Machines," 26th Hawaii Int'l
Conf. System Sciences, Jan. 1993, pp. 192-201.

38

[22] G. Saghi, H.J. Siegel, and J. L. Gray, "Predicting Performance and Select­
ing Modes of Parallelism: A Case Study Using Cyclic Reduction on Three
Parallel Machines," J. Parallel and Distributed Computing," Vol. 19, No. 3,
Nov. 1993, pp. 219-233.

[23] H.J. Siegel, S. Abraham, W. L. Bain, K. E. Batcher, T. L. Casavant, D. De­
Groot, J.B. Dennis, D. C. Douglas, T. Feng, J. R. Goodman, A. Huang, H.
F. Jordan, J. R. Jump, Y. N. Patt, A. J. Smith, J.E. Smith, L. Snyder, H. S.
Stone, R. Tuck, and B. W. Wah "Report of the Purdue Workshop on Grand
Challenges in Computer Architecture for the Support of High Performance
Computing," J. Parallel and Distributed Computing, Vol. 16, No. 3, pp. 199-
211, Nov. 1992.

[24] H.J. Siegel, J.B. Armstrong, and D. W. Watson, "Mapping Computer-Vision­
Related Tasks onto Reconfigurable Parallel Processing Systems," IEEE Com­
puter, Vol. 25, No. 2, Feb. 1992, pp. 54-63.

[25] H. J. Siegel, J. K. Antonio, R. C. Metzger, M. Tan, and Y. A. Li, "Hetero­
geneous computing," in Handbook of Parallel and Distributed Computing,
edited by A. Y. Zomaya, McGraw-Hill, 1995, to appear (also Purdue Univer­
sity, EE School, Technical Report TR-EE 94-37, Dec. 1994).

[26] H. J. Siegel, T. Schwederski, W. G. Nation, J. B. Armstrong, L. Wang, J. T.
Kuehn, R. Gupta, M. D. Allemang, D. G. Meyer, andD. W. Watson, "The De­
sign and Prototyping of the PASM Reconfigurable Parallel Processing Sys­
tem," to appear in Parallel Computing: Paradigms and Applications, A. Y.
Zomaya, ed., Chapman and Hall, London, U.K., 1995.

[27] "Special Report: Gigabit Network Testbeds," IEEE Computer, Vol. 23, No.
9, Sept. 1990, pp. 77-~0.

[28] V. S. Sunderam, "Design Issues in Heterogeneous Network Computing," Work­
shop on Heterogeneous Processing, revised edition, Mar. 1992, pp. 101-112.

[29) M. Tan; J. K. Antonio, H.J. Siegel, and Y. A. Li, "Scheduling and Data Re­
location for Sequentially Executed Subtasks in a Heterogeneous Computing
System," Heterogeneous Computing Workshop, April 1995, to appear.

[30) L. Tao, B. Narahari, and Y. C. Zhao, "Heuristics for Mapping Parallel Com­
putations to Heterogeneous Parallel Architectures," Workshop on Heteroge­
neous Processing, Apr. 1993, pp. 36-41.

39

[31] D. W. Watson, J. K. Antonio, H. J. Siegel, and M. J. Atallah, "Static Program
Decomposition Among Machines in an SIMD/SPMD Heterogeneous Envi­
ronment with Non-Constant Mode Switching Costs," Heterogeneous Com­
puting Workshop, Apr. 1994, pp. 58-65.

[32] M. Wang, S.-D. Kim, M.A. Nichols, R. F. Freund, H.J. Siegel, and W. G.
Nation, "Augmenting the Optimal Selection Theory for Superconcurrency,"
Workshop on Heterogeneous Processing, Mar. 1992, pp. 13-22.

[33] C. C. Weems, G. E. Weaver, and S. G. Dropsho, "Linguistic Support for Het­
erogeneous Parallel Processing: a Survey and an Approach," Heterogeneous
Computing Workshop, Apr. 1994, pp. 81-88.

[34] J. Yang, I. Ahmad, and A. Ghafoor, "Estimation of Execution Times on Het­
erogeneous Supercomputer Architecture," 1993 Int'l Conf. Parallel Process­
ing, Vol. I, Aug. 1993, pp. 219-225.

[35] J. Yang, A. Khokhar, S. Sheikh, and A. Ghafoor, "Estimating Execution Time
for Parallel Tasks in Heterogeneous Processing (HP) Environment," Hetero­
geneous Computing Workshop, Apr. 1994, pp. 23-28.

40

5.2 Processors-In-Memory (PIM) Chip Architectures for Petaflops
Computing

Peter M. Kogge
Mccourtney Chair in Computer Science & Engineering

IEEE Fellow, IBM Fellow (retired)
384 Fitzpatrick, University of Notre Dame

Notre Dame, IN 46556

5.2.1 Introduction

One of the three architectures proposed at the February 1994 Petaftops workshop in
Pasadena, California [1] revolved around placing multiple complete CPUs and in­
terconnect logic on a high density memory chip. This single-chip type Processor-In­
Memory (PIM) MPP-building block chip could then be cascaded as often as needed
to meet the particular performance levels desired. For petaftops levels, systems of
as little as a few thousand chips appeared feasible. This was upwards of two orders
of magnitude fewer chips than for estimates of the other two architectures.

This paper will develop in more detail than at the [Pasadena] Workshop the
more important tradeoffs involved with PIM architecture chips. Technology trends
over the next twenty years will be coupled with both variations in architecture and
ratios of processing speed to memory. Also addressed are the most important tech­
nological challenges that still need to be resolved to make PIM chips a wide spread
reality.

As background, the "proof of concept" for this single chip type MPP block is
a recently announced PIM chip termed EXECUBE [2, 3]. A 5V 0.8 µm CMOS
technology merged 1 OOK custom circuits and 4.5 Mbits of DRAM onto a single die.
The logic implemented eight complete 16-bit CPUs, plus four DMA channels each
that interconnected the CPUs internally into a 3-dimensional binary hypercube of
eight processing elements (PEs). The DRAM memory is partitioned, giving each
CPU its own independent 64 KB memory, as pictured in Figure 1. One of the DMA
channels from each CPU leaves the chip, permitting larger arrays of chips to be tied
together directly, without any external interface glue logic or chips. Arrays of up to
64 such chips are currently in operation.

The instruction set of the CPU was optimized to both minimize gates, perform
a variety of computational operations, and work in either an MPP SIMD or MIMD
mode. We kept each CPU as simple as possible, and avoided silicon-consuming

41

speedup techniques, such as caches and extensive pipelining, that do not return per­
formance gains proportional to their cost in silicon. Significant thought was given to
communications patterns, and the inter-PE DMA channels included a wide variety
of circuit, packet, and multiplex/demultiplex functions. Also, thought was given
on how to utilize the huge memory bandwidth available to each CPU at its own
row buffer on it's DRAM interface and several new instructions were added. At 25
MHz, each CPU can peak at 6.25 MIPS, for a 50 MIPS total per chip.

(a) Physical Chip (c) 8-PE Chip Technology

::;; ::;; ::;;
:i:o ~a! ~a! ~a! a: a:

Ou Ou Ou Ou
"'< "'< "'< ~~ ~::;; ::1:;; ~::;;

"' "' "' 1;j "' "' "'
PE#1 PE#O

PE#s:PE#4
' ' ::;; ::;; •::;:

~a! ;i ~: ~ ~
Ou c cyo 0
"'< ~<·~< ~::;: ::.:::~:~~
1;j ~ :~

' '\ ________ _

. . .

.

::;;

~~ Ou
"'< ::1::;:
1;j

::; ::;; ::;; ::;;

~a! <o <o <o a: a: a: a: a: a:
Ou Ou Ou Ou
'l1< "'< "'< 'l1<
"'::;; ::1:;; ~::;; "'::;;
"' "' 1;j "' "' "' "'
PE#2 PE#3

PE#6 PE#?
::;

:i:o
::;; ::;;

<o ~~ <o
~a: a: a: a: a:

"'~
Ou Ou Ou
~~

O> <('l1< ~::;: ~::;; "'::;;
1;j "' 1;j "' "' "'

·-.
-{~=-------------------------------------~:~
: ' ' ::;; ::;;

. '

~~ ~~
Cl(.) Cl()

~~ ~~
"' "' "' "'

OMA
LOGIC

\I I

~--·

{b) Single PE

Figure 1: The EXECUBE Processor-In-Memory Architecture

Estimates comparing the chip with other MPP architectures [2] indicate that it
is upwards of lOx more efficient in terms of computation per square of silicon than
any other existing approach. Similar numbers hold in terms of how it uses the native

42

bandwidth available from the DRAM macros, how the off- chip contacts are used
to enhance communications for MPP applications, and even in power dissipation
per million instructions.

Given the huge advantage this type of chip architecture has for MPP applica­
tions, one can ask what are the potentials for future generations of it, and what would
be realistic design points to choose if a petaflop was the ultimate goal?

To get some insight into the tradeoffs possible, we can use the SIA projections
[4] on technology, and sketch out trend lines for various possible configurations.

'
5.2.2 SIA Projections and CPU Architecture

To do this we assume two different CPU architectures. The first, based on the EX­
ECUBE experience, assumes that each CPU is designed simply, and is optimized
for fixed point computations. For this we assumed an EXECUBE-like 12K circuit
CPU which executes an average instruction in about 2.5 clock cycles. The second
CPU assumes a design optimized for floating point, but as with EXECUBE, a sim­
pler (but more efficient in terms of FLOPS/silicon) design point is chosen than what
is common in high end microprocessors today. We assume a lOOK circuit CPU that
can operate on the average at 1 FLOP per clock.

The other major assumption we make is that in a mixed DRAM/logic configu­
ration and at any projected point in time, we can smoothly vary the transistor usage
on one chip from 100% logic (using the maximum projected logic density) to 100%
DRAM (assuming the maximum projected DRAM density). Thus, we can look at
different numbers of CPUs on a chip, with different amounts of memory available
to them.

The reason for this latter tradeoff is that during the workshop it became apparent
that the major economic constraint on reaching a petaftops system was in the cost of
the memory system to support it. Based on typical rules of thumb, a petaflop would
require about a petabyte of memory, which even with very dense DRAM, would
be in the order of 10,000s of chips. When this was realized, the application work­
group at the workshop came to the conclusion that there were reasonable petaflops
applications where at least an "N3/ 4" rule would apply, meaning that perhaps only
about 32 terabytes of memory might be need for some applications. Instead of the
typical "1 byte per FLOP" rule, this translates into a "0.03 byte/FLOP" rule.

Figure 2 rolls these design assumptions, together with the SIA projections, into
a spectrum of potential chip and system configurations assuming an EXECUBE­
like largely fixed point CPU macro. (Note that this chart assumes extending the
1992 SIA projections out through 2010 and 2013). Figure 3 does the same for the
assumed floating point CPU macro. The calculations behind the (a) chart in each

43

1E+04

1E+03

1E+02

1E+01

1E+OO

1E·01 ---++--+---tr---t--+--ct---.a..--'
1E+Oo 1E+o1 1E+02 1E+03 1E+04 1E+OS 1996 1998 2001 2004 2007 2010 2013

!<18/Chlp Teclwlology Year
(a) Potential Chip Configuration YI Year (b) Chips Needad for a PetaoP

Figure 2: PIM Configurations for a PetaOP

figure were performed at several different year points, and took the projected logic
density to determine how many CPUs might fit on differentpercentages of a chip.
From this, and the projected on chip clock speeds, we determined a projected per
chip performance number. This was plotted against the amount of memory that
could be placed in the remainder of the chip (the "knee-shaped" curves). Through
these curves were then drawn straight lines that represent different ratios of storage
to performance, to match the above discussion.

1E+O

tE-01-+---+t---...i.---4',___-l-+---CH-_,,_--'
1E+OO 1E+01 1E+02 1E+03 1E+04 1E+OS 1995 1998 2001 20CM 2007 2010 2013

MB/Chip Technology Vear
(a) Potanlal Chip Configuration vs Year (b) Chip& Needed for a PetaFLOP

Figure 3: PIM Configurations for a Petafl.op

The (b) charts in each figure then use the intersections of these pairs of curves
to determine how many chips would be needed to reach a petafl.ops system, again
for different ratios of memory to performance. The numbers agree with the feeling
of the Pasadena workshop, namely that a PIM-based architecture has the potential
to achieve huge levels of performance with far fewer chips (and thus cost) than the
other approaches.

44

S.2.3 Open Issues

As encouraging as these results are, there are several open questions that absolutely
must be answered before such systems can become a reality, and which ought to be
the subject of ongoing research:

1. Selecting an ISA and CPU organization that together offers the best possible
performance per square of silicon. (This includes developing architectural
techniques to utilize the tremendous memory bandwidth available when the
CPU is physically right next to its primary memory on the same chip.)

2. Controlling power in the design of each CPU so that the overall power does
not exceed our ability to cool the systems in a cost- efficient manner

3. Developing 3-dimensional packaging schemes that permit multiple PIM chips
to be packaged close together, thus minimizing the interconnection costs and
communications time of flight inherent in building networks of 1000s of chips

4. Selecting an inter-PE topology, and fast enough interconnection paths, to per­
mit this performance to be efficiently utilized on real problems

5. Developing software tools which permit easy construction of programs that
can utilize 100,000s of PEs simultaneously

S.2.4 References

[1] Sterling, T., P. Messina, and P. Smith., Enabling Technologies for Peta(FL)ops
Computing, Cal Tech Report CCSF-45, July 1994.

[2] Kogge, P. M., "The EXECUBE Approach to Massively Parallel Processing,"
1994. Int. Conf. on Parallel Processing, Chicago, IL, August, 1994.

[3] Kogge, P. M., T. Sunaga, E. Retter, "Combined DRAM and Logic Chip for
Massively Parallel Applications," accepted for 1995 IEEE Conf. on Advanced
Research in VLSI, Raleigh, NC, March, 1995.

[4] Semiconductor Industries Association, Semiconductor Technology, Working
Group Report, 1992. 1994 update in progress.

45

46

5.3 A Petaops is Currently Feasible by Computing in RAM

Duncan Elliott
Martin Snelgrove t

Christian Cojocaru t
Michael Stumm

Department of Electrical and Computer Engineering
University of Toronto, Canada M5S 1A4

tDepartment of Electronics
Carleton University, Ottawa, Canada KlS 5B6

5.3.1 Introduction

We focus on what would be required, given technology now available, to make a
petaops computer system. In particular we address memory bandwidth, packaging,
and power consumption.

A petaops computer system would necessarily be large, and would have to be
implemented with the most reliable and highly integrated technology available. Now,
and for the next few years, that is silicon CMOS memory technology running at
room temperature. Of memory technologies, DRAM has higher density, lower cost
per bit and moderate speed with cycle times under lOOns. SRAM, on the other
hand, is more expensive, but is available with cycle times under lOns. Ultimately,
the memory size/speed requirements of the set of applications to be run will favor
SRAM or DRAM.

We assume the presence of significant amounts of memory and memory traffic
in a petaops architecture. And, we discount specialized architectures like "datapath­
only" systolic arrays (being free of RAM) on the assumption that they would not be
broadly enough applicable to make the system economic.

The memory bandwidth requirement for a petaops machine (floating point or in­
teger) demands that the bottle-neck of the memory chip pins be circumvented. For
this example, we use a 32-bit functional-unit word and 16Mb, lOns-cycle SRAM
chips with 16 data pins. If only one memory access is made in every eight opera­
tions, 2.5 million memory chips are needed to supply the 0.5 petabytes/s memory
bandwidth. We optimistically assume that registers and caches local to the functional­
unit chip make up the other sources and destinations. Off-chip caches don't solve

47

the bottleneck of bringing data through memory pins. If instead, the functional
units are connected directly to the memory columns and each operation requires
3 memory accesses, as few as 15 thousand chips are required to deliver the neces­
sary 12PB/s, provided that: memory columns are 256 bits long, the IC geometries
will permit connection to the columns or sense amplifiers, and that all columns can
be made active during one cycle (at the expense of extra power pins). Even when
an order of magnitude is lost due to compromises in the above assumptions, the
bandwidth gains of putting processing in the memory are still tremendous. With
the higher densities of DRAM, the gains are greater. Assuming a 256Mb, lOOns­
cycle DRAM with 16 data pins, the aforementioned bandwidths require 25 million
chips for off-chip access and 9200 chips for integrated processors.

Even the busing between memory and off-chip functional units is overwhelm­
ing. Half a petabyte/s transferred at a sustained clock rate of 500MHz still requires
8 million bus wires.

The memory bandwidth requirements of a petaops machine make a strong argu­
ment for integrating the processing power into the memory. These are approximate
lower bounds on the number of memory chips necessary for the required memory
bandwidth. We will see that differences in memory geometry and speed, as well as
the efficiency of the processor, affect the amount of memory needed for a petaops.

5.3.2 Power Limitations

For an overall power consumption of 1 OKW, the energy consumed per operation in
a petaops system would have to be 10-11J. A power consumption in the tens of
kilowatts is a comfortable limit for an air-cooled machine.

CMOS consumes energy CY~m during one cycle of charging and discharging
a circuit node between ground and a power supply Yoo. The minimum practical
value of Y DD for room-temperature operation appears to be about 1 Y [1, 2], since
going below Yoo = 4Yt doesn't improve energy per operation and where MOS
threshold voltage Y t has to be greater than about 0.2V to control leakage currents
that are determined by the room-temperature value kT / q ~ 26m Y. Assuming that
an average operation involves reading and changing roughly 100 bits and that cir­
cuit nodes are precharged to Y oo/2, we require

10-11 J > 100bitsC(0.5Y)2 (1)

which limits the capacitance to an average of 400fF.
While adiabatic computing [3] attempts to reduce CY2f power, it still has switch­

ing overheads of the same general form but with a diode voltage (around 0.7V) re­
placing the Y DD term. At present, adiabatic computing appears to consume roughly

48

the same power as 1 V CMOS, and hence it does not appear to offer a solution with
present technology.

A 400fF capacitance is barely greater than the bit-line pair capacitance of a typi­
cal modem DRAM [4] which is charged for every memory access. A cache doesn't
help power consumption. Even though a high hit rate reduces the number of ac­
cesses to main memory, the cache RAM charges similar capacitances on each ac­
cess.

A conventional memory architecture also wastes almost all bit reads because
only a small fraction of the bits read by the sense amplifiers on a given cycle are
actually used. This is obviously unacceptable, since we already have a tight power­
budget when assuming that bits are used with perfect efficiency. Driving signals
off-chip also comes with the expense of charging many pF per wire.

We therefore claim that bits should usually be processed on-chip with the mem­
ory, and in fact very close to the sense amplifiers of the memory chip. It follows that
the processors used must be compact and simple, or their sheer size will consume
energy in routing signals.

Radical changes to memory architecture, such as breaking up memory arrays
and introducing extra row decoders to perform independent addressing, will reduce
memory density and increase the power cost of communications. The long internal
memory words are too long for a uniprocessor and difficult for a MIMD multipro­
cessor to utilize, unless the application can benefit from processors autonomously
executing their own instruction streams but performing loads and stores to the same
address in local memory at the same time. The shared memory address stream sug­
gests the use of a shared instruction stream as well. For these reasons, we use SIMD
processing elements (PEs) in the memory.

Attempting to speed up the cycle time is also wrong. The best energy/operation
is obtained at low V DD and hence relatively slow switching. Faster cycle times
would also make power supply transients worse, and we already propose to acti­
vate many more sense amplifiers at once than is typically done.

5.3.3 Computing in RAM

We have shown the feasibility of placing one-bit SIMD PEs in memory adjacent to
the sense amplifiers in both SRAM and DRAM. Our first proof-of-concept design
of "Computational RAM" (C•RAM) [5] was fabricated in a 1.2µm CMOS process
and had 64 PEs with 128 bits of SRAM per PE. This minimalistic PE, shown in
Figure 1, requires 77 transistors and fits in the width of a memory column. Together
the PEs occupy 9% of the chip area. The second generation of Ce RAM [6] is being
fabricated in a 0.8µm BiCMOS process and has 512 PEs by 480 bits per PE, as

49

well as some new features. A DRAM version of C•RAM has been designed (but
not fabricated) with a PE for every 2Kb of memory.

Bus tie
Broadcast Bus

Figure 1: Ce RAM Processing Element

Other architectures include a 3.8 GIPS chip from NEC [7] with 64 eight-bit
processors attached to 2 MB of SRAM, a SRAM based 64-processor chip with 1-
bit PEs from the Supercomputer Research Center [8], and the DRAM based "Se­
rial Video Processor" with 1024-PEs TI [9] using one-bit processors. These chips
demonstrate that computing can be done very close to the memory, and that this can
be done with light-weight SIMD PEs, simple buses, and one-dimensional nearest­
neighbor communication to keep size (and hence power) under control.

These simple one-bit processors can deliver between 0.1 MIPS and 1 MIPS each
for 32-bit integer operations. A terabyte of SRAM based C•RAM could deliver
a petaops (more memory than our lower bound). Assuming one PE per 512 bits
with a 20ns read/ ALU/write cycle, 32-bit additions can be performed at a rate of 6. 7
petaops. An 8-bit multiply with 16-bit accumulate achieves 2.6 petaops. Yet, single
precision floating point multiplies are only performed at a rate of 0.4 petaflops.

In the above examples of performance, C•RAM falls short of producing 1 bit
of result for every memory write operation. Since CeRAM is register-poor, inter­
mediate results are stored in memory. In the case of multiplication, partial sums are
ferried to and from memory. If multiplies are really needed at the full rate, our pro-

50

cessor would have to be redesigned with more registers (to avoid rereading a multi­
plicand and partial product for each bit of the multiplier from the relatively long and
power-hungry bit-lines). Normalization support for floating-point adds would also
be expensive. We have developed a variable-width processor [6] that contributes
improved power and performance on multiply for roughly a factor of two increase
in processor area.

5.3.4 Overall Architecture

Even though the majority of the computing power will come from the SIMD PEs in
memory, we do not propose a pure SIMD machine but rather a MIMD-SIMD hy­
brid. Combining C•RAM, a high-performance microprocessor like the DEC Alpha
[10] for every 256 MB of memory, and a scalable interconnect [11], would make a
multicomputer MIMD machine with each of its processors in tum having a mas­
sively parallel SIMD machine as its memory. With a terabyte of total system mem­
ory, each of 4096 microprocessors would have 128 SRAM- (or 8 DRAM-) based
Ce RAM chips. The MIMD-SIMD hybrid combines the flexibility of MIMD with
the economics (especially the power economics) of SIMD.

5.3.5 Conclusions

A petaops system is obviously an extremely aggressive target, but a C•RAM design
that focuses on power consumption and bandwidth makes it plausible. While the
technologies we propose are far from "proven", they are within the bounds of the
imaginable with present fabrication processes and system engineering.

5.3.6 Acknowledgments

The authors are grateful for assistance from MOSAID Technologies, Northern Tele­
com Electronics, Canadian Microelectronics Corporation; and support from the Nat­
ural Sciences and Engineering Research Council of Canada and MICRONET. Ad­
dress email to dunc@eecg.toronto.edu

5.3.7 References

[1] Dake Liu and Christer Svensson. Trading Speed for Low Power by Choice
of Supply and Threshold Voltages. IEEE Journal of Solid-State Circuits, Vol
8, No. 1, January 1993, pp. 10-17.

51

[2] Anantha P. Chandrakasan, Randy Allmon, Anthony Statakos, and Robert W.
Brodersen. "Design of Portable Systems". In Custom Integrated Circuits
Conference, May 1994, pp. 12.1.1-12.1.8.

[3] Alex G. Dickinson and John S. Denker. "Adiabatic Dynamic Logic." In Cus­
tom Integrated Circuits Conference, May 1994, pp. 12.6.1-12.6.4.

[4] Betty Prince, "Semiconductor Memories: A Handbook of Design, Manufac­
turing and Application," 2d ed. Wiley, 1991.

[5] Duncan G. Elliott, W. Martin Snelgrove, and Michael Stumm. "Computa­
tional RAM: A Memory-SIMD Hybrid and its Application to DSP." In Cus­
tom Integrated Circuits Conference, Boston, MA, May 1992, pp. 30.6.1-
30.6.4.

[6] Christian Cojocaru. "Computational RAM: Implementation and Bit-Parallel
Architecture." Master's thesis, Carleton University, January 1995.

[7] Nobuyuki Yamashita, Tohru Kimura, Yoshihiro Fujita, Yoshiharu Aimoto,
Takashi Manaba, Shin'ichiro Okazaki, Kazuyuki Nakamura, and Masakazu
Yamashina. "A 3.84GIPS Integrated Memory Array Processor LSI with 64
Processing Eiements and 2Mb SRAM." In Intemationai Soiid-State Circuits
Conference, San Francisco, February 1994, pp. 260-261.

[8] Maya Gokhale, Bill Holmes, Ken Jobst, Alan Murray, and Tom Turnbull. "A
Massively Parallel Processor-in-Memory Array and its Programming Envi­
ronment." Technical Report SRC-TR-92-07 6, Supercomputer Research Cen­
ter, Institute for Defense Analyses, 17100 Science Drive, Bowie, Maryland,
November 1992.

[9] Jim Childers, Peter Reinecke, and Hiroshi Miyaguchi. "SVP: A Serial Video
Processor." IEEE 1990 Custom Integrated Circuits, May 1990 Conference,
pp 17.3.1-17.3.4.

[1 O] Daniel Booberpuhl, Richard Witek, Randy Allmon, Robert Anglin, and Sharon
Britton. "A 200MHz 64b Dual-Issue CMOS Microprocessor." In Interna­
tional Solid-State Circuits Conference, San Francisco, February 1992, pp 106-
107.

[11] Zvonko G. Vranesic, Michael Stumm, David M. Lewis, and Ron White. "Hec­
tor: A Hierarchically Structured Shared-Memory Multiprocessor Computer,"
Vol 24, No.I, January 1991, pp.72-79.

52

5.4 Design of a Masssively Parallel Computer Using Bit Serial
Processing Elements

5.4.1 Introduction

John E. Dorband
Goddard Space Flight Center

Greenbelt, MD 20171

Maurice F. Aburdene
Kamal S. Khouri

Jason E. Piatt
Jianqing Zheng

Department of Electrical Engineering
Bucknell University

Lewisburg, PA 17837

Recent trends for the design of massively parallel computers have shifted from em­
phasis on the design of single-instruction, multiple-data (SIMD) machines to multi­
ple instruction-multiple data (MIMD) machines. However, it is our contention that
the trend is based on inappropriately drawn conclusions. Because of the early rush
to build SIMD computers, inadequate attention was devoted to exploring the full
potential of these architectures. Current MIMD machines that are based on com­
mercially available processors lack the scalability originally intended for massively
parallel computers. These computers employ processors on the order of a hundred
or a thousand rather than a million, and yet consume large amounts of power and
space.

5.4.2 Massively Parallel SIMD Architecture

The objective of our project; is to design a massively parallel SIMD architecture
with greater than a million processors. A bit serial processor specifically designed
for a SIMD architecture will be utilized. The processing element [1] consists of a
bit serial arithmetic and logic unit (ALU), a distributed bit serial RAM, and a two­
dimensional router. The ALU is further divided into computational logic, three reg­
isters (an accumulator register, a carry register, and a mask register), and transmis­
sion gates, as shown in Figure 1.

53

Ain

LA/MA

IMS

r*1 Transmission
~ Gate

-<:J Data Connector

RI/Ml

1K

Figure 1: Registers and ALU of PE

In this design, a half adder is the fundamental component of the ALU. The re­
sults of such operations may be stored in either the accumulator or carry register.
The use of a shift register may considerably reduce the execution time for functions
such as multiplication. However, to reduce the size of the processing element by at
least a factor of five, a shift register is not used. The mask register allows certain
processors to perform a given operation while the others are "masked" and therefore
do not execute that operation.

Designed for CMOS implementation, the processor uses transmission gates to
guarantee that there are no conflicting signals, and that no combination of control
signals will produce a short from the power supply to the ground of any device.

The processing element may receive and transmit data from three levels: (1)
local RAM and ALU, (2) router network, and (3) global operation network. Each
processing element may only' communicate with one level at a time. The first level
is used to perform operations on data stored in the bit-serial RAM or any one of the
registers.

The router network allows processors to transmit and receive information from
each other. Any data received may be stored locally and operated on. The router is
a two-dimensional mesh as shown in Figure 2. This means that each element may
communicate directly with any of its four closest neighbors-north, south, east or
west.

Since two registers are available to store data, we may use both for communi­
cation purposes. The accumulator register is chosen to accommodate east-west data
transfer, while the carry register is used for north-south data transfer. This scheme

54

.T .. ,.J., ..T..
PE 7 ,_,,.- PE 8 PE 9 ~-.;--_,..... ··r·

.-.: :--- --: :-- --: ~·

.. t. .J. .. t.
....;.._,..- _;__,, .

PE 6 PE 5
~---... ..;._ PE 4 ' --,--. ..!.--... ·' . -~ ·'

--: :--- ,._, :-• ·~ :--

.. T t. .. t.
PE 1 -i-./-.; PE 2 PE 3

--,--. ... ·' '
I

~r·:... ---: t :--- -: l:-.. it·· '· ·' '·

Figure 2: 3x3 Toroidal 2-D Mesh of Bit-Serial PEs

optimizes the use of a two-dimensional router, and if need be, can allow for trans­
mitting two sets of data at a time. For example, one command may be "send carry
register conteucs north" or it may be "send carry register contents north and accu­
mulator register contents west."

Each processing element is connected to two routing switches-one switch for
north-south communication and another for east-west communication. The switchs
consists of four transmission gates in a square formation, where opposing gates are
controlled by a common signal. The comers of each switch are connected to four
data transmission lines: input of a register, output of a register, and the switches
from the two adjacent processors. The control signals dictate which transmission
gates are on and hence which direction the data is transmitted. In addition, a series
of external data lines have been added to allow for external 1/0. When the external
1/0 is activated, the router network remains on, but the toroidal connect is removed
to allow data to enter from only one side of the mesh.

Often it is necessary to inquire about the status of all the processors. These types
of operations are described as global operations, and require the use of an indepen­
dent network. This is the third level network for data transmission that consists of a
linear mesh of OR gates. The register contents of each PE are ORed and the result
of the operation placed in each processor.

55

5.4.3 Summary

The group has successfully simulated a 3 x 3 toroidal mesh of processing elements
using circuit design software. The simulation included all local operations. In ad­
dition, the router and global networks have been designed, and we are currently in
the process of simulating .them. Plans are to simulate a larger network and begin to
develop a VLSI prototype.

5.4.4 Acknowledgment

Partial support for this work was provided by NASA Grant NAG 5-2509.

5.4.5 References

[1] Dorband, John E., "Processing Element Description", NASA Goddard Space
Flight Center, 1989.

56

5.5 Non von Neumann Instruction Set Architecture as an Enabling
Technology in Grand Challenge Systems

5.5.1 Introduction

Justin S. M. Porter
University of British Columbia

Department of Electrical Engineering

To attain significant performance gains, system bottlenecks need to be removed.
High-end processors currently achieve large throughput by superscalar and super­
pipelined architectures, register set layouts and caching systems. These well estab­
lished tools all sidestep the von Neumann bottleneck of moving data between pro­
cessors and memories. This paper examines performance details of a distributed­
instruction set architecture as an enabling technology in grand challenge systems.
Performance gains will be shown from the movement of decoding and fetching units
from the processor to memory systems.

In order to obtain the performance goal of petaflops speed, identified as a crucial
factor by working groups in grand challenge systems [l], the fundamentals of com­
putational style will have to be re-examined. Performance gains must be realized
for this class of computing power in a manner that will not compromise efforts in
software development or manufacturing. Previous work in the area of active mem­
ory have been pursued [8] in fields related to database searches, network routing,
and storage management but this technology has yet to be realized for computation­
intensive scientific applications.

The von Neumann architecture has been adhered to by a majority of supercom­
puter developers, the exceptions being dataflow [5] and symbolic language machines.
Traditionally, operational cycles have continued to be composed of fetch, decode,
execute and writeback stages. Both vector supercomputers and massively paral­
lel systems have been built using this paradigm. Each approach has, at appropriate
times, been the underlying methodology by which the fastest computer systems in
the world have been built. Expansion of computational power by orders of magni­
tude must free itself from technology dependent factors which have been utilized
in coarse-grained parallel vector processors such as the Cray YMP [2] and NEC
SX-2 [3] or on the dependency of parallel problem spaces which massively parallel
systems such as the Connection Machine [4] have been constructed around.

57

The use of cutting edge physical technology such as gallium arsenide chips,
high mobility heterojunctions, optical devices, and superconductors may not be in­
corporated into grand challenge systems on the basis that there are factors such as
expense, manufacturing difficulty, and maintenance difficulties. Software advances
in highly parallel decomposition via graph techniques, loop decomposition tech­
niques and vectorizing compilers[6] are important advances, may not adequately
address the large range of problems presented as grand challenges.

The distributed instruction set architecture embodied in this paper starts wi(h
the movement of fetch and decode units from processor elements to the memory
system. Additionally, memory related instructions such as loading and moving data
have been implemented inside the memory system in order to save bus cycles. In
light of current trends in multithreaded vector processing, architectural tools such as
caching, pipelining and register sets may only continue to yield performance gains
until the end of the century. Distributed-instruction set architecture does not rely on
these architectural features.

In order to demonstrate the feasibility of distributed instruction set architec­
tures, a machine simulation was constructed and used to perform the Fast Fourier
Transform benchmark to determine execution lengths. The remainder of this paper
discusses features of the instruction set used, simulator results, and future direc­
tionso

5.5.2 Distributed Instruction Set Architecture

For decades, computer designers have provided extra functionality and performance
in systems by use of co-processors for math and graphical functions. To take this
concept to an extreme form, this type of distribution of functionality can be applied
to the basic operating cycle in the von Neumann architecture. To show the feasibil­
ity of this type of architecture for scientific applications, a machine simulator was
constructed. Two instruction sets were used in the simulations: one representing
a traditional von Neumann architecture, and the other representing a distributed­
instruction set. The instruction formats for both simulators are presented in Table 1
and Table 2. Bracketed values are indirect addressing, literal indicates immediate
mode addressing.

Both instruction sets were designed with basic tenets of reduced-instruction set
computers in mind. The fundamental difference between the two sets is that the
distributed case takes into account a savings of one cycle for memory instructions.
This derives from memory instructions being executed entirely within the mem­
ory system without involvement of a processor element. The execution delay in­
troduced by the fetch, decode, execute, writeback cycle for each instruction set are

58

Table 1: Sample Instruction Set for von Neumann System
Instruction Format Cycles to Execute
Integer Add INT ADD (srcl)(src2)(dst) 3
Integer Multiply INT MULT (srcl) (src2) (dst) 4
Integer Add INT ADD (srcl) (src2) (dst) 3
Integer Subtract INT SUB (srcl) (src2) (dst) 3
Integer Divide INT DIV (srcl) (src2) (dst) 4
Floating Point Add FP ADD (srcl) (src2) (dst) 3
Floating Point Multiply FP MULT (srcl) (src2) (dst) 4
Logical And AND (srcl) (src2) (dst) 1
Logical Or OR (srcl) (src2) (dst) 1
Logical Not NOT (src) (dst) 1
Load LOAD (src) (dst) 2
Load Immediate LOADI (dst) value 2
Move MOVE (src) (dst) 2
Branch Equal to BREQ (srcl) (src2) address 2
Branch Greater than BRGT (srcl) (src2) address 2
Branch Less than BRLT (srcl) (src2) address 2
Jump JMP address 2

Table 2: Sample Instruction Set for Distributed System
Instruction Format Cycles to Execute
Integer Add INT ADD (srcl)(src2)(dst) 3
Integer Multiply INT MULT (srcl) (src2) (dst) 4
Integer Add INT ADD (srcl) (src2) (dst) 3
Integer Subtract INT SUB (srcl) (src2) (dst) 3
Integer Divide INT DIV (srcl) (src2) (dst) 4
Floating Point Add FP ADD (srcl) (src2) (dst) 3
Floating Point Multiply FP MULT (srcl) (src2) (dst) 4
Logical And AND (srcl) (src2) (dst) 1
Logical Or OR (srcl) (src2) (dst) 1
Logical Not NOT (src) (dst) 1
Load LOAD (src) (dst) 1
Load Immediate LOADI (dst) value 1
Move MOVE (src) (dst) 1
Branch Equal to BREQ (srcl) (src2) address 2
Branch Greater than BRGT (srcl) (src2) address 2
Branch Less than BRLT (srcl) (src2) address 2
Jump JMP address 2

59

summarized inTable 3.

Table 3: Processor Cycle Delays
vonNeumann Delay Distributed Delay
System System
Fetch 1 Fetch 0
hline Decode I Decode 0
Execute As Per Table I Execute As Per Table 2
Write I Write 1

Again, the distributed system has an advantage since the fetch and decode op­
erations can be accomplished without usage of the system bus. Even in the most
powerful computers, the majority of system bottlenecks are currently attributed to
memory system design and memory-processor interaction.

5.5.3 Simulation Results

The. simulator was designed to model a dual processor system executing in SIMD
fashion using the above instruction set parameters. The benchmark used was the
Cooley-Tukey algorithm for the Fast Fourier Transform which is a representative
scientific benchmark. The results of simulated executions are presented in Table 4.

Moving the fetch, decode, and load/move instructions to memory yielded a 16.6%
savings in execution time, allowing for a speedup factor of 1.19. Although one
benchmark does not completely prove the case that distributed-instruction sets would
yield higher throughput, the distributed architectures performance on a basic test
such as this suggests that further simulation studies.would have similar findings.

The simulator did not incorporate models for distributed memory access, dy­
namic instruction scheduling, interprocessor data dependencies, or usage of pipelines
or caches. It could be argued that these results are inaccurate because pipelining is
insensitive to total length of operation execution, however the large amount of con­
text information captured in pipelines and caches presents a large problem when
operating in a multithreaded environment. Current superpipelined designs usually

Table 4· Simulation Results
Instruction Set Execution Time

(cycles)
vonNeumann 9657560
Distributed 7731990

60

incorporate a dozen pipeline sections on average, thus presenting a large perfor­
mance bottleneck on context-switching activities. The impact of these factors on
system performance is beyond the scope of this paper.

The major advantage of distributed instruction sets would be that the benchmark
code for the distributed system can run unchanged from that of the von Neumann
system. No recoding of software would be required and there would not be a bur­
den placed on compilers to determine optimal code transformations based on this
change in architecture[6].

One obstacle to implementing distributed instruction set machines would be in
the wafer fabrication process. Different fabrication techniques are used in the man­
ufacture of both high performance processors and memory chips, and the integra­
tion of techniques to create memory chips with instruction units on them will require
additional work.

5.5.4 Conclusions

In order to facilitate an order of magnitude increase in performance in cutting edge
supercomputers, a change in the fundamentals of execution style has shown to give
a 16.6% savings in execution length. In exposing the distributed nature of basic in­
structions, techniques such as multi threading and vector processing[?] may be com­
bined in the future for higher performance gains.

5.5.5 References

[1] Seigel, H.J. and Abraham, S. "Summary of the Report of the NSF-Sponsored
Purdue Workshop on Grand Challenges in Computer Architecture for the Sup­
port of High Performance Computing", 4th Symposium on Frontiers of Mas­
sively Parallel Processing, 1992, p. 76.

[2] Vajapeyam, S., Sohi, G. And Hsu, W.C. "An Empirical Study of the CRAY
Y-MP Processor using the PERFECT Club Benchmarks", 18th International
Symposium on Computer Architecture, p. 170.

[3] Fatoohi, R. "Vector Performance Analysis of the NEC SX-2", International
Conference on Supercomputing, 1990, p. 389.

[4] Tucker, L.W. and Robertson, G.G., "Architecture and Applications of the Con­
nection Machine", IEEE Computer, Vol. 21, No. 8, August 1988, pp. 26-38.

[5] Yuba, T. et al., "Dataflow Computer Development in Japan", International
Conference on Supercomputing, 1990, p. 140.

61

[6] Tsuda and Kunieda, Y., "V-Pascal: An Automatic Vectorizing Compiler for
Pascal with No Language Extensions", The Journal of Supercomputing, Vol
4, No. 3, September 1990, p. 251.

[7] Chiueh, T. "Multi-Threaded Vectorization", 18th International Symposium
on Computer Architecture, p. 352.

[8] Asthana, A., Cravatts, M. and Kryzanowski, P. "An Experimental Active Mem­
roy Based I/O Subsystem", Computer Architecture News, ACM SIGARCH,
Vol 22, No. 4, September 1994, p. 29.

62

5.6 Taming Massive Parallelism: The Prospects of Opto-Electronic
CRCW-Shared Memory

5.6.1 Introduction

Paul Lukowicz
Walter F. Tichy

Fakultat fiir Informatik
Universitiit Karlsruhe

D-76128 Karlsruhe, Germany
lukowicz@ira.uka.de, tichy@ira.uka.de

Much would be gained on the way beyond the teraflop and towards the petaflop if
massively parallel computers (MPCs) could be utilized more efficiently. Currently
most non-trivially parallel applications achieve only a fraction of the theoretical
peak performance once the number of processors goes into thousands. Much bet­
ter results could be obtained if it were possible to build a MPC with a uniform ac­
cess time concurrent-read, concurrent-write-shared memory (CRCW-SM). Unfor­
tunately, due to fundamental physical limitations of conventional electronic mem­
ory all such attempts have so far yielded unsatisfactory results. This has motivated
us to look at a novel, promising approach: using the natural parallelism provided by
optical data storage to build an opto-electronic CRCW-SM (OCRCW-SM) suitable
forMPCS.

5.6.2 Related Work

So far, research on the use of optical technology in parallel computers has con­
centrated on the improvement of interconnection networks [10, 3]. Optically, ex­
tremely tightly (or even fully) connected networks were suggested as a potential
platform for the efficient simulation of shared memory (e.g., [11]). We go a step
further by proposing a direct implementation of the full functionality of a CRCW­
SM and its integration into the memory hierarchy of a MPC. Our work is based on
the research in the area of magnetooptic memory [5], holographic optical memory
[4], and ferroelectric liquid crystal memory [l].

63

5.6.3 OCRCW-SM

A detailed description of our proposed system and elaborate performance estimates
can be found in [8] and [7]. Here we give a compact overview of the overall struc­
ture and the performance.

5.6.4 Principles

The idea behind the OCRCW-SM is that information stored using optically con­
trolled, variable light absorption of memory pixels can be accessed concurrently
by distinct light beams. Each bit is stored in a light modulator (LM) that can be
either transparent (1) or light absorbing (0). It is read out by illuminating it with
a beam of light (readout beam) and using a light detector to check whether it has
been absorbed or transmitted (Figure ld). To allow optical, parallel write access an
electro-optic modulator is constructed by combining an electrically controlled LM
with two photodetectors (PDs). When illuminated with a light beam (write beam)
one PD (set PD) causes the modulator to become transparent (bit=l), while the
other one (clear PD) makes it absorbing (bit=O). For a parallel write operation with
some processors trying to set the bit and others trying to clear it, the set and clear
PDs can be wired to accept a majority decision.

To build an M-bit OCRCW-SM. we need a plane of M LMs, for data storage.
Each of the P accessing processors must have a device to direct a light beam to­
wards the desired memory location (beam deflector) placed in front of the MP and
a detector device placed behind it. An optical system must be devised that makes
sure that all beams emitted by a particular processor find their way to its detector
device.

Major requirements on any concrete OCRCW-SM design are the limitation of
the overall size of the memory plane and the size and complexity of the beam de­
flector (the size of the beam deflectors must be much smaller then the MP to allow
for a large number of accessing processors). Furthermore it should be possible to
implement the device in the form of integrated chip-like components that can easily
be mass produced and can operate reliably under every day conditions.

5.6.5 Memory Architecture

To limit the size and complexity of the beam deflectors the memory is divided intop
pages and addressed in two stages. In the first optical stage a processor projects the
selected page on an array of light detectors using the beam deflection mechanism
(Figure lb). Thus, the beam deflector need only resolve p points. It can be real­
ized by p miniature laser diodes, each equipped. with appropriate micro-optics. In

64

the second stage the desired bit is retrieved from the detector array by a matrix ad­
dressing mechanism. In a similar two-stage addressing scheme, an appropriately
set sample page is projected on the memory page containing a given memory loca­
tion to perform a write operation (Figure le). The sample page has two electrically
controlled LMs for each bit of a memory page. One LM corresponds to the set PD
(set LM), the other one to the clear PD (clear LM). To write a selected bit of page
the LMs of the sample page corresponding to the other bits are all off (absorbing).
Of the LMs corresponding to the selected bit either the set LM or the clear LM is
on, depending on whether the bit is to be cleared or set (Figure le).

To limit the overall size of the MP we divide it into m modules Mmod = ~ bits
each. The modules are connected to the processors by a tree of height h of P x D
multiplexers with h = logm(D) (Figure la). The memory modules are located at
the leaves and have PIO channels, one for each PE. Thus each PE has an indepen­
dent connection to each memory module.

Each of the nm.ult = L:f,:-J Di =:; Dh = m multiplexers maps the input of each
PE onto one of D alternative outputs. This is essentially a simplified version of the
functionality contained in a memory module, where the input of each PE has to be
directed to one of p pages with p > D. Thus, at worst the number of components in
the system is doubled. On the other hand the overall complexity is greatly reduced
since we are now dealing with a system modularly built of identical, constant-size
components.

5.6.6 Technological Feasibility

The basic components of the OCR CW-SM are light sources, light modulators, light
detectors and passive optical components (lenses, holograms etc). Such devices al­
lowing miniaturization and integration in semiconductor technology and operating
at GHz frequencies have all been demonstrated in laboratory experiments (e.g., [9]).
They were used to implement complex systems in optical bench experiments [2].
The integration of simple systems in compact modules has also been studied and
reported [6].

5.6.7 Performance

There is no relevant theoretical limit to the number of processors that can access the
OCRCW-SM. For practical purposes the concurrency level is limited by the system
size, the optical cross-talk and energy considerations. Up to the order of magnitude
of 105 processors can be shown to be a realistic estimate. The information density
depends on the resolution of the optical system and the size the LMs. Both approach

65

the wave length of the light meaning that densities of 1~,:Js and beyond could be
reached. The capacity of our modular design is limited only in as far as the latency is
determined by the physical dimensions of the system. Taking into account the per­
formance of the opto-electronic components, systems with GBytes capacity could
be built with a latency ~ 1 ns.

5.6.8 System Architecture

The speed (due to physical dimensions), the feasibility (a reduced density device is
easier to build) and the cost of an OCRCW-SM system depend on the capacity of
the SM. At the same time, experience shows that most applications require only a
fraction of storage to be sharable. It thus makes sense to integrate the OCRCW-SM
into the memory hierarchy instead of using it exclusively. This also opens the way
for further performance improvement through local caching.

We are currently working on theoretical estimates and simulations to determine
the optimal ration of OCR CW-SM to conventional distributed memory and the best
way to integrate it. The most promising strategies are (a) software distinction be­
tween private and shared memory (efficient and simple, but burdensome to the pro­
grammer), (b) using a small amount of OCRCW-SM for special system purposes
(e.g., maintaining global cache coherence), (c) using OCRCW-SM as a fast-shared
cache for the private memories (desirable, but difficult to implement), and (d) con­
necting the OCRCW-SM to a large conventional memory that is used as a "swap"
device.

5.6.9 Conclusion and Future Work

We have shown that recent rapid progress in opto-electronic technology offers the
possibility of building a true scalable CRCW-SM. We have presented a design that
could be implemented in integrated semiconductor technology with memory den­
sity, latency and access speed equal to or better than what is possible with state­
of-the-art conventional memory. Such a device would allow us to utilize massive
parallelism of up to 105 processors with a high degree of efficiency.

We are using arrays of S-SEED MQW modulators and VCSEL laser chips to
build an optical bench proof-of-principle model. Furthermore, experiments to test
the scalabibty and the performance limits of different critical system components
are planned. We are also working on simulations comparing the performance of ma­
chines using OCRCW-SM varying in size and performance to more conventional
parallel machines.

66

-···--··-·-·-··-··------ --~'- ~--···-~ -----'-·-------~- ..

p

~

read setup

PE I

lasefdioOO

PE2

PEJ

reading and writting a bit

-----J ------· ,.

CIN•I

xctting a hil

clearing a hit

_____] ~E
B liCl detector

m dear dclcclor

OCRCWSM

D

PE I

PE2

PEJ

D

C~J··· ~ ..
·· ..

·· .. ·· ..

···· ..
······ ...

write setup

lilllllf'lle page ------ nx:mnry page

PE I ~ ~
l::uiL'rdiodc

PE2

writting a page

sample page memory hcforc

~ E
~ --------------------E

-- ~ --------------------E

memory afk:r

Figure 1: Architecture of the Proposed Opto-Electronic Shared Memory System

67

5.6.10 References

[1] J. L. de Bougrenet del la Tocnaye and J.R. Brocklehurst. "Parallel Access
Read/Write Memory Using an Optically Addressed Ferroelectric Spatial Light
Modulator." Applied Optics, Vol. 30, No. 2, January 1991, pp. 179-180.

[2] F. B. Mccormic et al. "Five-Stage Free-Space Optical Switching Network
With Field-Effect Transistor Delf-Electro-Optic-Effect-Device Smart-Pixiel
Arrays." Applied Optics, Vol. , No. 8, March 1994, p. 1601.

[3] E. E. E. Friet,man, W. van Nifterick, L. Dekker, and T. J.M. Jongeling. "Par­
allel Optical Interconnects: Implementation of Optoelectronics in Multipro­
cessor Architectures." Applied Optics, Vol. 29, No.8, March 1990, pp. 1160-
1177.

[4] J. Glanz. "Will Holograms Tame the Data Glut." Science, Vol. 265, No. 5,
August 1994, p. 736.

[5] B. Hill. Optical Memory Systems. Digital Memory and Storage. Vieweg,
1978.

[6] J. Jahns. "Planar Packaging of Free-Space Optical Interconnections," Pro­
ceedings. of the IEEE, Vol. 82, No. 11, 1994.

[7] P. Lukowicz and W. F. Tichy. "On the Feasibility of a Scalable Opto-Electronic
CRCW Shared Memory," Submission to the International Conference on Al­
gorithms and Architectures for Parallel Processing (ICA3PP-95).

[8] P. Lukowicz and W. F. Tichy. "Designing a Scalable Optoelectronic CRCW
PRAM," Proceedings of the Lessach Workshop on Parallel Processing, Uni­
versity of Clausthal TR series, September 1994.

[9] A.D. McAulay. "Optical Computer Architectures," John Wiley & Sons, Inc.,
1991.

[10] T. M. Pinkston. ''The GLORI Strategy for Multiprocessors: Integrating Op­
tics into the Interconnect Architecture," Technical Report CSL-TR-92-552,
Stanford University, Department of Computer Science, December 1992.

[11] C. Waterson and K. Jenkins. "Shared-Memory Optical/Electronic Computer
Architecture and Control," Applied Optics, Vol. 33, No. 8, March 1994, p.
1559.

68

5. 7 Lightning: A Scalable Dynamically Reconfigurable Hierarchical
WDM Network for High Performance Clustering

Patrick W. Dowd
Department of Electrical and Computer Engineering

State University of New York at Buffalo

5. 7 .1 Introduction

201 Bell Hall
Buffalo, NY 14260

dowd@eng.buffalo.edu.

This paper describes a hierarchical optical structure for high-performance processor
clustering. The architecture is based on wavelength division multiplexing (WDM)
which enables multiple multi-access channels to be realized on a single optical fiber.
The objective of the hierarchical architecture is to achieve scalability yet avoid the
requirement of multiple wavelength-tunable devices per node. In addition, single­
hop, all-optical communication is achieved: a packet remains in the optical form
from source to destination and does not require opto-electronic conversion or inter­
mediate routing. The wavele~gth multiplexed hierarchical structure features wave­
length channel re-use at each 'level, allowing scalability to very large system sizes.
It partitions the traffic between different levels of the hierarchy without electronic
intervention in a combination of wavelength- and space-division multiplexing. A
significant advantage of the proposed structure is its ability to dynamically vary the
bandwidth provided to different levels of the hierarchy.

5. 7.2 Scalable Technique for Clustering

The objective is to develop a scalable technique for clustering: a strategy that is
effective (in performance and price/performance) for high performance supercom­
puter system-level interconnection. The interconnection strategy needs to be flex­
ible to adapt to cost constraints at the low-end and high performance requirements
at the high-end. This paper defines the general architecture and then defines more
specifically an experimental testbed currently under construction known as "Light­
ning" that is targeted to supercomputer interconnection. This is a group project
including researchers from the State University of New York at Buffalo (network
and system architecture), University of Maryland at College Park (WDM devices),

69

University of Maryland at Baltimore County (WDM devices), the Supercomputing
Research Center (memory interface and operating system), and the Laboratory for
Physical Sciences (optical materials processing).

The goal of the experimental testbed being developed is to support a (weakly
coherent) distributed shared memory environment between the interconnected pro­
cessors. This is accomplished through a combination of the network architecture,
operating system, and network/memory interface design. The design objective is
not just to provide a high-bandwidth network, but to deliver that bandwidth to the
application rather than wasting it in overhead at the operating system level. Our
approach is to achieve a tighter integration in the optical, electronic and software
technologies within the system. For example, the design of our memory interface is
being over-seen by the system architect, an operating systems designer, the primary
application developer, and the designers of the optical components. This collabo­
ration has resulted in a 0-copy memory/network interface card where an incoming
memory block is injected directly to its final location in memory without interme­
diate buffer copies.

5.7.3 Lightning Network Architecture

Lightning network architecture uses wavelength-, space-, and time-division mul­
tiplexing to achieve the communication requirements of the system. In particular,
wavelength re-use is achieved at each level of the hierarchy to both magnify the
usefulness of WDM channels and reduce the number of required WDM channels.
A major objective of the architecture was to relax the constraints placed on the op­
tical devices-strong constraints usually translate into high cost. In particular, one
objective is to reduce the number of required WDM channels to preserve practical
feasibility.

This architecture has an advantage in that bandwidth can be dynamically re­
allocated throughout the system to adapt to shifts in traffic patterns. The bandwidth
assigned to different levels of the hierarchical system can be dynamically increased
or decreased, based on the reference patterns and file activity of the system. How­
ever, in comparison to traditional reconfigurable architectures, the reconfiguration
of the system is automatic and hidden from the user. The user does not have to log­
ically map an application to a specific topology or inform the operating system at
compile- or run-time of its intended communication patterns. Note that this system
is not designed to reconfigure ori an instruction-by-instruction basis, due to the ge­
ographically distributed design constraint, and reconfiguration is viewed as more
a process-by-process level. Lightning senses the traffic patterns inherent to an ap­
plication and adapts itself accordingly. This function is hidden from the user and

70

the operating system and avoids placing the burden of understanding the specifics
of the system on the programmer. The programmer views the system as a pool of
processors and is not involved with process placement.

5.7.4 Summary

Lightning accomplishes the dynamical reconfiguration capability by monitoring the
traffic intensities on channels at each level of the hierarchy. When an imbalance
in traffic intensities is detected between two levels of the hierarchy, the system re­
configures to balance the traffic by pushing channels either up or down the hier­
archy. Note that the reconfiguration is completely decentralized for fault tolerant
reasons-there is no single watchdog monitoring and all nodes share in the respon­
sibility of monitoring and initiating reconfiguration.

I

5.7.5 Acknowledgements

This work is supported by the Laboratory for Physical Sciences, College Park, Mary­
land.

71

72

5.8 PETAftops: PErhaps Take A Futuristic Look at Optical
Processing Systems

Chunming Qiao
Department of Electrical and Computer Engineering

SUNY at Buffalo, Amherst, NY 14260
qiao@photon.eng.buffalo.edu

5.8.1 Introduction

Many studies have already been carried out to compare optical and electronic inter­
connects for high-speed digital systems [1, 2]. It has been found that based on power
consumption, speed and integration density, the optical interconnects are more suit­
able than electronic counterparts for extremely high bandwidth (e.g. above GHz)
systems [3]. In addition, the current VLSI technology is quickly approaching the
physical limits due to thermal and/or quantum effects [4, 5].

Here, we consider a system capable of petaflops-range performance, from the
viewpoint of interconnection networks. One possible model is a massively parallel
machine and the other is a distributed cluster. We feel that free-space optical and
fiber-optic interconnects are promising for massively parallel and distributed pro­
cessing systems, respectively.

5.8.2 Free-space Optics for Massively Parallel Machines

A massively parallel machine would be suitable for relatively fine-grained data­
parallel applications such as image processing or finite-element analysis. We wish
to limit the number of nodes needed in order to achieve a reasonable connectivity.
Limiting the number of nodes, however, implies that each node will have to be very
powerful. We assume a system having 1 million nodes (106), each is capable of one
gigaflops.

With electronic interconnects, no matter what logical topologies is used, the
physical layout is usually two-dimensional: that is, processing elements and in­
terconnects are on the same plane. A typical system is a 2-D mesh shown in Fig­
ure l(a).

With free-space optic interconnects, it is possible to use the third dimension to
interconnect two planes of processing elements as shown in Figure 1 (b). However,
the size of such a system is limited by the aberration and diffraction of the lens array

73

lens array
N

N

. ; :r:;--~ :r -~.
·i\·I·'·'·'·•· ., ... ~.,.:.~.

N ·l·>·~·~·i-+· ·'·'
I I I I I I
I__:_ I I I I

(a). 2D Mesh (b). Free-space optics (c). True 30 interconnects.

Figure 1: Possible Topologies

and the optical power detection limit of the detectors. In fact, studies [6] showed
that the product of channel bandwidth (in Mbits/s) and system size is limited to
about 5 x 105. Using extreme technologies of free-space optics, one may implement
the interconnects in 3 or more dimensions as shown in Figure l(c). It is important
for such a system to have a fixed nodal degree and a localized connection pattern
while maintaining a small diameter.

Here we present a futuristic topology which we call Multi-Plane Interconnected
Cube (MPIC). To explain the interconnection pattern, we examine a 3-D block of
27 nodes, each represented in a triplet according to their x, y and z coordinates, as
shown in Fig. 2(a). All nodes in an MPIC have the same fixed degree of 14 and
connectivity. Figures 2(b) through (e) show the interconnection pattern from the
viewpoint of the center node of the block, (1, 1, 1). It is interesting to observe that
the diameter of an N x N x N MPIC is N - 1 if N is odd and N otherwise, even
when diagonal links such as the one shown in the dotted line in Figure 2(c) do not
exist. Including those diagonal links would increase the nodal degree from 14 to
26, only to improve the diameter by 1 when N is even. In addition, as illustrated
in Figure 2 (f), the minimal angle separation of any two light beams would be de­
creased from 55° to 35°. Many issues related to the MPIC topology such as routing,
electronic and/or optical implementations, fault-tolerance and comparative perfor­
mance study are still being actively investigated.

74

(a). A block of 27 node in an MPIC

(0,2,0) (1,2,1) (2,2,2)

~
(0,0,0) (1,0,1) (2,0,2)

(d). Diagonal view (FR)

(1,2,1)

(0,(,1) 63 (2,(,1)

(1,0,1)

(b).Front view (Z=l)

(0,2,2) (1,2,1) (2,2,0)

~
(0,0,2) (1,0,1) (2,0,Q)

(e). Diagonal View (FL)

(1,1,2)

(0,1,1) (1,1,1)

p"
;

;

(0, 1,0) (I, 1,0)

(c). Top view (Y=I)

(0,2,0)

(~
'Cf·················

(2,1,1)

(0,1,0) {2 (1,1,1)

(0. Minimal angle separation

Figure 2: Interconnection Patterns in an MPIC

5.8.3 Fiber-optic Interconnects for Parallel and Distributed Systems

One may envision a distributed system of moderate size (about lK nodes), in which
each node is capable of 1 teraftops. Such a system would be suitable for a large­
grain parallel and/or distributed computations. Issues related to the reduction and
tolerance of communication latency are of major concern in such a system, but novel
solutions using optical technology are being sought.

• Increase connectivity. The network diameter can be reduced by increasing
its connectivities with both time and wavelength multiplexing. Multiple vir­
tual channels can be created on a single physical link, so that the effective net­
work connectivity is increased. Figure 3 (a) shows a ring of four nodes which
is configured to a completely-connected network using four wavelengths.

• Tolerate propagation latency. When two communicating nodes are physi­
cally far apart, time-multiplexing techniques [7, 8] that can effectively achieve
message pipelining on a single fiber [9] can be applied to tolerate the long la­
tency. Figure 3 (b) shows that up ton packets can be transmitted and received

75

within an end-to-end delay.

DD CJ

(~ ~ -- 2 l
time

(a). WDM in a ring (b). Message pipelining (c). Reconfiguration in TOM

Figure 3: Fiber-optics in Distributed Computing

• Eliminate intermediate O/E conversions: Whenever feasible, intermediate
O/E conversions should be eliminated Not only can this avoid delay; it also
can make the communication network bit-rate transparent. Single-hop net­
works can be reconfigured in time-division multiplexed (TDM) fashion [10,
8] as in Figure 3 (c) to eliminate or amortize control. MuUi-:bop networks
can either establish time-slot continuous connections (12], or use all-optical
time-slot interchangers. Similar approaches have been studied in WDM sys­
tems.

Finally, we note that regardless of whether petaflops is feasible, or whether op­
tical computing can replace electronic processing, we believe that optical intercon­
nects will be the means in the future for high speed and high bandwidth communi­
cations. In the past, optical technology has received enormous attention from the
telecommunication community but has been largely ignored by the computer com­
munity. Currently, fiber-optic technology is already a driving force to high perfor­
mance communication and computing in local area network, although many issues
remain open. It is hoped that more and more people in the computer community
will embrace this new technology, which is going to play important roles in high
performance parallel and distributed systems.

76

S.8.4 References

[1] D. Hartman, "Digital High Speed Interconnects: A Study Of the Optical Al­
ternative," Optical Engineering, Vol. 25, Oct. 1986, pp. 1086-1102.

[2] P. Haugen, S. Rychovsky, and A. Husain, "Optical Interconnects for High
Speed Computing," Optical Engineering, Vol. 25, Oct. 1986, pp. 1076-1984.

[3] M. Feldman, S. Esener, C. Guest, and S. Lee, "Comparison Between Opti­
cal and Electrical Interconnects Based on Power and Speed Considerations,"
Applied Optics, Vol. 27, May 1988, pp. 1742-1751.

[4] R. Keyes, "Physical Limits in Digital Electronics," IEEE Proceedings, Vol. 63,
May 1975, pp. 740-760.

[5] Gooeman, F. Leonberger, S. Kung, and R. Athale, "Optical Interconnections
for VLSI Systems," IEEE Proceedings, Vol. 72, 1984, pp. 850-866.

[6] T. Sakano, K. Noguchi, and T. Matsumoto, "Optical Limits for Spatial In­
terconenction Networks Using 2-D Optical Array Devices," Applied Optics,
Vol. 29, Mar. 1990, pp. 1094-1100.

[7] H. Jordan, "Time Multiplexed Optical Computers," in Proceedings of Super­
computing, Nov. 1991, pp. 370-378.

[9] C. Qiao and R. Melhem, "Time-Division Optical Communications in Mul­
tiprocessor Arrays," IEEE Transactions on Computers, Vol. 42, May 1993,
pp. 577-590.

[1 O] R. Melhem, D. Chiarulli, and S. Levitan, "Space Multiplexing of Waveguides
in Optically Interconnected Multiprocessor Systems," The Computer Jour­
nal, Vol. 32, No. 4, 1989, pp. 362-369.

[11] R. Thompson, ''The Dilated Slipped Banyan Switching Network Architec­
ture for Use in an All-Optical Local Area Network," IEEE Journal of Light­
wave Technology, Vol. 9, Dec. 1991, pp. 1780-1787.

[12] C. Qiao and R. Melhem, ''Reconfiguration with Time-division Multiplexed
MINs for Multiprocessor Communications," IEEE Transactions on Parallel
and Distributed Systems, Vol. 5, No. 4, 1994, pp. 337-352.

77

[13] C. Qiao and R. Melhem, "Reducing Communication Latency with Path Mul·
tiplexing in Optically Interconnected Multiprocessor Systems," in Proceed­
ings of the Int'l Symp. on High Performance Computer Architecture, Jan.
1995, pp. 34-43.

78

.5.9 Easing the Burden on Latency-Tolerance Mechanisms in
Petaftops Computers

5.9.1 Introduction

David K. Probst
Department of Computer Science

Concordia University
Montreal, Quebec
probst@crim.ca

The large diameters of projected petacomputers push the envelopes of required mech­
anisms for latency-tolerance such as pipelining and multithreading. User/compiler­
managed register caches that offer scalable latency avoidance (by neither storing
large state nor generating coherence traffic) can ease some of this burden. In high
performance parallel computing the fundamental question is whether scalability­
at a given design level in the hierarchy-is best achieved by dependence on or in­
dependence from data locality.

5.9.2 Locality Independence

Here, we explore the design point of a multithreaded multiprocessor with locality
independence (i.e., true shared memory) and enough bisection bandwidth to b~l­
ance the machine. Our goal is that neither locality dependence nor cache behavior
should be allowed to either constrain available parallelism or degrade the quality of
memory bandwidth.

A register cache allows the state of a cache line to be partitioned between the
compiler and the cache. The cache has associative lookup, presence bits, dirty bits,
but no coherence protocol. For each datum, the compiler manages an additional five
states (roughly, the Cartesian product of a set of three states and {this processor, not
this processor}).

Compiler dependence analysis and user directives allow visible synchroniza­
tion to directly coordinate transitions among the following three local "split" cache
states of a datum:

1. Private (i.e., exclusive read/write)-One cached copy exists; the value in mem­
ory is not accessible.

79

2. Sharable (i.e., read only)--Several cached copies exist; the value in memory
is not accessible

3. Uncachable (i.e., shared and writable)-No cached copy exists; access to the
location is by "write through".

5.9.3 Summary

We propose replacing program-independent cache-coherence protocols by program­
specific user/compiler control over (a) when to copy into data register caches af­
ter visible input synchronization points, and (b) when to uncopy out of data reg­
ister caches before visible output synchronization points. "Uncopy" means self­
invalidate, possibly writing back. Cache invalidation is performed locally- when­
ever data become shared and writable-by executing machine instructions expressly
provided for this purpose.

The new cache instructions are: read/nocopy and uncopy; normal reads and
writes may make copies in the data register cache. The semantics of cache instruc­
tions is an obvious function of the presence and dirty bits.

80

5.10 Petaflops Technology: Real Time Image Compensation

S.10.1 Introduction

Richard G. Lyon
Hughes STX

NASA/GSFC Code 934
Greenbelt, MD 20771

lyon@phase.gsfc.nasa.gov
(301)-286-9768

Optical systems designers currently design optics and associated hardware to meet
system requirements. Petaflops computing would allow for relaxation of the de­
sign optical requirements and correction of the imagery in real time to meet these
requirements. The system would encompass not only the optics and detector but the
reconstruction algorithm and petaflops computational engine as well. No hardware
feedback loop would be required.

The recent successes [2] in restoration of Hubble Space Telescope (HST) im­
agery has shown that image reconstruction algorithms are a potential alternative to
costly optical systems. While algorithms cannot totally recover HST's design reso­
lution due to photometric and noise limitations, optimal systems could be designed
for some applications. Discussed briefly here will be two such "canonical systems",
each based on petaflops technology. The first will be for real time compensation of
a low cost optical system without off-line processing. The other will be for real time
atmospheric compensation without the use of costly wavefront sensor and adaptive
optical technology. Discussed in a generic fashion will be the computational re­
quirements required to realize both systems.

S.10.2 Real Time Image Compensation

In order to track in real time a rapidly moving object we need a system capable of
frames rate approaching 1000 Hz. The object radiance drives the size of the primary
mirror and sensitivity increases as the square of the mirror diameter. Thus, for dim
or space-based objects the mirror diameter must be quite large. Fabrication of high
optical quality large monolithic mirrors is costly and time consuming.

An alternative approach would be to design and build large low cost mirrors
with figure errors and compensate the imagery in real time at video frame rates.
Realization of petaflops technology would make this an attractive alternative. The
image compensation could be performed on a petaflops computational engine using

81

an image deconvolution algorithm. The current state of the art in image deconvo­
lution algorithms is generally considered the maximum entropy algorithm (MEM).

The MEM maximizes the information entropy of the recovered image subject
to a set of constraints and is generally considered the best method for ill-posed prob­
lems. The algorithm is non-linear and iterative, converging asymptotically to a so­
lution. For Hubble images excellent results are achieved after 1000 iterations. Each
iteration requires 20 gigafiops consisting of four, 2-dimensional (1024x 1024), 32~
bit FFTs and a number of highly data-parallel, complex floating point operations.
One thousand iterations would require 20 terafiops, and to do this at a frame rate
of 1000 Hz would require 20 petafiops of compute power. The level ofparallelism
is driven by the number of pixels in the detector array (1024x 1024), given a par­
allelism of approximately 1,000,000. This would require a computational engine
with 1024x 1024 32-bit processors each operating at 20 gigafiops sustained.

5.10.3 Real Time Atmospheric Compensation

The atmosphere typically changes on the order of a millisecond. A real time device
would need to sample it at approximately 1000 Hz. Current atmospheric compen­
sation schemes rely on a wavefront sensor with a delay line feeding back to an adap­
tive optic. Both the wavefront sensor and adaptive optic are complex and costly and
can yet only partially compensate the atmospheric turbulence. Petafiops computing
would allow for real time correction without a wavefront sensor or an adaptive op­
tical system. Indeed only conventional optics would be used, and they could be rel­
atively low quality. The imagery would be compensated in real time via phase [1,
3]. Phase diversity relies on simultaneous measurements of an image with known
phase differences (e.g., focus). This is easily accomplished by splitting the converg­
ing focal beam prior to focus into multiple foci. Phase diversity uses an iterative
non-linear algorithm to converge to the phase errors introduced by the atmosphere.
From the recovered phase errors the object can be recovered. The algorithm uses
6N + 2 FFTs per image recovery, where N is the number of iterations (typically
1000). Each FFT requires 5 gigafiops. In order to correct the atmosphere at 1000 Hz
we need 30 petafiops of compute power. The level of parallelism is driven by the
number or samples (1024x 1024) yielding approximately 1,000,000. This would
require a computer with 1024'x 1024 32-bit processors each operating at a sustained
30 gigafiops.

82

5.10.4 References

[1] R. A. Gonsalves, "Phase Retrieval and Diversity in Adaptive Optics", Opt
Eng. Vol. 21, 1982, pp. 829-832.

[2] J.M. Hollis, J.E. Dorband, F. Yuseh-Zadeh, "Comparing Restored HST and
VLA Imagery of R Aquar 11", Astrophysical Journal, Feb 1992.

[3] R. G. Paxman, T. J. Schultz, and J.R. Feinup, "Joint Estimation of Object and
Aberrations by using Phase Diversity", JOSA-A 9, 1992.

83

84

6 Applications and Algorithms: Issues and Challenges

This section includes the extended abstracts from participants who made pre­
sentations on applications and algorithms issues and challenges of petaflops com­
puting.

Listed below are the titles of the extended abstracts and their authors:
• Enabling Data-intensive Applications through Petaftops Computing, Reagan

W. Moore

• Some Applications Demonstrating the Existing Need for Petaftops Comput­
ing In Biomedical Research, Jacob V. Maizel, Jr.

• Hierarchical Distributed Genetic Algorithms Control of Simulation-based Op­
timization: The Need for Petaftops, Bernard P. Zeigler, George Ball, Doo
HwanKim

• Computational Requirements for Hydrodynamic Turbulence on Petaftop Com­
puters, Anil E. Deane

• Computational Astrophysics Calculations on Petaftop Computers, Bruce Fryx­
ell

• Petaftops and the Gravitational N-body Problem, Kevin M. Olson

• Strategic Applications for Petaftops Computational Systems, Rick L. Stevens,
Valerie E. Taylor

• A Case Study of Interactive, Immersive Visualization for Scientific Environ­
ments, Valerie E. Taylor, Meena Kandaswamy, Rick L. Stevens

• Parallel Computations for Scientific and Engineering Applications: What Could
We Do With Petaftops? What Must We Consider If We Are To Exploit Peta­
ftops?, Guy Robinson (Note: Robinson was unable to make a presentation)

85

86

6.1 Enabling Data-intensive Applications through Petaflops
Computing

6.1.1 Introduction

Reagan W. Moore
San Diego Supercomputer Center

San Diego, CA

Computers capable of sustaining petaftops computation rates will also enable data­
intensive analysis of massive data sets. Just the data archival storage requirements
for a petaftops computer will require moving over a petabyte of data per hour. With
an appropriate design, however, even faster manipulation of data will be feasible.
It should be possible to dynamically manipulate petabyte data sets that are derived
from exabyte-sized data archives. This will allow a new mode of science, in which
data assimilation becomes as important to the development of predictive models as
computational simulation is today.

6.1.2 Data Assimilation

Data assimilation can be viewed as combinations of data mining (in which corre­
lations are sought in large sets of data) and data modeling (in which observational
data are combined with a simulation model to provide an improved predictive sys­
tem.) These approaches may require either locating a single data set within the data
archive (data picking) or deriving a data subset from data that may be uniformly
distributed throughout the archive. The latter requires supporting the streaming of
data through data subsetting platforms to create the desired data set. The hardware
architecture that can sustain this high data rate is based on the use of parallel J/O
streams to multiple data subsetting platforms.

A petaftops computer will incorporate many of the features needed to support
data-intensive problems. It will need to be a scalable parallel architecture for com­
putation, 1/0 access, and data storage. Data will need to flow in parallel from the
data storage devices to parallel nodes on the petaftops computer. A minimum IJO
rate needed to sustain just the archiving of data can be estimated from current sys­
tems. Assuming that data archival storage requirements for computational model­
ing on a petaftops computer will be similar to those on a gigaftops computer, it is
possible to estimate the amount of data that would be archived by scaling from data

87

Table 1: Projections of 1/0 Requirements
System 1/0 Rate I/ORate Data Moved

Execution to Disk to Archive to Archive
Rate (GB/s) (GB/s) (PB/day)

Gigaflops 2x 10-2 4 x 10-4 35 x 10-6

Teraftops 2 x 101 4 x 10-1 35 x 10-3

Petaflops 2 x 104 4 x 102 35 x 10°

flow analyses of current CRAY supercomputers [1]. For the workload at the San
Diego Supercomputer Center, roughly 14% of the data written to disk survives to
the end of the computation and 2% of the generated data is archived. The amount
of data that is generated is roughly proportional to the average workload execution
rate, with about 1 bit of data transferred for every 6 floating point operations [2].
Using these characterizations it is possible to project the 1/0 requirements for gi­
gaflops, teraftops, and petaftops computers as shown in Table 1

In practice, the usage model is expected to shift towards in-core regeneration
of intermediate results on a petaflops computer. This will decrease the amount of
data that is moved to disk. On the Cray Y-MIP8/864 at SDSC, a range of 110 gen­
eration rates were observed with as few as 1 bit moved for every 10 floating point
operations. However, when data-intensive applications are analyzed, even higher
1/0 access rates can be required. Note that the nominal rate suggests that a petaftops
computer will move over 30 petabytes of data per day to archival storage. Thus a
petaftops computer should be capable of supporting analyses of petabyte-size data
sets on an hourly basis.

6.1.3 Architecture Implications

The architecture design that will support this rate of data movement might be con­
structed from the following components:

- 10,000 nodes at 100 gigaflops/node

- 100 terabytes of memory at 10 gigabytes/node

- 400 1/0 channels at 1 gigabyte/sec per channel connected to 400 storage de-
vices that record at the same rate

- 2.5 petabytes of data stored per storage device for a total archival capacity of
1 exabyte

88

A terabyte of data distributed across all 400 storage devices could be read in
2.5 seconds. The time to read the entire exabyte-size archive would be 29 days. By
increasing the degree of 1/0 parallelism (increasing the number of 1/0 channels and
storage devices) even faster data processing rates would be achievable.

Petabyte data sets will exist by year 2000. An example is longitudinal clini­
cal patient records (including x-ray and MRI images, video, etc.). The amount of
data aggregated over the hospitals within a major city over a five-year interval is ex­
pected to exceed a petabyte. The ability to manipulate such a large data set within
seconds will allow studies that could greatly improve health care. A second ex­
ample is the NASA EOSDIS remote sensing data collection [3]. This collection
also will be multiple petabytes in size by year 2000 and is expected to grow to 8
petabytes by year 2007. The incorporation of remote sensing data in weather pre­
diction can lead to greatly improved predictive models.

The concept of a petafiops computer is intriguing because of the enhanced com­
putational modeling that will be enabled. However, instead of thinking of such a
system as a generator of simulation data, it is also possible to envision a petafiops
computer as a processor of archived data. It should be possible to manipulate a
petabyte of data per hour using the minimal design I/O capability. A petafiops com­
puter that can process an exabyte-size data archive is even more intriguing, in that
it will enable the solution of a significantly larger range of scientific problems that
can benefit from data assimilation.

6.1.4 References

[1] Moore, Reagan W., "File Servers, Networking, and Supercomputers," Adv.
Info Storage Systems, Vol. 4, SDSC Report GA-A20574, 1992.

[2] Vildibill, Mike, R. W. Moore, Henry Newman, "I/O Analysis of the CRAY Y­
MP8/864," Proceedings, Thirty-first Semi-annual Cray User Group Meeting,
Montreux, Switzerland, March 1993.

[3] Davis, F., W. Farrell, J. Gray, C.R. Mechoso, R. W. Moore, S. Sides, M.
Stonebraker, "EOSDIS Alternative Architecture," Final Report submitted to
RAIS, Sept. 6, 1994.

89

90

6.2 Some Applications Demonstrating the Existing Need for
Petaflops Computing In Biomedical Research

Jacob V. Maizel, Jr.
Chief, Laboratory of Mathematical Biology

National Cancer Institute
Building 469, Room 151

Frederick Cancer Research and Development Center
Frederick,MD21702

6.2.1 Introduction

Experience at existing high performance computing centers shows large require­
ments for compute cycles in a wide range of problems. Genome analysis, structure­
based drug discovery(referred to as Rdrug designs in vernacular terms), and mod­
eling of organs and tissues are examples outlined below for which much founda­
tion research is ongoing. Practical consequences are already envisioned in these
areas. Furthermore, most scientists expect that in the coming decades the num­
ber of examples in these areas will increase dramatically. Such things as virtual
medicine/surgery for teaching and research, prostheses for physical and cognitive
remediation, biomaterials, environmental research, information handling and other
imaginable areas will benefit from many orders more compute power.

6.2.2 Challenges from the Data of Genome Projects

The Human Genome project should produce the entire sequence of 3 x 109 bases
of human DNA in the next decades. It is reasonable to expect that at that time it
may be possible to do genomes of similar size, such as individual humans, exper­
imental and domestic animals, crops, and others at the rate of one per year. Rates
of 100 bases/sec may be routine. Full, element-by-element comparisons of new se­
quences with existing data bases would require more than 1011 to1012 elementary
comparisons per second, compounded as the data base grows. Clever heuristics can
reduce the essential operations, but some algorithm discovered in the future could
require complete re-analysis of all existing data. Full comparison of human and
mouse would need 1018 to 1019 operations, for example. This kind of compara­
tive sequence analysis is already proven to be one of the most powerful sources of
knowledge about genes, and shows promise of becoming more important as the data

91

and knowledge bases grow. These discoveries will drive the need for even more so­
phisticated analyses.

Genomic information completely determines the characteristics of the protein
and nucleic acid molecules that express a living organism's form and function. One
of the greatest challenges, in which computation is playing a major role, is the pre­
diction of higher order structure from the one-dimensional sequence of genes. Rules
for prediction of macromolecule folding are beginning to emerge. In the case of
RNA there are some simple rules that partially predict the secondary interactions
of distant parts of the polymer chain. A deterministic, dynamic programming code
is in wide use. It scales as ,...., N 3 in operations and ,...., N 2 in memory. Other non­
deterministic methods are also available. More complex methods for predicting
three-dimensional structure are appearing. As an example, preliminary secondary
structure predictions for sequences of HIV RNA (9,218 nucleotides) can be done
on a 16K processor SIMD Maspar or an 8-processor Cray YMP in about six hours.
There are 100,000s of sequences of potential interest ranging in size from 50 to
10,000 nucleotides.

Protein structure prediction is even of greater interest since proteins are the prin­
cipal agents of expression for genetic information. Rules for prediction are more
complex that for RNA, and are a research area of major concern. In its extreme
the problem could be viewed as of nN complexity, where reasonable values for n,

the number of conformations amino acids may take, could be dozens, and N, the
length of the polypeptide chain, ranges from 10s to 1000s. Exhaustive conforma­
tional search would not be feasible for many proteins, even with petaftops comput­
ers. However, even now there are a number of strategies to explore the problem.
Exhaustive search on highly simplified lattice models, using simplified potential
functions is partially successful. Statistics based assignments of structure from se­
quence similarities is another. In all cases refinement of final structures requires
molecular mechanical and computational chemistry tools.

Much experimental work, involving heavy computation, is still needed in algo­
rithm development for both the RNA and protein folding problem.

6.2.3 Drug Design

Current costs of developing a new drug are several hundred millions of dollars.
Good candidates are scarce. For example, by screening 10s to lOOs of thousands
of natural products and other chemicals, new candidate anti-cancer agents emerge
at less than one per year. Computation is anticipated as a powerful aid to designing
and pre-screening new candidates. This. approach requires fundamental structural
data on potential targets and the agents that may affect them. High performance

92

computer models are essential for analysis of experimental structural data to pro­
duce detailed molecular models, to molecular mechanical/dynamic exploration of
target structures, to chemical structure of small drugs and to interaction between
drugs and targets. All of these methods will require petaflops to achieve reliable
prediction, design and testing.

Structure determination requires computation in solution of the phase problems
of x-ray crystallography and in distance geometry calculation for magnetic reso­
nance. Computational chemistry is needed to understand the structure of drugs and
how they bind to targets at the atomic level and for details of electronic structure.

As examples, consider the protease of HIV and its inhibitors. This enzyme is
required for mature, infectious virus to be produced, and is thus a candidate for drug
targeting. It is being studied intensively. At this stage computing speeds are on the
order of 1012 fold slowerthan desired. Typically, 10-9 seconds of real time requires
100 Cray YMP hours. We want to cover l ms of chemical time. Petaftops would
permit electronic calculations at moderate levels of theory for the entire protease
and very detailed calculations for drug-sized molecules.

The calculations currently scale as N 2 for number of atoms in molecular me­
chanics calculations, with various heuristics to reduce from this upper bound. Elec­
tronic structure requirements vary depending on the level of theory, but range from
N 2 upward. Memory requirements scale as N 2 for molecular mechanics with ad­
ditional off-line storage for molecular dynamics trajectories. Electronic structure
codes vary in memory requirement depending whether storage and re-use of inter­
mediate values or re-computation is chosen.

6.2.4 Realistic 3-D Heart Models

Development of a realistic 3-D model of the heart will benefit improved designs for
prosthetic heart valves, modeling of cardiac diseases and understanding the func­
tional anatomy of the heart. Petaftops are needed to allow current promising models
to be scaled to realistic levels of detail.

The present level of development successfully models some portions of the fluid
dynamics of a heartbeat. It models the heart as geodesic fiber paths on surfaces in
3-space, based on painstaking anatomical dissection of mammalian hearts. Fiber
forces are transmitted to the blood by a special weighting function. Blood is repre­
sented currently by 128 x 128 x 128 3-D lattice of points on which fluid dynamics
are calculated using versions of the Navier-Stokes equations. The problem scales
in memory as slightly less then the grid size cubed and in computational complexity
as more than N 4 . Present requirements are a Cray C-90 cpu-week and SOM words
of memory for a single beat. Realistic improvements would require petaftops; and

93

could be utilized immediately to refine the many parameters, to achieve steady state
dynamics and to introduce new features such as electrical activity. Methods devel­
oped for this work are applicable to problems of sperm motility, platelet aggrega­
tion, and other problems with flexible boundaries, such as blood vessels of lung and
heart.

94

6.3 Hierarchical Distributed Genetic Algorithms Control of
Simulation-based Optimization: The Need for Petaflops

Bernard P. Zeigler
George Ball

Doo Hwan Kim

High Performance Simulation Project
Department of Electrical and Computer Engineering

School of Renewable Natural Resources
University of Arizona, Tucson, AZ 85721

6.3.1 Introduction

This discussion addresses the computing resource needs for computing environ­
, ments supporting simulation of landscape ecosystems at high levels of resolution
and encompassing large areas such as forests and watersheds. We will argue that
current technology is not adequate to support the large amounts of data necessary
for representing such systems, the speed required of simulations to provide outputs
in reasonable time, nor the control structure necessary to search through the asso­
ciated model parameter spaces. Our position is based upon experience gained in an
NSF/ARPA-sponsored Grand Challenge Application Group project.

The goals of the project are to (1) construct a modeling and simulation environ­
ment that employs massively parallel processing to simulate interactions of ecosys­
tem processes at selectable scales of space and time, (2) integrate as intrinsic to the
environment, geographical Information system (GIS) data bases to provide realistic
descriptions of 3-D landscapes, and (3) support experimentation and interpretation
through scientific visualization and automated optimization.

We first review our effort to extract the maximum performance from current
technology. Then we state why, despite best efforts, current technology is inade­
quate and requires petaftop performance levels.

6.3.2 Watershed Simulation

To prototype the application domain, we have developed a watershed simulation
with simplified hydrology. The watershed is modeled as a bounded 2-D discrete
event cell space with each cell representing a square whose dimensions are deter­
mined by the chosen resolution. A column of cells typically starts with bedrock at

95

the bottom, moves up through several layers of soil with differing hydrologic pa­
rameters, reaching a surface layer, and continuing on to several cells of air. Rain
will be represented as inputs to the top boundary layer of cells and will infiltrate
downwards and sidewards to the watershed basin. Each cell is represented by a lo­
cal model and the cellular heterogeneity requires that each such model have param­
eters specifying its unique wind, soil, or bedrock characteristics. This information
is stored in the GIS and downloaded into each model initially and at specified points
in the simulation run.

A major advantage of GIS-integrated simulation is that many of the parame­
ters needed to "situate" a model in the desired landscape are obtained directly from
satellite- or ground-based measurements. Still, a large simulation model typically
has many more parameters that are unknown and in need of adjustment to tune the
model to real world observed behavior or to optimize its performance of a desired
behavior. Searching through such large parameter spaces for optimal, or even ac­
ceptable, points is a daunting task, especially in multiple process (e.g., hydrology,
sedimentation, vegetation) models where each simulation run may require hours or
days to complete. The more that automated optimizers can relieve human modelers
of this search task, the faster will be the pace of advance in the modeling or design
effort. Therefore, optimization-based control of simulation is a key feature of our
high performance environment.

6.3.3 Hierarchical Distributed Genetic Algorithms

We are developing Hierarchical Distributed Genetic Algorithms (GAs) that tackle
high complexity by performing successive approximation searches. In such a mul­
tilevel approach, higher level GA processes work in a wide, but abstract, search
spaces whereas a lower level GAs search narrow, high resolution, spaces which
seem to hold promise of finding the global optimum. An architecture for a het­
erogeneous, distributed computing environment is being developed to support the
evolution of Hierarchical GAs (HG As) and the simulation experiments they gener­
ate. The HGA consists of GA clusters that are dynamically created hierarchically
to work on subproblems at different levels of abstraction. HGAs differ from the
conventional distributed parallel GAs in which multiple GAs are constructed at a
single level and work on the problem at the same level of abstraction. In the HGA,
lower level GA nodes are created dynamically by higher level GA nodes based upon
search performance. A GA node which has discovered superior points in its search
space receives greater resources to start more refined searches in subnodes. Judi­
cious allocation of resources in a heterogeneous, distributed computing environ­
ment is critical to search success. It must be based on knowledge of the current state

96

and on appropriate allocation policies. The emphasis of this domain, compared with
standard processor allocation studies, is that the environment is dedicated to work
on a single (albeit multiply resolved and distributed) job rather than an assortment
of independent jobs.

The computing environment is built on top of parallel virtual machine (PVM)­
networked platforms of various powers including workstations and parallel systems
(e.g., a locally owned XPlorer transputer and the CM-5 via Internet at NCSA). The
architecture is conceived of as consisting of a light processing layer and a heavy pro­
cessing layer. Decision making operations are performed concurrently in the light
processing layer, with the computation intensive simulations in the heavy process­
ing layer. Each layer consists of a large number of processes forming a process pool.
The heavy layer pool is centered in the massively parallel components (CM-5 and
XPlorer); the light layer consists of threaded processes within the workstations. In­
formation is exchanged between processes via PYM-based message passing. One
major advantage of the architecture is that the communication traffic in the light
processing layer can be fully overlapped with the "number crunching" in the heavy
processing layer in order to achieve a high degree of parallel activity.

6.3.4 Performance Limits and Petaflop Potential

Experiments to date with the environment have been largely aimed at sizing the
problem requirements in terms of time and space.

Time

Figure 1 shows the increase in execution time as the number of cells per node in­
creases (the number of nodes is constant at 512). We take as our execution time
estimate the time measure for 1,300 cells, the largest number of cells that can be
accommodated.

Execution time for one run: 10-1 day (2.4 hours)

We also have data for the number of evaluations and search times observed
for different platforms when running a representative optimization search problem.
From this data, we assume, conservatively:

Number of runs to find optimum= 106

Since on the 512-node CM-5 the total search time for 108 evaluations is less
than a day, we can ignore the per run GA processing time. Hence, in the following:

'
Search time for find optimum= 106 runsx10-1 days/run= 105 days

97

Time (minutes) Memory/Node (MB)

70

60

50

40

30

20

10

.,./.,,,..--"'

nme,,,,,.,..""''/
/

/

//

·--·--.... -.. --··+--·-·~~-=·:~-::-:::-:-o:
/ Memory ____ _

/­
/ _

_/- ---
.. ~-'

100 200

-_,/ ----

400 600 800 1000 1200 1300

Cells Per Node

Figure 1: Limit in Memory Per Node of the CM-5

30

20

10

0

To reduce search time to one day requires a speed-up of 105• Since the CM-5
peak realized performance is approximately 1010 flops, the peak performance re­
quired is 1010 x 105 = 1015, which is the petaftop level.

Space

The size of a simulation is measured in terms of the number of cells it contains.
Figure 1 shows the limitations imposed on the number of cells that can be accom­
modated on CM-5 nodes. The 32 megabyte RAM of the CM-5 node is filled with
approximately 3 megabytes df system code. The remaining space can accommo­
date about 1,300 cells containing one state variable each:

The memory limit per node= 1.3 x 103 cells

Assuming a 1024 node CM-5,

The capacity of 103 nodes= 1.3 x 106 cells with one attribute per cell

98

A spatial resolution of 20 feet (e.g., nominal cell size is 20 x 20 feet), requires
appro~imately 420,000 cells per square mile. A small watershed can easily encom­
pass 5 square miles, requiring 2.1 million cells to store basic information. Appli­
cations of smaller area but with higher resolution (e.g., a stand dynamics model of
forest growth) will yield similar requirements. At the extreme end is a problem such
as simulating the water runoff from the Grand Canyon to the Colorado river. This
would require (at 200 meter resolution) 21 million cells per attribute layer (e.g., el­
evation).

Considering the six attributes of elevation, slope, aspect, soil, vegetation, and
rainfall yields a storage requirement of 126 million attributes or approximately 100
times the storage currently available (assuming code increases linearly with each
attribute-an assumption we haven't tested).

In conclusion, the speed required for simulation-based optimization of landscape­
level ecosystems scale in the neighborhood of a 105 increase over today's technol­
ogy, and the space scales in the neighborhood of a 102 increase.

99

100

6.4 Computational Requirements for Hydrodynamic Turbulence on
Petaflop Computers

Anil E. Deane
Institute for Computational Science and Informatics

George Mason University

6.4.1 Introduction

Fairfax, VA
and

High Performance Computing Branch
NASA Goddard Space Flight Center

Greenbelt, MD

Most fluid flow is turbulent; be it household pipe flow, smokestack emission, at­
mospheric and oceanographic flows, flow around flight vehicles or astrophysical
flows. To make progress these hydrodynamics subdisciplines have made numer­
ous approximations, rooted in the physics of the phenomena, that make numerical
simulation feasible. Thus, the limitations of the model are tied up in the constraints
of the available computational resources. There is no single answer that is sought,
but a suite of descriptions that trade a better description in one area with a poorer de­
scription in another. In this paper we will visit these approximations in some key hy­
drodynamics subdisciplines, helped by (albeit largely incomplete) theory and con­
siderations of the dimension of the underlying (chaotic or strange) attractor. We are
also guided in our speculations by others who have delved into the current practice
and future trends of turbulence simulations [I].

At the outset we state, and argue later, the well known fact that turbulent flow
is sufficiently complicated that petaflops computing, or even exaflops computing,
will not enable the direct simulation of all the relevant length and time scales in
most flows of scientific interest. Thus we will explore here what petaflops comput­
ing does enable. Hydrodynamics enjoys a rare privilege in the physical sciences in
that the equations for hydrodynamics are known. This privilege, however, has not
meant that it has been particularly easy to understand turbulence either theoretically
or via simulation. In fact the contributions of hydrodynamicists to the theory and
to algorithms for the numerical computation of partial differential equations have
been seminal and are well known.

101

The study of hydrodynamics is chiefly divided into compressible and incom­
pressible flows distinguished by the Mach number M of the flow, and viscous and in­
viscid flows, distinguished by the Reynolds number Re of the flow. It is important to
note that incompressible flows M = 0 and inviscid flows Re = oo are singular lim­
its of the equations. Thus the solutions to the viscous equations when the Reynolds
number is finite, but arbitrarily large, are not the solutions to the inviscid equations.
In particular, as far as viscosity is concerned, the difference between the two solu­
tions confines itself to boundary layers whose size scales inversely With Re. (What
the scaling exponent is constitutes asymptotic theory). Thus flows with very high
Reynolds numbers, such as those past flight vehicles and most astrophysical flows,
are best computed as inviscid flows. The thin boundary layers that form and the
complex physics associated with them is then often ignored. The aforementioned
complex physics can include non-continuum behavior, particularly when high Mach
numbers are involved, that violate the assumptions of the Navier-Stokes equations
themselves and new, different, treatments become necessary. In many situations
however the Navier-Stokes equations do remain as a valid description, for instance
in aerodynamic and atmospheric flows.

Another important point to note concerns the actual mechanics of numerical ap­
proximation. The singular limit Re = oo leads to equations that lack viscous terms.
However due to discretization of the equations the error terms that are introduced
contain terms that are diffusive in nature. Thus, even though formally the equations
being solved are inviscid, their numerical approximation contain what is termed nu­
merical viscosity. Yet, in other inviscid systems, such terms are deliberately intro­
duced in order to smear discontinuities leading to artificial viscosity. These types
of viscosity can and do influence the simulated turbulence and form an effective
Reynolds number even when there is none formally present.

6.4.2 Length and Time Scales

Turbulent hydrodynamics involves consideration of length and time scales of the
irregular motions. Referring to Figure 1, there are the macroscopic length scales
termed energy injection or integral scales which are those of the geometry in whiGh
the flow is confined, and at the other end of the spectrum, those scales that are mi­
croscopic scales at which viscosity damps the motion, dissipating the energy. In
the intermediate region there is a broad range of scales that are too large for viscous
dissipation and yet smaller than any geometrical scale. There are good theoretical
reasons and ample empirical evidence that in this range, termed the inertial range
there is scaling behavior in the motions. For instance the energy dissipation has the
behavior [2], E(k),..., k-5/3 .

102

Energy

Energy
injection
scales

Inertial Range

Dissipation
scales

Wavenumber

Figure 1: Range of scales in turbulence. Wavenumber is inverse length so that
length scales decrease to the right

A direct numerical simulation (DNS) of turbulence serves to capture these three
ranges of scales. If the Navier-Stokes equations are a correct description of hydro­
dynamic turbulence, and they have served remarkably well to date, the complete
physical description is available within numerical approximation. Because of the
immense resources required, current DNS simulations are limited to Re L < 5, 000,
where we have used the 'L' suffix to denote the macroscopic length scale, such as
the dimension of a body immersed in the fluid. A more useful length scale for tur­
bulence is the Taylor microscale, .X, corresponding to the "beginning" of the dissi­
pation range. Current simulations are limited to Re>. ~ 200 [3, 4].

An alternative to DNS is that of large eddy simulations (LES). Here the largest
scales are computed directly. Scales smaller than the grid size of the computational
mesh are modeled in this approach. Some turbulence model-and there are a va­
riety of strategies that can be followed-then provides an approximation to these
non-computed scales. Current LES simulations are limited to ReL < 50, 000.

Most practical systems require Re L that are orders of magnitude greater than
these capabilities. To perform simulations that account for the effects of turbulence
in this regime of high Reynolds numbers, three strategies are available. The first
is to solve turbulence averaged equations rather than the original equations; this is
the practice for flight vehicle design. A second strategy is to arrive at some ad hoc
turbulence parameterizations; this is commonly done in atmospheric and oceano­
graphic models. The third strategy is to abandon any hope of doing a simulation at
the requisite Reynolds number, and instead either perform a DNS or LES at signif­
icantly lower Re and intellectually extrapolate the results to the actual system or to
only solve the Re = oo system. This is common in astrophysical situations.

While capturing length scales constitutes the basis of a turbulence simulation,
time scales are an important consideration as well. It is a feature of turbulence that

103

Table 1: Parameters of a Variety of Hydrodynamic Problems
I Regime I Re I M I Other Physics I

Aircraft1 109
Atmosphere2 10-rr

Ocean--s- ' 10""1T
Earth Magnetosphere4 > 106

Solar Convection5 1617

Supernova6 10S-

Notes: Values quoted are extreme
1 Generic Values

<5 -
....., 0 Rotation (Ro ~ 0.1)
....., 0 Rotation (Ro ~ 0.1)
<5 Magnetic Fields (Rem > 106)

> 1 Magnetic Fields (Rem = 107)

Rotation (Ta = 1012)

1~ Nuclear Burning

2For weather patterns of scale 103 km. Ro is Rossby number.
3For major currents of scale 500 km
4 J. Raeder (private communication), C. Mobarry (private communication).
5Ta is Taylor number, Rem is magnetic Reynolds number; see [5]
6 Parameters quoted are for debris. Re in the core is about 104 and in the neutrino
sphere Re ~ 1012 ; B. Fryxell and A. Burrows, private communication.

smaller scales adjust on time scales faster than large scales. The largest scales, on
the order of the geometry size, need to adjust such that material has had a chance to
traverse these scales a few times. The flow is then said to have had sufficient time
to adjust during some number of "eddy turnover times". A simulation is typically
carried over 0(100) eddy turnover times to reach a statistically steady state. This
constrains the minimum length of the simulation to this time.

Table 1 summarizes some regimes of scientific interest in terms of the Reynolds
and Mach numbers. Since a review of all these diverse areas is impractical, we
do not consider the important areas of atmospheric and ocean modeling further. In
these calculations hydrodynamics constitutes a fraction of the total computational
cost, the major contributor being other physics (e.g., radiation). Thus different scal­
ings hold than for hydrodynamics alone and we do not assess the impact of petaftop
computing. Table 2 summarizes some recent large scale simulations, indicating cur­
rent practical limits.

6.4.3 Minimum Modes

In the modem view of turbulence, turbulence occurs due to presence of a chaotic or
strange attractor that contains the long-term dynamics. This attractor is embedded
in the phase space of the system and is of fractional dimension. An initial condition
of the system forms a trajectory in phase space that quickly moves onto an iner­
tial manifold. Once on this manifold the trajectory goes onto the chaotic attractor.
Associated with each of these subsystems is the concept of dimension. (Figure 2
summarizes the situation with regard to the hierarchy of dimensions.) For our pur-

104

Table 2: Large-scale Computations and Their Parameters
Problem I .!!:! I Re I M I Other Physics

Harrier Jet1 2.8·10" S·lW ""'1 -
Earth Magnetosphere2 2 · lW 00 <5 Magnetic Fields

Solar Convection3 2·106 Ra= 2.3· 106 <S Magnetic Fields, Rotation
Supemova1 1000~106_I 00

Homogeneous TurbulenceT Sl:l3_(1.3 · 10" Re,.= 200
Homogeneous Tur:bulence6 10243J.:1~

Notes
1 Harrier YAV-88 aircraft. Parameters estimated; see [6]
2 J. Raeder (private communication)

00

16
0

1.1

3 Ra is the Raleigh number, a more appropriate parameter for convection. See [7].
4 The Mach number quoted is that of the outwards propagating shock; see [8].
5 See [3, 4]
6 The Mach number quoted is the initial M; see [9, 10]

Nuclear Burning
-
-

poses it is sufficient to think of dimension in this concept as number of degrees of
freedom (DOF). Each DOF can require a separate evolution equation-an ordinary
differential equation. The chaotic attractor cannot usually be graphed so a coordi­
nate system is not available to project the governing equations on to give the
absolute minimum number of modes that would still contain the attractor. An (ap­
proximate) inertial manifold can be graphed and hence a projection onto this basis
can provide an orders of magnitude reduction of the total number of DOF. The best
theoretical estimates so far have not constrained the minimum required modes to
be less than the classical results discussed in the workload section that follows, al­
though constructions based on projections have been made [11, 12, 13].

These kinds of projections are, however, in their infancy for hydrodynamics
and large scale turbulence simulations still rely on the discretization of the original
equations. In this author's opinion however, in the time frame of the availability of
petaflop computing such projection methods will come increasingly into play in the
simulation of turbulent flows, hence their inclusion in the discussion here.

It is instructive to consider what has been found for attractor dimensions for
turbulent flows which are the (unrealizable) absolute minimum number of modes
required. Even low Reynolds number flows have attractor dimensions of several
hundred. Thus the phenomena of real-world turbulence will not be representable in
a small number of equations [14]. In an example system of convection, the dimen­
sion of the numerical approximation is 1.4 x 104, while the dimension (Lyapunov
dimension) of the chaotic attractor is 120 [15]. In another example, Poiseuille flow,
the dimension of the numerical approximation is ,...., 105, while the dimension of the
chaotic attractor is 780 [16]. In neither of these examples was it possible to estimate

105

Inertial manifold

Figure 2: Hierarchy of Dimensions in Turbulence

the dimension of the inertial manifold. However, by projection techniques such as
in [11] an order of 102 reduction is possible. Thus projected simulation capabilities
may become considerably higher in that the same computational capability buys a
bigger simulation.

6.4.4 Workload

A hydrodynamics DNS consists of computing all relevant scales from the integral
length scale L to the smallest dissipation scales l, which is then synonymous with
the grid size. Turbulence theory gives (e.g., [17])

L/l r-v Re314

so that for a three dimensional simulation Re914 points are required. The number of
floating point operations resulting from the increase in Reynolds number is Re914 .

In addition, due to restriction of the time-step, an order of Re314 number of time
steps is required making the total number of floating point operations scale as

work,...,, Re3 (1)

Thus writing

106

we have
work2 3
--=r
work1

Now we wish to keep the wall clock time constant,

work2 _ work1
(machinespeed)2 - (machinespeed)i

work2 (machinespeed)2 3 -- = =s=r
work1 (machinespeed)i -

r = sl/3 (2)

Memory use is calculated as follows. Let Na1-r("' 10) be the number of arrays
(variable+ auxiliary) required for calculation. The memory will be

where N is the number of grid points in one direction, giving

so that

memory2 _ _ 9; 4
=m-r

memory1

m = s3/4

Also note that if n represents the ratio of grid points in one direction,

m= n3

Disk storage is proportional to the memory used,

d = JmNdump

(3)

(4)

where d is the ratio of disk storage at two machine speeds, N dump is the number of
data dumps over the length of the simulation, while f is the fraction of variables to
be stored as compared to those needed for computation. For incompressible turbu­
lence three velocities ne.ed to be stored while arrays number about 12, making the
ratio 0.25. For compressible flows 4-5 variables need storage, with Narr ~ 30,
with the ratio about 0.2. Other ancillary quantities such as vorticity may also be
computed and stored for analysis and a value f = 0.3 appears reasonable.

To work out disk I/O rate we proceed as follows. The number of words that
must be operated on in Nsteptf• is Na19 N 3 Nsteps• where Nalg is the operation count

107

for the.algorithm (for turbulence simulations Nalg is 500-2000). Since this many
operations must be performed by the code on a machine of speed (ratio), s, the time
taken isN algN3 N steps Is so that the disk 1/0 rate is,

/ms
(5)

6.4.5 Petaftops

In Table 3 we list extrapolations of various hydrodynamics problems for computers
capable of petaftops. In arriving at these estimates, equations (3) and (4) have been
used. In estimating the disk storage, the assumption is that order 103 data dumps are
typical (current practice is 102-103) over the time of the simulation. In addition,
for storage purposes 0.3 times the number of memory is a canonical number for
stored variables (e.g., only the velocity fields are stored). For purely hydrodynamic
problem Narr = 10 is used, while for additional physics such as magnetic fields
Narr = 20 is used. Both these values are underestimates.

Tabl 3 S al' e c mg to Ti fl era op an dP ft C eta Oj>_ omputing
Problem Current (lOGF) Teraflop_ Petaflop
Harrier Jet ReL = 5 • lOl' 2.3·107 2.3. iQ!f

mem<>l}'_ (ratio) . 1.3. 107 4 .10s 7.2 .1010

Earth Magnetosphere
memory 4·107 1.3 .1Q9 2 · 1011

disk storage 1.2. 1010 4. 1011 6·1014

Solar Convection
memory 4 .107 1.3 · 109 2 · 1011

disk storage 1.2. 1010 4 · 1011 6·1014

Supernova
memory 107 3.2·108 5.6·1010

disk storage 3· 109 1011 2 .1013

Homogeneous Turbulence Re>. =200 930 9300
memory 1.3 · 109 4.3 · 1010 7.4·1012

disk storage 3.9 • 1011 1.3. 1013 2.2 • 1015
memory VO rate 1011 1013 1015

disk IVO rate 3· 107 3·109 3 .1012

Homogeneous Turbulence
memory 1010 3.2·1011 5.6·1013

disk storage 3·1013 1015 3 · 1016
Note:
All projections, except those of the supernova (8. Fryxell, see [18]), are this author's
estimates. The current capacity of IOGF is an approximation and is not really true
across the simulations. Memory and disk storage are in words. Memory and disk 1/0 rates
are in words/sec across the full machine, VO rates must therefore be divided by number
of VO processors to arrive at rates in terms of words/sec/processor.

For memory 1/0 we have used the argument that in order to obtain the machine

108

speed, s, the cache/registers must be supplied by memory at the rate 10s. This is
certainly true for today's machines, and could remain true for future machines. For
disk 1/0, we have used (5) with Nsteps = 1, which is a worst case value.

Figure 3 shows the scaling for incompressible turbulence simulations. Similar
graphs hold, of course, for the other cases-the starting points vary. As the graph in­
dicates, with petaflop computers grids of (9000)3 calculations should become pos­
sible, given adequate memory. From Table 3 we see that the simulated Reynolds
numbers will reach Re.\ ~ 9300 which are enormous.

15 r---T"----....--------.11.5

12

3 5.5

0~------------2.5
9 10 12 15

log machine speed

Figure 3: Memory and Storage Requirements for Incompressible Turbulence Vs.
Machine Speed. (Shown also are the equivalent box sizes, i.e., number of grid
points, that can be realized.)

We have resisted the temptation to break the memory, 1/0, and disk require­
ments into per processor requirements, since NP• the number of processors for peta­
ftop computing is a technology-driven number. Also, it is not clear how well turbu­
lence simulations can use a very large number of processors (103-106). Certainly
good (with spectral codes) and excellent (with finite-difference/volume) efficien­
cies can be obtained for ::; 103 processors [1]. Spectral codes with in-processor
1-D FFTs will probably be completely replaced by across-processor multidimen­
sional FFTs to obtain reasonable efficiency for very large numbers of processors.

109

High-order schemes (e.g., compact differences, high-order polynomial basis) that
have high data locality will be the techniques to beat.

6.4.6 Conclusion

Turbulence simulations will benefit immensely from sustained petaflop performance.
Not only will the range of simulations be increased, as measured by the Reynolds
and Mach numbers, but 'SO will the quality of the simulations, as measured by the
included physical effects. Full flight vehicle simulations with modeling of subgrid
scale turbulence (LES) at realistic parameters should become possible. The balance
will be found between increasingly sophisticated modeling which will give better
answers and will drive the simulated Re up, but which will drive up the cost of the
simulation. Hence a decreased grid resolution will become necessary which will in
tum drive the simulated Re down. It is likely that the DNS of full flight vehicles
will be possible only with exaflop computing (or more).

The greatly increased computational capacity will in all probability be used in
many simulations not to drive up the basic parameters, but to introduce more com­
plex physics and simulated regime (and in some cases full three-dimensionality),
whose effects are at present unknown, or only known qualitatively. For example,
solar convection models currently include compressibility, magnetic fields, turbu­
lence models, rotation and ionization effects. These models will likely see greatly
increased parameter values. In addition multiple layer models and sphericity will
be included. The coupling of solar evolution models to detailed convection codes
should become possible.

Others areas where the current practice is limited to inviscid calculations such as
the magnetosphere and supernova (to select two among space science/astrophysics
areas) will likely see the explicit introduction of turbulence models. Then small
scale turbulence effects which can greatly affect mixing and energy transfer will
improve the overall simulation and bring it closer to the physical system. It is, of
course, unlikely that a DNS of these flows will be possible in the foreseeable future.
Similar remarks apply to atmospheric and ocean models, where grossly parameter­
ized turbulent fluxes in global simulations will (by necessity, because of the finer
resolutions) include turbulence models (in the sense of LES), but DNS will not be
possible.

As we have mentioned previously, novel projection methods that are based on
dynamical systems theory will play a role in the numerical computation of turbu­
lent flows. How big a role depends on theoretical developments that are immensely
complicated and need fundamental breakthroughs: hence they are unpredictable.
These methods could change the values stated in Table 3.

110

Finally, the study of turbulence as (computational) laboratory flows for theo­
retical reasons will see the greatest increase in simulated parameter ranges. A well
developed inertial range, valid over many decades in wavenumber, is important for
many_ theoretical models and to the further development of turbulence models.

6.4.7 References

[1] Karniadakis, G. E. and Orszag, S. A., Physics Today, 46, 34 (1993).

[2] Kolmogorov, A. N., Dokl. Akad. Nauk SSSR, 30, 301 (1941).

[3] Jimenez, J., Wray, A. A., Saffman, P. G., and Rogallo, R. S., J. Fluid Mech.,
. 255, 65 (1993).

[4] Chen, S., Doolen, G.D., Krachnan, R. H., and She, Z. S., Phys. Fluids A, 5,
458 (1993).

[5] Priest, E. R., Solar Magnetohydrodynamics, D. Reidel, 1982.

[6] Smith, Al. H., Chawla, K., and Dalsem, W. R. V., "Numerical Simulation
of a Complete STOVL Aircraft in Ground Effect," in A/AA Paper 91-3293,
A/AA 9th Applied Aerodynamics Conference, Baltimore, MD, 1991.

[7] Nordlund, A., Galsgaard, K., and Stein, R. F., "Magnetoconvection and Mag­
netoturbulence," in Solar Surface Magnetism, edited by Rutten, R. J. and Schri­
jver, C. J., Kluwer, 1995.

[8] Muller, E., Fryxell, B., and Arnett, D., Astron. and Astrophys., 251, 505
(1991).

[9] Porter, D. H., Pouquet, A., and Woodward, P. R., Theor. Comput. Fluid Dy­
namics, 4, 13 (1992).

[10] Porter, D. H., Woodward, P.R., Anderson, S., Chin-Purcell, K., Hessel, R.,
Perro, D., Zacharov, I., Ryan, J., Widra, L., and Galles, M., "Attacking a
Grand Challenge in Computational Fluid Dynamics on a Cluster of Silicon
Graphics Challenge Machines," unpublished.

[11] Aubry, N., Holmes, P., Lumley, J. L., and Stone, E. F., J. Fluid Mech., 192,
115 (1988).

[12] Sirovich, L., Knight, B. W., and Rodriguez, J. D., Quar. Appl. Math., 48, 535
(1990).

111

[13] Batcho, P. F. and Kamiadakis, G. E., J. Comput. Physics, 115, 121 (1994).

[14] Temam, R., Proc. R. Soc. Lond., A 434, 23 (1991).

[15] Sirovich, L. and Deane, A., J. Fluid Mech., 222, 251 (1991).

[16] Keefe, L., Moin, P., and Kim, J., J. Fluid Alech., 242, 1 (1992).

[17] Jackson, E., She, Z.-S., and Orszag, S. A., J. Sci. Comput., 6, 27 (1991).

[18) Fryxell, B., "Computational Astrophysics Calculations on Petaflop Comput-
ers," in The Petaflop Frontier Workshop, 1995 (this report).

112

6.5 Computational Astrophysics Calculations on Petaftop Computers

Bruce Fryxell
Institute for Computational Sciences and Informatics

George Mason University

6.5.1 Introduction

Fairfax, VA
and

NASA Goddard Space Flight Center
Greenbelt, MD

Computational astrophysics is such a diverse field that it is impossible to summarize
it in a single short paper such as this. Nevertheless, a number of aspects common
to many (if not all) areas of the field require the use of very large computational
resources. It would be incorrect to state that a certain level of performance (such
as petaflops) is necessary to solve a given problem. Instead, some crude informa­
tion can usually be obtained about a given astrophysical system by making approx­
imations so that the system can be simulated on a less powerful computer. Such
approximations might include assuming a geometrical symmetry to the problem to
reduce the number of spatial dimensions or ignoring certain physical effects which
may change the solution quantitatively but not qualitatively.

As computer power increases, however, more and more realistic simulations
can be performed by improving the numerical resolution of the calculation and by
using more realistic input physics. The numerical accuracy of a calculation is usu­
ally determined by checking to see if the solution has "converged", i.e., if the answer
does not change significantly when the resolution is increased. The performance re­
quired to reach this desired accuracy will vary significantly depending on the sys­
tem being simulated and the approximations used. Because of the nonlinearity of
the equations, the details of the solution and, therefore, the resolution needed to re­
solve all the important behavior are very difficult to predict in advance. However, it
is clear that the level of computing performance required for many problems is sig­
nificantly beyond what is currently available and for some problems even petaflops­
level computing may be insufficient. Although in some cases a complete solution
may not be attainable on a petaflop computer, such a large increase in computer
power would certainly be accompanied by a much clearer understanding of these
systems.

113

6.5.2 General Properties of Astrophysical Simulations

Astrophysics simulations are challenging for several reasons. First is the wide range
of length and time scales that must be resolved. Astrophysics calculations cover
length scales from the size of the universe to a small fraction of the radius of an indi­
vidual star, and time scales from the age of the universe to a tiny fraction of a second.
Fortunately, most simulations need to take into account only a small fraction of this
range, but it is not uncommon for length and time scales in a single simulation to
vary by many orders of magnitude. In order to resolve all the relevant length scales,
one must either use computational grids with a huge number of points, use adaptive
mesh techniques, which are much more expensive and complex, or both. One way
to deal with the large range of time scales is to use an implicit technique, which
usually runs less efficiently on parallel machines. However, if important physics
is occurring on the smallest time scales, there is no substitute for using a time step
value less than the smallest important time scale in the problem. In this case an
enormous number of time steps may be required in order to evolve the system to its
final state.

A second reason for the challenge of astrophysics simulations is that to obtain
the complete solution to many astrophysics problems, a full three-dimensional sim­
ulation is required. Many systems, e.g., spiral galaxies, are inherently three di­
mensional. The evolution of some systems, such as individual stars, that appear
roughly spherical, actually depends critically on non-spherical motions such as con­
vective flows and circulation currents. Another good example is the collision of
two stars. A head-on collision can be treated using a two-dimensional approxi­
mation. However, the chance that an exactly head-on collision will occur in na­
ture is extremely small. The more common case of a grazing collision requires the
use of all three spatial dimensions. In addition, for any system involving turbu­
lent flow-a very common situation given the low viscosity of most astrophysical
gases-two-dimensional simulations will give the wrong qualitative behavior be­
cause large scale structures, rather than small scale structures will dominate.

Astrophysics calculations also stress the I/O capabilities and storage capacity of
computers. The reason for this is that most systems are time-dependent and do not
evolve to a steady state. It is necessary to study every stage of the evolution to fully
understand the behavior of the object being simulated. As a result, the entire state
of the system must be stored a large number of times during the calculation. Each
phase of the evolution can then be examined individually, or they can be combined
to form a movie of the evolution.

A significant complication in trying to characterize the computational require­
ments for astrophysics calculations is that a wide variety of computational tech-

114

niques is needed. For example, simulation of individual stars requires gas dynam­
ics codes, while simulation of star clusters or galaxies is usually done using particle
methods. Each technique will place different demands on computer architectures.
There is probably not a single architecture that will be optimal for each situation.
To make matters worse, simulation of the most complex systems will require hy­
brid codes that combine two or more computational techniques. Trying to predict
what type of architecture is best in such a situation or guessing the computational
requirements for such a simulation is extremely difficult. In order to make the task
more manageable, the remainder of this paper will concentrate on systems which
use only continuum physics rather than particle methods. For hybrid codes, some
of the computational requirements quoted may be significant underestimates.

6.5.3 Requirements for a Petaflop Computer

In a field that is changing as rapidly as astrophysics, it is difficult to predict what
problems will be of interest at the time a petaflop computer becomes available, or
what techniques will be required to solve them. Thus, instead of analyzing the re­
quirements to solve a given problem, it seems more appropriate to proceed in a
more general way. The number of grid points required to obtain a believable answer
will vary considerably from simulation to simulation, depending on how much fine­
scale structure exists in the object being studied. However, experience with current
two-dimensional codes has shown that 1000 grid points per spatial dimension is ad­
equate to obtain reasonable results for many (but not all) problems. As more com­
plex physics is added to the simulation, this number may no longer be sufficient, but
for lack of a better estimate, it will be used in the remainder of this section. Thus,
for three-dimensional simulations, 109 grid points will be required.

As mentioned above, there is probably no ideal architecture for all problems in
computational astrophysics. However, there is usually a high degree of parallelism
in the techniques. For much of the calculation, each processor can be assigned to
update an individual grid point (or a group of grid points). In many cases, exactly
the same operations are performed at each grid point, except for an occasional if
test. These types of simulations can be performed equally well on SIMD or MIMD
computers. However, it' many different types of physical processes are important,
and each is taking place in only a small portion of the computational grid, MIMD
computers may have an advantage. For explicit methods, communication between
grid points is local and is usually confined to nearest neighbors.

Many complex physical processes, such as reaction networks and equations of
state calculations, require no communication at all. When such techniques are in­
cluded in the simulation, communication overhead may be completely dominated

115

by the computational costs. In this case, efficient simulations could be performed
by letting each processor work on a single zone. For a 10003 simulation, for exam­
ple, one could use up to 109 processors effectively. However, in general it would
probably be more practical to assign perhaps 1000 zones to each processor so that
only 106 processors could be used.

Simulations also exist that 'use techniques requiring global communication. The
simulations include implicit hydrodynamics, radiative transfer, and calculation of
gravitational potentials by solution of Poisson's equations. Non-local communi­
cation will also become important if unstructured grids or adaptive mesh techniques
are used. The maximum degree of parallelism for these methods is still a matter of
research, but it is likely that it will be much easier to make them work efficiently on
computers with a smaller number (< 1000) of faster processors. It is still unclear at
this time if MIMD architectures will have an advantage over SIMD for these types
of techniques.

The amount of core memory needed is relatively easy to estimate, especially
for simulations which involve only gas dynamics. In order to solve Euler's equa­
tions for compressible gas dynamics in three spatial dimensions using an explicit
finite difference method, it is necessary to store at least the gas density, the total
energy, and the three components of velocity at each grid point. The temperature
and pressure of the gas are frequentiy stored aiso, aithough for simple equations of
state, these could be calculated when needed without significantly increasing the
CPU time of the simulation. If magnetic effects are important, then the three com­
ponents of the magnetic field must also be stored. Thus, at least five to ten variables
are required for each grid point. A few additional variables may be required for the
gravitational potential, electric fields, electric currents, and so forth.

For some systems, the number of variables required can be considerably more.
Frequently, additional variables must be stored to keep track of the composition of
the gas. In stellar evolution, for example, the gas is composed of a mixture of a large
number of nuclear species. A separate variable is required for the fraction of each
of these species at each grid point to determine the rate of energy generation from
nuclear reactions and to compute the pressure from the equation of state. In some
cases, the fraction of the gas in each ionization state must also be stored. Thus, it
is possible that the number of variables required could grow to a few hundred per
grid point, or more.

Some additional memory will be required for scratch arrays. The exact number
needed will depend on the algorithm and programming style. For the present esti­
mate, it will be assumed that the amount of extra storage is a small fraction of the
total. Assuming 109 grid points, the total memory required for various simulations
should be in the range of 5-lOOOx 109 words. Using 64-bit words, which should

116

be sufficient for most applications, the memory requirement will range from 0.025
to 10 terabytes.

The amount of memory can also be estimated in a completely different way by
scaling up from current computer configurations. The amount of memory required
does not scale linearly with the processor speed for applications such as this. If the
number of grid points per dimension is doubled, the total memory required for a
three-dimensional simulation increases by a factor of 8. Likewise, the time to ad­
vance the solution one time step increases by a factor of 8. However, due to time
step restrictions for numerical stability, twice as many time steps must be used to
advance the solution the same amount of physical time, causing the total CPU tim.e
to increase by a factor of 16. Because of this, the memory should scale as the 3/4
power of the processor speed. If the starting point for scaling is taken as a gigaftop
computer with a gigabytes of memory, a petaftop computer should need on the order
of 10 terabytes of memory, the same as the estimate obtained above.

The CPU time required for a simulation with a given number of grid points will
depend on the time required to update each grid point and the total number of time
steps needed to reach the desired physical time. Both these numbers will depend
on which system is being simulated and the complexity of the physics being tested
and will vary over a wide range. Frequently, the complexity of the physics and the
grid size are adjusted so that the simulation can be performed in a reasonable length
of time (usually overnight). Thus, a typical calculation will be assumed to use on
the order of 10 hours of processor time. Even calculations that take a much longer
time to complete are usually run as a series of overnight jobs. This makes it possible
to determine the amount of on-line storage and 1/0 bandwidth required. Assuming
that the current state of the system being simulated can be represented completely
by 10 terabytes of data and that it will be stored 1000 times during the simulation,
10 petabytes of fast on-line storage will be required. The 1/0 bandwidth required to
dump this much data during the 10-hour calculation is 1 petabyte per hour or about
a quarter of a terabyte per second. The amount of off-line mass storage will have
to be scaled up from that available on current computers by a similar amount. Of
course, these estimates assume that the computer is dedicated to a single user. In a
multiuser environment the numbers will have to be scaled up accordingly.

117

118

6.6 Petaftops and the Gravitational N-body Problem

Kevin M. Olson
NASA Goddard Space Flight Center

Greenbelt, MD
and

Institute for Computational Sciences and Informatics
George Mason University

Fairfax, VA

6.6.1 Introduction

In this paper I consider what impact the development of a petaflop computer could
have on the gravitational N -body problem in astrophysics. Both the direct N 2 algo­
rithm as well as tree algorithms are considered. A petaflop computer should be able
to solve the direct problem for particle numbers several orders of magnitude larger
than is currently feasible, and realistic simulations with particle numbers matching
real systems where a high force resolution is required should be possible (e.g., glob­
ular clusters with 106 stars). For tree codes the same should be true, but the scaling
arguments are not as straight forward. For most astrophysical systems a solution
of the N -body problem is not enough, and new numerical techniques (already un­
der development) and greater physical understanding will be required to accurately
model these systems. The implications of the development of a petaflops computer
would have for simulations of two specific N -body systems are considered: glob­
ular clusters withrv 106 stars and disk galaxies with "" 1011 stars.

6.6.2 The N 2 Problem

The force on particle i in a system of N gravitationally interacting particles is given
by

N G mimjTij Fi=?:: (r~. + f.2)3/2
J=l tJ

(1)

where G is the universal gravitational constant, mi and mj are the masses of the
particles i and j, r ij is the vector separating them, and f. is a smoothing length which

can be nonzero and serves to eliminate diverging values in Fi when riJ is small.
This parameter also serves to define a resolution limit to the problem. This equation
also shows that the problem scales as N 2 •

119

To perform the above sum on the Maspar MP-2 requires roughly 3-4 seconds
for 16,384 particles. The peak performance of the Maspar MP-2 is ,...., 5 Gflops. If
we assume that the same algorithm will scale linearly with the performance of the
machine and that a similar fraction of the peak speed is attained, the time to perform
all the sums for all the particles in a system is then given by

N 2 5Gflops
t force = 3 - 4 X 16, 3842 X 106G flops seconds (2)

A typical simulation requires,...., 1, 000 to 10,000 time steps and if N = 106 , a
simulation would require a running time of,...., 75-750 seconds (assuming the time
required for the integration of the equations of motion for each particle is small).
Further, the amount of memory required for this problem is small. Nine numbers
are required for each particle (3 positions, 3 velocities, and 3 accelerations) so that
the total required memory is 9N x 8 bytes= 72 Mbytes for N = 106 . Hence, real­
istic simulations of systems such as globular star clusters would easily be possible
simply by increasing the processing speed to a petaflops level. The amount of disk
space, 110 band width, and mass storage available today should be adequate for this
specific problem.

We note that simulations of other N -body systems such as galaxies or clusters
of galaxies would aiso be possible to a degree of resolution equal to that achieved in
some of the largest of today's N-body simulations which currently use approximate
techniques.

6.6.3 Tree Codes

Tree codes are a collection of algorithms which approximate the solution to equa­
tion 1. In these algorithms the particles are sorted into a spatial hierarchy which
forms a tree data structure. Each node in the tree then represents a grouping of
particles and data which represents average quantities of these particles (e.g., total
mass, center of mass, and high-order moments of the mass distribution) are com­
puted and stored at the nodes of the tree. The forces are then computed by having
each particle search the tree and pruning subtrees from the search when the average
data stored at that node can be used to compute a force on the searching particle
below a user-supplied accuracy limit. Since the tree search for any one particle is
not known a priori and the tree is unstructured, frequent use is made of indirect ad­
dressing. Therefore, in order for this algorithm to operate at reasonable efficiency
on any machine, the time to make an indirect address and receive the requested data
from the most distant memory location should be of the same order as the time to
perform one monopole force calculation or ,...., 30 floating point operations.

120

For a fixed level of accuracy this algorithm scales as Nlog(N) although O(N)
algorithms are also possible. However. if the number of particles are increased we
also wish to run the algorithm to a higher degree of accuracy so that the approxi­
mation in the force calculation will not spoil the higher degree of spatial resolution
we wish to achieve by using larger numbers of particles. To appreciate the magni­
tude of this effect, we note that the typical acceleration in a structure of mass M and
size R is GM/ R2 . If we allow the softening length to be a measure of the resolu­
tion we wish to attain in a simulation, then an upper limit to the tolerable accuracy
in the acceleration will be "' GM/ E2• Further, the softening length is normally
chosen to be on the order of a typical interparticle separation and the mass M is
the mass of a single particle. With these assumptionsM "' 1/ N and E "' N- 113 .

Therefore, the accuracy with which we need to run a typical simulation scales as
N-1 / N- 213 = N- 113• Empirically, the running time of a typical tree algorithm
scales with the chosen accuracy roughly as 1/log2- 3(fJ / atyp) where fJa is the error
in the acceleration and atyp is a typical acceleration in the system. Therefore, the
time for a tree search scales with N as log2- 3(N 113) x Nlog(N)"' Nlog3- 4(N).

On the Maspar MP-2 a typical tree search takes roughly 10 seconds when run
at an accuracy of 1 % using N =65,536. Assuming that the peak performance of the
Maspar MP-2 is 5 Gftops and that the same fraction of this peak would be attained
by the hypothetical petaftop machine we arrive at the following relation for the time
to search the tree and compute forces in a typical N -body system,

itree = 2.8 X 108 X lOsec. X (5Gflops/106Gflops) X Nlog4(N)sec. (3)

If n = 106 this would result in a tree search time of,.._, 2 x 10-3 seconds. For
N = 109 and N = 1011 the search times would be ,...., 10 seconds and ,...., 2, 000 sec­
onds, respectively. It seems reasonable that simulations of this type will be possible
with several billion particles.

The memory requirements for simulations using trees scale with N, but the scal­
ing constant is larger than in the above discussed N 2 algorithm and a simulation
with N = 109 would require ,...., 2 terabytes of core memory. Further, we wish to
save the particle data (positions and velocities) to disk for later analysis. If a typical
simulation is run for 10,000 time steps and we save the data every 10 time steps we
would require at least ,...., 1, 000 x 6 x 8 bytes x N or,...., 50 terabytes of disk space for
one simulation. Further, if we demand that the 1/0 does not significantly interfere
with processing, and we restrict the time spent in 1/0 to be less than a tenth of the
total processing time, I estimate the required 1/0 bandwidth to be "' 5 gigabytes per
second.

121

6.6.4 Disk Galaxies

We consider next what this would mean for the specific example of a disk galaxy.
Modeling of disk galaxies requires that a certain fraction (""' 70% to 80%) of the
mass of the system be distributed in a spherical halo to simulate the so called dark
matter and to make the disk globally stable. Hence, if we used 109 particles to sim­
ulate a disk galaxy roughly 7 x 108 particles would be distributed in this halo with
the rest of them distributed in the disk. The average distance between particles in
the disk would then be""' 10-4 of the disk radius. This distance effectively defines a
lower limit to the resolution of the problem and is a few times smaller than a typical
interstellar gas cloud for the typical dimensions of a disk galaxy.

With the addition of a gas dynamical model (e.g., Smooth Particle Hydrody­
namics) to the basic N-body model we could model the evolution of a disk galaxy
in some of its properties down to the resolution of some its more detailed features (a
resolution not possible today). The addition of such a gas dynamical model, how­
ever, would add roughly a factor of 10 to the running time as well as to the memory
requirements. This lower limit to the resolution also means that interesting effects
known to operate on smaller scales (e.g., star formation) could not be included in
an explicit way in these simulations. But, it would almost certainly be possible to
model a single interstellar gas cloud which does include such effects using a peta­
flop computer.

122

6. 7 Strategic Applications for Petaftops Computational Systems

6.7.1 Introduction

Rick L. Stevens1

Argonne National Laboratory
MCS Division
Argonne, IL

Valerie E. Taylor
Northwestern Univ.

EECS Dept.
Evanston, IL

In this paper we outline our assumptions for a hypothetical petafiops computer sys­
tem and give a number of large-scale applications that we believe such systems
would enable. The applications described in this paper are only a few of the many
types of applications that we believe would become possible with peta-scale com­
puting environments. We are interested in continuing a detailed analysis of these ap­
plications requirements and to understand the implications these requirements have
for systems architecture, high performance networking and software environments.
We have specifically focused on applications that do not have existing counterparts
running on 10-100 gigafiops machines to force the "peta" discussion to expand to
include new types of applications, as such these applications are speculative but we
believe in the spirit of the original petafiops workshop held in Pasadena in 1994.
We also note that several of these applications would have nontrivial social impli­
cations if built. This paper is meant to spur discussion.

6.7.2 Global Assumptions

We assume a target date of 2012 for an integrated petaftops system. The typical
high-end user will by this time have a 10 gigafiops workstation with OC-3c ATM
network connection to the global Internet. The global Internet will have backbones

1 This research supported in part by the Applied Mathematical Sciences subprogram of the Office
of Energy Research, U.S. Department of Energy, under contract W-31-109-Eng-38.

123

of terabit speeds, perhaps constructed of many logically trunked OC-192 lines. Port­
able and head mounted VR interfaces will support multiple HDTV resolution de­
vices via OC-3c network connections. Latency in wide area networking applica­
tions is assumed to be limited by speed of light propagation delays and not signif­
icantly influenced by network congestion schemes. Due to high-latency we think
most highly interactive applications will be primarily targeted to North America.
The peta-scale computer system is estimated to cost in the $100 Million to $1 Bil­
lion range. Therefore all the applications are aimed at strategic topics and interests
that potentially could support investments of that scale.

Assumed characteristics of petaftops computing systems:

• lOK-lOOK processors (10-100 gigaftops /processor) 10-20-way internal par­
allelism with .1-lns clock (1 GHz-10 GHz)

• 256-1024 TB/RAM (primary memory) (.256-1 GB/GF)

• 20-100 PB Disk (secondary memory)

• 10-100 EB Tape (tertiary memory)

Node Memory Bandwidth and ffierarchy Needed

• 20 instructions per cycle with each instruction 32-bit OPS with 64-bit ad­
dresses

• Word size = 128 bits single/256 bits double

• Mem. bandwidth= 1280 bytes/cycle*lO GHz= 12, 800GB/ s = 13 TB/ s

We assume a seven- (perhaps six-) level memory hierarchy roughly like this
(per processor):

1. Registers= 10 TB/s, size= 1 MB

2. Ll cache= 1 TB/s, size= 10 MB

3. L2 cache= 100 GB/s, size= 100 MB

4. L3 cache = 10 GB/s, size = 1 GB

5. Primary= 1 GB/s, size= 10 GB

124

6. Secondary = 100 MB/s, size = 100 GB

7. Tertiary= 10 MB/s, size(shared) = 100 EB

Internal Communications (internode communication)

• 10-200ns communications latency (internode)

• 10-100 GB/s communications bandwidth (internode)

External Communications (between the petaflop systems and external world)

10 TB/s aggregate external network 1/0 bandwidth is assumed. For reference: VR
video data rates (15 MB/s), NTSC video data rates 5 Mb/s (e.g., MPEG-2).

• 1 GB/s per processor (OC-192 ATM for example)

• (66 VR feeds per processor) 660K-6,600K VR feeds total

• (2,000 full motion video feeds per processor) 20M video feeds total

Storage Environment

10-100 EB of tertiary storage; 1015bytes * 105 - -106processors

6.7.3 Molecular Nanotechnology CAD Systems

Description of Application: Molecular nanotechnology CAD (NanoCAD) systems
are the software environments for designing atomically precise structures consist­
ing of between 1 OOK and 100 Million atoms. The structures designed and simulated
in a N anoCAD system will be constructed by special computer controlled molecular
scale assembly machines that· will use scalable self-replication to produce macro­
scopic quantities of desired products.

The complex specification of systems containing millions of parts, assembly se­
quences of potentially millions of steps and the simulation and modeling needed to
insure reliable, safe and efficient construction of these devices will stress even peta­
ftops computer systems. None of these software systems exists today but we hope to
estimate the requirements of such systems by extrapolating from today's molecular
modeling and CAD systems.

125

Applications Requirements:

Much new software needs to be developed to model and simulate the processes of
nanomechanical assembly. Some of the modeling systems needed are

- Molecular modeling of 100 million atoms

- Simulation of ensembles of molecular nano devices

- Simulation of assembly sequences

- Searching for process technologies

- Proving safety and reliability of structures

- Visualization of structure models and assembly sequences

- Failure mode analysis and diagnostic and testability analysis

Research Issues

• Scalable Quantum/MM/Continuum models

• Scalable Molecular CAD techniques

• Molecular Space Filing Algorithms

• VR for Assembly sequence visualization

• VR for model building and CAD interfaces

• Discovery of Process Technologies

• Scalable algorithms for verification and testability

Comments

Short range simulations of 100 M particles have been done. Hierarchical methods
and scalable electronic structure codes are under development. VR for molecular
model building and reaction pathway planning will be needed. Biggest challenge is
a 106-109-fold speedup in modeling capability need to simulate the entire assembly
sequence of a large (100 mega-atom) nano-object.

126

6.7.4 Multiuser Shared Immersive Environments

Description of Application: Providing a shared virtual environment for many hun­
dreds of people to collaborate by interacting in a shared virtual space that provides
shared data, shared virtual objects, live audio and stereo high-resolution video and
access to interfaces to computer controlled devices, such as instruments, machine
tools, surgical systems, robots, and even entire factories or spacecraft. The shared
space will enable collaboration and interaction unrestricted by distance to enable
commerce, entertainment and virtual presence for essentially any purpose. A peta­
flops system with the configuration from above could provide this virtual world to
perhaps 100,000 people simultaneously and allow a virtually unlimited number of
interactions between those connected.

Applications Requirements:

- Split rendering systems (partially rendered on central system, partially on local
system)

-Hardware support for rendering and t-mesh manipulation, texture mapping etc.

-Ability to sustain a large fraction of external network bandwidth to users

-Ability to move user loads throughout the machine
I

-Ability to simultaneously model the virtual world and support interactions

-Support for wide variety of video and graphics primitives

-Order of a million simultaneous connections

-For reliability need RAID-like scalable processor to insure survivability.

Research Issues:

• Network performance,

• 1/0 performance,

• Modeling and sustained I/O simultaneously,

• Network connections scalability,

• Graphics hardware support for fast volume rendering, ray-tracing, VR, ra­
diosity algorithms,

127

• Programming models for distributed, wide area, collaborative VR

• Recording and playback models for VR systems.

Comments

We need numbers for graphics performance, ray-tracing and radiosity models; num­
bers for the types of data that people would have access to on-line (images, text,
books, movies, sports). Several projects are underway at ANL/NWU to building
performance models of shared interactive VR spaces driven by supercomputing sim­
ulation (see Taylor, Stevens abstract this report).

6.7.5 National Scale Data Mining Engines

Description of Application: An aggregate of publicly available data and simulation
resources that are updated continuously to support a variety of computational query
environments enabling complex simulation based queries. This resource would most
likely be linked dynamically ipto distributed applications, thereby provided a con­
tinuously accessible global database providing decision support for national activi-
ties (government, business and economics modeling, education and research). Databases
would include, land use, agriculture, meteorological, economic, social and census
data for example.

Applications Requirements:

- Large, integrated databases/knowledge bases

- Common simulation environment backend for distributed applications

- Support for hundreds of thousands of on-demand network connections

- Supporting cross correlations and arbitrary data mining operations

- Support multiple levels of access and security

- Scalable data intensive simulation environment to meet real-time goals

- Reliability

- Support for large-data movements

- Support for multimedia data types and indexing, searching and organizational
structures

128

- Support for unstructured "exploratory" browsing and experimental engines

Research Issues:

• Scalable multimedia indexing and knowledge extraction

• Knowledge translation and semantic filtering

• Scalable simulations,

• Support for audio and video queries

• Fast passes through tertiary storage

• Indexing, browsing, and clustering techniques

• Portability and scalable data structures

• Reliability

Comments

We need good performance models and quantitative information for query types,
indexing, simulation-based queries, video and audio, transactions and user inter­
faces.

6. 7 .6 Integrated Global Earth Systems Simulation Environment

Description of Application: Centralized database and simulation environment for
real-time accumulation of remote sensing data and support of interactive earth sys­
tems simulations (global climate, ecosystems, agriculture, watershed, land use, wildlife
management and fisheries etc.). Data would be qualified, "productized", and made
available in both data form and "assimilated" form (the result of incorporating into
a continuous faster than real-time, or FTRL, simulation). This system would sup­
port economic forecasting, government planning and regulation, crop management,
ecosystem management and education and research.

Applications Requirements:

- Support for many simultaneous FTRL simulations

- Potentially intercommunicating, real-time database data feeds

129

- Real-time output, many thousands of users (mostly automated wide-area sim­
ulation front ends)

Research Issues

• Resource management in FTRL simulations

• Assimilation enabled databases and interfaces to simulations

• Communications and I/O requirements for remote sensing data feeds

• Dynamic process management and process migration

6.7.7 Global Lifelong Education and Training Resource

Description of Application: Essentially a global university in a box, this application
would contain complete educational and training materials for all known careers
and profession/technical jobs. The environment would make available interactive
YR-based instruction, multimedia-based, self-paced learning environments, inter­
active computer simulations, distance learning specialists on-line, and comprehen­
sive aptitude and self-assessment capability. The system would also maintain and
automatically update profiles for automated jobs search and placement processes.
From learning a new language, to learning to play the guitar or to cook Ethiopian
food the system will provide examples, instructors, resources and feedback on de­
mand.

Applications Requirements

Systems support needs to be provided for

- User (or user-process proxy) initiated simulations

- Interactive user-to-user communication

- Intelligent multifunction agents

- Multimedia and VR interactive courseware

- Flexible interfaces to environmental systems (sensors, robotics)

130

Research Issues

• Effective models for di$tance learning

• Remote teaching and digital libraries

• Capture and enhancement of master teacher technology

• Databases (interactive MM databases)

• Dynamics linking to remote sensors and telepresence hardware

6.7.8 International Design and Modeling Resource

Description of Application: In this application we create an international design
and product modeling resource (IDMR). The IDMR would contain a complete CAD
specification of products and the manufacturing facilities necessary to fabricate and
assemble them. The range of products could include all items necessary to support
a modest-scale first-world economy from first principles. This repository would be
a major design and engineering resource that would allow small startup organiza­
tions to build on the expertise and legacy systems developed over the last 20 years
of use of digital systems. It would also support the rapid deployment of environ­
mentally sustainable manufacturing technology in the third world. By simply in­
stalling adequate communications and display technology, an instant information
and knowledge infrastructure can be created and projected. Communications tech­
nology could be land based optical or satellite based narrow beam. This design
repository would contain the following types of data: CAD files, simulation mod­
els, video and audio documentation on techniques and instructional materials, man­
ufacturing and fabrication knowledge, bootstrapping pathways and structured sys­
tems for rapid deployment of capability. It would also contain a complete database
on distribution and financing, thereby opening instant markets for products. The
database would allow startup ventures to immediately attack open market niches
from any place on the planet.

Applications Requirements

The IDMR would require the ability to automatically compute industrial develop­
ment trajectories (For example, given initial resource and environmental conditions
what are the next steps that can be taken to rapidly develop new manufacturing and
design resources?) Industrial trajectories require the analysis of perhaps millions of

131

potential development strategies and to optimize each scenario to local and tempo­
ral conditions. While individual product specifications are likely to increase in size,
complexity and computational requirements, the primary peta-systems requirement
will be from the desire to search for development paths rather than investigate indi­
vidual product development options. We think that a development trajectory would
cover complete market sectors and consist of hundreds of process steps, thousands
of products/components and involve the simulation of dozens of factory siting and
construction steps. The integrated model should be capable of providing informa­
tion at near real-time performance.

Research Issues

Principle issues are scalability and integration plus new modeling frameworks (i.e.,
just what exactly is a development trajectory model) Also scalable integrated CAD
and simulations need to be developed.

• Industrial engineering models

• Integrated resource/environmental models

• Integrated CADimechanics modeiing systems

• Generalized planning and robotics systems

• Scalable manufacturing capability (desktop to factory)

• Multidisciplinary optimization modeling systems

• Integrated database/simulations environments

• Enterprise trajectory modeling systems

• Economic and financial systems models

6. 7 .9 Human Knowledge Repository

Description of Application: Build the 21 century equivalent of the library of Alexan­
dria, an internationally accessible digital library. The Human Knowledge Reposi­
tory (HKR) would contain a record of all human knowledge (books, video, audio,
models, images, 3-D representation of artworks, computer programs, digital design
files and complete life recordings, etc.). Reference materials would be cross in­
dexed and maintained in a state to support research and study. Intelligent assistant

132

technology would provide search and browse proxies and would allow anyone to
construct educational and enrichment composite data sources. The primary advan­
tage of a close coupling of HKR with a petaftops system is the prospect of making
the data available via multiple languages, in multiple modalities and with dynamic
automated indexing and correlation agents. Accessing the HKR will be through
video, audio, text, VR and other data streams (e.g. computer to computer binary
formats).

Applications Requirements

Assuming 100 exabytes of external storage the system needs to be able to do the
following operations on new data as it is being added to the system:

- Index

- Translate

- Compress

- Search

- Composite

- Integrate

- Verify

At 10 terabytes per second aggregate 110 bandwidth the system would take 100
seconds to move 1 petabyte; 100,000 seconds ("' 1 day) to move 1 exabyte; and 10-
100 days to make a pass over the entire database.

Research Issues

• Access modality conversion

• Digital representation and presentation

• Rapid digitization and capture of knowledge assets

• Indexing/searching/correlation techniques

• Efficient compression and retrieval (hybrid systems)

• Automated syntactic and semantic translation systems (especially for domain
specific knowledge bases)

133

Comments

We need to estimate the time needed to convert modalities (language, format) for
various data types. For example, how long would it take to automatically translate
1 million digital books into 50 languages? Could one construct concordances of
millions of books and improve automatic translation by having giant lookup tables?

6.7.10 Lunar and Mars Bases HKR Backup Station

Description of Application: The objective here is to provide a HKR in a box that
would be portable and highly reliable to be placed in orbit, on the Moon and on Mars
for redundancy and to serve the emerging space based human population. The pri­
mary challenges for this use of the HKR revolve around trying to make the system
compact, self-repairing, power efficient (even power self contained) and highly reli­
able. We estimate that a remote HKR system should have a 10-year design lifetime
(i.e., design to be upgradable for 10 years) and a 25-year MTBF. The system will
need to be capable of robotic maintenance and be largely self-maintaining. The sys­
tem should provide incremental upgrade capability and be able to be linked to other
systems like itself for replication, updates, consistency checking and backup.

Applications Requirements

• Ultra reliability-internal process redundancy

• Robotic serviceability-self-maintenance

• Low power consumption

• Incremental upgradability

• Compact tertiary storage (goal would be 1020 bytes/cubic meter)
100GB/mm2 -+ 1 bit per 100 cubic microns

Research Issues

• Compact radiation hardened processors and storage systems

• Incremental upgradability

• Acceleration resistant components

• Parallel interfaces to wide band communications

134

• Flexible systems administration systems

• Self- maintaining software environments

6. 7.11 Conclusions

We have outlined several information intensive applications that could use peta­
scale computer systems. In fact we believe these are likely to be the most inter­
esting class of emerging applications for the next 20 years. These applications are
speculative (they don't and can't yet exist) but are likely to be built in one form or
another during the next century. We believe they need to be studied and understood
from a quantitative and software and systems architecture standpoint, and that they
are an important class of applications projects that could be potential users of peta­
flop computers. We hope these sketches will encourage people to think of new and
even exotic uses of the next generations of large-scale computers.

135

136

6.8 A Case Study of Interactive, Immersive Visualization for
Scientific Environments

6.8.1 Introduction

Valerie E. Taylor
Meena Kandaswamy

EECS Dept., Northwestern Univ.
Evanston, IL

Rick L. Stevens
Argonne National Laboratory

MCS Division
Argonne, IL

Interactive, immersive video combines real-time video with 3-D models of solids
or physical systems. The users are physically immersed in this virtual environment
and can navigate within an object in real time. This type of display is necessary
for exploration of otherwise inaccessible environments such as hazardous and dan­
gerous sites or remote space exploration. Systems for these environments would
consist of an integrated array of cameras located at the site, a petaflop computer
for volume reconstruction from the video data, and an immersive 3-D display such
as a Cave Automatic Virtual Environment (CAVE) or head-mounted display. Nu­
merical models would be integrated into the system to perform simulations of the
various components of the remote site based upon the interactive feedback of the
users.

This type of environment will come to fruition with the availability of Petaflops
systems. It has been estimated that real-time 3-D pixel (or voxel) reconstruction re­
quires on the order of 105-106 floating-point operations per second per voxel. For
a 1012 voxel 3-D CyberScene object, 1017-1018 floating-point operations must be
calculated per second for real-time 3-D display. In addition, resources must be al­
located for the numerical simulation.

The case study involves the development of a performance model of a scaled­
down version of the aforementioned system. Our system consists of the 3-D inter­
active, immersive visualization of the results from a finite element simulation. The
system is simple but captures ~any of the critical features of the system involving
reconstruction in addition to simulation. In particular, we will use the simulation­
only system to identify the compute, memory, I/O, and network requirements for

137

a real-time interactive system. This model will be used to provide insight into the
requirements for the reconstruction and simulation environment.

6.8.2 Environment

The interactive, immersive simulation environment consists of a 128-node IBM SP-
1 system, a HIPPI switch, an SGI Onyx, and a CAVE. The CAVE is a 10-foot cube
with display screens on two walls plus the floor. High-resolution video projectors
are used to display the output of the SGI Onyx system with three RealityEngine
graphics pipelines. Liquid crystal shutter glasses are used to present different views
to each eye of the user, thereby providing a perception of depth. A head-mounted,
electromagnetic tracking device allows the user to navigate within the virtual space.
The 3-D rendering is generated based on the physical layout of the projection screens
and the relative position of the user wearing the tracker. Interaction is achieved with
a hand-held wand having three buttons, similar to a mouse.

The current application involves a small mechanical system modeled with 8-
node hexagonal finite elements. It consists of a grinding wheel composed of 615
nodes and 433 elements used to grind a block composed of 96 nodes and 48 ele­
ments on a table represented by a single hexagonal element. This prototype is in­
dicative of larger systems used to analyze complex mechanical systems, including
the detection of contacting surfaces, friction at the interfaces, large rigid body mo­
tions, and thermal-mechanical analysis with finite elements.

A simulation event consists of running the finite element code on the SP system
and transferring the data from the SP to the SGI via HIPPI sockets using TCP/IP
writes. Future plans include using IPI writes to the SGI. The simulation data is then
stored and processed by the three graphics pipelines; the graphics pipelines send the
display data to the video projectors. A tracker event consists of a user navigating
within the virtual space. These movements are relayed back to the Onyx resulting
in a new display relative to the tracker; the update display is computed in real time.
Changes to the table elevation or simulation reset is accomplished by pressing the
specific wand buttons. This wand information is relayed back to the SP system for
simulation of the modified system. Upon completion of the simulation, the results
are transferred to the SGI for a new display.

6.8.3 Methodology

The performance model for the simulation-only system consists of the computa­
tional and memory requirements of the simulation and rendering codes in addition
to the message size and frequency of the data transferred between the simulation,

138

graphics engines, and the CAVE. The critical aspect of the analysis is the charac­
terization of the data transfers, which is the least understand due to the recent avail­
ability of such a system. Hence our immediate goal is to identify the network traffic
patterns of the simulation-only system.

Currently, we are instrumenting the graphics code to collect statistics on the traf­
fic patterns of a tracker event (movement within the virtual space) and a simulation
event (using the wand to change some aspect of the model). In addition, we are
gathering data on the computational requirements of the various events. The ex­
periments focus on the interactions between the following components:

• SP and SGI Onyx

• SGI and the CAVE projectors

• Wand and SGI

• Head tracker and SGI

We are also identifying limitations imposed on the transfer frequency, e.g., the
maximum frequency at which the wand updates can occur. Further, we are inves­
tigating methods for recording the events of a design session. This will allow us to
duplicate experiments to distinguish average patterns from anomalies.

When we understand the network traffic and required bandwidths, we will an­
alyze the computational and memory requirements of the simulation and rendering
codes. Significant work has been done in the area of models for parallel computa­
tions. We will tailor these models of communication and computation to the finite
element code and the CAVE rende~ng codes.

The computational and memory models will be combined with the network traf­
fic models to provide an understanding of the entire system. This combined model
will be used to analyze bottlenecks in the simple system and provide insight on the
computational and network requirements for large scale simulations. In particular,
we hope to use this model to provide insight into the following important issues:

• Effective methods for shipping data from the SP system to the SGI Onyx

• Limitations on the frequency of wand updates

• Ratio of compute processors to graphics processors for a balanced system

• Memory requirements of the overall system

• Resource requirements for a particular frame rate

139

After we understand the simulation-only system, we will progress to more com­
plicated systems involving:

• Many SP nodes for the simulation

• Many processors for the CAVE rendering code

• CAVE-to-CAVE displays

• Three or more CAVE displays

The CAVE-to-CAVE environment requires analysis of WAN traffic in addition
to the LAN traffic of only one CAVE. A number of issues arise in this environment
with the major issue being the latency in the transfer of data and the amount and
frequency of data to be transferred. Given that features may be changed about the
physical system being simulated and only one site may have a parallel machine, sig­
nificant amounts of data must be shipped to the remote CAVE. Hence, an additional
component would be added to the performance model to relate to remote transfers
of data.

6.8.4 Summary

This paper describes the motivation and environment of the initial stages of a case
study on the interactive, immersive visualization of scientific environments. The
study is being conducted using the CAVE visualization environment at Argonne
National Laboratory. The result of the study will be a performance model of a sys­
tem involving simulations on the SP system and data visualization on the CAVE.
This model will be used to provide insight into the inefficiencies of the existing sys­
tems and lead to recommendations and requirements for a real-time system involv­
ing large scale scientific simulations and CAVE-to-CAVE visualization.

140

6.9 Parallel Computations for Scientific and Engineering
Applications: What Could We Do With Petaftops? What Must

We Consider If We Are To Exploit Petaftops?

6.9.1 Introduction

Guy Robinson
NPAC, Syracuse University
Syracuse, NY 13244-4100

robinson@npac.syr.edu

At present the majority of large-scale scientific computations could easily be mod­
ified to embrace the teraflops-scale of computing resource. The barriers regarding
petaflops computing will be much harder to breakdown-if we are to perform not
just frontier science but real engineering computations.

Much of my research activity has been concerned with the solution of discrete
sets of equations representing a physical system with a number of external boundary
conditions. Often this area is dismissed as being relatively easily parallelized and
that problems can simply expand to make use of the parallel resources available.
However, we can show that this is not quite the case by the study of two represen­
tative examples such as the simulation of long transients for physical systems (e.g.,
nuclear reactors, offshore structures and aerodynamic systems) and global and cli­
mate modeling. Note that both these cases are in the production environment.

6.9.2 'I)'pical Problem Magnitude

All scientists and engineers have a list of numerical experiments they would like
to perform. Some are possible with existing codes whilst others require varying
degrees of additional development work. Parallel systems capable of supporting
these calculations and in returning results within the critical time span of the design
cycle are not yet generally available. For example, some large scale transient cal­
culations performed to support safety cases can take three months on a 5-gigaflops
machine even with assumed symmetry and simplified boundary conditions reduc­
ing the problem. These simplifications often result in solutions that are of little
relevance to specific systems. This discourages many scientists and engineers and
companies from performing such computations or reduces such work to small stud­
ies to the side of main research interests. Such computations could easily be per­
formed overnight on a teraflops machine, perhaps in a coffee break for a petaflops

141

machine. Nor should we forget the human effort involved in establishing such a
model. Nearly one month's work was spent developing and debugging the various
supporting code and model concepts.

Many CPD and other engineering computations make assumptions about sym­
metry or apply a simple decoupled model of the complex physics involved. The
study of large-scale steady states has been revolutionized by the availability of sig­
nificant computing resources, systems with nearly one million nodes being com­
monplace. The predicted boom in available computing power should allow these
computations to be expanded into transients. Many projects cannot be attempted,
yet alone completed, without this magnitude of support. The use of Numerical Wind
Tunnels [1,2] shows how there is a consistent change from experimental to numeri­
cal design work, partly due to the high cost of experimentation with today's expen­
sive systems many of which are unique designs and the impossibility of performing
many experiments. Estimates show that nearly 90% of research into some future
projects will be numerical.

Several possible outlets exist for parallel computing to expand the nature of
problems being tackled in science and engineering circles. The size of problems
and the increasing degrees of freedom are continually expanding. Fully unstruc­
tured 3-D flows are now being resolved by unstructured adaptive meshed transient
techniques with few constraints being introduced to reduce the computational de­
mands. Many complete systems require on the order of 10-1000 million nodes for
a complete geometrical representation with perhaps several orders more required
for a good solution.

Codes which combine several physics models (e.g., CPD, stress and heat trans­
fer) can be developed to predict the behavior of modern macroscopic objects within
and without design parameters. For example, consider the simple automobile en­
gine. The engine involves many physical processes and difficult numerical physics
and only the ease of experimentation has allowed considerable development progr,ess
to be made. Ease of experimentation, however, is not possible in all cases. Htgh
speed flight, for example, is difficult to represent directly even in experiments. Some
experiments will still be required, but these will be in a supporting role to validate
our codes and specific design features. Numerical simulation will reduce, but not
eliminate, the need for experimental studies, and these studies should be carefully
selected so as to avoid building a "tower of babel".

Whilst it is encouraging to consider this line of development, there are prob­
lems. The majority of scientific codes can be considered as having two parts. An
equation generation part from the application of various models that represent the
laws of physics, chemistry, etc., and a solver that produces a solution to this. Both
will need considerable revision if our goal of solving large, irregular fully 3-D prob-

142

lems is to be attained.

6.9.3 Problems With Equation Generation

Here we must look to increasing the order of our equation sets. Many codes today
solve first or partly second-order nonlinear equations, second-order or higher meth­
ods may be required with the associated increase in computation.

At present there are few combined codes that model fluid structure interaction,
and they often are designed for specific cases such as flight or marine structures.
Chemistry can be found in many codes along with various other models. Often
these physical processes are divided into two or more equation sets which are solved
in isolation, one providing boundary conditions for another. For highly accurate so­
lutions which are not prone to errors these equations must be coupled. In studying
complex systems there is always the danger that poor solutions will be obtained,
particularly if the system has any chaotic nature and the solution at any one point is
poorly computed. Such coupled equations are necessary to solve transient problems
with any degree of accuracy.

6.9.4 Problems With Solver Scaling

Coupled equation sets with high-order approximations and nonlinear relationships
are difficult to solve. At present we have been able to solve only simple equations
and have been able to use simple methods. Our existing parallel methods often scale
poorly with the number of unknowns in the problem, even for simple regular lin­
ear problems (seeTable 1). This poor scaling is hidden by the higher performance
of computing power available which has exceeded the growth in problem size: in
short, we have been lazy. The breakthrough to larger problems will require the de­
velopment of solvers which offer near linear scaling with problem size.

Table 1: Compute Time for a 3-D Problem
Solution Age Run Time to Solve
Method Time n=lOOO Problem

sor 1960 8N4log2(n) 2.5 Years
cyclic red 1970 8N3log2(n) 22 Hours

mg 1978 60N3 17 Hours

There is little interest in solving problems one order of magnitude larger if it
requires the pain of using a machine with three orders of magnitude the cost. It is
important to notice how current parallel systems reward locality of our solvers. For

143

solvers to scale well requires the global interaction of multigrid techniques, which
is not parallel friendly. Many simple steady state problems have been nearly im­
possible to solve without multigrid solvers [3, 4]. Perhaps it will be necessary to
develop entirely new techniques such as sparse grid methods whereby high resolu­
tion is obtained by combining many coarse meshes together. As yet this is not fully
understood for unstructured irregular problems.

6.9.S Problems of Display and Interaction

These studies will generate a large amount of data. The storage and later, or even
runtime, interpretation of these may require the development of new methods [5].
Multiple linked views may be required to convey even basic information regard­
ing the information contained within output datasets. Mining may be necessary to
extract the answers to specific questions and even expert systems with basic knowl­
edge of the type of problem. Also similar systems may be required to specify, and
perhaps verify, the problems initially before computation. Hopefully we can de­
velop these systems gradually with the rise in computing power, but some effort
must be expended in this area.

6.9.6 A Cautionary Note

We should be careful in just increasing the resolution and complexity of our models
and expecting linear or even previously observed scaling. Higher resolution may
resolve new physical features which might require additional computation to re­
solve correctly. Higher accuracy boundary conditions might be required in both
spatial and temporal terms. Perhaps many calculations will need to be performed
with slight perturbations in the initial conditions to see if the solution obtained is
stable or just to find the range of solutions which might occur. Such methods are
already under investigation by members of the meteorological community. Here,
limits in the number and accuracy of the initial boundary conditions demand that
greater attention be paid to the methods used.

Considerable additional computing is required by 4Dvar because temporal data
is included in the initial conditions. This requires many cycles until the numeri­
cal solution fits the actual observations. Ensemble forecasting is simpler, requir­
ing only many simple forecasts with slightly perturbed initial conditions. But, both
techniques require large amount of computing effort that coupled with the time con­
straints results in a forecast computation having a limited lifetime. Indeed this time
constraint limits the complexity of the physics model used. Similar constraints can
be applied to climate studies where at present severe limitations are placed on the

144

physics models used and conservation can be a major problem. This could be re­
solved with improved physics models which obviously require greater computation.

6.9.7 The Design Cycle

Today the design of high technology devices is supported by considerable com­
putational effort. The construction of optimized, or in terms of safety or ecolog­
ical behavior, preferred complex systems such as aircraft, power generation, and
even automobiles has become a difficult task. These objects have been built from
several isolated (or perhaps poorly constrained) systems. Power sources were de­
signed with only limited interaction with body work or external structures. To fur­
ther advance designs requires coupling the two processes. Perhaps this can only be
achieved by taking great steps forward and attempting radical designs. The eco­
nomics of any field however dictate that such bold steps would be thoroughly val­
idated and proven in a computer study before construction was even considered.
Help from genetic design methods may help. But, since evolution is a slow process
and the assessment of each design is an expensive process, this also will require
prodigious computing resources. The quality of the results in the design of solutions
to difficult problems cannot be disputed, however, and often designers have stolen
the best ideas from natural systems for inclusion in our modest attempts. Most of
our early flight experience came through the observation of birds and their wing
movements: observation that contributed to the design of control devices. Even to­
day the sudden outbreak of vertical wingtips can be mapped onto similar features
in natures widebody equivalents.

6.9.8 Petaftops, The Hardware and Software

If we can rely upon the hardware and software designers to deliver petaftops ma­
chines, then we must assist their endeavors. The exploitation of the current gener­
ation of parallel machines has limited the choice of algorithms. Indeed, we often
see considerable competition between advanced methods on older vector shared­
memory machines using the latest numerical methods and older methods on par­
allel machines. The true exploitation of petaftops will require the combination of
both advanced solution techniques and parallel systems. To achieve this we must
make the designers of these machines aware of the fundamental principles of these
advanced methods, just as they must make us aware of the features of these parallel
systems.

The field of QuantumChromoDynamics (QCD) has often constructed the world's
most powerful machines, of the order of a teraftops at present. These have typically

145

been "bespoke" machines designed for only one problem class. I propose that we
really require highly modular machines where we do not decide to fix CPU power,
communication bandwidth and topology. Users must be free to mix, match and con­
figure as required. The time scales of machine development are too short to support
anything else. We have already seen some good developments in this direction with
vendors allowing CPU and communication networks to be exchanged during the
lifetime of a single "box". Further efforts must be made in this direction. Of course,
such highly variable systems will require accommodating software.

One of the often quoted rules of parallel processing is that it rewards locality.
Some of the above methods can reward locality over an impressive number of pro­
cessors. However, as we increase the non-linearity of the equations we wish to solve
and the magnitude of the problems increase, this rule's alternative statement comes
into play: use as few processors as possible.

6.9.9 Conclusion

In conclusion, there is little doubt that there are scientific and engineering compu­
tations to be done with petaflops-scale computing resources. The methods, both
computational (in terms of the algorithms exploited) and scientific (in terms of ob­
taining useful and meaningful results from these machines) are a major point for
considerable discussion. However, it is clear that we shall only progress further in
any scientific discipline with the support of computation, both as an experimental
and an analytical tool.

6.9.10 References

[l] "Integration of Numerical and Experimental Wind Tunnels," IofNEWT, Bai­
ley, George, Koga, Bunning, Delzio, Kulfan. Supercomputing 94.

[2] "NAL Numerical Wind Tunnel," Miyoshi et al Supercomputing 94.

[3] "Parallel Algebraic Multigrid," Robinson, Parallel CFD92, New York, 92

[4] "Algebraic Multigrid Solver for the NS equations in the Discrete Second Or­
der Approximation," Webster and Robinson (to be published)

[5] "Computation Models Applied to Problems in Medicine," Johnson and Par­
ket, Supercomputing 94.

[6] European Centre for Medium Range Weather Forecasts Annual Report, 1994.

146

7 Discussion and Conclusions

This section addresses the motivation forthe first Petaflops Frontier Workshop (TPF-
1), several key consequences of the workshop, major findings of the presentations,
and implications for future directions.

7.1 Motivating Factors for TPF-1

It was with some trepidation that the organizers embarked on this project to conduct
The Petaflops Frontiers Workshop. An incipient field with a target likely to be 20
years in the future is vulnerable to issues of credibility. By its own design, it can
not impact high performance computing in the near future. There are also not likely
to be a large base of active researchers who would immediately identify with this
field. Yet, there were strong reasons to coordinate such a meeting, in spite of the
worrisome uncertainties.

Perhaps the most important reason is that there are many researchers engaged
in work that directly relates to Petaflops computing, even if they themselves do not
cast it as such. Because such research often does not have immediate near term
application, it too may be more difficult to justify, especially to sponsoring agen­
cies. By providing a petaflops computing system requirements conceptual frame­
work, such research can be positioned in terms of its potential contribution to this
larger whole. Also, the array of relevant research domains is so diverse, little cross
fertilization of ideas and results occurs. Again, a petaflops conceptual framework
enables such interdisciplinary exchanges. Finally, much of the basic research being
conducted truly requires long term investment and must be pursued now to be ready
in time to make its contribution. Identifying prospective candidates for enabling
technologies and methods research now can only be achieved if the requirements of
petaflops computing and the opportunities of such research products are matched.
And this can only happen by bringing both together by among other means such a
forum as The Petaflops Frontier Workshop.

Another important motivating factor for making TPF-1 a reality was the first
Pasadena Workshop on Enabling Technologies for Peta(FL)OPS Computing. If the
organizers of TPF-1 had some sense of being on the edge, imagine how the organiz­
ers of the Pasadena workshop felt. Yet, the response was exceptionally favorable
and professional. The quality of the workshop, its participants, its findings, and the
interest of the general high performance computing community to that undertaking
can not be overstated. The very positive reaction to the Pasadena workshop was
highly encouraging; without it, TPF-1 in all likelihood would not have occurred.
Yet, the Pasadena workshop was only a first step with many limitations in fields

147

considered and concepts addressed. The Pasadena workshop participation was by
invitation only, assuring a high density of experts in the desired fields. While not a
weakness, this was a self-biasing approach to attendance, representing those areas
that were assumed to be premiere while permitting little opportunity for surprise or
unanticipated possibilities. TPF-1 was left the opportunity to engage a second tier
of participation by letting the petaflops community define itself. An open call for
participation permitted all facets of the research community to contribute including
those areas that might not otherwise have been represented in an "invitation-only"
setting. As a result, the Pasadena and TPF-1 workshops complemented each other
and were so successful it may prove to be the model for the future.

One of the recommendations of the Pasadena workshop was to provide com­
plete coverage of relevant fields. By its nature, this was not possible at the Pasadena
meeting. TPF-1 was organized to attract a diverse group of researchers and there by
directly address this recommendation. A second recommendation of the Pasadena
Petaflops workshop was to provide more detail and breadth in the area of applica­
tion scaling. TPF-1 was organized explicitly to target applications programmers
with problems whose requirements could scale many orders of magnitude beyond
contemporary means and there by address this second recommendation as well.

Finally, it had been almost exactly one year since Pasadena workshop and a sec­
ond effort was called for to engage this inchoate community, maintain the momen­
tum, and examine results of the last year. The Frontiers of Massively Parallel Pro­
cessing Conference, more than perhaps any other single conference series, has re­
tained as its charter the domain of computation at the farthest conceivable extremes.
This conference provided an ideal context for TPF-1 , both in concept and from the
practical standpoint that many of the right people would likely be in attendance al­
ready.

It should be noted that throughout this endeavor, the organizers were encour­
aged and supported by NASA. The logistical details were professionally managed
by the USRA Center for Excellence in Space Data and Information Sciences at the
Goddard Space Flight Center. Without this backing and infrastructure, TPF-1 would
not have been feasible.

7.2 Some High Points

The intellectual content of the TPF-1 workshop will be summarized in the next two
subsections. Here, some key consequences of the workshop are highlighted.

The focus on petaflops computing structures did not parallel the balance of the
architecture working group at Pasadena but rather found a somewhat distinct focus
of its own. Most significant was the area of SIMD. The Pasadena petaflops work-

148

shop almost entirely ignored this computing model in preference for an almost ex­
clusively MIMD perspective. More than one presentation at TPF-1 identified the
SIMD approach to flow control as a viable way to capture a large class of highly
parallel applications and to develop high density architectures towards petaflops ca­
pability. While the merging of storage and computing logic on single integrated
circuits had been identified at Pasadena, this theme took on a more central role at
TPF-1 as more than one paper addressed the means and implications of such tech­
nologies. Missing was any indication that very short latency architectures would be
feasible. Instead, latency was exposed as the single dominant feasibility issue, with
power requirements and cost a close second.

The Petaflops Frontier Workshop provided a forum forindividual computational
scientists· to reflect on their own work and the implications of the potential of peta­
flops computing for it. Repeatedly, it was shown that science and engineering would
be dramatically advanced through the availability of usable petaflops capability. But,
the difficulties also were exposed. In many cases, applications do not scale linearly
with system size in what can be achieved for the end problem science. As prob­
lem size grows, the computational requirements may be compounded to constrain
errors as resolution is forced to increase. Other applications have definite limits in
data set size and instead require more sequential steps. These benefit from architec­
tures with higher clock speed but only to a certain point from architectures with un­
bounded parallelism. TPF-1 also directly examined some important non-numeric
applications of petaflops computing, including the implications for virtual reality
contexts.

The TPF-1 workshop was the setting for the announcement of a new facility to
support the emerging petaflops research community. Petaftops Enabling Technolo­
gies and Applications (PETA) is an on-line reference index accessible by means of
the world wide web. Its principle purpose is to provide a single source of links to
the products of the diverse speetrum of research activities that make up the peta­
flops community. It provides a dynamic intellectual "watering hole" for all rele­
vant work; one-stop shopping for everything you needed to know about the world
of petaflops. Peter Kogge and Rick Stevens are Senior Editors with responsibilities
in architecture/technologies and applications/algorithms, respectively. PETA can
be accessed at the URL: http://cesdis.gsfc.nasa.gov/petaftops/peta.html

In spite of initial concerns, not to mention heating problems on a very cold win­
ter day, The Petaflops Frontier Workshop was, by any measure, a success. Over a
hundred colleagues participated and were actively involved. The structure of many
short talks kept the meeting lively and provided many interesting concepts, issues,
and results. Almost half of the total conference attendance was also at this work­
shop. All feedback from attendees was very positive and the organizers have been

149

encouraged to host TPF-2 at Frontiers '96.

7.3 Applications and Algorithms

The presentations on applications and algorithms at the Petaflops Frontier Work­
shop provided ample evidence that petaflops computing cannot come soon enough.
A wide spectrum of applications, many dealing with currentscientific and engineer­
ing problems, need petaflops-level performance now. Equally true, once such per­
formance is available, applications that are now just concepts will quickly become
mainstays in science, engineering, medicine, pharmacology, education and training,
and business.

One key issue for the current and future applications will be the enormous J/O
requirements, both in speed and volume. Implicit in this, of course, is the need for
data storage approaching exabyte levels. Significant advances in modeling will de­
pend on a computing system's ability to manage (in addition to intensive computa­
tion) J/O streams of petabyte data sets per hour or minutes from archives in the ex­
abyte range. Such J/O will demand new or innovative storage techniques as well.
While not addressed during the TPF-1 workshop, the report on the first Pasadena
petaflops workshop addressed substantive issues of storage technology.

Computational fluid dynamics (CFO), a discipline critical to a wide variety of
applications (ranging from aerodynamics to medicine), could easily dominate usage
of petaflops (and even exaflops) computational capabilities. Indeed, the comput­
ing needs of the CFD community are so extensive that it's likely that, to the extent
that any community drives system architecture and algorithm development, the first
teraflops and petaflops systems will be designed to satisfy those needs.

One example of the pervasiveness of CFO (provided by Maizel) comes from
the field of medicine. Currently only portions of the fluid dynamics of a heartbeat
have been modeled successfully. One heartbeat now requires SOM of memory and
one cpu-week on a Cray C-90. Developing improved models along with a better
understanding of the underlying science, will depend on increased computational
power, i.e., moving from gigaflops to teraflops and petaflops.

Not all applications require petaflops-level computing to simply speed up exe­
cution time: increased problem scale (time and space) for improved accuracy and
precision are important also in such areas as environmental studies and astrophysics.
But, petaflops-level hardware must be developed in conjunction with algorithm de­
velopment that allows the application to take full advantage of system capabilities.

Significant progress in algorithms can free applications programmers from bur­
densome concerns about system-level performance factors. Certainly this is at least
one pressing need (true today-and even more important as the sizes of machines

150

increase) about which all parts of the high performance computing community seem
to agree.

As noted by several presenters, most applications could benefit from a heteroge­
neous computing environment (either mixed-machine or mixed-mode). The SIMD,
MIMD, etc. chips and machines exist and some progress has been made in appro­
priate algorithms for running applications in a heterogeneous environment. But,
moving from gigaflops machines to petaflops machines (via, presumably, teraflops
machines) will pose a myriad of extremely difficult problems in resource and ap­
plication management.

The situation presented above applies to applications with which the commu­
nity has appreciable experience. What about applications that now are just con­
cepts? These "future" applications, as presented by Stevens et al. include such pos­
sibilities databases with millions of users on-line simultaneously, off-world repos­
itories of all of humankind's knowledge, and full-scale virtual reality interactive
teaching environments. These and applications not yet conceived may be achiev­
able, but not, as mentioned previously, without quantum improvements in algo­
rithms, 1/0 and storage.

7.4 Architecture and Technology

By the close of the the Petaflop Frontier Workshop it was clear that issues of archi­
tectures for petaflops computing are still only broadly defined in terms consistent
with the context of "architecture" as it is known today. The nature of an appropri­
ate petaflops architecture (or several architectures) depends too much on technolo­
gies that are far from mature (or even technologies that ultimately may not "work"),
algorithms that have yet to be developed, and applications that require further un­
derstanding with respect to their underlying science and their scalability.

Heterogeneous computing (HC) has been shown to be superior for certain prob­
lems classes than a purely vector supercomputer-in some cases up to ten times
faster execution. Of the two approaches to HC, mixed-mode offers a finer granu­
larity (instruction level) than mixed-machine.

Mixed-machine on the other hand is evolving more naturally as researchers de­
vise and implement methods for managing the execution of complex applications
among different classes of machines: machines that in some instances are geograph­
ically widely separated. These endeavors have depended on the availability of hard­
ware and software to manage latency and inter-machine communications, and the
development of decomposition methods that allow distributing elements of the prob­
lem to machines that can best execute them.

Mixed-mode (i.e., SIMD, MIMD) heterogeneous computing (HC) has been em-

151

ployed successfully by various researchers at Purdue University, the University of
Texas at Austin, the University of Nice, France, the University of Karlsruhe, Ger­
many, and by IBM Federal Systems Division. Mixed-mode HC, however, presents
appreciably more challenges than mixed-machine HC, not the least of which is in­
complete understanding of-if not disagreement about-which, SIMD or MIMD,
is the better overall approach to problem solution.

The continuing rivalry between the SIMD and MIMD communities (which has
certainly been exacerbated by the zero-sum approach to allocating research dollars)
is exemplified by the contrast pr6vided in the article by Dorband, Auburdene et al.
Strong proponents of SIMD, they believe that a SIMD machine of 106 processors is
not only achievable, but desirable. And, indeed, it may be just that. Certainly, one
outcome of the research will be a better understanding of how to "manage" very
large numbers of processors. '

It is an understatement to assert that it is much too early to posit one architec­
ture over another for a petaftops machine. Indeed, the conceptual model offered by
Siegel et al. makes a strong case for an "architecture" that provides or makes avail­
able a variety of approaches depending on the computational requirements of the
application and its subtasks, i.e., a system comprised of both mixed-machine and
mixed-mode capabilities. The need for such flexibility is evident from the discus­
sion of various applications in Section 6.

But, whether or not mixed-machine or mixed-mode HC receives the majority of
support in the near term, formidable challenges exist in the development of systems
that can attain sustained petaftops performance.

Many of the challenges involve conserving memory, reducing latency, and in­
creasing bandwidth. A persistent theme of the workshop was that these issues can
and will be addressed, at least in part, by marrying processors and memory, or as
Kogge refers to it, processors-in-memory (PIM). Including computing logic in mem­
ory takes advantage of the large internal bandwidth and, for local memory purposes,
reduces latency to nil. But, for such an architecture to be feasible (from a size and
cost perspective), feature size has to be significantly reduced from today's levels
while keeping costs reasonable. Reducing the feature size, of course, increases the
density, thereby adding to the problem of power dissipation.

Maximum local bandwidth, though, can only reap some finite advantage; chip­
to-chip, board-to-board, etc., communication (1/0) must be improved dramatically.
Several optical schemes are being investigated that include guided, free-space and
three-dimensional methods along with several multiplexing approaches (wavelength
division, space division, frequency division), and concurrent read, concurrent write
methods. But, to move from the realm of the theoretical, simulation or brassboard
will necessitate considerable progress in hardware development. And, as Chun-

152

ming Qiao points out, most of the investment in optical technologies has been from
the telecommunications industries, not computing.

Noticeably absent from the workshop were any presentations on superconduc­
tivity technologies which received some attention at the first Pasadena petaflops
workshop. This technology although offering considerable promise, also presents
formidable obstacles to practical implementation, particularly in the interface to
room temperature components.. Indeed, in Pasadena I, the interface to room tem­
perature was discussed in terms of the very optical technologies that this workshop
showed need much more development. The need for optical development and low
funding superconductivity technology indicate that for the time being architecture
designers will reap better payoffs by focusing on processor-in-memory develop­
ments.

7 .5 Implications for Future Directions

The principle contributions of The Petaflops Frontier Workshop are first, that it has
increased the petaflops community knowledge and understanding of the field and its
opportunities in precisely the way intended, and second, it has broadened the com­
munity by providing an open forum for a wider range of disciplines and increasing
the involvement of researchers with relevant interests and contributions. But this is
a community and a discipline that is inventing itself and the question remains as to
its immediate future directions.

While TPF-1 provided new data related to application scaling and architecture
approaches, it did not come near to completing the task. Therefore, these two goals
must be pursued. The first is to be addressed at the Petaflops Summer Workshop at
Bodega Bay, California in August 1995. This work is also being pursued by a small
group of computational scientists in the domain of Earth and space science. The
objectives of these studies are to (1) identify problems in science, engineering, and
commerce that demand petaflops scale computing capability, and (2) determine the
balance of resource demand by such applications on the petaflops computer system
architectures.

The second goal, architecture, is being pursued, in part, by small sponsored
studies to flesh out key architectures that show promise of feasibility. Among those
for which on-going work is being conducted are Processor-in-Memory architec­
tures, ensembles of SMP architectures, and Mixed technology, multi-threaded ar­
chitecture. The intent of these studies is to expose the details and implications of
the approaches both for applications programmers and technologists. The results
of this work will be a basis for the Second Pasadena Workshop on Enabling Tech­
nologies for Petaflops Computing to be conducted in the Spring of 1996.

153

But an even broader range of approaches is possible and represented by current
research not yet formally asso(fiated with the petaflops community. The approaches
include a class of methods that could be referred to as "metaphorical computing"
that employ various physical phenomena and isomorphic mapping of parameters
between them and the computing problem to be solved. These are not von Neu­
mann computer architectures, and in fact, usually not digital. One example is the old
method of solving sets of first order differential equations using electronic analog
computers. A more recent example is molecular computing where natural processes
of organic molecules can be used to solve compute intensive applications such as
the traveling salesman problem. This highly disparate work needs to be connected
to the petaflops community so that adequate appreciation of their potential can be
achieved in terms of petaflops-scale computing and applications requirements.

While technology was addressed, by chance, there were no formal presentations
related to superconducting technologies. There were participants at TPF-1 from
that community, however. Because of the perceived difficulties in using cryogenic
technology and its importance for low power computation, a concerted effort must
be undertaken to embrace that research community and bring out the results of its
continuing advances.

It was felt by many that The Petaflops Frontier Workshop was an important
component of the 1995 Frontiers of Massively Parallel Processing conference and
that TPF-2 should be organized for Frontiers '96 with additional activities such as
a panel session on the topic also conducted for the conference. This is being pur­
sued by the conference program committee and will occur in Annapolis, Maryland
in October of 1996.

Finally, PETA, the on-line reference index for the petaflops research community
has been implemented and is accessible via the world wide web. Ideally, all relevant
work will be linked to this site with adequate annotation so that anyone interested
in this area has an immediate reference source. PETA is growing rapidly, but new
solicitations and contributions are required on a sustained basis in order to achieve
its objectives.

154

