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About This Book

The primary objective of this manual is to help hardware and software designers who are
working with the PowerPC 620™ microprocessor. This book is intended as a companion
to the PowerPC™ Microprocessor Family: The Programming Environments, Rev. 1,
referred to as The Programming Environments Manual. Because the PowerPC architecture
is designed to be flexible to support a broad range of processors, The Programming
Environments Manual provides a general description of features that are common to
PowerPC processors and indicates those features that are optional or that may be
implemented differently in the design of each processor.

Note that The Programming Environments Manual does not attempt to replace the
PowerPC architecture specification (documented in The PowerPC Architecture: A
Specification for a New Family of RISC Processors), which defines the architecture from
the perspective of the three programming environments and which remains the defining
document for the PowerPC architecture.

The PowerPC 620 RISC Microprocessor User’s Manual summarizes features of the 620
that are not defined by the architecture. This document and The Programming
Environments Manual distinguishes between the three levels, or programming
environments, of the PowerPC architecture, which are as follows:

»  PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers.

¢ PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devices can
access external memory, defines aspects of the cache model and cache control
instructions from a user-level perspective. The resources defined by the VEA are
particularly useful for optimizing memory accesses and for managing resources in
an environment in which other processors and other devices can access external
memory.
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» PowerPC operating environment architecture (OEA)—The OEA defines supervisor-
level resources typically required by an operating system. The OEA defines the
PowerPC memory management model, supervisor-level registers, and the exception
model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

It is important to note that some resources are defined more generally at one level in the
architecture and more specifically at another. For example, conditions that can cause a
floating-point exception are defined by the UISA, while the exception mechanism itself is
defined by the OEA.

Because it is important to distinguish between the levels of the architecture in order to
ensure compatibility across multiple platforms, those distinctions are shown clearly
throughout this book.

For ease in reference, this book has arranged topics described by the architecture
information into topics that build upon one another, beginning with a description and
complete summary of 620-specific registers and progressing to more specialized topics
such as 620-specific details regarding the cache, exception, and memory management
models. As such, chapters may include information from multiple levels of the architecture.
(For example, the discussion of the cache model uses information from both the VEA and
the OEA.)

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the
readers’ responsibility to be sure they are using the most recent version of the
documentation. For more information, contact your sales representative.

Audience

This manual is intended for system software and hardware developers and application
programmers who want to develop products for the 620. It is assumed that the reader
understands operating systems, microprocessor system design, the basic principles of RISC
processing, and details of the PowerPC architecture.

Organization
Following is a summary and a brief description of the major sections of this manual:

e Chapter 1, “Overview,” is useful for those who want a general understanding of the
features and functions of the PowerPC architecture. This chapter describes the
flexible nature of the PowerPC architecture definition, and provides an overview of
how the PowerPC architecture defines the register set, operand conventions,
addressing modes, instruction set, cache model, exception model, and memory
management model.
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Chapter 2, “Programming Model,” is useful for software engineers who need to
understand the 620-specific registers, operand conventions, and details regarding
how PowerPC instructions are implemented on the 620.

Chapter 3, “Instruction and Data Cache Operation,” provides a discussion of the
cache and memory model as implemented on the 620.

Chapter 4, “Exceptions,” describes the exception model as implemented on the 620.

Chapter 5, “Memory Management,” provides descriptions of the PowerPC address
translation and memory protection mechanism as implemented on the 620.

Chapter 6, “Instruction Timing,” describes instruction timing in the 620.
Chapter 7, “Signal Descriptions,” describes individual signals defined for the 620.
Chapter 8, “System Interface Operation,” describes interface operations on the 620.

Chapter 9, “Secondary Cache Interface,” provides information on the L2 cache
interface operation, register set, and ECC errors, as well as providing timing
diagrams.

Chapter 10, “Performance Monitor,” describes the operation of the performance
monitor diagnostic tool incorporated in the 620.

Chapter 11, “Power Management,” describes the power saving mechanism
implemented on the 620.

Appendix A, “PowerPC Instruction Set Listings,” lists all the PowerPC instructions.
Instructions are grouped according to mnemonic, opcode, function, and form.

This manual also includes a glossary and an index.

In this document, the terms “PowerPC 620 Microprocessor” and “620” are used to denote
a microprocessor from the PowerPC architecture family. The PowerPC 620
microprocessors are available from Motorola as MPC620.

Suggested Reading

This section lists additional reading that provides background for the information in this
manual as well as general information about the PowerPC architecture.

General Information

The following documentation provides useful information about the PowerPC architecture
and computer architecture in general:

The following books are available from the Morgan-Kaufmann Publishers, 340 Pine
Street, Sixth Floor, San Francisco, CA 94104; Tel. (800) 745-7323 (U.S.A.), (415)
392-2665 (International); internet address: mkp@mbkp.com.

— The PowerPC Architecture: A Specification for a New Family of RISC
Processors, Second Edition, by International Business Machines, Inc.
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Updates to the architecture specification are accessible via the world-wide web
at http://www.austin.ibm.com/tech/ppc-chg.html.

— PowerPC Microprocessor Common Hardware Reference Platform: A System
Architecture, by Apple Computer, Inc., International Business Machines, Inc.,
and Motorola, Inc.

— Macintosh Technology in the Common Hardware Reference Platform, by Apple
Computer, Inc.

— Computer Architecture: A Quantitative Approach, Second Edition, by
John L. Hennessy and David A. Patterson,

Inside Macintosh: PowerPC System Software, Addison-Wesley Publishing
Company, One Jacob Way, Reading, MA, 01867; Tel. (800) 282-2732 (U.S.A.),
(800) 637-0029 (Canada), (716) 871-6555 (International).

PowerPC Programming for Intel Programmers, by Kip McClanahan; IDG Books
Worldwide, Inc., 919 East Hillsdale Boulevard, Suite 400, Foster City, CA, 94404;
Tel. (800) 434-3422 (U.S.A.), (415) 655-3022 (International).

PowerPC Documentation
The PowerPC documentation is organized in the following types of documents:

User’s manuals—These books provide details about individual PowerPC
implementations and are intended to be used in conjunction with The Programming
Environments Manual. These include the following:

— PowerPC 601™ RISC Microprocessor User’s Manual:
MPC601UM/AD (Motorola order #)

— PowerPC 602™ RISC Microprocessor User’s Manual.
MPC602UM/AD (Motorola order #)

— PowerPC 603e™ RISC Microprocessor User’s Manual with Supplement for
PowerPC 603 Microprocessor:
MPC603EUM/AD (Motorola order #)

— PowerPC 604™ RISC Microprocessor User’s Manual:
MPC604UM/AD (Motorola order #)

PowerPC Microprocessor Family: The Programming Environments, Rev. 1
provides information about resources defined by the PowerPC architecture that are
common to PowerPC processors. This document describes both the 64- and 32-bit
portions of the architecture.

MPCFPE/AD (Motorola order #)

Implementation Variances Relative to Rev. 1 of The Programming Environments
Manual is available via the world-wide web at http://www.mot.com/powerpc/.
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Addenda/errata to user’s manuals—Because some processors have follow-on parts
an addendum is provided that describes the additional features and changes to
functionality of the follow-on part. These addenda are intended for use with the
corresponding user’s manuals. These include the following:

— Addendum to PowerPC 603e RISC Microprocessor User’s Manual: PowerPC
603e Microprocessor Supplement and User’s Manual Errata:
MPC603EUMAD/AD (Motorola order #)

— Addendum to PowerPC 604 RISC Microprocessor User’s Manual: PowerPC
604e™ Microprocessor Supplement and User’s Manual Errata:
MPC604UMAD/AD (Motorola order #)

Hardware specifications—Hardware specifications provide specific data regarding
bus timing, signal behavior, and AC, DC, and thermal characteristics, as well as
other design considerations for each PowerPC implementation. These include the
following:

— PowerPC 601 RISC Microprocessor Hardware Specifications:
MPC601EC/D (Motorola order #)

— PowerPC 602 RISC Microprocessor Hardware Specifications:
MPC602EC/D (Motorola order #)

— PowerPC 603 RISC Microprocessor Hardware Specifications:
MPC603EC/D (Motorola order #)

— PowerPC 603e RISC Microprocessor Family: PID6-603e Hardware
Specifications:
MPC603EEC/D (Motorola order #)

— PowerPC 603e RISC Microprocessor Family: PID7V-603e¢ Hardware
Specifications:
MPC603E7VEC/D (Motorola order #)

— PowerPC 604 RISC Microprocessor Hardware Specifications:
MPC604EC/D (Motorola order #)

— PowerPC 604e RISC Microprocessor Family: PID9V-604e Hardware
Specifications:
MPC604E9VEC/D (Motorola order #)

Technical Summaries—Each PowerPC implementation has a technical summary
that provides an overview of its features. This document is roughly the equivalent to
the overview (Chapter 1) of an implementation’s user’s manual. Technical
summaries are available for the 601, 602, 603, 603e, 604, and 604¢ as well as the
following:

— PowerPC 620™ RISC Microprocessor Technical Summary: MPC620/D
(Motorola order #)
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PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors:
MPCBUSIF/AD (Motorola order #) provides a detailed functional description of the
60x bus interface, as implemented on the 601, 603, and 604 family of PowerPC
microprocessors. This document is intended to help system and chipset developers
by providing a centralized reference source to identify the bus interface presented by
the 60x family of PowerPC microprocessors.

PowerPC Microprocessor Family: The Programmer’s Reference Guide:
MPCPRG/D (Motorola order #) is a concise reference that includes the register
summary, memory control model, exception vectors, and the PowerPC instruction
set.

PowerPC Microprocessor Family: The Programmer’s Pocket Reference Guide:
MPCPRGREF/D (Motorola order #): This foldout card provides an overview of the
PowerPC registers, instructions, and exceptions for 32-bit implementations.

Application notes—These short documents contain useful information about
specific design issues useful to programmers and engineers working with PowerPC
processors.

Documentation for support chips—These include the following:

— MPCI05 PCI Bridge/Memory Controller User’s Manual:
MPC105UM/AD (Motorola order #)

— MPC106 PCI Bridge/Memory Controller User’s Manual:
MPC106UM/AD (Motorola order #)

Additional literature on PowerPC implementations is being released as new processors
become available. For a current list of PowerPC documentation, refer to the world-wide
web at http://www.mot.com/powerpc/.

Conventions

This document uses the following notational conventions:

ACTIVE_HIGH Names for signals that are active high are shown in uppercase text

without an overbar.

ACTIVE_LOW A bar over a signal name indicates that the signal is active low—for

example, ARTRY (address retry) and TS (transfer start). Active-low
signals are referred to as asserted (active) when they are low and
negated when they are high. Signals that are not active low, such as
APARITYO-APARITY3 (address bus parity signals) and TTO-TT4
(transfer type signals) are referred to as asserted when they are high
and negated when they are low.

mnemonics Instruction mnemonics are shown in lowercase bold.
OPERATIONS Address-only bus operations that are named for the instructions that

generate them are identified in uppercase letters, for example, ICBI,
SYNC, TLBSYNC, and EIEIO operations.
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italics

0x0

0b0

rA,rB

rAl0

rD

frA, frB, frC
frD
REGI[FIELD]

n

Italics indicate variable command parameters, for example, bectrx
Prefix to denote hexadecimal number

Prefix to denote binary number

Instruction syntax used to identify a source GPR

The contents of a specified GPR or the value 0.

Instruction syntax used to identify a destination GPR

Instruction syntax used to identify a source FPR

Instruction syntax used to identify a destination FPR

Abbreviations or acronyms for registers are shown in uppercase text.
Specific bits, fields, or ranges appear in brackets. For example,
MSR[LE] refers to the little-endian mode enable bit in the machine
state register.

In certain contexts, such as a signal encoding, this indicates a don’t
care.

Used to express an undefined numerical value.

Acronyms and Abbreviations

The Table i contains acronyms and abbreviations that are used in this document. Note that
the meanings for some acronyms (such as SDR1 and XER) are historical, and the words for
which an acronym stands may not be intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term Meaning
ALU Arithmetic logic unit
ASR Address space register
BAT Block address translation
BIST Built-in self test
BIU Bus interface unit
BHT Branch history table
BPU Branch processing unit
BTAC Branch target address cache
BUID Bus unit ID
COoP Common on-chip processor
CR Condition register
CTR Count register
DABR Data address breakpoint register
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Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
DAR Data address register
DBAT Data BAT
DEC Decrementer (register)
DEQ Decode queue
DISQ Dispatch queue
DSISR Register used for determining the source of a DSI exception
DTLB Data translation look-aside buffer
EA Effective address
EAR External access register
ECC Error checking and correction
FIFO First-in, first out
FLQ Finish load queue
FPR Floating-point register
FPSCR Floating-point status and control register
FPU Floating-point unit
GPR General-purpose register
HIDO Hardware implementation dependent (register) 0
IABR Instruction address breakpoint register
IBAT Instruction BAT
IEEE Institute of Electrical and Electronics Engineers
ITLB Instruction translation look-aside buffer
U Integer unit
JTAG Joint Test Action Group
L2 Secondary cache
LR Link register
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
Lsu Load/store unit
MCIU Multiple-cycle integer unit
MESI Modified/exclusive/shared/invalid—cache coherency protocol
MMCRn Monitor mode control register n
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Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
MMU Memory management unit
MSB Most-significant byte
msb Most-significant bit
MSR Machine state register
NaN Not a number
No-Op No operation
OEA Operating environment architecture
PID Processor identification tag
PLL Phase-locked loop
PMCn Performance monitor control (register) n
PMI Performance monitor interrupt
PTE Page table entry
PTEG Page table entry group
PVR Processor version register
RISC Reduced instruction set computing/computer
ROB Reorder buffer
RTL Register transfer language
RWITM Read with intent to modify
SCiU Single-cycle integer unit
SDA Sampled data address (register)
SDR1 Register that specifies the page table base address for virtual-to-physical address translation
SIA Sampled instruction address (register)
SIMM Signed immediate value
SLB Segment look-aside buffer
SPR Special-purpose register
SPRGn Registers available for general purposes
SR Segment register
SRRO (Machine status) save/restore register 0
SRR1 (Machine status) save/restore register 1
B Time base register
TLB Translation lookaside buffer
UIMM Unsigned immediate value
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Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
UISA User instruction set architecture
VEA Virtual environment architecture
XATC Extended address transfer code
XER Register used for indicating conditions such as carries and overflows for integer operations

Terminology Conventions

Table ii lists certain terms used in this manual that differ from the architecture terminology

conventions.

Table ii. Terminology Conventions

The Architecture Specification

This Manual

Data storage interrupt (DSl)

DSI exception

Extended mnemonics

Simplified mnemonics

Instruction storage interrupt (ISI)

ISI exception

Interrupt*

Exception

Privileged mode (or privileged state)

Supervisor-level privilege

Problem mode (or problem state)

User-level privilege

Real address

Physical address

Relocation Translation
Storage (locations) Memory
Storage (the act of) Access

* For a detailed discussion of how the terms interrupt and exception are used in this document, see the introduction

to Chapter 4, “Exceptions.”

Table iii describes instruction field notation conventions used in this manual.

Table iii. Instruction Field Conventions

The Architecture Specification

Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)
BF, BFA crD, crfS (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS

frA, frB, frC, frD, frS (respectively)
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Table iii. Instruction Field Conventions (Continued)

The Architecture Specification Equivalent to:
FXM CRM
RA, RB, RT, RS rA, rB, rD, rS (respectively)
Sl SIMM
u IMM
Ul UMM
1,0, 11 0...0 (shaded)
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Chapter 1
Overview

This chapter provides an overview of the PowerPC 620™ microprocessor. It includes the
following:

* A summary of 620 features

¢+ Details about the 620 hardware implementation. This includes descriptions of the
620’s execution units, cache implementation, memory management units (MMUSs),
and system interface.

+ A description of the 620 execution model. This section includes information about
the programming model, instruction set, exception model, and instruction timing.

¢ A description of the performance monitor facility

1.1 Overview
This section describes the features of the 620, provides a block diagram showing the major
functional units, and describes briefly how those units interact.

The 620 is an implementation of the PowerPC™ family of reduced instruction set computer
(RISC) microprocessors. The 620 implements the PowerPC architecture as it is specified
for 64-bit addressing, which provides 64-bit effective addresses, integer data types of 8, 16,
32, and 64 bits, and floating-point data types of 32 and 64 bits (single-precision and double-
precision). The 620 is software compatible with the 32-bit versions of the PowerPC
microprocessor family.

The 620 is a superscalar processor capable of issuing four instructions simultaneously. As
many as four instructions can finish execution in parallel. The 620 has six execution units
that can operate in parallel:

» Floating-point unit (FPU)

« Branch processing unit (BPU)

¢ Load/store unit (LSU)

» Three integer units (IUs):
— Two single-cycle integer units (SCIUs)
— One multiple-cycle integer unit (MCIU)
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This parallel design, combined with the PowerPC architecture’s specification of uniform
instructions that allows for rapid execution times, yields high efficiency and throughput.
The 620’s rename buffers, reservation stations, dynamic branch prediction, and completion
unit increase instruction throughput, guarantee in-order completion, and ensure a precise
exception model. (Note that the PowerPC architecture specification refers to all exceptions
as interrupts.)

The 620 has separate memory management units (MMUSs) and separate 32-Kbyte on-chip
caches for instructions and data. The 620 implements a 128-entry, two-way set-associative
translation lookaside buffer (TLB) for instructions and data, and provides support for
demand-paged virtual memory address translation and variable-sized block translation. The
TLB and the cache use least-recently used (LRU) replacement algorithms.

The 620 has a 40-bit address bus, and can be configured with either a 64- or 128-bit data
bus. The 620 interface protocol allows multiple masters to compete for system resources
through a central external arbiter. Additionally, on-chip snooping logic maintains data
cache coherency for multiprocessor applications. The 620 supports single-beat and burst
data transfers for memory accesses and memory-mapped I/O accesses.

The 620 processor core uses an advanced, 2.5-V CMOS process technology, and is
compatible with 3.3-V CMOS devices.

1.1.1 PowerPC 620 Microprocessor Features
This section summarizes features of the 620’s implementation of the PowerPC architecture.
Major features of the 620 are as follows:
» High-performance, superscalar microprocessor
— As many as four instructions can be issued per clock

— As many as six instructions can start executing per clock (including three integer
instructions)

— Single clock cycle execution for most instructions
« Six independent execution units and two register files
— BPU featuring dynamic branch prediction
— Speculative execution through four branches
— 256-entry fully-associative branch target address cache (BTAC)

— 2048-entry branch history table (BHT) with two bits per entry indicating four
levels of prediction—not-taken, strongly not-taken, taken, strongly taken

— Two single-cycle IUs (SCIUs) and one multiple-cycle IU (MCIU)

— Instructions that execute in the SCIU take one cycle to execute; most
instructions that execute in the MCIU take multiple cycles to execute.

— Each SCIU has a two-entry reservation station to minimize stalls.
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— The MCIU has a two-entry reservation station and provides early exit (three
cycles) for 16 x 32-bit and overflow operations

— Thirty-two GPRs for integer operands
— Eight rename buffers for GPRs
— Three-stage floating-point unit (FPU)

— Fully IEEE 754-1985 compliant FPU for both single- and double-precision
operations

— Supports non-IEEE mode for time-critical operations
— Fully pipelined, single-pass double-precision design
— Hardware support for denormalized numbers
— Two-entry reservation station to minimize stalls
— Thirty-two 64-bit FPRs for single- or double-precision operands
— Eight rename buffers for FPRs
— Load/store unit (LSU)
— Three-entry reservation station to minimize stalls
— Single-cycle, pipelined cache access
— Dedicated adder that performs EA calculations
— Performs alignment and precision conversion for floating-point data
— Performs alignment and sign extension for integer data

— Five-entry pending load queue that provides load/store address collision
detection

— Five-entry finished store queue
— Six-entry completed store queue
— Supports both big- and little-endian modes
* Rename buffers
— Eight GPR rename buffers
— Eight FPR rename buffers
— Sixteen condition register (CR) rename buffers
The 620 rename buffers are described in Section 1.2.1.6, “Rename Buffers.”
» Completion unit

— Retires an instruction from the 16-entry reorder buffer when all instructions
ahead of it have been completed and the instruction has finished execution

— Guarantees sequential programming model (precise exception model)
— Monitors all dispatched instructions and retires them in order

MOTOROLA Chapter 1.0verview 1-3



j — Tracks unresolved branches and removes speculatively executed, dispatched,
and fetched instructions if branch is mispredicted

— Retires as many as four instructions per clock
o Separate on-chip instruction and data caches (Harvard architecture)

— 32-Kbyte, eight-way set-associative instruction and data caches; data cache is 2-
way interleaved.

— LRU replacement algorithm
— 64-byte (sixteen word) cache block size
— Physically indexed; physical tags

— Cache write-back or write-through operation programmable on a per page or per
block basis

— Instruction cache can provide four instructions per clock; data cache can provide
two words per clock.

— Caches can be disabled in software
— Parity checking performed on both caches
— Data cache coherency (MESI) maintained in hardware
— Interprocessor broadcast of cache control instructions
— Instruction cache coherency maintained in software
¢ On-chip L2 cache interface
— L2 cache is a unified instruction and data secondary cache with ECC.
— L2 cache is direct-mapped, physically-indexed, and physically-tagged.
— L2 data cache is inclusive of L1; L2 instruction cache is not inclusive of L1.
— L2 cache capacity is configurable from 1 Mbyte to 128 Mbyte.
— Independent user-configurable PLL provides L2 interface clock.

— L2 cache interface supports single-, double-, triple-, and quad-register
synchronous SRAMs.

— L2 cache interface supports CMOS SRAM:s.
— Supports direct connection of two SRAM banks
— Supports direct connection of coprocessor
» Separate memory management units (MMUs) for instructions and data

— Address translation facilities for 4-Kbyte page size, variable block size, and
256-Mbyte segment size

— Independent 64-entry fully—assoéiative effective-to-physical address translation
(EPAT) cache with invalid-first replacement algorithm for instructions and data

— Unified instruction and data translation lookaside buffer (TLB)
— TLB is 128-entry and two-way set-associative
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— 20-entry CAM segment lookaside buffer (SLB) with FIFO replacement
algorithm

— Sixteen segment registers that provide support for 32-bit memory management
— SLB, TLB, and EPAT cache miss handling performed by 620 hardware
— Hardware update of page frame table referenced and changed bits
— Hardware broadcast of TLB and control instructions
— Separate IBATs and DBATS (four each) also defined as SPRs
— 64-bit effective addressing
— 80-bit virtual addressing
— 40-bit physical memory address for up to one terabyte
» Bus interface
— Selectable processor-to-bus clock frequency ratios (2:1, 3:1, and 4:1)
— A 64- and 128-bit split-transaction external data bus with burst transfers
— Explicit address and data bus tagging
— Pended (split) read protocol
— Pipelined snoop response, fixed boot-time latency
— 620 bus is crossbar compatibie
— Additional signals and signal redefinition for direct-store operations
« Multiprocessing support

— Hardware-enforced, four-state cache coherency protocol (MESI) for data cache.
Bits are provided in the instruction cache to indicate only whether a cache block
is valid or invalid.

— Data cache coherency for L1 and L2, and external L3 cache is fully supported by
620 hardware.

— Snoop operations take priority over processor access to L1 and L2 cache.
— Instruction cache coherency is software controlled.

— Load/store with reservation instruction pair is provided for atomic memory
references, semaphores, and other multiprocessor operations.

» Power requirements
— Operating voltage is 2.5 V for the processor core, and 3.3 V for I/O drivers.

+ Performance monitor can be used to help in debugging system designs and
improving software efficiency, especially in multiprocessor systems.

» In-system testability and debugging features are provided through JTAG boundary-
scan capability.
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1.1.2 Block Diagram

Figure 1-1 provides a block diagram showing features of the 620. Note that this is a
conceptual block diagram intended to show the basic features rather than an attempt to
show how these features are physically implemented on the chip.
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1.2 PowerPC 620 Microprocessor Hardware
Implementation

This section provides an overview of the 620’s hardware implementation, including
descriptions of the functional units, shown in Figure 1-2, the cache implementation, MMU,
and the system interface.

Note that Figure 1-2 provides a more detailed block diagram than that presented in
Figure 1-1—showing the additional data paths that contribute to the improved efficiency in
instruction execution and more clearly indicating the relationships between execution units
and their associated register files.
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Figure 1-2. Block Diagram—Internal Data Paths

1-8 PowerPC 620 RISC Microprocessor User’s Manual MOTOROLA



1.2.1 Instruction Flow

Several units on the 620 ensure the proper flow of instructions and operands and guarantee
the correct update of the architectural machine state. These units include the following:

« Predecode unit—Provides logic to decode instructions and determine what
resources are required for execution.

+ Fetch unit—Using the next sequential address or the address supplied by the BPU
when a branch is predicted or resolved, the fetch unit supplies instructions to the
eight-word instruction queue.

+ Dispatch unit—The dispatch unit dispatches instructions to the appropriate
execution unit. During dispatch, operands are provided to the execution unit (or
reservation station) from the register files, rename buffers, and result buses.

« Branch processing unit (BPU)—In addition to providing the fetcher with predicted
target instructions when a branch is predicted (and a mispredict-recovery address if
abranch is incorrectly predicted), the BPU executes all condition register logical and
flow control instructions.

» Completion unit—The completion unit retires executed instructions in program
order and controls the updating of the architectural machine state.

1.2.1.1 Predecode Unit

The instruction predecode unit provides the logic to decode the instructions and categorize
the resources that will be used, source operands, destination registers, execution registers,
and other resources required for execution. The instruction stream is predecoded on its way
from the bus interface unit to the instruction cache.

1.2.1.2 Fetch Unit

The fetch unit provides instructions to the four-entry (8-instruction) instruction queue by
accessing the on-chip instruction cache. Typically, the fetch unit continues fetching
sequentially as many as four instructions at a time.

The address of the next instruction to be fetched is determined by several conditions, which
are prioritized as follows:

1. Detection of an exception. Instruction fetching begins at the exception vector.

2. The BPU recovers from an incorrect prediction when a branch instruction is in the
execute stage. Undispatched instructions are flushed and fetching begins at the
correct target address.

3. The BPU recovers from an incorrect prediction when a branch instruction is in the
dispatch stage. Undispatched instructions are flushed and fetching begins at the
correct target address.

4. As acache block is fetched, the branch target address cache (BTAC) and the branch
history table (BHT) are searched with the fetch address. If it is found in the BTAC,
the target address from the BTAC is the first candidate for being the next fetch
address.
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5. If none of the previous conditions exist, the instruction is fetched from the next
sequential address.

1.2.1.3 Dispatch Unit

The dispatch unit provides the logic for dispatching the predecoded instructions to the
appropriate execution unit. For many branch instructions, these decoded instructions along
with the bits in the BHT, are used during the decode stage for branch correction. The
dispatch logic also resolves unconditional branch instructions and predicts conditional
branch instructions using the branch decode logic, BHT, and values in the count register
(CTR).

The 2048-entry BHT provides two bits per entry, indicating four levels of dynamic
prediction—strongly not-taken, not-taken, taken, and strongly taken. The history of a
branch’s direction is maintained in these two bits. For example, each time a branch is taken,
the value is incremented (with a maximum value of three meaning strongly-taken); when it
is not taken, the bit value is decremented (with a minimum value of zero meaning strongly
not-taken). If the current value predicts taken and the next branch is taken again, the BHT
entry then predicts strongly taken. If the following branch is not taken, the BHT then
predicts taken.

The dispatch logic also allocates each instruction to the appropriate execution unit. A
reorder buffer entry in the completion unit is allocated for each instruction, and data (or
resource) dependency is checked between the instructions in the dispatch queue. The
rename buffers are searched for the operands as the operands are fetched from the register
file. Operands that are written by other instructions ahead of this one in the dispatch queue
are given the tag of that instruction’s rename buffer; otherwise, the rename buffer or register
file supplies either the operand or a tag. As instructions are dispatched, the fetch unit is
notified that the dispatch queue can be updated with more instructions.

1.2.1.4 Branch Processing Unit (BPU)

The BPU is used for branch instructions and condition register logical operations. All
branches, including unconditional branches, are placed in reservation stations until
conditions are resolved and they can be executed. At that point, branch instructions are
executed in order—the completion unit is notified whether the prediction was correct.

The BPU also executes condition register logicaly instructions, which flow through the
reservation station like the branch instructions.

1.2.1.5 Completion Unit

The completion unit retires executed instructions from the reorder buffer in the completion
unit and updates register files and control registers. The completion unit recognizes
exception conditions and discards any operations being performed on subsequent
instructions in program order. The completion unit can quickly remove instructions from a
mispredicted branch, and the dispatch unit begins dispatching from the correct path.
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The instruction is retired from the reorder buffer when it has finished execution and all
instructions ahead of it have been completed. The instruction’s result is written into the
appropriate register file and is removed from the rename buffers at or after completion. At
completion, the 620 also updates any other resource affected by this instruction. Several
instructions can complete simultaneously. Most exception conditions are recognized at
completion time.

1.2.1.6 Rename Buffers

To avoid contention for a given register location, the 620 provides rename registers for
storing instruction results before the completion unit commits them to the architected
register. Eight rename registers are provided for the GPRs, eight for the FPRs, and sixteen
for the condition register. GPRs, FPRs, and the condition register are described in
Section 1.3.2, “Registers and Programming Model,”

When the dispatch unit dispatches an instruction to its execution unit, it allocates a rename
register for the results of that instruction. The dispatch unit also provides a tag to the
execution unit identifying the result that should be used as the operand. When the proper
result is returned to the rename buffer, it is latched into the reservation station. When all
operands are available in the reservation station, execution can begin.

The completion unit does not transfer instruction results from the rename registers to the
registers until any speculative branch conditions preceding it in the completion queue are
resolved and the instruction itself is retired from the completion queue without exceptions.
If a speculatively executed branch is found to have been incorrectly predicted, the
speculatively executed instructions following the branch are flushed from the completion
queue and the results of those instructions are flushed from the rename registers.

1.2.2 Execution Units

The following sections describe the 620’s arithmetic execution units— two single-cycle
1Us, multiple-cycle IU, and FPU. When the reservation station sees the proper result being
written back, it will grab it directly from one of the result buses. Once all operands are in
the reservation station for an instruction, it is eligible to be executed. Reservation stations
temporarily store dispatched instructions that cannot be executed until all of the source
operands are valid.

1.2.2.1 Integer Units (IUs)

The two single-cycle IUs (SCIUs) and one multiple-cycle TU (MCIU) execute all integer
instructions. These are shown in Figure 1-1 and Figure 1-2. The results generated by the
IUs are put on the result buses that are connected to the appropriate reservation stations and
rename buffers. Each IU has a two-entry reservation station to reduce stalls. The reservation
station can receive instructions from the dispatch unit and operands from the GPRs, the
rename buffers, or the result buses.

Each SCIU consists of three single-cycle subunits—a fast adder/comparator, a subunit for
logical operations, and a subunit for performing rotates, shifts, and count-leading-zero
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operations. These subunits handle all one-cycle arithmetic instructions; only one subunit
can execute an instruction at a time.

The MCIU consists of a 64-bit integer multiplier/divider. The MCIU executes mfspr and
mtspr instructions, which are used to read and write special-purpose registers. The MCIU
can execute an mtspr or mfspr instruction at the same time that it executes a multiply or
divide instruction. These instructions are allowed to complete out of order.

1.2.2.2 Floating-Point Unit (FPU)

The FPU, shown in Figure 1-1 and Figure 1-2, is a single-pass, double-precision execution
unit; that is, both single- and double-precision operations require only a single pass, with a
latency of three cycles.

As the dispatch unit issues instructions to the FPU’s two reservation stations, source
operand data may be accessed from the FPRs, the floating-point rename buffers, or the
result buses. Results in turn are written to the floating-point rename buffers and to the
reservation stations and are made available to subsequent instructions. The three
reservation stations provided by the FPU support out-of-order execution of floating-point
instructions.

1.2.2.3 Load/Store Unit (LSU)

The LSU, shown in Figure 1-1 and Figure 1-2, transfers data between the data cache and
the result buses, which route data to other execution units. The LSU supports the address
generation and handles any alignment for transfers to and from system memory. The LSU
also supports cache control instructions and load/store multiple/string instructions.

The LSU includes a 64-bit adder dedicated for EA calculation. Data alignment logic
manipulates data to support aligned or misaligned transfers with the data cache. The LSU’s
load and store queues are used to buffer instructions that have been executed and are
waiting to be completed. The queues are used to monitor data dependencies generated by
data forwarding and out-of-order instruction execution ensuring a sequential model.

The LSU allows load instructions to precede store instructions in the reservation stations.
Data dependencies resulting from the out-of-order execution of loads before stores to
addresses with the same low-order 12 bits in the effective address are resolved when the
store instruction is completed. If an out-of-order load operation is found to have an address
that matches a previous store, the instruction pipeline is flushed, and the load instruction
will be refetched and re-executed.

The LSU does not allow the following operations to be speculatively performed on
unresolved branches:

 Store operations

» Loading of noncacheable data or cache miss operations

¢ Loading from direct-store segments
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1.2.3 Memory Management Units (MMUs)

The primary functions of the MMUs are to translate logical (effective) addresses to physical
addresses for memory accesses, I/O accesses (most I/O accesses are assumed to be
memory-mapped), and direct-store accesses, and to provide access protection on blocks
and pages of memory.

The PowerPC MMUSs and exception model support demand-paged virtual memory. Virtual
memory management permits execution of programs larger than the size of physical
memory; demand-paged implies that individual pages are loaded into physical memory
from system memory only when they are first accessed by an executing program.

The hashed page table is a variable-sized data structure that defines the mapping between
virtual page numbers and physical page numbers. The page table size is a power of 2, and
its starting address is a multiple of its size.

Address translations are enabled by setting bits in the MSR—MSR[IR] enables instruction
address translations and MSR[DR] enables data address translations.

The 620’s MMUs support up to one heptabyte (289 of virtual memory and one terabyte
(2% of physical memory. The MMUs support block address translations, direct-store
segments, and page translation of memory segments. Referenced and changed status are
maintained by the processor for each page to assist implementation of a demand-paged
virtual memory system.

Separate but identical translation logic is implemented for data accesses and for instruction
accesses. The 620 implements a two-stage translation cache mechanism; the first stage
consists of independent 64-entry content-addressable EPAT' for instructions and data, and
the second stage consists of a shared 128-entry, two-way set-associative translation
lookaside buffer (TLB). If a TLB miss occurs during the second-stage address translation,
memory segment lookup is assisted by a 20-entry content-addressable segment lookaside
buffer (SLB). The operating environment architecture (OEA) defines an additional,
optional bridge that allows 64-bit implementations to use a simpler memory management
model to access 32-bit effective address space. For processors that implement the address
translation portion of the bridge, segment descriptors take the form of the STEs defined for
64-bit MMUs; however, only 16 STEs are required to define the entire 4-Gbyte address
space. Like 32-bit implementations, the effective address space is entirely defined by 16
contiguous 256-Mbyte segment descriptors. Rather than using the set of 16, 32-bit segment
registers as is defined for the 32-bit MMU, the 16 STEs are implemented and are
maintained in 16 SLB entries. For more information on the optional bridge, refer to,
PowerPC Microprocessor Family: The Programming Environments, Rev. 1.

1.2.4 Cache Implementation

The PowerPC architecture does not define hardware aspects of cache implementations. For
example, the 620 implements separate data and instruction caches (Harvard architecture),
while other processors may use a unified cache, or no cache at all. The PowerPC
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architecture defines the unit of coherency as a cache block, which for the 620 is a 64-byte
(sixteen-word) line.

PowerPC implementations can control the following memory access modes on a page or
block basis:

»  Write-back/write-through mode

» Caching-inhibited mode

*  Memory coherency

* Guarded memory (prevents access for out-of-order execution)

1.2.4.1 Instruction Cache

The 620’s 32-Kbyte, eight-way set-associative instruction cache is physically indexed.
Within a single cycle, the instruction cache provides up to four instructions. Instruction
cache coherency is not maintained by hardware.

The PowerPC architecture defines a special set of instructions for managing the instruction
cache. The instruction cache can be invalidated entirely or on a cache-block basis. The
instruction cache can be disabled and invalidated by setting the HIDO[16] and HIDO[20]
bits, respectively.

1.2.4.2 Data Cache

The 620’s data cache is a 32-Kbyte, eight-way set-associative cache. It is a physically-
indexed, nonblocking, write-back cache with hardware support for reloading on cache
misses. Within one cycle, the data cache provides double-word access to the LSU.

The data cache tags are dual-ported, so the process of snooping does not affect other
transactions on the system interface. If a snoop hit occurs in the same cache set as a load or
store access, the LSU is blocked internally for one cycle to allow the 16-word block of data
to be copied to the write-back buffer.

The 620 data cache supports the four-state MESI (modified/exclusive/shared/invalid)
protocol to ensure cache coherency.

These four states indicate the state of the cache block as follows:

* Modified (M)—The cache block is modified with respect to system memory; that is,
data for this address is valid only in the cache and not in system memory.

« Exclusive (E)—This cache block holds valid data that is identical to the data at this
address in system memory. No other cache has this data.

» Shared (S)—This cache block holds valid data that is identical to this address in
system memory and at least one other caching device.

¢ Invalid (I)—This cache block does not hold valid data.
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Like the instruction cache, the data cache can be invalidated all at once or on a per cache
block basis. The data cache can be disabled and invalidated by setting the HIDO[17] and
HIDO[21] bits, respectively.

Each cache line contains 16 contiguous words from memory that are loaded from a 16-word
boundary (that is, bits A[58—63] of the logical addresses are zero); thus, a cache line never
crosses a page boundary. Accesses that cross a page boundary can incur a performance
penalty.

The organization of the cache is shown in Figure 1-3.
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Figure 1-3. Cache Unit Organization

1.2.5 Level 2 (L2) Cache Interface

The 620 provides an integrated L2 cache controller that supports L2 configurations from
1 Mbyte to 128 Mbyte, using the same block size (64 bytes) as the internal L1 caches. The
620’s L2 cache interface supports a direct-mapped, error-correction-code (ECC) protected,
unified instruction and data secondary cache that uses single- and double-register
synchronous static RAMs. The L2 cache interface supports a wide variety of static RAM
access speeds by means of a boot-time configurable subsynchronous interface that is
configurable for either CMOS or HSTL logic levels. An external coprocessor can also be
connected to the 620 through the L2 cache interface.

The L2 cache interface generates 9 bits of ECC for the 128 bits of data in a cache block,
and 6 bits of ECC for the tag and coherency state of the block. The ECC allows the
correction of single-bit errors, and the detection of double-bit errors. Uncorrectable errors
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detected by the L2 cache interface generates a machine check exception. The ECC
capability of the L2 cache interface can be configured in three modes—always-corrected
mode, never-corrected mode, and automatic mode. In always-corrected mode, ECC is
generated for write operations, and always corrected on read operations, resulting in
constant L2 read access latency. In never-corrected mode, ECC generation, checking, and
correction are disabled. In the automatic mode, ECC is generated during write operations,
and read operations are corrected only when errors are detected, thereby increasing read
latency only when correctable errors are detected.

1.2.6 System Interface/Bus Interface Unit (BIU)

The 620 provides a versatile bus interface that allows a wide variety of system design
options. The interface includes a 144-bit data bus (128 bits of data and 16 bits of parity), a
43-bit address bus (40 bits of address and 3 bits of parity), and sufficient control signals to
allow for a variety of system-level optimizations. The 620 uses one-beat, four-beat, and
eight-beat data transactions (depending on whether the 620 is configured with a 64- or 128-
bit data bus), although it is possible for other bus participants to perform longer data
transfers. The 620 clocking structure supports processor-to-bus clock ratios of 2:1, 3:1, and
4:1 as described in Section 1.2.7, “Clocking.”

The system interface is specific for each PowerPC processor implementation. The 620
system interface is shown in Figure 1-4.

ADDRESS <«——> e——» DATA
ADDRESS ARBITRATION <——» |«——— DATA ARBITRATION
ADDRESS START <«——>» «———» DATA TRANSFER
PowerPC
ADDRESS TRANSFER <———>» 620 |«———— DATA TERMINATION
Processor
TRANSFER ATTRIBUTE <——> CeSSOr | » PROCESSOR STATE
ADDRESS TERMINATION <———» |<«———— TEST AND CONTROL
CLOCKS <-———>» l«———» .2 CACHE INTERFACE
I e
+3.3 -

Figure 1-4. System Interface

Four-beat (or eight-beat, if in 64-bit data bus mode) burst-read memory operations that load
a 16-word cache block into one of the on-chip caches are the most common bus transactions
in typical systems, followed by burst-write memory operations, direct-store operations, and
single-beat (noncacheable or write-through) memory read and write operations.
Additionally, there can be address-only operations, data-only operations, variants of the
burst and single-beat operations (global memory operations that are snooped and atomic
memory operations, for example), and address retry activity.
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Memory accesses can occur in single-beat or four-beat burst data transfers. The address and
data buses are independent for memory accesses to support pipelining and split
transactions, and all bus operations are explicitly tagged through the use of 8-bit tags for
addresses and data. The 620 supports bus pipelining and out-of-order split-bus transactions.

Typically, memory accesses are weakly-ordered. Sequences of operations, including load
and store string/multiple instructions, do not necessarily complete in the same order in
which they began—maximizing the efficiency of the bus without sacrificing coherency of
the data. The 620 allows load operations to precede store operations (except when a
dependency exists). In addition, the 620 provides a separate queue for snoop push
operations so these operations can access the bus ahead of previously queued operations.
The 620 dynamically optimizes run-time ordering of load/store traffic to improve overall
performance.

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism is flexible,
allowing the 620 to be integrated into systems that use various fairness and bus-parking
procedures to avoid arbitration overhead. Additional multiprocessor support is provided
through coherency mechanisms that provide snooping, external control of the on-chip
caches and TLBs, and support for a secondary cache. The PowerPC architecture provides
the load/store with reservation instruction pair (lwarx/stwcx.) for atomic memory
references and other operations useful in multiprocessor implementations.

The following sections describe the 620 bus support for memory and direct-store
operations. Note that some signals perform different functions depending upon the
addressing protocol used.

1.2.6.1 Memory Accesses

Memory accesses allow transfer sizes of 8, 16, 24, 32, 64, or 128 bits in one bus clock cycle.
Data transfers occur in either single-beat, four-beat, or eight-beat burst transactions. A
single-beat transaction transfers as much as 128 bits. Single-beat transactions are caused by
noncached accesses that access memory directly (that is, reads and writes when caching is
disabled, caching-inhibited accesses, and stores in write-through mode). Burst transactions,
which always transfer an entire cache block (64 bytes), are initiated when a block in the
cache is read from or written to memory. Additionally, the 620 supports address-only
transactions used to invalidate entries in other processors’ TLBs and caches, and data-only
transactions in which modified data is provided by a snooping device during a read
operation to both the bus master and the memory system.

Typically I/O accesses are performed using the same protocol as memory accesses.
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1.2.6.2 Signals
The 620’s signals are grouped as follows:

Address arbitration signals—The 620 uses these signals to arbitrate for address bus
mastership.

Address transfer start signals—These signals indicate that a bus master has begun a
transaction on the address bus.

Address transfer signals—These signals, which consist of the address bus, address
parity, and address parity error signals, are used to transfer the address and to ensure
the integrity of the transfer.

Transfer attribute signals—These signals provide information about the type of
transfer, such as the transfer size and whether the transaction is bursted, write-
through, or caching-inhibited.

Address transfer termination signals—These signals are used to acknowledge the
end of the address phase of the transaction. They also indicate whether a condition
exists that requires the address phase to be repeated.

Data arbitration signals—The 620 uses these signals to arbitrate for data bus
mastership.

Data transfer signals—These signals, which consist of the data bus, data parity, and
data parity error signals, are used to transfer the data and to ensure the integrity of
the transfer.

Data transfer termination signals—Data termination signals are required after each
data beat in a data transfer. In a single-beat transaction, the data termination signals
also indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the final
data beat. They also indicate whether a condition exists that requires the data phase
to be repeated.

System status signals—These signals include the interrupt signal, checkstop signals,
and both soft reset and hard reset signals. These signals are used to interrupt and,
under various conditions, to reset the processor.

Processor state signal—This signal is used to indicate the state of the reservation
coherency bit.

Miscellaneous signals—These signals are used in conjunction with such resources
as secondary caches and the time base facility.

COP interface signals—The common on-chip processor (COP) unit is the master
clock control unit and it provides a serial interface to the system for performing
built-in self test (BIST) on all internal memory arrays.

Clock signals—These signals determine the system clock frequency. These signals
can also be used to synchronize multiprocessor systems.
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NOTE

A bar over a signal name indicates that the signal is active
low—for example, DBG (data bus grant) and EATS (early
address transfer start). Active-low signals are referred to as
asserted (active) when they are low and negated when they are
high. Signals that are not active low, such as AP[0-2] (address
bus parity signals) and DT[0-7] (data tag signals) are referred
to as asserted when they are high and negated when they are
low.

1.2.6.3 Signal Configuration

Figure 1-5 illustrates the logical pin configuration of the 620, showing how the signals are

grouped.
ADDRESS BUS REQUEST 1 1 | DATA BUS GRANT N DATA
ADDRESS B
R T
ARBITRATION ADDRESS BUS GRANT ol 1 1 |__DATA BUS REQUES > | ARBITRATION
HIGH PRIORITY REQUEST ol 1 -
64/128 |« DATA ﬂ
ADDRESS l: TRANSFER START DATA PARITY
- »f 1 17 (= >
START DATA CACHE DATA
1| 2AACACHE | TRANSFER
[ <_ADDRESS | 40 1 | DATA BUS BUSY .
ADDRESS < ADDRESS PARITY > 3 8 | DATA BUSTAG -
TRANSFER ___ ADDRESS BUS TAG 8
- 2 | - DATA VALID , | DATA
N 1 | <_DATA BUS ERROR - TERMINATION
< TRANSFERTYPE > 5 -
TRANSFER ~PDDRESS STATUS OUT 2 1 L INTERRUPT -
ATTRIBUTE <« RANSFER BURST >l 1 1 | HARD RESET INTERRUPTS
~<ADDRESS SIZE DATA ol 4 1 | SOFT RESET
ADDRESS STATUS IN ol 2 1 | g MACHINE CHECK -
— 1 | SYSTEM MANAGEMENT
[~ ADDRESS RESPONSE IN . -
ADDRESS > 3 -
TERMINATION ADDRESS RESPONSE OUT 3 1 | CHECKSTOP INPUT/QUTPUT PROCESSOR
— 4 |__RESERVATION > | STATE
[ L2DATA o 128 2 | < SYSTEM CLOCK i CLOCK
__ L2 COHERENCY 5
_ L2DATAECC 9 4 | < TEST ACCESS PORT —
L2 CACHE L2 TAG ECC 6 1 |_EsTDATA QUT _ | JTAG/COP
INTERFACE L2 ENABLE . e
L2 WRITE ENABLE o2 1 | ENABLE TIMEBASE -
__ L20LOCK 2 1 leWaAKEUP
L2 CLOCK IN ]2 7l PLL CONFIG MISC
L 1 | 2NALOG VDD
Figure 1-5. PowerPC 620 Microprocessor Signal Groups
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1.2.7 Clocking

The 620 has a phase-locked loop (PLL) that generates the internal processor clock. The
input, or reference signal, to the PLL is the bus clock. The feedback in the PLL guarantees
that the processor clock is phase locked to the bus clock, regardless of process variations,
temperature changes, or parasitic capacitances. The PLL also ensures a 50% duty cycle for
the processor clock.

The 620 supports the following processor-to-bus clock frequency ratios—2:1, 3:1, and 4:1,
although not all ratios are available for all frequencies. For more information about the
configuration of the PLL, refer to the 620 hardware specifications.

1.3 PowerPC 620 Microprocessor Execution Model
This section describes the following characteristics of the 620’s execution model:

» The PowerPC architecture

» The 620 register set and programming model

» The 620 instruction set

» The 620 exception model

¢ Instruction timing on the 620

1.3.1 Levels of the PowerPC Architecture

The PowerPC architecture is derived from the IBM POWER (Performance Optimized with
Enhanced RISC) architecture. The PowerPC architecture shares the benefits of the POWER
architecture optimized for single-chip implementations. The architecture design facilitates
parallel instruction execution and is scalable to take advantage of future technological
gains.

The PowerPC architecture consists of the following layers, and adherence to the PowerPC
architecture can be measured in terms of which of the following levels of the architecture
is implemented. For example, if a processor adheres to the virtual environment architecture,
it is assumed that it meets the user instruction set architecture specification:

» PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level software must conform. The UISA defines the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers. Note
that the PowerPC architecture refers to user level as problem state.

» PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devices can
access external memory, and defines aspects of the cache model and cache control
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instructions from a user-level perspective. The resources defined by the VEA are
particularly useful for managing resources in an environment in which other
processors and other devices can access external memory.

Implementations that conform to the PowerPC VEA also adhere to the UISA, but
may not necessarily adhere to the OEA.

« PowerPC operating environment architecture (OEA)—The OEA defines supervisor-
level resources typically required by an operating system. The OEA defines the
PowerPC memory management model, supervisor-level registers, and the exception
model. Note that the PowerPC architecture refers to the supervisor level as
privileged state.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

The 620 complies with all three levels of the PowerPC architecture for 64-bit processors.
In addition, the 620 implements the optional bridge; refer to PowerPC Microprocessor
Family: The Programming Environments, Rev. 1 for more information. Note that the
PowerPC architecture defines additional instructions for 64-bit data types. PowerPC
processors are allowed to have implementation-specific features that fall outside, but do not
conflict with, the PowerPC architecture specification. For example, the performance
monitor is an implementation-specific feature of the 620.

The 620 is a high-performance, superscalar PowerPC implementation of the PowerPC
architecture. Like other PowerPC processors, it adheres to the PowerPC architecture
specifications but also has additional features not defined by the architecture. These
features do not affect software compatibility. The PowerPC architecture allows optimizing
compilers to schedule instructions to maximize performance through efficient use of the
PowerPC instruction set and register model. The multiple, independent execution units in
the 620 allow compilers to maximize parallelism and instruction throughput. Compilers
that take advantage of the flexibility of the PowerPC architecture can additionally optimize
instruction processing of the PowerPC processors.

1.3.2 Registers and Programming Model

The PowerPC architecture defines register-to-register operations for most computational
instructions. Source operands for these instructions are accessed from the registers or are
provided as immediate values embedded in the instruction opcode. The three-register
instruction format allows specification of a target register distinct from the two source
operands. Load and store instructions transfer data between registers and memory.

During normal execution, a program can access the registers, shown in Figure 1-6,
depending on the program’s access privilege (supervisor or user, determined by the
privilege-level (PR) bit in the machine state register (MSR)). Note that registers such as the
general-purpose registers (GPRs) and floating-point registers (FPRs) are accessed through
operands that are part of the instructions. Access to registers can be explicit (that is, through
the use of specific instructions for that purpose such as Move to Special-Purpose Register
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(mtspr) and Move from Special-Purpose Register (mfspr) instructions) or implicitly as the
part of the execution of an instruction. Some registers are accessed both explicitly and
implicitly.

The numbers to the right of the SPRs indicate the number that is used in the syntax of the
instruction operands to access the register.

Figure 1-6 shows the registers implemented in the 620, indicating those that are defined by
the PowerPC architecture for 64-bit processors and those that are 620-specific.
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Figure 1-6. Programming Model—PowerPC 620 Microprocessor Registers
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PowerPC processors have two levels of privilege—supervisor mode of operation (typically
used by the operating environment) and one that corresponds to the user mode of operation
(used by application software). As shown in Figure 1-6, the programming model
incorporates 32 GPRs, 32 FPRs, special-purpose registers (SPRs), and several
miscellaneous registers. Note that each PowerPC implementation has its own unique set of
implementation-dependent registers that are typically used for debugging, configuration,
and other implementation-specific operations.

Some registers are accessible only by supervisor-level software. This division allows the
operating system to control the application environment (providing virtual memory and
protecting operating-system and critical machine resources). Instructions that control the
state of the processor, the address translation mechanism, and supervisor registers can be
executed only when the processor is in supervisor mode.

The PowerPC registers implemented in the 620 are summarized as follows:

* General-purpose registers (GPRs)—The PowerPC architecture defines 32 user-
level, general-purpose registers (GPRs). These registers are 32 bits wide in 32-bit
PowerPC implementations and 64 bits wide in 64-bit PowerPC implementations
(such as the 620). The 620 also has eight GPR rename buffers, which provide a way
to buffer data intended for the GPRs, reducing stalls when the results of one
instruction are required by a subsequent instruction. The use of rename buffers is not
defined by the PowerPC architecture, and they are transparent to the user with
respect to the architecture. The GPRs and their associated rename buffers serve as
the data source or destination for instructions executed in the IUs.

« Floating-point registers (FPRs)—The PowerPC architecture also defines 32
floating-point registers (FPRs). These 64-bit registers typically are used to provide
source and target operands for user-level, floating-point instructions. The 620 has
eight FPR rename buffers that provide a way to buffer data intended for the FPRs,
reducing stalls when the results of one instruction are required by a subsequent
instruction. The rename buffers are not defined by the PowerPC architecture and are
transparent to the user. The FPRs and their associated rename buffers can contain
data objects of either single- or double-precision floating-point formats.

+ Condition register (CR)—The CR is a 32-bit user-level register that consists of eight
4-bit fields that reflect the results of certain operations, such as move, integer and
floating-point compare, arithmetic, and logical instructions, and provide a
mechanism for testing and branching. The 620 also has 16 CR rename buffers,
which provide a way to buffer data intended for the CR. The rename buffers are not
defined by the PowerPC architecture and are transparent to the user.

» Floating-point status and control register (FPSCR)—The floating-point status and
control register (FPSCR) is a user-level register that contains all exception signal
bits, exception summary bits, exception enable bits, and rounding control bits
needed for compliance with the IEEE-754 standard.
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Machine state register (MSR)—The machine state register (MSR) is a supervisor-
level register that defines the state of the processor. The contents of this register are
saved when an exception is taken and restored when the exception handling
completes. The 620 implements the MSR as a 64-bit register that provides a superset
of the 32-bit functionality.

Segment registers (SRs)—For memory management, 32-bit PowerPC
implementations use sixteen 32-bit segment registers (SRs). The 620 provides 16
segment registers for use when executing programs compiled for 32-bit PowerPC
microprocessors (as part of the “optional 64-bit bridge” defined in the architecture).

Special-purpose registers (SPRs)—The PowerPC operating environment
architecture defines numerous special-purpose registers that serve a variety of
functions, such as providing controls, indicating status, configuring the processor,
and performing special operations. Some SPRs are accessed implicitly as part of
executing certain instructions. All SPRs can be accessed by using the move to/from
SPR instructions, mtspr and mfspr.

— User-level SPRs—The following SPRs are accessible by user-level software:
— Link register (LR)—The link register can be used to provide the branch target

address and to hold the return address after branch and link instructions. The
LR is 64 bits wide.

— Count register (CTR)—The CTR is decremented and tested automatically as
a result of branch and count instructions. The CTR is 64 bits wide.

— XER—The 32-bit XER contains the integer carry and overflow bits.

— Time base registers (TBL and TBU)—The TBL and TBU can be read by user-
level software, but can be written to only by supervisor-level software.

— Supervisor-level SPRs—The 620 also contains SPRs that can be accessed only
by supervisor-level software. These registers consist of the following:

— DSISR—32-bit data register that defines the cause of DSI and alignment
exceptions.

— Data address register (DAR)—A 64-bit register that holds the address of an
access after an alignment or DSI exception.

— Decrementer register (DEC)—A 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay.
In the 620, the decrementer frequency is equal to the bus clock frequency (as
is the time base frequency).

— SDRI register—The 64-bit register that specifies the page table format used
in logical-to-physical address translation for pages.

— Machine status save/restore register 0 (SRR0)—A 64-bit register that is used
by the 620 for saving the address of the instruction that caused the exception,
and the address to return to when a Return from Interrupt (rfi) instruction is
executed.
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— Machine status save/restore register 1 (SRR1)—A 64-bit register used to save
machine status on exceptions and to restore machine status when an rfi
instruction is executed.

— SPRG[0-3] registers—64-bit registers provided for operating system use.

— External access register (EAR)—A 32-bit register that controls access to the
external control facility through the External Control In Word Indexed
(eciwx) and External Control Out Word Indexed (ecowx) instructions.

— Processor version register (PVR—A 32-bit, read-only register that identifies
the version (model) and revision level of the PowerPC processor.

— Time base registers (TBL and TBU)—Both upper and lower registers
together, provide a 64-bit time base register. The registers are implemented as
a 64-bit counter, with the least-significant bit being the most frequently
incremented. The PowerPC architecture defines that the time base frequency
be provided as a subdivision of the processor clock frequency. In the 620, the
time base frequency is equal to the bus clock frequency (as is the decrementer
frequency). Counting is enabled by the Time Base Enable (TBENABLE)
signal.

— Address space register (ASR)—A 64-bit register that holds the physical
address of the segment table. The segment table defines the set of memory
segments that can be addressed.

— Block address translation (BAT) registers—The PowerPC architecture defines
16 BAT registers, divided into four pairs of data BATs (DBATSs) and four pairs
of instruction BATs (IBAT's).

The 620 includes the following registers not defined by the PowerPC architecture:

L]

Instruction address breakpoint register (IABR)—This register can be used to cause
a breakpoint exception to occur if a specified instruction address is encountered.

Data address breakpoint register (DABR)—This register can be used to cause a
breakpoint exception to occur if a specified data address is encountered.

Hardware implementation-dependent register 0 (HIDO)—This register is used to
control various functions within the 620, such as enabling checkstop conditions, and
locking, enabling, and invalidating the instruction and data caches.

Bus control and status register (BUSCSR)—This register controls the setting of
various bus operational parameters, and provides read-only access to bus control
values set at system reset.

L2 cache control register (L2CR)—The L2 cache control register provides controls
for the operation of the L2 cache interface, including the ECC mode desired, size of
the L2 cache, and the selection of HSTL or CMOS interface logic.

L2 cache status register (L2SR)—The L2 cache status register contains all ECC
error information for the L2 cache interface.
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« Processor identification register (PIR)—The PIR is a supervisor-level register that
has a right-justified, 4-bit field that holds a processor identification tag used to
identify a particular 620. This tag is used to identify the processor in multiple-master
implementations.

» Performance monitor counter registers (PMC1 and PMC2)—The counters are used
to record the number of times a certain event has occurred.

¢ Monitor mode control register 0 and 1 (MMCRO and MMCR 1)—These registers are
used for enabling various performance monitoring interrupt conditions and
establishing the function of the counters.

¢ Sampled instruction address and sampled data address registers (SIA and SDA)—
These registers hold the addresses for instruction and data used by the performance
monitoring interrupt.

Note that while it is not guaranteed that the implementation of HID registers is consistent
among PowerPC processors, other processors may be implemented with similar or
identical HID registers.

1.3.3 Instruction Set and Addressing Modes
The following subsections describe the PowerPC instruction set and addressing modes.

1.3.3.1 PowerPC Instruction Set and Addressing Modes

All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats
are consistent among all instruction types, permitting efficient decoding to occur in parallel
with operand accesses. This fixed instruction length and consistent format greatly simplifies
instruction pipelining.

1.3.3.1.1 Instruction Set

The 620 implements the entire PowerPC instruction set (for 64-bit implementations) and
most optional PowerPC instructions. The PowerPC instructions can be loosely grouped into
the following general categories:

* Integer instructions—These include computational and logical instructions.
— Integer arithmetic instructions
— Integer compare instructions
— Logical instructions
— Integer rotate and shift instructions

* Floating-point instructions—These include floating-point computational
instructions, as well as instructions that affect the FPSCR. Floating-point
instructions include the following:

— Floating-point arithmetic instructions
— Floating-point multiply/add instructions
— Floating-point rounding and conversion instructions
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— Floating-point compare instructions

— Floating-point move instructions

— Floating-point status and control instructions

— Optional floating-point instructions (listed with the optional instructions below)

The 620 supports all IEEE 754-1985 floating-point data types (normalized,
denormalized, NaN, zero, and infinity) in hardware, eliminating the latency incurred
by software exception routines.

The PowerPC architecture also supports a non-IEEE mode, controlled by a bit in the
FPSCR. In this mode, denormalized numbers, NaNs, and some IEEE invalid
operations are not required to conform to IEEE standards and can execute faster.
Note that all single-precision arithmetic instructions are performed using a double-
precision format. The floating-point pipeline is a single-pass implementation for
double-precision products. A single-precision instruction using only single-
precision operands in double-precision format performs the same as its double-
precision equivalent.

Load/store instructions—These include integer and floating-point load and store
instructions.

— Integer load and store instructions

— Integer load and store multiple instructions
— Integer load and store string instructions
— Floating-point load and store

Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

— Branch and trap instructions
— System call and rfi instructions
— Condition register logical instructions

Synchronization instructions—The instructions are used for memory synchronizing,
especially useful for multiprocessing.

— Load and store with reservation instructions—These UISA-defined instructions
provide primitives for synchronization operations such as test and set, compare
and swap, and compare memory.

— The Synchronize instruction (sync)—This UISA-defined instruction is useful for
synchronizing load and store operations on a memory bus that is shared by
multiple devices.
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— The Enforce In-Order Execution of I/O instruction (eieio)—The eieio
instruction, defined by the VEA, can be used instead of the sync instruction when
only memory references seen by I/O devices need to be ordered. The 620
implements eieio as a barrier for all storage accesses to the BIU, but not as a
barrier for all instructions like the implementation of the sync instruction.

» Processor control instructions—These instructions are used for synchronizing
memory accesses and managing caches, TLBs, segment registers and SLBs. These
instructions include move to/from special-purpose register instructions (mtspr and
mfspr).

¢ Memory/cache control instructions—These instructions provide control of caches,
TLBs, segment registers, and SLBs.

— User- and supervisor-level cache instructions
— Segment lookaside buffer management instructions
— Segment register manipulation instructions
— Translation lookaside buffer management instructions
» Optional instructions—The 620 implements the following optional instructions:
— The eciwx/ecowx instruction pair
— TLB invalidate entry instruction (tlbie)
— TLB synchronize instruction (tlbsync)
— SLB invalidate entry instruction (slbie)
— SLB invalidate all instruction (slbia)
— Optional graphics instructions:
— Store Floating-Point as Integer Word Indexed (stfiwx)

Floating Reciprocal Estimate Single (fres)

Floating Reciprocal Square Root Estimate (frsqrte)

|

Floating Square Root Single (fsqrts)

Floating Square Root Double (fsqrt)
Floating Select (fsel)

|

Note that this grouping of the instructions does not indicate which execution unit executes
a particular instruction or group of instructions.

Integer instructions operate on byte, half-word, word, and double-word operands. Floating-
point instructions operate on single-precision (one word) and double-precision (one double
word) floating-point operands. The PowerPC architecture uses instructions that are four
bytes long and word-aligned. It provides for byte, half-word, word, and double-word
operand loads and stores between memory and a set of 32 GPRs. It also provides for word
and double-word operand loads and stores between memory and a set of 32 FPRs.
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Computational instructions do not modify memory. To use a memory operand in a
computation and then modify the same or another memory location, the memory contents
must be loaded into a register, modified, and then written back to the target location with
specific store instructions.

PowerPC processors follow the program flow when they are in the normal execution state.
However, the flow of instructions can be interrupted directly by the execution of an
instruction or by an asynchronous event. Either kind of exception may cause one of several
components of the system software to be invoked.

1.3.3.1.2 Calculating Effective Addresses

The effective address (EA) is the 64-bit address computed by the processor when executing
a memory access or branch instruction or when fetching the next sequential instruction.

The PowerPC architecture supports two simple memory addressing modes:
» EA = (rAl0) + offset (including offset = 0) (register indirect with immediate index)
e EA = (rAl0) + rB (register indirect with index)

These simple addressing modes allow efficient address generation for memory accesses.
Calculation of the effective address for aligned transfers occurs in a single clock cycle.

For a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the storage operand is considered to wrap around
from the maximum effective address to effective address 0.

Effective address computations for both data and instruction accesses use 64-bit unsigned
binary arithmetic. A carry from bit 0 is ignored.

1.3.4 Exception Model

The following subsections describe the PowerPC exception model and the 620
implementation, respectively.

The PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to various registers and the processor begins execution at an address (exception vector)
predetermined for each exception and the processor changes to supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the FPSCR. Additionally, specific exception
conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that exceptions be handled in program order; therefore,
although a particular PowerPC processor may recognize exception conditions out of order,
exceptions are handled strictly in order. When an instruction-caused exception is
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recognized, any unexecuted instructions that appear earlier in the instruction stream,
including any that have not yet entered the execute state, are required to complete before
the exception is taken. Any exceptions caused by those instructions must be handled first.
Likewise, exceptions that are asynchronous and precise are recognized when they occur
(unless they are masked) and the reorder buffer is drained. The address of the next
instruction to be executed is saved in SRRO so execution can resume at the proper place
when the exception handler returns control to the interrupted process.

Unless a catastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. If, for example, a single instruction encounters multiple
exception conditions, those conditions are encountered sequentially. After the exception
handler handles an exception, the instruction execution continues until the next exception
condition is encountered. This method of recognizing and handling exception conditions
sequentially guarantees that exceptions are recoverable.

Exception handlers should save the information stored in SRRO and SRR1 early to prevent
the program state from being lost due to a system reset or machine check exception or to
an instruction-caused exception in the exception handler.

The PowerPC architecture supports four types of exceptions:

» Synchronous, precises—These are caused by instructions. All instruction-caused
exceptions are handled precisely; that is, the machine state at the time the exception
occurs is known and can be completely restored.

* Synchronous, imprecise—The PowerPC architecture defines two imprecise
floating-point exception modes, recoverable and nonrecoverable. The 620 treats the
imprecise, recoverable and imprecise, nonrecoverable modes as the precise mode.

* Asynchronous—The OEA portion of the PowerPC architecture defines two types of
asynchronous exceptions:

— Asynchronous, maskable—The PowerPC architecture defines the external
interrupt and decrementer interrupt which are maskable and asynchronous
exceptions. In the 620, and in many PowerPC processors, the external interrupt
is generated by the assertion of the Interrupt (INT) signal, which is not defined
by the architecture. In addition, the 620 implements one additional interrupt, the
system management interrupt, which performs similarly to the external interrupt,
and is generated by the assertion of the System Management Interrupt (SMI)
signal.

When these exceptions occur, their handling is postponed until all instructions in
progress, and any exceptions associated with those instructions, complete
execution.
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— Asynchronous, nonmaskable—There are two nonmaskable asynchronous
exceptions that are imprecise—system reset and machine check exceptions. Note
that the OEA portion of the PowerPC architecture, which defines how these
exceptions work, does not define the causes or the signals used to cause these
exceptions. These exceptions may not be recoverable, or may provide a limited
degree of recoverability for diagnostic purposes.

The PowerPC architecture defines two bits in the MSR—FEQ and FE1—that determine
how floating-point exceptions are handled. There are four combinations of bit settings, of
which the 620 implements two, which are as follows:

¢ Ignore exceptions mode—In this mode, the instruction dispatch logic feeds the FPU
as fast as possible and the FPU uses an internal pipeline to allow overlapped
execution of instructions. In this mode, floating-point exception conditions return a
predefined value instead of causing an exception.

+ Precise interrupt mode—This mode includes both the precise mode and imprecise
recoverable and nonrecoverable modes defined in the PowerPC architecture. In this
mode, a floating-point instruction that causes a floating-point exception brings the
machine to a precise state. In doing so, the 620 takes floating-point exceptions as
defined by the PowerPC architecture.

The 620 exception classes are shown in Table 1-1.

Table 1-1. Exception Classifications

Type Exception
Asynchronous/nonmaskable Machine check
System reset
Asynchronous/maskable External interrupt
Decrementer

System management interrupt (not defined by the PowerPC architecture)

Synchronous/precise Instruction-caused exceptions

Synchronous/imprecise Floating-point exceptions

The 620’s exceptions, and a general description of conditions that cause them, are listed in
Table 1-2.
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Table 1-2. Overview of Exceptions and Conditions

Exception
Type

Vector Offset
(hex)

Causing Conditions

Reserved

00000

System reset

00100

A system reset is caused by the assertion of either the soft reset (SRESET)or
hard reset (HRESET) signal.

Machine check

00200

A machine check exception is signaled by the assertion of a qualified DERR
indication on the 620 bus, or the machine check interrupt (MCP) signal. If
MSRI[ME] is cleared, the processor enters the checkstop state when one of
these signals is asserted. Note that MSR[ME] is cleared when an exception is
taken. The machine check exception is also caused by parity errors on the
address or data bus, in the instruction or data caches, or L2 ECC errors.

The assertion of the DERR signal is determined by load and store operations
initiated by the processor; however, it is expected that the DERR signal would
be used by a memory controller to indicate that a memory parity error or an
uncorrectable memory ECC error has occurred.

Note that the machine check exception is imprecise with respect to the
instruction that originated the bus operation.

DsI

00300

The cause of a DSI exception can be determined by the bit settings in the

DSISR, listed as follows:

0 Setif a load or store instruction results in a direct-store program exception;
otherwise cleared.

1 Set if the translation of an attempted access is not found in the primary table
entry group (PTEG), or in the secondary PTEG, or in the range of a BAT
register; otherwise cleared.

4 Set if a memory access is not permitted by the page or BAT protection
mechanism; otherwise cleared.

5 If SR[T] =1, set by an eciwx, ecowx, lwarx, or stwcx. instruction;
otherwise cleared. Set by an eciwx or ecowx instruction if the access is to
an address that is marked as write-through.

6 Set for a store operation and cleared for a load operation.

9 Setif an EA matches the address in the DABR while in one of the three
compare modes.

10 Set if the segment table search fails to find a translation for the effective
address; otherwise cleared.

11 Set if eciwx or ecowx is used and EAR[E] is cleared.

ISI

00400

An ISI exception is caused when an instruction fetch cannot be performed for

any of the following reasons:

« The effective address cannot be transiated. That is, there is a page fault for
this portion of the translation, so an ISI exception must be taken to retrieve
the translation from a storage device such as a hard disk drive.

» The fetch access is to a direct-store segment.

+ The fetch access violates memory protection. If the key bits (Ks and Kp) in
the segment register and the PP bits in the PTE or BAT are set to prohibit
read access, instructions cannot be fetched from this location.

External
interrupt

00500

An external interrupt occurs when the external exception signal, INT, is
asserted. This signal is expected to remain asserted until the exception handler
begins execution. Once the signal is detected, the 620 stops dispatching
instructions and waits for all dispatched instructions to complete. Any
exceptions associated with dispatched instructions are taken before the
interrupt is taken.
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Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception

Type

Vector Offset
(hex)

Causing Conditions

Alignment

00600

An alignment exception is caused when the processor cannot perform a

memory access for the following reasons:

+ An integer load or store double word is not word aligned.

» A floating-point load, store, Imw, stmw, lwarx, stwcx., eciwx, or ecowx
instruction is not word-aligned.

« Adcbzinstruction refers to a page that is marked either caching-inhibited or
write-through.

* Adcbz instruction has executed when the 620 data cache is locked or
disabled.

* An Imw, stmw, Iswi, Iswx, stswi, or stswx instruction is issued in little-
endian mode.

» A floating-point instruction access to a direct-store segment.

Program

00700

A program exception is caused by one of the following exception conditions,
which correspond to bit settings in SRR1 and arise during execution of an
instruction:

+ Floating-point exceptions—A floating-point enabled exception condition
causes an exception when FPSCRI[FEX] is set and depends on the values in
MSR[FEO] and MSR[FE1].

FPSCRIFEX] is set by the execution of a floating-point instruction that
causes an enabled exception or by the execution of a Move to FPSCR
instruction that results in both an exception condition bit and its
corresponding enable bit being set in the FPSCR.

» lllegal instruction—An illegal instruction program exception is generated
when execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields or when execution of an
optional instruction not provided in the specific implementation is attempted
(these do not include those optional instructions that are treated as no-ops).

» Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and
the MSR user privilege bit, MSR[PR], is set. This exception is also generated
for mtspr or mfspr with an invalid SPR field if SPR[0] = 1 and MSR[PR] = 1.

» Trap—A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

Floating-point
unavailable

00800

A floating-point unavailable exception is caused by an attempt to execute a
floating-point instruction (including floating-point load, store, and move
instructions) when the floating-point available bit is disabled (MSR[FP] = 0).

Decrementer

00900

The decrementer exception occurs when the most significant bit of the
decrementer (DEC) register transitions from 0 to 1.

Reserved

00A00-00BFF

System call

00C00

A system call exception occurs when a System Call (sc) instruction is executed.

Trace

00D00

Either the MSR[SE] = 1 and any instruction (except rfi) successfully completed
or MSR[BE] = 1 and a branch instruction is completed.

Floating-point
assist

00E00

Defined by the PowerPC architecture, but does not occur in the 620.

Reserved

00E10-00EFF
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Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception Vector Offset Causing Conditions
Type (hex)

Performance 00F00 The performance monitoring interrupt is a 620-specific exception and is used

monitoring with the 620 performance monitor, described in Section 1.4, “Performance

interrupt Monitor.”
The performance monitoring facility can be enabled to signal an exception when
the value in one of the performance monitor counter registers (PMC1 or PMC2)
goes negative. The conditions that can cause this exception can be enabled or
disabled in the monitor mode control register 0 (MMCRO).
Although the exception condition may occur when the MSR[EE] bit is cleared,
the actual interrupt is masked by the EE bit and cannot be taken until the EE bit
is set.

Reserved 01000-012FF | —

Instruction 01300 An instruction address breakpoint exception occurs when the address (bits 0 to

address 29) in the IABR matches the next instruction to complete in the completion unit,

breakpoint and the IABR enable bit IABR[30] is set.

System 01400 A system management interrupt is caused when MSR[EE] = 1 and the SMI

management input signal is asserted.

interrupt

Reserved 01500-02FFF | Reserved, implementation-specific exceptions. These are not implemented in
the 620.

1.3.5 Instruction Timing

As shown in Figure 1-7, the common pipeline of the 620 has five stages through which all
instructions must pass. Some instructions occupy multiple stages simultaneously and some
individual execution units have additional stages. For example, the floating-point pipeline
consists of three stages through which all floating-point instructions must pass.

[ Fetch (IF)

Y

(Four-instruction dispatch per clock in Dispatch (DS)

any combination)

/
Write-back (W)

Figure 1-7. Pipeline Diagram
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mmon pipeline stages are as follows:

Instruction fetch (IF)—During the IF stage, the fetch unit loads the decode queue
(DEQ) with instructions from the instruction cache and determines from what
address the next instruction should be fetched.

Instruction dispatch (DS)—During the dispatch stage, the decoding that is not time-
critical is performed on the instructions provided by the previous IF stage. Logic
associated with this stage determines when an instruction can be dispatched to the
appropriate execution unit. At the end of the DS stage, instructions and their
operands are latched into the execution input latches or into the unit’s reservation
station. Logic in this stage allocates resources such as the rename registers and
reorder buffer entries.

Execute (E)—While the execution stage is viewed as a common stage in the 620
instruction pipeline, the instruction flow is split among the six execution units, some
of which consist of multiple pipelines. An instruction may enter the execute stage
from either the dispatch stage or the execution unit’s dedicated reservation station.

At the end of the execute stage, the execution unit writes the results into the
appropriate rename buffer entry and notifies the completion stage that the instruction
has finished execution.

The execution unit reports any internal exceptions to the completion stage and
continues execution, regardless of the exception. Under some circumstances, results
can be written directly to the target registers, bypassing the rename buffers.

Complete (C)—The completion stage ensures that the correct machine state is
maintained by monitoring instructions in the completion buffer and the status of
instruction in the execute stage.

‘When instructions complete, they are removed from the reorder buffer. Results may
be written back from the rename buffers to the register as early as the complete stage.
If the completion logic detects an instruction containing exception status or if a
branch has been mispredicted, all subsequent instructions are cancelled, any results
in rename buffers are discarded, and instructions are fetched from the correct
instruction stream.

Write-back (W)—The write-back stage is used to write back any information from
the rename buffers that was not written back during the complete stage. The CR,
CTR, and LR are updated during the write-back stage.

All instructions are fully pipelined except for divide operations and some integer multiply
operations. The integer multiplier is a three-stage pipeline. SPR and divide operations can
execute in the MCIU in parallel with multiply operations.

The floating-point pipeline has three stages. All floating-point instructions are fully
pipelined except for divide and square root operations.
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1.4 Performance Monitor

The 620 incorporates a performance monitor facility that system designers can use to help
bring up, debug, and optimize software performance, especially in multiprocessing
systems. The performance monitor is a software-accessible mechanism that provides
detailed information concerning the dispatch, execution, completion, and memory access
of PowerPC instructions.

The monitor mode control registers (MMCRO and MMCRI1) can be used to specify the
conditions for which a performance monitoring interrupt is taken. For example, one such
condition is associated with one of the performance monitor counter registers (PMC1—
PMCS8) incrementing until the most significant bit indicates a negative value. Additionally,
the sampled instruction address and sampled data address registers (SIA and SDA) are used
to hold addresses for instruction and data related to the performance monitoring interrupt.
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Chapter 2
Programming Model

This chapter describes the PowerPC programming model with respect to the PowerPC 620.
It consists of three major sections, which describe the following:

» Registers implemented in the 620
¢ Operand conventions
» The 620 instruction set

2.1 The PowerPC 620 Processor Register Set

This section describes the registers in the 620 and includes an overview of the registers
defined by the PowerPC architecture and a more detailed description of 620-specific
registers and differences in how the registers defined by the PowerPC architecture are
implemented in the 620. Full descriptions of the basic register set defined by the PowerPC
architecture are provided in Chapter 2, “PowerPC Register Set,” in The Programming
Environments Manual.

Note that registers are defined at all three levels of the PowerPC architecture—user
instruction set architecture (UISA), virtual environment architecture (VEA), and operating
environment architecture (OEA). The PowerPC architecture defines register-to-register
operations for all computational instructions. Source data for these instructions are
accessed from the on-chip registers or are provided as immediate values embedded in the
opcode. The three-register instruction format allows specification of a target register
distinct from the two source registers, thus preserving the original data for use by other
instructions and reducing the number of instructions required for certain operations. Data
is transferred between memory and registers with explicit load and store instructions only.
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2.1.1 Register Set

The PowerPC UISA registers, shown in Figure 2-1, are user-level. The general-purpose
registers (GPRs) and floating-point registers (FPRs) are accessed through instruction
operands. Access to registers can be explicit (that is, through the use of specific instructions
for that purpose such as Move to Special-Purpose Register (mtspr) and Move from
Special-Purpose Register (mfspr) instructions) or implicit as part of the execution of an
instruction. Some registers are accessed both explicitly and implicitly.

The number to the right of the special-purpose registers (SPRs) indicates the number that
is used in the syntax of the instruction operands to access the register (for example, the
number used to access the XER is SPR 1). These registers can be accessed using the mtspr
and mfspr instructions.

Implementation Note—The 620 fully decodes the SPR field of the instruction. If the SPR
specified is undefined, the illegal instruction program exception occurs.

2-2 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA



-

/( USER MODEL \\

UISA
General-Purpose
Registers
GPRO
GPR1

GPR31

Floating-Point

FPR31

Condition Register
R

H

Floating-Point Status
and Control Register

FPSCR

x

ER
XER

SPR 1

Link Register
SPR 8

Count Register

USER MODEL
VEA

Time Base Facility
(For Reading)

TBL TBR 268
TBU TBR 269

N
-

CTR SPR9

J

SUPERVISOR MODEL

OEA

~

Configuration Registers

Machine State
Register
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DBAT3U
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SPR 538
SPR 539
SPR 540
SPR 541
SPR 542
SPR 543
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PVR SPR 287
Address Space

Register
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SRO

SR15
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Registers
IBATOU | SPR 528
IBATOL | SPR 529
IBAT1U | SPR 530
IBAT1L | SPR 531
IBAT2U | SPR 532
IBAT2L | SPR 533
IBAT3U | SPR 534
IBAT3L | SPR 535
Performance
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PMC2 SPR 788
PMC3 SPR 789
PMC4 SPR 790
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PMC7 SPR 793
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MMCR1
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L2CR SPR 1017
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Bus Control Register’
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SRRO SPR 26
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Instruction Address
Breakpoint Register’

SPR 1010

Data Address
Breakpoint Register

SPR 1013
J

1 620-specific—not defined by the PowerPC architecture

Figure 2-1. Programming Model—PowerPC 620 Microprocessor Registers
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The PowerPC'’s user-level registers are described as follows:

User-level registers (UISA)—The user-level registers can be accessed by all
software with either user or supervisor privileges. The user-level register set
includes the following:

— General-purpose registers (GPRs)—The PowerPC general-purpose register file
consists of thirty-two GPRs designated as GPRO-GPR31. The GPRs serve as
data source or destination registers for all integer instructions and provide data
for generating addresses. See “General Purpose Registers (GPRs),” in Chapter 2,
“PowerPC Register Set,” of The Programming Enwronments Manual for more
information.

— Floating-point registers (FPRs)—The floating-point register file consists of
thirty-two FPRs designated as FPRO-FPR31, which serves as the data source or
destination for all floating-point instructions. These registers can contain data
objects of either single- or double-precision floating-point format. For more
information, see “Floating-Point Registers (FPRs),” in Chapter 2, “PowerPC
Register Set,” of The Programming Environments Manual.

— Condition register (CR)—The CR is a 32-bit register, divided into eight 4-bit
fields, CRO—CR?7, that reflects the results of certain arithmetic operations and
provides a mechanism for testing and branching. For more information, see
“Condition Register (CR),” in Chapter 2, “PowerPC Reglster Set,” of The
Programming Environments Manual.

Implementation Note: The PowerPC architecture indicates that in some
implementations the Move to Condition Register Fields (mtcrf) instruction may
perform more slowly when only a portion of the fields are updated as opposed to
all of the fields. The condition register access latency for the 620 is the same in
both cases. In the 620, an mterf instruction that sets only a single field performs
significantly faster than one that sets either no fields or multiple fields. For more
information regarding the most efficient use of the mterf instruction, see
Section 6.3, “Instruction Scheduling Guidelines.”

— Floating-point status and control register (FPSCR)—The FPSCR contains all
floating-point exception signal bits, exception summary bits, exception enable
bits, and rounding control bits needed for compliance with the IEEE 754
standard. For more information, see “Floating-Point Status and Control Register
(FPSCR),” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual.

Implementation Note: The PowerPC architecture states that in some
implementations, the Move to FPSCR Fields (mtfsf) instruction may perform
more slowly when only a portion of the fields are updated as opposed to all of the
fields. In the 620 implementation, there is no degradation of performance.
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The remaining user-level registers are SPRs. Note that the PowerPC architecture
provides a separate mechanism for accessing SPRs (the mtspr and mfspr
instructions). These instructions are commonly used to explicitly access certain
registers, while other SPRs may be more typically accessed as the side effect of
executing other instructions.

— XER—The XER indicates overflow and carries for integer operations. It is set
implicitly by many instructions. See “XER Register (XER),” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual for more
information.

— Link register (LR)—The LR provides the branch target address for the Branch
Conditional to Link Register (belrx) instruction, and can optionally be used to
hold the logical address of the instruction that follows a branch and link
instruction, typically used for linking to subroutines. For more information, see
“Link Register (LR),” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual.

— Count register (CTR)—The CTR holds a loop count that can be decremented
during execution of appropriately coded branch instructions. The CTR can also
provide the branch target address for the Branch Conditional to Count Register
(becetrx) instruction. For more information, see “Count Register (CTR),” in
Chapter 2, “PowerPC Register Set,” of The Programming Environments
Manual.

User-level registers (VEA)—The PowerPC VEA introduces the time base facility
(TB), a 64-bit structure that maintains and operates an interval timer. The TB is read
as a 64-bit register, and written to as two 32-bit registers—time base upper (TBU)
and time base lower (TBL). Note that the time base register can be accessed by both
user- and supervisor-level instructions. In the context of the VEA, user-level
applications are permitted read-only access to the TB. The OEA defines
supervisor-level access to the TB for writing values to the TB. For more information,
see “PowerPC VEA Register Set—Time Base,” in Chapter 2, “PowerPC Register
Set,” of The Programming Environments Manual.

Supervisor-level registers (OEA)—The OEA defines the registers that are used
typically by an operating system for such operations as memory management,
configuration, and exception handling. The supervisor-level registers defined by the
PowerPC architecture for 64-bit implementations are describes as follows:

— Configuration registers

— Machine state register (MSR)—The MSR defines the state of the processor.
The MSR can be modified by the Move to Machine State Register (mtmsr),
Move to Machine State Register Double Word (mtmsrd), System Call (sc),
Return from Exception (rfi), and Return from Exception Double Word (rfid)
instructions. It can be read by the Move from Machine State Register (mfmsr)
instruction. See “Machine State Register (MSR),” in Chapter 2, “PowerPC
Register Set,” of The Programming Environments Manual for more
information.
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Implementation Note—Note that the 620 defines MSR[61] as the performahce monitor
marked mode bit (PMM). This additional bit is described in Table 2-1,

Table 2-1. MSR[PMM] Bit

Bit

Name

Description

61

PMM

Performance monitor marked mode. Used to mark specific processes. In conjunction with the
MMCRO[3-4], FCMO, and FCM1, provides control for the processes in which the performance
monitor is enabled or disabled.

0  Process is not a marked process.

1 Process is a marked process. ‘

This bit is specific to the 620, and is defined as reserved by the PowerPC architecture. For more
information about the performance monitor, see Chapter 10, “Performance Monitor.”.

— Processor version register (PVR)—This register is a read-only register that

identifies the version (model) and revision level of the PowerPC Processor.
For more information, see “Processor Version Register (PVR),” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual.

Implementation Note: The processor version number is 0x0014 for the 620.

The processor revision level starts at 0x0000 and is different for ea‘lch revision
of the chip. The revision level is updated for each silicon revision.

— Memory management registers

Block-address translation (BAT) registers—The PowerPC OEA includes
eight block-address translation registers (BAT's), consisting of four pairs of
instruction BATs (IBATOU-IBAT3U and IBATOL-IBAT3L) and four pairs of
data BATs (DBATOU-DBAT3U and DBATOL-DBAT3L). See Figure 2-1 for
a list of the SPR numbers for the BAT registers. For more information, see
“BAT Registers,” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual. Because BAT upper and lower words are loaded
separately, software must ensure that BAT translations are correct during the
time that both BAT entries are being loaded.

SDR1—The SDRI1 register specifies the page table base address used in
virtual-to-physical address translation. For more information, see “SDR1,” in
Chapter 2, “PowerPC Register Set,” of The Programming Environments
Manual for more information.

Address space register (ASR)—The ASR is a 64-bit register that holds bits
0-51 of the segment table’s physical address. For more information, see
“Address Space Register (ASR),” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Manual for more information.

Segment registers (SR)—The PowerPC OEA defines sixteen 32—i)it segment
registers (SRO-SR15). Note that the SRs are implemented on 32-bit
implementations only. The fields in the segment register are interpreted
differently depending on the value of bit 0. See “Segment Registers,” in
Chapter 2, “PowerPC Register Set,” of The Programming Environments
Manual for more information.
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— Exception handling registers

Data address register (DAR)—After a DSI or an alignment exception, DAR is
set to the effective address generated by the faulting instruction. See “Data
Address Register (DAR),” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual for more information.

SPRGO-SPRG3—The SPRGO-SPRG3 registers are provided for operating
system use. See “SPRGO-SPRG3,” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Manual for more information.

DSISR—The DSISR register defines the cause of DSI and alignment
exceptions. See “DSISR,” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual for more information.

Machine status save/restore register 0 (SRR0)—The SRRO register is used to
save machine status on exceptions and to restore machine status when an rfi
or rfid instruction is executed. See “Machine Status Save/Restore Register O
(SRRO0),” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual for more information.

Machine status save/restore register 1 (SRR1)—The SRR1 register is used to
save machine status on exceptions and to restore machine status when an rfi
or rfid instruction is executed. See “Machine Status Save/Restore Register 1
(SRR1),” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual for more information.

— Miscellaneous registers

Time Base (TB)—The TB is a 64-bit structure that maintains the time of day
and operates interval timers. The TB is read as a 64-bit register, and written to
as two 32-bit registers—time base upper (TBU) and time base lower (TBL).
Note that the time base registers can be accessed by both user- and
supervisor-level instructions. See “Time Base Facility (TB)—OEA,” in
Chapter 2, “PowerPC Register Set,” of The Programming Environments
Manual for more information.

Decrementer register (DEC)—This register is a 32-bit decrementing counter
that provides a mechanism for causing a decrementer exception after a
programmable delay; the frequency is a subdivision of the processor clock.
See “Decrementer Register (DEC),” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Manual for more information.

Implementation Note: In the 620, the time base and decrementer registers
are decremented once per bus clock cycle.

Data address breakpoint register (DABR)—This optional register can be used
to cause a breakpoint exception to occur if a specified data address is
encountered. See “Data Address Breakpoint Register (DABR),” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual for
more information.
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— External access register (EAR)—This optional register is used in conjunction
with the eciwx and ecowx instructions. Note that the EAR register and the
eciwx and ecowx instructions are optional in the PowerPC architecture and
may not be supported in all PowerPC processors that implement the OEA. See
“External Access Register (EAR),” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Manual for more information.

Hardware implementation registers—The PowerPC architecture allows
implementations to include SPRs not defined by the PowerPC architecture. Those
incorporated in the 620 are described as follows. Note that in the 620, these registers
are all supervisor-level registers.

— Instruction address breakpoint register (IABR)—This register can be used to
cause a breakpoint exception to occur if a specified instruction address is
encountered.

— Hardware implementation-dependent register 0 (HIDO)—This register is used to
control various functions within the 620, such as enabling checkstop conditions,
and locking, enabling, and invalidating the instruction and data caches.

— Processor identification register (PIR)—The PIR is a supervisor-level register
that has a right-justified, four-bit field that holds a processor identification tag
used to identify a particular 620. This tag is used to identify the processor in
multiple-master implementations. Note that although the SPR number is defined
by the OEA, the register definition is implementation-specific.

— Bus control and status register (BUSCR)—This register is used to set various
parameters for the processor interface, and provides status and error information
for bus operations.

— L2 cache control register (L2ZCR)—The L2CR contains all the control
parameters for the L2 cache interface. The L2CR also contains all the settings
required to set up ECC for the L2 interface.

— L2 cache status register (L2SR)—The L2SR provides all ECC error information
for the L2 cache interface.

— Performance monitor counter registers (PMC1-PMC8)—These counters are
used to record the number of times a certain event has occurred.

— Monitor mode control registers 0 and 1 (MMCRO and MMCR1)—These
registers are used for enabling various performance monitoring interrupt
conditions and establishes the function of the counters.

— Sampled instruction address and sampled data address registers (SIA and
SDA)—These registers hold the addresses for instruction and data used by the
performance monitoring interrupt.

2-8
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Note that while it is not guaranteed that the implementation of HID registers is consistent
among PowerPC processors, other processors may be implemented with similar or
identical HID registers.

2.1.2 Implementation-Specific Registers

This section describes registers that are defined for the 620 but are not included in the
PowerPC architecture. This section also includes a description of the PIR, which is assigned
an SPR number by the architecture but is not defined by it. Note that the 620-specific
register descriptions do not define all the bits in each register, and that all undefined bits
should be considered reserved and should be cleared to 0. Also note that all of the
620-specific registers are supervisor-level registers.

2.1.2.1 Instruction Address Breakpoint Register (IABR)

The 620 also implements an instruction address breakpoint register (IABR). When enabled,
instruction fetch addresses will be compared with an effective address that is stored in the
IABR. The granularity of these compares will be a word. If the word specified by the IABR
is fetched, the instruction breakpoint handler will be invoked. The instruction which
triggers the breakpoint will not be executed before the handler is invoked.

The IABR is shown in Figure 2-2.

[ ADDRESS IBEITEI

0 61 62 63

Figure 2-2. Instruction Address Breakpoint Register

The instruction address breakpoint register is used in conjunction with the instruction
address breakpoint exception, which occurs when an attempt is made to execute an
instruction at an address specified in the IABR. The bits in the IABR are defined as shown
in Table 2-2.

Table 2-2. Instruction Address Breakpoint Register Bit Settings

Bit Description
0-61 Word address to be compared
62 Breakpoint enabled. Setting this bit indicates that breakpoint checking is to be done.
63 Translation enabled. This bit is compared with the MSR[IR] bit. An IABR match is
signaled only if these bits also match.
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The instruction that triggers the instruction address breakpoint exception is executed before
the exception handler is invoked. For more information about the IABR exception, see
Section 4.6.14, “Instruction Address Breakpoint Exception (0x01300).”

The IABR can be accessed with the mtspr and mfspr instructions using the SPR 1010.

2.1.2.2 Processor ldentification Register (PIR)

The processor identification register (PIR), shown in Figure 2-3, is a 32-bit register that
holds a processor identification tag in the four least significant bits (PIR[28-31]). This tag
is useful for processor differentiation in multiprocessor system designs. In addition, this tag
is used for several direct-store bus operations in the form of a ‘bus transaction from’ tag.

Figure 2-3. Processor Identification Register

The PIR can be accessed with the mtspr and mfspr instructions using SPR 1023. Note that
although this number is defined by the OEA, the register structure is defined by each
implementation that implements this optional register.

2.1.2.3 Hardware Implementation-Dependent Register 0 (HIDO)

The HIDO register (SPR 1008) controls the state of several functions within the 620.2.1.2.3
provides bit setting information for the HIDO register.

Table 2-3. HIDO Bit Settings

Bit Description

0 Enable machine check input

0  The assertion of the MCP does not cause a machine check exception.

1 Enables the entry into a machine check exception based on assertion of the MCP input, detection of
a cache parity error, detection of an address parity error, or detection of a data parity error.

Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

1 Enable cache parity checking

0  The detection of a cache parity error does not cause a machine check exception.

1 Enables the entry into a machine check exception based on the detection of a cache parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

2 Enable machine check on address bus parity error

0  The detection of an address bus parity error does not cause a machine check exception.

1 Enables the entry into a machine check exception based on the detection of an address parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.
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Table 2-3. HIDO Bit Settings (Continued)

Bit Description

3 Enable machine check on data bus parity error
0  The detection of a data bus parity error does not cause a machine check exception.
1 Enables the entry into a machine check exception based on the detection of a data bus parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

14 Processor internal watchdog timer disable
0  Processor internal watchdog timer enabled. The 620 is forced into the checkstop state if it does not
complete any valid instructions during the period of time required for the decrementer to pass through 0
twice.
1 Processor internal watchdog timer is disabled

15 Not hard reset
0 A hard reset occurred if software had previously set this bit
1 A hard reset has not occurred.

16 Instruction cache enable
0  The instruction cache is neither accessed nor updated. All pages are accessed as if they were
marked cache-inhibited (WIM = X1X). All potential cache accesses from the bus (snoop and cache
operations) are ignored.
1 The instruction cache is enabled

17 Data cache enable
0  The data cache is neither accessed nor updated. All pages are accessed as if they were marked
cache-inhibited (WIM = X1X). All potential cache accesses from the bus (snoop, cache ops) are ignored.
1 The data cache is enabled.

20 Instruction cache invalidate all
0  The instruction cache is not invalidated.
1 When set, an invalidate operation is issued that marks the state of each clock in the instruction cache
as invalid without writing back any modified lines to memory. Access to the cache is blocked during this
time. Accesses to the cache from the bus are signaled as a miss while the Invalidate-all operation is in
progress.
The bit is cleared when the invalidation operation begins (usually the cycle immediately following the write
operation to the register). Note that the instruction cache must be enabled for the invalidation to occur.

21 Data cache invalidate all
0  The data cache is not invalidated.
1 When set, an invalidate operation is issued that marks the state of each clock in the data cache as
invalid without writing back any modified lines to memory. Access to the cache is blocked during this time.
Accesses to the cache from the bus are signaled as a miss while the Invalidate-all operation is in progress.
The bit is cleared when the invalidation operation begins (usually the cycle immediately following the Write
operation to the register). Note that the data cache must be enabled for the invalidation to occur.

24 Serial instruction execution disable
0  The 620 executes one instruction at a time. The 620 does not post a trace exception after each
instruction completes, as it would if MSR[SE] or MSR[BE] were set.
1 Instruction execution is not serialized.

25-26 | Branch prediction mode

00 Static branch prediction without update of branch history table (BHT)

01 Dynamic branch prediction

10  Static branch prediction with BHT updates

11 Static branch prediction when branch instruction y-bit = 1 (no BHT update); dynamic branch
prediction when y-bit = 0.
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Table 2-3. HIDO Bit Settings (Continued)

Bit Description

27-28 | Instruction fetch modes (address translation enabled)

00 No speculative fetch from memory

01 Reserved

10 Reserved

11 Allow unrestricted speculative fetching from memory

30 Branch target address cache disable
0  The branch target address cache is enabled

1 The branch target address cache is disabled

2.1.2.4 Bus Status and Control Register (BUSCSR)

The bus status and control register (BUSCSR) is a 64-bit register (accessed as SPR 1016)
that provides the means for setting operational parameters for the 620’s system interface
and provides status information related to bus operations. Note that some register bits are
marked read/write, some are read-only, and others are cleared by a write operation (W=0).
Read-only bits are not affected by write operations, and reserved bits are undefined for a
read operation, and no operation occurs for a write. The fields of the register are defined in
Table 2-4.

Table 2-4. BUSCSR Bit Settings

. . Read/
Bit Description Write
40-41 | BUSRATIO configuration (BUSRATIO[0-1]) Read
These bits reflect the setting of the BUSRATIO signals present at the system interface. only
42 Bus clock logic (BUSCLKGTL) Read
This bit reflects the configuration of the BUSCLKGTL input signal. The configuration of the only
BUSCLKGTL signal determines whether the BUSCLK input signals are to be driven by GTL or
CMOS logic. If the BUSCLKGTL bit is set to 1, the BUSCLK input signals are configured for
GTL logic; if the BUSCLKGTL bit is cleared to 0, the BUSCLK input signals are configured for
CMOS logic.
44-45 | AStat and AResp tenure (BUSRESPTEN[0-1]) Read

These bits reflects the configuration of the BUSRESPTEN input signals, which determine the only
latency from the assertion of ASTATOUT and ARESPOUT to the sampling of ASTATIN and
ARESPIN signals.

47 64-bit data bus mode (BUSDX) Read
This bit reflects the configuration of the BUSDX input signal. If this bit is cleared to 0, the data only
bus is configured for 128-bit operation. If this bit is set to 1, the bus is configured for 64-bit
operation, and data is transferred via the DH[0-63] signals.

48-50 | Address to AResp latency (BUSTLAR[0-2]) R/W
These bits determine the address sampled to response driven latency.
000 8 bus clock cycles

010-111  2-7 bus clock cycles

001 Reserved

51 Bus data error enable (BUSDERREN) RW
This bit, when set to 1, enables a machine check exception when the DERR signal is
asserted.
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Table 2-4. BUSCSR Bit Settings (Continued)

. -~ Read/
Bit Description Write
52 Bus positive acknowledge error enable (BUSPOSACKEN) R/W

Setting this bit to 1 enables the positive acknowledge error condition to cause a machine
check exception.

54 Bus intervention enable (BUSINTVEN) R/W
Setting this bit to 1 enables intervention for the bus operations initiated by the processor.

55 Bus snoop enable (BUSSNPEN) R/W
Setting this bit to 1 enables the snooping of bus operations, and the assertion of the M-bit
(memory-coherency enforced) for bus operations initiated by the 620. If this bit is cleared to 0
the 620 will not snoop bus operations, and the M bit will not be asserted for bus operations
initiated by the 620.

58 Bus response error (BUSRESPERR) R/W=0
This bit indicates that a reserved response code was detected for an address operation,
resulting in a machine check exception and the early termination of the bus operation. This bit
is cleared by a write operation to this bit position.

59 Bus positive acknowledge error (BUSPOSACKERR) R/W=0
This bit indicates that an expected positive acknowledge was not received for an address bus
operation. This bit is set regardless of the configuration of the BUSCSR[52] bit, and is cleared
by a write operation to this bit position.

60 Bus data error (BUSDERR) R/W=0
This bit indicates that the DERR signal was asserted for read data other than PIO Load Last.

In the case of PIO Load Last operations, this bit is set only if DERR is asserted for a read data
operation and a PIO Reply is received with the error bit set. This bit is set regardiess of the
configuration of the BUSCSR[51], and is cleared by a write operation to this bit position.

61-63 | Bus parity error (BUSPARERR[0-2])
These bits indicate that a bus parity error has occurred, and are set regardless of the
configuration of the HIDO[EBA] and HIDO[EBD] bits. These bits are cleared to 0 by a write
operation.
000 Address bus parity error
001 Data bus tag parity error
010 Data bus data parity error
011-111  Reserved
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2.1.2.5 L2 Cache Control Register (L2CR)

The L2 cache control register (L2CR) is a 64-bit register (accessed as SPR 1017) that
provides the means for setting operational parameters for the 620’s L2 interface, and
provides status information related to L2 operations. The fields of the register are defined

in Table 2-5.
Table 2-5. L2CR Bit Settings
. Read/

Bit Description Write

36 L2CLOCKIN and L2CLOCKIN PECL enable (L2CLKPECL) RW
When this bit is set to 1 the L2CLKIN and L2CLKIN signals are placed in PECL mode
regardless of the configuration of L2CR[57]. If this bit is cleared to 0, the logic levels for the
L2CLKIN and L2CLKIN signals are determined by the configuration of L2CR[57].

37 Remove dead cycles between read and write operations enable (L2NORWDEAD) RW
When this bit is set to 1 dead cycles are not inserted between read and write cycles on the L2
cache interface.

40-43 | Cache capacity and organization (L2SIZE) RW
These bits determine the L2 cache capacity. For additional information on cache size
configuration, refer to Section 9.3.1.3.1, “The L2TAGADD Signal”

0000 1 MB
0001 2 MB
0010 4 MB
0011 8 MB
0100 16 MB
0101 32 MB
0110 64 MB
0111 128 MB
1000-1111 Reserved

44 L2 drive power (L2DPWR) RW
This bit is used to define the drive power for the L2 interface point-to-point signals.

0 50 ohm drive power
1 Reserved

46 ECC error enable (L2ZECCERREN) R/W
When this bit is set to 1 a multi-bit ECC error will cause a machine check exception.

47-48 | Multi-level cache configuration (L2CLC[0-1]) R/W
These bits, in conjunction with the HIDO[16—17] bits, select one of seven multi-level cache
configurations. For more information about the configuration of these bits, refer to
Section 9.3.1.8, “L2CLC[0-1] Bits".

49 L2 PLL enable (L2PLLEN) RW
When this bit is set to 1 the L2 PLL is enabled to lock.

50 L2 cache initialize enable (L2INIT) RW
When this bit is cleared to 0 it indicates that the L2 SRAMs are being initialized. When in this
configuration, L2 read operations are returned a MESI cache state of invalid, and ECC is
forced to pass. When this bit is set to 1 the L2 SRAM initialization mode is disabled.

51 L2 late/normal write select (L2LATEWRITE) R/W
When this bit is cleared to 0 write data is driven on the bus data signals the same cycle as the
control and address signals are driven to the SRAMs. If this bit is set to 1 the write data is
driven on the bus data signals a cycle after the control and address signals are driven to the
SRAMSs, thereby saving a dead cycle on the bus data signals when performing a read
operation after a write operation.
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Table 2-5. L2CR Bit Settings (Continued)

Bit

Description

Read/
Write

52-53

ECC mode select (L2MODE[0-1])

These bits define the L2 cache ECC configuration.
00 Never correct (ECC disabled)

01  Always correct

10  Automatic switch correct

11 Reserved

R/W

54

L2 SRAM register depth select (L2SINGSYNC)

This bit is used in conjunction with L2CR[38] to determine the number of pipeline registers
present in the SRAMs used to implement the L2 cache. For more information about the
configuration of this bit, refer to Section 9.3.1.10, “L2SINGSYNC Bit".

R/W

56

L2 double-bank enable (L2B2ENABLE)

When this bit is set to 1 the internal decode for a dual SRAM bank L2 cache is enabled. For
more information about the configuration of this bit, refer to Section 9.3.1.7, “L2B2ENABLE
Bit".

R/W

60-61

L2 SRAM clock frequency (L2RATIOSR[0-1])

These bits set the ratio of the L2 clock to the processor clock. If the L2 is disabled, these bits
must be set to 0b01.

00 Reserved

01 1:1 ratio

10 2:1 ratio

11 3:1 ratio

For more information about the configuration of these bits, refer to Section 9.3.1.4,
“L2RATIOSR Bit”".

R/W
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2.1.2.6 L2 Cache Status Register (L2SR)

The L2 status register (L2SR) provides all information related to ECC errors occurring on
the L2 cache interface. The L2SR is accessed as SPR 1018. Note that the status provided
by the L2SR is valid only for the first ECC error, and subsequent ECC errors before the first
ECC error is cleared are lost. An ECC error that occurs during a read operation to the L2SR
is lost. Any write operation to the L2SR register results in clearing the register bits to 0
(W=0).

Table 2-6. L2SR Bit Settings

. o Read/
Bit Description Write
16 L2 ECC error detected (L2ECC) R/W=0

This bit is set to 1 when the first single-or double-bit ECC error is detected.

17-25 L2 data syndrome (L2DATASYN[0-8]) R/W=0
These bits reflect the ECC syndrome for the first L2 data ECC error.

26-31 L2 tag syndrome (L2TAGSYN[0-5]) R/W=0
These bits reflect the ECC syndrome for the first L2 tag ECC error.

35-59 | L2 ECC address ((L2ECCADDR[0-24]) R/W=0
these bits contain the address of the L2 quadword address of the first detected ECC error.
These bits map to bits 11 to 35 of the 40 bit address driven on the address bus. The bits
can be identified as either a tag or data address by examining the tag or data syndromes
for a non-zero value.

2.1.2.7 Performance Monitor Registers

The remaining twelve registers defined for use with the 620 are used by the performance
monitor. For more information about the performance monitor, see Chapter 10,
“Performance Monitor.”

2.1.2.7.1 Monitor Mode Control Register 0 (MMCRO)

The monitor mode control register 0 (MMCRO) is a 32-bit SPR (SPR 795) whose bits are
partitioned into bit fields that determine the events to be counted and recorded. The
selection of allowable combinations of events causes the counters to operate concurrently.

The MMCRO can be written to or read only in supervisor mode. The MMCRO includes
controls such as counter enable control, counter overflow interrupt control, counter event
selection and counter freeze control.

This register must be cleared at power up. Reading this register does not change its
contents. The fields of the register are defined in Table 2-7.
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Table 2-7. MMCRO Bit Settings

Bit

Name

Description

FC

Freeze counters
0  The values of the PMCn counters can be changed by hardware.
1 The values of the PMCn counters cannot be changed by hardware.

FCS

Freeze counting while in supervisor mode

0  The PMCn counters can be changed by hardware.

1 If the processor is in supervisor mode (MSR[PR] is cleared), the counters are not
changed by hardware.

FCP

Freeze counting while in user mode

0  The PMCn counters can be changed by hardware.

1 If the processor is in user mode (MSR[PR] is set), the PMC counters are not
changed by hardware.

FCM1

Freeze counting while MSR[PM] is set
0  The PMCn counters can be changed by hardware.
1 If MSR[PMM] is set, the PMCn counters are not changed by hardware.

FCMoO

Freeze counting while MSR(PMM) is zero.
0  The PMCn counters can be changed by hardware.
1 If MSR[PMM] is cleared, the PMCn counters are not changed by hardware.

PMXE

Performance monitor exception request enable.

0 Interrupt signaling is disabled.

1 Interrupt signaling is enabled.

This bit is cleared by hardware when a performance monitor interrupt is signaled. To
reenable these interrupt signals, software must set this bit after servicing the
performance monitor interrupt. The IPL ROM code clears this bit before passing control
to the operating system.

FCEX

Freeze counting of PMCs when a performance monitor interrupt is signaled (that is,

((PMCnINTCONTROL = 1) & (PMCn[0] = 1) & (ENINT = 1)) or the occurrence of an

enabled time base transition with ((TBXE =1) & (ENINT = 1)). Setting of this bit can be

overridden by configuration of MMCRO[18].

0  The signaling of a performance monitoring interrupt has no effect on the counting
status of PMCs.

1 The signaling of a performance monitoring interrupt prevents the changing of the
PMC counters until condition is reset by software.

Because a time base signal could have occurred along with an enabled counter

negative condition, software should always reset TBXE to0, if the value in TBXE was a

1.

7-8

TBSEL

64-bit time base, bit selection enable
00 Pick bit 63 to count
01  Pick bit 55 to count
10  Pick bit 51 to count
11 Pick bit 47 to count

TBXE

Cause interrupt signalling on bit transition (identified in TBSEL) from off to on
0 Do not allow interrupt signal if chosen bit transitions.

1 Signal interrupt if chosen bit transitions.

Software is responsible for setting and clearing TBXE.

10-15

THRESHOLD

Threshold value. This number is multiplied by eight and the result is the number of
processor cycles to which the threshold value will be set.
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Table 2-7. MMCRO Bit Settings (Continued)

Bit Name Description

| 16 PMC1XE Enable exception signaling due to PMC1 counter negative.
0 Disable PMC1 exception signaling due to PMC1 counter negative
1 Enable PMC1 exception signaling due to PMC1 counter negative

17 PMCnXE Enable exception signalling due to PMCn (where n>1) counter negative. This signal
overrides the setting of FCEX.

0  Disable PMCn exception signaling due to PMCn counter negative

1 Enable PMCn exception signaling due to PMCn counter negative

18 TRIGGER May be used to trigger counting of PMCn (where n>1) after PMC1 has become

negative or after a performance monitoring interrupt is signaled.

0  Enable PMCn counting

1 Disable PMCn counting until PMC1 bit O is set or until a performance monitor
interrupt is signaled

This signal can be used to trigger counting of PMCn after PMC1 has become negative.

This provides a triggering mechanism for counting after a certain condition occurs or

after a preset time has elapsed. It can be used to support getting the count associated

with a specific event.

19-25 | PMC1SEL PMC1 input selector, see Table 2-9 for events selectable.

26-31 | PMC2SEL PMC2 input selector, see Table 2-10 for events selectable.

2.1.2.7.2 Monitor Mode Control Register 1 (MMCR1)

The monitor mode control register 1 (MMCR1) is a 32-bit SPR (SPR 798) whose bits are
partitioned into bit fields that determine the events to be counted and recorded. The
selection of allowable combinations of events causes the counters to operate concurrently.

The MMCRI can be written to or read only in supervisor mode. The MMCRI1 includes
controls such as counter enable control, counter overflow interrupt control, counter event
selection and counter freeze control.

This register must be cleared at power up. Reading this register does not change its
contents. The fields of the register are defined in Table 2-8

Table 2-8. MMCR1 Bit Settings

Bit Name Description
04 PMC3SEL PMC3 input selector, see Table 2-11 for events selectable.
5-9 PMCA4SEL PMC4 input selector, see Table 2-12 for events selectable.
10-14 PMC5SEL PMCS5 input selector, see Table 2-13 for events selectable.
15-19 PMC6SEL PMCS6 input selector, see Table 2-14 for events selectable.
20-24 PMC7SEL PMC?7 input selector, see Table 2-15 for events selectable.
25-28 PMC8SEL PMCS8 input selector, see Table 2-16 for events selectable.
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Table 2-8. MMCR1 Bit Settings (Continued)

Bit Name Description

29 FCUIABR Freeze Counters until IABR Match. After a monitored IABR match is detected this
bit is reset to zero by the hardware. An IABR match is said to be monitored if it
occurs when PMC updates are permitted by the configuration of MMCRO[0—4],
MSR[PR] and MSR[PMM].

0 = The PMCs are conditionally updated.

1 =The PMCs are not updated until a “monitored” IABR match occurs.

30 PMC1HIST PMC1 History Mode
0 = PMC1 is conditionally incremented.
1 = PMC1 is in History mode.

31 PMCnHIST PMCn, n>1, History mode
0 = PMCn, n>1, are conditionally incremented.
1 =PMCn, n>1, are in History mode.

2.1.2.7.3 Performance Monitor Counter Registers (PMC1-PMC8)

PMCI1 through PMCS are 32-bit counters that can be programmed to generate interrupt
signals when they are negative. Counters are considered to be negative when the high-order
bit (the sign bit) becomes set; that is, they reach the value 2147483648 (0x8000_0000).
However, an interrupt is not signaled unless both PCMn[XE] and MMCRO[PMXE] are also
set.

Note that the interrupts can be masked by clearing MSR[EE/; the interrupt signal condition
may occur with MSR[EE] cleared, but the interrupt is not taken until the EE bit is set.
Setting MMCRO[FCEX] forces the counters to stop counting when a counter interrupt
occurs.

PMC1 through PMCS8 are SPRs 787 through 794, respectively, and can be read and written
to by using the mfspr and mtspr instructions. Software is expected to use the mtspr
instruction to explicitly set the PMC register to non-negative values. If software sets a
negative value, an erroneous interrupt may occur. For example, if both PCMn[XE] and
MMCRO[PMXE] are set and the mtspr instruction is used to set a negative value, an
interrupt signal condition may be generated prior to the completion of the mtspr and the
values of the SIA and SDA may not have any relationship to the type of instruction being
counted.

The event that is to be monitored can be chosen by setting the appropriate bits in the
MMCRO[19-31]. The number of occurrences of these selected events is counted from the
time the MMCRO was set either until a new value is introduced into the MMCRO register
or until a performance monitor interrupt is generated. Table 2-9 lists the selectable events
with their appropriate MMCRO encodings.
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Table 2-9. Selectable Events—PMC1

mgn:gglz;zs] Description
0x00 Processor cycles.
0x01 Number of instructions completed.
0x02 Time base selected bit transition from 0 to 1.
0x03 Number of instructions dispatched.
0x04 Number of load instructions completed.
0x05 L1 instruction cache miss.
0x06 A load miss occurred in L1.
0x07 Threshold exceeded (loads with no L2 intervention)
0x08 Data cache EPAT miss.
0x09 Threshold exceeded (stores with no L2 intervention)
O0x0A A Read-Burst missed the L2 and another bus device has modified data.
0x0B L1 instruction cache IERAT miss.
0x0C Brought/wrote a line into the ICACHE and used it.
0x0D Data cache detected an offset hit.
OxO0E Number of instructions deleted due to global cancel.
OxOF Chaining the counters in history mode. (PMC1 to PMC8)
0x12 A master-generated store operation is retried.
0x14 MSR external interrupt enable bit, MSR[EE], is off
0x15 Branch unit idle.
0x16 A single instruction serialization class instruction is in execution
(Counts the total number of cycles this condition is detected.)
0x17 The FPU status and control register instructions.
0x18 One store buffer is in use.
0x19 A snooped operation cleaned data from the L2.
Ox1A Number of stores in the completion buffer.
0x1B The link register stack is full.
ox1C A conditional branch was resolved at dispatch.
0x1D Number of loads in the completion buffer.
Ox1E Number of entries in the completion buffer.
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Table 2-9. Selectable Events—PMC1 (Continued)

MME?\?:ggi:_g%] Description
0x1F The finished store queue (FSQ) is full.
0x51 Data cache and instruction cache SLB miss occurred.
0x53 Data cache and instruction cache TLB miss.
0x56 A single instruction serialization class instruction is in execution
(Counts the number of times this condition is detected.)

Bits MMCRO[26-31] are used for selecting events associated with PMC2. These settings
are shown in Table 2-10.

Table 2-10. Selectable Events—PMC2

MMCRO[26-31]
Select Description
Encoding
0x00 Number of instructions completed.
0x01 Processor cycles.
0x02 Time base selected bit transition from zero to one.
0x03 Number of instructions dispatched.
0x05 Data cache store address lookup.
0x06 A sampled Read-Burst generated an L2 miss.
0x08 A conditional branch was predicted.
0x09 Store miss occurred in L1.
0x0A Threshold exceeded (loads with L2 intervention)
0x0B A Read-with-Intent-to-Modify (RWITM) generated an L2 access.
0x0C Threshold exceeded (stores with L2 intervention)
0x0D A store conditional instruction failed to execute successfully
0xO0E A master-generated non-burst store operation is stalled waiting for a store buffer.
0xOF Chaining the counters in history mode. (PMC2 to PMC1)
0x10 A sampled Read-Burst missed the L2 and another bus device has modified data.
ox11 The complex integer unit does not have a valid instruction to execute.
0x12 A system call interrupt was taken.
0x14 Two store buffers are in use.
0x15 A master-generated load operation is not retried.
0x16 A Iwarx instruction has finished execution.
0x18 A sample store instruction was scheduled for execution.
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Table 2-10. Selectable Events—PMC2 (Continued)

MMCRO[26-31]
Select Description
Encoding
0x19 The instruction buffer is empty this cycle.
0x1C A snooped operation generated a push or an intervention.
0x1D A master-generated store operation is loaded into the store buffer.
0x33 Data cache and instruction cache SLB miss occurred.

Bits MMCR1[0-4] are used for selecting events associated with PMC3. These settings are
shown in Table 2-11.

Table 2-11. Selectable Events—PMC3

MMCR1[0-4]
Select Description
Encoding
0x00 Brought/wrote a line into the ICACHE and used it.
0x01 Processor cycles.
0x02 Number of instructions completed.
0x03 Time base selected bit transition from zero to one.
0x04 Number of instructions dispatched.
0x05 A load miss occurred in L1.
0x06 A sampled Read-with-Intent-to-Modify (RWITM) generated an L2 miss.
0x07 The branch queue is full.
0x08 A sampled Read-with-Intent-to-Modify (RWITM) missed the L2 and another bus device has
modified data.
0x09 A store instruction was completed.
0x0A A sampled store was completed.
0x0B A load instruction is the next instruction to complete.
0x0C A Read-with-Intent-to-Modify (RWITM) generated an L2 miss.
0x0D A sampled Read-Burst generated an L2 access.
0x0E A master-generated Non-Burst Store operation is stalled waiting for a store buffer.
OxOF Chaining the counters in History mode. (PMC3 to PMC2)
0x10 A double word unaligned store was scheduled
Ox11 A master-generated store operation is loaded into the store buffer.
0x13 Three store buffers are in use.
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Table 2-11. Selectable Events—PMC3 (Continued)

MMCR1[0-4]
Select Description
Encoding
0x14 A master-generated store conditional (STCX) is cancelled.
0x15 A snooped operation generated a transition in the L2 from Exclusive or Shared to Invalid.
0x16 The FPU divide instructions.
0x18 1/0 interrupts detected.

Bits MMCR1[5-9] are used for selecting events associated with PMC4. These settings are
shown in Table 2-12.

Table 2-12. Selectable Events—PMC4

MMCR1[5-9]
Select Description
Encoding
0x00 L1 instruction cache IERAT miss.
0x01 Processor cycles.
0x02 Number of instructions completed.
0x03 Time base selected bit transition from zero to one.
0x04 Number of instructions dispatched.
0x05 Number of load instructions completed.
0x07 The load/store scheduled a sampled load instruction
0x08 A sampled Read-with-Intent-to-Modify (RWITM) generated an L2 access.
0x09 The load/store received data from the data cache.
Ox0A A Read-with-Intent-to-Modify (RWITM) missed the L2 and another bus device has modified data.
0x0B Data cache sync request was made to the BIU.
0x0C Gilobal cancel due to a load or store instruction address conflict.
0x0D The multi-cycle integer unit pipeline is busy with a valid instruction.
Ox0E A master-generated store operation is not retried.
OxOF Chaining the counters in History mode. (PMC4 to PMC3)
0x10 Data cache detected an aliased hit.
Ox11 The simple integer unit 1 does not have a valid instruction to execute.
0x12 A double word unaligned Ibad was scheduled.
0x13 Completion stalled on a load operation.
0x14 A master-generated bus operation received an ARESPIN Retry.
0x16 Branch completed.
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Table 2-12. Selectable Events—PMC4 (Continued)

MMCR1[5-9]
Select Description
Encoding
0x17 The dispatch buffer is empty this cycle.
0x18 Link register stack error.
0x19 The condition register logical unit produced a result.
0x1B A snooped operation cleaned data from the L1.

Bits MMCR1[10-14] are used for selecting events associated with PMCS5. These settings
are shown in Table 2-13.

Table 2-13. Selectable Events—PMC5

MMCR1[10-14]
Select Description
Encoding
0x00 Data cache EPAT miss.
0x01 The instruction cache was accessed and a fetch block was fetched.
0x02 No instructions completed.
0x04 A Read-Burst generated an L2 access.
0x05 The FPU finished the execution of an instruction.
0x06 The load/store reservation stations are empty.
0x07 BTAC hit.
0x08 Completed store queue (CSQ) is full.
0x09 A master-generated store operation is stalled waiting for a store buffer.
0x0A A snooped operation generated a transition in the L2 from Modified to Invalid.
0x0B The FPU convert and round instructions.
0x0C Processor cycles.
0x0D A master-generated Bus operation received an ASTATIN Retry.
O0xOF Chaining the counters in History mode. (PMC5 to PMC4)

Bits MMCR1[15-19] are used for selecting events associated with PMC6. These settings
are shown in Table 2-14.
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Table 2-14. Selectable Events—PMC6

MMCR1[15-19]
Select Description
Encoding
0x01 Store hit occurred in L1.
0x02 The multi-cycle integer unit finished the execution of an instruction.
0x03 A BTAC miss was detected.
0x04 An instruction fetch generated an L2 miss.
0x05 A conditional branch was dispatched.
0x06 The load queue is full.
0x08 A snooped operation generated a push or an intervention.
0x09 The MSRIEE] bit is off and an external interrupt is pending.
0x0A A master-generated load operation is retried.
0x0B The FPU move instructions and the select instruction.
0x0C Processor cycles.
0x0D A snooped operation accessed the L2.
0x0E A snooped operation generated a transition in the L2 from Exclusive to Shared.
OxOF Chaining the counters in History mode. (PMC6 to PMC5)

Bits MMCR1[20-24] are used for selecting events associated with PMC7. These settings
are shown in Table 2-15.

Table 2-15. Selectable Events—PMC7

MMCR1[20-24]
Select Description
Encoding
0x00 L1 instruction cache miss.
0x01 The simple integer unit O finished the execution of an instruction.
0x02 A branch was dispatched (any).
0x03 Global cancel due to a branch guessed wrong.
0x04 A bus operation was snooped.
0x06 No instructions dispatched.
0x07 The simple integer unit 0 does not have a valid instruction to execute.
0x0A A store instruction was dispatched.
0x0B Processor cycles.
0xOF Chaining the counters in History mode. (PMC7 to PMC6)
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Bits MMCR1[25-28] are used for selecting events associated with PMC8. These settings
are shown in Table 2-16.

Table 2-16. Selectable Events—PMC8

MMCR1[25-28]
Select Description
Encoding
0x1 A snooped operation hit the L2.
0x2 A Read-Burst generated an L2 miss.
0x3 A store conditional instruction executed successfully.
0x4 The simple integer unit 1 finished the execution of an instruction.
0x5 A bus operation was ASTATOUT Retried.
0x7 Prefetch bad.
0x8 Completion stalled on a store operation.
OxA A load instruction was dispatched.
0xB Misaligned data interrupt
0xC Processor cycles.
OxF Chaining the counters in History mode. (PMC8 to PMC7?)

2.1.2.7.4 Sampled Instruction Address Register (SIA)

The SIA contains the effective address of an instruction executing at or around the time that
the processor signals the performance monitor interrupt condition. If the performance
monitor interrupt was triggered by a threshold event, the SIA contains the exact instruction
that caused the counter to become negative. The instruction whose effective address is put
in the SIA is called the sampled instruction. For more information on threshold-related
interrupts, see Section ¢, “Performance Monitor Events.”

If the performance monitor interrupt was caused by something besides a threshold event,
the SIA contains the address of the last instruction completed during that cycle. The SIA is
a supervisor-level SPR.

The SIA (SPR 780) can be read by using the mfspr instruction and written to by using the
mtspr instruction.

2.1.2.7.5 Sampled Data Address Register (SDA)

The SDA contains the effective address of an operand of the last sampled instruction
executed by the load/store unit at or around the time that the processor signals the
performance monitor interrupt condition. If the performance monitor interrupt was
triggered by a threshold event, the SDA contains the effective address of the operand of the
SIA.

If the performance monitor interrupt was caused by something other than a threshold event,
the SIA contains the address of the last instruction completed during that cycle. The SDA
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contains an effective address that is not guaranteed to match the instruction in the STA. The
SDA is a supervisor-level SPR.

The SDA (SPR 781) can be read by using the mfspr instruction and written to by using the
mtspr instruction.

2.2 Operand Conventions

This section describes the operand conventions as they are represented in two levels of the
PowerPC architecture—UISA and VEA. Detailed descriptions are provided of conventions
used for storing values in registers and memory, accessing PowerPC registers, and
representation of data in these registers.

2.2.1 Floating-Point Execution Models

The IEEE 754 standard defines conventions for 64- and 32-bit arithmetic. The standard
requires that single-precision arithmetic be provided for single-precision operands. The
standard permits double-precision arithmetic instructions to have either (or both)
single-precision or double-precision operands, but states that single-precision arithmetic
instructions should not accept double-precision operands.

¢ Double-precision arithmetic instructions may have single-precision operands but
always produce double-precision results.

+ Single-precision arithmetic instructions require all operands to be single-precision
and always produce single-precision results.

For arithmetic instructions, conversion from double- to single-precision must be done
explicitly by software, while conversion from single- to double-precision is done implicitly
by the processor.

All PowerPC implementations provide the equivalent of the following execution models to
ensure that identical results are obtained. The definition of the arithmetic instructions for
infinities, denormalized numbers, and NaNs follow conventions described in the following
sections.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second
bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is one:

* Underflow during multiplication using a denormalized operand
* Overflow during division using a denormalized divisor
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2.2.2 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction.

2.2.3 Alignment and Misaligned Accesses

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the natural address of an operand is
an integral multiple of the operand length. A memory operand is said to be aligned if it is
aligned at its natural boundary; otherwise it is misaligned.

Operands for single-register memory access instructions have the characteristics shown in
Table 2-18. (Although not permitted as memory operands, quad words are shown because
quad-word alignment is desirable for certain memory operands).

Table 2-17. Supported Data Sizes and Alignments

Direct Store
Size - Ordinary Segment
(Bytes) Definition (T=0) S(:g:;e)nt Notes

1 Byte Supported Supported All byte alignments are supported.

2 Half-Word Supported Supported All alignments that do not cross a
double word boundary are sup-

3 3-Byte Supported Supported ported.

4 Word Supported Supported

8 Double-Word | Supported Supported Only double word alignments are
supported.

16 Quad-Word Supported Unsupported Only quad word aligned quad word
is supported.

5-7,9-15 — Unsupported Unsupported Not Supported

The concept of alignment is also applied more generally to data in memory. For example,
a 12-byte data item is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition,
alignment may affect performance. For single-register memory access instructions, the best
performance is obtained when memory operands are aligned.

Instructions are 32 bits (one word) long and must be word-aligned.
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2.2.4 Floating-Point Operand

The 620 provides hardware support for all single- and double-precision floating-point
operations for most value representations and all rounding modes. This architecture
provides for hardware to implement a floating-point system as defined in ANSI/IEEE
standard 754-1985, IEEE Standard for Binary Floating Point Arithmetic. Detailed
information about the floating-point execution model can be found in Chapter 3, “Operand
Conventions,” in The Programming Environments Manual.

The 620 supports non-IEEE mode whenever FPSCR[29] is set. In this mode, denormalized
numbers, NaNs, and some IEEE invalid operations are treated in a non-IEEE conforming
manner. This is accomplished by delivering results that approximate the values required by
the IEEE standard. Table 2-18 summarizes the conditions and mode behavior for operands.

Table 2-18. Floating-Point Operand Data Type Behavior

Operand A Operand B Operand C IEEE Mode Non-IEEE Mode
Data Type Data Type Data Type (NI =0) (NI=1)
Single denormalized Single denormalized | Single denormalized Normalize all three | Zero all three
Double denormalized | Double denormalized | Double denormalized
Single denormalized Single denormalized Normalized or zero Normalize Aand B | Zero A and B
Double denormalized | Double denormalized
Normalized or zero Single denormalized | Single denormalized | Normalize Band C | Zero B and C
Double denormalized | Double denormalized
Single denormalized | Normalized or zero Single denormalized | Normalize Aand C | Zero Aand C
Double denormalized Double denormalized
Single denormalized Normalized or zero Normalized or zero Normalize A Zero A
Double denormalized
Normalized or zero Single denormalized Normalized or zero Normalize B Zero B
Double denormalized
Normalized or zero Normalized or zero Single denormalized | Normalize C Zero C
Double denormalized
Single QNaN Don't care Don't care QNaN!'! QNaNl!
Single SNaN
Double QNaN
Double SNaN
Don't care Single QNaN Don't care QNaNI'! QNanNI'l
Single SNaN
Double QNaN
Double SNaN
Don't care Don't care Single QNaN QNaN'l QNaNl"!
Single SNaN
Double QNaN
Double SNaN
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Table 2-18. Floating-Point Operand Data Type Behavior (Continued)

Operand A Operand B Operand C IEEE Mode Non-IEEE Mode
Data Type Data Type Data Type (NI =0) (NI=1)
Single normalized Single normalized Single normalized Do the operation Do the operation
Single infinity Single infinity Single infinity
Single zero Single zero Single zero
Double normalized Double normalized Double normalized
Double infinity Double infinity Double infinity
Double zero Double zero Double zero

! Prioritize according to Chapter 3, “Operand Conventions,” in The Programming Environments Manual.

Table 2-19 summarizes the mode behavior for results.

Table 2-19. Floating-Point Result Data Type Behavior

Precision Data Type IEEE Mode (NI = 0) Non-IEEE Mode (NI = 1)
Single Denormalized Return single-precision Return zero.
denormalized number with trailing
zeros.
Single Normalized Return the result. Return the result.
Infinity
Zero
Single QNaN Return QNaN. Return QNaN.
SNaN
Single INT Place integer into low word of FPR. | If (Invalid Operation)
then
Place (0x8000) into FPR[32-63]
else
Place integer into FPR[32-63].
Double Denormalized Return double precision Return zero.
denormalized number.
Double Normalized Return the result. Return the result.
Infinity
Zero
Double QNaN Return QNaN. Return QNaN.
SNaN
Double INT Not supported by 620 Not supported by 620

2.2.5 Effect of Operand Placement on Performance

The PowerPC VEA states that the placement (location and alignment) of operands in
memory may affect the relative performance of memory accesses. The best performance is
guaranteed if memory operands are aligned on natural boundaries. To obtain the best
performance across the widest range of PowerPC processor implementations, the
programmer should assume the performance model described in Chapter 3, “Operand

Conventions,” in The Programming Environments Manual.
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2.3 Instruction Set Summary

This section describes instructions and addressing modes defined for the 620. These
instructions are divided into the following functional categories:

 Integer instructions—These include arithmetic and logical instructions. For more
information, see Section 2.3.4.1, “Integer Instructions.”

» Floating-point instructions—These include floating-point arithmetic instructions, as
well as instructions that affect the floating-point status and control register (FPSCR).
For more information, see Section 2.3.4.2, “Floating-Point Instructions.”

» Load and store instructions—These include integer and floating-point load and store
instructions. For more information, see Section 2.3.4.3, “Load and Store
Instructions.”

« Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow. For more information, see Section 2.3.4.4, “Branch and Flow
Control Instructions.”

* Processor control instructions—These instructions are used for synchronizing
memory accesses and managing caches, TLBs, and segment registers. For more
information, see Section 2.3.4.6, “Processor Control Instructions,” Section 2.3.5.1,
“Processor Control Instructions,” and Section 2.3.6.2, “Processor Control
Instructions.”

e Memory synchronization instructions—These instructions are used for memory
synchronizing. See Section 2.3.4.7, “Memory Synchronization Instructions,”
Section 2.3.5.2, “Memory Synchronization Instructions,” for more information.

*  Memory control instructions—These instructions provide control of caches, TLBs,
and segment registers. For more information, see Section 2.3.5.3, “Memory Control
Instructions,” and Section 2.3.6.3, “Memory Control Instructions.”

» External control instructions—These include instructions for use with special
input/output devices. For more information, see Section 2.3.5.4, “Optional External
Control Instructions.”

Note that this grouping of instructions does not necessarily indicate the execution unit that
processes a particular instruction or group of instructions. This information, which is useful
in taking full advantage of the 620’s superscalar parallel instruction execution, is provided
in Chapter 6, “Instruction Timing.”

Integer instructions operate on word operands. Floating-point instructions operate on
single-precision and double-precision floating-point operands. The PowerPC architecture
uses instructions that are four bytes long and word-aligned. It provides for byte, half-word,
word, double word, multiple word, and string operand loads and stores between memory
and a set of 32 general-purpose registers (GPRs). It also provides for word and double word
operand loads and stores between memory and a set of 32 floating-point registers (FPRs).
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Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into a register, modified, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands.
To simplify assembly language programming, a set of simplified mnemonics and symbols
is provided for some of the frequently-used instructions; see Appendix F, “Simplified
Mnemonics,” in The Programming Environments Manual for a complete list of simplified
mnemonics. Note that the architecture specification refers to simplified mnemonics as
extended mnemonics. Programs written to be portable across the various assemblers for the
PowerPC architecture should not assume the existence of mnemonics not described in that
document.

2.3.1 Classes of Instructions
The 620 instructions belong to one of the following three classes:

e Defined
e Illegal
* Reserved

Note that while the definitions of these terms are consistent among the PowerPC
processors, the assignment of these classifications is not. For example, a PowerPC
instruction defined for 64-bit implementations are treated as illegal by 32-bit
implementations such as the PowerPC 604™.

The class is determined by examining the primary opcode and the extended opcode, if any.
If the opcode, or combination of opcode and extended opcode, is not that of a defined
instruction or of a reserved instruction, the instruction is illegal.

Instruction encodings that are now illegal may become assigned to instructions in the
architecture or may be reserved by being assigned to processor-specific instructions.

2.3.1.1 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bits in reserved fields, the results on
execution can be said to be boundedly undefined. If a user-level program executes the
incorrectly coded instruction, the resulting undefined results are bounded in that a spurious
change from user to supervisor state is not allowed, and the level of privilege exercised by
the program in relation to memory access and other system resources cannot be exceeded.
Boundedly undefined results for a given instruction may vary between implementations,
and between execution attempts in the same implementation.

2.3.1.2 Defined Instruction Class

Defined instructions are guaranteed to be supported in all PowerPC implementations,
except as stated in the instruction descriptions in Chapter 8, “Instruction Set,” in The
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Programming Environments Manual. The 620 provides hardware support for all
instructions defined for 64-bit implementations.

A PowerPC processor invokes the illegal instruction error handler (part of the program
exception) when the unimplemented PowerPC instructions are encountered so they may be
emulated in software, as required. Note that the architecture specification refers to
exceptions as interrupts.

The 620 provides hardware support for all instructions defined for 64-bit implementations.
The 620 supports the optional fsqrt and fsqrts instructions, and does not support the tlbie
and tlbia instructions.

A defined instruction can have invalid forms. The 620 provides limited support for
instructions that are represented in an invalid form. Appendix B, “Invalid Instruction
Forms,” lists all invalid instruction forms and specifies the operation of the 620 upon
detecting each.

2.3.1.3 lllegal Instruction Class
Illegal instructions can be grouped into the following categories:

 Instructions not defined in the PowerPC architecture.The following primary
opcodes are defined as illegal but may be used in future extensions to the
architecture:

1,4,5,6,9,22, 56,57, 60, 61

Future versions of the PowerPC architecture may define any of these instructions to
perform new functions.

+ All unused extended opcodes are illegal. The unused extended opcodes can be
determined from information in Section A.2, “Instructions Sorted by Opcode,” and
Section 2.3.1.4, “Reserved Instruction Class.” Notice that extended opcodes for
instructions defined only for 64-bit implementations are illegal in 32-bit
implementations, and vice versa. The following primary opcodes have unused
extended opcodes.

17,19, 31, 59, 63 (Primary opcodes 30 and 62 are illegal for all 32-bit
implementations, but as 64-bit opcodes they have some unused extended opcodes.)

* Aninstruction consisting of only zeros is guaranteed to be an illegal instruction. This
increases the probability that an attempt to execute data or uninitialized memory
invokes the system illegal instruction error handler (a program exception). Note that
if only the primary opcode consists of all zeros. The instruction is considered a
reserved instruction, as described in Section 2.3.1.4, “Reserved Instruction Class.”

The 620 invokes the system illegal instruction error handler (a program exception) when it
detects any instruction from this class.

See Section 4.6.7, “Program Exception (0x00700),” for additional information about illegal
and invalid instruction exceptions. With the exception of the instruction consisting entirely
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of binary zeros, the illegal instructions are available for further additions to the PowerPC
architecture.

2.3.1.4 Reserved Instruction Class

Reserved instructions are allocated to specific implementation-dependent purposes not
defined by the PowerPC architecture. An attempt to execute an unimplemented reserved
instruction invokes the illegal instruction error handler (a program exception). See
“Program Exception (0x00700),” in Chapter 6, “Exceptions,” in The Programming
Environments Manual for additional information about illegal and invalid instruction
exceptions.

The PowerPC architecture defines four types of reserved instructions:
» Instructions in the POWER architecture not part of the PowerPC UISA

POWER architecture incompatibilities and how they are handled by PowerPC
processors are listed in Appendix B, “POWER Architecture Cross Reference,” in
The Programming Environments Manual.

* Implementation-specific instructions required to conform to the PowerPC
architecture

¢ Architecturally-allowed extended opcodes
» Implementation-specific instructions

2.3.2 Addressing Modes

This section provides an overview of conventions for addressing memory and for
calculating effective addresses as defined by the PowerPC architecture for 64-bit
implementations. For more detailed information, see “Conventions,” in Chapter 4,
“Addressing Modes and Instruction Set Summary,” of The Programming Environments
Manual.

2.3.2.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a memory access or branch instruction or when it fetches the
next sequential instruction.

Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte.

2.3.2.2 Memory Operands

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction. The PowerPC architecture supports both
big-endian and little-endian byte ordering. The default byte and bit ordering is big-endian.
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See “Byte Ordering,” in Chapter 3, “Operand Conventions,” of The Programming
Environments Manual for more information about big- and little-endian byte ordering.

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the natural address of an operand is
an integral multiple of the operand length. A memory operand is said to be aligned if it is
aligned at its natural boundary; otherwise it is misaligned. For a detailed discussion about
memory operands, see Chapter 3, “Operand Conventions,” of The Programming
Environments Manual.

2.3.2.3 Effective Address Calculation

An effective address (EA) is the 64-bit sum computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address 0, as described in the
following paragraphs.

Effective address computations for both data and instruction accesses use 64-bit unsigned
binary arithmetic. A carry from bit 0 is ignored.

Load and store operations have three categories of effective address generation:

» Register indirect with immediate index mode
« Register indirect with index mode
» Register indirect mode

Refer to Section 2.3.4.3.2, “Integer Load and Store Address Generation,” for a detailed
description of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:

e Immediate
e Link register indirect
» Count register indirect

2.3.2.4 Synchronization

The synchronization described in this section refers to the state of the processor that is
performing the synchronization.
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2.3.2.4.1 Context Synchronization

The System Call (sc), Return from Interrupt Double Word (rfid), and Return from Interrupt
(rfi) instructions perform context synchronization by allowing previously issued
instructions to complete before performing a change in context. Execution of one of these
instructions ensures the following:

* No higher priority exception exists (sc).

+ All previous instructions have completed to a point where they can no longer cause
an exception. If a prior memory access instruction causes direct-store error
- exceptions, the results are guaranteed to be determined before this instruction is
executed.

» Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

» The instructions following the sc, rfi, and rfid instructions execute in the context
established by these instructions.

2.3.2.4.2 Execution Synchronization

An instruction is execution synchronizing if all previously initiated instructions appear to
have completed before the instruction is initiated or, in the case of sync and isync, before
the instruction completes. For example, the Move to Machine State Register (mtmsr) and
Move to Machine State Register Double Word (mtmsrd) instructions are execution
synchronizing. It ensures that all preceding instructions have completed execution and will
not cause an exception before the instruction executes, but does not ensure subsequent
instructions execute in the newly established environment. For example, if mtmsr or
mtmsrd sets the MSR[PR] bit, unless an isync immediately follows the mtmsr or mtmsrd
instruction, a privileged instruction could be executed or privileged access could be
performed without causing an exception even though the MSR[PR] bit indicates user mode.

2.3.2.4.3 Instruction-Related Exceptions

There are two kinds of exceptions in the 620—those caused directly by the execution of an
instruction and those caused by an asynchronous event (or interrupts). Either may cause
components of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

* An attempt to execute an illegal instruction causes the illegal instruction (program
exception) handler to be invoked. An attempt by a user-level program to execute the
supervisor-level instructions listed below causes the privileged instruction (program
exception) handler to be invoked. The 620 provides the following supervisor-level
instructions—dcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsrd, mtmsr, mtspr, mtsrd,
mtsrdin, mtsr, mtsrin, rfid, rfi, slbia, slbie, tlbie, and tlbsync. Note that the
privilege level of the mfspr and mtspr instructions depends on the SPR encoding.

+ An attempt to access memory that is not available (page or segment fault) causes the
IST exception handler to be invoked.
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« An attempt to access memory with an effective address alignment that is invalid for
the instruction causes the alignment exception handler to be invoked.

» The execution of an sc instruction invokes the system call exception handler that
permits a program to request the system to perform a service.
+ The execution of a trap instruction invokes the program exception trap handler.

» The execution of a floating-point instruction when floating-point instructions are
disabled invokes the floating-point unavailable handler.

+ The execution of an instruction that causes a floating-point exception while
exceptions are enabled in the MSR invokes the program exception handler.

Exceptions caused by asynchronous events are described in Chapter 4, “Exceptions.”

2.3.3 Instruction Set Overview

This section provides a brief overview of the PowerPC instructions implemented in the 620
and highlights any special information with respect to how the 620 implements a particular
instruction. Note that the categories used in this section correspond to those used in
Chapter 4, “Addressing Modes and Instruction Set Summary,” in The Programming
Environments Manual. These categorizations are somewhat arbitrary and are provided for
the convenience of the programmer and do not necessarily reflect the PowerPC architecture
specification.

Note that some instructions have the following optional features:

* CR Update—The dot (.) suffix on the mnemonic enables the update of the CR.
» Overflow option—The o suffix indicates that the overflow bit in the XER is enabled.

2.3.4 PowerPC UISA Instructions

The PowerPC UISA includes the base user-level instruction set (excluding a few user-level
cache control, synchronization, and time base instructions), user-level registers,
programming model, data types, and addressing modes. This section discusses the
instructions defined in the UISA.

2.3.4.1 Integer Instructions
This section describes the integer instructions. These consist of the following:

+ Integer arithmetic instructions

« Integer compare instructions

» Integer logical instructions

» Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs, into the XER, and into condition register (CR) fields.
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2.3.4.1.1 Integer Arithmetic Instructions
Table 2-20 lists the integer arithmetic instructions for the PowerPC processors.

Table 2-20. Integer Arithmetic Instructions

Name Mnemonic Operand Syntax

Add Immediate addi rD,rA,SIMM
Add Immediate Shifted addis rD,rA,SIMM
Add add (add. addo addo.) rD,rA,rB
Subtract From subf (subf. subfo subfo.) rD,rA,rB
Add Immediate Carrying addic rD,rA,SIMM
Add Immediate Carrying and Record addic. rD,rA,SIMM
Subtract from Immediate Carrying subfic rD,rA,SIMM
Add Carrying addc (addc. addco addco.) rD,rA,rB
Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB
Add Extended adde (adde. addeo addeo.) rD,rA,rB
Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB
Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA
Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA

Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA
Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA
Negate neg (neg. nego nego.) rD,rA
Multiply Low Immediate mulli rD,rA,SIMM
Multiply Low Word mullw (mullw. mullwo mullwo.) rD,rA,rB
Multiply Low Double Word mulld (mulld. mulldo mulldo.) rD,rA,rB
Multiply High Word mulhw  (mulhw.) rD,rA,rB
Multiply High Double Word mulhd (mulhd.) rD,rA,rB
Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB
Multiply High Double Word Unsigned mulhdu (mulhdu.) rD,rA,rB
Divide Word divw (divw. divwo divwo.) rD,rA,rB
Divide Word Unsigned divwu (divwu. divwuo divwuo.) rD,rA,rB
Divide Double Word divd (divd. divdo divdo.) rD,rA,rB
Divide Double Word Unsigned divdu divdu. divduo divduo. rD,rA,rB

Although there is no Subtract Immediate instruction, its effect can be achieved by using an
addi instruction with the immediate operand negated. Simplified mnemonics are provided
that include this negation. The subf instructions subtract the second operand (rA) from the
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third operand (rB). Simplified mnemonics are provided in which the third operand is
subtracted from the second operand. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for examples.

The UISA states that for some implementations that execute instructions that set the
overflow bit (OE) or the carry bit (CA) it may either execute these instructions slowly or it
may prevent the execution of the subsequent instruction until the operation is complete. The
620 arithmetic instructions may suffer this penalty. The summary overflow bit (SO) and
overflow bit (OV) in the XER are set to reflect an overflow condition of a 32-bit (executing
mullw, divw, divwu) or 64-bit (executing mulld, divd, divdu) result. This may only occur
when the overflow enable bit is set (OE = 1).

2.3.4.1.2 Integer Compare Instructions

The integer compare instructions algebraically or logically compare the contents of register
rA with either the zero-extended value of the UIMM operand, the sign-extended value of
the SIMM operand, or the contents of register rB. The comparison is signed for the cmpi
and cmp instructions, and unsigned for the cmpli and cmpl instructions. Table 2-21
summarizes the integer compare instructions.

Table 2-21. Integer Compare Instructions

Name Mnemonic Operand Syntax
Compare Immediate cmpi crfD,L,rA,SIMM
Compare cmp crfD,L,rA,rB
Compare Logical Immediate cmpli crfD,L,rA,UIMM
Compare Logical cmpl crfD,L,rA,rB

The crfD operand can be omitted if the result of the comparison is to be placed in CRO.
Otherwise the target CR field must be specified in the instruction crfD field, using an
explicit field number.

For information on simplified mnemonics for the integer compare instructions see
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual.

2.3.4.1.3 Integer Logical Instructions

The logical instructions shown in Table 2-22 perform bit-parallel operations on the
specified operands. Logical instructions with the CR updating enabled (uses dot suffix) and
instructions andi. and andis. set CR field CRO to characterize the result of the logical
operation. Logical instructions do not affect the XER[SO], XER[OV], and XER[CA] bits.
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See Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for
simplified mnemonic examples for integer logical operations.

Table 2-22. Integer Logical Instructions

Name Mnemonic os'ﬁ:;';d
AND Immediate andi. rA,rS,UIMM
AND Immediate Shifted andis. rA,rS,UiMM
OR Immediate ori rA,rS,UIMM
OR Immediate Shifted oris rA,rS,UiMM
XOR Immediate xori rA,rS,UIMM
XOR Immediate Shifted xoris rA,rS,UiMM
AND and (and.) rA,rS,rB
OR or (or.) rA,rS,rB
XOR xor (xor.) rA,rS,rB
NAND nand (nand.) rA,rS,rB
NOR nor (nor.) rA,rS,rB
Equivalent eqv (eqv.) rA,rS,rB
AND with Complement andc (andc.) rA,rS,rB
OR with Complement orc (orc.) rA,rS,rB
Extend Sign Byte extsb (extsb.) rA,rS
Extend Sign Half Word extsh (extsh.) rA,rS
Extend Sign Word extsw (extsw.) rA,rS
Count Leading Zeros Word cntizw (cntlzw.) | rA,rS
Count Leading Zeros Double Word cntizd (cntlzd.) rA,rS

2.3.4.1.4 Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a complete list of simplified mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost
bits of a register, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

Integer rotate instructions rotate the contents of a register. The result of the rotation is either
inserted into the target register under control of a mask (if a mask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is O the associated
bit in the target register is unchanged), or ANDed with a mask before being placed into the
target register.
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The integer rotate instructions are summarized in Table 2-23.

Table 2-23. Integer Rotate Iinstructions

Name Mnemonic Operand Syntax
Rotate Left Double Word then Clear Left ridcl (ridcl.) rA,rS,rB,MB
Rotate Left Double Word then Clear Right rider (ridcr.) rA,rS,rB,ME
Rotate Left Double Word Immediate then Clear ridic (ridic.) rA,rS,SH,MB
Rotate Left Double Word Immediate then Clear Left ridicl (ridicl.) rA,rS,SH,MB
Rotate Left Double Word Immediate then Clear Right ridicr (ridicr.) rA,rS,SH,ME
Rotate Left Double Word Immediate then Mask Insert ridimi (ridimi.) rA,rS,SH,MB

Rotate Left Word Immediate then AND with Mask

riwinm (riwinm.)

rA,rS,SH,MB,ME

Rotate Left Word then AND with Mask

riwnm (riwnm.)

rA,rS,rB,MB,ME

Rotate Left Word Immediate then Mask Insert

riwimi (rlwimi.)

rA,rS,SH,MB,ME

The integer shift instructions perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics (shown in Appendix F, “Simplified
Mnemonics,” in The Programming Environments Manual) are provided to make coding of
such shifts simpler and easier to understand.

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision
Shifts,” in The Programming Environments Manual. The integer shift instructions are
summarized in Table 2-24.

Table 2-24. Integer Shift Instructions

Name Mnemonic Operand Syntax
Shift Left Double Word sid (sid.) rA,rS,rB
Shift Left Word siw (slw.) rA,rS,rB
Shift Right Algebraic Double Word srad (srad.) rA,rS,rB
Shift Right Algebraic Double Word Immediate sradi (sradi.) rA,rS,SH
Shift Right Double Word srd (srd.) rA,rS,rB
Shift Right Word SIW  (Srw.) rA,rS,rB
Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH
Shift Right Algebraic Word sraw (sraw.) rA,rS,rB
MOTOROLA Chapter 2. Programming Model 2-41



2.3.4.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

Floating-point arithmetic instructions

Floating-point multiply-add instructions
Floating-point rounding and conversion instructions
Floating-point compare instructions

Floating-point status and control register instructions

Floating-point move instructions

See Section 2.3.4.3, “Load and Store Instructions,” for information about floating-point
loads and stores.

The PowerPC architecture supports a floating-point system as defined in the IEEE 754
standard, but requires software support to conform with that standard. All floating-point
operations conform to the IEEE 754 standard, except if software sets the non-IEEE mode
bit (NI) in the FPSCR.

2.3.4.2.1 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 2-25.

Table 2-25. Floating-Point Arithmetic Instructions

Name Mnemonic Operand Syntax

Floating Add (Double-Precision) fadd (fadd.) frD,frAfrB
Floating Add Single fadds (fadds.) frD,frA,frB
Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB
Floating Subtract Single fsubs (fsubs.) frD,frA,frB
Floating Multiply (Double-Precision) fmul (fmul.) frD,frA,frC
Floating Multiply Single fmuls (fmuls.) frD,frA,frC
Floating Divide (Double-Precision) fdiv (fdiv.) frD,frA,frB
Floating Divide Single fdivs (fdivs.) frD,frA,frB
Floating Square Root (Double-Precision) fsqrt (fsqrt.) frD,frB
Floating Square Root Single fsqrts (fsqrts.) frD,frB
Floating Reciprocal Estimate Single fres (fres.) frD,frB
Floating Reciprocal Square Root Estimate | frsqrte (frsqrte.) frD,frB
Floating Select fsel frD,frA frC frB

All single-precision arithmetic instructions are performed using a double-precision format.
The floating-point architecture is a single-pass implementation for double-precision
products. In most cases, a single-precision instruction using only single-precision
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operands, in double-precision format, has the same latency as its double-precision
equivalent.

2.3.4.2.2 Floating-Point Multiply-Add Instructions
These instructions combine multiply and add operations without an intermediate rounding
operation. The floating-point multiply-add instructions are summarized in Table 2-26.

Table 2-26. Floating-Point Multiply-Add Instructions

Name Mnemonic Operand Syntax
Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frAfrC,frB
Floating Multiply-Add Single fmadds (fmadds.) frD,frAfrC,frB
Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB
Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frAfrC,frB
Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) frD,frAfrC,frB
Floating Negative Multiply-Add Single fnmadds (fnmadds.) | frD,frAfrC,frB
Floating Negative Multiply-Subtract (Double-Precision) fnmsub (fnmsub.) frD,frA,frC,frB
Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs.) | frD,frAfrC,frB

2.3.4.2.3 Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision floating-point number. The
floating-point convert instructions convert a 64-bit double-precision floating-point number
to a 32-bit signed integer number.

Examples of uses of these instructions to perform various conversions can be found in
Appendix D, “Floating-Point Models,” in The Programming Environments Manual.

Table 2-27. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand Syntax
Floating Convert from Integer Double Word fefid (fefid.) frD,frB
Floating Convert to Integer Double Word fetid (fetid.) frD,frB
Floating Convert to Integer Double Word with Round toward Zero | fetidz (fctidz.) frD,frB
Floating Round to Single frsp (frsp.) frD,frB
Floating Convert to Integer Word fctiw (fctiw.) frD,frB
Floating Convert to Integer Word with Round toward Zero fetiwz (fetiwz.) frD,frB
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2.3.4.2.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers.
The comparison ignores the sign of zero (that is +0 = —0). The floating-point compare
instructions are summarized in Table 2-28.

Table 2-28. Floating-Point Compare Instructions

Name Mnemonic Operand Syntax
Floating Compare Unordered fcmpu crfD,frA,frB
Floating Compare Ordered fecmpo crfD,frA,frB

Within the PowerPC architecture, an fcmpu or fempo instruction with the Re bit set can
cause an illegal instruction program exception or produce a boundedly undefined result. In
the 620, crfD should be treated as undefined.

2.3.4.2.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point
instructions executed by a given processor. Executing an FPSCR instruction ensures that all
floating-point instructions previously initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has
completed. The FPSCR instructions are summarized in Table 2-29.

Table 2-29. Floating-Point Status and Control Register Instructions

Name Mnemonic Operand Syntax
Move from FPSCR mffs (mffs.) frD
Move to Condition Register from FPSCR mcrfs crfD,crfS
Move to FPSCR Field Immediate mifsfi (mtfsfi.) crfD,IMM
Move to FPSCR Fields mifsf (mifsf.) FM,frB
Move to FPSCR Bit 0 mifsb0 (mtfsb0.) | crbD
Move to FPSCR Bit 1 mtfsb1 (mtfsb1.) | crbD

2.3.4.2.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another. The floating-point
move instructions do not modify the FPSCR. The CR update option in these instructions
controls the placing of result status into CR1. Table 2-30 summarizes the floating-point
move instructions.

Table 2-30. Floating-Point Move Instructions

Name Mnemonic Operand Syntax

Floating Move Register fmr (fmr.) frD,frB
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Table 2-30. Floating-Point Move Instructions (Continued)

Floating Negate fneg (fneg.) frD,frB
Floating Absolute Value fabs (fabs.) frD,frB
Floating Negative Absolute Value fnabs (fnabs.) frD,frB

2.3.4.3 Load and Store Instructions

Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions, which consist of the
following:

Integer load instructions

Integer store instructions

Integer load and store with byte reverse instructions
Integer load and store multiple instructions

Integer load and store string instructions
Floating-point load instructions

Floating-point store instructions

Implementation Notes—The following describes how the 620 handles misalignment:

L]

If an unaligned memory access crosses a 4-Kbyte page boundary, within a normal
segment, an exception may occur when the boundary is crossed (that is, a protection
violation occurs on the new page). In these cases, the 620 triggers a DSI exception
and the instruction may have partially completed.

Some misaligned memory accesses suffer performance degradation as compared to
an aligned access of the same type. Memory accesses that cross a word boundary are
broken into multiple discrete accesses by the load/store unit, except floating-point

doubles aligned on a double-word boundary. Any noncacheable access that crosses
a double-word boundary is broken into multiple external bus tenures.

Any operation that crosses a word boundary (double word for floating-point doubles
aligned on a double-word boundary) is broken into two accesses. Each of these
accesses is translated. If either translation results in a data memory violation, a DSI
exception is signaled. If two translations cross from T = 1 into T = 0 space (a
programming error), the 620 completes all of the accesses for the operation, the
segment information from the T = 1 space is presented on the bus for every access
of the operation, and the 620 requires a direct-store protocol “Reply” from the
device. Similarly, if two translations cross from T = 0 into T = 1 space, a DSI
exception is not signaled.

In the PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form is invalid. These include the
integer load indexed instructions (Ibzx, Ibzux, ldux, ldx, lhzx, lhzux, lhax, lhaux,
Iwaux, Iwax, Iwzx, lwzux), the integer store indexed instructions (stbx, sthux,
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stdux, stdx, sthx, sthux, stwx, stwux), the load and store with byte-reversal
instructions (lhbrx, Iwbrx, sthbrx, stwbrx), the string instructions (Iswi, Iswx,
stswi, stswx), and the synchronization instructions (sync, Iwarx). In the 620,
executing one of these invalid instruction forms causes CRO to be set to an undefined
value. The floating-point load and store indexed instructions (Ifsx, Ifsux, Ifdx, Ifdux,
stfsx, stfsux, stfdx, stfdux) are also invalid when the Rc bit is one. In the 620,
executing one of these invalid instruction forms causes CRO to be set to an undefined
value.

2.3.4.3.1 Self-Modifying Code

When a processor modifies a memory location that may be contained in the instruction
cache, software must ensure that memory updates are visible to the instruction fetching
mechanism. This can be achieved by the following instruction sequence:

dcbst lupdate memory

sync Iwait for update

icbi Iremove (invalidate) copy in instruction cache
sync Iwait for icbi to be globally performed

isync Iremove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Since
instruction fetching bypasses the data cache, changes to items in the data cache may not be
reflected in memory until the fetch operations complete.

Special care must be taken to avoid coherency paradoxes in systems that implement unified
secondary caches, and designers should carefully follow the guidelines for maintaining
cache coherency that are provided in the VEA, and discussed in Chapter 5, “Cache Model
and Memory Coherency,” in The Programming Environments Manual. Because the 620
does not broadcast the M bit for instruction fetches, external caches are subject to
coherency paradoxes.

2.3.4.3.2 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 2.3.2.3, “Effective Address Calculation,” for information about calculating
effective addresses. Note that in some implementations, operations that are not naturally
aligned may suffer performance degradation. Refer to Section 4.6.6, “Alignment Exception
(0x00600),” for additional information about load and store address alignment exceptions.

2.3.4.3.3 Register Indirect Integer Load Instructions

For integer load instructions, the byte, half word, word, or double word addressed by the
EA (effective address) is loaded into rD. Many integer load instructions have an update
form, in which rA is updated with the generated effective address. For these forms, if
rA # 0 and rA # rD (otherwise invalid), the EA is placed into rA and the memory element
(byte, half word, word, or double word) addressed by the EA is loaded into rD. Note that
the PowerPC architecture defines load with update instructions with operand rA = 0 or
rA =rD as invalid forms.
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Implementation Notes—The following notes describe the 620 implementation of integer
load instructions:

* In the PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form is invalid. These include the
integer load indexed instructions (Ibzx, lbzux, ldux, 1dx, lhzx, lhzux, lhax, lhaux,
Iwaux, lwax, lwzx, and lwzux). In the 620, executing one of these invalid
instruction forms causes CRO to be set to an undefined value.

» For load with update instructions (lbzu, Ibzux, 1du, ldux, thzu, lhzux, lhau, lhaux,
Iwzu, lwzux, Ifsu, Ifsux, Ifdu, Ifdux), when rA =0 or rA = rD the instruction form
is considered invalid. If rA = 0, the 620 sets GPRO to an undefined value. If rA =
rD, the 620 sets rD to an undefined value.

+ The PowerPC architecture cautions programmers that some implementations of the
architecture may execute the Load Half Algebraic (lha, lhax) instructions with
greater latency than other types of load instructions. This is not the case for the 620.

Table 2-31 summarizes the integer load instructions.

Table 2-31. Integer Load Instructions

Name Mnemonic Operand Syntax
Load Byte and Zero ibz rD,d(rA)
Load Byte and Zero Indexed Ibzx rD,rA,rB
Load Byte and Zero with Update Ibzu rD,d(rA)
Load Byte and Zero with Update Indexed Ibzux rD,rA,rB
Load Double Word Id rD,d(rA)
Load Double Word with Update Idu rD,d(rA)
Load Double Word with Update Indexed Idux rD,rA,rB
Load Double Word Indexed ldx rD,rA,rB
Load Half Word and Zero lhz rD,d(rA)
Load Half Word and Zero Indexed lhzx rD,rA,rB
Load Half Word and Zero with Update lhzu rD,d(rA)
Load Half Word and Zero with Update Indexed | lhzux rD,rA,rB
Load Half Word Algebraic lha rD,d(rA)
Load Half Word Algebraic Indexed lhax rD,rA,rB
Load Half Word Algebraic with Update lhau rD,d(rA)
Load Half Word Algebraic with Update Indexed | lhaux rD,rA,rB
Load Word Algebraic Iwa rD,d(rA)
Load Word Algebraic with Update Indexed lwaux rD,rA,rB
Load Word Algebraic with Indexed Iwax rD,rA,rB
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Table 2-31. Integer Load Instructions (Continued)

Name Mnemonic Operand Syntax
Load Word and Zero lwz rD,d(rA)
Load Word and Zero Indexed lwzx rD,rA,rB
Load Word and Zero with Update lwzu rD,d(rA)
Load Word and Zero with Update Indexed lwzux rD,rA,rB

2.3.4.3.4 Integer Store Instructions

For integer store instructions, the contents of rS are stored into the byte, half word, word or
double word in memory addressed by the EA (effective address). Many store instructions
have an update form, in which rA is updated with the EA. For these forms, the following
rules apply:

o IfrA #0, the effective address is placed into rA.

e IfrS =rA, the contents of register rS are copied to the target memory element, then
the generated EA is placed into rA (rS).

The PowerPC architecture defines store with update instructions with rA = 0 as an invalid
form. In addition, it defines integer store instructions with the CR update option enabled
(Rc field, bit 31, in the instruction encoding = 1) to be an invalid form. Table 2-32
summarizes the integer store instructions.

Table 2-32. Integer Store Instructions

Name Mnemonic Operand Syntax
Store Byte stb rS,d(rA)
Store Byte Indexed stbx rS,rA,rB
Store Byte with Update stbu rS,d(rA)
Store Byte with Update Indexed stbux rS,rA,rB
Store Double Word std rS,d(rA)
Store Double Word with Update stdu rS,d(rA)
Store Double Word with Update Indexed stdux rS,rA,rB
Store Double Word Indexed stdx rS,rA,rB
Store Half Word sth rS,d(rA)
Store Half Word Indexed sthx rS,rA,rB
Store Half Word with Update i sthu rS,d(rA)
Store Half Word with Update Indexed sthux rS,rA,rB
Store Word stw rS,d(rA)
Store Word Indexed stwx rS,rA,rB
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Table 2-32. Integer Store Instructions (Continued)

Name Mnemonic Operand Syntax
Store Word with Update stwu rS,d(rA)
Store Word with Update Indexed stwux rS,rA,rB

Implementation Notes—The following notes describe the 620 implementation of integer
store instructions:

¢ In the PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form is invalid. These include the
integer store indexed instructions (stbx, stbux, stdux, stdx, sthx, sthux, stwx,
stwux). In the 620, executing one of these invalid instruction forms causes CRO to
be set to an undefined value.

« For the store with update instructions (stbu, stbux, stdu, stdux, sthu, sthux, stwu,
stwux, stfsu, stfsux, stfdu, stfdux), when rA = 0, the instruction form is considered
invalid. In this case, the 620 sets GPRO to an undefined value.

2.3.4.3.5 Integer Load and Store with Byte Reverse Instructions

Table 2-33 describes integer load and store with byte reverse instructions. When used in a
PowerPC system operating with the default big-endian byte order, these instructions have
the effect of loading and storing data in little-endian order. Likewise, when used in a
PowerPC system operating with little-endian byte order, these instructions have the effect
of loading and storing data in big-endian order. For more information about big-endian and
little-endian byte ordering, see Section 3.2.2, “Byte Ordering,” in The Programming
Environments Manual.

Implementation Note—In the PowerPC architecture, the Rc bit must be zero for almost
all load and store instructions. If the Rc bit is one, the instruction form is invalid. These
include the load and store with byte-reverse instructions (lhbrx, lwbrx, sthbrx, stwbrx).
In the 620, executing one of these invalid instruction forms causes CRO to be set to an
undefined value.

Table 2-33. Integer Load and Store with Byte Reverse Instructions

Name Mnemonic | Operand Syntax
Load Half Word Byte-Reverse Indexed Ihbrx rD,rA,rB
Load Word Byte-Reverse Indexed Iwbrx rD,rA,rB
Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB
Store Word Byte-Reverse Indexed stwbrx rS,rA,rB

2.3.4.3.6 Integer Load and Store Multiple Instructions
The load/store multiple instructions are used to move blocks of data to and from the GPRs.
The load multiple and store multiple instructions may have operands that require memory
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accesses crossing a 4-Kbyte page boundary. As a result, these instructions may be
interrupted by a DSI exception associated with the address translation of the second page.

Implementation Notes—The following describes the 620 implementation of the
load/store multiple instruction:

» The PowerPC architecture requires that memory operands for Load Multiple and
Store Multiple instructions (Imw and stmw) be word-aligned. If the operands to
these instructions are not word-aligned, an alignment exception occurs. The 620
provides hardware support for Imw and stmw instructions that cross a page
boundary. However, a DSI exception may occur when the boundary is crossed (for
example, if a protection violation occurs on the new page).

¢ Executing an Imw instruction in which rA is in the range of registers to be loaded
or in which rA =rD = 0is invalid in the architecture. In the 620, all registers loaded
are set to undefined values. Any exceptions resulting from a memory access cause
the system error handler normally associated with the exception to be invoked.

« The 620’s implementation of the Imw instruction allows one double word of data to
be transferred to the GPRs per internal clock cycle (that is, one register is filled per
clock) whenever the data is found in the cache. For the stmw instruction, data is
transferred from the GPRs to the cache at a rate of one double word (GPR) per clock
cycle.

e When an Imw or stmw access is to noncacheable memory, data is transferred on the
external bus at a rate of one double word per external bus tenure.

» The load multiple instruction can be interrupted after the instruction has partially
completed. If rA has been modified and the instruction is restarted, the instruction
begins loading from the addresses specified by the new value of rA, which might be
anywhere in memory; therefore, the system error handler may be invoked.

The PowerPC architecture defines the load multiple word (Imw) instruction with rA in the
range of registers to be loaded as an invalid form.

Table 2-34. Integer Load and Store Multiple Instructions

Name Mnemonic Operand Syntax
Load Multiple Word | Imw rD,d(rA)
Store Multiple Word | stmw rS,d(rA)

2.3.4.3.7 Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to
registers or from registers to memory without concern for alignment. These instructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory fields. However, in some implementations, these instructions
are likely to have greater latency and take longer to execute, perhaps much longer, than a
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sequence of individual load or store instructions that produce the same results. Table 2-35
summarizes the integer load and store string instructions.

In other PowerPC implementations operating with little-endian byte order, execution of a
load or string instruction causes the system alignment error handler to be invoked; see
Section 3.2.2, “Byte Ordering,” in The Programming Environments Manual for more
information.

Table 2-35. Integer Load and Store String Instructions

Name Mnemonic Operand Syntax
Load String Word Immediate | Iswi rD,rA,NB
Load String Word Indexed Iswx rD,rA,rB
Store String Word Immediate | stswi rS,rA,NB
Store String Word Indexed stswx rS,rA,rB

Load string and store string instructions may involve operands that are not word-aligned.

As described in Section 4.6.6, “Alignment Exception (0x00600),” a misaligned string
operation suffers a performance penalty compared to an aligned operation of the same type.
A non-word-aligned string operation that crosses a 4-Kbyte boundary, or a
double-word-aligned string operation that crosses a 256-Mbyte boundary always causes an
alignment exception. A non—word-aligned string operation that crosses a double-word
boundary is also slower than a word-aligned string operation.

Implementation Note—The following describes the 620 implementation of the load/store
string instruction:

¢ The 620 provides hardware support for Iswi, Iswx, stswi, and stswx instructions to
cross a page boundary. However, a DSI exception may occur when the boundary is
crossed (for example, if a protection violation occurs on the new page).

« AnlIswi or Iswx instruction in which rA or rB is in the range of registers potentially
to be loaded or in which rA =rD = 0 is an invalid instruction form. In the 620, all
registers loaded are set to undefined values. Any exceptions resulting from a
memory access cause the system error handler normally associated with the
exception to be invoked.

+ The load multiple and load string instructions can be interrupted after the instruction
has partially completed. If rA has been modified and the instruction is restarted, the
instruction begins loading from the addresses specified by the new value of rA,
which might be anywhere in memory; therefore, the system error handler may be
invoked.

» The load string instructions can be interrupted after the instruction has partially
completed. If rA has been modified and the instruction is restarted, the instruction
begins loading from the addresses specified by the new value of rA, which might be
anywhere in memory; therefore, the system error handler may be invoked.
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2.3.4.3.8 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register
indirect with immediate index addressing mode and register indirect with index addressing
mode. Floating-point loads and stores are not supported for direct-store accesses. The use
of floating-point loads and stores for direct-store access results in an alignment exception.

There are two forms of the floating-point load instruction—single-precision and
double-precision operand formats. Because the FPRs support only the floating-point
double-precision format, single-precision floating-point load instructions convert
single-precision data to double-precision format before loading the operands into the target
FPR.

Note that the PowerPC architecture defines load with update instructions with rA =0 as an
invalid form.

Table 2-36. Floating-Point Load Instructions

Name Mnemonic Operand Syntax
Load Floating-Point Single Ifs frD,d(rA)
Load Floating-Point Single Indexed Ifsx frD,rA,rB
Load Floating-Point Single with Update Ifsu frD,d(rA)
Load Floating-Point Single with Update Indexed Ifsux frD,rA,rB
Load Floating-Point Double ifd frD,d(rA)
Load Floating-Point Double Indexed Ifdx frD,rA,rB
Load Floating-Point Double with Update Ifdu frD,d(rA)
Load Floating-Point Double with Update Indexed Ifdux frD,rA,rB

2.3.4.3.9 Floating-Point Store Instructions

This section describes floating-point store instructions. There are three basic forms of the
store instruction—single-precision, double-precision, and integer. The integer form is
supported by the optional stfiwx instruction. Because the FPRs support only floating-point,
double-precision format for floating-point data, single-precision floating-point store
instructions convert double-precision data to single-precision format before storing the
operands. Table 2-37 summarizes the floating-point store instructions.
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Table 2-37. Floating-Point Store Instructions

Name Mnemonic Operand Syntax
Store Floating-Point Single stfs frS,d(rA)
Store Floating-Point Single Indexed stfsx frS,rB
Store Floating-Point Single with Update stfsu frS,d(rA)
Store Floating-Point Single with Update Indexed stfsux frS,rB
Store Floating-Point Double stfd frS,d(rA)
Store Floating-Point Double Indexed stfdx frS,rB
Store Floating-Point Double with Update stfdu frS,d(rA)
Store Floating-Point Double with Update Indexed stfdux frS,rB
Store Floating-Point as Integer Word Indexed stfiwx frS,rB

Some floating-point store instructions require conversions in the LSU. Table 2-38 shows
the conversions made by the LSU when performing a Store Floating-Point Single
instruction.

Table 2-38. Store Floating-Point Single Behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Store
Single Zero Store
Infinity
QNaN
Single SNaN Store
Double Normalized If(exp < 896)
then Denormalize and Store
else
Store
Double Denormalized Store Zero
Double Zero Store
Infinity
QNaN
Double SNaN Store
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Table 2-39 shows the conversions made when performing a Store Floating-Point Double
instruction. Most entries in the table indicate that the floating-point value is simply stored.
Only in a few cases are any other actions taken.

Table 2-39. Store Floating-Point Double Behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Normalize and Store
Single Zero Store
Infinity
QNaN
Single SNaN Store
Double Normalized Store
Double Denormalized Store
Double Zero Store
Infinity
QNaN
Double SNaN Store

Architecturally, all floating-point numbers are represented in double-precision format
within the 620. Execution of a store floating-point single (stfs, stfsu, stfsx, stfsux)
instruction requires conversion from double- to single-precision format. If the exponent is
not greater than 896, this conversion requires denormalization.

Because of how floating-point numbers are implemented in the 620, there is also a case
when execution of a store floating-point double (stfd, stfdu, stfdx, stfdux) instruction can
require internal shifting of the mantissa. This case occurs when the operand of a store
floating-point double instruction is a denormalized single-precision value. The value could
be the result of a load floating-point single instruction, a single-precision arithmetic
instruction, or a floating round to single-precision instruction.

2.3.4.4 Branch and Flow Control Instructions

Some branch instructions can redirect instruction execution conditionally based on the
value of bits in the CR. When the processor encounters one of these instructions, it scans
the execution pipelines to determine whether an instruction in progress may affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action defined for the branch instruction.

2.3.4.4.1 Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aligned; the PowerPC processors ignore the two low-order
bits of the generated branch target address.
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Branch instructions compute the effective address (EA) of the next instruction address
using the following addressing modes:

¢ Branch relative

< Branch conditional to relative address
< Branch to absolute address

< Branch conditional to absolute address
¢ Branch conditional to link register

« Branch conditional to count register

Note that in the 620, all branch instructions (b, ba, bl, bla, bc, bca, bcl, bcla, belr, belrl,
becetr, beetrl) and condition register logical instructions (crand, cror, crxor, crnand,
crnor, crandc, creqv, crorc, and mcrf) are executed by the BPU. Some of these
instructions can redirect instruction execution conditionally based on the value of bits in the
CR. Whenever the CR bits resolve, the branch direction is either marked as correct or
mispredicted. Correcting a mispredicted branch requires that the 620 flush speculatively
executed instructions and restore the machine state to immediately after the branch. This
correction can be done immediately upon resolution of the condition registers bits.

2.3.4.4.2 Branch Instructions

Table 2-40 lists the branch instructions provided by the PowerPC processors. To simplify
assembly language programming, a set of simplified mnemonics and symbols is provided
for the most frequently used forms of branch conditional, compare, trap, rotate and shift,
and certain other instructions. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a list of simplified mnemonic examples.

Table 2-40. Branch Instructions

Name Mnemonic Operand Syntax
Branch b (ba bl bla) target_addr
Branch Conditional bc (bca bcl bcla) BO,Bl,target_addr
Branch Conditional to Link Register belr  (belrt) BO,BI
Branch Conditional to Count Register beetr (bectrl) BO,BI

2.3.4.4.3 Condition Register Logical Instructions

Condition register logical instructions, shown in Table 2-41, and the Move Condition
Register Field (merf) instruction are also defined as flow control instructions.
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Table 2-41. Condition Register Logical Instructions

Name Mnemonic Operand Syntax

Condition Register AND crand crbD,crbA,crbB
Condition Register OR cror crbD,crbA,crbB
Condition Register XOR crxor crbD,crbA,crbB
Condition Register NAND crnand crbD,crbA,crbB
Condition Register NOR crnor crbD,crbA,crbB
Condition Register Equivalent creqv crbD,crbA, crbB
Condition Register AND with Complement crandc crbD,crbA, crbB
Condition Register OR with Complement crorc crbD,crbA, crbB
Move Condition Register Field merf crfD,crfS

Note that if the LR update option is enabled for any of these instructions, the PowerPC
architecture defines these forms of the instructions as invalid.

2.3.4.4.4 Trap Instructions

The trap instructions shown in Table 2-42 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap
handler is invoked. If the tested conditions are not met, instruction execution continues
normally.

Table 2-42. Trap Instructions

Name Mnemonic Operand Syntax
Trap Double Word td TO,rA,rB
Trap Double Word Immediate tdi TO,rA,SIMM
Trap Word Immediate twi TO,rA,SIMM
Trap Word tw TO,rA,rB

See Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for
a complete set of simplified mnemonics.

2.3.4.5 System Linkage Instruction

This section describes the System Call (sc) instruction that permits a program to call on the
system to perform a service. See also Section 2.3.6.1, “System Linkage Instructions,” for
additional information.

Table 2-43. System Linkage Instruction—UISA

Name Mnemonic Operand Syntax

System Call sc —
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2.3.4.6 Processor Control Instructions

Processor control instructions are used to read from and write to the condition register
(CR), machine state register (MSR), and special-purpose registers (SPRs). See
Section 2.3.5.1, “Processor Control Instructions,” for the mftb instruction and
Section 2.3.6.2, “Processor Control Instructions,” for information about the instructions
used for reading from and writing to the MSR and SPRs.

2.3.4.6.1 Move to/from Condition Register Instructions
Table 2-44 summarizes the instructions for reading from or writing to the condition register.

Table 2-44. Move to/from Condition Register Instructions

Name Mnemonic Operand Syntax
Move to Condition Register Fields mtcrf CRM,rS
Move to Condition Register from XER merxr crfD
Move from Condition Register mfcr D

Note that the performance of the mterf instruction depends greatly on whether only one
field is being accessed or either no fields or multiple fields are accessed as follows:

» Those mterf instructions that update only one field are executed in either of the
SCIUs and the CR field is renamed as with any other SCIU instruction.

+ Those mterf instructions that update either multiple fields or no fields are dispatched
to the MCIU and a count/link scoreboard bit is set. When that bit is set, no more
mterf instructions of the same type, mtspr instructions that update the count or link
registers, branch instructions that depend on the condition register and CR logical
instructions can be dispatched to the MCIU. The bit is cleared when the mtctr,
mtcrf, or mtlr instruction that the bit is executed.

Because mterf instructions that update a single field do not require such synchronization
that other mterf instructions do, and because two such single-field instructions can execute
in parallel, it is typically more efficient to use multiple mterf instructions that update only
one field apiece than to use one mterf instruction that updates multiple fields. A rule of
thumb follows:

» Itis always more efficient to use two mterf instructions that update only one field
apiece than to use one mterf instruction that updates two fields.

— It is almost always more efficient to use three or four mterf instructions that
update only one field apiece than to use one mterf instruction that updates three
fields.

— Itis often more efficient to use more than four mterf instructions that update only
one field than to use one mterf instruction that updates four fields.
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2.3.4.6.2 Move to/from Special-Purpose Register Instructions
Table 2-45 lists the mtspr and mfspr instructions.

Table 2-45. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic Operand Syntax
Move to Special Purpose Register mtspr SPR,rS
Move from Special Purpose Register mfspr rD,SPR

2.3.4.7 Memory Synchronization Instructions

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “Instruction
and Data Cache Operation,” for additional information about these instructions and about
related aspects of memory synchronization.

Table 2-46. Memory Synchronization Instructions—UISA

Name Mnemonic Operand Syntax
Load Double Word and Reserve Indexed | Idarx rD,rA,rB
Load Word and Reserve Indexed Iwarx rD,rA,rB
Store Double Word Conditional Indexed stdcx. rS,rA,rB
Store Word Conditional Indexed stwex. rS,rA,rB
Synchronize sync —

The proper paired use of the ldarx and Iwarx instructions with the stdex. and stwex.
instructions allows programmers to emulate common semaphore operations such as “test
and set,” “compare and swap,” “exchange memory,” and “fetch and add.” The ldarx or
Iwarx instruction must be paired with an stdex. or stwex. instruction with the same
effective address used for both instructions of the pair. Note that the reservation granularity
is implementation-dependent. See 2.3.5.2, “Memory Synchronization Instructions,” for

details about additional memory synchronization (eieio and isync) instructions.

Implementation Notes—The following notes describe the 620 implementation of memory
synchronization instructions:

+ The PowerPC architecture requires that memory operands for Load and Reserve
(ldarx or lwarx) and Store Conditional (sdwcx. or stwcx.) instructions must be
word-aligned. If the operands to these instructions are not word-aligned on the 620,
an alignment exception occurs.

» The PowerPC architecture indicates that the granularity with which reservations for
ldarx, Iwarx, stdcx., and stwex. instructions are managed is
implementation-dependent. In the 620 reservations, this granularity is a 64-byte
cache block.
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» The sync instruction causes the 620 to serialize. The sync instruction can be
dispatched with other instructions that are before it, in program order. However, no
more instructions can be dispatched until the sync instruction completes.
Instructions already in the instruction buffer, due to prefetching, are not refetched
after the sync completes. If reflecting is required, isync should be executed to flush
the instruction buffer after the sync. The sync is dispatched to the LSU and is
broadcast onto the external bus.

In the PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form is invalid. These include the sync,
ldarx, and Iwarx instructions. In the 620, executing one of these invalid instruction forms
causes CRO to be set to an undefined value. The stdcx. and stwcx. instructions are the only
load/store instructions that has a valid form if Rc is set. If the Rc bit is zero, the result of
executing these instructions in the 620 causes CRO to be set to an undefined value.

2.3.5 PowerPC VEA Instructions

The PowerPC virtual environment architecture (VEA) describes the semantics of the
memory model that can be assumed by software processes, and includes descriptions of the
cache model, cache control instructions, address aliasing, and other related issues.
Implementations that conform to the VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

This section describes additional instructions that are provided by the VEA.

2.3.5.1 Processor Control Instructions

In addition to the move to condition register instructions (specified by the UISA), the VEA
defines the mftb instruction (user-level instruction) for reading the contents of the time base
register; see Chapter 3, “Instruction and Data Cache Operation,” for more information.
Table 3-34 shows the mftb instruction.

Table 2-47. Move from Time Base Instruction

Name Mnemonic Operand Syntax

Move from Time Base mftb D, TBR

Simplified mnemonics are provided for the mftb instruction so it can be coded with the
TBR name as part of the mnemonic rather than requiring it to be coded as an operand. See
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for
simplified mnemonic examples and for simplified mnemonics for Move from Time Base
(mftb) and Move from Time Base Upper (mftbu), which are variants of the mftb
instruction rather than of mfspr. The mftb instruction serves as both a basic and simplified
mnemonic. Assemblers recognize an mftb mnemonic with two operands as the basic form,
and an mfthb mnemonic with one operand as the simplified form.
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Implementation Notes—The following information is useful with respect to using the
time base implementation in the 620:

» The 620 allows user-mode read access to the time base counter through the use of
the Move from Time Base (mftb) and the Move from Time Base Upper (mftbu)
instructions. As a 64-bit PowerPC implementation, the 620 can access the entire TB
register at once.

» The time base counter is clocked at the bus clock frequency. Counting is enabled by
assertion of the time base enable (TBENABLE) input signal.

2.3.5.2 Memory Synchronization Instructions

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “Instruction
and Data Cache Operation,” for additional information about these instructions and about
related aspects of memory synchronization.

Table 2-48 describes the memory synchronization instructions defined by the VEA.

Table 2-48. Memory Synchronization Instructions—VEA

Operand

Name Mnemonic
Syntax

Implementation Notes

Enforce In-Order | eieio : —_— The eieio instruction is dispatched by the 620 to the LSU. The
Execution of /1O eieio instruction executes after all preceding cache-inhibited
or write-through memory instructions execute; all following
cache-inhibited or write-through instructions execute after the
eieio instruction executes. When the eieio instruction
executes, an EIEIO address-only operation is broadcast on
the external bus to allow ordering to be enforced in the
external memory system.

Instruction isync — The isync instruction causes the 620 to purge its instruction
Synchronize buffers and fetch the double word containing the next
sequential instruction.

System designs that use a second-level cache should take special care to recognize the
hardware signaling caused by a SYNC bus operation and perform the appropriate actions
to guarantee that memory references that may be queued internally to the second-level
cache have been performed globally.

In addition to the sync instruction (specified by UISA), the VEA defines the Enforce
In-Order Execution of I/O (eieio) and Instruction Synchronize (isync) instructions. The
number of cycles required to complete an eieio instruction depends on system parameters
and on the processor's state when the instruction is issued. As a result, frequent use of this
instruction may degrade performance slightly.
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The isync instruction causes the processor to wait for any preceding instructions to
complete, discard all prefetched instructions, and then branch to the next sequential
instruction (which has the effect of clearing the pipeline behind the isync instruction).

2.3.5.3 Memory Control Instructions
Memory control instructions include the following types:

» Cache management instructions (user-level and supervisor-level)
» Segment register manipulation instructions
+ Translation lookaside buffer management instructions

This section describes the user-level cache management instructions defined by the VEA.
See 2.3.6.3, “Memory Control Instructions,” for information about supervisor-level cache,
segment register manipulation, and translation lookaside buffer management instructions.

The instructions summarized in this section provide user-level programs the ability to
manage on-chip caches if they are implemented. See Chapter 3, “Instruction and Data
Cache Operation,” for more information about cache topics.

The user-level cache instructions provide software a way to help manage processor caches.
The following sections describe how these operations are treated with respect to the 620°s
cache.

As with other memory-related instructions, the effect of the cache management instructions
on memory are weakly-ordered. If the programmer needs to ensure that cache or other
instructions have been performed with respect to all other processors and system
mechanisms, a sync instruction must be placed in the program following those instructions.

Note that this discussion does not apply to direct-store segment accesses because these are
defined to be cache-inhibited and instruction fetch from them is not allowed. Cache
operations that access direct-store segment are treated as no-ops. Table 2-49 summarizes
the cache instructions defined by the VEA. Note that these instructions are accessible to
user-level programs.
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Table 2-49. User-Level Cache Instructions

Name

Mnemonic

Operand
Syntax

Implementation Notes

Data
Cache
Block Touch

dcbt

rA,rB

The VEA defines this instruction to allow for potential system
performance enhancements through the use of software-initiated
prefetch hints. Implementations are not required to take any action based
off the execution of this instruction, but they may choose to prefetch the
cache block corresponding to the effective address into their cache. The
620 performs the prefetch when the address hits in the TLB or the BAT, is
permitted load access from the addressed page, is not directed to a
direct-store segment, and is directed at a cacheable page. If the
operation does not meet these criteria, it is treated as a no-op. The data
brought into the cache as a result of this instruction is validated in the
same way a load instruction would be (that is, if no other bus participant
has a copy, it is marked as Exclusive, otherwise it is marked as Shared).
The memory reference of a debt causes the reference bit to be set.

A successful debt instruction affects the state of the TLB and cache LRU
bits as defined by the LRU algorithm.

Data
Cache
Block
Touch for
Store

dcbtst

rA,rB

This instructions behaves like the dcbt instruction.

Data
Cache
Block Set
to Zero

dcbz

rA,rB

The effective address is computed, translated, and checked for
protection violations as defined in the VEA. If the 620 does not have
exclusive access to the block, it presents an operation onto the 620 bus
interface that instructs all other processors to invalidate copies of the
block that may reside in their cache (this is the kill operation on the bus).
After it has exclusive access, the 620 writes all zeros into the cache
block. If the 620 already has exclusive access, it immediately writes all
zeros into the cache block. If the addressed block is within a
noncacheable or a write-through page, or if the cache is locked or
disabled, an alignment exception occurs.

If the operation is successful, the cache block is marked modified.

Data
Cache
Block Store

dcbst

rA,rB

The effective address is computed, translated, and checked for
protection violations as defined in the VEA. If the 620 does not have
exclusive access to the block, it broadcasts the essence of the instruction
onto the 620 bus (using the clean operation, described in Table 3-5). If
the 620 has modified data associated with the block, the processor
pushes the modified data out of the cache and into the memory queue for
future arbitration onto the 620 bus. In this situation, the cache block is
marked exclusive. Otherwise this instruction is treated as a no-op.

Data
Cache
Block Flush

dcbf

rA,rB

The effective address is computed, translated, and checked for
protection violations as defined by the VEA. If the 620 does not have
exclusive access to the block, it broadcasts the essence of the instruction
onto the 620 bus. In addition, if the addressed block is present in the
cache, the 620 marks this data as invalid. On the other hand, if the 620
has modified data associated with the block, the processor pushes the
modified data out of the cache and into the memory queue for future
arbitration onto the 620 bus. In this situation, the cache block is marked
invalid.
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Table 2-49. User-Level Cache Instructions (Continued)

Name Mnemonic Operand Implementation Notes
Syntax

Instruction icbi rA,rB The effective address is computed, translated, and checked for

Cache protection violations as defined in the PowerPC architecture. If the

Block addressed block is in the instruction cache, the 620 marks it invalid. This

Invalidate instruction changes neither the content nor status of the data cache. In
addition, the ICBI operation is broadcast on the 620 bus unconditionally
to support this function throughout multilayer memory hierarchy.

2.3.5.4 Optional External Control Instructions

The external control instructions allow a user-level program to communicate with a
special-purpose device. Two instructions are provided and are summarized in Table 2-50.

Table 2-50. External Control Instructions

Name Mnemonic Operand Syntax
External Control In Word Indexed eciwx rD,rA,rB
External Control Out Word Indexed ecowx rS,rA,rB

The eciwx and ecowx instructions should be word-aligned. Misaligned eciwx and ecowx
instructions are treated like cache-inhibited accesses, and may be split into two bus
transactions.

2.3.6 PowerPC OEA Instructions

The PowerPC operating environment architecture (OEA) includes the structure of the
memory management model, supervisor-level registers, and the exception model.
Implementations that conform to the OEA also adhere to the UISA and the VEA. This
section describes the instructions provided by the OEA.

2.3.6.1 System Linkage Instructions

This section describes the system linkage instructions (see Table 2-51). The sc instruction
is a user-level instruction that permits a user program to call on the system to perform a
service and causes the processor to take an exception. The rfi and rfid instructions are
supervisor-level instructions that are useful for returning from an exception handler.

Table 2-51. System Linkage Instructions——OEA

Name Mnemonic Operand Syntax
System Call sc —
Return from Interrupt Double Word rfid —
Return from Interrupt rfi —_
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2.3.6.2 Processor Control Instructions

This section describes the processor control instructions that are used to read from and

write to the MSR and the SPRs.

Table 2-52 summarizes the instructions used for reading from and writing to the MSR.

Table 2-52. Move to/from Machine State Register Instructions

Name Mnemonic Operand Syntax
Move to Machine State Register Double Word mtmsrd rS
Move to Machine State Register mtmsr rS
Move from Machine State Register mfmsr rD

The OEA defines encodings of the mtspr and mfspr instructions to provide access to

supervisor-level registers. The instructions are listed in Table 2-53.

Table 2-53. Move to/from Special-Purpose Register Instructions (OEA)

Name Mnemonic Operand Syntax
Move to Special Purpose Register mtspr SPR,rS
Move from Special Purpose Register mfspr rD,SPR

Encodings for the 620-specific SPRs are listed in Table 2-54.

Table 2-54 SPR Encodings for 620-Defined Registers (mfspr)

SPR'
Register Name
Decimal spr[5-9] spr[0-4]
795 11000 11011 MMCRO
798 11000 11110 MMCR1
787 11000 10011 PMC1
788 11000 10100 PMC2
789 11000 10101 PMC3
790 11000 10110 PMC4
791 11000 10111 PMC5
792 11000 11000 PMC6
793 11000 11001 PMC7
794 11000 11010 PMC8
790 11000 01100 SIA
781 11000 01101 SDA
1008 11111 10000 HIDO
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Table 2-54 SPR Encodings for 620-Defined Registers (mfspr) (Continued)

SPR'
Register Name
Decimal spr[5-9] spr[0-4]

1010 11111 10010 IABR

1016 11111 11000 BUSCSR

1017 11111 11001 L2CR

1018 11111 11010 L2SR

1023 11111 11111 PIR

"Note that the order of the two 5-bit halves of the SPR number is reversed compared with actual instruction
coding.

For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly as
a 10-bit binary number in the instruction. The number coded is split into two 5-bit halves that are reversed in

the instruction, with the high-order 5 bits appearing in bits 16—20 of the instruction and the low-order 5 bits in
bits 11-15.

Simplified mnemonics are provided for the mtspr and mfspr instructions in Appendix F,
“Simplified Mnemonics,” in The Programming Environments Manual. For a discussion of
context synchronization requirements when altering certain SPRs, refer to Appendix E,
“Synchronization Programming Examples,” in The Programming Environments Manual.

For information on SPR encodings (both user- and supervisor-level) see Chapter 8§,
“Instruction Set,” in The Programming Environments Manual. Note that there are
additional SPRs specific to each implementation; for implementation-specific SPRs, see
the user’s manual for that particular processor.

2.3.6.3 Memory Control Instructions
Memory control instructions include the following types of instructions:

+ Cache management instructions (supervisor-level and user-level)
+ Segment register manipulation instructions
« Translation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. See Section 2.7.3,
“Memory Control Instructions—VEA,” for more information about user-level cache
management instructions.
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2.3.6.3.1 Supervisor-Level Cache Management Instruction
Table 2-55 lists the only supervisor-level cache management instruction.

Table 2-55. Cache Management Supervisor-Level Instruction

Name Mnemonic Operand Syntax Implementation Notes
Data dcbi rA,rB The EA is computed, translated, and checked for protection
Cache violations as defined in the OEA.
Block The 620 broadcasts the essence of the instruction onto the 620
Invalidate bus (using the Kill operation). In addition, if the addressed block

is present in the cache, the 620 marks this data as invalid
regardless of whether the data is clean or modified. Note that
this can have the effect of destroying modified data which is
why the instruction is privileged and has store semantics with
respect to protection.

See Section 2.7.3.1, “User-Level Cache Instructions—VEA,” for cache instructions that
provide user-level programs the ability to manage the on-chip caches. If the effective
address references a direct-store segment, the instruction is treated as a no-op. Note that any
cache control instruction that generates an effective address that corresponds to a
direct-store segment (segment descriptor[T] = 1) is treated as a no-op.

2.3.6.3.2 Segment Register Manipulation Instructions

The instructions listed in Table 2-56 provide access to the segment registers. These
instructions operate completely independently of the MSR[IR] and MSR[DR] bit settings.
Refer to “Synchronization Requirements for Special Registers and for Lookaside Buffers,”
in Chapter 2, “PowerPC Register Set,” of The Programming Environments Manual for
serialization requirements and other recommended precautions to observe when
manipulating the segment registers.

Table 2-56. Segment Register Manipulation Instructions

Name Mnemonic Operand Syntax

Move to Segment Register Double Word mtsrd SR,rS
Move to Segment Register mtsr SR,rs
Move to Segment Register Double Word Indirect mtsrdin rS,rB
Move to Segment Register Indirect mtsrin rS,rB
Move from Segment Register mfsr rD,SR
Move from Segment Register Indirect mfsrin rD,rB
SLB Invalidate All slbia —

SLB Invalidate Entry sibie rB
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2.3.6.3.3 Translation Lookaside Buffer Management Instructions

The address translation mechanism is defined in terms of segment descriptors and page
table entries (PTEs) used by PowerPC processors to locate the logical to physical address
mapping for a particular access. These segment descriptors and PTEs reside in segment
tables and page tables in memory, respectively.

Refer to Chapter 7, “Memory Management” for more information about TLB operation.
Table 2-57 summarizes the operation of the TLB instructions in the 620.

Table 2-57. Translation Lookaside Buffer Management Instruction

Name

Mnemonic

Operand
Syntax

Implementation Notes

TLB
Invalidate
Entry

tibie

rB

Execution of this instruction causes all entries in the congruence class
corresponding to the specified EA to be invalidated in the processor
executing the instruction and in the other processors attached to the
same bus by causing a TLB invalidate operation on the bus as
described in Section 7.2.4, “Address Transfer Attribute Signals.”

The OEA requires that a synchronization instruction be issued to
guarantee completion of a tibie across all processors of a system.
The 620 implements the tibsync instruction which causes a
TLBSYNC operation to appear on the bus as a distinct operation,
different from a SYNC operation. It is this bus operation that causes
synchronization of snooped tibie instructions. Multiple tibie
instructions can be executed correctly with only one tibsync
instruction, following the last tibie, to guarantee all previous tibie
instructions have been performed globally.

Software must ensure that instruction fetches or memory references
to the virtual pages specified by the tibie have been completed prior
to executing the tibie instruction.

When a snooping 620 detects a TLB invalidate entry operation on the
bus, it accepts the operation only if no TLB invalidate entry operation
is being executed by this processor and all processors on the bus
accept the operation. Once accepted, the TLB invalidation is
performed unless the processor is executing a multiple/string
instruction, in which case the TLB invalidation is delayed until it has
completed.

Other than the possible TLB miss on the next instruction prefetch, the
tibie does not affect the instruction fetch operation—that is, the
prefetch buffer is not purged and does not cause these instructions to
be refetched.

TLB
Synchronize

tibsync

The TLBSYNC operation appears on the bus as a distinct operation,
different from a SYNC operation. It is this bus operation that causes
synchronization of snooped tlbie instructions.

See the tibie description above for information regrading using the
tibsync instruction with the tibie instruction. For more information
about how other processors react to TLB operations broadcast on the
system bus of a multiprocessing system, see Chapter 8, “System
Interface Operation.”
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2.3.7 Recommended Simplified Mnemonics

To simplify assembly language coding, a set of alternative mnemonics is provided for some
frequently used operations (such as no-op, load immediate, load address, move register, and
complement register). Programs written to be portable across the various assemblers for the
PowerPC architecture should not assume the existence of mnemonics not described in this
document.

For a complete list of simplified mnemonics, see Appendix F, “Simplified Mnemonics,” in
The Programming Environments Manual.
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Chapter 3
Instruction and Data Cache Operation

This chapter describes the organization of the PowerPC 620’s on-chip cache system, the
MESI cache coherency protocol, special concerns for cache coherency in single- and
multiple-processor systems, cache control instructions, various cache operations, and the
interaction between the cache and the memory unit.

To minimize the number of bus accesses, the 620 contains separate 32-Kbyte, eight-way
set-associative instruction and data caches and also provides a level 2 (L.2) cache interface
described in Chapter 9, “Secondary Cache Interface.” Systems may also be implemented
with a level 3 (L3) cache external to the 620.

The 620’s cache block size is 64 bytes. The cache is designed to adhere to a write-back
policy, but the 620 allows control of cacheability, write policy, and memory coherency at
the page and block level, as defined by the PowerPC architecture. The caches use a least
recently used (LRU) replacement policy.

The 620 cache implementation has the following characteristics:
» Separate 32-Kbyte instruction and data caches (Harvard architecture)
« Instruction and data caches are eight-way set associative.
+ Caches implement an LRU replacement algorithm within each set.

» The cache directories are physically addressed. The physical address tag is stored in
the cache directory. (Note that physical is referred to as real in the architecture
specification.)

» Both the instruction and data caches have 64-byte cache blocks. A cache block is the
block of memory that a coherency state describes, also referred to as a cache line.

« The coherency state bits for each block of the data cache allow encoding for all four
possible MESI states:

— Modified (Exclusive) (M)
— Exclusive (Unmodified) (E)
— Shared (S)

— Invalid (T)
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+ The coherency state bit for each cache block of the instruction cache allows
encoding for two possible states:

— Invalid (INV)
— Valid (VAL)

+ The instruction cache can be invalidated or locked, and the data cache can be
invalidated by setting the appropriate bits in the hardware implementation
dependent register 0 (HIDO), a special-purpose register (SPR) specific to the 620.

The 620 uses 16-word burst transactions to transfer cache blocks to and from memory.
When requesting burst reads, the 620 presents a quad-word-aligned address. Memory
controllers are expected to transfer this quad word of data first, followed by quad words
from increasing addresses, wrapping back to the beginning of the 16-word block as
required.

Writes of cache blocks by the 620 (for a copy-back operation) always present the first
address of the block, and transfer data beginning at the start of the block. However, this does
not preclude other masters from transferring critical double words first on the bus for
writes.

Note that in this chapter the terms multiprocessor and multiple-processor are used in the
context of maintaining cache coherency. These devices could be processors or other devices
that can access system memory, maintain their own caches, and function as bus masters
requiring cache coherency.

The organization of the 620 instruction and data caches is shown in Figure 3-1.
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Figure 3-1. Cache Organization

The 620’s instruction and data caches are connected to the bus interface unit (BIU) with a
128-bit bus. The 128-bit bus allows four instructions to be loaded into the instruction cache
or a quad word (for example, two double-precision floating-point operands) to be loaded
into the data cache in a single clock. The instruction cache provides a 156-bit interface (four
32-bit instructions plus 7 predecoded bits per instruction) to the instruction fetcher, so four
instructions can be made available to the instruction unit in a single clock cycle.

3.1 Data Cache Organization

The 620’s physically-addressed, physically indexed data cache lies between the load/store
instruction unit (LSU) and the bus interface unit (BIU), and provides the ability to read and
write data in memory by reducing the number of system bus transactions required for
execution of load/store instructions.

The LSU transfers data between the data cache and the result bus, which routes data to the
other execution units. The LSU supports the address generation and all the data alignment
to and from the data cache. The LSU also handles other types of instructions that access
memory, such as cache control instructions, and supports out-of-order loads and stores
while ensuring the integrity of data.

The 32-Kbyte, eight-way set-associative data cache is a nonblocking write-back cache with
hardware reload. The associative capability is implemented using a content addressable
memory (CAM) within the cache instead of the traditional n-way bussing and n-way
comparator bank external to the cache. The use of a CAM is advantageous in relation to
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frequency and area considerations, but can impact the effective associativity, since the
cache cannot contain multiple entries which have EA[44-57] the same.

The data cache supports a coherent memory system using the four-state MESI coherency
(modified/exclusive/shared/invalid) protocol. There are two separate address ports into the
data cache; one port for stores and snoop operations that access the cache using a physical
address, and one port for load accesses using an effective address. A load or store access
may hit in the cache every cycle since there is no write recovery blockage between a store
and a subsequent load. The data cache is divided into two halves, with accesses to each
cache half selected with a low order address bit. Load and store operations can access the
cache in parallel if they address different halves of the data cache. Snoop lookups access
the cache such that parallel load operations are stalled only if they access the same cache
set.

Each cache block contains 16 contiguous words from memory that are loaded from a 16-
word boundary; as a result, cache blocks are aligned with page boundaries. Within a single
cycle, the data cache provides a quad-word access to the LSU.

The data cache stores one parity bit for each byte of cached data. This byte parity is
calculated within the data cache for any cache array write (allocation of a new cache block
or execution of a store or data cache block zero instruction). Parity is checked on every read
operation from the cache array (execution of a load instruction or cache control instruction
that reads cached data, or copyback operations caused by cache block replacement, snoop
operations, or cache control instructions). Parity errors cause the generation of a machine
check exception as described in Chapter 4, “Exceptions.”

3.2 Instruction Cache Organization

The 32-Kbyte, eight-way set-associative instruction cache is physically-indexed. The
instruction cache also contains 7 Kbytes of predecoded instruction bits (7 bits per
instruction). The organization of the instruction cache, shown in Figure 3-1, is identical to
that of the data cache. Each cache block contains 16 contiguous words from memory that
are loaded from an 16-word boundary; as a result, cache blocks are aligned with page
boundaries.

The associative capability of the instruction cache is implemented using a content
addressable memory (CAM) within the cache instead of the traditional n-way bussing and
n-way comparator bank external to the cache. The use of a CAM is advantageous in relation
to frequency and area considerations, but can impact the effective associativity, as the cache
cannot contain multiple entries which have EA[44-57] the same.

The instruction cache implements a cache reload buffer (CRB), which stores the cache
block received as a result of the last instruction cache miss. Instruction from the BIU are
loaded directly into the CRB, allowing the processor to access other cache blocks in the
instruction cache without waiting for the cache block to be filled. If instructions are
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accessed while they are still in the CRB, the CRB will supply the instructions to the fetcher.
The instructions and associated tag information are loaded into the cache from the CRB
when the next instruction cache miss occurs.

Within a single cycle, the instruction cache provides as many as four instructions to the
instruction fetch unit. The instruction cache coherency is software-controlled. The
instruction cache can be invalidated on a block or invalidate-all granularity. The instruction
cache can be enabled, locked, and checked for parity depending on the setting of enable bits
provided in HIDO.

The instruction cache differs from the data cache in that it does not implement MESI cache
coherency protocol, and a single state bit is implemented that indicates only whether a
cache block is valid or invalid. If a processor modifies a memory location that may be
contained in the instruction cache, software must ensure that memory updates are visible to
the instruction fetching mechanism. This can be achieved by the following instruction
sequence:

dcbst # update memory

sync # wait for update

icbi # remove (invalidate) copy in instruction cache
sync # wait for ICBI operation to be globally performed
isync # remove copy in own instruction buffer

These operations are necessary because the data cache is a write-back cache. Because
instruction fetching bypasses the data cache, changes made to items in the data cache may
not be reflected in memory until after a fetch operation completes.

3.3 MMUs/Bus Interface Unit

The bus interface unit (BIU) implements both tenured and split-transaction modes, with an
8-bit tag provided for all address and data transactions. If permitted, the BIU can complete
one or more write transactions between the address and data tenures of a read transaction.
The BIU has 40-bit address and 128-bit data buses, with the address and data buses
protected by word and byte parity, respectively.

The BIU implements the critical-quad-word-first access where the double word requested
by the fetcher or the LSU is fetched first and the remaining words in the line are fetched
later. The critical quad word as well as other words in the cache block are forwarded to the
fetcher or to the LSU before they are written to the cache. When a memory access fails to
hit in the cache, the 620 accesses system memory through the bus interface unit. These
operations must arbitrate for bus access.

The memory management units (MMUSs) provide address translation as specified by the
PowerPC OEA, including block address translation and page translation of memory
segments. The MMUs and the bus interface unit are shown in Figure 3-2.
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Figure 3-2. Bus Interface Unit and MMU

The 620 performs address translation in two levels. The first-level translation is
accomplished by two separate 64-entry, fully-associative effective to physical translation
caches (EPATs); one for instruction fetches, and the other for data accesses. The EPAT
caches the effective address to physical address pairs returned from the second-level MMU.
The second-level MMU consists of a 20-entry, fully-associative SLB and a 128-entry, 2-
way set associative TLB. The second-level MMU is shared between the first-level
instruction and data MMUSs. The 620 provides hardware that performs the TLB reload (also
known as page table walk) when a translation is not in a TLB. Memory management is
described in Chapter 5, “Memory Management.” The BIU handles block fill and write-back
requests from either cache, as well as all noncacheable reads and writes.

3.4 Sequential Consistency

The following sections describe issues related to sequential consistency with respect to
single processor and multiprocessor systems.

3.4.1 Sequential Consistency Within a Single Processor

The PowerPC architecture requires that all memory operations executed by a single
processor be sequentially consistent with respect to that processor. This means that all
memory accesses appear to be executed in the order that is specified by the program with
respect to exceptions and data dependencies. Even though the 620 has multiple pipelines
into the cache and the memory access through the pipeline is out of program order, the 620
achieves the sequential consistent requirement effect by maintaining a centralized store
queue to check data dependencies. The completion unit ensures that all exceptions caused
by memory accesses will be handled in program order. Note that although memory accesses
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that miss in the cache are forwarded onto the memory queue for future arbitration onto the
bus, all potential synchronous exceptions have been resolved before the cache. In addition,
although subsequent memory accesses can address the cache, full coherency checking
between the cache and the memory queue is provided to avoid dependency conflicts.

3.4.2 Weak Consistency Between Multiple Processors

The PowerPC architecture requires only weak consistency among processors—that is,
memory accesses between processors need not be sequentially consistent and memory
accesses among processors can occur in any order. It is important to note that the 620
processor takes advantage of this relaxed requirement in an effort to maximize the
effectiveness of the bus. The 620 will allow read operations to go ahead of store operations
(except when a dependency exists). In addition, the 620 may re-order store operations
unless there is an eieio instruction in between. A single store-multiple instruction accessing
cache-inhibited memory may be converted into multiple bus operations, and 620 may re-
order those operations.

Note that strong ordering of memory accesses with respect to the bus (and therefore, as
observed by other processors and other bus participants) can be accomplished by following
instructions that access memory with the sync instruction.

3.4.3 Sequential Consistency Within Multiprocessor Systems

The PowerPC architecture defines a load operation to have been performed with respect to
all other processors (and mechanisms) when the value to be returned by the load can no
longer be changed by a subsequent store by any processor (or other mechanism). In
addition, it defines a store operation to be performed with respect to all other processors
(and mechanisms) when any load operation from the same location returns the value stored
(or a subsequently stored value).

In the 620, cacheable load operations and cacheable, non—write-through store operations
are performed with respect to all other processors (and mechanisms) when they have
arbitrated to address the cache. If a cache miss occurs, these operations may drop a memory
request into the processor’s memory queue, which is considered an extension to the state of
the cache with respect to snooping bus operations.

However, cache-inhibited load operations and cache-inhibited or write-through store
operations are performed with respect to other processors (and mechanisms) when they
have been successfully presented onto the 620 bus interface. As a result, if multiple
processors are performing these types of memory operations to the same addresses without
properly synchronizing one another (through the use of the Iwarx/stwcx. instructions), the
results of these instructions are sensitive to the conditions associated with the order in
which the processors are granted bus access.

If the 620 uses an L3 cache, the system designer must ensure the memory system responds
to bus operations resulting from the execution of sync and eieio instructions in such a way
that the required ordering of memory operations is preserved.
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3.5 Memory and Cache Coherency

The 620 can support a fully coherent 16 terabyte 2% memory address space. Bus
snooping is used to drive a four-state (MESI) cache coherency protocol which ensures the
coherency of all processor and direct-memory access (DMA) transactions to and from
global memory with respect to each processor’s cache. It is important that all bus
participants employ similar snooping and coherency control mechanisms. The coherency
of memory is maintained at a granularity of 64-byte cache blocks (this size is also called
the coherency or cache-block size).

All instruction and data accesses are performed under the control of the four memory/cache
access attributes:

e Write-through (W attribute)

¢ Caching-inhibited (I attribute)

¢ Memory coherency (M attribute)
* Guarded (G attribute)

These attributes are programmed by the operating system for each page and block. The W
and I attributes control how the processor performing an access uses its own cache. The
M attribute ensures that coherency is maintained for all copies of the addressed memory
location. The G attribute prevents speculative loading and prefetching from the addressed
memory location.

3.5.1 Data Cache Coherency Protocol

The primary objective of a coherent memory system is to provide the same image of
memory to all processors in the system. This is an important feature of multiprocessor
systems since it allows for synchronization, task migration, and the cooperative use of
shared resources. An incoherent memory system could easily produce unreliable results
depending on when and which processor executed a task. For example, when a processor
performs a store operation, it is important that the processor have exclusive access to the
addressed block before the update is made. If not, another processor could have a copy of
the old (or stale) data. Two processors reading from the same memory location would get
different answers.

To maintain a coherent memory system, each processor must follow simple rules for
managing the state of the cache. These include externally broadcasting the intention to read
a cache block not in the cache and externally broadcasting the intention to write into a block
that is not owned exclusively. Other processors respond to these broadcasts by snooping
their caches and reporting status back to the originating processor. The status returned
includes a shared indicator (that is, another processor has a copy of the addressed block)
and a retry indicator (that is, another processor either has a modified copy of the addressed
block that it needs to push out of the device, or another processor had a queuing problem
that prevented appropriate snooping from occurring).
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To maximize performance, the 620 provides a second path into the data cache directory for
snooping. This allows the mainstream instruction processing to operate concurrently with
the snooping operation. The instruction processing is affected only when the snoop control
logic detects a situation where a snoop push of modified data is required to maintain
memory coherency.

Each 64-byte cache block in the 620 data cache is in one of four states. The four possible
states for a block in the cache are the invalid state (I), the shared state (S), the exclusive state
(E), and the modified state (M). In a system where multiple cache levels function together
to form a single cache the inclusivity of a cache level above in a cache level below is called
vertical cache coherence. Coherency between different processors caches is called
horizontal cache coherence, and is maintained by all cache devices snooping the bus level
below, and optionally snooping the bus level above. The tables in the following sections
illustrate the rules concerning vertical and horizontal cache state coherence. The vertical
lines in the tables represent the separation between multi-level processor caches, and the
horizontal lines represent the separation between cache levels, usually implemented by a
bus interface. The box formed by these horizontal and vertical lines contain the allowable
cache states for that cache level.

Note that in the description of the MESI states that follow the term exclusive indicates that
the cache block referenced is located in a given cache, and in no other cache at the same
level. The term modified indicates that the cache block referenced is modified with respect
to main memory.

3.5.1.1 Modified Cache State

The modified (M) cache state specifies that a cache block is valid, modified, and exclusive.
The cache levels above a cache block marked M may be marked I, M, or S. Cache levels
below a block marked M may only be marked M, and other caches at the same level must
be marked I. Table 3-1 shows the permissible M cache states in a multi-level, multi-
processor cache implementation.

Table 3-1. Cache Level and Modified Cache State

Cache Level Processor A Processor B
Level 1 cache MSI

Level 2 cache M |

Level 3 cache M
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3.5.1.2 Exclusive Cache State

The exclusive (E) cache state specifies that a cache block is valid, not modified, and
exclusive to the cache block. The cache levels above a block marked E may be marked S or
I, but not M or E. Cache blocks marked E must be at the lowest cache level, and other cache
blocks at the same level must be marked I. Table 3-2 shows the permissible E cache states

in a multi-level, multi-processor cache implementation.

3.5.1.3 Shared Cache State

Table 3-2. Cache Level and Exclusive Cache State

Cache Level Processor A Processor B
Level 1 cache Si
Level 2 cache E |

The shared (S) cache state specifies that a cache block is valid, and shared with another
cache block. Cache levels above a block marked S may be marked S or I, but not M or E.
Cache levels below a block marked S may be marked M, E, or S, but not I. Caches in other
processors may mark the cache block S or I, but not M or E. Table 3-3 shows the
permissible S cache states in a multi-level, multi-processor cache implementation.

3.5.1.4 Invalid Cache State

Table 3-3. Cache Level and Shared Cache State

Cache Level Processor A Processor B
Level 1 cache Si

Level 2 cache S Si
Level 3 cache MES

The invalid (I) cache state specifies that there is not a valid copy of the cache block in the
cache. The cache levels above a cache block marked I must be marked I, and cache levels
below a cache block marked I may be marked M, E, S or I. Caches in other processor may
mark the cache block M, E, S, or I. Table 3-4 shows the permissible I cache states in a multi-
level, multi-processor cache implementation.

Table 3-4. Cache Level and Invalid Cache State

Cache Level Processor A Processor B
Level 1 cache |

Level 2 cache | MESI
Level 3 cache MESI
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3.5.2 Coherency and Secondary Caches

The 620 provides an interface to support a larger, off-chip secondary cache. The use of an
L2 cache can serve to further improve performance by reducing the number of bus accesses.
The L2 cache must operate with respect to the memory system in a manner that is consistent
with the intent of the PowerPC architecture.

External L3 caches must forward all relevant system bus traffic onto the 620 so the 620 can
take the appropriate actions to maintain memory coherency as defined by the PowerPC
architecture.

3.5.3 Page Table Control Bits

The PowerPC architecture allows certain memory characteristics to be set on a page and on
a block basis. These characteristics include the following:

o Write-back/write-through (using the W bit)
« Cacheable/noncacheable (using the I bit)
» Memory coherency enforced/not enforced (using the M bit)

An additional page control bit, G, handles guarded memory and is not considered here. This
ability allows both single- and multiple-processor system designs to exploit numerous
system-level performance optimizations.

The PowerPC architecture defines two of the possible eight decodings of these bits to be
unsupported (WIM = 110 or 111).

Note that software must exercise care with respect to the use of these bits if coherent
memory support is desired. Careless specification of these bits may create situations that
present coherency paradoxes to the processor. In particular, this can happen when the state
of these bits is changed without appropriate precautions (such as flushing the pages that
correspond to the changed bits from the caches of all processors in the system) or when the
address translations of aliased physical addresses specify different values for any of the
WIM bits. These coherency paradoxes can occur within a single processor or across several
processors.

It is important to note that in the presence of a paradox, the operating system software is
responsible for correctness. The next section provides a few simple examples to convey the
meaning of a paradox.

3.5.4 MESI State Diagram

The 620 provides dedicated hardware to provide data cache coherency by snooping bus
transactions. The address retry capability of the 620 enforces the MESI protocol, as shown
in Figure 3-3. Figure 3-3 assumes that the WIM bits are set to 001; that is, write-back,
caching-not-inhibited, and memory coherency enforced.
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Figure 3-3. MESI Cache Coherency Protocol—State Diagram (WIM = 001)

3.5.5 Coherency Paradoxes in Single-Processor Systems
The following coherency paradoxes can be encountered within a single processor:

* Load or store operations to a page with WIM = 0b011 and a cache hit occurs.
Caching was supposed to be inhibited for this page. Any load operation to a cache-
inhibited page that hits in the cache presents a paradox to the processor. The 620
ignores the data in the cache and the state of the cache block is unchanged.

» Store operation to a page with WIM = 0b10X and a cache hit on a modified cache
block occurs. This page was marked as write-through yet the processor was given
access to the cache (write-through page are always main memory). Any store
operation to a write-through page that hits a modified cache block in the cache
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presents a coherency paradox to the processor. The 620 writes the data both to the
cache and to main memory (note that only the data for this store is written to main
memory and not the entire cache block). The state of the cache block is unchanged.

3.5.6 Coherency Paradoxes in Multiple-Processor Systems

It is possible to create a coherency paradox across multiple processors. Such paradoxes are
particularly difficult to handle since some scenarios could result in the purging of modified
data, and others may lead to unforeseen bus deadlocks.

Most of these paradoxes center around the interprocessor coherency of the memory
coherency bit (or the M bit). Improper use of this bit can lead to multiple processors
accepting a cache block into their caches and marking the data as exclusive. In turn, this can
lead to a state where the same cache block is modified in multiple processor caches. Non-
coherent cache states occur in the L.1/L.2 cache state pairings E/M, M/E, E/E, M/S, E/S,
M/L, E/I, and S/I. The 620 does not detect these cache states and processor behavior is
undefined if they occur.

3.6 Cache Configuration

There are several bits in the HIDO register that can be used to configure the instruction and
data cache. These are described as follows:

» Bit 1-—Enable cache parity checking. Enables a machine check exception based on
the detection of a cache parity error. If this bit is cleared, cache parity errors are
ignored. Note that the machine check exception is further affected by the MSR[ME]
bit, which specifies whether the processor enters checkstop state or continues
processing

+ Bit 16—Instruction cache enable. If this bit is cleared, the instruction cache is
neither accessed nor updated. Disabling the caches forces all pages to be accessed
as if they were marked cache-inhibited (WIM = X1X). All potential cache accesses
from the bus are ignored.

« Bit 17—Data cache enable. If this bit is cleared, the data cache is neither accessed
nor updated. Disabling the cache forces all pages to be accessed as if they were
marked cache-inhibited (WIM = X1X). All potential cache accesses from the bus,
such as snoop and cache operations are ignored.

« Bit 18—Instruction cache lock. Setting this bit locks the instruction cache, in which
case all cache misses are treated as cache-inhibited. Cache hits occur as normal.
Cache operations and the icbi instruction continue to work as normal.

e Bit 20—Instruction cache invalidate all. When this bit is set, the instruction cache
begins an invalidate operation marking the state of each cache block in the desired
cache as invalid without copying back any data to memory. It is assumed that no data
in the instruction cache is modified. Invalidation of the instruction cache is
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completed in two processor clock cycles, and access to the cache is blocked during
this time. The bits are reset when the invalidation operation begins (usually the cycle
immediately following the write to the register beginning an invalidate operation).

» Bit21—Data cache invalidate all. When this bit is set, the data cache begins an
invalidate operation marking the state of each cache block in the desired cache as
invalid without copying back any modified lines to memory. Access to the cache is
blocked during this time. The bits are reset when the invalidation operation begins
(usually the cycle immediately following the write to the register). Any accesses to
the cache from the bus are signaled as a miss during the time that the invalidate-all
operation is in progress.

» Bits 27-28—Instruction fetch modes (with address translation enabled).

— 00: no speculative fetch from main memory
— 01: no speculative fetch from main memory with more than one pending branch

— 10: no speculative fetch from main memory with more than two pending
branches

— 11: allow speculative instruction fetching from main memory
The HIDO register can be accessed with the mtspr and mfspr instructions.

3.7 Cache Management Instructions

The VEA and OEA portions of the PowerPC architecture define instructions that can be
used for controlling caches in both single- and multiprocessor systems. The exact behavior
of these instruction in the 620 is described in the following sections.

Several of these instructions are required to broadcast their essence (such as a Kill, Clean,
or Flush operation) onto the 620 bus interface so that all processors in a multiprocessor
system can take the appropriate actions. The 620 contains snooping logic to monitor the bus
for these commands and control logic to keep the cache and the memory queue coherent.
Additional details on the specific bus operations can be found in Chapter 8, “System
Interface Operation.”

3.7.1 Instruction Cache Block Invalidate (icbi)

The effective address is computed, translated, and checked for protection violations as
defined in the PowerPC architecture. If the addressed block is in the instruction cache, the
620 marks this instruction cache block as invalid. This instruction changes neither the
content nor status of the data cache. The ICBI operation is broadcast on the 620 bus
unconditionally to support this function throughout a system’s memory hierarchy.

3.7.2 Instruction Synchronize (isync)

The isync instruction causes the 620 to purge its instruction buffers and fetch the next
sequential instruction.
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3.7.3 Data Cache Block Touch (dcbt) and
Data Cache Block Touch for Store (dcbtst)

The Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbtst)
instructions provide potential system performance improvement through the use of
software-initiated prefetch hints. The 620 treats these instructions identically. Note that
PowerPC implementations are not required to take any action based on the execution of this
instruction, but they may choose to prefetch the cache block corresponding to the effective
address into their cache. The 620 fetches the data into the cache when the address hits in
the TLB or the BAT, is permitted load access from the addressed page, is not directed to a
direct-store segment, and is directed at a cacheable page. Otherwise, the 620 treats these
instructions as no-ops.

Regarding MESI cache coherency, the data brought into the cache as a result of these
instructions is validated in the same manner that a load instruction would be (that is, if no
other bus participant has a copy, it is marked as exclusive; otherwise it is marked as shared).
The memory reference of a dcbt instruction causes the reference bit to be set.

Note also that the successful execution of the dcbt instruction affects the state of the TLB
and cache LRU bits as defined by the LRU algorithm.

3.7.4 Data Cache Block Set to Zero (dcbz)

As defined in the VEA, when the dcbz instruction is executed the effective address is
computed, translated, and checked for protection violations. If the 620 does not already
have exclusive access to this cache block, it presents a Kill operation onto the 620 bus—a
Kill operation instructs all other processors to invalidate copies of the cache block that may
reside in their caches. After it has exclusive access to the cache block, the 620 writes all
zeros into the cache block. In the event that the 620 already has exclusive access, it
immediately writes all zeros into the cache block. If the addressed block is within a
noncacheable or a write-through page, or if the cache is locked or disabled, an alignment
exception occurs.

3.7.5 Data Cache Block Store (dcbst)

As defined in the VEA, when a Data Cache Block Store (dcbst) instruction is executed, the
effective address is computed, translated, and checked for protection violations. If the 620
does not have modified data in this block, the 620 broadcasts a Clean operation onto the
bus. If modified (dirty) data is associated with the cache block, the processor pushes the
modified data out of the cache and into the memory queue for future arbitration onto the
620 bus. In this situation, the cache block is marked as exclusive. Otherwise this instruction
is treated as a no-op.

3.7.6 Data Cache Block Flush (dcbf)

As defined in the VEA, when a Data Cache Block Flush (dcbf) instruction is executed, the
effective address is computed, translated, and checked for protection violations. If the 620
does not have modified data in this cache block, it broadcasts a Flush operation onto the 620
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bus. If the addressed cache block is in the cache, the 620 marks this data as invalid.
However, if the cache block is present and modified, the processor pushes the modified data
into the memory queue for arbitration onto the 620 bus and the cache block is marked as
invalid.

3.7.7 Data Cache Block Invalidate (dcbi)

As defined in the OEA, when a Data Cache Block Invalidate (dcbi) instruction is executed,
the effective address is computed, translated, and checked for protection violations.

The 620 broadcasts a Kill operation onto the 620 bus. If the addressed cache block is in the
cache, the 620 marks this data as invalid regardless of whether the data is modified. Because
this instruction may effectively destroy modified data, it is privileged and has store
semantics with respect to protection; that is, write permission is required for the DCBI
(Kill) operation.

3.8 Basic Cache Operations

This section describes operations that can occur to the cache, and how these operations are
implemented in the 620.

3.8.1 Cache Reloads

A cache block is reloaded after a read miss occurs in the cache. The cache block that
contains the address is updated by a burst transfer of the data from system memory. Note
that if a read miss occurs in a multiprocessor system, and the data is modified in another
cache, the modified data is first written to external memory before the cache reload occurs.

3.8.2 Cache Cast-Out Operation

The 620 uses an LRU replacement algorithm to determine which of the eight possible cache
locations should be used for a cache update. Updating a cache block causes any modified
data associated with the least-recently used element to be written back, or cast out, to
system memory.

3.8.3 Cache Block Push Operation

When a cache block in the 620 is snooped and hit by another processor and the data is
modified, the cache block must be written to memory and made available to the snooping
device. The cache block that is hit is said to be pushed out onto the bus.

3.8.4 Atomic Memory References

The lwarx/stwex. instruction combination can be used to emulate atomic memory
references. These instructions are described in Chapter 2, “Programming Model.”
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3.9 Cache State Response to Instruction Execution
and Bus Operations

The following sections define the cache state transitions for the 620 caches with respect to
processor instructions and bus operations. External L3 cache state transitions due to snoop
responses to transactions on the bus above are also described to assist in the design of
systems that implement an external L3 cache.

3.9.1 Cache State Transitions Due to Instruction Execution

Table 3-5 below describes the cache coherency state transitions, bus operations, and
ARESPIN signal states associated with cache load, store, and control instructions. Each of
the columns in Table 3-5 are defined as follows:

+ Instruction or operation—Lists the instruction or operation that causes the state
transition. All entries in this column are instructions except deallocate, which
indicates a cache block deallocation due to a cache block castout. Note that LD and
ST explicitly denote all load and store operations except for LARX (lwarx and ldarx
instructions) and STCX (stwcx. and stdcX. instructions). Also, the setting of the PTE
M bit is ignored for all instructions except the DCBTST operation.

*  WIM state—Refers to the WIM memory access mode bits in the PTE. Refer to
Chapter 5, “Memory Management” for additional information about supported
WIMG bit configurations.

» Coherency state—Defines the coherency for the addressed cache block. The
notation “->” indicates that the states shown on the left will transition to the states
shown on the right following the execution of the instruction. If the “->” notation is
not shown, the state does not change following instruction execution. The cache is
not accessed during instruction execution if the coherency state entry is blank.

» Bus operation—Defines the bus operation, if any, that occurs as a result of
instruction execution.

» ARESPIN signal state—Reflects the input to the 620 from an external arbiter that
combines the responses from the ARESPOUT signals of other bus masters. The
ARESPIN responses are defined as follows:

— S, Null: If ARESPIN is S, coherency state is S, if ARESPIN is Null, coherency
state is E.

— M, M: Indicates whether response is modified or retry.
— Blank entry: Indicates that snoop response for this case is “don’t care”.

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-17



Table 3-5. Cache State Transitions Due to Instruction Execution

Instruction or Coherency N
Operation WIM State State Bus Operation | ARESPIN Comments -
LD, DCBT Cacheable MES
LARX MES LARX-reserve LARX-reserve broadcast
if L3 cache enabled
LD, DCBT, 1->S Burst read M M indicates data
LARX, DCBTST intervention
(M=0)
I->SE Burst read S, Null
LD, LARX Noncache- Single-beat read
able
DCBT No operation on non-
cacheable blocks
ST, DCBTST, Cacheable, M
STCX writeback
ST, STCX E->M
DCBTST E
DCBTST M=0 S
ST, STCX, and S->M DClaim
DCBTST M=1 — -
I->M RWITM M, M M indicates data interven-
tion
ST Cacheable, MESI Write with Flush STCX not supported for
write through cacheable, write through
ST,STCX Noncache- Write with Flush
able
DCBTST Cacheable, No operation on write
write through or noncacheable
through, and blocks
noncacheable
Deallocate Cacheable M->1 Write with Kill
(CB)
ESI-> |
DCBF M->1 Write with Kill (F)
ESI-> | Flush
DCBI MESI -> | DKill
DCBST M -> SE Write with Clean Eifno L3
SE -> SE Clean S, Null Clean optional for ES if no
L3
| Clean
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Table 3-5. Cache State Transitions Due to Instruction Execution

Instruction or WIM State Coherency

Operation State Bus Operation | ARESPIN Comments

DCBZ Cacheable, EM->M
writeback

Cacheable, IS->M DClaim
writeback

Cacheable, Alignment exception
write

through, and
noncacheable

Chapter 3, “Addressing Modes and Instruction Set Summary,” and Chapter 8, “Instruction
Set,” in The Programming Environments Manual describe the cache control instructions in
detail. Several of the cache control instructions broadcast onto the 620 interface so that all
processors in a multiprocessor system can take appropriate actions. The 620 contains
snooping logic to monitor the bus for these commands and the control logic required to
keep the cache and the memory queues coherent. For additional details about the specific
bus operations performed by the 620, see Chapter 8, “System Interface Operation.”

3.9.2 Cache State Transitions Due to Bus Snoop Operations
Table 3-6 describes the state transitions that occur due to bus snoop operations. Note that
the following conditions apply when the 620 is snooping bus operations:
* Bus operations that are marked not memory coherent (M = 0) are not snooped by the
620

* Bus operations that are marked memory coherent (M = 1) are snooped by the 620
regardless of the state of the cache-inhibited (I) bit.

* A Write-with-Clean bus operation will always be marked not memory coherent
(M =0) and will be ignored by the 620 snooper.

» The 620 will always have at least one cache block store buffer reserved for a cache
block push.
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Table 3-6. Cache State Transitions Due to Bus Snoop Operations

. Snooper | Reservation
Bus Operation State State ARESPOUT | ARESPIN Comments
Read-Burst N=1, S=0 M->8 M CausesC->MC
N=1, S=1, [2en data-only opera-
N=1, S=1, 12en, tion
13en (Intervention)
N=1,8=1,12en, M->E M
13en
N=0, S=0 M->8 Retry Causes Write
N=0, S=1, I2en with Clean
N=0, S=1, I2en, (push)
13en
N=0, S=1, I2en, M->E Retry
13en
S S Note3
S=0 E->S S Note3
S=1 S ReRun
S=1 E S ReRun
I R=0
R=1 S
RWITM N=1 M->1 M Causes C->C
data-only opera-
tion (Interven-
tion)
N=0 M->1 Retry Causes Write
with Kill (push)
ESI-> | ReRun
E->S ReRun
IS
Write-With-Kill, MESI -> | ReRun
DKill,
DClaim E->§ ReRun
MSI
Write-With-Flush M->1 Retry Causes Write
with Kill (push)
ESI-> | ReRun
E->S ReRun
Sl
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Table 3-6. Cache State Transitions Due to Bus Snoop Operations (Continued)

Bus Operation Snooper | Reservation | ,pespoyr | ARESPIN | Comments
State State
Read-Non-Burst M->S Retry Causes Write
with Clean
(push)
ES->S S Note3
I R=0
R=1 S
Clean M->ES Mm! Causes Write
with Clean
(push)
E if lowest
cache level, S
otherwise
S S
E s? ReRun
E->S s2 ReRun
| R=0
R=1 S
Flush M-> | M! Causes Write
with Kill (push)
ESI-> | ReRun
E->S ReRun
Sl
SYNC, TLBSYNC ReRun, Will ReRun until
Nuli done. Will Null
when done.

Notes:
1. M overrides ReRun to optimize performance.

2. ARESPOUT = Shared is not significant to any other snooping device that has this block marked
invalid. Note that the L2 E state implies that there is no L3 cache.

3. Burst read and single-beat read operations will mark the block S for the ReRun response, in addition
to the Null and Shared responses.

3.9.3 L3 Cache State Transitions Due to Bus-Above Operations

Although the 620 does not implement an L3 cache, this information in this section is
provided to show how coherence is maintained between the 620 and a cache external to the
620. For additional information about the operation of the bus and external cache refer to
Chapter 8, “System Interface Operation.” Note that all bus operations occurring above the
L3 cache are snooped regardless of the state of the A, W, I, M, and N address attribute bits.
The L3 cache state transition attributes described in Table 3-7 are as follows:
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» Bus above operation—Lists the instruction or operation that causes the state

transition.

* M in L2—Indicates when the state of a cache block at a higher level has been

modified.

* Snooper state—State of the L3 cache following a snoop operation.

+ ARESPOUT—State of the ARESPOUT signal during snoop operation.

» ARESPIN—State of the ARESPIN signal during snoop operation.

¢ Comments—Describes actions taken on busses above and below the L3 cache.

— Bus above—Describes actions taken with respect to the bus above the L3 cache

— Bus below—Describes actions taken with respect to the bus below the L3 cache
— Address above—Indicates that the 1.3 decodes the address to be above the L3

cache

— Address below—Indicates that the L.3 decodes the address to be below the L3

cache

The L3 state transitions that occur due to bus-above transactions are described in Table 3-7.

Table 3-7. L3 Cache State Transitions Due to Bus-Above Operations

Bus-Above
Operation

M State
inL2

L3 State
Following Snoop

ARESPOUT
State

ARESPIN
State

Comments

Read Burst, RWITM,
Write-with-Flush,
Read-Non-Burst,

Clean, Flush

Y

M

No Action

Read Burst

Bus Above: Source Data-
Only Operation

ES

Address Above:

No Action

Address Below:

Bus Above: Data-Only
Operation

|->ES

Address Above:

1. L3 allocates cache
block

2. Bus Above: Sink Data-
Only Operation

Address Below:

1. Bus Below: Read-Burst,
E-state if lowest cache
level and S response, else
S-state.

2. Bus Above: Source
Data-Only Operation
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Table 3-7. L3 Cache State Transitions Due to Bus-Above Operations (Continued)

Bus-Above M State L3 State ARESPOUT | ARESPIN

Operation inL2 Following Snoop State State Comments

RWITM N->Y M M Address Above:

Data is sourced by the L3
Null with the M response.
Address Below:

Bus Above: Source Data-
Only Operation with Null
response.

N->Y E->M Null Address Above:

No Action and Null
response because data is
sourced from memory.
Address Below:

Bus Above: Source Data-
Only Operation with Null
response.

N->Y S->M Null Address Above:

M 1a. No Action and Null
response if data is
sourced from memory.
1b. Modified response if
data is sourced by L3.
Address Below:

1. Bus Below: DClaim
2. Bus Above: Source
Data-Only Operation with
Null response.

N->Y I->M Address Above:

1. L3 allocates cache
block

2. Bus Above: Sink Data-
Only Operation

Address Below:

1. Bus Below: RWITM

2. Bus Above: Source
Data-Only Operation with
Null response.

Write-with-Kill, >N MESI -> | Address Above:
DKill No Action
Address Below:
Bus Below: Write-with-Kill
or DKill

Write-with-Clean Y->N M->ES Address Above:

No Action, E if lowest
cache level.

Address Below:

Bus Below: Write-with-
Clean, E if lowest cache
level.
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Table 3-7. L3 Cache State Transitions Due to Bus-Above Operations (Continued)

Bus-Above
Operation

M State
inL2

L3 State
Following Snoop

ARESPOUT
State

ARESPIN
State

Comments

DClaim

N->Y

MESI ->M

MInL2 must start as N
Bus Below: DClaim if
initial state is M

Write-with-Flush,
Read-Non-Burst

M->1

Retry

Address Above:

1. Bus Above: Write with
Kill (Push)

2. Bus Below: DKill if
lower cache level exists.
Address Below:

Bus Below: Write with Kill
(Push)

ESI-> |

Address Above:

No Action

Address Below:

Bus Below: Write-with-
Flush or Read-Non-Burst

Clean

M->ES

Address Above:

1. Bus Above: Write with
Clean, E-state if lowest
cache level, else S-state.
2. Bus Below: Clean
Address Below:

1. Bus Below: Write with
Clean

ES

Bus Below: Clean

Bus Below: Clean

Flush

M->1

Address Above:

1. Bus Above: Write with
Kill (Push)

2. Bus Below: DKill if
lower cache level exists.
Address Below:

Bus Below: Write with Kill
(Push)

E->1

No Action

Sl -> 1

Bus Below: Flush
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3.10 Access to Direct-Store Segments

The 620 supports both memory-mapped and I/O-mapped access to I/O devices. In addition
to the high-performance bus protocol for memory-mapped I/O accesses, the 620 provides
the ability to map memory areas to the direct-store interface (SR[T] = 1) with the following
two kinds of operations:

+ Direct-store operations—These operations are considered to address the
noncoherent and noncacheable direct-store; therefore, the 620 does not maintain
coherency for these operations, and the cache is bypassed completely.

¢ Memory-forced direct-store operations—These operations are considered to
address memory space and are therefore subject to the same coherency control as
memory accesses. These operations are global memory references within the 620
and are considered to be noncacheable.

Cache behavior (write-back, cache-inhibition, and enforcement of MESI coherency) for
these operations is determined by the settings of the WIM bits.
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Chapter 4
Exceptions

The OEA portion of the PowerPC architecture defines the mechanism by which PowerPC
processors implement exceptions (referred to as interrupts in the architecture specification).
Exception conditions may be defined at other levels of the architecture. For example, the
UISA defines conditions that may cause floating-point exceptions; the OEA defines the
mechanism by which the exception is taken.

PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to certain registers and the processor begins execution at an address (exception vector)
predetermined for each exception. Processing of exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the floating-point status and control register
(FPSCR). Additionally, certain exception conditions can be explicitly enabled or disabled
by software.

The PowerPC architecture requires that exceptions be taken in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled strictly in order with respect to the instruction stream. When an instruction-
caused exception is recognized, any unexecuted instructions that appear earlier in the
instruction stream, including any that have not yet entered the execute state, are required to
complete before the exception is taken. For example, if a single instruction encounters
multiple exception conditions, those exceptions are taken and handled sequentially.
Likewise, exceptions that are asynchronous and precise are recognized when they occur,
but are not handled until all instructions currently in the execute stage successfully
complete execution and report their results.

Note that exceptions can occur while an exception handler routine is executing, and
multiple exceptions can become nested. It is up to the exception handler to save the states
if it is desired to allow control to ultimately return to the excepting program.
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In many cases, after the exception handler handles an exception, there is an attempt to
execute the instruction that caused the exception. Instruction execution continues until the
next exception condition is encountered. This method of recognizing and handling
exception conditions sequentially guarantees that the machine state is recoverable and
processing can resume without losing instruction results.

To prevent the loss of state information, exception handlers must save the information
stored in SRRO and SRR soon after the exception is taken to prevent this information from
being lost due to another exception being taken.

In this chapter, the following terminology is used to describe the various stages of exception
processing:

Recognition Exception recognition occurs when the condition that can cause an
exception is identified by the processor.

Taken An exception is said to be taken when control of instruction
execution is passed to the exception handler; that is, the context is
saved and the instruction at the appropriate vector offset is fetched
and the exception handler routine is begun in supervisor mode
(referred to as privileged state in the architecture specification).

Handling Exception handling is performed by the software linked to the
appropriate vector offset. Exception handling is begun in supervisor-
mode.

Note that the PowerPC architecture documentation refers to exceptions as interrupts. In this
book, the term interrupt is reserved to refer to asynchronous exceptions, and sometimes to
the event that causes the exception to be taken. Also, the PowerPC architecture uses the
word exception to refer to IEEE-defined floating-point exceptions, conditions that may
cause a program exception to be taken (See Section 4.6.7, “Program Exception (0x00700).)
The occurrence of these IEEE exceptions may in fact not cause an exception to be taken.
IEEE-defined exceptions are referred to as IEEE floating-point exceptions or floating-point
exceptions.

4.1 PowerPC 620 Microprocessor Exceptions

As specified by the PowerPC architecture, all exceptions can be described as either precise
or imprecise and either synchronous or asynchronous. Asynchronous exceptions are caused
by events external to the processor’s execution; synchronous exceptions are caused by
instructions.

The types of exceptions implemented by the 620 are shown in Table 4-1. Note that all
exceptions except for the system management interrupt and performance monitoring
exception are defined by the PowerPC architecture.
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Table 4-1. Exception Classifications

Type Exception

Asynchronous/nonmaskable Machine Check
System Reset

Asynchronous/maskable External interrupt

Decrementer interrupt

System management interrupt (620-specific)
Performance monitoring exception (620-specific)

Synchronous/precise Instruction-caused exceptions

Exceptions implemented in the 620, and conditions that cause them, are listed in Table 4-2.

Table 4-2. Exceptions and Conditions—Overview

Exception Vector Offset

Type (hex) Causing Conditions

Reserved 00000 —_

System reset 00100 The causes of system reset exceptions are implementation-dependent. In the
620 a system reset is caused by the assertion of either the soft reset or hard
reset signal.

If the conditions that cause the exception also cause the processor state to be
corrupted such that the contents of SRRO and SRR1 are no longer valid or such
that other processor resources are so corrupted that the processor cannot
reliably resume execution, the copy of the Rl bit copied from the MSR to SRR1
is cleared.

Machine check | 00200 On the 620 a machine check exception is signaled by the assertion of the
machine check input (MCP) signal. If the MSR[ME] is cleared, the processor
enters the checkstop state when one of these signals is asserted. Note that
MSRI[ME] is cleared when an exception is taken. The machine check exception
is also caused by parity errors on the address or data bus or in the instruction or
data caches. Regardless of the state of MSR[ME} the 620 enters the checkstop
state if parity errors are detected on the address or data bus.

Note that the machine check exception is imprecise with respect to the
instruction that originated the bus operation.

The machine check exception is disabled when MSR[ME] = 0. If a machine
check exception condition exists and the ME bit is cleared, the processor goes
into the checkstop state.

If the conditions that cause the exception also cause the processor state to be
corrupted such that the contents of SRRO and SRR1 are no longer valid or such
that other processor resources are so corrupted that the processor cannot
reliably resume execution, the copy of the Rl bit copied from the MSR to SRR1
is cleared.

DSI 00300 A DSI exception occurs when a data memory access cannot be performed for
any of the reasons described in Section 4.6.3, “DSI Exception (0x00300).” Such
accesses can be generated by load/store instructions, certain memory control
instructions, and certain cache control instructions.

ISI 00400 An ISl exception occurs when an instruction fetch cannot be performed for a
variety of reasons described in Section 4.6.4, “ISI Exception (0x00400).”
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Table 4-2. Exceptions and Conditions—Overview (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

External
interrupt

00500

An external interrupt exception occurs when the external exception signal, INT,
is asserted. This signal is expected to remain asserted until the exception
handler begins execution. If MSR[EE] is set and the assertion of the INT signal
is detected, the 620 completes the oldest instruction in the completion queue
and cancels all outstanding instructions. Any exceptions associated with
dispatched instructions are taken before the exception is taken.

Alignment

00600

An alignment exception may occur when the processor cannot perform a
memory access for reasons described in Section 4.6.6, “Alignment Exception
(0x00600).” Note that the PowerPC architecture defines a wider range of
conditions that may cause an alignment exception than required in the 620. In
these cases, the 620 provides logic to handle these conditions without requiring
the processor to invoke the alignment exception handler.

Program

00700

A program exception is caused by one of the following exception conditions,
which correspond to bit settings in SRR1 and arise during execution of an
instruction:

+ Floating-point enabled exception—A floating-point enabled exception
condition is generated when either MSR[FEO] or MSR[FE1] and
FPSCRIFEX] are set. The settings of FEO and FE1 are described in
Table 4-4.

FPSCRIFEX] is set by the execution of a floating-point instruction that
causes an enabled exception or by the execution of a Move to FPSCR
instruction that sets both an exception condition bit and its corresponding
enable bit in the FPSCR. These exceptions are described in Chapter 6,
“Exceptions,” of The Programming Environments Manual.

+ lllegal instruction—An illegal instruction program exception is generated
when execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields or when execution of an
optional instruction not provided in the specific implementation is attempted
(these do not include those optional instructions that are treated as no-ops).
The PowerPC instruction set is described in Section 2.3, “Instruction Set
Summary.”

+ Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the
MSR register user privilege bit, MSR[PR], is set. This exception is also
generated for mtspr or mfspr with an invalid SPR field if spr[0] = 1 and
MSRIPR] = 1.

« Trap—A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

For more information, refer to Section 4.6.7, “Program Exception (0x00700).”

Floating-point
unavailable

00800

A floating-point unavailable exception occurs when the floating-point available
bit in the MSR is cleared (MSR[FP] = 0), and an attempt is made to execute a
floating-point instruction (including floating-point load, store, or move
instructions).

Decrementer

00900

The decrementer interrupt exception is taken if the exception is enabled
(MSRIEE] = 1) and the exception is pending. The exception is created when the
most significant bit changes of the decrementer register from 0 to 1. If it is not
enabled (MSR[EE] = 0), the exception remains pending until it is taken.

Reserved

00A00

Reserved for implementation-specific exceptions; this exception is not
implemented by the 620. For example, the 601 uses this vector offset for direct-
store exceptions.
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Table 4-2. Exceptions and Conditions—Overview (Continued)

Exception Vector Offset Causing Conditions
Type (hex)

Reserved 00B00 —

System call 00C00 A system call exception occurs when a System Call (sc) instruction is executed.

Trace 00D00 The trace exception, which is implemented in the 620, is defined by the
PowerPC architecture but is optional. A trace exception occurs if either MSR[SE]
=1 and any instruction (except rfid, rfi, sc, or trap instruction whose condition is
true) successfully completed or MSR[BE] = 1 and a branch instruction is
completed.

Floating-point 00EO0 The 620 does not implement the floating-point assist exception.

assist

Performance 00F00 The performance monitoring interrupt is a 620-specific exception and is used

monitoring with the 620 performance monitor, described in Section 4.6.13, “Performance

interrupt Monitoring Interrupt (0x00F00).”
The performance monitoring facility can be enabled to signal an exception when
the value in one of the performance monitor counter registers (PMC1 or PMC2)
goes negative. The conditions that can cause this exception can be enabled or
disabled through bits in the monitor mode control register 0 (MMCRO).
Although the exception condition may occur when the MSRIEE] bit is cleared,
the actual interrupt is masked by the MSR[EE] bit and cannot be taken until the
MSRIEE] bit is set.

Reserved 01000-012FF | Reserved for implementation-specific exceptions not implemented on the 620.

Instruction 01300 An instruction address breakpoint exception occurs when the address (bits 0 to

address 61) in the IABR matches the next instruction to complete in the completion unit,

breakpoint the IABR enable bit (IABR[62]) is set, and the IABR break on translation bit
(IABR[63]) is equal to MSR[IR].

System 01400 A system management interrupt exception is caused when MSR[EE] = 1 and

management the SMI input signal is asserted. This exception is provided for use with the nap

interrupt mode.

Reserved 014FF-02FFF | Reserved for implementation-specific exceptions not implemented on the 620.

MOTOROLA Chapter 4. Exceptions 4-5




4.2 Exception Recognition and Priorities

Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions have priority over all other exceptions—

system reset and machine check exceptions (although the machine check exception
condition can be disabled so the condition causes the processor to go directly into
the checkstop state). These exceptions cannot be delayed, and do not wait for the
completion of any precise exception handling.

. Synchronous, precise exceptions are caused by instructions and are taken in strict

program order.

. Imprecise exceptions (imprecise mode floating-point enabled exceptions) are

caused by instructions and they are delayed until higher priority exceptions are
taken.

. Maskable asynchronous exceptions (external interrupt and decrementer exceptions)

are delayed until higher priority exceptions are taken.

Exception priorities are described in “Exception Priorities,” in Chapter 4, “Exceptions,” in
The Programming Environments Manual.

The following is a summary of the exception priorities for the 620, including both
exceptions defined by the PowerPC architecture as well as the 620-specific exceptions.

1. System reset
2. Machine check
. Instruction-dependent

A) Integer loads and stores
a) Instruction address breakpoint
b) Alignment
c) DSI
d) Trace
B) Floating-point loads and stores
a) Instruction address breakpoint
b) Floating-point unavailable
c) Alignment
d) DSI
e) Trace
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C) Other floating-point instructions
a) Instruction address breakpoint
b) Floating-point unavailable
c) Program: Precise-mode floating-point enabled
d) Trace
D) rfi, rfid, mtmsr, and mtmsrd
a) Instruction address breakpoint for mtmsr and mtmsrd only
b) Program: Precise-mode floating-point enabled
c) Trace for mtmsr and mtmsrd only
E) Other instructions
a) Instruction address breakpoint
b) Exceptions mutually exclusive and same priority
— Program: Trap
— System call
— Program: Privileged instruction
— Program: Illegal instruction
¢) Trace
F) ISI
4. System management interrupt
(Note that the 620 does not implement imprecise-mode floating-point exceptions)
5. External
6. Performance monitor
7. Decrementer

System reset and machine check exceptions may occur at any time and are not delayed even
if an exception is being handled. As a result, state information for the interrupted exception
may be lost; therefore, these exceptions are typically nonrecoverable.

All other exceptions have lower priority than system reset and machine check exceptions,
and the exception may not be taken immediately when it is recognized.

If an imprecise exception is not forced by either the context or the execution synchronizing
mechanism and if the instruction addressed by SRRO did not cause the exception then that
instruction appears not to have begun execution. For more information on context-
synchronization, see Chapter 6, “Exceptions,” in The Programming Environments Manual.
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4.3 Support for 32-Bit Operating Systems

The 620 supports the optional 64-bit bridge as defined by the PowerPC architecture and
supports the following architecture-defined, exception-related functionality:

« mtmsr—32-bit version of Move to Machine State Register Double Word (mtmsrd)
instruction

» rfi—32-bit version of Return from Interrupt Double Word (rfid) instruction
¢  MSR[ISF]—New MSR bit that copies to MSR[SF] when an exception is taken

4.4 Exception Processing

When an exception is taken, the processor uses the save/restore registers, SRRO and SRR1,
to save the contents of the machine state register for user-level mode and to identify where
instruction execution should resume after the exception is handled.

When an exception occurs, the address saved in machine status save/restore register O
(SRRO) is used to help calculate where instruction processing should resume when the
exception handler returns control to the interrupted process. Depending on the exception,
this may be the address in SRRO or at the next address in the program flow. All instructions
in the program flow preceding this one will have completed execution and no subsequent
instruction will have begun execution. This may be the address of the instruction that
caused the exception or the next one (as in the case of a system call or trap exception). The
SRRO register is shown in Figure 4-1.

SRRO (holds EA for instruction in interrupted program flow) I

Figure 4-1. Machine Status Save/Restore Register 0

The save/restore register 1(SRR1) is used to save machine status (selected bits from the
MSR and possibly other status bits as well) on exceptions and to restore those values when
rfid (or rfi) is executed. SRR1 is shown in Figure 4-2.

| Exception-specific information and MSR bit values
0 63

Figure 4-2. Machine Status Save/Restore Register 1

Typically, when an exception occurs, bits 33-36 and 42-47 of SRRI1 are loaded with
exception-specific information and bits 0-32, 3741, and 48—63 of SRR1 are loaded with
equivalent bits from the MSR. Note that depending on the implementation, reserved bits in
the MSR may not be copied to SRR1.
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Note that in other implementations every instruction fetch that occurs when MSR[IR] =1,
and every instruction execution requiring address translation when MSR[DR] = 1, may

modify SRR1.
In the 620 and in other 64-bit PowerPC implementations, the MSR bits are as shown in
Figure 4-3.
[] Reserved
[Si°J'SF1I : 0 0000 .. 0000 0 |Pov§[ O—IILE| EEIPRI FP[ME{ FEolSE|BElFE1|£J IPI IRIDRI OIPMM2|RI|LE|
0123 44 45 46 47 48 49 50 51 52 53 54 55 5657 58 59 60 61 62 63

" The ISF bit is optional and implemented only as part of the 64-bit bridge; this bit is cleared to 0 on hard reset.
2 620-specific

Figure 4-3. Machine State Register (MSR)—64-Bit Implementation

Table 4-3 shows the bit definitions for the MSR.

Table 4-3. MSR Bit Settings

Bit(s) | Name Description
0 SF Sixty-four bit mode
0  The 64-bit processor runs in 32-bit mode. Note that this is the default setting following a
hard reset.
1 The 64-bit processor runs in 64-bit mode.
1 — Reserved
2 ISF Exception sixty-four bit mode (optional to OEA). When an exception occurs, this bit is copied
into MSR[SF] to select 64- or 32-bit mode for the context established by the exception.
345 | — Reserved
46 — Reserved
47 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to
select the endian mode for the context established by the exception.
48 EE External interrupt enable
0  While the bit is cleared the processor delays recognition of external interrupts and
decrementer exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer exception.
49 PR Privilege level
0  The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.
50 FP Floating-point available
0  The processor prevents dispatch of floating-point instructions, including floating-point
loads, stores, and moves.
1 The processor can execute floating-point instructions.
51 ME Machine check enable
0  Machine check exceptions are disabled.
1 Machine check exceptions are enabled.
52 FEO Floating-point exception mode 0.
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Table 4-3. MSR Bit Settings (Continued)

Bit(s) | Name Description

53 SE Single-step trace enable (Optional in the architecture; implemented in the 620)

0  The processor executes instructions normally.

1 The processor generates a single-step trace exception upon the successful execution of
the next instruction.

Note: If the function is not implemented, this bit is treated as reserved.

54 BE Branch trace enable (optional)

0  The processor executes branch instructions normally.

1 The processor generates a branch trace exception after completing the execution of a
branch instruction, regardless of whether the branch was taken.

Note: If the function is not implemented, this bit is treated as reserved.

55 FE1 Floating-point exception mode 1.

56 — Reserved

57 IP Exception prefix. The setting of this bit specifies whether an exception vector offset is

prepended with Fs or Os. In the following description, nnnnn is the offset of the exception vector.

See Table 4-2.

0  Exceptions are vectored to the physical address 0x0000_0000_000n_nnnn in 64-bit
implementations.

1 Exceptions are vectored to the physical address OxFFFF_FFFF_FFFn_nnnn in 64-bit
implementations.

58 IR Instruction address translation

0 Instruction address translation is disabled.

1 Instruction address translation is enabled.

For more information see Chapter 5, “Memory Management.”

59 DR Data address translation

0  Data address translation is disabled.

1 Data address translation is enabled.

For more information see Chapter 5, “Memory Management.”

60 —_ Reserved

61 PMM Performance monitor mark (620-specific). Used to mark specific processes. In conjunction with
the MMCRO[3—4], FCMO0, and FCM1 provides control for the processes in which the
performance monitor is enabled or disabled.

62 RI Recoverable exception (for system reset and machine check exceptions).

0  Exception is not recoverable.

1 Exception is recoverable.

For more information see Section 4.6.1, “System Reset Exception (0x00100),’and
Section 4.6.2, “Machine Check Exception (0x00200).

63 LE Little-endian mode enable
0  The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

The IEEE floating-point exception mode bits (FEO and FE1) together define whether
floating-point exceptions are handled precisely, imprecisely, or whether they are taken at
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all. The possible settings and default conditions for the 620 are shown in Table 4-4. For
further details, see Chapter 6, “Exceptions,” of The Programming Environments Manual.

Table 4-4. IEEE Floating-Point Exception Mode Bits

FEO | FE1 Mode
0 0 Floating-point exceptions disabled
0 1 Floating-point precise mode

0 Floating-point imprecise recoverable. In the 620, this bit setting causes the 620 to operate in floating-
point precise mode.

1 Floating-point precise mode

MSR bits are guaranteed to be written to SRR1 when the first instruction of the exception
handler is encountered.

4.4.1 Enabling and Disabling Exceptions

When a condition exists that may cause an exception to be generated, it must be determined
whether the exception is enabled for that condition.

L]

.

IEEE floating-point enabled exceptions (a type of program exception) are ignored
when both MSR[FEOQ] and MSR[FE1] are cleared. If either of these bits are set, all
IEEE enabled floating-point exceptions are taken and cause a program exception.
Asynchronous, maskable exceptions (that is, the external, decrementer, and system
management interrupts) are enabled by setting the MSR[EE] bit. When MSR[EE] =
0, recognition of these exception conditions is delayed. MSR[EE] is cleared
automatically when an exception is taken, to delay recognition of conditions causing
those exceptions.

A machine check exception can occur only if the machine check enable bit,
MSR[ME], is set. If MSR[ME] is cleared, the processor goes directly into checkstop
state when a machine check exception condition occurs. Individual machine check
exceptions can be enabled and disabled through bits in the HIDO register, which is
described in Table 4-7.

System reset exceptions cannot be masked.
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4.4.2 Steps for Exception Processing

After it is determined that the exception can be taken (by confirming that any instruction-
caused exceptions occurring earlier in the instruction stream have been handled, and by
confirming that the exception is enabled for the exception condition), the processor does
the following:

1.

The machine status save/restore register O (SRRO) is loaded with an instruction
address that depends on the type of exception. See the individual exception
description for details about how this register is used for specific exceptions.

Bits 33-36 and 4247 of SRR1 are loaded with information specific to the exception
type.

Bits 0-32, 37-41, and 48-63 of SRR1 are loaded with a copy of the corresponding

bits of the MSR. Note that depending on the implementation, reserved bits may not
be copied.

. The MSR is set as described in Table 4-3. The new values take effect beginning with

the fetching of the first instruction of the exception-handler routine located at the
exception vector address.

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore,
address translation is disabled for both instruction fetches and data accesses
beginning with the first instruction of the exception-handler routine.

Instruction fetch and execution resumes, using the new MSR value, at a location
specific to the exception type. The location is determined by adding the exception's
vector (see Table 4-2) to the base address determined by MSR[IP]. If IP is cleared,
exceptions are vectored to the physical address 0x0000_0000_000n_nnnn. If IP is
set, exceptions are vectored to the physical address OxXFFFF_FFFF_FFFn_nnnn. For
a machine check exception that occurs when MSR[ME] = 0 (machine check
exceptions are disabled), the checkstop state is entered (the machine stops executing
instructions). See Section 4.6.2, “Machine Check Exception (0x00200).”

4.4.3 Setting MSRI[RI]
The operating system should handle MSR[RI] as follows:

In the machine check and system reset exceptions—If MSR1[RI] is cleared, the
exception is not recoverable. If it is set, the exception is recoverable with respect to
the processor.

In each exception handler—When enough state information has been saved that a
machine check or system reset exception can reconstruct the previous state, set
MSR[RI].

In each exception handler—Clear MSR[RI], set the SRRO and SRR1 registers
appropriately, and then execute rfid (or rfi).

Not that the RI bit being set indicates that, with respect to the processor, enough
processor state data is valid for the processor to continue, but it does not guarantee
that the interrupted process can resume.
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4.4.4 Returning from an Exception Handler

The Return from Interrupt instructions, rfid (or rfi), perform context synchronization by
allowing previously issued instructions to complete before returning to the interrupted
process. In general, execution of the rfid (or rfi) instruction ensures the following:

+ All previous instructions have completed to a point where they can no longer cause
an exception. If a previous instruction causes a direct-store interface error exception,
the results must be determined before this instruction is executed.

+ Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

+ The rfid (or rfi) instruction copies SRR1 bits back into the MSR.

+ The instructions following this instruction execute in the context established by this
instruction.

For a complete description of context synchronization, refer to Chapter 6, “Exceptions,” of
The Programming Environments Manual.

4.5 Process Switching
The operating system should execute one of the following when processes are switched:

¢ The sync instruction, which orders the effects of instruction execution. All
instructions previously initiated appear to have completed before the sync
instruction completes, and no subsequent instructions appear to be initiated until the
sync instruction completes. For an example showing use of the sync instruction, see
Chapter 2, “PowerPC Register Set,” of The Programming Environments Manual.

» The isync instruction, which waits for all previous instructions to complete and then
discards any fetched instructions, causing subsequent instructions to be fetched (or
refetched) from memory and to execute in the context (privilege, translation,
protection, etc.) established by the previous instructions.

« The stwex. instruction, to clear any outstanding reservations, which ensures that an
Iwarx instruction in the old process is not paired with an stwex. instruction in the
new process.

The operating system should set the MSR[RI] bit as described in Section 4.4.3, “Setting
MSR[RI].”
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4.6 Exception Definitions

Table 4-5 shows all the types of exceptions that can occur with the 620 and the MSR bit
settings when the processor transitions to supervisor mode due to an exception. Depending
on the exception, certain of these bits are stored in SRR1 when an exception is taken.

Table 4-5. MSR Setting Due to Exception

Exception MSR Bit

Type SF {ISF|POW | ILE | EE | PR | FP | ME | FEO | SE | BE |FE1| IP | IR|{DR | PMM | Rl | LE
Systemreset [ISF| — | O —]10]J]O0|JO]—1{ O ojJ]o0o]J]O0]|—}|O}|O 0 0 | ILE
Machine check | ISF | — 0 — 10 00| O 0 0] 0 oO|—]O0]|] O 0 0 | ILE
Dsl ISF|—| o —|lojojof—|oOojo]loOo|]O]|]—]OfO 0 [0[ILE
1SI ISF| — 0 —]l0lojo}]—1}|oO 0|0 0O|—]0})O0 0 0 | ILE
External ISFl—| © —|lojJojJo|—|oO0o]Oo]JO]JO]|]—]O|O 0 | O0]ILE
Alignment ISF]l—| © —|loj]JojJo|—[oO0o]J]O|jO]O]|]—]OfO 0 |O0]ILE
Program ISF| — 0 —|O0]J]OfjO|—]| O o] o o|—]0] O 0 0 | ILE
Floating-point | ISF| — 0 —|(o0j1ojo|l—1{o 0] o0 o|l—]0} O 0 0 | ILE
unavailable
Decrementer | ISF| — 0 —]l]0]J]0]O0O}—] O ojo}joj|l—jJjo0fo 0 0 | ILE
System call ISF| — 0 — | 0 o|o|—| O 0] O 0O|—]0]O 0 0 | ILE
Trace ISF| —| © —|l0]Jojo}j—[O0]JO}jO]JO]|—]OfO 0 |0]ILE
exception
System ISF] —| © —|l0]Jo]Jo]—[O0O]JO|JO}JO]|—]OfO 0 |O0[ILE
management
Performance |[ISF{— | O —lojofo{—to0]JoO0ojJO}JO]|—]O}O 0 0| ILE
monitor

0 Bit is cleared.

ILE  Bitis copied from the ILE bit in the MSR.
— Bit is not altered
Reserved bits are read as if written as 0.

The setting of the exception prefix bit (IP) determines how exceptions are vectored. If the
bit is cleared, exceptions are vectored to the physical address 0x0000_0000_000n_nnnn
(where nnnnn is the vector offset); if IP is set, exceptions are vectored to the physical
address OXFFFF_FFFF_FFFn_nnnn. Table 4-2 shows the exception vector offset of the first
instruction of the exception handler routine for each exception type.

4.6.1 System Reset Exception (0x00100)

The system reset exception is a non-maskable interrupt that is signaled to the 620 either
through the assertion of an input signal to the chip (SRESET) or internally during the
power-on reset sequence.
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The system reset exception is considered asynchronous in the manner that it has no relation
to any specific instruction. Although the exception is asynchronous, the 620 synchronizes
it to an instruction completion boundary. When the 620 detects a system reset exception
condition, it completes the oldest instruction in the processor and then cancels all
outstanding instructions before taking the system reset exception. As a result, the system
reset exception is considered recoverable if the completing instruction (oldest instruction)
does not cause an interrupt. If the completing instruction does not cause an exception,
SRRO holds the effective address of the next instruction that would have executed if the
exception were not present. If the completing instruction causes an exception, SRRO
contains the effective address of the first instruction of the exception handler.

Note that system software can use HIDO[15] to indicate why the processor is taking a
system reset exception. To implement that, system software sets this bit at the end of the
system reset exception routine. HIDO[15] is cleared when the processor takes a hard reset.

Register settings for the system reset exception are described in Table 4-6.

Table 4-6. System Reset Exception—Register Settings

Register Setting Description

SRR0O If the completing instruction does not cause an exception, SRRO holds the effective address of the next
instruction that would have executed if the exception were not present. If the completing instruction causes
an exception, SRRO contains the effective address of the first instruction of the exception handler.

SRR1 0-32 Loaded with equivalent bits from the MSR
33-36 Cleared
37-41 Loaded with equivalent bits from the MSR
42-47 Cleared
48-61 Loaded with equivalent bits from the MSR
62 Loaded from the equivalent MSR bit, MSR[RI], if the exception is recoverable; otherwise
cleared.
63 Loaded with equivalent bit from the MSR

Note that depending on the implementation, reserved bits in the MSR may not be copied to SRR1.
If the processor state is corrupted to the extent that execution cannot resume reliably, the bit corresponding
to MSR[RI], (SRR1[62]), is cleared.

MSR SF SettovalueofISF PR 0 BE O PMM 0
ISF — FP 0 FE1 0 Rl 0
POW 0 ME — IP — LE  Setto value of ILE
ILE — FEO O IR 0
EE ©0 SE 0 DR ©

The SRESET input provides a “warm” reset capability. This input is used to avoid causing
the 620 to perform the entire power-on reset sequence, thereby preserving the contents of
the architected registers. This capability is useful when recovering from certain checkstop
or machine check states. When a system reset exception is taken, instruction execution
continues at offset 0x00100 from the physical base address indicated by MSR[IP].
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4.6.2 Machine Check Exception (0x00200)

The 620 implements the machine check exception as defined in the PowerPC architecture
(OEA). It conditionally initiates a machine check exception after an address or data parity
error occurred on the bus or in a cache, or after the machine check interrupt (MCP) signal
had been asserted. As defined in the OEA, the exception is not taken if the MSR[ME] is
cleared.

Although a machine check exception is asynchronous, the 620 synchronizes it to an
instruction completion boundary. When the 620 detects a machine check exception, it
completes the oldest instruction in the processor and then cancels all outstanding
instructions before invoking the machine check exception handler. If the completing
instruction (oldest instruction) causes another type of exception, SRRO contains the
effective address of the first instruction of the exception handler. If the completing
instruction does not cause another type of interrupt, SRRO contains the effective address of
the next instruction that would have executed if the exception were not present.

The 620 generates a machine check exception under the following conditions:

¢ MCP asserted—MCP is an input to the 620. When MCP is asserted and HIDO[O] is
set, the 620 takes a machine check exception. This is a recoverable machine check

exception and is the only machine check exception in which the 620 copies the
MSR[RI] bit to SRR1, instead of clearing it.

* Processor internal cache parity error—Parity checking for the 620’s internal caches
is enabled by setting HIDO[1]. A machine check exception occurs when internal
cache parity checking is enabled and a parity error is detected for either the data or
the instruction cache. The resulting machine check exception is unrecoverable in the
620.

» Processor interface parity error—Parity checking for the 620 processor interface is
enabled by setting HIDO[2] for address parity checking or HIDO[3] for data parity
checking. A machine check exception occurs when address parity checking is
enabled and a parity error is detected in the address bus. If data parity checking is
enabled and a parity error is detected in the data bus, a machine check exception
occurs regardless of the state of the MSR[ME] bit. The resulting machine check
exceptions result in the 620 entering an internal checkstop state.

+ L2 interface uncorrectable ECC error—ECC checking is enabled for the L2
interface when L2CR[46] is set. A machine check exception occurs when ECC
checking is enabled and an uncorrectable error is detected. Note that the L2 can be
accessed by either a processor or bus operation. The resulting machine check
exception is unrecoverable in the 620.

* DERR bus signal—The DERR bus signal indicates that the data from a processor
load or bus read is corrupted. DERR may be used to indicate an uncorrectable read
memory error. A machine check exception occurs when BUSCSR[51] is set and a
DERR assertion is detected. This machine check exception is unrecoverable in the
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620. Note that a direct-store load last operation uses DERR to indicate that a direct-
store error has occurred and to expect a reply. This case causes a DSI exception, but
not a machine check exception.
Machine check conditions can be enabled and disabled using bits in the HIDO described in
Table 4-7.

Table 4-7. Machine Check Enable Bits

HIDO Bit Description
0 Enable machine check input signal
1 Enable cache parity checking
2 Enable machine check on address bus parity error.
3 Enable machine check on data bus parity error.

If MSR[ME] and the appropriate HIDO bits are set, the exception is recognized and
handled; if MSR[ME] is cleared and the appropriate HIDO bits are set, the 620 will enter
an internal checkstop state. When a processor is in checkstop state, instruction processing
is suspended and generally cannot continue without restarting the processor. Note that
many conditions may lead to the checkstop condition; the disabled machine check
exception is only one of these.

Machine check exceptions are enabled when MSR[ME] = 1; this is described in
Section 4.6.2.1, “Machine Check Exception Enabled (MSR[ME] = 1).” If MSR[ME] = 0
and a machine check occurs, the processor enters the checkstop state. Checkstop state is
described in Section 4.6.2.2, “Checkstop State (MSR[ME] = 0).”
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4.6.2.1 Machine Check Exception Enabled (MSR[ME] = 1)

When a machine check exception is taken, registers are updated as shown in Table 4-8.

Table 4-8. Machine Check Exception—Register Settings

Register Setting Description
SRRO On a best-effort basis implementations can set this to an EA of some instruction that was executing
or about to be executing when the machine check condition occurred.
SRR1 0-32 Loaded from MSR
33-35 Cleared

36 Set if L2 ECC error

42 Set if L1 data cache parity error

43 Set if L1 instruction cache parity error

44 Set if machine-check signal input

45 Set if bus error (DERR)

46 Set if bus data parity error

47 Set if bus address parity error

48-61 Loaded from MSR

62 Loaded from MSR([62] if the processor is in a recoverable state; otherwise cleared
63 Loaded from MSR

MSR SF  Settovalueof ISF PR 0 BE 0 DR 0
ISF — FP 0 FE1 0 PMM 0
POW 0 ME' 0 |- Rl 0
ILE — FEO 0 IR 0 LE  Setto value of ILE
EE © SE 0

' Note that when a machine check exception is taken, the exception handler should set MSR[ME] as soon
as it is practical to handle another machine check exception. Otherwise, subsequent machine check
exceptions cause the processor to automatically enter the checkstop state.

The machine check exception is usually unrecoverable in the sense that execution cannot
resume in the same context that existed before the exception. If the condition that caused
the machine check does not otherwise prevent continued execution, MSR[ME] is set to
allow the processor to continue execution at the machine check exception vector address.
Typically earlier processes cannot resume; however, the operating systems can then use the
machine check exception handler to try to identify and log the cause of the machine check
condition.

When a machine check exception is taken, instruction execution resumes at offset 0x00200
from the physical base address indicated by MSR[IP].

4.6.2.2 Checkstop State (MSR[ME] = 0)

When a processor is in the checkstop state, instruction processing is suspended and
generally cannot resume without the processor being reset. The contents of all latches are
frozen within two cycles upon entering checkstop state.
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The 620 enters checkstop state when any of three conditions are present:

+ If MSR[ME] = 0 and a machine check exception occurs due to any of the reasons
mentioned previously.

« If CHECKSTORP is asserted externally.
« If an internal watchdog time-out is generated.
« If a processor interface parity error occurs.

Upon entering the checkstop state the processor clocks are stopped and internal state is
kept. The CHECKSTOP signal is asserted to notify the system when the checkstop is
caused by a machine check exception with MSR[ME] = 0, or a processor internal watchdog
time-out or processor interface parity error occurs.

For all machine check events except those initiated by processor interface parity errors, the
number of cycles between the time in which a machine check event is detected and the time
in which the CHECKSTOP signal is asserted is undetermined since the processor
synchronizes the Machine Check event to an instruction completion boundary before it
reports it. When processor interface parity errors cause the checkstop state to be entered the
CHECKSTORP signal is asserted two processor clock cycles after the parity error is
detected, and all latches are frozen within six processor clock cycles.

Note that not all PowerPC processors provide the same level of error checking. The reasons
a processor can enter checkstop state are implementation-dependent.

4.6.3 DSI Exception (0x00300)

A DSI exception occurs when no higher priority exception exists and a data memory access
cannot be performed. The DSI exception is implemented as it is defined in the PowerPC
architecture (OEA), and occurs for all the conditions defined in the PowerPC architecture.
A DSI exception also occurs for direct-store load or store errors.

Note that a DABR breakpoint match does not cause a DSI exception when the 620 is in
tracing mode (MSR[SE]=1) or when the performance monitor is turned on.

4.6.4 1S1 Exception (0x00400)

An ISI exception occurs when no higher priority exception exists and an attempt to fetch
the next instruction fails. This exception is implemented as it is defined by the PowerPC
architecture (OEA). When an ISI exception is taken, instruction execution resumes at
offset 0x00400 from the physical base address indicated by MSR[IP].

4.6.5 External Interrupt Exception (0x00500)

An external interrupt is signaled to the processor by the assertion of the external interrupt
signal (INT). The INT signal is expected to remain asserted until the 620 takes the external
interrupt exception. If the external interrupt signal is negated early, recognition of the
interrupt request is not guaranteed.
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Once an external interrupt is detected and external interrupts are enabled, MSR[EE] = 1,
the 620 completes the oldest instruction in the processor, cancels all outstanding
instructions, and takes the external interrupt as defined in the OEA.

After the 620 begins execution of the external interrupt handler, the system can safely
negate the INT. The interrupt may be delayed by other higher priority exceptions or if the
MSRIEE] bit is cleared when the exception occurs. Register settings for this exception are
described in Chapter 6, “Exceptions,” in The Programming Environments Manual.

When an external interrupt exception is taken, instruction execution resumes at offset
0x00500 from the physical base address indicated by MSRI[IP].

4.6.6 Alignment Exception (0x00600)

The 620 implements the alignment exception as defined by the PowerPC architecture
(OEA). An alignment exception is initiated when any of the following conditions is met:

» The operand of a floating-point load or store is not word-aligned

» The operand of a fixed-point load-double or store-double is not word-aligned
« The operand of Imw, stmw, Iwarx, or stwcx. is not word-aligned

e The operand of ldarx or stdcx. is not doubleword-aligned.

+ A floating-point memory access is attempted to a direct-store segment.

o If the address for a dcbz instruction is to a memory space marked write-through or
cache-inhibited, an alignment exception is taken.

4.6.7 Program Exception (0x00700)

The 620 implements the program exception as it is defined by the PowerPC architecture
(OEA). A program exception occurs when no higher priority exception exists and one or
more of the exception conditions defined in the OEA occur.

The 620 invokes the system illegal instruction program exception when it detects any
instruction from the illegal instruction class.

The 620 fully decodes the SPR field of the instruction. If an undefined SPR is specified, a
program exception is taken.

The UISA defines the mtspr and mfspr instructions with the record bit (Rc) set to cause a
program exception or provide a boundedly undefined result. In the 620, the appropriate CR
should be treated as undefined. Likewise, the PowerPC architecture states that the Floating
Compared Unordered (fcmpu) or Floating Compared Ordered (fempo) instruction with the
record bit set can either cause a program exception or provide a boundedly undefined result.
In the 620, CR field BF for these cases should be treated as undefined.

When a program exception is taken, instruction execution resumes at offset 0x00700 from
the physical base address indicated by MSR[IP].
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Two MSR bits are used to determine the mode used for handling floating-point exceptions
The 620 operates the floating-point unit (FPU) in either ignore exception mode (FEO = 0,
FE1 = 0) or precise mode (FEO, FE1= (1,0), (0,1), or (1,1)). The FPU uses an internal
pipeline to gain overlapped execution of instructions. If an exception occurs during the
floating-point arithmetic or conversion operations, the FPU sends the exception signal to
the completion block in the instruction flow unit, and the FPU may continue its operation
as normal. The completion block performs the necessary exception handling as defined in
PowerPC architecture. Register settings for this exception are described in Chapter 6,
“Exceptions,” in The Programming Environments Manual.

4.6.8 Floating-Point Unavailable Exception (0x00800)

The floating-point unavailable exception is implemented as defined in the PowerPC
architecture. A floating-point unavailable exception occurs when no higher priority
exception exists, an attempt is made to execute a floating-point instruction (including
floating-point load, store, or move instructions), and the floating-point available bit in the
MSR is disabled, (MSR[FP] = 0). Register settings for this exception are described in
Chapter 6, “Exceptions,” in The Programming Environments Manual.

When a floating-point unavailable exception is taken, instruction execution resumes at
offset 0x00800 from the physical base address indicated by MSR[IP].

4.6.9 Decrementer Exception (0x00900)

The decrementer exception is implemented in the 620 as it is defined by the PowerPC
architecture. The decrementer exception occurs when no higher priority exception exists, a
decrementer exception condition occurs (for example, the decrementer register has
completed decrementing), and MSR[EE] = 1. In the 620, the decrementer register is
decremented at the bus clock rate. Register settings for this exception are described in
Chapter 6, “Exceptions,” in The Programming Environments Manual.

When a decrementer exception is taken, instruction execution resumes at offset 0x00900
from the physical base address indicated by MSR[IP].

4.6.10 System Call Exception (0x00C00)

A system call exception occurs when a System Call (sc) instruction is executed. In the 620,
the system call exception is implemented as it is defined in the PowerPC architecture.
Register settings for this exception are described in Chapter 6, “Exceptions,” in The
Programming Environments Manual.

When a system call exception is taken, instruction execution resumes at offset 0x00C00
from the physical base address indicated by MSR[IP].

4.6.11 Trace Exception (0x00D00)

The trace exception is taken when the single step trace enable bit (MSR[SE]) or the branch
trace enable bit (MSR[BE]) is set and an instruction successfully completes. When a trace
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exception is taken, the values written to SRR 1 are implementation-specific; those values for
the 620 are shown in Table 4-9.

Table 4-9. Trace Exception—Register Settings

Register Setting
SRRO Address of the instruction the processor would have attempted to execute next if no exception
condition were present.
SRR1 0-32 Copied from MSR
33 Set
34 Cleared

35 Set for load, dcbt, or dcbtst instruction

36 Set for store instruction (won't set either bit for other cache control instructions)

37—-41 Copied from MSR

42 Set for Iswx or stswx instruction.

43 Set for mtspr to any privileged register, or if SLB or TLB is updated since last exception.
44 Set for taken branch instruction.

45-47 Cleared

48-63 Copied from MSR.

The 620 does take the trace exception if the source instruction causes another type of
exception. Therefore, the 620 does not take the trace exception on sc, rfid (or rfi), and trap
instructions whose condition is true.

When either MSR[SE] or MSR[BE] is set, the 620 operates in single-instruction
serialization mode.

When a trace exception is taken, instruction execution resumes as offset 0x00DOO0 from the
base address indicated by MSR[IP].

4.6.12 Floating-Point Assist Exception (0x00E00)

The optional floating-point assist exception defined by the PowerPC architecture is not
implemented in the 620.

4.6.13 Performance Monitoring Interrupt (0x00F00)

The PowerPC 620 performance monitor is a software-accessible mechanism that provides
detailed information concerning the dispatch, execution, completion, and memory access
of PowerPC instructions. The performance monitor is provided to help system developers
to debug their systems and to increase system performance with efficient software,
especially in a multiprocessor system where memory hierarchy behavior must be
monitored and studied in order to develop algorithms that schedule tasks (and perhaps
partition them) and distribute data optimally.
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Register settings are described in Table 4-10.

Table 4-10. Performance Monitoring Interrupt—Register Settings

Register Setting

SRRO Set to the effective address of the instruction that the processor would have
attempted to execute next if no exception conditions were present

SRR1 0-32 Loaded from MSR

33 Set if the content of SDA and SIA register is for the same instruction.
34-36 Cleared

37-41 Loaded from MSR

42—-47 Cleared

48-63 Loaded from MSR

The performance monitor uses the following SPRs:

*  Monitor mode control register 0 and 1 (MMCRO and MMCR1)—Controls the
behavior of the performance monitor. Provides the ability to select the events to
count and when they will be counted, set the threshold value, select the time base
input, enable history mode, and select the conditions that enable a performance
monitor exception.

» Performance monitor counters 1-8 (PMC1-PMC8)—Store the number of times a
software selectable event (maximum of one event per counter at a time) has occurred
since the performance monitor was enabled for counting.

» Sampled instruction address (SIA)—Stores the address of a sampled instruction.

» Sampled data address (SDA)—Stores the address associated with the data used by
the sampled instruction.

The 620 supports a performance monitor interrupt that is caused by a counter negative
condition or by a time-base flipped bit counter defined in the MMCRO register.

As with other PowerPC exceptions, the performance monitoring interrupt follows the
normal PowerPC exception model with a defined exception vector offset (0xO0F00). The
priority of the performance monitoring interrupt is below the external interrupt and above
the decrementer interrupt. The contents of the SIA and SDA are described in
Section 2.1.2.7, “Performance Monitor Registers.” The performance monitor is described
in Chapter 10, “Performance Monitor.”

4.6.14 Instruction Address Breakpoint Exception (0x01300)

The instruction address breakpoint exception occurs when an attempt is made to execute an
instruction that matches the address in the instruction address breakpoint register (IABR)
and the breakpoint is enabled. Specifically the following three conditions must be met:

e Instruction address (0-61) = IABR[0-61]

+ JABR[62] =1
e TABR[63] = MSR[IR]
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The instruction that triggers the instruction address breakpoint exception is not executed
before the exception handler is invoked. The vector offset of the instruction address
breakpoint exception is 0x01300. Register settings are described in Table 4-11.

Table 4-11. Instruction Address Breakpoint Exception—Register Settings

Register Setting Descriptions

SRRO Set to the effective address of the instruction that causes the
exception.

SRR1 0-32 Loaded from MSR
33-36 Cleared
3741 Loaded from MSR
42-47 Cleared
48-63 Loaded from MSR.

4.6.15 System Management Interrupt (0x01400)

The 620 implements a system management interrupt exception, which is not defined by the
PowerPC architecture. The system management exception is very similar to the external
interrupt exception and is particularly useful in implementing the nap mode. It has priority
over an external interrupt and it uses a different exception vector in the exception table (at
offset 0x01400).

The system management interrupt exception is taken when SMI is asserted and the
exception is enabled by MSR[EE].

Register settings for the system management exception are described in Table 4-12.

Table 4-12. System Management Interrupt Exception—Register Settings

Register Setting Descriptions

SRRO Set to the effective address of the instruction that causes the
exception.

SRR1 0-32 Loaded from MSR
33-36 Cleared
37-41 Loaded from MSR
42-47 Cleared
48-63 Loaded from MSR.

Like the external interrupt, a system management interrupt is signaled to the 620 by the
assertion of an input signal. The system management interrupt signal (SMI) is expected to
remain asserted until the exception is taken. If the SMI signal is negated early, recognition
of the exception request is not guaranteed. After the 620 begins execution of the exception
handler, the system can safely negate the SMI signal. When MSR[EE] is set and assertion
of the SMI signal is detected, the 620 completes the oldest instruction in the processor,
cancels all outstanding instructions, and takes the system management interrupt exception.

When the exception is taken, the 620 begins fetching instructions from exception vector
offset, 0x01400.
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Chapter 5
Memory Management

This chapter describes the PowerPC 620 microprocessor’s implementation of the memory
management unit (MMU) specifications provided by the operating environment
architecture (OEA) for PowerPC processors. The primary function of the MMU in a
PowerPC processor is the translation of logical (effective) addresses to physical addresses
(referred to as real addresses in the architecture specification) for memory accesses, I/O
accesses (most I/O accesses are assumed to be memory-mapped), and direct-store interface
accesses (which are optional to the PowerPC architecture). In addition, the MMU provides
access protection on a segment, block or page basis. In addition, the 620 implements the
optional 64-bit bridge facility defined in the OEA. This facility provides resources that may
allow some 32-bit operating systems to operate in the 64-bit addressing environment of the
620.

This chapter describes the specific hardware used to implement the MMU model of the
OEA in the 620. Refer to Chapter 7, “Memory Management,” in The Programming
Environments Manual for a complete description of the conceptual model.

Two general types of accesses generated by PowerPC processors require address
translation—instruction accesses and data accesses to memory generated by load and store
instructions. Generally, the address translation mechanism is defined in terms of segment
descriptors and page tables used by PowerPC processors to locate the effective-to-physical
address mapping for instruction and data accesses. The segment information translates the
effective address to an interim virtual address, and the page table information translates the
interim virtual address to a physical address.

The 64-bit MMU model implements segment descriptors, which are used to generate the
interim virtual addresses, as entries in a segment table, which are managed in memory
much as page tables are in both the 32- and 64-bit MMU models. On 32-bit
implementations, the segment descriptors are stored as on-chip segment registers, which
are emulated in the 620. In addition, a unified translation lookaside buffer (UTLB) keeps
recently-used page address translations on-chip.

The 620 implements two level of segmented address translation. The first-level translation
is accomplished by separate instruction and data 64-entry, fully-associative effective to
physical translation caches (EPATSs). The EPAT's cache the effective to physical translation
pairs that are returned from the second-level MMU. The second-level MMU consists of a
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20-entry, fully-associate SLB, and a 128-entry, 2-way set-associative TLB. The
second-level MMU is shared between the first-level instruction and data MMUs.

The block address translation (BAT) mechanism is a software-controlled array that stores
the available block address translations on-chip. BAT array entries are implemented as pairs
of BAT registers that are accessible as supervisor special-purpose registers (SPRs). There
are separate instruction and data BAT mechanisms, and in the 620, they reside in the
instruction and data MMUs respectively.

The MMUs, together with the exception processing mechanism, provide the necessary
support for the operating system to implement a paged virtual memory environment and for
enforcing protection of designated memory areas. Exception processing is described in
Chapter 4, “Exceptions.” Section 4.4, “Exception Processing,” describes the MSR, which
controls some of the critical functionality of the MMUs.

5.1 MMU Overview

The 620 implements the memory management specification of the PowerPC OEA for
64-bit implementations, including the optional 64-bit bridge facility. Thus it provides 264
bytes of effective address space accessible to supervisor and user programs with a 4-Kbyte
page size and 256-Mbyte segment size. The 620’s MMU provides an interim virtual address
(80 bits) and hashed page tables for the generation of 40-bit physical addresses. PowerPC
processors also have a BAT mechanism for mapping large blocks of memory. Block sizes
range from 128 Kbyte to 256 Mbyte and are software-programmable.

Basic features of the 620 MMU implementation defined by the OEA are as follows:

* Support for physical addressing mode—Logical-to-physical address translation can
be disabled separately for data and instruction accesses.

¢ Block address translation—Each of the BAT array entries (four IBAT entries and
four DBAT entries) provides a mechanism for translating blocks as large as
256 Mbytes from the 64-bit effective address space into the physical memory space.
This can be used for translating large address ranges whose mappings do not change
frequently.

+ Direct-store segments (optional to the PowerPC architecture)—If the T bit in the
indexed segment descriptor is set for any load or store request, this request accesses
a direct-store segment; bus activity is different and the memory space used has
different characteristics with respect to how it can be accessed. The address used on
the bus consists of bits from the EA and the segment descriptor.

» Segmented address translation—The 64-bit effective address is extended to an
80-bit virtual address by having EA[0-35] select a 52-bit virtual segment ID
(VSID), EA[36-51] forming bits 52-67, which together form a virtual page number
(VPN). The remaining 12 bits, EA[52—63] remain intact to form the low-order 12
bits of the virtual address.
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The 620 also provides the following features that are not required by the PowerPC
architecture:

A 20-entry content-addressable memory (CAM) segment lookaside buffer (SLB)
with FIFO replacement algorithm for storing the most recently used segment table
entries (STEs). The SLB is fully-associative.

Effective-to-Physical-Address Translators (EPATs)—The instruction and data
first-level MMUs each contain 64-entry, fully-associative EPAT's that cache
effective-to-physical translation pairs that are returned from the second level MMU.
The EPATSs are implemented as CAMSs with an invalid-first replacement algorithm.

Segment table lookup operations performed in hardware—The MMU attempts to
fetch the STE, which contains the segment descriptor, from the SLB on-chip. If the
STE is not in the SLB (that is, a SLB miss occurs), the hardware performs a segment
look-up operation (using a hashing function) to search for the STE.

Unified translation lookaside buffer (UTLB)—The 128-entry, 2-way set UTLB
saves recently-used page address translations on-chip for both instruction and data
accesses. Valid UTLB entries are also forwarded to the EPATS in the first-level
IMMU and DMMU.

Table search operations performed in hardware—If a page address translation is not
found in the EPATSs, the MMU attempts to locate the STE. If the translation is not
found in the SLB (that is, a SLB miss occurs), the hardware performs a table search
operation (using a hashing function) to search for the STE. Once the segment
descriptor is located, an 80-bit virtual address is formed and the MMU attempts to
fetch the PTE, which contains the physical address, from the TLB. If the translation
is not found in a TLB (that is, a TLB miss occurs), the hardware performs a
table-search operation (similar to that performed for the STE) to search for the PTE.

SLB invalidation—The 620 implements the optional SLB Invalidate Entry (slbie)
and SLB Invalidate All (slbia) instructions, which can be used to invalidate SLB and
EPAT entries. For more information on the slbie and slbia instructions, see
Section 5.4.4, “SLB Invalidation.”

TLB invalidation—The 620 implements the optional TLB Invalidate Entry (tlbie)
and TLB Synchronize (tlbsync) instructions, which can be used to invalidate TLB
entries. For more information on the tlbie and tlbsync instructions, see

Section 5.4.6, “TLB Invalidation.”

The optional 64-bit bridge—The OEA defines an additional, optional bridge to the
64-bit architecture that may make it easier for 32-bit operating systems to migrate to
64-bit processors. The 64-bit bridge retains certain aspects of the 32-bit architecture
that otherwise are not supported, and in some cases not permitted, by the 64-bit
version of the architecture. In processors that implement this bridge, segment
descriptors are implemented by using 16 SLB entries to emulate segment registers,
which, like those defined for the 32-bit architecture, divide the 32-bit memory space
(4 Gbytes) into sixteen 256-Mbyte segments. These segment descriptors however
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use the format of the segment table entries as defined in the 64-bit architecture and
are maintained in SLBs rather than in hardware segment registers as defined by the
architecture for 32-bit addressing.

Table 5-1 summarizes the 620 MMU features, including those defined by the PowerPC
architecture (OEA) for 32-bit processors and those specific to the 620.

Table 5-1. OEA-Defined PowerPC 620 Microprocessor MMU Features Summary

Feature Conventional 64-Bit Bridge
Address 284 pytes of effective address 232 pytes of effective address
ranges 0 - = -
2% bytes of virtual address 2 bytes of virtual address
< 254 bytes of physical address < 2%2 pytes of physical address
Page size 4 Kbytes Same
Segment size 256 Mbytes Same
Block address Range of 128 Kbyte—256 Mbyte Same
translation
Implemented with IBAT and DBAT Same
registers in BAT array
Memory Segments selectable as no-execute Same
protection -
Pages selectable as user/supervisor Same
and read-only
Blocks selectable as user/supervisor Same
and read-only
Page history Referenced and changed bits defined | Same
and maintained
Page address Translations stored as PTEs in hashed | Same
translation page tables in memory
Page table size determined by size Same
programmed into SDR1 register
TLBs Instructions for maintaining optional Same
TLBs
Segment Stored as STEs in hashed segment Stored in 16 SLB entries in the same format as the
descriptors tables in memory STEs defined for 64-bit implementations.
Instructions for maintaining optional 16 SLB entries are required to emulate the segment
SLBs registers defined for 32-bit addressing. The slbie and
slbia instructions should not be executed when using
the 64-bit bridge.
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Table 5-2 lists implementation-specific features of the 620 MMU.
Table 5-2. PowerPC 620 Microprocessor-Specific MMU Features Summary

Feature Description
Separate MMUs Separate memory management units (MMUs) for instructions and data
EPATs Independent 64-entry fully-associative effective-to-physical address translation (EPAT)

cache with invalid-first replacement algorithm for instructions and data

TLBs Unified instruction and data TLB

TLB is 128-entry and two-way set-associative

LRU replacement algorithm

Hardware broadcast of TLB and control instructions

SLBs 20-entry CAM segment lookaside buffer (SLB) with FIFO replacement algorithm

Hardware miss handling SLB, TLB, and EPAT cache miss handling performed by 620 hardware

Referenced/changed bits Hardware update of page frame table referenced and changed bits

40 bit addressing 40-bit physical memory address for up to one terabyte

5.1.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a load, store, branch, or cache instruction, and when it fetches
the next instruction. The effective address is translated to a physical address according to
the procedures described in Chapter 7, “Memory Management,” in The Programming
Environments Manual, augmented with information in this chapter. The memory
subsystem uses the physical address for the access.

For a complete discussion of effective address calculation, see Section 2.3.2.3, “Effective
Address Calculation.”

5.1.2 MMU Organization

The PowerPC architecture defines two methods of address translation—segmented address
translation and block address translation (BAT). These translations occur in parallel, with
the BAT taking precedence.

The segmented address translation on the 620 is implemented in two levels. The first-level
translation is accomplished by two separate 64-entry, fully-associative EPATS, one for
instruction fetches and the other for data accesses. The EPAT caches translation pairs that
are returned from the second-leve]l MMU. The second-level MMU consists of a more
traditional 20-entry, fully-associative SLB and a 128-entry, 2-way set-associative TLB.
This second-level MMU is used for both instruction and data accesses.
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Figure 5-1. Two-Level MMU Organization

The second-level MMU consists of a hardware table-search mechanism that is initiated to
reload the EPAT, SLB, or TLB when both MMU levels fail to translate an effective address.
This mechanism searches translation tables that have been previously constructed in main
memory. The table-search mechanism is nonspeculative in that it waits for any refill request
to commit before generating bus requests.

The MMU does not make requests to the L1 cache. Instead, it immediately makes requests
into the L2 and main memory. If the requested cache block was modified in the L1 cache,
that block is copied back to main memory before the MMU’s request is serviced. The
MMU’s request for a cache block always appears as a cacheable coherent burst read
operation on the bus, and any writes caused by referenced and changed bits appear as
write-through coherent stores. Stores for referenced or changed updates are always single
byte store operations.

Figure 5-2 shows the conceptual organization of the MMU in a 64-bit implementation; note
that it does not describe the specific hardware used to implement the memory management
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function for a particular processor and other hardware features (invisible to the system
software) not depicted in the figure may be implemented. For example, the memory
management function can be implemented with parallel MMU s that translate addresses for
instruction and data accesses independently.

The instruction addresses shown in the figure are generated by the processor for sequential
instruction fetches and addresses that correspond to a change of program flow. Memory
addresses are generated by load and store instructions (both for memory and the direct-store
interface) and by cache instructions.

As shown in Figure 5-2, after an address is generated, the higher-order bits of the effective
address, EAO-EAS1 (or a smaller set of address bits, EAO-EAu#, in the cases of blocks), are
translated into physical address bits PAO—PA27. The lower-order address bits, A28—A39 are
untranslated and therefore identical for both effective and physical addresses. After
translating the address, the MMU passes the resulting 40-bit physical address to the
memory subsystem.

In addition to the higher-order address bits, the MMU automatically keeps an indicator of
whether each access was generated as an instruction or data access and a supervisor/user
indicator that reflects the state of the PR bit of the MSR when the effective address was
generated. In addition, for data accesses, there is an indicator of whether the access is for a
load or a store operation. This information is then used by the MMU to appropriately direct
the address translation and to enforce the protection hierarchy programmed by the
operating system. See Section 2.1.1, “Register Set,” for more information about the MSR.

MOTOROLA Chapter 5. Memory Management 5-7




r-‘ e
Segment Table
Search Logic

Page Table
Search Logic

Optional

Data
Accesses

Instruction
Accesses

EA0-EA51

EAO0-EA51

A52-A63

PAO-PA63

IBATOL

IBAT3U
IBAT3L

DBATOU
DBATOL

(]
DBAT3U
DBAT3L

Figure 5-2. MMU Conceptual Block Diagram

A52-A63

PowerPC 620 RISC Microprocessor User's Manual

MOTOROLA



As shown in Figure 5-2, the 620 implements a unified translation lookaside buffer (UTLB)
and supports the automatic search of the page tables for page table entries (PTEs), both of
which the OEA defines as optional.

In 64-bit implementations, the address space register (ASR) defines the physical address of
the base of the segment table in memory. The segment table entries (STEs) contain the
segment descriptors, which define the virtual address for the segment. Some 64-bit
implementations may have dedicated hardware to search for STEs in memory, and copies
of STEs may be cached on-chip in segment lookaside buffers (SLBs) for quicker access.

The 620’s ASR implementation includes the optional V bit, which together with MSR[SF]
enable the use of the 64-bit bridge functionality.

5.1.3 Address Translation Mechanisms
The PowerPC architecture defines four types of address translation:

» Block address translation—Translates the block number for blocks that range in size
from 128 Kbyte to 256 Mbyte

» Page address translation—Translates the page frame address for a 4-Kbyte page size

 Direct-store address translation—Used to generate direct-store interface accesses on
the external bus; not optimized for performance. Direct-store addressing is optional
and is present in the 620 for compatibility only

» Real addressing mode address translation—When address translation is disabled,
the physical address is identical to the effective address

Figure 5-3 shows the four address translation mechanisms provided by the MMU. In
addition, it shows the 620-specific EPATSs, which are a cache of the address translations for
page address and direct-store accesses.

The segment descriptors shown in the figure control both the page and direct-store segment
address translation mechanisms. When an access uses the page or direct-store segment
address translation, the appropriate segment descriptor is required. In 64-bit
implementations, the segment descriptor is located via a search of the segment table in
memory for the appropriate segment table entry (STE). One of the 16 emulated segment
registers (which contain segment descriptors) is selected by the highest-order effective
address bits.

Processors, such as the 620, that implement the 64-bit bridge divide the 32-bit address
space into sixteen 256-Mbyte segments defined by a table of 16 STEs maintained in 16 SL.B
entries.

A control bit in the corresponding segment descriptor then determines if the access is to
memory (memory-mapped) or to a direct-store segment. Note that the direct-store interface
is present to allow certain older I/O devices to use this interface. When an access is
determined to be to the direct-store interface space, the implementation invokes an
elaborate hardware protocol for communication with these devices. The direct-store
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interface protocol is not optimized for performance, and therefore, its use is discouraged.
The most efficient method for accessing I/O is by memory-mapping the I/O areas.

For memory accesses translated by a segment descriptor, the interim virtual address is
generated using the information in the segment descriptor. Page address translation
corresponds to the conversion of this virtual address into the 64-bit physical address used
by the memory subsystem. In some cases, the physical address for the page resides in an
on-chip EPAT or TLB and is available for quick access. However, if the page address
translation misses in both the EPAT and TLB, the MMU searches the page table in memory
(using the virtual address information and a hashing function) to locate the required
physical address. Some implementations may have dedicated hardware to perform the page
table search automatically, while others may define an exception handler routine that
searches the page table with software.

Block address translation occurs in parallel with page and direct-store segment address
translation and is similar to page address translation, except that there are fewer upper-order
effective address bits to be translated into physical address bits (more lower-order address
bits (at least 17) are untranslated to form the offset into a block). Also, instead of segment
descriptors and a page table, block address translations use the on-chip BAT registers as a
BAT array. If an effective address matches the corresponding field of a BAT register, the
information in the BAT register is used to generate the physical address; in this case, the
results of the page translation (occurring in parallel) are ignored. Note that a matching BAT
array entry takes precedence over a translation provided by the segment descriptor in all
cases (even if the segment is a direct-store segment).
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Figure 5-3. Address Translation Types

Direct-store address translation is used when the direct-store translation control bit (T bit)
in the corresponding segment descriptor is set. In this case, the remaining information in
the segment descriptor is interpreted as identifier information that is used with the
remaining effective address bits to generate the packets used in a direct-store interface
access on the external interface; additionally, no TLB lookup or page table search is
performed.

Translation is disabled for real addressing mode. In this case the physical address generated
is identical to the effective address. Instruction and data address translation is enabled with
the MSR[IR] and MSR[DR] bits, respectively. Thus when the processor generates an
access, and the corresponding address translation enable bit in MSR (MSR[IR] for
instruction accesses and MSR[DR] for data accesses) is cleared, the resulting physical
address is identical to the effective address and all other translation mechanisms are
ignored.

MOTOROLA Chapter 5. Memory Management 5-11




5.1.4 Memory Protection Facilities

In addition to the translation of effective addresses to physical addresses, the MMUs
provide access protection of supervisor areas from user access and can designate areas of
memory as read-only as well as no-execute. Table 5-3 shows the protection options
supported by the MMUs for pages.

Table 5-3. Access Protection Options for Pages

User Read Supervisor Read
User Supervisor
Option Write Write
I-Fetch Data I-Fetch Data
Supervisor-only — — — N N \
Supervisor-only-no-execute —_ — _ — v N
Supervisor-write-only v V — 3 v v
Supervisor-write-only-no-execute — v — — N N
Both user/supervisor wl R v \/ N
Both user-/supervisor-no-execute — Y v — R v
Both read-only \I J — Y N —
Both read-only-no-execute — v — — N —

\ Access permitted
— Protection violation

The operating system determines whether instruction can be fetched from an area of
memory for which the no-execute option is provided in the segment descriptor. Each of the
remaining options is enforced based on a combination of information in the segment
descriptor and the page table entry. Thus, the supervisor-only option allows only read and
write operations generated while the processor is operating in supervisor mode
(corresponding to MSR[PR] = 0) to access the page. User accesses that map into a
supervisor-only page cause an exception to be taken.

Finally, the VEA and OEA define a facility that allows pages or blocks to be designated as
guarded preventing out-of-order accesses that may cause undesired side effects. For
example, areas of the memory map used to control I/O devices can be marked as guarded
so that accesses (for example, instruction prefetches) do not occur unless they are explicitly
required by the program.

For more information on memory protection, see “Memory Protection Facilities,” in
Chapter 7, “Memory Management,” in the The Programming Environments Manual.

5.1.5 Page History Information

The MMUs of PowerPC processors also define referenced (R) and changed (C) bits in the
page address translation mechanism that can be used as history information relevant to the
page. This information can then be used by the operating system to determine which areas
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of memory to write back to disk when new pages must be allocated in main memory. While
these bits are initially programmed by the operating system into the page table, the
architecture specifies that the R and C bits may be maintained either by the processor
hardware (automatically) or by some software-assist mechanism that updates these bits
when required.

Implementation Notes—Because the 620 performs TLB- and SLB-miss table search
operations nonspeculatively, it does not speculatively update the reference bit in the PTE or
STE. The 620 also does not set the R or C bit if the instruction causing the update causes
an exception. For more information, see Section 5.4.1, “Page History Recording.”

5.1.6 General Flow of MMU Address Translation

The following sections describe the general flow used by PowerPC processors to translate
effective addresses to virtual and then physical addresses.

5.1.6.1 Real Addressing Mode and Block Address Translation
Selection

When an instruction or data access is generated and the corresponding instruction or data

translation is disabled (MSR[IR] = 0 or MSR[DR] = 0), real addressing mode is used

(physical address equals effective address) and the access continues to the memory

subsystem as described in Section 5.2, “Real Addressing Mode.”

Figure 5-4 shows the flow used by the MMUs in determining whether to select real
addressing mode, block address translation or to use the segment descriptor to select either
direct-store interface or page address translation.
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Figure 5-4. General Flow of Address Translation (Real Addressing Mode and Block)

Note that if the BAT array search results in a hit, the access is qualified with the appropriate
protection bits. If the access violates the protection mechanism, an exception (ISI or DSI
exception) is generated.

Implementation Note—In real mode, 620 load and store operations are treated as though
they are marked as guarded, cacheable, writeback, and memory coherent (WIMG = 0011).
Instruction fetch operations are treated as guarded, cacheable, and memory coherent
(WIMG = 0011). However, these base WIMG values can be modified by configuration
specified in both HIDO and BUSCSR. Note however, that the 620 ignores the settings of the
W and G bits in the IBATS.

5.1.6.2 Page and Direct-Store Interface Address Translation
Selection

When an effective address is generated, and address translation is enabled, the effective
address is checked against both the BATs and the EPATSs. If the address translation is not
present in the BATs and it is found in the EPATSs, the address translation, WIMG settings,
protection information, and whether the access is to a page in memory or is a direct-store
access is determined immediately and the memory access can proceed.

5-14 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA



However, if the effective address translation is in neither the BATs or the EPATS, the
segment descriptor must be located. The T bit in the segment descriptor selects whether the
translation is to a page or to a direct-store segment as shown in Figure 5-5. In addition,
Figure 5-5 also shows how no-execute protection is enforced; if the N bit in the segment
descriptor is set and the access is an instruction fetch, the access is faulted as described in
Chapter 7, “Memory Management,” in The Programming Environments Manual. Note that
the figure shows the flow for these cases as described by the PowerPC OEA, and so the TLB
references are shown as optional. As the 620 implements TLBs, these branches are valid.
TLBs are described in more detail throughout this chapter.
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5.1.6.3 Selection of Page Address Translation

If the effective address hits in the EPAT, the EPAT provides the physical address translation
(the value of the physical page number, PTE[RPN]) required for generating the
effective-to-physical address translation. The EPAT saves information about the translation
that indicates whether it is a page address or a direct-store access.

If the EA is not in the EPATSs, the segment descriptor is located. If the T bit in the
corresponding segment descriptor is 0, page address translation is selected. Otherwise, the
information in the segment descriptor is then used to generate the 80-bit virtual address.
The virtual address is then used to identify the page address translation information (stored
as page table entries (PTEs) in a page table in memory). For increased performance, the 620
has a unified TLB in the second-level MMU that stores recently-used PTEs on-chip. When
the TLBs are updated, copies of the page translation information are forwarded to the
EPATS.

If an access hits in the appropriate TLB, the page translation occurs and the physical
address bits are forwarded to the memory subsystem. If the required PTE is not resident,
the MMU must search the page table. In this case, logic in the 620’s second-level MMU
directs the page table search operation. If the PTE is found, a new TLB and EPAT entry is
created and the page translation is once again attempted. This time, the EPAT is guaranteed
to hit. Once the PTE is located, the access is qualified with the appropriate protection bits.
If the access is a protection violation (not allowed), either an ISI or DSI exception is
generated.

If the PTE is not found by the table search operation, a page fault condition exists, and an
IST or DSI exception occurs so software can handle the page fault.

5.1.6.4 Selection of Direct-Store Interface Address Translation

All effective addresses are checked against the content of the EPATs in the first-level
IMMU and DMMU. EPAT entries contain information that indicates whether the
translation is for a page address or a direct-store access.

If the translation is not provided in the EPAT, the segment descriptor must be located. When
the segment descriptor has the T bit set, the access is considered a direct-store interface
access and the direct-store interface protocol of the external interface is used to perform the
access to direct-store space. The selection of address translation type differs for instruction
and data accesses only in that instruction accesses are not allowed from direct-store
segments; attempting to fetch an instruction from a direct-store segment causes an ISI
exception. See Section 5.6, “Direct-Store Interface Address Translation,” for more detailed
information about the translation of addresses in direct-store space.
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5.1.7 MMU Exceptions Summary

In order to complete any memory access, the effective address must be translated to a
physical address. As specified by the architecture, an MMU exception condition occurs if
this translation fails for one of the following reasons:

» There is no valid entry in the page table for the page specified by the effective
address (and segment descriptor) and there is no valid BAT translation.

» There is no valid segment descriptor and there is no valid BAT translation.

» An address translation is found but the access is not allowed by the memory
protection mechanism.

The translation exception conditions defined by the OEA for 32-bit implementations cause
either the IST or the DSI exception to be taken as shown in Table 5-5.

The translation exception conditions cause either the ISI or the DSI exception to be taken
as shown in Table 5-4. The state saved by the processor for each of these exceptions
contains information that identifies the address of the failing instruction. Refer to
Chapter 4, “Exceptions,” for a more detailed description of exception processing, and the
bit settings of SRR1 and DSISR when an exception occurs.

Table 5-4. Translation Exception Conditions

Condition Description Exception
Page fault (no PTE found) No matching PTE found in page tables (and | access: ISI exception
no matching BAT array entry) SRR1[33] =1
D access: DSI exception
DSISR[1] =1
Segment table fault (no STE No matching STE found in the segment tables | | access: ISI exception
found) (for 64-bit implementations) and no matching SRR1[42] =1
BAT array entry N
D access: DSI exception
DSISR[10] =1
Block protection violation Conditions described in Programming | access: ISI exception
Environments Manual SRR1[36] =1
D access: DSI exception
DSISR[4] = 1
Page protection violation Conditions described in Programming | access: I1SI exception
Environments Manual SRR1[36] = 1

D access: DSI exception

DSISR[4] = 1
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Table 5-4. Translation Exception Conditions (Continued)

Condition Description Exception

No-execute protection violation Attempt to fetch instruction when or STE[N] = | ISI exception

1 SRR1[35] = 1
Instruction fetch from direct-store | Attempt to fetch instruction when SR[T] =1 or | ISI exception
segment STE[T] =1 SRR1[35] = 1
Instruction fetch from guarded Attempt to fetch instruction when MSR[IR] =1 | ISI exception
memory and either: SRR1[35] = 1

matching xBAT[G] = 1, or

no matching BAT entry and PTE[G] = 1

In addition to the translation exceptions, there are other MMU-related conditions (some of
them implementation-specific) that can cause an exception to occur. These conditions map
to the exceptions as shown in Table 5-5. The only MMU exception conditions that occur
when MSR[DR] =0 are the conditions that cause the alignment exception for data accesses.
For more detailed information about the conditions that cause the alignment exception (in
particular for string/multiple instructions), see Section 4.6.6, “Alignment Exception
(0x00600).” Refer to Chapter 4, “Exceptions,” for a complete description of the SRR1 and
DSISR bit settings for these exceptions.

Table 5-5. Other MMU Exception Conditions

Condition

Description

Exception

dcbz with W =1 or | = 1 (may cause
exception or operation may be
performed to memory)

dcbz instruction to write-through
or cache-inhibited segment or
block

Alignment exception (Optional in the

PowerPC architecture)

Idarx, stdcx., Iwarx, or stwex. with
W =1 (may cause exception or
execute correctly)

Reservation instruction to write-
through segment or block

DSI exception (implementation-
dependent)
DSISR[5] = 1

Idarx, stdcx., lwarx, stwex., eciwx, or
ecowx instruction to direct-store

segment (may cause exception or may
produce boundedly-undefined results)

Reservation instruction or
external control instruction when
SR[T] =1 or STE[T] =1

DSI exception (implementation-
dependent)
DSISR[5] = 1

Floating-point load or store to direct-
store segment (may cause exception
or instruction may execute correctly)

Floating-point memory access
when SR[T] = 1 or STE[T] =1

Alignment exception
(implementation-dependent)

Load or store operation that causes a
direct-store error

Direct-store interface protocol
signalled with an error condition

DSI exception
DSISRI[0] = 1

eciwx or ecowx attempted when
external control facility disabled

eciwx or ecowx attempted with
EAR[E] =0

DSI exception
DSISR[11] =1

Imw, stmw, Iswi, Iswx, stswi, or
stswx instruction attempted in little-
endian mode

Imw, stmw, Iswi, Iswx, stswi, or
stswx instruction attempted
while MSRILE] = 1

Alignment exception

Operand misalignment

Translation enabled and operand
is misaligned as described in
Chapter 4, “Exceptions.”

Alignment exception (some of these

cases are implementation-
dependent).
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5.1.8 MMU Instructions and Register Summary

The MMU instructions and registers provide the operating system with the ability to set up
the segment descriptors. Additionally, the operating system has the resources to set up the
block address translation areas and the page tables in memory.

5.1.8.1 MMU Registers

Table 5-6 summarizes the registers that the operating system uses to program the MMU.
These registers are accessible to supervisor-level software only (supervisor level is referred
to as privileged state in the architecture specification). These registers are described in
detail in Chapter 2, “Programming Model.”

Table 5-6. MMU Registers

Register Description
Segment registers The sixteen 32-bit segment registers are defined for 32-bit implementations of the
(SRO-SR15) PowerPC architecture, but are emulated by the first 16 SLBs when the 620 enables the
(64-bit bridge only) 64-bit bridge. The fields in the segment register are interpreted differently depending on

the value of bit 0. The segment registers are accessed by the mtsr, mtsrin, mfsr, and
mfsrin instructions.

BAT registers There are 16 BAT registers, organized as four pairs of instruction BAT registers
(IBATOU-IBAT3U, (IBATOU-IBAT3U paired with IBATOL-IBAT3L) and four pairs of data BAT registers
IBATOL-IBAT3L, (DBATOU-DBAT3U paired with DBATOL-DBAT3L). The BAT registers are defined as
DBATOU-DBAT3U, 64-bit for 64-bit implementations. These special-purpose registers are accessed by the

and DBATOL-DBAT3L) | mtspr and mfspr instructions.

SDR1 register The SDR1 register specifies the base and size of the page tables in memory. SDR1 is a
64-bit register for 64-bit implementations. This is a special-purpose register that is
accessed by the mtspr and mfspr instructions.

Address space The 64-bit ASR specifies the physical address in memory of the segment table for 64-bit
register implementations. This is a special-purpose register that is accessed by the mtspr and
(ASR) mfspr instructions. Because it implements the 64-bit bridge, the 620 defines ASR[63] as

a valid bit that specifies whether the access uses 32- or 64-bit addressing. The ASR is
described in more detail in Section 5.1.8.2, “Address Space Register (ASR) and the

64-Bit Bridge.”

5.1.8.2 Address Space Register (ASR) and the 64-Bit Bridge

The OEA defines an additional, optional bridge to the 64-bit architecture that allows 64-bit
implementations to retain certain aspects of the 32-bit architecture that otherwise are not
supported, and in some cases not permitted by the 64-bit architecture. The bridge facilities
allow the option of defining bit 63 as ASR[V], the STABORG field valid bit. If this bit is
implemented, STABORG is valid only when ASR[V] is set. This bit is optional, but is
implemented if any of the following instructions, which are optional to a 64-bit processor,
are implemented: mtsr, mtsrin, mfsr, mfsrin, mtsrd, or mtsrdin. Processors that do not
implement ASR[V] treat ASR[63] as reserved except that it is assumed to be 1 for address
translation.
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The following further describes programming considerations that are affected by the
ASR[V] bit:

e If ASR[V]is cleared, having the STABORG field refer to a nonexistent memory
location does not cause a machine check exception. Also, if ASR[V] is cleared, the
segment table in memory is not searched and the result is the same as if the search
had failed.

» For a 64-bit operating system that uses the segment register manipulation
instructions as if it were running on a 32-bit implementation: if ASR[V] =0, a
segment fault can occur only if the operating system contains a bug that allows the
generation of an effective address larger than 232_ 1 when MSR[SF] =1 or if the
operating system fails to ensure that the first 16 ESIDs are established (that is, that
the corresponding SLB entries are valid)

» Note that slbie or slbia can be executed regardless of the setting of ASR[V];
however, the instructions should not be used if ASR[V] is cleared.

If ASR[V] is implemented, the ASR must point to a valid segment table whenever address
translation is enabled, the effective address is not covered by BAT translation, and
ASR[V]=1.

5.1.8.3 MMU Instructions

Because the implementation of TLBs and SLBs is optional, the instructions that refer to
these structures are also optional. However, as these structures serve as caches of the page
table (and segment table, in the case of an SLB), there must be a software protocol for
maintaining coherency between these caches and the tables in memory whenever changes
are made to the tables in memory. Therefore, the PowerPC OEA specifies that a processor
implementing a TLB is guaranteed to have a means for doing the following:

+ Invalidating an individual TLB entry (supported by the 620 through the tlbie
instruction)

+ Invalidating the entire TLB (through the architecture defined tlbia instruction; not
supported by the 620)

Similarly, a processor that implements an SLB is guaranteed to have a means for doing the
following:

¢ Invalidating an individual SLB entry (the architecture defines an optional slbie
instruction for this purpose)

+ Invalidating the entire SLB (the architecture defines an optional slbia instruction for
this purpose)

Note that while the implementation of SLBs in 64-bit processors is optional, processors that
implement the 64-bit bridge are required to implement at least 16 SLB entries to provide a
means of emulating the segment registers as they are defined in the 32-bit architecture.
When the processor is using the 64-bit bridge, neither the slbie or slbia instruction should
be executed.
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When the tables in memory are changed, the operating system purges these caches of the
corresponding entries, allowing the translation caching mechanism to refetch from the
tables when the corresponding entries are required.

A processor may implement one or more of the instructions listed in this section to support
table invalidation. If an instruction is implemented that matches the semantics of an
instruction listed here (and described in this document), the operation will be as described.
Alternatively, an algorithm may be specified that performs one of the functions listed above
(a loop invalidating individual TLB entries may be used to invalidate the entire TLB, for
example), or instructions with different semantics may be implemented.

A processor may also perform additional functions (not described here) as well as those
described in the implementation of some of these instructions. For example, an instruction
whose semantics are to purge a TLB entry may be implemented so as to purge all TLB
entries in a congruence class (that is, all TLB entries indexed by the specified EA which can
include corresponding entries in data and instruction TLBs) or the entire TLB.

Because the MMU specification for PowerPC processors is so flexible, it is recommended
that the software that uses these instructions and registers be “encapsulated” into
subroutines to minimize the impact of migrating across the family of implementations.

Table 5-7 summarizes the PowerPC instructions that specifically control the MMU. For
more detailed information about the instructions, refer to the Programming Environment’s
Manual.

Table 5-7. Instruction Summary—Control MMU

Instruction Description
mtsr SR,rS Move to Segment Register
SR[SR]¢—rS
(32-bit instruction used with 64-bit bridge)
mtsrin rS,rB Move to Segment Register Indirect
SR[rB[0-3]]¢—rS

(32-bit instruction used with 64-bit bridge)

mtsrd SR,rS Move to Segment Register Double Word
SLB[SR]<—rS
(64-bit bridge only)

mtsrdin rS,rB Move to Segment Register Indirect Double Word
SLB(rB[32-35]) <— (rS)
(64-bit bridge only)

mfsr rD,SR Move from Segment Register
rD<—SR[SR]
(32-bit instruction used with 64-bit bridge)

mfsrin rD,rB Move from Segment Register Indirect
rD<—SR[rB[0-3]]
(32-bit instruction used with 64-bit bridge)
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Table 5-7. Instruction Summary—Control MMU (Continued)

Instruction Description
tibia Translation Lookaside Buffer Invalidate All—This instruction is optional to the PowerPC
(not architecture and is not supported in the 620. Attempting to execute it causes an illegal instruction
implemented) program exception.
tibie rB Translation Lookaside Buffer Invalidate Entry

If TLB hit (for effective address specified as rB), TLB[V]<—0
Causes EPAT and TLB invalidation of entry in all processors in system.
This instruction is optional to the PowerPC architecture.

tibsync Translation Lookaside Buffer Synchronize

Ensures that all tibie instructions previously executed by the processor executing the tibsync
instruction have completed on all processors.

This instruction is optional to the PowerPC architecture.

sibia Segment Table Lookaside Buffer Invalidate All

For all SLB entries, SLB[V]<—0

Also invalidated all EPATSs.

64-bit implementations only. This instruction is optional to the PowerPC architecture.

slbie rB Segment Table Lookaside Buffer Invalidate Entry

If SLB hit (for effective address specified as rB), SLB[V]<—0

Invalidates all EPAT entries that match the specified address (ESID). This instruction is optional
to the PowerPC architecture.

5.2 Real Addressing Mode

If address translation is disabled (MSR[IR] = 0 or MSR[DR] = 0) for a particular access,
the effective address is treated as the physical address and is passed directly to the memory
subsystem as described in Chapter 7, “Memory Management,” in The Programming
Environments Manual.

For information on the synchronization requirements for changes to MSR[IR] and
MSR[DR], refer to Section 2.3.2.4, “Synchronization.”

5.3 Block Address Translation

The 620 implements block address translation as it is defined by the PowerPC architecture.
The block address translation (BAT) mechanism in the OEA provides a way to map ranges
of effective addresses larger than a single page into contiguous areas of physical memory.
Such areas can be used for data that is not subject to normal virtual memory handling
(paging), such as a memory-mapped display buffer or an extremely large array of numerical
data.

Block address translation in the 620 is described in Chapter 7, “Memory Management,” in
The Programming Environments Manual for 32-bit implementations.
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5.4 Memory Segment Model

The 620 adheres to the memory segment model as defined in Chapter 7, “Memory
Management,” in The Programming Environments Manual for 64-bit implementations.
Memory in the PowerPC OEA is divided into 256-Mbyte segments. This segmented
memory model provides a way to map 4-Kbyte pages of effective addresses to 4-Kbyte
pages in physical memory (page address translation), while providing the programming
flexibility afforded by a large virtual address space (80 bits).

The segment/page address translation mechanism may be superseded by the block address
translation (BAT) mechanism described in Section 5.3, “Block Address Translation.” Also
if the page address translation has been saved in an EPAT in the first-level instruction or
data MMU, there is no need to access the segment descriptors. Information pertaining to
memory protection or whether the translation is for a direct-store access is saved in the
EPAT entry. Note that the EPATs are not defined by the PowerPC architecture.

If the translation is not already available, the translation proceeds in the following two
steps:

1. From effective address to the virtual address (which never exists as a specific entity
but can be considered to be the concatenation of the virtual page number and the byte
offset within a page), and

2. From virtual address to physical address.

This section highlights those areas of the memory segment model defined by the OEA that
are specific to the 620.

5.4.1 Page History Recording

Referenced (R) and changed (C) bits reside in each PTE to keep history information about
the page. They are maintained by a combination of the 620 table search hardware and the
system software. The operating system uses this information to determine which areas of
memory to write back to disk when new pages must be allocated in main memory.
Referenced and changed recording is performed only for accesses made with page address
translation and not for translations made with the BAT mechanism or for accesses that
correspond to direct-store (T = 1) segments. Furthermore, R and C bits are maintained only
for accesses made while address translation is enabled (MSR[IR] = 1 or MSR[DR] = 1).

In the 620, the referenced and changed bits are updated as follows:
« For TLB hits, the C bit is updated according to Table 5-8.

+ For TLB misses, when a table search operation is in progress to locate a PTE. The
R and C bits are updated (set, if required) to reflect the status of the page based on
this access.

Table 5-8 shows that the status of the C bit in the TLB entry (in the case of a TLB hit) is
what causes the processor to update the C bit in the PTE (the R bit is assumed to be set in
the page tables if there is a TLB hit). Therefore, when software clears the R and C bits in
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the page tables in memory, it must invalidate the TLB entries associated with the pages
whose referenced and changed bits were cleared.

Table 5-8. Table Search Operations to Update History Bits—TLB Hit Case

R and C bits Processor Action
inTLB Entry
00 Combination doesn’t occur
01 Combination doesn’t occur
10 Read: No special action
Write: The 620 initiates a table search operation to update C.
11 No special action for read or write

The dcbt and dcbtst instructions can execute if there is a TLB/BAT hit or if the processor
is in real addressing mode. In case of a TLB/BAT miss, these instructions are treated as
no-ops; they do not initiate a table search operation and they do not set either the R or C bits.

As defined by the PowerPC architecture, the referenced and changed bits are updated as if
address translation were disabled (real addressing mode). Additionally, these updates are
performed with single-beat read and byte write transactions on the bus.

5.4.1.1 Referenced Bit

The referenced (R) bit of a page is located in the PTE in the page table. Every time a page
is referenced (with a read or write access) and the R bit is zero, the 620 sets the R bit in the
page table. The OEA specifies that the referenced bit may be set immediately, or the setting
may be delayed until the memory access is determined to be successful. Because the
reference to a page is what causes a PTE to be loaded into the TLB, the referenced bit in all
TLB entries is effectively always set. The processor never automatically clears the
referenced bit.

The referenced bit is only a hint to the operating system about the activity of a page. At
times, the referenced bit may be set although the access was not logically required by the
program or even if the access was prevented by memory protection. Examples of this in
PowerPC systems include the following:

 Fetching of instructions not subsequently executed

» Accesses generated by an Iswx or stswx instruction with a zero length

» Accesses generated by an stwex. or stdcex. instruction when no store is performed
because a reservation does not exist

¢ Accesses that cause exceptions and are not completed

5.4.1.2 Changed Bit

The changed bit of a page is located both in the PTE in the page table and in the copy of the
PTE loaded into the TLB (if a TLB is implemented, as in the 620). Whenever a data store
instruction is executed successfully, if the TLB search (for page address translation) results
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in a hit, the changed bit in the matching TLB entry is checked. If it is already set, the
processor does not change the C bit. If the TLB changed bit is 0, the 620 sets it and a table
search operation is performed to also set the C bit in the corresponding PTE in the page
table. The 620 initiates the table search operation for setting the C bit in this case.

The changed bit (in both the TLB and the PTE in the page tables) is set only when a store
operation is allowed by the page memory protection mechanism and the store is guaranteed
to be in the execution path (unless an exception, other than those caused by the sc, rfi, or
trap instructions, occurs). Furthermore, the following conditions may cause the C bit to be
set:

» The execution of an stwcx. or stdcx. instruction is allowed by the memory
protection mechanism but a store operation is not performed.

» The execution of an stswx instruction is allowed by the memory protection
mechanism but a store operation is not performed because the specified length is
zero.

+ The store operation is not performed because an exception occurs before the store is
performed.

Again, note that although the execution of the dcbt and dcbtst instructions may cause the
R bit to be set in some PowerPC processors, they never cause the C bit to be set.

5.4.1.3 Scenarios for Referenced and Changed Bit Recording

This section provides a summary of the model (defined by the OEA) that is used by
PowerPC processors for maintaining the referenced and changed bits. In some scenarios,
the bits are guaranteed to be set by the processor, in some scenarios, the architecture allows
that the bits may be set (not absolutely required), and in some scenarios, the bits are
guaranteed to not be set. Note that when the 620 updates the R and C bits in memory, the
accesses are performed as if MSR[DR] =0 and G = O (that is, as nonguarded cacheable
operations in which coherency is required).

Table 5-9 defines a prioritized list of the R and C bit settings for all scenarios. The entries
in the table are prioritized from top to bottom, such that a matching scenario occurring
closer to the top of the table takes precedence over a matching scenario closer to the bottom
of the table. For example, if an stwcx. instruction causes a protection violation and there is
no reservation, the C bit is not altered, as shown for the protection violation case. Note that
in the table, load operations include those generated by load instructions, by the eciwx
instruction, and by the cache management instructions that are treated as a load with respect
to address translation. Similarly, store operations include those operations generated by
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store instructions, by the ecowx instruction, and by the cache management instructions that
are treated as a store with respect to address translation.

Table 5-9. Model for Guaranteed R and C Bit Settings

Causes Setting of Causes Setting

Priority Scenario R Bit of C Bit
OEA 620 OEA 620

1 No-execute protection violation No No No No

2 Page protection violation Maybe No No No

3 Out-of-order instruction fetch or load operation Maybe No No No

4 Out-of-order store operation contingent on a branch, trap, | Maybe No No No
sc or rfi instruction, or a possible exception

5 Out-of-order store operation contingent on an exception, Maybe No No No
other than a trap or sc instruction, not occurring

6 Zero-length load (Iswx) Maybe No No

7 Zero-length store (stswx) Maybe' Maybe'

8 Store conditional (stwcex. or stdcx.) that does not store Maybe' Maybe'

9 In-order instruction fetch Yes? Yes No No

10 Load instruction or eciwx Yes Yes No No

11 Store instruction, ecowx, or debz instruction Yes Yes Yes Yes

12 icbi, dcbt, debtst, debst, or debf instruction Maybe No No No

13 dcbi instruction Maybe! | No Maybe' | No

TiCis set, R is also guaranteed to be set.
2 This includes the case in which the instruction was fetched out-of order and R was not set
(does not apply for 620).

For more information, see “Page History Recording” in Chapter 7, “Memory
Management,” of The Programming Environments Manual.

5.4.2 Page Memory Protection

The 620 implements page memory protection as it is defined in Chapter 7, “Memory
Management,” in The Programming Environments Manual.

5.4.3 SLB Description

The 620 implements a 20-entry, FIFO segment-lookaside buffer (SLB). The SLB
implementation supports both 64-bit addressing as defined by the PowerPC architecture
and 32-bit addressing which is supported through the 64-bit bridge defined as optional by
the PowerPC architecture.
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When the processor is in 64-bit bridge mode, the first 16 entries of the SLB act like 64-bit
segment register. The remaining four SLB entries function as SLB entries as they are
defined for 64-bit addressing.

The SLB supports simultaneous updates from the 64-bit bridge’s implementation of the
mtsr instruction as well as automatic hardware refills provided for 64-bit addressing, and
as such, allows complex combinations of translations based on STEs and segment registers.
In these hybrid modes, software must maintain SLB consistency.

5.4.4 SLB Invalidation

The 620 supports the slbie and the slbia instructions defined by the PowerPC architecture.
Note that the instructions invalidate the SLB entries as well as the EPAT entries that match
the specified ESID. These instructions are not broadcast on the bus.

5.4.5 TLB Description

The UTLB contains 128 entries organized as a two-way set associative array with 64 sets.
If the address in one of the two TLB entries is valid and matches the virtual address, that
TLB entry contains the physical address. If no match is found, a TLB miss occurs.

Unless the access is the result of an out-of-order access, a hardware table search operation
begins if there is a TLB miss. If the access is out of order, the table search operation is
postponed until the access is required, at which point the access is no longer out of order.
When the matching PTE is found in memory, it is loaded into a particular TLB entry
selected by the least-recently-used (LRU) replacement algorithm and the appropriate EPAT,
and the translation process begins again, this time with an EPAT hit.

TLB entries are on-chip copies of PTEs in the page tables in memory and are similar in
structure. Formats for the PTE are given in “PTE Format for 64-Bit Implementations,” in
Chapter 7, “Memory Management,” of The Programming Environments Manual.

Software cannot access TLB arrays directly, except to invalidate an entry with the tlbie
instruction.

Each set of TLB entries is associated with one LRU bit, which is accessed when those
entries in the same set are indexed. LRU bits are updated whenever a TLB entry is used or
after the entry is replaced. Invalid entries are always the first to be replaced.

Although both SLBs and TLBs can be accessed in the same clock, only one exception is
reported at a time.

Although address translation is disabled on a reset condition, the valid bits of the BAT array
and TLB entries are not automatically cleared. Thus, TLB entries must be explicitly cleared
by the system software (with the tlbie instruction) before the valid entries are loaded and
address translation is enabled.
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5.4.6 TLB Invalidation

For PowerPC processors such as the 620 that implement TLB structures to maintain
on-chip copies of the PTEs that are resident in physical memory, the optional TLB
Invalidate Entry (tlbie) instruction provides a way to invalidate the TLB entries. Note that
the tlbia instruction is not implemented by the 620.

When a tlbie instruction is executed, the following actions occur:

« Processor Function—The processor invalidates its own instruction and data TLBs
and EPATs. The tlbie invalidates all members of the congruence class indexed by the
EA. No SLB lookup and tag compare is required for this instruction. The processor
issues the tlbie bus operation.

+ Finished and Complete—The tlbie instruction is finished and complete when the
LSU sends the tlbie bus operation to the bus unit.

» Performed—The tlbie instruction is performed when the tlbsync instruction is
completes its operations on the bus.

» Snooper Function—The snooper indexes into both instruction and data EPATs and
into TLBs, and it invalidates the entire congruence class in each TLB without
comparing the tags for the TLBs.

« The 620 snooper handles only one tlbie instruction at a time—For more information
see Section 8.4.18, “ASTATIN and ARESPIN Retry.”

¢ Memory function—No operation

5.4.7 TLB Synchronization

The tlbsync instruction guarantees that all loads and stores in all processors that may have
used a TLB entry that has been invalidated by a tlbie instruction have been performed. The
tlbsync instruction may only be issued by one processor at a time; this must be software
controlled.

Note that as a tlbsync master or snooper, the 620 does not guarantee that all previous tlbie
instructions have been issued to the bus or, if completed on the bus, have been completed
by the 620 snooper. To guarantee that all tlbie instructions executed prior to the tlbsync will
have been completed on the bus and completed by all 620 snoopers before the tlbsync is
issued to the bus, the tlbsync instruction must follow a sync. The completion of the tlbsync
bus operation guarantees that all instructions on other processors that may have used a
translation invalidated by a tlbie are complete.

When the processor issues a tlbsync bus operation, ARESPIN Retry causes the tlbsync bus
operation to be reissued. ARESPIN ReRun causes the tlbsync operation to be issued R =
1. ARESPIN Null is treated as the completion of the tlbsync bus operation. ARESPIN
Shared and Modified are undefined. For more information, see Section 8.4.18, “ASTATIN
and ARESPIN Retry.”
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The tlbsync instruction is finished and complete when the tlbsync bus operation is
complete.

The snooper ensures that all loads, stores, and instruction fetches that used any TLBs have
been either flushed or performed. A snooped tlbsync has the same effect on a processor that
async would have if it were executed on that processor. A snooper receives the tlbsync and
accepts it only if ASTATIN is not Retry. If ASTATIN is Retry, the snooper must back out
of the tlbsync operation. A snooper may continue the tlbsync bus operation if ARESPIN is
Retry. A snooper issues ARESPOUT ReRun for as long as it takes to complete the tlbsync.

The tlbsync operation appears on the bus as a distinct operation, that causes
synchronization of snooped tlbie instructions. Section 5.4.6, “TLB Invalidation,” describes
the TLB invalidation mechanisms in the 620.

5.4.8 Page Address Translation Summary

Figure 5-6 provides the detailed flow for the page address translation mechanism, it
includes the checking of the N bit in the segment descriptor and then expands on the “TLB
Hit” branch of Figure 5-7. The detailed flow for the “TLB Miss” branch of Figure 5-7 is
described in Section 5.4.9, “Page Table Search Operation.” Note that, as in the case of block
address translation, if the dcbz instruction is attempted to be executed either in
write-through mode or as cache-inhibited (W = 1 or I = 1), the alignment exception is
generated. The checking of memory protection violation conditions for page address
translation is described in Chapter 7, “Memory Management,” in The Programming
Environments Manual.
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5.4.9 Page Table Search Operation

If the translation is not found in the TLBs (a TLB miss), the 620 initiates a table search
operation which is described in this section. Formats for the PTE are given in “PTE Format
for 32-Bit Implementations,” in Chapter 7, “Memory Management,” of The Programming
Environments Manual.

The following is a summary of the page table search process performed by the 620:

1. The 64-bit physical addresses of the primary and secondary PTEGs are generated as
described in the Programming Environments Manual.

2. As many as 16 PTEs (from the primary and secondary PTEGs) are read from
memory (the architecture does not specify the order of these reads, allowing
multiple reads to occur in parallel). PTE reads occur with an implied WIM
memory/cache mode control bit setting of 0b001. Therefore, they are considered
cacheable.

3. The PTEs in the selected PTEGs are tested for a match with the virtual page number
(VPN) of the access. The VPN is the VSID concatenated with the page index field
of the virtual address. For a match to occur, the following must be true:

— PTE[H] = 0 for primary PTEG; PTE[H] = 1 for secondary PTEG
— PTE[V]=1

— PTE[VSID] = VA[0-51]

— PTE[API] = VA[52-56]

4. If a match is not found within the eight PTEs of the primary PTEG and the eight
PTEs of the secondary PTEG, an exception is generated as described in step 8. If a
match (or multiple matches) is found, the table search process continues.

5. If multiple matches are found, all of the following must be true:

— PTE[RPN] is equal for all matching entries
— PTE[WIMG] is equal for all matching entries
— PTE[PP] is equal for all matching entries

6. If one of the fields in step 5 does not match, the translation is undefined, and R and
C bit of matching entries are undefined. Otherwise, the R and C bits are updated
based on one of the matching entries.

7. A copy of the PTE is written into the on-chip TLB and appropriate EPAT, and the R
bit is updated in the PTE in memory (if necessary). If there is no memory protection
violation, the C bit is also updated in memory (if necessary) and the table search is
complete.

8. If a match is not found within the primary or secondary PTEG, the search fails, and
a page fault exception condition occurs (either an ISI or DSI exception).

Reads from memory for page table search operations are performed as if the WIMG bit
settings were 0b0010 (that is, as unguarded cacheable operations in which coherency is
required).
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Reads from memory for table search operations should be performed as global (but not
exclusive), cacheable operations, and can be loaded into the on-chip cache.

Figure 5-7 shows how the conceptual model for the primary and secondary page table
search operations, described in The Programming Environments Manual are realized in the
620.

Figure 5-7 shows the case of a dcbz instruction that is executed with W =1 or I = 1, and
that the R bit may be updated in memory (if required) before the operation is performed or
the alignment exception occurs. The R bit may also be updated if memory protection is
violated.
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If the address in one of the two selected TLB entries is valid and matches the virtual
address, that TLB entry contains the physical address. If no match is found, a TLB miss
occurs and, if this is an in-order access, a hardware table search operation begins. Once the

matching PTE is found in memory, it is loaded into the appropriate TLB entry depending
on the LRU bit setting and translation continues.
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Note that when a TLB miss occurs, the MMU does not begin the table search operation if
the access is out of order.

5.5 Porting a 32-Bit Operating System

The 620 provides optional support, defined by the PowerPC architecture, that makes it
easier to modify a 32-bit operating system to work in the 64-bit environment.

5.5.1 MMU Support for 32-bit OS

The primary feature added to the MMU is support for segment register emulation that
resembles the segment registers defined by that OEA for 32-bit implementations. This is
accomplished by a modification to the SLB that allows the mtsr instruction to directly load
an entry into one of the first 16 entries of SLB. The entry number is determined by the
instruction. A diagram of this shared structure is shown in Figure 5-8.

EA / Segment Number

A 4

EA CAM ﬁ\

VSID Data Array

Binary al
DCD

A 4

VSID (to TLB)

Figure 5-8. Shared Segment Registers and SLB Structure

The SLB supports both mtsr and normal hardware refills simultaneously, which allows
complex combinations of both STE- and segment-register based translations. In these
hybrid modes, the software must maintain SLB consistency. In particular, the LRU policy
of the SLB becomes critical because hardware refill can overwrite the segments. The SLB
internally maintains a pointer to determine which cache block is to be written on the next
hardware refill. Following any write operation, the pointer is moved just below the written
line. The mtsr instructions ignore the refill pointer and write at the offset indicated by the
instruction.

In addition the following resources, defined as optional by the PowerPC architecture, are
implemented on the 620.

* ASR[V]—Address space register valid bit (ASR[63]) is used on the 620 to disable
segment table search operations. If this bit is cleared, any translation that misses in
the SLB causes in a segment fault.

»  MSR[ISF]—The MSR[ISF] is copied to MSR[SF] when the processor takes an
exception.
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» Segment register instructions that are required by the 32-bit architecture that are
used by the 64-bit bridge, mtsr, mtsrin, mfsr, and mfsrin.

« Additional segment register double instructions that are used only by the 64-bit
bridge facility:
— mtsrd (Move to Segment Double)—This instruction is a 64-bit extension of the

32-bit mtsr instruction. The enhanced instruction allows larger virtual addresses
to be loaded into the SLB.

— mtsrind (Move to Segment Register Double Indirect)—This instruction is a
64-bit extension of the 32-bit mtsrin instruction. The enhanced instruction
allows larger virtual addresses to be loaded into the SLB.

5.5.2 Guidelines

This section provides a very general overview for adapting a 32-bit operating system to run
on the 620. In particular, it describes differences between a 32-bit based processor and 620
that are important to a operating system.

» PTE format—The 64-bit version of PTE has a different format from the 32-bit PTE.
Sections of the operating system that create and reference PTE data must reflect the
new format.

*  SDR1—The 64-bit version of SDR1 has a different format from the 32-bit version.
References to this register must use the new 64-bit format.

+ BATs—Since the 620 updates BATs as they are defined for 64-bit addressing,
software must ensure that the upper 32 bits are cleared in the GPR before issuing a
mtspr[BAT] instruction.

+ HIDO, L2CR, L2SR, BUSCSR—Because most processors differ in how they use
these processor configuration registers, the operating systems that access these
registers will need modification.

This list cannot consider every operating system in detail, and should not be considered
complete.

5.6 Direct-Store Interface Address Translation

The 620 implements the optional direct-store interface as it is defined by the PowerPC
architecture. That is, if T = 1 for the selected segment descriptor and there are no BAT hits,
the access maps to the direct-store interface, invoking a specific bus protocol for accessing
some special-purpose I/O devices. Direct-store segments are provided for POWER
compatibility and is not implemented on all PowerPC processors. As the direct-store
interface is present only for compatibility with existing I/O devices that used this interface
and the direct-store interface protocol is not optimized for performance, its use is
discouraged. Applications that require low latency load/store access to external address
space should use memory-mapped I/O, rather than the direct-store interface.
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Note that the 620 implements EPAT's that provide effective-to-physical address translations
for recent memory accesses. The EPATS also contain information that indicates whether the
T bit is set for the segment descriptor that corresponds to the memory access. Therefore
whether an access is to a direct-store device can be determined without having to locate the
segment descriptor.
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Chapter 6
Instruction Timing

This chapter describes instruction prefetch and execution through all of the execution units
of the PowerPC 620 microprocessor. It also provides examples of instruction sequences
showing concurrent execution and various register dependencies to illustrate timing
interactions.

6.1 Terminology and Conventions

Terminology and conventions used in this chapter are described as follows:

Stage—An element in the pipeline at which certain actions are performed, such as
decoding the instruction, performing an arithmetic operation, and writing back the
results. A stage typically takes a cycle to perform its operation; however, some
stages are repeated (a double-precision floating-point multiply, for example). When
this occurs, an instruction immediately following it in the pipeline is forced to stall
in its cycle.

In some cases, an instruction may also occupy more than one stage
simultaneously—for example, instructions may complete and write back their
results in the same cycle.

After an instruction is fetched, it can always be defined as being in one or more
stages.

Pipeline—In the context of instruction timing, the term pipeline refers to the
interconnection of the stages. The events necessary to process an instruction are
broken into several cycle-length tasks to allow work to be performed on several
instructions simultaneously—analogous to an assembly line. As an instruction is
processed, it passes from one stage to the next. When it does, the stage becomes
available for the next instruction.

Although an individual instruction may take many cycles to complete (the number
of cycles is called instruction latency), pipelining makes it possible to overlap the
processing so that the throughput (number of instructions completed per cycle) is
greater than if pipelining were not implemented.
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Superscalar—A superscalar processor is one that can issue multiple instructions
concurrently from a conventional linear instruction stream. In a superscalar
implementation, multiple instructions can be in the same stage at the same time. In
the 620 these instructions can leave the execute stage out of order but must leave the
other stages in order.

Branch prediction—The process of guessing whether a branch will be taken. Such
predictions can be correct or incorrect; the term predicted as it is used here does not
imply that the prediction is correct (successful). The PowerPC architecture defines
a means for static branch prediction, which is part of the instruction encoding. The
620 also implements dynamic branch prediction, where there are levels of
probability assigned to a particular instruction depending on the history of that
instruction, which is recorded in the branch history table (BHT).

Branch resolution—The determination of whether a branch is taken or not taken. A
branch is said to be resolved when it can exactly be determined which path it will
take. If the branch is resolved as predicted, speculatively executed instructions can
be completed. If the branch is not resolved as predicted, instructions on the
mispredicted path are purged from the instruction pipeline and are replaced with the
instructions from the nonpredicted path.

Program order—The original order in which program instructions are provided to
the instruction queue from the cache.

Stall—An occurrence when an instruction cannot proceed to the next stage.

Latency—The number of clock cycles necessary to execute an instruction and make
ready the results of that execution for a subsequent instruction. If the execution time
varies dependent on the data operands, then a best-case/worst-case range is given for
instructions that do not update architectural registers, such as store instructions. The
execution time means the time it takes to execute this instruction back-to-back.
Latency also includes the serialization penalty.

Throughput—A measure of the number of instructions that are processed per cycle.
For example, a series of double-precision floating-point multiply instructions has a
throughput of one instruction per clock cycle. Throughput also includes the
serialization penalty.

Reservation station—A buffer between the dispatch and execute stages that allows
instructions to be dispatched even though the operands required for execution may
not yet be available. In the 620, each execution unit has a two-entry reservation
station. The 620 implements two types of reservation stations. The integer units
implement out-of-order execution units so integer instructions can be executed out
of order within individual integer units and among the three units. The load/store
unit also supports out-of-order retrieval of instructions from its reservation stations.
The reservation stations of the floating-point execution unit are in-order reservation
stations—that is, all instructions must pass through the floating-point unit in
program order with respect to other like instructions.
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e Rename buffer—Temporary buffers used by instructions that have not completed
and as write-back buffers for those that have.

+ Finish—The term indicates the final cycle of execution. In this cycle, the completion
buffer is updated to indicate that the instruction has finished executing.

¢ Completion—Completion occurs when an instruction is removed from the
completion buffer. When an instruction completes we can be sure that this
instruction and all previous instructions will cause no exceptions. In some situations,
an instruction can finish and complete in the same cycle.

¢ Write-back—Write-back (in the context of instruction handling) occurs when a
result is written from the rename registers into the architectural registers (typically
the GPRs and FPRs). Results are written back at completion time or are moved into
the write-back buffer. Results in the write-back buffer cannot be flushed. If an
exception occurs, these buffers must write back before the exception is taken.

6.2 Instruction Timing Overview

The 620 has been designed to maximize instruction throughput and minimize average
instruction execution latency. For many of the instructions in the 620, this can be simplified
to include only the execute phase for a particular instruction. Note that the number of
additional cycles required by data access instructions depends on whether the access hits in
the L1 cache in which case there is a single cycle required for the cache access. If the access
misses in the L1 cache, the number of additional cycles required is affected by the 1.2 cache
access latency, processor-to-bus clock ratios, and other factors pertaining to memory
access.

In keeping with this definition, most integer instructions have a latency of one clock cycle
(for example, results for these instructions are ready for use on the next clock cycle after
issue). Other instructions, such as the integer multiply, require more than one clock cycle
to finish execution.

Figure 6-1 provides a detailed block diagram—showing the additional data paths that
contribute to the improved efficiency in instruction execution and more clearly shows the
relationships between execution units and their associated register files.
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Figure 6-1. PowerPC 620 Microprocessor Block Diagram Showing Data Paths

As shown in Table 6-1, effective throughput of more than one instruction per clock cycle
can be realized by the many performance features in the 620 including multiple execution
units that operate independently and in parallel, pipelining, superscalar instruction issue,
dynamic branch prediction, the implementation of two reservation stations for each
execution unit to avoid additional latency due to stalls in individual pipelines, and result
buses that forward results to dependent instructions instead of requiring those instructions
to wait until results become available in the architected registers.

Although it is not shown in Figure 6-1, the LSU and FPU are pipelined.

The 620’s completion buffer can retire four instructions every clock cycle. In general,
instruction processing is accomplished in five stages—fetch stage, dispatch stage, execute
stage, completion stage, and write-back stage. The instruction fetch stage includes the clock
cycles necessary to request instructions from the on-chip cache as well as the time it takes
the on-chip cache to respond to that request. In the complete stage, as many as four
instructions per cycle are completed in program order. In the write-back stage, results are
returned to the register file. Instructions are fetched and executed concurrently with the

6-4 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA



execution and write-back of previous instructions producing an overlap period between
instructions. The details of these operations are explained in the following paragraphs.

6.2.1 Pipeline Structures

The currently proposed master instruction pipeline of the 620 has five stages. Each
instruction executed by the machine will flow through at least these stages. Some
instructions (for example, loads and stores) flow through additional pipeline stages as
shown in Figure 6-3.

The five basic stages of the master instruction pipeline are:

* Fetch (IF)
« Dispatch (DS)
e Execute (E)
¢ Completion (C)
*  Write-back (W)
These stages are shown in Figure 6-2. Some instructions occupy multiple stages

simultaneously and some individual execution units, such as the FPU and MCIU, have
multiple execution stages.

Fetch (IF)

A

(Four-instruction dispatch per clock cycle in | Dispatch (DS)
any combination)

Execute Stage

Complete (C)

Write-Back (W)

Figure 6-2. Pipeline Diagram

Pipelines for typical instructions for each of the execution units are shown in Figure 6-3.
Note that this figure does not accurately reflect the latencies for all instructions that pass
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through each of the pipelines. The division of instructions into branch, integer, load/store,
and floating-point instructions indicates the execution unit in which the instructions
execute. For example, mtspr instructions, which are not thought of as integer instructions
from a functional perspective, are considered with integer instructions here because they
execute in the MCIU.

Note that in many circumstances, complete and write-back can occur in the same cycle.
Also, integer multiply, integer divide, move to/from SPR, store, and load instructions that
miss in the cache can occupy both the final stage of execute (finish) and complete (and
write-back) simultaneously.

Branch Instructions

Predict

Fetch Resolve

Integer Instructions

Fetch Dispatch  Execute* Complete Write-Back

Load Instructions

Execute

Fetch Dispatch Eélc Cache Align Complete Write-Back

Store Instructions
Execute

Fetch Dispatch (E:':Ic Cache Lookup Complete Gelglg Align Store
| I - L : .

Floating-point Instructions
Execute (FPR Access)

(Round
/Normalize

Fetch Dispatch  (Multiply) (Add)

) Complete Write-Back

* Note that several integer instructions that execute in the MCIU have multiple execute stages.

Figure 6-3. Master Instruction Pipeline
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A description of each of the five stages of the master instruction pipeline is provided in the
following sections.

6.2.1.1 Fetch Stage

The fetch pipeline stage primarily involves accessing instructions from the instruction
cache and determining where the next instruction fetch should occur. The instructions
fetched from the cache are either latched into an instruction buffer or the dispatch buffer for
subsequent consideration by the dispatch pipeline stage. Both branch history table (BHT)
and branch target address cache (BTAC) are accessed in the fetch stage to determine where
the next instruction fetch should occur.

6.2.1.2 Dispatch Stage

The dispatch pipeline stage is responsible for decoding the instructions in the dispatch
buffer, and allocating execution resources to the instructions. Instructions are eligible to be
dispatched if they get all of their required resources; otherwise, they are held in the dispatch
buffer until the resources become available. Resources are allocated to the instructions in
program order. The source operands of the instructions are read from the register file or
rename buffers, and are dispatched with the instruction to the execution units. The target
registers are renamed, and the rename-register tags are sent to the execution units too. At
the end of the dispatch pipeline stage, the dispatched instructions and their operands are
sent and latched into reservation stations or execution unit input latches.

6.2.1.3 Execute Stage

The functionality of the execute pipeline stage is executing an instruction from the
reservation stations or from instructions just arriving from dispatch. An instruction
becomes eligible for execution when all its source operands are available. The execution
unit selects the oldest instruction to execute if there is more than one instruction ready for
execution. Integer and load/store units can retrieve instructions from the reservation
stations out-of-order, but branch and floating-point units can only execute the oldest
instruction in the reservation stations. At the end of execute stage, execution unit will write
the results into the appropriate rename buffer entry, and notify the completion stage that the
instruction has finished execution. In the cases an exception occurs due to the instruction,
the execution unit will report the exception to complete pipeline stage and continue
executing next instructions from the reservation stations.

6.2.1.4 Complete Stage

The complete pipeline stage is responsible for maintaining the correct architectural
machine state. It considers four instructions residing in the completion buffer and uses the
information about the status of instructions provided by the dispatch and execute stages. If
the instructions being considered meet the constraints on completion, their results are
scheduled to be written back from the rename buffer(s) to the architectural register file(s).
If the completion logic detects an instruction containing exception status or a branch has
been mispredicted, all following instructions will be cancelled, their execution results in the
rename buffers will be discarded, and the correct instruction stream will be fetched.
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6.2.1.5 Write-back Stage

The write-back pipeline stage is relatively straightforward. It acts on the write-back select
information generated by the complete pipeline stage and writes the appropriate Rename
Buffer entries into the appropriate architectural register file(s). Updating of many other
architectural registers (CTR, LK, CR, etc.) is performed at this time as well.

6.3 Instruction Scheduling Guidelines

Since instructions are dispatched in program order, the performance of the 620 can be
improved by scheduling instructions appropriately to avoid resource conflicts and promote
parallel utilization of execution units.

6.3.1 Instruction Dispatch Rules

The following list provides limitations on instruction dispatch that should be kept in mind
in order to avoid dispatch stalls:

* At most, four instructions can be dispatched per cycle.

» Since instructions are dispatched in program order, an instruction cannot be
dispatched unless all preceding instructions in the dispatch buffer are dispatched.

+ One instruction can be dispatched per functional unit:
— The branch unit executes all branch and condition register logical instructions.

— The two single-cycle integer units are identical. Either can execute any integer
arithmetic, logical, shift/rotate, or trap instructions. They also handle mterf
instructions that update only one field.

— The multi-cycle integer unit executes all integer multiply, divide, and move
to/from instructions (except single-field mterf). It also executes cntlz
instructions.

— The load/store unit executes load, store, and cache control instructions.

— The floating-point unit executes all floating-point instructions, including move
to/from FPSCR.

 Each instruction must have an entry in the 16-entry reorder buffer (that is, the
completion buffer). The dispatch unit stalls when the reorder buffer is full. Reorder
buffer entries become available in the cycle after the instruction has completed.
Reorder buffer entries are assigned and released in pairs.

« An instruction that modifies a GPR is assigned at least one of the eight positions in
the GPR rename buffer. Load with update instructions get two positions since they
update two registers. When the GPR rename buffer is full, the dispatch unit stalls
when it encounters the first instruction that needs an entry. A rename buffer entry
becomes available for reassignment in the cycle that the previous results are written
back to the GPR, which is always the cycle after the instruction has completed.
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* Any instruction that modifies an FPR or is dispatched to the floating-point unit will
be assigned one entry in the eight-entry FPR rename buffer. When the FPR rename
buffer is full, dispatch will stall on the next instruction which requires an FPR
rename. A rename buffer entry becomes available for reassignment one cycle after
the instruction is completed.

» CR renaming is implemented in the 16-entry reorder buffer, thereby removing the
possibility that an instruction will stall solely due to the lack of a CR rename.

« Each execution unit (not including branch) has a reservation station with a minimum
of two entries (the load/store unit has three entries). The reservation station holds
instructions until they are ready for execution. Instructions can only be dispatched
to a unit if its reservation station is guaranteed to have at least one entry available.
(Instructions may be removed from the reservation station and executed out-of-order
in all units except the floating-point unit. When multiple instructions in the
reservation station are available for execution, the oldest instruction will be
selected.)

+ Only one branch instruction can dispatch per cycle. There are no restrictions on the
dispatch of instructions after a branch, unless the branch unit determines that there
may have been a prefetch error. In this case, the branch unit will halt the dispatch of
the ‘wrong-path’ instructions after the branch and begin fetching instructions from
what it knows or suspects to be the correct path.

* Only one instruction which may update the count register (CTR) may be pending
completion at one time. A second update-CTR instruction will not dispatch until the
first completes. In addition, any branch instruction which uses the CTR will not
dispatch while a move-to-CTR instruction is pending.

» There are also interlock mechanisms between instructions which update the Link
Register (LR). In general, two LR renames are supported. This allows, at most, two
instructions which update the LR to be pending completion. There are additional
constraints regarding the LR. A move-to-LR will not dispatch if there is a previous
move-to-LR pending execution. A move-from-LR will not dispatch if there is a
previous move-to-LR or move-from-LR pending execution. A branch with LK bit
set will not dispatch if there is a move-to-LR pending execution.

¢ The 620 can handle as many as four branch instructions in the execute stage. The
dispatch stalls on the first instruction after the fourth branch until the first branch
executes. The 620 does not restrict the number of branches which have finished
execution, but have not completed.

» An instruction may not be dispatched if a serialization mode is in effect for the
instruction:

— When in single-step trace mode, branch trace mode, or single instruction mode,
an instruction will not be dispatched until the previous instruction has completed.

— An instruction will not be dispatched if there is a previous Single-Instruction
serialized instruction which has not finished execution.

— An instruction will not be dispatched if a soft-stop breakpoint event occurred on
the previous instruction.
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» No instructions are dispatched during a ‘global cancel’ or if a ‘halt’ command from
the COP is being processed.

» Aninstruction in the last slot of the dispatch buffer will not dispatch if the instruction
contains an rB field.

6.4 Instruction Serialization Modes

Some instructions, such as mfspr and most mtspr instructions, extended arithmetic
instructions that require the carry bit, and condition register instructions, require
serialization to execute correctly. For this reason, the 620 implements a simple serialization
mechanism that allows such instructions to be dispatched properly but delays execution
until they can be executed safely. When all previous instructions have completed and
updated their results to the architectural states, the serialized instruction is executed by
directly reading and updated in the architectural states. If the instruction target is a GPR,
FPR, or the CR, the register is renamed to allow later nondependent instructions to execute.

Store instructions are dispatched to the LSU where they are translated and checked for
exception conditions. If no exception conditions are present, the instruction is passed to the
store queue where it waits for all previous instructions to complete before it can be
completed. Direct-memory accesses are handled in the same way to ensure that exceptions
are precise. Serialization modes are described in the following sections.

6.4.1 Single Instruction Serialization

During the first cycle in which the serializing instruction is present in the dispatch buffer
the instruction will be decoded. At this point the instruction will be identified as a
serializing instruction. If the instruction belongs to single instruction serialization class, the
serializing instruction will be dispatched as usual and all subsequent instructions will be
prevented from dispatching in this cycle. The drain time period begins at this point.

During the drain time period, all subsequent instructions will remain in the dispatch buffer.
While in the dispatch buffer, they may shift positions within the buffer but they may not be
dispatched. This time period will continue until all instructions prior to the serializing
instruction have completed execution and all architecture facilities are updated. At this
time, the single-instruction-mode time period begins.

At the beginning of the single-instruction-mode time period, all source operands for the
serializing instruction are guaranteed to be available from the appropriate architectural
facility. During the execution cycle any architectural facilities which are updated by the
serializing instruction are updated directly; all rename buffers and rename registers are
bypassed. After the instruction finishes execution, the unit in which the instruction is
executing will send a finish signal to the completion and dispatch blocks. The serializing
instruction is guaranteed to be completed by the completion logic in the cycle immediately
after it finishes because none of the completion constraints will prevent it from completing,
as the machine is empty of all other activity. The serializing instruction will not pass
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through the write-back pipeline stage, as all of its destination writes will have completed
during the execution pipeline stage.

Upon receiving the finish signal for the serializing instruction, the dispatch mechanism will
begin dispatching the instructions following the serializing instruction normally. This will
constitute the end of the single-instruction-mode time period.

Instructions causing single instruction serialization include:

 Instructions which update GPRs in non-rename mode, such as load multiples and
load string instructions

 Instructions which update the entire condition register, such as mterf
+ Instructions defined by the architecture to have context synchronizing behavior
+ Cache operations which modify or invalidate the content of a cache line

6.4.2 Execution Serialization
The occurrence of an execution serialization instruction has no effect on the dispatching
and execution of any following instructions. The only difference between an execution
serialization instruction and a non-serialization instruction is that the execution
serialization instruction cannot be executed until it is the oldest instruction in the system.
In another words, the instruction will be dispatched into a reservation station, but cannot be
issued to execution until the completion block informs the execution unit to execute the
instruction.
Instructions causing execution serialization include:

» Instructions which read CA and OV bits

 Instructions which write the whole XER (except SO bit)

« Instructions which store multiple data items to memory

» Instructions which read SPRs and write MSR

« Instructions which modify SPRs except CTR/LR

e MMU operations which modify the contents of MMU

« Instructions which modify reservation

¢ Load access to T = 1 and cache-inhibited space

« Instructions which may alter the operating mode of the FPU

+ Floating-point instructions with bit Rc =1

« Load/store instructions which require extra data alignment cycles, such as load-
byte-reverse instructions, and load/store crossing the double-word boundary.

6.4.3 Refetch Serialization

The occurrence of refetch serialization instruction prevents the 620 from dispatching
following instructions, and it will cause the 620 to cancel all outstanding instructions in the

MOTOROLA Chapter 6. InstructionTiming 6-11



processor when the serialization instruction is completed and refetch instructions after the
serialization instructions.
Instructions causing execution serialization include:

+ isync, rfi

» Instructions which change the SO bit in the XER

¢ Store instructions which detect the out-of-order execution of load instructions
accessing the same doubleword.

6.4.4 Other Serialization Modes
This section provides additional serialization modes implemented on the 620.
» Single Instruction Step Trace Mode—The 620 will serialize all instructions when in
single-step trace mode, MSR[SE] = 1.

¢ Branch Trace Mode—The 620 will serialize all instructions when in Branch Trace
mode, MSR[BE] = 1.

+ Single Instruction Dispatch Mode—The 620 will serialize all instructions when in
Single Instruction dispatch mode, HIDO[24] = 0.

6.5 Instruction Execution Timing
Table 6-1 shows the latency and throughput of each instruction (sorted alphabetically by
mnemonic).
General assumptions used to derive the numbers in this table:
» Data and instruction accesses hit in the L1 caches.
» Floating point operations do not involve zeros, NaNs, or infinity.
« References to memory are aligned.

Notations used in the table:
» Execution Unit
— IPU: Instruction Processing Unit
— IFU: Instruction Flow Unit
— LSU: Load/Store Unit
— SCIU: Single-cycle Integer Unit
— MCIU: Multi-cycle Integer Unit
— FPU: Floating-Point Unit
— CRLU: Condition Register Logical Unit
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» Latency—Latency is defined as the number of processor cycles from when the
instruction begins execution to when the execution result is available to dependent
instructions. If the execution time varies dependent on the data operands, then a best-
case/worst-case range is given. For instructions that do not update architectural
registers, such as store instructions, the execution time means the time it takes to
execute this instruction back to back. Latency also includes the serialization penalty.

» Throughput—Throughput is defined as the number of processor cycles required per
instruction for a series of independent instructions. Throughput also includes the
serialization penalty.

» Serialization Scheme
— Single_Inst_Ser: The instruction causes Single Instruction Serialization.
— Exec_Ser: The instruction causes Execution Serialization.
— Refetch: The instruction causes Refetch Serialization.
— Non-Pipelined: The instruction cannot be executed in a pipelined fashion.

Table 6-1. Instruction Execution Timing Sorted by Mnemonic

Instruction Ex‘if':littio" Latency Throughput Serialization
add SCIU 1 1 —
addc SCIU 1 1 —
adde SCIU 2 1 Exec_Ser
addi SCIU 1 1 —
addic SCiU 1 1 —
addic. SCIU 1 1 —
addis SCiU 1 1 —
addme SCIU 2 1 Exec_Ser
addze SCIU 2 1 Exec_Ser
and SCIU 1 1 —
andc SCIU 1 1 —
andi. SCIU 1 1 —
andis. SCIU 1 1 —
b IPU 0 1 —
bec IPU 0 1 -
beetr IPU 0 1 —
belr IPU 0 1 —_
cmp SCIU 1 1 —
cmpi SCIU 1 1 —
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Table 6-1. Instruction Execution Timing Sorted by Mnemonic (Continued)

Instruction Excijcr:ttion Latency Throughput Serialization
cmpl SCIU 1 1 —
cmpli SCIU 1 1 —
cntizd MClU 2 1 —
cntizw MCIU 2 1 —
crand CRLU 2 3 Exec_Ser
crandc CRLU 2 3 Exec_Ser
creqv CRLU 2 3 Exec_Ser
crnand CRLU 2 3 Exec_Ser
crnor CRLU 2 3 Exec_Ser
cror CRLU 2 3 Exec_Ser
crorc CRLU 2 3 Exec_Ser
crxor CRLU 2 3 Exec_Ser
dcbf LSU 15 15 Single_lInst_Ser
dcbi LSU 30 30 Single_Inst_Ser
dcbst LSU 15 1 Exec_Ser
dcbt LSU 2 1 —
dcbtst LSU 2 1 —
dcbz LSU 7 7 Single_Inst_Ser
divd MCIU 37 36 Non-Pipelined
divdu MCIU 37 36 Non-Pipelined
divw MCIU 37 36 Non-Pipelined
divwu MCIU 37 36 Non-Pipelined
eciwx LSU 26 —
ecowx LSU 3 —_
eieio LSU 22 Not Applic. Exec_Ser
eqv SCIU 1 1 —
extsb SCIu 1 1 —
extsh SCIU 1 1 —
extsw SCIU 1 1 -
fabs FPU 3 1 —
FP FPU 4 1 Exec_Ser
Instructions
with Re=1
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Table 6-1. Instruction Execution Timing Sorted by Mnemonic (Continued)

Instruction Exel;:rt:it'ion Latency Throughput Serializaticn
fadd FPU 3 1 —
fadds FPU 3 1 —
fefid FPU 3 1 —_
fcmpo FPU 3 1 —
fcmpu FPU 3 1 —
fetid FPU 3 1 —
fctidz FPU 3 1 —
fetiw FPU 3 1 —
fetiwz FPU 3 1 —
fdiv FPU 18-25 18-25 Non-Pipelined
fdivs FPU 18-25 18-25 Non-Pipelined
fmadd FPU 3 1 —
fmadds FPU 3 1 —
fmr FPU 3 i —
fmsub FPU 3 1 —
fmsubs FPU 3 1 —
fmul FPU 3 1 —
fmuls FPU 3 1 —
fnabs FPU 3 1 —
fneg FPU 3 1 —
fnmadd FPU 3 1 —
fnmadds FPU 3 1 —
fnmsub FPU 3 1 —
fnmsubs FPU 3 1 —
fres FPU 3 1 —
frsp FPU 3 1 —
frsqrte FPU 3 1 —
fsqrt FPU 21-30 21-30 Non-Pipelined
fsel FPU 3 1 —
fsqrts FPU 21-30 21-30 Non-Pipelined
fsub FPU 3 1 —
fsubs FPU 3 1 —
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Table 6-1. Instruction Execution Timing Sorted by Mnemonic (Continued)

Instruction Exel;:l:littion Latency Throughput Serialization
icbi LSU 27 Exec_Ser
isync IFU 6 Refetch
Ibz LSU 2 1 —
Ibzu LSu 2 1 —_
Ibzux LSu 2 1 —_
Ibzx LSU 2 1 —
Id LSU 2 1 Exec_Ser if misaligned
Idarx LSU 3 Not Applic. Exec_Ser
Idu LSU 2 1 Exec_Ser if misaligned
Idux LSU 2 1 Exec_Ser if misaligned
Idx LSU 2 1 Exec_Ser if misaligned
Ifd LSU 2 1 Exec_Ser if misaligned
Ifdu LSU 2 1 Exec_Ser if misaligned
Ifdux LSU 2 1 Exec_Ser if misaligned
Ifdx LSU 2 1 Exec_Ser if misaligned
Ifs LSU 2 1 Exec_Ser if misaligned
Ifsu LSuU 2 1 Exec_Ser if misaligned
Ifsux LSU 2 1 Exec_Ser if misaligned
Ifsx LSU 2 1 Exec_Ser if misaligned
tha LSuU 2 1 Exec_Ser if misaligned
Ihau LSU 2 1 Exec_Ser if misaligned
lhaux LSU 2 1 Exec_Ser if misaligned
Ihax LSU 2 1 Exec_Ser if misaligned
Ihbrx LSU 5 1 Exec_Ser
Ihz LSU 2 1 Exec_Ser if misaligned
Ihzu LSU 2 1 Exec_Ser if misaligned
lhzux LSU 2 1 Exec_Ser if misaligned
Ihzx LSU 2 1 Exec_Ser if misaligned
Imw LSU 1+#reg 1+#reg Single_Inst_Ser
Iswi LSU 1+#reg 1+#reg Single_Inst_Ser
Iswx LSuU 1+#reg 1+#reg Single_Inst_Ser
Iwa LSU 2 1 Exec_Ser if misaligned
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Table 6-1. Instruction Execution Timing Sorted by Mnemonic (Continued)

Instruction Ex«:;::ittion Latency Throughput Serialization

Iwarx LSuU 3 Not Applic. Exec_Ser

Iwaux LSU 2 1. Exec_Ser if misaligned

lwax LSU 2 1 Exec_Ser if misaligned

Iwbrx LSU 5 5 Exec_Ser

lwz LSU 2 1 Exec_Ser if misaligned

Iwzu LSU 2 1 Exec_Ser if misaligned

Iwzux LSU 2 1 Exec_Ser if misaligned

Iwzx LSuU 2 1 Exec_Ser if misaligned

merf CRLU 2 3 Exec_Ser

mcrfs FPU 4 1 Exec_Ser

mcerxr MCIU 4 4 Exec_Ser

mfcr MCIU 4 4 Exec_Ser

mffs FPU 4 1 Exec_Ser

mfmsr MCIU 5 5 Exec_Ser

mftb 268 MCIU 5 5 Exec_Ser

mftb 269 MCIU 4 4 Exec_Ser

mfspr MCIU 4-16 Some are

mfsr MCIU 9+ 9 Exec_Ser, can be stalled
by DCMMU

mfsrin MCIU 9+ 9 Exec_Ser, can be stalled
by DCMMU

mtcrf (single SCIU 2 1

field)

mtcrf MCIU 4 4 Single_Inst_Ser

(multiple

fields)

mtfsb0 FPU 3 3 Exec_Ser

mtfsb1 FPU 3 3 Exec_Ser

mtfsf FPU 4 1 Exec_Ser

mtfsfi FPU 4 1 Exec_Ser

mtmsr MCIU 4 4 Exec_Ser

mtmsrd MCIU 4 4 Exec_Ser

mispr MCIU 4 4

LR/CTR
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Table 6-1. Instruction Execution Timing Sorted by Mnemonic (Continued)

Instruction Exel;:xittion Latency Throughput Serialization
mtspr MCIU 4-16 Exec_Ser
(others)
mtsr MCIU 7+ 7 Exec_Ser, can be stalled
by DCMMU
mtsrin MCIU 7+ 7 Exec_Ser, can be stalled
by DCMMU
mulhd MCIU 3-9 1 10 bits per iteration
mulhdu MCIU 3-9 1 10 bits per iteration
mulhw MCIU 3-6 1+ 10 bits per iteration
mulhwu MCIU 3-6 1+ 10 bits per iteration
mulld MCIU 3-9 1+ 10 bits per iteration
mulli MCIU 3-4 1+ 10 bits per iteration
mullw MCIU 3-6 1+ 10 bits per iteration
nand SCIU 1 1 —
neg SCIU 1 1 —
nor SCIU 1 1 —
or SCIU 1 1 —
orc SCIU 1 1 —
ori SCiU 1 1 —
oris SCIU 1 1 —
rfi IFU 5 Refetch
rfid IFU 5 Refetch
ridel SCIU 1 1 —
rider SCIU 1 1 —
ridic SCIU 1 1 —_
ridicl SCIU 1 1 —_
ridicr SCIU 1 1 —
ridimi SCIU 1 1 —
riwimi SCIU 1 1 —
riwinm SCIU 1 1 —
riwnm SCIU 1 1 -
sc IFU 5 Refetch
slbia LSU 2 Exec_Ser
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Table 6-1. Instruction Execution Timing Sorted by Mnemonic (Continued)

Instruction Exel;:'::i:ion Latency Throughput Serialization
slbie Lsu 10 Exec_Ser
sid SCIuU 1 1 —
siw SCIU 1 1 —
srad SCIU 1 1 —
sradi SCIU 1 1 —
sraw SCIU 1 1 —
srawi SCIU 1 1 —
srd SCIU 1 1 —
srw SCIU 1 1 —_
stb LSuU 1 1
stbu LSU 2 1
stbux LSuU 2 1 —
stbx LSuU 2 1 —_
std LSU 2 1 Exec_Ser if misaligned
stdcx. LSU 3 Exec_Ser
stdu LSU 2 1 Exec_Ser if misaligned
stdux LSuU 2 1 Exec_Ser if misaligned
stdx LSU 2 1 Exec_Ser if misaligned
stfd LSU 2 1 Exec_Ser if misaligned
stfdu LSU 2 1 Exec_Ser if misaligned
stfdux LSU 2 1 Exec_Ser if misaligned
stfdx LSU 2 1 Exec_Ser if misaligned
stfiwx LSU 2 1 Exec_Ser if misaligned
stfs LSU 2 1 Exec_Ser if misaligned
stfsu LSU 2 1 Exec_Ser if misaligned
stfsux LSU 2 1 Exec_Ser if misaligned
stfsx LSU 2 1 Exec_Ser if misaligned
sth LSU 2 1 Exec_Ser if misaligned
sthbrx LSU 2 1 Exec_Ser if misaligned
sthu LSuU 2 1 Exec_Ser if misaligned
sthux LSU 2 1 Exec_Ser if misaligned
sthx LSU 2 1 Exec_Ser if misaligned
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Table 6-1. Instruction Execution Timing Sorted by Mnemonic (Continued)

Instruction ExT;::ittion Latency Throughput Serialization
stmw LSU 1+#reg 1+#reg Exec_Ser
stswi LSU 1+#reg 1+#reg Exec_Ser
stswx LSuU 1+#reg 1+#reg Exec_Ser
Stw LSU 2 i Exec_Ser if misaiigned
stwbrx LSU 2 1 Exec_Ser if misaligned
stwex. LSU 3 Exec_Ser
stwu LSU 2 1 Exec_Ser if misaligned
stwux Lsu 2 1 Exec_Ser if misaligned
stwx LSU 2 1 Exec_Ser if misaligned
subf SCiU 1 1 —
subfc SCIU 1 1 —
subfe SCIU 2 1 Exec_Ser
subfic SCIU 1 1 —
subfme SCIU 2 1 Exec_Ser
subfze SCIU 2 1 Exec_Ser
sync LSU 26 Single_Inst_Ser
td SCIU 1 1 -
tdi SCIU 1 1 —
tibie LSuU 22 Exec_Ser
tibsync LSU 26 Exec_Ser
tw SCIU 1 1 .
twi SCIU 1 1 —
xor SCIU 1 1 —
xori SCIU 1 1 —_
xoris SCIU 1 1 —

6.5.1 Performance of Load/Store Multiples and Strings Instructions

The following sections discuss the performance of load/store multiple and string
instructions.

6.5.1.1 Load-Mulitiple Word and Doubleword from Cacheable Memory
The 620 will load one register per cycle with single-instruction serialization, which means
load multiple cannot be executed until all previous instructions are completed, and no
following instructions can be dispatched until load multiple is finished. The same
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mechanism is used to handle load string instruction whose starting address is word-aligned
and byte count is multiple of four.

6.5.1.2 Store-Multiple Word to Cacheable Memory

The 620 will store one register per cycle with execution serialization, which means store
multiple can be dispatched, but cannot be executed until it’s the oldest instruction in the
processor. All following instructions can be dispatched and executed as usual.

The same mechanism is used to handle store string instruction whose starting address is
word-aligned and byte count is multiple of four.

6.5.1.3 Load-Multiple Word from Cache-Inhibited Memory

The 620 will generate one bus transaction every register. There is no data gathering in this
case, and the transfers are not pipelined. Same serialization scheme is used as Load
Multiple from cacheable memory.

The same mechanism is used to handle load string instruction whose starting address is
word-aligned and byte count is multiple of four.

6.5.1.4 Store-Multiple Word to Cache-Inhibited Memory

620 will split a store-multiple instruction to cache-inhibit memory into multiple single-
word stores, and Data Cache Unit will use the store-gathering mechanism to gather these
single-word stores into doubleword packets and transfer these packets to the bus. Detailed
description of the store mechanism is presented in the next section. In the ideal case where
bus is always available and processor core can generate data fast enough, Same serialization
is used as store multiple to cacheable memory.

The same mechanism is used to handle store string instruction whose starting address is
word-aligned and byte count is multiple of four.

6.5.1.5 String Instructions that are not Treated as Load/Store
Multiples

For this kind of string instructions, the 620 will access 4-bytes at a time if the access does

not cross a doublewo