Flowreplay Design Notes

Aaron Turner
http://synfin.net/

Last Edited:
October 23, 2003



Tcpreplay was designed to replay traffic previously captured in thepfoamat back onto the wire for testing NIDS and
other passive devices. Over time, it was enhanced to be @bdsttin-line network devices. However, a re-occurringuea
request for tcpreplay is to connect to a server in order toajgslications and host TCP/IP stacks. It was determindyg ear
that adding this feature to tcpreplay was far too complex,derided to create a new tool specifically designed for this.

Flowreplay is designed to replay traffic at Layer 4 or 7 defegndn the protocol rather then at Layer 2 like tcpreplay does
This allows flowreplay to connect to one or more servers usimrap savefile as the basis of the connections. Hence,
flowreplay allows the testing of applications running onl s=avers rather then passive devices.

2 Features

2.1 Requirements

. Full TCP/IP support, including IP fragments and TCP streaassembly.

. Support replaying TCP and UDP flows.

. Code should handle each flow/service independently.

. Should be able to connect to the server(s) in the pcap file @user specified IP address.

. Support a plug-in architecture to allow adding applmatayer intelligence.

Plug-ins must be able to support multi-flow protocols FeP.

. Ship with a default plug-in which will work “well enough®f simple single-flow protocols like HTTP and telnet.

. Flows being replayed “correctly” is more important themfprmance (Mbps).

. Portable to run on common flavors of Unix and Unix-like syss.

2.2 Wishes

. Support clients connecting to flowreplay on a limited saBlowreplay would replay the server side of the connection
. Support other IP based traffic ICMP, VRRP, OSPF, etc) kig-ns.

. Support non-IP traffic (ARP, STP, CDP, etc) via plug-ins.

. Limit which flows are replayed using user defined filtergf fter syntax?)

. Process pcap files directly with no intermediary file cosians.

o O B~ W ON BB

. Should be able to scale to pcap files in the 100’s of MB in aimk100+ simultaneous flows on a P3 500MHz w/ 256 MB
of RAM.

3 Design Thoughts

3.1 Sending and Receiving traffic
Flowreplay must be able to process multiple connectionsitoay more devices. There are two options:

1. Use socketsto send and receive data

2. Use libpcapto receive packets and librfeb send packets

Although using libpcap/libnet would allow more simultameaonnections and greater flexibility, there would be a high
complexity cost associated with it. With that in mind, I'vealded to use sockets to send and receive data.

Lhttp://tcpreplay.sourceforge.net/

2socket(2)

Shttp://www.tcpdump.org/
“http://www.packetfactory.net/projects/libnet/



Because a pcap file can contain multiple simultaneous flows)eed to be able to support that too. The biggest problem with
this is reading packet data in a different order then stareéle pcap file.

Reading and writing to multiple sockets is easy with se)amtoll(), however a pcap file has it's data stored seridlly,we
need to access it randomly. There are a number of possihlé@sd for this such as caching packets in RAM where they
can be accessed more randomly, creating an index of the tgsankbe pcap file, or converting the pcap file to another farma
altogether. Alternatively, I've started looking at libgmea as an alternate means to navigate a pcap file and processpacke
out of order.

3.3 Data Synchronization

Knowing when to start sending client traffic in response t® skerver will be "tricky". Without understanding the actual
protocol involved, probably the best general solution igiwg for a given period of time after no more data from thevser
has been received. Not sure what to do if the client traffisdielicit a response from the server (implement some kind o
timeout?). This will be the basis for the default plug-in.

3.4 TCP/IP

Dealing with IP fragmentation and TCP stream reassemblyjbsianother really complex problem. We're basically tagkin
about implementing a significant portion of a TCP/IP stackie@hought is to use libni@swvhich basically implements a
Linux 2.0.37 TCP/IP stack in user-space. Other solutionkide porting a TCP/IP stack from Open/Net/FreeBSD or ngiti
our own custom stack from scratch.

4 Multiple Independent Flows

The biggest asynchronous problem, that pcap files are deaimto be solved in a scaleable manner. Not much can be agsume
about the network traffic contained in a pcap savefile othar Murphy’s Law will be in effect. This means we’ll have to tea
with:

e Thousands of small simultaneous flows (captured on a busyoniek

e Flows which “hang” mid-stream (an exploit against a senarses it to crash)

e Flows which contain large quantities of data (FTP transdétSO’s for example)

How we implement parallel processing of the pcap savefiledeéimatically effect how well we can scale. A few considera-
tions:

e Most Unix systems limit the maximum number of open file dgsoris a single process can have. Generally speaking
this shouldn’t be a problem except for highly parallel psap’
e While RAM isn't limitless, we can use mmap() to get aroundthi

e Many Unix systems have enhanced solutions to poll() whidhimprove flow management.

4.1 IP Fragments and TCP Streams

There are five major complications with flowreplay:

1. The IP datagrams may be fragmented- we won't be able tchesstdndard 5-tuple (src/dst IP, src/dst port, protocol) to
lookup which flow a packet belongs to.

2. IP fragments may arrive out of order which will complicatdering of data to be sent.

Shttp://netdude.sourceforge.net/
Bhttp://www.avet.com.pl/~nergal/libnids/



4. Packets may be missing in the pcap file because they weppeli@uring capture.

5. There are tools like fragrouter which intentionally ¢deeaon-deterministic situations.

First off, I've decided, that I'm not going to worry about éruter or it's cousins. I'll handle non-deterministiagitions one
and only one way, so that the way flowreplay handles the traffidoe deterministic. Perhaps, I'll make it easy for oth&os
write a plug-in which will change it, but that's not somethilhm going to concern myself with now.

Missing packets in the pcap file will probably make that flovplatyable. There are proabably certain situation where we ca
make an educated guess, but this is far too complex to wooytdbr the first stable release.

That still leaves creating a basic TCP/IP stack in user spHge good news it that there is already a library which dogs th
called libnids. As of version 1.17, libnids can process paskrom a pcap savefile (it's not documented in the man page, b
the code is there).

A potential problem with libnids though is that it has to ntain it's own state/cache system. This not only means aniuiti
overhead, but jumping around in the pcap file as I'm planningloing to handle multiple simultaneous flows is likely to
really confuse libnids’ state engine. Also, libnids is lised under the GPL, but | want flowreplay released under a B&D-
license; | need to research if the two are compatible in tlag. w

Possible solutions:
e Developing a custom wedge between the capture file and Bbmkdch will cause each packet to only be processed a
single time.

e Use libnids to process the pcap file into a new flow-based forefi@ctively putting the TCP/IP stack into a dedicated
utility.

e Develop a custom user-space TCP/IP stack, perhaps basdBiSin ACP/IP stack, much like libnids is based on Linux
2.0.37.

e Screw it and say that IP fragmentation and out of order IP @&fkCP segments are not supported. Not sure if this will
meet the needs of potential users.

4.2 Blocking

As earlier stated, one of the main goals of this project isgepkthings single threaded to make coding plugins easiez. On
caveat of that is that any function which blocks will causees problems.

There are three major cases where blocking is likely to accur

1. Opening a socket
2. Reading from a socket
3. Writing to a socket

Reading from sockets in a non-blocking manner is easy tcesfolvusing poll() or select(). Writing to a socket, or merely
opening a TCP socket via connect() however requires a diffenethod:

It is possible to do non-blocking IO on sockets by settingghddONBLOCK flag on a socket file descriptor
using fcntl(2). Then all operations that would block wills(tally) return with EAGAIN (operation should be
retried later); connect(2) will return EINPROGRESS erffine user can then wait for various events via poll(2)
or select(2).

If connect() returns EINPROGRESS, then we'll just have tedmething like this:

"socket(7)



I* not yet */

if(errno !'= EINPROGRESS){ /* yuck. kill it. */
I og_f n(LOG_DEBUG, "i n- progress connect failed. Renmoving.");
return -1;

} else {
return 0; /* no change, see if next tine is better */

}

}

[* the connect has finished. */

Note: It may not be totally right, but it works ok. (that chuokcode gets called after poll returns the socket as
writable. if poll returns it as readable, then it's probabgcause of eof, connect fails. You must poll for both.

5 pcap vs flow File Format

As stated before, the pcap file format really isn’'t well sdifer flowreplay because it uses the raw packet as a contaner f
data. Flowreplay however isn't interested in packetsjiitterested in data streafwhich may span one or more TCP/UDP
segments, each comprised of an IP datagram which may be saudf multiple IP fragments. Handling all this additional
complexity requires a full TCP/IP stack in user space whiolld have additional feature requirements specific to flplere

Rather then trying to do that, I've decided to create a pcapnacessor for flowreplay called: flowprep. Flowprep wilhbée
all the TCP/IP defragmentation/reassembly and write odéafintaining the data streams for each flow.

A flow file will contain three sections:

1. A header which identifies this as a flowprep file and the filsion
2. Anindex of all the flows contained in the file

3. The data streams themselves

8A “data stream” as | call it is a simplex communication frore tHient or server which is a complete query, response oragess



32 Bit Word

Flowprep File Header

Magic Number

Version Reserved

Flow Index Entry

Client (Source) IP Flag 1: Last Index
Flag 2: Ignore
Flag 3: Server Socket

Server (Destination) IP

IP Protocol Flags Instance
Client Port/ICMP Type Server Port/ICMP Code
Offset to First Data Stream

Data Stream Header

Data Length of This Stream Flag 1: Direction

Flag 2: Ignore
Flags Urg Data Reserved Flag 3: More Data Stream:s
Timestamp Flag 4: Urgent Data Exists

In This Flow

Data Stream

At startup, the file header is validated and the data stredexas are loaded into memory. Then the first data stream heade
from each flow is read. Then each flow and subsequent datasisgaocessed based upon the timestamps and plug-ins.

6 Plug-ins

Plug-ins will provide the “intelligence” in flowreplay. Rlareplay is designed to be a mere framework for connectingicag
flows in a flow file with socket file handles. How data is processed what should be done with it will be done via plug-ins.

Plug-ins will allow proper handling of a variety of protosalvhile hopefully keeping things simple. Another part of the
consideration will be making it easy for others to contrébta flowreplay. | don’t want to have to write all the protocogjic
myself.

6.1 Plug-in Basics

Each plug-in provides the logic for handling one or more s, The main purpose of a plug-in is to decide when flowsepla
should send data via one or more sockets. The plug-in cannyseoa-blocking method of determining if it appropriate to
send data or wait for data to received. If necessary, a pluguh also modify the data sent.



NS

setto POLL. And the process repeats until there are no matesia the tree.
6.2 The Default Plug-in

Initially, flowreplay will ship with one basic plug-in calie“default”. Any flow which doesn’t have a specific plug-in defd,
will use default. The goal of the default plug-in is to workd@d enough” for a majority of single-flow protocols such as
SMTP, HTTP, and Telnet. Protocols which use encryption (S$%H, etc) or multiple flows (FTP, RPC, etc) will never
work with the default plug-in. Furthermore, the defaultglin will only support connectiont® a server, it will not support
accepting connections from clients.

The default plug-in will provide no data level manipulatiand only a simple method for detecting when it is time to send
data to the server. Detecting when to send data will be doree"hg more data” timeout value. Basically, by using the pcap
file as a means to determine the order of the exchange, anigtisnthe servers turn to send data, flowreplay will wait fog th
first byte of data and then start the “no more data” timer. f£¥ene more data is received, the timer is reset. If the timer
reaches zero, then flowreplay sends the next portion of thetdide of the connection. This is repeated until the the flo
has been completely replayed or a “server hung” timeoutdshed. The server hung timeout is used to detect a servehwhic
crashed and never starts sending any data which would ls¢efh® more data” timer.

Both the “no more data” and “server hung” timers will be usefited values and global to all flows using the default plug-in

6.3 Plug-in Details

Each plug-in will be comprised of the following:

1. An optional global data structure, for intra-flow comnuation
2. Per-flow data structure, for tracking flow state inforroati

3. Alist of functions which flow replay will call when certaimell-defined conditions are met.

e Required functions:

initialize_node() - called when a node in the tree creatéuuhis plug-in
post_poll_timeout() - called when the poll() returned dua timeout for this node
post_poll_read() - called when the poll() returned due &dbcket being ready
buffer_full() - called when a the packet buffer for this flosvfull

delete_node() - called just prior to the node being free()'d

EE R G

e Optional functions:

*

pre_send_data() - called before data is sent

post_send_data() - called after data is sent

pre_poll() - called prior to poll()

post_poll_default() - called when poll() returns and neitthe socket was ready or the node timed out
open_socket() - called after the socket is opened

close_socket() - called after the socket is closed

S S G



