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Security Requirements

Confidentiality
• Protection from disclosure to unauthorised persons

Integrity
• Maintaining data consistency

Authentication
• Assurance of identity of person or originator of data

Non-repudiation
• Originator of communications can’t deny it later



Security Requirements (ctd)

Availability
• Legitimate users have access when they need it

Access control
• Unauthorised users are kept out

These are often combined
• User authentication used for access control purposes
• Non-repudiation combined with authentication

Security Threats

Information disclosure/information leakage

Integrity violation

Masquerading

Denial of service

Illegitimate use

Generic threat: Backdoors, trojan horses, insider attacks

Most Internet security problems are access control or 
authentication ones
• Denial of service is also popular, but mostly an annoyance



Attack Types

Passive attack can only observe communications or data

Active attack can actively modify communications or data
• Often difficult to perform, but very powerful

– Mail forgery/modification
– TCP/IP spoofing/session hijacking

Security Services

From the OSI definition:
• Access control: Protects against unauthorised use
• Authentication: Provides assurance of someone's identity
• Confidentiality: Protects against disclosure to unauthorised 

identities
• Integrity: Protects from unauthorised data alteration
• Non-repudiation: Protects against originator of 

communications later denying it



Security Mechanisms

Three basic building blocks are used:
• Encryption is used to provide confidentiality, can provide 

authentication and integrity protection
• Digital signatures are used to provide authentication, integrity

protection, and non-repudiation
• Checksums/hash algorithms are used to provide integrity 

protection, can provide authentication

One or more security mechanisms are combined to provide 
a security service

Services, Mechanisms, Algorithms

A typical security protocol provides one or more services

• Services are built from mechanisms
• Mechanisms are implemented using algorithms



Conventional Encryption

Uses a shared key

Problem of communicating a large message in secret 
reduced to communicating a small key in secret

Public-key Encryption

Uses matched public/private key pairs

Anyone can encrypt with the public key, only one person 
can decrypt with the private key



Key Agreement

Allows two parties to agree on a shared key

Provides part of the required secure channel for exchanging 
a conventional encryption key

Hash Functions

Creates a unique “fingerprint” for a message

Anyone can alter the data and calculate a new hash value
• Hash has to be protected in some way



MAC’s

Message Authentication Code, adds a password/key to a 
hash

Only the password holder(s) can generate the MAC

Digital Signatures

Combines a hash with a digital signature algorithm



Digital Signatures (ctd)

Signature checking:

Message/Data Encryption

Combines conventional and public-key encryption



Message/data Encryption (ctd)

Public-key encryption provides a secure channel to 
exchange conventional encryption keys

Security Protocol Layers

The further down you go, the more transparent it is
The further up you go, the easier it is to deploy



Encryption and Authentication 
Algorithms and Technology

Cryptography is nothing more than a mathematical 
framework for discussing the implications of 
various paranoid delusions

— Don Alvarez

Historical Ciphers

Non-standard hieroglyphics, 1900BC

Atbash cipher (Old Testament, reversed Hebrew alphabet, 
600BC)

Caesar cipher:

letter = letter + 3

‘fish’  ‘ilvk’

rot13: Add 13/swap alphabet halves
• Usenet convention used to hide possibly offensive jokes
• Applying it twice restores original text



Substitution Ciphers

Simple substitution cipher:
a = p, b = m, c = f, ...

Break via letter frequency analysis

Polyalphabetic substitution cipher
1. a = p, b = m, c = f, ...
2. a = l, b = t, c = a, ...
3. a = f, b = x, c = p, ...

Break by decomposing into individual alphabets, then 
solve as simple substitution

One-time Pad (1917)

OTP is unbreakable provided
• Pad is never reused (VENONA)
• Unpredictable random numbers are used (physical sources, e.g. 

radioactive decay)

Message s e c r e t
18 5 3 17 5 19

OTP +15 8 1 12 19 5

7 13 4 3 24 24
g m d c x x



One-time Pad (ctd)

Used by
• Russian spies
• The Washington-Moscow “hot line”
• CIA covert operations

Many snake oil algorithms claim unbreakability by 
claiming to be a OTP
• Pseudo-OTP’s give pseudo-security

Cipher machines attempted to create approximations to 
OTP’s, first mechanically, then electronically

Cipher Machines (~1920)

1. Basic component = wired rotor

• Simple substitution

2. Step the rotor after each letter
• Polyalphabetic substitution, period = 26



Cipher Machines (ctd)

3. Chain multiple rotors

Each steps the next one when a full turn is complete

Cipher Machines (ctd)

Two rotors, period = 26  26

= 676

Three rotors, period = 26  26  26

= 17,576

Rotor sizes are chosen to be relatively prime to give 
maximum-length sequence

Key = rotor wiring

= rotor start position



Cipher Machines (ctd)

Famous rotor machines
US: Converter M-209
UK: TYPEX
Japan: Red, Purple
Germany: Enigma

Many books on Enigma
Kahn, Seizing the Enigma
Levin, Ultra Goes to War
Welchman, The Hut Six Story
Winterbothm, The Ultra Secret

“It would have been secure if used properly”

Use of predictable openings:
“Mein Fuehrer! ...”
“Nothing to report”

Use of the same key over an extended period

Encryption of the same message with old (compromised) 
and new keys

Device treated as a magic black box, a mistake still made 
today

Inventors believed it was infallible, "    "     "     "    "



Cipher Machines (ctd)

Various kludges made to try to improve security — none 
worked

Enigmas were sold to friendly nations after the war

Improved rotor machines were used into the 70’s and 80’s

Further reading:
Kahn, The Codebreakers
Cryptologia, quarterly journal

Stream Ciphers

Binary pad (keystream), use XOR instead of addition

Plaintext = original, unencrypted data
Ciphertext = encrypted data

Two XORs with the same data always cancel out

Plaintext 1 0 0 1 0 1 1
Keystream XOR 0 1 0 1 1 0 1
Ciphertext 1 1 0 0 1 1 0
Keystream XOR 0 1 0 1 1 0 1
Plaintext 1 0 0 1 0 1 1



Stream Ciphers (ctd)

Using the keystream and ciphertext, we can recover the 
plaintext

but

Using the plaintext and ciphertext, we can recover the 
keystream

Using two ciphertexts from the same keystream, we can 
recover the XOR of the plaintexts
• Any two components of an XOR-based encryption will recover 

the third
• Never reuse a key with a stream cipher
• Better still, never use a stream cipher

Stream Ciphers (ctd)

Vulnerable to bit-flipping attacks



RC4

Stream cipher optimised for fast software implementation

2048-bit key, 8-bit output

Former trade secret of RSADSI, reverse-engineered and 
posted to the net in 1994

while( length-- )
{
x++; sx = state[ x ]; y += sx;
sy = state[ y ]; state[ y ] = sx; state[ x ] = sy;
*data++ ^= state[ ( sx+sy ) & 0xFF ];
}

Takes about a minute to implement from memory

RC4 (ctd)
Extremely fast
Used in SSL (Netscape, MSIE), Lotus Notes, Windows 

password encryption, MS Access, Adobe Acrobat, MS 
PPTP, Oracle Secure SQL, ...
• Usually used in a manner which allows the keystream to be 

recovered (Windows password encryption, Windows server 
authentication, Windows NT SYSKEY, early Netscape server 
key encryption, some MS server/browser key encryption, MS 
PPTP, MS Access, ...)

• Every MS product which is known to use it has got it wrong at 
some time

Illustrates the problem of treating a cipher as a magic black 
box

Recommendation: Avoid this, it's too easy to get wrong



Block Ciphers

Originated with early 1970’s IBM effort to develop 
banking security systems

First result was Lucifer, most common variant has 128-bit 
key and block size
• It wasn’t secure in any of its variants

Called a Feistel or product cipher

Block Ciphers (ctd)

f()-function is a simple transformation, doesn’t have to be 
reversible

Each step is called a round; the more rounds, the greater the 
security (to a point)

Most famous example of this design is DES:
• 16 rounds
• 56 bit key
• 64 bit block size (L,R = 32 bits)

Designed by IBM with, uh, advice from the NSA



Attacking Feistel Ciphers

Differential cryptanalysis
• Looks for correlations in f()-function input and output

Linear cryptanalysis
• Looks for correlations between key and cipher input and output

Related-key cryptanalysis
• Looks for correlations between key changes and cipher 

input/output

Differential cryptanalysis discovered in 1990; virtually all 
block ciphers from before that time are vulnerable...

...except DES.  IBM (and the NSA) knew about it 15 
years earlier

Strength of DES

Key size = 56 bits

Brute force = 255 attempts

Differential cryptanalysis = 247 attempts

Linear cryptanalysis = 243 attempts

(but the last two are impractical)

> 56 bit keys don’t make it any stronger

> 16 rounds don’t make it any stronger



DES Key Problems

Key size = 56 bits

= 8  7-bit ASCII chars

Alphanumeric-only password converted to uppercase

= 8  ~5-bit chars

= 40 bits

DES uses low bit in each byte for parity

= 32 bits
• Forgetting about the parity bits is so common that the NSA 

probably designs its keysearch machines to accommodate this

Breaking DES

DES was designed for efficiency in early-70’s hardware

Makes it easy to build pipelined brute-force breakers in 
late-90’s hardware

16 stages, tests 1 key per clock cycle



Breaking DES (ctd)

Can build a DES-breaker using
• Field-programmable gate array (FPGA), software-

programmable hardware
• Application-specific IC (ASIC)

100 MHz ASIC = 100M keys per second per chip

Chips = $10 in 5K+ quantities

$50,000 = 500 billion keys/sec

= 20 hours/key (40-bit DES takes 1 second)

Breaking DES (ctd)

$1M = 1 hour per key (1/20 sec for 40 bits)

$10M = 6 minutes per key (1/200 sec for 40 bits)

(US black budget is ~$25-30 billion)

(distributed.net = ~70 billion keys/sec with 20,000 
computers)

EFF (US non-profit organisation) broke DES in 2½ days

Amortised cost over 3 years = 8 cents per key
• If your secret is worth more than 8 cents, don’t encrypt it with

DES

September 1998: German court rules DES “out of date and 
unsafe” for financial applications



Brute-force Encryption Breaking
Type of
Attacker

Budget Tool Time and cost per
key recovered

Keylen (bits)
for security

40 bits 56 bits 1995 2015
Pedestrian Tiny PC 1 week Infeasible 45 59
hacker $400 FPGA 5 hours

$0.08
38 years
$5,000

50 64

Small
business

$10K FPGA 12 mins
$0.08

556 days
$5,000

55 69

Corporate
department

$300K FPGA 24 secs
$0.08

19 days
$5,000

60 74

ASIC 0.18 secs
$0.001

3 hours
$38

Big
company

$10M FPGA 0.7 secs
$0.08

13 hours
$5,000

70 84

ASIC 0.005 s
$0.001

6 mins
$38

Intelligence
agency

$300M ASIC 0.0002 s
$0.001

12 secs
$38

75 89

Other Block Ciphers

Triple DES (3DES)
• Encrypt + decrypt + encrypt with 2 (112 bits) or 3 (168 bits) 

DES keys
• By late 1998, banking auditors were requiring the use of 3DES 

rather than DES

RC2
• Companion to RC4, 1024 bit key
• RSADSI trade secret, reverse-engineered and posted to the net 

in 1996
• RC2 and RC4 have special status for US exportability



Other Block Ciphers (ctd)

IDEA
• Developed as PES (proposed encryption standard), adapted to 

resist differential cryptanalysis as IPES, then IDEA
• Gained popularity via PGP, 128 bit key
• Patented

Blowfish
• Optimised for high-speed execution on 32-bit processors
• 448 bit key, relatively slow key setup

CAST-128
• Used in PGP 5.x, 128 bit key

Other Block Ciphers

Skipjack
• Classified algorithm originally designed for Clipper, 

declassified in 1998
• Very efficient to implement using minimal resources (e.g. 

smart cards)
• 32 rounds, breakable with 31 rounds
• 80 bit key, inadequate for long-term security

GOST
• GOST 28147, Russian answer to DES
• 32 rounds, 256 bit key
• Incompletely specified



Other Block Ciphers

AES
• Advanced Encryption Standard, replacement for DES
• 128 bit block size, 128/192/256 bit key

Many, many others
• No good reason not to use one of the above, proven algorithms

Using Block Ciphers

ECB, Electronic Codebook

Each block encrypted independently



Using Block Ciphers (ctd)

Original text

Intercepted encrypted form

Second intercepted message

Cut and paste blocks with account information

Decrypted message will contain the attacker’s account —
without them knowing the encryption key

Deposit $10,000 in acct.  number 12-3456- 789012-3

H2nx/GHE KgvldSbq GQHbrUt5 tYf6K7ug S4CrMTvH 7eMPZcE2

H2nx/GHE KgvldSbq GQHbrUt5 tYf6K7ug Pts21LGb a8oaNWpj

H2nx/GHE KgvldSbq GQHbrUt5 tYf6K7ug S4CrMTvH a8oaNWpj

Using Block Ciphers (ctd)
Need to

• Chain one block to the next to avoid cut & paste attacks
• Randomise the initial block to disguise repeated messages

CBC (cipher block chaining) provides chaining, random 
initialisation vector (IV) provides randomisation



Using Block Ciphers (ctd)

Both ECB and CBC operate on entire blocks

CFB (ciphertext feedback) operates on bytes or bits

This converts a block cipher to a stream cipher (with the 
accompanying vulnerabilities)

Relative Performance
Fast

RC4
Blowfish, CAST-128, AES
Skipjack
DES, IDEA, RC2
3DES, GOST

Slow

Typical speeds
• RC4 = Tens of MB/second
• 3DES = MB/second

Recommendations
• For performance, use Blowfish
• For job security, use 3DES



Public Key Encryption

How can you use two different keys?
• One is the inverse of the other:

key1 = 3, key2 = 1/3, message M = 4
Encryption: Ciphertext C = M  key1

= 4  3
= 12

Decryption: Plaintext  M = C  key2
= 12  1/3
= 4

One key is published, one is kept private  public-key 
cryptography, PKC

Example: RSA

n, e = public key, n = product of two primes p and q

d = private key

Encryption: C = Me mod n

Decryption: M = Cd mod n

p, q = 5, 7

n = p  q
= 35

e = 5

d = e-1 mod ((p-1)(q-1))
= 5



Example: RSA (ctd)

Message M = 4

Encryption: C = 45 mod 35

= 9

Decryption: M = 95 mod 35

= 59049 mod 35

= 4

(Use mathematical tricks otherwise the numbers get 
dangerous)

Public-key Algorithms

RSA (Rivest-Shamir-Adelman), 1977
• Digital signatures and encryption in one algorithm
• Private key = sign and decrypt
• Public key = signature check and encrypt

DH (Diffie-Hellman), 1976
• Key exchange algorithm

Elgamal
• DH variant, one algorithm for encryption, one for signatures
• Attractive as a non-patented alternative to RSA (before the 

RSA patent expired)



Public-key Algorithms (ctd)

DSA (Digital Signature Algorithm)
• Elgamal signature variant, designed by the NSA as the US 

government digital signature standard
• Intended for signatures only, but can be adapted for encryption

All have roughly the same strength:
512 bit key is marginal
1024 bit key is recommended minimum size
2048 bit key is better for long-term security

Recommendation
• Anything suitable will do
• RSA has universal acceptance, others are less accepted

Elliptic Curve Algorithms

Use mathematical trickery to speed up public-key 
operations



Elliptic Curve Algorithms (ctd)

Now we can add, subtract, etc.  So what?
• Calling it “addition” is arbitrary, we can just as easily call it 

multiplication
• We can now move (some) conventional PKCs over to EC 

PKCs (DSA  ECDSA)

Now we have a funny way to do PKCs.  So what?
• Breaking PKCs over elliptic curve groups is much harder than 

beaking conventional PKCs
• We can use shorter keys which consume less storage space

Advantages/Disadvantages of ECC’s

Advantages
• Sometimes useful in smart cards because of their low storage 

requirements

Disadvantages
• New, details are still being resolved

– Many ECC techniques are still too new to trust
• Almost nothing uses or supports them
• No more efficient than standard algorithms like RSA
• ECCs are a minefield of patents, pending patents, and 

submarine patents

Recommendation: Don’t use them unless you really need 
the small key size



Key Sizes and Algorithms

Conventional vs public-key vs ECC key sizes

(Your mileage may vary)

Conventional Public-key ECC
(40 bits) — —
56 bits (400 bits) —
64 bits 512 bits —
80 bits 768 bits —
90 bits 1024 bits 160 bits

112 bits 1792 bits 195 bits
120 bits 2048 bits 210 bits
128 bits 2304 bits 256 bits

Key Sizes and Algorithms (ctd)

However
• Conventional key is used once per message
• Public key is used for hundreds or thousands of messages

A public key compromise is much more serious than a 
conventional key compromise
• Compromised logon password, attacker can

– Delete your files
• Compromised private key, attacker can

– Drain credit card
– Clean out bank account
– Sign contracts/documents
– Identity theft



Key Sizes and Algorithms (ctd)

512 bit public key vs 40 bit conventional key is a good 
balance for weak security

Recommendations for public keys:
• Use 512-bit keys only for micropayments/smart cards
• Use 1K bit key for short-term use (1 year expiry)
• Use 1.5K bit key for longer-term use
• Use 2K bit key for certification authorities (keys become more 

valuable further up the hierarchy), long-term contract signing, 
long-term secrets

The same holds for equivalent-level conventional and ECC 
keys

Hash Algorithms

Reduce variable-length input to fixed-length (128 or 160 
bit) output

Requirements
• Can’t deduce input from output
• Can’t generate a given output (CRC fails this requirement)
• Can’t find two inputs which produce the same output (CRC 

also fails this requirement)

Used to
• Produce fixed-length fingerprint of arbitrary-length data
• Produce data checksums to enable detection of modifications
• Distil passwords down to fixed-length encryption keys

Also called message digests or fingerprints



MAC Algorithms

Hash algorithm + key to make hash value dependant on the 
key

Most common form is HMAC (hash MAC)

hash( key, hash( key, data ))
• Key affects both start and end of hashing process

Naming: hash + key = HMAC-hash

MD5  HMAC-MD5

SHA  HMAC-SHA

Algorithms

MD2: 128-bit output, deprecated

MD4: 128-bit output, broken

MD5: 128-bit output, weaknesses

SHA-1: 160-bit output, NSA-designed US government 
secure hash algorithm, companion to DSA

RIPEMD-160: 160-bit output

HMAC-MD5: MD5 turned into a MAC

HMAC-SHA: SHA-1 turned into a MAC

Recommendation: Use SHA-1, HMAC-SHA


