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Abstract.   Despite recent improvements in analytic techniques for attacking the Data Encryption
Standard (DES), exhaustive key search remains the most practical and efficient attack.  Key search
is becoming alarmingly practical.  We show how to build an exhaustive DES key search machine
for $1 million that can find a key in 3.5 hours on average.  The design for such a machine is
described in detail for the purpose of assessing the resistance of DES to an exhaustive attack.  This
design is based on mature technology to avoid making guesses about future capabilities.  With this
approach, DES keys can be found one to two orders of magnitude faster than other recently
proposed designs.  The basic machine design can be adapted to attack the standard DES modes of
operation for a small penalty in running time.  The issues of development cost and machine
reliability are examined as well.  In light of this work, it would be prudent in many applications to
use DES in a triple-encryption mode.

1. Introduction

From the time that details of the Data Encryption Standard (DES) [4] were made available, there
has been a great deal of controversy surrounding its short 56-bit keys.  One of the first criticisms
came from Diffie and Hellman who argued that it was feasible to build a machine that could attack
DES by exhaustively searching through all 256 DES keys, and that the cost of building this
machine would decrease rapidly with time [6].  Since then, several attempts have been made to
assess the cost and time required for exhaustive key search [7, 8, 10, 15].

In recent years, analytic techniques have been found to attack DES.  Biham and Shamir’s
differential cryptanalysis can be used to find a DES key given 247 chosen plaintexts [1, 2].
Matsui’s “linear cryptanalysis” can find DES keys given 247 known plaintexts [12].  However,
unless these attacks are improved greatly to lower the number of plaintexts required, they will be
of only theoretical interest.  For now, the most practical and economical way to attack DES is by
exhaustive key search.

The purpose of this paper is to evaluate the resistance of DES to a known-plaintext key search
attack.  This is done by designing a machine which takes a plaintext-ciphertext pair (P, C) and
finds the DES key or keys which encrypt P to produce C.  There have been numerous unpublished
and unverifiable claims about how fast the DES key space can be searched.  To avoid adding to



2

this list of questionable claims, a great deal of detail in the design of a key search machine is
included in the appendices.  This detailed work was done to obtain an accurate assessment of the
cost of the machine and the time required to find a DES key.  There are no plans to actually build
such a machine.

2. Key Search Chip

The most important component in the key search machine is the key search chip.  This chip takes
a plaintext-ciphertext pair (P, C), a starting key K, and searches through keys until one is found
that encrypts P to produce C.  The detailed design of this chip is given in Appendix A.

In order to maximize the rate at which keys are tested, the implementation of DES within the chip
is fully pipelined.  This means that there is a separate implementation of each round of DES and
the rounds are separated by registers.  This is similar in concept to an assembly line where at any
given time, items are at varying stages of processing.  On each clock tick, the plaintext P and a
new key enter the pipeline, and all previous encryptions advance through another round of DES.
In this way there are 16 encryptions taking place simultaneously.  Although it takes 16 clock ticks
to complete an encryption, one encryption completes at the end of the pipeline on each clock tick.
As each encryption completes, the result is compared to the ciphertext C that was originally
loaded into the chip.  If there is a match, then the chip stops and saves the key that lead to the
match.

An important feature of this chip is that there is very little need for input and output.  This makes
it possible to clock the chip at high speed without the requirement of getting data in and out of it at
high speed.  The chip described in Appendix A can be comfortably clocked at 50 MHz, and would
cost $10.50 per chip to manufacture.  This precise assessment of speed and cost is made possible
by the fact that the chip has been designed down to the gate level in a mature CMOS process.
Some cost estimates for key search chips in the literature suffer from incompleteness of design
and guesses about future technology.

In summary, this chip can test keys at the impressive rate of 50 million per second.  This is made
possible by the use of pipelining and the elimination of high-speed input and output.

3. Key Search Machine

The basic approach taken to building a key search machine out of key search chips is to build a
hierarchy of controllers.  At the lowest level, a group of ten key search chips is controlled by a
microcontroller which assigns tasks and polls the chips for any found keys.  The key search board
design described in Appendix B shows that for the selected board size, twelve groups of ten key
search chips fit on a board.  The twelve microcontrollers are themselves controlled by a master
microcontroller.  The master microcontroller assigns a plaintext-ciphertext pair and a range of
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keys to each slave microcontroller.  The slave microcontrollers subdivide the range of keys into
ten subranges for the ten key search chips.

A description of the shelf and frame design is given in Appendix C.  Each shelf contains twelve
key search boards and a controller board.  Four shelves are stacked together to form a frame
which is controlled by a PC.  Overall, a frame costs $100 000 and contains 5760 key search chips.

A key search machine would consist of a number of frames which would find one or more
candidate keys.  Each candidate key would have to be tested to see if it is correct (perhaps by
using another plaintext-ciphertext pair).

4. Performance

Using the design described here, DES keys can be found alarmingly quickly.  On average, one
would expect to search through 255 keys before the correct key is found.  Using the fact that a key
search chip tests 50 million keys per second and a frame costs $100 000 and contains 5760 key
search chips, we get the following table of machine cost versus key search time.

5. Development Cost

A key search machine could be built in about ten months by three people (not including support
groups for manufacture and chip and board layout).  One person would be needed to capture the
chip design, simulate it, and oversee its layout and fabrication.  A second person would design,
simulate, and oversee the fabrication of the key search board and the shelf controller board.  This
person would also handle the shelf and frame design.  A third person would write software for the
PC, shelf controller board, and the microcontrollers.  Taking into account loaded labour rates, the
cost of employing these people is about $100 000 each.  Allowing an additional $200 000 for
support in the chip layout, chip fabrication, and board layout brings the total development cost to
about $500 000.

6. Comparison to Other Recent Key Search Designs

The approach to DES key search proposed here is considerably faster than other recently
proposed designs.  Comparisons to other designs are given below.

Key Search Machine Cost Expected Search Time
$100 000 35 hours

$1000 000 3.5 hours
$10 000 000 21 minutes
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Garon and Outerbridge [8] used an approach to DES key search that is similar to the one used
here; design a specialized key search chip and pack as many of them as possible into a machine.
Based on Garon and Outerbridge estimates, a $1 million machine could search half of the DES
key space in 9 days in 1995 and 43 hours in the year 2000.  However, using the design in this
paper, this task would take only 3.5 hours using today’s technology.  This is 60 times faster than
the 1995 estimate and 12 times faster than the year 2000 estimate.

At Crypto ’92, Eberle [7] described a 1 Gbit/s gallium-arsenide (GaAs) DES chip.  This chip costs
$300.  Using $1 million worth of these chips, it would take 8 days to search through half of the
key space.  This is 55 times slower than the design in this paper.  This difference is mainly due to
the difference in chip cost and the use of pipelining.  Using Eberle’s chip has the advantage of not
having to do a chip design, but the gain from designing a new chip is considerable.

During the rump session of Crypto ’92, Wayner [15] proposed the idea of searching the DES key
space using a content-addressable search engine.  This approach has the advantage that it works
on a general-purpose machine.  If the content-addressable machine has already been acquired for
general use by some organization, then one only needs to write a small amount of software and
acquire time on the machine.  Based on Wayner’s estimate, one could search through half of the
key space in 30 days on a $1 million content-addressable machine.  The drawback of this
approach is that it is 200 times slower than the design in this paper.

An often proposed method of attacking DES is to take advantage of the spare cycles on a large
installed base of PCs and workstations.  However, DES is poorly suited to software
implementation.  On a Sun SparcStation-2, a key can be tested in 50 µs.  This means that it would
take 2500 workstations to keep up with a single key search chip of the type described in
Appendix A.  One key search frame has the equivalent key searching power of 14 million
workstations.

7. Reliability and Testing

When DES key search machines were first proposed, reliability was a difficult issue to deal with.
But today, large systems are routinely built that are much more complex and have higher
reliability requirements than a key search machine.

The analysis in Appendix D shows that the mean time between failures of a machine consisting of
n key search frames is about 9500/n hours.  From Section 4, the expected time of a single key
search for n key search frames is 35/n hours.  Dividing these two expressions, we find that a
failure is expected every 270 keys found.  Because the failure rate is low, a reasonable approach to
testing is to perform a self-test between key searches and replace any faulty cards.  There is no
need to do testing during key searches.
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8. Modes of DES

Thus far we have concentrated on attacking DES when it is used in the electronic codebook
(ECB) mode.  However, there are other standard modes of DES [5].  All of the 64-bit modes can
be attacked using the same machine design (this is demonstrated below).  To support modes
which produce less than 64 bits of ciphertext at a time requires modifications to the chip design.
The modes of DES are shown in the following figure.  In all cases a 56-bit key and a 64-bit
initialization vector (IV) are required.  On each step, the key, IV, and plaintext block P are used to
produce a ciphertext block C.

Figure 1:  Encryption using the various modes of DES

For the 64-bit modes, it is possible to construct a pair (P′, C′) which can be used as plaintext and
ciphertext inputs to the existing key search design to find the key.  For CBC mode, if a plaintext
block Pi is known, then use P′ = Pi ⊕ Ci-1  and C′ = Ci.  For 64-bit CFB mode, if a plaintext
block Pi is known, then use P′ = Ci-1  and C′ = Pi ⊕ Ci.  For 64-bit OFB mode, if two
consecutive plaintext blocks Pi and Pi+1 are known, then use P′ = Pi ⊕ Ci  and C′ = Pi+1 ⊕ Ci+1.

Among the modes of DES that produce less than 64 bits of ciphertext at a time, two popular ones
are 1-bit and 8-bit CFB.  The modification to the key search design required to support these
modes as well as ECB mode are considered in Appendix E.  We assume that there are 64 bits of
known plaintext available and that multiple encryptions with the same key are required to obtain a
full match between plaintext and ciphertext.  The conclusion is that the new key search chip
would cost $12.  This increases the cost of a key search frame to the point where only nine frames
could be built for $1 million.  This slows down the attack on ECB mode somewhat.  The CFB
modes are slowed down further by the need to perform additional encryptions when there are
partial matches with the ciphertext.  For 1-bit CFB, there is a 50% chance that the output bit from
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an encryption matches the stored ciphertext bit and that another encryption will have to be
performed with the same key.  As soon as a ciphertext bit does not match, the key is rejected.  This
makes the expected time to find a key for 1-bit CFB mode twice as long as for ECB mode.  Using
similar reasoning, 8-bit CFB mode takes approximately 256/255 times as long as ECB mode.
This information is summarized in the following table.

9. Triple-DES

One method of improving the security of DES greatly is to use triple-DES.  With triple-DES
encryption, each block of plaintext P is processed three times using either two or three
independent keys to produce the ciphertext C as shown in Figure 2.

Figure 2:  Triple-DES Encryption

The reason for making the middle operation a decryption is for compatibility with single-DES.  If
all keys are made equal, then triple-DES collapses to single-DES.

The two-key version of triple-DES was estimated to be 1013 times stronger than single-DES by
van Oorschot and Wiener [14].  The three-key version is even stronger.  In cases where security
must be improved for a large installed base of equipment using DES, it is likely to be much less
costly to switch to triple-DES than it is to switch to a different cryptosystem.
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10. Conclusion

It is possible to build a $1 million machine that can attack DES and recover a key in an average
time of 3.5 hours.  The machine uses a known plaintext to exhaustively search through the DES
key space and could be developed for $500 000 in about 10 months.  Because a great deal of detail
has gone into the design of the key search machine, we can have high confidence in the
assessment of its cost and speed.  The key search design presented here is one to two orders of
magnitude faster than other recently proposed designs.

Even cryptosystems with 64-bit keys may be vulnerable.  If DES were modified to use 64-bit
keys, there would be 28 times as many keys to search through, and a $10 million machine would
take an average of 3.7 days to find a key.

It is possible to build a key search machine that can support a range of modes of DES with little
penalty in run-time.  A $1 million machine would take 8 hours on average to find a key used in
1-bit CFB mode and 4 hours on average for any of ECB, CBC, 64-bit OFB, 64-bit CFB, or 8-bit
CFB mode.

This work shows that exhaustive DES key search is alarmingly economical.  If it ever was true
that attacking DES was only within the reach of large governments, it is clearly no longer true.  A
fairly painless way to improve security dramatically is to switch to triple-DES.

Appendix A: Key Search Chip Detailed Design

This appendix contains the detailed design of a DES key search chip.  The chip takes a plaintext P,
a ciphertext C, and a starting key and searches through keys until one is found that encrypts P to
produce C.  An important feature of this chip is that the implementation of DES is pipelined.  This
means that there is separate silicon for each of the 16 rounds, and the rounds are separated by
registers.  At any given time, there are 16 keys in the pipeline.  On each clock tick a new key
enters the pipeline, other keys advance by one round, and the oldest key’s encryption  completes.
As each encryption completes at the end of the pipeline, the result is compared to the ciphertext
value C.  Using this pipelined approach, keys can be tested at the rate of one key every clock tick.

The chip is designed using the standard cells in a 0.8 µm CMOS process.  The chip is fully
synchronous; all flip-flops use the same clock.  The design is presented in a top-down fashion.
The first subsection in this appendix contains the top-level design consisting of a number of
blocks.  In the following subsections, each block is subdivided into smaller blocks.  At the end of
this hierarchical decomposition, the standard cells (basic components such as and-gates, or-gates,
and flip-flops) used in the design are described.
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To help in distinguishing high-level blocks from standard cells, high-level blocks have
arrowheads on their inputs and bold letters in their names.  For standard cells, names are not
bolded and there are no arrows on input lines.

Throughout the design, standard bit numbering is used with 0 as the least significant (rightmost)
bit.  This differs from the DES description [4] where the numbering of a 64-bit quantity begins
with 1 for the most significant bit up to 64 for the least significant bit.

Sufficient buffering was included in the chip design to limit the fan-out of all gates to at most 8.
For lines interconnecting the topmost blocks in the top level design, the fan-out was limited to 4.

Most modern large chip designs include built-in self test (BIST) circuitry.  Because the key search
chip is small and can be fully tested from its external pins, no BIST circuitry has been included in
its design.  If BIST were added, the cost of the key search chip would increase by about 30%.

The worst case delays from the output of one flip-flop to the input of another flip-flop occur in the
rounds of encryption.  Taking into account this delay, the delay through the flip-flop, and clock
skew across the chip, this chip can be clocked comfortably at 50 MHz.  This means that once the
pipeline is full, a key is tested every 20 ns.

The most important factor in determining the cost of this chip is its area.  In the CMOS process
used here, units of area are called “sites”.  A site is 3.6 µm × 54.4 µm.  Each of the standard cells
requires an integral number of sites (see section A.44).  For this chip, the total area of all gates not
including clock regeneration or pads for external connections is 73637 sites.  Clock regeneration
requires 210 sites for each 100 flip-flops.  Because there are 2164 flip-flops, 4620 sites are needed
for clock regeneration.  This makes a total of 78257 sites not including pads.  A standard way to
quote the size of a chip is to specify the number of equivalent gates using a 2-input nand gate as
the standard.  For this CMOS process, a 2-input nand gate requires 3 sites.  Therefore, this chip
design has 26086 equivalent gates.  Taking into account the area required for interconnections and
pads, this chip’s area would be 260 mils × 260 mils.1  Although, this chip only needs 27 pins, it is
too large to fit in a 28-pin PLCC (plastic leaded chip carrier) package.  The next standard size is a
44-pin PLCC package.  Using a 44-pin PLCC package, the cost would be $10.50 per chip to
fabricate and test in volumes of at least 10 000.

The power consumption of this chip would be about 450 mW.  This is somewhat less than one
might expect for a 50 MHz device.  However, the chip is small and the I/O to it is quite slow.  The
I/O consists of loading values into the chip initially and polling it periodically to see if it has
found the desired key.  This means that very little power is dissipated in the pads.

1 1 mil = 0.001 inch = 25.4 µm.
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The following table gives the area and page number for each block in the hierarchical design.

A.1 Top-Level Design

The key search chip has a microprocessor interface which allows a plaintext, a ciphertext, and a
starting key value to be written in, and the found key to be read out.  In addition, the
microprocessor can read and write the status (“go” or “stop”) of the chip.  The chip contains four
registers which are visible to the microprocessor (see Figure A.1).  The write-only registers
include the 64-bit plaintext register, the 64-bit ciphertext register, and the 56-bit key counter
register.  There is also the read-only 56-bit output_key register.  Note that in this design, key
parity bits as defined in DES [4] are not included.  The microprocessor can also read and write the
stop bit which indicates the state of the chip.

A total of 27 pins are used.  Five pins are allocated to each of power and ground.  One pin is for
the 50 MHz clock input, and there is a tri-state pin for testing purposes.  The remaining 15 pins
are the microprocessor interface.  There is a chip enable line, a read/write line, 5 address lines,
and 8 data lines for byte-wide access.  The following table shows the address map of the chip.

† The area listed for the external interface does not include the pads.

Block name
Area

(sites)
Page

number Block name
Area

(sites)
Page

number

top level 73637 9 S_output 277 29
stop 21 12 minterm_4 15 30
compare 383 12 register_32 320 31
compare_16 94 12 register_8 80 31
compare_4 22 13 xor_48 192 32
plaintext and ciphertext 1148 13 xor_32 128 33
write_control 36 14 xor_8 32 33
mux2_register8 136 15 E_perm 0 34
key_counter 1437 16 P_perm 0 34
write_control7 33 17 key_round_1 560 34
poly_register 207 18 key_round_2 560 35
count_register 195 19 register_28 280 35
output_key 1395 21 register_7 70 36
mux2_register7 122 22 PC2_perm 0 36
mux7_1 51 23 rotate_left 0 36
buffer8 24 23 rotate_left_2 0 37
buffer3 9 24 initial_perm 0 37
pipelined_DES 67968 24 inverse_initial 0 37
encrypt_round 3688 26 PC1_perm 0 37
S_box 2728 27 inverse_PC1 0 38
dual_dec38 64 27 external_interface † 137 38
S1_wiring to S8_wiring 0 28
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While the chip is in the go state, the key_counter steps through the keys and puts one key per
clock tick into the DES pipeline.  This key is used with the contents of the plaintext register to
perform the first round of encryption.  All other stages of the pipeline perform one round of a
previous encryption.  From the last stage of the pipeline comes the result of an encryption and the
key used in that encryption.  The key is loaded into the output_key register (regardless of whether
it is the desired key or not).  The result of encryption is compared to the contents of the ciphertext
register.  If the ciphertext matches, then the chip goes into the stop state.

In the stop state, the key_counter does not count, and it is possible for the microprocessor to write
a new value into the key_counter.  The DES pipeline continues to run in the stop state, but the
output_key register ceases to take in the keys coming out of the pipeline.  In this way, the
output_key register will be left holding the key which caused a match with the ciphertext register.
In the case where the microprocessor stops the chip, the output_key register will simply hold the
last key which came out of the pipeline before the chip was stopped.

The intended way for a microprocessor to use this chip is for it to first stop the chip, fill up the
plaintext, ciphertext, and key_counter registers, and then put the chip in the go state.  The
microprocessor then polls the chip periodically to see if it has found a key and has stopped.  This
continues until a key is found or the microprocessor stops the chip to start a new task.

To save circuitry, the key_counter does not count linearly through the key space.  The carry look-
ahead logic for a 56-bit counter would be large, and it would be difficult to get it to run at the
required speed.  A linear-feedback shift register based on a primitive generator polynomial is used
to step through all the non-zero keys.  The all-zero key must be tested separately by the processor
which controls the collection of key search chips.  The generator polynomial used is
g = x56 + x7 + x4 + x2 + 1.  If the first key tried is k, then the subsequent keys tried are kx mod g,
kx2 mod g, kx3 mod g, and so on.  The processor which controls the collection of key search chips
will have to take this counting method into account when calculating the starting key values to
load into each chip’s key_counter.

In Figure A.1, clock, power, and ground are not shown leaving the external interface, but they go
to all other blocks.

Address Read Write
00-07 not used (zeros are read) plaintext (bytes 0-7)
08-0F not used (zeros are read) ciphertext (bytes 0-7)
10-16 output_key (bytes 0-6) key_counter (bytes 0-6)

17 not used (zeros are read) not used
18-1F stop bit (in bit 0 with 7 leading zeros) stop bit (from bit 0 - other bits ignored)
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Figure A.1:  Top-Level Key Search Chip Design
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A.2 Stop Block

The stop block contains the flip-flop which indicates whether the chip is in the stop state (Q = 1)
or the go state (Q = 0).  The inputs to this block are a write line W, a data line D, and an equal line
E which is a 1 if there has been a match with the ciphertext register.  If W = 1, the stop bit takes on
the value of D.  If W = 0 and E = 1, the stop bit becomes a 1.  If W = 0 and E = 0, the stop bit
retains its old value.

Figure A.2:  Stop Block

A.3 Compare Block

The compare block outputs a 1 if all 64 bits of DA are equal to the corresponding bits of DB.  The
output is 0 otherwise.

Figure A.3:  Compare Block
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Figure A.4:  Compare_16 Block

A.5 Compare_4 Block

The compare block outputs a 0 if all 4 bits of DA are equal to the corresponding bits of DB.  The
output is 1 otherwise.

Figure A.5:  Compare_4 Block
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Figure A.6:  Plaintext and Ciphertext Blocks
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Figure A.7:  Write_control Block
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Figure A.8:  Mux2_register8 Block
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value of the address lines takes the value of the data lines, and all other register bytes retain their
old values (if the address is 7, the entire register retains its old value).  If S = 0, the register counts
to the next key value.  In terms of polynomials, the next key value is kx mod g, where k is the
current key value and g = x56 + x7 + x4 + x2 + 1 is the generator polynomial.  This is the same as
shifting the register left and if a 1 shifts from the top end, exclusive-or-ing the generator
polynomial onto the register.

Figure A.9:  Key_counter Block

A.10 Write_control7 Block

The write_control7 block takes a write line W, 3 address lines A, and produces 7 output control
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Figure A.10:  Write_control7 Block

A.11 Poly_register Block

The poly_register block contains the least significant register byte of the key_counter.  This is the
only byte of the key_counter that is affected when we exclusive-or the generator polynomial onto
the key_counter.  The inputs are the stop bit S, the previous contents of the top bit of the
key_counter X, a line to control writing C, and 8 data lines D.  The outputs are the flip-flop
outputs Q and the shifted out bit Y (which is just bit 7 of Q).  If S = 1 and C = 0, the register
retains its old value.  If S = 1 and C = 1, the register takes the value of the data lines.  If S = 0, the
register is shifted left with X indicating whether we exclusive-or the bottom 8 bits of the generator
polynomial onto the register.
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Figure A.11:  Poly_register Block
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The outputs are the flip-flop outputs Q and the shifted out bit Y (which is just bit 7 of Q).  If S = 1
and C = 0, the register retains its old value.  If S = 1 and C = 1, the register takes the value of the
data lines.  If S = 0, the register is shifted left with X shifting into the least significant bit.

Figure A.12:  Count_register Block

D Q
C

OP
I1

I0
MUX

D Q
C

OP
I1

I0
MUX

D Q
C

OP
I1

I0
MUX

D Q
C

OP
I1

I0
MUX

D Q
C

OP
I1

I0
MUX

D Q
C

OP
I1

I0
MUX

D Q
C

OP
I1

I0
MUX

D Q
C

OP
I1

I0
MUX

D (bit 0)

D (bit 1)

D (bit 2)

D (bit 3)

D (bit 4)

D (bit 5)

D (bit 6)

D (bit 7)

C

Q (bit 0)

Q (bit 1)

Q (bit 2)

Q (bit 3)

Q (bit 4)

Q (bit 5)

Q (bit 6)

Q (bit 7)

C

OP
I1

I0
MUX

C

OP
I1

I0
MUX

C

OP
I1

I0
MUX

C

OP
I1

I0
MUX

C

OP
I1

I0
MUX

C

OP
I1

I0
MUX

C

OP
I1

I0
MUX

C

OP
I1

I0
MUX

Y

X

S



21

A.13 Output_key Block

The output_key block contains a 56-bit register.  The inputs are the stop bit S, 3 address lines A,
and 56 key lines K.  If S = 0, the register takes on the value of the input key K.  If S = 1, the
register retains its old value.  The output from this block is the byte B of the register specified by
the address lines.  If the specified address is 7, then all bits of B are 0.

Figure A.13:  Output_key Block
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A.14 Mux2_register7 Block

The mux2_register7 block contains a 7-bit register.  The inputs are a control line C and 7 data
lines D.  If C = 1, the register takes on the value of the data lines.  If C = 0, the register retains its
old value.

Figure A.14:  Mux2_register7 Block
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A.15 Mux7_1 Block

The inputs to the mux7_1 block are 3 control lines C and 7 input lines I.  The output OP is equal
to the input line that is specified by the control lines.  If the control lines specify an address of 7,
then OP = 0.

Figure A.15:  Mux7_1 Block

A.16 Buffer8 Block

The buffer8 block simply buffers each of 8 input lines.

Figure A.16:  Buffer8 Block
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A.17 Buffer3 Block

The buffer3 block simply buffers each of 3 input lines.

Figure A.17:  Buffer3 Block

A.18 Pipelined_DES Block

The pipelined_DES block performs the DES calculations at the core of the key search chip.  The
inputs are a 64-bit plaintext P and a 56-bit input key IK.  The outputs are a 64-bit ciphertext C and
a 56-bit output key OK.  At the top of the block, the DES initial permutation is applied to the
plaintext, and the PC1 permutation is applied to the input key.  This is followed by a 16-stage
pipeline.  Each stage of the pipeline consists of key scheduling applied to the key to produce a
sub-key, a round of encryption using the current data and current sub-key, and a 120-bit register to
pipeline the 64 bits of data and 56 bits of key.  After the pipeline, the data is permuted to form the
ciphertext, and the key is permuted to restore the original order of the key bits.  It takes 16 clock
ticks to produce a ciphertext, but there are 16 encryptions in progress at any given time.
Intermediate results from 16 different encryptions are held in the 120-bit registers within the
pipeline stages.  On each clock tick, an encryption completes producing a ciphertext and the
associated key.
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Figure A.18:  Pipelined_DES Block
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A.19 Encrypt_round Block

The encrypt_round block performs one round of DES not including key scheduling.  The inputs
are 64 bits of data D and 48 bits of sub-key SK.  A round of DES begins with applying the E
permutation to the right half of D expanding it to 48 bits, and exclusive-or-ing this result with the
sub-key.  The resulting 48 bits go through the S-boxes producing 32 bits which then go through
the P permutation.  The result of the P permutation is exclusive-or-ed with the left half of D to
produce the right half of the output data for this round of DES.  The left half of the output data for
this round of DES is simply the same as the right half of the input data.  The output data goes into
a 64-bit pipelining register.

Figure A.19:  Encrypt_round Block
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A.20 S_box Block

There are 8 DES S-boxes.  Each is a look-up table with 6 input bits and 4 output bits.  The
structure of each table is such that each of the outputs 0 to 15 occurs exactly 4 times.  The
approach to implementing the S-boxes taken here is to fully decode the 6 input bits, and then
combine the 4 minterms for each of the non-zero table outputs.  The 15 signals corresponding to
the non-zero table outputs are then combined to form the 4 S-box output bits.

Figure A.20:  S_box Block
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Figure A.21:  Dual_dec38 Block
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Figure A.22:  S1_wiring to S8_wiring Blocks

A.23 S_output Block

The S_output block takes the permuted version of the decoded S-box inputs and produces the S-
box outputs.  The first 8 input bits are used to produce the signal associated with an S-box table
entry of 1.  The next 8 bits are used for a table entry of 2, and so on to a table entry of 15.  The
signals for S-box table entries are then combined to form the S-box outputs.  Output bit 0 is



30

created by or-ing the odd table entry signals.  Output bit 1 is created by or-ing table entry signals
2, 3, 6, 7, 10, 11, 14, and 15.  Output bit 2 is created by or-ing table entry signals 4, 5, 6, 7, 12, 13,
14, and 15.  Output bit 3 is created by or-ing table entry signals 8 to 15.

Figure A.23:  S_output Block

A.24 Minterm_4 Block

The input to the minterm_4 block is 4 pairs of signals.  The signals in each pair are and-ed
together, and the resulting 4 signals are or-ed together.
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Figure A.24:  Minterm_4 Block

A.25 Register_32 Block

The register_32 block consists of 32 flip-flops.

Figure A.25:  Register_32 Block
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The register_8 block consists of 8 flip-flops.
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Figure A.26:  Register_8 Block
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The xor_48 block exclusive-ors 48 pairs of signals together.
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Figure A.27:  Xor_48 Block

A.28 Xor_32 Block

The xor_32 block exclusive-ors 32 pairs of signals together.

Figure A.28:  Xor_32 Block
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The xor_8 block exclusive-ors 8 pairs of signals together.
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Figure A.29:  Xor_8 Block

A.30 E_perm Block

This block does not contain any gates.  Each output bit is connected to one of the input bits.  The
E permutation is one of the elements of DES.  The following figure shows the input bit numbers
for each output bit starting from the most significant output bit.

0 31 30 29 28 27 28 27 26 25 24 23 24 23 22 21 20 19 20 19 18 17 16 15
16 15 14 13 12 11 12 11 10 9 8 7 8 7 6 5 4 3 4 3 2 1 0 31

Figure A.30:  E_perm Block

A.31 P_perm Block

This block does not contain any gates.  Each output bit is connected to one of the input bits.  The
P permutation is one of the elements of DES.  The following figure shows the input bit numbers
for each output bit starting from the most significant output bit.

16 25 12 11 3 20 4 15 31 17 9 6 27 14 1 22 30 24 8 18 0 5 29 23 13 19 2 26 10 21 28 7

Figure A.31:  P_perm Block

A.32 Key_round_1 Block

This block performs one round of the key scheduling part of DES.  There are actually two types of
key rounds.  They only differ in the number of rotates performed at a certain point in the block.  In
this block, the 56-bit input key K is split into two 28-bit halves, each is rotated left one position,
and the halves are rejoined to form the value which goes into the 56-bit pipeline register.  The 48-
bit sub-key output SK is formed by applying the PC2 permutation to the rotated key.
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Figure A.32:  Key_round_1 Block

A.33 Key_round_2 Block

This block performs one round of the key scheduling part of DES.  There are actually two types of
key rounds.  They only differ in the number of rotates performed at a certain point in the block.  In
this block, the 56-bit input key K is split into two 28-bit halves, each is rotated left two positions,
and the halves are rejoined to form the value which goes into the 56-bit pipeline register.  The 48-
bit sub-key output SK is formed by applying the PC2 permutation to the rotated key.

Figure A.33:  Key_round_2 Block

A.34 Register_28 Block

The register_28 block consists of 28 flip-flops.

Figure A.34:  Register_28 Block
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A.35 Register_7 Block

The register_7 block consists of 7 flip-flops.

Figure A.35:  Register_7 Block

A.36 PC2_perm Block

This block does not contain any gates.  Each output bit is connected to one of the input bits.  The
PC2 permutation is one of the elements of DES.  The following figure shows the input bit
numbers for each output bit starting from the most significant output bit.

42 39 45 32 55 51 53 28 41 50 35 46 33 37 44 52 30 48 40 49 29 36 43 54
15 4 25 19 9 1 26 16 5 11 23 8 12 7 17 0 22 3 10 14 6 20 27 24

Figure A.36:  PC2_perm Block

A.37 Rotate_left Block

This block does not contain any gates.  Each output bit is connected to one of the input bits.  The
28 input lines are rotated left one position.  The following figure shows the input bit numbers for
each output bit starting from the most significant output bit.
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26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 27

Figure A.37:  Rotate_left Block

A.38 Rotate_left_2 Block

This block does not contain any gates.  Each output bit is connected to one of the input bits.  The
28 input bits are rotated left 2 positions.  The following figure shows the input bit numbers for
each output bit starting from the most significant output bit.

25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 27 26

Figure A.38:  Rotate_left_2 Block

A.39 Initial_perm Block

This block does not contain any gates.  Each output bit is connected to one of the input bits.  The
initial permutation (IP) is one of the elements of DES.  The following figure shows the input bit
numbers for each output bit starting from the most significant output bit.

6 14 22 30 38 46 54 62 4 12 20 28 36 44 52 60 2 10 18 26 34 42 50 58 0 8 16 24 32 40 48 56
7 15 23 31 39 47 55 63 5 13 21 29 37 45 53 61 3 11 19 27 35 43 51 59 1 9 17 25 33 41 49 57

Figure A.39:  Initial_perm Block

A.40 Inverse_initial Block

This block does not contain any gates.  Each output bit is connected to one of the input bits.  This
permutation is not exactly the inverse of initial_perm.  It also swaps the left and right halves.  The
following figure shows the input bit numbers for each output bit starting from the most significant
output bit.

56 24 48 16 40 8 32 0 57 25 49 17 41 9 33 1 58 26 50 18 42 10 34 2 59 27 51 19 43 11 35 3
60 28 52 20 44 12 36 4 61 29 53 21 45 13 37 5 62 30 54 22 46 14 38 6 63 31 55 23 47 15 39 7

Figure A.40:  Inverse_initial Block

A.41 PC1_perm Block

This block does not contain any gates.  Each output bit is connected to one of the input bits.  The
PC1 permutation is one of the elements of DES.  The following figure shows the input bit
numbers for each output bit starting from the most significant output bit.
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6 13 20 27 34 41 48 55 5 12 19 26 33 40 47 54 4 11 18 25 32 39 46 53 3 10 17 24
0 7 14 21 28 35 42 49 1 8 15 22 29 36 43 50 2 9 16 23 30 37 44 51 31 38 45 52

Figure A.41:  PC1_perm Block

A.42 Inverse_PC1 Block

This block does not contain any gates.  Each output bit is connected to one of the input bits.  This
block performs the inverse of the PC1_perm block.  The following figure shows the input bit
numbers for each output bit starting from the most significant output bit.

48 40 32 0 4 12 20 49 41 33 1 5 13 21 50 42 34 2 6 14 22 51 43 35 3 7 15 23
52 44 36 28 8 16 24 53 45 37 29 9 17 25 54 46 38 30 10 18 26 55 47 39 31 11 19 27

Figure A.42:  Inverse_PC1 Block

A.43 External_interface Block

The external interface block is the interface between an external processor and the core of the key
search chip.  Included in the external_interface are 27 pads (not all of which are shown in Figure
A.43) which serve as a buffer between the external pins and the inside of the chip.  There are input
pads for the chip enable, read/write line, tri-state line, and the 5 address lines.  There are 8
input/output pads for the data lines.  Not shown in Figure A.43 are the pad for the clock signal, 5
power pads, and 5 ground pads.

The flip-flops at the top of the block produce delayed versions of the chip enable.  The chip enable
is delayed to synchronize it to the chip’s clock and to give the other signals coming into the chip
time to become valid.  When the delayed enable line makes a transition from 1 to 0 and the
read/write line is a 0, then data is being written into the chip and address lines 3 and 4 select one
of the write lines (write_s, write_kc, write_c, and write_p) to become a 1.  Address lines 0, 1, and
2 are passed through as outputs from the external_interface.  If the undelayed enable line is 0, the
read/write line is a 1, and the tri-state line is a 1, then data is being read from the chip and the
input/output pads on the data lines are set as outputs.  The purpose of the tri-state line is to force
the chip into an input mode to allow testing of a board.  When data is being read from the chip and
address lines 3 and 4 are both 1, then the stop bit is put out on data pin 0 and the rest of the data
pins are 0.  When data is being read from the chip, address line 3 is a 0, and address line 4 is a 1,
then the output from the output_key block goes out on the data pins.  A read from any other
address causes zeros to be put out on the data pins.  When data is written into the chip, the signals
on the data pins are passed through to the data_out signals.
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Figure A.43:  External_interface Block
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A.44 Standard Cells

This section contains descriptions of each of the standard cells, their symbols, and their areas (in
units of sites, where a site is 3.6 µm × 54.4 µm).

2 sites inverter

3 sites buffer

3 sites 2-input nand gate

3 sites 2-input nor gate

4 sites 2-input and gate

4 sites 2-input or gate

4 sites 2-input exclusive-or gate

5 sites 2-input exclusive-nor gate

4 sites 2-input and gate with one inverted input

4 sites 2-input or gate with one inverted input

4 sites 3-input nand gate

4 sites 3-input nor gate

5 sites 3-input and gate

5 sites 3-input or gate

5 sites 4-input nand gate

7 sites 4-input nor gate
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6 sites 4-input and gate

6 sites 4-input or gate

4 sites composite gate: 1,2 or-and-invert

4 sites composite gate: 1,2 and-or-invert

5 sites composite gate: 1,3 or-and-invert

5 sites composite gate: 1,3 and-or-invert

5 sites composite gate: 1,1,2 or-and-invert

5 sites composite gate: 1,1,2 and-or-invert

6 sites composite gate: 2,2 or-and-invert

6 sites composite gate: 2,2 and-or-invert
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Appendix B: Key Search Board Design

The main goal in designing a key search board is to pack as many key search chips onto it as
possible with a minimum of overhead and additional cost.  The majority of the overhead is
microcontrollers to control the key search chips.  The microcontroller selected for this design is
the Motorola MC68HC705C8 [13].  The main features of this member of the 6805 family are
8192 bytes of one-time programmable ROM, 176 bytes of RAM, a serial peripheral interface
(SPI), a serial communications interface (SCI), 24 general-purpose I/O pins, and it is available in

6 sites

2-input inverting decoder:
I1 I0 M3 M2 M1 M0
0 0 1 1 1 0
0 1 1 1 0 1
1 0 1 0 1 1
1 1 0 1 1 1
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2-input inverting multiplexor:
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a 44-pin PLCC (surface-mount) package.  The masked ROM version of this chip is less
expensive, but the one-time programmable version was selected to avoid masking charges.

Each microcontroller can control 10 key search chips using its 24 I/O pins.  Eight data lines, five
address lines, and a read/write line are connected to all 10 key search chips.  Each of the
remaining 10 I/O pins goes to the enable pin of one of the key search chips.

The board needs a master microcontroller (also an MC68HC705C8) to control all of the other
microcontrollers.  The master is connected to its slaves using the serial peripheral interface.  The
SPI is designed to connect a master to several slaves directly without any other logic.  The master
microcontroller’s serial communications interface is used as the board’s external interface.

Other components that will be required are an octal buffer/line driver (74HC244) for the board’s
external interface lines, a 50 MHz oscillator, clock drivers to drive the clock to the key search
chips, a counter (74HC191) to divide the clock by 16 to produce a suitable clock for the
microcontrollers, a clock driver for the microcontrollers, decoupling capacitors on the underside
of the board, a fuse for the power entry to the board, and the unpopulated board itself.

For the shelf and frame technology that this system is designed for, the usable area of each board
is 9 inches × 13 inches.  Using surface-mount components for everything except the fuse, there is
enough room on the board for 120 key search chips.1  To handle this number of chips, 5 clock
drivers and 13 microcontrollers are needed.  A possible layout of this board is shown in
Figure B.1.  The unlabeled chips are the key search chips.  The layout shows connections between
certain chips indicating the control of the slave microcontrollers by the master and the control of
key search chips by each slave.

The board itself is a 6-layer board.  There is one layer for each of power and ground.  The
remaining 4 layers are for routing clocks and the connections between chips.  Because most of the
connections are very localized, it may be possible to use a 4-layer board, but we will assume that
a 6-layer board is necessary.  The cost of fabricating, populating, and testing the board is about
$300.

1 A 44-pin PLCC package covers 0.72 inch × 0.72 inch, and 0.2 inch spacing between chips is required.
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The following table shows the costs to build this board.

The total power consumption of all of the key search chips is 120 × 450 mW = 54 W.  Adding the
power consumption of the other components brings the total board power to 60 W.  This is fairly
high power consumption.  The issues of providing this power and cooling the boards will need to
be addressed at the shelf and frame level.

The program in the slave microcontroller is not very complicated.  Through its SPI it receives
tasks which consist of a plaintext P, a ciphertext C, a starting key K, and chip step value s.  The
chip step value specifies the spacing between starting keys for each of the 10 key search chips.  If
each chip is responsible for m keys, then the chip step value supplied to the slave microcontroller
is s = xm mod g, where g is the generator polynomial.  The 10 starting keys are K, Ks mod g,
Ks2 mod g, … , Ks9 mod g.  To get from one chip’s starting key to the next, the slave
microcontroller performs a polynomial multiply of the previous starting key and the chip step
value and reduces the result modulo the key_counter’s generator polynomial g.  This is a fairly
simple calculation.  After starting the key search chips, the slave polls them until one of them has
the desired key or a new task comes in.  Any found keys are reported back to the master.  The
slave should also be capable of performing a simple known-answer test on each of its key search
chips and reporting any failures to the master.

The master must be able to take tasks through its SCI which consist of P, C, starting key K, slave
step value t, and chip step value s.  The values P, C, and s are passed directly to each slave.  The
starting keys sent to the 12 slaves are K, Kt mod g, Kt 2 mod g, …, Kt11 mod g.  The master
should also be capable of performing a known-answer test on each of its slaves. The master
reports any found keys or hardware failures over its SCI.

Component Quantity Unit Cost ($) Extended ($)

key search chip 120    10.50 1260___

MC68HC705C8 13 8 104___

50 MHz oscillator 1 4 4___

clock driver 5 8 40___

74HC191 1 1 1___

74HC244 1 1 1___

decoupling capacitors and fuse 15___

board and cost to populate and test it 300___

Total Board Cost $ 1725___
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Figure B.1:  Key Search Board Layout
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Appendix C: Key Search Frame Design

Given that we have key search boards as described in Appendix B, we need a structure to hold,
interconnect, and control all of these boards.  An existing technology for this purpose was
selected as the basis for this design.  Boards are housed in frames.  Each frame consists of 4
stacked shelves, and each shelf has 26 board slots and 4 slots for power supplies.

Each shelf requires a board to control the key search boards.  This controller board needs only a
processor and sufficient logic to interface serially to the key search boards.  The controller boards
could be made for about $500 each.  Although there are 25 slots left in the shelf, the total power
requirements for 25 key search boards at 60 W each is too much for the 4 shelf power supplies.
To stay comfortably within the power supply limits and leave more space for power dissipation,
only 12 key search boards are on each shelf.  The following table shows the cost of a shelf.

Each frame consists of 4 shelves and fans for cooling.  The frame also requires a PC to control the
4 shelf controller boards and to check the all-zero key.  The following table shows the frame cost.

A frame costs about $100 000 and contains 5760 key search chips each of which can test
50 million DES keys per second.  Overall, a frame can test 2.88 × 1011 keys per second.

Appendix D: Reliability of the Key Search Machine

A common criticism of past key search designs is that they are not sufficiently reliable to
complete a single key search without breaking down.  Today, this is no longer a concern.  To show
that the key search machine described in this paper is sufficiently reliable, we will calculate its
mean time between failures (MTBF).  All information on component reliability was obtained
through internal BNR component testing.

Component Quantity Unit Cost ($) Extended ($)

key search board 12 1725___ 20700__

controller board 1 500___ 500__

power supply 4 300___ 1200__

mechanical structure, board interconnections, testing 1000___ 1000__

Total Shelf Cost $ 23400__

Component Quantity Unit Cost ($) Extended ($)

key search shelf 4 23400__ 93600__

mechanical structure, fans, testing 4000__ 4000__

PC 1 2000__ 2000__

Total Frame Cost $ 99600__
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The typical failure rate of chips designed in the CMOS process used for the key search chip is
10 FITs.1  The actual failure rate for the key search chip may be somewhat less because it is small
and contains no analog circuitry, but we will use a failure rate of 10 FITs.  The total failure rate for
a key search board is shown in the following table.

A key search shelf consists of 12 key search boards, a controller board and four power supplies.
The controller board and power supplies each contain fewer components than a key search board,
and so we will estimate their failure rates at 1000 FITs.  The total failure rate for a shelf is shown
in the following table.

A key search frame consists of four shelves and a PC.  We will estimate a PC’s failure rate at
5000 FITs.  The total failure rate for a frame is shown in the following table.

1 FIT is short for Failure unIT.  One FIT is equal to one failure in 109 hours.

Component Quantity Unit Reliability (FITs) Total Reliability (FITs)

key search chip 120 10 1200_______

MC68HC705C8 13 20 260_______

50 MHz oscillator 1 3 3_______

clock driver 5 10 50_______

74HC191 1 4 4_______

74HC244 1 4 4_______

fuse 1 3 3_______

decoupling capacitors 400 0.1 40_______

board 1 100 100_______

Total Board Failure Rate 1664_______

Component Quantity Unit Reliability (FITs) Total Reliability (FITs)

key search board 12 1664 19968_______

controller board 1 1000 1000_______

power supply 4 1000 4000_______

board interconnections 1 100 100_______

Total Shelf Failure Rate 25068_______

Component Quantity Unit Reliability (FITs) Total Reliability (FITs)

key search shelf 4 25068 100272_______

PC 1 5000 5000_______

Total Frame Failure Rate 105272_______
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The failure rate for a frame is one failure every 9500 hours.  For a machine consisting of n frames,
the MTBF is 9500/n hours.  In particular, a $1 million machine consisting of 10 frames would
have an MTBF of 950 hours or about 40 days.  The expected time to find a DES key using n
frames is 35/n hours.  Therefore, we expect one failure every 270 keys found regardless of the
machine’s size.  This failure rate is much lower than is necessary to get useful key search results.

Appendix E: Support for 1-bit and 8-bit Cipher Feedback

The most popular modes of DES which are not handled by the key search chip design in
Appendix A are the 1-bit and 8-bit cipher feedback (CFB) modes.  A number of changes to the
basic chip design would have to be made in order to support these modes.  For the following
discussion it will be useful to refer to Figure A.1.

From the external microcontroller’s point of view, the main changes would be that it would have
to specify which mode to use (ECB, 1-bit CFB, or 8-bit CFB), and for the CFB modes the
microcontroller would have to specify the initialization vector (IV) value which immediately
preceded the encryption of the known plaintext.  We will assume that there are still 64 consecutive
bits of known plaintext and ciphertext that are supplied to the key search chip.  Within the chip,
additional registers are needed to hold the mode and IV, and additional write logic is required in
the external_interface.

The strategy for the CFB modes is to begin by taking each key and performing the encryption for
the first bit or byte of plaintext.  If there is no match with the corresponding bit or byte of
ciphertext, then go on to the next key.  If there is a match, then the key_counter must be stopped
for one clock tick, the key from the bottom of the DES pipeline must be inserted into the top of
the pipeline, and the next IV for CFB must be computed and fed into the plaintext input at the top
of the DES pipeline.  To keep track of the number of matches there have been for each key, we
need an extra 6 flip-flops in each stage of the pipeline.  Not until there has been a full 64 bits of
matching with the ciphertext register will a key be declared found and stored in the output_key
register.

We will require multiplexors at the inputs to the DES pipeline to choose between a new key and
continuing with an old key.  This adds too much delay to the first pipeline stage making it
necessary to add an additional pipeline register at the beginning of the DES pipeline.

All of this additional circuitry enlarges the key search chip by 2000 gates.  This increases the
chip’s cost from $10.50 to $12, which increases the cost of a key search frame to $108 240.
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