00001
00002
00003 #include "pch.h"
00004 #include "luc.h"
00005 #include "asn.h"
00006 #include "nbtheory.h"
00007 #include "sha.h"
00008 #include "algparam.h"
00009
00010 NAMESPACE_BEGIN(CryptoPP)
00011
00012 void LUC_TestInstantiations()
00013 {
00014 LUC_HMP<SHA>::Signer t1;
00015 LUCFunction t2;
00016 InvertibleLUCFunction t3;
00017 }
00018
00019 bool DL_Algorithm_LUC_HMP::Sign(const DL_GroupParameters<Integer> ¶ms, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
00020 {
00021 const Integer &q = params.GetSubgroupOrder();
00022 r = params.ExponentiateBase(k);
00023 s = (k + x*(r+e)) % q;
00024 return true;
00025 }
00026
00027 bool DL_Algorithm_LUC_HMP::Verify(const DL_GroupParameters<Integer> ¶ms, const DL_PublicKey<Integer> &publicKey, const Integer &e, const Integer &r, const Integer &s) const
00028 {
00029 Integer p = params.GetGroupOrder()-1;
00030 const Integer &q = params.GetSubgroupOrder();
00031
00032 Integer Vsg = params.ExponentiateBase(s);
00033 Integer Vry = publicKey.ExponentiatePublicElement((r+e)%q);
00034 return (Vsg*Vsg + Vry*Vry + r*r) % p == (Vsg * Vry * r + 4) % p;
00035 }
00036
00037 Integer DL_BasePrecomputation_LUC::Exponentiate(const DL_GroupPrecomputation<Element> &group, const Integer &exponent) const
00038 {
00039 return Lucas(exponent, m_g, static_cast<const DL_GroupPrecomputation_LUC &>(group).GetModulus());
00040 }
00041
00042 void DL_GroupParameters_LUC::SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const
00043 {
00044 for (unsigned int i=0; i<exponentsCount; i++)
00045 results[i] = Lucas(exponents[i], base, GetModulus());
00046 }
00047
00048 void LUCFunction::BERDecode(BufferedTransformation &bt)
00049 {
00050 BERSequenceDecoder seq(bt);
00051 m_n.BERDecode(seq);
00052 m_e.BERDecode(seq);
00053 seq.MessageEnd();
00054 }
00055
00056 void LUCFunction::DEREncode(BufferedTransformation &bt) const
00057 {
00058 DERSequenceEncoder seq(bt);
00059 m_n.DEREncode(seq);
00060 m_e.DEREncode(seq);
00061 seq.MessageEnd();
00062 }
00063
00064 Integer LUCFunction::ApplyFunction(const Integer &x) const
00065 {
00066 DoQuickSanityCheck();
00067 return Lucas(m_e, x, m_n);
00068 }
00069
00070 bool LUCFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
00071 {
00072 bool pass = true;
00073 pass = pass && m_n > Integer::One() && m_n.IsOdd();
00074 pass = pass && m_e > Integer::One() && m_e.IsOdd() && m_e < m_n;
00075 return pass;
00076 }
00077
00078 bool LUCFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
00079 {
00080 return GetValueHelper(this, name, valueType, pValue).Assignable()
00081 CRYPTOPP_GET_FUNCTION_ENTRY(Modulus)
00082 CRYPTOPP_GET_FUNCTION_ENTRY(PublicExponent)
00083 ;
00084 }
00085
00086 void LUCFunction::AssignFrom(const NameValuePairs &source)
00087 {
00088 AssignFromHelper(this, source)
00089 CRYPTOPP_SET_FUNCTION_ENTRY(Modulus)
00090 CRYPTOPP_SET_FUNCTION_ENTRY(PublicExponent)
00091 ;
00092 }
00093
00094
00095
00096
00097 class LUCPrimeSelector : public PrimeSelector
00098 {
00099 public:
00100 LUCPrimeSelector(const Integer &e) : m_e(e) {}
00101 bool IsAcceptable(const Integer &candidate) const
00102 {
00103 return RelativelyPrime(m_e, candidate+1) && RelativelyPrime(m_e, candidate-1);
00104 }
00105 Integer m_e;
00106 };
00107
00108 void InvertibleLUCFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
00109 {
00110 int modulusSize = 2048;
00111 alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize);
00112
00113 if (modulusSize < 16)
00114 throw InvalidArgument("InvertibleLUCFunction: specified modulus size is too small");
00115
00116 m_e = alg.GetValueWithDefault("PublicExponent", Integer(17));
00117
00118 if (m_e < 5 || m_e.IsEven())
00119 throw InvalidArgument("InvertibleLUCFunction: invalid public exponent");
00120
00121 LUCPrimeSelector selector(m_e);
00122 const NameValuePairs &primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize)
00123 ("PointerToPrimeSelector", selector.GetSelectorPointer());
00124 m_p.GenerateRandom(rng, primeParam);
00125 m_q.GenerateRandom(rng, primeParam);
00126
00127 m_n = m_p * m_q;
00128 m_u = m_q.InverseMod(m_p);
00129 }
00130
00131 void InvertibleLUCFunction::Initialize(RandomNumberGenerator &rng, unsigned int keybits, const Integer &e)
00132 {
00133 GenerateRandom(rng, MakeParameters("ModulusSize", (int)keybits)("PublicExponent", e));
00134 }
00135
00136 void InvertibleLUCFunction::BERDecode(BufferedTransformation &bt)
00137 {
00138 BERSequenceDecoder seq(bt);
00139
00140 Integer version(seq);
00141 if (!!version)
00142 BERDecodeError();
00143
00144 m_n.BERDecode(seq);
00145 m_e.BERDecode(seq);
00146 m_p.BERDecode(seq);
00147 m_q.BERDecode(seq);
00148 m_u.BERDecode(seq);
00149 seq.MessageEnd();
00150 }
00151
00152 void InvertibleLUCFunction::DEREncode(BufferedTransformation &bt) const
00153 {
00154 DERSequenceEncoder seq(bt);
00155
00156 const byte version[] = {INTEGER, 1, 0};
00157 seq.Put(version, sizeof(version));
00158 m_n.DEREncode(seq);
00159 m_e.DEREncode(seq);
00160 m_p.DEREncode(seq);
00161 m_q.DEREncode(seq);
00162 m_u.DEREncode(seq);
00163 seq.MessageEnd();
00164 }
00165
00166 Integer InvertibleLUCFunction::CalculateInverse(const Integer &x) const
00167 {
00168 DoQuickSanityCheck();
00169 return InverseLucas(m_e, x, m_q, m_p, m_u);
00170 }
00171
00172 bool InvertibleLUCFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
00173 {
00174 bool pass = LUCFunction::Validate(rng, level);
00175 pass = pass && m_p > Integer::One() && m_p.IsOdd() && m_p < m_n;
00176 pass = pass && m_q > Integer::One() && m_q.IsOdd() && m_q < m_n;
00177 pass = pass && m_u.IsPositive() && m_u < m_p;
00178 if (level >= 1)
00179 {
00180 pass = pass && m_p * m_q == m_n;
00181 pass = pass && RelativelyPrime(m_e, m_p+1);
00182 pass = pass && RelativelyPrime(m_e, m_p-1);
00183 pass = pass && RelativelyPrime(m_e, m_q+1);
00184 pass = pass && RelativelyPrime(m_e, m_q-1);
00185 pass = pass && m_u * m_q % m_p == 1;
00186 }
00187 if (level >= 2)
00188 pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2);
00189 return pass;
00190 }
00191
00192 bool InvertibleLUCFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
00193 {
00194 return GetValueHelper<LUCFunction>(this, name, valueType, pValue).Assignable()
00195 CRYPTOPP_GET_FUNCTION_ENTRY(Prime1)
00196 CRYPTOPP_GET_FUNCTION_ENTRY(Prime2)
00197 CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
00198 ;
00199 }
00200
00201 void InvertibleLUCFunction::AssignFrom(const NameValuePairs &source)
00202 {
00203 AssignFromHelper<LUCFunction>(this, source)
00204 CRYPTOPP_SET_FUNCTION_ENTRY(Prime1)
00205 CRYPTOPP_SET_FUNCTION_ENTRY(Prime2)
00206 CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
00207 ;
00208 }
00209
00210 NAMESPACE_END