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Abstract. In this paper we present a new 128-bit block cipher called

Square. The original design of Square concentrates on the resistance

against di�erential and linear cryptanalysis. However, after the initial

design a dedicated attack was mounted that forced us to augment the

number of rounds. The goal of this paper is the publication of the result-

ing cipher for public scrutiny. A C implementation of Square is available

that runs at 2.63 MByte/s on a 100 MHz Pentium. Our M68HC05 Smart

Card implementation �ts in 547 bytes and takes less than 2 msec. (4 MHz

Clock). The high degree of parallellism allows hardware implementations

in the Gbit/s range today.

1 Introduction

In this paper, we propose the block cipher Square. It has a block length and

key length of 128 bits. However, its modular design approach allows extensions

to higher block lengths in a straightforward way. The cipher has a new self-

reciprocal structure, similar to that of Threeway and SHARK [2, 15].

The structure of the cipher, i.e., the types of building blocks and their in-

teraction, has been carefully chosen to allow very e�cient implementations on

a wide range of processors. The speci�c choice of the building blocks them-

selves has been led by the resistance of the cipher against di�erential and linear

cryptanalysis. After treating the structure of the cipher and its consequences for

implementations, we explain the strategies followed to thwart linear and di�er-

ential cryptanalysis. This is followed by a description of an e�cient attack that

exploits the particular properties of the cipher structure.

We do not encourage anyone to use Square today in any sensitive appli-

cation. Clearly, con�dence in the security of any cryptographic design must

be based on the resistance against e�ective cryptanalysis after intense public

scrutiny.

?
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A reference implementation of Square is available from the following URL:

http://www.esat.kuleuven.ac.be/�rijmen/square.

2 Structure of Square

Square is an iterated block cipher with a block length and a key length of 128

bits each. The round transformation of Square is composed of four distinct

transformations. It is however important to note that these four building blocks

can be e�ciently combined in a single set of table-lookups and exor operations.

This will be treated later in the section on implementation aspects.

The basic building blocks of the cipher are �ve di�erent invertible transfor-

mations that operate on a 4� 4 array of bytes. The element of a state a in row

i and column j is speci�ed as a
i;j

. Both indexes start from 0.

2.1 A Linear Transformation �

� is a linear operation that operates separately on each of the four rows of a

state. We have

� : b = �(a), b
i;j

= c
j

a
i;0 � c

j�1ai;1 � c
j�2ai;2 � c

j�3ai;3;

where the multiplication is in GF(2

8
) and the indices of c must be taken mod-

ulo 4. Note that the �eld GF(2

n

) has characteristic 2 [9]. This means that the

addition in the �eld corresponds to the bitwise exor.

The rows of a state can be denoted by polynomials, i.e., the polynomial

corresponding to row i of a state a is given by

a
i

(x) = a
i;0 � a

i;1x� a
i;2x

2
a
i;3x

3
:

Using this notation, and de�ning c(x) =

L
j

c
j

x

j

we can describe � as a modular

polynomial multiplication:

b = �(a), b
i

(x) = c(x)a
i

(x) mod 1� x

4
for 0 � i < 4:

The inverse of � corresponds to a polynomial d(x) given by

d(x)c(x) = 1 (mod 1� x

4
):

2.2 A Nonlinear Transformation 



 is a nonlinear byte substitution, identical for all bytes. We have


 : b = 
(a), b
i;j

= S



(a
i;j

);

with S



an invertible 8-bit substitution table or S-box. The inverse of 
 consists

of the application of the inverse substitution S

�1



to all bytes of a state.
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2.3 A Byte Permutation �

The e�ect of � is the interchanging of rows and columns of a state. We have

� : b = �(a), b
i;j

= a
j;i

:

� is an involution, hence �

�1
= �.

2.4 Bitwise Round Key Addition �

�[k

t

] consists of the bitwise addition of a round key k

t

. We have

�[k

t

] : b = �[k

t

](a), b = a� k

t

:

The inverse of �[k

t

] is �[k

t

] itself.

2.5 The Round Key Evolution  

The round keys k

t

are derived from the cipher key K in the following way. k

0

equals the cipher key K. The other round keys are derived iteratively by means

of the invertible a�ne transformation  .

 : k

t

=  (k

t�1
)

2.6 The Cipher Square

The building blocks are composed into the round transformation denoted by

�[k

t

]:

�[k

t

] = �[k

t

] � � � 
 � � (1)

Square is de�ned as eight rounds preceeded by a key addition �[k

0
] and by

�

�1
:

Square[k] = �[k

8
]��[k7]��[k6]��[k5]��[k4]��[k3]��[k2]��[k1]��[k0]���1 (2)

2.7 The Inverse Cipher

As will be shown in Section 9, the structure of Square lends itself to e�cient

implementations. For a number of modes of operation it is important that this

is also the case for the inverse cipher. Therefore, Square has been designed in

such a way that the structure of its inverse is equal to that of the cipher itself,

with the exception of the key schedule. Note that this identity in structure di�ers

from the identity of components and structure in IDEA [10].

From (2) it can be seen that

Square

�1
[k] = � � ��1[k0]� ��1[k1] � ��1[k2] � ��1[k3] � ��1[k4] �

�

�1
[k

5
] � ��1[k6] � ��1[k7] � ��1[k8]
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a S[a] S[�] S[�] S[�]

S[�] S[�] S[�] S[�]

S[�] S[�] S[�] S[�]

S[�] S[�] S[�] S[�]

-

-

-

-

�

a b c d a

b

c

d

-

�

Fig. 1. Geometrical representation of the basic operations of Square. � consists of

4 parallel linear di�usion mappings. 
 consists of 16 separate substitutions. � is a

transposition.
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with

�

�1
[k

t

] = �

�1 � 
�1 � ��1 � ��1[kt] = �

�1 � 
�1 � � � �[kt] (3)

It may seem that the structure of the inverse cipher di�ers substantially from

that of the cipher itself. By exploiting some algebraic properties of the building

blocks, we can show this not to be the case. Since � only transposes the bytes

a
i;j

and 
 only operates on the individual bytes, independent of their position

(i; j), we have




�1 � � = � � 
�1:

Moreover, since �

�1
(a)� k

t

= �

�1
(a+ �(k

t

)), we have

�[k

t

] � ��1 = �

�1 � �[�(kt)];

We now de�ne the round transformation of the inverse cipher as

�

0
[k

t

] = �[k

t

] � � � 
�1 � ��1; (4)

which has the same structure as � itself, except that 
 and � are replaced by




�1
and �

�1
respectively. Using the algebraic properties above, we can derive

� � �[k0] � ��1[k1] = � � �[k0] � ��1 � 
�1 � � � �[k1]

= � � ��1 � �[�(k0)] � � � 
�1 � �[k1]

= �[�(k

0
)] � � � 
�1 � �[k1]

= �[�(k

0
)] � � � 
�1 � �[k1] � ��1 � �

= �[�(k

0
)] � � � 
�1 � ��1 � �[�(k1)] � �

= �

0
[�(k

0
)] � �[�(k1)] � �

This equation can be generalized in a straightforward way to include more than

one round. Now, with �

t

= �(k

8�t
), we have

Square

�1
=

�

0
[�

8
] � �0[�7] � �0[�6] � �0[�5] � �0[�4] � �0[�3] � �0[�2] � �0[�1] � �[�0] � �

Hence the inverse cipher is equal to the cipher itself with 
 replaced by 


�1
,

with � by �

�1
and di�erent round key values.

2.8 First round

The �

�1
before �[k

0
] in Square can be incorporated in the �rst round. We have

�[k

1
] � �[k0] � ��1 = �[k

1
] � � � 
 � � � �[k0] � ��1

= �[k

1
] � � � 
 � �[�(k0)]

Hence the initial �

�1
can be discarded by omitting � in the �rst round and

applying �(k

0
) instead of k

0
. The same simpli�cation can be applied to the

inverse cipher.
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3 Linear and Di�erential Cryptanalysis

The resistance against linear cryptanalysis [12] and di�erential cryptanalysis [1]

has been the rationale behind the criteria by which the S



substitution and the

� multiplication polynomial c(x) have been chosen.

A di�erence propagation along the rounds of an iterated block cipher is gen-

erally called a di�erential characteristic. A characteristic is speci�ed by a series

of di�erence patterns. The probability associated with a characteristic is the

probability that all intermediate di�erence patterns have the value speci�ed in

the above series. We call a di�erential characteristic a di�erential trail. The prob-

ability associated with a di�erential trail can be approximated by the product

of the di�erence propagations between every pair of subsequent rounds (which

can be easily calculated). The probability that a given di�erence pattern a

0
at

the input of a number of cipher rounds gives rise to a di�erence pattern b

0
at the

output is equal to the sum of the probabilities of all di�erential trails starting

with a

0
and ending with b

0
. In general the propagation from the input di�erence

pattern a

0
to the output di�erence pattern b

0
is called a di�erential.

As can be seen in [12] the correlation between a linear combination of input

bits and a linear combination of output bits of an iterated block cipher can be

treated in an analogous but slightly di�erent way. A linear trail is speci�ed by

a series of selection patterns. For a given cipher key, the correlation coe�cient

(positive or negative) corresponding to a linear trail consists of the product

of the correlation coe�cients between the linear combinations of bits of every

pair of subsequent rounds. In [2] it was shown that the correlation between a

linear combination of input bits, denoted by selection pattern u, and a linear

combination of output bits, denoted by v is equal to the sum of the correlation

coe�cients of all linear trails starting with u and ending in v. It must be remarked

that the correlation coe�cients may be positive or negative and that the sign

depends on the value of round key bits.

S



and c(x) are chosen to minimize the maximum probability of di�erential

trails and the maximum correlation of linear trails over four rounds. This is

obtained in the framework of a very speci�c approach.

3.1 Wide Trail Design Strategy

In [2] the `wide trail design strategy' was introduced as a means to guarantee

low maximum probability of multiple-round di�erential trails and low maximum

correlation of multiple-round linear trails. In this strategy the round transfor-

mation is composed of a number of uniform transformations, that are split in

the nonlinear blockwise substitution (corresponding to our 
) and the compo-

sition of the linear transformations (corresponding to our � � �). The round

key addition does not play a role in the strategy. It was shown in [2] that the

probability of a di�erential trail is the product of the input-output di�erence

propagation probabilities of the S-boxes with nonzero input di�erence (`active

S-boxes'). The correlation of a linear trail is the product of the input-output
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correlations of the S-boxes with nonzero output selection patterns (`active S-

boxes'). The two mechanisms for eliminating high-probability di�erential trails

and high-correlation linear trails are the following:

{ Choose an S-box where the maximum di�erence propagation probability and

the maximum input-output correlation are as small as possible.

{ Choose the linear part in such a way that there are no trails with few active

S-boxes.

The �rst mechanism gives us two clear criteria for the selection of the S



. The

second mechanism gives a hint on how to select the multiplication polynomial

c(x). In the following section we will focus on the linear part � � �.

4 The Multiplication Polynomial c(x)

The transformation � treats the di�erent rows of a state a completely separately

and in the same way. We will now study the di�erence propagation and correla-

tion properties of �, concentrating on a single row. Assume an input di�erence

speci�ed by a

0
(x) = a(x) � a

�
(x). The output di�erence will be given by

b

0
(x) = c(x)a(x) � c(x)a

�
(x) mod 1� x

4
= c(x)a

0
(x) mod 1� x

4
:

On the other hand, a linear combination of output bits, speci�ed by the selection

polynomial u(x) is equal to (i.e., correlated to, with correlation coe�cient 1) a

linear combination of input bits, speci�ed by the following selection polynomial

[2]:

v(x) = c(x

�1
)u(x) mod 1 + x

4
:

It is intuitively clear that both linear and di�erential trails would bene�t from a

multiplication polynomial that could limit the number of nonzero terms in input

and output di�erence (and selection) polynomials. This is exactly what we want

to avoid by choosing a polynomial with a high di�usion power, expressed by the

so-called branch number.

Let w
h

(a) denote the Hamming weight of a vector, i.e., the number of nonzero

components in that vector. Applied to a state a, a di�erence pattern a

0
or a

selection pattern u, this corresponds to the number of non-zero bytes. In [2] the

branch number B of an invertible linear mapping was introduced as

B(�) = min

a6=0
(w

h

(a) + w
h

(�(a))) :

This implies that the sum of the Hamming weights of a pair of input and output

di�erence patterns (or selection patterns) to � is at least B. It can easily be shown
that B is a lower bound for the number of active S-boxes in two consecutive

rounds of a linear or di�erential trail. Since � operates on each row separately,

we can have B = 5 at most.

In [15] it was shown how a linear mapping over GF(2

m

)

n

with optimal B
(B = n+ 1) can be constructed from a maximum distance separable code. The
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MDS-code used is a Reed-Solomon code over GF(2

m

): if G
e

= [I
n�nBn�n] is

the echelon form of the generation matrix of and (2n; n; n + 1)-RS-code, then

� : X 7! Y = B �X de�nes a linear mapping with optimal branch number.

The polynomial multiplication with c(x) corresponds to a special subset of

the MDS-codes, having the additional property that B is a circulant matrix.

A circulant matrix is a matrix where every row consists of the same elements,

shifted over one position, or b
i;j

= b0;j�i mod n

. This property is exploited in

section 9.2 to produce a memory-e�cient implementation of the cipher. In [11]

we �nd the following theorem:

Theorem1. An (n; k; d)-code C with generator matrix G = [IB] is MDS i�

every square submatrix of B is nonsingular.

In a matrix with elements from GF(2

m

) every determinant has a probability of

2

�m
to evaluate to zero. For increasing size of the matrix the number of deter-

minants increases exponentially, making it infeasible to search randomly for an

MDS-code. However, in a circulant matrix the number of distinct determinants

is only a fraction of the number for arbitrary matrices (cf. Table 1). By impos-

ing the extra constraint that the matrix should be a circulant, we increase the

probability to �nd an MDS-code by random search.

n generic circulant n generic circulant

1 1 1 5 252 41

2 5 3 6 924 111

3 20 7 7 3431 309

4 70 17 8 12869 935

Table 1. The number of square submatrices in a generic matrix of order n, and the

number of non-equivalent determinants in a circulant matrix of the same order. The

numbers of the last column were obtained by an exhaustive computer search.

c(x) corresponds to a 4 � 4 matrix, hence if we choose it randomly, the

probability that it has B = 5 can be approximated by (1� 1
256 )

17 � 0:93. This

gives us a high degree of freedom in the choice of c(x). We choose

c(x) = 2x � 1x � x� 1x � x
2 � 3x � x

3
:

This determines d(x) uniquely.

d(x) = Ex � 9x � x� Dx � x
2 � Bx � x

3

4.1 Motivation for the Choice of �

Since the branch number of c(x) is 5, the number of active S-boxes in a two-

round trail is at least 5. The e�ect of �, interchanging rows and columns, has

8



the e�ect that any trail over four consecutive rounds will have at least 25 active

S-boxes. A simple and clear proof of this is available and will be published in a

more theoretical paper that is being written [3] .

5 The Nonlinear Substitution 


As explained above, the relevant criteria imposed upon the 
 S-box are the

highest (in absolute value) occurring correlation between any pair of linear com-

bination of input bits and linear combinations of output bits (denoted by �)

and the highest occurring probability corresponding to any pair of input di�er-

ence and output di�erence pattern. This corresponds to the highest value in the

so-called exor table of the 
 S-box, de�ned as

E
ij

= #fxjS(x) � S(x� i) = jg :

We de�ne � = max
i;j

fE
ij

g � 2�8.

We present three alternative choices for the S-box: explicitly constructed

nonlinear algebraic transformations, slightly modi�ed versions of the latter and

randomly selected invertible mappings.

5.1 Explicit Construction

In [13] a method is given to construct m-bit S-boxes with 
 = 2

1�m=2
and

� = 2

2�m
, the theoretically minimum possible values. From the proposals in [13]

we select the mapping x 7! x

�1
over GF(2

8
), with � = 2

�6
and � = 2

�3
.

The problem with this choice is that the mapping has a very simple descrip-

tion in GF(2

8
). The other components of the round transformation also have a

simple description in GF(2

8
). This may enable cryptanalytic attacks based on

the algebraic manipulation of equations to derive key information [4].

Note that anym-bit mapping can be represented as a polynomial or a rational

form in GF(2

m

). It is however unlikely that this representation can be exploited

in cryptanalysis if the polynomial or rational form is of no special, relatively

simple, form.

The feasibility of algebraic manipulation can be severely diminished. The ele-

ments of GF(2

8
) can be represented with respect to di�erent bases. By choosing

a di�erent basis for the de�nition of � and 
 we can prevent that the round

transformation has a simple description in any basis of GF(2

8
).

Still, even speci�ed in another basis, the chosen nonlinear mapping stays an

involution and has two �xed points: 0 and 1. By applying an a�ne transformation

on the individual bits of the output these properties can be removed and a simple

algebraic expression of the round transformation in any basis of GF(2

8
) can be

prevented.
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5.2 Modi�cations

Another method to prevent a simple algebraic description is by choosing a map-

ping according to the method explained in the previous subsection and subse-

quently modifying it slightly to destroy the exploitable algebraic structure. It will

be seen that the disadvantage of this approach is that � and/or � will increase.

We conducted some experiments starting from the mapping multiplicative

inverse in GF(2

8
) as proposed above (� = 2

�6
and � = 8� 2

�6
) and we applied

a small number of modi�cations.

When we consider the mapping as a look-up table and investigate all variants

that have a pair of entries swapped, an increase is observed of � to 6 �2�8 and/or
� to 9� 2

�6
. We also tested 300 000 variants in which four or eight entries were

swapped. Swapping four entries increases � to 9 � 2

�6
, swapping eight entries

increases � to 10� 2

�6
and � to 6 � 2�8.

5.3 Random Search

Algebraically constructed permutations always exhibit some structure that may

be exploited in attacks in unanticipated ways, designers often resort to random

substitutions: a substitution is selected from a set of substitutions that are gen-

erated by the use of a random source and evaluated with respect to (presumably)

relevant nonlinearity criteria. In [14] the average di�erential properties of per-

mutations are investigated and a bound for the expected value of � is given. For

an m-bit permutation

lim

m!1

E[�2

m

]

2m

� 1 :

We veri�ed this experimentally for 1.5 million samples with m = 8 and

measured at the same time � and �. The results are given in table 2. The S-boxes

with the highest resistance against both linear and di�erential cryptanalysis,

have � = 10 � 2�8 and � = 15 � 2�6.

� �

8 � 2
�8

10 � 2
�8

12 � 2
�8

14 � 2
�8

16 � 2
�8

18 � 2
�8

20 � 2
�8

15� 2

�6
0 0.07 0.07 0.006 0.0001 0 0

16� 2

�6
0.0003 4.77 5.58 0.58 0.04 0.002 0

17� 2

�6
0.002 15.63 20.55 2.24 0.15 0.007 0.0004

18� 2

�6
0.0002 12.21 17.17 1.96 0.13 0.007 0.0005

19� 2

�6
0.0004 4.91 7.31 0.87 0.05 0.003 0

20� 2

�6
0 1.52 2.34 0.28 0.02 0.001 0

21� 2

�6
0 0.41 0.64 0.08 0.004 0.001 0

Table 2. Maximum input-output correlation and di�erence propagation probability of

randomly generated nonlinear permutations. The entries denote the percentage of the

generated mappings that have the indicated � and �.
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5.4 Our Choice

Because of its optimal values for � and �, we have decided to take for S



an

S-box that is constructed by taking the mapping x 7! x

�1
and applying an

a�ne transformation (over GF(2)) to the output bits. This a�ne transformation

has the property that it has a complicated description in GF(2

8
) to thwart

interpolation attacks [4].

Our choices force all four-round di�erential trails to have an associated prob-

ability not higher than 2

�150
, far below the critical noise value of 2

�127
. Equiv-

alently, four-round linear trails have an associated correlation not over 2

�75
, far

below the critical noise value of 2

�64
. Hence, for resistance against conventional

LC and DC six rounds may seem su�cient. However, the speci�c blocked struc-

ture of the cipher allows for more e�cient dedicated di�erential attacks. This

will be explained in the following section.

6 A Dedicated Attack

In this section we describe a dedicated attack that exploits the cipher structure

of Square. The attack is a chosen plaintext attack and is independent of the

speci�c choices of S



, c(x) and the key schedule. It is faster than an exhaustive

key search for Square versions of up to 6 rounds. After describing the basic

attack on 4 rounds, we will show how it can be extended to 5 and 6 rounds.

6.1 Preliminaries

Let a �-set be a set of 256 states that are all di�erent in some of the (16) state

bytes (the active) and all equal in the other state bytes (the passive). Let � be

the set of indices of the active bytes. We have

8x; y 2 � :

�
x
i;j

6= y
i;j

for (i; j) 2 �
x
i;j

= y
i;j

for (i; j) 62 �

In this section we will make use of the geometrical interpretation as presented

in Figure 1. Applying the transformations 
 and �[k

t

] on (the elements of) a

�-set results in a (generally di�erent) �-set with the same �. Applying � results

in a �-set in which the active bytes are transposed by �. Applying � to a �-set

does not necessarily result in a �-set. However, since every output byte of 
 is

a linear combination (with invertible coe�cients) of the four input bytes in the

same row, an input row with a single active byte gives rise to an output row

with only active bytes.

6.2 Four Rounds

Consider a �-set in which only one byte is active. We will now trace the evolution

of the positions of the active bytes through 3 rounds. The 1st round contains no �,

hence there is still only one byte active at the beginning of the 2nd round. � of the

11



2nd round converts this to a complete row of active bytes, that is subsequently

transformed by � to a complete column. � of the 3rd round converts this to a

�-set with only active bytes. This is still the case at the input to the 4th round.

Since the bytes of the outputs of the 3rd round (denoted by a) range over all

possible values and are therefore balanced over the �-set, we haveM
b=�(a);a2�

b
i;j

=

M
a2�

M
k

c
j�kai;k =

M
l

c
l

M
a2�

a
i;l+j =

M
l

c
l

0 = 0:

Hence, the bytes of the output of � of the fourth round are balanced. This

balancedness is in general destroyed by the subsequent application of 
.

An output byte of the 4th round (denoted by a here) can be expressed as a

function of the intermediate state b above

a
i;j

= S



[b
j;i

]� k

4
i;j

:

By assuming a value for k

4
i;j

, the value of b
j;i

for all elements of the �-set can be

calculated from the ciphertexts. If the values of this byte are not balanced over

�, the assumed value for the key byte was wrong. This is expected to eliminate

all but approximately 1 key value. This can be repeated for the other bytes of

k

4
.

We implemented the attack and found that two �-sets of 256 chosen plain-

texts each are su�cient to uniquely determine the cipher key with an overwhelm-

ing probability of success.

6.3 Extension by a Round at the End

If an additional round is added, we have to calculate the above value of b
j;i

from the output of the 5th round instead of the 4th round. This can be done by

additionally assuming a value for a set of 4 bytes of the 5th round key. As in the

case of the 4-round attack, wrong key assumptions are eliminated by verifying

that b
j;i

is not balanced.

In this 5-round attack 2

40
key values must be checked, and this must be re-

peated 4 times. Since by checking a single �-set leaves only 1=256 of the wrong

key assumptions as possible candidates, the cipher key can be found with over-

whelming probability with only 5 �-sets.

6.4 Extension by a Round at the Beginning

The basic idea is to choose a set of plaintexts that results in a �-set at the output

of the 2nd round with a single active S-box. This requires the assumption of

values of four bytes of the round key k

0
.

If the intermediate state after � of the 2nd round has only a single active

byte, this is also the case for the output of the 2nd round. This imposes the

following conditions on a row of four input bytes of � of the second round: one

particular linear combination of these bytes must range over all 256 possible

values (active) while 3 other particular linear combinations must be constant for

12



all 256 states. This imposes identical conditions on the bytes in the same row

in the input to �[k

1
], and consequently on a column of bytes in the input to

� of the 1st round. If the corresponding column of bytes of k

0
is known, these

conditions can be converted to conditions on four plaintext bytes.

Now we consider a set of 2

32
plaintexts, such that the array of bytes in one

column ranges over all possible values and all other bytes are constant.

Now, make an assumption for the value of the 4 bytes of the relevant column

of k

0
. Select from the set of 2

32
available plaintexts, a set of 256 plaintexts that

obey the conditions indicated above. Now the 4-round attack can be performed.

For the given key assumption, the attack can be repeated for a several plaintext

sets. If the byte values of k

5
suggested by these attacks are not consistent, the

initial assumption must have been wrong. A correct assumption for the bytes of

k

0
will result in the swift and consistent recuperation of the last round key.

We implemented this attack where we assumed knowledge of 16 bits of the

�rst-round key. The attack found the other 16 bits of the �rst-round key and

128 bits of the last-round key using only 2 structures of 256 plaintexts for every

key value guessed in the �rst round.

6.5 Complexity of the Attacks

Combining both extensions results in a 6 round attack. Although infeasible with

current technology, this attack is faster than exhaustive key search, and therefore

relevant. We have not found extensions to 7 rounds faster than exhaustive key

search.

We summarize the attacks in Table 3.

Attack #Plaintexts Time Memory

4-round 2

9
2

9
small

5-round type 1 2

11
2

40
small

5-round type 2 2

32
2

40
2

32

6-round 2

32
2

72
2

32

Table 3. Complexities of the attack on SQUARE.

7 Number of Rounds

Due to these attacks we have to increase the number of rounds to at least seven.

As a safety margin, we �xed the number of rounds to eight.

Conservative users are free to increase the number of rounds. This can be

done in a straightforward way and requires no adaptation of the key schedule

whatsoever.
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8 The Key Evolution  

The key schedule speci�es the derivation of the round keys in terms of the cipher

key. Its function is to provide resistance against the following types of attack:

{ Attacks in which part of the cipher key is known to the cryptanalyst, e.g.,

if the cipher is used with a key shorter than 128 bits.

{ Attacks where the key entry to the cipher is known or can be chosen, e.g., if

the cipher is used as the compression function of a hash algorithm [7].

{ Related-key attacks.

Resistance against the �rst type of attack can be improved by a key schedule in

which the round key undergoes a transformation with high di�usion. For a good

scheme, the knowledge of a certain number of bits of one round key �xes very

few bits in other round keys. The other two types of attack exploit regularities in

the structure of the key schedule by locally compensating round key di�erences

[5, 7].

The key schedule also plays an important role in the elimination of symmetry:

{ Symmetry in the round transformation: the round transformation

treats all bytes of a state in very much the same way. This symmetry can be

removed by having round constants in the key schedule.

{ Symmetry between the rounds: the round transformation is the same

for all rounds. This equality can be removed by having round-dependent

round constants in the key schedule.

The key schedule is de�ned in terms of the rows of the key. We can de�ne a

left byte-rotation operation rotl(a
i

) on a row as

rotl[a
i;0ai;1ai;2ai;3] = [a

i;1ai;2ai;3ai;0]

and a right byte rotation rotr(a
i

) as its inverse.

The key schedule iteration transformation k

t+1
=  (k

t

) and its inverse are

de�ned by

k

t+1
0 = k

t

0 � rotl(kt3)� C
t

k

t+1
1 = k

t

1 � k

t+1
0

k

t+1
2 = k

t

2 � k

t+1
1

k

t+1
3 = k

t

3 � k

t+1
2

�

t+1
3 = �

t

3 � �

t

2

�

t+1
2 = �

t

2 � �

t

1

�

t+1
1 = �

t

1 � �

t

0

�

t+1
0 = �

t

0 � rotr(�t3)� C

0
t

The simplicity of the inverse key schedule is thanks to the fact that � and  

commute. The round constants C
t

are also de�ned iteratively. We have C0 = 1x
and C

t

= 2x � Ct�1.

This choice provides high di�usion and removes the regularities in an e�cient

way.
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9 Implementation Aspects

9.1 8-bit Processor

On an 8-bit processor Square can be programmed by simply implementing the

di�erent component transformations. This is straightforward for �, � and  .

The transformation 
 requires a table of 256 bytes. � requires multiplication

in the �eld GF(2

8
). However, the multiplication polynomial has been chosen

to make this very e�cient. We have written a program implementing Square

in Assembler for the Motorola's M68HC05 microprocessor, typical for Smart

Cards. The machine code occupies in total 547 bytes of ROM, needs 36 bytes

of RAM and one execution of Square, including the key schedule, takes about

7500 cycles. This corresponds to less than 2 msec with a 4 MHz Clock.

The inverse cipher however is signi�cantly slower than the forward cipher.

This is caused by the di�erence in complexity between � and �

�1
.

9.2 32-bit Processor

In the implementation of the cipher, the succession of steps

� � �[kt] � � � 
 = �[k

0t
] � � � � � 


with k

0t
= �(k

t

) can be combined in a single set of table lookups. The interme-

diate state can be represented by four 32-bit words, each containing a row [a
i

].

Its transpose is denoted by [a
i

]

T

. For b = �(�(
(a))) + k

0t
we have

[b
i

]

T

=

2
664
c0 c3 c2 c1

c1 c0 c3 c2

c2 c1 c0 c3

c3 c2 c1 c0

3
775 �
2
664
S



[a0;i]

S



[a1;i]

S



[a2;i]

S



[a3;i]

3
775� [k

0t
i

]

T

=

2
664
c0

c1

c2

c3

3
775 � S
 [a0;i]�

2
664
c3

c0

c1

c2

3
775 � S
 [a1;i]�

2
664
c2

c3

c0

c1

3
775 � S
 [a2;i]�

2
664
c1

c2

c3

c0

3
775 � S
 [a3;i]� [k

0t
i

]

T

We de�ne the tables M and T as

M [a] = a �
�
c0 c1 c2 c3

�
T [a] =M [S[a]] :

T and M have 256 entries of four bytes each. The table M implements the

polynomial multiplication. T combines the nonlinear substitution with this mul-

tiplication. Now we have

[b
i

] =

M
j

rotr
j

(T [a
ji

])� [k

0t
i

] :

We conclude that �[�(k

t

i

)] � � � � � 
 can be done with 16 table lookups, 12

rotations and 16 exors of 32-bit words. This implementation needs the table T ,

with 256 entries of four bytes, i.e. one kilobyte in total.
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Last Round It can be seen that in this implementation, � of the last round

is already executed in the previous set of table-lookups. In the last round the

function to be applied is �[k

8
]�� �
. This can be realised by replacing the table

T [x] = M [S[x]] by S[x]. Since c2 = 1x, the unity in GF(2

8
), the entries of the

small table S can be extracted from T , removing the extra storage requirement

for S.

Performance The reference implementation is written in C and runs at 2.63

MByte/s on a 100 MHz Pentium with the Windows95 operating system. The in-

verse cipher can be implemented in exactly the same way as the cipher itself and

has the same performance. The di�erence is in the tables and the precalculation

of the round keys.
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