Information for each entry item is restricted to the designated pages. However, the applicant may decide how much page space to assign for number of the num

Receipt Number

Cryptographic Techniques Overview

1. Name of Cryptographic Technique FEAL-NX				
Categories 1.Asymmetric Cryptographic Schemes Symmetric Ciphers 3.Hush Functions 4.Pseudo-random Number Generators				
Security Functions of Asymmetric Cryptographic Schemes 1.confidentiality 2. Authentication 3. signature 4. key- sharing				
Subcategories of Symmetric Ciphers 1. stream ciphers 2. O-bits block ciphers 3. 128-bits block ciphers				
 2. Cryptographic Techniques Overview 2.1 Design policy Main design Interface and parts Block length 64bits key length 128bits possible S-box based arithmetic operation and logic operation Function of randomization High data randomizing structure Making of Extended key S-box based arithmetic operation and logic operation (2) Security Round number Select N 32 to provide sufficient invulnerability to differential, linear, and impossible differential cryptanalysis F-function High data randomizing structure (3) Implementation Software Well supports 8bit CPU Good for use in current smart cards and portable digital assistants Arithmetic operation Uses 8-bit addition Using RAM/ROM Possible to implement using 8bit CPU operation code Moderate memory requirements to store data and programs 2.2 Intended applications FEAL-NX especially suits implementation on with low-end devices. Its uses include cipher				
FEAL-NX especially suits implementation on with low-end devices. Its uses include cipher communication, entity authentication, and random number generation. Since it requires just a small amount of coding to achieve 8-bit micro processor operation, it is easy to implement on legacy-machines' ROMs. If implemented on smart cards, authentication using symmetric encipherment is possible.				

any individual entry item. Number Park Number Park Number Park Number Park Number 23. Basic theory and techniques [1) Design theory Fvaluation of randomness [1,2] (2) Security evaluation Select N to provide sufficient invulnerability to differential, linear, and impossible differential cr ptanalysis [3,4,5] Results of using Smart card Cipher Easimile ISDN digital telephone Cipher box for personal computer Cipher IsI Cipher device for network use ATM security compatible element (see [9] for specification) References of submission [1] Akhiro Shimizu and Shoji Miyaguchi: "Fast Data Encipherment Algorithm FEAL," In David Chaum and Wyn L. Price, editors, Advances in Cryptology EUROCRYPT87, volume 304 of Lecture Notes in Computer Science, pp. 267-278. Springer-Verlag, Berlin, Heidelberg, New York, 1988. [2] Akhiro Simizu and Shoji Miyaguchi: "Fast encipherment algorithm FEAL," In David Chaum and Information Science, and Statumentals of Electronics, Communications and Computer Sciences Japan, Vol. FD-1, No. 7, pp. 141-1423, July 1987, (in Japanese) [3] Kazumaro Aoki, Aunio Kobayashi, and Shiho Moriai. The best differential characteristic search of FEAL, No. 1, pp. 98-104, 1998. (Japanese preliminary version was presented at ISEC96-31). [4] Kazumaro Aoki, and Sofi Miyaguchi: Testat encipherment adgorithm Eos Algorithm Cryptography and Informa	Information for each entry item is restricted to the designated pages. However, the applicant may decide how much page space to assign for	Receipt		
 2.3 Basic theory and techniques Design theory Evaluation of randomness [1,2] Security evaluation Select N to provide sufficient invulnerability to differential, linear, and impossible differential cr ptanalysis [3,45] Results of using Smart card Cipher board for personal computer Cipher boar for personal computer Cipher LSI Cipher LSI Cipher LSI Cipher LSI Simizu and Shoji Miyaguchi: "Fast Data Encipherment Algorithm FEAL," In David Chaum and Wyn L. Price, editors, Advances in Cryptology EUROCRYPT87, volume 304 of Lecture Notes in Computer Science, pp. 267-278. Springer-Verlag, Berlin, Heidelberg, New York, 1988. [2] Aktino Sinizu and Shoji Miyaguchi: "Fast Data Encipherment algorithm FEAL," In David Chaum and Wyn L. Price, editors, Advances in Cryptology EUROCRYPT87, volume 304 of Lecture Notes in Computer Science, pp. 267-278. Springer-Verlag, Berlin, Heidelberg, New York, 1988. [2] Aktino Sinizu and Shoji Miyaguchi: "Fast encipherment algorithm FEAL," In David Chaum and Wyn L. Price, editors, Advances in Cryptology EUROCRYPT87, volume 304 of Lecture Notes in Computer Science, pp. 267-278. Springer-Verlag, Berlin, Heidelberg, New York, 1988. [3] Kazumaro Aoki, Kunio Kobayashi, and Shiho Moriai. The best differential characteristic scarch of FEAL. EleCE Fransactions Fundamentals of Electronics, Communications and Computer Sciences Japan, Vol. E81-A, No. 1, pp. 98-104, 1998. (Japanese). [5] Shiho Moriai, Kazumaro Aoki, and SLIYO MAZUMOTOS, Matagumano Cryptography and Information Security, number T4-1.3 in SCIS'99, International Conference Center Kobe, Kobe, Japan, 1999. Technical Group on Information Security (BECE). (in Japanese). <	anv individual entry item.	Number		
 Smart card Cipher facsimile ISDN digital telephone Cipher board for personal computer Cipher box for personal computer Cipher LSI Cipher LSI Cipher device for network use ATM security compatible element (see [9] for specification) References of submission [1] Akihiro Shimizu and Shoji Miyaguchi: "Fast Data Encipherment Algorithm FEAL," In David Chaum and Wyn L. Price, editors, Advances in Cryptology EUROCRYPT87, volume 304 of Lecture Notes in Computer Science, pp. 267-278, Springer-Verlag, Berlin, Heidelberg, New York, 1988. [2] Akihiro Simizu and Shoji Miyaguchi: "Fast encipherment algorithm FEAL," IEICE paper , Vol. J70-D, No. 7, pp. 1413-1423, July 1987, (in Japanese) [3] Kazumaro Aoki, Kunio Kobayashi, and Shiho Moriai. The best differential characteristic search of FEAL. [1] EICE Transactions Fundamentals of Electronics, Communications and Computer Sciences Japan, Vol. E81-A, No. 1, pp. 98-104, 1998. (Japanese preliminary version was presented at ISEC96-31). [4] Kazumaro Aoki, Kun cryptanalysis with impossible differentials. In 1999 Symposium on Cryptography and Information Security (IEICE), (in Japanese). [5] Shiho Moriai, Kazumaro Aoki, and Kazuo Ohta. The best linear expression search of FEAL. IEICE Transactions Fundamentals of Electronics, Communications and Computer Sciences (Japan), Vol.E79-A, No.1, pp.2–11, 1996 (The extended abstract was presented at CRYPT095). [6] Shoij Miyaguchi, Hikaru Morita, and Atsushi Fujioka: "FEAL encipherment and its application", IEICE , the symposium of security and reliability about communication network for information society, pp.29-34, Aug. 1991. (in Japanese) [7] Hikaru Morita and Shoji Miyaguchi: "FEAL-LSI and its Application," NTT R&D, Vol. 40, No. 10, pp. 377-171.380, Oct. 1991. (in Japanese). [8] Hikaru Morita and Shoji Miyaguchi: "FEAL-LSI and its Application," NTT Review, Vol. 3	 2.3 Basic theory and techniques (1) Design theory Evaluation of randomness [1,2] (2) Security evaluation Select N to provide sufficient invulnerability to differential, 1 ptanalysis [3,4,5] 	linear, and	impossible differential cr	
 References of submission [1] Akihiro Shimizu and Shoji Miyaguchi: "Fast Data Encipherment Algorithm FEAL," In David Chaum and Wyn L. Price, editors, Advances in Cryptology EUROCRYPT'87, volume 304 of Lecture Notes in Computer Science, pp. 267-278. Springer-Verlag, Berlin, Heidelberg, New York, 1988. [2] Akihiro Simizu and Shoji Miyaguchi: "Fast encipherment algorithm FEAL," IEICE paper , Vol. J70-D, No. 7, pp. 1413-1423, July 1987.(in Japanese) [3] Kazumaro Aoki, Kunio Kobayashi, and Shiho Moriai. The best differential characteristic search of FEAL. IEICE Transactions Fundamentals of Electronics, Communications and Computer Sciences Japan, Vol. E81-A, No. 1, pp. 98104, 1998. (Japanese preliminary version was presented at ISEC96-31). [4] Kazumaro Aoki. On cryptanalysis with impossible differentials. In 1999 Symposium on Cryptography and Information Security, number T4-1.3 in SCIS'99, International Conference Center Kobe, Kobe, Japan, 1999. Technical Group on Information Security (IEICE). (in Japanese). [5] Shiho Moriai, Kazumaro Aoki, and Kazuo Ohta. The best linear expression search of FEAL. IEICE Transactions Fundamentals of Electronics, Communications and Computer Sciences (Japan), Vol.E79-A, No.1, pp.211, 1996 (The extended abstract was presented at CRYPTO'95). [6] Shoji Miyaguchi, Hikaru Morita, and Atsushi Fujioka: "FEAL encipherment and its application", IEICE , the symposium of security and reliability about communication network for information society, pp.29-34, Aug. 1991. (in Japanese) [7] Hikaru Morita, and Shoji Miyaguchi: "FEAL-LSI and its Application," NTT R&D, Vol. 40, No. 10, pp. 1371-1380, Oct. 1991. (In Japanese). [8] Hikaru Morita and Shoji Miyaguchi: "FEAL-LSI and its Application," NTT Review, Vol. 3, No. 6, pp. 57-63, Nov. 1991. [9] ATM Forum: Phase I ATM Security Specification. 	Smart card Cipher facsimile ISDN digital telephone Cipher board for personal computer Cipher box for personal computer Cipher LSI Cipher device for network use ATM security compatible element (see [9] for specification)	1		
2/2	 References of submission [1] Akihiro Shimizu and Shoji Miyaguchi: "Fast Data Encipherment Algorithm FEAL," In David Chaum and Wyn L. Price, editors, Advances in Cryptology EUROCRYPT'87, volume 304 of Lecture Notes in Computer Science, pp. 267-278. Springer-Verlag, Berlin, Heidelberg, New York, 1988. [2] Akihiro Simizu and Shoji Miyaguchi: "Fast encipherment algorithm FEAL," IEICE paper , Vol. J70-D, No. 7, pp. 1413-1423, July 1987. (in Japanese) [3] Kazumaro Aoki, Kunio Kobayashi, and Shiho Moriai. The best differential characteristic search of FEAL. IEICE Transactions Fundamentals of Electronics, Communications and Computer Sciences Japan, Vol. E81-A, No. 1, pp. 98104, 1998. (Japanese preliminary version was presented at ISEC96-31). [4] Kazumaro Aoki. On cryptanalysis with impossible differentials. In 1999 Symposium on Cryptography and Information Security, number T4-1.3 in SCIS'99, International Conference Center Kobe, Kobe, Japan, 1999. Technical Group on Information Security (IEICE). (in Japanese). [5] Shiho Moriai, Kazumaro Aoki, and Kazuo Ohta. The best linear expression search of FEAL. IEICE Transactions Fundamentals of Electronics, Communications and Computer Sciences (Japan), Vol.E79-A, No.1, pp.211, 1996 (The extended abstract was presented at CRYPTO'95). [6] Shoji Miyaguchi, Hikaru Morita, and Atsushi Fujioka: "FEAL encipherment and its application", IEICE, the symposium of security and reliability about communication network for information society, pp.29-34, Aug. 1991. (in Japanese) [7] Hikaru Morita, Kazuo Ohta, and Shoji Miyaguchi. Results of switching-closure-test on FEAL. In Hideki Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors, Advances in Cryptology ASIACRYPT'91, volume 739 of Lecture Notes in Computer Science, pp. 247252. Springer-Verlag, Berlin, Heidelberg, New York, 1993. [8] Hikaru Morita and Shoji Miyaguchi: "FEAL-LSI and its Application," NTT R&D, Vol. 40, No. 10, pp. 1371-1380, Oct. 1			
			2/2	