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Appendix

Security of Efficient Digital Signature Scheme
TSH-ESIGN

Eiichiro Fujisaki Tatsuaki Okamoto

1 Introduction

In this manuscript, we will prove the security of the efficient digital signature scheme

TSH-ESIGN.

2 Definitions

Definition 2.1 Let A be a probabilistic algorithm and let A(xq, ..., xn;7) be the result
of A on input (x1,...,2,) and coinsr. We define byy — A(x1,...,xy) the experiment
of picking r at random and letting y be A(xy, ..., 2n;7). If S is a finite set, lety —g S
be the operation of picking y at random and uniformly from finite set S. ¢ denotes
the null symbol and, for list T, 7 — & denote the operation of letting list T be empty.
Moreover, || denoles the concatenation operalor, | - | denotes the size of bil length,
i.e., |yl := |logyy| + 1. For n-bit string =, [z]* and [z]; denote the most and least
significant k bits of x, respectively (k < n).

Definition 2.2 [Random Oracle Model] We define by Q the set of all maps from
the set {0, 1} of finile strings to the set {0,1}*° of infinile strings. Let H be a map
from a set of an appropriate finite length (say : {0,1}%) to a set of an appropriate
finite length (say {0,1}%). H — Q means that map H is chosen from Q at random
and uniformly, with restricting the domain to {0,1}* and the range to the first b bits
of output.

Definition 2.3 [Digital Signature Scheme] A digital signature scheme is defined
by a triple of algorithms (Gen,Sig,Ver) such that

o Key generation algorithm Gen s a probabilistic polynomial-time algorithm which

on input 1*¥ (k € N) outputs a pair (pk,sk), called public key and secret key.



e Signing algorithm Sig 1s a probabilistic polynomial-time algorithm which on input
sk «— Gen(1%) and a message m € {0,1}* produces a string, s € {0,1}*, called

the signature of m.

o Verification algorithm Ver is a probabilistic polynomial-time algorithm which on
input pk «— Gen(1*) and a pair of a message and a signature, (m,s) returns 0
(i.e. invalid) or 1 (i.e. wvalid) to indicate whether or not the signature is valid.
Here we insist that, for any (m, s) where s «— Sigs(m), we require Verp,(m,s) =

1, otherwise Verpp(m,s) = 0 with overwhelming probability.

Definition 2.4 [Forging Algorithm F| Let I1 := (Gen, Sig, Ver) be a digital sig-
nature scheme. Let A be an algorithm which on input pk obtained by running the
generator, Gen, has access to random hash function H and signing oracle Stgsp and

eventually outputs some string. We say that adversary A is a (1, qp, ¢s, €(k))-forger for
I(1*%) 4f

Advi(k) == Pr[H — Q; (pk, sk) — Gen(1%) : FH59x (pk) — (m, s)] > e(k),
where Verpp(m,s) = 1 and m is not included in the list of queries that F asks to

Sigsr(+), and, moreover, F' completes within running time t, asking at most g5 queries

to H(-) and at most q; queries to Sigsp(-).

3 TSH-ESIGN: ESIGN with Trisection Size Hash

This section introduces the digital signature scheme TSH-ESIGN.

3.1 Trisection Size Hash function A

Although 1t is necessary that the hash function used in our proposed signature
scheme be ideal (or random oracle) to prove the security of the signature scheme, an
arbitrary hash function (e.g., MD5 and SHA-1) is available for practical use. When the
signature scheme is defined over Z/nZ where |n| = 3k, the underlying hash function
h(:) is defined as h : {0,1}* — {0,1}¥~1. (That is, the size of the image of hash h is

around one third of the size of |n|.)



3.2 Key Generation algorithm Gen

Key generation algorithm Gen outputs, given security parameter 1% (k € IN),
(pk,sk) where pk = {n,e} and sk = {n,e, p,q}. The parameters, n, e, p and ¢, satisfy

the following conditions:
e p,q (p# q) are prime numbers with k-bit length, i.e., k = |p| = |q|-

o n := p?q with 3k-bit length and e > 4.

3.3 Signature Generation Sig,;(m)

The signature s of message m is computed by the signature algorithm Sig(-) as

follows:

Step 1 Pick r at random and uniformly from (Z/peZ)\pZ = {r €
Z[pqZ| ged(r,p) = 1}.

Step 2 Set z «— (0]|h(m)||0%*) and o « (z — r°) mod n.

Step 3 Set (wg, wy) such that

Wo |—p—q—|, (1)

wg - pg — «. (2)

wy

If wy > 22%=1 then go back to Step 1.

Step 4 Set ¢t — —%%5 mod p, and s — (r 4+ tpg) mod n.

re—1

Step 5 Output s.

3.4 Signature Verification Ver,;(m,s)

For a pair of message m and signature s, the verification algorithm Verp,(m,s)

outputs wvalid (or 1) if
5* mod n]!+ == 0l}h(m) o, 3)

otherwise invalid (or 0).
Here we define by Ver(h(m), pk) the set of valid signatures, namely, given (h(m), pk),
signatures that satisfy Equation (3).

10



Remark:

In practice, the verification equation can be replaced by
[s° mod n])* == 0||h(m). (4)

The formal proof in the next section still works with minor modification of the ap-

proximate e-th root assumption.

4 Security

In this section, we examine the security of TSH-ESIGN. We first introduce a problem
that is considered to be difficult to solve and then prove that breaking our scheme is
as difficult as solving this problem.

We call the underlying problem the approximate e-th root problem (AERP). Roughly
speaking, AERP is the problem, for given (y,e), of finding « such that z® mod n is
approximately equivalent to y, i.e., ° mod n & y.

Now let us define the approximate e-th root problem (AERP) and the breaking

algorithm.

Definition 4.1 [Approximate e-th root problem (AERP)] Let Gen be the gen-
erator of the TSH-ESIGN algorithm. Approzimate e-th root problem (AERP) is, for
given pk := {n e} — Gen(1*) and y «—p {0,1}*~1, to find x € (Z/nZ)\pZ such that

0]]y]|0 == [#° mod n]**1.

Definition 4.2 [AERP-Breaker B] We say that adversary B is a (t,¢(k))-AERP-
breaker of

AdvéERP(k) = Pr[(pk, sk) — Gen(1%);y —r {0,1}*71 . B(pk,y) — 2] > e(k),
where 0||y||0 == [2° mod n]* and B completes within running time t.

The following theorem is the main result of this manuscript. This theorem implies
that breaking AERP is as difficult as forging TSH-ESIGN (existentially forging under

adaptive chosen message attacks).

11



Theorem 4.3 If there exists a (t(k), qn(k),qs(k), e(k))-forger F' for TSH-ESIGN, then
there exists a (t'(k), €' (k))-AERP-Breaker B such that

t/(k) = t(k)+4(qh+%)'9(k3)’ and
€k) = (1/qn)- (k).

Proof:

Let TI := (Gen, Sig,Ver) be a triple of the TSH-ESIGN algorithm and F be a
(t,qn, qs, €)-forging algorithm for TSH-ESIGN. We will present an AERP-Breaker B
that includes F' as an oracle. The aim of B is, given y, to find an approximate root
z such that 0||y||0 == [2° mod n]*+!. Recall that the advantage of ESIGN-breaker B
is defined by

AdvéERP(k) = Pr[(pk, sk) — Gen(1%);y —r {0,1}*71: B(pk,y) — «].
Likewise recall that the advantage of forger F' for TSH-ESIGN 1is defined by
Advi(k) .= Pr[H — Q; (pk, sk) — Gen(1%) : FH519x (pk) — (m,s), where s € Ver(H(m), pk)],

where Ver(H(m), pk) is defined as above in Sec.3.4 and m is not included in the list
of queries that F' asks to Sigsg(-). Since forging algorithm F' will make two kinds of
queries, hash oracle queries and signing oracle queries, B must answer these queries

by itself. Below we describe the specification of AERP-breaker B:

AERP-Breaker: B(pk,y)
set 7 — ¢ (empty) and # — ¢ (null);
set { —r {1l,...,q5}, 71— 0 and j — 0;
run F(pk);
do while F' does not ask query @ to H(-) nor ask to Sigs(-)
if I asks query @ to H(-)
i+ +; j + +; (increment ¢, j);

if j ==

set Qr — Qs

put (@1, ¢,y) in the list 7 and answer F' with y;
else if Q & 7

set Qi — Qs

12



End.

do while 0] * ||0 == [z¢ mod n]*+1
vi —r (Z[nZ)\pZ;
set (0]|y;]|0) « [z§ mod n]*+1;
put (@i, #;,y;) in the list 7 and answer F' with y;;
else (Q €T)
answer F' with the corresponding ' € 7;
else if I asks query @ to Sigs(+)

i+ + (increment 7);

if Q=@
abort I’ and break;
else if Q & 7
set Qi — @;
do while 0| * ||0 == [¢¢ mod n]*+!

z; —r (Z/nZ)\pZ;
set (0]]3:]10) — [ mod n]#+";
put (Qs, #;,y;) in the list 7 and answer F' with x;;
else (Q €T)
answer F' with the corresponding z’ € 7;
if I outputs (Qy, 1)
set x «— xy;

return x

Here '’ denotes an (k — 1)-bit arbitrary string and 7 denotes a list that records queries

of F" and the corresponding signatures and hash values that B makes. B starts with list

7 empty and then records (@Q;, #;,y;) in 7 by following the specification until aborting

F or F ends asking queries.

Hereafter we explain the strategy of this specification, which is similar to that of

FDH-RSA as presented by Bellare and Rogaway in [4].

First B picks up [ uniformly from {1,... ¢g}. B sets counters, i,j, as i «— 0 and

j — 0. Counter 7 is utilized for counting the total number of the queries that F' asks

to random oracle H and signing oracle Sig, while counter j is utilized for counting the

number of F’s asking to H.

13



o If F' asks query @ to random oracle H(-), B increases 4,j and then works as

follows:

— If the query is the {-th one, B sets Q; — @, puts (@, ,y) in list 7, and

answers F' with y, where y 1s the instance input to B,

— Else if the query has not been recorded in list 7, B sets QQ; <— @, and then
after executing Experiment I= [repeatedly picks up x; from (Z/nZ)\pZ
until 0[] * ||0 == [zf mod n]**! where "+’ denotes an (k — 1)-bit arbitrary
string], makes an entry of (Q;,#;, %) in 7 and answers F' with y; as the

hash value of Q, where y; is defined by 0||y;||0 « [#¢ mod n]*+1.
— Otherwise (i.e., Q is already in list 7), B answers I with the corresponding
y er.
e Similarly, if F' asks query @ to signing oracle Sigs(-), B increases i and then
works as follows:
— If Q; = @;, B aborts F and outputs ¢ (This means B failed to solve AERP),

— Else if Q ¢ 7, B sets Q; — @, and then after executing Experiment I
makes an entry of (Qy,z;,y;) in 7 and answers F' with #; as the signing

value of @, where y; is defined by 0||y;||0 « [zf mod n]*+1L.

— Otherwise (i.e., Q is already in list 7), B answers I with the corresponding

' er.

Here we state that the distribution of (#;,y;) from Experiment I is identical to
that of (s, H(m)) of signing algorithm Sig;;(-) in the random oracle model. To prove
this, we state the following two lemmas. To prove Lemma 4.5 is sufficient to prove

this statement.

Lemma 4.4 For given h(m) € {0,1}*~! and pk «— Gen(1%), the following equation
holds:

#Ver(h(m),pk) = #{r € (Z/peZ)\pZ|0 < (—a mod pq) + pg < 2°*7'}, (5)

where a 1= ((0||h(m)][0%*) — r¢) mod n.
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Sketch of Proof:

Recall that Ver(h(m), pk) :={s € (Z/nZ)\pZ|[s® mod n]*+! == 0||h(m)||0}. Rep-
resent s € Ver(h(m),pk) by s = r +tpq where r € (Z/pgZ)\pZ, and t € Z/pZ. Tt is
easy to check that (r,7) is the unique representation of s.

Let Setr(h(m)) = {r € (Z/pgZ)\pZ|0 < (—a mod pq) + pg < 2%~1} where
a = ((0||h(m)][0%*) — r¢) mod n. This makes it possible to make bijective map
Ver(h(m),pk) — Setr(h(m)) by r := smod pg and t := (—a mod pq) + pg where
a := ((0]]h(m)]|0%*) — 7¢) mod n. Therefore, #V er(h(m), pk) = #Setr(h(m)). 9

Lemma 4.5 For given so € Ver(h(m),pk), the following equation holds:

1

Pr[s «— Sigl(m) : s == s0] = [s == so|s € Ver(h(m),pk)] =

Pr
s—r(ZnZN\pZ

where Prs<—R(Z/nZ)\pZ[S == sg|s € Ver(h(m),pk)] denotes the conditional proba-
bility of Event [s «—p (Z/nZ)\pZ : s == sq] given Event [s —p (Z/nZ)\pZ : s €
Ver(h(m), pk)].

Sketch of Proof:
. From Lemma 4.4, the proof of this lemma is straightforward. q

i From Lemma 4.5, we found that B can answer F' by itself unless F' asks @; as a
signing query. Eventually, when F' outputs (@, s), Q is considered to be @Q; for some
j. In the case of j = [, B succeeds to break AERP because [s¢ mod n]**! == y, and
the success probability € (k) is at least (1/qn) - (k). 9
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— #Ver(h(m),pk)’

(6)



