
Speci�cation of ESIGN Signatures

1 Introduction

We describe the speci�cation of a digital signature scheme, ESIGN, with
enough details. ESIGN is speci�ed by a triplet of primitive algorithms,
(G;S ;V), along with a hash function, where G is called the key generation
algorithm, S the signing algorithm, and V the verifying algorithm. We
will describe the speci�cations of these algorithms in Sec. 4. We also use
some auxiliary algorithms, such as a pseudo-random number generator, a
primality test algorithm, and a hash function, which we mention in Sec. 5
and Sec. 8 later.

2 Criteria of Design

Security in a cryptosystem is clearly the most important criterion: So we
will adopt here the strongest security notion of security for a digital signa-
ture scheme { existentially unforgeable against adaptively-chosen message
attacks. In addition, security in this sense must be proven in a cryptosystem,
that is to say, a digital signature scheme that is called a provably secure one,
can, theoretically, be proven secure under some reasonable assumptions.

E�ciency is also a very important factor in a cryptosystem { performance
and amount of resource when implemented in software/hardware.

ESIGN is a digital signature scheme that achieves both criteria.
To achieve provable security (in the strongest sense), we adopt the ran-

dom oracle paradigm along with a reasonable intractable assumption. In
the random oracle paradigm, security of a cryptosystem is proved assuming
hash functions are modeled as random orales. This paradigm was originally
proposed by Bellare and Rogaway in [3], and is rapidly becoming a standard
approach to achieve a provably-secure cryptosystem. Security of ESIGN, in
the random oracle model, can be assured under an intractable assumption,

1



which we name the approximate e-th root assumption. This assumption is
an approximate version of RSA assumption.

As for e�ciency, signature generation with ESIGN is ten times more
e�cient than that achieved with RSA-based signature schemes, while their
veri�cation performances are comparable. Compared to EC(Elliptic Curve)-
based signature schemes, ESIGN is several times faster in terms of signature
and veri�cation performance.

3 Notations

� a := b: the value of b is substituted for a, or a is de�ned as b.

� Z : the set of integers.

� Z=nZ := f0; 1; : : : ; n� 1g.

� Let A, B be sets. AnB := fx j x 2 A ^ x 62 Bg.

� Let A be a set. For k 2 N, Ak: the set of all k-tuples of elements in A
(i.e., Ak := A� � � � � A

| {z }

k

).

� (Z=nZ)� := f1; 2; : : : ; n� 1gnfx j gcd(x; n) 6= 1g.

� f0; 1g� is the set of �nite strings. f0; 1g� is also denoted by B.

� f0; 1gi is the set of i bit length bit strings. f0; 1gi is also denoted by
Bi.

� Let a 2 Z. Bi[a] denotes a bit string (ai�1; ai�2; : : : ; a0) 2 Bi such
that

a = a0 + 2a1 + 22a2 + � � � 2i�1ai�1:

� Let a := (ai�1; ai�2; : : : ; a0) 2 Bi. I[a] denotes an integer b 2 Z such
that

b = a0 + 2a1 + 22a2 + � � � 2i�1ai�1:

� If a 2 Bi, jaj := i.

� a � b (mod n) means a � b is divided by n. a := b mod n denotes
a 2 Z=nZ and a � b (mod n).

� Let a 2 B and b 2 B. ajjb denotes the concatenation of a and b. For
example, (0; 1; 0; 0)jj(1; 1; 0) = (0; 1; 0; 0; 1; 1; 0).

2



� Let a 2 B. ak := ajj � � � jja
| {z }

k

.

� Let X 2 B. [X ]pLen denotes the most pLen signi�cant bits of X .

� Let a 2 Bi and b 2 Bi. a�b means the bit-wise exclusive-or operation.
(i.e., a� b 2 Bi.)

4 Cryptographic Primitives

ESIGN is speci�ed by a triplet of primitive algorithms, (G;S;V), where G
is called the key generation algorithm, S the signing algorithm, and V the
verifying algorithm.

If a variable, x, in an input or output in this speci�cation is in Z, then it
should be in the binary form, Bi[x], where i is an arbitrary length (speci�ed
by the interface with an application/protocol) with x < 2i.

4.1 Key Generation: G

The input and output of G are as follows:

[Input ] Security parameter k(= pLen) 2 Z.

[Output ] The pair of public-key, (n; e; pLen) 2 Z3, and the secret-key,
(p; q) 2 Z2.

The operation of G, on input k is as follows:

� Choose two distinct primes, p, q, of size k and compute n := p2q.

� Select an integer e > 4.

� Set pLen := k.

� Output the binary coding of (n; e; pLen) and (p; q).

4.2 Signature Generation: S

The input and output of S are as follows:

[Input ] A string, m 2 f0; 1gpLen�1 along with (the binary coding of) a
public-key, (n; e; pLen).

[Output ] A binary string, s 2 f0; 1g3pLen.

3



The operation of S , on input m, (p; q), and (n; e; pLen), is as follows:

1. Pick r at random and uniformly from (Z=pqZ)npZ := fr 2 Z=pqZj gcd(r; p) =
1g.

2. Set z := (0jjmjj02�pLen) and � := (I(z)� re) mod n.

3. Set (w0; w1) such that

w0 := d
�

pq
e; (1)

w1 := w0 � pq � �: (2)

4. If w1 � 22pLen�1, then go back to Step 1. (That is, if the most signi�-
cant bit of w1 is 1, then go back to Step 1.)

5. Set t := w0

ere�1
mod p and s := B3pLen[(r + tpq) mod n].

6. Output s.

4.3 Signature Veri�cation: V

The input and output of V are as follows:

[Input ] The pair of strings, (m;s), along with (the binary coding of) the
public-key, (n; e; pLen).

[Output ] A bit | `1' represents valid and `0' represents invalid).

The operation of V, on input (m; s) along with (n; e; pLen) is as follows:

� Check whether the following equation holds or not:

[B3pLen[I(s)
e mod n]]pLen = 0jjm: (3)

� If it holds, output `1' (rep.valid), otherwise output `0' (rep. invalid).

5 Auxiliary Algorithms

Here we describe the auxiliary algorithms used in this paper.

� [PRNG] In the key-generation and signature-generation algorithms, a
pseudo-random number generator (PRNG) is used to pick up a random
number from an appropriate domain. For a practical construction of
PRNGs, the reader is referred to [13, Annex D.6] or [16, Chapter 6].

4



� [Primality Test] In the key-generation and signature-generation al-
gorithms, a primality testing algorithm is used to pick up a prime
number with appropriate bit-length. A practical construction of a pri-
mality testing algorithm is, for instance, Miller-Rabin Test [13, Annex
A.15.1].

� [Hash Function] A construction of a hash function is described in
Sec. 8, which is used in the signature-generation and veri�cation algo-
rithms.

� [Basic Operations] Basic operations over groups, rings, and �elds,
like multiplication, addition, etc., follow algorithms in [13, Annex A.1-
3].

6 Speci�cation of ESIGN

Here we describe the speci�cation of ESIGN.
If a variable, x, in an input or output in this speci�cation is in Z, then it

should be in the binary form, Bi[x], where i is an arbitrary length (speci�ed
by the interface with an application/protocol) with x < 2i.

6.1 Key Generation: G

The input and output of G are as follows:

[Input ] Security parameter k(= pLen) 2 Z.

[Output ] The pair of public-key, (n; e; pLen;HID) 2 Z4, and the secret-
key, (p; q) 2 Z2.

The operation of G, on input k is as follows:

� Choose two distinct primes, p, q, of size k and compute n := p2q.

� Select an integer e > 4.

� Set pLen := k.

� Pick up HID where HID indicates the identity of a (hash) function H

: f0; 1g� ! f0; 1gpLen�1 in the pre-prepared hash function list.

� Output the binary coding of (n; e; pLen;HID) and (p; q).

5



Remark:

Since 0jjH(x), notH(x), is always required in the signing and veri�cation
procedures, H(x) can be realized by using hash function H 0 : f0; 1g� �!
f0; 1gpLen as follows: �rst H 0(x) is computed, and the most signi�cant bit
of H 0(x) is set to `0' while preserving the other bits. The resulting value is
0jjH(x).

6.2 Signature Generation: S

The input and output of S are as follows:

[Input ] A message, m 2 f0; 1g� along with (the binary coding of) a
public-key, (n; e; pLen;HID).

[Output ] A binary string, s 2 f0; 1g3pLen.

The operation of S, on input m, (p; q), and (n; e; pLen;HID), is as fol-
lows:

1. Pick r at random and uniformly from (Z=pqZ)npZ := fr 2 Z=pqZj gcd(r; p) =
1g.

2. Set z := (0jjH(m)jj02�pLen) and � := (I(z)� re) mod n.

3. Set (w0; w1) such that

w0 := d
�

pq
e; (4)

w1 := w0 � pq � �: (5)

4. If w1 � 22pLen�1, then go back to Step 1. (That is, if the most signi�-
cant bit of w1 is 1, then go back to Step 1.)

5. Set t := w0

ere�1
mod p and s := B3pLen[(r + tpq) mod n].

6. Output s.

6.3 Signature Veri�cation: V

The input and output of V are as follows:

[Input ] The pair of message and signature, (m; s), along with (the binary
coding of) the public-key, (n; e; pLen;HID).

6



[Output ] A bit | `1' represents valid and `0' represents invalid).

The operation of V , on input (m;s) along with (n; e; pLen;HID) is as
follows:

� Check whether the following equation holds or not:

[B3pLen[I(s)
e mod n]]pLen = 0jjH(m): (6)

� If it holds, output `1' (rep.valid), otherwise output `0' (rep. invalid).

7 Recommended Parameters

We recommend ESIGN parameters as follows:

� k: more than or equal to 320 (the size of n should be more than 960
bits), and

� e: more than or equal to 8.

We used 1152 bits as the size of n and e = 32 in Sec. 4 in the document
\Self-Evaluation of ESIGN".

8 Hash Function

In the key-generation algorithm, a hash function used in the signature-
generation and veri�cation algorithms is picked up from the pre-prepared
hash function list. ESIGN can be proven secure if the hash function in it is
modeled as a random oracle.

We show a typical construction of a hash function with pLen > 160 out
of SHA (NIST Secure Hash Algorithm), which was suggested by Bellare and
Rogaway [4].

We denote by SHA�(x) the 160-bit result of SHA applied to x, except
that the 160-bit \starting value" in the algorithm description is taken to be
ABCDE = �. Let SHAl

�(x) denote the �rst l-bits of SHA�(x). Fix the
notation < i > for i encoded as a binary 32-bit word. We de�ne function H
as:

H(x) := SHA80

� (< 0 > jjx)jjSHA80

� (< 1 > jjx)jj � � � jjSHALl

� (< l > jjx);

where l = b 3k
80
c, and Ll = pLen� 80l.

7



References

[1] Abdalla, M., Bellare, M. and Rogaway, P.: DHES: An Encryption
Scheme Based on the Di�e-Hellman Problem, Submission to IEEE
P1363a (1998, August).

[2] Adleman, L.M. and McCurley, K.S.: Open Problems in Number Theo-
retic Complexity,II (open problems: C7, O7a and O7b), Proc. of ANTS-
I, LNCS 877, Springer-Verlag, pp.291-322 (1995).

[3] Bellare, M. and Rogaway, P.: Random Oracles are Practical: A
Paradigm for Designing E�cient Protocols, Proc. of the First ACM
Conference on Computer and Communications Security, pp.62{73
(1993).

[4] Bellare, M. and Rogaway, P. : Optimal Asymmetric Encryption, Proc.
of Eurocrypt'94, LNCS 950, Springer-Verlag pp.92-111 (1995).

[5] Bellare, M. and Rogaway, P.: The Exact Security of Digital Signatures
{ How to Sign with RSA and Rabin, Proc. of Eurocrypt'96, LNCS 1070,
Springer-Verlag, pp.399-416 (1996).

[6] Boneh, D., Durfee, G. and Howgrave-Graham, N.: Factoring N = prq

for Large r, Proc. of Crypto'99, LNCS 1666, Springer-Verlag, pp.326-
337 (1999)

[7] Brickell, E. and DeLaurentis, J.: An Attack on a Signature Scheme
Proposed by Okamoto and Shiraishi, Proc. of Crypto'85, LNCS 218,
Springer-Verlag, pp.28-32 (1986)

[8] Brickell, E. and Odlyzko: Cryptanalysis: A Survey of Recent Re-
sults, Chap.10, Contemporary Cryptology, Simmons (Ed.), IEEE Press,
pp.501{540 (1991).

[9] Canetti, R., Goldreich, O. and Halevi, S.: The Random Oracle Method-
ology, Revisited, Proc. of STOC, ACM Press, pp.209{218 (1998).

[10] Cryptography Using Compaq MultiPrime Technology in a Paral-
lel Processing Environment, Enterprise Security Solutions, Elec-
tronic Commerce Technical Brief, Compaq Computer Corporation,
http://www6.compaq.com/solutions/security/ (2000)

8



[11] Damg�ard, I., Landrock, P., and Pomerance, C., \Average Case Error
Estimates for the Strong Probable Prime Test", Matematics of Com-
putation 61(1993), pp.177{194.

[12] Girault, M., To�n, P. and Vall�ee, B.: Computation of Approximate
L-th Roots Modulo n and Application to Cryptography, Proc. of
Crypto'88, LNCS 403, Springer-Verlag, pp.100-117 (1990)

[13] IEEE P1363 Draft (D9), http://grouper.ieee.org/groups/1363/P1363/draft.html
(1999).

[14] Fujisaki, E. and Okamoto, T.: Security of E�cient Digital Signature
Scheme TSH-ESIGN, manuscript (1998 November).

[15] S. Goldwasser, S. Micali and R. Rivest, \A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks," SIAM J. on Com-
puting, 17, pp.281{308, 1988.

[16] Menezes, A., van Oorschot, P., and Vanstone, S., \Handbook of Applied
Cryptography", CRC Press, Boca Raton, Florida 1996.

[17] Okamoto, T.: A Fast Signature Scheme Based on Congruential Poly-
nomial Operations, IEEE Trans. on Inform. Theory, IT-36, 1, pp.47-53
(1990).

[18] Okamoto, T., Fujisaki, E. and Morita, H.: TSH-ESIGN: E�cient Digi-
tal Signature Scheme Using Trisection Size Hash, submission to P1363a
(1998).

[19] Okamoto, T. and Shiraishi, A.: A Fast Signature Scheme Based on
Quadratic Inequalities, Proc. of the ACM Symposium on Security and
Privacy, ACM Press (1985).

[20] Peralta, R.: Bleichenbacher's improvement for factoring numbers of the
form N = PQ2 (private communication) (1997).

[21] Peralta, R. and Okamoto, E.: Faster Factoring of Integers of a Special
Form, IEICE Trans. Fundamentals, E79-A, 4, pp.489-493 (1996).

[22] Pollard, J.L.: Manuscript (1997).

[23] Silverman, R.D.,: A Cost-Based Security Analysis of Symmetric and
Asymmetric Key Lengths, Bulletin number13, RSA Laboratories, April
2000.

9



[24] FIPS 180-1 \Secure Hash Standard", Federal Information Processing
Standards Publication 180-1, U.S. Department of Commerce/N.I.S.T.,
National Technical Information Service, Spring�eld, Virginia, April 17
1995.

[25] Vall�ee, B., Girault, M. and To�n, P.: How to Break Okamoto's Cryp-
tosystem by Reducing Lattice Bases, Proc. of Eurocrypt'88, LNCS 330,
Springer-Verlag, pp.281-291 (1988)

[26] Vall�ee, B., Girault, M. and To�n, P.: How to Guess L-th Roots Modulo
n by Reducing Lattice Bases, Proc. of Conference of ISSAC-88 and
AAECC-6, (1988)

10


