Specification of ESIGN Signatures

1 Introduction

We describe the specification of a digital signature scheme, ESIGN, with
enough details. ESIGN is specified by a triplet of primitive algorithms,
(G,S,V), along with a hash function, where G is called the key generation
algorithm, & the signing algorithm, and V the verifying algorithm. We
will describe the specifications of these algorithms in Sec. 4. We also use
some auxiliary algorithms, such as a pseudo-random number generator, a
primality test algorithm, and a hash function, which we mention in Sec. 5
and Sec. 8 later.

2 Criteria of Design

Security in a cryptosystem is clearly the most important criterion: So we
will adopt here the strongest security notion of security for a digital signa-
ture scheme — existentially unforgeable against adaptively-chosen message
attacks. In addition, security in this sense must be proven in a cryptosystem,
that is to say, a digital signature scheme that is called a provably secure one,
can, theoretically, be proven secure under some reasonable assumptions.

Efficiency is also a very important factor in a cryptosystem — performance
and amount of resource when implemented in software/hardware.

ESIGN is a digital signature scheme that achieves both criteria.

To achieve provable security (in the strongest sense), we adopt the ran-
dom oracle paradigm along with a reasonable intractable assumption. In
the random oracle paradigm, security of a cryptosystem is proved assuming
hash functions are modeled as random orales. This paradigm was originally
proposed by Bellare and Rogaway in [3], and is rapidly becoming a standard
approach to achieve a provably-secure cryptosystem. Security of ESIGN, in
the random oracle model, can be assured under an intractable assumption,



which we name the approximate e-th root assumption. This assumption is
an approximate version of RSA assumption.

As for efficiency, signature generation with ESIGN is ten times more
efficient than that achieved with RSA-based signature schemes, while their
verification performances are comparable. Compared to EC(Elliptic Curve)-

based signature schemes, ESIGN is several times faster in terms of signature
and verification performance.

3 Notations

a := b: the value of b is substituted for a, or a is defined as b.
Z : the set of integers.

Z/nZ :=1{0,1,... ,n — 1}.

Let A, B be sets. A\B:={z | 2 € AAz & B}.

Let A be a set. For k € N, A*: the set of all k-tuples of elements in A
(ie., A¥:= Ax .- x A).
—_——
k
(Z/nZ)* :={1,2,...,n—1}\{z | ged(z,n) # 1}.
{0,1}* is the set of finite strings. {0,1}* is also denoted by B.

{0,1}" is the set of i bit length bit strings. {0,1}* is also denoted by
B,.

Let a € Z. B;[a] denotes a bit string (a;—1,a;—2,... ,a0) € B; such
that '

a=ao+2ay +2%as + -2 1a;_q.
Let a := (aj-1, ai—2,... ,a0) € B;. I[a] denotes an integer b € Z such
that '

b=ag+2a1 + 2202 + - 22_102'_1.
If a € By, |a] := 1.

a = b (mod n) means ¢ — b is divided by n. @ := bmod n denotes
a € Z/nZ and a = b (mod n).

Let a € B and b € B. al|b denotes the concatenation of @ and b. For
example, (0,1,0,0)|/(1,1,0) = (0,1,0,0,1,1,0).



o Let a € B. a*:=al|---]|a.
——

k

o Let X € B. [X]P%“" denotes the most pLen significant bits of X.

e Let a € B; and b € B;. a®b means the bit-wise exclusive-or operation.

(i.e.,ad b€ B;.)

4 Cryptographic Primitives

ESIGN is specified by a triplet of primitive algorithms, (G,S,V), where G
is called the key generation algorithm, § the signing algorithm, and V the
verifying algorithm.

If a variable, z, in an input or output in this specification is in Z, then it
should be in the binary form, B;[z], where ¢ is an arbitrary length (specified
by the interface with an application/protocol) with z < 21

4.1 Key Generation: §

The input and output of G are as follows:
[Input | Security parameter k(= pLen) € Z.

[Output | The pair of public-key, (n,e,pLen) € Z?, and the secret-key,
(p,q) € Z°.

The operation of G, on input k is as follows:

e Choose two distinct primes, p, ¢, of size k and compute n := p’q.
e Select an integer e > 4.

e Set plen := k.

e Output the binary coding of (n,e,pLen) and (p, q).

4.2 Signature Generation: S

The input and output of S are as follows:

[Input ] A string, m € {0,1}PL*"~! along with (the binary coding of) a
public-key, (n,e,pLen).

[Output ] A binary string, s € {0,1}3Plen,



The operation of S, on input m, (p,q), and (n,e,pLen), is as follows:

1. Pick r at random and uniformly from (Z/pgZ)\pZ := {r € Z/pqZ| gcd(r,p) =
1}.

2. Set z := (0||m||0?PL*") and a := (I(z) — r°) mod n.

3. Set (wp, w1 ) such that

wo = [])_q-|7 (1)
wy = wo - pg — a. (2)

4. Tf wy > 22PLen=1 then go back to Step 1. (That is, if the most signifi-
cant bit of wy is 1, then go back to Step 1.)

5. Set t := % mod p and s := Bs,req[(r + tpg) mod n].

6. Output s.

4.3 Signature Verification: V
The input and output of V are as follows:

[Input | The pair of strings, (m, s), along with (the binary coding of) the
public-key, (n,e,pLen).

[Output | A bit — ‘1’ represents valid and ‘0’ represents invalid).
The operation of V, on input (m, s) along with (n,e,pLen) is as follows:
e Check whether the following equation holds or not:

[Bayrenll(s)° mod n]JP"*" = 0fjm. (3)

e If it holds, output ‘1’ (rep.valid), otherwise output ‘0’ (rep. invalid).

5 Auxiliary Algorithms
Here we describe the auxiliary algorithms used in this paper.

e [PRNG] In the key-generation and signature-generation algorithms, a
pseudo-random number generator (PRNG) is used to pick up a random
number from an appropriate domain. For a practical construction of
PRNGs, the reader is referred to [13, Annex D.6] or [16, Chapter 6].



e [Primality Test] In the key-generation and signature-generation al-
gorithms, a primality testing algorithm is used to pick up a prime
number with appropriate bit-length. A practical construction of a pri-
mality testing algorithm is, for instance, Miller-Rabin Test [13, Annex
A.15.1].

e [Hash Function] A construction of a hash function is described in
Sec. 8, which is used in the signature-generation and verification algo-
rithms.

e [Basic Operations] Basic operations over groups, rings, and fields,
like multiplication, addition, etc., follow algorithms in [13, Annex A.1-

6 Specification of ESIGN

Here we describe the specification of ESIGN.

If a variable, z, in an input or output in this specification is in Z, then it
should be in the binary form, B;[z], where ¢ is an arbitrary length (specified
by the interface with an application/protocol) with z < 21

6.1 Key Generation: §

The input and output of G are as follows:
[Input | Security parameter k(= pLen) € Z.

[Output ] The pair of public-key, (n,e,pLen, HID) € Z*, and the secret-
key, (p,q) € Z*.

The operation of G, on input k is as follows:

e Choose two distinct primes, p, ¢, of size k and compute n := p?q.
e Select an integer e > 4.

e Set plen := k.

e Pick up HID where HID indicates the identity of a (hash) function H
:{0,1}* — {0,1}7F"=1 in the pre-prepared hash function list.

Output the binary coding of (n,e,pLen, HID) and (p, q).



Remark:

Since 0|| H(z), not H(z), is always required in the signing and verification
procedures, H(x) can be realized by using hash function H' : {0,1}* —
{0,137 as follows: first H'(z) is computed, and the most significant bit
of H'(x) is set to ‘0" while preserving the other bits. The resulting value is

0| H (z).

6.2 Signature Generation: S

The input and output of S are as follows:

[Input | A message, m € {0,1}" along with (the binary coding of) a
public-key, (n,e, pLen, HID).

[Output ] A binary string, s € {0,1}3Plen,

The operation of S, on input m, (p,q), and (n,e,pLen,HID), is as fol-
lows:

1. Pick r at random and uniformly from (Z/pgZ)\pZ := {r € Z/pqZ| gcd(r,p) =
1}.
2. Set z := (0||H(m)||0*PF*") and a := (I(z) — 7¢) mod n.

3. Set (wp, w1 ) such that

wy = [p—qh (4)
wy = wy-pg— a. (5)

4. If wy > 22PLen=1 then go back to Step 1. (That is, if the most signifi-
cant bit of wy is 1, then go back to Step 1.)

5. Set t := %7 mod p and s := Bs,re[(r + tpg) mod n).

ere

6. Output s.

6.3 Signature Verification: V

The input and output of V are as follows:

[Input | The pair of message and signature, (m, s), along with (the binary
coding of) the public-key, (n, e, pLen, HID).



[Output | A bit — ‘1’ represents valid and ‘0’ represents invalid).

The operation of V, on input (m,s) along with (n,e,pLen,HID) is as
follows:

e Check whether the following equation holds or not:
[BaprenlI(s)” mod u]J"H" = 0||H (m). (6)

e If it holds, output ‘1’ (rep.valid), otherwise output ‘0’ (rep. invalid).

7 Recommended Parameters
We recommend ESIGN parameters as follows:

e k: more than or equal to 320 (the size of n should be more than 960
bits), and

e ¢: more than or equal to 8.

We used 1152 bits as the size of n and € = 32 in Sec. 4 in the document
“Self-Evaluation of ESIGN”.

8 Hash Function

In the key-generation algorithm, a hash function used in the signature-
generation and verification algorithms is picked up from the pre-prepared
hash function list. ESIGN can be proven secure if the hash function in it is
modeled as a random oracle.

We show a typical construction of a hash function with pLen > 160 out
of SHA (NIST Secure Hash Algorithm), which was suggested by Bellare and
Rogaway [4].

We denote by SHA,(z) the 160-bit result of SHA applied to z, except
that the 160-bit “starting value” in the algorithm description is taken to be
ABCDE = ¢. Let SHA! (2) denote the first I-bits of SHA,(z). Fix the
notation < ¢ > for ¢ encoded as a binary 32-bit word. We define function H
as:

H(z):=SHAY (< 0 > ||2)||SHAS (< 1 > ||2)]] - - - ||[SHAL (< 1 > ||2),

where [ = | 28], and L; = pLen — 80L.



References

[1]

Abdalla, M., Bellare, M. and Rogaway, P.: DHES: An Encryption
Scheme Based on the Diffie-Hellman Problem, Submission to IEEE
P1363a (1998, August).

Adleman, L.M. and McCurley, K.S.: Open Problems in Number Theo-
retic Complexity,II (open problems: C7, O7a and O7b), Proc. of ANTS-
I, LNCS 877, Springer-Verlag, pp.291-322 (1995).

Bellare, M. and Rogaway, P.: Random Oracles are Practical: A
Paradigm for Designing Efficient Protocols, Proc. of the First ACM
Conference on Computer and Communications Security, pp.62-73
(1993).

Bellare, M. and Rogaway, P. : Optimal Asymmetric Encryption, Proc.
of Eurocrypt’94, LNCS 950, Springer-Verlag pp.92-111 (1995).

Bellare, M. and Rogaway, P.: The Exact Security of Digital Signatures
— How to Sign with RSA and Rabin, Proc. of Eurocrypt’96, LNCS 1070,
Springer-Verlag, pp.399-416 (1996).

Boneh, D., Durfee, G. and Howgrave-Graham, N.: Factoring N = p”¢
for Large r, Proc. of Crypto’99, LNCS 1666, Springer-Verlag, pp.326-
337 (1999)

Brickell, E. and DeLaurentis, J.: An Attack on a Signature Scheme
Proposed by Okamoto and Shiraishi, Proc. of Crypto’85, LNCS 218,
Springer-Verlag, pp.28-32 (1986)

Brickell, E. and Odlyzko: Cryptanalysis: A Survey of Recent Re-
sults, Chap.10, Contemporary Cryptology, Simmons (Ed.), IEEE Press,
pp.501-540 (1991).

Canetti, R., Goldreich, O. and Halevi, S.: The Random Oracle Method-
ology, Revisited, Proc. of STOC, ACM Press, pp.209-218 (1998).

Cryptography Using Compaq MultiPrime Technology in a Paral-
lel Processing FEnvironment, FEnterprise Security Solutions, FElec-
tronic Commerce Technical Brief, Compaq Computer Corporation,
http://www6.compaq.com/solutions/security/ (2000)



[11] Damgard, 1., Landrock, P., and Pomerance, C., “Average Case Error
Estimates for the Strong Probable Prime Test”, Matematics of Com-
putation 61(1993), pp.177-194.

[12] Girault, M., Toffin, P. and Vallée, B.: Computation of Approximate
L-th Roots Modulo n and Application to Cryptography, Proc. of
Crypto’88, LNCS 403, Springer-Verlag, pp.100-117 (1990)

[13] IEEE P1363 Draft (D9), http://grouper.ieee.org/groups/1363/P1363/draft.html
(1999).

[14] Fujisaki, E. and Okamoto, T.: Security of Efficient Digital Signature
Scheme TSH-ESIGN, manuscript (1998 November).

[15] S. Goldwasser, S. Micali and R. Rivest, “A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks,” SIAM J. on Com-
puting, 17, pp.281-308, 1988.

[16] Menezes, A., van Oorschot, P., and Vanstone, S., “Handbook of Applied
Cryptography”, CRC Press, Boca Raton, Florida 1996.

[17] Okamoto, T.: A Fast Signature Scheme Based on Congruential Poly-
nomial Operations, IEEE Trans. on Inform. Theory, IT-36, 1, pp.47-53
(1990).

[18] Okamoto, T., Fujisaki, E. and Morita, H.: TSH-ESIGN: Efficient Digi-
tal Signature Scheme Using Trisection Size Hash, submission to P1363a
(1998).

[19] Okamoto, T. and Shiraishi, A.: A Fast Signature Scheme Based on
Quadratic Inequalities, Proc. of the ACM Symposium on Security and
Privacy, ACM Press (1985).

[20] Peralta, R.: Bleichenbacher’s improvement for factoring numbers of the
form N = PQ? (private communication) (1997).

[21] Peralta, R. and Okamoto, E.: Faster Factoring of Integers of a Special
Form, IEICE Trans. Fundamentals, E79-A, 4, pp.489-493 (1996).

[22] Pollard, J.L.: Manuscript (1997).

[23] Silverman, R.D.,: A Cost-Based Security Analysis of Symmetric and
Asymmetric Key Lengths, Bulletin number13, RSA Laboratories, April
2000.



[24]

[25]

[26]

FIPS 180-1 “Secure Hash Standard”, Federal Information Processing
Standards Publication 180-1, U.S. Department of Commerce/N.I.S.T.,
National Technical Information Service, Springfield, Virginia, April 17
1995.

Vallée, B., Girault, M. and Toffin, P.: How to Break Okamoto’s Cryp-
tosystem by Reducing Lattice Bases, Proc. of Eurocrypt’88, LNCS 330,
Springer-Verlag, pp.281-291 (1988)

Vallée, B., Girault, M. and Toffin, P.: How to Guess L-th Roots Modulo
n by Reducing Lattice Bases, Proc. of Conference of ISSAC-88 and
AAECC-6, (1988)

10



