Information for each entry item is restricted to the designated pages. However, the applicant may decide how much page space to assign for any individual entry item.

Receipt Number

Cryptographic Techniques Overview

1. Name of Cryptographic Technique ESIGN
Categories 1.Asymmetric Cryptographic Schemes 2.Symmetric Ciphers 3.Hush Functions 4.Pseudo-random Number Generators
Security Functions of Asymmetric Cryptographic Schemes 1.confidentiality 2. Authentication 3. signature 4. key- sharing
Subcategories of Symmetric Ciphers 1. stream ciphers 2. 64-bits block ciphers 3. 128-bits block ciphers
 Sureall clipiers 2. 04-bits block clipiers 3. 128-bits block clipiers Cryptographic Techniques Overview Design policy Criteria of Security:
 2.3 Basic theory and techniques (1) ESIGN was originally proposed in [1] in 1985. Since then, both problems, factoring \$200 p^2q\$ and approximate \$e\$-th root problem (AERP), have been extensively investigated by many excellent researchers such as Adleman, Bleichenbacher, Brickell, DeLaurent Girault, McCurley, Odlyzko, Peralta, Pollard, Shamir, Toffin, Vall{¥'e}e. The authors ave also communicated with Lenstra and Buchmann on these problems. The fact the no efficient algorithms on both problems have been found since they were raised imp s that these problems can be considered to be almost as intractable as factoring \$100 pc and the RSA problem. (2) ESIGN can be proven secure in the random oracle model under the approximate
 ave also communicated with Lenstra and Buchmann on these problems. The fact the no efficient algorithms on both problems have been found since they were raised imp s that these problems can be considered to be almost as intractable as factoring \$n q\$ and the RSA problem. (2) ESIGN can be proven secure in the random oracle model under the approximate \$-th root assumption.

Information for each entry item is restricted to the designated Receipt pages. However, the applicant may decide how much page Number space to assign for any individual entry item. **Reference**: [1] Okamoto, T. and Shiraishi, A.: A Fast Signature Scheme Based on Quadratic Inequalities, Proc. of the ACM Symposium on Security and Privacy, ACM Press (1985). [2] Okamoto, T.: A Fast Signature Scheme Based on Congruential Polynomial Operations, IEEE Trans. on Inform. Theory, IT-36, 1, pp.47-53 (1990). [3] Brickell, E. and DeLaurentis, J.: An Attack on a Signature Scheme Proposed by Okamoto and Shiraishi, Proc. of Crypto'85, LNCS 218, Springer-Verlag, pp.28-32 (1986) [4] Brickell, E. and Odlyzko: Cryptanalysis: A Survey of Recent Results, Chap.10, Contemporary Cryptology, Simmons (Ed.), IEEE Press, pp.501--540 (1991). [5] Girault, M., Toffin, P. and Vall{¥'e}e, B.: Computation of Approximate \$L\$-th Roots Modulo \$n\$ and Application to Cryptography, Proc. of Crypto'88, LNCS 403, Springer-Verlag, pp.100-117 (1990)[6] Vall{¥'e}e, B., Girault, M. and Toffin, P.: How to Guess \$L\$-th Roots Modulo \$n\$ by Reducing Lattice Bases, Proc. of Conference of ISSAC-88 and AAECC-6 (1988) [7] Peralta, R.: Bleichenbacher's improvement for factoring numbers of the form \$N=PQ^{2}\$ (private communication) (1997). [8] Peralta, R. and Okamoto, E.: Faster Factoring of Integers of a Special Form, IEICE Trans. Fundamentals, E79-A, 4, pp.489-493 (1996). [9] Pollard, J.L.: Manuscript (1997). [10] Okamoto, T., Fujisaki, E. and Morita, H.: TSH-ESIGN: Efficient Digital Signature Scheme Using Trisection Size Hash, submission to P1363a (1998). Previous use: None

2/2