
Self-Evaluation of ESIGN Identi�cation

1 Introduction

This document details security assessment and performance on ESIGN iden-
ti�cation scheme.

2 Security of ESIGN Identi�cation

2.1 Secure Identi�cation Scheme

We describe here a de�nition of a secure identi�cation scheme, following the
standard de�nition by Feige, Fiat, and Shamir [12].

De�nition 2.1 Let (A;B) be an identi�cation protocol between a prover A
and a veri�er B. Let G be a key-generator for an identi�cation scheme and
let (w;x) be a pair of secret and public keys generated by G. We denote by
(A(w); B)(x) an experiment of an identi�cation scheme between A and B

with regards to (w; x), where x is inputted to both A and B and w is in-
putted only to A. An identi�cation scheme, (A;B), is secure if the following
conditions hold:

1. For any constant c, for su�ciently large k,

Pr[(A(w); B)(x) = `accept' ] > 1� 1=kc:

2. There exists no adversary Adv such that, for any constants, c; c0, for
su�ciently large k,

Pr[(Adv;B)(x) = `accept' ] > 1=kc;

after kc
0

-times execution of (A(w);Adv)(x).

Here the probabilities above are taken over the coin tosses of A;B;Adv and
G.
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2.2 Security of ESIGN Identi�cation

We convert ESIGN signature scheme into an identi�cation scheme in a stan-
dard way. The following result is then well-known.

Theorem 2.2 Suppose that there exists a digital signature scheme that is
existentially unforgeable against adaptive chosen message attacks. Then
there exists a secure identi�cation scheme.

It leads the next theorem.

Theorem 2.3 ESIGN identi�cation scheme is secure under the approxi-
mate e-th root assumption in the random oracle model.

2.3 Security of ESIGN signature

The security for a digital signature scheme is modeled as the infeasibility
of any adversary in winning the following game [16]: First a key-generation
algorithm generates a public-key and a secret-key for the digital signature
scheme. The adversary then takes the public-key and have access to the
signature oracle to get a signature on a message in the adaptively-chosen
manner. The adversary will win the game if she can forge a signature on
a message other than one for which she asked for a signature. For more
details, the reader is referred to [16].

We compare here in Table 1 the security of ESIGN, RSA based schemes
(e.g., PSS or FDH-RSA), and elliptic-curve based schemes (e.g., EC-Schnorr).

Table 1: Comparison of security

Scheme Security Number-theoretical Random function
against CMA assumption assumption

ESIGN Secure AER Random

PSS or FDH-RSA Secure RSA Random

EC-Schnorr Secure EC Discrete Log. Random

2.4 Theoretical Result

ESIGN signature scheme can be proven secure in the random oracle model
under a non-standard but reasonable assumption. The non-standard as-
sumption is called the approximate e-th root (AER) assumption. AER
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Problem is analogous to the RSA problem. The RSA problem is to �nd x,
given n; e; y, such that xe = y (mod n); The AER problem is to �nd x, given
n; e; y, such that a part (1=3jnj-most signi�cant bit) of xe mod n equals the
corresponding part of y, i.e., [xe mod n]1=3jnj = [y]1=3jnj. We describe here
statements of the problem and the assumption.

De�nition 2.4 (AER Problem) Let G be the key-generator of ESIGN.
The approximate e-th root problem (AERP) is, for given (n; e; k) and given
(k�1)-bit random string y, to �nd x 2 (Z=nZ)npZ such that 0jjy = [xe mod
n]pLen, where the distribution of (n; e; k) follows that of G (jnj = 3k).

De�nition 2.5 (AER Assumption) The approximate e-th root problem
(AERP) is intractable, if for any non-uniform probabilistic polynomial time
algorithm Adv, for any constant c, for su�ciently large k,

Pr[Adv(k; n; e; y) = x] < 1=kc;

where 0jjy = [xe mod n]k The probability is taken over the coin ips of G
and Adv.

Here we describe the theoretical result of ESIGN in terms of security.

Theorem 2.6 ESIGN is existentially unforgeable against adaptive chosen
message attacks in the random oracle model under AER assumption.

Proof is shown in [15].

Remark:

[Factoring n = p2q] Although it is not known whether n = p2q is easier
to factor than n = pq, some special algorithms to factor n = p2q have been
studied [21, 22, 23, 2]. However, such techniques are speci�c to the elliptic
curve factoring method (ECM), and the fastest algorithm for factoring both
n = pq and n = p2q is the number �eld sieve (NFS) method, whose running
time depends only on the composite size, jnj. (Even these algorithms based
on the ECM [21, 22, 23] are just several times faster than the traditional
ECM.)

Recently Boneh et al. presented an algorithm for factoring n = prq with
large r, using the LLL algorithm (lattice reduction) [6]. Their algorithm,
however, is only e�ective for the case where r is large (at least (log p)1=2). If
r is constant (or small), the running time of their algorithm is exponential
in jnj. Hence, as for n = p2q, their algorithm is less e�cient than the ECM
and NFS methods.
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Therefore, currently the size of n = p2q can be the same as n = pq if
n is su�ciently large (e.g., jnj is at least 1024). Actually, according to the
evaluation equations in [10], the ECM method for n = p2q (i.e., the sizes
of primes of n are 1/3 of jnj) with 1024 bits is less e�cient than the NFS
method for n (both for n = p2q and n = pq) with 1024 bits.

Remark:

[AER Problem] The square degree version of ESIGN was proposed in
1985 [20], was broken by Brickell and DeLaurentis in the same year [7, 8].
In other words, they showed an e�cient algorithm to solve the approxi-
matesquare root problem (AERP with e = 2). They also presented an
e�cient algorithm to solve the cubic version, AERP with e = 3.

In the late 1980's, French mathematicians, Girault, To�n and Vall�ee,
extensively studied various types of the approximate e-th root modulo n
problems, by using lattice base reduction [13, 26, 27]. (Brickell and De-
Laurentis's attack is a special case of their lattice base reduction attack.)
However, they could �nd no e�cient solution to AERP with e � 4.

Since lattice base reduction is currently the only e�ective tool to solve
such approximate e-th root modulo n problems, we have no way to e�ciently
solve AERP with e � 4. (Note that lattice base reduction is a very powerful
tool to solve various problems: for example, almost all knapsack public-key
cryptosystems were broken by lattice base reduction.)

We have the following conjecture on AERP:
Conjecture: Problem A is expected polynomial-time reducible to problem
B.

Problem A: Given three positive integers, M and n, and e, solve s that
satis�es

se �M (mod n):

Problem B: Given four positive integers, M;n, �, and e, and positive real
number " such that

j�j = (
e� 1

e
� ")jnj;

solve s that satis�es

M � se mod n < M + �:

If the following conjecture is true, AERP is as intractable as RSA in-
version or Rabin inversion. In particular, when e is even (e.g., 8, 16, : : : ),
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which we recommend, the conjecture implies that AERP is as intractable as
factoring n.

Remark:

The original ESIGN, based on the same problem as TSH-ESIGN, has
been already adopted by ISO/IEC 14888-3 (digital signatures with appendix).
(TSH-ESIGN is a provably secure variant of the original ESIGN.)

Both problems, factoring n = p2q and approximate e-th root problem
(AERP), were explicitly raised by us in 1985. For the last 14 years the both
problems have been extensively investigated by many excellent researchers
such as Adleman, Bleichenbacher, Brickell, DeLaurentis, Girault, McCurley,
Odlyzko, Peralta, Pollard, Shamir, To�n, Vall�ee. The authors have also
communicated with Lenstra and Buchmann on these problems.

The fact that no e�cient algorithms on both problems have been found
since they were raised more than 14 years implies that these problems can
be considered to be almost as intractable as factoring n = pq and the RSA
problem.

3 Performance as Implemented

3.1 Performance in Hardware

� Process:
Cell base.

� Design environment:
Verilog-XL + DesignCompiler

� Resource:

About 25.6KG(@ 2NAND areal equality) + Memory(13312bit)
Structure: [Random logic+Multiplier�2+Adder] + [Memory(13312bit)]

� Speed:
Evaluation speed in 30MHz clock. (Measured by simulator)

ESIGN

Proof (Sig.) 9.8 ms
Veri�cation 2.5 ms

(Key length = 1152 bit.)
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3.2 Performance in Software

� Platform:

CPU: Pentium III 700MHz
OS: FreeBSD4.0R
Memory: 131060K bytes

� Language:
C Language (gcc version 2.8.1)

� Memory size(Code size):

ESIGN

Proof (Sig.) 81859 bytes
Veri�cation 80028 bytes

� Memory size(Work size):

ESIGN

Proof (Sig.) 1112 KB
Veri�cation 1064 KB

� Process speed:

ESIGN

Proof (Sig.) 3.401 ms
Veri�cation 0.404 ms

(Key length = 1152 bit.)

� Data size:
Size of n 1152 bits
Value of e 1024 (10 bits)
hLen 160 bits
gLen 160 bits
Size of plaintext 128 bits
Size of public key �le 329 bytes
Size of secret key �le 206 bytes
Size of signature �le 290 bytes
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� Optimize level:

We use compile option \gcc -O3."

Remark:

In this evaluation, we use the simplest modular inversion algorithm for
signature generation. If we use a more sophisticated modular inversion algo-
rithm like Lehmer's method, the signature generation speed will be several
times faster than that in this evaluation.

4 Comparison of Computation Amount

In this section, we explain the e�ciency of ESIGN Identi�cation. We com-
pare the processing speeds of ESIGN Identi�cation, elliptic curve version of
Schnorr Identi�cation scheme, and Fiat-Shamir scheme. For each scheme we
estimate the amount of work needed for identi�cation generation and veri-
�cation by calculating the amount of required modular operations in terms
of the number of 1152 bit modular multiplications.

Here, we estimate the performance based on standard techniques such as
the (extended) binary method for modular exponentiation and the Chinese
Remainder Theorem.

We assume that the modulus n for ESIGN and Fiat-Shamir schemes are
1152 bits, and the modulus for EC-Schnorr scheme is 160 bits. We assume
public exponent e = 25 for ESIGN. We assume the number of moves between
the prover and the veri�er is 30 for Fiat-Shamir scheme.

The next table shows the evaluation.

Table 2: Comparison of computation amount

Schemes
Proof (Sig.) Veri�cation # of Moves

(M(1152)) (M(1152))

ESIGN 9 5 2

EC-Schnorr 41 48 3

Fiat-Shamir 45 45 30

Here, M(b) (I(b)) denotes the amount of work for one b-bit modular
multiplication (inversion). We assume M(b1) = M(b2)(b1=b2)2, I(b1) =
I(b2)(b1=b2)2, and I(b)=M(b) � 4.
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