Specification of ESIGN Identification

1 Introduction

We describe the specification of an identification scheme based on ESIGN
signature scheme. The identification scheme, ESIGN Identification, is con-
verted in a traditional way from ESIGN signature scheme. ESIGN is origi-
nally a digital signature scheme specified by a triplet of primitive algorithms,
(G,S,V), along with a hash function, where G is called the key generation
algorithm, S the signing algorithm, and V the verifying algorithm. We will
describe the specifications of these algorithms in Sec. 4. We also use some
auxiliary algorithms, such as a pseudo-random number generator, a primal-
ity test algorithm, and a hash function, which we mention in Sec. 5 and
Sec. 9 later.

2 Criteria of Design

2.1 Design Policy

Security in a cryptosystem is clearly the most important criterion: We make
in a traditional way an identification scheme from ESIGN signature scheme.
ESIGN as a signature scheme can be proven secure in the strongest security
notion (existentially unforgeable against adaptively-chosen message attacks)
in the random oracle model. The identification scheme obtained by this way
then can be proven secure for an identification scheme in the RO model (See
the document of “Self-Evaluation of ESIGN Identification”). The definition
of security for an identification scheme follows that in [12].

Efficiency is also a very important factor in a cryptosystem — performance
and amount of resource when implemented in software/hardware. ESIGN
identification is at least as efficient as any well-known identification scheme
(See 2.2).



2.2 ESIGN Signature

ESIGN is a digital signature scheme that can be proven secure in the
strongest security notion (existentially unforgeable against adaptively-chosen
message attacks) in the random oracle model.

To achieve the security, we adopt the random oracle paradigm along
with a reasonable intractable assumption. In the random oracle paradigm,
security of a cryptosystem is proved assuming hash functions are modeled
as random oracles. This paradigm was originally proposed by Bellare and
Rogaway in [3], and is rapidly becoming a standard approach to achieve
a provably-secure cryptosystem. Security of ESIGN, in the random oracle
model, can be assured under an intractable assumption, which we name
the approximate e-th root assumption. This assumption is an approximate
version of RSA assumption.

As for efficiency, signature generation with ESIGN is ten times more
efficient than that achieved with RSA-based signature schemes, while their
verification performances are comparable. Compared to EC(Elliptic Curve)-
based signature schemes, ESIGN is several times faster in terms of signature
and verification performance.

3 Notations

e ¢ := b: the value of b is substituted for a, or a is defined as b.

o 7 : the set of integers.

Z/nZ :=1{0,1,... ,n — 1}.

Let A, B be sets. A\B:={z | 2 € AAz & B}.

Let A be a set. For k € N, A*: the set of all k-tuples of elements in A
(ie., AF:= Ax - x A).
———’
k

(Z/nZ)* :={1,2,... ,n—1}\{z | ged(z,n) # 1}.

e {0,1}* is the set of finite strings. {0,1}* is also denoted by B.
o {0,1} is the set of i bit length bit strings. {0,1}° is also denoted by
B,.



e Let a € Z. B;[a] denotes a bit string (a;—1,a;-2,... ,a9) € B; such

that '
a=ag+2a; +2%a5+ -2 1a;_y.
e Let a:= (aj_1,a;—2,... ,a0) € B;. I[a] denotes an integer b € Z such
that

b= ap + 2(11 + 22612 + - -2i_1ai_1.
e Ifa e By, |a| :=1.

e a = b (mod n) means ¢ — b is divided by n. @ := bmod n denotes
a € Z/nZ and a = b (mod n).

e Let a € B and b € B. al||b denotes the concatenation of @ and b. For
example, (0,1,0,0)|/(1,1,0) = (0,1,0,0,1,1,0).

o Let a € B. d* :=aqf|---||a.
——
k

o Let X € B. [X]P%“" denotes the most pLen significant bits of X.

e Let a € B;and b € B;. a®b means the bit-wise exclusive-or operation.

(i.e.,ad b€ B;.)

4 Cryptographic Primitives

ESIGN is specified by a triplet of primitive algorithms, (G,S,V), where G
is called the key generation algorithm, § the signing algorithm, and V the
verifying algorithm.

If a variable, z, in an input or output in this specification is in Z, then it
should be in the binary form, B;[z], where ¢ is an arbitrary length (specified
by the interface with an application/protocol) with z < 21

4.1 Key Generation: §

The input and output of G are as follows:
[Input | Security parameter k(= pLen) € Z.

[Output | The pair of public-key, (n,e,pLen) € Z?, and the secret-key,
(p,q) € Z°.

The operation of G, on input k is as follows:



e Choose two distinct primes, p, ¢, of size k and compute n := p’q.

Select an integer e > 4.

Set pLen := k.

e Output the binary coding of (n,e,pLen) and (p, q).

4.2 Signature Generation: S

The input and output of S are as follows:

[Input ] A string, m € {0,1}PL*"~! along with (the binary coding of) a
public-key, (n,e,pLen).

[Output ] A binary string, s € {0,1}3Plen,
The operation of S, on input m, (p,q), and (n,e,pLen), is as follows:

1. Pick r at random and uniformly from (Z/pgZ)\pZ := {r € Z/pqZ| gcd(r,p) =
1}.

2. Set z := (0||m||0?PL*") and a := (I(z) — r°) mod n.

3. Set (wp, w1 ) such that

Q
wo = —
it
wy = wo-pg— Q.

4. Tf wy > 22PLen=1 then go back to Step 1. (That is, if the most signifi-
cant bit of wy is 1, then go back to Step 1.)

5. Set t := 2% mod p and s := Bs,req[(r + tpg) mod n].

(&

6. Output s.

4.3 Signature Verification: V

The input and output of V are as follows:

[Input | The pair of strings, (m, s), along with (the binary coding of) the
public-key, (n,e,pLen).

[Output | A bit — ‘1’ represents valid and ‘0’ represents invalid).



The operation of V, on input (m, s) along with (n,e,pLen) is as follows:

e Check whether the following equation holds or not:

[Bspren[(s)° mod n]]pLen = 0||m.

e If it holds, output ‘1’ (rep.valid), otherwise output ‘0’ (rep. invalid).

5 Auxiliary Algorithms
Here we describe the auxiliary algorithms used in this paper.

e [PRNG] In the key-generation and signature-generation algorithms, a
pseudo-random number generator (PRNG) is used to pick up a random
number from an appropriate domain. For a practical construction of
PRNGs, the reader is referred to [14, Annex D.6] or [17, Chapter 6].

e [Primality Test] In the key-generation and signature-generation al-
gorithms, a primality testing algorithm is used to pick up a prime
number with appropriate bit-length. A practical construction of a pri-
mality testing algorithm is, for instance, Miller-Rabin Test [14, Annex
A.15.1].

e [Hash Function] A construction of a hash function is described in
Sec. 9, which is used in the signature-generation and verification algo-
rithms.

e [Basic Operations] Basic operations over groups, rings, and fields,
like multiplication, addition, etc., follow algorithms in [14, Annex A.1-

6 Specification of ESIGN Identification
This section details the procedure of ESIGN identification.
[Set-UP] User A generates a public key, (n,e, HID, pLen), and the corre-

sponding secret key, (p,¢), following the procedure of key generator G. A
then register the public key to the server(or verifier) B.



[Identification]

1. Verifier B generates a random string r € {0, 1}7¢" and send them to
user A.

2. A makes a ESIGN signature, s, on random string r, using the secret
key (p,q), and return the signature to B.

3. B verifies the validity of the signature: Check whether the following
equation holds or not,

[Bspren[(s)” mod n]]pLen = 0||H (m).

7 Specification of ESIGN Signature

Here we describe the specification of ESIGN.

If a variable, z, in an input or output in this specification is in Z, then it
should be in the binary form, B;[z], where ¢ is an arbitrary length (specified
by the interface with an application/protocol) with = < 21.

7.1 Key Generation: G

The input and output of G are as follows:
[Input | Security parameter k(= pLen) € Z.

[Output ] The pair of public-key, (n,e,pLen, HID) € Z*, and the secret-
key, (p,q) € Z°.

The operation of G, on input k is as follows:
e Choose two distinct primes, p, ¢, of size k and compute n := p?q.
e Select an integer e > 4.

e Set plen := k.

Pick up HID where HID indicates the identity of a (hash) function H
:40,1}* — {0,1}PL7=1 in the pre-prepared hash function list.

Output the binary coding of (n,e,pLen, HID) and (p, q).



Remark:

Since 0|| H(z), not H(z), is always required in the signing and verification
procedures, H(x) can be realized by using hash function H' : {0,1}* —
{0,137 as follows: first H'(z) is computed, and the most significant bit
of H'(x) is set to ‘0" while preserving the other bits. The resulting value is

0| H (z).

7.2 Signature Generation: S

The input and output of S are as follows:

[Input | A message, m € {0,1}" along with (the binary coding of) a
public-key, (n,e, pLen, HID).

[Output ] A binary string, s € {0,1}3Plen,

The operation of S, on input m, (p,q), and (n,e,pLen,HID), is as fol-
lows:

1. Pick r at random and uniformly from (Z/pgZ)\pZ := {r € Z/pqZ| gcd(r,p) =
1}.

2. Set z := (0||H(m)||0*PF*") and a := (I(z) — 7¢) mod n.

3. Set (wp, w1 ) such that

(8
w = —_—
0 [pq17
wy = wg- pg— a.

4. Tf wy > 22PLen=1 then go back to Step 1. (That is, if the most signifi-
cant bit of wy is 1, then go back to Step 1.)

5. Set t := %21 mod p and s := Bs,re[(r + tpg) mod n).

ere—1

6. Output s.

7.3 Signature Verification: V

The input and output of V are as follows:

[Input | The pair of message and signature, (m, s), along with (the binary
coding of) the public-key, (n, e, pLen, HID).



[Output | A bit — ‘1’ represents valid and ‘0’ represents invalid).

The operation of V, on input (m,s) along with (n,e,pLen,HID) is as
follows:

e Check whether the following equation holds or not:

[Bspren[(s)” mod n]]pLe” = 0||H (m).

e If it holds, output ‘1’ (rep.valid), otherwise output ‘0’ (rep. invalid).

8 Recommended Parameters
We recommend ESIGN parameters as follows:

e k: more than or equal to 320 (the size of n should be more than 960
bits), and

e ¢: more than or equal to 8.

We used 1152 bits as the size of n and € = 32 in Sec. 4 in the document
“Self-Evaluation of ESIGN Identification”.

9 Hash Function

In the key-generation algorithm, a hash function used in the signature-
generation and verification algorithms is picked up from the pre-prepared
hash function list. ESIGN can be proven secure if the hash function in it is
modeled as a random oracle.

We show a typical construction of a hash function with pLen > 160 out
of SHA (NIST Secure Hash Algorithm), which was suggested by Bellare and
Rogaway [4].

We denote by SHA,(z) the 160-bit result of SHA applied to z, except
that the 160-bit “starting value” in the algorithm description is taken to be
ABCDE = ¢. Let SHA! (2) denote the first I-bits of SHA,(z). Fix the
notation < ¢ > for ¢ encoded as a binary 32-bit word. We define function H
as:

H(z):=SHAY (< 0 > ||2)||SHAS (< 1 > ||2)]] - - - ||[SHAL (< 1 > ||2),

where [ = | 28], and L; = pLen — 80L.
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