
EPOC 3675849

1 A<=>
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 ��y¡��Ö�4�¤_�»/��v�k�¤ª²EPOC !�³�©²EPOC-1 !
�³©²EPOC-2 !�³©²EPOC-3 !�³�vw¡��q®c}�§[�{©�¥�¥
��v�»/«·.§�wª
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Va�eË�$���v!�?2ë�»/ÊË�u¤©7Bë�)V°ÓèaWe�üM
ûV±�&��¡¤8ú»/§^�ª

2 :£¨«;
2.1 ¶¾

1. [EPOC-1 Å®ÈÎ] p-¿ÂH-è°è>��v��©]�§Tø±{	�~¥
�©~�iy[~]�{l��+�© EPOC-1 �ì*ë��!�Ã�L����E
¸Ñ°!E�%C� �±�u¤ª

2. [ÏÖÔ¯ÝÄÀÂó�ñø¯ÝÆ½¿Á EPOC-2 Å®ÈÎ] �'�Â%-è{	
�~¥�°��}�© OU !�4��&Ê��§-è�¥�±©~�iy[~]�
{l��+�© EPOC-2°q®oy!�§Pv���±�ì*ë��!�Ã�L�
���E¸Ñ�u¤ª

3. [°�ÅÏÖÔ¯ÝÆ½¿Á EPOC-2 Å®ÈÎ] �'�Â%-è{	�}°��
}�©OU !�4��&Ê��§-è�±©SP�¤CçT!�{gÏë�L�+
� ��¢�©~�iy[~]�{l��+�© EPOC-2°CçT!�§Pv��
�±�ì*ë��!�Ã�L����E¸Ñ�u¤ª
EPOC-2°CçT!�§Pv���±�©�(T!��CçT!�§���¦��
pWu�kn!�Ê`�u¤{©��Ê`�K#��©��pWu�kn!�Ê`�
���!E�%C�� ��{Èù�¥�v¤ð�u¤ªsx�©���Pv¤Cç
T!�{gÏë�%C��� ��ÖÏë�%C�� ���vý���© EPOC-

2°CçT!�§Pv���±���Î�ë����¥¤�ÖÏë�%C�� ��
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!�Ê`��¤ª�w&�� EPOC-2 �Óæ�©ï�l®h���¤Õù:Ö�u
¤ª��£©g�b{!�Ã§À��¤"�l®h�	Ì��Qù§�¤��©!�
Ã{ñâ�'�¨�¥�£Æ��¥�ý���©����§Qj�¤��{1Ö��
¤ª

4. [ÏÖÔ¯ÝÄÀÂó�ñø¯ÝÆ½¿Á EPOC-3 Å®ÈÎ] Gap-�'�Â%-
è{	�~¥�°��}�© OU !�4�� Gap-&Ê��§-è�¥�±©~�
iy[~]�{l��+�© EPOC-2°CçT!����q®oy!�§Pv��
�±�ì*ë��!�Ã�L����E¸Ñ�u¤ª
Õÿ Gap-�'�Â%-è�©���è>�¥�-è�u¤{©��Gap-�'�Â
%-è{×¢¥¤� n §�'�Â%�¤I�� Ô��modn ���]üM��Ú
èI�� Ô�{Í/��¤ª��¡w�����Æ=�£Ôv�����¢¥�y
£© Gap-�'�Â%-è��Ì�-è��x¢¥¤ª��©$�© Gap--è�
°Mè Di�e-Hellman -è���±Mè-è����4I�u¤��§^��v¤
[11]ª

5. [°�ÅÏÖÔ¯ÝÆ½¿Á EPOC-3 Å®ÈÎ] Gap-�'�Â%-è{	�}
°��}�© OU !�4�� Gap-&Ê��§-è�±©SP�¤CçT!�{g
Ïë�L�+� ��¢�©~�iy[~]�{l��+�© EPOC-3°&Ü�C
çT!�§Pv���±�ì*ë��!�Ã�L����E¸Ñ�u¤ª
EPOC-3°CçT!�§Pv���±�© EPOC-2°CçT!�§Pv���±�
ÐO�©�(T!��CçT!�§���¦��pWu�kn!�Ê`�u£©�
�pWu�kn!�Ê`����!E�%C�� ��{Èù�¥�v¤ª��©
EPOC-2 �ÐO�©ï�l®h���¤Õù:Ö§ÈL��v¤ª��£©g�b
{!�Ã§À��¤"�l®h�	Ì��Qù§�¤��©!�Ã{ñâ�'�¨�
¥�£Æ��¥�ý���©����§Qj�¤��{1Ö��¤ª
EPOC-2 ��v EPOC-3 �Óå�©pWu�kn!�Ê`���fkb}�ëS
PÊË°��£©fkb}�(�\�yv��(T!�Ê`§Pv�TØ�{��¦
¥©"��*fkb}�(�â�!ö�Ø��¥�T§Pv�Á�&�CçT!��
¡¤l®h!�,{��¦¥¤±{1Ö����u¤°²EPOC!�WO÷³� 6.4

�§Tø±ª��£© EPOC-2 ��©TØ��l®h!�{Ð9��X¦¥¤��
��© EPOC-3 ��©T§Ø�����©¹Ð9�.&�CçT!��¡¤!�,
§��w��{1Ö�u¤ª�¢�©��¡w�!�ç�§�����!E�%C�
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 ��°ì*ë��!�Ã�L����E¸Ñ¯5P±{Èù�¥�v¤��§ùF
�|¤ª

6. [®ÈÎÅ�·]

aPëz�!E�%C� ���ùF��v����(T!�����© Cramer-

Shoup!� RSA!��7�}OAEP{à¢¥�v¤ª Cramer-Shoup!��©
~�iy4����¤-è{�aë�ÛP&Ê��pkb|4��u¤ð�K¥�v
¤{©��të�-è��°7Bë�mU��-è¡£�Ev-è�u¤±Di�e-

Hellman -è¡£��¢�Ev DDH -è�7�v�v¤ª&Ê© EPOC-2 �©l
�ë�~�iy4��7�v�v¤���©��të�-è��7Bë��'�Â%
-è�7�v�v¤ð�OAEP   Cramer-Shoup !�¡£�K¥�v¤ª��©
EPOC-3 �©��të�-è{ Gap-�'�Â%-è�u£�'�Â%-è¡£�
Ev-è�u¤ª°EPOC-3 �© ���-è�� EPOC-2 �·�¡£Ev-è
�7�v�v¤{©À��õl�ò fkb}�ëSPÊË����Ö¯:ÖG�©
EPOC-2 ¡£�K¥�v¤ª±

º 1:  ���·.
Ê`  �� ��të ~�iy4�

°!E�%C�± -è -è
EPOC-1  ��ùF�| p-¿ÂH ��~�iy
EPOC-2(OTP)  ��ùF�| �'�Â% ��~�iy
EPOC-3(OTP)  ��ùF�| Gap-�'�Â% ��~�iy
Cramer-Shoup  ��ùF�| DDH UOWHF

OAEP-RSA  ��ùF�| RSA ��~�iy
PKCS#1 Ver.1 �L1 � �

Ýô RSA �L1 � �

°ã¬ OTP�©CçT!����q®oy!�SP§© DDH�©Di�e-Hellman

MèI�§© UOWHF �©ÛP&Ê��pkb|4�§%C�¤ª±

2.2 ��ØÓµ

B���© EPOC-1, EPOC-2, EPOC-3 � ���4�¤N2§^� [13, 7, 8, 11]ª
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×º 2.1 G § EPOC-1 �T
�)V��© (n; g; h; pLen; hLen) §���(T��¤ª
b 2 f0; 1g � rf0; 1ghLen �~�iyz�&O���¥���© C := gbhr mod n��
¤ª
��¡w�-në��`\3V�`�ey Adv �����©���è� c, hÂ��|

�ß k(= pLen) ����
Pr[Adv(k; hLen; n; g; h; C) = b] < 1=2 + 1=kc:

{�o�¤�|© p-¿ÂHI�{Ô�v�wª���©-n� G � Adv �-nG3ú
�d¢¥�v¤ª
p-¿ÂHI�{Ô�v�vw-è§ p-¿ÂH-è�wª

×º 2.2 G0 § G0(k) ! n, n = p2q, jpj = jqj = k�u¤¡w�
�6�� (p; q : �

�)© n �Â½� EPOC-2 ��(T n �Ð���¤ª�'�Â%I���© (n; k) §N
x¢¥� (p; q) §S�~¤I��u¤ª
��¡w�-në��`\3V�`�ey A �����©���è� c, hÂ��|�

ß k ����
Pr[A(k; n) = (p; q)] < 1=kc

{�o�¤�|©�'�Â%I�{Ô�v�wª���©-n� G0 � A �-nG3ú
�d¢¥�v¤ª
�'�Â%I�{Ô�v�vw-è§�'�Â%-è�wª

×º 2.3 G § EPOC-3 �T
�)V��© (n; g; h; pLen; hLen) §���(T��¤ª
b 2 f0; 1g � rf0; 1ghLen �~�iyz�&O���¥���© C := gbhr mod n��
¤ª p � SG § p-¿ÂHI��4�¤[~]�����|© p � SG §Xx¤��¡w
�-në��`\3V�`�ey Advp�SG �����©���è� c, hÂ��|�ß
k(= pLen) ����

Pr[Adv(k; pLen; hLen; n; g; h) = (p; q)] < 1=kc:

{�o�¤�|© Gap-�'�Â%I�{Ô�v�wª���©-n� G � Adv �-
nG3ú�d¢¥�v¤ª
Gap-�'�Â%I�{Ô�v�vw-è§Gap-�'�Â%-è�wª

×º 2.4 Adv § ��Þ)§���Lb��¤ª!ö�Þ)��© Adv � ��ÄÃ�,

X0 � X1, y¡���þÉ s §
��¤ª���© jX0j = jX1j � (gLen)a (a: è�)
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��¤ª� Þ)��©Adv �!�Ã Y := SymEnc(K;Xb) §Nx¢¥¤ª���©
K 2 f0; 1ggLen y¡� b 2 f0; 1g�~�iyz�&O�è�¢¥¤ª
��¡w�-në��`\3V�`�ey Adv �����©���è� c, hÂ��|

�ß gLen ����
Pr[Adv(gLen;X0; X1; s; Y ) = b] < 1=2 + 1=(gLen)c

{�o�¤�|© SymE {gÏë�L���� ��u¤�vwª���©-n� (k; b)

� Adv �-nG3ú�d¢¥�v¤ª
×� 2.5 p-¿ÂH-è{	�~¥�©~�iy[~]�{l��+�© EPOC-1 �ì*
ë��!�Ã�L����E¸Ñ�u¤ª
×� 2.6 EPOC-2 �Pv¤ SymE §q®oy!���¤ª rLen = pLen � 1, z�
hLen = (2 + c0)pLen (c0 > 0: è�)��¤ª���|© n = p2q ���¤�'�Â%-
è{	�~¥�©~�iy[~]�{l��+�© EPOC-2�ì*ë��!�Ã�L��
��E¸Ñ�u¤ª
×� 2.7 rLen = pLen� 1, z� hLen = (2 + c0)pLen (c0 > 0: è�)��¤ª���
|© n = p2q ���¤�'�Â%-è{	�}©SP�¤CçT!�{gÏë�L�+�
 ��¢�©~�iy[~]�{l��+�© EPOC-2�ì*ë��!�Ã�L����
E¸Ñ�u¤ª
×� 2.8 OU !�4��&Ê��§-è�©SP�¤CçT!�{gÏë�L�+� �
�¢�©~�iy[~]�{l��+�© EPOC-2�ì*ë��!�Ã�L����E¸
Ñ�u¤ª
×� 2.9 EPOC-3 �Pv¤ SymE §q®oy!���¤ª hLen = (2+c0)pLen (c0 >

0: è�)��¤ª���|© n = p2q ���¤ Gap-�'�Â%-è{	�~¥�©~�
iy[~]�{l��+�© EPOC-3 �ì*ë��!�Ã�L����E¸Ñ�u¤ª
×� 2.10 hLen = (2 + c0)pLen (c0 > 0: è�)��¤ª���|© n = p2q ���¤
Gap-�'�Â%-è{	�}©SP�¤CçT!�{gÏë�L�+� ��¢�©~�
iy[~]�{l��+�© EPOC-3 �ì*ë��!�Ã�L����E¸Ñ�u¤ª
×� 2.11 OU !�4�� Gap-&Ê��1§-è�©SP�¤CçT!�{gÏë�L�
+� ��¢�©~�iy[~]�{l��+�© EPOC-3 �ì*ë��!�Ã�L��
��E¸Ñ�u¤ª

1pSG ����!$#�� %(,+/
�����&���2'6�14�� ��
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�Ê 1:ú<� ���°;á±N2�4�¤¡£hWm��D�»/{Ò¢¥�v¤ [7,

8, 11]:sx�© EPOC-2 §°ì*ë��!�Ã�L���¤E¸Ñ�2ð�±×¤�L�
�#§-è�¤�©���L�Q�¤KVq���Ð�KVq� n §�'�Â%�|¤�
�§^�¤ª
�Ê 2:°n = p2q ��'�Â%� Ô���v�±
n = p2q ��'�Â%{ n = pq ¡£�1Ýz�wz��v��Âz���v{© n =

p2q �Ó,�¥�v}�z�V�`�ey{RB�¥�v¤ [14, 15, 16, 1]ª�z�©�
¥¢�V�`�ey�v�¥��'�Â%��(F�Ë��V�`�ey�u¤ª&Ê©
n = pq � n = p2q �v�¥�yv��!����'�Â%V�`�ey{���¤vË
�u£©��V�`�ey�a�\3� n �aWe�$���©�'��aWe��$�
��vª"ú¡£©�\ð��© n = p2q �aWe§ n = pq �aWe�ÐÍ��¥�©
ÐÍ� ��§������x¢¥¤ª

3 9¤«;
3.1 ò�ðâãàÃÅ;É�´

� :½ÀÁöýêè:

f�w®d
� ÇÒ¸Ð:

Verilog-XL ´ DesignCompiler

� üë�è:½�:

J 25.6KG(¶2NANDG�/V)´z{� (13312bit)��¬ [~�iy�ck]´û
V6µ ´0V6]´ [z{� (13312bit)]

� ËÚ�´:

]�k] 30MHz ��)V�ò (bx|�®b}��¡£�è)

EPOC-1

!� 640 ms

À� 960 ms

EPOC-2

!� 640 ms

À� 960 ms

EPOC-3

!� 640 ms

À� 320 ms

���©TaWe 1152 bit��¤ª
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3.2 ëõïâãàÃÅ;É�´

� �´öûíï÷�ø:

CPU: Pentium with MMX 266MHz

OS: Trubo Linux version 4.0

� ¹=ÛÜ:

¢� (gcc version 2.91.60)

�Ùæ��)V~Wu~���� gnu mp (gmp version 3.0.1) §XP
� ùúü:½� (æ�ð�):

EPOC-1

!� 44.814 Kbytes

À� 45.353 Kbytes

EPOC-2

!� 49.371 Kbytes

À� 50.957 Kbytes

EPOC-3

!� 50.838 Kbytes

À� 51.888 Kbytes

� ùúü:½� (þ�åäüà):

EPOC-1

!� 488 Kbytes

À� 484 Kbytes

EPOC-2

!� 472 Kbytes

À� 488 Kbytes

EPOC-3

!� 472 Kbytes

À� 488 Kbytes

� Ì�ËÚ:

EPOC-1

!� 60.0 ms

À� 86.9 ms

EPOC-2

!� 53.3 ms

À� 73.7 ms

EPOC-3

!� 52.8 ms

À� 27.3 ms

���©TaWe 1152 bit��¤ª
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� î�ìçáé:

n �aWe 1152 bits

hLen 160 bits

gLen 160 bits

ÄÃæ 128 bits

�(TtUW�aWe 694 bytes

¸DTtUW�aWe 304 bytes

!�ÃtUW�aWe 291 bytes(EPOC-1) / 307 bytes(EPOC-2) / 332 bytes(EPOC-3)

� ßÙ²Å¼»:

_�rW�\�!ì,� gcc -O3 §Pv�ª
B»/�©a�v�v�^~y (call-6)���î¼����§a���N2�u¤ª
EPOC � gRhr �)V§© gR � hr §Å����A��v¤ª&ò� gRhr §
A�¤ÊË§�¡��©J 1.5Ù��,�¤��{�|¤{©�&�»/�����
�,ÊË§Pv�v�vª
��©�(Tr~z®h� g �©��¨��ý� 2 §Xw��{jR¤ª�¥§S
P��v�^~y§ g = 2 �ý��Ó,����,�¤��{jR¤{©�&�»
/������,ÊË§Pv�v�vª
mod n   mod p2 �)V�yv�©â���üMèl§SP�����)V�¤�
�{jR¤{©�&�»/��©����,ÊË§Pv�v�vª
��{��©j|®�§�x�B»/¡£���a�{1Ö�u¤ª

4 ¨>@@§«;?¥¦ªA8?@©?
EPOC !���Ö§©7ó��¤aWe�üMûV�&��/V��»/�¤ª��t

ë�)V�7�}�(T!��ý�©��¡w�ÊË�¡¤»/{Ê`��L��Ö§»
/�¤!�?2ë�ÊË��x¢¥¤ª��£©��¡w�p®nXZV gtmXZV
§Pv�a����©���Ò¢¥�Ê`3���ë��Ö·���¾Ç�u¤��x¢
¥¤ª
����©íJë� fr�r~z®h�ý���v�»/§��wª&��©�Ö§

iY�© ���-è§E��ý��u¤°èl 2.8, èl 2.11±ª�w&��©èl 2.7,

èl 2.10 Í�ÿO�uw¡w�r~z®h§�è��ý��u¤ª
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4.1 Ñ¿®ÈÎ³×Å±ÃÅôûù�ìÅÍÞ

�(T!�§SP�¤íJë�0D°�(T!�� 128skmêò�T�Ø����P
v¤±�yv�© EPOC-1, EPOC-2 y¡� EPOC-3 �íJë�r~z®h�è�"+
��¤°���|� ���©èl 2.8, èl 2.11�Èù�¥¤±ª EPOC-1 �ý�©
mLen = 128, rLen = 80, hLen = 208© EPOC-2°q®oy!�SP±�ý�© rLen =

128, gLen = 128, hLen = 128©�� EPOC-3 °q®oy!�SP±�ý�©RLen =

128, gLen = 128, rLen = hLen = 128©��¤ª�¢�© EPOC-1, EPOC-2, EPOC-

3 �yv��© n �aWe§ 1152 bits ��©·.���� OAEP-RSA �ý�� n §
1152 bits© e § 232 + 1 ��¤ª
��©+Ê`��©pkb|�õlq@�0VÍ�õlq�üMûV�õlq�·��

�EY�|¤��©����üMûV�&����·.§��wª�¢�© EPOC �!�
õl��©�|ûKV�,äqWo�Ë°27é�qWo�Ë±§Pv¤����© EPOC,

RSA �À�KV��â�üMèl2§Pv¤����¤ª
���|© EPOC-1, EPOC-2, EPOC-3 �¢�� OAEP-RSA �õlq�¢��l®

haWe§"+�^�ª�y©"+� #M(1152) � 1152 bits �Ë�+��üMûV�&
�§%C�¤ª

º 2: õlqÍ�·.°Ev ��-è�+��r~z®h±
Ê` !�, À�, Tæ (jnj) !�Ãæ°jCj±

°#M (1152)± °#M(1152)± °bits± °bits±
EPOC-1 364 266 1152 1152

EPOC-2(OTP) 224 188 1152 1280

EPOC-3(OTP) 224 64 1152 1408

OAEP-RSA 33 432 1152 1152

4.2 <¿®ÈÎ³×Å±ÃÅôûù�ìÅÍÞ

�(T!�§SP�¤íJë�0D°�(T!�� 128skmêò�T�Ø����P
v¤±�yv�©èl 2.7, èl 2.10 Í�ÿO�uw¡w��è�� EPOC-1, EPOC-2

y¡� EPOC-3 �íJë�r~z®h�è�"+��¤ª EPOC-1 �ý�©mLen =

2EPOC ��BC)5"DE�F.G���B modp2 �	*! modp 	*�0��H*� -3!#� 

9



128, rLen = 80, hLen = 832© EPOC-2°q®oy!�SP±�ý�© rLen = 128,

gLen = 128, hLen = 832©�� EPOC-3 °q®oy!�SP±�ý�©RLen = 128,

gLen = 128, rLen = 832, hLen = 128©��¤ª�¢�© EPOC-1, EPOC-2, EPOC-

3 �yv��© n �aWe§ 1152 bits ��©·.���� OAEP-RSA �ý�� n §
1152 bits© e § 232 + 1 ��¤ª
����-è�©���Ð���¤ª
���|© EPOC-1, EPOC-2, EPOC-3 �¢�� OAEP-RSA �õlq�¢��l®

haWe§"+�^�ª

º 3: õlqÍ�·.°cv ��-è�+��r~z®h±
Ê` !�, À�, Tæ (jnj) !�Ãæ°jCj±

°#M (1152)± °#M(1152)± °bits± °bits±
EPOC-1 1300 786 1152 1152

EPOC-2(OTP) 1280 775 1152 1280

EPOC-3(OTP) 1280 64 1152 1408

OAEP-RSA 33 432 1152 1152
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Appendix

OCAC: an Optimal Conversion for Asymmetric

Cryptosystems

Tatsuaki Okamoto David Pointcheval

KL

Five years after the optimal asymmetric encryption padding (OAEP) which

makes chosen-ciphertext secure encryption scheme from any trapdoor one-way

permutation (but whose unique application is RSA), this paper presents OCAC,

an optimal conversion which applies to any weakly secure cryptosystem: the

overload is negligible, since it just consists, as with OAEP, of two hashings for

both encryption and decryption. Furthermore, advantages of OCAC beyond

OAEP are numerous:

1. it is more general than OAEP, since it can apply to any partially trap-

door one-way function (RSA and modular square, but also Di�e-Hellman,

Higher Residues, etc);

2. it is possible to integrate symmetric encryption (block and stream ciphers)

to reach very high speed rates;

3. it also provides a key distribution with session key encryption which achieves

chosen-ciphertext security with an only semantically secure symmetric scheme.

Therefore, OCAC could become a new alternative to OAEP, and even reach

security relative to factorization.

In addition, in order to clarify the security requirement of the underlying

asymmetric encryption, this paper introduces a novel class of computational

problems, the gap problems, which is considered to be dual to the class of the

decision problems. We show the relationship among inverting problems (e.g.,

computational-DH problem), decision problems (e.g., decision-DH problem), and

gap problems (e.g., gap-DH problem).

1 Introduction

For a long time many conversions from a weakly secure encryption into a chosen-

ciphertext secure cryptosystem have been attempted, with variable success. Such a
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goal is of greatest interest since many one-way encryption schemes are known, with

variable e�ciency and various properties, whereas chosen-ciphertext secure schemes

are very rare.

1.1 Chosen-Ciphertext Secure Cryptosystems

Until few years ago, the description of a cryptosystem, together with some heuris-

tic arguments for security, were enough to convince and to make a scheme to be

widely adopted. Formal semantic security [15] and further non-malleability [11] were

just seen as theoretical properties. However, after multiple cryptanalyses of interna-

tional standards [5, 8, 7], provable security has been realized to be important and

even became a basic requirement for any new cryptographic protocol. Therefore, for

the last two years, many cryptosystems have been proposed. Some furthermore in-

troduced new problems [17, 21, 18, 23, 26], other are intricate constructions, over

old schemes, to reach chosen-ciphertext security (from El Gamal [33, 32, 9, 1, 20],

Okamoto-Uchiyama [22], D-RSA [25] or Paillier [24]), with speci�c security proofs.

Indeed, it is easy to describe a one-way cryptosystem from any trapdoor problem.

Furthermore, such trapdoor problems are not so rare (Di�e-Hellman [10], factoriza-

tion, RSA [29], elliptic curves, McEliece [16], etc). A very nice result would be a generic

and e�cient conversion from any such trapdoor problem into a chosen-ciphertext se-

cure encryption scheme.

1.2 Related Work

In 1994, Bellare and Rogaway [3] suggested such a conversion, the so-called OAEP

(Optimal Asymmetric Encryption Padding). However, its application domain was

restricted to trapdoor permutations, which is a very rare object (RSA seems to be

the only one application). Nevertheless, it provided the most e�cient RSA-variant,

the OAEP-RSA scheme, provably chosen-ciphertext secure, and became the new RSA

standard { PKCS #1 [30].

At PKC '99, Fujisaki and Okamoto [13] proposed another conversion with further

improvements [14, 27]. It therefore seemed that the expected goal was reached: a

generic conversion from any one-way cryptosystem into a chosen-ciphertext secure

encryption scheme. However, the resulting scheme is not optimal, from the compu-
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tational point of view. Namely, the decryption phase is more heavy than one could

expect, since it requires a re-encryption.

As a consequence, with those conversions, one cannot expect to obtain a scheme

with an easy decryption phase (unless both encryption and decryption are easy, which

is very unlikely). However, decryption is usually implemented on a smart card, hence

e�cient decryption process is a challenge with a practical impact.

1.3 Achievement: a New and Optimal Conversion

The present work provides a new conversion which is optimal in both the encryption

and decryption phases. Indeed, the encryption needs an evaluation of the one-way

function, and the decryption just makes one call to the inverting function. Further

light computations are to be done, but just an XOR and two hashings. Moreover,

many interesting features appear with integration of symmetric encryption schemes.

The aim of the new conversion is very natural: it roughly �rst encrypts a session

key using the asymmetric scheme, and then encrypts the plaintext with any symmetric

encryption scheme, which is semantically-secure under simple passive attacks (possibly

the one-time pad), using the session key as secret key. Of course this simple and

actually used scheme does not reach chosen-ciphertext security, but just making the

session key more impredictable and adding a checksum, it can be made so:

C = Easympk (R) (1)

K = G(R) (2)

Epk(m) = CjjE symK (m)jjH(C;R;m); (3)

where G and H are any hash functions.

Moreover, if one uses a semantically secure symmetric encryption scheme against

basic passive attacks (no known-plaintext attacks), the last part of the ciphertext,

which is very fast since it only makes calls to a hash function and to a symmetric

encryption, can be used more than once, with many messages. This makes a highly

secure use of a session key, with symmetric encryption E sym which initially just meets

a very weak security property:

C = Easympk (R)

K = G(R)
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Epk(mi) = CjjE symK (mi)jjH(C;R;mi) for i = 1; : : : :

1.4 Outline of the Paper

We �rst review, in Section 2, the security notions about encryption schemes (both

symmetric and asymmetric) required in the rest of the paper, with namely the seman-

tic security. Then, in the next section (Section 3), we describe a new attack scenario,

we call the Plaintext-Checking Attack. In Section 4, we develop a novel class of prob-

lems, the Gap-Problems. Then in Section 5, we describe our new Optimal Conversion

together with the security proofs, relative to the above gap-problems. The next section

(Section 6) presents some interesting applications of this conversion. Then comes the

conclusion.

2 Security Notions for Encryption Schemes

2.1 Asymmetric Encryption Schemes

In this part, we formally de�ne public-key encryption schemes, together with the

security notions.

De�nition 2.1 (Asymmetric Encryption Schemes) An asymmetric encryption

scheme, on a message spaceM, consists of 3 algorithms (Kasym; Easym;Dasym):

� the key generation algorithm Kasym(1k) outputs a random pair of secret-public

keys (sk; pk), relatively to the security parameter k;

� the encryption algorithm Easympk (m; r) outputs a ciphertext c corresponding to the

plaintext m 2 M (using the random coins r 2 
);

� the decryption algorithm Dasym
sk (c) outputs the plaintext m associated to the ci-

phertext c.

Remark:

As written above, E asympk (m; r) denotes the encryption of a message m 2M using the

random coins r 2 
. When the random coins are useless in the discussion, we simply

note Easympk (m).
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The basic security notion required from an encryption scheme is the one-wayness,

which roughly means that, from the ciphertext, one cannot recover the whole plaintext.

De�nition 2.2 (One-Way) An asymmetric encryption scheme is said to be one-way

if no polynomial-time attacker can recover the whole plaintext from a given ciphertext

with non-negligible probability. More formally, an asymmetric encryption scheme is

said (t; ")-INV if for any adversary A with running time bounded by t, its inverting

probability is less than ":

Succ
inv = Pr[(sk; pk) Kasym(1k);m

R
 M; r

R
 
 : A(Easympk (m; r)) = m] < ":

A by now more and more required property is the semantic security [15] also known

as indistinguishability of encryptions or polynomial security since it is the computa-

tional version of perfect security [31].

De�nition 2.3 (Semantic Security) An asymmetric encryption scheme is said to

be semantically secure if no polynomial-time attacker can learn any bit of information

about the plaintext from the ciphertext, excepted the length. More formally, an asym-

metric encryption scheme is said (t; "; `)-IND if for any adversary A = (A1; A2) with

running time bounded by t,

Adv
ind = 2 � Pr

2
664

(sk; pk) Kasym(1k)

(m0;m1; s) A1(pk);

b
R
 f0; 1g; r

R
 
; c E asympk (mb; r)

: A2(c; s) = b

3
775� 1 < ";

where m0 and m1 are both `-bit long.

Both notions are denoted INV and IND respectively in the following.

Another security notion has been de�ned, called non-malleability [11]. It roughly

means that it is impossible to derive, from a given ciphertext, a new ciphertext such

that the plaintexts are meaningfully related. But we won't detail it since this notion

has been proven equivalent to semantic security against parallel attacks [4].

Indeed, the adversary considered above may obtain, in some situations, more infor-

mations that just the public key. With just the public key, we say that she plays a

chosen{plaintext attack since she can encrypt any plaintext of her choice, thanks to

the public key. It is denoted CPA. But she may, for some time, access a decryption

oracle. She then plays a chosen{ciphertext attack, which is either non-adaptive [19]
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if this access is limited in time, or adaptive [28] if this access is unlimited, and the

adversary can therefore ask any query of her choice to the decryption oracle, but of

course she is restricted not to use it on the challenge ciphertext.

It has already been proven [2] that under this latter attack, the adaptive chosen-

ciphertext attacks, denoted CCA, the semantic security and the non-malleability no-

tions are equivalent, and is the strongest security notion that one could expect. We

therefore call this security level in this scenario the chosen{ciphertext security.

2.2 Symmetric Encryption Schemes

In this part, we briey focus on symmetric encryption schemes.

De�nition 2.4 (Symmetric Encryption Schemes) A symmetric encryption scheme,

on a message spaceM, consists of 3 algorithms (Ksym; E sym;Dsym):

� the key generation algorithm Ksym(1k) outputs a random key k, relatively to the

security parameter k;

� the encryption algorithm E symk (m) outputs a ciphertext c corresponding to the

plaintext m 2 M, in a deterministic way;

� the decryption algorithm Dsym
k (c) gives back the plaintext m associated to the

ciphertext c.

As for asymmetric encryption, impossibility for any adversary to get back the whole

plaintext just given the ciphertext is the basic requirement. However, we directly

consider semantic security.

De�nition 2.5 (Semantic Security) A symmetric encryption scheme is said to be

semantically secure if no polynomial-time attacker can learn any bit of information

about the plaintext from the ciphertext, excepted the length. More formally, a sym-

metric encryption scheme is said (t; "; `)-IND if for any adversary A = (A1; A2) with

running time bounded by t,

Adv
ind = 2� Pr

2
664

sk Ksym(1k)

(m0;m1; s) A1(k);

b
R
 f0;1g; c E symk (mb)

: A2(c; s) = b

3
775� 1 < ";

where m0 and m1 are both `-bit long.
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In the basic scenario, the adversary just sees some ciphertexts, but nothing else. How-

ever, many stronger scenarios can also be considered. The �rst which seemed natural

for public-key cryptosystems are the known/chosen-plaintext attacks, where the adver-

sary sees some plaintext-ciphertext pairs with the plaintext possibly chosen by herself.

These attacks are not trivial in the symmetric encryption setting, since the adversary

is unable to encrypt herself.

The stronger scenario considers the adaptive chosen-plaintext/ciphertext attacks,

where the adversary has access to both an encryption and a decryption oracle.

However, just the security against the basic no-plaintext/ciphertext attacks (a.k.a.

passive attacks) is enough in our application. Therefore, one can remark that it is a

very weak requirement. Indeed, if one considers AES candidates, cryptanalysts even

fail in breaking e�ciently semantic security using adaptive chosen plaintext/ciphertext

attacks: with respect to pseudo-random permutations, semantic security is equivalent

to say that the family (Esymk )k is (t; ")-indistinguishable from the uniform distribu-

tion on all the permutations over f0; 1g`, after just one query (cf. universal hash

functions [6])!

Remark:

One should remark that the one-time pad provides a perfect semantically secure

symmetric encryption: if Ksym(1k) outputs k-bit long secret key, then for any t it is

(t; 0; k)-semantically secure.

3 The Plaintext-Checking Attacks

We have recalled above all the classical security notions together with the classical

scenarios of attacks in the asymmetric setting. A new kind of attacks (parallel attacks)

has been recently de�ned [4], which have no real practical meaning, but the goal was

just to deal with non-malleability. In this paper, we de�ne a new one, where the

adversary can check whether a message-ciphertext pair (m; c) is valid: the Plaintext-

Checking Attack.

De�nition 3.1 (Plaintext-Checking Attack) The attacker has access to a Plaintext-

Checking Oracle which takes as input a plaintext m and a ciphertext c and outputs 1

or 0 whether c encrypts m or not.
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It is clear that such an oracle is less powerful than a decryption oracle. This scenario

will be denoted by PCA, and will be always assumed to be fully adaptive: the attacker

has always access to this oracle without any restriction: she can even include the

challenge ciphertext in the query. Therefore, it is clear that semantic security under

this attack cannot be reached. But we don't mind, since we just require a scheme to

be one-way in this scenario. It is a very weak notion.

Remark:

One can remark that any deterministic INV-CPA asymmetric encryption scheme is

clearly still INV-PCA. Namely, any trapdoor one-way permutation provides a INV-

PCA-secure encryption scheme (e.g. RSA [29]).

4 Gap Problems

The attacking problem under the above-mentioned Plaintext-Checking Attack can

be characterized by a novel class of computational problems, the gap problems.

We �rst de�ne the gap problems as well as the related inverting and decision prob-

lems. Then we give some examples.

4.1 De�nitions

Let f : f0; 1g��f0; 1g� 7! f0; 1g be any binary relation. The two classical problems

are the following:

� the inverting problem of f is, given x, to compute any y such as f(x; y) = 1 if it

exists, or to answer Fail.

� the decision problem (type 1) of f is, given a pair (x; y), to decide whether

f(x; y) = 1 or not.

� the decision problem (type 2) of f is, given x, to decide whether there exists

some y such that f(x; y) = 1 or not.

In this section, we de�ne the gap problems.

De�nition 4.1 (Gap Problem) The gap problem (type 1 or 2) of f is to solve the

inverting problem of f with the help of the oracle of f 's decision problem (type 1 or 2,

respectively).
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Let us also de�ne some notations:

� a problem X is tractable if it can be solved with non-negligible probability by

some probabilistic polynomial time Turing machine.

� a problem X is strongly tractable if it can be solved with overwhelming proba-

bility by some probabilistic polynomial time Turing machine.

Therefore, we have the negation:

� a problem X is intractable if it is not tractable

� a problem X is weakly intractable if it is not strongly tractable.

Finally, to compare the di�culty of problems, we use the notion of polynomial reduc-

tions:

� a problem X is reducible to problem Y if there exists a probabilistic polynomial

time oracle Turing machine AY (with oracle of problem Y ) to compute X with

non-negligible probability.

� a problem X is strongly reducible to problem Y if there exists a probabilistic

polynomial time oracle Turing machine AY (with oracle of problem Y ) to com-

pute X with overwhelming probability.

We can easily obtain the following proposition,

Proposition 4.2 Let f be any binary relation.

� If the gap problem of f is tractable (resp. strongly tractable), the inverting prob-

lem of f is reducible (resp. strongly reducible) to the decision problem of f .

� Let us assume that all the de�ned problems, based on f , are uniformly easy or

di�cult. If the decision problem of f is strongly tractable, the inverting problem

of f is reducible to the gap problem of f .

Proof:

The �rst claim directly comes from the de�nition of the gap problem. Let us consider

the second claim, with a probabilistic polynomial time Turing machine A that solves

the decision problem of f , with overwhelming probability. Let us also assume that
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we have a probabilistic polynomial time oracle Turing machine BD that solves the

inverting problem of f with the help of a decision oracle D. Since A solves the

decision problem with overwhelming probability, it perfectly simulates the D oracle,

after polynomially many queries, with non-negligible probability. In these cases, the

machine B can invert. [QED] {

This proposition implies a duality between the gap and decision problems. In other

words, the reasonability (or weakness) of the intractability assumptions of the gap and

decision problems of f are comparable, unless one of them is shown to be tractable.

4.2 The Random Self-Reducible Problems

De�nition 4.3 A problem is said random self-reducible if any instance can be trans-

formed in an other uniformly distributed instance whose solution helps in solving the

initial instance.

Such problems are clearly uniformly easy or di�cult Problems. Furthermore, the weak

intractability is equivalent to the classical intractability.

Corollary 4.4 Let f be any random self-reducible binary relation.

� If the gap problem of f is tractable, the inverting problem of f is reducible to the

decision problem of f .

� If the decision problem of f is tractable, the inverting problem of f is reducible

to the gap problem of f .

Remark:

Almost all the classical problems used in cryptography are random self-reducible.

4.3 Examples of Gap Problems

Let us review some of these classical problems, with their gap variations.

De�nition 4.5 (The Di�e-Hellman Problems) Let us consider any group G of

order q together with a generator g. We de�ne three problems as follows:
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� The Inverting Di�e-Hellman Problem (a.k.a. the Computational Di�e-Hellman

problem): given a pair (ga; gb), �nd the element C = gab.

� The Decision Di�e-Hellman Problem: given a triple (ga; gb; gc), decide whether

c = ab mod q or not.

� The Gap Di�e-Hellman Problem: given a pair (ga; gb), �nd the element C = gab

with the help of a Decision Di�e-Hellman Oracle (which answers whether a given

triple is correct or not).

Note that these decision and gap problems are of type 1, where

f ((A;B); C)
def
=
�
logg C

?
= logg A� logg B mod q

�
;

which is a priori not a polynomially computable function.

De�nition 4.6 (The Gap-DH Assumption) For any probabilistic polynomial or-

acle Turing machine which has access to a Decision-DH oracle, the probability of, given

(ga; gb), �nding C = gab is negligible.

Since no polynomial time reduction (even a probabilistic one) is known from the

Computational-DH to the Decision-DH problems, the Gap-DH assumption seems as

reasonable as the Decision-DH assumption due to the duality of these problems (Propo-

sition 4.2). Note that, as for most of the problems in use in cryptography, the Inverting

Problem is stronger than the Gap Problem (and the Decision Problem either). There-

fore, the tractability of the Gap-DH problem would lead to an equivalence between

Computational-DH and Decision-DH (they would be reducible to each other), which

is very unlikely.

De�nition 4.7 (The Rabin Problems) Let us consider n = pq. We de�ne three

problems as follows:

� The Inverting Rabin Problem (a.k.a. the Factoring Problem): given a pair (n; y),

�nd x = y1=2 mod n if x exists.

� The Decision Rabin Problem (a.k.a the Quadratic Residuosity Problem): given

a pair (n; y), decide whether x exists or not.
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� The Gap Rabin Problem: given a pair (n; y), �nd x = y1=2 mod n if x exists,

with the help of a Decision Rabin Oracle.

Note that these decision and gap problems are of type 2, where

f(y; x)
def
=
�
y

?
= x2 mod n

�
;

which is a polynomially computable function.

Since no polynomial time reduction is known from the Factorization to the Quadratic-

Residuosity problem, the Gap-Rabin assumption seems as reasonable as the Quadratic-

Residuosity assumption.

De�nition 4.8 (The RSA Problems) Let us consider n = pq and e relatively prime

with '(n). We de�ne three problems as follows:

� The Inverting RSA Problem: given a triple (n; e; y), �nd x = y1=e mod n.

� The Decision RSA Problem: given a quadruple (n; e; y; x), decide whether x =

y1=e mod n.

� The Gap RSA Problem: given a triple (n; e; y), �nd x = y1=e mod n with the

help of a Decision RSA Oracle.

Note that these decision and gap problems are of type 1, where

f (y; x)
def
=
�
y

?
= xe mod n

�
;

which is a polynomially computable function. Therefore, it is a really di�erent situ-

ation from the Di�e-Hellman problems. They are both type 1 problems, but in the

current RSA situation, the function f is polynomially computable. Thus the Decision-

problem is clearly strongly tractable (and even more than that since one can always

answer correctly). As a consequence, the Gap and Inverting-RSA problems are equiv-

alent.

De�nition 4.9 (The Okamoto-Uchiyama Problems) Let us consider n = p2q,

g 2 Z
?
n such that gp�1

p mod p2 is of order p, and h = gn mod n. We de�ne three

problems as follows:
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� The Inverting-OU Problem (a.k.a. the Factoring Problem): given a quadruple

(n; g; h; y), �nd x 2 Z?p such that y = gxhr mod n.

� The Decision-OU Problem (a.k.a. the High-Residuosity Problem): given a tuple

(n; g; h; y; x), decide whether y = gxhr mod n for some r, or not.

� The Gap-OU Problem (thus called the Gap-High-Residuosity Problem): given a

quadruple (n; g; h; y), �nd x 2 Z?p such that y = gxhr mod n with the help of a

Decision-OU Oracle.

Note that these decision and gap problems are of type 1, where f is a �rst order

function:

f (y; x)
def
=
�
9r; y

?
= gxhr mod n

�
;

which is a priori not a polynomially computable function.

De�nition 4.10 (The Gap-High-Residuosity Assumption) For any probabilis-

tic polynomial oracle Turing machine, which has access to a High-Residuosity Oracle,

the probability of success in factoring is negligible.

Since no polynomial time reduction from Factorization to the High-Residuosity

problem, the Gap-High Residuosity assumption seems as reasonable as the High-

Residuosity assumption.

5 Description of the Conversion

5.1 The Basic Conversion

Let us consider (Kasym;E asym;Dasym), any INV-PCA{secure asymmetric encryption

scheme, as well as two given hash functions G and H which output k1-bit strings and

k2-bit strings respectively. Then, the new scheme (K; E ;D) works as follows:

� Key generation algorithm K(1k): it simply runs Kasym(1k) to get a pair of keys

(sk; pk), and outputs it.

� Encryption algorithm Epk(m;R;r): it gets c1 = E
asym
pk (R; r), then it computes the

session key K = G(R), c2 = K �m as well as c3 = H(c1; R;m). The ciphertext

consists of the triple C = (c1; c2; c3).
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� Decryption algorithm Dsk(C): from C = (c1; c2; c3), it �rst extracts R from c1 by

decrypting it: R = Dasym
sk (c1). It can therefore recover the session key K = G(R)

and m = K � c2 which is output only if c3 = H(c1; R;m). Otherwise, it outputs

\Reject".

The overload is minimal. Indeed, if we consider the encryption phase, it just adds

the computation of two hash values and an XOR. Concerning the decryption phase,

which had been made heavy in previous conversions [13, 14, 27] with a re-encryption

to check the validity, we also just add the computation of two hash values and an

XOR, as in the encryption process.

5.2 The Hybrid Conversion

As it as already been done with some previous conversions [13, 14, 22, 25, 27], the

\one-time pad" encryption can be generalized to any symmetric encryption scheme

which is not perfectly secure, but semantically secure against passive attacks.

Let us consider two encryption schemes, (Kasym; Easym;Dasym) is a INV-PCA{secure

asymmetric scheme and (Ksym; E sym;Dsym) is a IND{secure symmetric scheme which

uses k1-bit long keys, as well as two hash functions G and H which output k1-bit

numbers and k2-bit numbers respectively. Then, the new scheme (Khyb; Ehyb;Dhyb)

works as follows:

� Key generation algorithm Khyb(1k): it simply runs Kasym(1k) to get a pair of

keys (sk; pk), and outputs it.

� Encryption algorithm Ehybpk (m;R; r): it gets c1 = Epk(R; r) and a random session

key K = G(R). Then it computes c2 = E symK (m) as well as the checking part

c3 = H(c1;R;m). The ciphertext consists of C = (c1; c2; c3).

� Decryption algorithm Dhyb
sk (C): from C = (c1; c2; c3), it �rst extracts R from

c1 by decrypting it: R = Dasym
sk (c1). It can therefore recover the session key

K = G(R) as well as the plaintext m = Dsym
K (c2) which is output only if c3 =

H(c1; R;m). Otherwise, it outputs \Reject".

The overload is similar to the previous, but then, the plaintext can be longer. Such

an hybrid transformation cannot be just considered as folklore since the OAEP conver-

sion (which furthermore requires a trapdoor permutation) does not allow symmetric
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encryption integration. Furthermore, the required property for the symmetric encryp-

tion is very weak. Indeed, as it will be seen during the security analysis in next section,

it is just required that the symmetric encryption scheme is semantic security in the

basic scenario (no plaintext/ciphertext attacks).

5.3 Chosen-Ciphertext Security

Theorem 5.1 Let us assume that

� the asymmetric encryption scheme (Kasym; Easym;Dasym) is INV-PCA{secure3

� and the symmetric encryption scheme (Ksym; E sym;Dsym) is IND-secure,

then the conversion (Khyb; Ehyb;Dhyb) is IND-CCA in the random oracle model.

More precisely, one can claim the following exact security result.

Theorem 5.2 Let us consider a CCA{adversary Acca against the \semantic security"

of the conversion (Khyb;Ehyb;Dhyb), between `-bit messages, within a time bounded by

t, with advantage ", after qD, qG and qH queries to the decryption oracle, and the hash

functions G and H respectively. Then for any 0 < � < ", there either exist

� an adversary Bpca against the (t; ')-INV-PCA-security of the asymmetric encryp-

tion scheme (Kasym; Easym;Dasym), after less than (gG + qH) � (qD + 1) queries to

the Plaintext-Checking Oracle, where

' =
"� �

2
�

qD
2k2

� or an adversary B against the (t; �; `)-IND{security of symmetric encryption

scheme (Ksym; E sym;Dsym).

Proof:

More than semantically secure under chosen-ciphertext attacks, this converted scheme

can be proven \plaintext{aware" [3, 2], which implies chosen-ciphertext security. To

prove above Theorems, we �rst assume that the symmetric encryption scheme (Ksym; E sym;Dsym)

is (t; �; `)-IND{secure, for some probability 0 < � < ".

3In other words, \If the type 1 Gap problem is intractable (where f(y; x) = 1 i� Dasym(y) = x)"
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Semantic Security. The semantic security of this scheme intuitively comes from

the fact that for any adversary, in order to have any information about the encrypted

message m, she at least has to have asked (c1; R; ?) to H (which is called \event 1" and

denoted by E1) or R to G (which is called \event 2" and denoted by E2). Therefore,

for a given c1 = E
asym
pk (R; r), R is in the list of queries asked to G or H . Then, for

any candidate ~R, one asks to the Plaintext Checking Oracle whether c1 encrypts ~R or

not. The accepted one is output as the inversion of Easympk on the ciphertext c1, which

breaks the INV-PCA.

More precisely, let us consider A = (A1; A2), an adversary against the semantic

security of the converted scheme, using an adaptive chosen-ciphertext attack. Within

a time bound t, she asks qD queries to the decryption oracle and qG and qH queries

to the hash functions G and H respectively, and distinguishes the right plaintext with

an advantage greater than ". Actually, in the random oracle model, because of the

randomness of G and H, if neither event 1 nor event 2 happen, she gets c2 = E
sym
K (mb),

for a totally random key K and then cannot gain any advantage greater than �, since

the running time is bounded by t and messages are `-bit long. Then,

Pr
b
[A2(E

hyb
pk (mb; r); s) = b j :(E1 _ E2)] �

1

2
+
�

2
:

However,

1

2
+
"

2
� Pr

b
[A2(E

hyb
pk (mb; r); s) = b]

= Pr
b
[A2 = b ^ :(E1 _ E2)] + Pr

b
[A2 = b ^ (E1 _ E2)]

= Pr
b
[A2 = b j :(E1 _ E2)]� Pr

b
[:(E1 _ E2)] + Pr

b
[A2 = b ^ (E1 _ E2)]

�
1

2
+
�

2
+ Pr

b
[E1 _ E2]:

This leads to Pr[E1 _ E2] � ("� �)=2. If E1 or E2 occurred, an ~R will be accepted and

returned after at most (qG + qH) queries to the Plaintext Checking Oracle.

Plaintext{Extractor. Since we are in an adaptive chosen-ciphertext scenario, we

have to simulate the decryption oracle, or to provide a plaintext-extractor. When the

adversary asks a query (c1; c2; c3), the simulator looks for the triples (m;R;K) in the

table of the query/answer's previously got from the hash functions G and H, using

c1, which one both led to c2 and c3. For any correct one, it asks to the Plaintext-

Checking Oracle whether c1 encrypts the given R (therefore globally at most qH). In
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the positive case, it has found a triple (m;R;K) such that, K = G(R) and for some r0,

c1 = E
asym
pk (R; r0), c2 = E

sym
K (m) and c3 = H(c1; R;m). The corresponding plaintext is

therefore m.

Some decryptions may be incorrect, but only refusing a valid ciphertext: a ciphertext

is refused if the query R has not been directly asked to G by the attacker, or (c1; R;m)

not asked to H. This may happen in two situations:

� the attacker has guessed the right value for H(c1; R;m) without having asked

for it, but only with probability 1=2k2 ;

� the c3 has been given directly by the encryption oracle, which means that it is a

part of the challenge ciphertext. Because of c1, R and m in the triple H-input,

the decryption oracle query would either be exactly the challenge ciphertext,

which is not allowed to the attacker, or a non-valid ciphertext.

Using this plaintext-extractor, we obtain,

Pr[(E1 _ E2) ^ no incorrect decryption] �
"� �

2
�

qD
2k2

;

in which cases one solves the Inverting-problem, simply using the Decision-problem

oracle to check which element, in the list of queries asked to G and H , is the solution.

[QED] {

6 Some Examples

We now apply this conversion to many classical encryption schemes which are clearly

INV-PCA under some well de�ned assumptions.

6.1 The RSA Encryption Scheme

6.1.1 Description of the Original Scheme.

In 1978, Rivest{Shamir{Adleman [29] de�ned the �rst asymmetric encryption based

on the RSA{assumption. It works as follows:

� The user chooses two large primes p and q and publishes the product n = pq

together with any exponent e, relatively prime to '(n). He keeps p and q secret,

or the invert exponent d = e�1 mod '(n).
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� To encrypt a message m 2 Z?n, one just has to compute c = me mod n.

� The recipient can recover the message thanks to d, m = cd mod n.

The one-wayness of this scheme relies on the RSA assumption. Since this scheme is

deterministic, it is still one-way, even against CPA, relative to the RSA assumption.

6.1.2 The Converted Scheme: OCAC{RSA.

Let us consider two hash functions G and H which output k1-bit numbers and k2-

bit numbers respectively, and any semantically secure symmetric encryption scheme

(Ksym; E sym;Dsym).

� Key generation algorithm K(1k): it chooses two large primes p and q greater

than 2k, computes the product n = pq. A key pair is composed by a random

exponent e, relatively prime to '(n) and its inverse d = e�1 mod '(n).

� Encryption algorithm Ee;n(m;R): with R 2 Z
?
n, it gets c1 = Re mod n, then

it computes K = G(R) and c2 = E symK (m) as well as c3 = H(c1; R;m). The

ciphertext consists of the triple C = (c1; c2; c3).

� Decryption algorithm Dd;n(c1; c2; c3), it �rst extracts R = cd1 mod n. Then it

recovers K = G(R) and m = Dsym
K (c2) which is output if and only if c3 =

H(c1; R;m). Otherwise, it outputs \Reject".

Theorem 6.1 The OCAC{RSA encryption scheme is IND-CCA in the random ora-

cle model, under the RSA assumption (and the semantic security of the symmetric

encryption scheme under the basic passive attack).

This becomes the best alternative to OAEP{RSA [3, 30], since E sym can simply be

the \one-time pad" but also any semantically secure encryption scheme to provide

high-speed rates.

6.2 The El Gamal Encryption Scheme

6.2.1 Description of the Original Scheme.

In 1985, El Gamal [12] de�ned an asymmetric encryption scheme based on the

Di�e-Hellman key distribution problem [10]. It works as follows:
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� An authority chooses and publishes an Abelian group G of order q, denoted

multiplicatively but it could be an elliptic curve, together with a generator g.

Each user chooses a secret key x in Z?q and publishes y = gx.

� To encrypt a message m, one has to choose a random element k in Z?q and sends

the pair (r = gk mod p; s = m� yk) as the ciphertext.

� The recipient can recover the message from a pair (r; s) since m = s=rx, where

x is his secret key.

To reach semantic security, this scheme requires m to be encoded by an element in the

group G. Whereas the one-wayness of this scheme anyway relies on the Computational

Di�e-Hellman problem.

Lemma 6.2 The El Gamal encryption scheme is INV-PCA under the Gap-DH As-

sumption.

Proof:

This lemma is clear since a Plaintext-Checking Oracle, for a given public key y = gx

and a ciphertext (r = gk; s = m � yk), simply checks whether the triple (y = gx; r =

gk; s=m) is a DH-triple. It is exactly a Decision Di�e-Hellman Oracle. [QED] {

6.2.2 The Converted Scheme: OCAC{El Gamal.

Let us consider two hash functions G and H which output k1-bit numbers and k2-

bit numbers respectively, and any semantically secure symmetric encryption scheme

(Ksym; E sym;Dsym).

� Key generation algorithm K(1k): it chooses a large prime q, greater than 2k, a

subgroup G of order q of an Abelian group G0 and a generator g of G. A key pair

is composed by a random element x in Z?q and y = gx.

� Encryption algorithm Ey(m;R; r): with R 2 G0 and r 2 Zq, it gets c1 = gr and

c01 = R � yr in G0, then it computes K = G(R) and c2 = EsymK (m) as well as

c3 = H(c1; c
0

1; R;m). The ciphertext consists of the tuple C = (c1; c
0

1; c2; c3).
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� Decryption algorithm Dx(c1; c01; c2; c3), it �rst extracts R = c01=c
x
1 . Then it recov-

ersK = G(R) andm = Dsym
K (c2) which is output if and only if c3 = H(c1; c

0

1; R;m).

Otherwise, it outputs \Reject".

Theorem 6.3 The OCAC{El Gamal encryption scheme is IND-CCA in the random

oracle model, under the Gap-DH assumption (and the semantic security of the sym-

metric encryption scheme under the basic passive attack).

6.3 The Okamoto-Uchiyama Encryption Scheme

6.3.1 Description of the Original Scheme.

Last year, Okamoto{Uchiyama [21] de�ned an asymmetric encryption based on a

trapdoor discrete logarithm. It works as follows:

� Each user chooses two large primes p and q and computes n = p2q. He also

chooses an element g 2 Z?n such that gp�1
p mod p2 is of order p and computes

h = gn mod n. The modulus n, and the elements g and h are made public while

p and q are kept secret.

� To encrypt a message m, smaller than p, one has to choose a random element

r 2 Zn and sends c = gmhr mod n as the ciphertext.

� The recipient can recover the message m from c since m = L(cp)=L(gp) mod p,

where L(x) = (x� 1)=p mod p for any x = 1 mod p, and cp = cp�1 mod p2.

The semantic security of this scheme relies on the p-subgroup assumption (a.k.a. p-

residuosity or more generally high-residuosity), while the one-wayness relies on the

factorization of the modulus n. The INV-PCA relies on the gap problem (Gap-High-

Residuosity).

However, since the encryption process is public, the bound p is unknown. A public

bound has to be de�ned, for example n1=4 which is clearly smaller than p, or 2k where

2k < p; q < 2k+1.

Lemma 6.4 The Okamoto-Uchiyama encryption scheme is INV-PCA under the Gap-

High-Residuosity Assumption.
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Proof:

This lemma is clear since a Plaintext-Checking Oracle is exactly a high-residuosity

oracle. [QED] {

6.3.2 The Converted Scheme: OCAC{Okamoto-Uchiyama

Let us consider two hash functions G and H which output k1-bit numbers and k2-

bit numbers respectively, and any semantically secure symmetric encryption scheme

(Ksym; E sym;Dsym).

� Key generation algorithm K(1k): it chooses two large primes p and q greater than

2k, as well as g as described above. It then computes n = p2q and h = gn mod n.

� Encryption algorithm En;g;h(m;R; r): with R < 2k and r < 23k, it gets c1 =

gRhr mod n, then it computes K = G(R) and c2 = E symK (m) as well as c3 =

H(c1; R;m). The ciphertext consists of the triple C = (c1; c2; c3).

� Decryption algorithm Dp(c1; c2; c3), it �rst extracts R = L(c1p)=L(gp). Then it

recovers K = G(R) and m = Dsym
K (c2) which is output if and only if R < 2k and

c3 = H(c1;R;m). Otherwise, it outputs \Reject".

Theorem 6.5 The OCAC{Okamoto-Uchiyama encryption scheme is IND-CCA in the

random oracle model, under the Gap-High-Residuosity assumption (and the semantic

security of the symmetric encryption scheme under the basic passive attack).

7 Conclusion

This paper presented OCAC, an optimal conversion which applies to any weakly

secure cryptosystem: the overload is as negligible as OAEP, and advantages of OCAC

beyond OAEP are numerous. Therefore, OCAC provides an optimal solution to real-

ize a provably secure (in the strongest security sense) asymmetric or hybrid encryp-

tion schemes based on any practical asymmetric encryption primitive such as RSA,

El Gamal, or Elliptic-Curve El Gamal. In addition, this paper introduced a novel class

of computational problems, the gap problems, which is considered to be dual to the

class of the decision problems.
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