Rijndael

Joan Daemen
Proton World
Belgium

Vincent Rijmen
COSIC
Belgium

Vincent meets Joan

- Where: K.U.Leuven, research group COSIC
- When: Summer '93
- Why: Evaluation of propriety cipher
- What: successful cryptanalysis (under NDA :-(

The Mother of Rijndael: Square

- Need for a 128-bit block cipher with 128-bit keys
 - 56-bit DES key: exhaustive key search feasible
 - 64-bit DES block (and Triple-DES): MAC weaknesses
- Summer-Fall '96: Design
 - symmetrical parallel structure
 - byte-oriented
 - no arithmetic operations
- Spring '97: Publication
 - Fast Software Encryption Workshop in Haifa, Israel

Our AES Proposal: Rijndael

- Spring '97: early draft of AES call for proposals:
 - key and block lengths 128, 196 and 256 bits
 - we started to work on a Square variant satisfying this
- Summer '97: Official AES call
 - requirement of 192 and 256 bit block lengths removed
 - "would be infeasible to realize"
- June '98: AES submission deadline
 - We baptized our design Rijndael (Rijmen & Daemen) and submitted it to NIST

AES Selection Process

- August 98': AES 1 in Ventura (CA)
 - 15 proposals were presented
- Square had made school
 - Rijndael: son of Square
 - Crypton (Korea) has the Square structure
 - Twofish (Counterpane) uses Square features
- August '99: Announcement of the five finalists

NISSC 2000

October 2000: Rijndael announced as AES

What makes Rijndael stand out?

- The symmetric and parallel structure
 - gives implementers a lot of flexibility
 - has not allowed effective cryptanalytic attacks
- Well adapted to modern processors
 - Pentium
 - RISC and parallel processors
- Suited for Smart cards
- Flexible in dedicated hardware
- → Let's have a look at what's inside!

Rijndael: what is inside?

Key and State bytes arranged in rectangular arrays

$k_{0.0}$	k _{0,1}	$k_{0,2}$	$k_{0,3}$	$k_{0,4}$	$k_{0,5}$	$k_{0,6}$	k _{0,7}
					k _{1,5}		
					k _{2,5}		
					k _{3,5}		

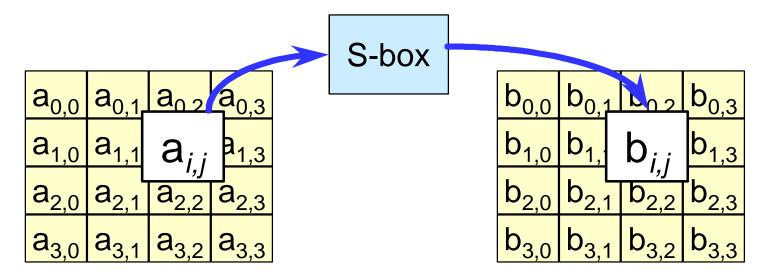
Variable Key size:

16, 24 or 32 bytes

Variable Block size:

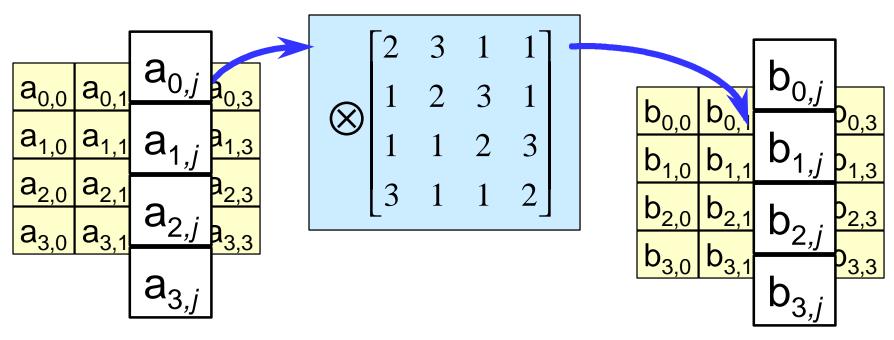
16, 24 or 32 bytes

a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}	a _{0,4}	a _{0,5}	a _{0,6}	a _{0,7}
a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}	a _{1,4}	a _{1,5}	a _{1,6}	a _{1,7}
a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}	a _{2,4}	a _{2,5}	a _{2,6}	a _{2,7}
$a_{3,0}$	a _{3,1}	a _{3,2}	$a_{3,3}$	a _{3,4}	a _{3,5}	a _{3,6}	a _{3,7}


Rijndael: Iterated Block Cipher

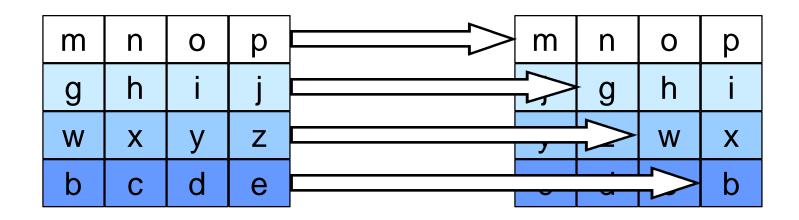
- 10/12/14 times applying the same round function
- Round function: uniform and parallel, composed of 4 steps
- Each step has its own particular function:
 - ByteSub: nonlinearity
 - ShiftRow: inter-column diffusion
 - MixColumn: inter-byte diffusion within columns
 - Round key addition

Round step 1: ByteSub



- Bytes are transformed by applying invertible S-box.
- One single S-box for the complete cipher
- High non-linearity

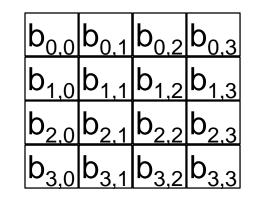
Round step 2: MixColumn



- Bytes in columns are linearly combined
- High intra-column diffusion:
 - based on theory of error-correcting codes

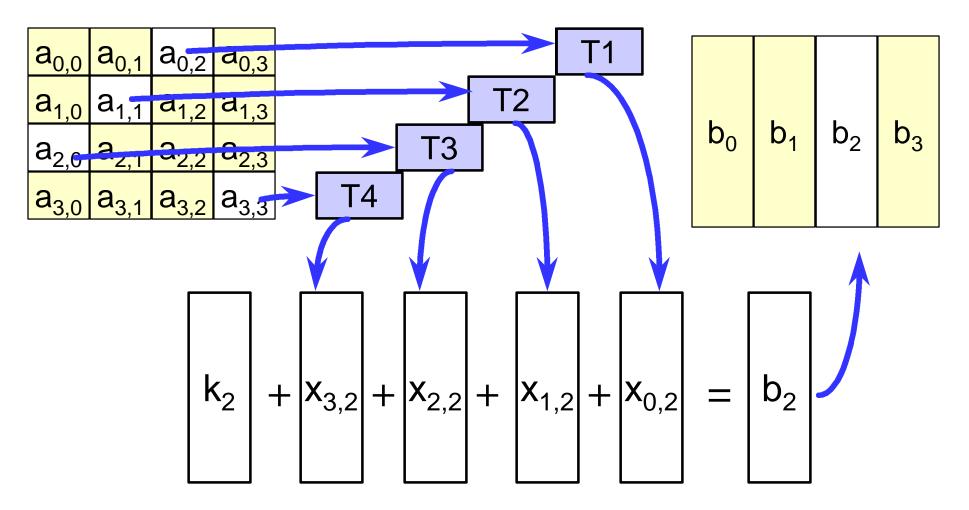
Round step 3: ShiftRow

- Rows are shifted over 4 different offsets
- High diffusion over multiple rounds:
 - Interaction with MixColumn



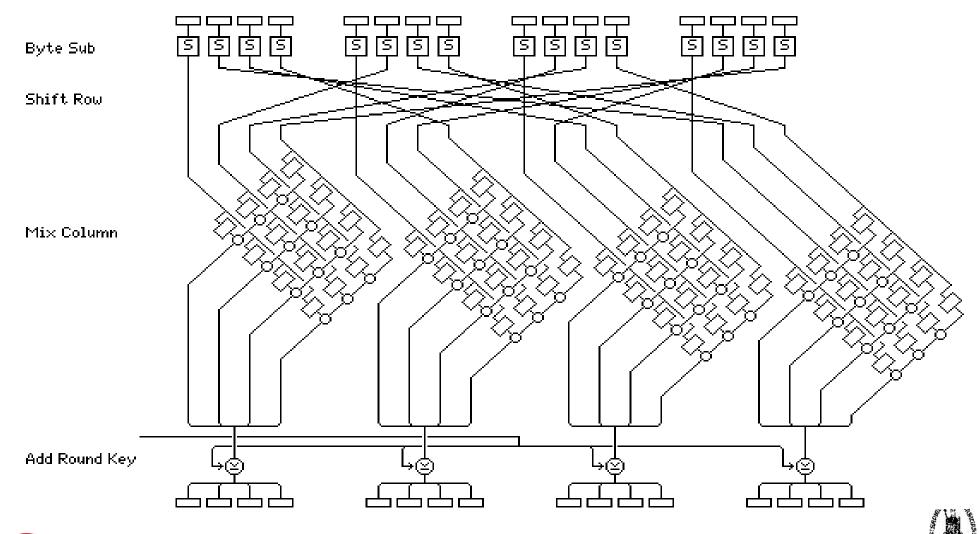
Round step 4: Key addition

$$\begin{array}{c|c} a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\ a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3} \end{array}$$


$$+ \begin{array}{c|c} & K_{0,0} & K_{0,1} & K_{0,2} & K_{0,3} \\ \hline & K_{1,0} & K_{1,1} & K_{1,2} & K_{1,3} \\ \hline & K_{2,0} & K_{2,1} & K_{2,2} & K_{2,3} \\ \hline & K_{3,0} & K_{3,1} & K_{3,2} & K_{3,3} \end{array}$$

- Makes round function key-dependent
- Computation of round keys: "keep it simple"
 - small number of operations
 - small amount of memory

Rijndael on Modern Processors



Round function: just 16 table-lookups and EXORS

Rijndael in Hardware

Future of AES/Rijndael

AES

- US Government Administration
- IPSEC
- commercial file encryption products
- Banking (DIGIPASS, ...)
- ...

Rijndael

- UMTS
- Windows
- ...

We like to thank

- NIST: for the open way in which the AES process was conducted
- Rijndael Programmers: for showing that it can be efficiently implemented
 - Antoon Bosselaers, Paulo Barretto, Cryptix, Brian Gladman, Geoffrey Keating, Helger Lipmaa, Kazumaro Aoki, Mitsuru Matsui, a.m.o.
- Anyone who motivated us by expressing their interest in our work

