
14’th Annual Tcl/Tk conference
Sept. 24-28 2007

Bourbon Orleans Hotel, New Orleans, LA USA

Conference Proceedings

14’th Annual Tcl/Tk conference
Sept. 24-28 2007

Bourbon Orleans Hotel, New Orleans, LA USA

Invited Talks

The great (internal) Var reform of 2007

Miguel Sofer
Universidad Torcuato Di Tella

September 15, 2007

Abstract

The Var struct used as internal representation for Tcl’s
variables currently contains six pointers and 2 integers, or
32 bytes on a 32-bit platform. For variables in hashtables,
be they namespace variables or array elements, a hash en-
try structure consuming a further minimum of 24 bytes
(but typically 28) is also maintained.

These requirements reflect a history of the structure,
and are far from optimal. We will explain the require-
ments that have to be satisfied, how they gave rise to this
structure, and a way to thin them down considerably: com-
piled variables are reduced to 8 bytes (75% reduction),
hashtable variables to a grand total of 24 bytes (60% re-
duction)1. Further performance advantages of the new im-
plementation will also be described.

1 Introduction

Variables are among the most-often accessed structs in
Tcl2. Their impact on Tcl’s performance is undeniable3,
both in terms of runtime and memory footprint. The cur-
rent Var struct4 in Tcl, defined in tclInt.h and reproduced
in Figure 1, is not optimal: it is too large and its cache-
friendliness is further handicapped by an unlucky layout,
cache-unfriendly for every r/w operation.

This paper describes the motivation and design deci-
sions in the new variable code in Tcl8.5, implemented in
Patch #1750051. Section 2 describes the definition of vari-
ables in current Tcl, section 3 the newly defined structs in
8.5. We describe the advantages of the new code in section
4, and its disadvantages in section 5. Section 6 describes
related work that will not appear in Tcl8.5 and remains to
be done in the future.

1A partial implementation is already committed to HEAD, a full im-
plementation may or may not appear in Tcl8.6

2Commands may profit from a similar reform in the future
3tbd: precise measurements
4from Tcl8.0 up to Tcl8.5a6

2 The Var struct in Tcl8.x (x<5)
The Var struct currently requires 32 bytes5 and accomo-
dates in the single struct both storage types for variables:
compiled locals and variables held in a hashtable (either
namespace variables or array elements). The necessity of
the different fields can be classified as follows

1. flags, value: the really necessary fields for normal
read/write operation. The first maintains the current
state and type of the variable, the second its current
value.

2. name, nsPtr, hPtr: necessary so that compiled vari-
ables (name) and hashtable variables (nsPtr, hPtr)
can find out their names. Knowing the name is re-
quired for error messages and trace processing. Note
that at most two of these fields are non-NULL for any
variable.

3. refCount, hPtr: needed for lifetime management
of the struct, which is only really necessary for
hashtable variables.

4. searchPtr, tracePtr: necessary to store searches and
traces currently defined on this variable.

Furthermore, hashtable variables require the maintenance
of a Tcl_HashEntry struct that is allocated separatedly and
requires either 24 bytes (for variable names of up to three
characters), 28 bytes (between 4 and 7 characters), 32
bytes (between 8 and 11 characters), and so on.

The claim of suboptimality is based on the following
observations:

• the fields name, nsPtr, hPtr, refCount, tracePtr6 and
searchPtr are rarely accessed, only flags and value
are needed for normal r/w operation

5all calculations done for 32-bit platforms as illustration
6tracePtr is actually tested against NULL at each r/w operation, but

this can be avoided

1

typedef struct Var {
union {

Tcl_Obj *objPtr; /* The variable’s object value. Used for
* scalar variables and array elements. */

Tcl_HashTable *tablePtr;/* For array variables, this points to
* information about the hash table used to
* implement the associative array. Points to
* ckalloc-ed data. */

struct Var *linkPtr; /* If this is a global variable being referred
* to in a procedure, or a variable created by
* "upvar", this field points to the
* referenced variable’s Var struct. */

} value;
char *name; /* NULL if the variable is in a hashtable,

* otherwise points to the variable’s name. It
* is used, e.g., by TclLookupVar and "info
* locals". The storage for the characters of
* the name is not owned by the Var and must
* not be freed when freeing the Var. */

Namespace *nsPtr; /* Points to the namespace that contains this
* variable or NULL if the variable is a local
* variable in a Tcl procedure. */

Tcl_HashEntry *hPtr; /* If variable is in a hashtable, either the
* hash table entry that refers to this
* variable or NULL if the variable has been
* detached from its hash table (e.g. an array
* is deleted, but some of its elements are
* still referred to in upvars). NULL if the
* variable is not in a hashtable. This is
* used to delete an variable from its
* hashtable if it is no longer needed. */

int refCount; /* Counts number of active uses of this
* variable, not including its entry in the
* call frame or the hash table: 1 for each
* additional variable whose linkPtr points
* here, 1 for each nested trace active on
* variable, and 1 if the variable is a
* namespace variable. This record can’t be
* deleted until refCount becomes 0. */

VarTrace *tracePtr; /* First in list of all traces set for this
* variable. */

ArraySearch *searchPtr; /* First in list of all searches active for
* this variable, or NULL if none. */

int flags; /* Miscellaneous bits of information about
* variable. See below for definitions. */

} Var;

Figure 1: The Var struct in Tcl8.x (x<5)

2

• the fields tracePtr and searchPtr are NULL most or
all of the time for most variables.

• the normal r/w operations7 access the fields flags, tra-
cePtr and value (in that order): first the end of the
struct, then the beginning.

• creating a new variable in a hashtable requires two
separate calls to malloc() - one for the Var, one for the
Tcl_HashEntry. As these two structs (can) have the
same lifetime and are in 1-1 relationship they could
be allocated together, reducing the necessary calls to
malloc/free by 50% on variable creation and destruc-
tion.

3 The Var structs in Tcl8.5
The layout in memory and access modes for variables has
been completely redesigned in Tcl8.58, with significant
reductions in the required memory and better memory ac-
cess patterns.

In order to do this, two different structs have been de-
signed for variables: Var (Figure 2) for compiled local
variables, and VarInHash (Figure 3) for variables kept in
hashtables. The most frequent operations, reading and
writing, are impervious to the difference as they only ac-
cess the Var part; the difference is only relevant for opera-
tions related to the variable’s lifetime management: creat-
ing a link to the variable and unsetting it.

The details are described in this section.

3.1 Removing tracePtr and searchPtr
As observed previously, the fields tracePtr and searchPtr
are NULL most or all of the time for most variables. The
first one is accessed at each variable r/w operation in order
to determine if the variable is traced, so that the correct
r/w procedure can be used. That is: the fact that these
fields are NULL or not is part of the state of the vari-
able. By defining new flag bits to record the complete
state of the variable, the linked lists currently held at tra-
cePtr and searchPtr can be moved elsewhere: only if the
corresponding bits are set will their values be accessed.

Two special hash tables (hanging from the Interp struct)
have been designed to hold these linked lists. The trace
and search code has been modified to maintain the new
flag bits.

As an added advantage, the state of the variable can now
distinguish the type of trace. This means for instance that

7the modes of access in decreasing order of frequency are: read,
write, create, destroy, create a link to it.

8after Tcl8.5a6

reading a variable that carries a trace on write can proceed
at full speed, without traversing the list of traces to (fail
to) find a possible read trace.

3.2 Compiled local variables: most fields re-
moved

Each time a proc is invoked, an array of variables is allo-
cated on the Tcl stack to hold the body’s local variables.
These variables are normally accessed by indexing into
this array, much faster than an access by name9.

The lifetime management of the required memory is
fairly simple: it is reserved when the proc is invoked and
returned when the proc returns. Compiled local variables
have no use for the refCount and hPtr fields, they are gone.

The name of a local variable is unqualified, the nsPtr
field is not needed. Furthermore, the name does not
change at each invocation, and it can safely be held in ei-
ther the Proc or ByteCode structs10.

Losing this field also simplifies the initialisation of local
variables during a proc’s invocation. The new flag bits and
semantics were designed so that a local variable has to be
initialised to {0,NULL}11, which can be done by a fast
memset.

As a result compiled variables only use 8 bytes, as seen
in Figure 2, for a 75% size reduction.

3.3 Variables in hashtables: thinned
down and consolidated with the en-
try, Tcl_Obj keys

Namespace variables require knowledge of their names-
pace in order to reconstruct their fully qualified name. But
they have a pointer hPtr to their hash table entry, which
in turn has a pointer tablePtr to the namespace’s hash ta-
ble. We have chosen to store a pointer to the namespace
right after the hash table12, so that every variable can find
its namespace without needing to store nsPtr in the struct.
As name was always NULL for these variables, it is gone
too.

The Var structure is now allocated together with its cor-
responding Tcl_HashEntry, which requires that their life-
times be tied together.

9this is among the main performance wins of bytecompiling
10in the current implementation it is held in both; this choice was made

in order to minimise the changes that might impact extensions.
11the proc arguments obviously require a different initialisation. Fur-

thermore, variable resolvers as defined e.g. by incrTcl still require spe-
cial var-by-var processing

12a new TclVarHashTable struct has been defined with two fields: a
Tcl_HashTable and a Namespace*

3

typedef struct Var {
int flags; /* Miscellaneous bits of information about

* variable. See below for definitions. */
union {

Tcl_Obj *objPtr; /* The variable’s object value. Used for
* scalar variables and array elements. */

TclVarHashTable *tablePtr;/* For array variables, this points to
* information about the hash table used to
* implement the associative array. Points to
* ckalloc-ed data. */

struct Var *linkPtr; /* If this is a global variable being referred
* to in a procedure, or a variable created by
* "upvar", this field points to the
* referenced variable’s Var struct. */

} value;
} Var;

Figure 2: The Var struct in Tcl8.5

typedef struct VarInHash {
Var var;
int refCount; /* Counts number of active uses of this

* variable: 1 for the entry in the hash
* table, 1 for each additional variable whose
* linkPtr points here, 1 for each nested
* trace active on variable, and 1 if the
* variable is a namespace variable. This
* record can’t be deleted until refCount
* becomes 0. */

Tcl_HashEntry entry; /* The hash table entry that refers to this
* variable. This is used to find the name of
* the variable and to delete it from its
* hashtable if it is no longer needed. It
* also holds the variable’s name. */

} VarInHash;

Figure 3: VarInHash struct

4

The hash tables for variables now use Tcl_Obj keys, as
opposed to the previous string keys13, insuring that the
size of the VarInHash struct does not depend on the length
of the variable’s name14.

3.4 Simplified flag semantics

The reform provided the oportunity to simplify the flag
semantics by removing some previously allowed possi-
bilites:

• VAR_SCALAR removed: scalar is the default state
of a variable, signaled by the absence of array or link
bits. The previous scheme allowed for a variable to
be neither scalar nor array nor link.

• VAR_UNDEFINED removed: a variable is unde-
fined precisely when its value is NULL. The previous
scheme allowed a non-NULL value (garbage)

4 What has been won

The variable reform is a big change, slightly traumatic (see
next section). The reasons that make it worthwhile in the
author’s view include:

4.1 Reduced memory consumption for vari-
ables

Assuming variable names between 4 and 7 characters, 24
bytes per variable are saved:

Bytes
Type Tcl8.4 Tcl8.5 Reduction
Local 32 8 24 (75%)

Namespace 60 36 24 (40%)
Array elem. 60 36 24 (40%)

The savings increase for longer variable (or array ele-
ment) names.

4.2 Cache friendliness

• normal r/w access addresses the first two fields in the
struct, in order

• the table of compiled locals is 75% smaller, reducing
the data cache pressure for the bytecode engine

13the variable access code is as of this writing not yet fully optimised
for this change

14further advantages are described below

• joint allocation of variables and their hash table en-
tries allows to eliminate one level of indirection in
the variable’s access: instead of following the entry’s
clientData (which hold a pointer to the Var), the Var
pointer is computed from the entry’s using a known
offset.

4.3 Reduced impact of traces
Up to Tcl8.4 access to a traced variable was always
slower: even if the current access mode was not itself
traced, this could only be discovered by traversing the
linked list of traces. The new code proceeds at full speed
when there is no trace relevant for the current access mode

4.4 Faster creation and destruction of vari-
ables

Typically a single call to malloc() on creation, and a single
call to free() on destruction

• Reuse the Tcl_Obj in the creation request as the hash
table key: increase its reference count instead of al-
locating a new string

• Decrease the name’s reference count on destroying
the variable; if the name is shared, no additional calls
to free()

4.5 Faster access to variables15

The Tcl_Obj keys allow for faster lookup: shared literals
increase the probability of a very cheap test in the match-
ing case, the fact that the string length is stored allows
for faster failure in many cases. Better possibilities for
caching of resolved variable names.

5 TANSTAAFL

5.1 Added complication in trace code
The trace code has to maintain the trace-related bits in
the Var’s flags, while previously it would just add/remove
items from the front of the trace linked list

5.2 Added complication of variable code
More code is dependent on the flag values. For example,
compiled local variables do not have a refCount field. All
the code that manages the reference count of variables has

15not yet fully optimised as of today

5

to check the storage class of the variable (a special flag bit)
to determine if a r/w of the reference count is necessary.

5.3 A new hashtable type
The hash table used to store variables is defined via a new
tclVarHashKeyType. However, the current implementa-
tion uses the standard Tcl hash tables with a custom key
type.

5.4 Slower trace invocation
The invocation of variable traces is somewhat slower, as it
involves a new search in a hash table. This is deemed to be
more than compensated with the faster access to variables
when the access mode itself is not traced.

5.5 Breaking “rogue” extensions
Extensions that include tclInt.h and interact directly with
the core’s variables, variable hash tables or bytecodes are
broken. The code of incrTcl, XOTcl and tbcload has been
adapted to the new core; it is not known if more extensions
are impacted.

As a general rule, it is relatively straightforward to adapt
an impacted extension to restore source compatibility.

Binary compatibility in the sense that “a previously
compiled extension runs in a current core” is essentially
impossible. It is possible16 to create “binary compatible
sources”, in the sense that a newly compiled extension can
run on both a Tcl8.4 and Tcl8.5 core. This has been done
for the three extensions mentioned above.

It is to be stressed that normal extensions that only in-
clude tcl.h suffer no effects, and that most extensions that
do use tclInt.h (including Tk!) are also immune.

6 Remaining (somewhat) related
rewrites

There are other related modifications that may (or may
not) occur in the future - either Tcl8.6 or Tcl9. Among
them

6.1 Optimisation of variable lookup and
caching of variable names

Variable lookup and the caching of variable names has not
yet been optimised for the reformed code17. This optimi-

16with some nasty hacks
17and is clearly suboptimal for some access patterns, see Bug 1793601

sation will occur before the Tcl8.5 release. It is expected
to provide significant speedups.

6.2 Specialized hash tables for variables
The reform described here uses Tcl’s standard hash ta-
bles. These are versatile and performant, but impose some
penalties on variables that could be avoided with special-
ized hash tables:

• the entries are “too big” for our purposes, three more
fields could be eliminated for a further 33% reduction
in the VarInHash size (Figure 4), from 36 to 24 bytes.

• the hash table code owes its versatility to its generous
usage of indirect calls; coding specifically for vari-
able hash tables would allow faster access

6.3 commandReform
The second most critical struct in Tcl is the command. The
core has a sophisticated mechanism for caching command
names, and trying to avoid renewed lookups18. However,
lookups by name are still frequent.

A reform of the command lookup code similar to the
one described in this paper will be tested. The memory
footprint of commands likely being much smaller than
that of variables, and command creation/destruction being
rarer than the analogon for variables, the payoff in terms
of memory management is unlikely to exist.

On the other hand, especially if a reform manages to
also reduce the cost of verification of a cached pointer’s
validity, the pay off in terms of increased command dis-
patch performance could be sizable.

6.4 objReform
I lied: the most time critical struct in Tcl is not Var, it
is Tcl_Obj. Modifying Tcl_Obj handling is however very
difficult without breaking every extension out there. Some
experimental attempts that could pay off handsomely (but
may be infeasible in Tcl8.x) include:

• Improving the alignment of Tcl_Objs, using the
padding to store small strings within the Tcl_Obj
struct itself (see Patch 1772004). This reduces in-
direction as well as calls to malloc()/free()

• Usage of tagged pointers to Tcl_Objs within the byte-
code engine to store “small” integers to reduce indi-
rections

18already improved in Tcl8.5 to reduce sharing of command name lit-
erals in different namespaces

6

typedef struct VarInHash {
Var var;
int refCount; /* Counts number of active uses of this

* variable: 1 for the entry in the hash
* table, 1 for each additional variable whose
* linkPtr points here, 1 for each nested
* trace active on variable, and 1 if the
* variable is a namespace variable. This
* record can’t be deleted until refCount
* becomes 0. */

TclVarHashTable *tablePtr; /* Pointer to the table containing this
* variable */

Tcl_Obj *keyPtr; /* Pointer to the object containing the
* name of this variable. */

struct Var *nextPtr; /* Pointer to the next variable in this
* same bucket (only necessary for certain
* types of hashtables).

} VarInHash;

Figure 4: Future VarInHash struct

7 Conclusion
Internally there are two different kinds of Tcl variables:
compiled locals which reside in an array, and the rest
which live in hash tables. Tcl8 defined a common struct
to describe both, with some fields that are only useful for
one kind and are wasted in the other. Additionally, part of
the variable’s state is kept in extra fields that are NULL for
most variables most of the time.

Different specialised structs for each kind, and a re-
design that insures that the state is fully described by the
flag values, permitted a very significant reduction in the
memory footprint of variables. There is no space/time
tradeoff involved as there are also speed gains (not of the
same magnitude).

This major change respects all public interfaces; how-
ever, a few extensions that use internal apis lost both bi-
nary and source compatibility and required an adaptation.

A similar revision of other important structures and ac-
cess patterns in Tcl will be explored. The expectation is
that there is a possible payoff in terms of speed, but no
major impact on the memory footprint is to be expected.

7

14’th Annual Tcl/Tk conference
Sept. 24-28 2007

Bourbon Orleans Hotel, New Orleans, LA USA

GUI and Gui Techniques

Building an Electronic Design
Automation (EDA) tool

using Tcl/Tk and object oriented
programming.

John Hughes
Software Engineer

Mentor Graphics Corp.
Wilsonville, OR

14th Annual Tcl/Tk Conference
New Orleans, Louisiana

September, 2007

Abstract

This paper discusses how a powerful debugging,
and design analysis, tool was created for the
Design-For-Test (DFT) division at Mentor
Graphics Corp. This tool is called DFTVisualizer
and is a quantum leap forward from the old tool.
The old tool, known as DFTInsight, will be
covered briefly for comparison purposes.

This paper will describe the reasons why Tcl/Tk
was chosen and how the Tcl code interacts with
the C/C++ "kernel" code. It will also cover the
object oriented techniques used to build the tool
and the various packages used in the
implementation.

Introduction & Outline

Several years ago we were presented with the
problem of replacing our current debugging tool
with something new and exciting. The old tool
was basically a schematic viewer that would
allow the user to view portions of their chip
design that were flagged as having design rule
errors.

After nearly a year of meetings and gathering
requirements we had an “idea” of the tool we

needed to build. It needed to encompass the
capability of the old tool, but offer several
additional debugging and analysis features.
Many of those features already existed in the
system, but in the form of textual reports. While
those reports contained the desired information,
they were often labor intensive to read and
“digest”. Showing the data in a graphical form
was a requirement.

The remainder of this paper will be organized as
follows:

1. A brief history of the legacy DFTInsight
tool and textual reports.

2. Requirements and the functional
specification.

3. Language and widget toolkit
considerations.

4. Design of the DFTVisualizer tool.
5. Conclusion with a brief description of the

implementation status and its success or
failure with our customers.

History

The Design-for-Test tools aid in creating test
patterns to run on the Automatic Test Equipment
(ATE) in the “fab” when chips are being
produced. Some DFT tools also modify the chip
design to contain extra circuitry, so the chip can
test itself. This is called Built-in-Self-Test or BIST
for short. Creating test patterns for the latest
microprocessor is a task that is very time and
memory consuming. This can take days, even
using grid computing engines, so the user wants
the debugging process to be intuitive, effective,
and reduce the overall time spent debugging the
design. The Mentor Graphics DFT products have
utilized a tool called DFTInsight to examine the
design via a schematic that represents a portion
of the chip design containing a problem.

See figure 1.

Figure 1. DFTInsight showing a DRC violation

Trouble shooting a DRC violation is only one of
the problems that DFT customers encounter.
There are other issues they need to analyze, like
test coverage. Test coverage reports will tell the
user what areas of the chip are testable and have
test patterns generated for it. The user wants to
see the coverage statistics for the entire chip and
for the different design blocks used to build the
chip. That way they can concentrate their efforts
on the areas with the most problems.
Traditionally this has been a textual report from
the DFT products that the customer has to read.
Often the customer would create scripts to
produce more readable reports or convert them
into CSV for importing into a spreadsheet
program.

The next generation tool would evolve from
strictly a debugging tool for design rule violations,
to one that would allow graphical analysis of
many textual reports. An example text report is
shown below.

<ATPG> report statistics -hierarchy
... analyzing hierarchical statistics (Coll: 8248 faults, Full: 13282)
 # faults UO AU % test
-top- (cm) 13282 0 34 16.07%
 dir (txStatus) 176 0 0 23.86%
 cfsm (cmFSM) 1138 0 0 11.51%
 dec (decode)] 1142 0 22 17.81%
 skipgen (skip_generate) 394 0 0 19.54%
 lbmux (mux2to1b20) 86 0 0 0.00%
 hpdech (hp_decode) 214 0 0 27.10%
 hpdecl (hp_decode) 212 0 0 26.42%
 dcx (detect_cx) 178 0 0 0.00%
 dd (detect_data) 18 0 0 0.00%

Requirements and Functional Spec.

For approximately a year, a team met weekly to
gather and discuss requirements for the new
debug and analysis tool. This team was
comprised of people from technical marketing,
customer support, technical documentation, QA,
and engineering.

Once the requirements were finalized
(theoretically), work began on a functional
specification document. This was largely
authored by the engineering team and approved
by customer support and technical marketing
personnel. This document broke down each
requirement into greater detail and how it would
work in the new tool. One of the requirements
was that there would be multiple windows, or
views, of the data and those windows would be
contained within a framework or parent window.
These windows could be un-docked from the
parent window and re-docked at a later time.

Another requirement is that this new environment
needed to work with our legacy GUI and with our
tool in no-GUI mode. The DFT tools can be run
without a GUI in interactive mode or batch mode.
In interactive mode, the user still needs to be able
to bring up the new debugging and analysis
environment by typing a command. This means
that our command loop needs to work in
conjunction with the TK event loop and not block
each other. The DFT tools are single threaded
applications, but do use grid distribution to run
multiple processes. So, the master process is
single threaded (legacy issue), but it spawns
multiple slave processes on the grid.

Lastly, all of this needs to work in a Unix/Linux
world because that is where the DFT tools are
utilized.

Language & widget toolkit considerations

Several languages and widget toolkits were
considered before coding started on the new tool.
We knew that some of the code would be coded
in C/C++ because that is what the “kernel” of our
DFT products is written in. The DFTInsight tool,
and most of our GUI, was written in Tcl/Tk, but
we did consider the following options:

• Tcl/Tk
• Java
• Qt
• incrTcl/incrTk
• SWidgets (Mentor toolkit)
• mtiWidgets (Mentor toolkit)

incrTcl/incrTk with a C interface to the kernel
code was ultimately selected and we also used
the mtiWidgets toolkit. The reason that the
mtiWidgets were selected is that they were
already used in a popular Mentor product whose
customers liked the GUI, and they were created
with incrTcl/incrTk. Also, since we would be
switching back-and-forth between C++ and Tcl
code, incrTcl just seemed like a natural choice to
do object oriented tasks in Tcl.

Design of the DFTVisualizer

The first thing we did once we started the design
phase was to write a design document that
detailed the different parts of the tool being built.
The document contained the details of the data
structures, classes, and API used by the
framework and the “child” windows within the
framework.

• What is the framework and what does it
do?

o The framework is a parent
window that will contain all of the
other windows in the tool. It also
implements the API that is used
to communicate between
windows. This API is a singleton
class written in incrTcl.

o The framework also includes the
tool bar, menu bar, and an MTI
pane manager window [1].

o The MTI pane manager window
will contain the various debug &
analysis windows, a transcript
window, and a status bar.

o The framework will handle the
selection set across all windows.

o It will also manage the drag-n-
drop operations between
windows.

• Framework API
o addTextToTranscript

o clearTranscript
o showStatusBar
o hideStatusBar
o updateStatusBar
o updatePreferences
o start/endDragNDrop
o methods for cross selection

between windows.
o ……. Many more

• Child Window API

o showChildWindow
o hideChildWindow
o acceptDndObjects
o dock
o undock
o addData
o addObject
o deleteObject
o selectObject
o …… many more

All of these API’s are implemented via incrTcl
methods. For example, here is a portion of the
class signature for ChildWindow. A ChildWindow
is one of the windows contained within the
Framework window/class. For example, a
window showing a hierarchical browser, a
transcript window, a schematic viewer window, a
waveform viewing window, etc.

itcl::class ChildWindow {

 constructor {frameHandle windowName windowFrame \

windowDisplayName} {

 set _windowName $windowName
 set _frameHandle ""
 set _toolBar ""
 set _menuBar ""
 set _frameVars(child_frame) ""
 set _saveFocus ""

 ::ChildWindow::Create $frameHandle $windowFrame \

$windowDisplayName

 }

 destructor {}

 # routine to have the child create itself.
 # i.e. Build the main window for the child
 private method Create {frameHandle childFrame childName}

 # get the name of the child window
 method getChildWindowName {}

 # get the displayed name of the child window
 method getChildWindowDisplayName {}

 # get the frame of the child window
 method getChildWindowFrame {}

 # tell the child to select/deselect something

 method notifySelection {selObject selectType {numOfSwitches "0"} \
{switches ""} }

 # tell the signal child window to select/deselect
 method notifySelectionToSignal {objectType objectName \

dataType selectType}

 # add an object to the child window
 method addObject {object {numOfSwitches "0"} {switches }}

 # delete an object from the child
 method deleteObject {object {numOfSwitches "0"} {switches ""} }

 # add data to Child Window
 method addData {data}

 # delete data from Child Window
 method deleteData {data}

 # Class data members
 # handle/ptr back to framework
 protected variable _frameHandle;

 # generic "name" of a child Window
 protected variable _windowName;

 # displayed "name" of a child Window
 protected variable _displayName;

 protected variable _toolBar
 protected variable _menuBar

 protected variable _exportFormat
 protected variable _dlgToCmdFormat
 protected variable _saveFilePath
 protected variable _saveFileFormat

 protected variable _createDofilePath
 protected variable _replaceDofiletag

 protected variable _saveFocus

} ;# end ChildWindow class

See figure 2 for an example of the DFTVisualizer.

Figure 2. DFTVisualizer with multiple windows
shown

See figure 3 for an example of the graphical
representation of the textual report. This version
will allow the user to browse through the design
hierarchically and they can turn on/off the
columns of data shown. This way the user can
quickly navigate to the data they are most
interested in seeing.

Future Work

Currently there are 11 windows in the
DFTVisualizer to aid with debugging and/or data
analysis. One of the newer windows is a task
manager that helps guide the user through
common operations in the tool and will
automatically open the appropriate windows for
that task. Continuing to evolve the tool to provide
more debugging and analysis options are a high
priority, but looking at a higher level, this
environment may eventually become a
replacement for our current GUI. Streamlining
task based operations will continue to be
important and I expect that some project
management features will be added too.

References

[1] Griffin, Brian S. The MTI Panemanager Widget 2-D Paned Window
for user configurable U/I, Tcl/Tk 2005
(www.tcl.tk/community/tcl2005/abstracts/GUI/Panemanager.pdf)

Figure 3. Graphical reporting of statistical data

Conclusion

The DFTVisualizer has many capabilities and is
an order of magnitude better than its
predecessor. The customers have given great
feedback on the tool and have adopted it very
quickly. We have many stories of customers
saving days or weeks of debugging effort
because of the DFTVisualizer.

Of course the customers have also been quick to
ask for more features; some that we never even
considered in our long term planning.

In general, the tool is solid and the customers are
happy with it. The overall goal was to have a
simple, easy to use, and clear process to debug
problems in the customer design, and to present
data in an easy to analyze format. Based on the
customer response, we have achieved that goal.

Now we just need to add the other million
features that the customers desire! ☺

Making Beautiful Graphs with Zplot
Remzi H. Arpaci-Dusseau

University of Wisconsin, Madison

Abstract
This paper introduces Zplot, a Tcl library for making two-
dimensional data plots. Zplot provides a simple set of
primitives that allow users to input and manipulate data,
plot said data in a variety of formats, and decorate the re-
sulting graphs with axes, labels, and other textual accents.
Zplot then outputs encapsulated PostScript for ease of in-
clusion in technical documents.

1 Introduction
Over the past 20 years or so, I have used a variety of tools
to generate data graphics for the various technical papers
with which I have been involved. These tools left me de-
spondent. They seemed incapable of producing all but the
most basic of graphs. Many common graph types were
not well supported (e.g., bar graphs). Simple data manip-
ulations were forced into pre-processing steps, creating a
clumsy tool chain. Manual manipulation on the resultant
PostScript was often required to achieve the desired result.

Zplot is the fruit that was born of this frustration. Zplot
is a pure Tcl library that allows the creation of two-
dimensional data graphics in a flexible and powerful man-
ner. Typical graphs are created with only a few lines of
Tcl, and complex and intricate graphs can be produced
from only tens of lines of code.

In this document, I describe Zplot. First, I give an
overview of the tool and the basic primitives it provides.
Then, I describe each of the basic routines in more detail,
showing how they can be combined to produce a wide
range of interesting graphs. Zplot drawing routines are all
built upon a set of low-level PostScript-generating com-
mands; these hide many of the details of generating cor-
rect PostScript from the rest of Zplot, boiling down most
activities to simple drawing commands that place lines,
shapes, and text on the drawing surface. I then conclude
the paper with a few comments about Tcl, related and fu-
ture work, and a final summary.

2 Overview
I now describe the basic primitives provided by Zplot. Let
us start with a typical (if simple) graph as an example, and
use this to drive the discussion of the different elements
of Zplot. A typical graphing script might be written as
follows (with the results of the graph shown in Figure 1).

0 2 4 6 8 10
0

2

4

6

8

10
A Sample Graph

T
he

 Y
-A

xi
s

The X-Axis

Figure 1:An Example Graph. The most bare-boned of plots
that one can make with Zplot.

input the library
source zplot.tcl
namespace import Zplot::*
describe the drawing surface
PsCanvas -title "file.eps" -dimensions 300,200
load some data
Table -table t -file "file.data"
make a drawable region for a graph
Drawable -xrange 0,10 -yrange 0,20
make some axes
AxesTicsLabels -title "A Sample Graph" \
-xtitle "The X-Axis" -ytitle "The Y-Axis"

plot the points
PlotPoints -table t -xfield x -yfield y \
-style triangle -linecolor red

finally, output the graph to a file
PsRender -file "file.eps"

In this example, the user creates a graph by first de-
scribing the drawing surface by callingPsCanvas and
specifying its dimensions. Then, the user calls theTable
routine to load data into Zplot, getting the data from a file
(file.data). The user, wishing to plot the data, now
creates a drawable region by calling theDrawable rou-
tine; doing so defines where on the canvas the drawable is,
and also how to map data points onto the drawing surface
(e.g., the range of x values and y values that map onto this
drawable). With a drawable defined, the user can now call

one of a variety of plotting routines (e.g.,PlotPoints)
to plot the data onto the drawable. The plotting routines
generally take a large number of arguments, enabling a
wide variety of plots to be produced; in this case, the
user chooses to draw a red triangle at each (x,y) point of
the graph. Finally, the user adds some graphical and tex-
tual decorations to help clarify the graph (in this case, by
simply calling theAxesTicsLabels routine), and then
renders the PostScript to a file by calling PsRender. I now
describe each of these primitives in more detail.

Note that each of these routines takes a large number of
optional parameters. To find out what these are (without
perusing the source code), one should simply call the rou-
tine and pass it the-help flag (or any bad flag); a useful
error message about the routine and all of its parameters
(including default values) will be printed.

2.1 Table
There are numerous routines available to users to input
and manipulate data; these are known as theTable*
routines. The most commonly used routine is the ba-
sic Table routine; usually, this routine is used to input
a file and then plot its points. A typical file (such as
file.data above) looks like this:

x y
0 0
1 1
2 2
3 3
4 6
...
9 4
10 8

The first line contains the “schema” for the table, with
names for each column; these names are subsequently
used to refer to the data when manipulating it or drawing
it to the screen.

One powerful routine is theTableSelect command;
it allows one to perform a database-like selection over a
table and put the results in a new table. Here is an example
that selects data from tablet with y-values above 5, and
plots green circles around said points (the results of which
are shown in Figure 2):

Table -table thi -columns x,y
TableSelect -from t -to thi -where {$y > 5}
PlotPoints -table thi -xfield x -yfield y \

-style circle -linecolor green -size 4

There are a number of other useful table functions
which are not covered here, mostly for manipulating
and summarizing data. For example,TableMath can
be used to perform a mathematical operation (or in-
deed, any valid Tcl expression) on a column of data.
The routineTableComputeMeanEtc is useful for

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10
Using Table Selection

T
he

 Y
-A

xi
s

The X-Axis

Figure 2:Table Selection. The example uses a simple table
selection to find y-values that are greater than 5. Then, these
points are plotted as green circles.

computing means and deviations over a column, and
TableBucketize can be used to place data into bins.
All of these primitives are built on lower-level table rou-
tines that access each row of a table and perform opera-
tions on its contents; thus, more complex operations on
tables can be readily assembled by adventurous users.

2.2 Drawable
The drawable is likely the most important abstraction
that Zplot implements. A drawable is created by the
Drawable command. Each drawable has a name; the
default name isdefault and this default is used by all
routines that expect a drawable unless otherwise specified.
Here is the relevant portion of the example above rewrit-
ten to use the drawable namefoo instead of the default:

Drawable -drawable foo -xrange 0,10 \
-yrange 0,20

AxesTicsLabels -drawable foo \
-title "A Sample Graph" \
-xtitle "The X-Axis" -ytitle "The Y-Axis"

PlotPoints -drawable foo -table t \
-xfield x -yfield y -style triangle \
-linecolor red

The powerful aspect of a drawable is that it enables a
user to place multiple (potentially overlapping) drawable
regions onto the drawing surface. This feature can be used
to implement a number of interesting graphs. For exam-
ple, in Figure 3 (taken from [6]), two regions of the graph
are of interest but hard to see due to their small size. Thus,
one can create two additional drawables and plot closeups
of the data in those regions:

These types of closeups are trivial to implement. Here
is the code for one of them (the entire example, and many
others, can be found on the Zplot web site):

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2

4

6

8

Time (s)

700 710 720
0

2

4

6

3280 3290 3300 3310
0

2

4

6

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2

4

6

8
DGRAID: Measuring Imperfect Placement

N
um

be
r

of
 M

is
pl

ac
ed

 B
lo

ck
s

(T
ho

us
an

ds
)

Figure 3:Nested Plots. A plot from an earlier paper of ours
is recreated. Two closeups are made in the lower graph, with
only a few lines of Tcl code required.

Drawable -drawable copyc1 -coord 135,90 \
-dimensions 40,40 -xrange 700,720 \
-yrange 0,6000

Table -table copyc1 -columns c0,c1
TableSelect -from copy -to copyc1 \

-where {($c0>=700) && ($c0<=720)}
AxesTicsLabels -drawable copyc1 \

-xauto ,,10 -yauto ,,2000 \
-linecolor gray -fontsize 6

PlotLines -drawable copyc1 -table copyc1 \
-xfield c0 -yfield c1 -linewidth 0.25

This example also demonstrates a number of parame-
ters that theDrawable routine can be passed. For exam-
ple, a user can specify its exact position with thecoord
flag and its size with thedimensions parameter.

Multiple drawables can also be used to plot data with
multiple y axes in a simple and straightforward manner.
In this example, we plot the same data from the example
above, except onto an overlapping drawable that maps the
y range from 0 up to 20 (instead of 0 to 10). The code is
below; the resulting graph (Figure 4) thus plots the same
data twice, once in red (as relative to the left y-axis), and
once in green (as relative to the right).

Drawable -drawable second -xrange 0,10 \
-yrange 0,20 -width 230

AxesTicsLabels -drawable second -style y \
-ytitle "Second Y-Axis" -labelstyle in \
-yaxisposition 10 -yauto ,,4

PlotPoints -drawable second -table t \
-xfield x -yfield y -style triangle \
-linecolor green -fill t -fillcolor green

2.3 The Plot* Family
There are currently eight members in thePlot* fam-
ily: Heat, VerticalBars, HorizontalBars,

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10
Multiple Y Axes

T
he

 Y
-A

xi
s

The X-Axis

0

4

8

12

16

20

S
ec

on
d

Y
-A

xi
s

Figure 4: Multiple Y Axes. The script creates two draw-
ables, the right one with a y-range that is twice as high as the
left one. The same data is plotted on both.

VerticalIntervals, HorizontalIntervals,
Points, Lines, andVerticalFill. Most should
be self explanatory from the name, and examples of each
can be found in Figure 5.

There is also a plotting function that takes an equation
instead of a table:PlotFunction. This routine simply
takes a function to evaluate and draws the result.

2.4 Axes, Tics, and Labels
A single complex routine supports the generation of axes,
tic marks, and labels for a graph. It is (not surprisingly)
calledAxesTicsLabels. It has too many arguments
to describe here in any detail. However, it is often quite
simple to use. For example, to specify the title, label for
the x-axis, and label for the y-axis, one simple do the fol-
lowing:

AxesTicsLabels -title "Title" \
-xtitle "X-Axis" -ytitle "Y-Axis"

Internal algorithms compute reasonable locations for
said labels (depending on whether tic marks are used, for
example). Further, when the guesses are wrong, one can
use a shift argument to move the text to a more appro-
priate location (e.g., the-titleshift argument can be
passed the value3,0 to bump it 3 points to the right).
Many of the other options deal with customizations such
as font selection, rotation, color, and so forth.

2.5 Legend
Finally, Zplot provides support in most plotting routines
for the addition of a legend. A given plot routine takes an
optional-legend flag which indicates the name to be
associated with the data. The user subsequently calls the
Legend routine, to place the legend on the screen and
control its appearance.

Lines Points Lines & Points Filled

Error Bars Box Plots Intervals Functions

Vertical Bars Stacked Bars Horizontal Bars Heat

Figure 5:Multiple Plot Types. This example plots a number
of different plot types, as described in each title. Of course, many
other variations are possible.

3 PostScript Generation
Zplot is built on top of a number of underlying PostScript
primitives, including basic lines, filled (or empty) shapes,
and text. Each of these routines is used by the plotting
routines and other entities that wish to create graphical or
textual elements upon on the drawing surface. We now
describe the primitives in turn.

PsLine -coord <x1,y1:x2,y2:...:xN,yN>
-linecolor <color>
-linewidth <width in pts>
-linecap <0, 1, or 2>
-linejoin <0, 1, or 2>
-linedash <dash pattern>
-closepath <true or false>

ThePsLine primitive is passed a set of coordinates,
some basic information about the line, and then pro-
duces a line that connects the coordinates in the resulting
PostScript. All PostScript primitives take coordinates in
PostScript “ems”, each of which is 1/72nd of an inch. The
PsLine primitive also takes additional arguments that al-
low the addition of an arrow to the end of the line; we omit
these parameters for the sake of space.

PsBox -coord x1,y2:x2,y2
PsCircle -coord x,y -radius r
PsPolygon -coord x1,y1:...:xN,yN

-linecolor
-linedash
-linecap
-fill <true or false>
-fillcolor <color of each element>
-fillstyle <style>
-fillsize <size of element in pattern>
-fillskip <amount to skip between ...>
-fillshift <+x,+y>
-bgcolor <color behind pattern>

0 1 2 3 4 5 6
0

2

4

6

8

10

Lots of Patterns

T
he

 Y
-A

xi
s

The X-Axis

Stuff
Things
Junk
Yards
Doods

Figure 6:Multiple Patterns. This example plots a number
of different patterns in a set of stacked bars. As one can see,
patterns such as diagonal lines and triangles can be used to fill
a region. The example also includes a legend.

Each of these shape routines take a variety of arguments
that describe their coordinates, and then all take three dif-
ferent sets of arguments that characterize the line around
the shape (-line*), the fill of the shape (-fill*), and
the background color behind the shape (-bgcolor). The
line descriptors match those ofPsLine above, and the
background color is straightforward. Most interesting,
then, is the variety and flexibility provided by the pattern
descriptions.

The -fill* parameters allows users to specify a
fill pattern for a region. The most important parameter
is -fillstyle, which determines how the region is
filled. Current styles that are supported includesolid,
hline, vline, dline1, dline2, circle,
square, triangle, utriangle; more are added
occasionally (when the author needs them). Each
pattern takes two arguments to determine its contents:
-fillsize and-fillskip. Within a given pattern,
-fillsize determines the size of each element in
the pattern, and-fillskip the space between each
element. Figure 6 is a bar graph that demonstrates the use
of some of these patterns.

PsText -coord <x,y>
-text <the text to write on canvas>
-font
-color <color>
-rotate <angle of rotation>
-anchor <how to anchor the text>
-bgcolor <background color behind text>
-bgborder <size of border around text>

The last primitive we describe isPsText, which draws
text onto the screen. Most of its parameters are straight-
forward. However, the most crucial argument to under-
stand is theanchor. This parameter describes how the

Anchor Is l,l

Anchor Is l,c

Anchor Is l,h

Anchor Is c,l

Anchor Is c,c

Anchor Is c,h

Anchor Is r,l

Anchor Is r,c

Anchor Is r,h

Figure 7:Text Anchors. This example shows how to specify
text anchors.

text should be anchored relative to the coordinate that
was passed to the routine. The parameter takes the form
xanchor,yanchor, where xanchor specifies the an-
choring of the text in the x direction (eitherl for left, c
for center, orr for right), and yanchor the anchoring in
the y direction (l for low, c for center, andh for high).
Figure 7 shows the different possible anchors (the coor-
dinates passed to the text drawing routine are highlighted
with a red circle).

4 Commenting on Tcl
We now comment on a few aspects of Tcl that arose dur-
ing the implementation of Zplot. We begin with perfor-
mance issues, comment on namespaces and packages, and
finally discuss error checking.

4.1 Performance
As floating point specialist William Kahan famously said,
“The fast drives out the slow, even if the fast is wrong.”
Tcl is slow. Thus, Zplot is slow. If one tries to plots graphs
with thousands of data points, one will have to wait, even
on a modern processor. To show how slow, I present a
rudimentary performance study of Zplot performance.

In the experiment, I simply timed how long it takes to
produce a plot given an input file with 100,000 data points.
The experiment was run upon a MacBook Pro laptop with
2.16 GHz Intel Core 2 Duo processors, 1 GB of RAM,
and running Mac OS X 10.4.9. Five trials were run, and
the input file fit comfortably into main memory (thus, no
substantial I/O activity occurs during the experiment).

The average time to run Zplot over this large data file
was 45.93 seconds (with very little variation). In compar-
ison with other tools written in C, Zplot performance is
many orders of magnitude slower (e.g., plotting the same
input file with gnuplot is nearly instantaneous). It is true
that Zplot was not written with optimized performance in
mind, but it was not written to be horrifically slow, either.
It is simply the case that building clean Tcl programs with
many nested subroutine calls leads to poor performance.

Ironically, John Ousterhout’s paper [5] points out many
reasons that operating system performance does not scale
with processor performance; analogous arguments can
be made about Tcl. Although processors have improved
greatly in the past 10 years, Tcl remains slow in both a

relative and absolute sense. It is this author’s opinion that
this performance flaw is one major reason Tcl has not be-
come more broadly accepted.

4.2 Namespaces and Packages
Tcl namespaces are a simple and powerful feature; as a
long-time Tcl user, they have been a welcome addition.
Somehow, I do not find myself using Tcl packages; in-
stead, I just create a single large Tcl file from the various
source files of Zplot, andsource said file to use Zplot.
Primitive? Certainly. And yet somehow I prefer it to the
current package creation system.

4.3 Error Checking
I found myself cursing the lack of assistance for error
checking in Tcl. For example, when a user calls a routine
and accidentally passes text instead of a numeric value to
a particular routine, if one is not careful, some kind of Tcl
error message will get printed and the program aborted –
not very user-friendly.

To cope with this problem, I wrote a generic argument
parsing package that performed type checking and other
type-specific checks on a per-argument basis. Internally,
most user-callable routines begin with a declaration as fol-
lows:

proc Table {args} {
set default {
{"table" "default" \

"isString 1" "name to call table"}
{"file" "" \

"isFile 1" "file to read from"}
{"separator" "" "isString 1" \

"if empty, whitespace; \
otherwise, whatever is specified"}

}
ArgsProcess Table default args use \
"Create a table. If ’-file’ is specified, \
load the table from a file. Otherwise, \
’-columns’ must be specified and give a \
comma-separated list of columns in the \
table (e.g., ’-columns x,y,mean’)."

...

For each argument, a routine is specified that is used to
perform whatever checks are relevant. For example, for
the-table parameter above, the routineisString is
called to ensure that the table name is a string (a primi-
tive perform of dynamic type-checking). Defaults are also
specified in case the user does not specify a given argu-
ment (e.g., -table will default to thedefault table).
When a problem occurs, an error message prints out each
parameter, its default value, the info string per parame-
ter (e.g., name to call the table), and the over-
all description of the function as specified in the call to
ArgsProcess. As mentioned above, one can call most
routines with a bad flag to obtain said information.

5 Related Work
Much of the frustration I spoke of earlier was with a tool
known as gnuplot [7]. Gnuplot provides excellent support
for simple line graphs and scatter plots, as well as numer-
ous other graph types. However, its lack of reasonable
support for bar charts was one of the main driving forces
behind Zplot. However, I should note that the PostScript
produced by gnuplot was clear and easy to read, sparking
my interest in that language, and thus (indirectly) making
Zplot possible. Great PostScript resources, for those who
are interested, are the blue book, red book, and (to some
extent), the green book [1, 3, 2]; all are available online.

As I demonstrated Zplot to others, many people re-
ferred me to Ploticus [4], which is a more powerful and
complete tool than gnuplot and is capable of producing
a large variety of interesting graph types. Many of the
features found in Zplot are also found in ploticus (e.g.,
a ploticus “area” is akin to a Zplot Drawable), and I of-
ten found myself downloading examples from the Ploti-
cus web page to see if Zplot could easily do what Ploticus
already does. Indeed, at one point I even considered drop-
ping Zplot development and simply adding a few features
to Ploticus that I found lacking (e.g., bar graphs with a
variety of pretty patterns). However, one look at the Ploti-
cus source code convinced me that I might be on the right
path (or, at least, a different path). Ploticus is comprised
of over 60,000 lines of C code. Zplot, in contrast, is less
than 5,000 lines of Tcl; although not always the prettiest
code, certainly quite a bit simpler. This comparison is cer-
tainly a bit unfair, as Zplot is not as powerful as Ploticus,
but I feel quite positive that it will never be nearly as large
or complex, a testimony to the power of a higher-level
language such as Tcl.

6 Future Work
Zplot is incomplete in a number of ways. For example,
although the PostScript it generates is simple, it is often
inefficient (i.e., the resultant PostScript is larger than it
need be). Some simple optimizations would noticeably
reduce the size of the resultant PostScript files.

Error reporting has improved throughout the course of
Zplot’s development, but could always be better. The de-
velopment of a more powerful argument processing pack-
age (as described above) helped a great deal, but there are
still some cases where a user could trigger an internal as-
sertion to fail and thus will see a stack trace telling them
where something went wrong. Better error reporting re-
mains something I plan to look into.

Finally, there are a host of features which would be use-
ful. Better support for time and date formats would be
of great benefit. More line styles, point styles, and fill
patterns are always helpful. A facility to automate graph
generation (much like the “prefabs” offered by ploticus)
would probably be well-received.

7 Conclusions
In this paper, I have introduced Zplot, a pure Tcl package
for drawing PostScript figures. Zplot provides a number
of powerful but simple tools for making beautiful two-
dimensional plots. In the course of building Zplot, I was
again surprised by how slow Tcl is; however, its simplicity
and power make programming in Tcl something unusual
(to me) among its counterparts: fun.

If you are interested in Zplot, please visit:
www.zplot.org.

Acknowledgments
The author thanks his colleagues at the University of
Michigan for all of their support during the sabbatical year
which made Zplot possible. The author also thanks his
wife for the numerous discussions she was forced to have
about Zplot, which she did gladly and gracefully, whether
she wanted to or not. Finally, the author thanks his two
daughters, Anna and Maddy, for looking at some of the
resulting graphs and “oohing” and “ahhing” at the appro-
priate times.

References
[1] Adobe Systems Inc. PostScript Lan-

guage Tutorial and Cookbook. www-
cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF,
1985.

[2] Adobe Systems Inc. PostScript Lan-
guage Program Design. www-
cdf.fnal.gov/offline/PostScript/GREENBK.PDF,
1988.

[3] Adobe Systems Inc. PostScript Lan-
guage Reference Manual. www-
cdf.fnal.gov/offline/PostScript/PLRM2.pdf, 1990.

[4] Stephen C. Grubb. Ploticus. ploticus.sourceforge.net,
2007.

[5] John K. Ousterhout. Why Aren’t Operating Systems
Getting Faster as Fast as Hardware? InProceedings
of the 1990 USENIX Summer Technical Conference,
Anaheim, CA, June 1990.

[6] Muthian Sivathanu, Vijayan Prabhakaran, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Im-
proving Storage System Availability with D-GRAID.
In Proceedings of the 3rd USENIX Symposium on File
and Storage Technologies (FAST ’04), pages 15–30,
San Francisco, California, April 2004.

[7] Thomas Williams, Colin Kelley, Russell Lang, Dave
Kotz, John Campbell, Gershon Elber, and Alexander
Woo. Gnuplot. www.gnuplot.info, 2007.

 1

Abstract—The Experimental Physics and Industrial Control

System (EPICS) is a control system in wide use in the control
systems of accelerator laboratories across the world as well as in
large-scale particle physics experiments. This paper will describe
a Tcl package that provides access to EPICS control systems and a
set of widgets that allow user interfaces to EPICS systems to be
easily constructed. The extension will be compared and contrasted
with the et_wish EPICS aware extended wish, and a justification
for choosing to write a new extension will be given.

I. INTRODUCTION AND OUTLINE

The Experimental Physics and Industrial Control System
(EPICS)[1] is a distributed control system that is heavily used
in nuclear and high energy physics experiments and
accelerators. Los Alamos National Laboratories and Argonne
National Laboratories originally developed EPICS and the
EPICS organization supports further development and
international use.

The National Superconducting Cyclotron Laboratory at
Michigan State University is the leading accelerator laboratory
in unstable heavy ion research in the United States and one of
the leaders in the world. Our accelerator and beam-line
controls are built around the EPICS control system. Several
facility experimental devices, such as the S800 spectrometer
[2], also feature EPICS in their slow control paths.

Recently several factors pushed me to investigate the use of Tcl
to produce applications that interface with the NSCL EPICS
system:

1. In my role as the software lead for the data acquisition
system, I was getting an increasing number of requests
to interface the data taking system in a read-only
manner with data that could be obtained from the
EPICS system. These requests ran the gamut from on-
line monitoring of EPICS system channels during
experimental data taking to inclusion of time varying
control system parameters in the main event flow.

1 The National Science Foundation under grant number PHY0606007

funded this work.

2. The Gas Stopping Cell[3], an experimental system,
which performs high precision mass and half-life
measurements on unstable nuclei could be run more
efficiently and more effectively if it had available to it
a system that sequenced several data taking runs while
making new controls settings for the beam-line and gas
cell EPICS parameters between runs.

3. The accelerator controls development group at the
NSCL, after several years of “Windows only” console
subsystems was looking for ways to create portable
console applications.

4. The accelerator operators were looking for ways to get
faster turn-around for desired changes in console
applications and new console application
development.

The remainder of this paper is organized as follows:

• Section II will provide a brief structural summary of
EPICS and how EPICS control systems are typically
implemented in the field.

• Section III will describe past work on interfacing
Tcl/Tk to EPICS, why we did not choose to use prior
art and what our requirements and desirements for an
EPICS interface package were. A discussion of how
we would structure our software is given as well.

• Section IV breaks in to three sub-sections. The first
describes the low-level compiled extension that
provides Tcl/Tk applications with access to EPICS
control system channels. The second describes a set of
Tk mega widgets that can be used to meet some
control system needs irrespective of the underlying
control system. The third describes a set of “EPICS
aware” mega widgets that can be used to quickly build
control system applications in Tcl/Tk.

• Section V will describe the status of the software, its
level of adoption amongst the various development
groups at the NSCL, and availability for outside use.

Tcl/Tk Tools for EPICS Control Systems.

R. Fox
National Superconducting Cyclotron Laboratory1

Michigan State University
East Lansing, MI 48824-1321

 2

II. INTRODUCING EPICS

EPICS is a distributed control system that was originally
developed collaboratively at Los Alamos National Laboratories
and Argonne National Laboratories in 1989 as an off-shoot of
the Ground Test Accelerator (GTA) control system at Los
Alamos National Labs. EPICS has been adopted to control
over 30 accelerators world wide, several large detection
systems, telescopes and is also in use in several commercial
applications/industrial applications. [4].

In the initial versions of EPICS, work was allocated to I/O
controllers (IOCs), and console systems. The IOC systems at
the time were typically board level embedded products running
the WindRiver vxWorks Software[5]. As i386 computing
became increasingly powerful and cost-effective, EPICS IOC
software has migrated to these systems and can run on
Windows32, Linux, and Solaris86 operating systems.
Furthermore, for smaller systems, the line between the IOC and
console computer blurs since general-purpose computers are
capable of running elements of both components.

A typical EPICS deployment is shown below in Figure 1:

IOC nodes are attached to the hardware either directly or,
increasingly, via serial links and private subnets that they
gateway on behalf of the EPICS channel access protocol. As
more and more hardware interfaces are network capable, the
IOC role is increasingly that of a protocol translator. Console
systems run applications with which humans. The gateway
system servers two purposes:

1. It is an access point that can determine which systems
outside the EPICS control system are allowed to
access EPICS channels and how.

2. It does broad/multi-cast traffic filtering. The EPICS
channels (or process variables as they are called) are
not listed in a centralized database. Instead a
broadcast discovery protocol similar to ARP is used to
locate the node that serves a specific process variable.

The EPICS process variable is stored as an IOC resident
‘database record’. The name of the entry (e.g. ATHING) can
typically be read to retrieve some hardware value. Descriptive
information about ATHING may be found by reading other
fields of the ATHING record. For example, the engineering
units of ATHING are, by convention stored in ATHING.EGR.

The interesting thing about the EPICS channel access layer
from the point of view of the console application is that there is
no actual distinction, other than convention between accessing a
process variable that represents hardware and a process variable
that is some other field in the database record associated with
that hardware.

The IOC software operates by cycling through database records
calling handlers for each record that are intended to update the
record’s fields from the hardware and the hardware from the
record’s fields. Consider a simple example, a power supply.
The power supply has a request voltage and an actual voltage.
It an be turned on or off. It has a status that can describe its
state that might be any of on, off, or interlocked. A record for
this hypothetical power supply may have the structure shown in
Table 1 below:

Table 1 A Sample EPICS database record.

Field Meaning
PS1 Requested Voltage (write)

Actual Voltage (read)
PS1.EGR Engineering units of the requested voltage

(read; returns “Volts”).
PS1.STATUS Status of the supply (read; returns “On”,

“Off” or “Interlocked”).
PS1.REQ Requested voltage (read only)
PS1.ON Write 1 to turn on, 0 to turn off.
PS.TYPE Type of record e.g. PSUPPLY

Note that by convention the name of the record is written to set
the device and read to retrieve the actual value of the device.
The database driven structure of EPICS provides several
advantages.

1. Having created a record structure, and driver new
instances of a power supply can be created by simply
creating new database records and connecting them to
the driver software (record fields not shown could
provide actual hardware connection information to the
driver, e.g. the serial port device the power supply was
connected on, or a TCP/IP address).

2. Having described a power supply controller via a
database record, only a new driver needs to be written
to control a new type of power supply with similar
application layer control characteristics.

3. Changing the hardware allocations of specific named
devices is not a matter of changing software, but only

IOCIOC IOCIOC IOCIOC IOCIOC

…

…

gateway

Figure 1 A typical EPICS Deployment.

 3

of changing the database and can be done while the
system is running.

4. EPICS supports creating new devices by creating new
database record types (structures), creating instances
of them and device driver software to support them.
Database records are described via a database meta-
language that is used, in con junction with database
definitions, to create record instances.

Each channel has a ‘native data type’, but all channels can be
read as a string. This is a concept that is similar in nature to the
dual ported Tcl_Obj used in the Tcl internals and API, however
the ‘native type’ port is fixed and cannot be changed.
Nonetheless, to some extent, software can be written that reads
and controls EPICS channels that adhere to the Tcl EIAS
(Everything Is A String) philosophy. It is also possible to
obtain a process variable’s ‘native data type’ and we will show
in Section IV how we use that in the epics package to perform
more accurate string conversions that EPICS itself does.

III. T CL AND EPICS IN THE PAST

Research indicates two existing Tcl/Tk packages that support
EPICS. These are ET[6], and IT[7]. These are both bundled in
the EPICS caTCL extension. It turns out that IT is simply an
extension of ET that can export data to the IDL data
visualization and analysis tool[8]. I will therefore not discuss
and analyze the strengths and weaknesses of IT as they are
identical to ET with the additional requirement that IDL be
available to make full use of its capabilities.

ET is delivered as an extended wish shell, et-wish. Et-wish
provides the command [pv] . The [pv] command is an
ensemble that allows Tcl applications to link Tcl variables to
EPICS process variables, set process variables from EPICS
channels and check the status of the connection between EPICS
channels and the underlying application variables. There are
some drawbacks however:

• Et is not a loadable package and requires a special shell;
et-wish

• Et requires blt and internally uses its vector type.
• Et usage is not very Tclish in particular:

o Tcl variables are type sensitive giving the
impression that Everything Is Not a string

o Tcl linked variables are not automatically
updated by et-wish but must be manually
updated and manually set.

o Process variables themselves don’t actually
have a good object model. There’s the PV
command, and there are variables linked,
there’s no direct handle for a process variable
that is being manipulated by the program.

• Et does not interface well with Tk, (because of the need
to manually update linked variables)

• ET forces application designers to build widgets
appropriate to control rather than providing a library of
control widgets.

I felt the drawbacks of et-wish were sufficient to justify the
effort required to build a new Epics interface to Tcl/Tk.
Furthermore, since I already had epics channel access layer
encapsulating classes, I felt I had a good leg up on that
development process by interfacing these classes to Tcl through
my Tcl++ partial encapsulation of the Tcl API.

The vision I had for Tcl/Tk support for EPICS is shown in the
software-layering diagram below:

Table 2 below is a key to the boxes in the figure in figure 2.

Table 2 Key to figure 2.

Item Meaning
CA The EPICS Channel Access

library.
Tcl/Tk&stubs lib The Tcl API and the stubs

library that provides a version
independent front-end to it.

Epics/Tcl A new loadable package that
is stubs enabled providing
Tcl-ish access to EPICS
process variables.

Interpreter A Tcl interpreter instance
Controlwidget Pure Tcl widgets for arbitrary

control applications.
Epicswidgets EPICS aware mega widgets.
Application A console application.

In the next section, we will describe the red components of this
diagram.

IV. NSCL SUPPORT FOR EPICS AND TCL/TK

A. The epics package

CA Tcl/Tk & stubs lib.

EpicsTcl controlwidget

epicswidgets
Application

Interpreter

 4

The epics package is about 9000 LOC of C++ software, much
of it (4300 LOC) the TCL++ wrapping of the Tcl API, and
much of the rest (3000 LOC) a previously written C++
wrapping of the EPICS channel access layer (ca). The epics
package (epicstcl for short) provides an object-oriented
interface to EPICS process variables. This support is
summarized in Figure 3 below:

The epicschannel command creates a new epics Process
Variable object and a Tcl command that has the same name as
the process variable. Operations on the process variable are
performed via that command, which, as Figure 3 shows is an
ensemble command.

Prior to describing how the package operates, I want to make a
slight digression to describe some of the support epicstcl
provides for ‘programming in the large’. Programming in the
large support considers the fact that almost certainly the same
process variable will appear in different places on the same
application simultaneously. This can lead to code sequences
separated physically and temporally by a large distance like
those shown below:

epicschannel achannel
achannel link achannelVariable1
…
epicschannel achannel
achannel link achannelVariable2

…
achannel delete
…
achannel delete

Which raise questions like:

1. What should the second epicschannel command on
the same process variable as the first do?

2. What should the second link subcommand on the
same process variable do?

3. What should delete do?

4. What should unlink do in the event a process variable
is unlinked from its Tcl variable?

Good support for programming in the large requires that “the
left hand not have to know what the right hand is doing” so that
tight module and user interface coupling can be avoided.
Therefore three design decisions were made to support
programming in the large:

1. Process variable objects have a reference count and
the epicstcl package internally maintains knowledge of
the process variables that have been created.
Duplicate process variables don’t actually create
another object, but instead increment the reference
count. The delete operation similarly decrements the
reference count and only deletes the underlying
channel object/command when the reference count
reaches zero.

2. The mapping of process variables to Tcl variables is
one to many. That is more than one Tcl variable can
be simultaneously linked to an epics process variable.
Changes to the process variable are reflected in all
linked Tcl variables, and a Tcl scripted change to any
linked variable will cause a set to the underlying
process variable (which eventually will cause a change
in the value of the process variable that in turn will
update the value of all the other linked Tcl variables).

3. Linked Tcl variables also have a reference count and
epicstcl maintains internal knowledge of these links in
a manner similar to the channel objects themselves.
This supports a channel being linked to the same Tcl
variable more than once.

The EPICS ca library provides ‘channel access’. Ca allows
access to EPICS process variables. In addition to allowing the
application to poll the current values of a process variable, and
to set new values, EPICS has an event model that supports
notifying the application when an epics variable has
“significantly changed”. The significance of a change can be
defined in the EPICS database records for a process variable.

EPICS performs this notification via threading, and the
notification may occur in an arbitrary thread relative to the
thread that requested the notification. It is therefore important
to get the threading model right with respect to Tcl in order to
avoid thread related failures in the Tcl interpreter.

Tcl/Tk supports an apartment-threading model. This model
states that:

• A thread can have many interpreters.
• Each interpreter can for the most part be interacted

with only in the thread that created it (each interpreter
has only one thread).

• API Functions exist to post events to the event loop of
an interpreter running in an arbitrary thread.

epicschannel pvname
pvname get ?count?
pvname set value-list ?format?
pvname link tclVariableName
pvname unlink tcvVariableName
pvname listlinks ?pattern?
pvname updatetime
pvname values
pvname size
pvname delete

Figure 3 epicstcl Command summary.

 5

On the other hand, it is not possible to predict which
application thread will receive an EPICS update notification.
Therefore the epicstcl loadable package updates Tcl variables
by posting an event to the interpreter that owns that variable
rather than directly updating the variable itself.

Initial versions of the package always read the string version of
the channel in keeping with Tcl’s EIAS philosophy. Users
discovered, however that EPICS’s floating point to string
representation conversion functions were inadequate, especially
for process variables containing small values. For example, a
beam current monitor that was displaying a few nano-amps of
beam (e.g. 5x10-9 nA) would be converted to the string
“0.000”. Therefore, the epicstcl package reads each process
variable in its native type. When the channel connection event
is processed, a native-type to string converter is associated with
the native data type.

The threading model of EPICS also leads to some interesting
edge cases. Consider the script:

epicschannel achannel
achannel delete

The first command expresses an interest in the EPICS process
variable achannel. This:

1. Creates a new Channel object in the extension. The
channel object requests an attachment to the process
variable named achannel.

2. Creates the Tcl command [achannnel]
3. In a separate thread, EPICS will notify the Channel

object that the process variable was successfully
located and attached. This happens asynchronously.

4. Once the channel has been successfully attached, the
channel object can express an interest in update
notifications.

5. Update notifications can then proceed asynchronously
and in an arbitrary thread.

The second command declares the application is no longer
interested in the channel. This:

1. Detaches the channel from EPICS
2. Deletes the [achannel] command.
3. Deletes the channel object

The script shown will typically delete the channel object before
the asynchronous notification that the channel has been
connected and, often, prior to the actual connection itself. Thus
care must be taken to cancel these notifications or to discard
notifications for channels that have been already deleted.

Similarly each low-level channel object has associated with it a
semaphore object (implemented on Unix-like systems as a

pthreads semaphore and on Windows systems as a Critical
Section) to ensure synchronization of internal data structures
within the multiple threads that may be executing in an object.
These are wrapped in objects that acquire the synchronization
primitive on construction and release on destruction so that
code of the form:
 {
 CriticalRegion lock(id);
 ….
 }

Will maintain the appropriate lock discipline even in the
presence of C++ exceptions. Tcl semaphores are not used
because this level of the code is intended for re-use in non-Tcl
applications.

B. The controlwidget system independent widgets.

While EPICS is the dominant device control system at the
NSCL, there are other control systems in simultaneous use.
These include various small Labview systems as well as some
ad-hoc systems for special purpose applications.

The Widget support for building console applications is
therefore broken into two layers. The lowest layer provides
some re-usable widgets that are independent of the control
system. These operate very much like normal Tk widgets in the
sense that they may have –variable options or set/get methods
that some control system aware software can use to manipulate
the widget appearance to correspond to the appearance of some
control system parameter.

Snit[9] was used to create these widgets. I have had many
pleasant experiences using Snit as a mega widget framework,
and this project was no exception.

The following widgets were written:

• Led – An indicator that simulates a light.
• Meter – A vertically oriented rectangular meter.
• RadioMatrix – A rectangular array of radio buttons

that can be used to chose one possibility from several.
• TypeNGo A type in widget coupled with a button that

commits the value in the entry to the control system.
The entry supports validation that is invoked when the
button is clicked. This allows the application to be
certain that a variable that expects a number gets a
number e.g.

To give a sense for how these widgets work, Figure 4 below
shows a test script for the meter widget. In this case, the
‘control system’ is just a proc that runs every 100ms and jitters
the meter value.

 6

C. The controlwidget EPICS aware widgets

The ultimate intent of our work is to make it easy to create
control system applications for EPICS at the NSCL. To do this
I have also written a set of EPICS aware widgets. In most
cases, EPICS awareness means that these widgets have a
–channel option that binds the widget to display/control a
specific process variable in the EPICS control system.

The EPICS aware widgets have been implemented as a mix of
snit::widget and snit::widgetadaptor ‘classes’. Where

Figure 4 Test script for meter.

possible, they are implemented on top of the widget set
described in part B. of this section. For example, there is an
epicsMeter widget. This is implemented in terms of the meter
widget described in section B.

The EPICS aware widgets that have been written include:

• EpicsButton: provides several types of epics aware
buttons including a pair of buttons for e.g. on/off a
single button that can toggle on/off states, and a button

that can a process variable to an arbitrary value when
clicked.

• EpicsEnumeratedControl: provides a wrapping of
the RadioMatrix widget described in part B of this
section.

• Epicsgraph: provides a wrapping of the BLT graph
widget that allows one to graph the time evolution of
one process variable against the time evolution of a
second (see also Epicsstripchart)..

• EpicsLabel, EpicsLabelWithUnits: provides a read-
only display of a process variable or a process variable
with its engineering units.

• EpicsLed: an EPICS aware wrapping of the Led
widget described B. above.

• EpicsMeter: an EPICS aware wrapping of the meter
widget described above.

• EpicsBCMMeter: an EPICS aware wrapping of the
meter widget along with range controls suitable for
use with NSCL Beam current monitor devices.

• EpicsPullDown: an EPICS aware pull down menu
that can present a set of choices for the value of a
process variable.

• EpicsSpinBox: an EPICS aware spinbox.
• EpicsTypeNGo: an EPICS aware wrapping of the

typeNGo widget.
• EpicsStripChar:t an EPICS aware wrapping of a

BLT stripchart widget that allows time series data for
epics process variables to be displayed.

V. SOFTWARE STATUS AND LEVEL OF ADOPTION

The software is currently stable at version 1.4-001. This version
has been tested on Windows XP,2000 Linux and MAC OS-X. I
have used this software routinely in my work providing EPICS
interfaces to the experimenters. It is provided on the conference
CD along with some installation instructions. See the software
subdirectory of the CD subdirectory for this paper.

I have not been able to interest the NSCL controls group in this
software. Instead they have embarked on an ambitious project
to build portable user interfaces using Qt and C++. They
estimate this to be a multi-year project, however in the
meantime, laboratory administration has given the go-ahead to
accelerator operators with software development experience to
use this to develop their own user interface software and they
have done so with great enthusiasm.

The epicstcl package and associated mega widgets have served
as an enabling platform for the NSCL accelerator operators to
get functioning control panels that meet their needs with better
turn-around times than they have had in the past, and without
waiting for the completion of the Qt/C++ application

package require meter
namespace import controlwidget::*

set metervar 0.5

set jiggleMax 5
set jiggleAmount 0.1

meter .meter -variable metervar \
 -from -1.0 -to 1.0
pack .meter

proc jiggle ms {
 global metervar
 global jiggleCount
 global jiggleMax
 global jiggleAmount

 after $ms [list jiggle $ms]

 set jiggle [expr \
 rand()*$jiggleAmount - \
 $jiggleAmount/2.0]

 set metervar [expr $metervar + \
 $jiggle]

}

jiggle 100

 7

framework described in the previous paragraph. The project
has yielded benefits both for our experimental user group and
for the operations program at the NSCL.

VI. REFERENCES

[1] http://www.aps.anl.gov/epics/index.php
[2] http://www.nscl.msu.edu/tech/devices/s800
[3]
http://www.springerlink.com/content/r3224712r7n17864/fulltex
t.pdf
[4] http://www.aps.anl.gov/epics/projects.php
[5] http://www.windriver.com/products/platforms/
[6] Bob Daly
http://www.aps.anl.gov/epics/EpicsDocumentation/Extensions
Manuals/TclTk/et.tcltk.html
[7] Bob Daly
http://www.aps.anl.gov/epics/EpicsDocumentation/Extensions
Manuals/TclTk/it.tcltk.html
[8] http://rsinc.com/idl/
[9] http://en.wikipedia.org/wiki/Snitsnit

14’th Annual Tcl/Tk conference
Sept. 24-28 2007

Bourbon Orleans Hotel, New Orleans, LA USA

TCL/Tk Develoment and
Debugging tools

Xtrace: a high-level extension of Tcl-trace
Florian Murr

Siemens AG - Corporate Technology
Otto-Hahn-Ring 6

D-81739 Munich, Germany
+49 (0)89 636-44949

florian.murr@siemens.com

Manfred Burger
Siemens AG - Corporate Technology

Otto-Hahn-Ring 6
D-81739 Munich, Germany

+49 (0)89 636-43209
manfred.burger@siemens.com

ABSTRACT
In this paper two Tcl-packages written in pure XOTcl [3] are
presented. The first “Xcom” is yet another socket-communication
package; the second “Xtrace” uses Xcom to provide an observer
command across multiple processes called “xtrace” that is
modeled along the lines of the well-known Tcl “trace”
command, but much more high-level.

Keywords
Xtrace, Tcl-trace, observer-pattern, distributed applications,
distributed user interfaces, model based.

1. INTRODUCTION
Tcl has much of the famous “observer pattern” built into the
language via the well-known Tcl-“trace” command.

The observer-pattern consists of some entity that might be
accessed and any number of observers who want to be informed
about these accesses.

Tcl- “trace add variable” provides observer-functionality
at core language level in a slightly modified way:

Any trace-callback-command, i.e. “observer”, does not only get
informed, but can intercept any attempted access and decide
whether to let it pass, to modify, or to block it. This reflects the
very low-level and immediate nature of Tcl’s trace command.

Being so low-level “trace” is best suited for extending Tcl with
new commands or control constructs.

The observer pattern on the other hand is often used in a
distributed context and is much more high-level in spirit.

If an observer resides in a different process than the observed
variable, intercepting an attempted access is out of question. Even
getting informed of every change of the observed variable is
sometimes too demanding.

Within a distributed observer pattern, consistency matters more
than immediate callbacks! - Therefore Xtrace favors high-level
comfort and consistency over direct access.

Let’s first have a look at the mindset that spawned Xtrace and
than at a simple example.

2. BASIC SETTING
The basic distributed setting we had in mind when developing
Xtrace consisted of:

• A “model” composed of XOTcl objects that reside at
the server.

• Multiple “clients” that are observers-of / actors-on this
model, residing in different processes or even on
different machines.

The clients are able to change the model, through setting of
variables, or through method calls and these changes get
propagated back to the clients, assuring that all clients mirror the
current state of the model. The process in which the observed
variables reside is henceforth called the “model” (or “server”).
[This notion is not completely correct, since xtrace allows in
principle that the model- objects / variables are distributed among
multiple processes, but we not yet made use of that possibility.]

The “clients” (“observers”) are typically interested in state-
transitions of the model. Such a transition of one consistent state
to the next often involves the change of more than one variable.
A high-level feature like xtrace will therefore propagate the
cumulated delta after all the simple variable changes are
complete. Fortunately Tcl’s event-loop gives a handle to find
moments when a consistent state should have been reached.

2.1 EXAMPLE 1
Consider some facility with several workplaces.
Appliances to be checked travel through these workplaces and get
different tasks performed upon them. Every workplace has a
“current appliance” variable and every appliance has a variable
for every task to be performed.
So in our example the situation at the model might be something
like this:

% ::workplace7 set currAppliance
::app12
% ::app12 set pTest
::task42
% ::task42 set values
{123 234 345}
% ::task42 set state
ok
% ::task42 set remarks
{}
% ::task42 set worker
::person773
% ::person773 set firstName
John
% …

Some monitor may show the “id”, “state” and “remarks” variables
of the current task on the current appliance at that workplace.

With Xtrace one may make use of

obj xtrace add ?-soft? chain vars cmd

and code this in a single command-line:
::workplace7 xtrace add \

{currAppliance pTest} \

{values state remarks} \

[list ::monitorCallback]

2.2 WELL-KNOWN OBJECTS
Xtrace works in the object-oriented setting of XOTcl and any use
of it is directed to some Xtrace-participating XOTcl-object.

Objects participate in Xtrace, when they provide a “toModel”
method, which returns the peer-object, to contact its model.
[There are some classes that may be used, either as base-class or
as “mixin” that provide default implementations for clients and
server.]

Some of these objects should be known at coding-time to any
client of an application, to kick-start Xtrace-communication.
These are the so called “well-known objects”. In example 1
“::workplace7” is treated as such a well-known object.

These objects only “live” fully on the server, but the client at least
knows that on the server there exists some object with this name.
– Usually the client also knows the type (classes) of these objects.
Other objects may not be known at coding-time, but get delivered
to the client during runtime. The client then could use another
“xtrace add” to listen to variables of those objects, too.

The client version of an (well-known) object is just a stub. It will
only have those variables that get mentioned in “xtrace add”.
These variables will be created as needed. The stubs usually do
not have the functional implementations for methods either.
Methods just send there call to the server.

[Actually there are some Meta-classes of Xtrace that provide these
functionalities. If you use

• “instproc” the method is implemented on the server and the
client,

• “instprocModel” the method exists only on the server,

• “instprocDist” the method gets distributed in the sense above.

But to get the idea, we usually abstract away such technicalities in this
paper.]

The model version of a well-known object is thought to be the
real object, be fully functional and have all the necessary
variables and methods.

2.3 VARIABLES
All the chain- and vars- variables exist in the client and on the
server. Just setting a variable (on the client or server) suffices to
let the change automatically be distributed. Since communication
takes place “after idle”, one may change many variables until the
next consistent state is reached and not until then the
dissemination of the cumulated changes starts.

2.3.1 “Chain” variables
The "chain" in example 1 is the list "{currAppliance
pTest}". Such a chain consists of variable names. These
variables are supposed to hold object-names as values or to be
empty. The idea behind "variable chains" is that starting with an
already known object (e.g. "::workplace7" which is known à
priori) which has a variable whose name is the first element in the
chain ("currAppliance"). This variable has some object-name as
value, which holds the next variable and so on.

2.3.2 “Vars” variables
The “vars”-list contains names of variables of the last object in
the chain. Normally these variables are XOTcl- class attributes of
some application specific class. They are not restricted to specific
value-types, as the chain-variables are. Our practical experience
has lead us to quite often use “dict” values [2]. (We used the
Tcl8.4 backport of “dict”.)

2.3.3 Slow clients
“xtrace add” has an optional flag “-soft”, that is intended for
slow clients. The client may be considered slow, because the
connection, or the machine of the client are slow, or because the
client has some time consuming task to perform every time he
gets informed by xtrace.
As a guiding example consider some rapid changing image, i.e.
some pseudo-movie and clients with different speeds trying to be
in sync, i.e. to show the same image. The variable “currImage” on
the server changes with some predefined frame rate. Since the
server may not show the image at all, but only hold the
“currImage” variable, speed is no concern there. If a client wants
to show the image, that may take some time (especially with Tk).
Without precautions in this respect, every change would be sent to
this client. In other words, messages arrive faster on the socket,
then the client can get them off and the socket would be jammed.
Here the “-soft” option comes to the rescue.
If a variable gets traced “soft”, then the server just sends an “are-
you-ready” message to the client, whenever the variable changes.
– The client responds when he is idle. When this response arrives
at the server, the up to then cumulated changes get sent to the
client. On the up-side the client avoids clogging of his socket and
stays in sync, on the down-side, he might miss some intermediate
changes and skip some of the image to be shown.

2.4 CALLBACK INTERFACE
When the callback-command “cmd” of “xtrace add” gets
called in the client the name of a “parcel”-object gets appended to
the command. This is an object of type “XtrcParcel” which
provides methods to comfortably extract all the information
concerning the changes that have happened.
Sometimes one is not really interested in getting the callback, but
is content when the variables in chain and vars are kept up-to-
date. This behavior is achieved by giving an empty callback-
command to “xtrace add”.

In either case, should any variable in "chain" or "vars" have its
value changed, then the change will be distributed to the clients
that are interested in this variable; i.e. all the clients that have an
“xtrace” registered for this variable and those whose chain
happens to contain the variable in question.

On the client all the variables that contribute to any of the
registered xtraces get mirrored from the server and get updated
with the current values before the callback command is called.
Additionally there is an interface on “parcel” that allows
retrieving the previous value of any of the variables in “chain” or
“vars”, so that the transition “oldValue newValue” for any of
these variables is available during the callback call.

Should for example "currAppliance" be set to "{}" the values of
"pTest" and its vars are no longer valid too. All changes in the
chain gets distributed and the callbacks called. The clients also
need no longer listen for changes on variables of the previous
“pTest”. Or should another appliance, with some other “pTest”,
take place in the “::workplace7”, the new corresponding values
get distributed. This is all handled automatically in Xtrace.

3. SYNOPSIS
The following commands are provided by Xtrace:

obj xtrace add ?-soft? chain vars cmd
obj xtrace remove chain vars cmd
obj xtrace info chain vars cmd

“obj” may be any well-known XOTcl object for Xtrace or an
object which is actually in some chain traced by xtrace.

“-soft” allows for slow clients.

"chain" is a list of variable names. The corresponding variables
must contain an object name or be empty.

"vars" is a list of variable names, of the last object in the chain.

"cmd" is a Tcl or XOTcl callback command.

Further details of the meaning of the different arguments of
“xtrace add” are described in chapter 2.

“xtrace remove” and “xtrace info” are most of all self–
explanatory. We do not describe it here.

4. REMARKS
Xtrace goes especially well in combination with the "dict"
command. Since a dict is a value, it may be the value of any of
the "vars" in an xtrace. Therefore one can bundle values in a dict
at the model, to facilitate observation.

The Tcl event loop has extraordinary power in synchronizing
asynchronous calls! Since xtrace (interprocess-) communication
takes only place when the process get "idle", some quasi-
simultaneous changes from different clients get synchronized by
the Tcl-event-loop. When the process becomes "idle" again,
xtrace assumes that a consistent state has been reached, that gets
distributed to the clients. - It is of course possible to program
against this assumption, but with only moderate consideration it is
possible to develop very stable and consistent distributed
applications.

The xtrace interface is very high-level, since the user just focuses
on the logical "chain of variables" and all the work of keeping the
corresponding values up to date gets done by the xtrace package.

Another feature that makes Xtrace high-level is the allowance of
slow clients. In that case Xtrace doesn't force the frequent

changes upon the client (which would clog the communication
socket), but informs that there has been some change and waits
then to be requested by the client to send the current cumulated
changes.
In very complex applications one even might consider not to have
only one model-process, but to distribute the model over multiple
machines. This should be no problem to xtrace, since every one of
the "well-known" objects knows how to contact its model and
these may well be in different processes for different objects.

5. COMPARISON OF “trace” AND “xtrace”
Xtrace is rather similar in spirit to the low-level Tcl-“trace
add variable”. Here is a list of similarities and differences
between "trace" and "xtrace:

• “trace” is low-level monitoring, intended to be able to
extend Tcl with new infrastructure. That is exactly what
xtrace uses Tcl-trace for!

• “xtrace” is intended for high-level observing. The new
structures support monitoring of consistent changes of
different objects and variables.

• "xtrace" is written in XOTcl, whereas "trace" is a Tcl
core feature.

• "xtrace" allows to observe more than one variable in
one call, it even allows so called “variable-chains” to
be observed.

• "xtrace" does not call the callback command, the very
moment the variable is accessed, but distributes the
cumulated changes when the process becomes idle.

• "xtrace" specializes on "write"-access to variables.
Read-only access of variables is not in its scope.

• "xtrace" may observe variables in objects in different
processes.

• "xtrace" is bidirectional. Variables get mirrored in the
observing client and changes get propagated in both
directions.

• "xtrace" callback gets delivered a "parcel" that contains
both: the old value and the new value of the variable.

• "xtrace" communicates using the "xcom"-package that
uses "sockets" for communication.

• "xtrace" allows clients that are quite slow to participate.
("-soft" option)

• "xtrace" allows the callback to be empty. - Only the
variable values keep getting synchronized.

• "xtrace" allows dynamically to extend the observed
objects. The chain of variables need not exist.

6. THE “Xcom” PACKAGE
Xcom is yet another socket communication package, similar to
the well known “comm” package [1].

Unfortunately "comm" had some limitations that lead us to
reimplement its functionality using XOTcl. (Some conditions

dubbed "race-conditions" in comm are quite natural in xtrace and
handled gracefully there.)

Xcom allows file-transfers to be triggered and a callback is
executed once the file-transfer is complete.

The request for some file lets the called partner create a
temporary file-server for this request and reply to the requesting-
partner, the host and port of this file-server. The requesting-
partner gets the file from the server and the callback command is
evaluated. - This works in both directions, from Xcom-server to
Xcom-client, or from client to server.

Xcom has some utility functions built-in for xtrace.

XOTcl allows to "mixin" classes dynamically, which makes it
very easy to account for clients "speaking different languages".
One client may speak "Tcl", just plain Tcl commands, another
client might use "XML", say a Flash-UI using ActionScript-
XMLsocket, still another client wants encrypted messages. Xtrace
just mixes in the appropriate encoding classes. - As a result,
Xtrace can communicate with each client in its preferred
communication language.

7. REFERENCES
[1] Comm., http://tcllib.sourceforge.net/doc/comm.html
[2] dict, http://www.tcl.tk/man/tcl8.5/TclCmd/dict.htm
[3] XOTcl, http://www.xotcl.org/

P
resenting eti

- H
ow

 i learned to stop w
orrying and created m

egaw
idgets -

A
xel N

agelschm
idt http://axn.dyndns.org

B
A

SIC
C

O
B

O
L

Z
80 A

ssem
bler

Forth
H

ypercard
L

isp
Sm

alltalk
Pascal

PE
A

R
L

M
odula-2

T
C

L
O

beron

D
elphi

CJava

M
A

T
L

A
B

H
ow

 it all began ...

Started program
m

ing on a calculator T
I-59

B
uilt the Sinclair Z

X
-80 from

 a soldering kit after a holiday in E
ngland

A
dvanced to Z

X
-81, Z

X
 Spectrum

, A
tari ST

 520, M
acintosh SE

Studied C
om

puter Science and M
athem

atics in E
rlangen

W
orked for several institutes and clinical departm

ents during years of study, designed PC
 C

ard for m
easuring tasks w

ith D
M

A
Started business to assem

ble PC
s according to custom

er requirem
ents

U
sed C

P/M
, G

E
M

, D
O

S, W
indow

s, M
ac O

S, M
inix, IR

IX
, Solaris, L

inux, M
ac O

S X
 and other system

s

T
ogether w

ith a friend founded a com
puter com

pany positioned in trainings and consulting, m
ainly on java and O

O
 techniques

Preparing course m
aterials, adm

inistrating Solaris and L
inux m

achines for classes and developers, first contact to T
C

L

W
orking since 9 years in a com

pany for biom
edical technology, as developer, database developer and Solaris adm

inistrator

T
oday running U

buntu on PC
s, M

ac O
S X

 on several M
acs (PPC

), Solaris on som
e SU

N
s, being forced to use W

in-X
P at w

ork

U
ntil now

 m
et John M

c C
arthy, N

iklaus W
irth, D

ouglas A
dam

s (SIG
G

R
A

PH
 K

eynote in N
ew

 O
rleans 1996), happy to m

eet m
ore experts here !

W
riting a com

plete editor is possible after one m
onth of learning T

C
L

!

I w
rote som

ething like this around the year 1997:

eti 0.1, nearly feature com
plete

E
ven better version 0.3:

H
as m

enubar (not show
n here, screenshot from

 M
ac)

O
ptions to save / save as / open / close file, toolbar, find and replace

O
ptions to change font fam

ily / size / background colour
Status bar w

ith status info, cursor position and clock
C

an m
ail it‘s content

Ported to Solaris (because no change necessary)
N

o w
idespread use, probably because never deployed

Started database program
m

ing w
ith T

C
L

 and oratcl, netw
ork program

m
ing cross platform

Found T
C

L
 be able to connect to a database very easily

C
reated an online transaction processing application, processing tens of thousands m

essages per day from
 cardiac pacem

akers

N
eeded to w

rite a m
ultiplexing front end to an SM

S sender/receiver that allow
ed only one connect from

 a client

A
dded m

onitoring tools to w
atch processes, checks for availability of hosts, D

B
 listeners, W

ebservers, disk space, load ...

R
unning several instances of tclhttpd on production and test servers to w

atch processing and resources, lightw
eight, easy to use

U
sing tequila to synchronize processes and have a look at process figures from

 several clients

A
lso created m

ore and m
ore tools for m

e and collegues

•
sim

ple application
•

single w
indow

•
som

e buttons and entries
•

database connection
•

m
onitoring tools

•
text transform

ation
•

database repair tasks
•

X
M

L
 parsing and creation of T

C
L

 and SQ
L

 scripts from
 description of data m

odules

E
ach of these sharing m

any properties w
ith other tools, having it‘s ow

n m
ethod for persistant storage like .files, ini-files etc.

A
 tool is born ...

C
ollected these into a com

m
on tabnotebook, w

ithout any interaction betw
een the m

odules yet:

U
sage of object orientation seem

ed to be a good idea:

H
ave a m

ini editor for any kind of text. D
erive H

T
M

L
 editor, T

C
L

 editor etc. from
 this.

H
ave a set of classes needed for graphic program

s, derive different graphical draw
ings / sim

ulations from
 this.

Specify a set of com
m

on used actions to include into the m
enu or a toolbar

H
ave m

ultiple instances of the sam
e type, so can use a notebook w

ith several tabs

incr T
C

l offering classes and incr T
K

 offering m
egaw

idgets like notebook seem
ed natural

B
ut (1) ...

incr T
K

 seem
ed to be m

ore com
plicated than necessary

incr T
K

 seem
ed to be slow

 because of code overhead

Solution I:

create one superclass draw
ing the toolbar, the notebook and the status bar

create one superclass in incr T
C

L
 (not T

K
!) for all instances (called etim

odules)

have each etim
odul draw

 it‘s ow
n fram

e

inherit superclass etim
odul to take care of com

m
on needed m

ethods

B
ut (2) ...

creating m
ultiple w

indow
s w

ith notebooks needed another superclass

inheritance for w
idgets w

as not really used

tcledit or diffedit could not really inherit the class m
iniedit, different count and layout of w

idgets

learned about tile and increasing / ongoing support for M
ac O

S X

Solution II:

recreated som
e w

idgets using tile com
ponents

added m
enu to change style to any existing tile them

e

som
e usage of m

kW
idgets, because better creation of m

egaw
idgets w

as anticipated

B
ut (3) ...

m
ixing iw

idgets w
ith tile w

idgets w
as no good idea

m
kW

idgets usable for m
egaw

idgets, but not really an O
O

 system

m
kW

idgets not being supported any longer?

not m
uch tim

e to try som
ething new

T
hen ...

visited the 5th european T
C

L
 U

ser m
eeting (and organized the 6th one)

got m
ore involved using tequila, thus m

aking shared apps an easy possibility

learned about integrating O
penG

L
 to create apps using 3D

 graphics

learned m
ore about tile, the notebook api has som

e differences

learned m
ore on creating fullfeatured apps

learned m
ore on m

ixing text and graphics to create integrated learning experiences

learned m
ore on tablelist and it‘s integration into tile

O
ther influences happening in this tim

e:

M
ore usage of Java and especially E

clipse at w
ork

O
ur com

pany introducing L
otus N

otes, m
e visiting a developers course

Seeing that T
C

L
 can control m

uch of w
indow

s through tw
api

.N
E

T
 and m

ono appearing in w
idespread use, new

 ID
E

s anjuta and m
onodevelop

A
pplications becom

ing m
ore com

plex, each one developing their (ow
n) m

akro language

Seeing that T
C

L
 can integrate calls to graphic libraries like Im

ageM
agic or O

penG
L

U
nderstanding that integration in big consistent fram

ew
orks like O

beron or Squeak m
akes usage m

uch easier

A
nticipating to learn that T

C
L

 can integrate calls to control O
penO

ffice.org

L
earning about snit and it‘s ongoing support and integration w

ith T
C

L
 8.5

W
riting m

ore applications as helpers or for database access, needing a usable and robust fram
ew

ork to do so

E
xpecting user interfaces to allow

 users m
uch m

ore choice and flexibility - ”graphical program
m

ing”

N
ot w

anting to learn a new
 P*-language every year

Seeing that T
C

L
 is here to stay, easy to use, easy to teach or use as description language, cross platform

=
>

 D
ecided to base fram

ew
ork and apps on T

C
L

, integrating good usage exam
ples into an usable ID

E

(O
K

, did so before w
ith Pascal, O

beron and D
elphi ...)

M
oving from

 incr T
C

L
 to snit

no, but delegation helps
yes

Inherit m
ethods

yes, like the TCL w
ay

no, only after deletion of class
O

verw
rite class definition

destroy $self
itcl::class delete object $this

D
estroying instance

m
ethod <nam

e> <args> <body>
m

ethod <nam
e> <args> <body>

declaring m
ethod

$self
$this

Reference to instance

$self <m
ethod>

<m
ethod>

Calling ow
n m

ethods

set w
 $w

in, fram
e already created

fram
e $w

, delivered as argum
ent

Building w
idgets

delegate <m
ethod> to <otherclass>

inherit <upperclass>
Inheritance vs. Delegation

snit::w
idget <nam

e>
itcl::class <nam

e>
Header

sn
it

incr
TCL

T
o

p
ic

R
ew

rote about 5 m
ajor classes and the core of the fram

ew
ork in about 3 days.

N
eed to rew

rite toolbar, and som
e handy m

egaw
idgets used from

 m
kW

idgets to snit.

First results seem
 to be very prom

ising.

Skeleton of an etim
odule:

snit::w
idget som

epage {

typecom
ponent super

delegate m
ethod * to super

typeconstructor {set super [etim
odul %

A
U

T
O

%
]}

variable w

constructor args {

create the m
odules w

idgets
initialize variables

}m
ethod start {} {

perform
 actions, start tim

ers etc.
}m

ethod onshow
 {} {

perform
 actions w

hen m
odule is show

n again
}m

ethod onhide {} {
perform

 actions w
hen m

odule is hidden
}

m
ethod f9 {} {

refresh, reload actions w
hen requested to do so

}m
ethod clone {} {

create a clone of the sam
e type of m

odule
}m

ethod close {} {
stop tim

ers, free resources, close this m
odule

}m
ethod w

hatever {} {
do som

ething
}#

}A
ll m

ethods not im
plem

ented in a specific etim
odule are called in the super class by delegation.

Som
e of them

 are em
pty, others do the easy and safe default action, e.g. clone, aboutm

e

A
 digression on netw

ork and m
onitoring:

N
eeded a sm

all T
C

P/IP connected client / server tool for cross platform
 m

onitoring and m
aintenance applications

Synchronous reliable rem
ote calls to hosts or services that are dow

n lead to som
etim

es intolerable delays in client tools

U
ntil now

 w
e could live w

ith tequila for process synchronization, carefully dividing into m
odules w

hich m
ay encounter delays

and those that need short response tim
es

Som
e problem

s rem
ain, w

ill explore m
ore about this later. M

aybe U
D

P can help?

A
lso using tclhttpd m

odules as application server, after integrating SQ
L

ite database into the w
ebserver.

 <
=

=

W
ebclient w

ith SQ
L

ite database should m
ake deploym

ent of application and upgrades very easy ...

#!/usr/local/bin/tclsh

idea from
 m

y w
iki 147, thanks to D

K
F

stripped dow
n, no interp, w

orking and tested

package require T
k

package require http

proc http_source url {
 set token [http::geturl $url]
 set script [http::data $token]
 http::cleanup $token
 eval $script
}http_source http://deploym

ent.local/tclapps/initapp.tcl

(R
em

em
ber the first version? 7 lines of code is all that is needed, the possibilities are endless ...)

U
pgrading and m

igrating through tests is a reliable w
ay ...

A
lso a good w

ay to docum
ent bugs and show

 w
hen they are fixed

t
c
l
t
e
s
t
:
:
t
e
s
t

a
c
h
t
e
r
b
a
h
n

t
e
s
t
2

-
b
o
d
y

{
m
a
t
h
3
:
:
a
c
h
t
e
r
b
a
h
n

3
9
}

-
r
e
s
u
l
t

3
4

t
c
l
t
e
s
t
:
:
t
e
s
t

f
i
b
o
n
a
c
c
i

t
e
s
t
1

-
b
o
d
y

{
m
a
t
h
3
:
:
f
i
b
o
n
a
c
c
i

1
4
}

-
r
e
s
u
l
t

3
7
7

t
c
l
t
e
s
t
:
:
t
e
s
t

f
i
b
o
n
a
c
c
i

t
e
s
t
2

-
b
o
d
y

{
m
a
t
h
3
:
:
f
i
b
o
n
a
c
c
i

1
9
}

-
r
e
s
u
l
t

4
1
8
1

t
c
l
t
e
s
t
:
:
t
e
s
t

r
o
m
a
n

t
e
s
t
1

-
b
o
d
y

{
m
a
t
h
3
:
:
r
o
m
a
n

2
5
}

-
r
e
s
u
l
t

X
X
V

L
ately had to follow

 strict Q
M

 standard procedures, parts of T
C

L
 application now

 certified for m
edical usage in clinical studies

T
h
e

m
o
d
u
l
e

s
h
a
l
l

h
a
v
e

a

m
e
t
h
o
d

t
o

r
e
l
i
a
b
l
y

p
r
e
d
i
c
t

t
h
e

w
e
a
t
h
e
r

f
o
r

t
h
e

n
e
x
t

2
0

d
a
y
s
.

T
h
e

m
o
d
u
l
e

s
h
a
l
l

h
a
v
e

a

m
e
t
h
o
d

d
e
m
o

t
o

s
t
a
r
t

a

s
m
a
l
l

d
e
m
o

s
h
o
w
i
n
g

i
t
‘
s

f
e
a
t
u
r
e
s
.

T
h
e

n
e
w

m
o
d
u
l
e

s
h
a
l
l

b
e

c
a
l
l
e
d

r
o
u
t
i
n
e
s
3

a
n
d

c
o
n
f
o
r
m

t
o

t
h
e

s
t
a
n
d
a
r
d

c
a
l
l
s

f
o
r

e
t
i
m
o
d
u
l
e
s
.

I
t

s
h
a
l
l

b
e

p
l
a
c
e
d

i
n

t
h
e

e
t
i
l
i
b
2

m
o
d
u
l
e

l
i
b
r
a
r
y
.

R
E
Q
-
6
2
8
-
0
0
3
.
0
1
8

R
E
Q
-
6
2
8
-
0
0
3
.
0
1
6

R
E
Q
-
6
2
8
-
0
0
3
.
0
1
2

Description of requirement
Requirement No.

T
est-driven developm

ent helps to structure requirem
ents into code and to prove that all usecases have been considered:

t
c
l
t
e
s
t
:
:
t
e
s
t

r
o
u
t
i
n
e
s
3

e
x
i
s
t
s

-
b
o
d
y

{
f
i
l
e

e
x
i
s
t
s

$
t
c
l
p
a
t
h
/
e
t
i
l
i
b
2
/
r
o
u
t
i
n
e
s
3
.
t
c
l
}

-
r
e
s
u
l
t

1

t
c
l
t
e
s
t
:
:
t
e
s
t

r
o
u
t
i
n
e
s
3

d
e
m
o

-
b
o
d
y

{
r
o
u
t
i
n
e
s
3

.
a
;

e
x
p
r

{
[
l
s
e
a
r
c
h

[
.
a

i
n
f
o

m
e
t
h
o
d
s
]

d
e
m
o
]

>
=

0
}
}

-

r
e
s
u
l
t

1

t
c
l
t
e
s
t
:
:
t
e
s
t

r
o
u
t
i
n
e
s
3

t
e
s
t
2

-
b
o
d
y

{
#

n
o
t

s
o

e
a
s
y

t
o

w
r
i
t
e

t
h
e

t
e
s
t
}

-
r
e
s
u
l
t

{
#

t
h
e

p
r
o
g
r
a
m
m
e
r

w
i
l
l

i
m
p
l
e
m
e
n
t

w
h
a
t
e
v
e
r

h
e

t
h
i
n
k
s

i
s

c
o
r
r
e
c
t
}

E
xam

ples of etim
odules:

Startpage, allow
ing to start other m

odules, show
ing m

ost used docum
ents, todo and calendar

O
lder fram

ew
ork for helper applications (term

inal, consoles for sqlite and oratcl) show
n below

tcledit, editor w
ith syntax colouring based on ctext

A
llow

s w
orking in projects and libraries, highlights requirem

ents and proc / m
ethod headers

nac, (not another com
m

ander), because this is m
y m

ain productivity tool
U

sing tablelist, but need m
ore intelligent bindings for keyboard operation and cleaning of layout

U
sing a database in the application, using the application in the database ...

M
any possibilities w

ith m
etakit, starkits etc. exist

C
om

ing from
 O

racle, i found SQ
L

ite the m
ost easy m

ethod to use a lightw
eight though very pow

erful database in m
y apps

A
lready had a personal w

iki inside of eti, using structure of this to m
igrate the project into the database, show

n in dem
o now

s
q
l
i
t
e
>

s
q
l
i
t
e
>

.
t
a
b
l
e
s

a
d
d
r

c
a
l

c
o
d
e

p
r
e
f
s

t
o
d
o

w
i
k
i

s
q
l
i
t
e
>

.
s
c
h
e
m
a

w
i
k
i

C
R
E
A
T
E

T
A
B
L
E

w
i
k
i

(
i
d

i
d
,

i
t
e
m

s
t
r
i
n
g
,

t
e
x
t

s
t
r
i
n
g
,

f
i
r
s
t

d
a
t
e
,

c
o
u
n
t

i
n
t
e
g
e
r
,

l
a
s
t

d
a
t
e
)
;

s
q
l
i
t
e
>

.
s
c
h
e
m
a

c
o
d
e

C
R
E
A
T
E

T
A
B
L
E

c
o
d
e

(
i
d

i
d
,

t
y
p
e

s
t
r
i
n
g
,

v
a
l
u
e

s
t
r
i
n
g
,

n
a
m
e

s
t
r
i
n
g
,

f
i
r
s
t

d
a
t
e
,

c
o
u
n
t

n
u
m
b
e
r
,

l
a
s
t

d
a
t
e
)
;

s
q
l
i
t
e
>

s
e
l
e
c
t

d
i
s
t
i
n
c
t

t
y
p
e

f
r
o
m

c
o
d
e
;

a
p
p

l
i
b

m
o
d
u
l
e

s
q
l
i
t
e
>

Still using cvs in filesystem
, but w

ill m
ove versioning into database soon, have code archive on other servers in net.

T
here is still m

ore to com
e and m

ore todo ...

T
C

L
 8.5 should be ready soon (or m

ay be it is already?)

C
heck tcl m

odules (see T
IP #189) and convert m

y libraries to new
 form

at

A
PI of etim

odules has to be frozen at som
e point for deploym

ent

U
pdate w

ebserver and have code repository there

Solve som
e problem

s w
ith tim

eout w
aits on T

C
P/IP

H
ave a single application fram

ew
ork for easier deploym

ent of apps, perhaps using freew
rap?

Follow
 developm

ent of E
clipse, L

otus and the K
om

odo Project ...

info, to show
 inform

ation about the application
T

hanks again, this is really a tool m
ade possible by the com

m
unity!

14’th Annual Tcl/Tk conference
Sept. 24-28 2007

Bourbon Orleans Hotel, New Orleans, LA USA

Tcl as Glue

Tcl in the Middle

Michael A. Cleverly
Intermountain Healthcare
4646 W Lakepark Blvd
Salt Lake City, Utah 84120
michael.cleverly@intermountainmail.org

September 27, 2007

Abstract

Tcl has long been recognized as an excellent language to glue existing components together to
create new applications. Tcl is just as useful when interjected into the middle of functioning
N-tier “enterprise” systems.

SockSpy[1] is probably the best known[2] example of a “man in the middle” Tcl application.
What may not be as widely appreciated, however, is that Tcl's strong TCP sockets and event-
drive I/Omake construction of custom“man in themiddle solutions” (or proxies) quite straight-
forward.

!ese custom solutions solve real business problems o"en at a fraction of the cost of other
potential solutions.!is paper will look at a handful of examples where Tcl has been employed
in this manner at Intermountain Healthcare.

1 About Intermountain Healthcare
Intermountain Healthcare[3] is a non-pro#t integrated healthcare delivery system head-
quartered in Salt Lake City, Utah and serving communities throughout Utah and southeast-
ern Idaho. Intermountain employs over 26,000 people throughout its system of hospitals,
clinics and healthplans.

Founded in the 1970s, Intermountain has been pioneering the use of information technol-
ogy in healthcare since that time. Intermountain is a recognized leader in its uses of informa-
tion technology in healthcare[4]. In 2005 Intermountain began a 10-year partnership with
GE Healthcare to collaborate and jointly design and develop new electronic health record
technologies[5][6].

2 Facilitating a corporate rebranding initiative
Prior to November 2005 Intermountain Healthcare was known as “Intermountain Health
Care,” or more o"en simply IHC. A major corporate rebranding initiative was launched
in the end of that month to remove the space between the words “health” and “care” and
eliminate references to IHC as an acronym.[7]. Severalmonths later the health plans division

1

formerly known as “IHCHealth Plans” changed its name to SelectHealth[8] completing the
corporate rebranding initiative.

Prior to the rebranding, Intermountain's principal public web site had been powered by Ex-
pressroom, a proprietary Java & XML based Content Management System (CMS). Express-
roomhas had a rocky history, being acquired and then sold by a series of di$erent owners[9].
In short Expressroom was viewed internally as a deprecated technology that needed to be
replaced going forward.

When the rebranding initiative was announced internally, the various departments respon-
sible for content realized they would need to modify substantial amounts of content to rid
all URLs of any reference to the IHC acronym.

!e old home page was located at http://www.ihc.com/xp/ihc/; the new home page was to
be located at http://intermountainhealthcare.org/xp/public/.

While standard web technologies (such as Apache's mod rewrite[10]) could be used to redi-
rect incoming links to legacy URLs two problems would have remained:
1. Extra overhead from absolute links within the existing content that would incur extra

redirection overhead
2. !e user's browser would still show the now verboten acronym when a user moused

over a link
Since the departments responsible for the content did not have the man power to change all
of the Expressroom content prior to the date of the public announcement, Intermountain's
Enterprise Web Operations team adapted the opensource AOLserver[11] web server to act
as a “rebranding proxy.”

For those unfamiliar with the particulars of AOLserver's Tcl API[12], it is (trivial) to delegate
the handling of portions of the URL space to speci#ed Tcl procedures (which are invoked
once for each request).

ns_register_proc GET / rebranding-proxy
ns_register_proc HEAD / rebranding-proxy
ns_register_proc POST / rebranding-proxy

In the above example, any URL requested at or under / (i.e., the whole site) will be processed
by a Tcl procedure named “rebranding-proxy.”

!e algorithm employed by our rebranding-proxy is quite straightforward:
1. Get the requested URL using ns conn url
2. Use regsub to munge the new-style URL (/xp/public) into the old form Expressroom

uses (/xp/ihc)
3. Make a connection to the Expressroom application server and request the munged

URL
4. If the MIME content type returned by Expressroom matches text/* then use string

map to #x up any embedded links using the old-style URLs by translating them to the
new format

5. Return the response to the user passing along the same HTTP response code and
most of the same headers received from Expressroom

It is worth noting that not all response headers should be returned from Expressroom to
the user. Speci#cally, if we've altered any URLs within the HTML (or CSS or Javascript, etc.)
then the Content-Length header will absolutely need to be recalculated.

2

http://www.ihc.com/xp/ihc/
http://intermountainhealthcare.org/xp/public/

3 A restricted authorization proxy for static content
Intermountain Healthcare has standardized (for the time being) on Vignette's Portal (VAP)
and Content Management (VCM) products for audience-focused intranet and extranet dy-
namic portals[13].

In thismodel, portlets runningwithin theVAP application server consume dynamic content
from the VCM database and render it to HTML. !e VAP application servers are front-
ended by multiple Apache web servers. Static VCM content, for performance reasons, is
pushed out directly to the web servers and served by Apache.

As long as the static content was benign images or content meant for public (unauthenti-
cated) consumption, this approach to managing static content was acceptable. Over time as
portal adoption grew, some business units wanted to begin publishing static content that
needed to be restricted more tightly than merely through the obscurity of its URL.

Based on the success of usingAOLserver as a “rebranding proxy” Intermountain's Enterprise
Web Operations team constructed a similar proxy, dubbed “portal-rproxy” to restrict access
to static content to logged in authenticated users. Rather than having Apache retrieve #les
directly from the local #lesystem we used mod proxy[14] to point Apache to an AOLserver
instance running on a non-privileged port bound to the local loopback interface.

Users who are authenticated to VAP will have a session id cookie. !is cookie is only trans-
mited over SSL between the user and the web server to prevent eavesdropping attacks. Be-
cause the SSL connection has already been terminated by Apache, portal-rproxy has access
to it in cleartext. We leverage this fact to call forward to the VAP application server to see if
the session is still valid and active; only if it is, do we serve up the static content from the #le
system (using AOLserver's ns return!le API call).

To make it possible for system administrators to change access restrictions without needing
to modify Tcl code, we created two con#guration #les that are read at runtime: noauth.conf
and restrict-per-site.conf.

!e noauth.conf #le contains a list of regular expression patterns. Blank lines, lines made up
of only whitespace and lines where the #rst non-whitespace character is a # (i.e., comments)
are ignored. Such a #le would look like:

Allow all access to .css stylesheets
\.css$

Logos, etc. for the public areas of the portal
^/Public/Images/

!e restrict-per-site.conf #le contains URL patterns and a list of portal subsite(s) the logged
in user must have access to in order to retrieve the content. A hypothetical entry in such a
#le would look like:

restrict-url "^/Surgery/Schedules/" to physicians
For performance, the results of a succesful check of the validity of a session id can be cached
for a few minutes (to reduce the overhead of repeatedly checking while retrieving multiple
static assets referenced from a single portal page). We recommend keeping this cache win-
dow fairly low (no more than several minutes) to limit the amount of time static content
could be refreshed a"er a user has logged o$.

As with any web application that uses session cookies if an attacker can obtain the session
cookie (i.e., via an Cross Site Scripting (XSS) attack[15]) they e$ectively become the user.

3

Our portal-rproxy neither widens this risk (as compared to having the application server
handle the static content) nor does it mitigate it any.

4 Pseudo source-NAT'ing with tcpsymlinks
!e basic skeleton of a functioning man in the middle proxy in Tcl can easily be written to
#t on a single printed page[16]. For example:

socket -server accept listeningPort

proc accept {client addr port} {
if {[catch {socket -async destHost destPort} server]} then {

shutdown $client
} else {
fconfigure $client -blocking 0 -buffering none -translation binary
fconfigure $server -blocking 0 -buffering none -translation binary
fileevent $client readable [list glue $client $server]
fileevent $server readable [list glue $server $client]

}
}

proc glue {src dst} {
if {[catch {puts -nonewline $dst [read $src]}] ||

[eof $src] || [eof $dst]} then {
shutdown $src $dst

}
}

proc shutdown {args} {
foreach sock $args {catch {close $sock}}

}

Enter the event loop
vwait forever

Just as a symbolic link (symlink) in a #le system serves as “a special type of #le that serves
as a reference to another #le”[17], we introduce the notion of a “tcpsymlink” which is just a
listening port on a particular IP address that proxies tra%c to another address and port.

Our tcpsymlinkd daemon looks in a ports/ directory for #les named either description.port
or description.port.interface. !e description portion of the #lename serves merely as docu-
mentation for those administering the server the daemon is running on.!e daemon listens
on the speci#ed port on either all interfaces or the one speci#ed.

Each ports/ #le is expected to contain one line containing the hostname (or IP address)
followed by a space and a port number. When a new connection comes in a new outgoing
connection is made to this location and the two sockets are “glued” together in much the
same way as the code skeleton above shows.

!e daemon polls periodically (typically every #"een seconds) to see if any of the ports/
con#guration #les have changed, been deleted, or added. Changes only a$ect future connec-
tions; existing connections are not disturbed. If a ports/ #le has been deleted, the listening

4

socket is closed preventing future connections. Likewise if a new ports/ #le has been created,
a new listening socket will be opened.

On occasions when the daemon needs to listen on a prvileged port, it must be started as
root. In these cases it is recommended to drop root privileges as soon as the initial listening
sockets are opened. Either the TclX extension[18] or a small C extension (such as the one
included with TclHttpd[19] or one written using Critcl[20]) can be used to setuid to a non-
privileged user.

5 A Tcl web server with a One Track Mind
OTM[21] is a web server written in Tcl that answers all requests in exactly the same way.
!is turns out to actually be a useful feature, especially when combined with tcpsymlinks.

Instead of having a web server con#gured to front-end an application server, we instead
have the web server talk to a tcpsymlink which in turn talks to the application server. When
it comes time to do periodic scheduled maintenance, a helpful downtime message can be
served up using OTM and the tcpsymlink can be temporarily repointed away from the ap-
plication server. When the downtime is over, the tcpsymlink can be changed back. All of
this can be done without changing any of the con#guration settings of either the web server
or the application server and is potentially less error prone.

6 Front-ending an existing system with SSL
Another man in the middle use where Tcl shines is the ease with which existing applications
can be extended to support SSL connections using the TLS extension[22].

In the simplest case, an application that already calls Tcl's native socket command need only
call ::tls::socket instead, possibly specifying some additional SSL-speci#c con#guration op-
tions.

One recent implementation of an SSL-enabled proxy at Intermountain dealt with a new ra-
diology image viewer. Several hundred physicians (not directly employed by Intermountain
but who have admitting rights at Intermountain hospitals) and their o%ces and clinics have
hardware VPN tunnels that allow them to access certain components of Intermountain's
Electronic Medical Record (EMR) so"ware.

!e existing EMR system, written in Java, added signi#cant overhead to the transmission of
images because it would download the entire image from the radiology system, bu$ering it
in memory before it would send any data back to the web server (which would only then
begin to transmit the data back to the end user's browser).!is added a roughly 10x penalty
compared to directly accessing the radiology system.

Ideally the images would be transfered via an SSL connection over the hardware tunnel. Al-
though the hardwareVPNprovides encryption for the data as it traverses the public internet,
at the other end of the VPN tunnel the tra%c is no longer protected to any eavesdroppers on
the local LAN. End-to-end SSL encryption thus provides additional security against eaves-
dropping.

Using the existing SSL-enabled Apache web servers that front-end the EMR to proxy the
radiology images provided somewhat better performance than having the EMR handle the

5

images directly, but the speed was still 2x to 3x slower than retrieving them directly from
the radiology system (without SSL).

Since the VPN tunnels require con#guration on both ends of the tunnel, adding a new ad-
dress (say that of the radiology system itself) would require coordination between both In-
termountain engineers and the (o"en contracted) IT sta$ that the a%liated physicians em-
ploy to manage their computer equipment. Coordinating and implementing such a change
could easily have consumed 500-man hours of labor.

Instead, using Tcl code basically equivalent to the man in the middle skeleton shown previ-
ously, with socket -server replaced with tls::socket -server running on the same web servers
on a high port (so no VPN tunnels needed to be recon#gured) a%liates were able to access
the radiology image viewer using SSL. !e TLS package was compiled to take advantage of
the hardware SSL acceleration cards already present in the web servers.!e net result is that
there is no noticeable di$erence between requesting an image through our SSL-enabling Tcl
proxy compared to accessing the radiology system (non-SSL) directly.

7 Deterministic load balancing
Our #nal example of using Tcl as a man in the middle proxy involves deterministic load
balancing. If we have a pool of N application servers we choose an application server to route
to by taking the #nal octet of the requester's IP address mod N and using the corresponding
application server. For example:

set servers [list host1 host2 host3 host4]
set octet [lindex [split $ip_addr .] end]
set choice [expr {$octet % [llength $servers]}]
set backend [lindex $servers $choice]

Typically an application server vendorwill supply a “plugin” for variousweb servers[23][24].
!e job of the plug-in is to spread the load across the various backend application server
instances. Since these plug-ins are traditionally proprietary and closed source, their algo-
rithmic decision making process is somewhat opaque.

At Intermountain, we are phasing out our use of the WebLogic plug-in, replacing it with a
Tcl man in themiddle proxy we call “wlpr-proxy” (short for “WebLogic Plugin Replacement
Proxy”). With the vendor's plug-in, active users would occasionally be redirected to a dif-
ferent application server instance for no apparent reason. !is was very frustrating for end
users (clinicians hate to have to repeat entry of lengthy patient notes merely because some
piece of so"ware routed them to the wrong destination). Since the problemwas intermittent
and not reproducible on demand, it posed a frustrating challenge for both quality assurance
(QA) and support personnel alike.

WebLogic's plug-in can be con#gured to log debug data. On a busy web server, however,
all the debug data from various connections quickly becomes intermingled and is nearly
impossible to disentangle. !us, a design requirement for our wlpr-proxy replacement was
the ability to log each connection individually. We chose to have the capability of logging
all client request headers (for GET, HEAD and POST requests) and server response headers
(for GET and HEAD requests). For privacy reasons, we do not log any form data that the
user POSTs or any of the servers response headers to the POST request.

!e ability to reconstruct the precise sequence of end user requests and responses has proven
to be a useful resource for both QA testers and developers. Several instances of obscure

6

corner-case bugs have already been identi#ed via the enhanced logging that wlpr-proxy
provides. In the past, because we lacked visibility, some of these bugs would have slipped
through testing and into production.

8 Two caveat to keep in mind
When writing line-oriented proxies with Tcl versions prior to 8.5, it helps to keep in mind
the potential Denial-of-Service (DoS) condition discussed on the Tcl'ers Wiki by Donald
Porter and George Peter Staplin[25]. In non-blocking I/O mode a readable #leevent will
trigger when new data is available on a channel even if an entire line is not available.

A malicious user could send excessively long lines (without ever sending a newline) forcing
Tcl to eventually exhaust all of its available memory, panic and abend.

With the inclusion of TIP #287[26] in Tcl 8.5, a new subcommand of chan pending can be
used to introspect how much bu$ered data is available to be read and enforce application-
speci#c limits appropriately. For those interested (and some may not be since this problem
is largely theoretical and rarely seen in the wild), prior to Tcl 8.5 several di$erent mitigation
techniques are possible:
1. Write a small C extension to expose the existing Tcl InputBu$ered and use that to

introspect the amount of unread data
2. Set an event some number of seconds into the future using a"er and take some action

(i.e., using read instead of gets or aborting the connection) if a complete line has not
been read by then

3. Rewrite your application to use read instead of gets
!e second caveat to keep in mind is that it is worth remembering to call #locked: “!e
&locked command returns 1 if the most recent input operation on channelId returned less
information than requested because all available input was exhausted[27].”

If you are writing a proxy that inspects HTTP requests the end of the client's request headers
is signi#ed by a blank line[28].When gets returns a blank line it could be because the linewas
blank (end of request headers) or there wasn't a complete line in the bu$er. Calling#locked
(or in Tcl 8.5 chan blocked) allows the program to distinguish these two cases and avoid a
failure to parse subsequent request headers.

For an example showing the use of both chan blocked and chan pending together, see this[29]
December 2006 thread on the comp.lang.tcl newsgroup.

9 Not just IPv4 and TCP
Although the Tcl core itself only supports TCP IPv4 sockets various extensions exist which
provide support for other protocols.
• TclUDP[30] provides UDP sockets and is available for both Windows and Unix sys-

tems
• IOCPSOCK[31] is aWindows extension providing faster IPv4 TCP sockets as well as

IPv6 TCP and IrDA sockets
• Ceptcl[32] is a Unix-centric extension providing UDP, IPv6 and raw IP sockets
• hping3[33] is a low-level packet assembler scriptable with Tcl

7

10 Conclusion
We have seen that custom application-speci#c proxies can be quite easily written in Tcl.
!ese Tcl solutions solve real business problems. Because of Tcl's powerful event-driven I/O
model, Tcl solutions tend to be small and fairly easy to reason about.

References
[1] Poindexter, Tom, Keith Vetter, and Don Libes. “SockSpy.” <http://sourceforge.net/

projects/sockspy/>
[2] Laird, Cameron. “Sockspy Knows TCP/IP” Sys Admin December 2002. <http://www.

samag.com/documents/s=7732/sam0212b/0212b.htm>
[3] About Intermountain: Serving Our Communities. Intermountain Healthcare. <http:

//intermountainhealthcare.org/xp/public/about-intermountain/>
[4] Intermountain Healthcare. “Report to the Community 2006.” <http:

//intermountainhealthcare.org/xp/public/documents/corp/annualreport.pdf>
[5] Kozek, Andrea. “GE Healthcare & Intermountain Health Care To Provide Wide-

Reaching IT System.” 17 February 2005. <http://www.gehealthcare.com/company/
pressroom/releases/pr_release_10225.html>

[6] Cowley, Daron. “GE Healthcare & IHC establish new research center to develop elec-
tronic health record technologies.” 6 July 2005. <http://intermountainhealthcare.org/
xp/public/about-intermountain/news/article26.xml>

[7] Intermountain Communications. “Intermountain Healthcare updates
logo.” 29 November 2005. <http://intermountainhealthcare.org/xp/public/
about-intermountain/news/article6.xml>

[8] Intermountain Communications. “IHC Health Plans has a new name--SelectHealth.”
3 April 2006 <http://intermountainhealthcare.org/xp/public/about-intermountain/
news/article10.xml>

[9] “Expressroom Lives On...” CMS Watch. 21 July 2003. <http://www.cmswatch.com/
Trends/224-Expressroom-Lives-On...>

[10] “Module mod rewrite URL Rewriting Engine.” !e Apache So"ware Foundation.
<http://httpd.apache.org/docs/1.3/mod/mod_rewrite.html>

[11] Davidson, Jim. “Tcl in AOL Digital City: !e Architecture of a Multithreaded High-
Performance Web Site.” 16 February 2000. <http://www.aolserver.com/docs/intro/
tcl2k/html/>

[12] AOLserver Tcl API Reference. <http://www.aolserver.com/docs/devel/tcl/api/>
[13] Smith, Ryan. “Intermountain Healthcare: Audience-Focused Dynamic Portals.” 24

October 2006. <http://www.vignettevillage.com/Austin/ConferenceSessionDetails.
html>

[14] “Apachemodule mod proxy.”!e Apache So"ware Foundation. <http://httpd.apache.
org/docs/1.3/mod/mod_proxy.html>

[15] Fogie, Seth, Jeremiah Grossman, Robert Hansen, Anton Rager, and Petko D. Petkov.
Cross Site Scripting Attacks: XSS Exploits and Defenses. Syngress, 2007.

[16] Cleverly, Michael A. “!e skeleton of a man in the middle.” Weblog Entry. Cleverly
Blogged. 12 March 2007. <http://blog.cleverly.com/permalinks/285.html>

[17] “Symbolic link.” Wikipedia: !e Free Encyclopedia. 17 August 2007. <http://en.
wikipedia.org/wiki/Symbolic_Link>

[18] Lehenbauer, Karl et al. “TclX.” <http://tclx.sourceforge.net/>
[19] Welch, Brent. “TclHttpd.” <http://tclhttpd.sourceforge.net/>

8

http://sourceforge.net/projects/sockspy/
http://sourceforge.net/projects/sockspy/
http://www.samag.com/documents/s=7732/sam0212b/0212b.htm
http://www.samag.com/documents/s=7732/sam0212b/0212b.htm
http://intermountainhealthcare.org/xp/public/about-intermountain/
http://intermountainhealthcare.org/xp/public/about-intermountain/
http://intermountainhealthcare.org/xp/public/documents/corp/annualreport.pdf
http://intermountainhealthcare.org/xp/public/documents/corp/annualreport.pdf
http://www.gehealthcare.com/company/pressroom/releases/pr_release_10225.html
http://www.gehealthcare.com/company/pressroom/releases/pr_release_10225.html
http://intermountainhealthcare.org/xp/public/about-intermountain/news/article26.xml
http://intermountainhealthcare.org/xp/public/about-intermountain/news/article26.xml
http://intermountainhealthcare.org/xp/public/about-intermountain/news/article6.xml
http://intermountainhealthcare.org/xp/public/about-intermountain/news/article6.xml
http://intermountainhealthcare.org/xp/public/about-intermountain/news/article10.xml
http://intermountainhealthcare.org/xp/public/about-intermountain/news/article10.xml
http://www.cmswatch.com/Trends/224-Expressroom-Lives-On...
http://www.cmswatch.com/Trends/224-Expressroom-Lives-On...
http://httpd.apache.org/docs/1.3/mod/mod_rewrite.html
http://www.aolserver.com/docs/intro/tcl2k/html/
http://www.aolserver.com/docs/intro/tcl2k/html/
http://www.aolserver.com/docs/devel/tcl/api/
http://www.vignettevillage.com/Austin/ConferenceSessionDetails.html
http://www.vignettevillage.com/Austin/ConferenceSessionDetails.html
http://httpd.apache.org/docs/1.3/mod/mod_proxy.html
http://httpd.apache.org/docs/1.3/mod/mod_proxy.html
http://blog.cleverly.com/permalinks/285.html
http://en.wikipedia.org/wiki/Symbolic_Link
http://en.wikipedia.org/wiki/Symbolic_Link
http://tclx.sourceforge.net/
http://tclhttpd.sourceforge.net/

[20] Landers, Steve. “Access C library functions using Critcl.” Tcl'ers Wiki. 5 April 2004.
<http://wiki.tcl.tk/11227>

[21] Cleverly,Michael A. “OTM:Aweb server with aOne TrackMind.”Weblog Entry. Clev-
erly Blogged. 26 June 2005. <http://blog.cleverly.com/permalinks/158.html>

[22] Newman, Matt et al. “TLS extension.” <http://tls.sourceforge.net>
[23] “Using Web Server Plug-Ins with WebLogic Server.” BEA WebLogic Server 8.1

Documentation. 2003. <http://e-docs.bea.com/wls/docs81/plugins/>
[24] Cocasse, Sharad andMakarand Kulkarni. “Understanding theWebSphere Application

ServerWeb server plug-in.”October 2003. <http://download.boulder.ibm.com/ibmdl/
pub/software/dw/wes/pdf/WASWebserverplug-in.pdf>

[25] Staplin, George Peter andDon Porter. “Using gets with a socket is a BAD IDEA.” Tcl'ers
Wiki. 24 October 2001. <http://wiki.tcl.tk/1183>

[26] Cleverly, Michael A., Donal K. Fellows, ed. “TIP #287: Add commands for Deter-
mining Size of Bu$ered Data.” Tcl Improvement Proposal. 26 October 2006. <http:
//www.tcl.tk/cgi-bin/tct/tip/287.html>

[27] “&locked manual page.” <http://www.tcl.tk/man/tcl8.4/TclCmd/fblocked.htm>
[28] Fielding, et al. “Hypertext Transfer Protocol--HTTP/1.1.” RFC 2616. June 1999. <http:

//www.w3.org/Protocols/rfc2616/rfc2616-sec5.html#sec5>
[29] Cleverly, Michael A. “Re: TIP #287: Add a Commands [sic] for Determining Size of

Bu$ered Data.” comp.lang.tcl newsgroup. 14 December 2006. <http://groups.google.
com/group/comp.lang.tcl/msg/e5e4d9cf8842a092>

[30] !oyts, Pat and Xiaotao Wu. “TclUDP.” <http://tcludp.sourceforge.net/>
[31] Gravereaux, David. “IOCPSOCK.” <http://iocpsock.sourceforge.net/>
[32] Casso$, Stuart. “Ceptcl.” <http://www3.sympatico.ca/stuart.cassoff/software/>
[33] San#lippo, Salvatore. “Hping3.” <http://wiki.hping.org/>

9

http://wiki.tcl.tk/11227
http://blog.cleverly.com/permalinks/158.html
http://tls.sourceforge.net
http://e-docs.bea.com/wls/docs81/plugins/
http://download.boulder.ibm.com/ibmdl/pub/software/dw/wes/pdf/WASWebserverplug-in.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/wes/pdf/WASWebserverplug-in.pdf
http://wiki.tcl.tk/1183
http://www.tcl.tk/cgi-bin/tct/tip/287.html
http://www.tcl.tk/cgi-bin/tct/tip/287.html
http://www.tcl.tk/man/tcl8.4/TclCmd/fblocked.htm
http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html#sec5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html#sec5
http://groups.google.com/group/comp.lang.tcl/msg/e5e4d9cf8842a092
http://groups.google.com/group/comp.lang.tcl/msg/e5e4d9cf8842a092
http://tcludp.sourceforge.net/
http://iocpsock.sourceforge.net/
http://www3.sympatico.ca/stuart.cassoff/software/
http://wiki.hping.org/

An ODE solver for Tcl:
old Fortran in a new interface

Kevin B. Kenny
Computational Biology Laboratory, GE Global Research Center, Niskayuna, NY

kennykb@research.ge.com
Abstract

LSODAR is a Fortran subroutine for integration of ordinary differential equations that
has been actively maintained for over twenty years and gives high-quality results for a
variety of problems. This paper demonstrates how such a “dusty deck” can be adapted to
interface cleanly to a modern high-level language like Tcl, be made safe to use in the
presence of threads and recursion, and take advantage of the symbolic computation
capabilities available to Tcl. The result is an ODE solver for Tcl that is production-ready,
at the expenditure of considerably less effort than it would take to develop comparable
capabilities targeted specifically at Tcl. It presents a few tricks that should be handy in
connecting other legacy Fortran applications to Tcl.

1. Introduction
Fortran has for decades been the first choice of language for scientific programming.
Because of this, a great many Fortran codes are available for solving numeric problems,
such as statistical analysis, root finding, and the integration of differential equations.
Many of the best are available free of charge, having been developed by US Government
researchers at taxpayer expense. These “treasures of the national labs” deserve to be more
widely known outside the Fortran community, but the tremendous difference in style
between Fortran and more modern languages inhibits their broader acceptance. This
paper describes how one such code, LSODAR (Livermore Solver for Ordinary
Differential equations with Automatic method selection and Root-finding) (4) was
adapted to use in Tcl.

Among the issues that have to be addressed for this code are adapting the long parameter
lists of the Fortran calls to something more Tcl-friendly, managing dynamically allocated
memory, dealing with Fortran callbacks (callbacks to EXTERNAL functions) at the Tcl
level, and dealing with issues like recursion and multithreading.

The combination is arguably greater than the sum of the parts, because Tcl’s ability to
perform symbolic calculations can be exploited in the combined code. The combined
Fortran-Tcl system has the ability to use Tcl’s symbolic capabilities to perform symbolic
differentiation to exploit backward-differencing formulas.

2. Background
The motivation for this work was the observation that a number of the author’s
colleagues were performing numerical simulations of ordinary differential equations
(ODE’s) in the context of cell biology(1), pharmacokinetics(5), and other biological
systems. The systems tended to divide into two groups. The first group was accepted by
the biologist users, but generally was specialized for a single narrow problem, and often
had tremendous issues of numerical stability (because of the use of ad hoc solvers for the
ODE’s). The second took care with the numerical analysis, often by using well-tested
third party codes, and often offered considerably more generality, but tended to be

Fortran programs usable only by their authors. Clearly, some sort of middle ground was
needed.

At the same time, a number of others were working on developing the interface between
Tcl and Fortran. Having already realized Tcl’s utility for ad hoc scientific
calculations(8), Arjen Markus had developed a rudimentary interface for Fortran
programs to evaluate Tcl scripts(7). Working together with Jean-Claude Wippler and
Steve Landers, he also explored a “proof of concept” of an automatic interface generator
whereby Fortran subprograms could be integrated into Tcl(6). The idea of integrating Tcl
and Fortran was certainly in the air.

These two developments combined to motivate the development of a Tcl interface to a
general-purpose Fortran ODE solver, LSODAR (Livermore Solver for Ordinary
Differential equations [Automatic method selection with Rootfinding])(4). LSODAR was
chosen because it is well qualified (it has been well maintained for twenty years!), and
because it requires fairly little “care and feeding” in the area of solution method selection
(Many other libraries require the user to recognize the realms in which their ODE’s are
stiff and non-stiff and choose methods accordingly, risking horrible numerical
instabilities if the wrong methods are chosen.) Moreover, LSODAR offers a root-finding
capability, which was essential to stop the simulation at bifurcation points in the mixed
strategy (ODE’s plus discrete event simulation) that some of the author’s colleagues were
pursuing.

3. The Tcl interface to LSODAR

The first approach to connecting LSODAR with Tcl was to do a fairly straightforward
translation of the application programming interface. It became obvious fairly quickly,
however, that this approach was not going to succeed – or at the very least, was not going
to produce a calling sequence that was anywhere near to idiomatic Tcl. If we examine
Figure 1, it becomes quickly obvious why this is.

 SUBROUTINE DLSODAR (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK,
 1 ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, JT,
 2 G, NG, JROOT)
 EXTERNAL F, JAC, G
 INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW, JT,
 1 NG, JROOT
 DOUBLE PRECISION Y, T, TOUT, RTOL, ATOL, RWORK
 DIMENSION NEQ(*), Y(*), RTOL(*), ATOL(*), RWORK(LRW), IWORK(LIW),

1 JROOT(NG)

Figure 1. Calling sequence for LSODAR.

First, there is a long list of parameters – twenty or so. It is difficult to imagine any Tcl
command accepting that many positional parameters. Moreover, a number of the
parameters (NEQ, LRW, LIW, and NG) simply serve to give the lengths of arrays. In
addition, only the arrays ATOL, RTOL,Y and JROOT are actually used by the caller,

either before or after the call1. RWORK, IWORK and G are simply working storage
provided by the caller because Fortran 77 has no dynamic memory allocation.

A more awkward problem is that three of the parameters are EXTERNAL – which, in
Fortran, means that they are pointers to Fortran subprograms that will be invoked by the
called routine. These callbacks need to be adapted so that they can be delivered into Tcl.
Clearly, at least a small development effort was needed to make a module that would
present a Tcl-friendly interface and support calls back and forth between Tcl and Fortran.

A. Choice of compiler
Since Tcl’s object level API’s are all in C, and the interfaces between C and Fortran are
not terribly portable among compilers, the decision was made to have all the code in C.
For this reason, the first thing done was to take all the Fortran code needed for LSODAR
and pass it through ‘f2c’ – a Fortran compiler that has C code as output(3). This C code,
plus the C source code for four builtin functions from the associated runtime library,
provided a code base that was independent of the Fortran compiler on any target system;
it is simply included in the source code of the distributed module. It was tested on one
Linux system by comparing the output of the LSODAR example programs compiled with
‘f2c’ and the output from the Fortran versions compiled with GNU ‘g77’(2); output was
identical.

B. Designing a Tcl interface
Rather than having a large number of positional parameters, the Tcl interface uses
keyword-value syntax, with sensibly chosen defaults. Figure 2 shows a trivial example,
where a simple harmonic oscillator is modeled for an eighth-cycle of its operation.

 set solver [odesolv::odesolv -atol 1e-6 -rtol 1e-6 -indvar theta \
 -- s {$c} c {-$s}]
 set s 0.0
 set c 1.0
 set theta 0.0
 set troubles [$solver run [expr {atan(1.0)}]]
 puts [list $theta $c $s]
 rename $solver {}

Figure 2. Trivial example of use of the solver

The program in Figure 2 is read: “Create an ODE solver instance, and store it in variable
‘solver’. The independent variable for the system of ODE’s is ϑ , and the results are
expected to be computed to either six decimal places (an absolute tolerance of 610−) or to
six significant figures (a relative tolerance of 610−). The system to be solved is:

s
dt

dc

c
dt

ds

−=

=
.

Initial values are 1,0,0 === csϑ , and results are requested for 4/πϑ = .”

1 Not quite true – the IWORK and RWORK arrays also contain further optional parameters for the call. We
are dealing with a truly Byzantine interface here!

Unsurprisingly, when run, the program prints that at the end, s and c are both within 10-6

of 2 .

Note that the right-hand sides of the system are Tcl expressions: they are actually
evaluated by making Tcl_ExprDoubleObj callbacks back into the interpreter where the
solver instance was created.

C. Connecting Tcl and Fortran
The solver constructor command is fairly straightforward; it simply builds a C data
structure that contains all the parameters (plus sensible defaults for any named parameters
that have been omitted). It then constructs a Tcl command that has this data structure as
its ClientData, and returns the name of the constructed command. The client data
structure also includes pointers to the arrays that the Fortran code uses.

The instance command supports three subcommands, ‘run’, ‘continue’ and ‘status.’ The
‘run’ command starts an integration; the ‘continue’ command continues an integration
already in progress. The ‘status’ command simply returns a dictionary containing a group
of the internal variables that the integrator uses, reporting on things like the integration
method in use, the number of steps taken so far, the size of the last successful step and the
next step to be attempted.

The ‘run’ and ‘continue’ commands invoke the Fortran code in fairly straightforward
fashion. The only thing that is at all unusual is that the callbacks F (which computes the
vector of derivatives, JAC (which computes the Jacobian matrix of F) and G (which
computes the algebraic equations whose roots are to be found) are sent back to C code
within the interface module for further processing. The callback for F, for instance, is
shown in Figure 3.

static void
SolverInstEvalDeriv(
 integer* neq, /* Number of equations, but also
 * instance pointer */
 doublereal* t, /* Value of the independent variable */
 doublereal* y, /* Values of the model variables */
 doublereal* ydot) /* Values of the derivatives */
{
 Solver* solverPtr = (Solver*) neq;
 Tcl_Interp* interp = solverPtr->interp;
 int systemc;
 Tcl_Obj** systemv;
 int i;
 int status = TCL_OK;
 status = CopyOutModelVariables(solverPtr, t, y, &systemc, &systemv);

 /* Evaluate the derivatives */
 for (i = 0; (status == TCL_OK) && (i < *neq); ++i) {
 status = Tcl_ExprDoubleObj(interp, systemv[2 *i + 1], ydot + i);
 }
 if (status != TCL_OK) {
 longjmp(solverPtr->errorExit, 1);
 }
}

Figure 3. Callback that evaluates the derivatives in the solver

In the figure, we see first a horrible kludge. The parameter, ‘neq’, which gives the
number of ODE’s in the system, is also the first member of the client data structure.
Casting it back to the client data lets the evaluator find all the other information it needs.
Believe it or not, this hack is actually documented in the manual for LSODAR.

The ‘CopyOutModelVariables’ call copies the Fortran state vector to Tcl variables in the
current scope. Following this, each of the ‘neq’ derivatives is evaluated in Tcl. If an error
occurs, the solver is aborted (by the expedient of longjmp’ing around the Fortran code,
since LSODAR does not provide for an error exit); otherwise, we return to the Fortran to
continue solving the ODE’s.

4. Troubles that needed fixing
This level of interface served for quite some time, until its user base expanded a little.
The first real trouble came from unexpected recursion. A user had created a Tk GUI that
allowed running multiple systems at once. For some reason, one of the derivatives was
evaluated by an expression that contained an invocation of a Tcl procedure, which in turn
contained an [update]. The event loop was invoked, and dispatched the solver for another
system of equations, and the code crashed.

The problem was that the code generated by ‘f2c’ contained static data in several labeled
COMMON blocks. This static storage had to be made local to a single instance of the
solver. This proved to be surprisingly easy.

First, every file that designated a given labeled COMMON block has a ‘struct’
declaration simultaneously laying it out and defining it, as shown in Figure 4. A #define
giving the name to be used to refer to the block follows immediately.

struct {
 doublereal rowns[209], ccmax, el0, h__, hmin, hmxi, hu, rc, tn, uround;
 integer init, mxstep, mxhnil, nhnil, nslast, nyh, iowns[6], icf, ierpj,
 iersl, jcur, jstart, kflag, l, lyh, lewt, lacor, lsavf, lwm, liwm,
 meth, miter, maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje,
 nqu;
} dls001_;

#define dls001_1 dls001_

Figure 4. Machinery of ‘f2c’ COMMON blocks.

Each subprogram that appears in the file begins with a left brace ‘{‘ on a line by itself.
This is the only place where ‘f2c’ generates such a line.

A simple Tcl script is able to rewrite the declaration to the code shown in Figure 5.

typedef struct {
 doublereal rowns[209], ccmax, el0, h__, hmin, hmxi, hu, rc, tn, uround;
 integer init, mxstep, mxhnil, nhnil, nslast, nyh, iowns[6], icf, ierpj,
 iersl, jcur, jstart, kflag, l, lyh, lewt, lacor, lsavf, lwm, liwm,
 meth, miter, maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje,
 nqu;
} dls001_;
extern Tcl_ThreadDataKey Odesolvdls001_Key;

Figure 5. Rewritten COMMON block interface.

It can then add a codeburst to the head of every procedure to get the current locations of
the blocks, as shown in Figure 6.

 dls001_ *dls001_Ptr = (dls001_ *)
 OdesolvGetCommon("dls001_", &Odesolvdls001_Key, sizeof(dls001_));
 dlsa01_ *dlsa01_Ptr = (dlsa01_ *)
 OdesolvGetCommon("dlsa01_", &Odesolvdlsa01_Key, sizeof(dlsa01_));
 dlsr01_ *dlsr01_Ptr = (dlsr01_ *)
 OdesolvGetCommon("dlsr01_", &Odesolvdlsr01_Key, sizeof(dlsr01_));

Figure 6. Retrieving COMMON block addresses at the head of procedures

(OdesolvGetCommon is a thin layer around Tcl_GetThreadData that calls Tcl_Panic if
the thread data have not been initialized.)

When a solver instance is started via the ‘run’ or ‘continue’ subcommands, it saves any
existing thread data, sets the thread data to point to instance-specific copies of the
COMMON blocks, and enters the Fortran code. In this way, the usage of COMMON
blocks is made safe for multiple instances of the solver, multiple interpreters, and even
multiple threads. Since this change was made, no further mystery crashes have been
observed.

5. Further convenience
One optional parameter to LSODAR is a subroutine that evaluates the Jacobian of the
derivatives (that is, the matrix of second derivatives). Supplying this subroutine can
accelerate convergence, and in the case of very stiff systems of equations, may be
necessary for numerical stability.

Even in Tcl, writing code to evaluate the Jacobian may be onerous. Since most of the
uses of the package so far have involved fairly simple expressions for the derivatives (in
the sense that they do not require command substitutions or arrays, but make do with
Tcl’s built-in functions and scalar variables), it looked feasible to address the problem
with symbolic differentiation.

The ‘odesolv’ package looks for a ‘math::symdiff’ package. If it finds it, and the user has
not supplied a Jacobian matrix, it invokes ‘math::symdiff::jacobian’ to try to develop one
symbolically. If it succeeds, it invokes the Fortran code with the symbolic Jacobian; if it
fails, it invokes the Fortran code with no Jacobian supplied and hopes for the best.

Figure 7 shows an example of computing a symbolic Jacobian for a system of equations.

% foreach row [math::symdiff::jacobian {
 y1 {-0.04 * $y1 + 10000. * $y2 * $y3}
 y2 {0.04 * $y1 - 10000. * $y2 * $y3 - 3.0e-7 * $y2 * $y2}
 y3 {3.0e-7 * $y2 * $y2}
}] {puts $row}
-0.04 {(10000.0 * $y3)} {(10000. * $y2)}
0.04 {-(((10000.0 * $y3) + ((3.0e-7 * $y2) + (3e-007 * $y2))))} {-((10000. *
$y2))}
0.0 {((3.0e-7 * $y2) + (3e-007 * $y2))} 0.0

Figure 7. Calculating derivatives symbolically

The details of the ‘symdiff’ package are described in a companion paper.

6. Results
It is customary in an experience study like this one to present comparison results with
other techniques for achieving the same goals. In this case, it is difficult, because it is
hard to find other attempts at a production-quality ODE solver in Tcl.2 Certainly, any
attempt to compare the ‘odesolv’ package with the ODE solver in Tcllib is comparing
apples with oranges: ‘odesolv’ offers automatic switching between Adams-Moulton and
Gear backward differencing, while Tcllib does only fourth-order Runge-Kutta; ‘odesolv’
has adaptive stepsize control and error estimation, while the Tcllib method lacks these
features; and so on. Nevertheless, it is possible at least to set up benchmark problems
with the two systems.

The first problem, a nonstiff system, was the simple harmonic oscillator of Figure 2.
Integration was carried out starting at 0=ϑ and continuing to 6/13πϑ = , a little more
than one cycle. The second problem was the extremely stiff set of equations

vu
dt

dv
vu

dt

du
19999991998998 −−=+= , carried out for 160 ≤≤ t .

For the stiff solution, LSODAR chose the Adams-Moulton solver for the initial nonstiff
settling time until t = 0.017, and then switched to Gear’s backward difference formula.
Table 1 shows the performance comparison.

Table 1 . Performance comparisons of Tcllib’s integrator and ‘odesolv’.

Problem Nonstiff Stiff
Metric Tcllib Odesolv Tcllib Odesolv
Number of evaluations of derivatives 256 194 32768 472
Number of evaluations of Jacobian N/A 5 N/A 21
Run time (ms) 4.13 0.55 284.00 2.03

The results show that to achieve the same accuracy of results ‘odesolv’ took roughly the
same number of iterations in the nonstiff case, but arrived at the answer nearly an order
of magnitude faster than tcllib’s integrator. Tcllib’s integrator proved unsuitable for the

2 It may be possible to achieve this functionality using Tcl with SCILAB; I have not yet succeeded at this,
but admittedly haven’t tried very hard.

stiff problem. For fewer than 16384 iterations of the Runge-Kutta step, its numeric
stability was so catastrophic that it crashed with a floating-point overflow rather than
returning results. By contrast, ‘odesolv’ was, as expected, quite well behaved, switching
to a backward difference formula and needing two orders of magnitude less time (and
comparably fewer evaluations of the derivatives).

7. Conclusions
This work demonstrates a comprehensive reworking of a legacy Fortran interface into
idiomatic Tcl. It shows how integrating high-quality scientific codes into Tcl can enhance
the capabilities of both. It presents a few interesting techniques for integrating Fortran
and Tcl; in particular, anchoring client data to the address of a Fortran parameter,
replacing COMMON blocks with thread-specific data are both new techniques (as far as
the author is aware). Finally, it demonstrates that combining Tcl’s ability for symbolic
computation and for reconfiguration yields a whole that is greater than the sum of the
parts.

References
1) Beer, A.J., Haubner, R., Goebel, M., Luderschmidt, S., Spilker, M.E., Wester,

H.J., Weber, W.A., Schwaiger, M. “Biodistribution and pharmacokinetics of the α V
β
3-selective tracer 18F-galacto-RGD in cancer patients.” J Nucl Med. 46:8

(August, 2005), pp.1333-41.
2) Burley, James Craig. Using and porting GNU Fortran. Version 3.4.6. Cambridge,

Mass: Free Software Foundation, 2006.
3) Feldman, S.I., Gay, David M., Maimone, Mark W., Schryer, N. L. “A Fortran-to-

C converter.” Computing Science Technical Report 149, Murray Hill, N.J.:
AT&T Bell Laboratories, March, 1995. Reprint available at
http://www.netlib.org/f2c/f2c.pdf.

4) Hindmarsh, Alan C. “ODEPACK: A systematized collection of ODE solvers.” In
Scientific Computing (R.S. Stepelman, et al., eds.) (Volume 1 of IMACS
Transactions on Scientific Computation) Amsterdam: North-Holland, 1983, pp.
55-64. Reprint available at http://www.llnl.gov/CASC/nsde/pubs/u88007.pdf.

5) Kiehl, Thomas R., Mattheyses, Robert M., Simmons, Melvin K. “Hybrid
simulation of cellular behavior.” Bioinformatics 20:3 (March 2004), pp. 316-322.

6) Landers, Steve, and Wippler, Jean-Claude. “CriTcl - beyond Stubs and
compilers.” Proc. Ninth Intl. Tcl/Tk Conference, Vancouver, B.C. (September
2002). Reprint available at
http://aspn.activestate.com/ASPN/Tcl/TclConferencePapers2002/Tcl2002papers/
wippler-critcl/critcl.pdf.

7) Markus, Arjen. “Combining Fortran and scripting languages.” ACM SIGPLAN
Fortran Forum 21:3 (2002), pp. 10-18.

8) Markus, Arjen. “Doing mathematics with Tcl.” Proc. Third European Tcl/Tk User
Meeting. Munich (June, 2002). Reprint available at http://www.t-
ide.com/tcl2002e/mathematics.pdf.

14’th Annual Tcl/Tk conference
Sept. 24-28 2007

Bourbon Orleans Hotel, New Orleans, LA USA

Tcl Applications

Anatomy of a Large Application:
Architectural Patterns and Solutions

William H. Duquette
Jet Propulsion Laboratory, California Institute of Technology

William.H.Duquette@jpl.nasa.gov

ABSTRACT
JNEM, the Joint Non-kinetic Effects Model, is a large simulation
application. Written almost entirely in Tcl/Tk, it makes
architectural use of the Snit object system and the SQLite3
database engine. This paper addresses a number of architectural
patterns and solutions that have been found useful during the two-
plus years of JNEM development. Patterns include the three-layer
package architecture (application, domain, and utility); Snit types
as application modules; saving and restoring application state; the
database-backed objects; SQLite3 as an application memory
debugger; and a generalization of the scrollbar/scrollable pattern.

1. Joint Non-kinetic Effects Model
The Joint Non-kinetic Effects Model (JNEM) is a military training
simulation that participates in a federation of simulations used to
train military commanders. The federation is called the Joint
Land Component Constructive Training Capability (JLCCTC)
Multi-Resolution Federation (MRF). JNEM's role as a federate in
the federation is to model the responses of the civilian population
to force activities, up to and including actual combat, thus adding
non-kinetic effects to the kinetic effects modeled by the battlefield
simulation. JNEM is written primarily in Tcl/Tk 8.4, with a small
amount of code in C/C++.

This paper describes certain architectural patterns and solutions
used in the implementation of JNEM; it does not address specifics
of the JNEM implementation, simulation model, or data formats.
The techniques described here can be adapted to any large
application/system with similar requirements.

2. The Three-Layer Package Architecture
Like many large application development efforts, JNEM is not
really a single application; rather it is a system containing many
applications of various sizes, of which the JNEM simulation
proper is the largest. The system also includes control GUIs (the
JNEM Console), simulators designed to represent other federates
during development, and a number of ancillary tools of varying
degrees of complexity, both GUI and non-GUI. As a result, there
is opportunity for significant code sharing between the various
components of the system.

The cleanest mechanism for sharing code between applications is
the use of well-written reusable code libraries. Reusability,
however, is context-dependent. Every coding effort is based on
assumptions as to the context in which the resulting software will
be used. This context then determines the arena in which the
software is reusable.

The wider the context in which the code is to be reused, the more
general and flexible (and hence the more complicated and costly)
the code needs to be. The narrower the context, the more

assumptions the author of the code may make and the more
specific (and hence simpler and less costly) the code may be.

It is important to target code to the proper context. If a library
module is written for too broad a context, it will be more complex
than necessary, and thus more costly to implement and maintain.
The increased complexity is often reflected in the module's
interface; this in turn increases the complexity of all clients of the
module, thus increasing the cost of using the module.

If the library module is written for too narrow a context, then it
may not be possible to take advantage of unforeseen opportunities
for reuse that will arise. When this happens, either the library
module needs to be generalized—if there is time—or the coder is
likely to be forced to engage in "bad reuse": copying the library
code into a new module with small changes.

Deciding the appropriate context for a new module of code is to a
certain extent an art, and depends on a clear vision of what the
project's needs will be in the future. However, we have found that
the following three-layer package architecture greatly simplifies
the decision:

Application Layer
Domain Layer
Utility Layer

Each layer represents a particular context and has its own
particular constraints; generality increases from top to bottom.
The layers are defined in detail below; once they have been
defined, we will discuss how code is structured within each layer.

2.1 The Utility Layer
The utility layer represents the widest context in the system. Code
written for this layer should make few assumptions about the
environment in which it runs, and, in particular, should avoid
placing requirements on the application. For example, JNEM's
utility layer includes a pair of comm(n)-based communications
modules, commclient(n) and commserver(n). Among their duties
is the logging of client connects, disconnects, and other message
traffic. However, they write to a log file only when configured to
do so; otherwise they would be suitable for large, long-running
applications but not for short ad hoc utility scripts.

These considerations place the following constraints on modules
in the utility layer:

Modules should not touch the global namespace. All utility
layer code should be defined in package namespaces, with public
names exported.

Anatomy of a Large Application William H. Duquette Page 2

Modules without state should usually export a single ensemble
command. This was determined to be a beneficial pattern by
Roseman [3], and minimizes the risk of name collisions if names
are imported into the global namespace. There are exceptions;
frequently-used utility commands can be implemented as normal
commands. But generally speaking, a family of related
commands should be implemented as an ensemble. For example,
JNEM's family of matrix operations are implemented as a single
ensemble, mat(n).

Modules with state should be implemented as object instances.
JNEM's logging facility, for example, is defined as a logger(n)
object type, thus allowing an application to create multiple
logger(n) objects and log to multiple files simultaneously.

Object instances must be wired together explicitly. If a
commserver(n) object is to log communications traffic, for
example, it must be given the name of a logger(n) object. It
cannot simply assume that there is a logger(n) with a well-known
name.

JNEM's utility layer includes the following kinds of modules:

• String and list handling
• Date and time
• Interprocess communication
• Math and geometry
• Control structures
• Data types
• Logging
• General purpose megawidgets

A module that contains no domain-specific knowledge should be
included in this layer on one of two conditions: if it is definitely
needed by two or more applications within the system, or if it has
potential for reuse and little extra work is required to make it a
library module. The logger(n) module is an example of the first
case; string and list handling routines are examples of the second.

JNEM is not a cross-platform application; it specifically targets
Linux/X-Windows. If it were to be made cross-platform, platform
details would be handled in this layer as well.

2.2 The Domain Layer
The domain layer contains code intended for reuse in multiple
applications in our particular application domain. For example,
JNEM defines a module called sqldatabase(n), a Snit-based
wrapper for SQLite3 database objects. Among other features, the
wrapper defines the JNEM database schemas. This information is
clearly specific to our application domain, and hence does not
belong in the utility layer; on the other hand, we wish to be able to
write a variety of applications, from the JNEM simulation proper
down to simple scripts, that access JNEM database files.
Consequently this code belongs in the domain layer, along with
domain-specific data types, file format definitions and parsers,
multi-application simulation modules, and domain-specific multi-
application GUI components. As with the utility layer, code
written for this layer should avoid placing requirements on the
application.

Domain layer code generally operates under the same constraints
as utility layer code; however, it will include domain-specific

knowledge and will be more likely to implement specific policies.
JNEM's utility layer, for example, includes a module called
sqlib(n), which contains routines for querying SQLite3 schemas
and for formatting the results of SQLite3 queries. This module
makes no assumptions about the SQLite3 database upon which it
operates, and defines no policies for how the database is used.
The domain-layer module sqldatabase(n), on the other hand, not
only defines the database schema but also implements a
document-like open/save transaction policy.

A module containing domain-specific knowledge should be
defined in this layer on either of two conditions: if it is definitely
needed by two or more applications within the system, or if it has
potential for reuse and little extra work is required to make it a
library module.

It sometimes happens that a module requiring domain-specific
infrastructure would also be useful in programs based solely on
the utility layer. In this case, one needs to consider generalizing
the module and its interface so that the module itself contains no
dependencies on the domain layer, but can be configured to make
use of domain-specific modules when available.

2.3 The Application Layer
The application layer contains code that resides in a single
application. Properly speaking, then, there is no system-wide
application layer; each application within the system has its own.
Code written for this layer may access any desired modules from
the two lower layers, and may embody any assumptions that
simplify the implementation. The application may use the global
namespace freely, and many objects in the application layer will
have well-known names. For example, the application may define
a global logger(n) object called ::log, and all application
modules may use it freely by that name. No "wiring together" of
objects is required.

We have found the following guidelines to be helpful.

Define public names in the global namespace. We are used to
not polluting the global namespace in our code, so as to avoid
name collisions. But if the application itself cannot use the global
namespace, who can?

Define private names in namespaces. A module's private
internal commands should be defined in a module-specific
namespace, so as to avoid inadvertant inter-module name
collisions.

Prefer singletons to object types with multiple instances.
Application modules will frequently contain state. Unless
multiple instances of that state are definitely required, however,
modules should be implemented as singleton objects with well-
known names. This simplifies the code, and makes it easier to
call modules from other modules without explicit wiring.

Implement singletons as ensemble commands. This gives each
singleton module a single well-known name, and allows it to be
treated as an object by other modules. The benefits of using
ensemble commands for module public interfaces are discussed in
[3].

Anatomy of a Large Application William H. Duquette Page 3

2.4 Internal Architecture
Since the utility and domain layers consist of library modules, it
will come as no surprise that each is implemented as a collection
of packages. In principle, each module in these layers could be
implemented as a separate package. For simplicity, however,
JNEM groups the modules into a small number of packages, as
shown below, although each module has its own man page:

 GUI Non-GUI
Application Layer jnem_app(n)
Domain Layer simgui(n) simlib(n)
Utility Layer gui(n) util(n)

In use, the primary distinction is between GUI and non-GUI code,
as requiring the Tk package in a non-GUI application has
undesirable effects. Consequently, the utility and domain layers
are each defined as a pair of library packages, one GUI and one
non-GUI, each of which contains a number of modules.

Two architectures are used at the application layer: small
applications, such as command-line utilities, are generally
implemented as simple scripts which load the packages they need
from the domain and utility layers. Larger applications, such as
the JNEM simulation proper, are implemented as a short loader
script which loads an application package, jnem_app(n). This
architecture allows the application to contain arbitrarily many
modules in an easily managed way. In JNEM, all such
applications share a single loader script, jnem(1). Thus, the
command

$ jnem sim

causes the jnem(1) script to load the jnem_sim(n) package and
invoke its main entry point. By convention, every jnem_app(n)
package contains at least one module, app.tcl, which defines a
singleton object called ::app. The application's main entry point
is then ::app init.

3. Snit Types as Application Modules
As stated above, an application module should present its public
interface as an ensemble command defined in the global
namespace, while the module's internal code should reside in a
module-specific namespace. A snit::type definition serves
this purpose admirably well:

• The type's name, defined in the global namespace, is the

ensemble command.
• The type's type methods are the ensemble command's

subcommands.
• All of the type's code and variables naturally reside in the

type's namespace.

In addition, ensemble subcommands can be delegated to
component objects or to other application modules, and ensemble
subcommands can themselves be ensembles with subcommands
of their own.

The one necessity is to ensure that the snit::type cannot
create instances; otherwise, a mistyped subcommand will be
treated as the name of an instance to be created, with mystifying
results. The skeleton for such a module looks like this:

snit::type mymodule {
 pragma -hasinstances no

 typevariable myvariable

 typemethod mysubcommand {args} {
 ...
 }
 ...
}

The ::mymodule command is global, but all of the module's
code then resides in the ::mymodule:: namespace.

The type's standard "info" and "destroy" methods can also be
disabled, allowing them to be redefined by the module if the
author so desires.

3.1 Library Ensembles
Ensemble commands implemented in the utility or domain layers
can also be implemented in this way, placing the command in the
package namespace. JNEM's matrix manipulation module,
mat(n), a module of package util(n), is implemented something
like this:

namespace export ::util::mat

snit::type ::util::mat {
 pragma -hasinstances no

 typeconstructor { namespace import ::util::* }

 typemethod add {mat1 mat2} { ... }
 ...
}

The ensemble command is defined in the ::util namespace, as
are util(n) commands. Note that the ensemble's code resides in
the ::util::mat namespace, and consequently cannot see
other commands defined in ::util; hence, the ensemble must
import them as shown. This is a nuisance, as it constrains the
order in which util(n)'s modules are loaded. If JNEM were using
Tcl 8.5 and Snit 2.1, this would not be necessary; in Snit 2.1, Snit
types automatically add their parent namespace to their
namespace path.

4. Saving and Restoring Simulation State
Training exercises can run twenty-four hours a day for five days
or more. If a simulation in the training federation should crash, it
is vital not only to get it running again as soon as possible, but
also to get it running again with the same state it had prior to the
crash (possibly adjusted slightly so as to avoid crashing again).
Now, the state of a simulation is a complex thing, and the only
way to recreate it from scratch is to re-run it with the same inputs
and random draws. After more than a few hours, though, the time
involved in "running up" the simulation from scratch is
prohibitive. Consequently, every simulation in the federation is
periodically asked to save its state so that the federation state can
be restored later. Such a saved state is called a checkpoint, and
saving simulation state is referred to as checkpointing the
simulation.

In one sense, this is no different than the requirement on any
document-centric application—a word processor, say, or a

Anatomy of a Large Application William H. Duquette Page 4

spreadsheet. There are, however, two distinctions of note. First,
the state data for a complex simulation can be of great variety and
extent. In a word processor, each document is likely to be
represented as an object of some type, probably managing a
hierarchy of lower-level objects; and saving the document to disk
is a natural operation on the document object. In a complex
simulation, there are likely to be many, many objects and ancillary
data to be saved, and there might not be any obvious organizing
principle corresponding to the notion of a "document". Second,
the requirement to load and save state is implicit in the notion of a
document-centric application; it is not similarly implicit in the
notion of a simulation. History shows that checkpointing is an
architectural issue, and that it can be very difficult to implement if
it isn't taken into account from the beginning.

Code written to save and restore complex application state to and
from disk can be extremely fragile. First, all relevant state must
be identified; if any state variables are omitted, it will not be
possible to restore the simulation's state precisely. We will refer
to this set of checkpointed state variables as the application's
persistent state. Second, the routines which read the checkpoint
must exactly mirror the routines that write it out, or efforts to
restore will fail. An error in either one renders the checkpoint
useless; and naturally, it's a common error (especially in
applications for which checkpointing is an afterthought) to update
the reader and forget to update the writer, or vice versa. The
solution is to provide a framework for saving and restoring
arbitrary state variables, and then register all state variables with
the framework.

In most languages, it would also be necessary to register the type
of each state variable. In Tcl, where everything is a string,
defining such a framework is nearly trivial. JNEM follows a few
simple patterns which make saving and restoring simulation state
both easy to implement and robust in the face of change.

JNEM's internal state is of four kinds:

• Persistent state stored in the run-time database (RDB)
• Persistent state stored in Tcl variables which are mirrored in

the RDB.
• Persistent state stored in Tcl variables which are not mirrored

in the RDB.
• Non-persistent state stored in Tcl variables.

Only the first three kinds need to be included in a simulation
checkpoint; however, the latter three kinds need to be clearly
commented and distinguished in the code.

4.1 Saving the Run-time Database
The run-time database, or RDB, is an SQLite3 database. Much of
JNEM's simulation data is stored there, particularly its knowledge
of the various entities in the simulated world. Checkpointing the
data stored in the RDB is, of course, trivial—JNEM creates a
checkpoint simply by committing all current updates and making
a copy of the database file. The data is restored by copying and
opening the checkpoint file as a new RDB.

The checkpoint file is thus an SQLite3 database file. If all
persistent state were stored in the RDB, no further work would
need to be done. Inevitably, for performance or ease of
implementation, some data will be stored only in memory. Some

state data, notably object instance data, is stored in memory and
automatically mirrored on change in the RDB; this makes it easy
to perform queries on objects and also to produce reports. Such
data is automatically checkpointed. Other state data in Tcl
variables gets copied to and from the database on checkpoint and
restore, as discussed in the following section.

4.2 Saving In-Memory Application State
The simulation consists of a number of modules, each of which
has its own set of Tcl variables, some of which contain persistent
data and some of which do not. Each module that has Tcl
variables containing non-mirrored persistent state is registered
with the checkpoint management module. This registry is simply a
hard-coded list of module names; it is updated by hand as
modules are added and deleted.

Each such checkpointable module is required to have the two
following subcommands:

module checkpoint

Returns the module's non-mirrored persistent state as a
single Tcl value. This is usually a dictionary, and
frequently a dictionary of dictionaries.

module recover state

Restores the module's state to state, which must be a
value returned by the module's checkpoint
subcommand.

When a checkpoint is to be saved, the checkpoint manager simply
asks each checkpointable module for its state, and stores it under
the module's name in an RDB table called checkpoint. which
has two string-valued columns, component and data. When
saving a checkpoint, the application retrieves the state for each
checkpointable module and stashes the module's name and state
data into the checkpoint table. When restoring from a
checkpoint, the application retrieves the module names and state
values from the restored RDB file and asks each module to
recover itself.

The preceding discussion uses the term "module", but some of the
checkpointed "modules" are actually instances of snit::types.
What they all have in common is that they all have well-known
global names, are created at simulation start, and persist for the
life of the simulation. (Transient objects, on the other hand, mirror
their state to the RDB.) Thus, the code is extremely simple; the
only maintenance that is ever needed at the application level is to
add and delete names from the list of checkpointable "modules" as
the simulation's implementation changes during the course of
development.

4.3 Saving In-Memory Module State
The previous section explained how the application saves and
restores the persistent state of its modules to and from the RDB
using each module's checkpoint and recover
subcommands. This section explains how each module structures
its internal data, and how the checkpoint and recover
subcommands are usually implemented.

First, each checkpointable object is either a singleton
implemented as a snit::type, as described above, or an

Anatomy of a Large Application William H. Duquette Page 5

instance of a snit::type. Either way, the object's variables
are grouped and clearly labeled as to whether they are
checkpointed or not. Second, almost all checkpointed data is
stored in one or more Tcl arrays. Some data is array-oriented by
nature; and the remaining scalar data is stored in an array simply
to make checkpointing convenient. The checkpoint and
recover subcommands can then be implemented like this:

typemethod checkpoint {} {
 list \
 array1 [array get array1] \
 array2 [array get array2]
}

typemethod restore {checkpoint} {
 foreach {name value} $checkpoint {
 array unset $name
 array set $name $value
 }
}

In a few cases an object might have component objects with
persistent state; this complicates the code slightly. But in each
case, the pattern is the same: the object's state is checkpointed as a
dictionary of named values and recovered accordingly.

The beautiful thing about this mechanism is that it is only
necessary to touch the checkpoint/recover code when a
checkpointed array or component is added to or removed from an
object. Since checkpointable scalar variables are grouped into an
array, any number of new scalar variables can be trivially added
and correctly checkpointed just by defining them in that (carefully
labeled) array.

In short, simply by storing data in arrays and adopting a simple
convention, we get trouble-free saves and restores of in-memory
data with almost no maintenance overhead. It just works.

5. Database-Backed Objects
The word "object" being oversubscribed, we will adopt the
following terminology for this section. An object is a standard
Tcl object: a command with subcommands. A singleton is an
object defined as a snit::type with type methods. An
instance is an object defined as an instance of a snit::type.
An entity is a simulated thing with associated data that might or
might not have an associated object.

In JNEM, for example, a ground unit—a platoon, say—is an
entity. Ground unit data is received from the federation, and each
unit's data is stored as a row in the RDB's units table, thus
allowing units to be queried in interesting ways. Since units have
little behavior within JNEM itself, there is no Tcl object
associated with each unit.

Fixed site entities, e.g., power plants and hospitals, do have
significant behavior within JNEM, and hence have significant
amounts of associated code and data. In JNEM v1, all entity data
was stored in the RDB, and the related code for a particular entity
type resided within one more singletons within the application,
singletons whose primary task was something else. There were
three advantages to this approach:

• Entity data could be easily queried.
• Entity data was trivially included in saved checkpoints.
• Entities by their nature are transient, and the housekeeping

nuisance of saving and restoring transient instances was
thereby avoided.

There were also disadvantages:

• Code related to an entity type was split between different

modules, wherever the entities were used; there was no
central place for it to live.

• All changes to entity data required explicit SQL updates to
the RDB, thus making the code uglier and more verbose.

(A note on using an SQLite3 database for an application's record
data: it is sometimes reasonable to write an API for updating
records in the database, but it is rarely reasonable to write an API
for querying records. Such an API is never as expressive as SQL
SELECT statements, and it is much faster to do a SELECT and
allow SQLite3 to iterate over the selected entity data than it is to
do a foreach over entity IDs and then query the RDB for each
entity's data.)

In JNEM v2, it soon became clear that the entity-related code was
becoming unmanageably ugly, and that some entities could
benefit from being represented as Tcl objects, i.e., as Snit
instances. Now, saving and restoring transient instances is a
nuisance: on a restore, one must destroy all existing transient
instances, and then recreate the saved instances. There are two
aspects to this problem: creating the restored objects with the
correct names, so that they can be used by other code, and
creating the restored objects with the correct data. Moreover, we
wished to make this change without losing the benefits of storing
entity data in the RDB. The result was the "databased-backed
objects" pattern. The details of the pattern are as follows.

Each entity type is mapped to a particular RDB table; individual
entities are represented as rows in the table. Each entity has a
unique ID, which is the table's primary key. Entities are always
addressed by their unique ID, not by any object name. Thus, the
object names are arbitrary.

The first step is to make it possible to efficiently retrieve a Tcl
object for a given entity, given only the entity's ID. At any given
time, an entity might or might not have an associated Tcl object.
Any routine that needs to access an entity as a Tcl object requests
such an object, giving the entity's ID. The object is created, if it
does not already exist, and is cached for later use. By convention,
the routine requesting the object may only presume that the
returned object name is valid until the routine itself returns. The
routine may use the object name freely, and may pass it to other
routines; however, only the entity ID should be saved in data
structures. Entity object names are not persistent. If the state of
the simulation changes, i.e., if state is restored from checkpoint,
then the content of the RDB is presumed to be different. The
cache of entity objects is cleared, and all such objects are
destroyed. By this means, objects are created on demand and then
retrieved as needed.

This part of the pattern is implemented by a singleton associated
with the entity type; fixed site entities, for example, are managed

Anatomy of a Large Application William H. Duquette Page 6

by the site singleton. The site singleton provides the
following method (among others):

site get id ?-create?

Returns an object instance for the fixed site entity with
the given id. Unless -create is specified, the entity
must already exist in the RDB.

Thus, any routine that needs to access a fixed site's behavior will
know the site's ID and will call site get to retrieve the
instance. Any routine which merely wishes to query one or more
fixed sites will query the RDB directly.

The entity objects are, perhaps surprisingly, not instances of the
site type, but rather instances of the siteType type. As noted
previously, defining a snit::type with both type and instance
methods can lead to perplexing bugs if the type is called with a
misspelled type method. (Note that snit::widgets are more
or less immune to this problem, as a misspelled type method name
is unlikely to look like a widget name.)

The second step is to tie an entity object's data to the entity's row
in the RDB. When an entity object is created, it retrieves the
entity's row from the RDB, and stores it in an instance variable, an
array called info. This allows the object's methods to read this
data without the cost of accessing the database. The entity object
then provides at least the following methods:

$entity set name value

Sets the value of entity field name, updating both the
info array and the related RDB row.

$entity get name

Retrieves the value of entity field name from the info
array.

The rules that ensure consistency between the data stored in the
RDB and the data mirrored in the entity objects are as follows:

• Only type methods of the entity singleton and methods of the

entity instance type are allowed to use SQL queries to
modify the contents of the entity type's table in the RDB.

• Other modules must use the entity singleton to affect entities
as a group, and entity objects to update fields of individual
entities. They may use the set method directly, or use other
entity instance methods which call set indirectly.

• If the entity singleton updates existing entities, then the
singleton's instance cache must be cleared. We will not try to
update all existing entity instances immediately; instead, we
will recreate them on demand.

This pattern preserves the advantages of saving entity data in the
RDB while allowing entity code to be well-structured and easily
maintained, at minimal cost in code complexity.

6. SQLite3 as a Memory Debugger
In conventional C or C++ programming, a perennial difficulty is
finding out precisely what's going on in the program's memory,
especially in environments where an external debugger is difficult
or impossible to use. Tcl/Tk eases this problem by its very nature;
with a small amount of work, any application can pop up a
"console" window with a command line, so that the developer can

query Tcl variables via Tcl commands. Even so, navigating
complex data structures can still be tedious, especially when data
is stored in Snit instance variables.

As noted above, JNEM uses its "Runtime Database", or RDB, as a
structured memory store. The user is allowed to enter SQL
"SELECT" queries for the RDB from the JNEM Console's
command line interface; the query results are returned in tabular
format. To the extent that the application's data is stored in the
RDB, then, that data is easily browsed using arbitrary queries—
which has the effect of turning SQLite3 into a memory debugger
without peer. Any desired data or condition can be queried; and if
desired, triggers can be used to trap particular conditions as they
occur. It would be difficult to overstate the convenience of this
feature.

7. The Scrollbar/Scrollable Pattern
The scrollbar/scrollable pattern is familiar to every Tk
programmer; adding scrollbars to a text widget to create a simple
text editor is a standard introductory example, but scrollbars can
also scroll canvas widgets, frames, and listboxes. Scrollbar A and
scrollable widget B have a symbiotic relationship such that if A's
position is changed, B's viewport updates to match, and vice
versa. At the lines of code level, A and B are wired together by a
pair of callback/subcommand protocols:

• When A's position is changed, A's -command callback calls

B's yview subcommand to update B's viewport.
• When B's viewport is changed, B's -yscrollcommand

callback calls A's set subcommand.
• Both A and B are smart enough not to do anything if the

subcommand tells them to do what they are already doing.
• A and B are kept in sync through all changes, whether

triggered by the user or by the application.

The beautiful thing about this pair of callback/subcommand
protocols is that it is defined by the arguments passed by the
callback to the subcommand, not by either the callback or the
subcommand name. This is the feature that allows the text widget
to use two scrollbars at once, using the same protocols. Only the
developer who glues A and B together needs to know the callback
and subcommand names.

During JNEM v2 development, we realized that, properly
abstracted, this pattern can apply to pairs of other kinds of
widgets, as a "meta-pattern" if you will. For example, JNEM's log
browser includes a search box called the "finder". Entering a
search string in the box causes matching log entries to be
highlighted in the body of the browser; further, the search box
displays a count of the number of matches, and buttons to scroll
the log browser from one match to another. If the content of the
log browser is updated, then the search box must update its
search.

Our initial implementations of the finder and log browser were
rather ugly; we kept trying to make the log browser subordinate to
the finder, and we kept having synchronization problems. The
difficulty was that updates were received by both the finder and
the log browser, and the log browser's updates were being
mishandled, precisely because the finder was not involved.
Pondering the Scrollbar/Scrollable pattern, we realized that
neither the finder nor the log browser should be in charge; rather,

Anatomy of a Large Application William H. Duquette Page 7

the two widgets must be peers, each keeping itself synchronized
with the other. This could be called the Finder/Findable pattern; it
has the same nature as the Scrollbar/Scrollable pattern. Given a
finder A and a log browser B, A and B are wired together by a
pair of callback/subcommand protocols:

• When the contents of A's search box is changed, whether by

the user or by the application, A's -findcmd callback calls
B's find subcommand, passing it the target string and
search type (exact match, regular expression, etc.). B does
the search and highlights the matches. Note that find is an
ensemble subcommand with subcommands of its own.

• When B's search results change, B's -foundcmd callback
calls A's found subcommand, passing it the number of
matches found and the index of the match currently
displayed. A updates its appearances, displaying the index
and count, and enabling or disabling its arrow buttons
appropriately.

• If matches were found, then A's -findcmd can call B's
find command to navigate through the found matches.

JNEM has several "findable" widgets that will happily work
together with the Finder widget.

The meta-pattern can be expressed as follows: given two objects,
A and B, each of which must remain synchronized with the other
in the face of updates to either one, glue the two objects together
by means of a pair of callbacks and subcommands, such that A's
callback calls B's subcommand, and vice-versa. Define the
protocol in terms of the required arguments of each subcommand
only, as it allows B to communicate with multiple A's at the same
time, much as the text widget communicates with multiple
scrollbars.

8. REFERENCES

[1] Duquette, William H., "Snit's Not Incr Tcl",

http://www.wjduquette.com/snit.

[2] Tcl Manual, http://www.tcl.tk/man/tcl8.4/TclLib/Eval.htm.

[3] Roseman, Mark, "Ten Years of Rapid Development", 9th

Tcl/Tk Conference,
http://www.markroseman.com/pubs/tenyears.pdf.

[4] Duquette, William H., "Type Definition Objects", 12th

Tcl/Tk Conference.

9. ACKNOWLEDGEMENTS
This research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration, during the
development of the Joint Non-kinetic Effects Model (JNEM) for
the U.S. Army Program Executive Office – Simulation, Training
and Instrumentation (PEO STRI) in Orlando, Florida.

14’th Annual Tcl/Tk conference
Sept. 24-28 2007

Bourbon Orleans Hotel, New Orleans, LA USA

Tcl Does Data(bases)

TDIF
Tcl Data Interface

Framework

Presented to the 14th Annual Tcl Developer
Conference by:

Sean Deely Woods

Table of Contents
Table of Contents... 2
Tables and Figures ... 3
Introduction .. 4

What is TDIF trying to solve? ...4
TDIF Philosophy ...4
TDIF Concepts...4

Node .. 4
Containers.. 4
Connectors ..5
Elements..5
Properties..5
Putting it all together...6

Usage.. 6
Bare Metal...7
Containers ..8

Container Handles..9
Elements ...10
Properties .. 11

Extending TDIF... 13
Connectors ..13
Writing Connectors ...13
writing Containers ...14
Writing Elements ..15
Writing Properties ..15
Writing in Different Object Systems15

Pay the Ferryman... 15
Stay with the times.. 16

Format for Schema Dicts ..17
Column... 17
Index... 18

Concluding Remarks .. 19
Further Reading.. 20
About the Author.. 20
Credits: ... 20

Graphics and Art...20
Fonts Used: ...20

Tables and Figures
Table 1 - Bare Metal Connector Methods ..8
Table 2 – Basic Container Exposed Methods .. 9
Table 3 – SQL Container Exposed Methods... 9
Table 4 – Basic Element Exposed Methods..11
Table 5 – Basic Property Exposed Methods .. 12
Table 6 - Connector Language Abstraction Methods ..14
Table 7 – Garbage Collector Interface..16
Table 8 – Methods to expose for Garbage Collector...16
Table 9 – TDIF Column properties .. 17
Table 10 – TDIF Column Types...18
Table 11 – TDIF Index properties..18
Table 12 – TDIF Index column properties ...18
Table 13 – TDIF Index Types ...18

Example 1 - Using TDIF .. 7
Example 2 - Bare Metal Use if TDIF...8
Example 3 – Basic container usage ... 9
Example 4 – Basic element usage ..10
Example 5 – Basic property usage ... 12
Example 6 – Scythe Implementation for [Incr Tcl] ... 15
Example 7 – cronos usage ...16
Example 8 – schema dict... 17

Introduction

What is TDIF trying to solve?
TDIF is a uniform methodology for accessing external data within Tcl.

Its genesis stems from a need on my part to have the same software run under multiple platforms
with different drivers to access MySQL. One distro of linux would ship with tclmysql. Another would ship
with mysqltcl. Windows ships with tclodbc. And then there was the change in mysqltcl’s interface
between mysql_ and mysql::.

At the same time sqlite was coming into it’s own, and I found myself replacing some MySql
applications with it. I was also having to occasionally dump data out of MS Sql and MS Access. Being a
lazy programmer, I developed a shorthand for all of the various database interactions I needed, and
then wrote a suite of tools to convert that shorthand to the native interface of the storage engine.

TDIF is my attempt to adapt my own techniques, developed over time, into a formal interface.

TDIF Philosophy
TDIF caters to two different audiences.

One audience is simply looking for a consistent way in which to feed bare statements into a database
engine. They want abstraction only so far as to ensure no matter what driver they use to access XSql,
they get data returned in a predictable format. We will call this BMI: Bare Metal Interface.

This audience can pretty much skip to the chapter on Usage, most of this paper describes the full
blown TDIF. Though the chapter on the Implementation may be an interesting read for those who wish
to add new drivers.

The second audience does a lot of work accessing data from multiple data sources at once. For
them, optimal database statements are a secondary concern. Their principle need is to transparently
load and save data regardless of the database engine used. If indeed, the data is coming from a
database at all. This interface uses all of the capabilities of TDIF: Tcl Data Interface Framework. TBMI is
still available for the occasional optimization, or function that TDIF does not provide for.

In TDIF tables, records, and columns are abstracted into containers, elements, and properties
(though I still call them ‘fields’ or ‘columns’ out of habit). This interface reduces all storage engines to a
port in which to drop key/value lists.

I use TDIF as a framework on which to build much more complex systems. Reducing everything to
key/value lists means that a webserver application no longer needs to worry about formulating
queries. A user migration script can simply dump a list from one engine to another. An application
writer can switch storage engines as a customization rather than a full-blown port.

TDIF Concepts

Node
A node is simply an object within TDIF this is otherwise not defined. Structurally, tdif.node is a class

that contains common operating elements of all the other object types. Method names use “node”
because most of the time TDIF does not know or care what type of object is referenced.

Containers
While it us useful to think of a container as a data table, don’t wrap yourself up in it. A data table is

only on kind of container in TDIF. Standalone files are another type. A bank of instruments could be
another container. In short, a container is any object in TDIF that acts as a grouping for other objects.

Containers can, in fact, contain other containers. Connectors are treated as a type of container.
Instead of spawning database record objects, they spawn container objects for tables and property
handling objects for columns.

A container can also spread it’s data over connectors, or multiple tables within a connector, or
conceivably multiple tables over multiple connectors. The point is, a developer simply writes and reads
data to the container object. The container object works out all of the details on where data is stored
and how.

Connectors
Connectors are a special kind of container that goes out and directly communicates with an outside

data store. Other containers use Connectors to interact with the outside.

Database connectors spawn off other container objects. File connectors spawn off the records they
contained with the file. Undoubtedly even more exotic arrangements will pop up as we go along.

The important takeway is that a connector is a container that has a few extra methods for
interacting with the data store. Sql connectors also provide some creature comfort utilities for
containers to formulate queries with.

Elements
Elements are objects that take data stored in records, and make them come alive within a TDIF

application. Unlike containers, they do not contain other objects. Though that can link to other objects.
Elements can also have data that spans multiple containers. (Though I suppose these should rightly be
called compounds.) An element can also be present in more than one container. The key thing is that it
deals with all of the data storage issue. All the application writer has to do is read and write key/value
lists.

Properties
Properties are a special kind of node that controls how data being interacted with is formatted and

validated. Think of them as objects that represent the columns in a database. If a container or an
element want to generate a form, they pass the current value for each field to the property object, and
it returns an Html input snippet. If the application wants to check if a new value is in a valid range, it can
ask the property.

Putting it all together
This diagram shows all of the different concepts in action:

Fig ure � 1 - TDIF in Act ion �

The above example is a system in which we have different types of people. One is our office staff, who
in addition to an entry in the online stafflist, also have an entry in the password table in unix. We also
have frontline staff who come and go, but have no need (nor would we wish to grant them access to)
our Unix system. A frontline staff element has all of the properties from the db.user table. Office staff
have the properties from the passwd table in addition to the db.user table. Our element understands
how changes to a field on one system need to reflect changes that take place in another.

For instance, if we change someone’s last name on the staff directory, we also need to update the
GECOS field in Unix if they are to be displayed properly. And of course some admins would find that
writing directly to the passwd file to be a bit repugnant. So the passwd object makes all of it’s updates
through the usermod function. Also, no engineer worth his salt would put his security system at the
mercy of his website, so the system call is done on the webserver’s behalf by an another program.
How the passwd container does its job is immaterial to us. That is the joy of abstraction.

Usage
Let us building on our hypothetical staff directory/unix security bridge. We have a user “Betty

Random.” Betty marries a man with the surname “Stochiastic.” Betty, being an old fashioned kind of

gal, changes her name to Betty Stochiastic. Of only to avoid writer’s cramp from trying to sign Random-
Stochiastic on checks. Because this sort of thing happens a lot in any vibrant organization, we want to
design a simple way for our non-technical users in HR to be able to regularly update both the staff list
and the name that appears on our unix hosted file server and domain controller.

A snippet of TDIF code to perform this update would look like this:

Create the connector objects
tao::create_object maildb [lappend $dblogin class ::tdif::connector::mysqltcl]
tao::create_object passwd [class unixEtcPasswd]

Create the staff directory container, and link it
tao::object_create staff [class staff_directory dbCon maildb passwdCon passwd]
tdif Container staff staff

Spawn an object to handle brandom’s account
set uObj [tdif spawn_object staff brandom]
$uObj displayName
Betty Random
$uObj Get
uid 1337 gecos {Betty Random} name_last Random name_first Betty
uname brandom active 1 mail brandom@fi.edu
$uObj Set {name_last Stochastic}
Note that the name field has ALSO been updated
$uObj Get
uid 1337 gecos {Betty Stochastic} name_last Stochastic name_first Betty
uname brandom active 1 mail brandom@fi.edu
Send changes back up to the containers. In the process, destroy the object
$uObj renew
passwd nodeGetField brandom gecos
Betty Stochastic

Example 1 - U sing TDIF �

The example above glosses some important details:

• How did we write the classes that drive this example?

• How does the object decide what fields go to which container?

• Which methods are standard TDIF, and what have my examples created?

• What does that “tdif Container” step do?

• What is that “spawn_object” step?

• Why does the table have the name staff in some places and staffObj in others?

All of these questions, and more will be answered in the course of this paper. We will begin with TCL
interface, and work our way into creating new objects and finally creating new connectors.

Bare Metal
Many developers are not going to want TDIF to handle their table objects, nor provide transparent

updates to things. What they do want is a consistent face with which to communicate to their
database of choice. For these users we provide a subset of functions called the “BMI”, the Bare Metal
Interface. Essentially if you have the classes for the connectors already defined, you can call them into
being and be on your merry way without all this talk about containers, elements, properties and
whathaveyou.

What you do get is a consistent interface for any database the Tcl has a driver for, and someone has
taken the time to code a TDIF wrapper. Here is a simple example of BMI in action:

Call the connector object into being
tao::class maildb [class tdif.connector.mysqltcl \
 db_user smtpd db_pass password database maildb db_host localhost]

Cry havoc an let loose the dogs of war
maildb query_flat "select email from user where username=‘swoods‘"
swoods@fi.edu
maildb cmnd "update user set name 'Evil Twin Skippy‘ where username=‘swoods‘"

Example 2 - Bare Metal Use i f TDIF �

Every TDIF connector exposes the following methods. They assume you know the native language of
the database. Results are returned as a list, or a flat list. Doesn’t sound all that thrilling, but it’s actually
the first feature that led me down the road to developing TDIF in the first place:
Method Description
cmnd statement Send a statement to the database that does not return data
query statement Send a statement to the database the returns data, and format it as a list. Each row is

one list item
query_flat statement Send a statement to the database the returns data, and format it as a flattened list.

Each column is one list item. Useful for feeding into foreach statements.
describe table Using whatever means available, returns a dict that lists all columns and indexes for a

table object
sqlfix string Escape out any special characters in a string that could be interpreted as part of the

statement
sqlprep string Format a string complete with quotes to mark it as a value to be inserted as a column

Table 1 - Bare Metal Connec tor Me t hods �

Connector objects are free to add additional methods to exploit the special features of their
particular database engine, provided they do not overwrite one of the currently meaningful keywords.
Keep in mind, connectors ARE containers, so in addition to the above 6, so all of the Container
keywords also apply. See the appendix for a complete (as of the date of this writing) list of methods.

By convention, if your connector contains other sub-storage elements, container operations interact
with meta-data, tables, columns, etc. If your connector goes right to a table, or some other flat data
storage, container operations interact with its records.

Containers
Containers are a corpus of data. Developers use them to provide a consistent interface to data

tables and other logical storage units. Containers do not technically store data. They simply pass the
messages between the nodes that use the data and the engine where the information is stored. They
are also responsible for calling element and property nodes into being, as well as cleaning them up
when the container is destroyed.

Some containers need to speak through a connector object. Others are tied directly to the data
store. The difference is immaterial to the programmer. Their job is essentially to read and write
key/value lists to a node identified by the nodeId.

A container in action (note we are re-using some of the objects from example 2):

Create the table object using a class that reads the schema from the connector
::tao::object_create staffObj [class sqltable.static.autodetect \
 table maildb.user sqlObj maildb]
Associate staff as a tdif container
tdif Container staff staffObj
staffObj nodeGetField 1104 name
{Evil Twin Skippy}
Send an update through the container
staffObj nodeSet 1104 {name {Sean Woods}}
See that the change has actually gone through
maildb query_flat "select name from user where username=‘swoods‘"
{Sean Woods}
staffObj nodeGetField 1104 name
{Sean Woods}

Example 3 – Basic con ta ine r u sage �

Containers expose the following methods to developers:

Method Description
nodeSet nodeId keyValueList Update set contents of nodeId with the values in keyValueList
nodeGet nodeId Return the entire contents of nodeId as a key/value list
nodeGetField nodeId fieldName Return the value of field stored in nodeId
nodeGetFields nodeId fieldList Return the value of each field in fieldList stored in nodeId as key/value list
nodeDelete nodeId Delete the node stored at nodeId
nodeClass nodeId Return the class that defines how the node at nodeId should be generated
nodeAlias string Return the address of a node that is associated with the alternate

identification of string
train nodeId Return a dict that is used by the object manager to create a spawned node

object. Must include a value for class, globalName, node_id, and
containerObj

tdifAttach Method called when a container is associated with tdif.
/container If this container is a child of another container, return the object handle of

the parent.
/node nodeId Return a node object to represent the data in nodeId
/property propertyName Return an object handle for the property node that validates and

represents the field propertyName.
spawnedNodes Return a list of all nodes this container has spawned

Table 2 – Basi c Conta i ne r Exposed Me thod s

SQL Containers add a few additional methods.

Method Description
/sql Return the connector object of the Container
tdifAttach Method called when a container is associated with tdif. SQL table objects

use this method to populate the connector object with meta-data
schema Return a dict with sub-elements that define the columns, indexes, and

primary key of the table
nodeNext Return the next available nodeId
nodeMatch keyValueList ?like? Return a list of nodeIds that match the properties given by keyValueList. If a

1 is given for “like”, the system matches using a pattern match instead of
literal value.

Table 3 – SQL Conta i ner Expo sed Met hod s

Container Handles
One may ask, why the manual step of running tdif Container? Truth be told, there is nothing keeping

you the developer from adding that step to an object’s constructor. The reason I include it in the
example is to show that tdif is designed to play well with other object systems. It also is a nice way for
me to mention the global record addressing system that tdif uses.

Suppose you wish to link records in two different containers. Yes, yes, if they are on the same SQL
system you can create foreign keys and whatnot. But in script, say we have an entry in MySQL we wish
to have associated with an entry in Sqlite. There is no realistic way to bind these things natively in the
data store, so tdif has to do it in script.

To facilitate this kind of linking, tdif associates each container with a handle. During setup, the handle
is associated with the object that is the actual container. A container can answer to many handles, but
each handle can only be associates with on container at a time.

When we link records within the same container, we simply list the record ID numbers. (Or whatever
the primary key is.) However, if we link to a element that is in another container, we add the handle of
the other container. Because this link is stored in the actually data backend, and because we have no
idea what the actual object that defines the container will be called in future implementations, we refer
to it by this made up handle.

What handle a container answers to is entirely the responsibility of the developer to maintain.
Though one convention I’ve developed for my webserver is to associate users with whatever container
stores my user list, and groups with the grouplist. In my access control system, I can simply store
links to users-1104 and rest assured that however we are accessing the user list, as long as I keep a
global number paired with an employee id, I’ll be referring to user 1104, aka swoods, better known as
me.

I’ve used this system for 6 years, and through countless technology changes. It works, even if the
object systems change, tables move, and data technologies change. In my case the user list has
moved from tfi.staff to mailbd.user, and will probably be an entry in LDAP pretty soon.

The other reason is to uncouple container objects from the same container system used to define
TDIF. Because all of the interactions take place through object methods, there is nothing to keep a
container (or any other object for that matter) defined in SNIT or XoTcl from working with TDIF. (TDIF
itself is written in Tao). So not only could users-1104 refer to database element in a completely
different data store, the class that defines it could be written in an entirely different object system.

So why the convention of internally links be just the id, and external links be the container-nodeId?
Because handles can change. If I decide to start referring to users as staff, how will I maintain all of
the links that have already been created? What if a container is both users and staff? You start
having to check all names for the container past, present, and possibly future just to find simple links
between records. Not a happy state of affairs.

It doesn’t hurt that a lot of db admins also just store record numbers in indexes, so this convention
lets me rip link data direct from the database.

Elements
Elements are packets of data brought to life as objects. While they express the greatest variety of all

objects in TDIF, they have the simplest interface. Elements are almost never created directly. They are
spawned by their containers.

Here is a short example of elements in action. Again, this example builds on the previous example
and makes use of the containers and connectors already created:

Spawn an object
set recordObj [staffObj /node 1104]
$recordObj globalName
staff-1104
$recordObj Get name
{Sean Woods}
$recordObj Set {name {Evil Twin Skippy}}
$recordObj renew
staffObj nodeGetField 1104 name
{Evil Twin Skippy}

Example 4 – Bas ic e leme nt u sag e �

In the above example, we spawn off an element object, write a value to it, and then save the changes
back to the container. renew is an inside joke with me. It uploads changes and then calls the carosel
method, that puts the object in line to be destroyed on the next pass of the garbage collector. (It’s a
reference to the movie Logan’s Run.)

Why does upload lead to the destruction of a element object? It’s the only way to consistently handle
elements that change class based on their contents. At least in my experience.

Take a work order, for instance. It starts off as a problem report. After it is reviewed, it becomes a
work order. That work order is then assigned to someone. Once the person assigned the work order
has completed the task, the work order is marked completed. Once the supervisor is satisfied that a
work order has been completed, it is closed.

In each phase of it’s life cycle, the element responds differently to stimulus. While one could simply
devise a grossly complicated all-seeing/all-dancing class that deals with all of the states through
conditional statements… it’s been my experience that these systems are a gory mess. Much better to
define each state as a different class of element, and then use inheritence to keep the exploit the
similarities.

To be a TDIF element, an object must respond to the following methods:

Method Description
trashRecord Signal to delete this node’s data from the parent container on destruction

of the object
carosel Signal to the garbage collector to destroy the object on the next pass
renew Upload the internal representation of the object to the container, and then

carosel
NodeId Return the ‘primary key’ of the element in the container
globalName Return the fully qualifed name of this object: containerHandle-nodeId
Get ?field? Return the complete contents of the element as a key value list if not field is

given OR
Return the value of a specific property of the element

Set keyValueList Update the internal representation of the object with the values in
keyValueList

Input keyValueList Validate/Format all of the values in a keyValueList (Does not change the
internal state). Throws an error if a value is out of bounds. On success it
returns a key/value list with values reformatted for the native store.

/property propertyName Return an object handle for the property node that validates and
represents the field propertyName. Note, this object will be the same
whether you call /property from an element or it’s container

/container Return the object handle of this elements container

Table 4 – Bas ic Elemen t Exposed Me thod s

Properties
Properties are the oddest part of the TDIF implementation. Early in the design, it became clear that it

was useful to think of columns as objects unto themselves. Rather than store data, they were the voice
of reason that understood all of the validation rules for the column. The column object knew what the
max size for a field was. It would throw an error if we tried to store an integer in a string field, or vice
verse. When I implemented an HTML display engine, the column object generated the individual user
interface elements for each field, be it an input box, a dropdown menu, etc.

Because it is handy to have an element call for a property, we provide a mechanism for it to do so.
Likewise, if we don’t yet have an element, but we want to create a form to generate one, it becomes
useful to call up a property from the container. Thus, both object types can call up property objects on
demand.

While properties do not store element data, the do store their own information. Tidbits like the size
and description for the field. This information is stored in the connector object. On nodes that are both
the connector and the container, it’s assumed the developer will be able to figure out which nodes are
records and which are properties.

Containers have the option to generate all of their properties during tdifAttach, or to simply call
them into being in response to a /property call. Most elements redirect /property calls to their
container for this reason. elements are also welcome to generate their own properties. The key is that
the object spelled out should be consistent whether the call is made to the container or the element,
and that the the first thing the /property method should do is check to see if a property exists before
creating a new one.

Properties are not subject to the same garbage collection as elements. It is assumed that they will
stick around until their container is destroyed.

Here is an example of property object usage. Again, this build on the objects we’ve created in
previous examples.

Spawn an object
set nameObj [$recordObj /property name]
$nameObj Display [$recordObj Get name]
Evil Twin Skippy
$nameObj htmlEntry [$recordObj Get name]
<input name=maildb.user.name value=“Evil Twin Skippy“ size=40>
$nameObj Input "An Increadibly Long String that is sure to exceed the size …“
An Increadibly Long String that is sure t

Example 5 – Basi c pro pe rty u sag e �

Method Description
element Return the fully qualified path of this column (for use in forms and database statements)
Label Return the description of the property
Display value Render value into human readable form for the current display engine
Export value Render value into human readable plain text
Input value Check the validity of value, and convert an inputted value into native format of the

storage engine
Entry value Return a string, block, or script that defines a UI input form for this property
Search value Return a string, block, or script that defines a UI search form for this property
Hidden value Return a string, block, or script that defines a hidden UI element form for this property
Dump Return the value entered into the form generated by Entry in a tk window
Update value Update the display widget in tk window with the new value
Options For boolean and select fields, return a list of valid options

Table 5 – Bas ic Prope rty Expo sed Met hod s

Extending TDIF
The reference implementation for TDIF is written in my own object system, Tao. Tao currently

requires either Tcl 8.5, or Tcl 8.4 with either the Dict or sqlite package. There is no earth shattering
technology in Tao that would prevent TDIF from being re-written in any other object system.

TDIF also does not care what object system a node (be it a connector, container, element, or
property) is written in. It will be perfectly happy passing data back and forth through an incr Tcl, Tao,
snit, or plain old namespace. Simple implement the method as outlined in the usage section.

Writing in Tao would only be required to extend or enhance the existing library of connectors,
containers, elements, and properties.

Connectors
Connectors written in Tao have two parts:

 Data Language Interface – Translates between the TDIF and the specific SQL dialect of the
database server.

 Data Driver Interface – Translates between TDIF and the Tcl interface of the database
connection driver.

Why two? Basically the dividing
line between the Protocol and the
Connector is pretty blurry. To the
right is a simplified relationship
between the connectofs in TDIF.

TclOdbc, TclMysql and MySqlTcl
all have a radically different
connection driver. They are a raw
pipe into MySql, though.

TclODBC doesn’t just talk to
MySql. It can talk to everything
from Microsoft SQL, to access, to
.txt files. It can also talk to
PostGres, MySql, BerleyDBs, and
so on. While the driver is identical,
the language and features
available depend on what type of
database you are connecting to.

Then you have Sqlite, which is it’s own language, its own driver, and it’s pointless to try to separate
the two. In other cases, our “driver” is really a raw socket talking to a relay. Once you abstract, it’s
really hard to think of connectors as monolithic things anymore.

Because we have no control over the data languages, and it will take some years for the driver
writers to catch up with a standard interface, we need to accept their diversity as a fact of life. Each of
system has its own capabilities, hindrances, and design panache. Sometimes a function a function we
are looking for is in the language.

And then we have LDAP. Which I briefly tried to integrate, but frankly don’t understand enough about
to sensibly formulate policy. It did send me down the path of abstracting out database command
statements though.

Writing Connectors
Essentially a connector needs to implement every method that a container object would need to call

to access data. This includes abstracting out common queries and language constructs. Why? Well

some language provides a very nice way to INSERT OR REPLACE. Which saves a lot of work on
updates, since we don’t have to check for the existence of a record. On others, we check first, if a
record exists we INSERT, otherwise we UPDATE. And, depending on your SQL dialect, INSERT and
UPDATE have very different syntaxes.

In other cases we have features like full-text searching. It’s nice if you have it. But many database
systems don’t. So we have to fake it. I’ve prepared a table of all of the methods that my Containers call
and my Connectors implement. There will undoubtedly be more as we move along.

Method Description
stmt_insert {keylist valuelist dtable} Return an insert statment
stmt_exists {keylist dtable} Return a 1 if the record in keylist exists in table, 0 otherwise
stmt_replace {keylist valuelist dtable} Formulate an INSERT OR REPLACE where it’s available,

Otherwise call stmt_exists and return an INSERT statement or an
UPDATE statement as appropriate

stmt_select {keylist fieldlist dtable} Return a select statement
stmt_update {keylist valuelist dtable} Return an update statement
stmt_where {keylist {forbid_null 0}} Return a where statement, optionally yell if we try to enter a null value
stmt_delete {keylist dtable} Return a DELETE statement
table_qualify {rawtable} Convert a db.table to just table on the braindead systems that don’t

handle it properly. In the systems that DO handle db.table, make sure
we add db if we just give table. Essentially we always want to call a
table by the same name

column_qualify {rawcolumn {table {}}} A similar process to table_qualify for columns. On systems with no
concept of alternate databases, make the reference:
table.column. On those that do, make it db.table.column. And by the
way, make it relative to table

table_exists table Return 1 if a table exists, 0 if it doesn’t. And use the best mechanism
you have.

searchStmtPrim {var op val} Return a comparison statement in the native form for op the
database. Valid ops in TDIF are:
 match notlike isnot = > <
Also convert null and now in the val field to either a native
representation, or some tcl calculated value.
Not too useful for SQL, but essential when we go to add non-sql data
languages

searchStmtJoin {joinop stmtl} Connect several conditions created by searchStmtPrim into a
compound conditional. Again, SQL we all know how to do. This is
primarily for other languages.

searchStmtNest stmtl Nest a compound statement into a single conditional. (In SQL we use
parentheses. Other systems do it differently)

table_create {table schemaDict} Create a table, if it doesn’t already exist, to the spec defined in
schemaDict.

stmt_create_column {field infoDict} Return a column creation statement for a column named field using
the information in infoDict as a guide.

stmt_create_index {idxtable idxname
infoDict}

Return a statement that will create and index of idxname on idxtable
according to the specs in infoDict

stmt_create_table {table columns
indexes {table_type {}}}

Generate a statement that will create a table with the columns
defined by the columns dict, the indexes dict, and of type table_type.
At present, temporary is the only alternate type TDIF understands.

searchFullText {value {columns {}}} Generate a fulltext search statement. If fulltext is not available, fake it.

Table 6 - Connec tor Language Abst ract ion Met hod s �

writing Containers
Containers would seem to be the hard part. There are so many, with so many different shapes. From

a TDIF perspective, though, they are quite simple. And if you looked at the section on writing
connectors, you’ll see that most of the heavy lifting has actually been abstracted out to the connector.

Sql connectors are available with the stock release of TDIF, and all that is really required to
customize them is to supply the proper schema. In most cases, I either dump data from the connector

object, or I provide a hard-coded dict to return through the schema method. There really isn’t any
magic going on behind the scenes.

A default container stores information as an in-memory dict. SQL containers redirect the nodeGet
and nodeSet commands to pull data from the connector instead. And even there, they don’t build sql
statements. They farm that out to the connector.

The only trick is keeping track of what you spawn off in the way of element and property nodes, so
you remember to destroy them when you destroy the container. Now containers do get to be
monstrously complex. But the complexity is all driven by the application. The needs of TDIF are simple
and few.

Writing Elements
Elements are only as complicated as your application. Beyond the basic methods outlined in the

usage chapter, there are not magic interactions. You only need to be aware that garbage collection
does take place, and elements are not permanent

Writing Properties
Like elements, the methods that TDIF provides are minimal for inter-operability. How they are used,

and what additional methods you chose to implement are your own.

Writing in Different Object Systems
TDIF is blind to what object system you are actually using, assuming you are using an object system

at all. TDIF does make a few small requests if you do decide to strike out on your own and write objects
that interact with TDIF in a system other than Tao:

Pay the Ferryman
If you write elements in your own object system, implement a “scythe” method for the garbage

collector to call. scythe should return a procname to evaluate which will destroy your object. The
garbage collector calls: “[$object scythe] $object” internally. If your object system has an ensemble
command “object destroy $object”, just define a proc that takes care of the details. For instance:

proc itclScythe objname {
 ::itcl::delete object $objname
}

Example 6 – Scyt he Im plemen ta t ion for [I nc r Tc l]

When a temporary object (especially elements) come into being, register with the garbage collector
thatanos. All that’s required to add an object to it’s accounting is a call to thanatos alloc $object. Once
thanatos has it allocated, it will delete temporary objects whenever you call: thanatos cleanup.

By convention, if you want to prevent the garbage collector from destroying an object, return an
empty list when scythe is called.

For web-engines, I call thanatos cleanup at the end of every page view. TK based systems should
probably call it after a data entry screen closes. Thanatos will only delete objects that have been
“kissed.” Tao calls thanatos kiss $object at the end of the carosel method.

Thantos also destroys objects if they have been idle for 60 seconds. To mark an object as not idle,
call thantos touch $object. This will grant it another 60 second lease on life. To change the lease
length for all objects, set a new value for ::thanatos::kill_time. Kill_time takes integer values, in seconds.

The complete interface to thanatos is:

Method Description
alloc object Add an object to automatic garbage collection
free object Remove an object from automatic garbage collection
touch object Extend an object’s lease on life
kiss object Trigger an object’s destruction on the next call to cleanup
knock Check to see if any objects are set to be destroyed. (If zero, cleanup is not

called)
cleanup Run through and dispatch any object that has been kissed or whose lease

has expired

Table 7 – Garbage Co llec tor I n terf ace

Thanatos expects to see the following methods in any object it interacts with:

Method Description
scythe Proc to call to destroy an object

Table 8 – Met hods to e xpose for Garbage Col lec to r

I would also like to point out that “thanatos kiss” should not be called during an object’s destructor.
Odd’s are if the destructor has been called, the object has already been kissed. What you may want to
do is “thantos free” the object. This will remove if from garbage collection no matter if it self destructs
or is removed through another mechanism.

Stay with the times
TDIF includes a built in schedular object chronos. Chronos is called periodically to run tasks. Rather

than invent your own periodic task use TDIF’s. Chronos requires no exposed methods in objects.

The MySql connector objects presented a troublesome problem for me because the idle/reconnect
feature in the drivers is broken, wounded, or missing. So I had to implement my own in script, thus the
genesis of Chronos. To use chronos:

set jobId [::chronos::JobCreate name "Test Job " \
 interval 60 script "puts {Hi There}"]

Hi There
Hi There
….
::chronos::JobKill $jobId

Example 7 – cro nos u sag e �

Format for Schema Dicts
Containers report their schema as a dict. The table_create function in the connector objects ALSO

takes data in as a dict. What is the format for this dict? The dict has four main entries: column, index,
primary_key, and type.

staffObj schema
primary_key uid
column {
 uid {type intkey}
 username {type char length 32 required 1}
 name {type string desc {Full Name}}
 name_last {type string desc {First Name}}
 name_first {type string desc {Last Name}}
 mail {type char length 64 required 1 desc {Email Address}}
 active {type boolean options {1 0} states {0 no 1 yes} default 1 \
 desc {Display on Stafflist}}
 password {type password crypt sha1 length 64 sqltype char \
 desc {Password}}
}
index {
 uuname {type unique columns username}
 uemail {type unique columns email}
 maildx {type index columns {
 uid
 {username direction ascending}
 {email length 16 direction ascending}
 }
 nsearch {type fulltext columns {name name_last name_first}}
}

Example 8 – sc hema d ic t �

Column
The column dict lists each column in a table in the format: columnName {key value …}. This dict is

used to generate property nodes. The table of values used by TDIF are as follows:

Property Description
type What type of property (see table)
sqltype Native storage type (optional)
desc Property/Column description
length Length of the field (longer values are truncated on Input)
width Display size of the field
default The default value for the column
options For enum and select types, the range of valid values
states Mapping of stored values to human readable values
required Allow null values
collate Colation to use on column. Valid values:

binary, nocase

Table 9 – TDIF Co lumn prop er t ie s

TDIF
Type

MySql
Representation

MSSql
Representation

Sqlite
Representation

Description

string tinytext char(length) string Generic String
int,
integer

int int int Integer

intkey … … … Auto Incrementing Primary Key
(implementations differ between data engines)

char,
varchar

varchar(length) char(length) string String of fixed width. Note that the collate
option will select char or varchar in MySql to
emulate the collate functionally in sqlite.

text bigtext text string Large block of text
select enum(options) char(length) string Enumerated list of values
boolean tinyint tinyint int 1/0 or Y/N or True/False value
Table 10 – TDIF Column Types

Index
The index portion simply lists all of the indexes, by name, as well as a type and columns affected.

Field Description
type Index Type:

index, unique, fulltext
storage Native storage engine to use (if supported, ignored otherwise). In MySql

available values are: BTREE and HASH
columns Dict describing the columns indexed

Table 1 1 – TDIF I nd ex pro pe rt ie s

Field Description
length Integer, length of the field to index
direction Sort direction to index by this column.

Valid values:
 asc, ascending, desc, descending

collate Colation to use (if supported by database, ignored otherwise)
For sytems

Table 1 2 – TDIF I nd ex co lumn pro per t ie s

TDIF
Type

MySql
Representation

MSSql
Representation

Sqlite
Representation

Description

index index index index Generic index
unique unique index unique index unique index Uniquely constrained index
fulltext fulltext index emulated emulated Fulltext search index
Table 13 – TDIF Index Types

Concluding Remarks
TDIF is a work in progress. My intent is to at least start a conversation on how we in the Tcl

community can begin adopting a formal way of interfacing with external data. Why is such a framework
desirable?

Newcomer Friendly

For starters, it makes the system friendlier to newcomers. I won’t pitch this as a major reason for
adoption, but it is at least a nice side effect. Few can argue though that providing a consistent interface
for all database connections will make documenting simpler.

Interoperability

A stronger reason than consistency for consistency’s sake is that software developed for one
system can be more easily integrated into another if they can at least agree on how to access the
database. By abstracting most of the SQL statement generation, one also allows software originally
developed for one environment to be turned around and used in another with little to any modification.

Optimization

We are not all SQL experts. By abstracting out common functions to a system that can be
customized for the individual database engine, we can exploit performance enhancing tricks. Take for
instance using the “INSERT OR REPLACE” statement in Sqlite, instead of the conventional two step
process required for other databases.

Safety

Abstracting out SQL statement generation also allows us to catch common mistakes. Say a “DELETE
FROM TABLE” or “UPDATE” with no WHERE condition. It also ensures that all of the data from Tcl is
escaped properly, and won’t cause a bizarre interaction if someone manages to input a value that just
so happens to be the name of a column, and they JUST so happen to have not put the value in quotes.

It doesn’t just work for SQL

By abstracting the concept of tables out to containers, we open ourselves to an entire world of data
storage systems. We can write a handler that wraps around a flat file. We can transparently relay
database calls to another machine.

Code can work in multiple operating environments

A case in point, I have libraries of scripts the run from a shell environment on various server as well
as withing my tclhttpd base intranet. Depending on the computer, it may or may not have access to the
mysqltcl package. If it does not, I create an object, with the same name, that takes all of the calls that
would have gone to the mysqltcl connector, and instead relays them to a helper daemon running on
the database server.

My software doesn’t know, or care, which is which.

For all of these reasons, and more, I hope that TDIF will spark a conversation, if not a change in
thinking, on how we treat outside data. Feel free to contact me with suggestions on how TDIF can be
improved.

You can download a reference implementation of TDIF, as well as Tao (the object system it is written
in) at:

http://www.etoyoc.com/tao

Further Reading
“The Tcl Architecture of Objects”, Sean Woods: http://www.etoyoc.com/tao/

About the Author
Sean Deely Woods is the Senior Network Engineer at the Franklin Institute Science Museum in

Philadelphia, PA. He has been writing in Tcl professionally since 1997. His claims to fame include a
serial port driver under MacOS classic, and the famous “Hypnotoad” presentation at the 13th tcl
conference.

Sean can be reached via email at: yoda@etoyoc.com

He maintains an independent website at: http://www.etoyoc.com/

He can be found on the Tclers chat under the pseudonym hypnotoad

Tclers Wiki entries by him are normally signed SDW

Credits:

Graphics and Art
Cover Graphic, “Game Console”, Username MachZero, ConceptArt.org:
http://www.medievalfx.com/machzero/graphics/050420a.jpg

Fonts Used:
Text: Eurostile
Title: Mainframe
Headings: Mainframe, MetroDF, Monoglyceride
Captions: Aerovias Brasil NF
Code: Monoco CE

Speed Tables - A High-Performance, Memory-Resident Database for Tcl

Karl Lehenbauer
Peter da Silva

Speed tables provides an interface for defining tables containing zero or more
rows, with each row containing one or more fields. The speed table compiler
reads a table definition and generates C code to create and manage correspond-
ing structures, producing a set of C access routines and a C language extension
for Tcl to create, access and manipulate those tables. It then compiles the ex-
tension, links it as a shared library, and makes it loadable on demand via Tcl's
"package require" mechanism.

Speed tables are well-suited for applications for which this table/row/field ab-
straction is useful, with row counts from the dozens to the tens of millions, for
which the performance requirements for access, search and/or update frequency
exceed those of the available SQL database, and the application does not re-
quire “no transaction loss” behavior in the event of a crash.

In contrast to ad-hoc tables implemented with some combination of arrays, lists,
upvar, namespaces, or even using Tcl 8.5’s dicts, speed tables’ memory footprint
is far smaller and performance far higher when many rows are present.

Speed tables’ search capabilities include indexed searches, results sorting, set-
ting offsets and limits, specifying match expressions, and counting. A configur-
able searching engine, speed table searches bypass the Tcl interpreter on a row-
by-row basis (except for processing matches), providing high performance.
Speed tables support tab-separated reading and writing to files and TCP/IP
sockets, and has a direct C interface to PostgreSQL. Examples are provided for
importing SQL query results into a speed table as well as copying from a speed
table to a database table, again bypassing the interpreter on a per-row basis.

Representing Complex Data Struc-
tures in Tcl
Tcl is not known for its ability to repre-
sent complex data structures. Yes, it
has lists and associative arrays and,
in Tcl 8.5, dicts. Yes, object-oriented
extensions such as Incr Tcl provide
ways to plug objects together to rep-
resent fairly complex data structures
and yes, the BLT toolkit, among oth-
ers, has provided certain more effi-
cient ways to represent data (a vector
data type, for instance) than available
by default and, yes, it is possible to
abuse upvar and namespaces as part

of expressing the structure of, and
methods of access for, your data.
There are, however, three typical
problems with this approach:
1. It is memory-inefficient.

Tables implemented using Tcl ob-
jects use at least an order of mag-
nitude more memory than native
C.
For example, an integer, stored as
a Tcl object, has the integer value
and all the overhead of a Tcl ob-
ject, 24 bytes minimum, routinely

more, and often way more. When
constructing Tcl lists, there is an
overhead to making those lists,
and the list structures themselves
consume memory, sometimes a
surprising amount as Tcl tries to
avoid allocating memory on the fly
by often allocating more than you
need, and sometimes much more
than you need. 1

Another drawback of Tcl arrays is
that they store the field names
(keys) along with each value,
which is inherently necessary
given their design but is yet an-
other example of the inefficiency of
this approach.

2. It is computationally inefficient.
Constructing, managing and ma-
nipulating complicated structures
out of lists, arrays, etc, is quite
processor-intensive when com-
pared to, for instance, a hand-
coded C-based approach exploit-
ing pointers, C structs, and the
like.

3. It yields code that is clumsy and
obtuse.
Using a combination of upvar and
namespaces and lists and arrays
to represent a complex structure
yields relatively opaque and in-
flexible ways of expressing and
manipulating that structure, twist-
ing the code and typically replicat-
ing little pieces of weird structure
access drivel throughout the appli-
cation, making the code hard to
follow, teach, fix, enhance, and
hand off.

Speed tables reads a structure defini-
tion and emits C code to create and
manipulate tables of rows of that
structure. We generate a full-fledged
Tcl C extension that manages rows of
fields as native C structs and emit
subroutines for manipulating those
rows in an efficient manner.
Memory efficiency is high because we
have low per-row storage overhead
beyond the size of the struct itself,
fields are stored in native formats
such as short integer, integer, float,
double, bit, etc, and field names only
occur once for a table type regardless
of the number of tables created and
the number of rows in those tables.
Computational efficiency is high be-
cause we are reasonably clever about
storing and fetching those values, par-
ticularly when populating from lines of
tab-separated data as well as Post-
greSQL database query results, in-
serting into them by reading rows from
a Tcl channel containing tab-
separated data, writing them tab-
separated, locating them, updating
them, and counting them, as well as
importing and exporting by other
means.
Speed tables avoids executing Tcl
code on a per row basis when a lot of
rows need to be looked at. In particu-
lar when bulk inserting and bulk proc-
essing via search, Tcl essentially con-
figures an execution engine that can
operate on millions of rows of data
without the Tcl interpreter’s per-row
involvement except, perhaps, for ex-
ample, executing scripted code only

2

1 It is common to see ten or twenty times the space consumed by the data itself used up by the Tcl objects, lists, arrays, etc, used to hold them.
Even on a modern machine, using 20 gigabytes of memory to store a gigabyte of data is at a minimum kind of gross and, at worst, renders the
solution unusable.)

on the rows that match your search
criteria.
Null Values
Speed tables maintains a "null value"
bit per field, unless told not to, and
provides an out-of-band way to distin-
guish between null values and non-
null values, as is present in SQL data-
bases... providing a ready bridge be-
tween those databases and speed ta-
bles.
Indexes
Speed tables supports defining skip
list-based indexes on one or more
fields in a row, providing multi-
hundred-fold speed improvements for
many searches. Fields that are not
declared to be indexable do not have
any code generated to check for the
existence of indexes, etc, when they
are changed, one of many of optimiza-
tions in place to make speed tables
fast.
Speed Table Data Types
The following data types are avail-
able2:

• boolean - a single 0/1 bit

• varstring - a variable-length string

• fixedstring - a fixed-length string

• short - a short integer

• int - a machine native integer

• long - a machine native long

• wide - a 64-bit wide integer (Tcl
Wide)

• float - a floating point number

• double - a double-precision floating
point number

• mac - an ethernet MAC address

• inet - an internet IP address

• tclobj - a Tcl object
Fields are defined by the data type
followed by the field name, for exam-
ple...
double longitude

...to define a double-precision field
named longitude.
Configurable Field Attributes
Field definitions can followed by one
or more key-value pairs that define
additional attributes about the field.
Supported attributes include

• indexed

If “indexed” is specified with a “true”
value, the code generated for the
speed table will include support for
generating, maintaining, and using a
skip list index on the field being de-
fined.
Indexed traversal can be performed in
conjunction with the speed table’s
search functions to accelerate
searches and avoid sorting (since skip
lists are sorted). This defaults to “in-
dexed 0”, i.e. the field is not generated
with index support.

• notnull

If notnull is specified as true, the code
generated for the speed table will not
have code for maintaining an out-of-
band null/not-null status created for it,
increasing the performance of ma-

3

2 Additional data types can be added, although over Speed Tables’ evolution that has become an increasingly complicated undertaking.

nipulating fields for which out-of-band
null support is not needed. Defaults to
“notnull 0”.

• default

If default is specified, the following
value is defined as the default value
and will be set into rows that are cre-
ated when the field does not have a
value assigned.
There is no default default value;
however if no default value is defined
and the field is declared as notnull,
strings will default to empty and num-
bers will default to zero.

• length

Currently only valid for fixedstring
fields, length specifies the length of
the field in bytes. There is no default
length; length must be specified for
fixedstring fields.

• unique

If unique is specified with a true value,
the field is defined as indexed, and an
index has been created and is in exis-
tence for this field for the current table,
a unique check will be performed on
this field upon insertion into the speed
table.

• key

If key is specified as true, this field will
become the key for the table. There
must be at most one “key” field, and it
currently must be a varstring. (Any
field type can be indexed but our Tcl-
adapted hashtables require strings as
indexes.) If no “key” field exists then
the key will not be exposed as part of
a row unless it is explicitly referenced
with the name “_key”.
Special Fields
Named fields may not begin with an
underscore (as these are reserved for
speed table internals), but there are
two special field names that may be
used in any place where a field is
specified:

• _key

If no field is specified as a key, this
name can be used to reference the
key for the row.

• _dirty

This is set whenever a field is modi-
fied, and may be explicitly cleared…
for example when a table is saved to a
TSV file in a search operation.

Example Speed Table Definition

package require speedtable

CExtension animinfo 1.1 {

CTable animation_characters {
 varstring name indexed 1 unique 0
 varstring home
 varstring show indexed 1 unique 0
 varstring dad
 boolean alive default 1
 varstring gender default male
 int age

4

 int coolness
}

}

• Speed tables are defined inside
the code block of the CExtension.

• Executing this will generate table-
specific C functions a Tcl C lan-
guage extension named Animinfo,
compile it along with support code
and link it it into a shared library.

• Multiple speed tables can be de-
fined in one CExtension definition.

• No matter how you capitalize it, the
package name with be the first
character of your C extension
name capitalized and the rest
mapped to lowercase.

• The name of the C extension fol-
lows the CExtension keyword, fol-
lowed by a version number, and
then a code body containing table
definitions.

Loading Your Speed Table-
Generated C Extension
After sourcing in the above definition,
you can do a
 package require Animinfo
or
package require Animinfo 1.1

and Tcl will load the extension and
make it available.
It is not necessary to re-execute the
CExtension definition to use it again,
but it is always safe (and efficient) to
do so -- we detect whether or not the
C extension has been altered since
the last time it was generated as a
shared library, and avoid the compila-

tion and linking phase when it isn't
necessary.
Sourcing the above code body and
doing a package require Ani-
minfo will create one new command,
animation_characters, corresponding
to the defined table. We call this
command a meta table or a creator
table.
animation_characters create
t creates a new object, t, that is a Tcl
command that will manage and ma-
nipulate zero or more rows of the ani-
mation_characters table.
You can create additional instances of
the table using the meta table's create
method. All tables created from the
same meta table operate independ-
ently of each other, although they
share the meta table data structure
that speed table implementation code
uses to understand and operate on
the tables.
You can also use set obj [anima-
tion_characters create #auto] to
create a new instance of the table,
without having to generate a unique
name for it.

Basic Examples

All rows in a speed table have a
unique key value, which normally re-
sides outside of the table definition
itself. The simplest way to create or
modify a row is with the set operation.
Performing a set on a speed table per-
forms an update or insert:
t set shake \
 name "Master Shake" \
 show “Aqua Teen Hunger Force”

5

If there is no row in the table with
“shake” as a key 3, this creates a new
row in the speed table t, otherwise it
updates the current value of the row
having the key “shake” with a new
name and show.
We can set other fields in the same
row:
t set shake age 4 coolness -5

And increment them in one operation
with “incr”:
% t incr shake age 1 coolness -1

5 -6

You can fetch a single value naturally
with “get”...
if {[t get $key age] > 18} {...}

Or can get all the fields in the row, in
the order they were defined in the cta-
ble definition:
puts [t get shake]
{} {} {} {} {} 1 male 5 -6

Forgot what fields are available?
% t fields
id name home show dad alive gender
age coolness

You can get a key-value list of fields,
suitable for passing to array set, us-
ing array_get:
array set data [t array_get shake]
puts “$data(name) $data(coolness)”

If a field’s value is null then the field
name and value will not be returned
by array_get. So if a field can be null,
you need to check for its existence
using info exists before trying to
use it or use array_get_with_nulls,
which will always provide all the fields’
values, substituting a null value string,

and typically the empty string) when
the value is null.
You can check if a key exists with ex-
ists:
t exists frylock
0

Or load a complete table from a file
tab-separated data with read_tabsep:
set fp [open
animation_characters.tsv]
t read_tabsep $fp
close $fp

Search

Search is one of the most useful ca-
pabilities of speed tables. Let’s use
search to write all of the rows in the
table to a save file:
set fp [open save.tsv]
t search -write_tabsep $fp
close $fp

Want to restrict the results to a certain
set of fields? Use the -fields option
followed by a list of the names of the
fields you want.
t search -write_tabsep $fp \
 -fields {name show coolness}

Sometimes you might want to include
the names of the fields as the first
line...
t search -write_tabsep $fp \
 -fields {name show coolness} \
 -with_field_names 1

Let’s find everyone who’s on the Ven-
ture Brothers show who’s over 20
years old, and execute code for each
result:
t search \
 -compare {
 {= show “Venture Brothers}

6

3 The key for a row has a name, “_key”, but it’s not exposed implicitly in operations on the default list of fields. It is also possible to use the “key”
attribute to make any single varstring

 {> age 20}
 } \
 -array data -code {
 parray data
 puts “”
}

Additional meta table methods

• animation_characters null_value \\N
- which sets the default null value for
all tables of this table type to, in this
case, \N.

• animation_characters method foo
bar - this will register a new method
named foo, which will be available to
all instances of the table. Invoking
the foo method will cause the bar
proc to be called with the arguments
being the name of the table followed
by whatever arguments were
passed.

For example, if after executing anima-
tion_characters method foo bar and
creating an instance of the anima-
tion_characters table named t, if you
executed
t foo a b c d

then proc bar would be called with the
arguments "t a b c d".
Where the table Is Built
The generated C source code, some
copied .c and .h files, the compiled .o
object file, and shared library are nor-
mally written in a directory called
build underneath the directory that's
current at the time the CExtension is
sourced, unless a build path is speci-
fied. For example, after the "package
require ctable" and outside of and
prior to the CExtension definition, if
you invoke
CTableBuildPath /tmp

...then those files will be generated in
the /tmp directory.

Note that the specified build path is
appended to the Tcl library search
path variable, auto_path, if it isn't al-
ready in there.
Methods for Manipulating Speed
Tables
The following built-in methods are
available as arguments to each in-
stance of a speed table:

get, set, array_get,
array_get_with_nulls, exists, de-
lete, count, foreach, type, import,
import_postgres_result, export,
fields, fieldtype, needs_quoting,
names, reset, destroy, statistics,
write_tabsep, read_tabsep

For the examples, assume we have
done cable_info create x.

• set

There are two ways to specify the
fields to set:
x set key field value \
 ?field value...?

or
x set key keyValueList

The key is unique. It can be any
string and is not normally a field of the
table. The following commands are
equivalent:
x set peter ip 127.0.0.1 \
 name "Peter da Silva" i 501
x set peter {
 ip 127.0.0.1
 name "Peter da Silva"
 i 501
}

Thus a natural way to pull an array
into a speed table row is:

7

% x set key [array get dataArray]

• fields

"fields" returns a list of defined fields,
in the order they were defined.

• field

"field" returns information about the
field attributes. Since we ignore attrib-
utes we don’t recognize, you can in-
clude your own key-value pairs and
access them using this method: field
getprop name returns the value of the
name attribute. field properties
returns a list of all attributes. field
proplist will return the names and
values of all the properties in the usual
name-value format.

• get

Get fields. Get specified fields, or all
fields if none are specified, returning
them as a Tcl list.
% x get peter

127.0.0.1 {} {Peter da Silva} {}
{} {} 501 {} {}

% x get peter ip name

127.0.0.1 {Peter da Silva}

• array_get

Get specified fields, or all fields if none
are specified, in "array get" (key-value
pair) format. Null fields will not be
fetched.
% x array_get peter

ip 127.0.0.1 name {Peter da Silva}
i 501

% x array_get peter ip name mac

ip 127.0.0.1 name {Peter da Silva}

• array_get_with_nulls

Get specified fields, or all fields, in “ar-
ray get” format, including null fields.

• exists

Return 1 if the specified key exists, 0
otherwise.
% x exists peter
1
% x exists karl
0

• delete

Delete the specified row from the ta-
ble. Returns 1 if the row existed, 0 if it
did not.
% x delete karl
0
% x set karl
% x delete karl
1
% x delete karl
0

• count

Returns the number of rows in the ta-
ble.

• batch

The batch command provides an effi-
cient way to perform a series of ctable
operations. It takes a list of ctable
commands (without the ctable name)
and returns a list of results. Each ele-
ment in the result list is a list of the in-
dex of the result, and a list of two val-
ues: the Tcl result code (for example,
0 for TCL_OK, 1 for TCL_ERROR)
and the result string (result or error
string).
% x batch {{set dean age 17}
{incr dean age 1} {incr brock age
foo}}

{{1 {0 18}} {2 {1 {expected inte-
ger but got “foo” while converting
age increment amount while proc-
essing key-value list}}}

Dean’s age to 17 produced no result.
Incrementing it returned the incre-

8

mented value (18), and trying to add
‘foo’ to Brock’s age produced an error.
Note that errors in batched commands
do not cause batch to return an error.
It is up to the caller to examine the re-
sult of the batch command to see
what happened: “batch” will only re-
turn an error in the event of bad ar-
guments such as an invalid “batch”
list.

• search

Search for matching rows and take
actions on them, with optional sorting.
Search is a powerful element of the
speed tables tool that can be lever-
aged to do a number of the things tra-
ditionally done with database systems
that incur much more overhead.
Search can perform brute-force multi-
variable searches on a speed table
and take actions on matching records,
without any scripting code running on
an every-row basis.
On a modern 2006 Intel and AMD ma-
chines, speed table search can per-
form, for example, unanchored string
match searches at a rate of sixteen
million rows per CPU second (around
60 nanoseconds per row).
Search4 has scads of options:

• -sort sortArg
Sort results based on the specified
field or fields. To sort a field in de-
scending order, put a dash in front
of the field name.

• -fields fieldList
Restrict search results5 to the
specified fields, which (among
other things) may produce a noti-
cable performance boost..

• -glob pattern
Perform a glob-style comparison
on the key, excluding the examina-
tion of rows not matching.

• -countOnly 16

Counts matching rows but does
not take any action based on the
count.

• -offset offset

• -limit limit
Like the SQL “offset” and “limit” pa-
rameters, these limit the results to
a section of the ctable. The results
are not well-defined without -sort
or -countOnly.

• -write_tabsep channel
Matching rows are written tab-
separated to the file or socket (or
postgresql database handle)
"channel".

• -with_field_names 1
If you are doing -write_tabsep,
-with_field_names 1 will
cause the first line emitted to be a
tab-separated list of field names.
• -compare list

Perform a comparison to select
rows.

9

4 Like berkeley ls.

5 Fields that are used for sorting and/or for comparison expressions do not need to be included in -fields in order to be examined.

6 All search parameters must have a value, so “-countOnly” requires the value “1”.

Compare expressions are speci-
fied as a list of lists. Each list con-
sists of an operator and one or
more arguments. Each expression
is applied to each row in turn, and
all expressions must match for the
search to succeed.
Here's an example:

$speedTable search -compare {
	

 {> coolness 50}
	

 {> hipness 50}
} ...

In this case you're selecting every
row where coolness is greater than
50 and hipness is greater than 50.
Most expressions are fairly easy to
understand:

• {false field}

• {true field}

• {null field}

• {notnull field}

Comparisons are type-
sensitive:

• {< field value}

• {<= field value}

• {= field value}

• {!= field value}

• {>= field value}

• {> field value}
String matching uses “glob”
operations:

• {match field expres-
sion}

• {match_case field ex-
pression}

• {notmatch field ex-
pression}

• {notmatch_case field
expression}

Range and are the most effi-
cient when performed on in-
dexed fields:

• {range field low hi}
List operations must be per-
formed on indexed fields, and
only one may be in a list. Yes,
this is not optimal and will be
changed in a future release:

• {in field valueList}

• -code codeBody
Run scripting code on matching
rows, along with one or more of
these options:

• -key keyVar
Make the key value of the
matched row be available in-
side the code block as keyVar.

• -get listVar
The fields of the row are avail-
able in the variable listVar.

• -array arrayName

• -array_with_nulls array-
Name

The fields are available as the
array arrayName.

• -array_get listVar

• -array_get_with_nulls
listVar

The fields are available in an “ar-
ray get” format list in listVar.
Search examples:

Write everything in the table tab-
separated to channel $channel

10

$speed table search
-write_tabsep $channel

Write everything in the table with
coolness > 50 and hipness > 50:

$speed table search\
 -write_tabsep $channel
 -compare {
 {> coolness 50}
 {> hipness 50}
}

Run some code every everything
in the table matching above:

$speed table search \
 -compare {{> coolness
50} {> hipness 50}} \
 -key key -array_get
data -code {
	

 puts "key -> $key,
data -> $data"
 }

• incr

Increment the specified numeric
values, returning a list of the new
incremented values
% x incr $key a 4 b 5
...will increment $key's a field by 4
and b field by 5, returning a list
containing the new incremented
values of a and b.

• type

Return the "type" of the object, i.e.
the name of the object-creating
command that created it.
% x type
cable_info

• key

Return the name of the “key” field
in the ctable (usually _key).

• makekey

Given a list of name-value pairs,
return the key value.

• methods

Return a list of defined methods
(commands) that the ctable can
handle. The speedtable API may
include extensions (such as the
ctable server) or implement ctable-
compatible classes independently
of ctables (for example, there’s a
STAPI definition for pgsql), so it
may be necessary to check
whether the STAPI-compatible ob-
ject that you are examining sup-
ports the commands you need.

• store

x store keyval_list
Stores the list in the ctable using
the key defined in the ctable defini-
tion, or using an autoincremented
numeric key compatible with
read_tabsep if the table’s key field
is not specified in the list.

• import_postgres_result

x import_postgres_result
pgTclResultHandle

Given a Pgtcl result handle, im-
port_postgresql_result will iterate
over all of the result rows and cre-
ate corresponding rows in the ta-
ble. This is fast as it does not do
any intermediate Tcl evaluation on
a per-row basis.

set res [pg_exec $connection \
 "select * from mytable"]
if {[pg_result $res -status] ==
"PGRES_RESULT_OK"} {
 x import_postgres_result \
 $res
}
$res destroy

11

• fieldtype

Return the data type of the named
field, such as varstring.

• needs_quoting

Given a field name, return 1 if it
might need quoting. For example,
varstrings and strings may need
quoting, while integers, floats, IP
addresses, MAC addresses, etc,
do not.

• names

Return a list of all of the keys in the
table. This is fine for small tables
but horribly inefficient for large ta-
bles; use search instead.

• reset

Clear everything out of the table.

• destroy

Delete all the rows in the table,
free all of the memory, and destroy
the object.

• read_tabsep

Read tab-separated entries from a
Tcl channel, with a list of fields
specified, or all fields if none are
specified.

set fp [open /tmp/output.tsv r]
x read_tabsep $fp
close $fp

The first column is normally the
key and is not included in the list of
fields. So if you name five fields,
for example, each row must con-
tain six columns.
Options:

• -glob pattern

If the key does not match, the row
is not inserted.

• -nokeys

The first column is not a key
column. If the table has a key
field defined, and that column is
in the fields being read, then it
will be used. Otherwise an
auto-incremented numeric key
will be generated for each row
and read_tabsep will return the
last key generated.
read_tabsep stops when it reaches
end of file OR when it reads an
empty line.

• index

Index actually creates the index for
fields with the indexed attribute.
This is a separate operation be-
cause it is far more created the in-
dices AFTER populating a large
table.
x index create foo 24

Creates a skip list index on field
"foo" and sets it to for an optimal
size of 2^24 rows. The size value
is optional. If there is already an
index present on that field, does
nothing.
x index drop foo

Drops the skip list on field "foo." If
there is no such index, does noth-
ing.
x index count foo

Returns a count of the skip list for
field "foo".
x index span foo
Returns a list containing the lexi-
cally lowest entry and the lexically

12

highest entry in the index. If there
are no rows in the table, an empty
list is returned.
x index indexable

...returns a (potentially empty) list
of all of the field names that can
have indexes created for them.
x index indexed

...returns a (potentially empty) list
of all of the field names in table x
that current have an index in exis-
tence for them, meaning that index
create has been invoked on that
field.

Performance Importing PostgreSQL
Results
On a 2 GHz AMD64 running
FreeBSD, speed tables can import
import about 200,000 10-element
rows per CPU second, i.e. around 5
microseconds per row. Importing is
slower if one or more fields has an in-
dex.
Speed Table Search Performance
An example of brute force searching
that there isn’t much getting around
without adding fancy full-text search
features is unanchored text search.
Even in this case, with speed tables’s
fast string search algorithm and quick
traversal during brute-force search,
the authors have observed 60 nano-
seconds per row, thus searching
about sixteen million rows per CPU
second on circa-2006 AMD64 ma-
chines.
Although many optimizations are be-
ing performed by the speed table
compiler, further performance im-

provements can be made without in-
troducing huge new complexities, per-
turbations, etc.
Indexed Searches
Many searches can be greatly accel-
erated through the use of indexes on
appropriate fields. Please consult the
documentation for which operators
and under what conditions indexes
cause searches to be accelerated.
Client-Server Speed Tables
Tables created with Speed Tables are,
by default, local to the Tcl interpreter
that created them.
Early in our work it became clear that
we needed a client-server way to talk
to Speed Tables that was highly com-
patible with accessing Speed Tables
natively.
The simplicity and uniformity of the
speed tables interface and the rigor-
ous use of key-value pairs as argu-
ments to search (requiring values in
all cases) made it possible to imple-
ment a Speed Tables client and server
in around 500 lines of Tcl code.
This implementation provides identical
behavior for client-server speed tables
as direct speed tables for most speed
table methods.
Stored Procedures
There is a Tcl interpreter on the server
side, pointing to the possibility of de-
ploying server-side code to interact
with Speed Tables7, although there
isn’t any formal mechanism for creat-
ing and loading server-side code at
this time.

13

7 Fairly analogous to stored procedures in a SQL database, Tcl code running on the server’s interpreter could perform multiple speed table actions
in one invocation, reducing client/server communications overhead and any delays associated with it.

Speed Tables’ register method ap-
pears to be a natural fit for implement-
ing an interface to row-oriented
server-side code invoked from a cli-
ent.
Speed Tables can be operated in safe
interpreters if desired, as one part of a
solution for running server-side code,
should you choose to take it on.
Dedicated Speed Table Servers
Once you start considering using
Speed Tables as a way to cache tens
of millions of rows of data across
many tables, if the application is large
enough, you may want to consider
having machines basically serve as
dedicated Speed Table servers.
Take generic machines and stuff them
with the max amount of RAM at your
appropriate density/price threshold.
Boot up your favorite Linux or BSD off
of a small hard drive, thumb drive, or
from the network. Start up your
Speed Tables server processes, load
them up with data, and start serving
speed tables at far higher perform-
ance that traditional SQL databases.
This is a lot stronger than memcached
because memcached is basically just
a directory of files. Here, at the very
least, you can define fields that con-
tain metadata and use search to look
stuff up.
Speed Table URLs
sttp://foo.com/bar
sttp://foo.com:2345/bar
sttp://foo.com/bar/snap
sttp://foo.com:1234/bar/snap
stty://foo.com/bar?moreExtraStuff=
sure

The default speed table client/server
port is 11111. It can be overridden as
above. There’s a host name, an op-

tional port, an optional directory, a ta-
ble name, and optional extra stuff.
Currently the optional directory and
optional extra stuff are parsed, but ig-
nored.
Example Client Code
package require speedtable_client

remote_speedtable \
speedtable://127.0.0.1/dumbData t

t search -sort -coolness -limit 5
-key key -array_get_with_nulls
data -code {
 puts “$key -> $data”
}

Example Server Code
When registering a table on the server
side, use a wildcard for the host:
package require speedtable_server
create a ctable ‘t’ here.
::speedtable_server::register \
speedtable://*/dumbData t

That’s all there is to it. You have to
allow the Tcl event loop to run, either
by doing a vwait or by periodically call-
ing update if your application is not
event-loop driven, but as long as you
do so, your app will be able to server
out speedtables.
Performance
Performance of client-server speed
tables is necessarily slower than that
of native, local speed tables. Network
round-trips and the Tcl interpreter be-
ing involved on both the client and
server side for every method invoked
on a remote speed table inevitably
impacts performance.
That being said, a couple of tech-
niques, batching and using searches
in places of gets can have a dramatic

14

impact on client/server speed table
performance.
Batching
Consider a case where you know
you’re going to set values in dozens to
hundreds of rows in a table. You can
batch up the sets into a single batch
set command.
$remoteCtable set key1 var value
?var value...?
$remoteCtable set key2 var value
?var value...?
$remoteCtable set key3 var value
?var value...?

$remoteCtable batch {
 set key1 var value ?var
value...?
 set key2 var value ?var
value...?
 set key3 var value ?var
value...?
}

In the second example, all of the set
commands are sent over in a single
remote speed table command, proc-
essed as a single batch by the speed
table server (with no Tcl interpreter in-
volvement in processing on a per-
command basis inside the batch). A
list is returned comprising the results
of all of the commands executed.
(See the batch method for more de-
tails.)
Most speed table commands can be
batched, except for the search meth-
ods (this is not checked, though, and
the results are undefined). In particu-
lar, get, delete, and exists can be
pretty useful.
Use “search” Instead of “get”
Another common use of speed tables
is to retrieve values from rows in some

kind of loop. Perhaps something
like...
foreach key $listOfRows {
 set data [$t get $key]
 ...
}

In the above example, every “get”
causes a network roundtrip to the
speed table server handling that table.
If we substitute a search for the
above, we can get all the data for all
the rows in a single roundtrip. The “in”
compare method can be particularly
useful for this...
$ctable search -compare {in key
$listOfRows} -array_get data {

}

Shared Memory Speed Tables
Client-server speed tables can take a
fairly big performance hit, as a sizable
amount of Tcl code gets executed to
make the remote speed table behave
like a local one.
While they’re still pretty fast, server
actions are inherently serialized be-
cause of the single-threaded access
model afforded using standard Tcl
fileevent actions within the Tcl event
loop.
When the speed table resides on the
same machine as the client, particu-
larly in this era of relatively inexpen-
sive multiprocessor systems, it would
be valuable for a client to be able to
access the speed table directly
through shared memory, bypassing
the client/server mechanism entirely.
Speed tables can use shared memory
to accelerate concurrent access by
multiple processes. The design objec-
tive was to provide a way for same-
server clients to access the speed ta-

15

ble through shared memory while re-
taining the ability to build and use
speed tables without using shared
memory at all.
When a speed table is instantiated for
use with shared memory, the entire
table, all keys and indexes are stored
in shared memory, and may be used
when there is sufficient memory avail-
able.
Tricky synchronization issues surfaced
quickly while development this. For
instance, what should we do if a row
gets changed or added while a search
is being performed? We don’t want to
completely lock out access to the ta-
ble during a search. Thus we have to
really deal with database updates dur-
ing searches, which raise referential
integrity issues and garbage collection
/ dangling pointer issues. Many
searches, such as ones involving re-
sults sorting, collecting a set of point-
ers to the rows that have matched.
Those rows cannot be permitted to
disappear behind search’s back.
Also search tables were already in
heavy production with tables contain-
ing tens of millions of rows. This work
had to be rock solid or it wouldn’t be
usable.
To simplify the problem, we decided to
funnel writes through the client/server
mechanism and only allows reads and
searches to occur through shared
memory. In many cases all changes
are handled by a single process any-
way, and no updates need be sent
from clients.
We take advantage of the skiplist
code’s ability to support lockless syn-
chronization between processes shar-
ing memory. Our approach is to main-

tain metadata about in-progress
searches in shared memory and have
a cycle number that increases as the
database is updated. When a search
begins, the client copies the current
cycle number to a word in shared
memory allocated for it by the server.
As normal activity causes rows to be
modified, updated, or deleted by the
server, the cycle number they were
modified on is stored in the row. If
rows (or any other shared memory ob-
ject, such as strings) are deleted, they
are added to a garbage pool along
with the current cycle, but not actually
freed for reuse until the server gar-
bage collects them on a later cycle.
If the client detects that a row it’s ex-
amining has been modified since it
started its search, it restarts the
search operation. The server makes
sure to update pointers within shared
memory in an order such that the cli-
ent will never step into a partially
modified structure. This allows the
whole operation to proceed without
explicit locks, so long as pointer and
cycle updates are atomic and ordered.
Garbage collection is performed by
locating deleted memory elements
that have a cycle number is lower than
the cycle number of any client cur-
rently performing a search.
To use shared memory support, a new
parameter was added to the “create”
command, specifying that a table was
shared as a master or a reader. This
parameter is followed by a list of op-
tions that describe the size of the table
and how it is built.
STAPI - the Speed Table API
STAPI creates the speedtables API,
which is used for a variety of table-like

16

objects. This includes remote speed
tables through ctable_server and SQL
databases. There are two main sets of
routines in STAPI, and they’re not
normally used together.
• st_server, a set of routines for

automatically creating a speed ta-
ble from an SQL table as a local
cache for the table, or as a work-
space to be used for preparing
rows to be inserted into the table.
It’s normally used in a cta-
ble_server task providing a local
read-only cache for a remote data-
base for many client processes.

• st_client, which provides the gen-
eral interface for creating STAPI
objects identified by URIs.
The primary mechanism for us-
ing STAPI as a client is through
::stapi::connect, which con-
nects to a speed table server or
other database providing a
speed table interface via a URI.

::stapi::connect uri ?-name
value...?

Only one option is normally required:
-key col

Define the column used to
generate the key.

If a key is not provided, some STAPI
capabilities may not be available.
::stapi::register method \
transport_handler

 register a transport method for
::stapi::connect
At this time the following meth-
ods have been defined in
STAPI:
Using a ctable server via sttp
(client/server)

package require st_cli-
ent

sttp://[host:port]/[dir
/]table[/stuff][?stuff]

Using a ctable server via sttp
(shared memory)

package require
st_shared

shared://port/[dir/]tab
le[/stuff][?stuff]

Access a speed table server on
localhost, using shared mem-
ory for the "search" method and
the client-server speed table
transfer protocol for all other
methods.
An additional option is used:

-build directory

The ctable built by the
server must be in
auto_path, or in the di-
rectory defined by the
"-build" option.

Using a PostgreSQL database
directly

package require st_cli-
ent_pgtcl

sql://connection/table[
/col[:type]/col...][?pa
ram¶m...]

Create a stapi interface
directly to a PostgreSQL
table

The connection part has not
been implemented yet. It will be
something like
[user[:password]]@[host:]dat
abase

17

If no columns are listed, all col-
umns of the table will be re-
turned.
Parameters are name=value
style, just like in HTTP. A key
column should be defined.
Pseudo-columns can be de-
fined here, too, with parameters
like -column=sql_code or
_key=column_name.

Using an already opened
speed table

package require st_cli-
ent

If the URI is not URI format, it
assumes it's an object that pro-
vides stapi semantics already...
typically a ctable, an already-
opened ctable_client connec-
tion, or the result of a previous
call to ::stapi::connect. It que-
ries the object using the meth-
ods command, and if neces-

sary creates a wrapper around
the ctable to implement the ex-
tra methods that STTP pro-
vides.

STDisplay - Display Functions for
the web
STDisplay is derived from Rivet’s DI-
ODisplay, and the calling sequence is
similar. For example:
set display [
 ::STDisplay #auto -uri \
 sql:///history?_key=time
]

$display field time
$display field account
$display field serial
…
$display field explanation
$display show

Since STDisplay works with anything
that can be exposed in the Speed Ta-
ble API, it’s an efficient and conven-
ient mechanism to browse many kinds
of database and database-like tables
on the web.

Speedtable C-level implementation
You can interact with any speed table,

regardless of its composition, from C,
by making standardized calls via the
speed table’s methods (pointers to
functions) and speed table’s creator
table structures.

Varstrings are char * pointers and a
length. We allocate the space for
whatever string is stored and store the

address of that allocated space. We
avoid malloc/frees when possible by
reusing the space when values
change and the string being store fits.
Default values are represented with a

18

null pointer., while fixed-length strings
are generated inline.
The null field bits and booleans are all
generated together and should be
stored efficiently by the compiler. We
rely on the C compiler to do the right
thing with regards to word-aligning
fields as needed for efficiency.
You can examine the C code gener-
ated -- it's quite readable. If you didn't
know better, you might think it was
written by a person rather than a pro-
gram.
How we invoke the compiler can be
found in gentable.tcl. We currently
only support FreeBSD and Mac OS X,
and a general solution will likely in-
volve producing a GNU configure.in
script and running autoconf, configure,
etc. We’d really appreciate some help
on this.
License
The Speed Tables package is distrib-
uted under the same permissive Ber-
keley license that Tcl uses.
Obtaining Speed Tables
A SourceForge project has been re-
quested for speed tables and should
be available by September 20th,
2007.
http://sourceforge.net/projects/speedta
bles
Included with speed tables is a 65
page developer’s manual. A test suite
includes dozens of tests.
Request For Participation
Speed tables are working well, for the
authors as least. An autoconf-style
configuration system would be of
great value. We’d also like a mecha-

nism for defining C-based search
comparison routines, and someone to
use and construct examples for inter-
facing to C directly.
Speed tables could be a useful addi-
tion to other scripting languages as
well, and of course additional docu-
mentation would always oblige, as
well as manual translations into other
langauges, testing for different lo-
cales, and so forth.
Summary
Speed tables powerfully extends Tcl’s
ability to access and manipulate data,
providing unique capabilities, far
higher performance, and greater
memory density over traditional Tcl-
based approaches. Its permissive li-
cense makes it feasible for use in a
wide range of projects that need
higher performance storage and
searching than available from a SQL
database or from ad hoc methods.

19

http://sourceforge.net/projects/speedtables
http://sourceforge.net/projects/speedtables
http://sourceforge.net/projects/speedtables
http://sourceforge.net/projects/speedtables

GEB: SQLite in Tcl/Tk in SQLite

Abstract
GEB is a Tcl/Tk program for displaying and
manipulating SQLite databases. Each of its
major functions is stored in an SQLite table. It
has much of the functionality of the SQLite
stand-alone executable, plus spreadsheet-like
table display, nearly complete ALTER TABLE
functions, SQLite version 2 to version 3
conversion, the ability to execute a table as
either SQL or Tcl, and a few other functions I
had a need for. The name GEB was chosen
because using an SQLite database to store the
program which displays and modifies the
SQLite database itself seemed reminiscent of the
“self reference at a higher level” which was a
recurring theme in the book “Gödel Escher
Bach: An Eternal Golden Braid.” If you insist
on interpreting it as an acronym, it could stand
for “Gerry's Experimental Box,” but that is
really a backronym.

This paper contains a brief background and
history of GEB, a discussion of its current
capabilities, and a list of some possible future
additions.

Background

GEB began with a desire to migrate some
smallish database projects from proprietary s/w
(MS Access and dBase n) to FOSS. SQLite
caught my eye. Neither the command-line
program (CLP) nor any of the free packages for
it seemed to do everything I wanted, so I
decided to roll my own. My project would have
to run on Linux and Windows, and I was
looking at both Perl and Tcl, with the former
having the edge because of its being used a lot at
work. I installed both language packages on
both platforms. Tcl and SQLite worked
perfectly on both systems. I had problems with
the perl package on one of the platforms (no
idea which one by now), so I went with Tcl.

My goal was to put all the functionality I needed
into my package, so I wouldn't have to switch
over to the stand-alone executable or some other
program for some step in the middle of a
process I was undertaking.

I have tried to be extremely cautious about data
integrity. Algorithms have been kept as simple
as possible, to make them easier to verify. In
some cases where GEB generates SQL, the user
is shown the SQL and is given the chance to
decline to accept it.

History (showsqlite)

The first functions I needed were displaying the
tables in a file and their fields, and the contents
of a table. Figure 1 shows my first version,
which used text widgets. The upper window
shows one table per line, with the number of
entries in blue, the table name in black, and the
column names in red. Clicking on a table name
lists the contents in the lower window.

The display format was not appropriate for
editing the table contents, so a separate editing
window was created, shown in Figure 2. It was
opened using the Data – Edit menu.

Since I was always thinking of more columns I
needed to add to some tables, an Alter Table
function was needed. This window, shown in
Figure 3, was brought up by clicking on the
column names of a table. Columns could be
added or deleted, changed in order, renamed, or
copied. All changes were made by copying to a
TEMP table (possibly with changes), deleting
the original table, copying tot the original name
(possibly with changes), and deleting the TEMP
table. Since some kinds of changes are

Page 1

incompatible with other kinds (for a single pass
through the alteration), some functions are
disabled and their buttons grayed out when
others are started. If two “incompatible”
functions are needed, the user is required to
make two passes through the process. The
generated SQL is shown, and the user can
cancel without making the changes. The
example in the figure shows the result of some
Move Up/Down operations. The Add, Rename,
and Copy operations are incompatible and their
keys have been grayed out, but Delete is still
available. The SQL listing shows everything but
the Commit Transaction, which is not sent until
the user accepts the action.

The main window displays, and the data edit
window were clunky, even by my standards, so
my first upgrade after basic functionality was
achieved was to switch to tkTable-based
display.

Upgraded Display (showtable)

The original impetus for using tkTable was
looks—getting a spreadsheet-like display. The
expected side-effect was getting a much nicer
format for editing and entering data. An
unexpected one pleasantly took care of a
potential problem with large tables. The
original text-based display was populated by
reading the entire table into memory and
inserting it into the text widget. This worked
fine with the data sets I was using, so I never got
around to coding something better, but it would
not have scaled well. The tkTable widget, in the
command data mode, calls a user-specified proc
for any cell it needs to display (or update), so
the size of the table is of little importance to the
display speed. I have thought a little about
speeding things up by reading the whole row
when the first column is asked for, and then
filling in the rest of the row from cached values,
but I have not been able to convince myself that
some race condition could not result in an
updated value being missed—and besides, the
current speed is acceptable. The main window

now is as shown in Figure 4, which has the
standard spreadsheet-like look.

Clicking on a table name now brings up a
window like Figure 5, which not only looks
better, but also allows updating and adding data.

When updating data, the default is to require
confirmation for each cell changed, but there are
options for read-only (no changes allowed) or
making the change immediately, without
confirmation. Also, the capability to extend the
number of rows in the table can be set to Never,
Confirmation required, or Always done. Finally,
selected rows can be deleted.

Stand-alone Functions

This section covers capabilities of GEB that do
not interact (at least very much) with the basic
display and edit windows that have been
discussed so far. They were added over an
extended period of time, but will be covered
together.

Execute SQL/Tcl

There is often a need to execute a single line of
SQL or Tcl, so I created windows for those
functions. The result is made a little more
readable by allowing the user to specify the
number of items per line. Figure 6 shows an
example.

Run a Table

More than once I wrote and debugged some Tcl
code to process some data in an SQLite file, and
then could not find the code when I needed to
run it again. I hate doing things twice. A lot. So i
started adding tables to the file with a column
named text for storing the code snippets.

Page 2

Naturally, copying the data from these tables
and pasting it into one of the Execute windows
got old real fast, and so the ability to edit and
execute the code was added. I was really
worried about the code interfering with GEB, so
I experimented with executing the Tcl code in
either a safe interpreter or a special namespace. I
also included the ability to execute SQL code.
None of these special capabilities turned out to
be very useful, and this capability has not been
updated, but the lessons learned led to the Tcl
storing and execution that made it possible to
use the database file for storing the program
itself.

Import/Export

The CLP falls short of my import/export needs
in a few ways. First, in some cases my data has
the desires column names as the first line, and in
other cases it doesn't. Including the names is an
option for both import and export, as is picking
the delimiter. Second, in one data set all lines
contained the “essential” columns but some also
had some “optional” data. Therefore the import
routine optionally allows some lines to be
missing columns. It would have been easy
enough to handle the data manually, but why
spend a few minutes doing menial work if you
can avoid it with an hour or two of
programming?

There was also a separate capability to import a
single cell from a text file, or export it, similar to
the onecolumn method, but not using it.

Convert between Version 2 and
Version 3

This work started during the SQLite Version 2
days, and for a long time I refrained from using
any SQLite capabilities restricted to Version 3
so that my code would work with either file
format, but I eventually gave in, because of V3's
ability to do its own variable substitution.

Anyhow, functions were added to convert from
V2 to V3 (because it was needed), and from V3
to V2 (for completeness, and to simplify
checking.

Putting the Program in the
Database File

When I read DRH's paper “SQLite and Tcl” I
was intrigued by the concept of storing the
whole program in the database file. I was not yet
familiar with Tcl's handling of unknown procs,
but the wiki showed how to use and extend that.
I had, or at least thought I had, all the other
pieces, so the basics were soon cobbled
together.

I did not exactly implement DRH's writeup,
since I wanted to reduce the number of tables.
Therefore I grouped the supporting procs with
the main proc for each function and put them in
a single table with the name of the main proc.

This had two impacts: There could not be
separate columns for the header and body of a
proc, and the support procs could not be called
from a proc stored in a different table, unless it
was known to already have been loaded. The
grouping of the procs was done properly, and so
the second theoretical impact has never been a
problem.

Two unexpected problems did arise, though.

I had never needed to work on more than one
file at a time, so I had not implemented
ATTACH capabilities. The program could look
at just one file, and that file was now the one
containing the program itself. No place for the
file with the data. A significant rewrite was
needed to handle attached files, with a bunch of
one-dimensional arrays describing the database
schema needing to be redone as two-
dimensional arrays, with the attach name as the
new index.

Secondly, the simple editing support the
program had was no longer enough. I could no

Page 3

longer do a global search for the name of a proc
or variable and see every place it was used. So
the scope of the search routine was expanded to
cover all tables with a column named tcl.

Figure 7 shows the main editruntcl window, and
Figure 8 the search window. The two are tightly
integrated, with edits in one making the
appropriate changes in the other. In fact,
automatic propagation of changes is something I
worked hard to achieve, since the display or use
of obsolete data could lead to database
corruption. The one deliberate exception is the
tk_optionMenu widget in the editruntcl window,
whose table list must be reset manually by
clicking on the button next to it. This was
because updating the list affects the display, and
I wanted that under user control.

Program Organization

One goal was to put as much of the startup
process in the database, so that the external
bootstrap would be as small as possible. As can
be seen in Figure 9, that effort met with success.
The last two lines are optional, and one or the
other is usually commented out, depending on
the work being done. For program development
the editruntcl line is left uncommented, so the
main editing window will come up
automatically. Otherwise an attachit line brings
up a display of the desired data file.

The main_attach routine controls most of the
startup process. It must read in and execute two
procs to set up the array of table names needed
by the extended unknown handler. Refactoring
the functionality could reduce the number of
procs needed to one, but such strictly esthetic
improvements are low priority compared to
improving functionality.

Extending the capability of the unknown handler
is based on http://wiki.tcl.tk/2776. Whenever an
unknown proc name is encountered, the
::GEB::tcltablelist(main) list is searched for that
name preceded by main. (so that currently
attached files are not used for auto loading). If

such a table name is found, the table is loaded. If
reading in the table defines a proc with the
desired name, that new proc is executed with the
appropriate arguments and its result is returned.
If either of these conditions is not met the
original processor for unknown procs is
executed.

All other functions are initiated with menus or
buttons.

Future Plans

The development process so far has been so
pleasant that I look forward to adding further
functionality. In the past it has often taken
longer to decided what I wanted to do and how I
wanted it to work than it took to implement it,
and I fully expect that to be as true in the future.

Two things I am planning to implement soon are
allowing wildcards (of the [string match] kind to
searches, and some sort of version control, at
least to the point of executing a stable version
while editing and testing a development version
of routines. Further down the road I may look at
a GUIfied way of doing Full Text Searches, and
setting up tkTable displays of views.

Potential Users and Licensing

GEB is a set of Tcl routines for displaying and
manipulating SQLite databases, stored in an
SQLite database. As such, it could conceivable
appeal to a wide range of users.

At one extreme would be a Tcl developer who
didn't care about SQLite. GEB could be used by
such a developer, but other environments are
more powerful in many ways.

At the other extreme is an SQLite user who
doesn't care about Tcl and doesn't want to learn
it. This use seems like a bit better fit, and there
is less competition, but most would still find
other programs more to their liking.

Page 4

GEB is most likely to appeal to those in the
middle: those with some SQLite data and some
Tcl scripts for processing the data, who want to
keep, use, and maintain them together.

I intend to release GEB to the public domain,
since it would feel wrong for my contribution to
have a more restrictive license than SQLite
itself. Therefore, GEB may be used for any

purpose whatsoever. Development is
encouraged, and especially if the new code is
also public domain.

Support is available—inquire within.

Gerald C. Snyder
mesmerizerfan@gmail.com

Figures

Page 5

Figure 1. Pre-tkTable Main Display Window

Page 6

Figure 2. Pre-tkTable Edit Window

Figure 3. Alter Table Window

Page 7

Figure 5. Table Display with tkTable

Figure 4. Main Window with tkTable

Page 8

Figure 6. Window for runsql

Page 9

Figure 7. Window for editruntcl

Page 10

package require Tk; package require Tktable; console show
Create namespace for all "globals" and procs
namespace eval ::GEB {}
 load /sqlite/tclsqlite3.dll
 load /sqlite/tclsqlite.dll
set dbfile showtable.sq3
 sqlite3 sq $dbfile
 set ::GEB::attachfilename(main) $dbfile
proc evalsqlitetcl table {
 uplevel #0 [join [sq eval "select tcl from $table limit 1"]]
}
evalsqlitetcl main_attach
editruntcl
attachit s2008 /irisdata/2008symp/2008symp.sq3

Figure 9. GEB Bootstrap

Figure 8. Search Window

14’th Annual Tcl/Tk conference
Sept. 24-28 2007

Bourbon Orleans Hotel, New Orleans, LA USA

Tcl Does Web

 U
sing and Providing W

eb
Services in Tcl

G
erald W

. Lester
TicketSw

itch U
SA

, LLC

O
verview

•
W

hat are W
eb Services

•
Available Packages

•
Traditional A

pproaches

•
O

ur A
pproach

•
Exam

ples

•
C

onclusion

W
hat are W

eb Services
•

W
3C

•
X

M
L Bassed

•
SO

A
P based

•
W

eb Services D
escription Language

(W
SD

L)

•
O

ther definitions exist

•
R

EST
ful

Available Packages
•

W
ebServices for Tcl

•
Server

•
TclH

ttpd

•
C

lient

•
A

ny Tcl A
pplication

•
http://m

em
bers.cox.net/~gerald.lester/

W
ebServicesForTcl.htm

l

http://members.cox.net/~gerald.lester/WebServicesForTcl.html
http://members.cox.net/~gerald.lester/WebServicesForTcl.html
http://members.cox.net/~gerald.lester/WebServicesForTcl.html
http://members.cox.net/~gerald.lester/WebServicesForTcl.html

Available Packages

•
Server

•
Tcl W

eb Services Toolkit (T
W

IST
)

•
A

O
Lserver

•
C

lient

•
N

one yet, future goal

•
http://code.google.com

/p/tw
sdl/

Traditional A
pproaches

•
D

efine W
SD

L by hand

•
G

enerate docum
entation for service by hand

•
U

se tool to generate server abstract class
definition

•
H

andle your ow
n X

M
L

•
U

se tool to generate client stubs

•
H

andle your ow
n X

M
L

O
ur A

pproach

•
N

o know
ledge of X

M
L is required

•
D

ictionaries used for data structures

•
Attem

pt to m
ake as m

uch in the Tcl spirit as
possible

•
Typing and constraints not enforced

O
ur A

pproach - Server Side

•
Server generates W

SD
L and “m

an/help” page
from

 definition of procedure and data
structures

•
W

eb Services are strongly typed

•
U

ses literate program
m

ing style

O
ur A

pproach - C
lient Side

•
C

lient side parses W
SD

L

•
O

ptionally generates stubs

•
Parsed W

SD
L can be saved to a file and

reloaded

•
For w

hen W
SD

L is not accessible

•
M

ore effi
cient

Packages U
sed

•
tD

O
M

•
http

•
log

•
uri

•
htm

l

•
dict

C
urrent Status

•
Version 1.x

•
M

an/H
elp pages

•
Tutorial (thanks Bryan O

akley)

•
http://w

w
w.tclscripting.com

/articles/nov06/
article1.htm

l

http://www.tclscripting.com/articles/nov06/article1.html
http://www.tclscripting.com/articles/nov06/article1.html
http://www.tclscripting.com/articles/nov06/article1.html
http://www.tclscripting.com/articles/nov06/article1.html

Exam
ple

•
Echo service

•
Two m

ethods

•
Sim

pleEcho

•
Input: String to
echo

•
Returns: String

•
C

om
plexEcho

•
Inputs: String
to echo

•
Returns:

•
D

ate/tim
e

•
String

C
lient Exam

ple

p
a
c
k
a
g
e

r
e
q
u
i
r
e

W
S
:
:
C
l
i
e
n
t

#
#

#
#

G
e
t

D
e
f
i
n
i
t
i
o
n

o
f

t
h
e

o
f
f
e
r
e
d

s
e
r
v
i
c
e
s

#
#

:
:
W
S
:
:
C
l
i
e
n
t
:
:
G
e
t
A
n
d
P
a
r
s
e
W
s
d
l

h
t
t
p
:
/
/
l
o
c
a
l
h
o
s
t
:
8
0
1
5
/
s
e
r
v
i
c
e
/
w
s
E
x
a
m
p
l
e
s
/
w
s
d
l

s
e
t

t
e
s
t
S
t
r
i
n
g

"
T
h
i
s

i
s

a

t
e
s
t
"

s
e
t

i
n
p
u
t
s

[
l
i
s
t

T
e
s
t
S
t
r
i
n
g

$
t
e
s
t
S
t
r
i
n
g
]

http://localhost:8015/service/wsExamples/wsdl
http://localhost:8015/service/wsExamples/wsdl

C
lient Exam

ple - Synchronous

p
u
t
s

s
t
d
o
u
t

"
C
a
l
l
i
n
g

S
i
m
p
l
e
E
c
h
o

v
i
a

D
o
C
a
l
l
s
!
"

s
e
t

r
e
s
u
l
t
s

[
:
:
W
S
:
:
C
l
i
e
n
t
:
:
D
o
C
a
l
l

w
s
E
x
a
m
p
l
e
s

S
i
m
p
l
e
E
c
h
o

$
i
n
p
u
t
s
]

p
u
t
s

s
t
d
o
u
t

"
\
t

R
e
c
e
i
v
e
d
:

{
$
r
e
s
u
l
t
s
}
"

p
u
t
s

s
t
d
o
u
t

"
C
a
l
l
i
n
g

C
o
m
p
l
e
x
E
c
h
o

v
i
a

D
o
C
a
l
l
s
!
"

s
e
t

r
e
s
u
l
t
s

[
:
:
W
S
:
:
C
l
i
e
n
t
:
:
D
o
C
a
l
l

w
s
E
x
a
m
p
l
e
s

C
o
m
p
l
e
x
E
c
h
o

$
i
n
p
u
t
s
]

p
u
t
s

s
t
d
o
u
t

"
\
t

R
e
c
e
i
v
e
d
:

{
$
r
e
s
u
l
t
s
}
"

C
lient Exam

ple - Stubs

#
#
#
#

G
e
n
e
r
a
t
e

s
t
u
b
s

a
n
d

u
s
e

t
h
e
m

f
o
r

t
h
e

c
a
l
l
s

#
#
:
:
W
S
:
:
C
l
i
e
n
t
:
:
C
r
e
a
t
e
S
t
u
b
s

w
s
E
x
a
m
p
l
e
s

p
u
t
s

s
t
d
o
u
t

"
C
a
l
l
i
n
g

S
i
m
p
l
e
E
c
h
o

v
i
a

S
t
u
b
s
!
"

s
e
t

r
e
s
u
l
t
s

[
:
:
w
s
E
x
a
m
p
l
e
s
:
:
S
i
m
p
l
e
E
c
h
o

$
t
e
s
t
S
t
r
i
n
g
]

p
u
t
s

s
t
d
o
u
t

"
\
t

R
e
c
e
i
v
e
d
:

{
$
r
e
s
u
l
t
s
}
"

p
u
t
s

s
t
d
o
u
t

"
C
a
l
l
i
n
g

C
o
m
p
l
e
x
E
c
h
o

v
i
a

S
t
u
b
s
!
"

s
e
t

r
e
s
u
l
t
s

[
:
:
w
s
E
x
a
m
p
l
e
s
:
:
C
o
m
p
l
e
x
E
c
h
o

$
t
e
s
t
S
t
r
i
n
g
]

p
u
t
s

s
t
d
o
u
t

"
\
t

R
e
c
e
i
v
e
d
:

{
$
r
e
s
u
l
t
s
}
"

C
lient Exam

ple - A
synchronous

#
#
#
#

D
e
f
i
n
e

a
s
y
n
c
h
r
o
n
o
u
s
l
y

c
a
l
l
b
a
c
k

r
o
u
t
i
n
e
s

#
#
p
r
o
c

s
u
c
c
e
s
s

{
s
e
r
v
i
c
e

o
p
e
r
a
t
i
o
n

r
e
s
u
l
t
}

{

g
l
o
b
a
l

w
a
i
t
V
a
r

p
u
t
s

s
t
d
o
u
t

"
A

c
a
l
l

t
o

$
o
p
e
r
a
t
i
o
n

o
f

$
s
e
r
v
i
c
e

w
a
s

s
u
c
c
e
s
s
f
u
l

a
n
d

r
e
t
u
r
n
e
d

$
r
e
s
u
l
t
"

s
e
t

w
a
i
t
V
a
r

1

}p
r
o
c

h
a
d
E
r
r
o
r

{
s
e
r
v
i
c
e

o
p
e
r
a
t
i
o
n

e
r
r
o
r
C
o
d
e

e
r
r
o
r
I
n
f
o
}

{

g
l
o
b
a
l

w
a
i
t
V
a
r

p
u
t
s

s
t
d
o
u
t

"
A

c
a
l
l

t
o

$
o
p
e
r
a
t
i
o
n

o
f

$
s
e
r
v
i
c
e

w
a
s

f
a
i
l
e
d

w
i
t
h

{
$
e
r
r
o
r
C
o
d
e
}

{
$
e
r
r
o
r
I
n
f
o
}
"

s
e
t

w
a
i
t
V
a
r

1

}

C
lient Exam

ple - A
synchronous

#
#
#
#

C
a
l
l

a
s
y
n
c
h
r
o
n
o
u
s
l
y

#
#
s
e
t

w
a
i
t
V
a
r

0

p
u
t
s

s
t
d
o
u
t

"
C
a
l
l
i
n
g

S
i
m
p
l
e
E
c
h
o

v
i
a

D
o
A
s
y
n
c
C
a
l
l
!
"

:
:
W
S
:
:
C
l
i
e
n
t
:
:
D
o
C
a
l
l

w
s
E
x
a
m
p
l
e
s

S
i
m
p
l
e
E
c
h
o

$
i
n
p
u
t
s

\

[
l
i
s
t

s
u
c
c
e
s
s

w
s
E
x
a
m
p
l
e
s

S
i
m
p
l
e
E
c
h
o
]

\

[
l
i
s
t

h
a
d
E
r
r
o
r

w
s
E
x
a
m
p
l
e
s

S
i
m
p
l
e
E
c
h
o
]

v
w
a
i
t

w
a
i
t
V
a
r

p
u
t
s

s
t
d
o
u
t

"
C
a
l
l
i
n
g

C
o
m
p
l
e
x
E
c
h
o

v
i
a

D
o
A
s
y
n
c
C
a
l
l
!
"

:
:
W
S
:
:
C
l
i
e
n
t
:
:
D
o
C
a
l
l

w
s
E
x
a
m
p
l
e
s

C
o
m
p
l
e
x
E
c
h
o

$
i
n
p
u
t
s

\

[
l
i
s
t

s
u
c
c
e
s
s

w
s
E
x
a
m
p
l
e
s

S
i
m
p
l
e
E
c
h
o
]

\

[
l
i
s
t

h
a
d
E
r
r
o
r

w
s
E
x
a
m
p
l
e
s

S
i
m
p
l
e
E
c
h
o
]

v
w
a
i
t

w
a
i
t
V
a
r
å

C
lient Exam

ple - G
oogle A

PI
p
a
c
k
a
g
e

r
e
q
u
i
r
e

W
S
:
:
C
l
i
e
n
t

p
a
c
k
a
g
e

r
e
q
u
i
r
e

d
i
c
t

:
:
W
S
:
:
C
l
i
e
n
t
:
:
G
e
t
A
n
d
P
a
r
s
e
W
s
d
l

h
t
t
p
:
/
/
a
p
i
.
g
o
o
g
l
e
.
c
o
m
/
G
o
o
g
l
e
S
e
a
r
c
h
.
w
s
d
l

d
i
c
t

s
e
t

a
r
g
s

k
e
y

"
<
y
o
u
r

g
o
o
g
l
e

l
i
c
e
n
s
e

k
e
y

h
e
r
e
>
"

d
i
c
t

s
e
t

a
r
g
s

q

{
s
i
t
e
:
t
c
l
s
c
r
i
p
t
i
n
g
.
c
o
m

f
o
n
t
}

d
i
c
t

s
e
t

a
r
g
s

s
t
a
r
t

0

d
i
c
t

s
e
t

a
r
g
s

m
a
x
R
e
s
u
l
t
s

1
0

d
i
c
t

s
e
t

a
r
g
s

f
i
l
t
e
r

t
r
u
e

d
i
c
t

s
e
t

a
r
g
s

r
e
s
t
r
i
c
t

{
}

d
i
c
t

s
e
t

a
r
g
s

s
a
f
e
S
e
a
r
c
h

f
a
l
s
e

d
i
c
t

s
e
t

a
r
g
s

l
r

{
}

d
i
c
t

s
e
t

a
r
g
s

i
e

l
a
t
i
n
1

d
i
c
t

s
e
t

a
r
g
s

o
e

l
a
t
i
n
1

s
e
t

r
e
s
u
l
t

[
:
:
W
S
:
:
C
l
i
e
n
t
:
:
D
o
C
a
l
l

G
o
o
g
l
e
S
e
a
r
c
h
S
e
r
v
i
c
e

d
o
G
o
o
g
l
e
S
e
a
r
c
h

$
a
r
g
s
]

f
o
r
e
a
c
h

i
t
e
m

[
d
i
c
t

g
e
t

$
r
e
s
u
l
t

r
e
t
u
r
n

r
e
s
u
l
t
E
l
e
m
e
n
t
s

i
t
e
m
]

{

p
u
t
s

[
d
i
c
t

g
e
t

$
i
t
e
m

t
i
t
l
e
]

p
u
t
s

[
d
i
c
t

g
e
t

$
i
t
e
m

U
R
L
]

p
u
t
s

"
"

}

http://api.google.com/GoogleSearch.wsdl
http://api.google.com/GoogleSearch.wsdl

Server Exam
ple

p
a
c
k
a
g
e

r
e
q
u
i
r
e

W
S
:
:
S
e
r
v
e
r

p
a
c
k
a
g
e

r
e
q
u
i
r
e

W
S
:
:
U
t
i
l
s

#
#

#
#

D
e
f
i
n
e

t
h
e

s
e
r
v
i
c
e

#
#

:
:
W
S
:
:
S
e
r
v
e
r
:
:
S
e
r
v
i
c
e

\

-
s
e
r
v
i
c
e

w
s
E
c
h
o
E
x
a
m
p
l
e

\

-
d
e
s
c
r
i
p
t
i
o
n

{
E
c
h
o

E
x
a
m
p
l
e

-

T
c
l

W
e
b

S
e
r
v
i
c
e
s
}

\

-
h
o
s
t

$
:
:
C
o
n
f
i
g
(
h
o
s
t
)
:
$
:
:
C
o
n
f
i
g
(
p
o
r
t
)

D
efining Schem

a

#
#

#
#

D
e
f
i
n
e

a
n
y

s
p
e
c
i
a
l

t
y
p
e
s

#
#

:
:
W
S
:
:
U
t
i
l
s
:
:
S
e
r
v
i
c
e
T
y
p
e
D
e
f

S
e
r
v
e
r

w
s
E
c
h
o
E
x
a
m
p
l
e

e
c
h
o
R
e
p
l
y

{

e
c
h
o
B
a
c
k

{
t
y
p
e

s
t
r
i
n
g
}

e
c
h
o
T
S

{
t
y
p
e

d
a
t
e
T
i
m
e
}

}

D
efining O

perations
#
#
#
#

D
e
f
i
n
e

t
h
e

o
p
e
r
a
t
i
o
n
s

a
v
a
i
l
a
b
l
e

#
#
:
:
W
S
:
:
S
e
r
v
e
r
:
:
S
e
r
v
i
c
e
P
r
o
c

\

w
s
E
c
h
o
E
x
a
m
p
l
e

\

{
S
i
m
p
l
e
E
c
h
o

{
t
y
p
e

s
t
r
i
n
g

c
o
m
m
e
n
t

{
R
e
q
u
e
s
t
e
d

E
c
h
o
}
}
}

\

{

T
e
s
t
S
t
r
i
n
g

{
t
y
p
e

s
t
r
i
n
g

c
o
m
m
e
n
t

{
T
h
e

t
e
x
t

t
o

e
c
h
o

b
a
c
k
}
}

}

\

{
E
c
h
o

a

s
t
r
i
n
g

b
a
c
k
}

{

r
e
t
u
r
n

[
l
i
s
t

S
i
m
p
l
e
E
c
h
o
R
e
s
u
l
t

$
T
e
s
t
S
t
r
i
n
g
]

}:
:
W
S
:
:
S
e
r
v
e
r
:
:
S
e
r
v
i
c
e
P
r
o
c

\

w
s
E
c
h
o
E
x
a
m
p
l
e

\

{
C
o
m
p
l
e
x
E
c
h
o

{
t
y
p
e

e
c
h
o
R
e
p
l
y

c
o
m
m
e
n
t

{
R
e
q
u
e
s
t
e
d

E
c
h
o

-
-

t
e
x
t

a
n
d

t
i
m
e
s
t
a
m
p
}
}
}

\

{

T
e
s
t
S
t
r
i
n
g

{
t
y
p
e

s
t
r
i
n
g

c
o
m
m
e
n
t

{
T
h
e

t
e
x
t

t
o

e
c
h
o

b
a
c
k
}
}

}

\

{
E
c
h
o

a

s
t
r
i
n
g

a
n
d

a

t
i
m
e
s
t
a
m
p

b
a
c
k
}

{

s
e
t

t
i
m
e
S
t
a
m
p

[
c
l
o
c
k

f
o
r
m
a
t

[
c
l
o
c
k

s
e
c
o
n
d
s
]

-
f
o
r
m
a
t

{
%
Y
-
%
m
-
%
d
T
%
H
:
%
M
:
%
S
Z
}

-
g
m
t

y
e
s
]

r
e
t
u
r
n

[
l
i
s
t

C
o
m
p
l
e
x
E
c
h
o
R
e
s
u
l
t

[
l
i
s
t

e
c
h
o
B
a
c
k

$
T
e
s
t
S
t
r
i
n
g

e
c
h
o
T
S

$
t
i
m
e
S
t
a
m
p
]

]

}

D
em

o of Auto-generated Pages

•
Service D

ocum
entation

•
W

SD
L

http://localhost:8015/service/wsEchoExample
http://localhost:8015/service/wsEchoExample
http://localhost:8015/service/wsEchoExample/wsdl
http://localhost:8015/service/wsEchoExample/wsdl

K
now

n Problem
s

•
Som

e “legal” X
Schem

a very hard to parse

•
.N

ET generated w
ith som

e tools

•
Som

e Server im
plem

ents expect certain
“hardcoded” nam

espace prefixes instead.

W
orkarounds

•
For m

ost “diffi
cult” X

Schem
a m

inor edits allow

it to be parsed

•
N

o good workaround for “hardcoded”
nam

espace problem
s

C
onclusion

•
Provides an easy w

ay to provide W
eb Services

from
 Tcl.

•
U

seable to call a good num
ber of W

eb Services

•
M

ay require m
inor m

odifications to W
SD

L

•
C

onsider a work in progress

Q
uestions?

14’th Annual Tcl/Tk conference
Sept. 24-28 2007

Bourbon Orleans Hotel, New Orleans, LA USA

Programming Techniques

OO for Tcl
or “How I Learned to Stop Worrying and Write the Co de”

Donal Fellows
<donal.k.fellows@manchester.ac.uk>

For the past two years, I have been working on developing a new OO system for
Tcl that is intended to serve as a basis for a wide range of OO styles. In this pa-
per, I will describe and explain the current status of the work, discuss the issues
involved in producing a high-performance flexible OO system, and describe a
number of issues that have been encountered during work (with Arnulf Wiede-
mann) to build a version of [incr Tcl] on top of the core OO system.

As many of you know, I have been writing an object system for Tcl for a couple of
years now. The intention was that this object system should focus on just the core task of
making a fast method dispatch system as well as seeding the very heart of the inheritance
hierarchy. This is in contrast to the other major object systems (e.g., [incr Tcl], XOTcl,
Snit) that provide a much larger set of features, but at the cost of being far more complex.
By sticking to the fundamentals, my code will be well placed to focus on how to be fast
and readable, allowing the other OO systems to focus on “added value” such as collection
management systems, rich application support, etc. Like that, it would allow us to have
the power of the object-programming paradigm without enormous amounts of effort or
tearing up the large number of existing scripts that depend on the features of the previ-
ously existing object systems.

This paper does not describe the detailed programming interface for the object system:
I covered that previously1. Instead, it goes into more detail about the details of what
makes for a fast and flexible object system. There has been a major change since I pre-
sented the initial proposal for this work two years ago though: after much discussion, I
decided that any object system that goes into the core must have a substantial amount of
practical “in-deployment” experience first. In order to gain this experience, I redesigned
my object system to work as an extension package using the TEA build system. In addi-
tion, by doing this, I made it far easier for other people to work with the system during
development. More eyeballs really do mean fewer bugs!

This has resulted in the TclOO extension, which you can use with any sufficiently re-
cent version of an 8.5 core (i.e., after the sixth alpha release). It has documentation and a
test suite, and I know that it builds and works correctly on both Windows and Linux. It
even exports its own API via a stubs table, making it even easier to build your own exten-
sions on top. There are down-sides to this though: how they have been dealt with is one
of the topics of this paper.

1 See my paper in the Tcl 2005 conference, or TIP #257, which was derived from it.

Flexibility and the Art of Code Writing

One of the major driving requirements of the TclOO package has been that it should
be possible for third party code to extend it, and in as many different ways as possible.
Thus, you can define not just new methods, but new kinds of methods and (currently ex-
perimental) new ways of invoking objects. However, doing this, especially for the long
term, requires both the definition of structures (so that typing information can be pro-
vided in a sane fashion) and the rigorous hiding of the internal details of those structures
that are private to the TclOO package itself.

The concealment of the internal details of private structures is relatively straightfor-
ward in practice: when those tokens even potentially pass outside the control of the pack-
age, I conceal their real types and they are just an abstract pointer2. I then provide a set of
accessor functions to allow third-party code to extract the information within the real
structures without exposing details that can change between versions.

Ensuring that public structures are future-proof is more complex. The structures that
require this treatment are there to express the type of something, and instances of those
structures will typically be compiled as constants in extension code. This binds the binary
versions of those extensions inherently to the version of the API they use. Luckily, this
problem has already been resolved in Tcl for structures such as the Tcl_Filesystem
and Tcl_ChannelType , which would otherwise have the identical problem. These han-
dle versioning by putting a version number directly into the structure: by knowing what
version of the structure declaration the code was compiled against, the set of valid fields
can be understood. This allows structures for purposes such as the definition of types of
methods or metadata to be migrated into the future at minimal cost.

Another thing that has come from the TclOO work has been the way that some parts of
the Tcl core are much easier to extend than before. For example, the Tcl info command
is now an ensemble, as this allows the addition of new info class and info object
subcommands in a simple fashion. The alternative would have been a special mechanism
just for the info command itself, which would have required extensive testing instead of
being just an application of a more general facility.

Inheriting Diamonds

One of the things that I wished to support was multiple inheritance, since that is a fea-
ture that is often very useful; e.g., a school bus is both a road vehicle and a passenger
transportation device, and yet those superclasses are fundamentally distinct (compare
with dump trucks and cruise ships!) And yet this opens up the way to a classic problem
where you have a class that is a subclass of two other classes that define conflicting
methods: the key to the problem being which method is “more important”? Since this can
involve almost arbitrary amounts of additional confusing complexity, this problem is
genuinely hard. (Arguably, this should not happen as method names should never clash
like this, but method names model human language, and language is messy and impre-
cise.)

2 In C, a pointer is abstract if it points to a type that the compiler does not know the size of. The classic ex-
ample of an abstract pointer is void* , but pointers to a structure of unknown size are better in practice for
many things, since they require an explicit cast to be converted to another type.

A study of the literature for dynamic object systems (static systems like C++ have
other constraints that did not concern me) indicated that the best solution was to think in
terms of first converting the inheritance graph (as viewed from a particular point) into a
tree back to the object root, where any node may appear multiple times. Then you walk
the tree “pre-order” to produce a traversal list, traversing the parents of each node in
“natural” order (i.e., the order specified in the definition of the class). Finally, you re-
move every reference to any method on the list except the last one. The resulting list of
methods (see Figure 1) turns out to be exactly what you want.

Figure 1: Diamond Inheritance Pattern

Well, almost. TclOO also supports mixins and filters, which add to the complexity.
Mixins are classes that are added to objects; they are great for modelling roles and or-
thogonal behaviour, and come in the inheritance order before conventional classes (which
model types better.) Filters are a way to decide whether to skip the evaluation of a
method or perform some other kind of wrapping evaluation on a per-method basis, and
are implemented as a list of method names to call before calling the real method. With
both mixins and filters added, you have the model used by TclOO and XOTcl. (Other Tcl
object systems typically have either simplifications of this model – [incr Tcl] is like this –
or are done in a totally different way – the Self-modelled ones are in this category.)

Caching for Fun and Profit

The algorithm for calculating the method call chain described above is distinctly ex-
pensive, as you can imagine. The only way to get reasonable speed out of it is to be strict
about using caching. And yes, TclOO uses caches a lot.

In particular, it caches method chains carefully so that the second time you call an ob-
ject’s method, the chain can be retrieved rapidly and the method dispatched in double-
quick time. But care must be taken when doing such caches that the values retrieved from
them are valid; if a class in the inheritance tree is modified, it can mean that all your as-
sumptions about what the method chain looks like are wrong! Luckily, it turns out that it
is easy to build a system for detecting potential problems that is also cheap. Just as with
Tcl’s bytecode engine, I use epoch counters. When an incompatible change happens, the
appropriate epoch is updated – every object has its own epoch counter, but classes use a
global one because they may be used outside themselves – and the code that retrieves
values from the cache can just check two epochs (the object epoch and the global epoch)
against the values saved when the chain was created. When both epochs match, the chain
of implementations for that particular method name is correct and can be dispatched im-
mediately.

A

B C

D

D:method

B:method

A:method

C:method

A:method

Traversal Order

Of course, if you have experience with the Tcl_Obj value system you might expect
that the caches would be kept in the method name value itself. After all, that is exactly
where Tcl’s ensembles and functions like Tcl_GetIndexFromObj keep their caches.
But this is not actually a safe thing to do, since we have per-object methods (and mixins
and …) and without a strong classical object typing system I must keep the caches in the
object itself and not the method name value. This is a significant difference between a
subcommand dispatch scheme designed to support an ensemble and one for objects and
their methods.

Getting [Incr]ementally Better

As mentioned earlier, one of the major aims of this work was to support the building
of other object systems on top. This is a good thing to aim for since they have historically
reached very deep into Tcl’s innards in order to get speed, and that has left them inclined
to be tightly bound to particular versions of Tcl. Not exactly the Stubs promise!

Instead, I have been working (with much prompting from Arnulf Wiedemann) on pro-
viding an API that allows these other extensions to build their style of methods on top of
my core ones without having to pry deep inside my code. For the moment, this API is not
public – I do not know yet whether the functions and structures involved are at all stable
– but it is my intention to make it available. In particular, it allows for code to do things
like adjusting the command resolution scheme specifically for the body of the method
instead of by doing strange things with the overall command resolution system. This lim-
its the effects and makes it easier to increase the performance. Other areas that have an
internal extension point are the mechanisms for deciding how to implement a particular
method call, for deciding the exact level of privacy enjoyed by a class method, and to al-
low classes to control the name of the namespaces of the objects they create.

The net result of this (and much work by Arnulf) is that it has proved possible to im-
plement a new version of [incr Tcl] on top of the TclOO core and get it to sufficient qual-
ity where it passed the itcl test suite. One of the biggest gains is that this new version,
currently known as itcl-ng, can do this without need to deal with direct allocation of
structures that are in the Tcl core. This in turn makes it likely that future versions of itcl
will be compliant with the broader Tcl Stubs promise: that a new minor version of Tcl
will not force the rebuilding of extensions built against the old version.

Collecting Examples

But you would rather see code, right?

There are many features in the TclOO system that are of interest at the scripted level.
Although it only defines two classes (being oo::object , the class of objects, and
oo::class , the class of classes) these classes have many abilities, some of which I shall
show off here. Firstly, let us define some simple collection classes.

Since we want to allow objects to be automatically deleted when they are no longer
referenced, it greatly helps to start with a reference-counting infrastructure. The following
class creates objects that maintain a reference count just like those for Tcl_Obj values,
deleting themselves when the count drops below one.

oo::class create Refcountable {
 constructor {} {
 variable refcount 0

 next

 }

 method incrRefCount {} {
 variable count
 incr count
 }

 method decrRefCount {} {
 variable count
 if {[incr count -1] <= 0} {
 my delete
 }
 }
}

On top of this class, we then build some simple collection classes. This list class can have
reference counted objects added to it, searched for in it, removed from it, and can also
iterate over the list of objects. When the list is destroyed, it will automatically remove its
references to its contents (possibly deleting them in turn, of course).

oo::class create List {

 superclass Refcountable

 constructor {} {

 variable list {}

 next

 }

 destructor {

 my foreach object {

 $object decrRefCount

 }

 next

 }

 method add args {

 variable list

 foreach object $args {

 lappend list $object

 $object incrRefCount

 }

 }

 method has object {

 variable list

 expr {$object in $list}

 }

 method remove object {
 variable list
 set idx [lsearch -exact $list $object]
 if {$idx >= 0} {
 set list [lreplace $list $idx $idx]
 }

 return

 }

 method foreach {var body} {
 variable list
 upvar 1 $var v

 foreach v $list {

 uplevel 1 $body

 }

 }

}

But as we all know, lists are not the only sort of collection. The other major kind is the
map. This map class maintains a mapping (in a dictionary) from strings to objects. The
objects are naturally reference counted. It supports methods to put (add or update) a map-
ping, get the object from a mapping, delete a mapping or list the keys in the mapping.
Aside from the other features, one interesting thing to note here is the Decr method,
which is hidden from use by things outside the class. This happens automatically when
the method name does not start with a lower-case letter.

oo::class create Map {
 superclass Refcountable
 constructor {} {

 variable map {}

 next

 }

 destructor {

 variable map

 dict for $map {key object} {

 $object decrRefCount

 }

 next

 }

 method Decr key {

 variable map

 if {[dict exists $map $key]} {

 [dict get $map $key] decrRefCount

 return 1

 }

 return 0

 }

 method put {key object} {
 variable map
 $object incrRefCount
 my Decr $key
 dict set map $key $object

 return

 }

 method get {key} {
 variable map

 return [dict get $map $key]

 }

 method unset {key} {
 if {[my Decr $key]} {
 variable map

 dict unset map $key

 }

 return

 }
 method keys {} {

 variable map

 return [dict keys $map]

 }

}

As you can see, it is quite easy to build all the trappings of a conventional object system.
Or at least it is if you do not permit renaming of objects with rename . When objects may
be renamed, things get quite a bit more complex since you can no longer safely store the

object’s name; instead, you need to use some kind of unique identifier that is never modi-
fied: the name of the object’s private namespace serves this purpose well. This class also
demonstrates how the object system can use other features of Tcl (in this case, name-
spaces and traces) to achieve its aims

oo::class create Renamable {

 superclass Refcountable

 constructor {

 variable ::objforname

 set objforname([namespace current]) [self]

 trace add command [self] rename \

 [namespace code {my Renamed}]

 next

 }

 destructor {

 variable ::objforname

 unset objforname([namespace current])

 next

 }

 method Renamed {from to op} {
 variable ::objforname
 set objforname([namespace current]) $to
 }

 method uid {} {
 return [namespace current]

 }

 method getFromUid {uid} {

 variable ::objforname

 return $objforname($uid)

 }

}

Updating the list and map classes to use this new class’s features by storing the unique
identifier values instead of the object names is left as an exercise for the reader.

Wrapping Widgets

One key rite of passage for an object system is integrating with Tk. Everyone wants to
do it so they can make megawidgets and create other sorts of enhanced functionality.
Here I demonstrate how to do this in a simple example using an entry widget:

oo::class create Entry {

 self.unexpose create

 constructor {widgetName args} {

 entry $widgetName {*}$args

 variable realName __$widgetName

 rename $widgetName $realName

 rename [self] $widgetName

 trace add command $realName delete \

 [namespace code {my delete ;#}]

 }

 method unknown {method args} {

 variable realName

 return [$realName $method {*}$args]

 }

 unexpose unknown

}

Note that I use the special unknown method here to direct any method invocations not
otherwise known to the subcommands of the real widget. This, very much like Snit’s
delegation, makes it simple to override a method without having to maintain the whole
list of subcommands (a traditional problem with [incr Tk]).

But we want to do something fancier with this new capability. We do this by Here’s a
new kind of entry widget that we can flash like a button:

oo::class create FlashEntry {
 superclass Entry
 method flash {{times 5}} {
 set bg [my cget –bg]
 set fg [my cget –fg]
 for {set i 0} {$i < $times} {} {
 my configure –bg $fg –fg $bg
 update idletasks
 after 200
 my configure –bg $bg –fg $fg
 update idletasks
 if {[incr i] < $times} {
 after 200
 }

 }

 }

}

Now we can use this like this, which (apart from the slightly different creation sequence)
is now just like using a normal widget, except it has this extra capability:

FlashEntry new .e

pack .e

bind .e <Return> {%W flash}

Tackling Threads

As you might expect, the TclOO package is completely thread-safe. This means that
we can use it with the Thread package with very little fuss. For example, here is a small
thread pool manager that also looks after getting the results from the pool back and clean-
ing up after itself:

package require Thread

oo::class create Parallel {

 constructor {lambdaTerm $args} {

 variable term $lambdaTerm

 variable pool [tpool::create {*}$args]

 variable posted {}

 }

 destructor {

 variable pool

 variable posted

 if {[dict size $posted]} {

 my cancel

 }

 tpool::release $pool

 }

 method start {values} {
 variable term
 variable pool
 variable posted
 if {[dict size $posted]} {
 error "pool still busy"

 }

 variable results {}

 foreach v $values {

 dict set posted [tpool::post –nowait $pool \

 [list apply $term $key]] $v

 }

 }

 method wait {} {

 variable pool

 variable posted

 variable results

 set done [tpool::wait $pool [dict keys $posted]]

 foreach j $done {

 dict set results [dict get $posted $j] \

 [tpool::get $pool $j]

 dict unset posted $j

 }

 return [dict size $posted]

 }

 method cancel {} {

 variable pool

 variable posted

 variable results

 set left [tpool::cancel $pool [dict keys $posted]]

 foreach j $left {

 tpool::wait $pool $j

 dict set results [dict get $posted $j] \

 [tpool::get $pool $j]

 }

 set posted {}

 }

 method results {} {

 variable results

 return $results

 }

}

The thread pool manager can be used to execute lambda terms on many values in parallel;
for example, this simple example demonstrates how to compute Fibonacci numbers in a
somewhat foolish fashion:

Parallel create Fib {x {fib $x}} –maxthreads 6 –ini tcmd {
 proc fib x {
 if {$x <= 2} {return 1}
 expr {[fib [incr x -1]] + [fib [incr x -1]]}
 }
}

Fib start {10 20 30 40 50 60 70 80 90 100 110 120 1 30 140}

while {[Fib wait]} {}

array set fibonacci [Fib results]

puts "got part way..."

Fib start {150 160 170 180 190 200 210 220 230 240 250 260}

while {[Fib wait]} {}

array set fibonacci [Fib results]

Fib delete

parray fibonacci

Working with WebServices

Of course, we can also do things with objects and WebServices. Indeed, this is how
they are typically created in most of the rest of the WS community.

package require WS::Server

package require WS::Utils

oo::class create Service {

 self.unexport new

 constructor {args} {

 global Config

 variable ServName [self]

 ::WS::Server::Service -service [self] \

 -host $Config(host):$Config(port)

 {*}$args \

 -premonitor [namespace code {my}] \

 -postmonitor [namespace code {my}] \

 -checkheader [namespace code {my CHECK}]

 }

 method PRE {service operation argList} {

 }

 method POST {service operation status results} {

 }

 method CHECK {

 service operation caller httpHeaders soapHeaders

 } {}

 # A Simple Utility Method
 method DateTime {instant} {
 clock format $instant –format {%Y-%m-%dT%H:%M:%SZ} \
 -gmt yes
 }

 # A Utility Method
 method type {name definition} {
 variable ServName
 ::WS::Utils::ServiceTypeDef Server $ServName \
 $name $definition
 }

 # Utility method

 method operation {nameInfo argList doc body} {

 variable ServName

 set args {}

 set name [lindex $nameInfo 0]

 oo::define [self] method $name $args $body

 set body2 [namespace code [list my $name]]

 foreach arg $argList {

 append body2 " $" [lindex $arg 0]

 lappend args [lindex $arg 0]

 }

 ::WS::Server::ServiceProc $ServName $nameInfo \
 $argList $doc $body2

 }

 # Utility method for producing operation result s

 method Result args {

 set op [uplevel 1 {self method}]Result

 upvar 1 _RESULT_ result

 if {![info exists result]} {set result {}}

 if {![dict exists $result $op]} {

 dict set result $op {}

 }

 dict set result $op {*}$args

 }

}

A demonstration of how to use this code is naturally in order. This is adapting from the

Service create wsExamples \

 -description {Tcl Example Web Services}

wsExamples type echoReply {

 echoBack {type string}

 echoTS {type dateTime}

}

wsExamples operation {

 SimpleEcho {type string comment {Requested Echo }}

} {

 {TestString {type string comment {Text to echo back}}}

} {Echos a string back} {

 my Result $TextString

}

wsExamples operation {
 ComplexEcho {type echoReply comment {Requested echo+ts}}
} {
 {TestString {type string comment {Text to echo back}}}
} {Echos a string back with a timestamp attached} {
 my Result echoBack $TestString

 my Result echoTS [my DateTime [clock seconds]]

}

This example, based on the code on the Web Services for Tcl website, is already consid-
erably simpler for the application of simple object technology. But deeper support should
be possible in the future. After all, ideally a web service should not be significantly
harder to write syntactically than a conventional Tcl namespace; there is more than
enough other complexity to deal with!

Accelerating with Aspects

Another thing you can do with TclOO is create aspects. An aspect is a way of “cross-
cutting” a program so that code does not need to deal with everything in one place. In-
stead, you can have each part be a specialist in what it does, perhaps by adding logging or
persistence to some existing code that would otherwise need significant reengineering.
For example, below we define a special class that is used for applying transparent caches
to an object. This is great when you are dealing with methods that can take a long time to

execute because of computation, though care must be taken with it because it does not
understand object internal state.

oo::class create cacheAspect {

 filter Memoize

 method Memoize args {

 # Do not filter the core method implementations

 if {[lindex [self target] 0] eq "::oo::object"} {

 return [next {*}$args]

 }

 # Check if the value is already in the cache

 my variable ValueCache

 set key [self target],$args

 if {[info exist ValueCache($key)]} {

 return $ValueCache($key)

 }

 # Compute value, insert into cache, and return it

 return [set ValueCache($key) [next {*}$args]]

 }

 method flushCache {} {

 my variable ValueCache

 unset ValueCache

 # Skip the cacheing

 return -level 2 ""

 }

}

You can then apply this to any object to add memoization to that object’s methods by
mixing the class in. For example:

oo::object create demo
oo::define demo {

 method compute {a b c} {

 after 3000 ;# Simulate deep thought

 return [expr {$a + $b * $c}]

 }

}

This object just does some simple calculations, but takes a long time over it.

puts [demo compute 1 2 3] prints "7" after delay

puts [demo compute 1 2 3] prints "7" after delay

puts [demo compute 1 2 3] prints "7" after delay

Time to add that memoization!

oo::define demo mixin cacheAspect

puts [demo compute 1 2 3] prints "7" after delay

puts [demo compute 1 2 3] prints "7" instantly!

puts [demo compute 1 2 3] prints "7" instantly!

puts [demo compute 4 5 6] prints "34" after delay

puts [demo compute 4 5 6] prints "34" instantly!

puts [demo compute 1 2 3] prints "7" instantly!

If we change things, we need to flush the cache…

oo::define demo method compute {a b c} {

 after 3000

 return [expr {$a * $b + $c}]

}

puts [demo compute 1 2 3] prints "7" instantly, wrongly!

demo flushCache

puts [demo compute 1 2 3] prints "6" after delay, right!

puts [demo compute 1 2 3] prints "6" instantly

And all this from just the application of a mixin and a filter. The demo object itself knows
nothing at all about how to do caching, but we waved our magic wand and added the
functionality after the fact. Can aspects make your programming tasks easier?

Future Directions

Thanks to the help I have received from many people (especially Arnulf Wiedemann),
the TclOO package is almost ready for public release. The main thing left to do is to dis-
cover what features have I left out that are critical, and that is something which is best
done by letting other people try to use and break it. As always, the code probably needs
more work so that it goes faster. I also want to really encourage everyone to take my code
and find cool ways to use it to do things that are relevant to you.

Symbolic differentiation in Tcl:
reusing the Tcl parser for symbolic algebra

Kevin B. Kenny
Computational Biology Laboratory, GE Global Research Center, Niskayuna, NY

kennykb@research.ge.com

(Extended abstract)

Symbolic differentiation is one of the easier problems in symbolic algebra; it is often
presented as a student exercise in artificial-intelligence courses. Even though it is easy, it
remains useful (and often underutilized) for mathematical computations such as root-
finding, minimization and maximization of functions, and solving ordinary differential
equations.

The most time-consuming part of writing a symbolic differentiator, in many languages, is
writing a parser for the expressions to be differentiated. Fortunately, Tcl, being an
interpretive language, comes with a parser for expressions that is available at run time.
While the parser is not normally exported to scripts, the parser interface that the
instrumentor in TclPro uses allows for script access via an extension. One advantage to
using the built-in parser is that the programmer can be certain that the language of
expressions to be differentiated is exactly the language of expressions to be evaluated.

The differentiator begins with a Tcl expression whose derivative is to be found, and the
variable with respect to which it is being differentiated. The first thing that it does is to se
the ‘parser’ extension to parse the expression. It then rewrites the parse tree into a form
that is suitable for evaluation as a Tcl command. For instance, the Tcl expression,

2 * sin($x) * cos($x)

would be rewritten into the Tcl command:

{operator *} \
 {{operator *} \
 {constant 2.} \
 {{operator sin} \
 {var x}}} \
 {{operator cos} \
 {var x}}

Various rewritings are then available by evaluating the command in various namespaces.
In particular, the command:

namespace eval math::symdiff::differentiate \
 [linsert $parseTree 1 $varName]

differentiates the given expression with respect to the given variable. The result is a tree
in the same form: second and higher derivatives can be obtained by the same method.

The differentiator itself is fairly stupid. It includes the rules for finding the derivatives of
sums, differences, products, quotients and powers. It also has the basic rules for
differentiating the built-in functions, and a number of these rules also invoke common

code for the Chain Rule. A typical rule, in fact an unusually complex one, is the one for
the two-argument arc-tangent function:

proc {math::symdiff::differentiate::operator atan2} {var f g} {
 set df [eval [linsert $f 1 $var]]
 set dg [eval [linsert $g 1 $var]]
 return [MakeQuotient \
 [MakeDifference \
 [MakeProd $df $g] \
 [MakeProd $f $dg]] \
 [MakeSum \
 [MakeProd $f $f] \
 [MakeProd $g $g]]]
}

Here we see the recursive nature of the differentiator at work: it begins by differentiating
the two arguments to atan2 with respect to the given variable, and then applies the rule:

()221tan gf
dt

dg
f

dt

df
g

g

f

dt

d +






 −=− .

A handful of functions, no more than a couple of hundred lines of code in all, implement
this part of the differentiator.

The [MakeSum], [MakeDifference], [MakeProd], … functions could have been
implemented simply as invocations to [list]. In the actual implementation, though, they
are done with a modicum of “peephole optimization.” [MakeSum], for instance, has
special cases:

• If either operand begins with a unary minus, the sum is rewritten as a difference.

• If either operand is a constant 0, the sum is rewritten as the other operand.

• If both operands are constants, the sum is folded to a constant representing their
sum.

Similarly, [MakeProduct] has special cases to lift unary minus out of products; to
simplify multiplications by zero, one and –1; and to reduce the product of two constants
to a constant. The other expression constructors have similar peephole optimizations.

A simple (twenty-line or so) Tcl script then converts the list representation back to Tcl’s
notation so that [eval] can deal with it.

The resulting derivatives are hardly a minimal representation, but they are good enough
for numeric evaluations. The differentiator has been integrated successfully with:

• A multidimensional root-finder using modified Newton-Raphson iteration.

• A function minimizer using the conjugate-gradient method and explicit
derivatives.

• A non-linear least-squares curve fitter using the Levenberg-Marquardt algorithm.

• A solver for stiff ODE’s based on the Fortran code LSODAR (and described in a
companion paper).

The differentiator as it stands is serviceable, but there are ample opportunities for future
work. Among the most obvious challenges are:

• Better algebraic simplification for the output. This sort of technique also moves
Tcl toward the realm of a true symbolic-algebra system that could be used for
more than just differentiation.

• Cleaning up the horrible API of the TclPro parsing extension and integrating it
more tightly into the Tcl core (failing to expose the parser at script level is an
egregious oversight).

• Reworking the Tcl-command representation to use the “math functions as
commands” and “math operators as commands” syntax of Tcl 8.5. This change
would (in 8.5) make it possible to evaluate the generated derivatives directly
without reconverting to infix notation.

• At the same time that such a change is made to use tcl::mathfunc::F notation for
the built-in mathematical functions, the ability for users to extend the set of
supported functions dynamically should be included. Such an extension would
allow special functions such as exponential integrals, elliptic integrals and
Jacobian elliptic functions, Bessel functions, and so on to be differentiated
symbolically.

Tcl 8.5 is not far from being an extremely capable system for ad-hoc mathematical
calculations; extensions such as this one point the way.

	cleverly.pdf
	 About Intermountain Healthcare
	 Facilitating a corporate rebranding initiative
	 A restricted authorization proxy for static content
	 Pseudo source-NAT'ing with tcpsymlinks
	 A Tcl web server with a One Track Mind
	 Front-ending an existing system with SSL
	 Deterministic load balancing
	 Two caveat to keep in mind
	 Not just IPv4 and TCP
	 Conclusion

	GEBPaperV2.pdf
	GEB: SQLite in Tcl/Tk in SQLite
	Abstract
	Background
	History (showsqlite)
	Upgraded Display (showtable)
	Stand-alone Functions
	Execute SQL/Tcl
	Run a Table
	Import/Export
	Convert between Version 2 and Version 3

	Putting the Program in the Database File
	Program Organization
	Future Plans
	Potential Users and Licensing
	Figures

