Using GNU Fortran

For ccc version 7.3.0

(GCC)

The gfortran team

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301, USA

Copyright (©) 1999-2017 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:

A GNU Manual

(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

1 Introductioncov i 1

Invoking GNU Fortran
GNU Fortran Command Options 7
3 Runtime: Influencing runtime behavior with environment

variables . .. 29

Language Reference

4 Fortran 2003 and 2008 Status, 35
5 Compiler Characteristics, 39
6 EXtensions.iiiiii e 43
7 Mixed-Language Programming 63
8 Coarray Programming, 7
9 Intrinsic Procedures i 101
10 Imntrinsic Modules i 273
Contributing e 279
GNU General Public License. 283
GNU Free Documentation License 295
Funding Free Software 303
Option Indexot 305

Keyword Indexo 307

Table of Contents

1 Introduction................. 1
1.1 About GNU Fortrano, 1
1.2 GNU Fortran and GCC i 2
1.3 Preprocessing and conditional compilation...................... 2
1.4 GNU Fortran and G77 ... e 3
1.5 Project Status ... 3
1.6 Standards.c..oiiii 4

1.6.1 Varying Length Character Strings 4

Part I: Invoking GNU Fortran 5

2 GNU Fortran Command Options 7
2.1 Option SUMMATY . .o vvt ittt ettt et e 7
2.2 Options controlling Fortran dialect 8
2.3 Enable and customize preprocessing...............c.ooiiian... 12
2.4 Options to request or suppress errors and warnings............ 15
2.5 Options for debugging your program or GNU Fortran.......... 19
2.6 Options for directory search............. 20
2.7 Influencing the linking step.............oooiiiiiiiiiiiL 21
2.8 Influencing runtime behavior.......... 21
2.9 Options for code generation conventions....................... 21
2.10 Environment variables affecting gfortran.................... 28

3 Runtime: Influencing runtime behavior with

environment variables................. 29
3.1 TMPDIR—Directory for scratch files............................ 29
3.2 GFORTRAN_STDIN_UNIT—Unit number for standard input 29
3.3 GFORTRAN_STDOUT_UNIT—Unit number for standard output.... 29
3.4 GFORTRAN_STDERR_UNIT—Unit number for standard error...... 29

3.5 GFORTRAN_UNBUFFERED_ALL—Do not buffer I/O on all units.... 29
3.6 GFORTRAN_UNBUFFERED_PRECONNECTED—Do not buffer I/ O on
preconnected UNItS. . ..o e 29
3.7 GFORTRAN_SHOW_LOCUS—Show location for runtime errors...... 29
3.8 GFORTRAN_OPTIONAL_PLUS—Print leading + where permitted.. 30
3.9 GFORTRAN_DEFAULT_RECL—Default record length for new files.. 30
3.10 GFORTRAN_LIST_SEPARATOR—Separator for list output........ 30
3.11 GFORTRAN_CONVERT_UNIT—Set endianness for unformatted I/0O
... 30
3.12 GFORTRAN_ERROR_BACKTRACE—Show backtrace on run-time errors
... 31

iii

iv The GNU Fortran Compiler

4 Fortran 2003 and 2008 Status................ 35
4.1 Fortran 2003 statuso 35
4.2 Fortran 2008 status ...t 36
4.3 Technical Specification 29113 Status........................... 38
4.4 Technical Specification 18508 Status................cooveii.n... 38

5 Compiler Characteristics 39
5.1 KIND Type Parameters..............oooiiiiiiiiiiiiiiiii... 39
5.2 Internal representation of LOGICAL variables................. 39
5.3 Thread-safety of the runtime library................. 40
5.4 Data consistency and durability L 40
5.5 Files opened without an explicit ACTION= specifier 41
5.6 File operations on symbolic links...................... 41

6 Extensions..................l 43
6.1 Extensions implemented in GNU Fortran...................... 43

6.1.1 Old-style kind specifications.............................. 43
6.1.2 Old-style variable initialization 43
6.1.3 Extensions to namelist L 44
6.1.4 X format descriptor without count field 45
6.1.5 Commas in FORMAT specifications......................... 45
6.1.6 Missing period in FORMAT specifications................... 45
6.1.7 T/Oitem listsoouiuiiiiiii 45
6.1.8 Qexponent-letter.......... i 45
6.1.9 BOZ literal constants..............coiiiiiiiiiiiii... 45
6.1.10 Real array indices.........ccoviuiiiiiiiiiiiiiiiiiie... 46
6.1.11 Unary operatorsoeeeeeeeeiiiiiiiiiieeeeennn. 46
6.1.12 TImplicitly convert LOGICAL and INTEGER values.......... 46
6.1.13 Hollerith constants support............... ..., 47
6.1.14 Cray POINterS . ..ottt 47
6.1.15 CONVERT specifier. ..ottt 49
6.1.16 OpenMP 50
6.1.17 OpenACC 50
6.1.18 Argument list functions %VAL, %REF and %LOC............ 51
6.1.19 Read/Write after EOF marker 51
6.1.20 STRUCTURE and RECORD..........oiiuiiiiieeeennannnnnn o1
6.1.21 UNION and MAP e e 54
6.1.22 Type variants for integer intrinsics....................... 56
6.1.23 AUTOMATIC and STATIC attributes o7
6.1.24 Extended math intrinsics..............l 57
6.1.25 Form feed as whitespace............ccviiiiiiiiii... 58
6.1.26 TYPE as an alias for PRINT 58
6.1.27 %LOC asanrvalueovuiiiiiiiiiiinanan.s 58
6.1.28 . XOR. operatoro.oeiiiiii 59
6.1.29 Bitwise logical operators i 59
6.1.30 Extended I/O specifiers.......................olL 59

6.1.31 Legacy PARAMETER statements....................... 60

6.1.32 Default exponents............ccooiiiiiiiiiiieeeaaaann. 61

6.2 Extensions not implemented in GNU Fortran.................. 61
6.2.1 ENCODE and DECODE statements........................... 61
6.2.2 Variable FORMAT €XPreSsionsueeeiiueeeennneennn. 62
6.2.3 Alternate complex function syntax........................ 62
6.2.4 Volatile COMMON blocks.o 62
6.2.5 0OPEN(C ... NAMES) ..\ttt 62

7 Mixed-Language Programming............... 63

7.1 Interoperability with C..... 63
7.1.1 Intrinsic Types.....couii i e 63
7.1.2 Derived Types and struct...............c.ooi i 63
7.1.3 Interoperable Global Variables............................ 64
7.1.4 Interoperable Subroutines and Functions.................. 64
7.1.5 Working with Pointers 66
7.1.6 Further Interoperability of Fortran with C................ 68

7.2 GNU Fortran Compiler Directives.............ccovviinveann... 69

7.3 Non-Fortran Main Programt 70
7.3.1 _gfortran_set_args — Save command-line arguments... 70
7.3.2 _gfortran_set_options — Set library option flags....... 71
7.3.3 _gfortran_set_convert — Set endian conversion........ 72
7.3.4 _gfortran_set_record_marker — Set length of record

MATKETS .« ..t 72
7.3.5 _gfortran_set_fpe — Enable floating point exception traps

.. 73
7.3.6 _gfortran_set_max_subrecord_length — Set subrecord

length ... 73

7.4 Naming and argument-passing conventions 73
7.4.1 Naming conventions.............ccoeeeiiiiiiiiiiiieee... 74
7.4.2 Argument passing conventions.......................... 74

8 Coarray Programming 77

8.1 Type and enum ABI Documentation 7
8.1.1 caf _token _t....cuiiii 7
8.1.2 caf_register_t..........oiiiiiiiiiiii 77
8.1.3 caf_deregister_t.......... ... il 7
8.1.4 caf_reference_t.........couiiiiiiiiiiiiiiiiiiii 7
8. 1.5 caf_team_t ...ttt 79

8.2 Function ABI Documentationccoiiiiaana... 79
8.2.1 _gfortran_caf_init — Initialiation function............ 80
8.2.2 _gfortran_caf_finish — Finalization function.......... 80
8.2.3 _gfortran_caf_this_image — Querying the image number

.. 80

8.2.4 _gfortran_caf_num_images — Querying the maximal
number of IMages. ... 81
8.2.5 _gfortran_caf_image_status — Query the status of an

vi

The GNU Fortran Compiler

8.2.6 _gfortran_caf_failed_images — Get an array of the

indexes of the failed images.............. il 81
8.2.7 _gfortran_caf_stopped_images — Get an array of the

indexes of the stopped images.............. 82
8.2.8 _gfortran_caf_register — Registering coarrays........ 82
8.2.9 _gfortran_caf_deregister — Deregistering coarrays.... 83

8.2.10 _gfortran_caf_is_present — Query whether an
allocatable or pointer component in a derived type coarray is

allocated 84
8.2.11 _gfortran_caf_send — Sending data from a local image to
aTremote IMage 84
8.2.12 _gfortran_caf_get — Getting data from a remote image
.. 85
8.2.13 _gfortran_caf_sendget — Sending data between remote
IMAZES .« vttt ettt 86

8.2.14 _gfortran_caf_send_by_ref — Sending data from a local
image to a remote image with enhanced referencing options.. 87
8.2.15 _gfortran_caf_get_by_ref — Getting data from a remote

image using enhanced references 88
8.2.16 _gfortran_caf_sendget_by_ref — Sending data between
remote images using enhanced references on both sides...... 89
8.2.17 _gfortran_caf_lock — Locking a lock variable......... 90
8.2.18 _gfortran_caf_lock — Unlocking a lock variable....... 91
8.2.19 _gfortran_caf_event_post — Post anevent........... 91
8.2.20 _gfortran_caf_event_wait — Wait that an event occurred
.. 92
8.2.21 _gfortran_caf_event_query — Query event count..... 93
8.2.22 _gfortran_caf_sync_all — All-image barrier.......... 93
8.2.23 _gfortran_caf_sync_images — Barrier for selected images
.. 93
8.2.24 _gfortran_caf_sync_memory — Wait for completion of
segment-memory operationsooiiiiiiiinn.. 94
8.2.25 _gfortran_caf_error_stop — Error termination with exit
COAE. oo 94
8.2.26 _gfortran_caf_error_stop_str — Error termination with
SETINg .. 95
8.2.27 _gfortran_caf_fail_image — Mark the image failed and
end its execution 95
8.2.28 _gfortran_caf_atomic_define — Atomic variable
ASSIENIMENT . ..o oot 95
8.2.29 _gfortran_caf_atomic_ref — Atomic variable reference
.. 95
8.2.30 _gfortran_caf_atomic_cas — Atomic compare and swap
.. 96
8.2.31 _gfortran_caf_atomic_op — Atomic operation 96

8.2.32 _gfortran_caf_co_broadcast — Sending data to all
IMAZES « ¢ v vttt 97

8.2.33 _gfortran_caf_co_max — Collective maximum reduction

.. 97
8.2.34 _gfortran_caf_co_min — Collective minimum reduction
.. 98
8.2.35 _gfortran_caf_co_sum — Collective summing reduction
.. 98
8.2.36 _gfortran_caf_co_reduce — Generic collective reduction
.. 99
9 Intrinsic Procedures 101
9.1 Introduction to intrinsic procedures 101
9.2 ABORT — Abort the program, 101
9.3 ABS — Absolute value........... ... 102
9.4 ACCESS — Checks file access modescoooiit.. 103
9.5 ACHAR — Character in ASCII collating sequence 103
9.6 ACOS — Arccosine function. ... 104
9.7 ACOSD — Arccosine function, degrees......................... 105
9.8 ACOSH — Inverse hyperbolic cosine function 105
9.9 ADJUSTL — Left adjust a string ...t 106
9.10 ADJUSTR — Right adjust a string............................ 106
9.11 AIMAG — Imaginary part of complex number................ 107
9.12 AINT — Truncate to a whole number........................ 107
9.13 ALARM — Execute a routine after a given delay 108
9.14 ALL — All values in MASK along DIM are true............. 109
9.15 ALLOCATED — Status of an allocatable entity 110
9.16 AND — Bitwise logical ANDo L. 110
9.17 ANINT — Nearest whole number............................. 111
9.18 ANY — Any value in MASK along DIM is true.............. 112
9.19 ASIN — Arcsine function................i i, 112
9.20 ASIND — Arcsine function, degrees................c.oovin... 113
9.21 ASINH — Inverse hyperbolic sine function 114
9.22 ASSOCIATED — Status of a pointer or pointer/target pair.... 114
9.23 ATAN — Arctangent function.............. ... oL 115
9.24 ATAND — Arctangent function, degrees 116
9.25 ATAN2 — Arctangent function............................... 117
9.26 ATAN2D — Arctangent function, degrees..................... 118
9.27 ATANH — Inverse hyperbolic tangent function................ 119
9.28 ATOMIC_ADD — Atomic ADD operation...................... 119
9.29 ATOMIC_AND — Atomic bitwise AND operation.............. 120
9.30 ATOMIC_CAS — Atomic compare and swap................... 120
9.31 ATOMIC_DEFINE — Setting a variable atomically............. 121
9.32 ATOMIC_FETCH_ADD — Atomic ADD operation with prior fetch
.. 122
9.33 ATOMIC_FETCH_AND — Atomic bitwise AND operation with prior
fetch o 123
9.34 ATOMIC_FETCH_OR — Atomic bitwise OR operation with prior

Lot .« o 123

vii

viii

The GNU Fortran Compiler

9.35 ATOMIC_FETCH_XOR — Atomic bitwise XOR operation with prior

fetCh o o 124
9.36 ATOMIC_OR — Atomic bitwise OR operation................. 125
9.37 ATOMIC_REF — Obtaining the value of a variable atomically.. 125
9.38 ATOMIC_XOR — Atomic bitwise OR operation................ 126
9.39 BACKTRACE — Show a backtrace............. 127
9.40 BESSEL_JO — Bessel function of the first kind of order O..... 127
9.41 BESSEL_J1 — Bessel function of the first kind of order 1..... 128
9.42 BESSEL_JN — Bessel function of the first kind............... 128

9.43 BESSEL_YO — Bessel function of the second kind of order 0.. 129
9.44 BESSEL_Y1 — Bessel function of the second kind of order 1.. 130

9.45 BESSEL_YN — Bessel function of the second kind 130
9.46 BGE — Bitwise greater than or equal to 131
9.47 BGT — Bitwise greater than............... 131
9.48 BIT_SIZE — Bit size inquiry function....................... 132
9.49 BLE — Bitwise less thanorequal to......................... 132
9.50 BLT — Bitwise lessthan i i 132
9.51 BTEST — Bit test function i .. 133
9.52 C_ASSOCIATED — Status of a C pointer...................... 134
9.53 C_F_POINTER — Convert C into Fortran pointer............. 134
9.54 C_F_PROCPOINTER — Convert C into Fortran procedure pointer
.. 135
9.55 C_FUNLOC — Obtain the C address of a procedure........... 136
9.56 C_LOC — Obtain the C address of an object................. 136
9.57 C_SIZEOF — Size in bytes of an expression 137
9.58 CEILING — Integer ceiling function.......................... 138
9.59 CHAR — Character conversion function 138
9.60 CHDIR — Change working directory 139
9.61 CHMOD — Change access permissions of files................. 139
9.62 CMPLX — Complex conversion function...................... 140
9.63 CO_BROADCAST — Copy a value to all images the current set of
IMAgeS ..o 141
9.64 CO_MAX — Maximal value on the current set of images....... 142
9.65 CO_MIN — Minimal value on the current set of images....... 142
9.66 CO_REDUCE — Reduction of values on the current set of images
.. 143
9.67 CO_SUM — Sum of values on the current set of images........ 144
9.68 COMMAND_ARGUMENT_COUNT — Get number of command line
ATGUINIEIIES . . .ottt ettt e 145
9.69 COMPILER_OPTIONS — Options passed to the compiler....... 146
9.70 COMPILER_VERSION — Compiler version string............... 146
9.71 COMPLEX — Complex conversion function.................... 147
9.72 CONJG — Complex conjugate function....................... 147
9.73 C0S — Cosine function.......... ..o, 148
9.74 COSD — Cosine function, degrees..............coviieeonnn.. 149
9.75 COSH — Hyperbolic cosine function.......................... 149
9.76 COTAN — Cotangent function............ ..., 150

9.77 COTAND — Cotangent function, degrees...................... 150

9.78
9.79
9.80
9.81
9.82
9.83
9.84
9.85
9.86
9.87
9.88
9.89
9.90
9.91
9.92
9.93
9.94
9.95
9.96
9.97
9.98
9.99

9.100
9.101
9.102
9.103
9.104
9.105
9.106

9.107
9.108
9.109
9.110
9.111
9.112
9.113
9.114
9.115
9.116
9.117
9.118
9.119
9.120
9.121
9.122
9.123

COUNT — Count function......... ..., 151
CPU_TIME — CPU elapsed time in seconds 152
CSHIFT — Circular shift elements of an array................ 153
CTIME — Convert a time into a string....................... 153
DATE_AND_TIME — Date and time subroutine................ 154
DBLE — Double conversion function......................... 155
DCMPLX — Double complex conversion function.............. 156
DIGITS — Significant binary digits function................. 156
DIM — Positive difference i 157
DOT_PRODUCT — Dot product function....................... 157
DPROD — Double product function 158
DREAL — Double real part function.......................... 159
DSHIFTL — Combined left shift 159
DSHIFTR — Combined right shift..................., 160
DTIME — Execution time subroutine (or function)........... 160
EOSHIFT — End-off shift elements of an array 161
EPSILON — Epsilon function, 162
ERF — Error function........... ..o i, 163
ERFC — Error function............ ... o i 163
ERFC_SCALED — Error function 164
ETIME — Execution time subroutine (or function)........... 164
EVENT_QUERY — Query whether a coarray event has occurred
.. 165
EXECUTE_COMMAND_LINE — Execute a shell command....... 166
EXIT — Exit the program with status. 167
EXP — Exponential function 167
EXPONENT — Exponent function............................ 168
EXTENDS_TYPE_OF — Query dynamic type for extension 168
FDATE — Get the current time as a string.................. 169
FGET — Read a single character in stream mode from stdin
.. 169
FGETC — Read a single character in stream mode 170
FLOOR — Integer floor function.............. 171
FLUSH — Flush I/O unit(s) ...t 172
FNUM — File number function................ 172
FPUT — Write a single character in stream mode to stdout.. 173
FPUTC — Write a single character in stream mode.......... 174
FRACTION — Fractional part of the model representation ... 175
FREE — Frees memory ..., 175
FSEEK — Low level file positioning subroutine.............. 175
FSTAT — Get file status. ..., 177
FTELL — Current stream position.......................... 177
GAMMA — Gamma function............. ... il 178
GERROR — Get last system error message................... 178
GETARG — Get command line arguments 179
GET_COMMAND — Get the entire command line.............. 180
GET_COMMAND_ARGUMENT — Get command line arguments... 180
GETCWD — Get current working directory................... 181

ix

The GNU Fortran Compiler

9.124 GETENV — Get an environmental variable 182
9.125 GET_ENVIRONMENT_VARIABLE — Get an environmental variable
.. 182
9.126 GETGID — Group ID function............. 183
9.127 GETLOG — Get login nameo, 183
9.128 GETPID — Process ID function............................. 184
9.129 GETUID — User ID function.................ooiiiiiiii . 184
9.130 GMTIME — Convert time to GMT info...................... 185
9.131 HOSTNM — Get system host name 185
9.132 HUGE — Largest number of a kind.......................... 186
9.133 HYPOT — Euclidean distance function 186
9.134 TIACHAR — Code in ASCII collating sequence................ 187
9.135 IALL — Bitwise AND of array elements.................... 187
9.136 TIAND — Bitwise logical and oL 188
9.137 TIANY — Bitwise OR of array elements...................... 189
9.138 IARGC — Get the number of command line arguments. 190
9.139 IBCLR — Clear bit...... ..o 190
9.140 IBITS — Bit extraction............. ..., 191
9.141 IBSET — Set bit......coii e 191
9.142 ICHAR — Character-to-integer conversion function.......... 192
9.143 IDATE — Get current local time subroutine (day/month/year)
.. 193
9.144 TIEOR — Bitwise logical exclusiveor 193
9.145 TIERRNO — Get the last system error number 194
9.146 IMAGE_INDEX — Function that converts a cosubscript to an
image INdexX 194
9.147 INDEX — Position of a substring within a string............ 195
9.148 INT — Convert to integer type.........cooviiiiiiiia... 195
9.149 INT2 — Convert to 16-bit integer type 196
9.150 INT8 — Convert to 64-bit integer type..................... 197
9.151 IOR — Bitwise logical or........... ... o i L. 197
9.152 TIPARITY — Bitwise XOR of array elements................. 198
9.153 IRAND — Integer pseudo-random number................... 198
9.154 TIS_IOSTAT_END — Test for end-of-file value................ 199
9.155 IS_IOSTAT_EOR — Test for end-of-record value............. 200
9.156 ISATTY — Whether a unit is a terminal device.............. 200
9.157 ISHFT — Shift bits ... 201
9.158 ISHFTC — Shift bits circularly 201
9.159 TISNAN — Test fora NaN......... .o i, 202
9.160 ITIME — Get current local time subroutine
(hour/minutes/seconds) 202
9.161 KILL — Send a signal to & processc.ooevuue.... 203
9.162 XIND — Kind of anentity............coooiiiiiiiiiiii.., 203
9.163 LBOUND — Lower dimension bounds of an array 204
9.164 LCOBOUND — Lower codimension bounds of an array........ 204
9.165 LEADZ — Number of leading zero bits of an integer......... 205

9.166 LEN — Length of a character entity 205

9.167 LEN_TRIM — Length of a character entity without trailing blank
Characters 206
9.168 LGE — Lexical greater than orequal 206
9.169 LGT — Lexical greater than.............. 207
9.170 LINK — Create a hard link.............o L. 208
9.171 LLE — Lexical less than orequal........................... 208
9.172 LLT — Lexical lessthan.............., 209
9.173 LNBLNK — Index of the last non-blank character in a string.. 209
9.174 LOC — Returns the address of a variable 210
9.175 LOG — Natural logarithm function 210
9.176 L0OG10 — Base 10 logarithm function....................... 211
9.177 LOG_GAMMA — Logarithm of the Gamma function........... 211
9.178 LOGICAL — Convert to logical type.............. ..., 212
9.179 LONG — Convert to integer type..........oovvviiiiio... 212
9.180 LSHIFT — Left shift bits.......... ... i, 213
9.181 LSTAT — Get file status. ..o ... 213
9.182 LTIME — Convert time to local time info................... 214
9.183 MALLOC — Allocate dynamic memory 215
9.184 MASKL — Left justified maskol 215
9.185 MASKR — Right justified mask.............. L. 216
9.186 MATMUL — matrix multiplication 216
9.187 MAX — Maximum value of an argument list................. 217
9.188 MAXEXPONENT — Maximum exponent of a real kind......... 217
9.189 MAXLOC — Location of the maximum value within an array.. 218
9.190 MAXVAL — Maximum value of an array 218
9.191 MCLOCK — Time functioncoiiiiiiiiien.. 219
9.192 MCLOCK8 — Time function (64-bit)................oooie.... 219
9.193 MERGE — Merge variables, 220
9.194 MERGE_BITS — Merge of bits under mask 220
9.195 MIN — Minimum value of an argument list................. 221
9.196 MINEXPONENT — Minimum exponent of a real kind 221
9.197 MINLOC — Location of the minimum value within an array.. 222
9.198 MINVAL — Minimum value of an array 222
9.199 MOD — Remainder function oL 223
9.200 MODULO — Modulo function............. ..., 224
9.201 MOVE_ALLOC — Move allocation from one object to another
.. 225
9.202 MVBITS — Move bits from one integer to another........... 225
9.203 NEAREST — Nearest representable number.................. 226
9.204 NEW_LINE — New line character............................ 226
9.205 NINT — Nearest whole number............................. 227
9.206 NORM2 — Euclidean vector normscooovvo. ... 228
9.207 NOT — Logical negation...............ooiiiiiiiiiiio... 228
9.208 NULL — Function that returns an disassociated pointer..... 229
9.209 NUM_IMAGES — Function that returns the number of images
.. 229
9.210 OR — Bitwise logical OR...........o i, 230
9.211 PACK — Pack an array into an array of rank one............ 231

xi

xii The GNU Fortran Compiler

9.212 PARITY — Reduction with exclusive OR.................... 231
9.213 PERROR — Print system error message...................... 232
9.214 POPCNT — Number of bits set............ot 232
9.215 POPPAR — Parity of the number of bits set 233
9.216 PRECISION — Decimal precision of a real kind.............. 233
9.217 PRESENT — Determine whether an optional dummy argument is
specifiedo 234
9.218 PRODUCT — Product of array elements...................... 234
9.219 RADIX — Base of a model number.......................... 235
9.220 RAN — Real pseudo-random number........................ 236
9.221 RAND — Real pseudo-random number 236
9.222 RANDOM_NUMBER — Pseudo-random number................. 236
9.223 RANDOM_SEED — Initialize a pseudo-random number sequence
.. 237
9.224 RANGE — Decimal exponent range...............ccovuue... 238
9.225 RANK — Rank of a data object 238
9.226 REAL — Convert toreal type...........cooiiiiiiiiiiin. 239
9.227 RENAME — Rename afile........... oL, 240
9.228 REPEAT — Repeated string concatenation 240
9.229 RESHAPE — Function to reshape an array................... 241
9.230 RRSPACING — Reciprocal of the relative spacing............ 241
9.231 RSHIFT — Right shift bits 242
9.232 SAME_TYPE_AS — Query dynamic types for equality 242
9.233 SCALE — Scaleareal value, 243
9.234 SCAN — Scan a string for the presence of a set of characters
.. 243
9.235 SECNDS — Time functionooiiiii .. 244
9.236 SECOND — CPU time function..............., 244
9.237 SELECTED_CHAR_KIND — Choose character kind 245
9.238 SELECTED_INT_KIND — Choose integer kind................ 245
9.239 SELECTED_REAL_KIND — Choose real kind.................. 246
9.240 SET_EXPONENT — Set the exponent of the model 247
9.241 SHAPE — Determine the shape of an array.................. 248
9.242 SHIFTA — Right shift with fill 248
9.243 SHIFTL — Left shift i, 249
9.244 SHIFTR — Right shift............. L, 249
9.245 SIGN — Sign copying functiono, 249
9.246 SIGNAL — Signal handling subroutine (or function)......... 250
9.247 SIN — Sine function........... ..o 251
9.248 SIND — Sine function, degreescoovvviiiiann. 251
9.249 SINH — Hyperbolic sine function........................... 252
9.250 SIZE — Determine the size of an array..................... 253
9.251 SIZEOF — Size in bytes of an expression 253
9.252 SLEEP — Sleep for the specified number of seconds......... 254
9.253 SPACING — Smallest distance between two numbers of a given
17 0T N 254
9.254 SPREAD — Add a dimension to an array.................... 255

9.256 SRAND — Reinitialize the random number generator........ 256
9.257 STAT — Get filestatus...........ooo .. 256
9.258 STORAGE_SIZE — Storage size in bits............. 258
9.259 SUM — Sum of array elements............. 258
9.260 SYMLNK — Create a symbolic link 259
9.261 SYSTEM — Execute a shell command 259
9.262 SYSTEM_CLOCK — Time function 260
9.263 TAN — Tangent function............... ... i, 261
9.264 TAND — Tangent function, degrees 261
9.265 TANH — Hyperbolic tangent function....................... 262
9.266 THIS_IMAGE — Function that returns the cosubscript index of
thisimageo 263
9.267 TIME — Time function............... 264
9.268 TIME8 — Time function (64-bit), 264
9.269 TINY — Smallest positive number of a real kind 265
9.270 TRAILZ — Number of trailing zero bits of an integer........ 265
9.271 TRANSFER — Transfer bit patterns 265
9.272 TRANSPOSE — Transpose an array of rank two.............. 266
9.273 TRIM — Remove trailing blank characters of a string 267
9.274 TTYNAM — Get the name of a terminal device............... 267
9.275 UBOUND — Upper dimension bounds of an array 268
9.276 UCOBOUND — Upper codimension bounds of an array........ 268
9.277 TUMASK — Set the file creation mask 269
9.278 UNLINK — Remove a file from the file system............... 269
9.279 UNPACK — Unpack an array of rank one into an array 269
9.280 VERIFY — Scan a string for characters not a given set...... 270
9.281 XOR — Bitwise logical exclusive OR 271
10 Intrinsic Modules........................... 273
10.1 ISO_FORTRAN _ENV. ...ttt et 273
10.2 ISO_C_BINDINGctttneettiie et iien e iiee e 275
10.3 IEEE modules: IEEE_EXCEPTIONS, IEEE_ARITHMETIC, and
IEEE _FEATURES . . o e e e e e 276
10.4 OpenMP Modules OMP_LIB and OMP_LIB_KINDS............. 277
10.5 OpenACC Module OPENACCo ottiit i 277
Contributing L. 279
Contributors to GNU Fortran, 279
Projects . ..o 280
Proposed EXtensionscoiiiiiiiiiiiiiii i 280
Compiler extensions: ... 280
Environment Optionso 281
GNU General Public License 283
GNU Free Documentation License 295

ADDENDUM: How to use this License for your documents........ 302

xiii

xiv The GNU Fortran Compiler
Funding Free Software........................... 303

Option Index 305

Keyword Index

Chapter 1: Introduction 1

1

Introduction

This manual documents the use of gfortran, the GNU Fortran compiler. You can find in
this manual how to invoke gfortran, as well as its features and incompatibilities.

The GNU Fortran compiler front end was designed initially as a free replacement for,

or alternative to, the Unix £95 command; gfortran is the command you will use to invoke
the compiler.

1.1 About GNU Fortran

The GNU Fortran compiler supports the Fortran 77, 90 and 95 standards completely, parts
of the Fortran 2003 and Fortran 2008 standards, and several vendor extensions. The devel-
opment goal is to provide the following features:

Read a user’s program, stored in a file and containing instructions written in Fortran
77, Fortran 90, Fortran 95, Fortran 2003 or Fortran 2008. This file contains source
code.

Translate the user’s program into instructions a computer can carry out more quickly
than it takes to translate the instructions in the first place. The result after compilation
of a program is machine code, code designed to be efficiently translated and processed
by a machine such as your computer. Humans usually are not as good writing machine
code as they are at writing Fortran (or C++, Ada, or Java), because it is easy to make
tiny mistakes writing machine code.

Provide the user with information about the reasons why the compiler is unable to
create a binary from the source code. Usually this will be the case if the source code
is flawed. The Fortran 90 standard requires that the compiler can point out mistakes
to the user. An incorrect usage of the language causes an error message.

The compiler will also attempt to diagnose cases where the user’s program contains a
correct usage of the language, but instructs the computer to do something questionable.
This kind of diagnostics message is called a warning message.

Provide optional information about the translation passes from the source code to
machine code. This can help a user of the compiler to find the cause of certain bugs
which may not be obvious in the source code, but may be more easily found at a lower
level compiler output. It also helps developers to find bugs in the compiler itself.

Provide information in the generated machine code that can make it easier to find bugs
in the program (using a debugging tool, called a debugger, such as the GNU Debugger
gdb).

Locate and gather machine code already generated to perform actions requested by
statements in the user’s program. This machine code is organized into modules and is
located and linked to the user program.

The GNU Fortran compiler consists of several components:

A version of the gcc command (which also might be installed as the system’s cc com-
mand) that also understands and accepts Fortran source code. The gcc command is
the driver program for all the languages in the GNU Compiler Collection (GCC); With
gcc, you can compile the source code of any language for which a front end is available
in GCC.

2 The GNU Fortran Compiler

e The gfortran command itself, which also might be installed as the system’s £95 com-
mand. gfortran is just another driver program, but specifically for the Fortran com-
piler only. The difference with gcc is that gfortran will automatically link the correct
libraries to your program.

e A collection of run-time libraries. These libraries contain the machine code needed
to support capabilities of the Fortran language that are not directly provided by the
machine code generated by the gfortran compilation phase, such as intrinsic functions
and subroutines, and routines for interaction with files and the operating system.

e The Fortran compiler itself, (£951). This is the GNU Fortran parser and code generator,
linked to and interfaced with the GCC backend library. £951 “translates” the source
code to assembler code. You would typically not use this program directly; instead,
the gcc or gfortran driver programs will call it for you.

1.2 GNU Fortran and GCC

GNU Fortran is a part of GCC, the GNU Compiler Collection. GCC consists of a collec-
tion of front ends for various languages, which translate the source code into a language-
independent form called GENERIC. This is then processed by a common middle end which
provides optimization, and then passed to one of a collection of back ends which generate
code for different computer architectures and operating systems.

Functionally, this is implemented with a driver program (gcc) which provides the
command-line interface for the compiler. It calls the relevant compiler front-end program
(e.g., £951 for Fortran) for each file in the source code, and then calls the assembler and
linker as appropriate to produce the compiled output. In a copy of GCC which has been
compiled with Fortran language support enabled, gcc will recognize files with ‘. £’ ‘. for’,
‘.ftn’, ©.£90°, ‘.£95’, ‘.03’ and ‘.f08’ extensions as Fortran source code, and compile it
accordingly. A gfortran driver program is also provided, which is identical to gcc except
that it automatically links the Fortran runtime libraries into the compiled program.

Source files with ‘.f’, ‘.for’, ‘.fpp’, ‘.ftn’, *.F’, *.FOR’, ‘*.FPP’, and ‘.FTN’ extensions
are treated as fixed form. Source files with *.£90°, ‘.£95’, *.£f03’, ‘.£08’, ‘.F90’, ‘.F95’,
‘.F03’ and ‘.F08’ extensions are treated as free form. The capitalized versions of either
form are run through preprocessing. Source files with the lower case ‘.fpp’ extension are
also run through preprocessing.

This manual specifically documents the Fortran front end, which handles the program-
ming language’s syntax and semantics. The aspects of GCC which relate to the optimization
passes and the back-end code generation are documented in the GCC manual; see Section
“Introduction” in Using the GNU Compiler Collection (GCC). The two manuals together
provide a complete reference for the GNU Fortran compiler.

1.3 Preprocessing and conditional compilation

Many Fortran compilers including GNU Fortran allow passing the source code through a
C preprocessor (CPP; sometimes also called the Fortran preprocessor, FPP) to allow for
conditional compilation. In the case of GNU Fortran, this is the GNU C Preprocessor
in the traditional mode. On systems with case-preserving file names, the preprocessor is
automatically invoked if the filename extension is ‘.F’, *.FOR’, ‘.FIN’, ‘. fpp’, ‘.FPP’, ‘.F90’,

Chapter 1: Introduction 3

‘.F95’, *.F03’ or ‘.F08’. To manually invoke the preprocessor on any file, use ‘~cpp’, to

disable preprocessing on files where the preprocessor is run automatically, use ‘-nocpp’.

If a preprocessed file includes another file with the Fortran INCLUDE statement, the in-
cluded file is not preprocessed. To preprocess included files, use the equivalent preprocessor
statement #include.

If GNU Fortran invokes the preprocessor, __GFORTRAN__ is defined and __GNUC__, _
_GNUC_MINOR__ and __GNUC_PATCHLEVEL__ can be used to determine the version of the

compiler. See Section “Overview” in The C Preprocessor for details.

While CPP is the de-facto standard for preprocessing Fortran code, Part 3 of the Fortran
95 standard (ISO/IEC 1539-3:1998) defines Conditional Compilation, which is not widely
used and not directly supported by the GNU Fortran compiler. You can use the program
coco to preprocess such files (http://www.daniellnagle.com/coco.html).

1.4 GNU Fortran and G77

The GNU Fortran compiler is the successor to g77, the Fortran 77 front end included in GCC
prior to version 4. It is an entirely new program that has been designed to provide Fortran
95 support and extensibility for future Fortran language standards, as well as providing
backwards compatibility for Fortran 77 and nearly all of the GNU language extensions
supported by g77.

1.5 Project Status

As soon as gfortran can parse all of the statements correctly, it will be in the
“larva” state. When we generate code, the “puppa” state. When gfortran is
done, we’ll see if it will be a beautiful butterfly, or just a big bug....

—Andy Vaught, April 2000
The start of the GNU Fortran 95 project was announced on the GCC homepage in March
18, 2000 (even though Andy had already been working on it for a while, of course).

The GNU Fortran compiler is able to compile nearly all standard-compliant Fortran 95,
Fortran 90, and Fortran 77 programs, including a number of standard and non-standard
extensions, and can be used on real-world programs. In particular, the supported extensions
include OpenMP, Cray-style pointers, some old vendor extensions, and several Fortran 2003
and Fortran 2008 features, including TR 15581. However, it is still under development and
has a few remaining rough edges. There also is initial support for OpenACC. Note that this
is an experimental feature, incomplete, and subject to change in future versions of GCC.
See https://gcc.gnu.org/wiki/0OpenACC for more information.

At present, the GNU Fortran compiler passes the NIST Fortran 77 Test Suite, and pro-
duces acceptable results on the LAPACK Test Suite. It also provides respectable perfor-
mance on the Polyhedron Fortran compiler benchmarks and the Livermore Fortran Kernels
test. It has been used to compile a number of large real-world programs, including the
HARMONIE and HIRLAM weather forecasting code and the Tonto quantum chemistry
package; see https://gcc.gnu.org/wiki/GfortranApps for an extended list.

Among other things, the GNU Fortran compiler is intended as a replacement for G77.

At this point, nearly all programs that could be compiled with G77 can be compiled with
GNU Fortran, although there are a few minor known regressions.

http://www.daniellnagle.com/coco.html
https://gcc.gnu.org/wiki/OpenACC
http://www.fortran-2000.com/ArnaudRecipes/fcvs21_f95.html
http://www.netlib.org/lapack/faq.html#1.21
http://www.polyhedron.com/fortran-compiler-comparisons/polyhedron-benchmark-suite
http://www.netlib.org/benchmark/livermore
http://www.netlib.org/benchmark/livermore
http://hirlam.org/
http://hirlam.org/
http://physical-chemistry.scb.uwa.edu.au/tonto/wiki/index.php/Main_Page
http://physical-chemistry.scb.uwa.edu.au/tonto/wiki/index.php/Main_Page
https://gcc.gnu.org/wiki/GfortranApps

4 The GNU Fortran Compiler

The primary work remaining to be done on GNU Fortran falls into three categories:
bug fixing (primarily regarding the treatment of invalid code and providing useful error
messages), improving the compiler optimizations and the performance of compiled code,
and extending the compiler to support future standards—in particular, Fortran 2003 and
Fortran 2008.

1.6 Standards

The GNU Fortran compiler implements ISO/IEC 1539:1997 (Fortran 95). As such, it can
also compile essentially all standard-compliant Fortran 90 and Fortran 77 programs. It also
supports the ISO/TEC TR-15581 enhancements to allocatable arrays.

GNU Fortran also have a partial support for ISO/IEC 1539-1:2004 (Fortran
2003), ISO/IEC 1539-1:2010 (Fortran 2008), the Technical Specification Further
Interoperability of Fortran with C (ISO/IEC TS 29113:2012). Full support of those
standards and future Fortran standards is planned. The current status of the support is
can be found in the Section 4.1 [Fortran 2003 status|, page 35, Section 4.2 [Fortran 2008
status|, page 36, Section 4.3 [TS 29113 status], page 38 and Section 4.4 [TS 18508 status],
page 38 sections of the documentation.

Additionally, the GNU Fortran compilers supports the OpenMP specification
(version 4.0 and most of the features of the 4.5 version, http: //openmp . org/wp/
openmp-specifications/). There also is initial support for the OpenACC specification
(targeting version 2.0, http://www.openacc.org/). Note that this is an experimental
feature, incomplete, and subject to change in future versions of GCC. See https://gcc.
gnu.org/wiki/0penACC for more information.

1.6.1 Varying Length Character Strings

The Fortran 95 standard specifies in Part 2 (ISO/IEC 1539-2:2000) varying length character
strings. While GNU Fortran currently does not support such strings directly, there exist
two Fortran implementations for them, which work with GNU Fortran. They can be found
at http://www.fortran.com/iso_varying_string.f95 and at ftp://ftp.nag.co.uk/
sc22wgb/ISO_VARYING_STRING/.

Deferred-length character strings of Fortran 2003 supports part of the features of IS0_
VARYING_STRING and should be considered as replacement. (Namely, allocatable or pointers
of the type character(len=:).)

http://openmp.org/wp/openmp-specifications/
http://openmp.org/wp/openmp-specifications/
http://www.openacc.org/
https://gcc.gnu.org/wiki/OpenACC
https://gcc.gnu.org/wiki/OpenACC
http://www.fortran.com/iso_varying_string.f95
ftp://ftp.nag.co.uk/sc22wg5/ISO_VARYING_STRING/
ftp://ftp.nag.co.uk/sc22wg5/ISO_VARYING_STRING/

Chapter 1: Introduction

Part I: Invoking GNU Fortran

Chapter 2: GNU Fortran Command Options 7

2 GNU Fortran Command Options

The gfortran command supports all the options supported by the gcc command. Only
options specific to GNU Fortran are documented here.

See Section “GCC Command Options” in Using the GNU Compiler Collection (GCC),
for information on the non-Fortran-specific aspects of the gcc command (and, therefore,
the gfortran command).

All GCC and GNU Fortran options are accepted both by gfortran and by gcc (as well
as any other drivers built at the same time, such as g++), since adding GNU Fortran to the
GCC distribution enables acceptance of GNU Fortran options by all of the relevant drivers.

In some cases, options have positive and negative forms; the negative form of ‘-ffoo’
would be ‘~fno-foo’. This manual documents only one of these two forms, whichever one
is not the default.

2.1 Option summary

Here is a summary of all the options specific to GNU Fortran, grouped by type. Explanations
are in the following sections.

Fortran Language Options
See Section 2.2 [Options controlling Fortran dialect], page 8.

-fall-intrinsics -fbackslash -fcray-pointer -fd-lines-as-code
-fd-lines-as—-comments
-fdec -fdec-structure -fdec-intrinsic-ints -fdec-static -fdec-math
-fdefault-double-8 -fdefault-integer-8
-fdefault-real-8 -fdollar-ok -ffixed-line-length-n
-ffixed-line-length-none -ffree-form -ffree-line-length-n
-ffree-line-length-none -fimplicit-none -finteger-4-integer-8
-fmax-identifier-length -fmodule-private -ffixed-form -fno-range-check
-fopenacc -fopenmp -freal-4-real-10 -freal-4-real-16 -freal-4-real-8
-freal-8-real-10 -freal-8-real-16 -freal-8-real-4 -std=std -ftest-forall-
temp

Preprocessing Options
See Section 2.3 [Enable and customize preprocessing], page 12.

-A-question[=answer| -Aquestion=answer -C -CC -Dmacro[=defn] -H -P
-Umacro -cpp -dD -dI -dM -dN -dU -fworking-directory -imultilib dir
-iprefix file -iquote -isysroot dir -isystem dir -nocpp -nostdinc
-undef

Error and Warning Options
See Section 2.4 [Options to request or suppress errors and warnings|, page 15.

-Waliasing -Wall -Wampersand -Wargument-mismatch -Warray-bounds -Wc-binding-Jj

type -Wcharacter-truncation
-Wconversion -Wfunction-elimination -Wimplicit-interface

-Wimplicit-procedure -Wintrinsic-shadow -Wuse-without-only -Wintrinsics-std i

-Wline-truncation -Wno-align-commons -Wno-tabs -Wreal-g-constant

-Wsurprising -Wunderflow -Wunused-parameter -Wrealloc-lhs -Wrealloc-lhs-all |}

-Wtarget-lifetime -fmax-errors=n -fsyntax-only -pedantic -pedantic-errors

Debugging Options
See Section 2.5 [Options for debugging your program or GNU Fortran|, page 19.

The GNU Fortran Compiler

-fbacktrace -fdump-fortran-optimized -fdump-fortran-original
-fdump-parse-tree -ffpe-trap=list -ffpe-summary=1list

Directory Options

See Section 2.6 [Options for directory search|, page 20.

-Idir -Jdir -fintrinsic-modules-path dir

Link Options

See Section 2.7 [Options for influencing the linking step], page 21.

)

-static-libgfortran

Runtime Options

See Section 2.8 [Options for influencing runtime behavior], page 21.

-fconvert=conversion -fmax-subrecord-length=length
-frecord-marker=length -fsign-zero

Code Generation Options

See Section 2.9 [Options for code generation conventions], page 21.

-faggressive-function-elimination -fblas-matmul-limit=n
-fbounds-check -fcheck-array-temporaries
-fcheck=<all|array-temps|bounds|do|mem|pointer|recursion>
-fcoarray=<none|single|1lib> -fexternal-blas -ff2c -ffrontend-optimize
-finit-character=n -finit-integer=n -finit-local-zero
-finit-derived

-finit-logical=<truel|false> -finit-real=<zero|inf|-inf|nan|snan>
-finline-matmul-limit=n

-fmax-array-constructor=n -fmax-stack-var-size=n -fno-align-commons
-fno-automatic -fno-protect-parens -fno-underscoring
-fsecond-underscore -fpack-derived -frealloc-lhs -frecursive
-frepack-arrays -fshort-enums -fstack-arrays

2.2 Options controlling Fortran dialect

The following options control the details of the Fortran dialect accepted by the compiler:

-ffree-form
—-ffixed-form

Specify the layout used by the source file. The free form layout was introduced
in Fortran 90. Fixed form was traditionally used in older Fortran programs.
When neither option is specified, the source form is determined by the file
extension.

—-fall-intrinsics

This option causes all intrinsic procedures (including the GNU-specific exten-
sions) to be accepted. This can be useful with ‘-std=£95’ to force standard-
compliance but get access to the full range of intrinsics available with gfortran.
As a consequence, ‘-Wintrinsics-std’ will be ignored and no user-defined pro-
cedure with the same name as any intrinsic will be called except when it is
explicitly declared EXTERNAL.

—-fd-lines—as-code
-fd-lines-as-comments

Enable special treatment for lines beginning with d or D in fixed form sources. If
the ‘-fd-lines-as-code’ option is given they are treated as if the first column

Chapter 2: GNU Fortran Command Options 9

-fdec

contained a blank. If the ‘~-fd-lines-as-comments’ option is given, they are
treated as comment lines.

DEC compatibility mode. Enables extensions and other features that mimic
the default behavior of older compilers (such as DEC). These features are non-
standard and should be avoided at all costs. For details on GNU Fortran’s
implementation of these extensions see the full documentation.

Other flags enabled by this switch are: ‘-fdollar-ok’ ‘-fcray-pointer’
‘~fdec-structure’ ‘-fdec-intrinsic-ints’ ‘-fdec-static’ ‘-fdec-math’
If ‘~-fd-lines-as-code’/‘-fd-lines-as-comments’ are unset, then ‘-fdec’
also sets ‘-fd-lines-as-comments’.

—fdec-structure

Enable DEC STRUCTURE and RECORD as well as UNION, MAP, and dot (’.") as a
member separator (in addition to '%’). This is provided for compatibility only;
Fortran 90 derived types should be used instead where possible.

—-fdec-intrinsic-ints

Enable B/I/J/K kind variants of existing integer functions (e.g. BIAND,
ITAND, JIAND, etc...). For a complete list of intrinsics see the full
documentation.

—-fdec-math

Enable legacy math intrinsics such as COTAN and degree-valued trigonometric
functions (e.g. TAND, ATAND, etc...) for compatability with older code.

-fdec-static

Enable DEC-style STATIC and AUTOMATIC attributes to explicitly specify
the storage of variables and other objects.

-fdollar-ok

Allow ‘$’ as a valid non-first character in a symbol name. Symbols that start
with ‘$” are rejected since it is unclear which rules to apply to implicit typing as
different vendors implement different rules. Using ‘¢’ in IMPLICIT statements
is also rejected.

—-fbackslash

Change the interpretation of backslashes in string literals from a single back-
slash character to “C-style” escape characters. The following combinations are
expanded \a, \b, \f, \n, \r, \t, \v, \\, and \0 to the ASCII characters alert,
backspace, form feed, newline, carriage return, horizontal tab, vertical tab,
backslash, and NUL, respectively. Additionally, \xnn, \unnnn and \Unnnnnnnn
(where each n is a hexadecimal digit) are translated into the Unicode charac-
ters corresponding to the specified code points. All other combinations of a
character preceded by \ are unexpanded.

-fmodule-private

Set the default accessibility of module entities to PRIVATE. Use-associated en-
tities will not be accessible unless they are explicitly declared as PUBLIC.

10

The GNU Fortran Compiler

-ffixed-line-length-n

Set column after which characters are ignored in typical fixed-form lines in the
source file, and through which spaces are assumed (as if padded to that length)
after the ends of short fixed-form lines.

Popular values for n include 72 (the standard and the default), 80 (card im-
age), and 132 (corresponding to “extended-source” options in some popular
compilers). n may also be ‘none’, meaning that the entire line is meaningful
and that continued character constants never have implicit spaces appended to
them to fill out the line. ‘-ffixed-line-length-0’ means the same thing as
‘-ffixed-line-length-none’.

-ffree-line-length-n

Set column after which characters are ignored in typical free-form lines in the
source file. The default value is 132. n may be ‘none’, meaning that the
entire line is meaningful. ‘-ffree-line-length-0’ means the same thing as
‘~ffree-line-length-none’.

-fmax-identifier-length=n

Specify the maximum allowed identifier length. Typical values are 31 (Fortran
95) and 63 (Fortran 2003 and Fortran 2008).

-fimplicit-none

Specify that no implicit typing is allowed, unless overridden by explicit
IMPLICIT statements. This is the equivalent of adding implicit none to the
start of every procedure.

—-fcray-pointer

—-fopenacc

-fopenmp

Enable the Cray pointer extension, which provides C-like pointer functionality.

Enable the OpenACC extensions. This includes OpenACC !$acc directives in
free form and c$acc, *$acc and !$acc directives in fixed form, !'$ conditional
compilation sentinels in free form and c$, *$ and !$ sentinels in fixed form,
and when linking arranges for the OpenACC runtime library to be linked in.

Note that this is an experimental feature, incomplete, and subject to change
in future versions of GCC. See https://gcc.gnu.org/wiki/0OpenACC for more
information.

Enable the OpenMP extensions. This includes OpenMP !$omp directives in
free form and c$omp, *$omp and !$omp directives in fixed form, !$ conditional
compilation sentinels in free form and c$, *$ and !$ sentinels in fixed form, and
when linking arranges for the OpenMP runtime library to be linked in. The
option ‘~fopenmp’ implies ‘~-frecursive’.

-fno-range-check

Disable range checking on results of simplification of constant expressions during
compilation. For example, GNU Fortran will give an error at compile time when
simplifying a = 1. / 0. With this option, no error will be given and a will be
assigned the value +Infinity. If an expression evaluates to a value outside of
the relevant range of [-HUGE () :HUGE ()|, then the expression will be replaced by

https://gcc.gnu.org/wiki/OpenACC

Chapter 2: GNU Fortran Command Options 11

-Inf or +Inf as appropriate. Similarly, DATA i/Z’FFFFFFFF’/ will result in an
integer overflow on most systems, but with ‘~fno-range-check’ the value will
“wrap around” and i will be initialized to —1 instead.

-fdefault-integer-8

Set the default integer and logical types to an 8 byte wide type. This option also
affects the kind of integer constants like 42. Unlike ‘~finteger-4-integer-8’,
it does not promote variables with explicit kind declaration.

-fdefault-real-8

Set the default real type to an 8 byte wide type. This option also affects the kind
of non-double real constants like 1.0, and does promote the default width of
DOUBLE PRECISION to 16 bytes if possible, unless ~-fdefault-double-8 is given,
too. Unlike ‘~freal-4-real-8’, it does not promote variables with explicit kind
declaration.

—-fdefault-double-8

Set the DOUBLE PRECISION type to an 8 byte wide type. Do nothing if this is
already the default. If ‘-fdefault-real-8’ is given, DOUBLE PRECISION would
instead be promoted to 16 bytes if possible, and ‘~fdefault-double-8’ can be
used to prevent this. The kind of real constants like 1.d0 will not be changed
by ‘-fdefault-real-8’ though, so also ‘-fdefault-double-8’ does not affect
it.

-finteger-4-integer-8

Promote all INTEGER(KIND=4) entities to an INTEGER(KIND=8) entities. If
KIND=8 is unavailable, then an error will be issued. This option should be
used with care and may not be suitable for your codes. Areas of possible con-
cern include calls to external procedures, alignment in EQUIVALENCE and/or
COMMON, generic interfaces, BOZ literal constant conversion, and 1/0. Inspec-
tion of the intermediate representation of the translated Fortran code, produced
by ‘~fdump-tree-original’, is suggested.

-freal-4-real-8
-freal-4-real-10
—-freal-4-real-16
-freal-8-real-4
-freal-8-real-10
-freal-8-real-16

-std=std

Promote all REAL (KIND=M) entities to REAL(KIND=N) entities. If REAL (KIND=N)
is unavailable, then an error will be issued. All other real kind types are un-
affected by this option. These options should be used with care and may not
be suitable for your codes. Areas of possible concern include calls to external
procedures, alignment in EQUIVALENCE and/or COMMON, generic interfaces, BOZ
literal constant conversion, and I/O. Inspection of the intermediate representa-
tion of the translated Fortran code, produced by ‘-fdump-tree-original’, is
suggested.

Specify the standard to which the program is expected to conform, which may
be one of ‘£95’, ‘£2003’, ‘£2008’, ‘gnu’, or ‘legacy’. The default value for std

12 The GNU Fortran Compiler

is ‘gnu’, which specifies a superset of the Fortran 95 standard that includes all
of the extensions supported by GNU Fortran, although warnings will be given
for obsolete extensions not recommended for use in new code. The ‘legacy’
value is equivalent but without the warnings for obsolete extensions, and may
be useful for old non-standard programs. The ‘£95’, ‘£2003” and ‘£2008’ values
specify strict conformance to the Fortran 95, Fortran 2003 and Fortran 2008
standards, respectively; errors are given for all extensions beyond the relevant
language standard, and warnings are given for the Fortran 77 features that
are permitted but obsolescent in later standards. ‘-std=£2008ts’ allows the
Fortran 2008 standard including the additions of the Technical Specification
(TS) 29113 on Further Interoperability of Fortran with C and TS 18508 on
Additional Parallel Features in Fortran.

-ftest-forall-temp
Enhance test coverage by forcing most forall assignments to use temporary.

2.3 Enable and customize preprocessing

Preprocessor related options. See section Section 1.3 [Preprocessing and conditional com-
pilation], page 2 for more detailed information on preprocessing in gfortran.

—Cpp

-nocpp Enable preprocessing. The preprocessor is automatically invoked if the file
extension is ‘. fpp’, *.FPP’, ‘*.F’, *.FOR’, ‘*.FTIN’, *.F90’, *.F95’, ‘*.F03’ or ‘.F08’.
Use this option to manually enable preprocessing of any kind of Fortran file.
To disable preprocessing of files with any of the above listed extensions, use the
negative form: ‘-nocpp’.

The preprocessor is run in traditional mode. Any restrictions of the file-
format, especially the limits on line length, apply for preprocessed output
as well, so it might be advisable to use the ‘~ffree-line-length-none’ or
‘~ffixed-line-length-none’ options.

-dM Instead of the normal output, generate a list of ’#define’ directives for all the
macros defined during the execution of the preprocessor, including predefined
macros. This gives you a way of finding out what is predefined in your version
of the preprocessor. Assuming you have no file ‘foo.f90’, the command

touch fo0o.f90; gfortran -cpp -E -dM foo.£90

will show all the predefined macros.
-dD Like ‘=dM’ except in two respects: it does not include the predefined macros, and

it outputs both the #define directives and the result of preprocessing. Both
kinds of output go to the standard output file.

-dN Like ‘-dD’, but emit only the macro names, not their expansions.

-du Like ‘dD’ except that only macros that are expanded, or whose definedness is
tested in preprocessor directives, are output; the output is delayed until the use
or test of the macro; and ’#undef’ directives are also output for macros tested
but undefined at the time.

-dI Output *#include’ directives in addition to the result of preprocessing.

Chapter 2: GNU Fortran Command Options 13

-fworking-directory

Enable generation of linemarkers in the preprocessor output that will let the
compiler know the current working directory at the time of preprocessing.
When this option is enabled, the preprocessor will emit, after the initial line-
marker, a second linemarker with the current working directory followed by
two slashes. GCC will use this directory, when it is present in the prepro-
cessed input, as the directory emitted as the current working directory in some
debugging information formats. This option is implicitly enabled if debug-
ging information is enabled, but this can be inhibited with the negated form
‘~fno-working-directory’. If the ‘-P’ flag is present in the command line,
this option has no effect, since no #line directives are emitted whatsoever.

—-idirafter dir

Search dir for include files, but do it after all directories specified with ‘-I’
and the standard system directories have been exhausted. dir is treated as a
system include directory. If dir begins with =, then the = will be replaced by
the sysroot prefix; see ‘-—sysroot’ and ‘~isysroot’.

—-imultilib dir

Use dir as a subdirectory of the directory containing target-specific C++ headers.

-iprefix prefix

Specify prefix as the prefix for subsequent ‘-iwithprefix’ options. If the prefix
represents a directory, you should include the final */°.

-isysroot dir

This option is like the ‘~-sysroot’ option, but applies only to header files. See
the ‘--sysroot’ option for more information.

-iquote dir

Search dir only for header files requested with #include "file"; they are not
searched for #include <file>, before all directories specified by ‘-I’ and before
the standard system directories. If dir begins with =, then the = will be replaced
by the sysroot prefix; see ‘--sysroot’ and ‘~isysroot’.

-isystem dir

-nostdinc

—-undef

Search dir for header files, after all directories specified by ‘-I’ but before the
standard system directories. Mark it as a system directory, so that it gets the
same special treatment as is applied to the standard system directories. If dir
begins with =, then the = will be replaced by the sysroot prefix; see ‘--sysroot’
and ‘-isysroot’.

Do not search the standard system directories for header files. Only the direc-
tories you have specified with ‘~I” options (and the directory of the current file,
if appropriate) are searched.

Do not predefine any system-specific or GCC-specific macros. The standard
predefined macros remain defined.

14

The GNU Fortran Compiler

-Apredicate=answer

Make an assertion with the predicate predicate and answer answer. This form
is preferred to the older form -A predicate(answer), which is still supported,
because it does not use shell special characters.

-A-predicate=answer

-C

-CC

—-Dname

Cancel an assertion with the predicate predicate and answer answer.

Do not discard comments. All comments are passed through to the output file,
except for comments in processed directives, which are deleted along with the
directive.

You should be prepared for side effects when using ‘-C’; it causes the prepro-
cessor to treat comments as tokens in their own right. For example, comments
appearing at the start of what would be a directive line have the effect of turn-
ing that line into an ordinary source line, since the first token on the line is no
longer a *#°.

Warning: this currently handles C-Style comments only. The preprocessor does
not yet recognize Fortran-style comments.

Do not discard comments, including during macro expansion. This is like ‘-C’,
except that comments contained within macros are also passed through to the
output file where the macro is expanded.

In addition to the side-effects of the ‘-C’ option, the ‘-CC’ option causes all
C++-style comments inside a macro to be converted to C-style comments. This
is to prevent later use of that macro from inadvertently commenting out the
remainder of the source line. The ‘~CC’ option is generally used to support lint
cominents.

Warning: this currently handles C- and C++-Style comments only. The prepro-
cessor does not yet recognize Fortran-style comments.

Predefine name as a macro, with definition 1.

-Dname=definition

The contents of definition are tokenized and processed as if they appeared
during translation phase three in a ’#define’ directive. In particular, the
definition will be truncated by embedded newline characters.

If you are invoking the preprocessor from a shell or shell-like program you may
need to use the shell’s quoting syntax to protect characters such as spaces that
have a meaning in the shell syntax.

If you wish to define a function-like macro on the command line, write its
argument list with surrounding parentheses before the equals sign (if any).
Parentheses are meaningful to most shells, so you will need to quote the option.
With sh and csh, -D’name (args...)=definition’ works.

‘-D’ and ‘-U’ options are processed in the order they are given on the command
line. All -imacros file and -include file options are processed after all -D and -U
options.

Print the name of each header file used, in addition to other normal activities.
Each name is indented to show how deep in the ’#include’ stack it is.

Chapter 2: GNU Fortran Command Options 15

-P Inhibit generation of linemarkers in the output from the preprocessor. This
might be useful when running the preprocessor on something that is not C code,
and will be sent to a program which might be confused by the linemarkers.

-Uname Cancel any previous definition of name, either built in or provided with a ‘-D’
option.

2.4 Options to request or suppress errors and warnings

Errors are diagnostic messages that report that the GNU Fortran compiler cannot compile
the relevant piece of source code. The compiler will continue to process the program in an
attempt to report further errors to aid in debugging, but will not produce any compiled
output.

Warnings are diagnostic messages that report constructions which are not inherently
erroneous but which are risky or suggest there is likely to be a bug in the program. Unless
‘-Werror’ is specified, they do not prevent compilation of the program.

)

You can request many specific warnings with options beginning ‘-W’, for example
‘~Wimplicit’ to request warnings on implicit declarations. Each of these specific warning
options also has a negative form beginning ‘-Wno-’ to turn off warnings; for example,
‘~Wno-implicit’. This manual lists only one of the two forms, whichever is not the
default.

These options control the amount and kinds of errors and warnings produced by GNU
Fortran:

-fmax-errors=n
Limits the maximum number of error messages to n, at which point GNU
Fortran bails out rather than attempting to continue processing the source
code. If n is 0, there is no limit on the number of error messages produced.

-fsyntax-only
Check the code for syntax errors, but do not actually compile it. This will

generate module files for each module present in the code, but no other output
file.

-Wpedantic

-pedantic
Issue warnings for uses of extensions to Fortran 95. ‘-pedantic’ also applies to
C-language constructs where they occur in GNU Fortran source files, such as
use of ‘\e’ in a character constant within a directive like #include.

Valid Fortran 95 programs should compile properly with or without this option.
However, without this option, certain GNU extensions and traditional Fortran
features are supported as well. With this option, many of them are rejected.

Some users try to use ‘-pedantic’ to check programs for conformance. They

soon find that it does not do quite what they want—it finds some nonstandard
practices, but not all. However, improvements to GNU Fortran in this area are
welcome.

This should be wused in conjunction with ‘-std=£f95’, ‘-std=£2003" or
‘-std=£2008’.

16 The GNU Fortran Compiler

-pedantic-errors
Like ‘-pedantic’, except that errors are produced rather than warnings.

-Wall Enables commonly used warning options pertaining to usage that we
recommend avoiding and that we believe are easy to avoid. This currently
includes ‘-Waliasing’, ‘-Wampersand’, ‘-Wconversion’, ‘-Wsurprising’,
‘-Wc-binding-type’, ‘-Wintrinsics-std’, ‘-Wtabs’, ‘-Wintrinsic-shadow’,
‘~Wline-truncation’, ‘~Wtarget-lifetime’, ‘~Winteger-division’,
‘-Wreal-q-constant’, ‘-Wunused’ and ‘-Wundefined-do-loop’.

-Waliasing
Warn about possible aliasing of dummy arguments. Specifically, it warns if the
same actual argument is associated with a dummy argument with INTENT (IN)
and a dummy argument with INTENT (OUT) in a call with an explicit interface.

The following example will trigger the warning.

interface
subroutine bar(a,b)
integer, intent(in) :: a
integer, intent(out) :: b

end subroutine
end interface
integer :: a

call bar(a,a)

-Wampersand
Warn about missing ampersand in continued character constants. The
warning is given with ‘~-Wampersand’, ‘-pedantic’, ‘-std=£95’, ‘-std=£2003’
and ‘-std=£2008’. Note: With no ampersand given in a continued character
constant, GNU Fortran assumes continuation at the first non-comment,
non-whitespace character after the ampersand that initiated the continuation.

-Wargument-mismatch
Warn about type, rank, and other mismatches between formal parameters and
actual arguments to functions and subroutines. These warnings are recom-
mended and thus enabled by default.

-Warray-temporaries
Warn about array temporaries generated by the compiler. The information
generated by this warning is sometimes useful in optimization, in order to avoid
such temporaries.

-Wc-binding-type
Warn if the a variable might not be C interoperable. In particular, warn if the
variable has been declared using an intrinsic type with default kind instead of
using a kind parameter defined for C interoperability in the intrinsic IS0_C_
Binding module. This option is implied by ‘-Wall’.

-Wcharacter-truncation
Warn when a character assignment will truncate the assigned string.

Chapter 2: GNU Fortran Command Options 17

-Wline-truncation
Warn when a source code line will be truncated. This option is implied by
‘-Wall’. For free-form source code, the default is ‘-Werror=line-truncation’
such that truncations are reported as error.

-Wconversion
Warn about implicit conversions that are likely to change the value of the
expression after conversion. Implied by ‘-Wall’.

-Wconversion-extra
Warn about implicit conversions between different types and kinds. This option
does not imply ‘~-Wconversion’.

-Wextra Enables some warning options for usages of language features which
may be problematic. This currently includes ‘-Wcompare-reals’ and
‘~Wunused-parameter’.

-Wimplicit-interface
Warn if a procedure is called without an explicit interface. Note this only
checks that an explicit interface is present. It does not check that the declared
interfaces are consistent across program units.

-Wimplicit-procedure
Warn if a procedure is called that has neither an explicit interface nor has been
declared as EXTERNAL.

-Winteger-division
Warn if a constant integer division truncates it result. As an example, 3/5
evaluates to 0.

-Wintrinsics-std
Warn if gfortran finds a procedure named like an intrinsic not available in the
currently selected standard (with ‘-std’) and treats it as EXTERNAL procedure
because of this. ‘-fall-intrinsics’ can be used to never trigger this behavior
and always link to the intrinsic regardless of the selected standard.

-Wreal-q-constant
Produce a warning if a real-literal-constant contains a q exponent-letter.

-Wsurprising
Produce a warning when “suspicious” code constructs are encountered. While
technically legal these usually indicate that an error has been made.

This currently produces a warning under the following circumstances:

e An INTEGER SELECT construct has a CASE that can never be matched
as its lower value is greater than its upper value.

e A LOGICAL SELECT construct has three CASE statements.
e A TRANSFER specifies a source that is shorter than the destination.

e The type of a function result is declared more than once with the same
type. If ‘-pedantic’ or standard-conforming mode is enabled, this is an
error.

A CHARACTER variable is declared with negative length.

18 The GNU Fortran Compiler

-Wtabs By default, tabs are accepted as whitespace, but tabs are not members of the
Fortran Character Set. For continuation lines, a tab followed by a digit between
1 and 9 is supported. ‘~Wtabs’ will cause a warning to be issued if a tab is en-
countered. Note, ‘-Wtabs’ is active for ‘-pedantic’, ‘-std=£95’, ‘-std=£2003’,
‘-std=f2008’, ‘-std=f2008ts’ and ‘-Wall’.

-Wundefined-do-loop
Warn if a DO loop with step either 1 or -1 yields an underflow or an overflow
during iteration of an induction variable of the loop. This option is implied by
‘~Wall’.

-Wunderflow
Produce a warning when numerical constant expressions are encountered, which
yield an UNDERFLOW during compilation. Enabled by default.

-Wintrinsic-shadow
Warn if a user-defined procedure or module procedure has the same name
as an intrinsic; in this case, an explicit interface or EXTERNAL or INTRINSIC
declaration might be needed to get calls later resolved to the desired intrin-
sic/procedure. This option is implied by ‘-Wall’.

-Wuse-without-only
Warn if a USE statement has no ONLY qualifier and thus implicitly imports all
public entities of the used module.

-Wunused-dummy-argument
Warn about unused dummy arguments. This option is implied by ‘-Wall’.

-Wunused-parameter
Contrary to gcc’s meaning of ‘-Wunused-parameter’, gfortran’s imple-
mentation of this option does not warn about unused dummy arguments
(see ‘-Wunused-dummy-argument’), but about unused PARAMETER values.
‘~Wunused-parameter’ is implied by ‘-Wextra’ if also ‘~Wunused’ or ‘-Wall’ is
used.

-Walign-commons
By default, gfortran warns about any occasion of variables being padded for
proper alignment inside a COMMON block. This warning can be turned off via
‘~Wno-align-commons’. See also ‘-falign-commons’.

-Wfunction-elimination
Warn if any calls to functions are eliminated by the optimizations enabled by
the ‘~ffrontend-optimize’ option.

-Wrealloc-1hs
Warn when the compiler might insert code to for allocation or reallocation of
an allocatable array variable of intrinsic type in intrinsic assignments. In hot
loops, the Fortran 2003 reallocation feature may reduce the performance. If
the array is already allocated with the correct shape, consider using a whole-
array array-spec (e.g. (:,:,:)) for the variable on the left-hand side to prevent
the reallocation check. Note that in some cases the warning is shown, even if
the compiler will optimize reallocation checks away. For instance, when the

Chapter 2: GNU Fortran Command Options 19

right-hand side contains the same variable multiplied by a scalar. See also
‘~frealloc-1lhs’.

-Wrealloc-lhs-all
Warn when the compiler inserts code to for allocation or reallocation of an
allocatable variable; this includes scalars and derived types.

-Wcompare-reals
Warn when comparing real or complex types for equality or inequality. This
option is implied by ‘~Wextra’.

-Wtarget-lifetime
Warn if the pointer in a pointer assignment might be longer than the its target.
This option is implied by ‘-Wall’.

-Wzerotrip
Warn if a DO loop is known to execute zero times at compile time. This option
is implied by ‘-Wall’.

-Werror Turns all warnings into errors.

See Section “Options to Request or Suppress Errors and Warnings” in Using the GNU
Compiler Collection (GCC), for information on more options offered by the GBE shared by
gfortran, gcc and other GNU compilers.

Some of these have no effect when compiling programs written in Fortran.

2.5 Options for debugging your program or GNU Fortran

GNU Fortran has various special options that are used for debugging either your program
or the GNU Fortran compiler.

—-fdump-fortran-original
Output the internal parse tree after translating the source program into internal
representation. Only really useful for debugging the GNU Fortran compiler
itself.

—fdump-fortran-optimized
Output the parse tree after front-end optimization. Only really useful for de-
bugging the GNU Fortran compiler itself.

-fdump-parse-tree
Output the internal parse tree after translating the source program into internal
representation. Only really useful for debugging the GNU Fortran compiler
itself. This option is deprecated; use ~fdump-fortran-original instead.

—-ffpe-trap=1list
Specify a list of floating point exception traps to enable. On most systems, if
a floating point exception occurs and the trap for that exception is enabled, a
SIGFPE signal will be sent and the program being aborted, producing a core
file useful for debugging. list is a (possibly empty) comma-separated list of
the following exceptions: ‘invalid’ (invalid floating point operation, such as
SQRT(-1.0)), ‘zero’ (division by zero), ‘overflow’ (overflow in a floating point
operation), ‘underflow’ (underflow in a floating point operation), ‘inexact’

20

The GNU Fortran Compiler

(loss of precision during operation), and ‘denormal’ (operation performed on
a denormal value). The first five exceptions correspond to the five IEEE 754
exceptions, whereas the last one (‘denormal’) is not part of the IEEE 754
standard but is available on some common architectures such as x86.

The first three exceptions (‘invalid’, ‘zero’, and ‘overflow’) often indicate
serious errors, and unless the program has provisions for dealing with these
exceptions, enabling traps for these three exceptions is probably a good idea.

Many, if not most, floating point operations incur loss of precision due to round-
ing, and hence the ffpe-trap=inexact is likely to be uninteresting in practice.

By default no exception traps are enabled.

-ffpe-summary=1ist

Specify a list of floating-point exceptions, whose flag status is printed to ERROR_
UNIT when invoking STOP and ERROR STOP. list can be either ‘none’; ‘all’ or a
comma-separated list of the following exceptions: ‘invalid’, ‘zero’, ‘overflow’,
‘underflow’, ‘inexact’ and ‘denormal’. (See ‘-ffpe-trap’ for a description of
the exceptions.)

By default, a summary for all exceptions but ‘inexact’ is shown.

-fno-backtrace

When a serious runtime error is encountered or a deadly signal is emitted (seg-
mentation fault, illegal instruction, bus error, floating-point exception, and the
other POSIX signals that have the action ‘core’), the Fortran runtime library
tries to output a backtrace of the error. —-fno-backtrace disables the backtrace
generation. This option only has influence for compilation of the Fortran main
program.

See Section “Options for Debugging Your Program or GCC” in Using the GNU Compiler
Collection (GCC), for more information on debugging options.

2.6 Options for directory search

These options affect how GNU Fortran searches for files specified by the INCLUDE directive
and where it searches for previously compiled modules.

It also affects the search paths used by cpp when used to preprocess Fortran source.

-Idir

-Jdir

These affect interpretation of the INCLUDE directive (as well as of the #include
directive of the cpp preprocessor).

Also note that the general behavior of ‘~I’ and INCLUDE is pretty much the
same as of ‘-I’ with #include in the cpp preprocessor, with regard to looking
for ‘header.gcc’ files and other such things.

This path is also used to search for ‘.mod’ files when previously compiled mod-
ules are required by a USE statement.

See Section “Options for Directory Search” in Using the GNU Compiler Col-
lection (GCC), for information on the ‘-I’ option.

This option specifies where to put ‘.mod’ files for compiled modules. It is also
added to the list of directories to searched by an USE statement.

The default is the current directory.

Chapter 2: GNU Fortran Command Options 21

-fintrinsic-modules-path dir
This option specifies the location of pre-compiled intrinsic modules, if they are
not in the default location expected by the compiler.

2.7 Influencing the linking step

These options come into play when the compiler links object files into an executable output
file. They are meaningless if the compiler is not doing a link step.

-static-libgfortran
On systems that provide ‘libgfortran’ as a shared and a static library, this
option forces the use of the static version. If no shared version of ‘1libgfortran’
was built when the compiler was configured, this option has no effect.

2.8 Influencing runtime behavior
These options affect the runtime behavior of programs compiled with GNU Fortran.

-fconvert=conversion
Specify the representation of data for unformatted files. Valid values
for conversion are: ‘native’, the default; ‘swap’, swap between big- and
little-endian; ‘big-endian’, use big-endian representation for unformatted
files; ‘little-endian’, use little-endian representation for unformatted files.

This option has an effect only when used in the main program. The CONVERT
specifier and the GFORTRAN_CONVERT_UNIT environment variable over-
ride the default specified by “~fconvert’.

-frecord-marker=length
Specify the length of record markers for unformatted files. Valid values for
length are 4 and 8. Default is 4. This is different from previous versions of
gfortran, which specified a default record marker length of 8 on most systems.
If you want to read or write files compatible with earlier versions of gfortran,
use ‘-frecord-marker=8’.

-fmax-subrecord-length=Iength
Specify the maximum length for a subrecord. The maximum permitted value
for length is 2147483639, which is also the default. Only really useful for use
by the gfortran testsuite.

-fsign-zero
When enabled, floating point numbers of value zero with the sign bit set are
written as negative number in formatted output and treated as negative in the
SIGN intrinsic. ‘~fno-sign-zero’ does not print the negative sign of zero values
(or values rounded to zero for I/O) and regards zero as positive number in the
SIGN intrinsic for compatibility with Fortran 77. The default is ‘~-fsign-zero’.

2.9 Options for code generation conventions

These machine-independent options control the interface conventions used in code genera-
tion.

22

The GNU Fortran Compiler

Most of them have both positive and negative forms; the negative form of ‘-ffoo’ would
be ‘-fno-foo’. In the table below, only one of the forms is listed—the one which is not the
default. You can figure out the other form by either removing ‘no-’ or adding it.

-fno-automatic

-ff2c

Treat each program unit (except those marked as RECURSIVE) as if the
SAVE statement were specified for every local variable and array referenced
in it. Does not affect common blocks. (Some Fortran compilers provide
this option under the name ‘-static’ or ‘-save’.) The default, which is
‘~fautomatic’, uses the stack for local variables smaller than the value given
by ‘-fmax-stack-var-size’. Use the option ‘-frecursive’ to use no static
memory.

Generate code designed to be compatible with code generated by g77 and f2c.

The calling conventions used by g77 (originally implemented in f2c¢) require
functions that return type default REAL to actually return the C type double,
and functions that return type COMPLEX to return the values via an extra
argument in the calling sequence that points to where to store the return
value. Under the default GNU calling conventions, such functions simply re-
turn their results as they would in GNU C—default REAL functions return
the C type float, and COMPLEX functions return the GNU C type complex.
Additionally, this option implies the ‘-fsecond-underscore’ option, unless
‘~fno-second-underscore’ is explicitly requested.

This does not affect the generation of code that interfaces with the 1ibgfortran
library.

Caution: It is not a good idea to mix Fortran code compiled with ‘-ff2c’
with code compiled with the default ‘~fno-f2c’ calling conventions as, calling
COMPLEX or default REAL functions between program parts which were compiled
with different calling conventions will break at execution time.

Caution: This will break code which passes intrinsic functions of type default
REAL or COMPLEX as actual arguments, as the library implementations use the
‘-fno-f2c’ calling conventions.

-fno-underscoring

Do not transform names of entities specified in the Fortran source file by ap-
pending underscores to them.

With ‘-funderscoring’ in effect, GNU Fortran appends one underscore to
external names with no underscores. This is done to ensure compatibility with
code produced by many UNIX Fortran compilers.

Caution: The default behavior of GNU Fortran is incompatible with f2¢ and
g77, please use the ‘~ff£2c’ option if you want object files compiled with GNU
Fortran to be compatible with object code created with these tools.

Use of ‘~fno-underscoring’ is not recommended unless you are experimenting
with issues such as integration of GNU Fortran into existing system environ-
ments (vis-a-vis existing libraries, tools, and so on).

Chapter 2: GNU Fortran Command Options 23

For example, with ‘~funderscoring’, and assuming that j () and max_count ()
are external functions while my_var and 1lvar are local variables, a statement
like

I = J(O) + MAX_COUNT (MY_VAR, LVAR)
is implemented as something akin to:

i =j_0 + max_count__(&my_var &lvar) ;

——>

With ‘~fno-underscoring’, the same statement is implemented as:

i = j() + max_count(&my_var, &lvar);

Use of ‘~fno-underscoring’ allows direct specification of user-defined names
while debugging and when interfacing GNU Fortran code with other languages.

Note that just because the names match does not mean that the interface
implemented by GNU Fortran for an external name matches the interface im-
plemented by some other language for that same name. That is, getting code
produced by GNU Fortran to link to code produced by some other compiler
using this or any other method can be only a small part of the overall solution—
getting the code generated by both compilers to agree on issues other than
naming can require significant effort, and, unlike naming disagreements, linkers
normally cannot detect disagreements in these other areas.

Also, note that with ‘~fno-underscoring’, the lack of appended underscores in-
troduces the very real possibility that a user-defined external name will conflict
with a name in a system library, which could make finding unresolved-reference
bugs quite difficult in some cases—they might occur at program run time, and
show up only as buggy behavior at run time.

In future versions of GNU Fortran we hope to improve naming and linking
issues so that debugging always involves using the names as they appear in the
source, even if the names as seen by the linker are mangled to prevent accidental
linking between procedures with incompatible interfaces.

-fsecond-underscore
By default, GNU Fortran appends an underscore to external names. If this
option is used GNU Fortran appends two underscores to names with underscores
and one underscore to external names with no underscores. GNU Fortran also
appends two underscores to internal names with underscores to avoid naming
collisions with external names.

This option has no effect if ‘~fno-underscoring’ is in effect. It is implied by
the ‘~ff2¢’ option.

Otherwise, with this option, an external name such as MAX_COUNT is imple-
mented as a reference to the link-time external symbol max_count__, instead
of max_count_. This is required for compatibility with g77 and f2c, and is
implied by use of the ‘~ff2c’ option.

-fcoarray=<keyword>

‘none’ Disable coarray support; using coarray declarations and image-
control statements will produce a compile-time error. (Default)

‘single’ Single-image mode, i.e. num_images() is always one.

24 The GNU Fortran Compiler

‘1ib’ Library-based coarray parallelization; a suitable GNU Fortran coar-
ray library needs to be linked.

-fcheck=<keyword>
Enable the generation of run-time checks; the argument shall be a comma-
delimited list of the following keywords. Prefixing a check with ‘no-’ disables
it if it was activated by a previous specification.

‘all’ Enable all run-time test of ‘~fcheck’.

‘array-temps’
Warns at run time when for passing an actual argument a tempo-
rary array had to be generated. The information generated by this
warning is sometimes useful in optimization, in order to avoid such
temporaries.

Note: The warning is only printed once per location.

‘bounds’ Enable generation of run-time checks for array subscripts and
against the declared minimum and maximum values. It also
checks array indices for assumed and deferred shape arrays against
the actual allocated bounds and ensures that all string lengths
are equal for character array constructors without an explicit
typespec.

Some checks require that ‘-~fcheck=bounds’ is set for the compila-
tion of the main program.

Note: In the future this may also include other forms of checking,
e.g., checking substring references.

‘do’ Enable generation of run-time checks for invalid modification of
loop iteration variables.

mem Enable generation of run-time checks for memory allocation. Note:
This option does not affect explicit allocations using the ALLOCATE
statement, which will be always checked.

‘pointer’ Enable generation of run-time checks for pointers and allocatables.

‘recursion’
Enable generation of run-time checks for recursively called sub-
routines and functions which are not marked as recursive. See
also ‘~frecursive’. Note: This check does not work for OpenMP
programs and is disabled if used together with ‘~frecursive’ and
‘~fopenmp’.

Example: Assuming you have a file ‘foo.£90’, the command

gfortran -fcheck=all,no-array-temps foo.£f90
will compile the file with all checks enabled as specified above except warnings

for generated array temporaries.

-fbounds-check
Deprecated alias for ‘~fcheck=bounds’.

Chapter 2: GNU Fortran Command Options 25

-fcheck-array-temporaries
Deprecated alias for ‘~fcheck=array-temps’.

-fmax-array-constructor=n
This option can be used to increase the upper limit permitted in array con-
structors. The code below requires this option to expand the array at compile
time.

program test

implicit none

integer j

integer, parameter :: n = 100000

integer, parameter :: i(n) = (/ (2*j, j =1, n) /)
print ’(10(I10,1X))’, i

end program test

Caution: This option can lead to long compile times and excessively large object

files.
The default value for n is 65535.

-fmax-stack-var-size=n
This option specifies the size in bytes of the largest array that will be put on
the stack; if the size is exceeded static memory is used (except in procedures
marked as RECURSIVE). Use the option ‘-frecursive’ to allow for recursive
procedures which do not have a RECURSIVE attribute or for parallel programs.
Use ‘-fno-automatic’ to never use the stack.

This option currently only affects local arrays declared with constant bounds,
and may not apply to all character variables. Future versions of GNU Fortran
may improve this behavior.

The default value for n is 32768.

-fstack-arrays
Adding this option will make the Fortran compiler put all local arrays, even
those of unknown size onto stack memory. If your program uses very large
local arrays it is possible that you will have to extend your runtime limits for
stack memory on some operating systems. This flag is enabled by default at
optimization level ‘-0Ofast’.

-fpack-derived
This option tells GNU Fortran to pack derived type members as closely as
possible. Code compiled with this option is likely to be incompatible with code
compiled without this option, and may execute slower.

-frepack-arrays
In some circumstances GNU Fortran may pass assumed shape array sections
via a descriptor describing a noncontiguous area of memory. This option adds
code to the function prologue to repack the data into a contiguous block at
runtime.

This should result in faster accesses to the array. However it can introduce
significant overhead to the function call, especially when the passed data is
noncontiguous.

26 The GNU Fortran Compiler

-fshort-enums
This option is provided for interoperability with C code that was compiled with
the ‘~fshort-enums’ option. It will make GNU Fortran choose the smallest
INTEGER kind a given enumerator set will fit in, and give all its enumerators
this kind.

-fexternal-blas
This option will make gfortran generate calls to BLAS functions for some
matrix operations like MATMUL, instead of using our own algorithms, if the size of
the matrices involved is larger than a given limit (see ‘-fblas-matmul-limit’).
This may be profitable if an optimized vendor BLAS library is available. The
BLAS library will have to be specified at link time.

-fblas-matmul-limit=n
Only significant when ‘-fexternal-blas’ is in effect. Matrix multiplication
of matrices with size larger than (or equal to) n will be performed by calls to
BLAS functions, while others will be handled by gfortran internal algorithms.
If the matrices involved are not square, the size comparison is performed using
the geometric mean of the dimensions of the argument and result matrices.

The default value for n is 30.

-finline-matmul-limit=n
When front-end optimiztion is active, some calls to the MATMUL intrinsic function
will be inlined. This may result in code size increase if the size of the matrix
cannot be determined at compile time, as code for both cases is generated.
Setting -finline-matmul-1imit=0 will disable inlining in all cases. Setting
this option with a value of n will produce inline code for matrices with size up
to n. If the matrices involved are not square, the size comparison is performed
using the geometric mean of the dimensions of the argument and result matrices.

The default value for n is 30. The -fblas-matmul-1imit can be used to change
this value.

—-frecursive
Allow indirect recursion by forcing all local arrays to be allocated on the

stack. This flag cannot be used together with ‘-fmax-stack-var-size=’ or
‘~fno-automatic’.

-finit-local-zero

-finit-derived

-finit-integer=n

-finit-real=<zero|inf|-inf|nan|snan>

-finit-logical=<truel|false>

-finit-character=n
The ‘-finit-local-zero’ option instructs the compiler to initialize local
INTEGER, REAL, and COMPLEX variables to zero, LOGICAL variables to false,
and CHARACTER variables to a string of null bytes. Finer-grained initialization
options are provided by the ‘-finit-integer=n’, ‘-finit-real=<zero|inf|-
inf|nan|snan> (which also initializes the real and imaginary parts
of local COMPLEX variables), ‘-finit-logical=<true|false>’, and

Chapter 2: GNU Fortran Command Options 27

‘~finit-character=n’ (where n is an ASCII character value) options.
Components of derived type variables will be initialized according to these
flags only with ‘-finit-derived’. These options do not initialize

e allocatable arrays
e variables that appear in an EQUIVALENCE statement.

(These limitations may be removed in future releases).

Note that the ‘-finit-real=nan’ option initializes REAL and COMPLEX variables
with a quiet NaN. For a signalling NaN use ‘-finit-real=snan’; note, however,
that compile-time optimizations may convert them into quiet NaN and that
trapping needs to be enabled (e.g. via ‘-ffpe-trap’).

Finally, note that enabling any of the ‘-finit-*" options will silence warn-
ings that would have been emitted by ‘-Wuninitialized’ for the affected local
variables.

-falign-commons

By default, gfortran enforces proper alignment of all variables in a COMMON
block by padding them as needed. On certain platforms this is mandatory,
on others it increases performance. If a COMMON block is not declared with
consistent data types everywhere, this padding can cause trouble, and
‘~fno-align-commons’ can be used to disable automatic alignment. The same
form of this option should be used for all files that share a COMMON block. To
avoid potential alignment issues in COMMON blocks, it is recommended to order
objects from largest to smallest.

-fno-protect-parens

By default the parentheses in expression are honored for all optimization
levels such that the compiler does not do any re-association. Using
‘~fno-protect-parens’ allows the compiler to reorder REAL and COMPLEX
expressions to produce faster code. Note that for the re-association
optimization ‘-fno-signed-zeros’ and ‘~fno-trapping-math’ need to be in
effect. The parentheses protection is enabled by default, unless ‘-Ofast’ is
given.

-frealloc-1lhs
An allocatable left-hand side of an intrinsic assignment is automatically
(re)allocated if it is either unallocated or has a different shape. The option is
enabled by default except when ‘-std=£f95’ is given. See also ‘-Wrealloc-1hs’.

-faggressive-function-elimination
Functions with identical argument lists are eliminated within statements, re-
gardless of whether these functions are marked PURE or not. For example, in
a = £(b,c) + £(b,c)
there will only be a single call to f. This option only works if
‘~ffrontend-optimize’ is in effect.

-ffrontend-optimize
This option performs front-end optimization, based on manipulating parts the
Fortran parse tree. Enabled by default by any ‘-0’ option. Optimizations en-
abled by this option include inlining calls to MATMUL, elimination of identical

28 The GNU Fortran Compiler

function calls within expressions, removing unnecessary calls to TRIM in com-
parisons and assignments and replacing TRIM(a) with a(1:LEN_TRIM(a)). It
can be deselected by specifying ‘~fno-frontend-optimize’.

See Section “Options for Code Generation Conventions” in Using the GNU Compiler
Collection (GCC), for information on more options offered by the GBE shared by gfortran,
gec, and other GNU compilers.

2.10 Environment variables affecting gfortran
The gfortran compiler currently does not make use of any environment variables to control
its operation above and beyond those that affect the operation of gcc.

See Section “Environment Variables Affecting GCC” in Using the GNU Compiler Col-
lection (GCC), for information on environment variables.

See Chapter 3 [Runtime], page 29, for environment variables that affect the run-time
behavior of programs compiled with GNU Fortran.

Chapter 3: Runtime: Influencing runtime behavior with environment variables 29

3 Runtime: Influencing runtime behavior with
environment variables

The behavior of the gfortran can be influenced by environment variables.

Malformed environment variables are silently ignored.

3.1 TMPDIR—Directory for scratch files
When opening a file with STATUS="SCRATCH’, GNU Fortran tries to create the file in one
of the potential directories by testing each directory in the order below.

1. The environment variable TMPDIR, if it exists.

2. On the MinGW target, the directory returned by the GetTempPath function. Alterna-
tively, on the Cygwin target, the TMP and TEMP environment variables, if they exist, in
that order.

3. The P_tmpdir macro if it is defined, otherwise the directory ‘/tmp’.

3.2 GFORTRAN_STDIN_UNIT—Unit number for standard input

This environment variable can be used to select the unit number preconnected to standard
input. This must be a positive integer. The default value is 5.

3.3 GFORTRAN_STDOUT_UNIT—Unit number for standard output

This environment variable can be used to select the unit number preconnected to standard
output. This must be a positive integer. The default value is 6.

3.4 GFORTRAN_STDERR_UNIT—Unit number for standard error

This environment variable can be used to select the unit number preconnected to standard
error. This must be a positive integer. The default value is 0.

3.5 GFORTRAN_UNBUFFERED_ALL—Do not buffer I/O on all units

This environment variable controls whether all I/O is unbuffered. If the first letter is ‘y’,
‘Y’ or ‘1’, all I/O is unbuffered. This will slow down small sequential reads and writes. If
the first letter is ‘n’, ‘N’ or ‘0’, I/O is buffered. This is the default.

3.6 GFORTRAN_UNBUFFERED_PRECONNECTED—Do not buffer I/O on
preconnected units

The environment variable named GFORTRAN_UNBUFFERED_PRECONNECTED controls whether

I/O on a preconnected unit (i.e. STDOUT or STDERR) is unbuffered. If the first letter is

‘y’, ‘Y’ or ‘1’ I/O is unbuffered. This will slow down small sequential reads and writes. If
the first letter is ‘n’, ‘N’ or ‘0’, I/O is buffered. This is the default.

3.7 GFORTRAN_SHQOW_LOCUS—Show location for runtime errors

If the first letter is ‘y’, ‘Y’ or ‘1’ filename and line numbers for runtime errors are printed.
If the first letter is ‘n’, ‘N’ or ‘0’, do not print filename and line numbers for runtime errors.
The default is to print the location.

30 The GNU Fortran Compiler

3.8 GFORTRAN_OPTIONAL_PLUS—Print leading + where
permitted
If the first letter is ‘y’, ‘Y’ or ‘1’, a plus sign is printed where permitted by the Fortran

standard. If the first letter is ‘n’, ‘N’ or ‘0’, a plus sign is not printed in most cases. Default
is not to print plus signs.

3.9 GFORTRAN_DEFAULT_RECL—Default record length for new
files

This environment variable specifies the default record length, in bytes, for files which are
opened without a RECL tag in the OPEN statement. This must be a positive integer. The
default value is 1073741824 bytes (1 GB).

3.10 GFORTRAN_LIST_SEPARATOR—Separator for list output

This environment variable specifies the separator when writing list-directed output. It may
contain any number of spaces and at most one comma. If you specify this on the command
line, be sure to quote spaces, as in
$ GFORTRAN_LIST_SEPARATOR=’ , ° ./a.out
when a.out is the compiled Fortran program that you want to run. Default is a single
space.

3.11 GFORTRAN_CONVERT_UNIT—Set endianness for unformatted
I/0

By setting the GFORTRAN_CONVERT_UNIT variable, it is possible to change the representation
of data for unformatted files. The syntax for the GFORTRAN_CONVERT_UNIT variable is:

GFORTRAN_CONVERT_UNIT: mode | mode ’;’ exception | exception ;
mode: ’native’ | ’swap’ | ’big_endian’ | ’little_endian’ ;
exception: mode ’:’ unit_list | unit_list ;

unit_list: unit_spec | unit_list unit_spec ;

unit_spec: INTEGER | INTEGER ’-’ INTEGER ;

The variable consists of an optional default mode, followed by a list of optional excep-
tions, which are separated by semicolons from the preceding default and each other. Each
exception consists of a format and a comma-separated list of units. Valid values for the
modes are the same as for the CONVERT specifier:

NATIVE Use the native format. This is the default.
SWAP Swap between little- and big-endian.
LITTLE_ENDIAN Use the little-endian format for unformatted files.
BIG_ENDIAN Use the big-endian format for unformatted files.
A missing mode for an exception is taken to mean BIG_ENDIAN. Examples of values for
GFORTRAN_CONVERT_UNIT are:
’big_endian’ Do all unformatted I/O in big_endian mode.

’little_endian;native:10-20,25’ Do all unformatted I/O in little_endian mode,
except for units 10 to 20 and 25, which are in native format.

?10-20’ Units 10 to 20 are big-endian, the rest is native.

Chapter 3: Runtime: Influencing runtime behavior with environment variables 31

Setting the environment variables should be done on the command line or via the export
command for sh-compatible shells and via setenv for csh-compatible shells.

Example for sh:
$ gfortran foo.f90
$ GFORTRAN_CONVERT_UNIT=’big_endian;native:10-20’ ./a.out
Example code for csh:
% gfortran foo.f90
% setenv GFORTRAN_CONVERT_UNIT ’big_endian;native:10-20’
% ./a.out
Using anything but the native representation for unformatted data carries a significant
speed overhead. If speed in this area matters to you, it is best if you use this only for data
that needs to be portable.

See Section 6.1.15 [CONVERT specifier], page 49, for an alternative way to specify the
data representation for unformatted files. See Section 2.8 [Runtime Options|, page 21, for
setting a default data representation for the whole program. The CONVERT specifier overrides
the ‘~fconvert’ compile options.

Note that the values specified via the GFORTRAN_CONVERT_UNIT environment vari-
able will override the CONVERT specifier in the open statement. This is to give control
over data formats to users who do not have the source code of their program available.

3.12 GFORTRAN_ERROR_BACKTRACE—Show backtrace on run-time
errors

If the GFORTRAN_ERROR_BACKTRACE variable is set to ‘y’, ‘Y’ or ‘1’ (only the first letter
is relevant) then a backtrace is printed when a serious run-time error occurs. To disable
the backtracing, set the variable to ‘n’, ‘N’; ‘0’. Default is to print a backtrace unless the
‘~fno-backtrace’ compile option was used.

Chapter 3: Runtime: Influencing runtime behavior with environment variables

Part 1I: Language Reference

33

Chapter 4: Fortran 2003 and 2008 Status 35

4 Fortran 2003 and 2008 Status

4.1 Fortran 2003 status

GNU Fortran supports several Fortran 2003 features; an incomplete list can be found below.
See also the wiki page about Fortran 2003.

Procedure pointers including procedure-pointer components with PASS attribute.

Procedures which are bound to a derived type (type-bound procedures) including PASS,
PROCEDURE and GENERIC, and operators bound to a type.

Abstract interfaces and type extension with the possibility to override type-bound
procedures or to have deferred binding.

Polymorphic entities (“CLASS”) for derived types and unlimited polymorphism
(“CLASS(*)”) — including SAME_TYPE_AS, EXTENDS_TYPE_OF and SELECT TYPE for
scalars and arrays and finalization.

Generic interface names, which have the same name as derived types, are now sup-
ported. This allows one to write constructor functions. Note that Fortran does not
support static constructor functions. For static variables, only default initialization or
structure-constructor initialization are available.

The ASSOCIATE construct.
Interoperability with C including enumerations,
In structure constructors the components with default values may be omitted.

Extensions to the ALLOCATE statement, allowing for a type-specification with type pa-
rameter and for allocation and initialization from a SOURCE= expression; ALLOCATE and
DEALLOCATE optionally return an error message string via ERRMSG=.

Reallocation on assignment: If an intrinsic assignment is used, an allocatable vari-
able on the left-hand side is automatically allocated (if unallocated) or reallocated (if
the shape is different). Currently, scalar deferred character length left-hand sides are
correctly handled but arrays are not yet fully implemented.

Deferred-length character variables and scalar deferred-length character components of
derived types are supported. (Note that array-valued compoents are not yet imple-
mented.)

Transferring of allocations via MOVE_ALLOC.

The PRIVATE and PUBLIC attributes may be given individually to derived-type compo-
nents.

In pointer assignments, the lower bound may be specified and the remapping of elements
is supported.

For pointers an INTENT may be specified which affect the association status not the
value of the pointer target.

Intrinsics command_argument_count, get_command, get_command_argument, and get_
environment_variable.

Support for Unicode characters (ISO 10646) and UTF-8, including the SELECTED_CHAR _
KIND and NEW_LINE intrinsic functions.

https://gcc.gnu.org/wiki/Fortran2003

36

The GNU Fortran Compiler

Support for binary, octal and hexadecimal (BOZ) constants in the intrinsic functions
INT, REAL, CMPLX and DBLE.

Support for namelist variables with allocatable and pointer attribute and nonconstant
length type parameter.

Array constructors using square brackets. That is, [...] rather than (/.../). Type-
specification for array constructors like (/ some-type :: ... /).

FExtensions to the specification and initialization expressions, including the support for
intrinsics with real and complex arguments.

Support for the asynchronous input/output syntax; however, the data transfer is cur-
rently always synchronously performed.

FLUSH statement.
I0MSG= specifier for I/O statements.

Support for the declaration of enumeration constants via the ENUM and ENUMERATOR
statements. Interoperability with gcc is guaranteed also for the case where the -
fshort-enums command line option is given.

TR 15581:
e ALLOCATABLE dummy arguments.
e ALLOCATABLE function results
e ALLOCATABLE components of derived types

The OPEN statement supports the ACCESS=’STREAM’ specifier, allowing I/O without
any record structure.

Namelist input/output for internal files.

Minor I/O features: Rounding during formatted output, using of a decimal comma
instead of a decimal point, setting whether a plus sign should appear for positive
numbers. On systems where strtod honours the rounding mode, the rounding mode
is also supported for input.

The PROTECTED statement and attribute.

The VALUE statement and attribute.

The VOLATILE statement and attribute.

The IMPORT statement, allowing to import host-associated derived types.

The intrinsic modules ISO_FORTRAN_ENVIRONMENT is supported, which contains param-
eters of the I/O units, storage sizes. Additionally, procedures for C interoperability are
available in the IS0_C_BINDING module.

USE statement with INTRINSIC and NON_INTRINSIC attribute; supported intrinsic mod-
ules: ISO_FORTRAN_ENV, ISO_C_BINDING, OMP_LIB and OMP_LIB_KINDS, and OPENACC.

Renaming of operators in the USE statement.

4.2 Fortran 2008 status

The latest version of the Fortran standard is ISO/IEC 1539-1:2010, informally known as
Fortran 2008. The official version is available from International Organization for Stan-
dardization (ISO) or its national member organizations. The the final draft (FDIS) can

Chapter 4: Fortran 2003 and 2008 Status 37

be downloaded free of charge from http://www.nag.co.uk/sc22wgb/links.html. For-
tran is developed by the Working Group 5 of Sub-Committee 22 of the Joint Technical
Committee 1 of the International Organization for Standardization and the International
Electrotechnical Commission (IEC). This group is known as WGH5.

The GNU Fortran compiler supports several of the new features of Fortran 2008; the wiki

has some information about the current Fortran 2008 implementation status. In particular,
the following is implemented.

The ‘-std=£2008’ option and support for the file extensions ‘.£08” and ‘.F08’.

The OPEN statement now supports the NEWUNIT= option, which returns a unique file
unit, thus preventing inadvertent use of the same unit in different parts of the program.

The g0 format descriptor and unlimited format items.

The mathematical intrinsics ASINH, ACOSH, ATANH, ERF, ERFC, GAMMA, LOG_GAMMA,
BESSEL_JO, BESSEL_J1, BESSEL_JN, BESSEL_YO, BESSEL_Y1, BESSEL_YN, HYPOT, NORM2,
and ERFC_SCALED.

Using complex arguments with TAN, SINH, COSH, TANH, ASIN, ACOS, and ATAN is now
possible; ATAN(Y,X) is now an alias for ATAN2(Y,X).

Support of the PARITY intrinsic functions.

The following bit intrinsics: LEADZ and TRAILZ for counting the number of leading and
trailing zero bits, POPCNT and POPPAR for counting the number of one bits and returning
the parity; BGE, BGT, BLE, and BLT for bitwise comparisons; DSHIFTL and DSHIFTR for
combined left and right shifts, MASKL and MASKR for simple left and right justified masks,
MERGE_BITS for a bitwise merge using a mask, SHIFTA, SHIFTL and SHIFTR for shift
operations, and the transformational bit intrinsics TALL, TANY and IPARITY.

Support of the EXECUTE_COMMAND_LINE intrinsic subroutine.
Support for the STORAGE_SIZE intrinsic inquiry function.

The INT{8,16,32} and REAL{32,64,128} kind type parameters and the array-valued
named constants INTEGER_KINDS, LOGICAL_KINDS, REAL_KINDS and CHARACTER_KINDS
of the intrinsic module ISO_FORTRAN_ENV.

The module procedures C_SIZEOF of the intrinsic module ISO_C_BINDINGS and
COMPILER_VERSION and COMPILER_OPTIONS of ISO_FORTRAN_ENV.

Coarray support for serial programs with ‘~fcoarray=single’ flag and experimental
support for multiple images with the ‘~fcoarray=1ib’ flag.

Submodules are supported. It should noted that MODULEs do not produce the smod
file needed by the descendent SUBMODULEs unless they contain at least one MODULE
PROCEDURE interface. The reason for this is that SUBMODULESs are useless without MODULE
PROCEDUREs. See http://j3-fortran.org/doc/meeting/207/15-209.txt for a discussion
and a draft interpretation. Adopting this interpretation has the advantage that code
that does not use submodules does not generate smod files.

The DO CONCURRENT construct is supported.

The BLOCK construct is supported.

The STOP and the new ERROR STOP statements now support all constant expressions.
Both show the signals which were signaling at termination.

Support for the CONTIGUOUS attribute.

http://www.nag.co.uk/sc22wg5/links.html
http://www.nag.co.uk/sc22wg5/
https://gcc.gnu.org/wiki/Fortran2008Status

38

The GNU Fortran Compiler

Support for ALLOCATE with MOLD.

Support for the IMPURE attribute for procedures, which allows for ELEMENTAL procedures
without the restrictions of PURE.

Null pointers (including NULL()) and not-allocated variables can be used as actual ar-
gument to optional non-pointer, non-allocatable dummy arguments, denoting an absent
argument.

Non-pointer variables with TARGET attribute can be used as actual argument to POINTER
dummies with INTENT (IN).

Pointers including procedure pointers and those in a derived type (pointer components)
can now be initialized by a target instead of only by NULL.

The EXIT statement (with construct-name) can be now be used to leave not only the
DO but also the ASSOCIATE, BLOCK, IF, SELECT CASE and SELECT TYPE constructs.

Internal procedures can now be used as actual argument.

Minor features: obsolesce diagnostics for ENTRY with ‘~std=£2008’; a line may start
with a semicolon; for internal and module procedures END can be used instead of END
SUBROUTINE and END FUNCTION; SELECTED_REAL_KIND now also takes a RADIX argu-
ment; intrinsic types are supported for TYPE(intrinsic-type-spec); multiple type-bound
procedures can be declared in a single PROCEDURE statement; implied-shape arrays are
supported for named constants (PARAMETER).

4.3 Technical Specification 29113 Status
GNU Fortran supports some of the new features of the Technical Specification (TS) 29113

on

Further Interoperability of Fortran with C. The wiki has some information about the

current TS 29113 implementation status. In particular, the following is implemented.

See also Section 7.1.6 [Further Interoperability of Fortran with C], page 68.
The ‘-std=£2008ts’ option.
The OPTIONAL attribute is allowed for dummy arguments of BIND(C) procedures.
The RANK intrinsic is supported.

GNU Fortran’s implementation for variables with ASYNCHRONOUS attribute is compati-
ble with TS 29113.

Assumed types (TYPE(*)).

Assumed-rank (DIMENSION(..)). However, the array descriptor of the TS is not yet
supported.

4.4 Technical Specification 18508 Status

GNU Fortran supports the following new features of the Technical Specification 18508 on
Additional Parallel Features in Fortran:

The new atomic ADD, CAS, FETCH and ADD/OR/XOR, OR and XOR intrinsics.

The CO_MIN and CO_MAX and SUM reduction intrinsics. And the CO_BROADCAST and
CO_REDUCE intrinsic, except that those do not support polymorphic types or types with
allocatable, pointer or polymorphic components.

Events (EVENT POST, EVENT WAIT, EVENT_QUERY)
Failed images (FAIL IMAGE, IMAGE_STATUS, FAILED_IMAGES, STOPPED_IMAGES)

https://gcc.gnu.org/wiki/TS29113Status

Chapter 5: Compiler Characteristics 39

5 Compiler Characteristics

This chapter describes certain characteristics of the GNU Fortran compiler, that are not
specified by the Fortran standard, but which might in some way or another become visible
to the programmer.

5.1 KIND Type Parameters
The KIND type parameters supported by GNU Fortran for the primitive data types are:

INTEGER 1, 2, 4, 8%, 16¥, default: 4**
LOGICAL 1, 2, 4, 8%, 16*, default: 4**
REAL 4, 8, 10*, 16*, default: 4***
COMPLEX 4, 8, 10*, 16*, default: 4***

DOUBLE PRECISION
4, 8, 10*, 16*, default: 8***

CHARACTER
1, 4, default: 1

* not available on all systems
** unless ‘-fdefault-integer-8’ is used
K unless ‘-fdefault-real-8’ is used (see Section 2.2 [Fortran Dialect Options], page 8)

The KIND value matches the storage size in bytes, except for COMPLEX where the
storage size is twice as much (or both real and imaginary part are a real value of the
given size). It is recommended to use the Section 9.237 [SELECTED_CHAR_KIND],
page 245, Section 9.238 [SELECTED_INT_KIND]|, page 245 and Section 9.239
[SELECTED_REAL_KIND], page 246 intrinsics or the INT8, INT16, INT32, INT64,
REAL32, REAL64, and REAL128 parameters of the ISO_FORTRAN_ENV module instead of
the concrete values. The available kind parameters can be found in the constant arrays
CHARACTER_KINDS, INTEGER_KINDS, LOGICAL_KINDS and REAL_KINDS in the Section 10.1
[ISO_.FORTRAN_ENV], page 273 module. For C interoperability, the kind parameters of
the Section 10.2 [ISO_C_BINDING], page 275 module should be used.

5.2 Internal representation of LOGICAL variables

The Fortran standard does not specify how variables of LOGICAL type are represented,
beyond requiring that LOGICAL variables of default kind have the same storage size as default
INTEGER and REAL variables. The GNU Fortran internal representation is as follows.

A LOGICAL(KIND=N) variable is represented as an INTEGER(KIND=N) variable, however,
with only two permissible values: 1 for .TRUE. and 0 for .FALSE.. Any other integer value
results in undefined behavior.

See also Section 7.4.2 [Argument passing conventions], page 74 and Section 7.1 [Interop-
erability with C], page 63.

40 The GNU Fortran Compiler

5.3 Thread-safety of the runtime library

GNU Fortran can be used in programs with multiple threads, e.g. by using OpenMP, by
calling OS thread handling functions via the ISO_C_BINDING facility, or by GNU Fortran
compiled library code being called from a multi-threaded program.

The GNU Fortran runtime library, (1ibgfortran), supports being called concurrently
from multiple threads with the following exceptions.

During library initialization, the C getenv function is used, which need not be thread-
safe. Similarly, the getenv function is used to implement the GET_ENVIRONMENT_VARIABLE
and GETENV intrinsics. It is the responsibility of the user to ensure that the environment is
not being updated concurrently when any of these actions are taking place.

The EXECUTE_COMMAND_LINE and SYSTEM intrinsics are implemented with the system
function, which need not be thread-safe. It is the responsibility of the user to ensure that
system is not called concurrently.

For platforms not supporting thread-safe POSIX functions, further functionality might
not be thread-safe. For details, please consult the documentation for your operating system.

The GNU Fortran runtime library uses various C library functions that depend on the
locale, such as strtod and snprintf. In order to work correctly in locale-aware programs
that set the locale using setlocale, the locale is reset to the default “C” locale while
executing a formatted READ or WRITE statement. On targets supporting the POSIX 2008
per-thread locale functions (e.g. newlocale, uselocale, freelocale), these are used and
thus the global locale set using setlocale or the per-thread locales in other threads are not
affected. However, on targets lacking this functionality, the global LC_NUMERIC locale is
set to “C” during the formatted I/O. Thus, on such targets it’s not safe to call setlocale
concurrently from another thread while a Fortran formatted I/O operation is in progress.
Also, other threads doing something dependent on the LC_NUMERIC locale might not
work correctly if a formatted 1/O operation is in progress in another thread.

5.4 Data consistency and durability

This section contains a brief overview of data and metadata consistency and durability
issues when doing I/0.

With respect to durability, GNU Fortran makes no effort to ensure that data is commit-
ted to stable storage. If this is required, the GNU Fortran programmer can use the intrinsic
FNUM to retrieve the low level file descriptor corresponding to an open Fortran unit. Then,
using e.g. the ISO_C_BINDING feature, one can call the underlying system call to flush
dirty data to stable storage, such as fsync on POSIX, _commit on MingW, or fcntl(fd,
F_FULLSYNC, 0) on Mac OS X. The following example shows how to call fsync:

! Declare the interface for POSIX fsync function
interface
function fsync (£fd) bind(c,name="fsync")
use iso_c_binding, only: c_int
integer(c_int), value :: fd
integer(c_int) :: fsync
end function fsync
end interface

! Variable declaration

Chapter 5: Compiler Characteristics 41

integer :: ret

! Opening unit 10
open (10,file="foo")

! Perform I/0 on unit 10
|

! Flush and sync
flush(10)
ret = fsync(fnum(10))

! Handle possible error
if (ret /= 0) stop "Error calling FSYNC"

With respect to consistency, for regular files GNU Fortran uses buffered I/O in order
to improve performance. This buffer is flushed automatically when full and in some other
situations, e.g. when closing a unit. It can also be explicitly flushed with the FLUSH
statement. Also, the buffering can be turned off with the GFORTRAN_UNBUFFERED_ALL and
GFORTRAN_UNBUFFERED_PRECONNECTED environment variables. Special files, such as termi-
nals and pipes, are always unbuffered. Sometimes, however, further things may need to be
done in order to allow other processes to see data that GNU Fortran has written, as follows.

The Windows platform supports a relaxed metadata consistency model, where file meta-
data is written to the directory lazily. This means that, for instance, the dir command can
show a stale size for a file. One can force a directory metadata update by closing the unit,
or by calling _commit on the file descriptor. Note, though, that _commit will force all dirty
data to stable storage, which is often a very slow operation.

The Network File System (NFS) implements a relaxed consistency model called open-to-
close consistency. Closing a file forces dirty data and metadata to be flushed to the server,
and opening a file forces the client to contact the server in order to revalidate cached data.
fsync will also force a flush of dirty data and metadata to the server. Similar to open and
close, acquiring and releasing fcntl file locks, if the server supports them, will also force
cache validation and flushing dirty data and metadata.

5.5 Files opened without an explicit ACTION= specifier
The Fortran standard says that if an OPEN statement is executed without an explicit ACTION=
specifier, the default value is processor dependent. GNU Fortran behaves as follows:

1. Attempt to open the file with ACTION="READWRITE’

2. If that fails, try to open with ACTION=’READ’
3. If that fails, try to open with ACTION="WRITE’
4.

If that fails, generate an error

5.6 File operations on symbolic links
This section documents the behavior of GNU Fortran for file operations on symbolic links,
on systems that support them.

e Results of INQUIRE statements of the “inquire by file” form will relate to the target
of the symbolic link. For example, INQUIRE(FILE="foo" ,EXIST=ex) will set ex to

42 The GNU Fortran Compiler

.true. if foo is a symbolic link pointing to an existing file, and .false. if foo points to an
non-existing file (“dangling” symbolic link).

e Using the OPEN statement with a STATUS="NEW" specifier on a symbolic link will result
in an error condition, whether the symbolic link points to an existing target or is
dangling.

e If a symbolic link was connected, using the CLOSE statement with a STATUS="DELETE"
specifier will cause the symbolic link itself to be deleted, not its target.

Chapter 6: Extensions 43

6 Extensions

The two sections below detail the extensions to standard Fortran that are implemented in
GNU Fortran, as well as some of the popular or historically important extensions that are
not (or not yet) implemented. For the latter case, we explain the alternatives available to
GNU Fortran users, including replacement by standard-conforming code or GNU extensions.

6.1 Extensions implemented in GNU Fortran

GNU Fortran implements a number of extensions over standard Fortran. This chapter con-
tains information on their syntax and meaning. There are currently two categories of GNU
Fortran extensions, those that provide functionality beyond that provided by any standard,
and those that are supported by GNU Fortran purely for backward compatibility with
legacy compilers. By default, ‘-std=gnu’ allows the compiler to accept both types of exten-
sions, but to warn about the use of the latter. Specifying either ‘-std=£95’, ‘~std=£2003’
or ‘-std=£2008’ disables both types of extensions, and ‘-std=legacy’ allows both without
warning. The special compile flag ‘-fdec’ enables additional compatibility extensions along
with those enabled by ‘-std=legacy’.

6.1.1 Old-style kind specifications

GNU Fortran allows old-style kind specifications in declarations. These look like:
TYPESPEC*size x,y,z

where TYPESPEC is a basic type (INTEGER, REAL, etc.), and where size is a byte count
corresponding to the storage size of a valid kind for that type. (For COMPLEX variables,
size is the total size of the real and imaginary parts.) The statement then declares x, y
and z to be of type TYPESPEC with the appropriate kind. This is equivalent to the standard-
conforming declaration

TYPESPEC(k) x,y,z
where k is the kind parameter suitable for the intended precision. As kind parameters are
implementation-dependent, use the KIND, SELECTED_INT_KIND and SELECTED_REAL_KIND
intrinsics to retrieve the correct value, for instance REAL*8 x can be replaced by:

INTEGER, PARAMETER :: dbl = KIND(1.0dO)
REAL (KIND=dbl) :: x

6.1.2 Old-style variable initialization

GNU Fortran allows old-style initialization of variables of the form:
INTEGER i/1/,3/2/
REAL x(2,2) /3%0.,1./

The syntax for the initializers is as for the DATA statement, but unlike in a DATA state-
ment, an initializer only applies to the variable immediately preceding the initialization. In
other words, something like INTEGER I,J/2,3/ is not valid. This style of initialization is
only allowed in declarations without double colons (: :); the double colons were introduced
in Fortran 90, which also introduced a standard syntax for initializing variables in type
declarations.

Examples of standard-conforming code equivalent to the above example are:

44 The GNU Fortran Compiler

! Fortran 90
INTEGER :: i =
REAL :: x(2,2)
! Fortran 77
INTEGER i, j
REAL x(2,2)
DATA i/1/, j/2/, x/3%0.,1./

1, j =2
= RESHAPE((/0.,0.,0.,1./),SHAPE(x))

Note that variables which are explicitly initialized in declarations or in DATA statements
automatically acquire the SAVE attribute.

6.1.3 Extensions to namelist

GNU Fortran fully supports the Fortran 95 standard for namelist I/O including array
qualifiers, substrings and fully qualified derived types. The output from a namelist write is
compatible with namelist read. The output has all names in upper case and indentation to
column 1 after the namelist name. Two extensions are permitted:

Old-style use of ‘$’ instead of ‘&’

$MYNML

X(:)%Y(2) = 1.0 2.0 3.0
CH(1:4) = "abcd"

$END

It should be noted that the default terminator is ‘/’ rather than ‘€END’.

Querying of the namelist when inputting from stdin. After at least one space, entering

‘?’ sends to stdout the namelist name and the names of the variables in the namelist:
?

&mynml
X
xhy
ch

&end

Entering ‘=7’ outputs the namelist to stdout, as if WRITE(*,NML = mynml) had been
called:

=7

&MYNML

X(1)%Y=0.000000 , 1.000000 , 0.000000 s
X(2)%Y= 0.000000 , 2.000000 , 0.000000 s
X(3)%Y= 0.000000 , 3.000000 , 0.000000 s
CH=abcd, /

To aid this dialog, when input is from stdin, errors send their messages to stderr and
execution continues, even if IOSTAT is set.

PRINT namelist is permitted. This causes an error if ‘-std=£95’ is used.

PROGRAM test_print
REAL, dimension (4) :: x = (/1.0, 2.0, 3.0, 4.0/)
NAMELIST /mynml/ x
PRINT mynml

END PROGRAM test_print

Expanded namelist reads are permitted. This causes an error if ‘-std=f95’ is used. In
the following example, the first element of the array will be given the value 0.00 and the
two succeeding elements will be given the values 1.00 and 2.00.

Chapter 6: Extensions 45

&MYNML
X(1,1) = 0.00 , 1.00 , 2.00
/

When writing a namelist, if no DELIM= is specified, by default a double quote is used to
delimit character strings. If -std=F95, F2003, or F2008, etc, the delim status is set to 'none’.
Defaulting to quotes ensures that namelists with character strings can be subsequently read
back in accurately.

6.1.4 X format descriptor without count field

To support legacy codes, GNU Fortran permits the count field of the X edit descriptor in
FORMAT statements to be omitted. When omitted, the count is implicitly assumed to be
one.

PRINT 10, 2, 3
10 FORMAT (I1, X, I1)

6.1.5 Commas in FORMAT specifications

To support legacy codes, GNU Fortran allows the comma separator to be omitted immedi-
ately before and after character string edit descriptors in FORMAT statements.

PRINT 10, 2, 3
10 FORMAT (°F00=’I1’ BAR=’I2)

6.1.6 Missing period in FORMAT specifications

To support legacy codes, GNU Fortran allows missing periods in format specifications if
and only if ‘-std=legacy’ is given on the command line. This is considered non-conforming
code and is discouraged.

REAL :: value
READ(*,10) value
10 FORMAT (’F4’)

6.1.7 I/0 item lists

To support legacy codes, GNU Fortran allows the input item list of the READ statement,
and the output item lists of the WRITE and PRINT statements, to start with a comma.

6.1.8 Q exponent-letter

GNU Fortran accepts real literal constants with an exponent-letter of Q, for example,
1.23Q45. The constant is interpreted as a REAL(16) entity on targets that support this
type. If the target does not support REAL(16) but has a REAL(10) type, then the real-
literal-constant will be interpreted as a REAL(10) entity. In the absence of REAL(16) and
REAL(10), an error will occur.

6.1.9 BOZ literal constants

Besides decimal constants, Fortran also supports binary (b), octal (o) and hexadecimal (z)
integer constants. The syntax is: ‘prefix quote digits quote’, were the prefix is either b,
o or z, quote is either > or " and the digits are for binary 0 or 1, for octal between 0 and
7, and for hexadecimal between 0 and F. (Example: °01011101°.)

Up to Fortran 95, BOZ literals were only allowed to initialize integer variables in DATA
statements. Since Fortran 2003 BOZ literals are also allowed as argument of REAL, DBLE,

46 The GNU Fortran Compiler

INT and CMPLX; the result is the same as if the integer BOZ literal had been converted by
TRANSFER to, respectively, real, double precision, integer or complex. As GNU Fortran
extension the intrinsic procedures FLOAT, DFLOAT, COMPLEX and DCMPLX are treated alike.

As an extension, GNU Fortran allows hexadecimal BOZ literal constants to be specified
using the X prefix, in addition to the standard Z prefix. The BOZ literal can also be specified
by adding a suffix to the string, for example, Z>ABC’ and ’ABC’Z are equivalent.

Furthermore, GNU Fortran allows using BOZ literal constants outside DATA statements
and the four intrinsic functions allowed by Fortran 2003. In DATA statements, in direct
assignments, where the right-hand side only contains a BOZ literal constant, and for old-
style initializers of the form integer i /0’0173’ /, the constant is transferred as if TRANSFER
had been used; for COMPLEX numbers, only the real part is initialized unless CMPLX is used.
In all other cases, the BOZ literal constant is converted to an INTEGER value with the largest
decimal representation. This value is then converted numerically to the type and kind of the
variable in question. (For instance, real :: r = b?0000001° + 1 initializes r with 2.0.) As
different compilers implement the extension differently, one should be careful when doing
bitwise initialization of non-integer variables.

Note that initializing an INTEGER variable with a statement such as DATA
i/Z’FFFFFFFF’/ will give an integer overflow error rather than the desired result
of —1 when i is a 32-bit integer on a system that supports 64-bit integers. The
‘~fno-range-check’ option can be used as a workaround for legacy code that initializes
integers in this manner.

6.1.10 Real array indices

As an extension, GNU Fortran allows the use of REAL expressions or variables as array
indices.

6.1.11 Unary operators

As an extension, GNU Fortran allows unary plus and unary minus operators to appear as
the second operand of binary arithmetic operators without the need for parenthesis.

X=Yx-Z

6.1.12 Implicitly convert LOGICAL and INTEGER values

As an extension for backwards compatibility with other compilers, GNU Fortran allows the
implicit conversion of LOGICAL values to INTEGER values and vice versa. When converting
from a LOGICAL to an INTEGER, .FALSE. is interpreted as zero, and .TRUE. is interpreted as
one. When converting from INTEGER to LOGICAL, the value zero is interpreted as .FALSE.
and any nonzero value is interpreted as .TRUE..

LOGICAL :: 1
1=1
INTEGER :: i
i = .TRUE.

However, there is no implicit conversion of INTEGER values in if-statements, nor of
LOGICAL or INTEGER values in I/O operations.

Chapter 6: Extensions 47

6.1.13 Hollerith constants support

GNU Fortran supports Hollerith constants in assignments, function arguments, and DATA
and ASSIGN statements. A Hollerith constant is written as a string of characters preceded
by an integer constant indicating the character count, and the letter H or h, and stored
in bytewise fashion in a numeric (INTEGER, REAL, or complex) or LOGICAL variable. The
constant will be padded or truncated to fit the size of the variable in which it is stored.

Examples of valid uses of Hollerith constants:
complex*16 x(2)
data x /16Habcdefghijklmnop, 16Hqrstuvwxyz012345/
x(1) = 16HABCDEFGHIJKLMNOP
call foo (4h abc)

Invalid Hollerith constants examples:

integer*4 a
a 8H12345678 ! Valid, but the Hollerith constant will be truncated.
a OH ! At least one character is needed.

In general, Hollerith constants were used to provide a rudimentary facility for handling
character strings in early Fortran compilers, prior to the introduction of CHARACTER variables
in Fortran 77; in those cases, the standard-compliant equivalent is to convert the program
to use proper character strings. On occasion, there may be a case where the intent is
specifically to initialize a numeric variable with a given byte sequence. In these cases, the
same result can be obtained by using the TRANSFER statement, as in this example.

INTEGER (KIND=4) :: a
a = TRANSFER ("abcd", a) ! equivalent to: a = 4Habcd

6.1.14 Cray pointers

Cray pointers are part of a non-standard extension that provides a C-like pointer in Fortran.
This is accomplished through a pair of variables: an integer "pointer" that holds a memory
address, and a "pointee" that is used to dereference the pointer.

Pointer /pointee pairs are declared in statements of the form:

pointer (<pointer> , <pointee>)

or,
pointer (<pointerl> , <pointeel>), (<pointer2> , <pointee2>), ...

The pointer is an integer that is intended to hold a memory address. The pointee may
be an array or scalar. A pointee can be an assumed size array—that is, the last dimension
may be left unspecified by using a * in place of a value—but a pointee cannot be an assumed
shape array. No space is allocated for the pointee.

The pointee may have its type declared before or after the pointer statement, and its
array specification (if any) may be declared before, during, or after the pointer statement.
The pointer may be declared as an integer prior to the pointer statement. However, some
machines have default integer sizes that are different than the size of a pointer, and so the
following code is not portable:

integer ipt
pointer (ipt, iarr)

If a pointer is declared with a kind that is too small, the compiler will issue a warning;
the resulting binary will probably not work correctly, because the memory addresses stored
in the pointers may be truncated. It is safer to omit the first line of the above example;

48 The GNU Fortran Compiler

if explicit declaration of ipt’s type is omitted, then the compiler will ensure that ipt is an
integer variable large enough to hold a pointer.

Pointer arithmetic is valid with Cray pointers, but it is not the same as C pointer arith-
metic. Cray pointers are just ordinary integers, so the user is responsible for determining
how many bytes to add to a pointer in order to increment it. Consider the following example:

real target(10)

real pointee(10)
pointer (ipt, pointee)
ipt = loc (target)

ipt = ipt + 1

The last statement does not set ipt to the address of target (1), as it would in C pointer
arithmetic. Adding 1 to ipt just adds one byte to the address stored in ipt.

Any expression involving the pointee will be translated to use the value stored in the
pointer as the base address.

To get the address of elements, this extension provides an intrinsic function LOC(). The
LOC() function is equivalent to the & operator in C, except the address is cast to an integer
type:

real ar(10)

pointer (ipt, arpte(10))

real arpte

ipt = loc(ar) ! Makes arpte is an alias for ar
arpte(1) = 1.0 ! Sets ar(1) to 1.0

The pointer can also be set by a call to the MALLOC intrinsic (see Section 9.183 [MALLOC]
page 215).

)

Cray pointees often are used to alias an existing variable. For example:
integer target(10)
integer iarr(10)
pointer (ipt, iarr)
ipt = loc(target)

As long as ipt remains unchanged, iarr is now an alias for target. The optimizer,
however, will not detect this aliasing, so it is unsafe to use iarr and target simultaneously.
Using a pointee in any way that violates the Fortran aliasing rules or assumptions is illegal.
It is the user’s responsibility to avoid doing this; the compiler works under the assumption
that no such aliasing occurs.

Cray pointers will work correctly when there is no aliasing (i.e., when they are used to
access a dynamically allocated block of memory), and also in any routine where a pointee
is used, but any variable with which it shares storage is not used. Code that violates these
rules may not run as the user intends. This is not a bug in the optimizer; any code that
violates the aliasing rules is illegal. (Note that this is not unique to GNU Fortran; any
Fortran compiler that supports Cray pointers will “incorrectly” optimize code with illegal
aliasing.)

There are a number of restrictions on the attributes that can be applied to Cray point-
ers and pointees. Pointees may not have the ALLOCATABLE, INTENT, OPTIONAL, DUMMY,
TARGET, INTRINSIC, or POINTER attributes. Pointers may not have the DIMENSION, POINTER,
TARGET, ALLOCATABLE, EXTERNAL, or INTRINSIC attributes, nor may they be function re-
sults. Pointees may not occur in more than one pointer statement. A pointee cannot be a
pointer. Pointees cannot occur in equivalence, common, or data statements.

Chapter 6: Extensions 49

A Cray pointer may also point to a function or a subroutine. For example, the following
excerpt is valid:
implicit none
external sub
pointer (subptr,subpte)
external subpte
subptr = loc(sub)
call subpte()
[...]
subroutine sub

[...]

end subroutine sub

A pointer may be modified during the course of a program, and this will change the
location to which the pointee refers. However, when pointees are passed as arguments, they
are treated as ordinary variables in the invoked function. Subsequent changes to the pointer
will not change the base address of the array that was passed.

6.1.15 CONVERT specifier

GNU Fortran allows the conversion of unformatted data between little- and big-endian
representation to facilitate moving of data between different systems. The conversion can
be indicated with the CONVERT specifier on the OPEN statement. See Section 3.11 [GFOR-
TRAN_CONVERT _UNIT], page 30, for an alternative way of specifying the data format
via an environment variable.

Valid values for CONVERT are:

CONVERT=’"NATIVE’ Use the native format. This is the default.

CONVERT=’SWAP’ Swap between little- and big-endian.

CONVERT=’LITTLE_ENDIAN’ Use the little-endian representation for unformatted files.
CONVERT=’BIG_ENDIAN’ Use the big-endian representation for unformatted files.

Using the option could look like this:

open(file=’big.dat’,form="unformatted’,access=’sequential’, &
convert=’big_endian’)

The value of the conversion can be queried by using INQUIRE (CONVERT=ch). The values
returned are *BIG_ENDIAN’ and *LITTLE_ENDIAN’.

CONVERT works between big- and little-endian for INTEGER values of all supported kinds
and for REAL on IEEE systems of kinds 4 and 8. Conversion between different “extended
double” types on different architectures such as m68k and x86_64, which GNU Fortran
supports as REAL (KIND=10) and REAL(KIND=16), will probably not work.

Note that the values specified via the GFORTRAN_CONVERT_UNIT environment vari-
able will override the CONVERT specifier in the open statement. This is to give control
over data formats to users who do not have the source code of their program available.

Using anything but the native representation for unformatted data carries a significant
speed overhead. If speed in this area matters to you, it is best if you use this only for data
that needs to be portable.

50 The GNU Fortran Compiler

6.1.16 OpenMP

OpenMP (Open Multi-Processing) is an application programming interface (API) that sup-
ports multi-platform shared memory multiprocessing programming in C/C++ and Fortran
on many architectures, including Unix and Microsoft Windows platforms. It consists of a set
of compiler directives, library routines, and environment variables that influence run-time
behavior.

GNU Fortran strives to be compatible to the OpenMP Application Program Interface
v4.5.

To enable the processing of the OpenMP directive !$omp in free-form source code; the
c$omp, *$omp and !$omp directives in fixed form; the !$ conditional compilation sentinels in
free form; and the c$, *$ and !$ sentinels in fixed form, gfortran needs to be invoked with
the ‘~fopenmp’. This also arranges for automatic linking of the GNU Offloading and Multi
Processing Runtime Library Section “libgomp” in GNU Offloading and Multi Processing
Runtime Library.

The OpenMP Fortran runtime library routines are provided both in a form of a Fortran
90 module named omp_1lib and in a form of a Fortran include file named ‘omp_lib.h’.

An example of a parallelized loop taken from Appendix A.1 of the OpenMP Application
Program Interface v2.5:

SUBROUTINE A1(N, A, B)
INTEGER I, N
REAL B(N), A
'$0OMP PARALLEL DO !I is private by default
DO I=2,N
B(I) = (A(D) + A(I-1)) / 2.0
ENDDO
'$0MP END PARALLEL DO
END SUBROUTINE A1l

Please note:

e ‘—fopenmp’ implies ‘~frecursive’, i.e., all local arrays will be allocated on the stack.
When porting existing code to OpenMP, this may lead to surprising results, especially
to segmentation faults if the stacksize is limited.

e On glibc-based systems, OpenMP enabled applications cannot be statically linked due
to limitations of the underlying pthreads-implementation. It might be possible to get
a working solution if -W1,--whole-archive -1lpthread -Wl,--no-whole-archive is
added to the command line. However, this is not supported by gcc and thus not
recommended.

6.1.17 OpenACC

OpenACC is an application programming interface (API) that supports offloading of code
to accelerator devices. It consists of a set of compiler directives, library routines, and
environment variables that influence run-time behavior.

GNU Fortran strives to be compatible to the OpenACC Application Programming In-
terface v2.0.

To enable the processing of the OpenACC directive !$acc in free-form source code; the
c$acc, *$acc and !$acc directives in fixed form; the !'$ conditional compilation sentinels in
free form; and the c$, *$ and !'$ sentinels in fixed form, gfortran needs to be invoked with

http://openmp.org/wp/openmp-specifications/
http://openmp.org/wp/openmp-specifications/
http://www.openacc.org/
http://www.openacc.org/

Chapter 6: Extensions 51

the ‘~fopenacc’. This also arranges for automatic linking of the GNU Offloading and Multi
Processing Runtime Library Section “libgomp” in GNU Offloading and Multi Processing
Runtime Library.

The OpenACC Fortran runtime library routines are provided both in a form of a Fortran
90 module named openacc and in a form of a Fortran include file named ‘openacc_lib.h’.

Note that this is an experimental feature, incomplete, and subject to change in future
versions of GCC. See https://gcc.gnu.org/wiki/0OpenACC for more information.

6.1.18 Argument list functions VAL, %REF and %L0C

GNU Fortran supports argument list functions %VAL, %REF and %L0OC statements, for back-
ward compatibility with g77. It is recommended that these should be used only for code
that is accessing facilities outside of GNU Fortran, such as operating system or windowing
facilities. It is best to constrain such uses to isolated portions of a program—portions that
deal specifically and exclusively with low-level, system-dependent facilities. Such portions
might well provide a portable interface for use by the program as a whole, but are them-
selves not portable, and should be thoroughly tested each time they are rebuilt using a new
compiler or version of a compiler.

%VAL passes a scalar argument by value, %REF passes it by reference and %L0OC passes its
memory location. Since gfortran already passes scalar arguments by reference, %REF is in
effect a do-nothing. %LOC has the same effect as a Fortran pointer.

An example of passing an argument by value to a C subroutine foo.:

C
C prototype void foo_ (float x);
C

external foo

real*4 x

x = 3.14159

call foo (%VAL (x))

end

For details refer to the g77 manual https://gcc.gnu.org/onlinedocs/gcc-3.4.6/
g77/index.html#Top.

Also, c_by_val.f and its partner c_by_val.c of the GNU Fortran testsuite are worth
a look.

6.1.19 Read/Write after EOF marker

Some legacy codes rely on allowing READ or WRITE after the EOF file marker in order to find
the end of a file. GNU Fortran normally rejects these codes with a run-time error message
and suggests the user consider BACKSPACE or REWIND to properly position the file before the
EOF marker. As an extension, the run-time error may be disabled using -std=legacy.

6.1.20 STRUCTURE and RECORD

Record structures are a pre-Fortran-90 vendor extension to create user-defined aggregate
data types. Support for record structures in GNU Fortran can be enabled with the
‘~fdec-structure’ compile flag. If you have a choice, you should instead use Fortran 90’s
“derived types”, which have a different syntax.

In many cases, record structures can easily be converted to derived types. To convert,
replace STRUCTURE /structure-name/ by TYPE type-name. Additionally, replace RECORD

https://gcc.gnu.org/wiki/OpenACC
https://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/index.html#Top
https://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/index.html#Top

52 The GNU Fortran Compiler

/structure-name/ by TYPE(type-name). Finally, in the component access, replace the pe-
riod (.) by the percent sign (%).
Here is an example of code using the non portable record structure syntax:

! Declaring a structure named ‘‘item’’ and containing three fields:
! an integer ID, an description string and a floating-point price.
STRUCTURE /item/

INTEGER id

CHARACTER (LEN=200) description

REAL price
END STRUCTURE
| Define two variables, an single record of type ‘‘item’’
! named ‘‘pear’’, and an array of items named °‘store_catalog’’
RECORD /item/ pear, store_catalog(100)

! We can directly access the fields of both variables
pear.id = 92316

pear.description = "juicy D’Anjou pear"

pear.price = 0.15

store_catalog(7).id = 7831

store_catalog(7) .description = "milk bottle"
store_catalog(7) .price = 1.2

I We can also manipulate the whole structure
store_catalog(12) = pear
print *, store_catalog(12)

This code can easily be rewritten in the Fortran 90 syntax as following:

! ¢ “STRUCTURE /name/ ... END STRUCTURE’’ becomes
I “‘“TYPE name ... END TYPE’’
TYPE item
INTEGER id
CHARACTER (LEN=200) description
REAL price
END TYPE

| ‘‘RECORD /name/ variable’’ becomes ‘‘TYPE(name) variable’’
TYPE(item) pear, store_catalog(100)

| Instead of using a dot (.) to access fields of a record, the
! standard syntax uses a percent sign (%)

pear’id = 92316

pearfdescription = "juicy D’Anjou pear"

pearyprice = 0.15

store_catalog(7)%id = 7831

store_catalog(7)%description = "milk bottle"
store_catalog(7)Yprice = 1.2

Chapter 6: Extensions 53

I Assignments of a whole variable do not change
store_catalog(12) = pear
print *, store_catalog(12)

GNU Fortran implements STRUCTURES like derived types with the following rules and
exceptions:

e Structures act like derived types with the SEQUENCE attribute. Otherwise they may
contain no specifiers.

e Structures may share names with other symbols. For example, the following is invalid
for derived types, but valid for structures:

structure /header/
|

end structure
record /header/ header

e Structure types may be declared nested within another parent structure. The syntax
is:

structure /type-name/

structure [/<type-name>/] <field-list>

The type name may be ommitted, in which case the structure type itself is anonymous,
and other structures of the same type cannot be instantiated. The following shows
some examples:

structure /appointment/
! nested structure definition: app_time is an array of two ’time’
structure /time/ app_time (2)
integer (1) hour, minute
end structure
character(10) memo
end structure

! The ’time’ structure is still usable
record /time/ now
now = time(5, 30)

structure /appointment/
! anonymous nested structure definition
structure start, end
integer (1) hour, minute
end structure
character(10) memo
end structure

e Structures may contain UNION blocks. For more detail see the section on Section 6.1.21
[UNION and MAP], page 54.

54 The GNU Fortran Compiler

e Structures support old-style initialization of components, like those described in
Section 6.1.2 [Old-style variable initialization], page 43. For array initializers, an
initializer may contain a repeat specification of the form <literal-integer> *
<constant-initializer>. The value of the integer indicates the number of times to
repeat the constant initializer when expanding the initializer list.

6.1.21 UNION and MAP

Unions are an old vendor extension which were commonly used with the non-standard
Section 6.1.20 [STRUCTURE and RECORD], page 51 extensions. Use of UNION and MAP
is automatically enabled with ‘-fdec-structure’.

A UNION declaration occurs within a structure; within the definition of each union is a
number of MAP blocks. Each MAP shares storage with its sibling maps (in the same union),
and the size of the union is the size of the largest map within it, just as with unions in C.
The major difference is that component references do not indicate which union or map the
component is in (the compiler gets to figure that out).

Here is a small example:

structure /myunion/
union
map
character(2) w0, wil, w2
end map
map
character(6) long
end map
end union
end structure

record /myunion/ rec
! After this assignment...

rec.long = ’hello!’

The following is true:

1

! rec.w0 === ’he’
! rec.wl === ’11°
! rec.w2 === ’o!’

The two maps share memory, and the size of the union is ultimately six bytes:

0 1 2 3 4 5 6 Byte offset
I | I I | I |

- wo -~ w1 - w2 -

\-----—- / \------- / \------- /

- LONG h

\mmmm /

Following is an example mirroring the layout of an Intel x86_64 register:

structure /reg/
union ! UO I rax

Chapter 6: Extensions

map
character (16) rx
end map
map
character(8) rh | rah
union ! U1l
map
character(8) rl I ral
end map
map
character(8) ex | eax
end map
map
character(4) eh | eah
union ! U2
map
character(4) el ! eal
end map
map
character(4)
end map
map
character(2)
character(2)
end map
end union
end map
end union
end map
end union
end structure
record /reg/ a

e}

ax

[=2

ah
al

(o=}

| After this assignment...
a.rx = >AAAAAAAA .BBB.C.D’

I The following is true:

a.rx === ’AAAAAAAA.BBB.C.D’
a.rh === ’AAAAAAAA’

a.rl === > .BBB.C.D’
a.ex === > .BBB.C.D’
a.eh === ’ .BBB’
a.el === ’.C.D’°
a.x === ’.C.D°
a.h === ’.C?

a.l === >.D’

56 The GNU Fortran Compiler

6.1.22 Type variants for integer intrinsics

Similar to the D/C prefixes to real functions to specify the input/output types, GNU
Fortran offers B/I/J/K prefixes to integer functions for compatibility with DEC programs.
The types implied by each are:

B - INTEGER(kind=1)
I - INTEGER(kind=2)
J - INTEGER(kind=4)
K - INTEGER(kind=8)

GNU Fortran supports these with the flag ‘~-fdec-intrinsic-ints’. Intrinsics for which
prefixed versions are available and in what form are noted in Chapter 9 [Intrinsic Proce-
dures|, page 101. The complete list of supported intrinsics is here:

Intrinsic B I J K

Section 9.3 BABS IIABS JIABS KIABS
[ABS], page 102

Section 9.51 BBTEST BITEST BJTEST BKTEST
[BTEST],

page 133

Section 9.136 BIAND ITAND JIAND KIAND
[IAND],

page 188

Section 9.139 BBCLR IIBCLR JIBCLR KIBCLR
[IBCLR],

page 190

Section 9.140 BBITS IIBITS JIBITS KIBITS
[IBITS],

page 191

Section 9.141 BBSET IIBSET JIBSET KIBSET
[IBSET],

page 191

Section 9.144 BIEOR ITEOR JIEOR KIEOR
[IEOR],

page 193

Section 9.151 BIOR IIOR JIOR KIOR
[IOR], page 197

Section 9.157 BSHFT IISHFT JISHFT KISHFT
[ISHFT],

page 201

Section 9.158 BSHFTC IISHFTC JISHFTC KISHFTC
[ISHFTC],

page 201

Section 9.199 BMOD IMOD JMOD KMOD
[MOD], page 223

Chapter 6: Extensions 57

Section 9.207 BNOT INOT JNOT KNQOT
[NOT], page 228

Section 9.226 - FLOATI FLOATJ FLOATK
[REAL],

page 239

6.1.23 AUTOMATIC and STATIC attributes

With ‘-fdec-static’ GNU Fortran supports the DEC extended attributes STATIC and
AUTOMATIC to provide explicit specification of entity storage. These follow the syntax of the
Fortran standard SAVE attribute.

STATIC is exactly equivalent to SAVE, and specifies that an entity should be allocated
in static memory. As an example, STATIC local variables will retain their values across
multiple calls to a function.

Entities marked AUTOMATIC will be stack automatic whenever possible. AUTOMATIC is the
default for local variables smaller than ‘-fmax-stack-var-size’, unless ‘-fno-automatic’
is given. This attribute overrides ‘-fno-automatic’, ‘~-fmax-stack-var-size’, and blanket
SAVE statements.

Examples:

subroutine f

integer, automatic :: i | automatic variable
integer x, y | static variables
save

endsubroutine

subroutine f
integer a, b, ¢, x, y, 2z
static :: x
save y
automatic z, c
! a, b, ¢, and z are automatic
! x and y are static
endsubroutine

! Compiled with -fno-automatic
subroutine f
integer a, b, c, d

automatic :: a
! a is automatic; b, ¢, and d are static
endsubroutine

6.1.24 Extended math intrinsics

GNU Fortran supports an extended list of mathematical intrinsics with the compile flag
‘-fdec-math’ for compatability with legacy code. These intrinsics are described fully in
Chapter 9 [Intrinsic Procedures|, page 101 where it is noted that they are extensions and
should be avoided whenever possible.

58 The GNU Fortran Compiler

Specifically, ‘-fdec-math’ enables the Section 9.76 [COTAN], page 150 intrinsic, and
trigonometric intrinsics which accept or produce values in degrees instead of radians. Here
is a summary of the new intrinsics:

Radians Degrees

Section 9.6 [ACOS], page 104 Section 9.7 [ACOSD], page 105*
Section 9.19 [ASIN], page 112 Section 9.20 [ASIND], page 113*
Section 9.23 [ATAN], page 115 Section 9.24 [ATAND], page 116*
Section 9.25 [ATAN2], page 117 Section 9.26 [ATAN2D], page 118*
Section 9.73 [COS], page 148 Section 9.74 [COSD], page 149*
Section 9.76 [COTAN], page 150* Section 9.77 [COTAND], page 150%*
Section 9.247 [SIN], page 251 Section 9.248 [SIND], page 251*
Section 9.263 [TAN], page 261 Section 9.264 [TAND], page 261*

* Enabled with ‘-fdec-math’.

For advanced users, it may be important to know the implementation of these functions.
They are simply wrappers around the standard radian functions, which have more accurate
builtin versions. These functions convert their arguments (or results) to degrees (or radians)
by taking the value modulus 360 (or 2*pi) and then multiplying it by a constant radian-to-
degree (or degree-to-radian) factor, as appropriate. The factor is computed at compile-time
as 180/pi (or pi/180).

6.1.25 Form feed as whitespace

Historically, legacy compilers allowed insertion of form feed characters ("\f’, ASCII 0xC) at
the beginning of lines for formatted output to line printers, though the Fortran standard
does not mention this. GNU Fortran supports the interpretation of form feed characters in
source as whitespace for compatibility.

6.1.26 TYPE as an alias for PRINT

For compatibility, GNU Fortran will interpret TYPE statements as PRINT statements with
the flag ‘-fdec’. With this flag asserted, the following two examples are equivalent:

TYPE *, ’hello world’

PRINT *, ’hello world’

6.1.27 %LOC as an rvalue

Normally %LOC is allowed only in parameter lists. However the intrinsic function LOC does
the same thing, and is usable as the right-hand-side of assignments. For compatibility, GNU
Fortran supports the use of %4LOC as an alias for the builtin LOC with ‘~std=legacy’. With
this feature enabled the following two examples are equivalent:

integer :: i, 1

1 = %loc(i)

call sub(l)

integer :: i
call sub(%loc(i))

Chapter 6: Extensions 59

6.1.28 .XOR. operator

GNU Fortran supports .X0R. as a logical operator with ~std=1legacy for compatibility with
legacy code. .XOR. is equivalent to .NEQV.. That is, the output is true if and only if the
inputs differ.

6.1.29 Bitwise logical operators

With ‘-fdec’, GNU Fortran relaxes the type constraints on logical operators to allow in-
teger operands, and performs the corresponding bitwise operation instead. This flag is for
compatibility only, and should be avoided in new code. Consider:

INTEGER :: i, j

i=2z’33’

j = z’cc’

print *, i .AND. j

In this example, compiled with ‘-fdec’, GNU Fortran will replace the .AND. operation

with a call to the intrinsic Section 9.136 [IAND], page 188 function, yielding the bitwise-
and of i and j.

Note that this conversion will occur if at least one operand is of integral type. As a result,
a logical operand will be converted to an integer when the other operand is an integer in a
logical operation. In this case, .TRUE. is converted to 1 and .FALSE. to O.

Here is the mapping of logical operator to bitwise intrinsic used with ‘-fdec’:

Operator Intrinsic Bitwise operation

.NOT. Section 9.207 complement
[NOT], page 228

.AND. Section 9.136 intersection
[IAND], page 188

.OR. Section 9.151 union
[IOR], page 197

.NEQV. Section 9.144 exclusive or
[IEOR], page 193

.EQV. Section 9.207 complement of exclusive or
[NOT],

page 228(Section 9.144
[IEOR], page 193)

6.1.30 Extended I/0O specifiers

GNU Fortran supports the additional legacy I/O specifiers CARRIAGECONTROL, READONLY,
and SHARE with the compile flag ‘~fdec’, for compatibility.

CARRIAGECONTROL
The CARRIAGECONTROL specifier allows a user to control line termination set-
tings between output records for an I/O unit. The specifier has no meaning for
readonly files. When CARRAIGECONTROL is specified upon opening a unit for for-
matted writing, the exact CARRIAGECONTROL setting determines what characters
to write between output records. The syntax is:
OPEN(..., CARRIAGECONTROL=cc)

60 The GNU Fortran Compiler

Where cc is a character expression that evaluates to one of the following values:

’LIST’ One line feed between records (default)
’FORTRAN’ Legacy interpretation of the first character (see below)
’NONE’ No separator between records

With CARRIAGECONTROL="FORTRAN’, when a record is written, the first charac-
ter of the input record is not written, and instead determines the output record
separator as follows:

Leading character Meaning Output separating character(s)
747 Overprinting Carriage return only
)= New line Line feed and carriage return
0 Skip line Two line feeds and carriage return
71 New page Form feed and carriage return
$° Prompting Line feed (no carriage return)
CHAR(0) Overprinting (no None

advance)

READONLY The READONLY specifier may be given upon opening a unit, and is equivalent
to specifying ACTION="READ’, except that the file may not be deleted on close
(i.e. CLOSE with STATUS="DELETE"). The syntax is:
OPEN(..., READONLY)

SHARE The SHARE specifier allows system-level locking on a unit upon opening it for
controlled access from multiple processes/threads. The SHARE specifier has
several forms:

OPEN(..., SHARE=sh)
OPEN(..., SHARED)
OPEN(..., NOSHARED)

Where sh in the first form is a character expression that evaluates to a value as
seen in the table below. The latter two forms are aliases for particular values

of sh:

Explicit form Short form Meaning
SHARE=’DENYRW’ NOSHARED Exclusive (write) lock
SHARE="DENYNONE’ SHARED Shared (read) lock

In general only one process may hold an exclusive (write) lock for a given file
at a time, whereas many processes may hold shared (read) locks for the same
file.

The behavior of locking may vary with your operating system. On POSIX
systems, locking is implemented with fcntl. Consult your corresponding op-
erating system’s manual pages for further details. Locking via SHARE= is not
supported on other systems.

6.1.31 Legacy PARAMETER statements

For compatibility, GNU Fortran supports legacy PARAMETER statements without paren-
theses with ‘-std=legacy’. A warning is emitted if used with ‘-std=gnu’, and an error is

Chapter 6: Extensions 61

acknowledged with a real Fortran standard flag (‘-std=£95’, etc...). These statements take
the following form:

implicit real (E)
parameter e = 2.718282
real c

parameter c = 3.0e8

6.1.32 Default exponents

For compatibility, GNU Fortran supports a default exponent of zero in real constants with
‘~fdec’. For example, 9e¢ would be interpreted as 9e0, rather than an error.

6.2 Extensions not implemented in GNU Fortran

The long history of the Fortran language, its wide use and broad userbase, the large num-
ber of different compiler vendors and the lack of some features crucial to users in the first
standards have lead to the existence of a number of important extensions to the language.
While some of the most useful or popular extensions are supported by the GNU Fortran
compiler, not all existing extensions are supported. This section aims at listing these ex-
tensions and offering advice on how best make code that uses them running with the GNU
Fortran compiler.

6.2.1 ENCODE and DECODE statements

GNU Fortran does not support the ENCODE and DECODE statements. These statements are
best replaced by READ and WRITE statements involving internal files (CHARACTER variables
and arrays), which have been part of the Fortran standard since Fortran 77. For example,
replace a code fragment like

INTEGER*1 LINE(80)

REAL A, B, C
c ... Code that sets LINE

DECODE (80, 9000, LINE) A, B, C
9000 FORMAT (1X, 3(F10.5))

with the following:

CHARACTER (LEN=80) LINE

REAL A, B, C
c ... Code that sets LINE

READ (UNIT=LINE, FMT=9000) A, B, C
9000 FORMAT (1X, 3(F10.5))

Similarly, replace a code fragment like

INTEGER*1 LINE(80)
REAL A, B, C
c ... Code that sets A, B and C
ENCODE (80, 9000, LINE) A, B, C
9000 FORMAT (1X, ’0UTPUT IS °’, 3(F10.5))

with the following:

CHARACTER (LEN=80) LINE

REAL A, B, C
c ... Code that sets A, B and C

WRITE (UNIT=LINE, FMT=9000) A, B, C
9000 FORMAT (1X, °’O0UTPUT IS ’, 3(F10.5))

62 The GNU Fortran Compiler

6.2.2 Variable FORMAT expressions

A variable FORMAT expression is format statement which includes angle brackets enclosing a
Fortran expression: FORMAT(I<N>). GNU Fortran does not support this legacy extension.
The effect of variable format expressions can be reproduced by using the more powerful
(and standard) combination of internal output and string formats. For example, replace a
code fragment like this:
WRITE(6,20) INT1
20 FORMAT (I<N+1>)
with the following:

c Variable declaration
CHARACTER (LEN=20) FMT

c

c Other code here...

c
WRITE(FMT,’ ("(I", IO, ")")’) N+1
WRITE(6,FMT) INT1

or with:
c Variable declaration
CHARACTER (LEN=20) FMT
c
c Other code here...

WRITE(FMT,*) N+1
WRITE(6," (I" // ADJUSTL(FMT) // ")") INT1

6.2.3 Alternate complex function syntax

Some Fortran compilers, including g77, let the user declare complex functions with the
syntax COMPLEX FUNCTION namex16(), as well as COMPLEX*16 FUNCTION name (). Both are
non-standard, legacy extensions. gfortran accepts the latter form, which is more common,
but not the former.

6.2.4 Volatile COMMON blocks

Some Fortran compilers, including g77, let the user declare COMMON with the VOLATILE
attribute. This is invalid standard Fortran syntax and is not supported by gfortran. Note
that gfortran accepts VOLATILE variables in COMMON blocks since revision 4.3.

6.2.5 OPEN(... NAME=)

Some Fortran compilers, including g77, let the user declare OPEN(... NAME=). This is
invalid standard Fortran syntax and is not supported by gfortran. OPEN(... NAME=)
should be replaced with OPEN(... FILE=).

Chapter 7: Mixed-Language Programming 63

7 Mixed-Language Programming

This chapter is about mixed-language interoperability, but also applies if one links Fortran
code compiled by different compilers. In most cases, use of the C Binding features of the
Fortran 2003 standard is sufficient, and their use is highly recommended.

7.1 Interoperability with C

Since Fortran 2003 (ISO/IEC 1539-1:2004(E)) there is a standardized way to generate
procedure and derived-type declarations and global variables which are interoperable with
C (ISO/IEC 9899:1999). The bind(C) attribute has been added to inform the compiler that
a symbol shall be interoperable with C; also, some constraints are added. Note, however,
that not all C features have a Fortran equivalent or vice versa. For instance, neither C’s
unsigned integers nor C’s functions with variable number of arguments have an equivalent
in Fortran.

Note that array dimensions are reversely ordered in C and that arrays in C always start
with index 0 while in Fortran they start by default with 1. Thus, an array declaration
A(n,m) in Fortran matches A[m] [n] in C and accessing the element A(i,j) matches A[j-
1] [i-1]1. The element following A(i,j) (C: A[j-1]1[i-1]; assuming ¢ < n) in memory is
A(i+1,j) (C: A[j-111[4i]).

7.1.1 Intrinsic Types

In order to ensure that exactly the same variable type and kind is used in C and Fortran, the
named constants shall be used which are defined in the ISO_C_BINDING intrinsic module.
That module contains named constants for kind parameters and character named constants
for the escape sequences in C. For a list of the constants, see Section 10.2 [I[SO_C_BINDING],
page 275.

For logical types, please note that the Fortran standard only guarantees interoperability
between C99’s _Bool and Fortran’s C_Bool-kind logicals and C99 defines that true has the
value 1 and false the value 0. Using any other integer value with GNU Fortran’s LOGICAL
(with any kind parameter) gives an undefined result. (Passing other integer values than 0
and 1 to GCC’s _Bool is also undefined, unless the integer is explicitly or implicitly casted
to _Bool.)

7.1.2 Derived Types and struct

For compatibility of derived types with struct, one needs to use the BIND(C) attribute in
the type declaration. For instance, the following type declaration

USE ISO_C_BINDING
TYPE, BIND(C) :: myType
INTEGER(C_INT) :: i1, i2
INTEGER (C_SIGNED_CHAR) :: i3
REAL(C_DOUBLE) :: di
COMPLEX (C_FLOAT_COMPLEX) :: ci
CHARACTER (KIND=C_CHAR) :: str(5)
END TYPE

matches the following struct declaration in C

struct {
int i1, i2;

64 The GNU Fortran Compiler

/* Note: "char" might be signed or unsigned. */
signed char i3;
double di;
float _Complex cl;
char str[5];
} myType;

Derived types with the C binding attribute shall not have the sequence attribute, type
parameters, the extends attribute, nor type-bound procedures. Every component must be
of interoperable type and kind and may not have the pointer or allocatable attribute.
The names of the components are irrelevant for interoperability.

As there exist no direct Fortran equivalents, neither unions nor structs with bit field or
variable-length array members are interoperable.

7.1.3 Interoperable Global Variables

Variables can be made accessible from C using the C binding attribute, optionally together
with specifying a binding name. Those variables have to be declared in the declaration part
of a MODULE, be of interoperable type, and have neither the pointer nor the allocatable
attribute.
MODULE m
USE myType_module
USE ISO_C_BINDING
integer (C_INT), bind(C, name="_MyProject_flags") :: global_flag
type (myType), bind(C) :: tp
END MODULE
Here, _MyProject_flags is the case-sensitive name of the variable as seen from C pro-
grams while global_flag is the case-insensitive name as seen from Fortran. If no binding
name is specified, as for tp, the C binding name is the (lowercase) Fortran binding name.
If a binding name is specified, only a single variable may be after the double colon. Note of
warning: You cannot use a global variable to access errno of the C library as the C standard
allows it to be a macro. Use the IERRNO intrinsic (GNU extension) instead.

7.1.4 Interoperable Subroutines and Functions

Subroutines and functions have to have the BIND(C) attribute to be compatible with C.
The dummy argument declaration is relatively straightforward. However, one needs to be
careful because C uses call-by-value by default while Fortran behaves usually similar to
call-by-reference. Furthermore, strings and pointers are handled differently. Note that in
Fortran 2003 and 2008 only explicit size and assumed-size arrays are supported but not
assumed-shape or deferred-shape (i.e. allocatable or pointer) arrays. However, those are
allowed since the Technical Specification 29113, see Section 7.1.6 [Further Interoperability
of Fortran with C], page 68

To pass a variable by value, use the VALUE attribute. Thus, the following C prototype
int func(int i, int *j)
matches the Fortran declaration

integer(c_int) function func(i,j)
use iso_c_binding, only: c_int
integer(c_int), VALUE :: i
integer(c_int) :: j

Chapter 7: Mixed-Language Programming 65

Note that pointer arguments also frequently need the VALUE attribute, see Section 7.1.5
[Working with Pointers], page 66.

Strings are handled quite differently in C and Fortran. In C a string is a NUL-terminated
array of characters while in Fortran each string has a length associated with it and is thus
not terminated (by e.g. NUL). For example, if one wants to use the following C function,

#include <stdio.h>
void print_C(char *string) /* equivalent: char string[] =*/
{
printf ("%s\n", string);
}

to print “Hello World” from Fortran, one can call it using

use iso_c_binding, only: C_CHAR, C_NULL_CHAR
interface
subroutine print_c(string) bind(C, name="print_C")
use iso_c_binding, only: c_char
character(kind=c_char) :: string(x)
end subroutine print_c
end interface
call print_c(C_CHAR_"Hello World"//C_NULL_CHAR)

As the example shows, one needs to ensure that the string is NUL terminated. Addi-
tionally, the dummy argument string of print_C is a length-one assumed-size array; using
character(len=%) is not allowed. The example above uses c_char_"Hello World" to en-
sure the string literal has the right type; typically the default character kind and c_char are
the same and thus "Hello World" is equivalent. However, the standard does not guarantee
this.

The use of strings is now further illustrated using the C library function strncpy, whose
prototype is

char *strncpy(char *restrict sl1, const char *restrict s2, size_t n);

The function strncpy copies at most n characters from string s2 to sI and returns sl.
In the following example, we ignore the return value:

use iso_c_binding

implicit none

character(len=30) :: str,str2

interface
! Ignore the return value of strncpy -> subroutine
! "restrict" is always assumed if we do not pass a pointer
subroutine strncpy(dest, src, n) bind(C)

import

character(kind=c_char), intent(out) :: dest(*)
character(kind=c_char), intent(in) :: src(x)
integer(c_size_t), value, intent(in) :: n

end subroutine strncpy
end interface
str = repeat(’X’,30) ! Initialize whole string with ’X’
call strncpy(str, c_char_"Hello World"//C_NULL_CHAR, &
len(c_char_"Hello World",kind=c_size_t))
print ’(a)’, str ! prints: "Hello WorldXXXXXXXXXXXXXXXXXXX"
end

The intrinsic procedures are described in Chapter 9 [Intrinsic Procedures], page 101.

66 The GNU Fortran Compiler

7.1.5 Working with Pointers

C pointers are represented in Fortran via the special opaque derived type type (c_ptr) (with
private components). Thus one needs to use intrinsic conversion procedures to convert from
or to C pointers.

For some applications, using an assumed type (TYPE(%*)) can be an alternative to a C
pointer; see Section 7.1.6 [Further Interoperability of Fortran with C|, page 68.

For example,

use iso_c_binding

type(c_ptr) :: cptrl, cptr2

integer, target :: array(7), scalar

integer, pointer :: pa(:), ps

cptrl = c_loc(array(1)) ! The programmer needs to ensure that the
! array is contiguous if required by the C
! procedure

cptr2 = c_loc(scalar)

call c_f_pointer(cptr2, ps)

call c_f_pointer(cptr2, pa, shape=[7])

When converting C to Fortran arrays, the one-dimensional SHAPE argument has to be
passed.

If a pointer is a dummy-argument of an interoperable procedure, it usually has to be
declared using the VALUE attribute. void* matches TYPE(C_PTR), VALUE, while TYPE(C_
PTR) alone matches voidx*x*.

Procedure pointers are handled analogously to pointers; the C type is TYPE(C_FUNPTR)
and the intrinsic conversion procedures are C_F_PROCPOINTER and C_FUNLOC.

Let us consider two examples of actually passing a procedure pointer from C to Fortran
and vice versa. Note that these examples are also very similar to passing ordinary pointers
between both languages. First, consider this code in C:

/* Procedure implemented in Fortran. */
void get_values (void (*)(double));

/* Call-back routine we want called from Fortran. */
void
print_it (double x)
{
printf ("Number is %f.\n", x);
}

/* Call Fortran routine and pass call-back to it. */
void
foobar ()
{
get_values (&print_it);
}

A matching implementation for get_values in Fortran, that correctly receives the pro-
cedure pointer from C and is able to call it, is given in the following MODULE:

MODULE m
IMPLICIT NONE

! Define interface of call-back routine.
ABSTRACT INTERFACE
SUBROUTINE callback (x)

Chapter 7: Mixed-Language Programming

USE, INTRINSIC :: ISO_C_BINDING

REAL (KIND=C_DOUBLE) , INTENT(IN), VALUE ::

END SUBROUTINE callback
END INTERFACE

CONTAINS

! Define C-bound procedure.

SUBROUTINE get_values (cproc) BIND(C)
USE, INTRINSIC :: ISO_C_BINDING
TYPE(C_FUNPTR), INTENT(IN), VALUE :: cproc

PROCEDURE (callback), POINTER :: proc

! Convert C to Fortran procedure pointer.
CALL C_F_PROCPOINTER (cproc, proc)

! Call it.
CALL proc (1.0_C_DOUBLE)
CALL proc (-42.0_C_DOUBLE)
CALL proc (18.12_C_DOUBLE)
END SUBROUTINE get_values

END MODULE m

67

Next, we want to call a C routine that expects a procedure pointer argument and pass
it a Fortran procedure (which clearly must be interoperable!). Again, the C function may

be:
int
call_it (int (*func) (int), int arg)
{
return func (arg);
}

It can be used as in the following Fortran code:

MODULE m
USE, INTRINSIC :: ISO_C_BINDING
IMPLICIT NONE

! Define interface of C function.
INTERFACE

INTEGER(KIND=C_INT) FUNCTION call_it (func, arg) BIND(C)

USE, INTRINSIC :: ISO_C_BINDING

TYPE(C_FUNPTR) , INTENT(IN), VALUE :: func
INTEGER(KIND=C_INT), INTENT(IN), VALUE ::

END FUNCTION call_it
END INTERFACE

CONTAINS

! Define procedure passed to C function.
! It must be interoperable!

INTEGER (KIND=C_INT) FUNCTION double_it (arg) BIND(C)

INTEGER (KIND=C_INT), INTENT(IN), VALUE ::
double_it = arg + arg
END FUNCTION double_it

! Call C function.

68 The GNU Fortran Compiler

SUBROUTINE foobar ()
TYPE(C_FUNPTR) :: cproc
INTEGER(KIND=C_INT) :: i

! Get C procedure pointer.
cproc = C_FUNLOC (double_it)

! Use it.
DO i = 1_C_INT, 10_C_INT
PRINT *, call_it (cproc, i)
END DO
END SUBROUTINE foobar

END MODULE m

7.1.6 Further Interoperability of Fortran with C

The Technical Specification ISO/TEC TS 29113:2012 on further interoperability of Fortran
with C extends the interoperability support of Fortran 2003 and Fortran 2008. Besides
removing some restrictions and constraints, it adds assumed-type (TYPE(*)) and assumed-
rank (dimension) variables and allows for interoperability of assumed-shape, assumed-rank
and deferred-shape arrays, including allocatables and pointers.

Note: Currently, GNU Fortran does not support the array descriptor (dope vector) as
specified in the Technical Specification, but uses an array descriptor with different fields.
The Chasm Language Interoperability Tools, http://chasm-interop.sourceforge.net/
, provide an interface to GNU Fortran’s array descriptor.

The Technical Specification adds the following new features, which are supported by
GNU Fortran:

e The ASYNCHRONOUS attribute has been clarified and extended to allow its use with
asynchronous communication in user-provided libraries such as in implementations of
the Message Passing Interface specification.

e Many constraints have been relaxed, in particular for the C_LOC and C_F_POINTER
intrinsics.

e The OPTIONAL attribute is now allowed for dummy arguments; an absent argument
matches a NULL pointer.

e Assumed types (TYPE(*)) have been added, which may only be used for dummy argu-
ments. They are unlimited polymorphic but contrary to CLASS (*) they do not contain
any type information, similar to C’s void * pointers. Expressions of any type and kind
can be passed; thus, it can be used as replacement for TYPE(C_PTR), avoiding the use
of C_LOC in the caller.

Note, however, that TYPE(*) only accepts scalar arguments, unless the DIMENSION is
explicitly specified. As DIMENSION(*) only supports array (including array elements)
but no scalars, it is not a full replacement for C_LOC. On the other hand, assumed-type
assumed-rank dummy arguments (TYPE(*), DIMENSION(..)) allow for both scalars
and arrays, but require special code on the callee side to handle the array descriptor.

e Assumed-rank arrays (DIMENSION(..)) as dummy argument allow that scalars and
arrays of any rank can be passed as actual argument. As the Technical Specification
does not provide for direct means to operate with them, they have to be used either

http://chasm-interop.sourceforge.net/
http://chasm-interop.sourceforge.net/

Chapter 7: Mixed-Language Programming 69

from the C side or be converted using C_LOC and C_F_POINTER to scalars or arrays of
a specific rank. The rank can be determined using the RANK intrinisic.

Currently unimplemented:

e GNU Fortran always uses an array descriptor, which does not match the one of the
Technical Specification. The ISO_Fortran_binding.h header file and the C functions
it specifies are not available.

e Using assumed-shape, assumed-rank and deferred-shape arrays in BIND(C) procedures
is not fully supported. In particular, C interoperable strings of other length than one
are not supported as this requires the new array descriptor.

7.2 GNU Fortran Compiler Directives

The Fortran standard describes how a conforming program shall behave; however, the
exact implementation is not standardized. In order to allow the user to choose specific
implementation details, compiler directives can be used to set attributes of variables and
procedures which are not part of the standard. Whether a given attribute is supported and
its exact effects depend on both the operating system and on the processor; see Section “C
Extensions” in Using the GNU Compiler Collection (GCC) for details.

For procedures and procedure pointers, the following attributes can be used to change
the calling convention:

e CDECL - standard C calling convention
e STDCALL — convention where the called procedure pops the stack

e FASTCALL — part of the arguments are passed via registers instead using the stack

Besides changing the calling convention, the attributes also influence the decoration of
the symbol name, e.g., by a leading underscore or by a trailing at-sign followed by the
number of bytes on the stack. When assigning a procedure to a procedure pointer, both
should use the same calling convention.

On some systems, procedures and global variables (module variables and COMMON blocks)
need special handling to be accessible when they are in a shared library. The following
attributes are available:

e DLLEXPORT — provide a global pointer to a pointer in the DLL

e DLLIMPORT — reference the function or variable using a global pointer

For dummy arguments, the NO_ARG_CHECK attribute can be used; in other compilers, it
is also known as IGNORE_TKR. For dummy arguments with this attribute actual arguments
of any type and kind (similar to TYPE(*)), scalars and arrays of any rank (no equivalent in
Fortran standard) are accepted. As with TYPE(*), the argument is unlimited polymorphic
and no type information is available. Additionally, the argument may only be passed
to dummy arguments with the NO_ARG_CHECK attribute and as argument to the PRESENT
intrinsic function and to C_LOC of the ISO_C_BINDING module.

Variables with NO_ARG_CHECK attribute shall be of assumed-type (TYPE(*);
recommended) or of type INTEGER, LOGICAL, REAL or COMPLEX. They shall not have the
ALLOCATE, CODIMENSION, INTENT(OUT), POINTER or VALUE attribute; furthermore, they
shall be either scalar or of assumed-size (dimension(*)). As TYPE(*), the NO_ARG_CHECK
attribute requires an explicit interface.

70 The GNU Fortran Compiler

e NO_ARG_CHECK — disable the type, kind and rank checking

The attributes are specified using the syntax
IGCC$ ATTRIBUTES attribute-list :: variable-list

where in free-form source code only whitespace is allowed before !GCC$ and in fixed-form
source code !GCC$, cGCC$ or *GCC$ shall start in the first column.

For procedures, the compiler directives shall be placed into the body of the procedure; for
variables and procedure pointers, they shall be in the same declaration part as the variable
or procedure pointer.

7.3 Non-Fortran Main Program

Even if you are doing mixed-language programming, it is very likely that you do not need
to know or use the information in this section. Since it is about the internal structure of
GNU Fortran, it may also change in GCC minor releases.

When you compile a PROGRAM with GNU Fortran, a function with the name main (in
the symbol table of the object file) is generated, which initializes the libgfortran library
and then calls the actual program which uses the name MAIN__, for historic reasons. If
you link GNU Fortran compiled procedures to, e.g., a C or C++ program or to a Fortran
program compiled by a different compiler, the libgfortran library is not initialized and thus
a few intrinsic procedures do not work properly, e.g. those for obtaining the command-line
arguments.

Therefore, if your PROGRAM is not compiled with GNU Fortran and the GNU Fortran
compiled procedures require intrinsics relying on the library initialization, you need to
initialize the library yourself. Using the default options, gfortran calls _gfortran_set_
args and _gfortran_set_options. The initialization of the former is needed if the called
procedures access the command line (and for backtracing); the latter sets some flags based
on the standard chosen or to enable backtracing. In typical programs, it is not necessary
to call any initialization function.

If your PROGRAM is compiled with GNU Fortran, you shall not call any of the follow-
ing functions. The libgfortran initialization functions are shown in C syntax but using C
bindings they are also accessible from Fortran.

7.3.1 _gfortran_set_args — Save command-line arguments

Description:
_gfortran_set_args saves the command-line arguments; this initialization is
required if any of the command-line intrinsics is called. Additionally, it shall
be called if backtracing is enabled (see _gfortran_set_options).

Syntaz: void _gfortran_set_args (int argc, char *argv[])
Arguments:
argc number of command line argument strings
argv the command-line argument strings; argv|[0] is the pathname

of the executable itself.

Ezxample:

Chapter 7: Mixed-Language Programming 71

int main (int argc, char *argv[])
{
/* Initialize libgfortran. */
_gfortran_set_args (argc, argv);
return O;

}

7.3.2 _gfortran_set_options — Set library option flags

Description:
_gfortran_set_options sets several flags related to the Fortran standard to be
used, whether backtracing should be enabled and whether range checks should
be performed. The syntax allows for upward compatibility since the number of
passed flags is specified; for non-passed flags, the default value is used. See also
see Section 2.9 [Code Gen Options|, page 21. Please note that not all flags are
actually used.

Syntax: void _gfortran_set_options (int num, int options[])

Arguments:
num number of options passed
argv The list of flag values

option flag list:

option|0] Allowed standard; can give run-time errors if e.g. an
input-output edit descriptor is invalid in a given standard.
Possible values are (bitwise or-ed) GFC_STD_F77 (1), GFC_
STD_F95_0BS (2), GFC_STD_F95_DEL (4), GFC_STD_F95 (8),
GFC_STD_F2003 (16), GFC_STD_GNU (32), GFC_STD_LEGACY
(64), GFC_STD_F2008 (128), GFC_STD_F2008_0BS (256) and
GFC_STD_F2008_TS (512). Default: GFC_STD_F95_0BS
| GFC_STD_F95_DEL | GFC_STD_F95 | GFC_STD_F2003 |
GFC_STD_F2008 | GFC_STD_F2008_TS | GFC_STD_F2008_0BS
| GFC_STD_F77 | GFC_STD_GNU | GFC_STD_LEGACY.

option[1] Standard-warning flag; prints a warning to standard error.
Default: GFC_STD_F95_DEL | GFC_STD_LEGACY.

option|[2] If non zero, enable pedantic checking. Default: off.

option|3] Unused.

option[4] If non zero, enable backtracing on run-time errors. Default:

off. (Default in the compiler: on.) Note: Installs a sig-
nal handler and requires command-line initialization using _
gfortran_set_args.

option[5] If non zero, supports signed zeros. Default: enabled.

option|[6] Enables run-time checking. Possible values are
(bitwise or-ed): GFC_RTCHECK_BOUNDS
(1), GFC_RTCHECK_ARRAY_TEMPS (2),

GFC_RTCHECK_RECURSION (4), GFC_RTCHECK_DO
(16), GFC_RTCHECK_POINTER (32). Default: disabled.

option[7] Unused.

72 The GNU Fortran Compiler

option|8] Show a warning when invoking STOP and ERROR STOP if
a floating-point exception occurred. Possible values are
(bﬁ“dse OPed) GFC_FPE_INVALID (1), GFC_FPE_DENORMAL
(2), GFC_FPE_ZERO (4), GFC_FPE_OVERFLOW (8), GFC_
FPE_UNDERFLOW (16), GFC_FPE_INEXACT (32). Default:
None (0). (Default in the compiler: GFC_FPE_INVALID |
GFC_FPE_DENORMAL | GFC_FPE_ZERO | GFC_FPE_QOVERFLOW
GFC_FPE_UNDERFLOWJ

Ezample:
/* Use gfortran 4.9 default options. */
static int optiomns[] = {68, 511, 0, 0, 1, 1, 0, 0, 31};
_gfortran_set_options (9, &options);
7.3.3 _gfortran_set_convert — Set endian conversion
Description:
_gfortran_set_convert set the representation of data for unformatted files.
Syntax: void _gfortran_set_convert (int conv)
Arguments:
conv Endian conversion, possible values:
GFC_CONVERT_NATIVE (0, default),
GFC_CONVERT_SWAP (1), GFC_CONVERT_BIG
(2), GFC_.CONVERT_LITTLE (3).
Example:

int main (int argc, char *argv[])
{
/* Initialize libgfortran. */
_gfortran_set_args (argc, argv);
_gfortran_set_convert (1);
return O;

}

7.3.4 _gfortran_set_record_marker — Set length of record markers

Description:
_gfortran_set_record_marker sets the length of record markers for unfor-
matted files.

Syntax: void _gfortran_set_record_marker (int val)
Arguments:
val Length of the record marker; valid values are 4 and 8. Default
is 4.
Ezample:

int main (int argc, char *argv[])
{
/* Initialize libgfortran. */
_gfortran_set_args (argc, argv);
_gfortran_set_record_marker (8);
return O;

Chapter 7: Mixed-Language Programming 73

7.3.5 _gfortran_set_fpe — Enable floating point exception traps

Description:
_gfortran_set_fpe enables floating point exception traps for the specified ex-
ceptions. On most systems, this will result in a SIGFPE signal being sent and
the program being aborted.

Syntax: void _gfortran_set_fpe (int val)

Arguments:
option[0] IEEE exceptions. Possible values are (bitwise or-ed) zero
(0, default) no trapping, GFC_FPE_INVALID (1), GFC_FPE_
DENORMAL (2), GFC_FPE_ZERO (4), GFC_FPE_OVERFLOW (8),
GFC_FPE_UNDERFLOW (16), and GFC_FPE_INEXACT (32).

Ezample:

int main (int argc, char *argv([])
{
/* Initialize libgfortran. */
_gfortran_set_args (argc, argv);
/* FPE for invalid operations such as SQRT(-1.0). */
_gfortran_set_fpe (1);
return O;

}

7.3.6 _gfortran_set_max_subrecord_length — Set subrecord length

Description:
_gfortran_set_max_subrecord_length set the maximum length for a sub-
record. This option only makes sense for testing and debugging of unformatted

I/0.
Syntaz: void _gfortran_set_max_subrecord_length (int val)
Arguments:
val the maximum length for a subrecord; the maximum permitted
value is 2147483639, which is also the default.
Example:

int main (int argc, char *argv([])

{
/* Initialize libgfortran. */
_gfortran_set_args (argc, argv);
_gfortran_set_max_subrecord_length (8);
return O;

7.4 Naming and argument-passing conventions

This section gives an overview about the naming convention of procedures and global vari-
ables and about the argument passing conventions used by GNU Fortran. If a C binding
has been specified, the naming convention and some of the argument-passing conventions
change. If possible, mixed-language and mixed-compiler projects should use the better de-
fined C binding for interoperability. See see Section 7.1 [Interoperability with C], page 63.

74 The GNU Fortran Compiler

7.4.1 Naming conventions

According the Fortran standard, valid Fortran names consist of a letter between A to Z, a
to z, digits 0, 1 to 9 and underscores (_) with the restriction that names may only start
with a letter. As vendor extension, the dollar sign ($) is additionally permitted with the
option ‘-fdollar-ok’, but not as first character and only if the target system supports it.

By default, the procedure name is the lower-cased Fortran name with an appended
underscore (_); using ‘-fno-underscoring’ no underscore is appended while -fsecond-
underscore appends two underscores. Depending on the target system and the calling
convention, the procedure might be additionally dressed; for instance, on 32bit Windows
with stdcall, an at-sign @ followed by an integer number is appended. For the changing
the calling convention, see see Section 7.2 [GNU Fortran Compiler Directives|, page 69.

For common blocks, the same convention is used, i.e. by default an underscore is ap-
pended to the lower-cased Fortran name. Blank commons have the name __BLNK__.

For procedures and variables declared in the specification space of a module, the name
is formed by __, followed by the lower-cased module name, _MOD_, and the lower-cased
Fortran name. Note that no underscore is appended.

9 -

-

7.4.2 Argument passing conventions

Subroutines do not return a value (matching C99’s void) while functions either return a
value as specified in the platform ABI or the result variable is passed as hidden argument
to the function and no result is returned. A hidden result variable is used when the result
variable is an array or of type CHARACTER.

Arguments are passed according to the platform ABI. In particular, complex arguments
might not be compatible to a struct with two real components for the real and imaginary
part. The argument passing matches the one of C99’s _Complex. Functions with scalar
complex result variables return their value and do not use a by-reference argument. Note
that with the ‘-ff2c’ option, the argument passing is modified and no longer completely
matches the platform ABI. Some other Fortran compilers use £2¢ semantic by default; this
might cause problems with interoperablility.

GNU Fortran passes most arguments by reference, i.e. by passing a pointer to the data.
Note that the compiler might use a temporary variable into which the actual argument has
been copied, if required semantically (copy-in/copy-out).

For arguments with ALLOCATABLE and POINTER attribute (including procedure pointers),
a pointer to the pointer is passed such that the pointer address can be modified in the
procedure.

For dummy arguments with the VALUE attribute: Scalar arguments of the type INTEGER,
LOGICAL, REAL and COMPLEX are passed by value according to the platform ABI. (As vendor
extension and not recommended, using %VAL() in the call to a procedure has the same
effect.) For TYPE(C_PTR) and procedure pointers, the pointer itself is passed such that it
can be modified without affecting the caller.

For Boolean (LOGICAL) arguments, please note that GCC expects only the integer value
0 and 1. If a GNU Fortran LOGICAL variable contains another integer value, the result is
undefined. As some other Fortran compilers use —1 for .TRUE., extra care has to be taken —
such as passing the value as INTEGER. (The same value restriction also applies to other front
ends of GCC, e.g. to GCC’s C99 compiler for _Bool or GCC’s Ada compiler for Boolean.)

Chapter 7: Mixed-Language Programming 75

For arguments of CHARACTER type, the character length is passed as hidden argument. For
deferred-length strings, the value is passed by reference, otherwise by value. The character
length has the type INTEGER(kind=4). Note with C binding, CHARACTER(len=1) result
variables are returned according to the platform ABI and no hidden length argument is
used for dummy arguments; with VALUE, those variables are passed by value.

For OPTIONAL dummy arguments, an absent argument is denoted by a NULL
pointer, except for scalar dummy arguments of type INTEGER, LOGICAL, REAL and
COMPLEX which have the VALUE attribute. For those, a hidden Boolean argument
(logical (kind=C_bool) ,value) is used to indicate whether the argument is present.

Arguments which are assumed-shape, assumed-rank or deferred-rank arrays or, with
‘~fcoarray=1ib’, allocatable scalar coarrays use an array descriptor. All other arrays pass
the address of the first element of the array. With ‘~fcoarray=1ib’, the token and the offset
belonging to nonallocatable coarrays dummy arguments are passed as hidden argument
along the character length hidden arguments. The token is an oparque pointer identifying
the coarray and the offset is a passed-by-value integer of kind C_PTRDIFF_T, denoting the
byte offset between the base address of the coarray and the passed scalar or first element
of the passed array.

The arguments are passed in the following order
e Result variable, when the function result is passed by reference

e Character length of the function result, if it is a of type CHARACTER and no C binding
is used

e The arguments in the order in which they appear in the Fortran declaration

e The the present status for optional arguments with value attribute, which are internally
passed by value

e The character length and/or coarray token and offset for the first argument which is
a CHARACTER or a nonallocatable coarray dummy argument, followed by the hidden
arguments of the next dummy argument of such a type

Chapter 8: Coarray Programming 77

8 Coarray Programming

8.1 Type and enum ABI Documentation

8.1.1 caf_token_t
Typedef of type void * on the compiler side. Can be any data type on the library side.

8.1.2 caf_register_t

Indicates which kind of coarray variable should be registered.

typedef enum caf_register_t {

CAF_REGTYPE_COARRAY_STATIC,

CAF_REGTYPE_COARRAY_ALLOQOC,

CAF_REGTYPE_LOCK_STATIC,

CAF_REGTYPE_LOCK_ALLOC,

CAF_REGTYPE_CRITICAL,

CAF_REGTYPE_EVENT_STATIC,

CAF_REGTYPE_EVENT_ALLOC,

CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY,

CAF_REGTYPE_COARRAY_ALLOC_ALLOCATE_ONLY
}
caf_register_t;

The values CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY and CAF_REGTYPE_COARRAY_
ALLOC_ALLOCATE_ONLY are for allocatable components in derived type coarrays only. The
first one sets up the token without allocating memory for allocatable component. The latter
one only allocates the memory for an allocatable component in a derived type coarray.
The token needs to be setup previously by the REGISTER_ONLY. This allows to have
allocatable components un-allocated on some images. The status whether an allocatable
component is allocated on a remote image can be queried by _caf_is_present which used
internally by the ALLOCATED intrinsic.

8.1.3 caf_deregister_t

typedef enum caf_deregister_t {

CAF_DEREGTYPE_COARRAY_DEREGISTER,

CAF_DEREGTYPE_COARRAY_DEALLOCATE_ONLY
}
caf_deregister_t;
Allows to specifiy the type of deregistration of a coarray object. The CAF_DEREGTYPE_
COARRAY_DEALLOCATE_ONLY flag is only allowed for allocatable components in derived type
coarrays.

8.1.4 caf_reference_t

The structure used for implementing arbitrary reference chains. A CAF_REFERENCE_T allows
to specify a component reference or any kind of array reference of any rank supported by
gfortran. For array references all kinds as known by the compiler/Fortran standard are
supported indicated by a MODE.

78 The GNU Fortran Compiler

typedef enum caf_ref_type_t {
/* Reference a component of a derived type, either regular one or an
allocatable or pointer type. For regular ones idx in caf_reference_t is
set to -1. x/
CAF_REF_COMPONENT,
/* Reference an allocatable array. */
CAF_REF_ARRAY,
/* Reference a non-allocatable/non-pointer array. I.e., the coarray object
has no array descriptor associated and the addressing is done
completely using the ref. */
CAF_REF_STATIC_ARRAY
} caf_ref_type_t;

typedef enum caf_array_ref_t {
/* No array ref. This terminates the array ref. x*/
CAF_ARR_REF_NONE = O,
/* Reference array elements given by a vector. Only for this mode
caf_reference_t.u.a.dim[i].v is valid. */
CAF_ARR_REF_VECTOR,
/* A full array ref (:). =*/
CAF_ARR_REF_FULL,
/* Reference a range on elements given by start, end and stride. */
CAF_ARR_REF_RANGE,
/* Only a single item is referenced given in the start member. x*/
CAF_ARR_REF_SINGLE,
/* An array ref of the kind (i:), where i is an arbitrary valid index in thel}
array. The index i is given in the start member. */
CAF_ARR_REF_QOPEN_END,
/* An array ref of the kind (:i), where the lower bound of the array ref
is given by the remote side. The index i is given in the end member. */J]
CAF_ARR_REF_OPEN_START
} caf_array_ref_t;

/* References to remote components of a derived type. */
typedef struct caf_reference_t {
/* A pointer to the next ref or NULL. */
struct caf_reference_t *next;
/* The type of the reference. */
/* caf_ref_type_t, replaced by int to allow specification in fortran FE. x/|J]
int type;
/* The size of an item referenced in bytes. I.e. in an array ref this is
the factor to advance the array pointer with to get to the next item.
For component refs this gives just the size of the element referenced. */|j
size_t item_size;
union {
struct {
/* The offset (in bytes) of the component in the derived type.
Unused for allocatable or pointer components. */

Chapter 8: Coarray Programming 79

ptrdiff_t offset;
/* The offset (in bytes) to the caf_token associated with this
component. NULL, when not allocatable/pointer ref. x*/
ptrdiff_t caf_token_offset;
} c;
struct {
/* The mode of the array ref. See CAF_ARR_REF_x. x/
/* caf_array_ref_t, replaced by unsigend char to allow specification in
fortran FE. x*/
unsigned char mode [GFC_MAX_DIMENSIONS];
/* The type of a static array. Unset for array’s with descriptors. x/
int static_array_type;
/* Subscript refs (s) or vector refs (v). */
union {
struct {
/* The start and end boundary of the ref and the stride. */
index_type start, end, stride;
} s
struct {
/* nvec entries of kind giving the elements to reference. */
void *vector;
/* The number of entries in vector. */
size_t nvec;
/* The integer kind used for the elements in vector. */
int kind;
} ov;
} dim[GFC_MAX_DIMENSIONS];
}oag
} u;

} caf_reference_t;

The references make up a single linked list of reference operations. The NEXT member
links to the next reference or NULL to indicate the end of the chain. Component and array
refs can be arbitrarly mixed as long as they comply to the Fortran standard.

NOTES The member STATIC_ARRAY_TYPE is used only when the TYPE is CAF_REF_
STATIC_ARRAY. The member gives the type of the data referenced. Because no array
descriptor is available for a descriptor-less array and type conversion still needs to take
place the type is transported here.

At the moment CAF_ARR_REF_VECTOR is not implemented in the front end for descriptor-
less arrays. The library caf_single has untested support for it.
8.1.5 caf_team_t

Opaque pointer to represent a team-handle. This type is a stand-in for the future imple-
mentation of teams. It is about to change without further notice.

8.2 Function ABI Documentation

80 The GNU Fortran Compiler

8.2.1 _gfortran_caf_init — Initialiation function

Description:

This function is called at startup of the program before the Fortran main pro-
gram, if the latter has been compiled with ‘~fcoarray=1ib’. It takes as argu-
ments the command-line arguments of the program. It is permitted to pass two
NULL pointers as argument; if non-NULL, the library is permitted to modify the
arguments.

Syntaz: void _gfortran_caf_init (int *argc, char *x*argv)

Arguments:
argc intent(inout) An integer pointer with the number of argu-

ments passed to the program or NULL.
argv intent(inout) A pointer to an array of strings with the
command-line arguments or NULL.

NOTES The function is modelled after the initialization function of the Message Passing
Interface (MPI) specification. Due to the way coarray registration works, it
might not be the first call to the library. If the main program is not written
in Fortran and only a library uses coarrays, it can happen that this function
is never called. Therefore, it is recommended that the library does not rely on
the passed arguments and whether the call has been done.

8.2.2 _gfortran_caf_finish — Finalization function

Description:

This function is called at the end of the Fortran main program, if it has been
compiled with the ‘-fcoarray=1ib’ option.

Syntax: void _gfortran_caf_finish (void)

NOTES For non-Fortran programs, it is recommended to call the function at the end of
the main program. To ensure that the shutdown is also performed for programs
where this function is not explicitly invoked, for instance non-Fortran programs
or calls to the system’s exit() function, the library can use a destructor function.
Note that programs can also be terminated using the STOP and ERROR STOP
statements; those use different library calls.

8.2.3 _gfortran_caf_this_image — Querying the image number

Description:

This function returns the current image number, which is a positive number.

Syntax: int _gfortran_caf_this_image (int distance)

Arguments:
distance As specified for the this_image intrinsic in T'S18508. Shall

be a non-negative number.

NOTES If the Fortran intrinsic this_image is invoked without an argument, which is

the only permitted form in Fortran 2008, GCC passes 0 as first argument.

Chapter 8: Coarray Programming 81

8.2.4 _gfortran_caf_num_images — Querying the maximal number
of images

Description:

This function returns the number of images in the current team, if distance is 0
or the number of images in the parent team at the specified distance. If failed
is -1, the function returns the number of all images at the specified distance;
if it is 0, the function returns the number of nonfailed images, and if it is 1, it
returns the number of failed images.

Syntaz: int _gfortran_caf_num_images(int distance, int failed)

Arguments:
distance the distance from this image to the ancestor. Shall be positive.
failed shall be -1, 0, or 1

NOTES This function follows TS18508. If the num_image intrinsic has no arguments,
then the compiler passes distance=0 and failed=-1 to the function.

8.2.5 _gfortran_caf_image_status — Query the status of an image

Description:
Get the status of the image given by the id image of the team given by
team. Valid results are zero, for image is ok, STAT_STOPPED_IMAGE from the
ISO_FORTRAN_ENV module to indicate that the image has been stopped
and STAT_FAILED_IMAGE also from ISO_FORTRAN_ENV to indicate that the
image has executed a FAIL IMAGE statement.

Syntax: int _gfortran_caf_image_status (int image, caf_team_t * team)

Arguments:
image the positive scalar id of the image in the current TEAM.
team optional; team on the which the inquiry is to be performed.

NOTES This function follows TS18508. Because team-functionality is not yet imple-
mented a null-pointer is passed for the team argument at the moment.

8.2.6 _gfortran_caf_failed_images — Get an array of the indexes

of the failed images

Description:

Syntaz:

Arguments:

NOTES

Get an array of image indexes in the current team that have failed. The array is
sorted ascendingly. When team is not provided the current team is to be used.
When kind is provided then the resulting array is of that integer kind else it
is of default integer kind. The returns an unallocated size zero array when no
images have failed.

int _gfortran_caf_failed_images (caf_team_t * team, int * kind)

team optional; team on the which the inquiry is to be performed.
image optional; the kind of the resulting integer array.

This function follows TS18508. Because team-functionality is not yet imple-
mented a null-pointer is passed for the team argument at the moment.

82

The GNU Fortran Compiler

8.2.7 _gfortran_caf_stopped_images — Get an array of the indexes
of the stopped images

Description:

Syntaz:

Arguments:

NOTES

Get an array of image indexes in the current team that have stopped. The
array is sorted ascendingly. When team is not provided the current team is to
be used. When kind is provided then the resulting array is of that integer kind
else it is of default integer kind. The returns an unallocated size zero array
when no images have failed.

int _gfortran_caf_stopped_images (caf_team_t * team, int * kind)

team optional; team on the which the inquiry is to be performed.
image optional; the kind of the resulting integer array.

This function follows TS18508. Because team-functionality is not yet imple-
mented a null-pointer is passed for the team argument at the moment.

8.2.8 _gfortran_caf_register — Registering coarrays

Description:

Syntaz:

Registers memory for a coarray and creates a token to identify the coarray.
The routine is called for both coarrays with SAVE attribute and using an ex-
plicit ALLOCATE statement. If an error occurs and STAT is a NULL pointer,
the function shall abort with printing an error message and starting the error
termination. If no error occurs and STAT is present, it shall be set to zero.
Otherwise, it shall be set to a positive value and, if not-NULL, ERRMSG shall
be set to a string describing the failure. The routine shall register the mem-
ory provided in the DATA-component of the array descriptor DESC, when that
component is non-NULL, else it shall allocate sufficient memory and provide a
pointer to it in the DATA-component of DESC. The array descriptor has rank
zero, when a scalar object is to be registered and the array descriptor may be
invalid after the call to _gfortran_caf_register. When an array is to be
allocated the descriptor persists.

For CAF_REGTYPE_COARRAY_STATIC and CAF_REGTYPE_COARRAY_ALLOC, the
passed size is the byte size requested. For CAF_REGTYPE_LOCK_STATIC,
CAF_REGTYPE_LOCK_ALLOC and CAF_REGTYPE_CRITICAL it is the array size or
one for a scalar.

When CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY is used, then only a token
for an allocatable or pointer component is created. The SIZE parameter is not
used then. On the contrary when CAF_REGTYPE_COARRAY_ALLOC_ALLOCATE_
ONLY is specified, then the token needs to be registered by a previous call with
regtype CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY and either the memory
specified in the desc’s data-ptr is registered or allocate when the data-ptr is
NULL.

void caf_register (size_t size, caf_register_t type, caf_token_t
*token, gfc_descriptor_t *desc, int *stat, char *errmsg, int
errmsg_len)

Chapter 8: Coarray Programming 83

Arguments:

NOTES

size For normal coarrays, the byte size of the coarray to be allo-
cated; for lock types and event types, the number of elements.

type one of the caf_register_t types.

token intent(out) An opaque pointer identifying the coarray.

desc intent(inout) The (pseudo) array descriptor.

stat intent(out) For allocatable coarrays, stores the STAT=; may
be NULL

errmsg intent(out) When an error occurs, this will be set to an error
message; may be NULL

errmsg_len the buffer size of errmsg.

Nonalloatable coarrays have to be registered prior use from remote images. In
order to guarantee this, they have to be registered before the main program.
This can be achieved by creating constructor functions. That is what GCC does
such that also nonallocatable coarrays the memory is allocated and no static
memory is used. The token permits to identify the coarray; to the processor,
the token is a nonaliasing pointer. The library can, for instance, store the base
address of the coarray in the token, some handle or a more complicated struct.
The library may also store the array descriptor DESC when its rank is non-zero.

For lock types, the value shall only used for checking the allocation status.
Note that for critical blocks, the locking is only required on one image; in
the locking statement, the processor shall always pass an image index of one
for critical-block lock variables (CAF_REGTYPE_CRITICAL). For lock types and
critical-block variables, the initial value shall be unlocked (or, respecitively, not
in critical section) such as the value false; for event types, the initial state should
be no event, e.g. zero.

8.2.9 _gfortran_caf_deregister — Deregistering coarrays

Description:

Syntaz:

Arguments:

Called to free or deregister the memory of a coarray; the processor calls this
function for automatic and explicit deallocation. In case of an error, this func-
tion shall fail with an error message, unless the STAT variable is not null.
The library is only expected to free memory it allocated itself during a call to
_gfortran_caf_register.

void caf_deregister (caf_token_t *token, caf_deregister_t type, int
xstat, char *errmsg, int errmsg_len)

token the token to free.

type the type of action to take for the coarray. A CAF_DEREGTYPE_
COARRAY_DEALLOCATE_ONLY is allowed only for allocatable or
pointer components of derived type coarrays. The action only
deallocates the local memory without deleting the token.

stat intent(out) Stores the STAT=; may be NULL

errmsg intent(out) When an error occurs, this will be set to an error
message; may be NULL

84

The GNU Fortran Compiler

errmsg-_len the buffer size of errmsg.

NOTES For nonalloatable coarrays this function is never called. If a cleanup is required,
it has to be handled via the finish, stop and error stop functions, and via
destructors.

8.2.10 _gfortran_caf_is_present — Query whether an allocatable

or pointer component in a derived type coarray is allocated

Description:

Syntaz:

Arguments:

Used to query the coarray library whether an allocatable component in a derived
type coarray is allocated on a remote image.

void _gfortran_caf_is_present (caf_token_t token, int image_index,
gfc_reference_t *ref)

token An opaque pointer identifying the coarray.

image_index The ID of the remote image; must be a positive number.

ref A chain of references to address the allocatable or pointer
component in the derived type coarray. The object reference
needs to be a scalar or a full array reference, respectively.

8.2.11 _gfortran_caf_send — Sending data from a local image to a
remote image

Description:

Syntaz:

Arguments:

Called to send a scalar, an array section or a whole array from a local to a
remote image identified by the image_index.

void _gfortran_caf_send (caf_token_t token, size_t offset,

int image_index, gfc_descriptor_t *dest, caf_vector_t *dst_
vector, gfc_descriptor_t *src, int dst_kind, int src_kind, bool
may_require_tmp, int *stat)

token intent(in) An opaque pointer identifying the coarray.

offset intent(in) By which amount of bytes the actual data is shifted
compared to the base address of the coarray.

image_index intent(in) The ID of the remote image; must be a positive

number.
dest intent(in) Array descriptor for the remote image for the
bounds and the size. The base_addr shall not be accessed.
dst_vector intent(in) If not NULL, it contains the vector subscript of

the destination array; the values are relative to the dimension
triplet of the dest argument.

src intent(in) Array descriptor of the local array to be transferred
to the remote image
dst_kind intent(in) Kind of the destination argument

src_kind intent(in) Kind of the source argument

Chapter 8: Coarray Programming 85

NOTES

may_require_tmjntent(in) The variable is false when it is known at compile
time that the dest and src either cannot overlap or overlap
(fully or partially) such that walking src and dest in element
wise element order (honoring the stride value) will not lead
to wrong results. Otherwise, the value is true.

stat intent(out) when non-NULL give the result of the operation,
i.e., zero on success and non-zero on error. When NULL and
an error occurs, then an error message is printed and the
program is terminated.

It is permitted to have image_index equal the current image; the memory of
the send-to and the send-from might (partially) overlap in that case. The
implementation has to take care that it handles this case, e.g. using memmove
which handles (partially) overlapping memory. If may_require_tmp is true, the
library might additionally create a temporary variable, unless additional checks
show that this is not required (e.g. because walking backward is possible or
because both arrays are contiguous and memmove takes care of overlap issues).

Note that the assignment of a scalar to an array is permitted. In addition,
the library has to handle numeric-type conversion and for strings, padding and
different character kinds.

8.2.12 _gfortran_caf_get — Getting data from a remote image

Description:

Syntaz:

Arguments:

Called to get an array section or a whole array from a remote, image identified
by the image_index.

void _gfortran_caf_get (caf_token_t token, size_t offset, int
image_index, gfc_descriptor_t *src, caf_vector_t *src_vector,
gfc_descriptor_t *dest, int src_kind, int dst_kind, bool may_
require_tmp, int *stat)

token intent(in) An opaque pointer identifying the coarray.

offset intent(in) By which amount of bytes the actual data is shifted
compared to the base address of the coarray.

image_index intent(in) The ID of the remote image; must be a positive

number.

dest intent(out) Array descriptor of the local array to store the
data retrieved from the remote image

src intent(in) Array descriptor for the remote image for the
bounds and the size. The base_addr shall not be accessed.

src_vector intent(in) If not NULL, it contains the vector subscript of the

source array; the values are relative to the dimension triplet
of the src argument.

dst_kind intent(in) Kind of the destination argument

src_kind intent(in) Kind of the source argument

86 The GNU Fortran Compiler

may_require_tmjntent(in) The variable is false when it is known at compile
time that the dest and src either cannot overlap or overlap
(fully or partially) such that walking src and dest in element
wise element order (honoring the stride value) will not lead
to wrong results. Otherwise, the value is true.

stat intent(out) When non-NULL give the result of the operation,
i.e., zero on success and non-zero on error. When NULL and
an error occurs, then an error message is printed and the
program is terminated.

NOTES It is permitted to have image_index equal the current image; the memory of
the send-to and the send-from might (partially) overlap in that case. The
implementation has to take care that it handles this case, e.g. using memmove
which handles (partially) overlapping memory. If may_require_tmp is true, the
library might additionally create a temporary variable, unless additional checks
show that this is not required (e.g. because walking backward is possible or
because both arrays are contiguous and memmove takes care of overlap issues).

Note that the library has to handle numeric-type conversion and for strings,
padding and different character kinds.

8.2.13 _gfortran_caf_sendget — Sending data between remote
images

Description:
Called to send a scalar, an array section or a whole array from a remote
image identified by the src_image_index to a remote image identified by the
dst_image_index.

Syntaz: void _gfortran_caf_sendget (caf_token_t dst_token, size_t dst_
offset, int dst_image_index, gfc_descriptor_t *dest, caf_vector_t
*dst_vector, caf_token_t src_token, size_t src_offset, int src_
image_index, gfc_descriptor_t *src, caf_vector_t *src_vector, int
dst_kind, int src_kind, bool may_require_tmp, int *stat)

Arguments:
dst_token intent(in) An opaque pointer identifying the destination
coarray.
dst_offset intent(in) By which amount of bytes the actual data is shifted

compared to the base address of the destination coarray.
dst-image_indexintent(in) The ID of the destination remote image; must be a
positive number.

dest intent(in) Array descriptor for the destination remote image
for the bounds and the size. The base_addr shall not be
accessed.

dst_vector intent(int) If not NULL, it contains the vector subscript of

the destination array; the values are relative to the dimension
triplet of the dest argument.
src_token intent(in) An opaque pointer identifying the source coarray.

Chapter 8: Coarray Programming 87

NOTES

src_offset intent(in) By which amount of bytes the actual data is shifted
compared to the base address of the source coarray.

src_image_indexintent(in) The ID of the source remote image; must be a pos-
itive number.

sre intent(in) Array descriptor of the local array to be transferred
to the remote image.

src_vector intent(in) Array descriptor of the local array to be transferred
to the remote image

dst_kind intent(in) Kind of the destination argument

src_kind intent(in) Kind of the source argument

may_require_tmjntent(in) The variable is false when it is known at compile
time that the dest and src either cannot overlap or overlap
(fully or partially) such that walking src and dest in element
wise element order (honoring the stride value) will not lead
to wrong results. Otherwise, the value is true.

stat intent(out) when non-NULL give the result of the operation,
i.e., zero on success and non-zero on error. When NULL and
an error occurs, then an error message is printed and the
program is terminated.

It is permitted to have the same image index for both src_image_index and
dst_image_index; the memory of the send-to and the send-from might (par-
tially) overlap in that case. The implementation has to take care that it handles
this case, e.g. using memmove which handles (partially) overlapping memory. If
may_require_tmp is true, the library might additionally create a temporary
variable, unless additional checks show that this is not required (e.g. because
walking backward is possible or because both arrays are contiguous and memmove
takes care of overlap issues).

Note that the assignment of a scalar to an array is permitted. In addition,

the library has to handle numeric-type conversion and for strings, padding and
different character kinds.

8.2.14 _gfortran_caf_send_by_ref — Sending data from a local
image to a remote image with enhanced referencing options

Description:

Syntaz:

Arguments:

Called to send a scalar, an array section or a whole array from a local to a
remote image identified by the image_index.

void _gfortran_caf_send_by_ref (caf_token_t token, int image_index,
gfc_descriptor_t *src, caf_reference_t *refs, int dst_kind, int
src_kind, bool may_require_tmp, bool dst_reallocatable, int *stat)

token intent(in) An opaque pointer identifying the coarray.

image_index intent(in) The ID of the remote image; must be a positive
number.

sre intent(in) Array descriptor of the local array to be transferred

to the remote image

88

NOTES

The GNU Fortran Compiler

refs intent(in) The references on the remote array to store the data
given by src. Guaranteed to have at least one entry.

dst_kind intent(in) Kind of the destination argument

src_kind intent(in) Kind of the source argument

may_require_tmjntent(in) The variable is false when it is known at compile
time that the dest and src either cannot overlap or overlap
(fully or partially) such that walking src and dest in element
wise element order (honoring the stride value) will not lead
to wrong results. Otherwise, the value is true.

dst_reallocatabléntent(in) Set when the destination is of allocatable or pointer
type and the refs will allow reallocation, i.e., the ref is a full
array or component ref.

stat intent(out) When non-NULL give the result of the operation,
i.e., zero on success and non-zero on error. When NULL and an
error occurs, then an error message is printed and the program
is terminated.

It is permitted to have image_index equal the current image; the memory of
the send-to and the send-from might (partially) overlap in that case. The
implementation has to take care that it handles this case, e.g. using memmove
which handles (partially) overlapping memory. If may_require_tmp is true, the
library might additionally create a temporary variable, unless additional checks
show that this is not required (e.g. because walking backward is possible or
because both arrays are contiguous and memmove takes care of overlap issues).

Note that the assignment of a scalar to an array is permitted. In addition,
the library has to handle numeric-type conversion and for strings, padding and
different character kinds.

Because of the more complicated references possible some operations may be
unsupported by certain libraries. The library is expected to issue a precise error
message why the operation is not permitted.

8.2.15 _gfortran_caf_get_by_ref — Getting data from a remote
image using enhanced references

Description:

Syntaz:

Arguments:

Called to get a scalar, an array section or a whole array from a remote image
identified by the image_index.

void _gfortran_caf_get_by_ref (caf_token_t token, int image_index,
caf_reference_t *refs, gfc_descriptor_t *dst, int dst_kind, int
src_kind, bool may_require_tmp, bool dst_reallocatable, int *stat)

token intent(in) An opaque pointer identifying the coarray.

image_index intent(in) The ID of the remote image; must be a positive
number.

refs intent(in) The references to apply to the remote structure to

get the data.

Chapter 8: Coarray Programming 89

NOTES

dst intent(in) Array descriptor of the local array to store the data
transferred from the remote image. May be reallocated where
needed and when DST_REALLOCATABLE allows it.

dst_kind intent(in) Kind of the destination argument

src_kind intent(in) Kind of the source argument

may_require_tmjntent(in) The variable is false when it is known at compile
time that the dest and src either cannot overlap or overlap
(fully or partially) such that walking src and dest in element
wise element order (honoring the stride value) will not lead
to wrong results. Otherwise, the value is true.

dst_reallocatabléntent(in) Set when DST is of allocatable or pointer type and
its refs allow reallocation, i.e., the full array or a component
is referenced.

stat intent(out) When non-NULL give the result of the operation,
i.e., zero on success and non-zero on error. When NULL and an
error occurs, then an error message is printed and the program
is terminated.

It is permitted to have image_index equal the current image; the memory
of the send-to and the send-from might (partially) overlap in that case. The
implementation has to take care that it handles this case, e.g. using memmove
which handles (partially) overlapping memory. If may_require_tmp is true, the
library might additionally create a temporary variable, unless additional checks
show that this is not required (e.g. because walking backward is possible or
because both arrays are contiguous and memmove takes care of overlap issues).
Note that the library has to handle numeric-type conversion and for strings,
padding and different character kinds.

Because of the more complicated references possible some operations may be
unsupported by certain libraries. The library is expected to issue a precise error
message why the operation is not permitted.

8.2.16 _gfortran_caf_sendget_by_ref — Sending data between
remote images using enhanced references on both sides

Description:

Syntaz:

Arguments:

Called to send a scalar, an array section or a whole array from a remote
image identified by the src_image_index to a remote image identified by the
dst_image_index.

void _gfortran_caf_sendget_by_ref (caf_token_t dst_token, int
dst_image_index, caf_reference_t *dst_refs, caf_token_t src_token,
int src_image_index, caf_reference_t *src_refs, int dst_kind, int
src_kind, bool may_require_tmp, int *dst_stat, int *src_stat)

dst_token intent(in) An opaque pointer identifying the destination
coarray.

dst-image_indexintent(in) The ID of the destination remote image; must be a
positive number.

90

NOTES

The GNU Fortran Compiler

dst_refs intent(in) The references on the remote array to store the data
given by the source. Guaranteed to have at least one entry.
src_token intent(in) An opaque pointer identifying the source coarray.

src_image-indexintent(in) The ID of the source remote image; must be a pos-
itive number.

src_refs intent(in) The references to apply to the remote structure to
get the data.

dst_kind intent(in) Kind of the destination argument

src_kind intent(in) Kind of the source argument

may_require_tmjntent(in) The variable is false when it is known at compile
time that the dest and src either cannot overlap or overlap
(fully or partially) such that walking src and dest in element
wise element order (honoring the stride value) will not lead
to wrong results. Otherwise, the value is true.

dst_stat intent(out) when non-NULL give the result of the send-
operation, i.e., zero on success and non-zero on error. When
NULL and an error occurs, then an error message is printed
and the program is terminated.

src_stat intent(out) When non-NULL give the result of the get-
operation, i.e., zero on success and non-zero on error. When
NULL and an error occurs, then an error message is printed
and the program is terminated.

It is permitted to have the same image index for both src_image_index and
dst_image_index; the memory of the send-to and the send-from might (par-
tially) overlap in that case. The implementation has to take care that it handles
this case, e.g. using memmove which handles (partially) overlapping memory. If
may_require_tmp is true, the library might additionally create a temporary
variable, unless additional checks show that this is not required (e.g. because
walking backward is possible or because both arrays are contiguous and memmove
takes care of overlap issues).

Note that the assignment of a scalar to an array is permitted. In addition,
the library has to handle numeric-type conversion and for strings, padding and
different character kinds.

Because of the more complicated references possible some operations may be
unsupported by certain libraries. The library is expected to issue a precise error
message why the operation is not permitted.

8.2.17 _gfortran_caf_lock — Locking a lock variable

Description:

Acquire a lock on the given image on a scalar locking variable or for the given
array element for an array-valued variable. If the aquired_lock is NULL, the func-
tion returns after having obtained the lock. If it is non-NULL, then acquired_lock
is assigned the value true (one) when the lock could be obtained and false (zero)
otherwise. Locking a lock variable which has already been locked by the same
image is an error.

Chapter 8: Coarray Programming 91

Syntaz:

Arguments:

NOTES

void _gfortran_caf_lock (caf_token_t token, size_t index, int
image_index, int *aquired_lock, int *stat, char *errmsg, int
errmsg_len)

token intent(in) An opaque pointer identifying the coarray.

index intent(in) Array index; first array index is 0. For scalars, it is
always 0.

image_index intent(in) The ID of the remote image; must be a positive
number.

aquired_lock intent(out) If not NULL, it returns whether lock could be
obtained.

stat intent(out) Stores the STAT=; may be NULL.

errmsg intent(out) When an error occurs, this will be set to an error
message; may be NULL.

errmsg_len intent(in) the buffer size of errmsg

This function is also called for critical blocks; for those, the array index is always
zero and the image index is one. Libraries are permitted to use other images
for critical-block locking variables.

8.2.18 _gfortran_caf_lock — Unlocking a lock variable

Description:

Release a lock on the given image on a scalar locking variable or for the given
array element for an array-valued variable. Unlocking a lock variable which is
unlocked or has been locked by a different image is an error.

Syntazx: void _gfortran_caf_unlock (caf_token_t token, size_t index, int
image_index, int *stat, char *errmsg, int errmsg_len)
Arguments:
token intent(in) An opaque pointer identifying the coarray.
index intent(in) Array index; first array index is 0. For scalars, it is
always 0.
image_index intent(in) The ID of the remote image; must be a positive
number.
stat intent(out) For allocatable coarrays, stores the STAT=; may
be NULL.
errmsg intent(out) When an error occurs, this will be set to an error
message; may be NULL.
errmsg_len intent(in) the buffer size of errmsg
NOTES This function is also called for critical block; for those, the array index is always
zero and the image index is one. Libraries are permitted to use other images
for critical-block locking variables.
8.2.19 _gfortran_caf_event_post — Post an event
Description:

Increment the event count of the specified event variable.

92 The GNU Fortran Compiler
Syntax: void _gfortran_caf_event_post (caf_token_t token, size_t index, int
image_index, int *stat, char *errmsg, int errmsg_len)
Arguments:
token intent(in) An opaque pointer identifying the coarray.
index intent(in) Array index; first array index is 0. For scalars, it is
always 0.
image_index intent(in) The ID of the remote image; must be a positive
number; zero indicates the current image, when accessed
noncoindexed.
stat intent(out) Stores the STAT=; may be NULL.
errmsg intent(out) When an error occurs, this will be set to an error
message; may be NULL.
errmsg_len intent(in) the buffer size of errmsg
NOTES This acts like an atomic add of one to the remote image’s event variable. The
statement is an image-control statement but does not imply sync memory. Still,
all preceeding push communications of this image to the specified remote image
have to be completed before event_wait on the remote image returns.
8.2.20 _gfortran_caf_event_wait — Wait that an event occurred
Description:
Wait until the event count has reached at least the specified until_count; if so,
atomically decrement the event variable by this amount and return.
Syntax: void _gfortran_caf_event_wait (caf_token_t token, size_t index, int
until_count, int *stat, char *errmsg, int errmsg_len)
Arguments:
token intent(in) An opaque pointer identifying the coarray.
index intent(in) Array index; first array index is 0. For scalars, it is
always 0.
until_count intent(in) The number of events which have to be available
before the function returns.
stat intent(out) Stores the STAT=; may be NULL.
errmsg intent(out) When an error occurs, this will be set to an error
message; may be NULL.
errmsg_len intent(in) the buffer size of errmsg
NOTES This function only operates on a local coarray. It acts like a loop checking

atomically the value of the event variable, breaking if the value is greater or
equal the requested number of counts. Before the function returns, the event
variable has to be decremented by the requested until_count value. A possible
implementation would be a busy loop for a certain number of spins (possibly
depending on the number of threads relative to the number of available cores)
followed by another waiting strategy such as a sleeping wait (possibly with an
increasing number of sleep time) or, if possible, a futex wait.

Chapter 8: Coarray Programming 93

The statement is an image-control statement but does not imply sync memory.
Still, all preceeding push communications of this image to the specified remote
image have to be completed before event_wait on the remote image returns.

8.2.21 _gfortran_caf_event_query — Query event count

Description:

Syntaz:

Arguments:

NOTES

Return the event count of the specified event variable.

void _gfortran_caf_event_query (caf_token_t token, size_t index,
int image_index, int *count, int *stat)

token intent(in) An opaque pointer identifying the coarray.
index intent(in) Array index; first array index is 0. For scalars, it is
always 0.

image_index intent(in) The ID of the remote image; must be a posi-
tive number; zero indicates the current image when accessed

noncoindexed.

count intent(out) The number of events currently posted to the
event variable.

stat intent(out) Stores the STAT=; may be NULL.

The typical use is to check the local event variable to only call event_wait
when the data is available. However, a coindexed variable is permitted; there
is no ordering or synchronization implied. It acts like an atomic fetch of the
value of the event variable.

8.2.22 _gfortran_caf_sync_all — All-image barrier

Description:

Synchronization of all images in the current team; the program only continues
on a given image after this function has been called on all images of the cur-
rent team. Additionally, it ensures that all pending data transfers of previous
segment have completed.

Syntax: void _gfortran_caf_sync_all (int *stat, char *errmsg, int errmsg_
len)
Arguments:
stat intent(out) Stores the status STAT= and may be NULL.
errmsg intent(out) When an error occurs, this will be set to an error
message; may be NULL.
errmsg_len intent(in) the buffer size of errmsg
8.2.23 _gfortran_caf_sync_images — Barrier for selected images
Description:

Synchronization between the specified images; the program only continues on
a given image after this function has been called on all images specified for
that image. Note that one image can wait for all other images in the current

94 The GNU Fortran Compiler

team (e.g. via sync images (*)) while those only wait for that specific image.
Additionally, sync images ensures that all pending data transfers of previous
segments have completed.

Syntax: void _gfortran_caf_sync_images (int count, int images[], int *stat,
char *errmsg, int errmsg_len)

Arguments:
count intent(in) The number of images which are provided in the
next argument. For a zero-sized array, the value is zero. For
sync images (), the value is —1.
images intent(in) An array with the images provided by the user. If
count is zero, a NULL pointer is passed.
stat intent(out) Stores the status STAT= and may be NULL.
errmsg intent(out) When an error occurs, this will be set to an error
message; may be NULL.
errmsg_len intent(in) the buffer size of errmsg
8.2.24 _gfortran_caf_sync_memory — Wait for completion of

segment-memory operations

Description:
Acts as optimization barrier between different segments. It also ensures that
all pending memory operations of this image have been completed.

Syntaz: void _gfortran_caf_sync_memory (int *stat, char *errmsg, int
errmsg_len)

Arguments:
stat intent(out) Stores the status STAT= and may be NULL.
errmsg intent(out) When an error occurs, this will be set to an error
message; may be NULL.
errmsg_len intent(in) the buffer size of errmsg

NOTE A simple implementation could be

__asm__ __volatile__ ("":::"memory") to prevent code movements.
8.2.25 _gfortran_caf_error_stop — Error termination with exit
code

Description:
Invoked for an ERROR STOP statement which has an integer argument. The
function should terminate the program with the specified exit code.

Syntax: void _gfortran_caf_error_stop (int32_t error)

Arguments:
error intent(in) The exit status to be used.

Chapter 8: Coarray Programming 95

8.2.26 _gfortran_caf_error_stop_str — Error termination with
string

Description:
Invoked for an ERROR STOP statement which has a string as argument. The
function should terminate the program with a nonzero-exit code.

Syntaz: void _gfortran_caf_error_stop (const char *string, int32_t len)
Arguments:

string intent(in) the error message (not zero terminated)

len intent(in) the length of the string

8.2.27 _gfortran_caf_fail_image — Mark the image failed and end
its execution

Description:
Invoked for an FAIL IMAGE statement. The function should terminate the cur-
rent image.

Syntax: void _gfortran_caf_fail_image ()

NOTES This function follows TS18508.

8.2.28 _gfortran_caf_atomic_define — Atomic variable assignment

Description:
Assign atomically a value to an integer or logical variable.

Syntax: void _gfortran_caf_atomic_define (caf_token_t token, size_t offset,
int image_index, void *value, int *stat, int type, int kind)

Arguments:
token intent(in) An opaque pointer identifying the coarray.
offset intent(in) By which amount of bytes the actual data is shifted
compared to the base address of the coarray.
image_index intent(in) The ID of the remote image; must be a posi-
tive number; zero indicates the current image when used
noncoindexed.
value intent(in) the value to be assigned, passed by reference
stat intent(out) Stores the status STAT= and may be NULL.
type intent(in) The data type, i.e. BT_INTEGER (1) or BT_LOGICAL
(2).
kind intent(in) The kind value (only 4; always int)
8.2.29 _gfortran_caf_atomic_ref — Atomic variable reference
Description:
Reference atomically a value of a kind-4 integer or logical variable.
Syntazx: void _gfortran_caf_atomic_ref (caf_token_t token, size_t offset,
int image_index, void *value, int *stat, int type, int kind)
Arguments:

token intent(in) An opaque pointer identifying the coarray.

96 The GNU Fortran Compiler

offset intent(in) By which amount of bytes the actual data is shifted
compared to the base address of the coarray.

image_index intent(in) The ID of the remote image; must be a posi-
tive number; zero indicates the current image when used
noncoindexed.

value intent(out) The variable assigned the atomically referenced
variable.

stat intent(out) Stores the status STAT= and may be NULL.

type the data type, i.e. BT_INTEGER (1) or BT_LOGICAL (2).

kind The kind value (only 4; always int)

8.2.30 _gfortran_caf_atomic_cas — Atomic compare and swap

Description:

Atomic compare and swap of a kind-4 integer or logical variable. Assigns atom-
ically the specified value to the atomic variable, if the latter has the value
specified by the passed condition value.

Syntazx: void _gfortran_caf_atomic_cas (caf_token_t token, size_t offset,
int image_index, void *old, void *compare, void *new_val, int *stat,
int type, int kind)

Arguments:
token intent(in) An opaque pointer identifying the coarray.
offset intent(in) By which amount of bytes the actual data is shifted

compared to the base address of the coarray.
image_index intent(in) The ID of the remote image; must be a posi-
tive number; zero indicates the current image when used
noncoindexed.
old intent(out) The value which the atomic variable had just be-
fore the cas operation.
compare intent(in) The value used for comparision.
new_val intent(in) The new value for the atomic variable, assigned to
the atomic variable, if compare equals the value of the atomic
variable.
stat intent(out) Stores the status STAT= and may be NULL.
type intent(in) the data type, i.e. BT_INTEGER (1) or BT_LOGICAL
(2).
kind intent(in) The kind value (only 4; always int)
8.2.31 _gfortran_caf_atomic_op — Atomic operation
Description:

Apply an operation atomically to an atomic integer or logical variable. After the
operation, old contains the value just before the operation, which, respectively,
adds (GFC_CAF_ATOMIC_ADD) atomically the value to the atomic integer
variable or does a bitwise AND, OR or exclusive OR between the atomic variable
and value; the result is then stored in the atomic variable.

Chapter 8: Coarray Programming 97

Syntax: void _gfortran_caf_atomic_op (int op, caf_token_t token, size_t
offset, int image_index, void *value, void *old, int *stat, int type,
int kind)

Arguments:
op intent(in) the operation to be performed; possible values GFC_

CAF_ATOMIC_ADD (1), GFC_CAF_ATOMIC_AND (2), GFC_CAF_
ATOMIC_OR (3), GFC_CAF_ATOMIC_XOR (4).

token intent(in) An opaque pointer identifying the coarray.

offset intent(in) By which amount of bytes the actual data is shifted
compared to the base address of the coarray.

image_index intent(in) The ID of the remote image; must be a posi-
tive number; zero indicates the current image when used

noncoindexed.

old intent(out) The value which the atomic variable had just be-
fore the atomic operation.

val intent(in) The new value for the atomic variable, assigned to
the atomic variable, if compare equals the value of the atomic
variable.

stat intent(out) Stores the status STAT= and may be NULL.

type intent(in) the data type, i.e. BT_INTEGER (1) or BT_LOGICAL
(2)

kind intent(in) the kind value (only 4; always int)

8.2.32 _gfortran_caf_co_broadcast — Sending data to all images

Description:
Distribute a value from a given image to all other images in the team. Has to
be called collectively.

Syntax: void _gfortran_caf_co_broadcast (gfc_descriptor_t *a, int
source_image, int *stat, char *errmsg, int errmsg_len)
Arguments:
a intent(inout) An array descriptor with the data to be broad-
casted (on source_image) or to be received (other images).
source_image intent(in) The ID of the image from which the data should be
broadcasted.
stat intent(out) Stores the status STAT= and may be NULL.
errmsg intent(out) When an error occurs, this will be set to an error
message; may be NULL.
errmsg-len intent(in) the buffer size of errmsg.
8.2.33 _gfortran_caf_co_max — Collective maximum reduction
Description:

Calculates for each array element of the variable a the maximum value for that
element in the current team; if result_image has the value 0, the result shall
be stored on all images, otherwise, only on the specified image. This function
operates on numeric values and character strings.

98 The GNU Fortran Compiler

Syntax: void _gfortran_caf_co_max (gfc_descriptor_t *a, int result_image,
int *stat, char *errmsg, int a_len, int errmsg_len)

Arguments:

a intent(inout) An array descriptor for the data to be pro-
cessed. On the destination image(s) the result overwrites the
old content.

result_image intent(in) The ID of the image to which the reduced value
should be copied to; if zero, it has to be copied to all images.

stat intent(out) Stores the status STAT= and may be NULL.

errmsg intent(out) When an error occurs, this will be set to an error
message; may be NULL.

a_len intent(in) the string length of argument a

errmsg_len intent(in) the buffer size of errmsg

NOTES If result_-image is nonzero, the data in the array descriptor a on all images
except of the specified one become undefined; hence, the library may make use
of this.

8.2.34 _gfortran_caf_co_min — Collective minimum reduction

Description:

Calculates for each array element of the variable a the minimum value for that

element in the current team; if result_image has the value 0, the result shall

be stored on all images, otherwise, only on the specified image. This function
operates on numeric values and character strings.

Syntaz: void _gfortran_caf_co_min (gfc_descriptor_t *a, int result_image,
int *stat, char *errmsg, int a_len, int errmsg_len)

Arguments:

a intent(inout) An array descriptor for the data to be pro-
cessed. On the destination image(s) the result overwrites the
old content.

result_image intent(in) The ID of the image to which the reduced value
should be copied to; if zero, it has to be copied to all images.

stat intent(out) Stores the status STAT= and may be NULL.

errmsg intent(out) When an error occurs, this will be set to an error
message; may be NULL.

a_len intent(in) the string length of argument a

errmsg_len intent(in) the buffer size of errmsg

NOTES 1If result_-image is nonzero, the data in the array descriptor a on all images
except of the specified one become undefined; hence, the library may make use
of this.

8.2.35 _gfortran_caf_co_sum — Collective summing reduction

Description:

Calculates for each array element of the variable a the sum of all values for that
element in the current team; if result_image has the value 0, the result shall

Chapter 8: Coarray Programming 99

Syntaz:

Arguments:

NOTES

be stored on all images, otherwise, only on the specified image. This function
operates on numeric values only.

void _gfortran_caf_co_sum (gfc_descriptor_t *a, int result_image,
int *stat, char *errmsg, int errmsg_len)

a intent(inout) An array descriptor with the data to be pro-
cessed. On the destination image(s) the result overwrites the
old content.

result_image intent(in) The ID of the image to which the reduced value
should be copied to; if zero, it has to be copied to all images.

stat intent(out) Stores the status STAT= and may be NULL.

errmsg intent(out) When an error occurs, this will be set to an error
message; may be NULL.

errmsg_len intent(in) the buffer size of errmsg

If result_image is nonzero, the data in the array descriptor a on all images

except of the specified one become undefined; hence, the library may make use
of this.

8.2.36 _gfortran_caf_co_reduce — Generic collective reduction

Description:

Syntax:

Arguments:

Calculates for each array element of the variable a the reduction value for that
element in the current team; if result_image has the value 0, the result shall be
stored on all images, otherwise, only on the specified image. The opr is a pure
function doing a mathematically commutative and associative operation.

The opr_flags denote the following; the values are bitwise ored. GFC_CAF_
BYREF (1) if the result should be returned by reference; GFC_CAF_HIDDENLEN
(2) whether the result and argument string lengths shall be specified as hidden
arguments; GFC_CAF_ARG_VALUE (4) whether the arguments shall be passed
by value, GFC_CAF_ARG_DESC (8) whether the arguments shall be passed by
descriptor.

void _gfortran_caf_co_reduce (gfc_descriptor_t *a, void * (xopr)
(void *, void *), int opr_flags, int result_image, int *stat, char
xerrmsg, int a_len, int errmsg_len)

a intent(inout) An array descriptor with the data to be pro-
cessed. On the destination image(s) the result overwrites the
old content.

opr intent(in) Function pointer to the reduction function

opr_flags intent(in) Flags regarding the reduction function

result_image intent(in) The ID of the image to which the reduced value
should be copied to; if zero, it has to be copied to all images.

stat intent(out) Stores the status STAT= and may be NULL.

errmsg intent(out) When an error occurs, this will be set to an error
message; may be NULL.

100

NOTES

The GNU Fortran Compiler

a_len intent(in) the string length of argument a
errmsg-len intent(in) the buffer size of errmsg

If result_image is nonzero, the data in the array descriptor a on all images
except of the specified one become undefined; hence, the library may make use
of this.

For character arguments, the result is passed as first argument, followed by
the result string length, next come the two string arguments, followed by the
two hidden string length arguments. With C binding, there are no hidden
arguments and by-reference passing and either only a single character is passed
or an array descriptor.

Chapter 9: Intrinsic Procedures 101

9 Intrinsic Procedures

9.1 Introduction to intrinsic procedures

The intrinsic procedures provided by GNU Fortran include all of the intrinsic procedures re-
quired by the Fortran 95 standard, a set of intrinsic procedures for backwards compatibility
with G77, and a selection of intrinsic procedures from the Fortran 2003 and Fortran 2008
standards. Any conflict between a description here and a description in either the Fortran
95 standard, the Fortran 2003 standard or the Fortran 2008 standard is unintentional, and
the standard(s) should be considered authoritative.

The enumeration of the KIND type parameter is processor defined in the Fortran
95 standard. GNU Fortran defines the default integer type and default real type by
INTEGER (KIND=4) and REAL (KIND=4), respectively. The standard mandates that both data
types shall have another kind, which have more precision. On typical target architectures
supported by gfortran, this kind type parameter is KIND=8. Hence, REAL(KIND=8) and
DOUBLE PRECISION are equivalent. In the description of generic intrinsic procedures,
the kind type parameter will be specified by KIND=*, and in the description of specific
names for an intrinsic procedure the kind type parameter will be explicitly given (e.g.,
REAL (KIND=4) or REAL(KIND=8)). Finally, for brevity the optional KIND= syntax will be
omitted.

Many of the intrinsic procedures take one or more optional arguments. This document
follows the convention used in the Fortran 95 standard, and denotes such arguments by
square brackets.

GNU Fortran offers the ‘-std=£95’ and ‘-~std=gnu’ options, which can be used to restrict
the set of intrinsic procedures to a given standard. By default, gfortran sets the ‘-std=gnu’
option, and so all intrinsic procedures described here are accepted. There is one caveat. For
a select group of intrinsic procedures, g77 implemented both a function and a subroutine.
Both classes have been implemented in gfortran for backwards compatibility with g77. It is
noted here that these functions and subroutines cannot be intermixed in a given subprogram.
In the descriptions that follow, the applicable standard for each intrinsic procedure is noted.

9.2 ABORT — Abort the program

Description:
ABORT causes immediate termination of the program. On operating systems
that support a core dump, ABORT will produce a core dump. It will also print
a backtrace, unless -fno-backtrace is given.

Standard: GNU extension
Class: Subroutine
Syntaz: CALL ABORT

Return value:
Does not return.

Ezxample:

102
program test_abort
integer :: i =1, j =2
if (1 /= j) call abort
end program test_abort
See also:

[BACKTRACE], page 127

)

9.3 ABS — Absolute value

Description:

The GNU Fortran Compiler

ABS(A) computes the absolute value of A.

Standard: Fortran 77 and later, has overloads that are GNU extensions
Class: Elemental function
Syntaz: RESULT = ABS(A)
Arguments:
A The type of the argument shall be an INTEGER, REAL, or
COMPLEX.

Return value:

Section 9.101 [EXIT], page 167, Section 9.161 [KILL], page 203, Section 9.39

The return value is of the same type and kind as the argument except the return

value is REAL for a COMPLEX argument.

Example:

program test_abs

integer :: i

oo

Specific names:
Name
ABS(A)
CABS(A)
DABS (A)
IABS(A)
BABS(A)
IIABS(A)
JIABS(A)
KIABS(A)
ZABS (A)
CDABS (A)

1
=

-1
.e0
(-1.e0,0.e0)

rogram test_abs

Argument

REAL(4) A

COMPLEX(4) A
REAL(8) A

INTEGER(4) A
INTEGER(1) A
INTEGER(2) A
INTEGER(4) A
INTEGER(8) A
COMPLEX(8) A
COMPLEX(8) A

Return type
REAL(4)

REAL (4)

REAL(8)

INTEGER(4)
INTEGER (1)
INTEGER(2)
INTEGER(4)
INTEGER(8)
COMPLEX (8)
COMPLEX (8)

Standard

Fortran 77 and later
Fortran 77 and later
Fortran 77 and later
Fortran 77 and later
GNU extension
GNU extension
GNU extension
GNU extension
GNU extension
GNU extension

Chapter 9: Intrinsic Procedures

9.4 ACCESS — Checks file access modes

Description:

103

ACCESS (NAME, MODE) checks whether the file NAME exists, is readable, writable
or executable. Except for the executable check, ACCESS can be replaced by

Fortran 95’s INQUIRE.
Standard: GNU extension

Class: Inquiry function

Syntax: RESULT = ACCESS(NAME, MODE)

Arguments:

NAME Scalar CHARACTER of default kind with the file name. Tailing
blank are ignored unless the character achar(0) is present,
then all characters up to and excluding achar (0) are used as

file name.

MODE Scalar CHARACTER of default kind with the file access mode,
may be any concatenation of "r" (readable), "w" (writable)
and "x" (executable), or " " to check for existence.

Return value:

Returns a scalar INTEGER, which is 0 if the file is accessible in the given mode;
otherwise or if an invalid argument has been given for MODE the value 1 is

returned.

Example:

program access_test
implicit none

character(len=+*), parameter ::
character(len=+*), parameter ::

if (access(file,’ ’) ==
if (access(file,’r’) ==
if (access(file,’w’) ==
if (access(file,’x’) ==
if (access(file2,’rwx’)

print *, trim(file2),’ is readable, writable and

end program access_test

Specific names:
See also:

0) print
0) print
0) print
0) print
= 0) &

*

*
*
*

file
file2 =

>
3
)
H

trim(file),’
trim(file),’
trim(file),’
trim(file),’

= ’test.dat’
= ’test.dat

is
is
is
is

> //achar (0)

exists’
readable’
writable’
executable’

executable’

9.5 ACHAR — Character in ASCII collating sequence

Description:

ACHAR(I) returns the character located at position I in the ASCII collating

sequence.

Standard: Fortran 77 and later, with KIND argument Fortran 2003 and later

Class: Elemental function

Syntaz: RESULT = ACHAR(I [, KIND])

104 The GNU Fortran Compiler

Arguments:
I The type shall be INTEGER.
KIND (Optional) An INTEGER initialization expression indicating
the kind parameter of the result.

Return value:
The return value is of type CHARACTER with a length of one. If the KIND
argument is present, the return value is of the specified kind and of the default
kind otherwise.

Ezample:
program test_achar
character c
¢ = achar(32)
end program test_achar
Note: See Section 9.142 [ICHARJ, page 192 for a discussion of converting between
numerical values and formatted string representations.
See also: Section 9.59 [CHAR], page 138, Section 9.134 [IACHAR], page 187,
Section 9.142 [ICHAR], page 192
9.6 ACOS — Arccosine function
Description:
ACOS(X) computes the arccosine of X (inverse of COS(X)).
Standard: Fortran 77 and later, for a complex argument Fortran 2008 or later
Class: Elemental function
Syntaz: RESULT = ACOS (X)
Arguments:
X The type shall either be REAL with a magnitude that is less

than or equal to one - or the type shall be COMPLEX.

Return value:
The return value is of the same type and kind as X. The real part of the result
is in radians and lies in the range 0 < Racos(x) < 7.

Ezample:

program test_acos
real(8) :: x = 0.866_8
x = acos(x)

end program test_acos

Specific names:

Name Argument Return type Standard
ACOS(X) REAL(4) X REAL (4) Fortran 77 and later
DACOS (X) REAL(8) X REAL(8) Fortran 77 and later

See also: Inverse function: Section 9.73 [COS], page 148 Degrees function: Section 9.7
[ACOSD], page 105

Chapter 9: Intrinsic Procedures 105

9.7 ACOSD — Arccosine function, degrees

Description:
ACOSD(X) computes the arccosine of X in degrees (inverse of COSD(X)).

This function is for compatibility only and should be avoided in favor of stan-
dard constructs wherever possible.

Standard: GNU Extension, enabled with ‘-fdec-math’
Class: Elemental function
Syntazx: RESULT = ACOSD(X)

Arguments:
X The type shall either be REAL with a magnitude that is less
than or equal to one - or the type shall be COMPLEX.

Return value:
The return value is of the same type and kind as X. The real part of the result
is in degrees and lies in the range 0 < Racos(x) < 180.

Example:

program test_acosd
real(8) :: x = 0.866_8
x = acosd(x)

end program test_acosd

Specific names:

Name Argument Return type Standard
ACOSD(X) REAL(4) X REAL (4) GNU Extension
DACOSD(X) REAL(8) X REAL(8) GNU Extension

See also: Inverse function: Section 9.74 [COSD], page 149 Radians function: Section 9.6
[ACOS], page 104

9.8 ACOSH — Inverse hyperbolic cosine function

Description:
ACOSH(X) computes the inverse hyperbolic cosine of X.

Standard: Fortran 2008 and later
Class: Elemental function
Syntax: RESULT = ACOSH(X)

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value has the same type and kind as X. If X is complex, the
imaginary part of the result is in radians and lies between 0 < Jacosh(z) < 7.

Ezxample:

106 The GNU Fortran Compiler

PROGRAM test_acosh
REAL(8), DIMENSION(3) :: x = (/ 1.0, 2.0, 3.0 /)
WRITE (*,*) ACOSH(x)

END PROGRAM

Specific names:
Name Argument Return type Standard
DACOSH (X) REAL(8) X REAL(8) GNU extension

See also: Inverse function: Section 9.75 [COSH], page 149

9.9 ADJUSTL — Left adjust a string

Description:
ADJUSTL (STRING) will left adjust a string by removing leading spaces. Spaces
are inserted at the end of the string as needed.

Standard: Fortran 90 and later
Class: Elemental function
Syntax: RESULT = ADJUSTL (STRING)

Arguments:
STRING The type shall be CHARACTER.

Return value:
The return value is of type CHARACTER and of the same kind as STRING where
leading spaces are removed and the same number of spaces are inserted on the
end of STRING.

Ezample:

program test_adjustl
character(len=20) :: str = > gfortran’
str = adjustl(str)
print *, str

end program test_adjustl

See also: Section 9.10 [ADJUSTR], page 106, Section 9.273 [TRIM], page 267

9.10 ADJUSTR — Right adjust a string

Description:
ADJUSTR (STRING) will right adjust a string by removing trailing spaces. Spaces
are inserted at the start of the string as needed.

Standard: Fortran 95 and later
Class: Elemental function
Syntax: RESULT = ADJUSTR(STRING)

Arguments:
STR The type shall be CHARACTER.

Chapter 9: Intrinsic Procedures 107

Return value:
The return value is of type CHARACTER and of the same kind as STRING where
trailing spaces are removed and the same number of spaces are inserted at the
start of STRING.

Ezample:

program test_adjustr
character(len=20) :: str = ’gfortran’
str = adjustr(str)
print *, str

end program test_adjustr

See also: Section 9.9 [ADJUSTL], page 106, Section 9.273 [TRIM], page 267

9.11 AIMAG — Imaginary part of complex number

Description:
ATMAG(Z) yields the imaginary part of complex argument Z. The IMAG(Z) and
IMAGPART(Z) intrinsic functions are provided for compatibility with g77, and
their use in new code is strongly discouraged.

Standard: Fortran 77 and later, has overloads that are GNU extensions
Class: Elemental function
Syntaz: RESULT = AIMAG(Z)

Arguments:
Z The type of the argument shall be COMPLEX.

Return value:
The return value is of type REAL with the kind type parameter of the argument.

Example:

program test_aimag
complex(4) z4
complex(8) z8
z4 = cmplx(1.e0_4, 0.e0_4)
z8 = cmplx(0.e0_8, 1.e0_8)
print *, aimag(z4), dimag(z8)
end program test_aimag

Specific names:

Name Argument Return type Standard

ATMAG(Z) COMPLEX Z REAL GNU extension
DIMAG(Z) COMPLEX(8) Z REAL(8) GNU extension
IMAG(Z) COMPLEX Z REAL GNU extension
IMAGPART(Z) COMPLEX Z REAL GNU extension

9.12 AINT — Truncate to a whole number

Description:
AINT(A [, KIND]) truncates its argument to a whole number.

Standard: Fortran 77 and later

108 The GNU Fortran Compiler

Class: Elemental function
Syniam: RESULT = AINT(A [, KIND])

Arguments:
A The type of the argument shall be REAL.
KIND (Optional) An INTEGER initialization expression indicating
the kind parameter of the result.

Return value:
The return value is of type REAL with the kind type parameter of the argument
if the optional KIND is absent; otherwise, the kind type parameter will be given
by KIND. If the magnitude of X is less than one, AINT(X) returns zero. If the
magnitude is equal to or greater than one then it returns the largest whole

number that does not exceed its magnitude. The sign is the same as the sign
of X.

Example:

program test_aint
real(4) x4
real(8) x8
x4 = 1.234E0_4
x8 = 4.321_8
print *, aint(x4), dint(x8)
x8 = aint(x4,8)
end program test_aint

Specific names:

Name Argument Return type Standard
AINT(A) REAL(4) A REAL(4) Fortran 77 and later
DINT(A) REAL(8) A REAL(8) Fortran 77 and later

9.13 ALARM — Execute a routine after a given delay

Description:
ALARM(SECONDS, HANDLER [, STATUS]) causes external subroutine HANDLER
to be executed after a delay of SECONDS by using alarm(2) to set up a signal
and signal (2) to catch it. If STATUS is supplied, it will be returned with the
number of seconds remaining until any previously scheduled alarm was due to
be delivered, or zero if there was no previously scheduled alarm.

Standard: GNU extension
Class: Subroutine
S@ntax: CALL ALARM(SECONDS, HANDLER [, STATUS])

Arguments:

SECONDS The type of the argument shall be a scalar INTEGER. It is
INTENT(IN).

HANDLER Signal handler (INTEGER,FUNCTION or SUBROUTINE) or
dummy /global INTEGER scalar. The scalar values may be ei-
ther SIG_IGN=1 to ignore the alarm generated or SIG_DFL=0
to set the default action. It is INTENT (IN).

Chapter 9:

Ezample:

Intrinsic Procedures 109

STATUS (Optional) STATUS shall be a scalar variable of the default
INTEGER kind. It is INTENT (OUT).

program test_alarm
external handler_print
integer i
call alarm (3, handler_print, i)
print *, i
call sleep(10)
end program test_alarm

This will cause the external routine handler_print to be called after 3 seconds.

9.14 ALL — All values in MASK along DIM are true

Description:

Standard:
Class:
Syntaz:

Arguments:

ALL(MASK [, DIM]) determines if all the values are true in MASK in the array
along dimension DIM.

Fortran 95 and later
Transformational function

RESULT = ALL(MASK [, DIM])

MASK The type of the argument shall be LOGICAL and it shall not
be scalar.
DIM (Optional) DIM shall be a scalar integer with a value that

lies between one and the rank of MASK.

Return value:

Ezample:

ALL (MASK) returns a scalar value of type LOGICAL where the kind type param-
eter is the same as the kind type parameter of MASK. If DIM is present, then
ALL(MASK, DIM) returns an array with the rank of MASK minus 1. The shape
is determined from the shape of MASK where the DIM dimension is elided.

(A) ALL(MASK) is true if all elements of MASK are true. It also is true
if MASK has zero size; otherwise, it is false.

(B) If the rank of MASK is one, then ALL(MASK,DIM) is equivalent to
ALL(MASK). If the rank is greater than one, then ALL(MASK,DIM)
is determined by applying ALL to the array sections.

program test_all
logical 1
1 = all((/.true., .true., .true./))
print *, 1
call section
contains
subroutine section

integer a(2,3), b(2,3)

a 1

b 1

110 The GNU Fortran Compiler

b(2,2) =2
print *, all(a .eq. b, 1)
print *, all(a .eq. b, 2)
end subroutine section
end program test_all

9.15 ALLOCATED — Status of an allocatable entity

Description:
ALLOCATED (ARRAY) and ALLOCATED (SCALAR) check the allocation status of AR-
RAY and SCALAR, respectively.

Standard: Fortran 95 and later. Note, the SCALAR= keyword and allocatable scalar entities
are available in Fortran 2003 and later.

Class: Inquiry function

Syntaz:

RESULT = ALLOCATED (ARRAY)
RESULT = ALLOCATED (SCALAR)

Arguments:
ARRAY The argument shall be an ALLOCATABLE array.
SCALAR The argument shall be an ALLOCATABLE scalar.

Return value:
The return value is a scalar LOGICAL with the default logical kind type parame-
ter. If the argument is allocated, then the result is . TRUE.; otherwise, it returns
.FALSE.

Example:

program test_allocated

integer :: i = 4

real(4), allocatable :: x(:)

if (.not. allocated(x)) allocate(x(i))
end program test_allocated

9.16 AND — Bitwise logical AND

Description:
Bitwise logical AND.

This intrinsic routine is provided for backwards compatibility with GNU For-
tran 77. For integer arguments, programmers should consider the use of the
Section 9.136 [IAND], page 188 intrinsic defined by the Fortran standard.

Standard: GNU extension
Class: Function
Syntaz: RESULT = AND(I, J)

Arguments:
1 The type shall be either a scalar INTEGER type or a scalar
LOGICAL type.
J The type shall be the same as the type of I

Chapter 9: Intrinsic Procedures 111

Return value:
The return type is either a scalar INTEGER or a scalar LOGICAL. If the kind type
parameters differ, then the smaller kind type is implicitly converted to larger
kind, and the return has the larger kind.

Example:

PROGRAM test_and
LOGICAL :: T = .TRUE., F = .FALSE.
INTEGER :: a, b
DATA a / Z°F’ /, b / 2°3* /

WRITE (*,*) AND(T, T), AND(T, F), AND(F, T), AND(F, F)
WRITE (*,*) AND(a, b)
END PROGRAM

See also: Fortran 95 elemental function: Section 9.136 [[AND], page 188

9.17 ANINT — Nearest whole number

Description:
ANINT(A [, KIND]) rounds its argument to the nearest whole number.

Standard: Fortran 77 and later
Class: Elemental function
Syniax: RESULT = ANINT(A [, KIND])

Arguments:
A The type of the argument shall be REAL.
KIND (Optional) An INTEGER initialization expression indicating
the kind parameter of the result.

Return value:
The return value is of type real with the kind type parameter of the argument if
the optional KIND is absent; otherwise, the kind type parameter will be given
by KIND. If A is greater than zero, ANINT(A) returns AINT(X+0.5). If A is
less than or equal to zero then it returns AINT(X-0.5).

Example:

program test_anint
real(4) x4
real(8) x8
x4 = 1.234E0_4
x8 = 4.321_8
print *, anint(x4), dnint(x8)
x8 = anint(x4,8)
end program test_anint

Specific names:
Name Argument Return type Standard
AINT(A) REAL(4) A REAL (4) Fortran 77 and later
DNINT(A) REAL(8) A REAL(8) Fortran 77 and later

112

The GNU Fortran Compiler

9.18 ANY — Any value in MASK along DIM is true

Description:

ANY(MASK [, DIM]) determines if any of the values in the logical array MASK

along dimension DIM are .TRUE..
Standard: Fortran 95 and later
Class: Transformational function

Syntaz: RESULT = ANY(MASK [, DIM])

Arguments:
MASK The type of the argument shall be LOGICAL and it shall not
be scalar.
DIM (Optional) DIM shall be a scalar integer with a value that

lies between one and the rank of MASK.

Return value:

ANY (MASK) returns a scalar value of type LOGICAL where the kind type param-
eter is the same as the kind type parameter of MASK. If DIM is present, then
ANY (MASK, DIM) returns an array with the rank of MASK minus 1. The shape
is determined from the shape of MASK where the DIM dimension is elided.

(A) ANY (MASK) is true if any element of MASK is true; otherwise, it is
false. It also is false if MASK has zero size.
(B) If the rank of MASK is one, then ANY(MASK,DIM) is equivalent to

ANY (MASK). If the rank is greater than one, then ANY(MASK,DIM)
is determined by applying ANY to the array sections.

Example:

program test_any
logical 1

1 = any((/.true., .true., .true./))

print *, 1
call section
contains
subroutine section
integer a(2,3), b(2,3)

a=1
b=1
b(2,2) = 2

print *, any(a .eq. b, 1)
print *, any(a .eq. b, 2)
end subroutine section
end program test_any

9.19 ASIN — Arcsine function

Description:

ASIN(X) computes the arcsine of its X (inverse of SIN(X)).

Standard: Fortran 77 and later, for a complex argument Fortran 2008 or later

Class: Elemental function

Chapter 9: Intrinsic Procedures 113

Syntaz: RESULT = ASIN(X)

Arguments:
X The type shall be either REAL and a magnitude that is less
than or equal to one - or be COMPLEX.

Return value:
The return value is of the same type and kind as X. The real part of the result
is in radians and lies in the range —7/2 < Rasin(z) < 7/2.

Ezample:

program test_asin
real(8) :: x = 0.866_8
x = asin(x)

end program test_asin

Specific names:

Name Argument Return type Standard
ASIN(X) REAL(4) X REAL (4) Fortran 77 and later
DASIN(X) REAL(8) X REAL(8) Fortran 77 and later

See also: Inverse function: Section 9.247 [SIN], page 251 Degrees function: Section 9.20
[ASIND], page 113

9.20 ASIND — Arcsine function, degrees

Description:
ASIND(X) computes the arcsine of its X in degrees (inverse of SIND(X)).

This function is for compatibility only and should be avoided in favor of stan-
dard constructs wherever possible.

Standard: GNU Extension, enabled with ‘~fdec-math’.
Class: Elemental function
Syntax: RESULT = ASIND(X)

Arguments:
X The type shall be either REAL and a magnitude that is less
than or equal to one - or be COMPLEX.

Return value:
The return value is of the same type and kind as X. The real part of the result
is in degrees and lies in the range —90 < Rasin(z) < 90.

Example:

program test_asind
real(8) :: x = 0.866_8
x = asind(x)

end program test_asind

Specific names:
Name Argument Return type Standard
ASIND(X) REAL(4) X REAL (4) GNU Extension
DASIND(X) REAL(8) X REAL(8) GNU Extension

114 The GNU Fortran Compiler

See also: Inverse function: Section 9.248 [SIND], page 251 Radians function: Section 9.19
[ASIN], page 112

9.21 ASINH — Inverse hyperbolic sine function

Description:
ASINH(X) computes the inverse hyperbolic sine of X.

Standard: Fortran 2008 and later
Class: Elemental function
Syntaz: RESULT = ASINH(X)

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value is of the same type and kind as X. If X is complex, the
imaginary part of the result is in radians and lies between —7 /2 < Sasinh(z) <

/2.

Example:

PROGRAM test_asinh
REAL(8), DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
WRITE (*,*) ASINH(x)

END PROGRAM

Specific names:
Name Argument Return type Standard
DASINH(X) REAL(8) X REAL(8) GNU extension.

See also: Inverse function: Section 9.249 [SINH], page 252

9.22 ASSOCIATED — Status of a pointer or pointer/target pair

Description:
ASSOCIATED (POINTER [, TARGET]) determines the status of the pointer
POINTER or if POINTER is associated with the target TARGET.

Standard: Fortran 95 and later
Class: Inquiry function

Syntax: RESULT = ASSOCIATED (POINTER [, TARGET])

Arguments:
POINTER POINTER shall have the POINTER attribute and it can be of
any type.
TARGET (Optional) TARGET shall be a pointer or a target. It must
have the same type, kind type parameter, and array rank as
POINTER.

The association status of neither POINTER nor TARGET shall be undefined.

Chapter 9: Intrinsic Procedures 115

Return value:
ASSOCIATED(POINTER) returns a scalar value of type LOGICAL(4). There are
several cases:

(A) When the optional TARGET is not present then

Example:

See also:

ASSOCIATED (POINTER) is true if POINTER is associated with a
target; otherwise, it returns false.

(B) If TARGET is present and a scalar target, the result is true if

TARGET is not a zero-sized storage sequence and the target associ-
ated with POINTER occupies the same storage units. If POINTER
is disassociated, the result is false.

(C) If TARGET is present and an array target, the result is true if

TARGET and POINTER have the same shape, are not zero-sized
arrays, are arrays whose elements are not zero-sized storage se-
quences, and TARGET and POINTER occupy the same storage
units in array element order. As in case(B), the result is false, if
POINTER is disassociated.

(D) If TARGET is present and an scalar pointer, the result is true

if TARGET is associated with POINTER, the target associated
with TARGET are not zero-sized storage sequences and occupy
the same storage units. The result is false, if either TARGET or
POINTER is disassociated.

(E) If TARGET is present and an array pointer, the result is true if

target associated with POINTER and the target associated with
TARGET have the same shape, are not zero-sized arrays, are ar-
rays whose elements are not zero-sized storage sequences, and TAR-
GET and POINTER occupy the same storage units in array ele-
ment order. The result is false, if either TARGET or POINTER is
disassociated.

program test_associated
implicit none

real, target :: tgt(2) = (/1., 2./)

real, pointer :: ptr(:)

ptr => tgt

if (associated(ptr) .eqv. .false.) call abort

if (associated(ptr,tgt) .eqv. .false.) call abort
end program test_associated

Section 9.208 [NULL], page 229

9.23 ATAN — Arctangent function

Description:
ATAN (X) computes the arctangent of X.

Standard: Fortran 77 and later, for a complex argument and for two arguments Fortran

2008 or later

116

Class:
Syntaz:

Arguments:

The GNU Fortran Compiler

Elemental function

RESULT = ATAN (X)
RESULT = ATAN(Y, X)

X The type shall be REAL or COMPLEX; if Y is present, X shall
be REAL.

Y shall be of

the same type

and kind as
X.

Return value:

Ezample:

The return value is of the same type and kind as X. If Y is present, the result
is identical to ATAN2(Y,X). Otherwise, it the arcus tangent of X, where the real
part of the result is in radians and lies in the range —7/2 < Ratan(x) < 7/2.

program test_atan
real(8) :: x = 2.866_8
x = atan(x)

end program test_atan

Specific names:

See also:

Name Argument Return type Standard
ATAN(X) REAL(4) X REAL (4) Fortran 77 and later
DATAN (X) REAL(8) X REAL(8) Fortran 77 and later

Inverse function: Section 9.263 [TAN], page 261 Degrees function: Section 9.24
[ATAND], page 116

9.24 ATAND — Arctangent function, degrees

Description:

Standard:
Class:
Syntaz:

Arguments:

ATAND(X) computes the arctangent of X in degrees (inverse of Section 9.264
[TAND], page 261).

This function is for compatibility only and should be avoided in favor of stan-
dard constructs wherever possible.

GNU Extension, enabled with ‘~-fdec-math’.

Elemental function

RESULT = ATAND (X)
RESULT = ATAND(Y, X)

X The type shall be REAL or COMPLEX; if Y is present, X shall
be REAL.

Chapter 9: Intrinsic Procedures 117

Y shall be of

the same type
and kind as
X.

Return value:
The return value is of the same type and kind as X. If Y is present, the result
is identical to ATAND2(Y,X). Otherwise, it is the arcus tangent of X, where the
real part of the result is in degrees and lies in the range —90 < R atand(z) < 90.

Ezample:

program test_atand
real(8) :: x = 2.866_8
x = atand(x)

end program test_atand

Specific names:

Name Argument Return type Standard
ATAND (X) REAL(4) X REAL(4) GNU Extension
DATAND (X) REAL(8) X REAL(8) GNU Extension

See also: Inverse function: Section 9.264 [TAND], page 261 Radians function:
Section 9.23 [ATAN], page 115

9.25 ATAN2 — Arctangent function

Description:
ATAN2(Y, X) computes the principal value of the argument function of the com-
plex number X +4Y . This function can be used to transform from Cartesian into
polar coordinates and allows to determine the angle in the correct quadrant.

Standard: Fortran 77 and later
Class: Elemental function
Syntaz: RESULT = ATAN2(Y, X)

Arguments:
Y The type shall be REAL.
X The type and kind type parameter shall be the same as Y. If
Y is zero, then X must be nonzero.

Return value:

The return value has the same type and kind type parameter as Y. It is the
principal value of the complex number X + Y. If X is nonzero, then it lies in
the range —m < atan(z) < w. The sign is positive if Y is positive. If Y is zero,
then the return value is zero if X is strictly positive, 7 if X is negative and Y
is positive zero (or the processor does not handle signed zeros), and —m if X is
negative and Y is negative zero. Finally, if X is zero, then the magnitude of
the result is 7/2.

Ezample:

118 The GNU Fortran Compiler

program test_atan2
real(4) :: x = 1.e0_4, y = 0.5e0_4
x = atan2(y,x)

end program test_atan2

Specific names:

Name Argument Return type Standard

ATAN2(X, Y) REAL(4) X, Y REAL(4) Fortran 77 and later

DATAN2(X, Y) REAL(8) X, Y REAL(8) Fortran 77 and later
See also: Alias: Section 9.23 [ATAN], page 115 Degrees function: Section 9.26 [ATAN2D],

page 118

9.26 ATAN2D — Arctangent function, degrees

Description:
ATAN2D (Y, X) computes the principal value of the argument function of the
complex number X + ¢Y in degrees. This function can be used to transform
from Cartesian into polar coordinates and allows to determine the angle in the
correct quadrant.

This function is for compatibility only and should be avoided in favor of stan-
dard constructs wherever possible.

Standard: GNU Extension, enabled with ‘-fdec-math’.
Class: Elemental function
Syntaz: RESULT = ATAN2D (Y, X)

Arguments:
Y The type shall be REAL.
X The type and kind type parameter shall be the same as Y. If
Y is zero, then X must be nonzero.

Return value:

The return value has the same type and kind type parameter as Y. It is the
principal value of the complex number X + iY. If X is nonzero, then it lies
in the range —180 < atan(x) < 180. The sign is positive if Y is positive. If
Y is zero, then the return value is zero if X is strictly positive, 180 if X is
negative and Y is positive zero (or the processor does not handle signed zeros),
and —180 if X is negative and Y is negative zero. Finally, if X is zero, then
the magnitude of the result is 90.

Example:

program test_atan2d
real(4) :: x = 1.e0_4, y = 0.5e0_4
x = atan2d(y,x)

end program test_atan2d

Specific names:
Name Argument Return type Standard
ATAN2D(X, Y) REAL(4) X, Y REAL (4) GNU Extension
DATAN2D (X, Y) REAL(8) X, Y REAL(8) GNU Extension

Chapter 9: Intrinsic Procedures 119

See also: Alias: Section 9.24 [ATAND], page 116 Radians function: Section 9.25 [ATAN2],
page 117

9.27 ATANH — Inverse hyperbolic tangent function

Description:
ATANH(X) computes the inverse hyperbolic tangent of X.

Standard: Fortran 2008 and later
Class: Elemental function
Syntaz: RESULT = ATANH(X)

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value has same type and kind as X. If X is complex, the imaginary
part of the result is in radians and lies between —7/2 < Satanh(z) < /2.

Example:

PROGRAM test_atanh
REAL, DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
WRITE (*,*) ATANH(x)

END PROGRAM

Specific names:
Name Argument Return type Standard
DATANH (X) REAL(8) X REAL(8) GNU extension

See also: Inverse function: Section 9.265 [TANH], page 262

9.28 ATOMIC_ADD — Atomic ADD operation

Description:
ATOMIC_ADD (ATOM, VALUE) atomically adds the value of VAR to the variable
ATOM. When STAT is present and the invocation was successful, it is assigned
the value 0. If it is present and the invocation has failed, it is assigned a positive
value; in particular, for a coindexed ATOM, if the remote image has stopped,
it is assigned the value of ISO_FORTRAN_ENV’s STAT_STOPPED_IMAGE and if the
remote image has failed, the value STAT_FAILED_IMAGE.

Standard: TS 18508 or later
Class: Atomic subroutine

Syntax: CALL ATOMIC_ADD (ATOM, VALUE [, STAT])

Arguments:
ATOM Scalar coarray or coindexed variable of integer type with
ATOMIC_INT_KIND kind.
VALUE Scalar of the same type as ATOM. If the kind is different, the

value is converted to the kind of ATOM.
STAT (optional) Scalar default-kind integer variable.

120 The GNU Fortran Compiler

Example:

program atomic
use iso_fortran_env
integer(atomic_int_kind) :: atom[*]
call atomic_add (atom[1], this_image())
end program atomic

See also: Section 9.31 [ATOMIC_DEFINE], page 121, Section 9.32 [ATOMIC_FETCH_ADD|]
page 122, Section 10.1 [ISO_.FORTRAN_ENV], page 273, Section 9.29
[ATOMIC_AND], page 120, Section 9.36 [ATOMIC_OR], page 125,
Section 9.38 [ATOMIC_XOR], page 126

9.29 ATOMIC_AND — Atomic bitwise AND operation

Description:

ATOMIC_AND(ATOM, VALUE) atomically defines ATOM with the bitwise AND
between the values of ATOM and VALUE. When STAT is present and the
invocation was successful, it is assigned the value 0. If it is present and the
invocation has failed, it is assigned a positive value; in particular, for a coin-
dexed ATOM, if the remote image has stopped, it is assigned the value of
ISO_FORTRAN_ENV’s STAT_STOPPED_IMAGE and if the remote image has failed,
the value STAT_FAILED_IMAGE.

Standard: TS 18508 or later
Class: Atomic subroutine

Syntax: CALL ATOMIC_AND (ATOM, VALUE [, STAT])

Arguments:
ATOM Scalar coarray or coindexed variable of integer type with
ATOMIC_INT_KIND kind.
VALUE Scalar of the same type as ATOM. If the kind is different, the
value is converted to the kind of ATOM.
STAT (optional) Scalar default-kind integer variable.
Ezample:

program atomic

use iso_fortran_env

integer(atomic_int_kind) :: atom[*]

call atomic_and (atom[1], int(b’10100011101°))
end program atomic

See also: Section 9.31 [ATOMIC_DEFINE], page 121, Section 9.33 [ATOMIC_FETCH_AND] J}
page 123, Section 10.1 [ISO_.FORTRAN_ENV], page 273, Section 9.28
[ATOMIC_ADD], page 119, Section 9.36 [ATOMIC_OR|, page 125,
Section 9.38 [ATOMIC_XOR/, page 126

)

9.30 ATOMIC_CAS — Atomic compare and swap

Description:
ATOMIC_CAS compares the variable ATOM with the value of COMPARE; if the
value is the same, ATOM is set to the value of NEW. Additionally, OLD is set

Chapter 9: Intrinsic Procedures 121

Standard:
Class:
Syntaz:

Arguments:

Example:

See also:

to the value of ATOM that was used for the comparison. When STAT is present
and the invocation was successful, it is assigned the value 0. If it is present and
the invocation has failed, it is assigned a positive value; in particular, for a
coindexed ATOM, if the remote image has stopped, it is assigned the value of
ISO_FORTRAN_ENV’s STAT_STOPPED_IMAGE and if the remote image has failed,
the value STAT_FAILED_IMAGE.

TS 18508 or later
Atomic subroutine

CALL ATOMIC_CAS (ATOM, OLD, COMPARE, NEW [, STAT])

ATOM Scalar coarray or coindexed variable of either integer type
with ATOMIC_INT_KIND kind or logical type with ATOMIC_
LOGICAL_KIND kind.

OLD Scalar of the same type and kind as ATOM.

COMPARE Scalar variable of the same type and kind as ATOM.

NEW Scalar variable of the same type as ATOM. If kind is different,
the value is converted to the kind of ATOM.

STAT (optional) Scalar default-kind integer variable.

program atomic
use iso_fortran_env
logical(atomic_logical_kind) :: atom[*], prev
call atomic_cas (atom[1], prev, .false., .true.))
end program atomic

Section 9.31 [ATOMIC_DEFINE], page 121, Section 9.37 [ATOMIC_REF],
page 125, Section 10.1 [ISO_FORTRAN_ENV], page 273

9.31 ATOMIC_DEFINE — Setting a variable atomically

Description:

Standard:
Class:
Syntaz:

Arguments:

ATOMIC_DEFINE(ATOM, VALUE) defines the variable ATOM with the value
VALUE atomically. When STAT is present and the invocation was successful,
it is assigned the value 0. If it is present and the invocation has failed, it
is assigned a positive value; in particular, for a coindexed ATOM, if the
remote image has stopped, it is assigned the value of ISO_FORTRAN_ENV’s
STAT_STOPPED_IMAGE and if the remote image has failed, the value
STAT_FAILED_IMAGE.

Fortran 2008 and later; with STAT, TS 18508 or later
Atomic subroutine

CALL ATOMIC_DEFINE (ATOM, VALUE [, STAT])

ATOM Scalar coarray or coindexed variable of either integer type
with ATOMIC_INT_KIND kind or logical type with ATOMIC_
LOGICAL_KIND kind.

122

Ezample:

See also:

The GNU Fortran Compiler

VALUE Scalar of the same type as ATOM. If the kind is different, the
value is converted to the kind of ATOM.
STAT (optional) Scalar default-kind integer variable.

program atomic
use iso_fortran_env
integer(atomic_int_kind) :: atom[*]
call atomic_define (atom[1], this_image())
end program atomic
Section 9.37 [ATOMIC_REF], page 125, Section 9.30 [ATOMIC_CAS],
page 120, Section 10.1 [ISO_.FORTRAN_ENV], page 273, Section 9.28
[ATOMIC_ADD], page 119, Section 9.29 [ATOMIC_AND], page 120,
Section 9.36 [ATOMIC_OR], page 125, Section 9.38 [ATOMIC_XOR], page 126

9.32 ATOMIC_FETCH_ADD — Atomic ADD operation with prior
fetch

Description:

Standard:
Class:
Syntaz:

Arguments:

Example:

See also:

ATOMIC_FETCH_ADD (ATOM, VALUE, OLD) atomically stores the value of ATOM
in OLD and adds the value of VAR to the variable ATOM. When STAT is
present and the invocation was successful, it is assigned the value 0. If it is
present and the invocation has failed, it is assigned a positive value; in particu-
lar, for a coindexed ATOM, if the remote image has stopped, it is assigned the
value of ISO_FORTRAN_ENV’s STAT_STOPPED_IMAGE and if the remote image has
failed, the value STAT_FAILED_IMAGE.

TS 18508 or later
Atomic subroutine

CALL ATOMIC_FETCH_ADD (ATOM, VALUE, old [, STATI)

ATOM Scalar coarray or coindexed variable of integer type with
ATOMIC_INT_KIND kind. ATOMIC_LOGICAL_KIND kind.

VALUE Scalar of the same type as ATOM. If the kind is different, the
value is converted to the kind of ATOM.

OLD Scalar of the same type and kind as ATOM.

STAT (optional) Scalar default-kind integer variable.

program atomic
use iso_fortran_env
integer(atomic_int_kind) :: atom[*], old
call atomic_add (atom[1], this_image(), old)
end program atomic
Section 9.31 [ATOMIC_DEFINE], page 121, Section 9.28 [ATOMIC_ADD],
page 119, Section 10.1 [ISO_.FORTRAN_ENV], page 273, Section 9.33
[ATOMIC_FETCH_AND], page 123, Section 9.34 [ATOMIC_FETCH_OR],
page 123, Section 9.35 [ATOMIC_FETCH_XOR], page 124

Chapter 9: Intrinsic Procedures 123

9.33 ATOMIC_FETCH_AND — Atomic bitwise AND operation
with prior fetch

Description:

Standard:
Class:
Syntaz:

Arguments:

Ezample:

See also:

ATOMIC_AND(ATOM, VALUE) atomically stores the value of ATOM in OLD
and defines ATOM with the bitwise AND between the values of ATOM and
VALUE. When STAT is present and the invocation was successful, it is
assigned the value 0. If it is present and the invocation has failed, it is assigned
a positive value; in particular, for a coindexed ATOM, if the remote image has
stopped, it is assigned the value of ISO_FORTRAN_ENV’s STAT_STOPPED_IMAGE
and if the remote image has failed, the value STAT_FAILED_IMAGE.

TS 18508 or later
Atomic subroutine

CALL ATOMIC_FETCH_AND (ATOM, VALUE, OLD [, STAT])

ATOM Scalar coarray or coindexed variable of integer type with
ATOMIC_INT_KIND kind.

VALUE Scalar of the same type as ATOM. If the kind is different, the
value is converted to the kind of ATOM.

OLD Scalar of the same type and kind as ATOM.

STAT (optional) Scalar default-kind integer variable.

program atomic

use iso_fortran_env

integer(atomic_int_kind) :: atom[*], old

call atomic_fetch_and (atom[1], int(b’10100011101°), old)
end program atomic

Section 9.31 [ATOMIC_DEFINE], page 121, Section 9.29 [ATOMIC_AND],
page 120, Section 10.1 [ISO_FORTRAN_ENV], page 273, Section 9.32
[ATOMIC_FETCH_ADD], page 122, Section 9.34 [ATOMIC_FETCH_OR],
page 123, Section 9.35 [ATOMIC_FETCH_XOR], page 124

9.34 ATOMIC_FETCH_OR — Atomic bitwise OR operation with
prior fetch

Description:

Standard:
Class:

ATOMIC_OR(ATOM, VALUE) atomically stores the value of ATOM in OLD and
defines ATOM with the bitwise OR between the values of ATOM and VALUE.
When STAT is present and the invocation was successful, it is assigned the
value 0. If it is present and the invocation has failed, it is assigned a positive
value; in particular, for a coindexed ATOM, if the remote image has stopped,
it is assigned the value of ISO_FORTRAN_ENV’s STAT_STOPPED_IMAGE and if the
remote image has failed, the value STAT_FAILED_IMAGE.

TS 18508 or later

Atomic subroutine

124

Syntaz:

Arguments:

Ezample:

See also:

The GNU Fortran Compiler

CALL ATOMIC_FETCH_OR (ATOM, VALUE, OLD [, STAT])

ATOM Scalar coarray or coindexed variable of integer type with
ATOMIC_INT_KIND kind.

VALUE Scalar of the same type as ATOM. If the kind is different, the
value is converted to the kind of ATOM.

OLD Scalar of the same type and kind as ATOM.

STAT (optional) Scalar default-kind integer variable.

program atomic

use iso_fortran_env

integer(atomic_int_kind) :: atom[*], old

call atomic_fetch_or (atom[1], int(b’10100011101’), old)
end program atomic

Section 9.31 [ATOMIC_DEFINE], page 121, Section 9.36 [ATOMIC_OR],
page 125, Section 10.1 [ISO_FORTRAN_ENV], page 273, Section 9.32

[ATOMIC_FETCH_ADD], page 122, Section 9.33 [ATOMIC_FETCH_AND],
page 123, Section 9.35 [ATOMIC_FETCH_XOR], page 124

9.35 ATOMIC_FETCH_XOR — Atomic bitwise XOR operation
with prior fetch

Description:

Standard:
Class:
Syntax:

Arguments:

Ezample:

ATOMIC_XOR(ATOM, VALUE) atomically stores the value of ATOM in OLD and
defines ATOM with the bitwise XOR between the values of ATOM and VALUE.
When STAT is present and the invocation was successful, it is assigned the
value 0. If it is present and the invocation has failed, it is assigned a positive
value; in particular, for a coindexed ATOM, if the remote image has stopped,
it is assigned the value of ISO_FORTRAN_ENV’s STAT_STOPPED_IMAGE and if the
remote image has failed, the value STAT_FAILED_IMAGE.

TS 18508 or later
Atomic subroutine

CALL ATOMIC_FETCH_XOR (ATOM, VALUE, OLD [, STATI)

ATOM Scalar coarray or coindexed variable of integer type with
ATOMIC_INT_KIND kind.

VALUE Scalar of the same type as ATOM. If the kind is different, the
value is converted to the kind of ATOM.

OLD Scalar of the same type and kind as ATOM.

STAT (optional) Scalar default-kind integer variable.

program atomic

use iso_fortran_env

integer(atomic_int_kind) :: atom[*], old

call atomic_fetch_xor (atom[1], int(b’10100011101’), old)
end program atomic

Chapter 9: Intrinsic Procedures 125

See also: Section 9.31 [ATOMIC_DEFINE]|, page 121, Section 9.38 [ATOMIC_XOR],
page 126, Section 10.1 [ISO_.FORTRAN_ENV], page 273, Section 9.32
[ATOMIC_FETCH_ADD], page 122, Section 9.33 [ATOMIC_FETCH_AND],
page 123, Section 9.34 [ATOMIC_FETCH_OR/, page 123

9.36 ATOMIC_OR — Atomic bitwise OR operation

Description:

ATOMIC_OR(ATOM, VALUE) atomically defines ATOM with the bitwise AND be-
tween the values of ATOM and VALUE. When STAT is present and the
invocation was successful, it is assigned the value 0. If it is present and the
invocation has failed, it is assigned a positive value; in particular, for a coin-
dexed ATOM, if the remote image has stopped, it is assigned the value of
ISO_FORTRAN_ENV’s STAT_STOPPED_IMAGE and if the remote image has failed,
the value STAT_FAILED_IMAGE.

Standard: TS 18508 or later
Class: Atomic subroutine

Syntaz: CALL ATOMIC_OR (ATOM, VALUE [, STAT])

Arguments:
ATOM Scalar coarray or coindexed variable of integer type with
ATOMIC_INT_KIND kind.
VALUE Scalar of the same type as ATOM. If the kind is different, the
value is converted to the kind of ATOM.
STAT (optional) Scalar default-kind integer variable.
Ezxample:

program atomic

use iso_fortran_env

integer(atomic_int_kind) :: atom[*]

call atomic_or (atom[1], int(b’10100011101°))
end program atomic

See also: Section 9.31 [ATOMIC_DEFINE], page 121, Section 9.34 [ATOMIC_FETCH_OR] .}
page 123, Section 10.1 [ISO_.FORTRAN_ENV], page 273, Section 9.28
[ATOMIC_ADD], page 119, Section 9.36 [ATOMIC_OR], page 125,
Section 9.38 [ATOMIC_XOR], page 126

)

9.37 ATOMIC_REF — Obtaining the value of a variable
atomically

Description:

ATOMIC_DEFINE(ATOM, VALUE) atomically assigns the value of the variable
ATOM to VALUE. When STAT is present and the invocation was successful,
it is assigned the value 0. If it is present and the invocation has failed, it
is assigned a positive value; in particular, for a coindexed ATOM, if the
remote image has stopped, it is assigned the value of ISO_FORTRAN_ENV’s
STAT_STOPPED_IMAGE and if the remote image has failed, the value
STAT_FAILED_IMAGE.

126

Standard:
Class:
Syntaz:

Arguments:

Ezample:

See also:

The GNU Fortran Compiler

Fortran 2008 and later; with STAT, TS 18508 or later
Atomic subroutine

CALL ATOMIC_REF(VALUE, ATOM [, STAT])

VALUE Scalar of the same type as ATOM. If the kind is different, the
value is converted to the kind of ATOM.
ATOM Scalar coarray or coindexed variable of either integer type

with ATOMIC_INT_KIND kind or logical type with ATOMIC_
LOGICAL_KIND kind.
STAT (optional) Scalar default-kind integer variable.

program atomic
use iso_fortran_env
logical(atomic_logical_kind) :: atom[*]
logical :: val
call atomic_ref (atom, .false.)
1
call atomic_ref (atom, val)
if (val) then
print *, "Obtained"
end if
end program atomic

Section 9.31 [ATOMIC_DEFINE], page 121, Section 9.30 [ATOMIC_CAS],
page 120, Section 10.1 [ISO_.FORTRAN_ENV], page 273, Section 9.32
[ATOMIC_FETCH_ADD], page 122, Section 9.33 [ATOMIC_FETCH_AND],
page 123, Section 9.34 [ATOMIC_FETCH_ORJ, page 123, Section 9.35
[ATOMIC_FETCH_XORJ, page 124

9.38 ATOMIC_XOR — Atomic bitwise OR operation

Description:

Standard:
Class:
Syntaz:

Arguments:

ATOMIC_AND(ATOM, VALUE) atomically defines ATOM with the bitwise XOR
between the values of ATOM and VALUE. When STAT is present and the
invocation was successful, it is assigned the value 0. If it is present and the
invocation has failed, it is assigned a positive value; in particular, for a coin-
dexed ATOM, if the remote image has stopped, it is assigned the value of
ISO_FORTRAN_ENV’s STAT_STOPPED_IMAGE and if the remote image has failed,
the value STAT_FAILED_IMAGE.

TS 18508 or later
Atomic subroutine

CALL ATOMIC_XOR (ATOM, VALUE [, STAT])

ATOM Scalar coarray or coindexed variable of integer type with
ATOMIC_INT_KIND kind.

Chapter 9: Intrinsic Procedures 127

VALUE Scalar of the same type as ATOM. If the kind is different, the
value is converted to the kind of ATOM.
STAT (optional) Scalar default-kind integer variable.

Ezample:

program atomic

use iso_fortran_env

integer(atomic_int_kind) :: atom[*]

call atomic_xor (atom[1], int(b’10100011101°))
end program atomic

See also: Section 9.31 [ATOMIC_DEFINE], page 121, Section 9.35 [ATOMIC_FETCH_XOR] Jj
page 124, Section 10.1 [ISO_.FORTRAN_ENV], page 273, Section 9.28
[ATOMIC_ADD], page 119, Section 9.36 [ATOMIC_OR], page 125,
Section 9.38 [ATOMIC_XOR], page 126

9.39 BACKTRACE — Show a backtrace

Description:
BACKTRACE shows a backtrace at an arbitrary place in user code. Program
execution continues normally afterwards. The backtrace information is printed
to the unit corresponding to ERROR_UNIT in ISO_FORTRAN_ENV.

Standard: GNU Extension
Class: Subroutine
Syntaz: CALL BACKTRACE

Arguments:
None

See also: Section 9.2 [ABORT], page 101

9.40 BESSEL_JO — Bessel function of the first kind of order 0

Description:
BESSEL_JO(X) computes the Bessel function of the first kind of order 0 of X.
This function is available under the name BESJO as a GNU extension.

Standard: Fortran 2008 and later
Class: Elemental function
Syntaz: RESULT = BESSEL_JO(X)

Arguments:
X The type shall be REAL.

Return value:
The return value is of type REAL and lies in the range —0.4027.. <
Bessel(0,z) < 1. It has the same kind as X.

Ezample:

128 The GNU Fortran Compiler

program test_besjo0
real(8) :: x = 0.0_8
x = bessel_joO(x)

end program test_besjO

Specific names:
Name Argument Return type Standard
DBESJO(X) REAL(8) X REAL(8) GNU extension

9.41 BESSEL_J1 — Bessel function of the first kind of order 1

Description:

BESSEL_J1(X) computes the Bessel function of the first kind of order 1 of X.

This function is available under the name BESJ1 as a GNU extension.
Standard: Fortran 2008
Class: Elemental function
Syntax: RESULT = BESSEL_J1(X)

Arguments:
X The type shall be REAL.

Return value:

The return value is of type REAL and lies in the range —0.5818...

Bessel(0,z) < 0.5818. It has the same kind as X.

Example:

program test_besjl
real(8) :: x = 1.0_8
x = bessel_j1(x)

end program test_besjl

Specific names:
Name Argument Return type Standard
DBESJ1(X) REAL(8) X REAL(8) GNU extension

9.42 BESSEL_JN — Bessel function of the first kind

Description:

<

BESSEL_JN (N, X) computes the Bessel function of the first kind of order N of
X. This function is available under the name BESJN as a GNU extension. If N

and X are arrays, their ranks and shapes shall conform.

BESSEL_JN(N1, N2, X) returns an array with the Bessel functions of the first

kind of the orders N1 to N2.
Standard: Fortran 2008 and later, negative N is allowed as GNU extension

Class: Elemental function, except for the transformational function BESSEL_JN (N1,

N2, X)

Syntaz:

RESULT = BESSEL_JN(N, X)
RESULT = BESSEL_JN(N1, N2, X)

Chapter 9: Intrinsic Procedures 129

Arguments:
N Shall be a scalar or an array of type INTEGER.
N1 Shall be a non-negative scalar of type INTEGER.
N2 Shall be a non-negative scalar of type INTEGER.
X Shall be a scalar or an array of type REAL; for BESSEL_JN (N1,

N2, X) it shall be scalar.

Return value:
The return value is a scalar of type REAL. It has the same kind as X.

Note: The transformational function uses a recurrence algorithm which might, for
some values of X, lead to different results than calls to the elemental function.

Ezample:

program test_besjn
real(8) :: x = 1.0_8
x = bessel_jn(5,x)

end program test_besjn

Specific names:

Name Argument Return type Standard
DBESJN(N, X) INTEGER N REAL(8) GNU extension
REAL(8) X

9.43 BESSEL_Y0O — Bessel function of the second kind of
order 0

Description:
BESSEL_YO0 (X) computes the Bessel function of the second kind of order 0 of X.
This function is available under the name BESY0 as a GNU extension.

Standard: Fortran 2008 and later
Class: Elemental function
Syntaz: RESULT = BESSEL_YO0(X)

Arguments:
X The type shall be REAL.

Return value:
The return value is of type REAL. It has the same kind as X.

Example:

program test_besy0
real(8) :: x = 0.0_8
x = bessel_y0(x)

end program test_besyO

Specific names:
Name Argument Return type Standard
DBESYO (X) REAL(8) X REAL(8) GNU extension

130 The GNU Fortran Compiler

9.44 BESSEL_Y1 — Bessel function of the second kind of
order 1

Description:
BESSEL_Y1 (X) computes the Bessel function of the second kind of order 1 of X.
This function is available under the name BESY1 as a GNU extension.

Standard: Fortran 2008 and later
Class: Elemental function
Syntax: RESULT = BESSEL_Y1(X)

Arguments:
X The type shall be REAL.

Return value:
The return value is of type REAL. It has the same kind as X.

Ezample:
program test_besyl
real(8) :: x =1.0_8
x = bessel_y1(x)
end program test_besyl
Specific names:
Name Argument Return type Standard
DBESY1(X) REAL(8) X REAL(8) GNU extension

9.45 BESSEL_YN — Bessel function of the second kind

Description:
BESSEL_YN(N, X) computes the Bessel function of the second kind of order N
of X. This function is available under the name BESYN as a GNU extension. If
N and X are arrays, their ranks and shapes shall conform.
BESSEL_YN (N1, N2, X) returns an array with the Bessel functions of the first
kind of the orders N1 to N2.

Standard: Fortran 2008 and later, negative N is allowed as GNU extension

Class: Elemental function, except for the transformational function BESSEL_YN (N1,
N2, X)
Syntaz:

RESULT = BESSEL_YN(N, X)
RESULT = BESSEL_YN(N1, N2, X)

Arguments:
N Shall be a scalar or an array of type INTEGER .
N1 Shall be a non-negative scalar of type INTEGER.
N2 Shall be a non-negative scalar of type INTEGER.
X Shall be a scalar or an array of type REAL; for BESSEL_YN (N1,

N2, X) it shall be scalar.

Return value:
The return value is a scalar of type REAL. It has the same kind as X.

Chapter 9: Intrinsic Procedures 131

Note: The transformational function uses a recurrence algorithm which might, for
some values of X, lead to different results than calls to the elemental function.

Example:

program test_besyn
real(8) :: x = 1.0_8
x = bessel_yn(5,x)

end program test_besyn

Specific names:

Name Argument Return type Standard
DBESYN (N, X) INTEGER N REAL(8) GNU extension
REAL(8) X

9.46 BGE — Bitwise greater than or equal to

Description:
Determines whether an integral is a bitwise greater than or equal to another.

Standard: Fortran 2008 and later
Class: Elemental function
Syntaz: RESULT = BGE(I, J)

Arguments:
1 Shall be of INTEGER type.
J Shall be of INTEGER type, and of the same kind as I.

Return value:
The return value is of type LOGICAL and of the default kind.

See also: Section 9.47 [BGT], page 131, Section 9.49 [BLE], page 132, Section 9.50 [BLT],
page 132

9.47 BGT — Bitwise greater than

Description:
Determines whether an integral is a bitwise greater than another.

Standard: Fortran 2008 and later
Class: Elemental function
Syntaz: RESULT = BGT(I, J)

Arguments:
I Shall be of INTEGER type.
J Shall be of INTEGER type, and of the same kind as I.

Return value:
The return value is of type LOGICAL and of the default kind.

See also: Section 9.46 [BGE], page 131, Section 9.49 [BLE], page 132, Section 9.50 [BLT],
page 132

132 The GNU Fortran Compiler

9.48 BIT_SIZE — Bit size inquiry function

Description:
BIT_SIZE(I) returns the number of bits (integer precision plus sign bit) repre-
sented by the type of I. The result of BIT_SIZE(I) is independent of the actual
value of L

Standard: Fortran 95 and later
Class: Inquiry function
Syntaz: RESULT = BIT_SIZE(I)

Arguments:
1 The type shall be INTEGER.

Return value:
The return value is of type INTEGER

Example:

program test_bit_size
integer :: i = 123
integer :: size
size = bit_size(i)
print *, size

end program test_bit_size

9.49 BLE — Bitwise less than or equal to

Description:
Determines whether an integral is a bitwise less than or equal to another.

Standard: Fortran 2008 and later
Class: Elemental function
Syntaz: RESULT = BLE(I, J)

Arguments:
I Shall be of INTEGER type.
J Shall be of INTEGER type, and of the same kind as I.

Return value:
The return value is of type LOGICAL and of the default kind.

See also: Section 9.47 [BGT], page 131, Section 9.46 [BGE], page 131, Section 9.50 [BLT],
page 132

9.50 BLT — Bitwise less than

Description:
Determines whether an integral is a bitwise less than another.

Standard: Fortran 2008 and later

Class: Elemental function

Chapter 9: Intrinsic Procedures 133

Syntax: RESULT = BLT(I, J)

Arguments:
1 Shall be of INTEGER type.
J Shall be of INTEGER type, and of the same kind as I.

Return value:
The return value is of type LOGICAL and of the default kind.

See also: Section 9.46 [BGE], page 131, Section 9.47 [BGT], page 131, Section 9.49 [BLE],
page 132

9.51 BTEST — Bit test function

Description:
BTEST(I,P0S) returns logical . TRUE. if the bit at POS in I is set. The counting
of the bits starts at 0.

Standard: Fortran 95 and later, has overloads that are GNU extensions
Class: Elemental function
Syntaz: RESULT = BTEST(I, P0OS)

Arguments:
1 The type shall be INTEGER.
POS The type shall be INTEGER.

Return value:
The return value is of type LOGICAL

Example:

program test_btest
integer :: i = 32768 + 1024 + 64

integer :: pos
logical :: bool
do pos=0,16

bool = btest(i, pos)
print *, pos, bool
end do
end program test_btest

Specific names:

Name Argument Return type Standard

BTEST(I,P0S) INTEGER I,POS LOGICAL F95 and later

BBTEST(I,P0S) INTEGER(1) LOGICAL(1) GNU extension
I,P0OS

BITEST(I,POS) INTEGER(2) LOGICAL(2) GNU extension
I,P0OS

BJTEST(I,P0S) INTEGER(4) LOGICAL(4) GNU extension
I,P0OS

BKTEST(I,P0S) INTEGER(8) LOGICAL(8) GNU extension

I,P0OS

134 The GNU Fortran Compiler

9.52 C_ASSOCIATED — Status of a C pointer

Description:
C_ASSOCIATED(c_ptr_1[, c_ptr_2]) determines the status of the C pointer
c_ptr_1 or if c_ptr_1 is associated with the target c_ptr_2.

Standard: Fortran 2003 and later
Class: Inquiry function
Syntax: RESULT = C_ASSOCIATED(c_ptr_1[, c_ptr_2])

Arguments:
c_ptr_1 Scalar of the type C_PTR or C_FUNPTR.
c_ptr_2 (Optional) Scalar of the same type as c_ptr_1.

Return value:
The return value is of type LOGICAL; it is .false. if either c_ptr_1 is a C NULL
pointer or if c_ptrl and c_ptr_2 point to different addresses.

Example:

subroutine association_test(a,b)
use iso_c_binding, only: c_associated, c_loc, c_ptr
implicit none
real, pointer :: a
type(c_ptr) :: b
if (c_associated(b, c_loc(a))) &
stop ’b and a do not point to same target’
end subroutine association_test

See also: Section 9.56 [C_LOC], page 136, Section 9.55 [C_.FUNLOC], page 136

9.53 C_F_POINTER — Convert C into Fortran pointer

Description:
C_F_POINTER(CPTR, FPTR[, SHAPE]) assigns the target of the C pointer CPTR
to the Fortran pointer FPTR and specifies its shape.

Standard: Fortran 2003 and later
Class: Subroutine

Syntax: CALL C_F_POINTER(CPTR, FPTR[, SHAPE])

Arguments:
CPTR scalar of the type C_PTR. It is INTENT (IN).
FPTR pointer interoperable with cptr. It is INTENT (OUT).
SHAPE (Optional) Rank-one array of type INTEGER with INTENT (IN).
It shall be present if and only if fptr is an array. The size must
be equal to the rank of fptr.
Ezample:

program main
use iso_c_binding
implicit none
interface

Chapter 9: Intrinsic Procedures 135

subroutine my_routine(p) bind(c,name=’myC_func’)
import :: c_ptr
type(c_ptr), intent(out) :: p
end subroutine
end interface
type(c_ptr) :: cptr
real,pointer :: a(:)
call my_routine(cptr)
call c_f_pointer(cptr, a, [12])
end program main

See also: Section 9.56 [C_LOC], page 136, Section 9.54 [C_.F_PROCPOINTER], page 135

9.54 C_F_PROCPOINTER — Convert C into Fortran procedure
pointer

Description:
C_F_PROCPOINTER(CPTR, FPTR) Assign the target of the C function pointer
CPTR to the Fortran procedure pointer FPTR.

Standard: Fortran 2003 and later
Class: Subroutine
Syntaz: CALL C_F_PROCPOINTER(cptr, fptr)

Arguments:
CPTR scalar of the type C_FUNPTR. It is INTENT (IN).
FPTR procedure pointer interoperable with cptr. It is INTENT (OUT).

Example:

program main
use iso_c_binding
implicit none
abstract interface
function func(a)
import :: c_float
real(c_float), intent(in) :: a
real(c_float) :: func
end function
end interface

interface
function getIterFunc() bind(c,name="getIterFunc")
import :: c_funptr

type(c_funptr) :: getIterFunc
end function
end interface
type(c_funptr) :: cfunptr
procedure(func), pointer :: myFunc
cfunptr = getIterFunc()
call c_f_procpointer (cfunptr, myFunc)
end program main

See also: Section 9.56 [C_LOC], page 136, Section 9.53 [C_F_POINTER], page 134

136 The GNU Fortran Compiler

9.55 C_FUNLOC — Obtain the C address of a procedure

Description:
C_FUNLOC(x) determines the C address of the argument.

Standard: Fortran 2003 and later
Class: Inquiry function
Syntaz: RESULT = C_FUNLOC (x)

Arguments:
b'e Interoperable function or pointer to such function.

Return value:
The return value is of type C_FUNPTR and contains the C address of the argu-
ment.

Ezample:

module x
use iso_c_binding
implicit none

contains
subroutine sub(a) bind(c)
real(c_float) :: a

a = sqrt(a)+5.0
end subroutine sub
end module x
program main
use iso_c_binding
use x
implicit none
interface
subroutine my_routine(p) bind(c,name=’myC_func’)
import :: c_funptr
type(c_funptr), intent(in) :: p
end subroutine
end interface
call my_routine(c_funloc(sub))
end program main

See also: Section 9.52 [C_ASSOCIATED], page 134, Section 9.56 [C_LOC], page 136,
Section 9.53 [C_F_POINTER], page 134, Section 9.54 [C_.F_PROCPOINTER]
page 135

9

9.56 C_LOC — Obtain the C address of an object

Description:
C_LOC(X) determines the C address of the argument.

Standard: Fortran 2003 and later
Class: Inquiry function

Syntaz: RESULT = C_LOC(X)

Chapter 9: Intrinsic Procedures 137

Arguments:

X Shall have either the POINTER or TARGET attribute. It shall
not be a coindexed object. It shall either be a variable with inter-
operable type and kind type parameters, or be a scalar, nonpoly-
morphic variable with no length type parameters.

Return value:
The return value is of type C_PTR and contains the C address of the argument.

Ezxample:

subroutine association_test(a,b)
use iso_c_binding, only: c_associated, c_loc, c_ptr
implicit none
real, pointer :: a
type(c_ptr) :: b
if (c_associated(b, c_loc(a))) &

stop ’b and a do not point to same target’
end subroutine association_test

See also: Section 9.52 [C_ASSOCIATED], page 134, Section 9.55 [C_FUNLOC], page 136,
Section 9.53 [C_F_POINTER], page 134, Section 9.54 [C_.F_PROCPOINTER]
page 135

)

9.57 C_SIZEOF — Size in bytes of an expression

Description:
C_SIZEOF (X) calculates the number of bytes of storage the expression X occu-
pies.

Standard: Fortran 2008

Class: Inquiry function of the module ISO_C_BINDING

Syntaz: N = C_SIZEQOF(X)

Arguments:
X The argument shall be an interoperable data entity.

Return value:
The return value is of type integer and of the system-dependent kind C_SIZE_T
(from the ISO_C_BINDING module). Its value is the number of bytes occupied by
the argument. If the argument has the POINTER attribute, the number of bytes
of the storage area pointed to is returned. If the argument is of a derived type
with POINTER or ALLOCATABLE components, the return value does not account
for the sizes of the data pointed to by these components.

Ezample:
use iso_c_binding
integer(c_int) :: i
real(c_float) :: r, s(5)
print *, (c_sizeof(s)/c_sizeof(r) == 5)
end
The example will print .TRUE. unless you are using a platform where default

REAL variables are unusually padded.

138 The GNU Fortran Compiler

See also: Section 9.251 [SIZEOF], page 253, Section 9.258 [STORAGE_SIZE], page 258

9.58 CEILING — Integer ceiling function

Description:
CEILING(A) returns the least integer greater than or equal to A.

Standard: Fortran 95 and later
Class: Elemental function
S@niax: RESULT = CEILING(A [, KIND])

Arguments:
A The type shall be REAL.
KIND (Optional) An INTEGER initialization expression indicating
the kind parameter of the result.

Return value:
The return value is of type INTEGER(KIND) if KIND is present and a default-
kind INTEGER otherwise.

Ezample:

program test_ceiling
real :: x = 63.29
real :: y = -63.59
print *, ceiling(x) ! returns 64
print *, ceiling(y) ! returns -63
end program test_ceiling

See also: Section 9.108 [FLOOR], page 171, Section 9.205 [NINT], page 227

9.59 CHAR — Character conversion function
Description:
CHAR(I [, KIND]) returns the character represented by the integer I.
Standard: Fortran 77 and later
Class: Elemental function
Syntax: RESULT = CHAR(I [, KIND])

Arguments:
I The type shall be INTEGER.
KIND (Optional) An INTEGER initialization expression indicating
the kind parameter of the result.

Return value:
The return value is of type CHARACTER (1)

Example:
program test_char
integer :: i =74
character(1) :: c

¢ = char(i)
print *, i, c ! returns ’J’
end program test_char

Chapter 9: Intrinsic Procedures 139

Specific names:

Name Argument Return type Standard
CHAR(I) INTEGER I CHARACTER (LEN=1)77 and later
Note: See Section 9.142 [ICHAR], page 192 for a discussion of converting between

numerical values and formatted string representations.

See also: Section 9.5 [ACHAR], page 103, Section 9.134 [IACHAR], page 187,
Section 9.142 [ICHAR], page 192

9.60 CHDIR — Change working directory

Description:
Change current working directory to a specified path.

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

Standard: GNU extension
Class: Subroutine, function

Syntaz:

CALL CHDIR(NAME [, STATUS])
STATUS = CHDIR(NAME)

Arguments:
NAME The type shall be CHARACTER of default kind and shall specify
a valid path within the file system.
STATUS (Optional) INTEGER status flag of the default kind. Returns
0 on success, and a system specific and nonzero error code
otherwise.
Ezample:

PROGRAM test_chdir

CHARACTER(len=255) :: path
CALL getcwd(path)
WRITE(*,*) TRIM(path)
CALL chdir("/tmp")
CALL getcwd(path)
WRITE(*,*) TRIM(path)

END PROGRAM

See also: Section 9.123 [GETCWD], page 181

9.61 CHMOD — Change access permissions of files

Description:
CHMOD changes the permissions of a file.

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

Standard: GNU extension

Class: Subroutine, function

140 The GNU Fortran Compiler

Syntaz:

CALL CHMOD(NAME, MODE[, STATUS])
STATUS = CHMOD (NAME, MODE)

Arguments:

NAME Scalar CHARACTER of default kind with the file name. Trailing
blanks are ignored unless the character achar(0) is present,
then all characters up to and excluding achar (0) are used as
the file name.

MODE Scalar CHARACTER of default kind giving the file permission.
MODE uses the same syntax as the chmod utility as defined
by the POSIX standard. The argument shall either be a string
of a nonnegative octal number or a symbolic mode.

STATUS (optional) scalar INTEGER, which is 0 on success and nonzero
otherwise.

Return value:
In either syntax, STATUS is set to 0 on success and nonzero otherwise.

Ezample: CHMOD as subroutine

program chmod_test
implicit none

integer :: status
call chmod(’test.dat’,’u+x’,status)
print *, ’Status: ’, status

end program chmod_test

CHMOD as function:

program chmod_test
implicit none

integer :: status
status = chmod(’test.dat’,’u+x’)
print *, ’Status: ’, status

end program chmod_test

9.62 CMPLX — Complex conversion function

Description:
CMPLX(X [, Y [, KIND]]) returns a complex number where X is converted to
the real component. If Y is present it is converted to the imaginary component.
If Y is not present then the imaginary component is set to 0.0. If X is complex
then Y must not be present.

Standard: Fortran 77 and later
Class: Elemental function
Syntax: RESULT = CMPLX(X [, Y [, KIND]])

Arguments:
X The type may be INTEGER, REAL, or COMPLEX.

Chapter 9: Intrinsic Procedures 141

Y (Optional; only allowed if X is not COMPLEX.) May be INTEGER
or REAL.
KIND (Optional) An INTEGER initialization expression indicating

the kind parameter of the result.

Return value:
The return value is of COMPLEX type, with a kind equal to KIND if it is specified.
If KIND is not specified, the result is of the default COMPLEX kind, regardless
of the kinds of X and Y.

Example:
program test_cmplx
integer :: i = 42
real :: x = 3.14
complex :: z

z = cmplx(i, x)
print *, z, cmplx(x)
end program test_cmplx

See also: Section 9.71 [COMPLEX], page 147

9.63 CO_BROADCAST — Copy a value to all images the current
set of images

Description:
CO_BROADCAST copies the value of argument A on the image with image index
SOURCE_IMAGE to all images in the current team. A becomes defined as if by
intrinsic assignment. If the execution was successful and STAT is present, it is
assigned the value zero. If the execution failed, STAT gets assigned a nonzero
value and, if present, ERRMSG gets assigned a value describing the occurred
error.

Standard: Technical Specification (TS) 18508 or later
Class: Collective subroutine
Syntaz: CALL CO_BROADCAST (A, SOURCE_IMAGE [, STAT, ERRMSG])

Arguments:

A INTENT(INOUT) argument; shall have the same dynamic
type and type paramters on all images of the current team.
If it is an array, it shall have the same shape on all images.

SOURCE_IMA @@Fscalar integer expression. It shall have the same the same
value on all images and refer to an image of the current team.

STAT (optional) a scalar integer variable

ERRMSG (optional) a scalar character variable

Ezample:

program test
integer :: val(3)
if (this_image() == 1) then
val = [1, 5, 3]
end if

142 The GNU Fortran Compiler

call co_broadcast (val, source_image=1)
print *, this_image, ":", val
end program test

See also: Section 9.64 [CO_MAX], page 142, Section 9.65 [CO_MIN], page 142,
Section 9.67 [CO_SUM], page 144, Section 9.66 [CO_REDUCE], page 143

9.64 CO_MAX — Maximal value on the current set of images

Description:

CO_MAX determines element-wise the maximal value of A on all images of the
current team. If RESULT_IMAGE is present, the maximum values are returned
in A on the specified image only and the value of A on the other images become
undefined. If RESULT_IMAGE is not present, the value is returned on all
images. If the execution was successful and STAT is present, it is assigned the
value zero. If the execution failed, STAT gets assigned a nonzero value and, if
present, ERRMSG gets assigned a value describing the occurred error.

Standard: Technical Specification (TS) 18508 or later
Class: Collective subroutine

Syntax: CALL CO_MAX(A [, RESULT_IMAGE, STAT, ERRMSG])

Arguments:
A shall be an integer, real or character variable, which has the
same type and type parameters on all images of the team.
RESULT_IMAGPBptional) a scalar integer expression; if present, it shall have
the same the same value on all images and refer to an image
of the current team.
STAT (optional) a scalar integer variable
ERRMSG (optional) a scalar character variable
Ezample:

program test
integer :: val
val = this_image ()
call co_max (val, result_image=1)
if (this_image() == 1) then
write(*,%*) "Maximal value", val ! prints num_images()
end if
end program test

See also: Section 9.65 [CO_MIN], page 142, Section 9.67 [CO_SUM], page 144,
Section 9.66 [CO_REDUCE], page 143, Section 9.63 [CO_BROADCAST],
page 141

9.65 CO_MIN — Minimal value on the current set of images

Description:
CO_MIN determines element-wise the minimal value of A on all images of the
current team. If RESULT_IMAGE is present, the minimal values are returned
in A on the specified image only and the value of A on the other images become

Chapter 9: Intrinsic Procedures 143

undefined. If RESULT_IMAGE is not present, the value is returned on all
images. If the execution was successful and STAT is present, it is assigned the
value zero. If the execution failed, STAT gets assigned a nonzero value and, if
present, ERRMSG gets assigned a value describing the occurred error.

Standard: Technical Specification (TS) 18508 or later
Class: Collective subroutine
Syntax: CALL CO_MIN(CA [, RESULT_IMAGE, STAT, ERRMSG])

Arguments:

A shall be an integer, real or character variable, which has the
same type and type parameters on all images of the team.

RESULT_IMAGPBptional) a scalar integer expression; if present, it shall have
the same the same value on all images and refer to an image
of the current team.

STAT (optional) a scalar integer variable

ERRMSG (optional) a scalar character variable

Example:

program test
integer :: val
val = this_image ()
call co_min (val, result_image=1)
if (this_image() == 1) then
write(*,%*) "Minimal value", val ! prints 1
end if
end program test

See also: Section 9.64 [CO_MAX], page 142, Section 9.67 [CO_SUM], page 144,
Section 9.66 [CO_REDUCE], page 143, Section 9.63 [CO_BROADCAST]
page 141

9

9.66 CO_REDUCE — Reduction of values on the current set of
images

Description:

CO_REDUCE determines element-wise the reduction of the value of A on all images
of the current team. The pure function passed as OPERATOR is used to
pairwise reduce the values of A by passing either the value of A of different
images or the result values of such a reduction as argument. If A is an array,
the deduction is done element wise. If RESULT_IMAGE is present, the result
values are returned in A on the specified image only and the value of A on the
other images become undefined. If RESULT_IMAGE is not present, the value
is returned on all images. If the execution was successful and STAT is present,
it is assigned the value zero. If the execution failed, STAT gets assigned a
nonzero value and, if present, ERRMSG gets assigned a value describing the
occurred error.

Standard: Technical Specification (TS) 18508 or later

Class: Collective subroutine

144 The GNU Fortran Compiler

Syntax: CALL CO_REDUCE(A, OPERATOR, [, RESULT_IMAGE, STAT, ERRMSG])

Arguments:

A is an INTENT (INOUT) argument and shall be nonpolymorphic.
If it is allocatable, it shall be allocated; if it is a pointer, it
shall be associated. A shall have the same type and type
parameters on all images of the team; if it is an array, it shall
have the same shape on all images.

OPERATOR pure function with two scalar nonallocatable arguments,
which shall be nonpolymorphic and have the same type and
type parameters as A. The function shall return a nonallocat-
able scalar of the same type and type parameters as A. The
function shall be the same on all images and with regards to
the arguments mathematically commutative and associative.
Note that OPERATOR may not be an elemental function,
unless it is an intrisic function.

RESULT_IMAGEptional) a scalar integer expression; if present, it shall have
the same the same value on all images and refer to an image
of the current team.

STAT (optional) a scalar integer variable
ERRMSG (optional) a scalar character variable
Example:
program test
integer :: val
val = this_image ()
call co_reduce (val, result_image=1, operator=myprod)
if (this_image() == 1) then
write(*,*) "Product value", val ! prints num_images() factorial
end if
contains
pure function myprod(a, b)
integer, value :: a, b
integer :: myprod
myprod = a * b
end function myprod
end program test
Note: While the rules permit in principle an intrinsic function, none of the intrinsics

in the standard fulfill the criteria of having a specific function, which takes two
arguments of the same type and returning that type as result.

See also: Section 9.65 [CO_MIN], page 142, Section 9.64 [CO_-MAX], page 142,
Section 9.67 [CO_SUM], page 144, Section 9.63 [CO_.BROADCAST], page 141

9.67 CO_SUM — Sum of values on the current set of images

Description:
CO_SUM sums up the values of each element of A on all images of the current
team. If RESULT_IMAGE is present, the summed-up values are returned in
A on the specified image only and the value of A on the other images become
undefined. If RESULT_IMAGE is not present, the value is returned on all

Chapter 9: Intrinsic Procedures 145

images. If the execution was successful and STAT is present, it is assigned the
value zero. If the execution failed, STAT gets assigned a nonzero value and, if
present, ERRMSG gets assigned a value describing the occurred error.

Standard: Technical Specification (TS) 18508 or later
Class: Collective subroutine
Syntaz: CALL CO_MIN(A [, RESULT_IMAGE, STAT, ERRMSG])

Arguments:

A shall be an integer, real or complex variable, which has the
same type and type parameters on all images of the team.

RESULT_IMAGPBptional) a scalar integer expression; if present, it shall have
the same the same value on all images and refer to an image
of the current team.

STAT (optional) a scalar integer variable

ERRMSG (optional) a scalar character variable

Ezample:

program test
integer :: val
val = this_image ()
call co_sum (val, result_image=1)
if (this_image() == 1) then
write(*,*) "The sum is ", val ! prints (n**2 + n)/2, with n = num_imagesOf
end if
end program test

See also: Section 9.64 [CO_MAX], page 142, Section 9.65 [CO_MIN], page 142,
Section 9.66 [CO_REDUCE], page 143, Section 9.63 [CO_BROADCAST],
page 141

9.68 COMMAND_ARGUMENT_COUNT — Get number of command
line arguments

Description:
COMMAND_ARGUMENT_COUNT returns the number of arguments passed on the com-
mand line when the containing program was invoked.

Standard: Fortran 2003 and later
Class: Inquiry function
Syntazx: RESULT = COMMAND_ARGUMENT_COUNT ()

Arguments:
None

Return value:
The return value is an INTEGER of default kind.

Example:

program test_command_argument_count
integer :: count

146 The GNU Fortran Compiler

count = command_argument_count ()
print *, count
end program test_command_argument_count

See also: Section 9.121 [GET_.COMMAND], page 180, Section 9.122
[GET_.-COMMAND_ARGUMENT], page 180

9.69 COMPILER_OPTIONS — Options passed to the compiler

Description:
COMPILER_OPTIONS returns a string with the options used for compiling.

Standard: Fortran 2008
Class: Inquiry function of the module ISO_FORTRAN_ENV
Syntaz: STR = COMPILER_QOPTIONS()

Arguments:
None.

Return value:
The return value is a default-kind string with system-dependent length. It
contains the compiler flags used to compile the file, which called the COMPILER._
OPTIONS intrinsic.

Ezample:
use iso_fortran_env
print ’(4a)’, ’This file was compiled by ’, &
compiler_version(), ’ using the options ’, &
compiler_options()
end

See also: Section 9.70 [COMPILER_VERSION], page 146, Section 10.1
[ISO_.FORTRAN_ENV], page 273

)

9.70 COMPILER_VERSION — Compiler version string

Description:
COMPILER_VERSION returns a string with the name and the version of the com-
piler.

Standard: Fortran 2008

Class: Inquiry function of the module ISO_FORTRAN_ENV

Syntax: STR = COMPILER_VERSION()

Arguments:
None.

Return value:
The return value is a default-kind string with system-dependent length. It
contains the name of the compiler and its version number.

Ezample:

Chapter 9: Intrinsic Procedures 147

use iso_fortran_env

print ’(4a)’, ’This file was compiled by ’, &
compiler_version(), ’ using the options ’, &
compiler_options()

end

See also: Section 9.69 [COMPILER_OPTIONS|, page 146, Section 10.1
[ISO_FORTRAN_ENV], page 273

9.71 COMPLEX — Complex conversion function

Description:
COMPLEX (X, Y) returns a complex number where X is converted to the real
component and Y is converted to the imaginary component.

Standard: GNU extension
Class: Elemental function
Syntaz: RESULT = COMPLEX (X, Y)

Arguments:
X The type may be INTEGER or REAL.
Y The type may be INTEGER or REAL.

Return value:
If X and Y are both of INTEGER type, then the return value is of default COMPLEX
type.
If X and Y are of REAL type, or one is of REAL type and one is of INTEGER type,
then the return value is of COMPLEX type with a kind equal to that of the REAL
argument with the highest precision.

Ezample:

program test_complex
integer :: i = 42
real :: x = 3.14
print *, complex(i, x)

end program test_complex

See also: Section 9.62 [CMPLX], page 140

9.72 CONJG — Complex conjugate function

Description:
CONJG(Z) returns the conjugate of Z. If Z is (x, y) then the result is (x, -y)

Standard: Fortran 77 and later, has overloads that are GNU extensions
Class: Elemental function
Syntaz: Z = CONJG(Z)

Arguments:
Z The type shall be COMPLEX.

Return value:
The return value is of type COMPLEX.

148 The GNU Fortran Compiler

Example:

program test_conjg
complex :: z = (2.0, 3.0)
complex(8) :: dz = (2.71_.8, -3.14_.8)
z= conjg(z)
print *, z
dz = dconjg(dz)
print *, dz
end program test_conjg

Specific names:

Name Argument Return type
CONJG(Z) COMPLEX Z COMPLEX
DCONJG(Z) COMPLEX(8) Z COMPLEX(8)

9.73 C0S — Cosine function

Description:
COS (X) computes the cosine of X.

Standard
GNU extension
GNU extension

Standard: Fortran 77 and later, has overloads that are GNU extensions

Class: Elemental function
Syntazx: RESULT = COS(X)

Arguments:

X The type shall be REAL or COMPLEX.

Return value:

The return value is of the same type and kind as X. The real part of the
result is in radians. If X is of the type REAL, the return value lies in the range

—1 < cos(x) < 1.

Example:
program test_cos
real :: x = 0.0
x = cos(x)
end program test_cos

Specific names:

Name Argument Return type
COS (X) REAL(4) X REAL(4)
DCOS (X) REAL(8) X REAL(8)
CCOS(X) COMPLEX (4) X COMPLEX (4)
ZCOS(X) COMPLEX(8) X COMPLEX (8)
CDCOS (X) COMPLEX(8) X COMPLEX (8)

Standard

Fortran 77 and later
Fortran 77 and later
Fortran 77 and later
GNU extension
GNU extension

See also: Inverse function: Section 9.6 [ACOS], page 104 Degrees function: Section 9.74

[COSD], page 149

Chapter 9: Intrinsic Procedures 149

9.74 C0OSD — Cosine function, degrees

Description:
COSD(X) computes the cosine of X in degrees.
This function is for compatibility only and should be avoided in favor of stan-
dard constructs wherever possible.

Standard: GNU Extension, enabled with ‘~fdec-math’.
Class: Elemental function
Syntaz: RESULT = COSD (X)

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value is of the same type and kind as X. The real part of the
result is in degrees. If X is of the type REAL, the return value lies in the range
—1 < cosd(z) < 1.

Example:
program test_cosd
real :: x = 0.0
x = cosd(x)
end program test_cosd

Specific names:

Name Argument Return type Standard

COSD(X) REAL(4) X REAL(4) GNU Extension
DCOSD(X) REAL(8) X REAL(8) GNU Extension
CCOSD(X) COMPLEX(4) X COMPLEX (4) GNU Extension
ZC0SD (X) COMPLEX(8) X COMPLEX (8) GNU extension
CDCOSD (X) COMPLEX(8) X COMPLEX (8) GNU extension

See also: Inverse function: Section 9.7 [ACOSD], page 105 Radians function: Section 9.73
[COS], page 148

9.75 COSH — Hyperbolic cosine function

Description:
COSH(X) computes the hyperbolic cosine of X.
Standard: Fortran 77 and later, for a complex argument Fortran 2008 or later
Class: Elemental function
Syntaz: X = COSH(X)

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value has same type and kind as X. If X is complex, the imaginary
part of the result is in radians. If X is REAL, the return value has a lower bound
of one, cosh(x) > 1.

150 The GNU Fortran Compiler

Example:

program test_cosh
real(8) :: x = 1.0_8
x = cosh(x)

end program test_cosh

Specific names:

Name Argument Return type Standard
COSH(X) REAL(4) X REAL(4) Fortran 77 and later
DCOSH(X) REAL(8) X REAL(8) Fortran 77 and later

See also: Inverse function: Section 9.8 [ACOSH], page 105

9.76 COTAN — Cotangent function

Description:
COTAN(X) computes the cotangent of X. Equivalent to COS(x) divided by
SIN(x), or 1 / TAN(x).

This function is for compatibility only and should be avoided in favor of stan-
dard constructs wherever possible.

Standard: GNU Extension, enabled with ‘~fdec-math’.
Class: FElemental function
Syntax: RESULT = COTAN (X)

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value has same type and kind as X, and its value is in radians.

Ezample:

program test_cotan
real(8) :: x = 0.165_8
x = cotan(x)

end program test_cotan

Specific names:

Name Argument Return type Standard
COTAN(X) REAL(4) X REAL (4) GNU Extension
DCOTAN (X) REAL(8) X REAL(8) GNU Extension

See also: Converse function: Section 9.263 [TAN], page 261 Degrees function:
Section 9.77 [COTAND], page 150

9.77 COTAND — Cotangent function, degrees

Description:
COTAND(X) computes the cotangent of X in degrees. Equivalent to COSD(x)
divided by SIND(x), or 1 / TAND(x).

Chapter 9: Intrinsic Procedures 151

Standard: GNU Extension, enabled with ‘-fdec-math’.
This function is for compatibility only and should be avoided in favor of stan-
dard constructs wherever possible.

Class: Elemental function

Syntax: RESULT = COTAND (X)

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value has same type and kind as X, and its value is in degrees.

Ezample:
program test_cotand
real(8) :: x = 0.165_8
x = cotand(x)
end program test_cotand

Specific names:

Name Argument Return type Standard
COTAND (X) REAL(4) X REAL (4) GNU Extension
DCOTAND (X) REAL(8) X REAL(8) GNU Extension

See also: Converse function: Section 9.264 [TAND], page 261 Radians function:
Section 9.76 [COTAN], page 150

9.78 COUNT — Count function

Description:
Counts the number of .TRUE. elements in a logical MASK, or, if the DIM
argument is supplied, counts the number of elements along each row of the
array in the DIM direction. If the array has zero size, or all of the elements of
MASK are .FALSE., then the result is 0.

Standard: Fortran 95 and later, with KIND argument Fortran 2003 and later
Class: Transformational function

Syntax: RESULT = COUNT (MASK [, DIM, KIND])

Arguments:
MASK The type shall be LOGICAL.
DIM (Optional) The type shall be INTEGER.
KIND (Optional) An INTEGER initialization expression indicating

the kind parameter of the result.

Return value:
The return value is of type INTEGER and of kind KIND. If KIND is absent, the
return value is of default integer kind. If DIM is present, the result is an array
with a rank one less than the rank of ARRAY, and a size corresponding to the
shape of ARRAY with the DIM dimension removed.

Ezxample:

152 The GNU Fortran Compiler

program test_count

integer, dimension(2,3) :: a, b

logical, dimension(2,3) :: mask

a = reshape((/ 1, 2, 3, 4, 5,6 /), (/ 2, 3/))
b = reshape((/ 0, 7, 3, 4, 5, 8 /), (/ 2, 3/))
print ’(3i3)’, a(1,:)

print ’(3i3)’, a(2,:)

print *

print ’(3i3)’, b(1,:)

print ’(3i3)’, b(2,:)

print *

mask = a.ne.b

print ’(313)’, mask(1,:)

print ’(313)°, mask(2,:)

print *

print ’(3i3)°’, count(mask)

print *

print ’(3i3)’, count(mask, 1)

print *

print ’(3i3)’, count(mask, 2)
end program test_count

9.79 CPU_TIME — CPU elapsed time in seconds

Description:
Returns a REAL value representing the elapsed CPU time in seconds. This is
useful for testing segments of code to determine execution time.

If a time source is available, time will be reported with microsecond resolution.
If no time source is available, TIME is set to -1.0.

Note that TIME may contain a, system dependent, arbitrary offset and may not
start with 0.0. For CPU_TIME, the absolute value is meaningless, only differences

between subsequent calls to this subroutine, as shown in the example below,
should be used.

Standard: Fortran 95 and later
Class: Subroutine
Syntaz: CALL CPU_TIME(TIME)

Arguments:
TIME The type shall be REAL with INTENT (OUT).

Return value:
None

Ezxample:
program test_cpu_time
real :: start, finish
call cpu_time(start)
! put code to test here
call cpu_time(finish)
print ’("Time = ",f6.3," seconds.")’,finish-start
end program test_cpu_time

See also: Section 9.262 [SYSTEM_CLOCK], page 260, Section 9.82 [DATE_AND_TIME],
page 154

Chapter 9: Intrinsic Procedures 153

9.80 CSHIFT — Circular shift elements of an array

Description:

CSHIFT(ARRAY, SHIFT [, DIM]) performs a circular shift on elements of AR-
RAY along the dimension of DIM. If DIM is omitted it is taken to be 1. DIM
is a scalar of type INTEGER in the range of 1 < DIM < n) where n is the rank
of ARRAY. If the rank of ARRAY is one, then all elements of ARRAY are
shifted by SHIFT places. If rank is greater than one, then all complete rank
one sections of ARRAY along the given dimension are shifted. Elements shifted
out one end of each rank one section are shifted back in the other end.

Standard: Fortran 95 and later
Class: Transformational function

Syntaz: RESULT = CSHIFT(ARRAY, SHIFT [, DIM])

Arguments:
ARRAY Shall be an array of any type.
SHIFT The type shall be INTEGER.
DIM The type shall be INTEGER.

Return value:
Returns an array of same type and rank as the ARRAY argument.

Ezample:

program test_cshift
integer, dimension(3,3) :: a
a = reshape((/ 1, 2, 3, 4, 5, 6, 7,8, 9/), (/3,3/))
print ’(3i3)°’, a(1,:)
print ’(3i3)’, a(2,:)
print ’(3i3)’, a(3,:)
a = cshift(a, SHIFT=(/1, 2, -1/), DIM=2)
print *
print ’(3i3)’, a(1,:)
print ’(3i3)’, a(2,:)
print ’(3i3)’, a(3,:)
end program test_cshift

9.81 CTIME — Convert a time into a string

Description:
CTIME converts a system time value, such as retur