|
|
Usage: canonical [options] [input_file]
Read a polyhedron from a file in OFF format. Canonicalize or planarize it.
Uses algorithms by George W. Hart, http://www.georgehart.com/
http://www.georgehart.com/virtual-polyhedra/conway_notation.html
http://www.georgehart.com/virtual-polyhedra/canonical.html
If input_file is not given the program reads from standard input.
Options
-h,--help this help message (run 'off_util -H help' for general help)
--version version information
-n <itrs> maximum number of iterations (default: no limit)
-l <lim> minimum distance change to terminate, as negative exponent
(default: 12 giving 1e-12)
-d <int> divergence test. 0 for no test. (default 10)
-M <mthd> canonicalizing method,
m - mathematica version of canonicalization (default)
n - conway notation version of canonicalization
l - mathematica planarize portion only
p - conway notation planarize (face centroids reciprocal)
q - conway notation planarize (face centroids magnitude reciprocal)
x - face centroids only (no reciprocal) planarize method
-C <cent> initial 'centering'
x - none, c - centroid (-M p and -M l default)
s - centroid and project vertices onto a sphere (-M m default)
p - centroid and pre-planarized (-M n default)
q - centroid and pre-planarized with magnitude reciprocal
-z <n> status reporting every n lines. -1 for no status. (default 50)
-o <file> write output to file (default: write to standard output)
Mathematica Canonicalize Options (-M m and -M l)
-e <perc> percentage to scale the edge tangency error (default: 50)
-p <perc> percentage to scale the face planarity error (default: 20)
Pre-planarization Options (-C p and -C q)
-i <itrs> maximum number of pre-planarize iterations (default: no limit)
off_util cube | off_trans -S 1,2,3 | canonical | antiview
geodesic -c 2 ico | canonical | pol_recip -a | antiview
George Hart has a page on canonicalization.
Uses algorithms by George W. Hart, http://www.georgehart.com/. The 'Mathematica' algorithms have been written to follow George Hart's Mathematica implementation
Up:
Programs and Documentation
Next:
sph_rings - rings of points on a sphere