Milena — Technical documentation

LRDE

Copyright

Copyright (C) 2009 EPITA Research and Development Laboratory (LRDE).

This document is part of Olena.

Olena is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, version 2 of the License.

Olena is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU General Public License along
with Olena. If not, see <http://www.gnu.org/licenses/>.

Contents

|1 Coding Style|

2 Extend the Library|
2.1 Add a new 1mage value type|. oo
2.2 Add anew 1mage type|o oo

23 Addanewroutine oL

I3 Developer Ressources|
[3.1 Project Quality| oo
32 Questions and Answers|.

Chapter 1

Coding Style

The coding style is going to be updated. However, there are few reference
documents available here:

e https://trac.Irde.org/olena/wiki/CodingStyle

e https://olena.lrde.epita.fr/cgi-bin/twiki/view/Olena/CodingStyle010

Chapter 2

Extend the Library

2.1 Add a new image value type

2.2 Add a new image type

2.3 Add a new routine

Writing a new routine in Milena requires a specific layout in the code. This
layout is described in figure 2:3]

namespace min

Facade prototype

#ifndef MLN_INCLUDE_ONLY

namespace internal

Internal routines

Shared tests

namespace impl

namespace generic

Specific implementation

namespace internal

Implementation dispatch

Facade

#endif /! MLN_INCLUDE_ONLY

For a better understanding, we are going to comment this figure (fig. [2.3)
from the bottom to the top.

e Facade. The facade is the public routine that will be called by the user.
It should not contains any processing code but call dispatch routines. It
must be fully generic.

An example:

I

template <typename |, typename N>
inline
mlin_concrete(I)
erosion_tolerant (const Image<I>& input, const Neighborhood
unsigned rank)
{
mln_trace (" morpho:: erosion_tolerant”);
mln_precondition (exact(input).is_valid ());
mln_precondition (exact(nbh).is_valid ());
mln_concrete(l) output
= internal :: erosion_tolerant_dispatch (input,
nbh ,
rank);
return output;
}
L Y

e Implementation dispatch. According to specific information, the dis-
patch will call the proper implementation of the algorithm. The dispatch
is almost always static. It might contains dynamic dispatch in very spe-
cific cases. Dispatch function names are composed of the routine name
with “_dispatch” appended to it. Dispatch entry point routine must have
the same prototype as the facade. Dispatch routines are not intended to
be called by the user.

An example:

~
namespace internal
{
// Generic case, whatever the image value and domain
// types.
template <typename |, typename N>
mlin_concrete(|)
erosion_tolerant_dispatch(trait::image:: kind::any,
trait::image::speed::any,
const |& input, const N& nbh,
unsigned rank)
{
return impl:: generic:: erosion_tolerant(input,
nbh ,
rank);

N>& nbh,

// The image has bool values and is defined on a box.

template <typename |, typename N>

mln_concrete (1)

erosion_tolerant_dispatch (trait::image:: kind::logic ,
trait ::image::speed:: fastest ,
const |& input, const N& nbh,
unsigned rank)

return

impl:: erosion_tolerant_on_set_fastest (input,
nbh,
rank);

// Dispatch entry point.

template <typename |, typename N>

inline

mlin_concrete(|)

erosion_tolerant_dispatch (const Image<|>& input,
const Neighborhood<N>& nbh,
unsigned rank)

{
return
erosion_tolerant_dispatch(mlin_trait_.image_kind(1)(),

mln_trait_image_speed (1)(),
exact(input),
exact (nbh),
rank);

}

} // end of namespace min::internal
L J

e Specific implementation. Implementation routine are intended to be
called by the user. Thus, they must have an explicit name of what they
do and what they take as parameter. They implement de processing code
which may be specific for certain types. namespaceimpl may also have a
sub namespace called generic for the generic algorithm.

An example:

namespace impl

{

namespace generic

{

template <typename |, typename N>
mlin_concrete (1)
erosion_tolerant_on_set (const Image<I>& input_,

const Neighborhood<N>& nbh_,
unsigned rank)

{ min_trace(”impl:: generic:: erosion_tolerant”);
// Do it ...
return output;
}
}
template <typename |, typename N>

mln_concrete (1)
erosion_tolerant_on_set_fastest(const Image<I>& input_,

unsigned rank)

min_trace(”impl:: erosion_tolerant_on_set_fastest”);
// Do it ...
return output;

} // end of namespace impl

e Shared tests and internal routines. This is the right place to move
all the internal routines related to this new routine. They will be hidden
to the user.

e Facade prototype. This is what the user should see first if the file is
edited. The documentation should be written here.

Note that all parts of the file except the “facade prototype” are included

between MLN_INCLUDE _ONLY guards.

const Neighborhood<N>& nbh_,

Chapter 3

Developer Ressources

3.1 Project Quality

e QA Center : https://trac.Irde.org/olena/wiki/QACenter
e Buildbot : https://buildfarm.lrde.org/buildfarm/oln/

e Trac : http://trac.lrde.org/olena

3.2 Questions and Answers

The best way to keep in touch with the latest patches or ask your questions is
to subscribe to our mailing lists.
Currently four mailing-lists are available:

Olena Discussion about the project Olena
Olena-bugs Bugs from Olena projects
Olena-core Internal list for the Olena project

Olena-patches patches for the Olena project
You can subscribe to these mailing lists at the following address:

https://www.lrde.epita.fr/mailman/listinfo/

Just click on the name of the mailing list you want to subscribe to and fill
out the form.

	Coding Style
	Extend the Library
	Add a new image value type
	Add a new image type
	Add a new routine

	Developer Ressources
	Project Quality
	Questions and Answers

