
INTEL® OPEN IMAGE DENOISE
HIGH-PERFORMANCE DENOISING LIBRARY
FOR RAY TRACING
Version 1.2.0
April 9, 2020

2

Contents

1 Intel Open Image Denoise Overview 3
1.1 Support and Contact . 3
1.2 Version History . 4

2 Compiling Intel Open Image Denoise 6
2.1 Prerequisites . 6
2.2 Compiling on Linux/macOS . 7
2.3 Entitlements on macOS . 7
2.4 Compiling on Windows . 8
2.5 CMake Configuration . 8

3 Intel Open Image Denoise API 10
3.0.1 C99 API Example . 10
3.0.2 C++11 API Example . 11

3.1 Device . 11
3.1.1 Error Handling . 13

3.2 Buffer . 14
3.2.1 Data Format . 15

3.3 Filter . 15
3.3.1 RT . 17
3.3.2 RTLightmap . 20

4 Examples 22
4.1 Denoise . 22

5 Training 23
5.1 Prerequisites . 23
5.2 Datasets . 24
5.3 Preprocessing (preprocess.py) . 25
5.4 Training (train.py) . 25
5.5 Inference (infer.py) . 26
5.6 Exporting Results (export.py) . 26
5.7 Image Conversion and Comparison 26

3

Chapter 1
IntelOpen ImageDenoiseOverview

Intel Open Image Denoise is an open source library of high-performance, high-
quality denoising filters for images rendered with ray tracing. Intel Open Image
Denoise is part of the Intel® oneAPI Rendering Toolkit and is released under the
permissive Apache 2.0 license.

The purpose of Intel Open Image Denoise is to provide an open, high-quality,
efficient, and easy-to-use denoising library that allows one to significantly reduce
rendering times in ray tracing based rendering applications. It filters out the
Monte Carlo noise inherent to stochastic ray tracing methods like path tracing,
reducing the amount of necessary samples per pixel by even multiple orders of
magnitude (depending on the desired closeness to the ground truth). A simple
but flexible C/C++ API ensures that the library can be easily integrated into most
existing or new rendering solutions.

At the heart of the Intel Open Image Denoise library is a collection of efficient
deep learning based denoising filters, which were trained to handle a wide range
of samples per pixel (spp), from 1 spp to almost fully converged. Thus it is suit-
able for both preview and final-frame rendering. The filters can denoise images
either using only the noisy color (beauty) buffer, or, to preserve as much detail as
possible, can optionally utilize auxiliary feature buffers as well (e.g. albedo, nor-
mal). Such buffers are supported by most renderers as arbitrary output variables
(AOVs) or can be usually implemented with little effort.

Although the library ships with a set of pre-trained filter models, it is not
mandatory to use these. To optimize a filter for a specific renderer, sample count,
content type, scene, etc., it is possible to train the model using the included train-
ing toolkit and user-provided image datasets.

Intel Open Image Denoise supports Intel® 64 architecture based CPUs and
compatible architectures, and runs on anything from laptops, to workstations, to
compute nodes in HPC systems. It is efficient enough to be suitable not only for
offline rendering, but, depending on the hardware used, also for interactive ray
tracing.

Intel Open Image Denoise internally builds on top of Intel® Deep Neural Net-
work Library (DNNL), and automatically exploits modern instruction sets like
Intel SSE4, AVX2, and AVX-512 to achieve high denoising performance. A CPU
with support for at least SSE4.1 is required to run Intel Open Image Denoise.

Support and Contact
Intel Open Image Denoise is under active development, and though we do our
best to guarantee stable release versions a certain number of bugs, as-yet-missing
features, inconsistencies, or any other issues are still possible. Should you find
any such issues please report them immediately via the Intel Open Image De-
noise GitHub Issue Tracker (or, if you should happen to have a fix for it, you can

https://software.intel.com/en-us/rendering-framework
http://www.apache.org/licenses/LICENSE-2.0
https://github.com/intel/mkl-dnn
https://github.com/intel/mkl-dnn
https://github.com/OpenImageDenoise/oidn/issues
https://github.com/OpenImageDenoise/oidn/issues

Intel Open Image Denoise Overview 4

also send us a pull request); for missing features please contact us via email at
openimagedenoise@googlegroups.com.

For recent news, updates, and announcements, please see our complete
news/updates page.

Join our mailing list to receive release announcements and major news re-
garding Intel Open Image Denoise.

Version History

Changes in v1.2.0:
• Added neural network training code
• Added support for specifying user-trained models at runtime
• Slightly improved denoising quality (e.g. less ringing artifacts, less blurri-
ness in some cases)

• Improved denoising speed by about 7-38% (mostly depending on the com-
piler)

• Added OIDN_STATIC_RUNTIME CMake option (for Windows only)
• Added support for OpenImageIO to the example apps (disabled by default)
• Added check for minimum supported TBB version
• Find debug versions of TBB
• Added testing

Changes in v1.1.0:
• Added RTLightmap filter optimized for lightmaps
• Added hdrScale filter parameter for manually specifying the mapping of
HDR color values to luminance levels

Changes in v1.0.0:
• Improved denoising quality

– More details preserved
– Less artifacts (e.g. noisy spots, color bleeding with albedo/normal)

• Added maxMemoryMB filter parameter for limiting the maximum memory
consumption regardless of the image resolution, potentially at the cost of
lower denoising speed. This is internally implemented by denoising the
image in tiles

• Significantly reduced memory consumption (but slightly lower perfor-
mance) for high resolutions (> 2K) by default: limited to about 6 GB

• Added alignment and overlap filter parameters that can be queried for
manual tiled denoising

• Added verbose device parameter for setting the verbosity of the console
output, and disabled all console output by default

• Fixed crash for zero-sized images

Changes in v0.9.0:
• Reduced memory consumption by about 38%
• Added support for progress monitor callback functions
• Enabled fully concurrent execution when using multiple devices
• Clamp LDR input and output colors to 1
• Fixed issue where some memory allocation errors were not reported

mailto:openimagedenoise@googlegroups.com
https://openimagedenoise.github.io/news.html
https://groups.google.com/d/forum/openimagedenoise/

Intel Open Image Denoise Overview 5

Changes in v0.8.2:
• Fixed wrong HDR output when the input contains infinities/NaNs
• Fixed wrong output when multiple filters were executed concurrently on
separate devices with AVX-512 support. Currently the filter executions are
serialized as a temporary workaround, and a full fix will be included in a
future release.

• Added OIDN_STATIC_LIB CMake option for building as a static library (re-
quires CMake 3.13.0 or later)

• Fixed CMake error when adding the library with add_subdirectory() to a
project

Changes in v0.8.1:
• Fixed wrong path to TBB in the generated CMake configs
• Fixed wrong rpath in the binaries
• Fixed compile error on some macOS systems
• Fixed minor compile issues with Visual Studio
• Lowered the CPU requirement to SSE4.1
• Minor example update

Changes in v0.8.0:
• Initial beta release

6

Chapter 2
Compiling Intel Open Image
Denoise

The latest Intel Open Image Denoise sources are always available at the Intel
Open Image Denoise GitHub repository. The default master branch should al-
ways point to the latest tested bugfix release.

Prerequisites
You can clone the latest Intel Open Image Denoise sources using Git with the Git
Large File Storage (LFS) extension:

git clone --recursive https://github.com/OpenImageDenoise/oidn.git

Intel Open Image Denoise currently supports 64-bit Linux, Windows, and
macOS operating systems. In addition, before you can build Intel Open Image
Denoise you need the following prerequisites:

• CMake 3.1 or later

• A C++11 compiler (we recommend using Clang, but also support GCC,
Microsoft Visual Studio 2015 or later, and Intel® C++Compiler 17.0 or later)

• Intel® SPMD Program Compiler (ISPC), version 1.12.0 or later. Please ob-
tain a release of ISPC from the ISPC downloads page. The build system
looks for ISPC in the PATH and in the directory right “next to” the checked-
out Intel Open Image Denoise sources.1 Alternatively set the CMake vari- 1 For example, if Intel Open Image De-

noise is in ~/Projects/oidn, ISPC will also
be searched in ~/Projects/ispc-v1.12.
0-linux

able ISPC_EXECUTABLE to the location of the ISPC compiler.

• Python 2.7 or later

• Intel® Threading Building Blocks (TBB) 2017 or later

Depending on your Linux distribution you can install these dependencies
using yum or apt-get. Some of these packages might already be installed or
might have slightly different names.

Type the following to install the dependencies using yum:

sudo yum install cmake
sudo yum install tbb-devel

Type the following to install the dependencies using apt-get:

sudo apt-get install cmake-curses-gui
sudo apt-get install libtbb-dev

http://github.com/OpenImageDenoise/oidn
http://github.com/OpenImageDenoise/oidn
https://git-lfs.github.com/
https://git-lfs.github.com/
http://www.cmake.org
https://software.intel.com/en-us/c-compilers
http://ispc.github.io
https://ispc.github.io/downloads.html
https://www.threadingbuildingblocks.org/

Compiling Intel Open Image Denoise 7

Under macOS these dependencies can be installed using MacPorts:

sudo port install cmake tbb

UnderWindows please directly use the appropriate installers or packages for
CMake, Python, and TBB.

Compiling on Linux/macOS
Assuming the above prerequisites are all fulfilled, building Intel Open Image De-
noise through CMake is easy:

• Create a build directory, and go into it

mkdir oidn/build
cd oidn/build

(We do recommend having separate build directories for different configu-
rations such as release, debug, etc.).

• The compiler CMake will use by default will be whatever the CC and CXX
environment variables point to. Should you want to specify a different
compiler, run cmake manually while specifying the desired compiler. The
default compiler on most Linux machines is gcc, but it can be pointed to
clang instead by executing the following:

cmake -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang ..

CMake will now use Clang instead of GCC. If you are OK with using the
default compiler on your system, then simply skip this step. Note that the
compiler variables cannot be changed after the first cmake or ccmake run.

• Open the CMake configuration dialog

ccmake ..

• Make sure to properly set the build mode and enable the components you
need, etc.; then type ’c’onfigure and ’g’enerate. When back on the com-
mand prompt, build it using

make

• You should now have libOpenImageDenoise.so as well as a set of exam-
ple applications.

Entitlements on macOS
macOS requires notarization of applications as a security mechanism, and enti-
tlements must be declared during the notarization process.
Intel Open Image Denoise uses just-in-time compilaton through the Intel Deep
Neural Network Library and requires the following entitlements:

• com.apple.security.cs.allow-jit
• com.apple.security.cs.allow-unsigned-executable-memory
• com.apple.security.cs.disable-executable-page-protection

http://www.macports.org/
https://cmake.org/download/
https://www.python.org/downloads/
https://github.com/01org/tbb/releases
https://developer.apple.com/documentation/bundleresources/entitlements
https://developer.apple.com/documentation/bundleresources/entitlements
https://intel.github.io/mkl-dnn/
https://intel.github.io/mkl-dnn/
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_cs_allow-jit
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_cs_allow-unsigned-executable-memory
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_cs_disable-executable-page-protection

Compiling Intel Open Image Denoise 8

Compiling on Windows
OnWindows using the CMakeGUI (cmake-gui.exe) is themost convenientway
to configure Intel Open Image Denoise and to create the Visual Studio solution
files:

• Browse to the Intel Open Image Denoise sources and specify a build direc-
tory (if it does not exist yet CMake will create it).

• Click “Configure” and select as generator the Visual Studio version you
have (Intel Open Image Denoise needs Visual Studio 14 2015 or newer),
for Win64 (32-bit builds are not supported), e.g., “Visual Studio 15 2017
Win64”.

• If the configuration fails because some dependencies could not be found
then follow the instructions given in the errormessage, e.g., set the variable
TBB_ROOT to the folder where TBB was installed.

• Optionally change the default build options, and then click “Generate” to
create the solution and project files in the build directory.

• Open the generated OpenImageDenoise.sln in Visual Studio, select the
build configuration and compile the project.

Alternatively, Intel Open Image Denoise can also be built without any GUI,
entirely on the console. In the Visual Studio command prompt type:

cd path\to\oidn
mkdir build
cd build
cmake -G "Visual Studio 15 2017 Win64" [-D VARIABLE=value] ..
cmake --build . --config Release

Use -D to set variables for CMake, e.g., the path to TBB with “-D TBB_
ROOT=\path\to\tbb”.

CMake Configuration
The default CMake configuration in the configuration dialog should be appropri-
ate for most usages. The following list describes the options that can be config-
ured in CMake:

• CMAKE_BUILD_TYPE: Can be used to switch between Debug mode (Debug),
Releasemode (Release) (default), and Releasemodewith enabled assertions
and debug symbols (RelWithDebInfo).

• OIDN_STATIC_LIB: Build Intel Open Image Denoise as a static library (OFF
by default). CMake 3.13.0 or later is required to enable this option. When
using the statically compiled Intel Open Image Denoise library, you either
have to use the generated CMake configuration files (recommended), or
you have to manually define OIDN_STATIC_LIB before including the li-
brary headers in your application.

• OIDN_STATIC_RUNTIME: Use the static version of the C/C++ runtime li-
brary (available only on Windows, ON by default).

• OIDN_APPS: Enable building example and test applications (ON by default).

Compiling Intel Open Image Denoise 9

• OIDN_APPS_OPENIMAGEIO: Enable OpenImageIO support in the example
and test applications to be able to load/save OpenEXR, PNG, and other
image file formats (OFF by default).

• TBB_ROOT: The path to the TBB installation (autodetected by default).

• OPENIMAGEIO_ROOT: The path to the OpenImageIO installation (autode-
tected by default).

http://openimageio.org/

10

Chapter 3
IntelOpen ImageDenoiseAPI

Intel Open Image Denoise provides a C99 API (also compatible with C++) and a
C++11 wrapper API as well. For simplicity, this document mostly refers to the
C99 version of the API.

The API is designed in an object-oriented manner, e.g. it contains device ob-
jects (OIDNDevice type), buffer objects (OIDNBuffer type), and filter objects
(OIDNFilter type). All objects are reference-counted, and handles can be re-
leased by calling the appropriate release function (e.g. oidnReleaseDevice) or
retained by incrementing the reference count (e.g. oidnRetainDevice).

An important aspect of objects is that setting their parameters do not have
an immediate effect (with a few exceptions). Instead, objects with updated pa-
rameters are in an unusable state until the parameters get explicitly committed
to a given object. The commit semantic allows for batching up multiple small
changes, and specifies exactly when changes to objects will occur.

All API calls are thread-safe, but operations that use the same device will be
serialized, so the amount of API calls from different threads should be minimized.

To have a quick overview of the C99 andC++11APIs, see the following simple
example code snippets.

C99 API Example
#include <OpenImageDenoise/oidn.h>
...
// Create an Intel Open Image Denoise device
OIDNDevice device = oidnNewDevice(OIDN_DEVICE_TYPE_DEFAULT);
oidnCommitDevice(device);

// Create a denoising filter
OIDNFilter filter = oidnNewFilter(device, "RT"); // generic ray tracing filter
oidnSetSharedFilterImage(filter, "color", colorPtr,

OIDN_FORMAT_FLOAT3, width, height, 0, 0, 0);
oidnSetSharedFilterImage(filter, "albedo", albedoPtr,

OIDN_FORMAT_FLOAT3, width, height, 0, 0, 0); // optional
oidnSetSharedFilterImage(filter, "normal", normalPtr,

OIDN_FORMAT_FLOAT3, width, height, 0, 0, 0); // optional
oidnSetSharedFilterImage(filter, "output", outputPtr,

OIDN_FORMAT_FLOAT3, width, height, 0, 0, 0);
oidnSetFilter1b(filter, "hdr", true); // image is HDR
oidnCommitFilter(filter);

// Filter the image
oidnExecuteFilter(filter);

Intel Open Image Denoise API 11

// Check for errors
const char* errorMessage;
if (oidnGetDeviceError(device, &errorMessage) != OIDN_ERROR_NONE)
printf("Error: %s\n", errorMessage);

// Cleanup
oidnReleaseFilter(filter);
oidnReleaseDevice(device);

C++11 API Example
#include <OpenImageDenoise/oidn.hpp>
...
// Create an Intel Open Image Denoise device
oidn::DeviceRef device = oidn::newDevice();
device.commit();

// Create a denoising filter
oidn::FilterRef filter = device.newFilter("RT"); // generic ray tracing filter
filter.setImage("color", colorPtr, oidn::Format::Float3, width, height);
filter.setImage("albedo", albedoPtr, oidn::Format::Float3, width, height); // optional
filter.setImage("normal", normalPtr, oidn::Format::Float3, width, height); // optional
filter.setImage("output", outputPtr, oidn::Format::Float3, width, height);
filter.set("hdr", true); // image is HDR
filter.commit();

// Filter the image
filter.execute();

// Check for errors
const char* errorMessage;
if (device.getError(errorMessage) != oidn::Error::None)
std::cout << "Error: " << errorMessage << std::endl;

Device
Intel Open Image Denoise supports a device concept, which allows different com-
ponents of the application to use the Open Image Denoise API without interfer-
ing with each other. An application first needs to create a device with

OIDNDevice oidnNewDevice(OIDNDeviceType type);

where the type enumeration maps to a specific device implementation,
which can be one of the following:

Name Description

OIDN_DEVICE_TYPE_DEFAULT select the approximately fastest device
OIDN_DEVICE_TYPE_CPU CPU device (requires SSE4.1 support)

Table 3.1 – Supported device types, i.e.,
valid constants of type OIDNDevice-
Type.

Once a device is created, you can call

void oidnSetDevice1b(OIDNDevice device, const char* name, bool value);
void oidnSetDevice1i(OIDNDevice device, const char* name, int value);
bool oidnGetDevice1b(OIDNDevice device, const char* name);
int oidnGetDevice1i(OIDNDevice device, const char* name);

Intel Open Image Denoise API 12

to set and get parameter values on the device. Note that some parameters
are constants, thus trying to set them is an error. See the tables below for the
parameters supported by devices.

Table 3.2 – Parameters supported by all devices.

Type Name Default Description

const int version combined version number (major.minor.patch) with two decimal digits per
component

const int versionMajor major version number
const int versionMinor minor version number
const int versionPatch patch version number
int verbose 0 verbosity level of the console output between 0–4; when set to 0, no output is

printed, when set to a higher level more output is printed

Table 3.3 – Additional parameters supported only by CPU devices.

Type Name Default Description

int numThreads 0 maximum number of threads which the library should use; 0 will set it
automatically to get the best performance

bool setAffinity true bind software threads to hardware threads if set to true (improves performance);
false disables binding

Note that the CPU device heavily relies on setting the thread affinities to
achieve optimal performance, so it is highly recommended to leave this option
enabled. However, this may interfere with the application if that also sets the
thread affinities, potentially causing performance degradation. In such cases, the
recommended solution is to either disable setting the affinities in the application
or in Intel Open Image Denoise, or to always set/reset the affinities before/after
each parallel region in the application (e.g., if using TBB, with tbb::task_arena
and tbb::task_scheduler_observer).

Once parameters are set on the created device, the device must be committed
with

void oidnCommitDevice(OIDNDevice device);

This device can then be used to construct further objects, such as buffers and
filters. Note that a device can be committed only once during its lifetime. Before
the application exits, it should release all devices by invoking

void oidnReleaseDevice(OIDNDevice device);

Note that Intel Open Image Denoise uses reference counting for all object
types, so this function decreases the reference count of the device, and if the
count reaches 0 the device will automatically get deleted. It is also possible to
increase the reference count by calling

void oidnRetainDevice(OIDNDevice device);

An application typically creates only a single device. If required differently,
it should only use a small number of devices at any given time.

Intel Open Image Denoise API 13

Error Handling
Each user thread has its own error code per device. If an error occurs when
calling an API function, this error code is set to the occurred error if it stores no
previous error. The currently stored error can be queried by the application via

OIDNError oidnGetDeviceError(OIDNDevice device, const char** outMessage);

where outMessage can be a pointer to a C string which will be set to a more
descriptive error message, or it can be NULL. This function also clears the error
code, which assures that the returned error code is always the first error occurred
since the last invocation of oidnGetDeviceError on the current thread. Note
that the optionally returned error message string is valid only until the next in-
vocation of the function.

Alternatively, the application can also register a callback function of type

typedef void (*OIDNErrorFunction)(void* userPtr, OIDNError code, const char* message);

via

void oidnSetDeviceErrorFunction(OIDNDevice device, OIDNErrorFunction func, void* userPtr);

to get notified when errors occur. Only a single callback function can be
registered per device, and further invocations overwrite the previously set call-
back function, which do not require also calling the oidnCommitDevice function.
Passing NULL as function pointer disables the registered callback function. When
the registered callback function is invoked, it gets passed the user-defined pay-
load (userPtr argument as specified at registration time), the error code (code
argument) of the occurred error, as well as a string (message argument) that fur-
ther describes the error. The error code is always set even if an error callback
function is registered. It is recommended to always set a error callback function,
to detect all errors.

When the device construction fails, oidnNewDevice returns NULL as device.
To detect the error code of a such failed device construction, pass NULL as device
to the oidnGetDeviceError function. For all other invocations of oidnGetDe-
viceError, a proper device handle must be specified.

The following errors are currently used by Intel Open Image Denoise:

Table 3.4 – Possible error codes, i.e., valid constants of type OIDNError.

Name Description

OIDN_ERROR_NONE no error occurred
OIDN_ERROR_UNKNOWN an unknown error occurred
OIDN_ERROR_INVALID_ARGUMENT an invalid argument was specified
OIDN_ERROR_INVALID_OPERATION the operation is not allowed
OIDN_ERROR_OUT_OF_MEMORY not enough memory to execute the operation
OIDN_ERROR_UNSUPPORTED_HARDWARE the hardware (e.g., CPU) is not supported
OIDN_ERROR_CANCELLED the operation was cancelled by the user

Intel Open Image Denoise API 14

Buffer
Large data like images can be passed to Intel Open Image Denoise either via
pointers to memory allocated andmanaged by the user (this is the recommended,
often easier and more efficient approach, if supported by the device) or by cre-
ating buffer objects (supported by all devices). To create a new data buffer with
memory allocated and owned by the device, holding byteSize number of bytes,
use

OIDNBuffer oidnNewBuffer(OIDNDevice device, size_t byteSize);

The created buffer is bound to the specified device (device argument). The
specified number of bytes are allocated at buffer construction time and deallo-
cated when the buffer is destroyed.

It is also possible to create a “shared” data buffer with memory allocated and
managed by the user with

OIDNBuffer oidnNewSharedBuffer(OIDNDevice device, void* ptr, size_t byteSize);

where ptr points to the user-managed memory and byteSize is its size in
bytes. At buffer construction time no buffer data is allocated, but the buffer data
provided by the user is used. The buffer data must remain valid for as long as
the buffer may be used, and the user is responsible to free the buffer data when
no longer required.

Similar to device objects, buffer objects are also reference-counted and can
be retained and released by calling the following functions:

void oidnRetainBuffer(OIDNBuffer buffer);
void oidnReleaseBuffer(OIDNBuffer buffer);

Accessing the data stored in a buffer object is possible by mapping it into the
address space of the application using

void* oidnMapBuffer(OIDNBuffer buffer, OIDNAccess access, size_t byteOffset, size_t byteSize)

where access is the desired access mode of the mapped memory, byte-
Offset is the offset to the beginning of the mapped memory region in bytes,
and byteSize is the number of bytes to map. The function returns a pointer to
the mapped buffer data. If the specified byteSize is 0, the maximum available
amount of memory will be mapped. The access argument must be one of the
access modes in the following table:

Name Description

OIDN_ACCESS_READ read-only access
OIDN_ACCESS_WRITE write-only access
OIDN_ACCESS_READ_WRITE read and write access
OIDN_ACCESS_WRITE_DISCARD write-only access but the previous

contents will be discarded

Table 3.5 – Access modes for memory
regions mapped with oidnMapBuffer,
i.e., valid constants of type OIDNAccess.

After accessing the mapped data in the buffer, the memory region must be
unmapped with

void oidnUnmapBuffer(OIDNBuffer buffer, void* mappedPtr);

where mappedPtrmust be a pointer returned by a call to oidnMapBuffer for
the specified buffer. Any change to the mapped data is guaranteed to take effect
only after unmapping the memory region.

Intel Open Image Denoise API 15

Data Format
Buffers store opaque data and thus have no information about the type and for-
mat of the data. Other objects, e.g. filters, typically require specifying the format
of the data stored in buffers or shared via pointers. This can be done using the
OIDNFormat enumeration type:

Name Description

OIDN_FORMAT_UNDEFINED undefined format
OIDN_FORMAT_FLOAT 32-bit single-precision floating point scalar
OIDN_FORMAT_FLOAT[234] … and [234]-element vector

Table 3.6 – Supported data formats, i.e.,
valid constants of type OIDNFormat.

Filter
Filters are the main objects in Intel Open Image Denoise that are responsible
for the actual denoising. The library ships with a collection of filters which are
optimized for different types of images and use cases. To create a filter object,
call

OIDNFilter oidnNewFilter(OIDNDevice device, const char* type);

where type is the name of the filter type to create. The supported filter types
are documented later in this section. Once created, filter objects can be retained
and released with

void oidnRetainFilter(OIDNFilter filter);
void oidnReleaseFilter(OIDNFilter filter);

After creating a filter, it needs to be set up by specifying the input and output
images, and potentially setting other parameter values as well.

To bind images to the filter, you can use one of the following functions:

void oidnSetFilterImage(OIDNFilter filter, const char* name,
OIDNBuffer buffer, OIDNFormat format,
size_t width, size_t height,
size_t byteOffset,
size_t bytePixelStride, size_t byteRowStride);

void oidnSetSharedFilterImage(OIDNFilter filter, const char* name,
void* ptr, OIDNFormat format,
size_t width, size_t height,
size_t byteOffset,
size_t bytePixelStride, size_t byteRowStride);

It is possible to specify either a data buffer object (buffer argument) with
the oidnSetFilterImage function, or directly a pointer to shared user-managed
data (ptr argument) with the oidnSetSharedFilterImage function.

In both cases, you must also specify the name of the image parameter to set
(name argument, e.g. "color", "output"), the pixel format (format argument),
the width and height of the image in number of pixels (width and height argu-
ments), the starting offset of the image data (byteOffset argument), the pixel
stride (bytePixelStride argument) and the row stride (byteRowStride argu-
ment), in number of bytes. Note that the row stride must be an integer multiple
of the pixel stride.

Intel Open Image Denoise API 16

If the pixels and/or rows are stored contiguously (tightly packed without any
gaps), you can set bytePixelStride and/or byteRowStride to 0 to let the li-
brary compute the actual strides automatically, as a convenience.

Some special data used by filters are opaque/untyped (e.g. trained model
weights blobs), which can be specified with the oidnSetSharedFilterData
function:

void oidnSetSharedFilterData(OIDNFilter filter, const char* name,
void* ptr, size_t byteSize);

Filters may have parameters other than buffers as well, which you can set
and get using the following functions:

void oidnSetFilter1b(OIDNFilter filter, const char* name, bool value);
void oidnSetFilter1i(OIDNFilter filter, const char* name, int value);
void oidnSetFilter1f(OIDNFilter filter, const char* name, float value);
bool oidnGetFilter1b(OIDNFilter filter, const char* name);
int oidnGetFilter1i(OIDNFilter filter, const char* name);
float oidnGetFilter1f(OIDNFilter filter, const char* name);

Filters support a progress monitor callback mechanism that can be used to
report progress of filter operations and to cancel them as well. Calling oidnSet-
FilterProgressMonitorFunction registers a progress monitor callback func-
tion (func argument) with payload (userPtr argument) for the specified filter
(filter argument):

typedef bool (*OIDNProgressMonitorFunction)(void* userPtr, double n);

void oidnSetFilterProgressMonitorFunction(OIDNFilter filter,
OIDNProgressMonitorFunction func,
void* userPtr);

Only a single callback function can be registered per filter, and further invo-
cations overwrite the previously set callback function. Passing NULL as function
pointer disables the registered callback function. Once registered, Intel Open
Image Denoise will invoke the callback function multiple times during filter op-
erations, by passing the payload as set at registration time (userPtr argument),
and a double in the range [0, 1] which estimates the progress of the operation (n
argument). When returning true from the callback function, Intel Open Image
Denoise will continue the filter operation normally. When returning false, the
library will cancel the filter operation with the OIDN_ERROR_CANCELLED error
code.

After setting all necessary parameters for the filter, the changes must be com-
mmitted by calling

void oidnCommitFilter(OIDNFilter filter);

The parameters can be updated after committing the filter, but it must be
re-committed for the changes to take effect.

Finally, an image can be filtered by executing the filter with

void oidnExecuteFilter(OIDNFilter filter);

which will read the input image data from the specified buffers and produce
the denoised output image.

In the following we describe the different filters that are currently imple-
mented in Intel Open Image Denoise.

Intel Open Image Denoise API 17

RT
The RT (ray tracing) filter is a generic ray tracing denoising filter which is suitable
for denoising images rendered with Monte Carlo ray tracing methods like uni-
directional and bidirectional path tracing. It supports depth of field and motion
blur as well, but it is not temporally stable. The filter is based on a convolutional
neural network (CNN), and it aims to provide a good balance between denoising
performance and quality. The filter comes with a set of pre-trained CNN models
that work well with a wide range of ray tracing based renderers and noise levels.

It accepts either a low dynamic range (LDR) or high dynamic range (HDR)
color image as input. Optionally, it also accepts auxiliary feature images, e.g.
albedo and normal, which improve the denoising quality, preservingmore details
in the image.

The RT filter has certain limitations regarding the supported input images.
Most notably, it cannot denoise images that were not rendered with ray trac-
ing. Another important limitation is related to anti-aliasing filters. Most render-
ers use a high-quality pixel reconstruction filter instead of a trivial box filter to
minimize aliasing artifacts (e.g. Gaussian, Blackman-Harris). The RT filter does
support such pixel filters but only if implemented with importance sampling.
Weighted pixel sampling (sometimes called splatting) introduces correlation be-
tween neighboring pixels, which causes the denoising to fail (the noise will not
be filtered), thus it is not supported.

The filter can be created by passing "RT" to the oidnNewFilter function as
the filter type. The filter supports the following parameters:

All specified images must have the same dimensions.

Figure 3.1 – Example noisy color image
rendered using unidirectional path trac-
ing (64 spp). Scene by Evermotion.

Figure 3.2 – Example output image de-
noised using color and auxiliary feature
images (albedo and normal).

Using auxiliary feature images like albedo and normal helps preserving fine

Intel Open Image Denoise API 18

Table 3.7 – Parameters supported by the RT filter.

Type Format Name Default Description

Image float3 color input color image (LDR values in [0, 1] or HDR values in [0, +∞),
3 channels)

Image float3 albedo input feature image containing the albedo (values in [0, 1], 3
channels) of the first hit per pixel; optional

Image float3 normal input feature image containing the shading normal (world-space
or view-space, arbitrary length, values in (−∞, +∞), 3 channels)
of the first hit per pixel; optional, requires setting the albedo
image too

Image float3 output output color image (3 channels); can be one of the input images
Data weights trained model weights blob; optional
bool hdr false whether the color is HDR
float hdrScale NaN HDR color values are interpreted such that, multiplied by this

scale, a value of 1 corresponds to a luminance level of 100 cd/m²
(this affects the quality of the output but the output color values
will not be scaled); if set to NaN, the scale is computed
automatically (default)

bool srgb false whether the color is encoded with the sRGB (or 2.2 gamma)
curve (LDR only) or is linear; the output will be encoded with the
same curve

int maxMemoryMB 6000 approximate maximum amount of scratch memory to use in
megabytes (actual memory usage may be higher); limiting
memory usage may cause slower denoising due to internally
splitting the image into overlapping tiles, but cannot cause the
denoising to fail

const int alignment when manually denoising the image in tiles, the tile size and
offsets should be multiples of this amount of pixels to avoid
artifacts; note that manual tiled denoising of HDR images is
supported only when hdrScale is set by the user

const int overlap when manually denoising the image in tiles, the tiles should
overlap by this amount of pixels

details and textures in the image thus can significantly improve denoising qual-
ity. These images should typically contain feature values for the first hit (i.e. the
surface which is directly visible) per pixel. This works well for most surfaces but
does not provide any benefits for reflections and objects visible through trans-
parent surfaces (compared to just using the color as input). However, in certain
cases this issue can be fixed by storing feature values for a subsequent hit (i.e. the
reflection and/or refraction) instead of the first hit. For example, it usually works
well to follow perfect specular (delta) paths and store features for the first diffuse
or glossy surface hit instead (e.g. for perfect specular dielectrics and mirrors).
This can greatly improve the quality of reflections and transmission. We will
describe this approach in more detail in the following subsections.

The auxiliary feature images should be as noise-free as possible. It is not a
strict requirement but too much noise in the feature images may cause residual
noise in the output. Also, all feature images should use the same pixel recon-
struction filter as the color image. Using a properly anti-aliased color image but
aliased albedo or normal images will likely introduce artifacts around edges.

Intel Open Image Denoise API 19

Albedo

The albedo image is the feature image that usually provides the biggest quality
improvement. It should contain the approximate color of the surfaces indepen-
dent of illumination and viewing angle.

For simple matte surfaces this means using the diffuse color/texture as the
albedo. For other, more complex surfaces it is not always obvious what is the best
way to compute the albedo, but the denoising filter is flexibile to a certain extent
and works well with differently computed albedos. Thus it is not necessary to
compute the strict, exact albedo values but must be always between 0 and 1.

Figure 3.3 – Example albedo image ob-
tained using the first hit. Note that the
albedos of all transparent surfaces are 1.

Figure 3.4 – Example albedo image ob-
tained using the first diffuse or glossy
(non-delta) hit. Note that the albedos of
perfect specular (delta) transparent sur-
faces are computed as the Fresnel blend
of the reflected and transmitted albedos.

For metallic surfaces the albedo should be either the reflectivity at normal
incidence (e.g. from the artist friendly metallic Fresnel model) or the average
reflectivity; or if these are constant (not textured) or unknown, the albedo can
be simply 1 as well.

The albedo for dielectric surfaces (e.g. glass) should be either 1 or, if the sur-
face is perfect specular (i.e. has a delta BSDF), the Fresnel blend of the reflected
and transmitted albedos (as previously discussed). The latter usually works bet-
ter but only if it does not introduce too much additional noise due to random
sampling. Thus we recommend to split the path into a reflected and a transmit-
ted path at the first hit, and perhaps fall back to an albedo of 1 for subsequent
dielectric hits, to avoid noise. The reflected albedo in itself can be used formirror-
like surfaces as well.

The albedo for layered surfaces can be computed as the weighted sum of the
albedos of the individual layers. Non-absorbing clear coat layers can be simply
ignored (or the albedo of the perfect specular reflection can be used as well) but
absorption should be taken into account.

Intel Open Image Denoise API 20

Normal

The normal image should contain the shading normals of the surfaces either in
world-space or view-space. It is recommended to include normal maps to pre-
serve as much detail as possible.

Just like any other input image, the normal image should be anti-aliased (i.e.
by accumulating the normalized normals per pixel). The final accumulated nor-
mals do not have to be normalized but must be in a range symmetric about 0
(i.e. normals mapped to [0, 1] are not acceptable andmust be remapped to e.g. [−1,
1]).

Similar to the albedo, the normal can be stored for either the first or a subse-
quent hit (if the first hit has a perfect specular/delta BSDF).

Figure 3.5 – Example normal image ob-
tained using the first hit (the values are
actually in [−1, 1] but were mapped to
[0, 1] for illustration purposes).

Figure 3.6 – Example normal image ob-
tained using the first diffuse or glossy
(non-delta) hit. Note that the normals
of perfect specular (delta) transparent
surfaces are computed as the Fresnel
blend of the reflected and transmitted
normals.

Weights

Instead of using the built-in trained models for filtering, it is also possible to
specify user-trained models at runtime. This can be achieved by passing the
model weights blob produced by the training tool.

RTLightmap
The RTLightmap filter is a variant of the RT filter optimized for denoising HDR
lightmaps. It does not support LDR images.

The filter can be created by passing "RTLightmap" to the oidnNewFilter
function as the filter type. The filter supports the following parameters:

Intel Open Image Denoise API 21

Table 3.8 – Parameters supported by the RTLightmap filter.

Type Format Name Default Description

Image float3 color input color image (HDR values in [0, +∞), 3 channels)
Image float3 output output color image (3 channels); can be one of the input images
Data weights trained model weights blob; optional
float hdrScale NaN HDR color values are interpreted such that, multiplied by this

scale, a value of 1 corresponds to a luminance level of 100 cd/m²;
if set to NaN, the scale is computed automatically (default)

int maxMemoryMB 6000 approximate maximum amount of scratch memory to use in
megabytes (actual memory usage may be higher)

const int alignment when manually denoising the image in tiles, the tile size and
offsets should be multiples of this amount of pixels

const int overlap when manually denoising the image in tiles, the tiles should
overlap by this amount of pixels

22

Chapter 4
Examples

Denoise
A minimal working example demonstrating how to use Intel Open Image De-
noise can be found at apps/denoise/denoise.cpp, which uses the C++11 con-
venience wrappers of the C99 API.

This example is a simple command-line application that denoises the pro-
vided image, which can optionally have auxiliary feature images aswell (e.g. albedo
and normal). By default the images must be stored in the Portable FloatMap
(PFM) format, and the color values must be encoded in little-endian format. To
enable other image formats (e.g. OpenEXR, PNG) as well, the project has to be
rebuilt with OpenImageIO support enabled.

Running denoise without any arguments will bring up a list of command
line options.

http://www.pauldebevec.com/Research/HDR/PFM/

23

Chapter 5
Training

The Intel Open Image Denoise source distribution includes a Python-based neu-
ral network training toolkit (located in the training directory), which can be
used to train the denoising filter models with image datasets provided by the
user. The toolkit consists of the following command-line scripts:

• preprocess.py: Preprocesses training and validation datasets.

• train.py: Trains a model using preprocessed datasets.

• infer.py: Performs inference on a dataset using the specified training
result.

• export.py: Exports a training result to the runtime model weights format.

• find_lr.py: Tool for finding the optimal minimum and maximum learn-
ing rates.

• visualize.py: Invokes TensorBoard for visualizing statistics of a training
result.

• split_exr.py: Splits a multi-channel EXR image into multiple feature
images.

• convert_image.py: Converts a feature image to a different image format.

• compare_image.py: Compares two feature images using the specified
quality metrics.

Prerequisites
Before you can run the training toolkit you need the following prerequisites:

• Python 3.7 or later

• PyTorch 1.4 or later

• NumPy 1.17 or later

• OpenImageIO 2.1 or later

• TensorBoard 2.1 or later (optional)

The training toolkit has been tested only on Linux, thus other operating sys-
tems are currently not supported.

https://pytorch.org/
https://numpy.org/
http://openimageio.org/
https://www.tensorflow.org/tensorboard

Training 24

Datasets
A dataset should consist of a collection of noisy and corresponding noise-free
reference images. It is possible to have more than one noisy version of the same
image in the dataset, e.g. rendered at different samples per pixel and/or using
different seeds.

The training toolkit expects to have all datasets (e.g. training, validation) in
the same parent directory (e.g. data). Each dataset is stored in its own subdirec-
tory (e.g. train, valid), which can have an arbitrary name.

The images must be stored in OpenEXR format (.exr files), and the filenames
must have a specific format but the files can be stored in an arbitrary directory
structure inside the dataset directory. The only restriction is that all versions of
an image (noisy images and the reference image) must be located in the same
subdirectory. Each feature of an image (e.g. color, albedo) must be stored in a
separate image file, i.e. multi-channel EXR image files are not supported. If you
have multi-channel EXRs, you can split them into separate images per feature
using the included split_exr.py tool.

An image filename must consist of a name, the number of samples per pixel
or whether it is the reference (e.g. 0128spp, ref), the identifier (ID) of the fea-
ture (e.g. hdr, alb), and the file extension (.exr). The exact format as a regular
expression is the following:

.+_([0-9]+(spp)?|ref|reference|gt|target)\.(hdr|ldr|alb|nrm)\.exr

The number of samples per pixel should be padded with leading zeros to have
a fixed number of digits. If the reference image is not explicitly named as such
(i.e. has the number of samples instead), the image with the most samples per
pixel will be considered the reference.

The following image features are supported:

Feature ID Channels

color (HDR) hdr 3
color (LDR) ldr 3
albedo alb 3
normal nrm 3

Table 5.1 – Supported image features,
their IDs, and their number of channels.

The following directory tree demonstrates an example root dataset directory
(data) containing one dataset (rt_train) with HDR color and albedo feature
images:

data
`-- rt_train

|-- scene1
| |-- view1_0001.alb.exr
| |-- view1_0001.hdr.exr
| |-- view1_0004.alb.exr
| |-- view1_0004.hdr.exr
| |-- view1_8192.alb.exr
| |-- view1_8192.hdr.exr
| |-- view2_0001.alb.exr
| |-- view2_0001.hdr.exr
| |-- view2_8192.alb.exr
| `-- view2_8192.hdr.exr
|-- scene2_000008spp.alb.exr
|-- scene2_000008spp.hdr.exr

https://www.openexr.com/

Training 25

|-- scene2_000064spp.alb.exr
|-- scene2_000064spp.hdr.exr
|-- scene2_reference.alb.exr
`-- scene2_reference.hdr.exr

Preprocessing (preprocess.py)
Training and validation datasets can be used only after preprocessing them us-
ing the preprocess.py script. This will convert the specified training (-t or
--train_data option) and validation datasets (-v or --valid_data option) lo-
cated in the root dataset directory (-D or --data_dir option) to a format that
can be loaded more efficiently during training. All preprocessed datasets will be
stored in a root preprocessed dataset directory (-P or --preproc_dir option).

The preprocessing script requires the set of image features to include in the
preprocessed dataset as command-line arguments. Only these specified features
will be available for training. Preprocessing also depends on the filter that will be
trained (e.g. determines whichHDR/LDR transfer function has to be used), which
should be also specified (-f or --filter option). The alternative is to manually
specify the transfer function (-x or --transfer option) and other filter-specific
parameters, which could be useful for training custom filters.

For example, to preprocess the training and validation datasets (rt_train
and rt_valid) with HDR color, albedo, and normal image features, for training
the RT filter, the following command can be used:

./preprocess.py hdr alb nrm --filter RT --train_data rt_train --valid_data rt_valid

For more details about using the preprocessing script, including other op-
tions, please have a look at the help message:

./preprocess.py -h

Training (train.py)
After preprocessing the datasets, it is possible to start training a model using the
train.py script. Similar to the preprocessing script, the input features must be
specified (could be a subset of the preprocessed features), and the dataset names,
directory paths, and the filter can be also passed.

The tool will produce a training result, the name of which can be either speci-
fied (-r or --result option) or automatically generated (by default). Each result
is stored in its own subdirectory, and these are located in a common parent direc-
tory (-R or --results_dir option). If a training result already exists, the tool
will resume training that result from the latest checkpoint, or from an earlier
checkpoint at the specified epoch (-c or --checkpoint option).

The default training hyperparameters should work reasonably well in gen-
eral, but some adjustments might be necessary for certain datasets to attain opti-
mal performance, most importantly: the number of epochs (-e or --epochs op-
tion), the mini-batch size (--bs or --batch_size option), and the learning rate.
The training tool uses a cyclical learning rate (CLR) with the triangular2 scal-
ing policy and an optional linear ramp-down at the end. The learning rate sched-
ule can be configured by setting the base learning rate (--lr or --learning_
rate option), the maximum learning rate (--max_lr or --max_learning_rate
option), and the total cycle size in number of epochs (--lr_cycle_epochs op-
tion). If there is an incomplete cycle at the end, the learning rate will be linearly
ramped down to almost zero.

Example usage:

Training 26

./train.py hdr alb --filter RT --train_data rt_train --valid_data rt_valid --result rt_hdr_alb

For finding the optimal learning rate rangewe recommend using the included
find_lr.py script, which trains one epoch using an increasing learning rate and
logs the resulting losses in a comma-separated values (CSV) file. Plotting the loss
curve can show when the model starts to learn (the base learning rate) and when
it starts to diverge (the maximum learning rate).

The model is evaluated with the validation dataset at regular intervals (-
-valid_epochs option), and checkpoints are also regularly created (--save_
epochs option) to save training progress. Also, some statistics are logged (e.g. train-
ing and validation losses, learning rate) at a specified frequency (--log_steps
option), which can be later visualized with TensorBoard by running the visu-
alize.py script, e.g.:

./visualize.py --result rt_hdr_alb

Inference (infer.py)
A training result can be tested by performing inference on an image dataset (-i
or --input_data option) using the infer.py script. The dataset does not have
to be preprocessed. In addition to the result to use, it is possible to specify which
checkpoint to load as well. By default the latest checkpoint is loaded.

The tool saves the output images in a separate directory (-O or --output_
dir) in the requested formats (-F or --format option). It also evaluates a set of
image quality metrics (-M or --metric option), e.g. SSIM, MSE, for images that
have reference images available. All metrics are computed in tonemapped non-
linear sRGB space. Thus, HDR images are first tonemapped (with Naughty Dog’s
Filmic Tonemapper from John Hable’s Uncharted 2: HDR Lighting presentation)
and converted to sRGB before evaluating the metrics.

Example usage:

./infer.py --result rt_hdr_alb --input_data rt_test --format exr png --metric ssim

Exporting Results (export.py)
The training result produced by the train.py script cannot be immediately used
by the main library. It has to be first exported to the runtime model weights
format, a Tensor Archive (TZA) file. Running the export.py script for a training
result (and optionally a checkpoint) will create a binary .tza file in the directory
of the result, which can be either used at runtime through the API or it can be
included in the library build by replacing one of the built-in weights files.

Example usage:

./export.py --result rt_hdr_alb

Image Conversion and Comparison
In addition to the already mentioned split_exr.py script, the toolkit contains
a few other image utilities as well.

convert_image.py converts a feature image to a different image format
(and/or a different feature, e.g. HDR color to LDR), performing tonemapping and
other transforms as well if needed. For HDR images the exposure can be adjusted
by passing a linear exposure scale (-E or --exposure option). Example usage:

./convert_image.py view1_0004.hdr.exr view1_0004.png --exposure 2.5

Training 27

The compare_image.py script compares two feature images (preferably hav-
ing the dataset filename format to correctly detect the feature) using the specified
image quality metrics, similar to the infer.py tool. Example usage:

./compare_image.py view1_0004.hdr.exr view1_8192.hdr.exr --exposure 2.5 --metric mse ssim

Training 28

© 2018–2020 Intel Corporation

Intel, the Intel logo, Xeon, Intel Xeon Phi, and Intel Core are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

OptimizationNotice: Intel’s compilersmay ormay not optimize to the same degree for non-Intelmicroprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations
not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference
Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision #20110804

	Intel Open Image Denoise Overview
	Support and Contact
	Version History

	Compiling Intel Open Image Denoise
	Prerequisites
	Compiling on Linux/macOS
	Entitlements on macOS
	Compiling on Windows
	CMake Configuration

	Intel Open Image Denoise API
	C99 API Example
	C++11 API Example

	Device
	Error Handling

	Buffer
	Data Format

	Filter
	RT
	RTLightmap

	Examples
	Denoise

	Training
	Prerequisites
	Datasets
	Preprocessing (preprocess.py)
	Training (train.py)
	Inference (infer.py)
	Exporting Results (export.py)
	Image Conversion and Comparison

