
condordbq.pl(1) 727

condor dbq.pl

Provides a relational database management system interface to Condor. Condor submit file contents
are inserted into a table,condordbq.plsubmits the job to Condor, and updates a table with the status
of the work to allow the monitoring of its progress.

Synopsis

condor dbq.pl [--dbinfofile dbinfofile] [--dbinfodir dbinfodir] [--logdir logfiledir]
[--sleepamount seconds] [--maxwork numofwork] [--maxjobs numofjobs]
[--grabamount numjobs]

condor dbq.pl [--initdb] [--createlang] [--revokepublic] [--createsubmituser [dbinfofile]]
[--createworkuser [dbinfofile]] [--submit submitfile] [--noexecute]

condor dbq.pl[--help]

condor dbq.pl[--version]

Description

condordbq.pl provides a relational database interface to submit Condor jobs, and monitor their
progress as they are executed. The user submits work to the system by inserting a row into a database
table. The user can query thecondordbq.pltables to monitor the progress of their work.

condordbq.plis careful to submit each piece of work into Condor exactly once.condordbq.plcan
be stopped at any time. Upon restart it will recover its stateand resume operation.

condordbq.plhas two main modes of operation. The first, its normal mode, performs the role of
taking jobs from the database, submitting them to Condor andupdating the results of their execution.
The second mode performs administrative tasks on the database including creating the necessary
tables and accounts to usecondordbq.pl.

In the normal mode of operation,condordbq.plalternates between polling the database for new
work to submit to Condor, and monitoring the submitted work’s user logs for new events. The
database is updated to reflect the current state of the system. There are several options described in
the Options Section that can be used to throttlecondordbq.pl

The submission data for each work is in the same format allowed bycondorsubmit. The only limi-
tation is that the user can not specify a user log using thelog attribute ascondordbq.plwill override
this attribute with its own value.condordbq.plusescondorsubmitto perform the submission into
Condor. The only changes made to the submission are the user log is overridden, and attributes with
a prefix ofCDBQ are added. For correct operation, work submitted to thiscondorscheddoutside
of condordbq.plmust not add attributes or modify atttibutes with a prefix ofCDBQ .

Condor Version 7.5.0, Command Reference

condordbq.pl(1) 728

condordbq.ploperates by using two tables. Thework table represents each piece of work. The
jobstable represents the individual jobs once the work is submitted to Condor. Other than inserting
the work initially, users should only query the tables, and should not otherwise update values unless
specified below. A description of the fields and types of each table are described next.

work table Each row represents a piece of work to be executed by Condor. The table’s attribute
names, their SQL types and descriptions are as follows:

work data TEXT Stores the Condor submit file data. This is the only attributethat needs to
be set when inserting a new piece of work.

create ts TIMESTAMP Database timestamp when record was created.

id BIGINT Unique id for this record.

insert user TEXT Database user that inserted this record.

state TEXT The state of the piece of work in the system. The possible values are as follows:

initial Job has not yet been submitted to Condor.

chosen Job is about to be submitted to Condor.

in batch Job has successfully been submitted to Condor, but has not yet completed.

complete All the jobs of this work have completed successfully or havebeeen removed.

failed The work has failed due to a permanent error.

cdbq user TEXT Database user that inserted this record into Condor. NULL ifcon-
dor submitnot executed.

cmd stdout TEXT Standard out ofcondorsubmitafter submitting this job. NULL ifcon-
dor submitnot executed.

cmd stderr TEXT Standard error ofcondorsubmitafter submitting this job. NULL ifcon-
dor submitnot executed.

cmd exit code INTEGER Exit code ofcondorsubmit. 0 is success, other values indicate
failure. NULL if condorsubmitnot executed.

cmd exit signal INTEGER Signal causing thiscondorsubmitto fail. 0 is non-signal exit,
other values represent the signal number. NULL ifcondorsubmitnot executed.

log file TEXT Path to Condor’s user log file for this work.

next pos INTEGER Offset between last and next event record to read.

total jobs INTEGER Total number of jobs that are represented by this work.

complete jobs INTEGER Total number of jobs that have completed or been removed.

log err msg TEXT Last error message caused by accessing the user log file.

log err num INTEGER Last error number caused by accessing the user log file.

update ts TIMESTAMP Database timestamp when record was last updated.

user id INTEGER For use by the user to store an integer value.

user text TEXT For use by the user to store a text value.

Condor Version 7.5.0, Command Reference

condordbq.pl(1) 729

jobs table: Each row repreents a job of a piece of work. These rows are inserted once the work has
been submitted to the Condor system and Condor has written a submitted event to the user log
file. The table’s attribute names, their SQL types and descriptions are as follows:

work id BIGINT Id from thework table.

cluster INTEGER Condor cluster id of this job.

proc INTEGER Condor process id of this job.

subproc INTEGER Condor subprocess id of this job.

state INTEGER Condor user log record event type of the last event seen for this job.

info TEXT Additional information from the last log record seen for this job.

record ts TIMESTAMP User log timestamp from the last log record event processed.

create ts TIMESTAMP Database timestamp when job was first seen.

update ts TIMESTAMP Database timestamp when record was last updated.

exit code INTEGER Exit code of of this job. 0 is success, other values indicate failure.
NULL if job not yet complete.

exit signal INTEGER Signal causing this job to fail. 0 is non-signal exit, other values rep-
resent the signal number. NULL if job not yet complete.

The other functions ofcondordbq.plperform administrative tasks on the database. These include
inserting a new record into the work table given a Condor submit file, and creating the tables and
accounts required bycondordbq.pl. If any of this functionality is requested, only the administrative
tasks are performed; the normal processing of work is not started.

If --noexecuteis used with any of the administrative functions, the SQL statements are printed to
standard out instead of being executing. This is useful to review the statements for security purposes,
or to modify them before creating the database objects.

The --submit filenameoption is used to insert a work record into the system using the contents of
filenamefor the Condor submit file data. Iffilenameis ‘-’, the program reads the Condor submit file
from standard in.

The--initdb option causes the tables and other database objects to be created.

The --createlang option creates the plpgsql language to allow the trigger functions created by
--initdb to be used. This is not necessary if the database administrator created the language for
use when the database was created.

The --revokepublic option prevents the database users from creating object newtables in the
database in the ‘public’ schema that PostgreSQL grants by default to all users. If the user accounts
do not need to create tables this option should be used to revoke this unnecessary privilege.

The--createsubmituser[dbinfofile] option creates a database user that can be used to submit jobs.
The username and password for this account is obtained from the db information file specified,
or using the default location for submit db information file if none is specified. This account has
privileges to insert work into the work table, and read values from both tables.

Condor Version 7.5.0, Command Reference

condordbq.pl(1) 730

The--createworkuser[dbinfofile] option creates a database user that can be used bycondordbq.pl
to perform its normal operation. The username and password for this account is obtained from the
db information file specified, or using the default location for worker db information file if none is
specified. This account has privileges to update existing records in the work table, and to insert and
update records in the jobs table.

There are three types of database accounts required bycondordbq.pl. The first is an administrative
database account that can create database accounts, tablesand other objects. The administrative
account requires database privileges to create tables and users in the database. This account is used
by the administrative commands except the submit function.

The second account type is used to insert work records into the database by the--submit option. This
account requires privileges to insert records into the worktable. The account can be created using
the--createsubmituser, which also grants access to select records from the two tables allowing this
account to used to both submit work and to monitor its progress. Multiple acconts of this type may
be used.

The final account type is used to perform the actual work of thesystem. This account requires
privileges to update records in the work table and to both insert and update records in the jobs table.
The account can be created using the--createworkuser.

The account information describing an account is stored in adatabase information file that contains
three lines: the perl DBI string describing the database, the username, and the password. As these
files contain sensitive information, only the operating system accounts used to run thecondordbq.pl
should be able to read the database account information files. By default, a separate db information
file is used to store each of the three accounts with the program selecting the credential information
based on the selected operation. These files are stored in a directory specified by--dbinfodir ,
and are named db.admin.conf, db.submit.conf, and db.work.conf for the administrative, submit and
work accounts respectively. If this scheme is used the correct account will be used without having
to specify the account information file. If an account information file is missingcondordbq.plwill
fail if an operation is selected that requires the missing account information file.

Options

--dbinfofile dbinfofile Db information file containing the DBI connection string, username and
password one to a line. If not specified this file defaults to files in the--dbinfodir directory
with the names db.work.conf, db.submit.conf, or db.admin.conf, based on the functionality
requested being process the queue, submit a job, or perform administrative database functions
respectively. The default value is the current directory.

--dbinfodir dbinfodir Directory to look for default database information files when --dbinfofile is
not specified.

--logdir logfiledir Directory name to place the Condor user log files generated bythe Condor
system. The default value is the current directory.

Condor Version 7.5.0, Command Reference

condordbq.pl(1) 731

--sleepamountsecondsAmount of time to sleep between each iteration of polling thedatabase
system for new work and processing new events in the Condor user logs. The default value is
10 seconds.

--maxwork numofwork Maximum number of inprogress work in the Condor system. If there is
less work in the Condor system, new work will be submitted if available.

--maxjobsnumofjobs Maximum number of incomplete jobs in the Condor system. If there are
fewer jobs, new work will be submitted if available.

--grabamount numofwork Maximum amount of work to pull from the database system to insert
into the Condor system per iteration. The default value is 10work records.

--initdb Create the tables and other associated database objects required by the condordbq system.

--createlang Causes the plpgsql language to created in the database.

--revokepublic Revokes the default ability of database users to create new tables in the ‘public’
schema in the database.

--createsubmituser[dbinfofile] Create a database account that has proper permissions to insert a
work submission to the database. The username and paosword for the account is taken from
the db information file specified or the default submit db information file is used if none is
specified.

--createworkuser[dbinfofile] Create a database account that has proper permissions to allow
condordbq to process the queue. The username and paosword for the account is taken from
the db information file specified or the default worker db information file is used if none is
specified.

--submit submitfile Insert a row in the database containing the contents ofsubmitfile. A submitfile
value of ‘-’ will read the submit file from standard in.

--noexecuteDo not execute any of the administrative database commands.Just print them out to
standard out.

--help Print a help message and exit.

Condor Version 7.5.0, Command Reference

condordbq.pl(1) 732

--version Print the version and exit.

Examples

This section will present a complete introduction to usingcondordbq.plincluding setup of the en-
vironment, creation of the database accounts and tables, inserting work, and querying results. This
example assumes the database ‘condordbq db’ is already created, and accessible on the same host
via TCP/IP on the standard port. It also assumes that the administrative database account, ‘con-
dor dbq adminuser,’ exists with the password ‘condordbq adminpassword,’ and that this account
has the ability to create new database users and tables in the‘condor dbq db’ database. The example
code is written in the bash shell.

Create a secure directory to store the db information files.

mkdir condor_dbq_conf
chmod 0700 condor_dbq_conf

Create the database account information files for a PostgreSQL database named condordbq db:

cat > condor_dbq_conf/db.admin.conf <<EOF
DBI:Pg:database=condor_dbq_db;host=localhost
condor_dbq_admin_user
condor_dbq_admin_password
EOF

cat > condor_dbq_conf/db.submit.conf <<EOF
DBI:Pg:database=condor_dbq_db;host=localhost
condor_dbq_submit_user
condor_dbq_submit_password
EOF

cat > condor_dbq_conf/db.worker.conf <<EOF
DBI:Pg:database=condor_dbq_db;host=localhost
condor_dbq_worker_user
condor_dbq_worker_password
EOF

Create the plpgsql language used by objects created by--initdb :

condor_dbq.pl --dbinfodir=condor_dbq_conf --createlan g

Create the database tables and objects:

Condor Version 7.5.0, Command Reference

condordbq.pl(1) 733

condor_dbq.pl --dbinfodir=condor_dbq_conf --initdb

Revoke the default ability of database users to create new tables:

condor_dbq.pl --dbinfodir=condor_dbq_conf --revokepub lic

Create the worker account thatcondordbq.plwill use for its normal operation using the default db
worker information file for account information:

condor_dbq.pl --dbinfodir=condor_dbq_conf --createwor kuser

Create the submit account that users can use to insert work into the system using the default submit
db information file for account information:

condor_dbq.pl --dbinfodir=condor_dbq_conf --createsub mituser

Create the directory to store the user logs:

mkdir condor_dbq_logs
chmod 0722 condor_dbq_logs

Start the system:

condor_dbq.pl --dbinfodir=condor_dbq_conf --logdir=co ndor_dbq_logs

Create a Condor submit file containing a simple job:

cat > my.submit <<EOF
Universe = vanilla
transfer_executable = false
notification = never
output = my.out
error = my.err
log = my.log
Executable = /bin/sh
Arguments = "-c 'exit 0'"
Queue
EOF

Insert the Condor submit file into the work table:

condor_dbq.pl --dbinfodir=condor_dbq_conf --submit=my .submit

Condor Version 7.5.0, Command Reference

condordbq.pl(1) 734

Exit Status

condordbq.plwill exit with a status value of 0 (zero) upon success, and it will exit with a non-zero
value upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.5.0 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.5.0, Command Reference

http://www.condorproject.org/license

	1 Overview
	1.1 High-Throughput Computing (HTC) and its Requirements
	1.2 Condor's Power
	1.3 Exceptional Features
	1.4 Current Limitations
	1.5 Availability
	1.6 Contributions to Condor
	1.7 Contact Information
	1.8 Privacy Notice

	2 Users' Manual
	2.1 Welcome to Condor
	2.2 Introduction
	2.3 Matchmaking with ClassAds
	2.3.1 Inspecting Machine ClassAds with condor_status

	2.4 Road-map for Running Jobs
	2.4.1 Choosing a Condor Universe

	2.5 Submitting a Job
	2.5.1 Submit Description File Commands
	2.5.2 Sample submit description files
	2.5.3 About Requirements and Rank
	2.5.4 Submitting Jobs Using a Shared File System
	2.5.5 Submitting Jobs Without a Shared File System: Condor's File Transfer Mechanism
	2.5.6 Environment Variables
	2.5.7 Heterogeneous Submit: Execution on Differing Architectures

	2.6 Managing a Job
	2.6.1 Checking on the progress of jobs
	2.6.2 Removing a job from the queue
	2.6.3 Placing a job on hold
	2.6.4 Changing the priority of jobs
	2.6.5 Why is the job not running?
	2.6.6 In the log file
	2.6.7 Job Completion

	2.7 Priorities and Preemption
	2.7.1 Job Priority
	2.7.2 User priority
	2.7.3 Details About How Condor Jobs Vacate Machines

	2.8 Java Applications
	2.8.1 A Simple Example Java Application
	2.8.2 Less Simple Java Specifications
	2.8.3 Chirp I/O

	2.9 Parallel Applications (Including MPI Applications)
	2.9.1 Prerequisites to Running Parallel Jobs
	2.9.2 Parallel Job Submission
	2.9.3 Parallel Jobs with Separate Requirements
	2.9.4 MPI Applications Within Condor's Parallel Universe

	2.10 DAGMan Applications
	2.10.1 DAGMan Terminology
	2.10.2 Input File Describing the DAG
	2.10.3 Submit Description File
	2.10.4 Job Submission
	2.10.5 Job Monitoring, Job Failure, and Job Removal
	2.10.6 Advanced Features of DAGMan
	2.10.7 Job Recovery: The Rescue DAG
	2.10.8 File Paths in DAGs
	2.10.9 Visualizing DAGs with dot

	2.11 Virtual Machine Applications
	2.11.1 The Submit Description File
	2.11.2 Checkpoints
	2.11.3 Disk Images
	2.11.4 Job Completion in the vm Universe

	2.12 Time Scheduling for Job Execution
	2.12.1 Job Deferral
	2.12.2 CronTab Scheduling

	2.13 Job Monitor
	2.13.1 Transition States
	2.13.2 Events
	2.13.3 Selecting Jobs
	2.13.4 Zooming
	2.13.5 Keyboard and Mouse Shortcuts

	2.14 Special Environment Considerations
	2.14.1 AFS
	2.14.2 NFS Automounter
	2.14.3 Condor Daemons That Do Not Run as root
	2.14.4 Job Leases

	2.15 Potential Problems
	2.15.1 Renaming of argv[0]

	3 Administrators' Manual
	3.1 Introduction
	3.1.1 The Different Roles a Machine Can Play
	3.1.2 The Condor Daemons

	3.2 Installation
	3.2.1 Obtaining Condor
	3.2.2 Preparation
	3.2.3 Newer Unix Installation Procedure
	3.2.4 Condor is installed Under Unix ... now what?
	3.2.5 Installation on Windows
	3.2.6 RPMs
	3.2.7 Upgrading - Installing a Newer Version of Condor
	3.2.8 Installing the CondorView Client Contrib Module
	3.2.9 Dynamic Deployment

	3.3 Configuration
	3.3.1 Introduction to Configuration Files
	3.3.2 Special Macros
	3.3.3 Condor-wide Configuration File Entries
	3.3.4 Daemon Logging Configuration File Entries
	3.3.5 DaemonCore Configuration File Entries
	3.3.6 Network-Related Configuration File Entries
	3.3.7 Shared File System Configuration File Macros
	3.3.8 Checkpoint Server Configuration File Macros
	3.3.9 condor_master Configuration File Macros
	3.3.10 condor_startd Configuration File Macros
	3.3.11 condor_schedd Configuration File Entries
	3.3.12 condor_shadow Configuration File Entries
	3.3.13 condor_starter Configuration File Entries
	3.3.14 condor_submit Configuration File Entries
	3.3.15 condor_preen Configuration File Entries
	3.3.16 condor_collector Configuration File Entries
	3.3.17 condor_negotiator Configuration File Entries
	3.3.18 condor_procd Configuration File Macros
	3.3.19 condor_credd Configuration File Macros
	3.3.20 condor_gridmanager Configuration File Entries
	3.3.21 condor_job_router Configuration File Entries
	3.3.22 condor_lease_manager Configuration File Entries
	3.3.23 Grid Monitor Configuration File Entries
	3.3.24 Configuration File Entries Relating to Grid Usage and Glidein
	3.3.25 Configuration File Entries for DAGMan
	3.3.26 Configuration File Entries Relating to Security
	3.3.27 Configuration File Entries Relating to PrivSep
	3.3.28 Configuration File Entries Relating to Virtual Machines
	3.3.29 Configuration File Entries Relating to High Availability
	3.3.30 Configuration File Entries Relating to Quill
	3.3.31 MyProxy Configuration File Macros
	3.3.32 Configuration File Macros Affecting APIs
	3.3.33 Configuration File Entries Relating to condor_ssh_to_job
	3.3.34 condor_rooster Configuration File Macros

	3.4 User Priorities and Negotiation
	3.4.1 Real User Priority (RUP)
	3.4.2 Effective User Priority (EUP)
	3.4.3 Priorities in Negotiation and Preemption
	3.4.4 Priority Calculation
	3.4.5 Negotiation
	3.4.6 The Layperson's Description of the Pie Spin and Pie Slice
	3.4.7 Group Accounting
	3.4.8 Group Quotas

	3.5 Policy Configuration for the condor_startd
	3.5.1 Startd ClassAd Attributes
	3.5.2 The START expression
	3.5.3 The IS_VALID_CHECKPOINT_PLATFORM expression
	3.5.4 The RANK expression
	3.5.5 Machine States
	3.5.6 Machine Activities
	3.5.7 State and Activity Transitions
	3.5.8 State/Activity Transition Expression Summary
	3.5.9 Policy Settings

	3.6 Security
	3.6.1 Condor's Security Model
	3.6.2 Security Negotiation
	3.6.3 Authentication
	3.6.4 The Unified Map File for Authentication
	3.6.5 Encryption
	3.6.6 Integrity
	3.6.7 Authorization
	3.6.8 Security Sessions
	3.6.9 Host-Based Security in Condor
	3.6.10 Using Condor w/ Firewalls, Private Networks, and NATs
	3.6.11 User Accounts in Condor
	3.6.12 Privilege Separation
	3.6.13 Support for glexec

	3.7 Networking (includes sections on Port Usage and GCB)
	3.7.1 Port Usage in Condor
	3.7.2 Configuring Condor for Machines With Multiple Network Interfaces
	3.7.3 Condor Connection Brokering (CCB)
	3.7.4 Generic Connection Brokering (GCB)
	3.7.5 Using TCP to Send Updates to the condor_collector

	3.8 The Checkpoint Server
	3.8.1 Preparing to Install a Checkpoint Server
	3.8.2 Installing the Checkpoint Server Module
	3.8.3 Configuring the Pool to Use Multiple Checkpoint Servers
	3.8.4 Checkpoint Server Domains

	3.9 DaemonCore
	3.9.1 DaemonCore and Unix signals
	3.9.2 DaemonCore and Command-line Arguments

	3.10 Pool Management
	3.10.1 Shutting Down and Restarting a Condor Pool
	3.10.2 Reconfiguring a Condor Pool
	3.10.3 Using Dynamic Attributes

	3.11 The High Availability of Daemons
	3.11.1 High Availability of the Job Queue
	3.11.2 High Availability of the Central Manager

	3.12 Quill
	3.12.1 Installation and Configuration
	3.12.2 Four Usage Examples
	3.12.3 Quill and Security
	3.12.4 Quill and Its RDBMS Schema

	3.13 Setting Up for Special Environments
	3.13.1 Using Condor with AFS
	3.13.2 Configuring Condor for Multiple Platforms
	3.13.3 Full Installation of condor_compile
	3.13.4 The condor_kbdd
	3.13.5 Configuring The CondorView Server
	3.13.6 Running Jobs within VMware or Xen
	3.13.7 Configuring The Startd for SMP Machines
	3.13.8 Condor's Dedicated Scheduling
	3.13.9 Configuring Condor for Running Backfill Jobs
	3.13.10 Group ID-Based Process Tracking
	3.13.11 Limiting Resource Usage
	3.13.12 Concurrency Limits

	3.14 Java Support Installation
	3.15 Virtual Machines
	3.15.1 Configuration Parameters

	3.16 Power Management
	3.16.1 Entering a Low Power State
	3.16.2 Returning From a Low Power State
	3.16.3 Keeping a ClassAd for a Hibernating Machine
	3.16.4 Linux Platform Details
	3.16.5 Windows Platform Details

	4 Miscellaneous Concepts
	4.1 Condor's ClassAd Mechanism
	4.1.1 Syntax
	4.1.2 Evaluation Semantics
	4.1.3 ClassAds in the Condor System

	4.2 Condor's Checkpoint Mechanism
	4.2.1 Standalone Checkpointing
	4.2.2 Checkpoint Safety
	4.2.3 Checkpoint Warnings
	4.2.4 Checkpoint Library Interface

	4.3 Computing On Demand (COD)
	4.3.1 Overview of How COD Works
	4.3.2 Authorizing Users to Create and Manage COD Claims
	4.3.3 Defining a COD Application
	4.3.4 Managing COD Resource Claims
	4.3.5 Limitations of COD Support in Condor

	4.4 Job Hooks
	4.4.1 Hooks that Fetch Work
	4.4.2 Hooks for a Job Router

	4.5 Application Program Interfaces
	4.5.1 Web Service
	4.5.2 The DRMAA API
	4.5.3 The Command Line Interface
	4.5.4 The Condor GAHP
	4.5.5 The Condor Perl Module

	4.6 Condor Database Queue condor_dbq.pl
	4.6.1 Client Interactions
	4.6.2 Submitting Work
	4.6.3 Monitoring Work
	4.6.4 Database Schema
	4.6.5 Setup
	4.6.6 Recovery
	4.6.7 Standalone Checkpointing
	4.6.8 Checkpoint Safety
	4.6.9 Checkpoint Warnings
	4.6.10 Checkpoint Library Interface

	5 Grid Computing
	5.1 Introduction
	5.2 Connecting Condor Pools with Flocking
	5.2.1 Flocking Configuration
	5.2.2 Job Considerations

	5.3 The Grid Universe
	5.3.1 Condor-C, The condor Grid Type
	5.3.2 Condor-G, the gt2, gt4, and gt5 Grid Types
	5.3.3 The nordugrid Grid Type
	5.3.4 The unicore Grid Type
	5.3.5 The pbs Grid Type
	5.3.6 The lsf Grid Type
	5.3.7 The amazon Grid Type
	5.3.8 The cream Grid Type
	5.3.9 Matchmaking in the Grid Universe

	5.4 Glidein
	5.4.1 What condor_glidein Does
	5.4.2 Configuration Requirements in the Local Pool
	5.4.3 Running Jobs on the Remote Grid Resource After Glidein

	5.5 Dynamic Deployment
	5.6 The Condor Job Router
	5.6.1 Routing Mechanism
	5.6.2 Job Submission with Job Routing Capability
	5.6.3 An Example Configuration
	5.6.4 Routing Table Entry ClassAd Attributes
	5.6.5 Example: constructing the routing table from ReSS

	6 Platform-Specific Information
	6.1 Linux
	6.1.1 Linux Kernel-specific Information
	6.1.2 Red Hat Version 9.x
	6.1.3 Red Hat Fedora 1, 2, and 3

	6.2 Microsoft Windows
	6.2.1 Limitations under Windows
	6.2.2 Supported Features under Windows
	6.2.3 Secure Password Storage
	6.2.4 Executing Jobs as the Submitting User
	6.2.5 Executing Jobs with the User's Profile Loaded
	6.2.6 Using Windows Scripts as Job Executables
	6.2.7 Details on how Condor for Windows starts/stops a job
	6.2.8 Security Considerations in Condor for Windows
	6.2.9 Network files and Condor
	6.2.10 Interoperability between Condor for Unix and Condor for Windows
	6.2.11 Some differences between Condor for Unix -vs- Condor for Windows

	6.3 Macintosh OS X
	6.4 AIX
	6.4.1 AIX 5.2L
	6.4.2 AIX 5.1L

	7 Frequently Asked Questions (FAQ)
	7.1 Obtaining & Installing Condor
	7.2 Setting up Condor
	7.3 Running Condor Jobs
	7.4 Condor on Windows
	7.5 Grid Computing
	7.6 Troubleshooting
	7.7 Other questions

	8 Version History and Release Notes
	8.1 Introduction to Condor Versions
	8.1.1 Condor Version Number Scheme
	8.1.2 The Stable Release Series
	8.1.3 The Development Release Series

	8.2 Development Release Series 7.5
	8.3 Stable Release Series 7.4
	8.4 Development Release Series 7.3
	8.5 Stable Release Series 7.2
	8.6 Development Release Series 7.1
	8.7 Stable Release Series 7.0

	9 Command Reference Manual (man pages)
	cleanup_release
	condor_advertise
	condor_check_userlogs
	condor_checkpoint
	condor_chirp
	condor_cod
	condor_cold_start
	condor_cold_stop
	condor_compile
	condor_config_bind
	condor_config_val
	condor_configure
	condor_convert_history
	condor_dagman
	condor_dbq.pl
	condor_fetchlog
	condor_findhost
	condor_glidein
	condor_history
	condor_hold
	condor_load_history
	condor_master
	condor_master_off
	condor_off
	condor_on
	condor_power
	condor_preen
	condor_prio
	condor_q
	condor_qedit
	condor_reconfig
	condor_reconfig_schedd
	condor_release
	condor_reschedule
	condor_restart
	condor_rm
	condor_router_history
	condor_run
	condor_set_shutdown
	condor_ssh_to_job
	condor_stats
	condor_status
	condor_store_cred
	condor_submit
	condor_submit_dag
	condor_transfer_data
	condor_updates_stats
	condor_userlog
	condor_userprio
	condor_vacate
	condor_vacate_job
	condor_version
	condor_wait
	filelock_midwife
	filelock_undertaker
	install_release
	uniq_pid_midwife
	uniq_pid_undertaker

	10 Appendix A: ClassAd Attributes
	11 Appendix B: Magic Numbers

