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condor dbq.pl

Provides a relational database management system interface to Condor. Condor submit file contents
are inserted into a table,condordbq.plsubmits the job to Condor, and updates a table with the status
of the work to allow the monitoring of its progress.

Synopsis

condor dbq.pl [--dbinfofile dbinfofile] [ --dbinfodir dbinfodir] [ --logdir logfiledir]
[--sleepamount seconds] [ --maxwork numofwork] [ --maxjobs numofjobs]
[--grabamount numjobs]

condor dbq.pl [--initdb ] [ --createlang] [ --revokepublic] [ --createsubmituser [dbinfofile]]
[--createworkuser [dbinfofile]] [ --submit submitfile] [ --noexecute]

condor dbq.pl[--help]

condor dbq.pl[--version]

Description

condordbq.pl provides a relational database interface to submit Condor jobs, and monitor their
progress as they are executed. The user submits work to the system by inserting a row into a database
table. The user can query thecondordbq.pltables to monitor the progress of their work.

condordbq.plis careful to submit each piece of work into Condor exactly once.condordbq.plcan
be stopped at any time. Upon restart it will recover its stateand resume operation.

condordbq.plhas two main modes of operation. The first, its normal mode, performs the role of
taking jobs from the database, submitting them to Condor andupdating the results of their execution.
The second mode performs administrative tasks on the database including creating the necessary
tables and accounts to usecondordbq.pl.

In the normal mode of operation,condordbq.plalternates between polling the database for new
work to submit to Condor, and monitoring the submitted work’s user logs for new events. The
database is updated to reflect the current state of the system. There are several options described in
the Options Section that can be used to throttlecondordbq.pl

The submission data for each work is in the same format allowed bycondorsubmit. The only limi-
tation is that the user can not specify a user log using thelog attribute ascondordbq.plwill override
this attribute with its own value.condordbq.plusescondorsubmitto perform the submission into
Condor. The only changes made to the submission are the user log is overridden, and attributes with
a prefix ofCDBQ are added. For correct operation, work submitted to thiscondorscheddoutside
of condordbq.plmust not add attributes or modify atttibutes with a prefix ofCDBQ .
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condordbq.ploperates by using two tables. Thework table represents each piece of work. The
jobstable represents the individual jobs once the work is submitted to Condor. Other than inserting
the work initially, users should only query the tables, and should not otherwise update values unless
specified below. A description of the fields and types of each table are described next.

work table Each row represents a piece of work to be executed by Condor. The table’s attribute
names, their SQL types and descriptions are as follows:

work data TEXT Stores the Condor submit file data. This is the only attributethat needs to
be set when inserting a new piece of work.

create ts TIMESTAMP Database timestamp when record was created.

id BIGINT Unique id for this record.

insert user TEXT Database user that inserted this record.

state TEXT The state of the piece of work in the system. The possible values are as follows:

initial Job has not yet been submitted to Condor.

chosen Job is about to be submitted to Condor.

in batch Job has successfully been submitted to Condor, but has not yet completed.

complete All the jobs of this work have completed successfully or havebeeen removed.

failed The work has failed due to a permanent error.

cdbq user TEXT Database user that inserted this record into Condor. NULL ifcon-
dor submitnot executed.

cmd stdout TEXT Standard out ofcondorsubmitafter submitting this job. NULL ifcon-
dor submitnot executed.

cmd stderr TEXT Standard error ofcondorsubmitafter submitting this job. NULL ifcon-
dor submitnot executed.

cmd exit code INTEGER Exit code ofcondorsubmit. 0 is success, other values indicate
failure. NULL if condorsubmitnot executed.

cmd exit signal INTEGER Signal causing thiscondorsubmitto fail. 0 is non-signal exit,
other values represent the signal number. NULL ifcondorsubmitnot executed.

log file TEXT Path to Condor’s user log file for this work.

next pos INTEGER Offset between last and next event record to read.

total jobs INTEGER Total number of jobs that are represented by this work.

complete jobs INTEGER Total number of jobs that have completed or been removed.

log err msg TEXT Last error message caused by accessing the user log file.

log err num INTEGER Last error number caused by accessing the user log file.

update ts TIMESTAMP Database timestamp when record was last updated.

user id INTEGER For use by the user to store an integer value.

user text TEXT For use by the user to store a text value.
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jobs table: Each row repreents a job of a piece of work. These rows are inserted once the work has
been submitted to the Condor system and Condor has written a submitted event to the user log
file. The table’s attribute names, their SQL types and descriptions are as follows:

work id BIGINT Id from thework table.

cluster INTEGER Condor cluster id of this job.

proc INTEGER Condor process id of this job.

subproc INTEGER Condor subprocess id of this job.

state INTEGER Condor user log record event type of the last event seen for this job.

info TEXT Additional information from the last log record seen for this job.

record ts TIMESTAMP User log timestamp from the last log record event processed.

create ts TIMESTAMP Database timestamp when job was first seen.

update ts TIMESTAMP Database timestamp when record was last updated.

exit code INTEGER Exit code of of this job. 0 is success, other values indicate failure.
NULL if job not yet complete.

exit signal INTEGER Signal causing this job to fail. 0 is non-signal exit, other values rep-
resent the signal number. NULL if job not yet complete.

The other functions ofcondordbq.plperform administrative tasks on the database. These include
inserting a new record into the work table given a Condor submit file, and creating the tables and
accounts required bycondordbq.pl. If any of this functionality is requested, only the administrative
tasks are performed; the normal processing of work is not started.

If --noexecuteis used with any of the administrative functions, the SQL statements are printed to
standard out instead of being executing. This is useful to review the statements for security purposes,
or to modify them before creating the database objects.

The --submit filenameoption is used to insert a work record into the system using the contents of
filenamefor the Condor submit file data. Iffilenameis ‘-’, the program reads the Condor submit file
from standard in.

The--initdb option causes the tables and other database objects to be created.

The --createlang option creates the plpgsql language to allow the trigger functions created by
--initdb to be used. This is not necessary if the database administrator created the language for
use when the database was created.

The --revokepublic option prevents the database users from creating object newtables in the
database in the ‘public’ schema that PostgreSQL grants by default to all users. If the user accounts
do not need to create tables this option should be used to revoke this unnecessary privilege.

The--createsubmituser[dbinfofile] option creates a database user that can be used to submit jobs.
The username and password for this account is obtained from the db information file specified,
or using the default location for submit db information file if none is specified. This account has
privileges to insert work into the work table, and read values from both tables.
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The--createworkuser[dbinfofile] option creates a database user that can be used bycondordbq.pl
to perform its normal operation. The username and password for this account is obtained from the
db information file specified, or using the default location for worker db information file if none is
specified. This account has privileges to update existing records in the work table, and to insert and
update records in the jobs table.

There are three types of database accounts required bycondordbq.pl. The first is an administrative
database account that can create database accounts, tablesand other objects. The administrative
account requires database privileges to create tables and users in the database. This account is used
by the administrative commands except the submit function.

The second account type is used to insert work records into the database by the--submit option. This
account requires privileges to insert records into the worktable. The account can be created using
the--createsubmituser, which also grants access to select records from the two tables allowing this
account to used to both submit work and to monitor its progress. Multiple acconts of this type may
be used.

The final account type is used to perform the actual work of thesystem. This account requires
privileges to update records in the work table and to both insert and update records in the jobs table.
The account can be created using the--createworkuser.

The account information describing an account is stored in adatabase information file that contains
three lines: the perl DBI string describing the database, the username, and the password. As these
files contain sensitive information, only the operating system accounts used to run thecondordbq.pl
should be able to read the database account information files. By default, a separate db information
file is used to store each of the three accounts with the program selecting the credential information
based on the selected operation. These files are stored in a directory specified by--dbinfodir ,
and are named db.admin.conf, db.submit.conf, and db.work.conf for the administrative, submit and
work accounts respectively. If this scheme is used the correct account will be used without having
to specify the account information file. If an account information file is missingcondordbq.plwill
fail if an operation is selected that requires the missing account information file.

Options

--dbinfofile dbinfofile Db information file containing the DBI connection string, username and
password one to a line. If not specified this file defaults to files in the--dbinfodir directory
with the names db.work.conf, db.submit.conf, or db.admin.conf, based on the functionality
requested being process the queue, submit a job, or perform administrative database functions
respectively. The default value is the current directory.

--dbinfodir dbinfodir Directory to look for default database information files when --dbinfofile is
not specified.

--logdir logfiledir Directory name to place the Condor user log files generated bythe Condor
system. The default value is the current directory.
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--sleepamountsecondsAmount of time to sleep between each iteration of polling thedatabase
system for new work and processing new events in the Condor user logs. The default value is
10 seconds.

--maxwork numofwork Maximum number of inprogress work in the Condor system. If there is
less work in the Condor system, new work will be submitted if available.

--maxjobsnumofjobs Maximum number of incomplete jobs in the Condor system. If there are
fewer jobs, new work will be submitted if available.

--grabamount numofwork Maximum amount of work to pull from the database system to insert
into the Condor system per iteration. The default value is 10work records.

--initdb Create the tables and other associated database objects required by the condordbq system.

--createlang Causes the plpgsql language to created in the database.

--revokepublic Revokes the default ability of database users to create new tables in the ‘public’
schema in the database.

--createsubmituser[dbinfofile] Create a database account that has proper permissions to insert a
work submission to the database. The username and paosword for the account is taken from
the db information file specified or the default submit db information file is used if none is
specified.

--createworkuser[dbinfofile] Create a database account that has proper permissions to allow
condordbq to process the queue. The username and paosword for the account is taken from
the db information file specified or the default worker db information file is used if none is
specified.

--submit submitfile Insert a row in the database containing the contents ofsubmitfile. A submitfile
value of ‘-’ will read the submit file from standard in.

--noexecuteDo not execute any of the administrative database commands.Just print them out to
standard out.

--help Print a help message and exit.
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--version Print the version and exit.

Examples

This section will present a complete introduction to usingcondordbq.plincluding setup of the en-
vironment, creation of the database accounts and tables, inserting work, and querying results. This
example assumes the database ‘condordbq db’ is already created, and accessible on the same host
via TCP/IP on the standard port. It also assumes that the administrative database account, ‘con-
dor dbq adminuser,’ exists with the password ‘condordbq adminpassword,’ and that this account
has the ability to create new database users and tables in the‘condor dbq db’ database. The example
code is written in the bash shell.

Create a secure directory to store the db information files.

mkdir condor_dbq_conf
chmod 0700 condor_dbq_conf

Create the database account information files for a PostgreSQL database named condordbq db:

cat > condor_dbq_conf/db.admin.conf <<EOF
DBI:Pg:database=condor_dbq_db;host=localhost
condor_dbq_admin_user
condor_dbq_admin_password
EOF

cat > condor_dbq_conf/db.submit.conf <<EOF
DBI:Pg:database=condor_dbq_db;host=localhost
condor_dbq_submit_user
condor_dbq_submit_password
EOF

cat > condor_dbq_conf/db.worker.conf <<EOF
DBI:Pg:database=condor_dbq_db;host=localhost
condor_dbq_worker_user
condor_dbq_worker_password
EOF

Create the plpgsql language used by objects created by--initdb :

condor_dbq.pl --dbinfodir=condor_dbq_conf --createlan g

Create the database tables and objects:
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condor_dbq.pl --dbinfodir=condor_dbq_conf --initdb

Revoke the default ability of database users to create new tables:

condor_dbq.pl --dbinfodir=condor_dbq_conf --revokepub lic

Create the worker account thatcondordbq.plwill use for its normal operation using the default db
worker information file for account information:

condor_dbq.pl --dbinfodir=condor_dbq_conf --createwor kuser

Create the submit account that users can use to insert work into the system using the default submit
db information file for account information:

condor_dbq.pl --dbinfodir=condor_dbq_conf --createsub mituser

Create the directory to store the user logs:

mkdir condor_dbq_logs
chmod 0722 condor_dbq_logs

Start the system:

condor_dbq.pl --dbinfodir=condor_dbq_conf --logdir=co ndor_dbq_logs

Create a Condor submit file containing a simple job:

cat > my.submit <<EOF
Universe = vanilla
transfer_executable = false
notification = never
output = my.out
error = my.err
log = my.log
Executable = /bin/sh
Arguments = "-c 'exit 0'"
Queue
EOF

Insert the Condor submit file into the work table:

condor_dbq.pl --dbinfodir=condor_dbq_conf --submit=my .submit
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Exit Status

condordbq.plwill exit with a status value of 0 (zero) upon success, and it will exit with a non-zero
value upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.5.0 Manualor http://www.condorproject.org/license for additionalno-
tices.
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