CPMG Equations

Introduction
The general case for two-site exchange is:

1 1
Ry = Romas + 51{% — 2—cosh_1 (Dycosh(tAy) — D_cos(TA-))
T

Here

1 U+ 2Aw?
D:I: = 5 (:|:1+—(\I]2+C2)1/2)
_i 2 2\1/2 1/2
Ai_ﬂ(i\ﬂ(qf + )
U =k2 — Aw?

C = 2Aw(kAB — kBA)
kex = kAB + kBA

We also sometimes use v = % instead of 7.

Experimentally one measures Ry for various 7 and one wants to find Ropmazr, kaB,
kpa and Aw which give the best fit.

Case: 71— 0

Consider 7 — 0 (or equivalently v — oc0).

For small z we have that cosh(z) ~ 1+ %z2 and cos(z) ~ 1 — %22. Thus we see that
for small 7 we have

Then

1

cosh(tAy) ~ 1+ 572)\3
1

cos(TA-) ~1— 572>\2_

Thus

1
Dy cosh(tAy) — D_cos(tA_) ~ Dy — D_ + 57‘2(D+)\i +D_)\?)

1
=1 + ETQ(D-F)‘?&— + D_>\2_)



For small z we have that cosh™(1+ 122) ~ z. Therefore we see that for small T we
have

1 1 1/2
Ry >~ Romaz + §kex - 5 (D+>\i + D_/\2,> /
Case: 7 — o0
Consider 7 — oo (or equivalently v — 0).

Then we can ignore the cosine term. For large z we have that cosh(z) ~ %ez. Thus
we see that for large 7 we have

1 1
Dicosh(TAy) ~ §D+e”‘+ _ §€T/\++ZTLD+

For large z we have that coshil(%ez ) =~ z. Therefore we see that for large 7 we have

1 1
1 1
= RQmam + §kex - 5)\—1—

Case: kg =kpa, ¥V >0

The assumption that kap = kg4 makes the equations much simpler. Immediately
we have ( = 0.

¥ > 0 means that k., > Aw. With ¥ > 0 we also have

Aw? k2
D=1+ ="
S 7
Aw?
D_=—
U
Ay =02
Ao=0

As 7 — 0 we find that



1 1
R? RQmam + lex - 5 (D+>\2 + D7>\2,>1/2
1
RQmam + - kex - —D1/2)\+
2 2
= R?mam Qk 5 \111/2 v
= R?max

Thus looking at the smallest 7 (largest v) should determine a reasonable first esti-
mate of Romaz-

As 7 — oo we have that

1

1
RZ = R2max + lex - _)\—1—
1
= RQmax + zkem - 5\111/2
1
- RQmax + lex - §(kgx - Aw2)1/2

This doesn’t help too much.

Case: kap = kpa, kex > Aw

Fast exchange has k., > Aw, and this implies that ¥ > 0. We write

U =k2 — A=k, (1—¢)

Aw?

G2 22 < 1 and so is small.

where € =

Then to first order we have

1
U2 = k(1 — )% ~ k(1 — 5¢)
and
1 1 1 (1+6)
v B kgm (1 - 6) kgx ‘
Then
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It turns out to be easier not to expand A, in terms of € immediately but only later.
Then

Dicosh(tAy) — D_cos(TA_) ~ (1 + €)cosh(TA;) — €
= cosh(TAy) + € (cosh(TA;) — 1)
= A+ Be

where

We need to find cosh™1(A + Be) = C + De. Taking cosh on both sides gives

A+ Be = cosh(C + De)
= cosh(C)cosh(De) + sinh(C')sinh(De)
~ cosh(C') + De sinh(C)

and thus we have A = cosh(C) and B = D sinh(C) and so as long as A # 1 (as
here except in special case 7 = 0) we have

C = cosh™1(A)
p-_5B
Az -1
Here that gives
C= 7')\+

_cosh(TAy) —1
Veosh?(TAy) — 1

_ [cosh(TAy) —1 1/2
~ \cosh(tAy)+1

1
= tanh(57A+)
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(from a standard half-angle formula). Therefore

1 1
Ro ~ Romar + =kex — — (7'/\+ + € tanh(= T)\+))
2 2T
1
2

ot B -0+ )
= Romaz + e/ij (1 Tixtcmh( Tk‘ex))
= Romaz + fk—i (1 — Tlixtanh(szex))

= Romaz + fkix (1 — %ta h(iy ))

As before, in the limit as 7 — 0 we have Ry ~ Ropq,. The limit 7 — oo gives

Aw?

Ry~ R —
2 2maz T 4kex

Case: kap =kpa, ¥V <0

The assumption that kxp = kg4 makes the equations much simpler. Immediately
we have ( = 0.

¥ < 0 means that ke, < Aw. With ¥ < 0 we also have

Aw?
D, =—"2
||
Aw? k2
D_=-14+—=-"%
N
)\+ :O
_ = |p|l/?

As 7 — 0 we find that

1 1 1/2
Ry ~ Romaz + —kex — = (D+>\2 + D_/\%> /

2

1

1 1 kew (o112
- R?max + 2k'ex - 5 |\11|1/2 ’\I]|
- RZmax



This is the same result as for ¥ > 0, so again we can use the smallest 7 (largest v)
to determine a reasonable first estimate of Roj,qz-

As 7 — oo we have that

1 1
Ro ~ Romaz + ékeaz - 5/\4—

1
= R2max + §ke:v

Combined with the 7 — 0 estimate of Ra;,q.: We see that we can use the largest 7
(smallest v) to determine a reasonable first estimate of key.

Case: kap = kpa, ker < Aw

Slow exchange has k., < Aw, and this implies that ¥ < 0. We write

U=k, — Aw? = —Aw?(1 —¢)

2
ke:r

Ay < 1 and so is small.

where € =

Then to first order we have

0|2 = Aw(l — )/ ~ Aw(l — %6)

and
1 1 1 1 (146
U] Aw?2(1—¢€) Aw?
Then
Aw?
Di=——>~1+c¢€
[V
k2
D = -2 ~
o~
)\_|_ - 0

1
A= U2 ~ Aw(l — 56 = Aw

It turns out to be easier not to expand A_ in terms of . Then



D_cosh(tAy) — D_cos(TA_) ~ (1 +¢€) — € cos(TA_)
=1+¢€e(1—cos(TA))

For z small we have cosh(z) ~ 1 + 12 and so we see that for small ¢ we have
cosh™ (1 +t) ~ (2t)'/2. Thus we have

1 1
R2 RZma:B + lex - Z (26(1 - COS(T)‘*)))l/z
1/2
1 1 ) 1
= Romaz + lem ~ 5 (46 sm2(§T)\_))
1 |
= Romaz + 2]{:% — Tsm(éw\_)
1 2 1
~ Romaz + lex ( TALUSZn(iTAw)>
1 v Aw
- R2mam + 2kezp ( - A_wsm( Ay ))

(using a standard half-angle formula).

Case: kap = kpa, kex = Aw

The case when k¢, ~ Aw is interesting because the general equation has singularities
(which cancel) so making it numerically unsuitable. This does not happen if k4p #
kpa so that ¢ # 0.

First consider the case when ¥ > 0, so that € = ¥ = k2, — Aw? > 0 but is small.
Then

Aw? k2
D, =14—"1 =22
+ Y €
D _ Aw?
€
Ay = wl/2 — [1/2
A_ pr—
Thus
k2 Aw?
Dycosh(tAy) — D_cos(TA-) = ﬂCOSh(Tel/Q) _2Y
e €
1
~ L0200+ 57 — (B, )
=1+ Qk:zx



Therefore

1 1 _ 1

Next consider the case when W < 0, so that € = —¥ = Aw? — k2, > 0 but is small.
Then

kext?)

Aw?  Aw?
D — =
T
Do— 1 A ke
- e
A =0
— |\If|1/2 _ E1/2
Thus
Aw? K2
D.icosh(TAy) — D_cos(TA_) = i Zer cos(rel/?)
€ €
1 1
= E((kﬁx + 6) - kzx(l - 57—26»
1
=1 + 5]521.7'2
And so again
1 1 _ 1
RQ = RQmam + §kex - ZCOSh 1(1 + §kzx72)

So if you can work around the singularity the result is continuous across ¥ = 0.

Case: kap = kpa, ¥ > 0, derivatives

For the non-linear fitting routine we need the derivatives of Ry with respect to the
parameters Romaz, ker and Aw.

For this case remember that we have

Aw? k2

D, =1+ " =2
=Ty 7

Aw?
D_—_

U
)\+_\D1/2
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U= k2 — Aw?



Thus

1 1
Ry = Rama + hex 2—cosh_1(D+cosh(T)\+) - D)
T
The trivial derivative is
ORy )
8R2max
Note that
d 1 1
%cosh (r) = ——
Let
v = Dycosh(tAy) — D_
Then
OR> 1 _ 1 1 ov
Bkex n 2 2T \/U2 -1 akex
ov 0D, , oNy 0D_
= h(TA D h(T\ —
T~ O cosh(TA4) + DyTsinh(r +)8ke$ D
0Dy  9D-  2ke Aw?
Okey  Okeyw y2
oAy —1/2
=k L/
akex exr
And
(9R2 . _i 1 ov
OAw 2712 — 1 0Aw
ov oD . oA o0D_
AL 8Ac: cosh(TA;) + D+7'smh(7')\+)—aA: = 3AL

8D+ . 8D_ . 2]€2wa
OAw  O0Aw U2

OAy ~1/2

Case: kap = kpa, ¥ < 0, derivatives

For the non-linear fitting routine we need the derivatives of Ry with respect to the
parameters Romaz, ker and Aw.



For this case remember that we have

Aw?
D I
BT
Aw? k2
D_.=-14—=-%t£
N
)\+ — O
p_— |\If|1/2
0| = Aw? — K2,
Thus
1 1 1
Ry = Romax + 5/6695 — 2—cosh (D4 — D_cos(TA_))
T
The trivial derivative is
O0Rs _1
aRQmam
Let
v=D4 — D_cos(TA-)
Then
OR> B 1 _ i 1 ov
akex o 2 27 vV v2 —1 akex
81) 8D+ (‘9D_ 8)\_
= - A D_7sin(tA_
Ohe b, Ok cos(TA_) + D_7sin(r )akex
oDy B o0D_ B 2k Aw?
Okey  Okey W2
OA_
- —k i} —1/2
akex €x| |
And
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O0Rs 1 1 ov

0Aw 272 — 1 0Aw

v oDy 0D_ , O
Ay~ A aAwCOS(T/\_) + D_TSZn(T)\_)%
0Dy 0D 2k Aw
0Aw  0Aw w2
ON_

2 = Aw|p| L2
ohn ~ e

Case: kap # kpa, derivatives

For the non-linear fitting routine we need the derivatives of Ry with respect to the
parameters Romaz, kaB, kpa and Aw.

The trivial derivative is

ORy 1
aRZmax
Let
v = Dycosh(tAy) — D_cos(TA-)
Then

0Rs 1 1 1 ov

Okap T2 ;\/1)2 — 10kap

821}3 = gli; cosh(TAy) + D+Tsinh(7')\+)§kt; — g]{i; cos(TAZ) + DTSin(T)\)c?akZ_B
0D+ kex (¥ + 2Aw?) (Vkey + CAw)
Okap (U2 +(2)1/2 N (U2 + (2)3/2
oAr 1 Ukep + CAw
Okap  2Ms ( “ <w2+¢2>1/2>
And

OR2 1 1 1 ov

Okpa 2 Z\/vz — 10kpa

82;,4 = g]iz cosh(TAy) + D+73inh(7')\+)§k/>; — g]i; cos(TA_) + D_Tsin(T)\_)aak);_A
0D+ kex (U + 2Aw?) (Wkez — CAw)

Okpa (U2 +(2)1/2 (W2 + (2)3/2

2 < i Ukey — CAw)

0kpa 224 “ (‘112 + C2)1/2
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And

8R2 . _i 1 ov
OAw 2712 — 1 0Aw
ov . 8D+ X (’3)\+ oD_ R ON_
AG ~ DA cosh(TAy) + D+7'smh(7)\+)aAw AL cos(TA_) + D_Tsm(T)\_)aAw
0Dy Aw B (\I’+2Aw2)(—\IJAw+C(kAB —kpa))
OAw (B2 + (2)1/2 (W2 4 (2)3/2
Ny —VAw + ((kap — kpa)
0Aw  2\: (jFAW * (U2 + (2)172
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