
CBAPTZ& 6

GIMl&AL caoss-AISIBILBR DI&ICTIWIS

A cross-assembler directive is placed in the oper~tor field of a
source line. Only one directive is allowed per source line. Each
directive may haye a blank operand field or one or more operan~s.

Legal operands differ with each directive.

General cross-assembler directives are divided into the follow~ng

categories:

1. Listing control

2. Function control

3. Data storage

4. Radix and numeric control

s. Location counter control

6. Terminator

7. Program sectioning and boundaries

8. Symbol control

9. Conditional assembly

10. File control

Each directive is described in its own section of this chapter (see
Table 6-1 for an alphabetical listing of the directives and the
associated section reference).

6-1

Directive

.ASCII

.ASCIZ

.ASECT

• BLKB

.BLKL

• BLKW

• BYTE

.DSABL

.ENABL

.END

.ENDC

.EVEN

• GLOBL

.IDENT

.IF

.IFF

.IFT

Function
Section
Reference

Stores delimited strings as a sequence 6.3.5
of the 8-bit ASCII code of their
characters.

Same as .ASCII except the string is
followed by a zero byte.

Declares absolute program section.

Allocates bytes of data storage •

Allocates long words of data storage.

Allocates words of data storage •

Stores successive bytes of data •

Disables specified cross-assembler
functions.

Enables specified cross-assembler
functions.

Indicates end of source input.

Indicates end of conditional assembly
block.

Ensures that current value of the
location counter is even.

Defines listed symbols as global •

Provides additional means of labeling
an object module.

6.3.6

6.7.2

6.5.3

6.5.3

6.5.3

6.3.1

6.2.1

6.2.1

6.6

6.9.1

6.5.1

6.8.1

6.1.4

Assembles block if specified conditions 6.9.1
are met.

Assembles block if condition tests
false.

Assembles block if condition tests

6-2

6.9.2

6.9.2

(

)

• IFTF

• IIF

• LIST

.LONG

.NLIST

.ODD.

.PAGE

.PSECT

.RAD50

.RADIX

• REM

.SBTTL

• TITLE

.WORD

true •

Aa•eablea block regardless of whether 6.9.2
condition teats true or false •

Permits writing a one-line conditional 6.9.3
assembly block •

Increments listing count or lists 6.1.1
certain types of code.

Stores successive long words of data. 6.3.3

Decrements listing count or suppresses 6.1.l
certain types of code.

Ensures that the current value of the ·6.5.2
location counter is odd.

Starts a new listing page. 6.1.5

Declares names for program sections 6.7.1
and establishes their attributes.

Generates data in Radix-50 packed 6.3.7
format.

Changes radices throughout or in
portions of the source program.

Delimits a section of comments •

Produces a table of contents
immediately preceding the assembly
listing and puts subheadings on each
page in the listing •

Assigns a name to the object module
and puts headings on each page of
the assembly listing.

Generates successive words of data in
the object module.

TABLE 6-1: General Cross-Assembler Directives

6-3

6.4.1.1

6~1.6

6.1.3

6.1.2

6.3.2

(

6.1 LISTING CONTROL DIRECTIVES

Listing control directives control the content, format, and
pagination of all line printer assembly listing output. On the first
line of each page, the cross assembler prints the following (from
left to right):

1. Title of the object module, as established through the
• TIT.LE di rec t iv e (s e e s e ct ion 6 • 1 • 2) •

2. Cross-assembler version identification.

3. Day of the week.

4. Date.

5. Time of day.

6. Page number.

The second line of each assembly listing page contains the subtitle
text specified in the last-encountered .SBTTL directive (see sectioc-
6.1. 3).

In the teleprinter and line printer format, binary extensions for
statements generating more than one word are listed horizontally.

6.1.1 .LIST and .NLIST Directives

Formats:

where:

.LIST

.LIST arg

.NLIST

.NLIST arg

arg represents one or more of the optional symbolic
arguments defined in Table 6-2.

As indicated above, the listing control directives may be used
without arguments, in which case the listing directives alter the
listing level count. The listing level count is initialized to zero.
At each occurrence of a .LIST directive, the listing level count is
incremented; at each occurrence of an .NLIST directive, the listing
level count is decremented. When the level count is negative, tht
listing is suppressed (unless the line contains an error)

6-4

Conversely, when the level count is greater than zero, the listing is
generated regardless of the context of the line. Finally, when the
count is zero, the line is either listed or suppressed, depending on
the listing controls currently in effect for the program. The
following macro definition employs the .LIST and .NLIST directives to
selectively list portions of the macro body when the macro is
expanded:

.MACRO .LTEST
; A-this line should list

.NLIST
; B-this line should not list

.NLIST . C-this line should not list ,

.LIST . D-this line should not list ,

.LIST
E-this line should list

; F-this line should list . G-this line should list ,
• ENDM

•
•
•

• LIST ME
LTEST

A-this line should list
E-this line should list

; F-this line should list . G-this line should list '
Note that the line following line
level count remains o. If a
beginning of a program, all macro
.NLIST directive is encountered.

;List test
;Listing level count is o.
;Listing level count is -1.

;Listing level count is -2.

;Listing level count is -1.

;Listing level count is o.
;Listing level count is o.
;Listing level count is o.
;Listing level count is o.

;List macro expansion.
;Call the macro ,"

;Listing level count is o.
;Listing level count is o.
;Listing level count is o.
;Listing level count is o.

E will list because the listing
.LIST directive is placed at the

expansions will be listed unless an

An important purpose of the level count is to allow macro expansions
to be listed selectively and yet exit with the listing level count
restored to the value existing prior to the macro call.

When used with arguments, the listing directives do not alter the
listing level count. However, the .LIST and .NLIST directives can be
used to override current listing control, as shown in the example
below:

.MACRO XX
•

6-5

•
• LIST

X•.
.NLIST

•
•
•

• ENDM

.NLIST
xx

x~.

ME

;List next line.

;Do not list remainder of macro
;expansion •

;Do not list macro expansions.

(

•

The symbolic arguments allowed for use with the listing directives
are described in Table 6-2. These arguments can be used singly or in
combination with each other. If multiple arguments are specified in
a listing directive, each argument must be separated by a comma, tab,
or space. For any argument not specifically included in the control
statement, the associated default assumption (List or No list) is
applicable throughout the source program. The default assumptions
for the listing control directives also appear in Table 6-2.

ROTB

If the .NLIST arguments SEQ, LOC, BIN,
and SRC are in effect at the same time
(that is, if all four significant fields
in the listing are to be suppressed),
the printing of the resulting blank line
is inhibited.

6-6

(

L

)

)

)

--
Arguaent Default Function

--------~---SEQ List

LOC List

Controls the listing of the
sequential numbers assigned to
the source lines. If this number
field is suppressed through an
.NLIST SEQ directive, the cross
assembler generates a tab, effec
tively allocating blank space for
the field. Thus, the positional
relationships of the other fields
in the listing remain undisturbed.
During the assembly pro.c;e;ss, the
cross assembler examine:&" each
source line for possi bl:,.,:, error
conditions. For any li~,·in error,
the error code is printed preceding
the number field.

The cross assembler do~• not assign
line numbers to files that have had
such nuabers assigned by other
programs (an editor program, for
instance).

Controls the listing of.~he current
location counter field~:~ormally,
this field is not suppr~ssed.
However, if it is suppr~ssed through
the .NLIST LOC directive, the cross
assembler does not generate a tab,
nor does it allocate space for the
field, as is the case with the SEQ
field described above. Thus, the
suppression of the current location
counter (LOC) field effectively
left-justifies all subsequent fields
(while preserving positional
relationships) to the position
normally occupied by the counter's
field.

6-7

BIN List

BEX List

SRC List

COM List

MD List

MC List

ME No list

MEB No list

(

Controls the listing of generated
binary code. If. this field is
suppressed through an .NLIST BIN
directive, left-justification of
the source code field occurs in
the same manner described above
for the LOC field •.

Controls the listing of binary
extensions (the locations and
binary contents beyond those
that will fit on the source
statement line). This is a
subset of the BIN argument.

Controls the listing of source
lines.

Controls the listing of comments.
This is a subset of the SRC
argument. The .NLIST COM
directive reduces listing time (
and space when comments are not
desired.

Controls the listing of macro
definitions and repeat range
expansions.

Controls the listing of macro calls
and repeat range expansions.

Controls the listing of macro
expansions.

Controls the listing of macro
expansion binary code. A .LIST MEB
directive lists only those macro
expansion statements that generate
binary code. This is a subset of the
ME argument.

l

6-8

))

)l

)

CND List

LO No list

TOC List

SYM List

TTM No list

Controls the listing of unsatisfied
conditional coding and associated
.IF and .ENDC directives in the
source program. A .NLIST CND
directive lists only satisfied
conditional coding.

Controls the listing of all listing
directives having no arguments, in
other words, the directives that
alter the listing level count.

Controls the listing of the table of
contents during assembly pass 1 (see
section 6.1.3 describing the .SBTTL
directive). This argume•t does not
affect the printing of the full
assembly listing during assembly
pass 2.

Controls the listing of the symbol
table resulting from the assembly of
the source program.

Sets the listing output format to
teleprinter. The default is set to
line printer format.

TABLE 6-2: Symbolic Arguments of Listing Control Directives

Any argument specified in a .LIST/.NLIST directive other than those
listed in Table 6-2 causes the directive to be flagged with an error
code (A) in the assembly listing.

The listing control options can also be specified at assembly time
through switches included in the command string to the cross
assembler (see the Emulogic Cross Assembler User's Manual, section
2.3). The use of these switches overrides all corresponding listing
control (.LIST or .NLIST) directives specified in the source program.

6-9

6.1.2 .TITLE Directive

Format:

.TITLE string

where: string represents an identifier of 1 or mo~e Radix-50
characters which must begin with an alphabetic
character. (See Appendix A.2 for a table of
Radix-50 characters.)

(

The .TITLE directive assigns a name to the object module. The name
assigned is the first six non-blank, Radix-50 characters following
the .TITLE directive. All spaces and/or tabs up to the first
non-space/non-tab character following the .TITLE directive are
ignored by the cross assembler when evaluating the text string. Any
characters beyond the first six are checked for ASCII legality, but
they are not used as part of the object module name. For example,
the directive

.TITLE PROGRAM TO PERFORM DAILY ACCOUNTING

causes the assembled object module to be named PROGRA.
6-character name bears no relationship to the filename of the object
module, as specified in the command string to the cross assembler.
The name of an object module (specified in the .TITLE directive)
appears in the load map produced at link time. This is also the
module name which the Librarian will recognize.

If the .TITLE directive is not specified, the cross assembler assigns
the default name .MAIN. to the object module. If more than one
.TITLE directive is specified in the source program, the last .TITLE
directive encountered during assembly pass 1 establishes the name for
the entire object module.

If the .TITLE directive is specified without an object module name,
or if the first non-space/non-tab character in the object module name
is not a Radix-50 character, the directive is £lagged with an error
code (A) in the assembly listing.

6.1.3 .SBTTL Directive.

Format:

.SBTTL string

6-10

)

)

)

where: string must begin with
represents an identifier
characters.

an
of

alphanumeric
1 or more

character and
printable ASCII

The .SBTTL directive is used to produce a table of contents
immediately preceding the assembly listing and to print the text
following the .SBTTL directive on the second line of the header of
each page in the listing. The subheading in the text will be listed
until altered by. a subsequent .SBTTL directive in the program. For
example, the directive

.SBTTL Conditional assemblies

causes the text

Conditional assemblies

to be printed as the second line in the header of the assembly
listing.

During assembly pass 1, a table of contents containing the line
sequence number, the page number, and the text accompanying each
.SBTTL directive is printed for the assembly listing. The listing of
the table of contents is suppressed whenever an .NLIS~ TOC directive
is encountered in the source program. An example of a table of
contents listing is shown in Figure 6-1.

TABLE OF CONTENTS

so- 1 .MTOUT - Single character output EMT
51- 1 .MTRCTO - Reset CTRL/O EMT
52- 1 .MTATCH - Attach to terminal EMT
54- 1 .MTDTCH - Detach from a terminal EMT
55- 1 .MTPRNT - Print message EMT
56- 1 .MT STAT - Return multi-terminal system status EMT
57- 1 MTTIN - Single character input
58- l MTTGET - Get a character from the ring buff er
59- 1 TRRSET - Reset terminal status bits
60- l MTTPUT - Single character output
62- 1 MTRSET - Stop and detach all terminals attached to a job
63- 1 ESCAPE SEQUENCE TEST SUBROUTINE

Figure 6-1: Assembly Listing Table of Contents

6-11

(

6.1.4 .IDENT Directive

Format:

where:

.!DENT /string/

string represents a string of six or fewer Radix-50
characters which establish the program identification
or. version number. This string is included in the
global symbol directory of the object module and is
printed in the link map and Librarian listing.

I I represent delimiting characters. These delimiters may
be any paired printing characters, other than the
equal sign (•), the left angle bracket (<), or the
semicolon (;), as long as the delimiting character is
not contained within the text string itself (see Note
in section 6.3.4). If the delimiting characters do
not match, or if an illegal delimiting character is
used, the .IDENT directive is flagged with an errocr
code (A) in the assembly listing.

In addition to the name assigned to the object module with the .TITLE
directive (see section 6.1.2), the .IDENT directive allows the user
to label the object module with the program version number.

An example of the .IDENT directive is shown below:

.IDENT /VOl.00/

The character string is converted to Radix-50 representation
included in the global symbol directory of the object module.
character string also appears in the link map produced at link
and the Librarian directory listings.

and
This
time

one .!DENT
last such

which

When more than
program, the
character string
identification.

directive is encountered in a given
directive encountered establishes the

forms part of the object module

The Linker allows only one .IDENT string in a program.
uses the first .IDENT directive encountered during the
establish the character string that will be identified
the object modules.

6-12

The Linker
first pass to
with all of

')

)

6.1.5 .PAGE Directive/Page Ejection

Format:

.PAGE

The .PAGE directive is used within the source prograa to perform a
page eject at desired points in the listing. This directive takes no
arguments and causes a skip to the top of the next page when
encountered. It also causes the page number to be incremented and
the line sequence counter to be cleared. The .PAGE directive does
not appear in the listing.

When used within a macro definition, the .PAGE directive is ignored
during the assembly of the macro definition. Rather, the page eject
operation is performed as the macro itself is expanded. In this
case, the page number is also incremented.

Page ejection is accomplished in three other ways:

1. After reaching a count of 58 lines in the listing, the
cross assembler automatically performs a page eject to
skip over page perforations on line printer paper and to
formulate teleprinter output into pages. The page number
is not changed.

2. A page eject is performed when a form-feed character is
encountered. If the form-feed character appears with~n a
macro definition, a page eject occurs during the assembly
of the macro definition, but not 1 during the expansion of
the macro itself. A page eject resulting from the use of
the form-feed character causes the page number to be
incremented and the line sequence counter to be cleared.

3. A page eject is performed when encountering a new source
file. In this case the page number is incremented and
the line sequence count is reset.

6.1.6 .REM Directive/Begin Remark Lines

Format:

.REM comment-character

where: comment-character represents a character that marks the
end of the comment block when the

6-13

(

character reoccurs.

The .REM directive allows a prograaaer to insert a block of comments
into a cross-assembler source program without having to1 precede the
comment lines with the comment character (;). The text between the
specified delimiting characters is treated as comments. The comments
may span any number of lines. For example:

.TITLE Remark example
• REM &
All the text that resides here is interpreted by
the cross assembler to be comment lines until
another ampersand character is found. Any
character may be used in place of the ampersand.&
CLR.. PC
.END

6.2 FUNCTION DIRECTIVES

The following function directives are included in a source program ~
invoke or inhibit certain cross-assembler functions and operation\
incidental to the assembly process itself.

6.2.1 .ENABL and .DSABL Directives

Formats:

where: arg

.ENABL arg

.DSABL arg

represents one or more of the optional symbolic
arguments defined in Table 6-3.

Specifying any argument in an .ENABL/.DSABL directive other than
those listed in Table 6-3 causes that directive to be flagged with an
error code (A) in the assembly listing.

6-14

()

Arguaent Default

CRF Enabled

LC Disabled

LSB Disabled

)

)

Function

Disabling this function inhibits the
generation of cross-reference
output. This function only has
meaning if cross-reference output
generation is specified in the
command string.

Enabling this function causes
the cross assembler to accept
lowercase ASCII input instead of
converting it to uppercase.. If
this function is not enabled, all
text is converted to uppercase
(see Figure 6-2).

This argument permits the
enabling or disabling of a local
symbol block. Although a local
symbol block is normally .
established by encounterin~ia new
symbolic label or a .PSECT
directive in the source program,
an .ENABL LSB directive
establishes a new local syabol
block which is not termina~•d
until (1) another .ENABL LSB is
encountered, or (2) another
symbolic label or .PSECT directive
is encountered following a paired
.DSABL LSB directive.

The basic function of this
directive with regard to .PSECTs
is limited to those instances where
it is desirable to leave a program
section temporarily to store data,
followed by a return to the
original program section.

Attempts to define local symbols in
an alternate program section are
flagged with an error code (P) in
the assembly listing.

6-15

GBL Disabled

(

This arguaent, if enabled,
causes the cross asseabler to treat
all undefined symbol references as
global, allowing the Linker to
resolve them. The default for this
option is disabled, which causes the
cross assembler to .mark all
undefined references in assembly
pass 2 with a (U) error in the
assembly listing.

TABLE 6-3: Symbolic Arguments of Function Control D~rectives

('

{_)

6-16

)

)

)

1
2
3
4
5
6
7
8
9

10
1 1
12
13
14
15
16 000000

000000 164
17
18
19
20 000033

000033 124
21.
22 000001

;+

.TITLE .ENABL/.DSABL
.LIST TTM

;ILLUSTRATE .ENABL/.DSABLE LC
·-•

.ENABL LC ;STORE MACRO IN LOWER CASE

.MACRO TEXT $$$

.ENDM
.ASCII /this $$$ lowercase string/

.LIST ME

.NLIST BEX

TEXT is ;Invoke macro in lower case
.ASCII /this is a lower case string/

.DSABL LC ;Now disable lower case

TEXT WAS ;RE-INVOKE MACRO UPPERCASE
.ASCII /THIS WAS A LOWERCASE STRING/

.END

Figure 6-2: Example of .ENABL and .DSABL Directives

6-17

(

6.3 DATA STORAGE DIRECTIVES

A wide range of data and data types can be generated with
ASCII conversion

are described in

the
and
the

following data-storage directives.
radix-control cross-assembler directives
following sections.

6.3.1 .BYTE Directive

Format:

where:

.BYTE

• BYTE

exp,
expl,

•
•
•

expn

exp

expl,exp2,expn

;Stores the binary value of the
;expression in the next byte.

;Stores the binary values of the
;list of expressions in
;successive bytes.

represent expressions that must be reduced to 8 (
bits of data or less. Each expression will be
read as a 16-bit word expression, the high-order
byte to be truncated. The high-order byte must
be either all zeros or a truncation (T) error
results. Multiple expressions must be separated by
commas.

The .BYTE directive is used to generate successive bytes of binary
data in the object module.

Example:

SAM=5
.-410

.BYTE .. D48:tSAM ;The value 30 (hex equivalent of 48
;decimal) is stored in location 410.
;The value 005 is stored in location
; 411.

The construction .. D in the first operand of the .BYTE directive above
illustrates the use of a temporary radix-control operator. The
function of such special unary operators is described in section
6.4.1.2.

At link time,· it is likely that a relocatable expression will resull
in a value having more than eight bits, in which case the Linke

6-18

)

)

)

issues a byte-relocation error for the object module in question.
For example, the following statements create such a possibility:

.BYTE
A:

.BYTE

23

A

;Stores 23 in next byte.

;Relocatable value A will
;probably cause a
;byte-relocation error.

If an expression following the .BYTE directive is null,
interpreted as a zero:

it is

.•420

.BYTE , , , ;Zeros are stored in bytes
;420, 421, 422, and 42~.

Note that in the above example, four bytes
.BYTE directive. The three commas in the
implicit declaration of four null values,

of storage resul~· from the
operand field represent an
each separated from the
each containing a value of other by a comma. Hence, four bytes,

zero, are reserved in the object module.

6.3.2 .WORD Directive

Formats:

where:

.WORD

.WORD

exp,
expl,

•
•
•

expn

exp

expl,exp2,expn

;Stores the binary equivalent
;of the expression in the next
;word.

;Stores the binary equivalents
;of the list of expressions
;in successive words.

represent expressions that must reduce to 16 bits
of data or less. Multiple expressions must be
separated by commas •

The .WORD directive is used to generate successive words of data in
the object module.

Example:

6-19

.WORD 123A,.+4,SAL ;Stores the values 123A, 506,
;and 0 in words 500, 502, and
;504, respectively.

(

If an expression following the .WORD directive contains a null value,
it is interpreted as a zero, as shown in the following example:

.=500
.WORD ' 5 ' ;Stores the values O, 5, and 0

;in location 500, 502, and
;504, respectively.

A statement with a blank operator field (one that contains a symbol
other than a macro call, an instruction mnemonic, a cross-assembler
directive, or a semicolon) is interpreted during assembly as an
implicit .WORD directive, as shown in the example below:

.=440
LABEL: 100,LABEL ;Stores the value 100 in location 440

;and the value 440 in location 442. C-

6.3.3 .LONG Directive

Formats:

where:

.LONG

.LONG

exp,
expl,

•
•
•

expn

exp

expl,exp2,expn

;Stores the binary equivalent
;of the expression in the next
;long word.

;Stores the binary equivalents
;of the list of expressions in
;successive long words.

represent expressions that must reduce to 32 bits
of data or less. Multiple expressions must be
separated by commas •

The .LONG directive is used to generate successive long words of data
in the object module.

Example:

6-20

C)

()

C)·

SAL•O
.-500

.LONG 123ABC,.+4,SAL ;Stores the values 123ABC, 508,
;and 0 in long words 500, 504,
;and 508, respectively.

If an expression following the .LONG directive cont•ins a null value,
it is interpreted as a zero, as shown in the following exaaple:

.:m500
.LONG t 5 t

6.3.4 ASCII Conversion Characters

;Stores the values O, 5, and 0
;in long word 500, 504, and 508,
;respectively.

The single quote (') and the double quote (") characters are unary
operators that can appear in any cross-assembler expression. Used in
cross-assembler expressions, these characters cause a 16-bit
expression value to be generated.

When the single quote is used, the cross assembler takes the next
character in the expression and converts it from its 7-bit ASCII
value to a 16-bit expression value. The high-order byte of the
resulting expression value is always zero (O). The 16-bit value is
then used as an absolute term within the expression. For example,
the statement

LABEL: .WORD 'A

defines the following 16-bit expression value at LABEL:

00000000 01000001
I
----Binary Value of ASCII A

Thus the expression 'A results in a value of 0041 (hex).

The single quote (') character must not be followed by a
carriage-return, null, RUBOUT, line-feed, or form-feed character; if
it is, an error code (A) is generated in the assembly listing.

6-21

When the double quote is used, the cross assembler takes the next two
characters in the expression and converts them to a 16-bit binary
expression value from their 7-bit ASCII values. This 16-bit value is
then used as an absolute term within the expression. For example,
the statement

LABEL: .WORD "AB

defines the foll~wing 16-bit expression value at LABEL:

01000010 01000001
I
-----Binary Value of ASCII A

-----Binary Value of ASCII B

Thus the expression "AB results in a value of 4241 (hex).

The double quote (") character, like the single quote (') character~)
must not be followed by a carriage-return, null, RUBOUT, line-feed,
or form-feed character; if it is, an error code (A) is generated in
the assembly listing.

The ASCII character set is listed in Appendix A.l.

6.3.5 .ASCII Directive

Format:

where:

.ASCII /string l/ ••• /string n/

string is a string of printable ASCII characters. The
vertical-tab, null, line-feed, RUBOUT, and all
other non-printable ASCII characters, except
carriage-return and fora-feed, cause an error
code (I) if used in an .ASCII string. The
carriage-return and fora-feed characters are
flagged with an error code (A) because these
characters end the scan of the line, preventing
the cross-assembler froa detecting the matching
delimiter at the end of the character string.

6-22

)

)

I I represent delimiting characters. These delimiters
aay be any paired printing characters, other than
the equal sign (•), the left angle bracket (<), or
the seaicolon (;), as long as the delimiting
character is not contained within the text string
itself. If the deliaiting characters do not
match, or if an illegal delimiting character is
used, the .ASCII directive is flagged with an
error code (A) in the assembly listing.

The .ASCII directive translates character strings into their 7-bit
ASCII equivalents and stores them. in the object module. A
non-printing character can be expressed only by enclosing its
equivalent octal value within angle brackets. Each set of angle
brackets so used represents a single character. For exampla, in the
following statement

.ASCII (15)/ABC/<A+2)/DEF/(5)(4)

the expressions (15), <A+2), <5>, and <4> represent the values of
non-printing characters. Each bracketed expression must reduce to
eight bits of absolute data or less.

Angle brackets can be embedded between delimiting characters· in the
character string, but angle brackets so used do not take on their
usual significance as delimiters for non-printing characters. For
example, the statement

.ASCII /ABC<expression)DEF/

contains a single ASCII character string, and performs no evaluation
of the embedded, bracketed expression. This use of the angle
brackets is shown in the third example of the .ASCII directive below:

.ASCII /HELLO/

• ASCII /ABC/(15)(12)/DEF/

• ASCII /A(l5)8/

6-23

;Stores the binary
;representation of the letters
;HELLO in five consecutive
;bytes •

;Stores the binary
;representation of the
;characters A, B, C, carriage
;return, line feed, D, E, F
;in eight consecutive bytes •

;Stores the binary
;representation of the
;characters A, <, 1, 5,),

llOTI

;and B in six consecutive
;bytes.

The semicolon (;) and equal sign (•)
can be used as delimiting characters in
the string, but care must be exercised
in so doing because of their
significance as a comment indicator and
assignment operator, respectively, as
illustrated in the examples below:

.ASCII ;ABC;/DEF/

• ASCII /ABC/;DEF;

• ASCII /ABC/=DEF=

6-24

;Stores the binary
;representation of
;the characters
; A, B, C, D, E, and
;F in six
;consecutive bytes;
;not recommended
;practice •

;Stores the binary
;representations of
;the characters A,
;B, and C in three
;consecutive bytes;
;the characters D,
;E, F, and ; are
;treated as a
;comment •

;Stores the binary
;representation of
;the characters A,
;B, C, D, E, and
;F in six
;consecutive bytes;
;not recommended
;practice.

(

(_)

)

()

An equal sign is treated as an
assignment operator when it appears as
the first character in the ASCII string,
as illustrated by the following example:

.ASCII •DEF• ;The direct
;assignment
;operation
;.ASCll•DEF is
;performed, and a
;syntax error (Q)
;is generated upon
;encountering the
;second = sign.

6.3.6 .ASCIZ Directive

Format:

where:

.ASCIZ /string l/ ••• /string n/

string is a string of printable ASCII characters. The
vertical-tab, null, line-feed, RUBOUT, and all
other non-printable ASCII characters, except
carriage-return and form-feed, cause an error
code (I) if used in an .ASCIZ string. The
carriage-return and form-feed characters are
flagged with an error code (A) because they end
the scan of the line, preventing the cross
assembler from detecting the matching delimiter.

I I represent delimiting characters. These delimiters
may be any paired printing characters, other than
the equal sign (•), the left angle bracket (<), or
the seaicolon (;) (see Note in section 6.3.5), as
long as the delimiting character is not contained
within the text string itself. If the deliaiting
characters do not match or if an illegal
delimiting character is used, the .ASCIZ directive
is flagged with an error code (A) in the assembly
listing.

The .ASCIZ directive is similar to the .ASCII directive described
above, except that a zero byte is automatically inserted as the final
character of the string. Thus, when a list or text string has been
created with an .ASCIZ directive, a search for the null character in

6-25

the last byte can effectively determine the end of the string.

6.3.7 .RADSO Directive

Format:

.RAD50 /string l/ ••• /string n/

where: string represents a series of characters to be packed.

I I

The string must consist of the characters A
through Z, 0 through 9, dollar sign ($),
period (.) and space (). An illegal printing
character causes an error flag (Q) to be
printed in the assembly listing.

If fewer than three characters are to be packed,
the string is packed left-justified within the
word, and trailing spaces are assumed.

As with the .ASCII directive (described in sectiol"' \
5.3.4), the vertical-tab, null, line-feed, RUBOUT\.
and all other non-printing characters, except
carriage-return and fora-feed, cause an error code
(I) if used in a .RAD50 string. The
carriage-return and fora-feed characters result
in an error code (A) because these characters end
the scan of the line, preventing the cross
assembler from detecting the matching delimiter.

represent delimiting characters. These delimiters
may be any paired printing characters, other than
the equal sign (•), the left angle bracket (<), or
the seaicolon (;) (see Note in section 6.3.5),
provided that the delimiting character is not
contained within the text string itself. If the
deliaiting characters do not match or if an
illegal delimiting character is used, the .RAD50
directive is flagged with an error code (A) in
the asseably listing.

The .RADSO directive allows the user to generate data in Radix-50
packed format. Radix-50 form allows three characters to be packed
into sixteen bits (one word); therefore, any 6-character symbol can
be stored in two consecutive words. Examples of .RADSO directives
are shown below:

(J

6-26

)

.RAD50
• RAD50
.R.AD50

.R.AD50

/ABC/
/AB/
/ABCD/

/ABCDEF/

;Packs ABC into one word.
;Packs AB (SPACE) into one word •
;Packs ABC into first word and
;D (SPACE) (SPACE) into second word.
;Packs ABC into first word. DEF into
;second word.

Each character is translated into its Radix-50 equivalent, as
indicated in th~ following table:

Character

(space)
A-Z
$
•
(undefined)
0-9

R.adix-50 Octal Equivalent

0
1-32

33
34
35

36-47

The Radix-50 equivalents for characters 1 through 3 (Cl.C2,C3) are
combined as follows:

Radix-50 Value • ((Cl*50)+C2)*50+C3

For example:

Radix-50 Value of ABC • ((1*50)+2)*50+3 • 3223(8)

The Radix-50 character set is listed in Appendix A.2.

Angle brackets C<>) must be used in the .RAD50 directive whenever
special codes are to be inserted in the text string, as shown in the
example below:

CHRl•l
CHR2•2
CHR3•3

.RAD50

•
•
•

.RAD50

/AB/(35) ;Stores 3255 in one word

(CHRl)(CHR2)(CHR3) ;Equivalent to .RAD50 /ABC/

6-27

(

6.3.8 Temporary Radix-50 Control Operator

Foraat:

where: CCC represents a maxiaua of three cha~acters to be
converted to a 16-bit Radix-SO value. If aore than
three characters are specified, any following the
third character are ignored. If fewer than three
are specified, it is assumed that the trailing
characters are blanks~

The -R operator specifies that an argument is to be converted to
Radix-SO format. This allows up to three characters to be stored in
one word. The following example shows how the -R operator might be
used to pack a 3-character file type specifier (MAC) into a single
16-bit word:

FILEXT .WORD ;Defines RAD50 MAC as file
;extension

6-28

(

(

6.4 RADIX AND NUMERIC CONTROL FACILITIES

6.4.1 Radix Control and Unary Control Operators

Any numeric or expression value in a cross-assembler source prograa
is read as an octal value by default. Occasionally, however, an
alternate radix would be useful. By using the cross-assembler
facilities desc.ribed below, a programmer may declare a radix to
affect a term or an entire program.

ROTE

When two or more unary operators appear
together, modifying the same term, the
operators are applied to the term from
right to left.

,) 6.4.1.1 .RADIX Directive

Format:

,_)

.RADIX n

where: n represents one of the two radices: 8 or 16.
Any value other than null or one of the two
acceptable radices will cause an error code (A)
in the assembly listing. If the argument n is
not specified, the octal default radix is assumed.
The argument (n) is always read as a decimal
value.

Numbers used in a cross-assembler source program are initially
considered to be octal values; however, with the .RADIX directive
you can declare alternate radices applicable throughout the source
program or within specific portions of the program.

Any alternate radix declared in the source program through the .RADIX
directive remains in effect until altered by the occurrence of
another such directive, for example:

.RADIX 16

•

;Begins a section of code having a
;hex radix.

6-29

(

•
• RADIX ;Reverts to octal radix •

Please note that when .RADIX 16 is in effect, any numeric value whose
first character is A-F must be preceded by a zero.

In general, macro definitions should not contain o~ rely on radix
settings established with the .RADIX directive. Rather, teaporary
radix control operators should be used within a macro definition.
Where a possible radix conflict exists within a macro definition or
source program, it is recommended that the user specify numeric or
expression values using the temporary radix control operators
described below.

6.4.1.2 Temporary Radix Control Operators

Formats:

ADn (decimal)
Aon (octal) (
ABn (binary)
AHn (hexadecimal) (if the first character of n

is A-F, precede n with a zero.)

These four unary operators allow the user to establish an alternate
radix for a single term. An alternate is useful because after you
have specified a radix for a section of code, usually hexadecimal,
you may discover a number of cases where an alternate radix is more
convenient or desirable (particularly within macro definitions).
Creating a mask word (used to check bit status), for example, might
best be accomplished through the use of a binary radix.

Thus an alternate radix can be declared temporarily to meet a
localized requirement in the source prograa. The temporary radix
control operator may be used any tiae regardless of the radix in
effect or other radix declarations within the program. Because the
operator affects only the tera imaediately following it, it may be
used anywhere a nuaeric value is legal. The tera (or expression)
associated with the teaporary radix control operator will be
evaluated during assembly as a 16-bit entity.

The expressions below are representati•e of the methods of specifylng
temporary radix control operators:

Decimal Radix
Hexadecimal Radix

6-30

'"'B 00001101 Binary Radix
'"'O(A+l3) Octal Radix

The up-arrow and the radix control operator may not be separated, but
the radix control operator and the following tera or expression can
be separated by spaces or tabs for legibility or formatting purposes.
A multi-element term or expression that is to be .interpreted in an
alternate radix should be enclosed within angle brackets, as shown in
the last of the 1our temporary radix control expressions above.

The following example also illustrates
delimit an expression that is to
radix. When using the temporary radix
values are affected. Any symbols
evaluated with respect to the radix in

.RADIX 16

the use of angle brackets to
be interpreted in an alternate
control operator, only numeric
used with the operator will be
effect at their declaration.

When the temporary radix expression in the .WORD directive above is
evaluated, it yields the following equivalent statement:

• WORD '"'D260

The cross assembler allows a temporary radix change to decimal by
specifying a number, immediately followed by a decimal point (.), as
shown below:

loo. Equivalent to 64 (hex)
1376. Equivalent to 560 (hex)
128. Equivalent to 80 (hex)

The above expression forms are equivalent in function to:

'"'DlOO
'"'Dl376
'"'Dl28

6-31

6.5 LOCATION COUNTER CONTROL DIRECTIVES

The directives used in controlling the value of the current location
counter and in reserving storage space in the object program are
described in t~e following sections.

Several cross-assembler state•ents (listed below) aay cause an odd
number of bytes to be allocated:

1 •• BYTE directive

2 •• BLKB directive

3 •• ASCII or .ASCIZ directive

4 •• ODD directive

5. A direct assignment statement of the form .~.+expression,

which results in the assignment of an odd address value.

In cases that yield an odd address value and for chips that must .
start instructions on even boundaries, the next word-boundarier-·
instruction automatically forces the location counter to an eve\-.
value, but that instruction is flagged with an error code (B) in the
assembly listing.

6.5.1 .EVEN Directive

Format:

.EVEN

The .EVEN directive ensures that the current location counter
contains an even value by adding 1 if the current value is odd. If
the current location counter is already even, no action is taken.
Any operands following an .EVEN directive are flagged with an error
code (Q) in the asseably listing.

The .EVEN directive is used as follows:

.ASCIZ

.EVER

• WORD

/This is a test/

XYZ

;Ensures that the next statement will
;begin on a word boundary.

6-32

\)

)

6.5.2 .ODD Directive

Foraat:

.ODD

The .ODD directive ensures that the current locatio~ counter contains
an odd value by adding 1 if the current value is even. If the
current location. counter is already odd, no action is taken. Any
operands following an .ODD directive are flagged with an error code
(Q) in the a3sembly listing.

6.5.3 .BLKB, .BLKW and .BLKL Directives

Formats:

where: exp

ROTE

The .BLKL directive is supported only
for microprocessors that handle 32-bit
data.

• BLKB exp
• BLKW exp
.BLKL exp

represents the specified number of bytes, words or
long words (32 bits) to be reserved in the object
program. Any expression defined at assembly
time that reduces to an absolute value is
legal. If the expression specified in either of
these directives is not an absolute value, the
statement is flagged with an error code (A) in the
asseably listing. Furthermore, if the expression
contains a forward reference (a reference to a
symbol that is not previously defined), the cross
assembler generates incorrect object file code and
may cause statements following the
.BLKB/.BLKW/.BLKL directive to be flagged with
phase (P) errors. These directives should not be
used without arguments. However, if no argument
is present, a default value of 1 is assumed.

The .BLKB directive reserves byte blocks in the object module; the

6-33

.BLKW directive reserves wor.d blocks, and the .BLKL directive
reserves long word blocks. The following example illustrates the use
of the .BLKB, .BLKW, and .BLKL directives.

1
2
3
4
5
6 0000
7
8 0002
9

10 0052
11
12 0053
13
14 0057

;+
; Illustrate use of .BLKB, .BLKW and .BLKL
;-

.PSECT IMPURE,D,GBL,RW

COUNT: .BLKW 1 ;Character counter

MESSAG: .BLKB 50. ;Message text buffer

CHRSAV: .BLKB ;Saved character

LBUF: .BLKL ;Long word buffer

MSGPTR: .BLKW ;Message buff er ptr.

The .BLKB directive in a source program has the same effect as thC
following statement:

.=.+expression

which causes the value of the expression to be added to the current
value of the location counter. The .BLKB directive, however, is
easier to interpret in the context of the source code in which it
appears and is therefore recommended.

(_.

6-34

6.6 TERMINATING DIRECTIVE: .END DIRECTIVE

Format:

.END [exp]

where: exp represents an optional expression .value which, if
present, indicates the program-entry point, which
is the transfer address where the program begins.

When the cross-assembler encounters a valid occurrence of the
directive, it terminates the current assembly pass. Any text
this point in the current source file, or in additional source
identified in the command line, will be ignored.

.END
beyond
files

When creating an image consisting of several object modules, only one
object module may be terminated with an .END [exp] statement (where
exp is the starting address). All other object modules must be
terminated with an .END statement (where .END has no argument);
otherwise, an error message will be issued at link time. If no
starting address is specified in any of the object modules, image
execution will begin at location 1 of the image and immediately fault
because of an odd addressing error.

The .END statement must not be used within a macro expansion or a
conditional assembly block; if it is so used, it is flagged with an
error code (0) in the assembly listing. The .END statement may be
used, however, in an immediate conditional statement (see section
6.9.3).

If the source program input is not terminated with an .END directive,
an error code (E) results in the assembly listing.

6-35

(

6.7 PROGRAM SECTIONING DIRECTIVES

The cross-asse•bler program sectioning directives are used to
establish program section attributes essential to linking and to
declare names for program sections (p-sects).

6.7.1 .PSECT Directive

Format:

where:

.PSECT name,argl,arg2, ••• argn

name represents the symbolic name of the program
section, as described in Table 6-4.

comma represents any legal separator (comma, tab and/or
space).

represent one or more of the legal symbolic argl,
arg2,

•
arguments defined for use with the .PSECT (·
directive, as described in Table 6-4. The slash
separating each pair of symbolic arguments listed •

•
argn

in the table indicates that one or the other, but
not both, may be specified. Multiple arguaents
must be separated by a legal separating character.
Any symbolic argument specified in the .PSECT
directive other than those listed in Table 6-4
will cause that statement to be flagged with an
error code (A) in the assembly listing.

6-36

(_,

!)

--
Argument Default Meaning

-------------------~--
NAME

RO/RW

I/D

ABS/REL

Blank Must begin with an alphabetic character.
Establishes the program section name, which
is specified as one-to-six Radix-SO
characters. If this argument .is omitted,
a comma must appear in place of the name
parameter if other arguments are to follow.
The Radix-50 character set is listed
in Appendix A.

RW Defines which type of access is permitted to
the program section:

I

REL

RO•Read-Only Access RW•Read/Write Access

Defines the program section as containing
either instructions (I) or data (D).
These attributes allow the Linker
to differentiate global symbols that
are entry point instructions (I) from
those that are data values (D).

Defines the relocatability attribute of the
program section:

ABS•Absolute (non-relocatable). The ABS
argument causes the Linker to treat the
program section as an absolute module;
therefore, no relocation is required.
The program section is assembled and loaded,
starting at absolute virtual address O.

REL•Relocatable. The_REL argument causes the
Linker to treat the program section as a
relocatable module and a relocation
bias is added to all location references
within the program section making the
references absolute.

TABLE 6-4: Symbolic Arguments of .PSECT Directive

The only argument in the .PSECT directive that is position dependent
is NAME. If it is omitted, a comma must be used in its place. For
example, the directive:

6-37

(

.PSECT ,ABS

shows a .PSECT directive with a blank name argument and the ABS
argument. Default values (see Table 6-4) are assumed for all other
unspecified arguments.

The .PSECT directive allows a user to create progra• sections. All
references to one program section are concatenated to determine the
total memory space available for the program section. In declaring
the program sections (p-sects), you may declare the attributes of the
program sections. This allows you to control memory allocation and
at the same time increases program mod~larity.

The cross assembler provides for 256(10) program sections, as listed
below:

1. One default absolute program section (. ABS.)

2. One unnamed relocatable program section.

3. Two-hundred-fifty-four named program sections.

For each program section specified or implied,
maintains the following information:

1. Program section name,

the cross

2. Contents of the current location counter,

3. Maximum location counter value encountered,

assemble~

4. Program section attributes (described in Table 6-4
above).

The first statement of a source program is always an implied .PSECT
directive; this causes the cross assembler to begin assembling
source statements at relocatable zero of the unnamed program section.

The first occurrence of a .PSECT directive with a given name assuaes
that the current location counter is set at relocatable zero. The
scope of this directive then extends until a directive declaring a
different program section is specified. Subsequent .PSECT directives
cause assembly to resume where the named section previously ended.
For example:

.PSECT ;Declares unnamed relocatable program(_

6-38

)

)

A:
B:
C:

X:
Y:

D:

.WORD
• WORD
.WORD
.PSECT
.WORD
.WORD
.PSECT
.WORD

0
0
0

ALPHA
0
0

0

;section assembled at relocatable
;addresses 0 through 5 •

;Declares relocatable prograa section
;named ALPHA assembled at relocatable
;addresses 0 through 3.
;Returns to unnamed relocatable
;program section and continues assem
;bly at relocatable address 6.

A given program section may be defined completely upon encountering
its first .PSECT directive. Thereafter, the section can be
referenced by specifying its name only, or by completely respecifying
its attributes. For example, a program section can be declared
through the directive:

.PSECT ALPHA,ABS

and later referenced through the equivalent directive:

.PSECT ALPHA

which requires no arguments. If arguments are specified, they must
be identical to the ones previously declared for the program section.
If the arguments differ, the arguments of the first .PSECT will
remain in effect, and an error code (A) will be generated as a
warning.

By maintaining separate location counters for each program section,
the cross assembler allows you to write statements that are not
physically sequential but that can be loaded sequentially following
assembly, as shown in the following example.

.PSECT SECl,REL ;Start relocatable program section
A: • WORD 0 ;named SE Cl asseabled starting at
B: .WORD 0 ;relocatable address o.
c: .WORD 0
ST: operator A ;Assemble relocatable code

operator B
operator c
.PSECT SECA,ABS ;Start an absolute prograa section

;named SECA. Assemble code at
.WORD .+2,A ;absolute addresses 0 through 3.
.PSECT SECl ;Resume relocatable program section
operator A ;SECl.
operator ST

All labels in an absolute program section are absolute; likewise,

6-39

all labels in
current location
referenced in
respectively.

(

a relocatable program section are relocatable. The
counter symbol (.) is relocatable or absolute when

a relocatable or absolute program section,

Any labels appearing on a line containing a .PSECT or .ASECT
directive are assigned the value of the current location counter
before the .PSECT (or other) directive takes effect. Thus, if the
first statement ~f a program is

A: .PSECT SECB,REL

the label A is assigned to the address of the current program section
rather than relocatable address zero of the new program section SECB.

Since it is not known during assembly where
sections will be loaded, all references to
sections are assembled as references relative to
referenced section.

relocatable program
relocatable program

the base of the

In the following example, references tQ the symbols X and Y are
translated into references relative to the base of the relocatabl~
program section named SEN.

.-.+1000
A:

Y:
X:

.PSECT

.WORD

• WORD

.PSECT
• WORD
.WORD
.WORD

ENT,ABS

x

y

SEN,REL
A
0
0

;Assembled as base of
;relocatable section + 2
;Assembled as base of
;relocatable section + 4

;Assembled as 1000.

(_

6-40

0

c)

)

BOTI

In the preceding example, using a
constant in conjunction with the
current location counter symbol (.) in
the form .•1000 would result in an
error, because constants are always
absolute and are always associated with
the program's .ASECT (. ABS.). If the
form .•1000 were used, a program
section incompatibility would be
detected. See section 3.5 for a
discussion of the current location
counter.

6.7.2 .ASECT Directive

Format:

.ASECT

The cross assembler will accept .ASECT directives, but assembles them
as though they were .PSECT directives with the default attributes
listed in Table 6-5.

Attribute

Name

ACCESS

Type

Relocation

.ASECT
Default
Value

• ABS.

RW

I

ABS

TABLE 6-5: Program Section Default Values

6-41

6.8 SYMBOL CONTROL DIRECTIVES

The symbol control directives are used to set the type of a given
symbol.

6.8.1 .GLOBL Directive

Format:

where: syml,
sym2, •••
symn

.GLOBL syml,sym2, ••• symn

represent legal symbolic names. When multiple
symbols are specified, they are separated by any
legal separator (comma, space, and/or tab).

A .GLOBL directive may also embody a label field and/or a comment
field.

The .GLOBL directive is provided to define (and thus provide linkage
to) symbols not otherwise defined as global symbols within a module(''
In defining global symbols, the directive .GLOBL A,B,C is similar to.

A••expression
B••expression
C""=expression

or
A •• . .
B •• ..
C •• . .

Because object modules may be linked by global symbols, these symbols
are vital to a program. The role of global symbols, describing the
processing of a program from assembly to linking, is subsequently
discussed.

In assembling a source module, the cross assembler produces a
relocatable object module and a listing file containing the assembly
listing and symbol table. The Linker joins separately assembled
object modules into a single executable image. During linking,
object modules are relocated relative to the base of the module and
linked by global symbols. Because these symbols will be referenced
by other program modules, they must be singled out as global symbols
in the defining modules.

All internal symbols appearing within a given program must be defined
at the end of assembly pass 1 or they will be assumed to be default
global references. Refer to section 6.2.1 for a description of
enabling/disabling of global references.

In the following example (in which chip-specific mnemonics have bee(__

6-42

)

\)

. o

used for the LSI-11 microprocessor), A and B are entry-point symbols.
The symbol A has been explicitly defined as a global syabol by means
of the .GLOBL directive, and the symbol B has been explicitly defined
as a global syabol by means of the double colon (::). Since the
syabol C is not defined within the current assembly, it is an
external (global) reference if .ENABL GBL is in effect.

Define a subroutine with 2 entry points which calls an
external subroutine

.PSECT ;Declare the unnamed
;section •

• ENABL GBL

program

.GLOBL A ;Define A as a global symbol.
A: MOV @(RS)•,RO ;Define entry point A.

MOV #X,Rl
X: JSR PC,C ;Reference external subroutine

;C.
RTS RS ; Exit.

B •• MOV (RS)•,Rl ;Define entry point B.
CLR R2
BR x

External symbols can appear in the operand field of an instruction or
cross-assembler directive as a direct reference, as shown in the
examples below:

CLR
• WORD

EXT
EXT

External symbols may also appear as a term within an expression, as
shown below:

CLR
• WORD

EXT+A
EXT-2

An undefined external symbol cannot be used in the evaluation of a
direct assignment stateae~t or as an argument in a conditional
asseably directive (see sections 3.3, 6.9.1 and 6.9.3) •

6-43

t

(

6.9 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional asse•bly directives allow you to include or exclude
blocks of source code during the asse•bly process, based on the
evaluation of stated condition tests within the body of the program.

6.9.1 Conditiona1 Assembly Block Directives

Format:

where:

.IF
•
•
•
•
range
•
•

•

cond,argument(s) ;Start conditional assembly
;block •

;Range of conditional assembly
;block •

.ENDC ;End of conditional assembly
;block • •

cond represents a specified condition that must be
met if the block is to be included in the
assembly. The conditions that may be tested
by the conditional assembly directives are
defined in Table 6-6.

comma represents any legal separator (comma, space,
and/or tab).

argument{s) represent(s) the symbolic argument(s) or
expression(s) of the specified conditional
test. These arguaents are thus a function of
the condition to be tested (see Table 6-6).

range represents the body of code that is either
included in the asaeably, or excluded,
depending upon whether the condition is met •

• ENDC teraiaates the eoaditional asse•bly block.
This directive aust be present to end the
conditional asseably block.

(

A condition test other than those listed in Table 6-6, an illega(_J}

6-44

.)

)

J

argument, or a null argument specified in an .IF directive will cause
that line to be flagged with an error code (A) in the assembly
listing.

6-45

(

---------------------------~--
CONDITIONS

Positive Coapleaent Arguments Asseable Block If:

--
EQ
z

GT
G

LT
L

DF

B

IDN

NE
NZ

LE

GE

NDF

NB

DIF

Expression

Expression

Expression

Symbolic
argument

Macro-type
argument

Two macro-type
arguments

Expression is equal
to 0 (or not equal
to 0).

Expression is greater
than 0 (or less than or
equal to O).

Expression is less than
0 (or greater than or
equal to O).

Symbol is defined (or
not defined).

Argument is blank (or (
non-blank).

Arguments are identical
(or different). The .IF
IDN/.IF DIF conditional
directives are not
alphabetically case
sensitive by default.
The user may enable
these directives to
be case sensitive by
using the .ENABL
option (.ENABL LCM).

TABLE 6-6: Legal Condition Tests for Conditional Assembly Directives

BOTB

A macro-type argument (which is a form
of syabolic arguaent), as shown below,
is enclosed within angle brackets or
denoted with an up-arrow construction
(as described in section 7.3).

(A,B,C)
"/124/

6-46

.)

An example of a conditional asseably directive follows:

.IP IQ ALPHA+! ;Asae•ble block if ALPBA+l•O

•
•

• ENDC

The two operator• & and ! have special meaning within DF and NDF
conditions, in that they are allowed in grouping symbolic arguments.

& Logical AND operator

Logical inclusive OR operator

For example, the conditional assembly statement:

.IF DF SYMl & SYM2
•

•
• ENDC

results in the assembly of the conditional block if the symbols SYMl
and SYM2 are both defined.

Nested conditional directives take the form:

Conditional Assembly Directive
Conditional Assembly Directive

•
•
•

• ENDC
.ENDC

For example, the following conditional directives

.IF DF SYMl

.IF DF SYM2
•
•
•

• ENDC
.ENDC

can govern whether assembly is to occur. In the example above, if
the outermost condition is unsatisfied, no deeper level of evaluation

6-47

(

of nested conditional statements within the program occurs.

Each conditional assembly block must be terminated with an .ENDC
directive. An .ENDC directive encountered outside a conditional
assembly block is flagged with an error code (0) in the assembly
listing.

The cross assembler permits a nesting depth of 16(10) conditional
assembly levels~ Any statement that attempts to exceed this nesting
level depth is flagged with an error code (0) in the assembly
listing.

6.9.2 Subconditional Assembly Block Directives

Formats:

• !FF
.IFT
.IFTF

Subconditional directives may be placed within conditional
blocks to indicate:

assemblr '

I. The assembly of an alternate body of code when the
condition of the block tests false.

2. The assembly of a non-contiguous body of code within the
conditional assembly block, depending upon the result of
the conditional test in entering the block.

3. The unconditional assembly of a body of code within a
conditional assembly block.

The subconditional directives are described in detail in Table 6-7,
below. If a subconditional directive appears outside a conditional
assembly block, an error code (0) is generated in the assembly
listing.

(_

6-48

)

)

)

--
Subconditional

Directive Punction

--.IFF

.IFT

.IFTF

If the condition tested upon entering the
conditional asseably block is false, the code
following this directive, and contlnuing up to the
next occurrence of a subconditional directive or to
the end of the conditional asse•bly block, is to be
included in the program.

If the condition tested upon entering the
conditional assembly block is true, the code
following this directive, and continuing up to the
next occurrence of a subconditional directive or to
the end of the conditional assembly block, is to be
included in the program.

The code following this directive, and continuing up
to the next occurrence of a subconditional directive
or to the end of the conditional assembly block, is
to be included in the program, regardless of the
result of the condition tested upon entering the
conditional assembly block.

TABLE 6-7: Subconditional Assembly Block Directives

6-49

(

The implied argument of a subconditional directive is the condition
test specified upon entering the conditional asse•bly block, as
reflected by the initial directive in the conditional coding exaaples
below. Conditional or subconditional directives in nested
conditional assembly blocks are not evaluated if the previous (or
outer) cond~tion in the block is not satisfied. Exaaples 3 and 4
below illustrate nested directives that are not evaluated because of
previous unsatisfied conditional coding.

EXAMPLE 1: Assume that symbol SYM is defined •

• IF DF

•
•
•

• IFF
•
•
•

.IFT
•
•
•

.IFTF
•
•

•
• IFT

•
•
•

• ENDC

SYM ;Tests TRUE, SYM is defined. Assemble
;the following code •

;Tests FALSE. SYM is defined. Do not
;assemble the following code •

;Tests TRUE. SYM is defined. Assem
;ble the following code •

;Assemble following code uncondition
;ally •

;Tests TRUE. SYM is defined. Assem
;ble remainder of conditional assem
;bly block •

(

EXAMPLE 2: Assume that symbol X is defined and that symbol Y is not
defined •

• IF DF
.IF DF
.IFF

•
•
•

• IFT
•
•
•

• ENDC

x
y

;Tests TRUE, symbol X is defined.
;Tests FALSE, symbol Y is not defined.
;Tests TRUE, symbol Y is not defined,
;asseable the following code •

;Tests FALSE, symbol Y is not defined.
;Do not assemble the following code •

(

6-50

,)

1)

.ENDC

EXAMPLE 3: Assuae that syabol X is not defined and that syabol Y is
defined.

• IF DF X

.IF DF y

•
•
•

.IFF
•
•
•

.IFT
•
•
•

• ENDC
.ENDC

;Tests FALSE. Syabol X is not defined •
;Do not asseable the .following code.
;Nested conditional directive is not
;evaluated •

;Nested subconditional directive is
;not evaluated •

;Nested subconditional directive is
;not evaluated •

6-51

(,

6.9.3 Immediate Conditional Assembly Directive

Format:

where: cond

.IIF cond,arg,statement

represents one of the legal condition tests defined
for conditional assembly blocks in Table 6-6.

comma represents any legal separator (comma, space,
and/or tab).

arg represents the argument associated with the
immediate conditional directive; an expression,
symbolic argument, or macro-type argument, as
described in Table 6-6.

comma represents the separator between the conditional
argument and the statement field. If the preceding
argument is an expression, then a comma must be
used; otherwise, a comma, space and/or tab. may be (
used.

statement represents the specified statement to be
assembled if the condition is satisfied.

An immediate conditional assembly directive provides a means for
writing a 1-line conditional assembly block. The use of this
directive requires no terminating .ENDC statement and the condition
to be tested is completely expressed within the line containing the
directive.

For example, the immediate conditional statement:

.IIF DF FOO,BEQ ALPHA

generates the code

BEQ ALPHA

if the symbol FOO is defined within the source program.

As with the .IF directive, a condition test other than one of those
listed in Table 6-6, an illegal argument, or a null argument
specified in an .IIF directive results in an error code (A) in the
assembly listing.

6-52

)

)

CBAPTla 7

NACao DialCTIVBS

7.1 DEFINING MACROS

Macro directive~ provide the means to manipulate the macro
expansions. Only one directive is allowed per source line. Each
directive may have a blank operand field or one or more operands.
Legal operands differ with each directive. The macros and their
associated directives are detailed in this chapter.

By using macros, a programmer can use a single line to insert a
sequence of lines into a source program.

A macro definition is headed by a .MACRO directive (see section
7.1.1) followed by the source lines. The source lines may optionally
contain dummy arguments. If such arguments are used, each one is
listed in the .MACRO directive.

A macro call (see section 7.3) is the statement used by the
programmer to call the macro into the source program. The macro call
consists of the macro name followed by the real arguments needed to
replace any dummy arguments used in the macro.

Macro expansion is the insertion of the macro source lines into the
main program. Included in this insertion is the replacement of the
dummy arguments by the real arguments.

7.1.1 .MACRO Directive

Format:

where: label

name

comma

[label:] .MACRO name, dummy argument list

represents an optional statement label.

represents the user-assigned symbolic name of
the macro. This name may be any legal symbol
and may be used as a label elsewhere.

represents any legal separator (comma, space,
and/or tab).

7-1

Example:

dummy
argu
ment
list

represents a number of legal symbols (see
section 3.2.2) that aay appear anywhere in the
body of the macro definition, even as a label.
These dummy symbols can be used elsewhere in
the program with no conflict of definition.
Multiple dummy arguments specified in this
directive may be separated by any legal
separator. The detection of a duplicate or an
illegal symbol in a dummy argument list
terminates the scan and causes an error code
(A) to be generated.

.MACRO ABS A,B ;Defines macro ABS with two
;arguments, A and B.

(

The first statement of a macro definition must be a .MACRO directive.

ROTE

Although it is legal for a label to
appear on a .MACRO directive, this
practice is discouraged, especially in
the case of nested macro definitions,
because invalid labels or labels
constructed with the concatenation
character will cause the macro
directive to be ignored. This may
result in improper termination of the
macro definition.

This NOTE also applies to .IRP,
and .REPT (to be discussed).

.IRPC,

7.1.2 .ENDM Directive

Format:

where: naae

Example:

.ENDK [name]

represeats an optional argument specifying the
name of the macro being terminated by the
directive.

7-2

(

(_

C)

C)

.ENDM

• ENDM ABS

;Terminates the current
;macro definition •

;Terminates the current
;macro definition named ABS.

If specified, the macro name in the .ENDM statement must match the
name specified in the corresponding .MACRO directive. Otherwise, the
statement is flagged with an error code (A) in the assembly listing.
In either case, the current macro definition is terminated.
Specifying the macro name in the .ENDM statement thus permits the
Cross Assembler to detect missing .ENDM statements or improperly
nested macro definitions.

The .ENDM directive must not have a label. If a legal label is
attached, it will be ignored. If an illegal label is attached, the
directive will be ignored.

The .ENDM directive may ~e followed by a comment field,
below:

.MACRO
JSR
.WORD
• ENDM

TYPMSG
R5,TYPMSG
MESS GE

MESSGE ;Type a message.

;End of TYPMSG macro •

as shown

The final statement of every macro definition must be an .ENDM
directive. The .ENDM directive is also used to terminate indefinite
repeat blocks (see section 7.6) and may be used.to terminate repeat
blocks (see section 7.7).

7.1.3 .MEXIT Directive

Format:

.MEXIT

The .MEXIT directive may be used to terminate a macro expansion
before the end of the macro is encountered. This directive is also
legal within repeat blocks (see sections 7.6 and 7.7). It is most
useful in nested macros. The .MEXIT directive terminates the current
macro as though an .ENDM directive had been encountered. Using the
.MEXIT directive bypasses the complexities of nested conditional
directives and alternate assembly paths, as shown in the following
example:

7-3

-· .. _.,,

('

.MACRO ALTR N,A,B
•

•
• IF EQ N ;Start conditional assembly block •

•
•
•

• MEXiT ;Terminate macro expansion.
• ENDC ;End conditional assembly block •
•

• ENDM ;Normal end of macro •

In an assembly where the dummy symbol N is replaced by zero (see
Table 6-6), the .MEXIT directive would assemble the conditional block
and terminate the macro expansion. When macros are nested, a .MEXIT
directive causes an exit to the next higher level of macro expansion.

A .MEXIT directive encountered outside a macro definition is
with an error code (0) in the assembly listing.

7.1.4 MACRO Definition Formatting

flagged

(1

A form-feed character used within a macro definition causes a page
eject during the assembly of the macro definition. A page eject,
however, is not performed when the macro is expanded.

Conversely, when the .PAGE directive is used in a macro definition,
it is ignored during the assembly of the macro definition, but a page
eject is performed when that macro is expanded.

(·

7-4

')

)

7.2 CALLING MACROS

For•at:

where:

[label:] name real arguments

label

name.

real
argu
ments

represents an optional statement label.

represents the name of the macro, as specified
in the .MACRO directive (see section 7.1.1).

represent symbolic arguments which replace the
dummy arguments listed in the .MACRO directive.
When multiple arguments occur, they are
separated by any legal separator. Arguments to
the macro call are treated as character
strings; their usage is determined by the
macro definition.

A macro definition must be established
directive (see section 7.1.1) before
expanded within the source program.

by means of the .MACRO
the macro can be called and

When a macro name is the same as a user label, the appearance of the
symbol in the operator field designates the symbol as a macro call;
the appearance of the symbol in the operand field designates it as a
label, as shown below:

ABS: MOV (RO),Rl ;ABS is defined as a label.
•

BR ABS ;ABS is considered a label •

•
•

ABS #4,ENT,LAR ;ABS is a macro call.

7-5

7.3 ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

Multiple arguments within a macro definition or macro call must be
separated by one of the legal separating characters described in
Section 3.1.1.

Macro definition arguments (dummy) and macro call arguments (real)
normally maintain a strict positional relationship. That is, the
first real argum.ent in a macro call corresponds with the first dummy
argument in a macro definition. Only the use of keyword arguments in
a macro call can override this correspondence (see section 7.3.5).

For example, the following macro definition and its associated macro
call contain multiple arguments:

.MACRO REN A,B,C
•
•
•

REN ALPHA,BETA,(Cl,C2)

Arguments which themselves contain
enclosed in paired angle brackets.

REN <MOV

causes the entire expression

MOV X,Y

separating
For example,

X,Y),#44,WEV

characters must
the macro call:

to replace all occurrences
Real arguments within a
strings and are treated
expansion.

of the symbol A in the macro definition.
macro call are considered to be character
as a single entity during the macro

The up-arrow (-) construction allows angle brackets to be passed as
part of the argument. This construction, for example, could have
been used in the above macro call, as follows:

REN -/(MOV X,Y)/,#44,WEV

causing the entire character string <MOV X,Y) to be passed as an
argument.

Because of the use of the up-arrow (-) shown above, care must be
taken when passing an argument beginning with a unary operator c-o,
-D, ·s, -R, •p •••). These arguments must be enclosed in anglt
brackets (as shown below) or the Cross Assembler will read th

7-6

')

)

character following the up-arrow as a delimiter.

REN (""0 411),X,Y

The following macro call:

REN #44,WEV""/MOV X,Y/

contains only tw.o arguments (#44
up-arrow is a unary operator
preceded by an argument separator.

and
(see

WEV""/MOV
section

X,Y/), because the
3.1.3) and it is not

As shown in the examples above, spaces can be used within
argument constructions to increase the legibility
expressions.

ROTE

If an argument does not contain
tabs, semicolons, or commas,
include special characters

spaces,
it may

without
enclosing them in ·a bracketed
construction.

7.3.l Macro Nesting

bracketed
of such

Macro nesting occurs where the expansion of one macro includes a call
to another. The depth of nesting allowed depends upon the amount of
dynamic memory used by the source program being assembled.

To pass an argument containing legal argument delimiters to nested
macros, enclose the argument in the macro definition within angle
brackets, as shown in the coding sequence below. This extra set of
angle brackets for each level of nesting is required in the macro
definition, not in the macro call. The following example, using
chip-specific mnemonics for the LSI-11 microprocessor, represents a
sample macro nesting •

• MACRO LEVELl DUM1,DUM2
LEVEL2 (DUMl)
LEVEL2 (DUM2)
.ENDM

.MACRO LEVEL2 DUM3
DUM3
ADD #10,RO

7-7

(

MOV RO,(Rl)+
.ENDM

A call to the LEVELl macro, as shown below,

LEVELl (MOV X,RO),(MOV R2,RO>

causes the following macro expansion to occur:

MOV X,RO
ADD 1110,RO
MOV RO, (Rl)+
MOV R2,RO
ADD #10,RO
MOV RO,(Rl)+

When macro definitions are nested, the
called until the outer macro has
example, in the following coding:

inner definition cannot be
been called and expanded. For

.MACRO LVl A,B
• ('

.MACRO LV2 c
•

•
• ENDM
.ENDM

the LV2 macro cannot be called and expanded until the LVl macro has
been expanded. Likewise, any macro defined within the LV2 macro
definition cannot be called and expanded until LV2 has also been
expanded.

7.3.2 Passing Numeric Arguments as Symbols

If the unary operator backslash (\) precedes an argument, the macro
treats that argument as a numeric value in the current program radix.
The ASCII characters representing this value are inserted in the
•aero expansion, and their function is defined in the context of the
resulting code, as shown in the following example:

7-8

)

)

B•B+l

A'B:

c-o

.MACRO INC A,B
CON A,\B

.ENDK

.MACRO

.WORD 4

.ENDK
•
•
•

INC x,c

CON

;B is treated as a number in current
;prograa radix.

A,B
;A'B is described in Section 7.3.6

The above macro call (INC) would thus expand to:

XO: .WORD 4

In this expanded code, the label XO: results from the concatenation
of two real arguments. The single quote (') character in the label
A'B: concatenates the real arguments X and 0 as they are passed.
during the expansion of the macro. This type of argument
construction is described in more detail in Section 7.3.6.

A subsequent call to the same macro would generate the following code

Xl: .WORD 4

and so on, for later calls. The two macro definitions are necessary
because the symbol associated with dummy argument B (that is, C)
cannot be updated in the CON macro definition because the character 0
has replaced C in the argument string (INC X, C). In the CON macro
definition, the number passed is treated as a string argument.
(Where the value of the real argument is O, only a single 0 character
is passed to the macro expansion.)

Passing numeric values in this manner is useful in identifying source
listings. For example, versions of programs created through
conditional assemblies of a single source program can be identified
through such coding as that shown below. Assume, for example, that
the symbol ID in the macro call (IDT) has been equated elsewhere in
the source program to the value 6.

.MACRO

.!DENT

.ENDM
•
•
•

IDT

IDT SYK
/VOl.'SYM/

\ID

;Assume that the symbol ID takes
;on a unique 2-digit value.
;Where VOl is the update
;version of the program •

7-9

(

The above macro call would then expand to

.IDENT /VOl.6/

where 6 is the numeric value of the symbol ID.

7.3.3 Number of .Arguments in Macro Calls

A macro can be defined with or without arguments. If more arguments
appear in the macro call than in the macro definition, an error code
(Q) is generated in the assembly listing. If fewer arguments appear
in the macro call than in the macro definition, missing arguments are
assumed to be null values. The conditional directives .IF Band .IF
NB (see Table 6-6) can be used within the macro to detect missing
arguments. The number of arguments can also be determined using the
.NARG directive (Section 7.4.1).

7.3.4 Creating Local Symbols Automatically c
A label is often required in an expanded macro. In the conventional
macro facilities thus far described, a label must be explicitly
specified as an argument with each macro call. The user must be
careful in issuing subsequent calls to the same macro in order to
avoid duplicating labels. This concern can be eliminated through a
feature of the Cross Assembler that creates a unique symbol where a
label is required in an expanded macro.

As noted in Section 3.4, the Cross Assembler can automatically create
local symbols of the form n$, where n is a decimal integer within the
range 30000 through 65535, inclusive. Such local symbols are created
by the Cross Assembler in numerical order, as shown below:

30000$
30001$

•
•

65534$
65535$

This automatic generation is invoked on each call of a macro whose
definition contains a dummy argument preceded by the question mark
(?) character, as in the following macro definition using tht
chip-specific mnemonics for the LSI-11 microprocessor:

7-10

)

)

.MACRO ALPHA, A,?B ;Contains dummy argument B
;preceded by question mark.

TST A
BEQ B
ADD #5,A

B:
.ENDM

A local symbol i$ created automatically by the Cross Assembler only
when a real argument of the macro call is either null or missing, as
shown in Example 1 below. If the real argument is specified in the
macro call, however, the Cross Assembler. inhibits the generation of a
local symbol and normal argument replacement occurs, as shown in
Example 2 below. (Examples 1 and 2 are both expansions of the ALPHA
macro defined above.)

EXAMPLE 1 : Create a Local Symbol for the Missing Argument:

ALPHA Rl ;Second argument is missing.
TST Rl
BEQ 30000$;Local symbol is created.
ADD #5,Rl

30000$:

EXAMPLE 2: Do Not Create a Local Symbol:

XYZ:

ALPHA
TST
BEQ
ADD

R2,XYZ
R2
XYZ
#5,R2

Automatically created local
16(10) arguments of a macro

;Second argument XYZ is specified.

;Normal argument replacement occurs.

symbols are
definition.

restricted to the first

Automatically created local symbols resulting from the expansion of a
macro, as described above, do not establish a local symbol block in
their own right.

When a macro has several arguments earmarked for automatic local
symbol generation, substituting a specific label for one such
argument risks assembly errors because the Cross Assembler constructs
its argument substitution list at the point of macro invocation.
Therefore, the appearance of a label, the .ENABL LSB directive, or
the .PSECT directive, in the macro expansion will create a new local
symbol block. The new local symbol block could leave local symbol
references in the previous block and their symbol definitions in the
new one, causing error codes in the assembly listing. Furthermore, a

7-11

(

later macro expansion that creates local symbols in the new block may
duplicate one of the symbols in question, causing an additional error
code (P) in the assembly listing.

7.3.5 Keyword Arguments

Format:
name•string

where: name represents the dummy argument,

string represents the real symbolic argument.

The keyword argument may not contain embedded argument separators
unless delimited as described in Section 7.3.

Macros may be defined with, and/or called with, keyword arguments.
When a keyword argument appears in the dummy argument list of a macro
definition, the specified string becomes the default real argument at
macro call. When a keyword argument appears in the real argumeur
list of a macro call, however, the specified string becomes the rea\._
argument for the dummy argument that matches the specified name,
whether or not the dummy argument was defined with a keyword. If a
match fails, the entire argument specification is treated as the next
positional real argument.

A keyword argument may be specified anywhere in the dummy argument
list of a macro definition and is part of the positional ordering of
the argument. A keyword argument may also be specified anywhere in
the real argument list of a macro call but, in this case, does not
affect the positional ordering of the arguments.

1
2
3
4
5
6
7
8
9

10
1 1
12
13
14

.LIST ME

Define a macro having keywords in dummy
argument list

.MACRO TEST CONTRL•l,BLOCK,ADDRES•TEHP

.WORD CONTRL

.WORD BLOCK

.WORD ADORES

.ENDM

Now invoke several times

7-12

(

')

()

15
16
17

18
19

20
21

22
23

24
25

26
27

28
29
30

000000
000000 OOOOOOG
000002 OOOOOOG
000004 OOOOOOG

000006
000006 000.040
000010 000030
000012 000020

000014
000014 000001
000016 000005
000020 OOOOOOG

000022
000022 000005
000024 000000
000026 OOOOOOG

000030
000030 000001
000032 000000
000034 OOOOOOG

000036
000036 000001
000040 000000
000042 ooooooc

000001

. ,
TEST
.WORD
.WORD
.WORD

TEST
.WORD
.WORD
.WORD

TEST
.WORD
.WORD
.WORD

TEST
.WORD
.WORD
.WORD

TEST
.WORD
.. WORD
.WORD

TEST
.WORD
.WORD
.WORD

.END

A,B,C
A
B
c

ADDRES•20,BLOCK•30,CONTRL•40
40
30
20

BLOCK•S
1
5
TEMP

CONTRL•5,ADDRES•VARIAB
5

VARIAB

1

TEMP

ADDRES•JACK!JILL
1

JACKI JILL

7.3.6 Concatenation of Macro Arguments

The apostrophe or single quote character (') operates as a legal
delimiting character in macro definitions. A single quote that
precedes and/or follows a dummy argument in a macro definition is
removed, and the substitution of the real argument occurs at that
point. For example, in the following statements:

A'B:
.MACRO DEF A,B,C,
.ASCIZ /C/
.BYTE ''A,"B
.ENDM

7-13

when the macro DEF is called through the statement:

DEF X,Y,(START)

it is expanded, as follows:

XY: .ASCIZ /START/
.BYTE 'X,'Y

In expanding the first line, the scan for the first argument
terminates upon finding the first apostrophe (~) ~haracter. Since A
is a dummy argument, the apostrophe (').is removed. The scan then
resumes with B; B is also noted as another dummy argument. The two
real arguments X and Y are then concatenated to form the label XY:.
The third dummy argument is noted in the operand field of the .ASCIZ
directive, causing the real argument START to be substituted in this
field.

When evaluating the arguments of the .BYTE directive during expansion
of the second line, the scan begins with the first apostrophe (')
character. Since it is neither preceded nor followed by a dumay
argument, this apostrophe remains in the macro expansion. The sea~
then encounters the second apostrophe, which is followed by a dumm,..._
argument and is therefore discarded. The scan of argument A is
terminated upon encountering the comma (,). The third apostrophe is
neither preceded nor followed by a dummy argument and again remains
in the macro expansion. The fourth (and last) apostrophe is followed
by another dummy argument and is likewise discarded. (Four
apostrophe (') characters were necessary in the macro definition to
generate two apostrophe (') characters in the macro expansion.)

7-14

)

J

7.4 MACRO ATTRIBUTE DIRECTIVES: .NARG, .NCHR, AND .NTYPE

The asseabler has three directives that allow the user to deter•ine
certain attributes of macro arguments: .NARG, .NCHR, and .NTYPE.
The use of these directives permits selective modifications of a
macro expansion, depending on the nature of the arguments being
passed. These directives are described below.

7.4.1 .NARG Directive

Format:
[label:]

where: label

symbol

.NARG symbol

represents an optional statement label.

represents any legal symbol. This symbol is
equated to the number of non-keyword arguaents
in the macro call currently being expanded.
If a symbol is not specified, the .NARG
directive is flagged with an error code (A) in
the assembly listing.

The .NARG directive is used to determine the number of non-keyword
arguments in the macro call currently being expanded. Hence, the
.NARG directive can appear only within a macro definition; if it
appears elsewhere, an error code (0) is generated in the assembly
listing. An example of the .NARG directive is shown in Figure 7-1.

7-15

(

1 .TITLE NARG
2
3 .ENABLE .LC
4 .LIST ME
5 ;+
6 . Example of the .NARG directive ,
7 ·-,
8
9 .MACRO NULL NUM

10 .NARG SYM
11 .IF EQ SYM
12 .MEXIT
1 3 .IFF
14 .REPT NUM
15 NOP
16 .ENDM
l 7 .ENDC
18 .ENDM
19
20 000000 NULL

000000 .NARG SYM
.IF EQ SYM c .MEX IT
.IFF
.REPT
NOP
.ENDM
.ENDC

21
22 000000 NULL 6

000001 .NARG SYM
.IF EQ SYM
.MEXIT
.IFF

000006 .REPT 6
NOP
.ENDM

000000 000240 NOP
000002 000240 NOP
000004 000240 NOP
000006 000240 NOP
000010 000240 NOP
000012 000240 NOP

.ENDC
23
24 000001 .END

Figure 7-1: Example of .NARG Directive (_

7-16

)

)

7.4.2 .NCHR Directive

Format:

where:

[label:]

label

syabpl

comma

.NCHR syabol,(string)

represents an optional statemeQt label.

represents any legal syabol. This symbol is
equated to the number of characters in the
specified character string. If a symbol is not
specified, the .NCHR directive is flagged with
an error code (A) in the assembly listing.

represents any legal separator (comma, space,
and/or tab).

<string> represents a string of printable characters. If
the character string contains a legal separator
(comma, space, and/or tab) the whole string must
be enclosed within angle brackets (< >) or
up-arrows (•). If the delimiting characters do
not match or if the ending delimiter cannot be
detected because of a syntactical error in the
character string (thus prematurely terminating
its evaluation), the .NCHR directive is flagged
with an error code (A) in the assembly listing.

The .NCHR directive, which can appear anywhere in an assembler
program, is used to determine the number of characters in a specified
character string. This directive is useful in calculating the length
of macro arguments. See the example below in Figure 7-2.

7-17

(

1 .TITLE NCHR
2
3 .ENABL LC
4 .LIST ME
5 ;+
6 . Illustrate the .NCHR directive t

7 ·-t

8
9 .MACRO STRING MESS AG

10 .NCHR $$$,MESSAG
1 1 .WORD $$$
12 .ASCII /MESSAG/
13 .EVEN
14 .ENDM
15
16 000000 MSGl: STRING <Hello)

000005 .NCHR $$$,Hello
000005 .WORD $$$

000002 110 .ASCII /Hello/
000003 145
000004 154
000005 154 c 000006 157

.EVEN
17
18 000001 .END

Figure 7-2: Example of .NCHR Directive

(

7-18

i)

)

)

7.4.3 .NTYPE Directive

Fo rma't:

[la be 1:]

where: label

symb.ol

comma

a exp

.NTYPE symbol,aexp

represents an optional statement label.

represents any legal symbol. This symbol is
equated to the 6-bit addressing mode of the
following expression (aexp). If a symbol is not
specified, the .NTYPE directive is flagged with
an error code (A) in the assembly listing.

represents any legal separator (comma, space,
or tab).

represents any legal address expression, as used
with an opcode. If no argument is specified, an
error code (A) will appear in the assembly
listing.

The .NTYPE directive is used to determine the addressing mode of a
specified macro argument. Hence, the .NTYPE directive can appear
only within a macro definition; if it appears elsewhere, it is
flagged with an error code (0) in the assembly listing.

For additional information concerning addressing modes,
Chapter 5 and Appendix B.

7-19

refer to

(

7.5 .ERROR AND .PRINT DIRECTIVES

Format:

[label:]

where: label

expr.

text

.ERROR [expr] ;text

re~resents an optional state•ent label.

represents an optional expression whose value is
output when the .ERROR directive is encountered
during assembly.

denotes the beginning of the text string.

represents the message associated with the
.ERROR directive.

The .ERROR directive is used to output messages to the listing file
during assembly pass 2. A common use of this directive is to alert
the user to a rejected or erroneous macro call or to the existence of
an illegal set of conditions in a conditional assembly. If the
listing file is not specified, the .ERROR messages are output to the::
cross-assembler output device.

Upon encountering an .ERROR directive anywhere in a source program,
the Cross Assembler outputs a single line containing:

1. An error code (P);

2. The sequence number of the .ERROR directive statement;

3. The value of the current location counter;

4. The value of the expression, if one is specified;

5. The source line containing the .ERROR directive.

For example, the following directive

.ERROR A ;Invalid macro argument

causes a line in the following fora to be output to the listing file:

p

Seq. Loe.
No. No.·

512 005642

Exp.
Value

000076 .ERROR A

7-20

Text

;Invalid macro
argument (_

()

r)

()

The PRINT directive is identical in function to the .ERROR directive,
except that it is not flagged with the error code (P).

7-21

7.6 INDEFINITE REPEAT BLOCK DIRECTIVES: .!RP AND .IRPC

An indefinite repeat block is similar to a macro definition with only
one duamy argument. At each expansion of the indefinite repeat
range, this dummy argument is replaced with successive eleaents of a
real argument list. Since the repeat directive and its associated
range are coded in-line within the source program, this type of macro
definition and expansion does not require calling the macro by name,
as required in ~he expansion of the conventional macros previously
described in this chapter.

An indefinite repeat block can appear either within or outside
another macro definition, indefinite repeat block, or repeat block.
The rules for specifying indefinite repeat block arguments are the
same as for specifying macro arguments (see section 7.3).

7.6.1 .IRP Directive

Format:

[label:] .IRP sym,(argument list)

•
•
•

(range of indefinite repeat block)
•
•
•

• ENDM

where: label represents an optional statement label.

(

7-22

)

ROTI

Although it is legal for a label to
appear on a .MACRO directive, this
practice is discouraged, especially in
the case of nested macro definitions,
because invalid labels or labels
c~nstructed with the concatenation
character will cause the macro
directive to be ignored. This may
result in improper termination of the
macro definition.

This warning also applies to .IRPC and
.REPT.

sym

comma

<argument list)

range

.ENDM

represents a dummy argument that is replaced
with successive real arguments from within
the angle brackets. If no dummy argument is
specified, the .IRP directive is flagged
with an error code (A) in the assembly
listing.

represents any legal separator (comma, space,
and/or tab).

represents a list of real arguments enclosed
within angle brackets that is to be used in the
expansion of the indefinite repeat range. A
real argument may consist of one or more
characters; multiple arguments must be
separated by any legal separator (comma, space,
and/or tab). If no real arguments are
specified, no action is taken.

represents the block of code to be repeated once
for each occurrence of a real argument in the
list. The range may contain other macro
definitions, repeat ranges and/or the .MEXIT
directive (see section 7.1.3).

indicates the end of the indefinite repeat block
range.

The .IRP directive is used to replace
successive real arguments specified in

a dummy argument
an argument string.

with
This

7-23

(

replacement process occurs during the expansion of an indefinite
repeat block range. (See Figure 7-3 below.)

c

(,

7-24

--- ----------~

1 .TITLE IRPTEST
2
3 .LIST ME
4 ;+
5 ; Illustrate the .IRP and .IRPC directives
6 . by creating a pair of RAD50 tables ,
7 ·-,
8
9 000000 REGS: • IR.P REG,(PC,SP,R5,R4,R3,R2,Rl,R0)

10 .RAD50 /REG/
11 .ENDR

000000 062170 .RAD50 /PC/
000002 074500 .RAD50 /SP/
000004 072770 .RAD50 /R5/
000006 072720 .RAD50 /R4/
000010 072650 .RAD50 /R3/
000012 072600 .RAD50 /R2/
000014 072530 .RAD50 /Rl/
000016 072460 .RAD50 /RO/

12
13 000020 REGS2: .IR.PC NUM,(76543210)

) 14 .RAD50 /R'NUM/
15 .ENDR

000020 073110 .RAD50 /R7/
000022 073040 .RAD50 /R6/
000024 072770 .RAD50 /RS/
000026 072720 .RAD50 /R4/
000030 072650 .RAD50 /R3/
000032 072600 .RAD50 /R2/
000034 072530 .RAD50 /Rl/
000036 072460 .RAD50 /RO/

16 000001 .END

Figure 7-3: Example of .IRP and .IRPC Directives

)

7-25

(

7.6.2 .IRPC Directive

Format:

where:

[label:] .IRPC sym,(string>

•
•
•

(r•nge of indefinite repeat block)
•
•

• ENDM

label represents an optional statement label (see Note
in Section 7.6.1).

sym represents a dummy argument that is replaced
with successive real arguments from within the
angle brackets. If no dummy argument is
specified, the .IRPC directive is flagged with
an error code (A) in the assembly listing. ~

comma represents any legal separator (comma, space,
and/or tab).

<string) represents a list of characters, enclosed within
angle brackets, to be used in the expansion of
the indefinite repeat range. Although the
angle brackets are required only when the
string contains separating characters, their
use is recommended for legibility.

range represents the block of code to be repeated once
for each occurrence of a character in the list.
The range may contain macro definitions, repeat
ranges and/or the .MEXIT directive (see section
7.1.3) •

• ENDM indicates the end of the indefinite repeat block
range.

The .IRPC directive is available to permit single character
aubatitution, rather than argument substitution. On each ~teration
of the indefinite repeat range, the dummy argument is replaced with
successive characters in the specified string.

An example of the use of the .IRPC directive is shown in Figure 7-3.(_

7-26

)

)

7.7 REPEAT BLOCK DIRECTIVE: .REPT, .ENDR

Format:

where:

[label:] .REPT exp

•
•
•

(r~nge of repeat block)
•
•
•

• ENDR

label

exp

range

• ENDM
or

.ENDR

represents an optional statement label (see Note
in Section 7.6.1).

represents any legal expression. This value
controls the number of times the block of code
is to be assembled within the program. When
the expression value is less than or equal to
zero (0), the repeat block is not assembled.
If this expression is not an absolute value,
the .REPT statement is flagged with an error
code (A) in the assembly listing.

represents the block of code to be repeated.
The repeat block may contain macro definitions,
indefinite repeat blocks, other repeat blocks
and/or the .MEXIT directive (see section 7.1.3).

indicates the end of the repeat block range •

The .REPT directive is used to duplicate a block of code, a certain
number of times, in line with other source code.

7-27

(

7.8 MACRO LIBRARY DIRECTIVE: MCALL

Format:

where:

.MCALL argl,arg2, ••• argn

argl,
arg2, •••
argn

represent the symbolic names of the macro
definitions required in the assembly of the
source program. The names must be separated by
any legal separator (comma, space, and/or tab).

The .MCALL directive allows you to indicate in advance those system
and/or user-defined macro definitions that are not defined within the
source program but which are required to assemble the program. The
.MCALL directive must appear before the first occurrence of a call to
any externally defined macro.

The /M switch, used with an input file specification, indicates to
the Cross Assembler that the file is a macro library. When a macro
call is encountered in the source program, the Cross Assembler first
searches the user macro library for the named macro definitions, and,
if necessary, continues the search with the system macro library. c:-
Any number of such user-supplied macro files may be designated. For
multiple library files, the search for the named macros begins with
the last such file specified. The files are searched in reverse
order until the required macro deftnitions are found, finishing, if
necessary, with a search of the system macro library.

If any named macro is not found upon completion of the search, the
.MCALL statement is flagged with an error code (U) in the assembly
listing. Furthermore, a statement elsewhere in the source program
that attempts to expand such an undefined macro is flagged with an
error code (0) in the assembly listing.

7-28

APPBIDIX A

CROSS ASSIBILll CBAIACT&R S&TS

A.l ASCII CHARACTER SET

Even
Parity
Bit

7-Bit
Octal
Code Character Remarks

0

1

1

0

1

0

0
1
1

0
0

1
0

1

1

0

1

000

001

002

003

004

005

006
007
010

011
012

013
014

015

016

017

020

NUL

SOB

STX

ETX

EOT

ENQ

ACK
BEL
BS

HT
LF

VT
FF

CR

so

SI

DLE

A-1

Null, tape feed,
CONTROL/SHIFT/P.
Start of heading; also SOM,
start of message, CONTROL/A.
Start of text; also EOA, end of
address, CONTROL/B.
End of text; also EOM, end of
message, CONTROL/C.
End of transmission (END); shuts
off TWX machines, CONTROL/D.
Enquiry (ENQRY); also WRU,
CONTROL/E.
Acknowledge; also RU, CONTROL/F.
Rings the bell. CONTROL/G.
Backspace; also FEO, format
effector. backspaces some
machines, CONTROL/H.
Horizontal tab. CONTROL/I.
Line feed or Line space
(new line); advances paper
to next line. CONTROL/J.
Vertical tab (VTAB). CONTROL/K.
Form Feed to top of next page
(PAGE). CONTROL/L.
Carriage return to beginning of
line. CONTROL/M.
Shift out; changes ribbon color
to red. CONTROL/N.
Shift in; changes ribbon color
to black. CONTROL/O.
Data link escape. CONTROL/P
(DCO).

1

0

1

0

1

1

0

0
1
1
0
1
0

0

1

1
0
0
1
0
1
1
0
0
1
1
0
1
0
0
1
0
1

021

023

024

025

026

027

030
031
032
033
034
035

036

037

040
041
042
043
004
045
046
047
050
051
052
053
054
055
056
057
060
061

DCl

DC3

DC4

NAK

SYN

ETB

CAN
EM
SUB
ESC
FS
GS

RS

us

SP

II

$
%

(
)

+

•
I
0
1

A-2

Device control l; turns
transmitter (READER) on,
CONTROL/Q (X ON). 0 022 DC2
Device control 2; turns punch
or auxiliary on. CONTROL/R
(TAPB, AUX ON).
Device control .3; turns
transmitter (READER) off,
CONTROL/S (X OFF).
Device control 4; turns punch or
auxiliary off. CONTROL/T (AUX
OFF).
Negative acknowledge; also ERR,
ERROR. CONTROL/U.
Synchronous file (SYNC).
CONTROL/V.
End of transmission block; also
LEM, logical end of medium.
CONTROL/W.
Cancel (CANCL). CONTROL/X.
End of medium. CONTROL/Y.
Substitute. CONTROL/Z. ('
Escape. CONTROL/SHIFT/K.
File separator. CONTROL/SHIFT/L.
Group separator.
CONTROL/SHIFT/M.
Record separator.
CONTROL/SHIFT/N.
Unit separator.
CONTROL/SHIFT/O.
Space.

Accent acute or apostrophe.

(.

l 052 2
0 063 3
l 064 4
0 065 5
0 066 6
l 057 7
l 070 8
0 071 9
0 072
1 073
0 074 <
1 075 :a

l 076 >
0 077 ?
l 100 @

0 101 A
0 102 B
1 103 c
0 104 D

1 105 E

•)
l 106 F
0 107 G
0 110 H
0 l 1 1 I
1 112 J
0 113 K
1 114 L
0 115 M

0 116 N
l 117 0
0 120 p

1 121 Q
1 122 R

0 123 s
l 124 T
0 125 u
0 126 v
1 127 w
l 130 x
0 131 y

0 132 z
1 133 [shift/k.
0 134 shift/1.
1 135 shif t/m.
1 136 *
0 137 **

() 0 140 ... Accent grave.
1 141 a

A-3

1 142 b
0 143 c
1 144 d
0 145 e
0 146 f
1 147 g
1 150 h
0 151 i
0 152 j
1 153 k
0 154 1
1 155 m
1 156 n
0 157 0

1 160 p
0 161 q
0 162 r
1 163 s
0 164 t

1 165 u
1 166 v
0 167 w
0 170 x
1 171 y
1 172 z
0 173
1 174
0 175
0 176

1 177

*A Appears as I orA on some machines.
** Appears as < on some machines.

A-4

(

('

This code generated by ALTMODE.
This code generated by prefix
key (if present).
DEL Delete. Rubout.

l)

A.2 RADIX-50 CHARACTER SET

--
Character

ASCII
Octal

Equivalent
Radix-50

Equivalent

--
Space 40 0

A-Z 101-132 1-32

$ 44 33

S6 34

Unused 3S

0-9 60-71 36-47

--
The maximum Radix-50 value is, therefore:

47*S0**2+47*S0+47•174777

The following table provides a convenient means of translating
between the ASCII character set and its Radix-SO equivalents. For
example, given the ASCII string X2B, the Radix-SO equivalent
(arithmetic performed in octal) is:

X•ll3000
2•002400
8•000002
X2B=-115402

A-5

(

Single Char.

or Second Third
First Char. Character Character

---Space 000000 Space 000000 Space 000000
A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
c 011300 c 000170 c 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K 000670 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
0 056700 0 001130 0 000017
p 062000 p 001200 p 00002oc
Q 065100 Q 001250 Q 000021
R 070200 R 001320 R 000022
s 073300 s 001370 s 000023
T 076400 T 001440 T 000029
u 101500 u 001510 u 000025
v 104600 v 001560 v 000026
w 107700 w 001630 w 000027
x 113000 x 001700 x 000030
y 116100 y 001750 y 000031
z 121200 z 002020 z 000032
$ 124300 $ 002070 $ 000033
• 127400 • 002140 • 000034
Unused 132500 Unused 002210 Unused 000035
0 135600 0 002260 0 000036
1 140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 00.0046
9 171700 9 003030 9 000047

(_)

A-6

)

)

APPllDl:I B

CIOll AlllKILll LAIGUAGI AID DillCTIVIS

B.l SPECIAL CHARACTERS

--
Character Designation Function

--

.. . .

-
llllll

@

(

)

•

<

Colon

Double colon

Equal sign

Double equal
sign

Tab

Space

Number sign

At sign

Left parenthesis

Right parenthesis

Period

Comma

Semicolon

Left angle
bracket

Label terminator.

Label terminator; defines
the label as a global
label.

Direct assignment operator
and macro keyword
indicator.

Direct assignment operator;
defines the symbol as a
global symbol.

Item or field terminator.

Item or field terminator/
separator.

**
**
**
**
Current location counter •

Operand field separator.

Comment field indicator.

Initial argument or
expression indicator.

>

+

*

I

&

"

\

Right angle
bracket

Plus sign

Minus sign

Asterisk

Slash

Ampersand

Exclamation point

Double quote

Single quote

Up arrow or
circumflex

Backslash

Left square
bracket

Right square
bracket

(

Terminal argument or
expression indicator.

Arithmetic addition operator
or **•

Arithmetic .subtract~on
operator or **•

Arithmetic multiplication
operator.

Arithmetic division
operator.

Logical AND operator.

Logical inclusive OR
operator.

Double ASCII character
indicator.

Single ASCII character
indicator; or concatenation
indicator.

Universal unary operator or
argument indicator.

Macro call numeric argument
indicator.

**

**

c

** Refer to chapter 5 of this manual for chip-specific syntax.

l
B-2

')

)

B.2 CROSS-ASSEMBLER OPERATORS AND DIRECTIVES

The following table auaaarizes the Eaulogic Cross Assembler operators
and directives. "Section Reference" refers to the section or
sections where you will find a detailed description of a particular
directive.

Form

II

Section
Reference

6.3.4
7.3

6.3.3

6.4.1.2

6.4.1.2

B-3

Operation

Followed by one ASCII
character a single quote
(apostrophe) generates a
word which contains the
7-bit ASCII representation of
the character in the
low-order byte and zero in
the high-order byte. This
character is also used as a
concatenation indicator in
the expansion of macro
arguments.

Followed by two ASCII
characters a double quote
generates a word which
contains the 7-bit ASCII
representation of the two
characters. The first
character is stored in the
low-order byte; the second
character is stored in the
high-order byte.

A temporary radix control,
causes the value n to be
treated as a binary number.

A temporary radix control,
causes the value n to be
treated as a decimal
number.

"'Hn 6.4.1.2

"'On 6.4.1.2

"'Rccc 6.3.8

• ASCII /string/ 6.3.4

• ASCIZ /string/ 6.3.6

.ASECT 6.7.2

B-4

A temporary radix control,
causes the value n to be
treated as a hexadecimal
number.

A temporary radix control,
causes the value n to be
treated as an octal number.

Converts ccc to Radix-SO
form •

Generates a block of data
containing the ASCII
equivalent of the
character string (enclosed
in delimiting characters),
one character per byte •

Generates a block of data
containing the ASCII

(

equivalent of the character (·
string (enclosed in
delimiting characters), one
character per byte, with a
zero byte terminating the
specified string.

Begins or resumes the
absolute program section.

)

.BLKB exp

• BLKW exp

• BLKL exp

.BYTE expl,exp2, ••

) .DSABL arg

.ENABL arg

• END [exp]

.ENDC

• ENDM [name]

)

6.5.3

6.5.3

6.5.3

6. 3. l

6. 2. l

6.2.1

6.6

6.9.1

7. 1. 2

B-5

Reserves a block of storage
space whose length in bytes
is deterained by the
specified expression.

Reserves a block of storage
space whose .length in words
is deterained by the
specified expression.

Reserves a block of storage
.space whose length in words
is determined by the
specified expression (used
for 32-bit processors only).

Generates successive bytes of
data; each byte contains the
value of the corresponding
specified expression.

Disables the function
specified by the argument.

Enables (invokes) the
function specified by the
argument •

Indicates the logical end
of the source program. The
optional argument specifies
the transfer address where
program execution is to
begin.

Indicates the end of a
conditional assembly block •

Indicates the end of
the current repeat block,
indefinite repeat block, or
macro definition. The
optional name, if used, must
be identical to the name
specified in the macro
definition.

.ENDR 7.7

.ERROR exp;text 7.5

.EVEN 6. 5. l

.GLOBL syml,sym2, ••• 6.8.l

• !DENT /string/ 6.1.4

.IF cond,argl 6.9.l

B-6

Indicates the end of the
current repeat block. This
directive is provided for
compatibility with other
cross assemblers.

A user-invoked error
directive, causes output
to the listing file or
the command output device
containing the optional
expression and the
statement containing the
directive.

Ensures that the current
location counter contains
an even address by
adding l if it is odd.

Defines the symbol(s)
specified as global
symbol(s) •

(

c
Provides a means of labeling
the object module with
the program version
number. The version number
is the Radix-50 string
appearing between the
paired delimiting
characters.

Begins a conditional assembly
block of source code which is
included in the assembly only
if the stated condition is
met with respect to the
argument(s) specified.

')

.IFF

.IFT

.IFTF

.IIF cond,arg,

• IRP sym,
<argl,arg2, •••)

5.9.2

6.9.2

6.9.2

6.9.3

7. 6. 1

B-7

Appears only within a
conditional assembly block,
indicating the beginning of
a section of code to be
assembled if the condition
upon entering the block
tests false •.

Appears only within a
conditional assembly block,
indicating the beginning of
a section of code to be
assembled if the condition
upon entering the block
tests true.

Appears only within a
conditional assembly
block, indicating the
beginning of a section
of code to be
assembled unconditionally.

Acts as a 1-line conditional
statement assembly block
where the condition
is tested for the
argument specified. The
statement is assembled
only if the condition
tests true.

Indicates the beginning of an
indefinite repeat block in
which the symbol specified
is replaced with
successive elements of
the real argument list
enclosed within angle
brackets.

.IRPC sym,<string) 7.6.2

• LIST [arg] 6. 1. 1

.LONG expl,exp2, ••• 6.3.3

.MACRO name,argl, ••• 7. 1. 1

.MCALL argl,arg2, ••• 7.8

.MEXIT 7.1.3

B-8

(

Indicates the beginning of an
indefinite repeat block in
which the specified symbol
takes on the value of
successive characters,
optionally enclosed within
angle brackets •

Without an argument, the
.LIST directive increments
the listing level count by
1. With an argument, this
directive does not alter
the listing level count,
but formats the assembly
listing according to the
argument specified.

Generates successive long
words of data; each long
word contains the value
of the corresponding
specified expression.

Indicates the start of a
macro definition having
the specified name and
the following dummy
arguments.

Specifies the symbolic names
of the user or system
macro definitions required
in the assembly of the
current user program, but
which are not def~ned
within the program.

Causes an exit from the
current macro expansion
or indefinite repeat
block.

.NARG symbol 7.4.1

.NCHR symbol,<string) 7.4.2

• NLIST [arg] 6. 1. 1

) .NTYPE symbol,aexp 7.4.3

.ODD 6.5.2

.PAGE 6. 1. 5

)
B-9

Appearing only within a macro
definition, equates the
specified symbol to the
number of arguments in
the macro call currently
being expanded.

Appearing anywhere in a
source program, equates
the symbol specified to
the number of characters
in the specified string •

Without an argument,
decrements the listing level
count by 1. With an
argument, this directive
suppresses that portion
of the listing specified
by the argument.

Appearing only within a macro
definition, equates the
symbol to the 6-bit
addressing mode of the
specified address expression.

Ensures that the current
location counter contains
an odd address by adding
1 if it is even.

Causes the assembly listing
to skip to the top of the
next page and to increment
the page count.

.PRINT exp;text 7.5

.PSECT name,attl, ••• 6.7.1

• RADIX n 6.4.1.1

.RADSO /string/ 6.3.7

.REM comment-character 6. 1. 6

B-10

(

User-invoked message
directive; causes output
to the listing file or
the comaand output device
containing the optional
expression and the
statement containing the
directive.

Begins or resumes a named or
unnamed program section
.having the specified
attributes.

Alters the current program
radix to n, where n
is 8 or 16.

Generates a block of data
containing the Radix-SO
equivalent of the
character string
enclosed within
delimiting characters.

c
Allows a programmer to insert
a block of comments
into an assembler
source program without
having to precede the
comment lines with the
comment character (;).

l

.R.EPT exp 7.7

.SBTTL string 6.1.3

.TITLE string 6. 1. 2

)

.WORD expl,exp2, ••• 6.3.2

B-11

Begins a repeat block; causes
the section of code up
to the next .ENDK or
.ENDR. directive to be
repeated nuaber of times
specified as exp.

Causes the specified string
to be printed as part
of the assembly listing
page header. The string
component of each .SBTTL
directive is collected
into a table of contents
at the beginning of the
assembly listing.

Assigns the first six
Radix-50 characters in
the string as an object
module name and causes the
string to appear on each
page of the assembly
listing.

Generates successive words of
data; each word contains
the value of the
corresponding specified
expression.

(

c

')

APPIBDII C

11101 BllSAGIS

An error code is printed as the first character in a source line
containing an error. This error code identifies the error condition
detected during Xhe processing of the line. Example:

Q 26 000236 010102 MOV Rl,R2,A

The extraneous argument A in the MOV instruction causes the line to
be flagged with a Q (syntax) error.

--
Error Code Meaning

--
A Assembly error. Because many different conditions

produce this error message, the directives which
may yield a general assembly error have been
categorized below to reflect these error
conditions:

CATEGORY 1: ILLEGAL ARGUMENT SPECIFIED •

• RADIX -- A value other than 8 or 16 is
specified as a new radix •

• LIST/.NLIST -- An illegal argument is
specified with the directive (see
Table 6-2) •

• ENABL/.DSABL -- An illegal argument is
specified with the directive, or the
attribute arguments of a previously
declared program section. (See Table 6-3) •

• PSECT -- An illegal argument is specified
with the directive, or the attribute
arguments of a previously declared program
section change (see Table 6-4 and
Section 6.7.1.1).

C-1

A (cont.)
.IF/.IIF -- An illegal conditional test
or an illegal argument expression value
is specified with the directive (see
Table 6-6)

.MACRO -- An illegal or duplicate symbol found
in dummy argument list •

• TITLE -- Program name is not specified in the
directive, or first non-blank character
following the directive is a non-Radix-50
character •

(

• IRP/.IRPC -- No dummy argument is specified in
the directive •

• NARG/.NCHAR/.NTYPE -- No symbol is specified
in the directive •

• IF/.IIF -- No conditional argument is
specified in the directive.

CATEGORY 2: UNMATCHED DELIMITER/ILLEGAL ARGUMENT
CONSTRUCTION •

• ASCII/.ASCIZ/.RAD50/.IDENT -- Character string
or argument string delimiters do not match, or
an illegal character is used as a delimiter, or
an illegal argument construction is used in the
directive •

• NCHAR -- Character string delimiters do not
match, or an illegal character is used as a
delimiter in the directive.

c-2

)

A (cont.)
CATEGORY 3: GENERAL ADDRESSING ERRORS.

This type of error results from one of several
possible conditions:

1. Permissible range of a bran~h instruction
has been exceeded.

2. A statement makes invalid use of the
current location counter. For example, a
".•expression" statement attempts to force
the current location counter to cross
program section (.PSECT) boundaries.

3. A statement contains' an invalid address
expression:

In cases where an absolute address
expression is required, specifying a global
symbol, a relocatable value, or a complex
relocatable value (see Section 3.9) results
in an invalid address expression.
If an undefined symbol is made a default
global reference by the .ENABL GBL
directive (see Section 6.2.1) during pass 1,
any attempt to redefine the symbol during
pass 2 will result in an invalid address
expression.

In cases where a relocatable address
expression is required, either a
relocatable or absolute value is
permissible, but a global symbol or a
complex relocatable value in the statement
results in an invalid address expression.

C-3

A (cont.)

B

D

E

I

For example:

.BLKB/.BLKW/.REPT -- User has not
specified an absolute value or an
expression which reduces to an absolute
value has been specified with the
directive.

4. Multiple expressions are not separated by a
comma. This condition causes the next
symbol to be evaluated as part of the
current expression.

CATEGORY 4: ILLEGAL FORWARD REFERENCE.

This type of error results from either of two
possible conditions:

l. A global assignment statement
(symbol==expression) contains a
forward reference to another symbol.

2. An expression defining the value of the
current location counter contains a forward
reference.

Bounding error. Instructions or word data are
being assembled at an odd address. The location
counter is incremented by l. (Only used for
microprocessors that must start instructions
on word boundaries.)

Doubly defined symbol referenced. Reference was
made to a symbol which is defined more than once.

End directive not found. When the end-of-file is
reached during source input and the .END directive
has not yet been encountered, the assembler generates
this error code, ends assembly pass l, and
proceeds with assembly pass 2. Also caused by
assembler-stack overflow. In this case the assembler
will place a question mark (?) into the line at
the point where the overflow occurred.

Illegal character detected. Illegal characters
which are also non-printable are replaced by a

C-4

(

L

M

N

0

p

R

T

question mark (?) on the listing. The character
is then ignored.

Input line is greater than 132(ln) characters in
length. Currently, this error condition is caused
only during macro expansion when longer real
arguments, replacing the dummy arguments, cause a
line to exceed 132(10) characters.

Multiple definition of a label. A label was
encountered which was equivalent (in the first six
characters) to a label previously encountered.

A number contains a digit that is not in the
current program radix. The number is evaluated as
a decimal value.

Opcode error. Directive out of context.
Permissible nesting level depth for conditional
assemblies has been exceeded. Attempt to expand a
macro which was unidentified after .MCALL search.

Phase error. A label's definition of value varies
from one assembly pass to another or a multiple
definition of a local symbol has occurred within a
local symbol block. Also, when in a local symbol
block defined by the .ENABL LSB directive, an
attempt has occurred to define a local symbol in a
program section other than that which was in
effect when the block was entered. An error code
P also appears if an .ERROR directive is
assembled.

Questionable syntax. Arguments are missing, too
many arguments are specified, or the instruction
scan was not completed.

Truncation error. A number generated more bits than
allowed.

C-5

u Undefined symbol. An undefined symbol was
encountered during the evaluation of an
expression; such an undefined symbol is assigned
a value of zero. Other possible conditions which
result in this error code include unsatisfied
macro names in the list of .MCALL arguments and a
direct assigaent (symbol•expression) sta~ement
which contains a forward reference to a symbol
whose. definition also contains a forward reference;
also, a local symbol may have been referenced that
does not exist in the current local symbol block.

C-6

(

~-)

0

()

0

IKULOGIC. IRCORPOaATBD
3 Technology Way

Norwood, Massachusetts 02062
Telephone: (617) 329-1031

Telex: 710-336-5908

