~wPoiriViewPoint |
B arac Programmer's Manua

XEROX

§10800190
sl UES Saptember 1985

Xerox Corporation

Office Systems Division
2100 Geng Road

MS 5827

Palo Alto, California 94303

Copyright © 1985, Xerox Corporation. All rights reserved.
XEROX @,8010,and XDE are trademarks of XEROX CORPORATION.

Printed in U.S. A.

PP N TS

e

T-1

Table of Contents
1 Introduction
1.1 Document Structure 1-2
1.2 Getting Started 1-2
- 2 Overview

2.1 What [s ViewPoint? 2-1
2.1.1 User Abstractions . 2-1
2.1.2 Client Abstractions 2-2
1213 System Structure 2-3
2.2 History 2-3
2.3 Philosophy and Conventions . . 2-4
2.3.1 Supported Public Interfaces 2-4
2.3.2 Plug-ins 2-4
2.3.3 Don’t Preempt the User 2-5
2.3.4 Don’t Call Us, We'll Call You 2-5

3 Programmer's Guide
3.1 Guide . e e 3-2
311 Guide to the Guide . 3-2
3.1.2 Containee . 3-3
3.1.3 Application Windows 3-3
. 3.1.4 Menus . e e e 3-4
-’ 3.1.5 Managing a Body Window . 3-4
3.1.5.1 Display. 3-4

Table of Contents

3.2

3.3

3.4

3.5

4.1
4.2
4.3
4.4

5.1

5.2

5.3
5.4

T-2

3.1.5.2 TIP and TIPStar.

3.1.5.3 Context

3.1.5.4 Selection e
3.1.6 Property Sheets and Form Window
3.1.7 XString, et al. .

3.1.8 XMessage and Attention

3.19 Containers .

3.1.10 SoftKeys
3.1.11 Client-Defined Keyboards .
Getting Started . .
3.2.1 Simplest Application

3.2.2 Icon Application

3.2.3 Operational Notes .

Flow Descriptions.

3.3.1 Select an Icon

3.3.2 PROPS of an Icon

3.3.3 OPEN an [con . .
3.34 COPY Something to an Icon
Programming Conventions

3.4.1 Notifier .

3.4.2 Multiple Processes, Multiple Instances.
3.4.3 Resource Management .

3.44 Stopping Applications .

3.4.5 Multinationality

Summary of [nterfaces

Application Folder

Overview .

Interface [tems

Usage/Examples .

Index of Interface [tems

Atom

Overview .

Interface Items

Making Atoms .

5.2.1

5.2.2 Error .

523 Property Lists .

524 Enumerating Atoms and Property Lists
Usage/Examples .

Index of Interface [tems

3-4

3-6

3-6

3-8

3-9

3-9
3-11
3-11
3-11
3-12
3-12
3-12
3-15
3-15
3-15
3-17
3-17
3-18
3-19
3-19
3-20
3-21
3-21
3-21

4-1
41
12
14

5-1
5-1
5-1
5-2
5-2
5-2
5-3

ViewPoint Programmer’s Manual

6.1
6.2

6.3
6.4

7.1
7.2

7.3
7.4

8.1
8.2

8.3

8.4

9.1
9.2

9.3

AtomicProfile

Overview .

Interface [tems .

6.2.1 Boolean Values

6.2.2 Integer Values . . .
6.2.3 String Values . .
Usage/Examples
Index of Interface Items

Attention

Overview .

Interface Items .

7.2.1 Simple Messages

7.2.2 Sticky Messages

7.2.3 Confirmation Messages
72.4 System Menu
Usage/Examples .

Index of Interface Items

BlackKeys

Overview .
Interface [tems e e
8.2.1 Keyboard Data Structures .

8.2.2 Getting a Handle to the Current Keyboard .

8.2.3 Procedures .

8.2.4 Errors .

Usage/Examples .

8.3.1 Defining a Keyboard Record
Index of Interface Items

BWSAttributeTypes
Overview . .

Interface Items

9.2.1 Available Appllcatxon Types
9.2.2 ViewPoint Types

Index of Interface Items

6-1
6-1
6-1

6-2
6-2
6-4

7-1
7-2
7-2
7-2

7-3
7-3
7-5

8-1
8-1
8-1
8-2
8-3

8-3
8-3
8-5

9-1
9-1
9-1
9-2
9-3

T-3

Table of Contents

T-4

10

10.1
10.2
10.3

11

1.1
11.2
11.3

12

12.1
12.2

12.3

13

13.1

13.2

13.3
13.4

13.4

14

14.1
14.2

BWSFileTypes

Overview .
Interface [tems

Index of Interface [tems

BWSZone

Overview .
Interface Items

Index of Interface [tems

Catalog

Overview .

Interface [tems e e e e e
12.2.1 Finding and Creating Files in a Catalog
12.2.2 Operating on Catalogs .

Index of Interface [tems

Containee

Overview . ..

13.1.1 Background

13.1.2 Containee.Implementation
13.1.3 Containee.Data

Interface [tems

13.2.1 [tems for Application Implementors
13.2.2 [tems for Application Consumers
13.2.3 DefaultImplementation

13.2.4 Attribute Cache

Errors and Signals

Usage/Examples .

13.4.1 Sample Containee .

13.4.3 ChangeProc Example

13.4.2 Error and Signal Usage

Index of Interface Items

ContainerCache

Overview .

Interface Items e e e e
14.2.1 Cache Allocation and Management
14.2.2 Filling the Cache

14.2.3 [tem Operations

10-1
10-1
10-2

11-1
11-1
11-3

12-1
12-1
12-1
12-2
12-3

13-1
13-1
13-1
13-2
13-2
13-2
13-7
13-7
13-7
13-9
13-9
13-9
13-10
13-12
13-13

14-1
14-1
14-1
14-1
14-2

ViewPoint Programmer’s Manual

14.3

14.4

15

15.1
15.2

15.3

15.4
16

16.1
16.2

16.3

16.4

17

17.1
17.2

17.3
17.4

14.2.4 Item Content Operations

14.2.5 Making Items in the Cache. . . .
Usage/Examples

14.3.1 Example of ContainerCache Use

Index of Interface [tems

ContainerSource

Overview .
Interfaceltems
15.2.1 Handle, Procedures, and ProceduresObject.

15.2.2 Procedures That Operate on Individual [tems .
15.2.3 Procedures That Operate on the Entire Source .

15.2.4 ChangeProc Types .

15.2.5 Errors .

15.2.6 INLINES

Usage/Examples .

15.3.1 ContainerSource Example .

15.3.2 Errors and Signals .

Index of Interface [tems

ContainerWindow

Overview

Interface [tems

16.2.1 Create and Destroy a Container Window
16.2.2 [tem Operations
16.2.3 Operations on a ContainerWindow .
16.2.4 Errors .

Usage/Examples .

Index of Interface [tems

Context

Overview .

Interface [tems e e e e
17.2.1 Creating/Destroying a Context.
17.2.2 Finding a Context on a Window
17.2.3 Acquiring/Releasing the Context
17.2.4 Errors .

Usage/Examples~ . . .
Index of Interface Items

14-4
14-4
14-5
14-5
14-8

15-1
15-2
15-2
15-2
15-4
15-6
15-7
15-8
15-8
15-8
15-9
15-10

16-1
16-1
16-1
16-2
16-3
16-4
16-4
16-7

17-1
17-1
17-1
17-2
17-3
17-3
17-4
17-6

T-5

Table of Contents

18

18.1
18.2

18.3
18.4

19

19.1

19.2

19.3
19.4

20

20.1
20.2

20.3

20.4

21

21.1
21.2

T-6 -

Cursor

Overview

Interface [tems

18.2.1
18.2.2
18.2.3
18.2.4
18.2.5
18.2.6

Major Data Structures .

Setting the Cursor Picture .

Getting Cursor Information
Miscellaneous Operations .
Client-Defined Cursors.

Cursor Picture Manipulation . . .

Usage/Examples .

Index of Interface [tems

Directory

Overview
19.1.1

. . . ° ° . . . ° . °

Predefined Divider Structure . . .

Interface [tems

Adding Items to a Predefined Divider

19.2.1
19.2.2 Get Divider Handle
Usage/Examples .

Index of Interface [tems

Display

Overview

Interface [tems

20.2.1 Painting Filled Boxes, Horizontal Lines, and Vértical Lines
20.2.2 Painting Bitmaps and Gray Bricks .

20.2.3 Painting Points, Slanted Lines, and Curved Lines .

20.2.4 Painting Paralellograms and Trapezoids .
20.2.5 Painting Along Trajectories, Shifting Window Contents
Usage/Examples . . .

20.3.1 Special Topic: Direct Painting .

20.3.2 Example

Index of Interface [tems

Divider

Overview .

Interface Items

21.2.1
2122
21.2.3

Creating and Destroying

ConvertProc and GenericProc

Adding Entries.

18-1
18-1
18-1
18-2
18-2
18-3
18-3
18-3
18-3
18-5

19-1
19-1
19-1
19-1
19-2
19-2
19-4

20-1
20-1
20-1
20-2
20-4
20-6
20-7
20-6
20-6
20-9
20-9

21-1
211
21-1
21-2
21-3

ViewPoint Programmer’s Manual

21.3
21.4
22

22.1
22.2

22.3

22.4

23

23.1
23.2

23.3

23.4

24

24.1
24.2

24.3

24.4

25

25.1

Usage/Examples .
21.3.1 Fragment from Directorylmpl.mesa

Index of Interface [tems

Event

Overview .

Interface [tems e e
22.2.1 Registering Dependencies .
22.2.2 Notification
Usage/Examples .

22.3.1 Example 1 .

22.3.2 Example 2 .

Index of Interface Items

FileContainerShell

Overview .

Interface [tems e e e
23.2.1 Create a FileContainerShell

23.2.2 Operations on the Shell
Usage/Examples

23.3.1 Example: Creating a FileContainerShell and Specifying Columns .

Index of Interface Items

FileContainerSource

Overview .

Interface [tems
24.2.1 Creation .

24.2.2 Specifying Columns

24.2.3 Operations on Sources .

24.2.4 Commonly Used Columns .
Usage/Examples .

24.3.1 Example: Specifying Columns Using FileContainerSource .

Index of Interface Items

FormWindow

Overview . e e e
25.1.1 Creating a Form Window
25.1.2 Making Form Items

25.1.3 Getting and Setting Values
25.1.4 “Changed” BOOLEAN .
25.1.5 Visibility

21-3
21-3
21-5

22-1
22-1
22-1
22-2
22-3
22-3
22-4
22-5

23-1
23-1
23-1
23-2
23-2

- 23-2

23-4

24-1
24-1
24-1
24-1
24-3
24-4
24-4
24-4
24-7

25-1
25-2
25-2
25-2
25-3
25-3

T-7

Table of Contents

T-8

25.2

25.3

25.4

26

26.1
26.2
26.3
26.4

25.1.6

Layout

Interface Items

25.2.1
25.2.2
25.2.2.1
25.2.2.2
25.2.2.3
25.2.2.4
25.2.2.5
25.2.2.6
25.2.2.7
25.2.3
25.2.3.1
25.2.3.2
25.2.4
25.2.5
25.2.6
25.2.6.1
25.2.6.2
25.2.6.3
25.2.7
25.2.8
25.2.9
25.2.10
25.2.11
25.2.12

Creating a Form Window, etc. .
Making Form [tems, etc.
Boolean Items .

Choice [tems

Command Items

Tagonly Items .

Text and Number Items
Window [tems .

Destroying [tems .
Getting and Setting Values
Getting Values .

Setting Values . .
“Changed” BOOLEAN .
Visibility

Layout

Flexible Layout

Tabs .

Fixed Layout

Save and Restore
Miscellaneous TYPEs .
Miscellaneous [tem Operations.
NEXT Key . .
SIGNALs and ERRORs
Multinational Stuff

Usage/Examples . .

25.3.1
25.3.2
25.3.3
25.3.4
25.3.5
25.3.6
25.3.7

Calling ChangeProcs .
Creating a Simple FormWindow

Specifying Bitmaps in Choice [tems

The NEXT Key and Text [tems

Window Items (Including Interaction with the NEXT Key).

Hints

Saving and Restoring Items

Index of Interface Items

FormWindowMessageParse

Overview .

Interface Items

Usage/Examples .

Index of Interface Items

25-3

25-4

25-4

25-6

25-7

25-9
25-12
25-12
25-13
25-15
25-16
25-16
25-17
25-18
25-19
25-20
25-21
25-21
25-23
25-24
25-25
25-25
25-25
25-26
25-26
25-29
25-29
25-29
25-30
25-31
25-32
25-33
25-34
256-35
25-36

26-1
26-1
26-1
26-3

i
Wa

ViewPaint Programmer’s Manual

27

27.1
27.2

27.3
27.4

28

28.1
28.2

28.4
29

29.1
29.2

29.3

29.4
30

301
30.2
30.3

IdleControl

Overview .

Interface [tems .
27.2.1 Desktop Plug-in
27.2.2 Greeter Plug-in
27.2.3 Idle Loop
Usage/Examples .

Index of Interface [tems

KeyboardKey

Overview .

Interface [tems .

28.2.1 System Keyboards .

28.2.2 Client Keyboards .
28.2.3 Setting and Enumerating Keyboaxds
28.2.4 Keyboard Window Plug-in .

28.2.5 Errors .

Usage/Examples . . e
28.3.1 AddToSystemKeyboardb Example .
28.3.2 Special Keyboard Example

28.3.3 Registering Multiple Client Keyboards E‘(ample

Index of Interface [tems

KeyboardWindow

Overview .

Interface [tems .

29.2.1 Default Values .

29.2.2 Geometry Table Structure .
29.2.3 Bitmap Structure .
29.2.4 Getting to the Keyboard Window Handle
Usage/Examples . e e e
29.3.1 Using DefaultPictureProc .
29.3.2 Using DefaultGeometry

29.3.3 Sample Geometry Table Entries
Index of Interface Items

LevellVKeys

Overview .
Interface [tems
Index of Interface Items

27-1
27-1
27-1
27-1
27-2
27-2
27-3

28-1
28-1
28-1
28-2
28-2
28-3
28-4
28-4
28-4
28-4
28-5
28-6

29-1
29-1
29-1
29-2
29-3
29-3
29-3
29-3
29-4
29-4
29-5

30-1
30-1
30-3

T-9

Table of Contents

P . N
31 MenuData ; |
|
31.1 Overview o .0 e e e e e e e e 31-1
31.2 Interfaceltems < < . . . 31-1
31.2.1 Menu and [tem Creation 31-1
31.2.2 Menu Manipulation 31-2
31.2.3 AccessingData. < < . . . 31-3
31.3 Usage/Examples < < .« . . < . < . 31-4
31.3.1 Examplel+ . . . < < .+ < . . 314
31.3.2 - Example2 o 31-5
31.4 Index of Interfaceltems 31-7
32 MessageWindow
32.1 Overview . e e e e e e e e e e e e e e e e e 32-1
32.2 Interfaceltems 32-1
32.2.1 Create, Destroy,etc. < . . . 32-1
32.2.2 Posting Messages 32-2
32.3 Usage/Examples 32-2
32.4 Index of Interface ltems 32-4
33 OptionFile
33.1 Overview 0ol e e e e 33-1
33.2 Interfaceltems 33-1
33.2.1 Getting Values fromaPFile. 33-1
33.2.2 CurrentProfiles 33-2
33.2.3 EnumeratingaFile 33-2
33.3 Usage/Examples < . . . 33-3
33.2.4 Errors 33-3
33.4 Index of Interface Items < . . . 33-5
34 PopupMenu
34.1 Overview00 e e e e e e e 34-1
34.2 Interfaceltems < . .. 34-1
34.3 Usage/Examples < . . . 34-1
34.3.1 Example 0 L L. 34-1
34.4 Index of Interface ltems 34-3
35 ProductFactoring
35.1 Overview. <00351 N
35.2 Interfaceltems < . . . 351 '

T-10

ViewPoint Programmer’s Manual

35.3
35.4

36

36.1
36.2
36.3

37

37.1
37.2

37.3

37.4

38

38.1
38.2
38.3
38.4

39

39.1

35.2.1 Product and Product Options

35.2.2 Checking for an Enable Option.
35.2.3 Describing a Product and an Option
35.2.4 Errors .

Usage/Examples .

Index of Interface Items

ProductFactoringProdcuts

Overview .

Interface [tems

Index of Interface Items

PropertySheet

Overview .

Interface Items

37.2.1 Create a Property Sheet (not a Linked one) .
37.2.2 Menu [tems and the MenultemProc

37.2.3 Linked PropertySheets

37.2.4 Miscellaneous .

37.2.5 Signals and Errors e e e e e
Usage/Examples . e e e e e e
37.3.1 Flow Description of Creating a Property Sheet .
37.3.2 An Ordinary Property Sheet

Index of Interface [tems

Prototype

Overview .

Interface [tems

Usage/Examples .

Index of Interface Items

Selection

Overview .

39.1.1
39.1.2
39.1.2.1
39.1.2.2
39.1.3
39.1.3.1
39.1.3.2
39.1.3.3

Requestors and Managers . .

Essential for a Requestor

Convert, Target, Value, Enumerate, Can You Convert .
Resource Allocation/Deallocation

Essential for a Manager

Set, ConvertProc, ActonProc, Manager, Data

More on Selection.Value -- ValueFreeProc and ValueCopyMoveProc

Storage Considerations for ConvertProc

35-1
35-1
35-2
35-2
35-3
35-4

36-1
36-1
36-2

37-1
37-2
37-2
37-3
37-4
377
37-7
37-8
37-8
37-9

37-12

38-1
38-1
38-2
38-3

39-1
39-1
39-2
39-2
39-3
39-3
39-4
39-4
39-5

Table of Contents

39.1.3.4 StorageConsiderétionsfor ManagerData 39-5

39.2 Interfaceltems < . . 39-5
39.2.1 Requestor Items < . . 39-5
39.2.1.1 Convert o e e e e e 39-5
39.2.1.2 Query 0. e e e e e e e e 39-8
39.2.1.3 Enumeration < < .. . 39-9
39.2.1.4 Copy, Move, Free,etec. 3911
39.2.2 Manager [tems - 2 5 1
39.221 Set. e a e e e e . 3912
39.2.22 Conversion.+ .+ o+ o« e < < . 3913
39.223 Query« 4 e e e e o . 3913
39.2.2.4 Enumeration < < < . 3914
39.2.2.5 Free,Copy,Move,etc.« .+ < .+ < . . 3914
39.2251Free+« v < e .. . 3915
39.2252CopyandMove. 39-16
39.226 ActOn0 . e .. 3917
39.2.2.7 SaveandRestore 3918
39.2.2.8 Miscellaneous+ .+ . < . 3919
39.2.3 Errors+ < < < . . 3920
39.3 Usage/Examples+ < .« <« < . . . 3920
39.3.1 What SelectionisNOT. 3920
39.3.2 Random Details o 3921
39.3.3 Examples of Storage Allocation for Manager's ConvertProc . . . 39-21
39.3.4 Detailed Flowchart of a Selection.Convert 39-22
39.3.5 Sample ConvertProc and Requestor 3924
39.3.6 Sample Use of Enumeration 3927
39.4 Index of Interface Items 3929
40 SimpleTextDisplay
40.1 Overview e e e e e e 40-1
40.2 Interfaceltems < 40-1
40.2.1 Simplest Way to Display Text 40-1
40.2.2 StringlntoBuffer 40-2
40.2.3 Measureand Resolve 40-4
40.2.4 Multinational Items 40-5
40.3 Usage/Examples < . . . 40-6
40.3.1 StringIntoWindow 40-6
40.3.2 StringIntoBuffer 40-6
40.4 Index of Interface Items 4038

T-12

)

ViewPoint Programmer’s Manual

41

41.1

41.2

41.3

41.4

42

42.1
42.2

42.3

42.4

43

43.1
43.2

43.3

43.4

SimpleTextEdit
Overview . .
41.1.1 Creatmg Fields
41.1.2 Displaying a Field .
41.1.3 Notifying a Field
Interface Items

41.2.1 FieldContext

41.2.2 Creating Fields
41.2.3 Displaying a Field .
41.2.4 Notifying a Field
41.2.5 Miscellaneous Get and Set Procedures .
41.2.6 ChangeSize Proc
41.2.7 Errors .

Usage/Examples .

41.3.1 Selection Management . .
Index of Interface [tems
SimpleTextFont

Overview .

Interface [tems

42.2.1 System Font .

42.2.2 Client-Defined Characters .

42.2.3 Signals and Errors .
Usage/Examples . . .
42.3.1 Adding a Client- Def"med Character
42.3.2 Acquiring the System Font.

Index of Interface [tems

SoftKeys

Overview .

Interface [tems

43.2.1
43.2.2
43.2.3
43.2.4
43.2.5

Data Structures for SoftKey Labels
Creating and Deleting SoftKeys

Highlighting and Outlining a SoftKeys Kevtop Picture
Retrieving Information About a SoftKeys Window Instance

Errors .

Usage/Examples

43.3.1
43.3.2

Graphics Example .
Keyboard Manager.

Index of Interface [tems

41-1
41-1
41-2
41-2
41-2
41-2
41-3
41-4
41-5
41-7
41-8
41-9
41-9
41-9
41-10

42-1
42-1
42-1
42-2
42.2
42-2
42-3
42-3
42-4

43-1
43-1
43-1
43-2
43-3
43-4
43-4
43-4
43-4
43-5
43-6

T-13

Table of Contents

44

44.1
44.2

44.3

44 .4

45

45.1

45.2

45.3
45.4

46

46.1

T-14

. StarDesktop

Overview .

Interface [tems

44.2.1
44.2.2

General

Atoms .

Usage/Examples .

44.3.1
44.3.2

Adding a Reference to the Desktop .
LogonProc and Display-Background-Proc Use .

Index of Interface [tems .

StarWindowShell

Overview .

45.1.1 Client Overview e e e e
45.1.2 Creating a StarWindowShell, Handles, etc.
45.1.3 Body Windows .

45.1.4 Commands and Menus .

Interface Items

Create a StarWindowShell, etc.

45.2.1

45.2.1.1 [IsCloseLegalProc

45.2.1.2 Miscellaneous Get and Set Procedures .
45.2.2 Body Windows .

45.2.3 Commands and Menus .
45.2.3.1 Pushee Commands .

4524 Transition Procs

45.2.5 Scrolling

45.2.6 Push, Pop, ete. .

4527 Limit and Adjust Procs.
45.2.8 Displayed StarWindowShells
45.2.9 Errors .

Usage/Examples .

Index of Interface Items

TIP

Overview .

46.1.1
46.1.2
46.1.3
46.1.4
46.1.5
46.1.6

Basic Notification Mechanism .

Tables .

Input Focus

Periodic Notification e e e
Call-Back Notification and Setting the Manager
Attention and User Abort .

44-1
44-1
44-1
44-2
44-3
44-3
44-3
44-4

45-1
45-1
45-2
45-3
45-4
45-4
45-4
45-T
45-8
45-9
45-12
45-13
45-14
45-16
45-19
45-21
45-22
45-22
45-22
45-24

46-1
46-1
46-2
46-2
46-3
46-3
46-3

ViewPoint Programmer’s Manual

46.2

46.3

46.4

47

47.1
47.2

47.3

47.4

46.1.7 Stuffing Input into a Window

Interface Items

46.2.1 Results.

46.2.2 Notify Procedure

46.2.3 TIP Tables . e e e e e e
46.2.4 Associating Notify Procedures, Tables and Windows
46.2.5 Creating and Destroying Tables

46.2.6 Input Focus . .

46.2.7 Character Translation
46.2.8 Periodic Notification

46.2.9 Call-Back Notification .

46.2.10 Manager

46.2.11 User Abort .

46.2.12 Attention .

46.2.13 Stuffing Input into a ‘Window

46.2.14 Errors

46.2.15 Miscellaneous [tems

Usage/Examples . ..

46.3.1 Periodic Notification

1 46.3.2 Syntax of TIP Tables

46.3.3 Semantics of Tables

46.3.4 Example Table

46.3.5 Simple TIP Client Example
46.3.6 Modifying an Existing TIP Client
46.3.7 Macro Package

Index of Interface [tems

TIPStar

Overview .

Interface Items ..

47.2.1 The TIPStar Structure . .
47.2.2 Installing and Removing Tables
47.2.3 Retrieving Pointers to Installed Tables.
47.2.4 Mouse Modes

Usage/Examples . .
47.3.1 When PushTable is Called
47.3.2 When StoreTable is Called .
47.3.3 When PopTable is Called

Index of Interface Items

46-3
46-4
46-4
46-4
46-5
46-5
46-6
46-7
46-7
46-8
46-8
46-9
46-9
46-10
46-10
46-11
46-11
46-12
46-12
46-12
46-13
46-16
46-16
46-19
46-19
46-20

47-1
4741

71
47-2
47-3
47-3
47-4
47-4
47-5
47-7
47-8

T-15

Table of Contents

48

48.1
48.2

48.3

48.4
49

49.1
49.2
49.3

49.4

50

50.1

50.2

50.3

50.4

51

51.1
51.2

T-16

Undo

Overview .

Interface Items e
48.2.1 Application’s Procedures
48.2.2 Implementation’s Procedures
Usage/Examples . .

48.3.1 Example . . .

Index of Interface Items

UnitConversion

Overview .

Interface Items

Usage/Examples. . ..
493.1 Converting Font Values

Index of Interface [tems

Window

Overview.
50.1.1 Window Creation ce

50.1.2 Child Windows and the Window Tree

50.1.3 Painting into a Window

50.1.4 Bitmap-under .

50.1.5 Window Panes .

Interface Items e e e e e e
50.2.1 Basic Data Tvpes and Utility Operations
50.2.2 Window Creation and Initialization

50.2.3 Access to and Modification of a Window's Properties
50.2.4 Window Tree and Window Box Manipulation
50.2.5 Causing Painting

50.2.6 Errors . ce e

50.2.7 Special Topic: Bitmap-under
Usage/Examples . e e e

50.3.1 Display Procedures and MONITORs

50.3.2 Example 1 .

Index of Interface Items

XChar

Overview .
Interface [tems

51.2.1 Character Representation .

48-1
48-1
48-1
48-2
48-2
48-3
48-4

49-1
49-1
49-1
49-1
49-3

50-1
50-1
50-1
50-2
50-3
50-3
50-3
50-3
50-5
50-6
50-7

50-10

50-11
50-12
50-13
50-13
50-14
50-16

51-1
51-1
51-1

ViewPoint Programmer’s Manual

51.3

51.4

52

52.1
52.2

52.3

52.4

53

53.1
53.2

53.3
53.4

54

54.1

54.2

54.3

51.2.2 JoinDirection and StreakNature
51.2.3 Case

Usage/Examples
51.3.1 Creating an ASCII Character
51.3.2 Creating a Greek Character

Index of Interface Items

XCharSets

Overview .

Interface Items

52.2.1 Sets e e e
52.2.2 Enumeration of Character Sets.
Usage/Examples . e
52.3.1 Creating a Greek Character
Index of Interface Items

XComSoftMessage

Overview .

Interface [tems Ce e
53.2.1 Obtaining Message Handle
53.2.2 Message Keys .
Usage/Examples .

[ndex of Interface [tems

XFormat

Overview . e e e
54.1.1 Major Data Structures .
54.1.2 Operations

Interface Items .

54.2.1 Handles and Objects

54.2.2 Default Output Sink

54.2.3 Text Operations

54.2.4 Number Formats

54.2.5 Numeric Operations

54.2.6 Built-in Sinks .

54.2.7 Date Operation .
54.2.8 Network Data Operations .
54.2.9 NSString Operations
54.2.10 Errors .

Usage/Examples . ..

54.3.1 Using Built-in Sinks

51-2
51-2
51-3
51-3

- 51-3

51-4

52-1
52-1
52-1
52-2
52-2
52-2
52-3

53-1
53-1
53-1
53-1
53-2
53-3

54-1
54-1
54-1
54-2
54-2
54-2
54-2
54-3
54-4
54-4
54-5
54-5
54-6
54-6
54-6
54-6

Table of Contents

54.3.2 Creating New Format Procedures 54-7
54.4 Index of Interfaceltems 54-9
55 XLReal
55.1 Overview 0 e e 55-1
55.2 Interface Items 55-1
55.2.1 Representation e e e e e e e e e e e e e 55-1
55.2.2 Conversion e e e e e e e e e e e e e e 55-1
55.2.3 Comparison 55-2
55.2.4 Operations e e e e e e e e e e e e e 55-2
55.2.5 Special Numbers 55-3
) 55.2.6 Errors 55-4
55.2.7 Special Constants 55-4
55.3 Usage/Examples < . . 55-4
55.3.1 Special Numbers 55-4
55.3.2 Times of Common QOperations 55-4
55.4 Index of Interface Items 55-5
56 XMessage
56.1 Overview e e e 56-1
56.1.1 Message Usage. 56-1
56.1.2 Message Composition and Templates 56-1
56.2 Interfaceltems0 56-2
56.2.1 Handles <« 56-2
56.2.2 Getting Messages < 56-2

56.2.3 Composing Messages« .« .« 56-2
56.2.4 Defining Messages. 56-3

56.2.5 Obtaining Messages fromaFile 56-4
56.2.6 Destroying Message Handles 56-5
5527 Error 0. 56-5
56.3 Usage/Examples 56-5
56.3.1 Structuring Applications to Use Messages 56-5
56.3.2 Cxample of Message Usage. 56-6
56.4 Index of Interface Items 56-8
57 XString
57.1 Overview e e 57-1
57.1.1 Character Standard 57-1
57. 1.2| Data Structures 57-1
57.1.3 Operations e e e e e e e e e e e e 57-2
57.2 Interfaceltems 57-2

T-18

ViewPoint Programmer’s Manual

57.3

57.4

58

58.1
58.2

58.3

58.4

59

59.1
59.2

57.2.1
57.2.2
57.2.3
57.2.4
57.2.5
57.2.6
57.2.7
57.2.8
57.2.9
57.2.10
57.2.11
57.2.12
57.2.13
57.2.14
57.2.15
57.2.16
57.2.17
57.2.18
57.2.19

Contexts

Readers and ReaderBodies .
Writer and WriterBodies
Simple Reader Operations .
Accessing Characters
Errors .

Conversion to Readers .
Reader Allocation .

Simple Writer Operations .
Conversion to Writers .
Writer Allocation

Comparison of Readers.

Numeric Conversion of Readers

Character Scanning
Other Reader Operations
Appending to Writers
Editing Writers

Conversion from Readers

Reverse Character Operations .

Usage/Examples .

57.3.1
57.3.2
57.3.3

Designing Interfaces with Readers .

Using Readers . . .

Simple Parser Example

Index of Interface Items

XTime

Overview .

Interface Items

58.2.1 Acquiring Time

58.2.2 Editing Time

58.2.3 Useful Constants and Variables
Usage/Examples .

58.3.1 Parse Reader Template Definitions
58.3.2 Example

Index of Interface Items

XToken

Overview .

Interface Items

59.2.1
59.2.2

Character Source Definitions

Filter Definitions

57-2
57-3
57-4
57-5
57-5
57-6
57-6
57-7
57-8
57-8
57-8
57-9
57-10
57-11
57-11
57-12
57-13
57-14
57-14
57-15
57-15.
57-16
57-17
57-19

58-1
58-1
58-1
58-2
58-3
58-4
58-4
58-4
58-6

59-1
59-1
59-1
59-2

T-19

Table of Contents

59.2.3 Skip Mode Definitions .
59.2.4 Quoted Token Definitions .
59.2.5 Built-in Handles
59.2.6 Boolean and Numeric Tokens .
59.2.7 Basic Token Routines
59.2.8 Signals and Errors .
59.2.9 Built-in Filters.
59.2.10 Built-in Quote Procedures .
59.3 Usage/Examples . ..
59.3.1 Collecting Tokens .
59.4 Index of Interface [tems
Appendices
A System TIP Tables
B References
C Well-Known Atoms
D Listing of Public Symbols

T-20

59-2
59-3
59-3
59-3
59-4
59-5
59-6
59-7
59-7
59-7
59-9

Introduction

This ViewPoint Programmer’s Manual is written for programmers who are developing
applications to run on ViewPoint software. ViewPoint’s open architecture philosophy
allows applications to be developed easily.

You will find this manual useful only if you are already a Mesa programmer. You should
have completed the Mesa Course and be familiar with the contents of the XDE User’s
Guide (610E00140) and the Mesa Language Manual (610E00170). You should also be
familiar with the facilities described in the Pilot Programmer’s Manual (610E00160) and
the Filing Programmer's Manual contained in the Services Programmer’s Guide
(610E00180).

The ViewPoint Programmer’s Manual provides you with the information you will need to
implement the user interface of an application that runs on ViewPoint. This includes
information such as how to:

® Represent applications as icons.

® Interact with the mouse and keyboard to process the user’s instructions.

® Create folder-like containers.

® (Create property sheets.

® Create menus.

® Paint pictures and text on the display.

® (Create programmable keyboards.

® Represent and manipulate multinational text.

It does not provide you with Mesa, Pilot, or Services-specific information.

1-1

Introduction

1.1 Document Structure

This introductory chapter describes the physical manual itself, how it is organized, who
should read it, how it should be read, and why. Chapter 2, Overview, describes ViewPoint
and discuss its history and overall design

Chapter 3, The Programmer’s Guide, tells how to use the ViewPoint interfaces. It
describes concepts essential to understanding ViewPoint and describes the facilities that
are available. The most common interfaces are briefly discussed and grouped by
application. All of the ViewPoint interfaces, with a short summary, are listed
alphabetically at the end of the chapter.

The individual interface chapters are arranged alphabetically in Chapters 4 through 59.
These chapters provide detailed descriptions of the interfaces that ViewPoint provides.
Each interface chapter begins with an overview that explains the concepts behind the
interface and the important data types that it manipulates. The second section of each
chapter describes the actual items of the Mesa interface and groups them by function. The
third section explains typical ways of using the interface and often contains programming
examples, and the fourth section is the index of interface items. Within an interface
chapter, the items of the broadest interest are presented first. more specialized items
follow later. '

Appendix A presents the system TIP Tables, references are in Appendix B, Appendix C
contains a list of well-known Atoms, and Appendix D contains a listing of public symbols.

1.2 Getting Started

1-2

Chapters 1, 2, and 3 of the ViewPoint Programmer’'s Manual should be read in order.
Within Chapter 3, you will sometimes be guided to various sections in task-relative rather
than page-relative order. Chapters 4 through 59 (the interface chapters) can be read in
any order, depending on your need.

Overview

2.1 Whatls ViewPoint?

ViewPoint is a collection of facilities for writing application programs that run on a
personal workstation with a high-resolution bitmap display. It supports an open-ended
collection of applications, providing a framework and a set of rules that allow these
independent applications to be integrated. It has an advanced user interface that also
allows applications to be easily adapted for users in other countries.

Throughout this document, the term user describes people who interact with the
applications built on ViewPoint via the mouse and keyboard. User actions are not
predictable or controllable by programs. The term client describes programs that use the
facilities described in this document The client may act as a result of some user action,
but the behavior of the client is the result of a program and under control of its
implementor.

2.1.1 User Abstractions

ViewPoint uses several abstractions that are part of the advanced user interface pioneered
by the Star Workstation:

® [cons and Desktop. Icons that represent objects on a desktop are one basic abstraction
These objects can represent either functions or data. Data icons, such as a document,
represent objects on which actions can be performed. Function icons, such as a printer,
represent objects that perform actions. In the metaphor, they are on the desktop that
also serves as the background for their display. With ViewPoint, clients may create
new icons that provide additional functions within the desktop metaphor.

® Windows. Windows are rectangular areas on the screen that display the contents of an
icon when it is opened. Each window has a header containing the name of the
window’s icon and a set of commands. The window also contains scroll bars that scroll
the contents of the window vertically and horizontally

2-1

Overview

® Property Sheets. Property sheets are displayed forms that show the properties of an
object. They contain several types of parameters, including state parameters, which
may be on or off; choice parameters, which have a set of mutually exclusive values;
and text parameters.

® Selection. The selection is an object or body of data identified by the user. It is the
target of user actions; there can be only one selection at any one time. It can be a string
of text that the user may then delete, copy, or change the properties of. It can be an
icon on the desktop that is moved to a printer icon for printing or opened to display its
contents. In general, it can be almost any piece of data that can be represented on the
screen.

2.1.2 Client Abstractions

To implement the above user abstractions and to provide some building blocks for
developing applications, ViewPoint uses several client abstractions:

® (Containee and StarDesktop. Containee is an application registration facility that
associates an application with a file type. Registering an application consists of
providing procedures that paint iconic pictures and perform various operations.
StarDesktop, using the desktop metaphor, displays the desktop window and iconic
pictures for each file found in a particular directory.

® C(Client Windows. The client window abstraction is more primitive than the user
window abstraction. The client window abstraction serves to isolate applications from
the physical display and each other. A window can be thought of as a quarter of an
infinite plane. Within that space, the client is called upon to display the contents of the
window without regard to any other applications’ windows. Windows may be linked to
form a tree structure. A user’s window is typically composed of a number of small
client windows—one for the header, one for each scroll bar, and so forth.

® Menus. Menus are sequences of named commands, each consisting of a text name and
a procedure. Menus may be displayed to the user in several forms, such as in a pop-up
menu or as window shell header commands (see below).

® Window Shells. The user window abstraction is implemented by window shells. They
provide the header, scroll bars, and body windows. The body windows are windows the
client uses to display the content of an application. The commands in the header are
menus.

¢ Form Windows. Form windows are the client abstraction that provides the basis for
the user property sheet. Form windows allow form items in a window to be created and
manipulated. There are several types of items: boolean items, choice items, text items,
numeric text items, command items, form and window items. Window items allow the
client to implement its own type of item. The property sheet user abstraction is
implemented by putting a form window inside a window shell.

ViewPoint Programmer’s Manual 2

® C(Container Windows. Container windows implement a window that contains a list of
items. Clients supply the source of items and the container window handles displaying
the contents in a window and interacting with the user.

® Selection. The client selection abstraction is a framework in which a client can
manifest itself as the holder of the user’s current selection while other clients
interrogate the selection and request that it be converted to a variety of data types.
ViewPoint defines several selection conversion types, but the selection framework
allows clients to define additional conversion types. The selection is the principal
means by which information is transferred between different applications.

2.1.3 System Structure

ViewPoint’s architecture contains a small set of public interfaces that provide the basic
facilities for building workstation applications. Facilities are included in ViewPoint for
several reasons. Some facilities implement system-wide features, such as the window
package. If several applications tried to implement their own window packages, chaos
would result. Facilities are also included in ViewPoint to provide consistent user
interface, such as form windows and property sheets. A final reason for including facilities
is to provide packages that are useful to many clients, such as the simple text facilities. As
ViewPoint evolves, more facilities useful to a variety of clients will be added.

The ViewPoint interfaces fall into the following general categories:

Application registration: Containee
Windows and display: Context, Display, StarWindowsShell, Window
Forms and property sheets: FormWindow, FormWindowMessageParse, PropertySheet

User input and keyboards: BlackKeys, KeyboardKey, KeyboardWindow, LevellVKeys,

SoftKeys, TIP, TIPStar
Strings and messages: XChar, XCharSets, XCharSetNNN, XComSoftMessage,
XFormat, XLReal, XMessage, XString, XTime, XToken
Selection: Selection '
Containers: ContainerCache, ContainerSource, ContainerWindow,

FileContainerShell, FileContainerSource
Text display and editing: SimpleTextDisplay, SimpleTextEdit, SimpleTextFont

Miscellaneous user interface: Attention, Cursor, MenuData, MessageWindow,
PopupMenu, StarDesktop, Undo

Miscellaneous: Atom, AtomicProfile, Event, IdleControl

2.2 History

ViewPoint is the result of past experience with Star and the Xerox Development
Environment. In late 1982, the Star Performance and Architecture Project concluded that
Star’s monolithic system structure, in which every piece knew about every other piece,
hindered its performance. The monolithic structure also made it difficult to develop new

2.3

Overview

applications. In addition, there were hundreds of interfaces in the system but no
distinction between public and private interfaces, making it difficult for programmers to
learn how to write applications in the system.

In contrast to Star, the Xerox Development Environment had a modular system structure
with a small number of well-documented public interfaces It also encouraged an
open-ended collection of applications. While it performed well and was open, the Xerox
Development Environment did not have as consistent a user interface as Star, nor did it
support Star’s multinational requirements.

As a result of this study, ViewPoint was created. It has the system structure, documented
public interfaces, and openness of the Xerox Development Environment, vet supports
Star’s user interface and multinationality requirements.

While it was initially focused on providing a new foundation for Star, ViewPoint has
become the basis for more software products from the Office Systems Division. It will
evolve to replace the current foundation of the Xerox Development Environment and will
likely support products from organizations outside the Office Systems Division.

2.3 Philosophy and Conventions

ViewPoint’s philosophy and conventions apply both to applications that interact with the
user and to packages that implement some facility. Some are just good system-building
concepts. ViewPoint assumes that programs that run within it are friendly and that they
are not trying to circumvent or sabotage the system. The system does not try to enforce
many of these conventions but assumes that clients will adhere to them voluntarily. If
these conventions are not followed, the system may degrade or break down altogether

2.3.1 Supported Public Interfaces

Systems should be designed to export public interfaces that are well documented and
relatively stable. By defining a set of primitive facilities and stressing their stability,
applications are encouraged to depend on the existing ViewPoint facilities rather than on
other applications packages. This promotes an open architecture in which applications can
be developed and loaded with relative ease, exchanging information among themselves
while maintaining the independence of client modules. The open architecture allows
designing for unknown applications as well as the class of applicatinns expected in Star

In keeping with an open architecture, ViewPoint does not make far-reaching assumptions
about the applications that run above it. While it provides facilities that make certain
styles of applications easy, it does not preclude other styles of applications.

2.3.2 Plug-ins

2-4

ViewPoint is self-contained in that it does not import procedures that it expects a client to
supply. Rather it waits, in effect, for clients to call it and state that they wanto to
implement some facility. This is referred to as a plug-in approach: an application plugs
itself in to a lower layer of software.

Plug—-ins encourage modularity at the client level. Since ViewPoint can be run by itself
(although it does not do much), it can also be run with just one application plugged in.

ViewPoint Programmer’s Manual ' 2

Thus each application can be implemented and debugged individually, simplifying system
development.

Plug-ins also can break a dependency that would create a complex dependency graph. For
example, the desktop has a dependency on the applications that appear in the desktop. If
the desktop depended directly on the applications, it would have to change every time a
new application was created. By having the applications plug themselves into the desktop,
the direct dependency is broken.

2.3.3 Don’t Preempt the User

Clients should avoid dictating what the user must do. The user should be free to interact
with different applications as desired. For example, the current selection is something
that the user should control. It should be changed only as a result of user actions. A
background process should not change the selection out from under the user.

2.3.4 Don’t Call Us, We’ll Call You

Since the user is in control, a program must wait for the user to interact with it. The
method of interacting with the user that is prevalent in terminal-oriented user interfaces
is to get a command from the user and execute it, which results in the client regaining
control while it awaits user input. With potentially multiple applications active
simultaneously, the user should be free to interact with the one of his choosing.
ViewPoint’s input facilities notify a window when the user inputs to that window.

Events are another case in which the system calls the client. For example, a client may
need to do something when the user logs in. If the client registers a procedure with the
appropriate event, the procedure is invoked when the event occurs.

25

Overview

2-6

Programmer’s Guide

This guide for ViewPoint application programmers is intended to point the programmer to
the most important parts of the most important interfaces needed for writing an
application in ViewPoint.

ViewPoint is a collection of interfaces to be used for writing application programs. It is
primarily intended to support applications like those in the ViewPoint workstation; that
is, there is support for icons, windows, property sheets, and so forth.

The first section (3.1 Guide) contains a jump table of the form, “If your application does X,
then you use interfaces A and B, also you need to understand C and D, and you probably
want to read section 3.1.x.” The subsections (3.1.x) provide more detail about A, B, C, and
D, pointing the programmer to the most important types and procedures in an interface.
The second section (3.2 Getting Started) contains essential information for first-time
ViewPoint programmers. Section 3.3 provides some flow of control descriptions for several
common scenarios. It describes which interfaces call which client procedures when, and so
forth. Section 3.4 discuss some programming conventions specific to ViewPoint interfaces.
Section 3.5 contains a summary of all the ViewPoint interfaces.

First, we briefly define an application from the user’s point of view: The user sees the icons
on the desktop, and can operate on them in various ways. He can select an icon with the
mouse and open it to display its contents. Or by selecting the icon and pressing PROPS, he
can examine and change the icon’s properties through a window called a property sheet.
After an icon is opened, he can examine the properties of the contents and change them by
again using the property sheet. By selecting one icon, pressing COPY or MOVE, and then
selecting another icon, he can perform various application-specific operations. This is
often referred to as “dropping one icon onto another.” Each application attaches a different
meaning to the drop on operation. For example, the folder takes the icon dropped onto it
and adds it to the folder. The printing application (printer icon) prints the icon dropped
onto it.

From the application’s point of view, an icon is just a picture that represents a file. Files
have a file type, and an application operates on all files of the same type. Thus when the
user selects a folder icon, he is actually selecting a file with file type of folder. When the
user performs some operation on an icon, the desktop calls the appropriate application
based on the file type of the file represented by the selected icon.

3-1

3 Programmer’s Guide

3.1 Guide

The following table can help you readily find a desired section.

3.1.1 Guide to the Guide

If your application ... See section

. Appears as an icon:

- Read about icon applications in 3.2 Getting Started
- Use Containee to register the icon’s behavior

... Opens a window:

- Use StarWindowsShell to create a window
- Use MenuData to construct menus

... Manages the contents of a window:

- Use Display and Window to display information

- Supply a Tie.NotifyProc to process user actions

- Use Selection to share data between applications

- Use Context to save data with the window
... Puts up a Property Sheet:

- Use PropertySheet and FormWindow interfaces
... Manipulates strings:

- Use the XString interfaces (including XFormat, XToken, XChar)
... Displays messages to the user:

- Use the XMessage and Attention interfaces
... Displays a list of items like a folder:

- Use the Container interfaces (ContainerWindow, ContainerSource)
... Redefines the function keys:

- Use the SoftKeys interface

... Redefines the Black Keys:

- Use BlackKeys and KeyBoardKey interfaces

3-2

3.2.2
3.1.2

3.1.3
3.1.4

3.1.5
3.1.5
3.1.5
3.1.5

3.1.6

3.1.7

3.1.9

3.1.10

3.1.11

ViewPoint Programmer’s Manual 3

3.1.2 Containee

Containee is an application registration facility. An application is a software package that
implements the manipulation of one type of file. Containee is a facility for associating an
application with a file type. (§3.2.2 explains how an application registers itself and is then
invoked to perform various operations). The most important items in Containee are:

Implementation A record containing several client procedures.
Setimplementation Registers an application.
GenericProc Client procedure called to perform OPEN, PROPS, COPY/MOVE-

onto, and so forth.

PictureProc Client procedure called to display an icon picture.

Data, DataHandle Uniquely identifies a file.
3.1.3 Application Windows

StarWindowsShell allows a client to create a Star-like window. A StarWindowsShell
window has a header that contains a title, commands, and popup menus. The window may
have scrollbars, both horizontal and vertical. It also has interior window space that may
contain anything the client desires. StarWindowShell also supports the notion of opening
within.

A StarWindowsShell is a window (see Window interface) that is a child of the desktop
window. A StarWindowShell has an interior window which is a child of the
StarWindowsShell and is exactly the size of the available window space in the shell, that is,
the window shell minus its borders and header and scrollbars. The interior window may
have child windows created by the client. These children of the interior window are called
body windows. The client may create an arbitrary number of body windows and may
arrange them in an arbitrary fashion. Note: Since the body windows are children of the
interior window, they are clipped by the interior window.

Body windows may be managed directly by the client, including all display and
notification (user input). (See §3.2.4). Body windows can also be managed by various
interfaces provided by ViewPoint, such as FormWindow and ContainerWindow. These
interfaces have Create procedures that take a body window and turn it into a particular
kind of window, providing all the display and notification handling for the window.

The most important items in StarWindowsShell are:

Create Creates a StarWindowsShell window.
CreateBody Creates a body window.
ShellFromchild Returns the window shell, given a body window.

SetRegularCommands Places commands in the header of a StarWindowShell.

Programmer’s Guide

AddPopupMenu Adds a popup menu to the header of a StarWindowsShell.

3.1.4 Menus

A menu is a list of named commands. When the user selects a menu command, a client
procedure is called. The MenuData interface allows menu items and menus to be created.
MenuData does not address the user interface for menus. Menu items may appear as
commands in the header of a star window shell (starwindowshell.SetRegularCommands).
Entire menus may be accessed via a popup symbol in the header of a window shell
(starwindowshell. AddPopupMenu). Menu items may be added to the popup menu that is
available to the user through the attention window (Attention.AddMenultem).

The most important items in MenuData are:’

Createltem Creates a menu item.

MenuProc A client procedure that is called when the user selects a
menu item.

CreateMenu Creates a menu from an array of menu items.

3.1.5 Managing a Body Window

Clients can manage their own body windows. This involves handling both display and
notification (user input), and often includes managing the current selection. Display is
done by providing a window display procedure. Notifications are received through a client-
provided Tip.NotifyProc. The current selection is managed using the Selection interface.
Arbitrary data associated with a window can be saved with the window by using the
Context interface.

3.1.5.1 Display

The client’s display procedure is called by the Window interface to repaint the contents of
the window. It is called when the window is initially made visible. It is also called when
the window suddenly becomes more visible because an overlapping window was moved, or
when the window is scrolled so that the part of it that was invisible before becomes visible.
The display procedure should use the Display and/or SimpleTextDisplay interfaces to
display bits in the window. The display procedure can be set when a window shell’s body
window is created (StarwindowSheil.CreateBody), or by calling window.SetDisplayProc.

The most important item in Window is the client’s display procedure. There is no TYPE for
this procedure, but it is discussed in the Window interface chapter. Other important
items:

Box Defines a rectangle in a window.

Place Defines a point in a window.

)

ViewPoint Programmer’s Manual 3

The most important items in Display are:

Black Displays a black box.

White Displays a whiée box.

Invert Inverts the bits in a box.

Bitmap Displays an arbitrary array of bits.

The most important item in SimpleTextDisplay is:

StringintoWindow Displays a string in a window.
3.1.5.2 TIP and TIPStar

TIP provides basic user input facilities through a flexible mechanism that translates
hardware-level actions from the keyboard and mouse into higher-level client action
requests (result lists). The acronym TIP stands for terminal interface package. This
interface also provides the client with routines that manage the input focus, the periodic
notifier, and the sTOP key.

The basic notification mechanism directs user input to one of many windows in the
window tree. Each window has a Tip.Table and a Tip.NotifyProc. The table is a structure
that translates a sequence of user actions into a sequence of results which are then passed
to the notify procedure of the window.

The Notifier process dequeues user events, determines which window the event is for, and
tries to match the events in the window’s Table. If it finds a match in the table, it calls the
window’s NotifyProc with the results specified in the table. If no match is found, it tries
the next table in the window’s chain of tables. If no match is found in any table, the event
is discarded.

TIP tables provide a flexible method for translating user actions into higher-level client-
defined actions. They are essentially large select statements with user actions on the left
side and a corresponding set of results on the right side. Results may include mouse
coordinates, atoms, and strings for keyboard character input.

ViewPoint provides a list of normal tables that contain one production for each single user
action. Client programmers can write their own table to handle special user actions and
link it to system-defined tables, letting those tables handle the normal user actions. These
system-defined tables are accessible through the TIPStar interface and are described in
Appendix A.

Input Focus. The input focus is a distinguished window that is the destination of most user
actions. User actions may be directed either to the window with the cursor or to the input
focus. Actions such as mouse buttons are typically sent to the window with the cursor.
Most other actions, such as keystrokes, are sent to the current input focus. Clients may
make a window be the current input focus and be notified when some other window
becomes the current input focus.

3-5

Programmer’s Guide

The current selection and the current input focus often go together. If the window in which -_
a selection is made also expects to receive user keystrokes (function keys as well as black } '
keys), TIP.SetinputFocus should be called at the same time as Selection.Set is called. This is

also the time to call Softkeys.Push or Keyboardkey.RegisterClientKeyboards, if necessary.

Modes. TIPStar also provides the notion of a global mode to support MOVE, COPY, and SAME.
When the user presses down and releases the MOVE, COPY, or SAME keys, the client that
currently has the input focus will receive the notification and should call TiPstar.SetMode.
This changes the mouse TIP table so that atoms specific to the mode are produced rather
than normal atoms when the user performs mouse actions. For example, in copy mode
“CopyModeDown” instead of “PointDown” is produced when the left mouse button is
pressed down. This informs the client that receives the atom that it should attempt to copy
the current selection rather than simply select something.

The most important items in TIP are:
NotifyProc Client procedure that is called to handle a user action.
Results, ResultObject Right side of the table entry that matched the user action.

SetinputFocus Sets a window to be the current input focus.

The most important items in TIPStar are:
NormalTable Returns the chain of system-provided TIP tables. M

SetMode Sets the entire environment into MOVE, COPY; or SAMEAS
mode, thus changing the results produced for mouse clicks.

3.1.5.3 Context

The Context interface allows arbitrary client data to be associated with a window. Client
data is usually allocated and associated with the window when the window is created. The
data may be retrieved any time, such as at the beginning of the client’s display procedure
and Tir.NotifyProc.

The most important items in Context are:
Create Associates data with a window.

Find Recovers the data previously associated with'a window.

3.1.5.4 Selection

The Selection interface defines the abstraction that is the user’s current selection. It

provides a procedural interface to the abstraction that allows it to be set, saved, cleared,

and so forth. It also provides procedures that enable someone other than the originator of -~
the selection to request information relating to the selection and to negotiate for a copy of |
the selection in a particular format.

ViewPoint Programmer’s Manual ‘ 3

The Selection interface is used by two different classes of clients. Most clients wish merely
to obtain. the value of the current selection in some particular format; such clients are
called requestors. These programs call Convert (or maybe ConvertNumber, which in turn
calls Convert), or Query, or Enumerate. These clients need not be concerned with many of
the details of the Selection interface.

The other class of clients are those that own or set the current selection; these clients are
called managers. A manager calls Selection.Set and provides procedures that may be called
to convert the selection or to perform various actions on it. The manager remains in
control of the current selection until some other program calls Selection.Set. These clients
need to understand most of the details of the Selection interface.

A client that is managing its own body window will be both a selection requestor and a
selection manager in different parts of the code. For example, when the user selects
something in another window and copies it to the client’s window, the client must call
Selection.Convert to request the value of the selection in a form appropriate to the
application. On the other hand, when the user clicks a mouse button in the client's
window, the client will usually become the selection manager by calling Selection.Set.

The most important items in Selection are:
Convert Request the value of the selection in some target form.

Value A record containing a pointer to the converted selection
value, among other things.

CanYouConvert Returns TRUE if the selection manager can convert the
selection to a particular target type.

Set Called by a selection manager to become the current
manager.
ConvertProc Manager-supplied procedure that will be called to convert

the selection to some target type.

ActOnProc Manager-supplied procedure that will be called to perform
some action on the selection, such as mark, unmark, clear.

3.1.6 Property Sheets and FormWindow

A property sheet shows the user the properties of an object and allows the user to change
these properties. Several different types of properties are supported. The most common
ones are boolean, choice (enumerated), and text.

3-7

Programmer’s Guide

3-8

From a client’s point of view, a property sheet is simply a StarWindowShell with a
FormWindow as a body window. A property sheet is created by calling PropertySheet.Create,
providing a procedure that will make the form items in the FormWindow (a
FormWindow.MakeltemsProc), a list of commands to put in the header of the property sheet,
such as Done, Cancel, and Apply (PropertySheet.Menuitems), and a procedure to call when
the user selects one of these commands (a PropertySheet. MenultemProc). When the user
selects one of the commands in the header of the property sheet, the client’s
PropertySheet. MenultemProc is called. If the user selected Done, for example, the client can
then verify and apply any changes the user made to the object’s properties.

The most important items in PropertySheet are:
Create Creates a property sheet.

Menultems Used for specifying which commands to put in the header of
the property sheet.

MenultemProc Client procedure called when the user selects one of the
commands in the header.

The most important items in FormWindow are:
MakeltemsProc Client procedure called to create the items in the form.

MakeXXXitem Makes a form item. XXX can be Boolean, Choice, Text,
Integer, Decimal, Window, TagOnly, Command.

GetXXXltemValue Returns the current value of an item. XXX can be Boolean,
Choice, Text, Integer, Decimal, Window, TagOnly,
Command.

3.1.7 XString, et al.

The Xerox Character Code Standard defines a large number of characters, encompassing
not only familiar ASCII characters but also Japanese and Chinese Kanji characters and
others to provide a comprehensive character set able to handle international information
processing requirements. Because of the large number of characters, the data structures
in XString are more complicated than a LONG STRING's simple array of ASCII characters, but
the operations provided are more comprehensive

Characters are 16-bit quantities that are composed of two 8-bit quantities, their character
set and character code within a character set. The Character Standard defines how
characters may be encoded, either as runs of 8-bit character codes of the character set or as
16-bit characters where the character set and character code are in consecutive bytes. (See
the XChar chapter for information and operations on characters.)

ViewPoint provides a string package consisting of several interfaces that support the
Xerox Character Code Standard. XString provides the basic data structures for
representing encoded sequences of characters and some operations on these data
structures. XFormat converts other TYPEs into XStrings. XToken parses XStrings into other
TYPes. XChar defines the basic character type and some operations on it. XCharSets

ViewPoint Programmer’s Manual 3

enumerates the character sets defined in the Standard. A collection of interfaces
enumerate the character codes of several common character sets (XCharSetNNN). XTime
provides procedures to acquire and edit times into XStrings and XStrings into times.

3.1.8 XMessage and Attention

XMessage supports the translation into other languages of text displayed to the user. This
is accomplished by not including any string constants in the code of an application.
Rather, all the string constants for an application are declared in a separate module and
registered with XMessage. Then whenever the application needs a string constant, it
obtains it by calling XMessage.Get. Several commonly used messages such as “Yes”, “No”,
and days of the week are defined in XComSoftMessage.

The most important items in XMessage are:
Get Retrieves a message.

RegisterMessages Registers all the messages for an application.

The Attention interface provides a global mechanism for displaying messages to the user.
Attention provides procedures to post messages to the user in the attention window, clear
the attention window, post a message and wait for confirmation, and so forth.

The most important items in Attention are:

Post Posts 4 message in the attention window.
Clear Clears the attention window.
formatHandle XFormat.Handlethat may be used to format strings into the

attention window.

3.1.9 Containers

The Container interfaces (ContainerSource, ContainerWindow, FileContainerSource,
FileContainerShell, and ContainerCache) provide the services needed to implement an
application that appears as an ordered list of items to be manipulated by the user. Star
Folders are a typical example of such an application.

Figure 3-1 shows the relationships among the various interfaces and potential clients.
Each interface is described below, followed by a discussion of which interfaces an
application might need to use.

3-9

Programmer’s Guide

3-10

Folder InBasket

\ / ; Directory .

FileContainerShell

N

ContainerWindow

5| ContainerSource [0
FileContainerSource (Defs only - no impl) .

F”eCOntalnersource‘mpl :-.'. ... :

\ : DirectoryContainerSourceimpls L
ContainerCache /

Figure 3.1 Container interface Dependencies

The ContainerWindow interface takes a window and a ContainerSource and makes the
window behave like a container. It maintains the display and manages scrolling,
selection, and notifications. Note: This interface does not depend on NSFile.

A container source is a record of procedures that implement the behavior of the items in a

container and the behavior of the container itself. ContainerWindow obtains the strings of

each item by calling one of these procedures. ContainerWindow also performs user
operations on items, such as open, props, delete, insert, take the current selection, and
selection conversion by calling other procedures in the record. A container source can be
thought of as a supply (source) of items for a container window. The ContainerSource
interface defines each of the procedure TYPes that a container source must implement.
ContainerSource contains TYPEs only.

ContainerCache provides the implementor of a container source with an easy-to-use cache
for storing and retreiving the strings of each item and some client-specific data about each
item.

FileContainerSource provides an NSFile-backed container source. It takes an
Nsrile.Reference for a file that has children and each child file becomes an item of the
container. Facilities are provided to specify the columns based on NSFile attributes.

The FileContainerShell interface takes an NSFile and column information (such as
headings, widths, formatting), and creates a FileContainerSource, a StarWindowShell,
and a container window body window. Most NSFile-backed container applications can use
this interface, thereby greatly simplifying the writing of those applications.

-~

ViewPoint Programmer’s Manual 3

Each of the items in a container must behave like to a file on the desktop; that is, each
item must be able to be opened, show a property sheet, take a selection, and so forth.
However, the items need not be backed by files. If the container is backed by an NSFile that
has children, then the FileContainerShell interface is the only interface the client needs to
use. Otherwise, the client must implement a container source and must make most of the
calls that the FileContainerShell implementation makes; that is, Starwindowshell.Create,
starwindowsShell.CreateBody, Containerwindow.Create.

3.1.10 SoftKeys

The SoftKeys interface provides for client-defined function keys designated to be the
isolated row of function keys at the top of the physical keyboard. It also provides a
SoftKeys window whose “keytops” may be selected with the mouse to simulate pressing of
the physical key on the keyboard. Such a window is displayed on the user’s desktop
whenever an interpretation other than the default SoftKeys interpretation is in effect.
(The default is assumed to be the functions inscribed on the physical keys.) .

The most important items in SoftKeys are:

Labels, LabelRecord Strings to display on the keytops in the SoftKeys window.
Push ' [nstall a client-specific interpretation for the soft keys.
Remove Remove a previously installed interpretation. -

3.1.11 Client-Defined Keyboards

KeyboardKey is a keyboard (the central set of black keys on the physical keyboard)
registration facility. It provides clients with a means of registering system-wide
keyboards (available all the time, like English, French, European), a special keyboard
(like Equations), and/or client-specific keyboards (those that are available only when the
client has the input focus). The labels from these registered keyboards are displayed in the
softkeys window when the KEYBOARD key is held down by the user.

The BlackKeys interface provides the data structures that define a client keyboard.

The most important items in KeyboardKey are:
AddToSystemKeyboards Adds a keyboard to the system keyboards.

RegisterClientKeyboards Establishes the keyboards available to the user.

The most important items in BlackKeys are:

Keyboard, KeyboardObject A keyboard interpretation.

3-11

3

Programmer’s Guide

3.2 Getting Started

This section is a guide for programmers who have never used the ViewPoint interfaces. It
shows how two common types of applications are written using ViewPoint.

There are two ways that a user invokes a program in the ViewPoint environment. First is
to select an icon and press a function key such as OPEN, PROPS, COPY, or MOVE. This type of
program is called an icon application. Second, the user may also invoke a program by
simply selecting an item in the attention window’s popup menu. For example, in OS 5, a
Show Size command reports on the size of the selected icon’s file. The following sections
describe how to write each of these types of programs.

3.2.1 Simplest Application

The simplest way to get a program running in the ViewPoint environment is to have the
program add an item to the attention window’s popup menu. When the user selects that
item, the program is called. See the SampleBWSTool for an example of this type of
application. Excerpts from SampleBWSTool:

Init: PROCEDURE = {
sampleTool: xstring.ReaderBody « xstring.FromSTRING(["Sample Tool"L];
Attention.AddMenultem [
MenuData.Createltem [
zone: sysZ,
name: @sampleTool,
proc: MenuProc]];

}

-« Mainline code
Init{];

When the application is started, its startup (mainline) code creates a MenuData.ltemHandle
by calling MenuData.Createltem, then adds this item to the attention window’s menu by
calling Attention.AddMenultem. Now the MenuProc passed to MenuData.Createltem will be
called when the user selects the Sample Tool item in the attention window’s popup menu.
The MenuProc can then do whatever is appropriate for the application.

3.2.2 Icon Application

3-12

Getting an icon application running in ViewPoint is a little more complex. The basic idea
is that an application operates on files of a particular type. When an application is started,
it registers its interest in files of that type. Then whenever the user operates on a file of
that type, the application gets called. Here is a skeletal example of some application code,
the full explanation follows:

-- Constants and global data

samplelconFileType: NsSFile.Type =...;
oldimpl, newimpl: Containee.iImplementation «[];

ViewPoint Programmer’s Manual 3

-- Containee.Implementation procedures

GenericProc: Containee.GenericProc = {

SELECT atom FROM
canYouTakeSelection => ...
takeSelection = > ...
takeSelectionCopy = > ...
open = > ..,
props => ...
ENDCASE = > . ..

PictureProc: Containee.PictureProc = {
B;s.play.Bitmap [...I;
Y

-- Initialization procedures

InitAtoms: PROCEDURE = {
open ¢« Atom.MakeAtom[“Open™L];
props « Atom.MakeAtom["Props"L];
canYouTakeSelection « atom.MakeAtom["CanYouTakeSelection"L];
takeSelection «- Atom.MakeAtom["TakeSelection”L];
takeSelectionCopy « atom.MakeAtom("TakeSelectionCopy"L];

} '
~ FindOrCreatePrototypelconfFile: PROCEDURE = {.'. .}

Setimplementation: PROCEDURE = {
newlmpl.genericProc « GenericProc;
newimpl.pictureProc « PictureProc;
oldimpl « containee.Setimplementation [samplelconFileType, newimpl |;

}:
-- Mainline code

InitAtoms(];
FindOrCreatePrototypelconFile[];
Setimplementation(];

The most important thing to note in the above example is the Setlmplementation
procedure and the call to Containee.Setimplementation in particular. This call associates
the application’s implementation (newlmpl) with a particular file type
(samplelconFileType). This implementation is actually a Containee.lImplementation that is
a record which contains procedures. Whenever the user operates on files of type
samplelconFileType, the procedures in the Implementation record are called. An
understanding of how this works requires an understanding of how the ViewPoint desktop
implementation operates.

First, some background about NSFiles. All NSFiles have:

® aname
® afile type (LONG CARDINAL)

3-13

Programmer’s Guide

3-14

® aset of attributes, such as create date
® either:
® content, such as a document
@ children that are also NSFiles, such as a folder

An NSFile that has children is often called a directory. Fine point: anNSFile can actually have both
content and children, but we ignore that for now to simplify this discussion. Note that since the children
of an NSFile can themselves have children, NSFile supports a hierarchical file system.

A ViewPoint desktop is an NSFile that has children. Each child file of the desktop’s NSFile
is represented on the screen by an icon picture. The desktop display of rows of icons is an
illusion. The word “icon” is in quotes because, from the programmer’s point of view, there
really is no such thing as an icon. The only things thatreally exist are files (NSFiles), icon
pictures, and application code.

Immediately after logging on, the desktop implementation enumerates the child files of
the desktop file and calls an application’s Containee.PictureProc for each child file, based on
the child file’s type. Each application’s Containee.PictureProc should then display the icon
picture for that file.

After logon is complete and the desktop is displayed, the desktop implementation receives
user actions such as mouse clicks and pressing the OPEN or PROPS keys. For example,
assume the user selects an icon picture and presses OPEN. When the user presses OPEN, the
desktop implementation determines the file type for the file represented by the icon
picture the user selected, then calls the Containee.GenericProc for the application that
operates on files of that type, requesting that the application open the icon. It also passes
the application a unique identifier for the particular file selected. At this point the
application can do whatever is appropriate for that application. Typically, the application
opens the file, reads some data out of the file, creates a StarWwindowsShell, and displays the
contents of the file in the window in some application-specific form.

The desktop implementation does not call an application directly. Rather, ViewPoint
maintains a table of file-type/Containee.lImplementation pairs. When an application calls
Containee.Setimplementation, an entry is added to the table. When the desktop
implementation calls an application, it obtains the Containee.lmplementation for the
application by looking it up in the table (it actually calls Containee.Getimplementation).

3.2.3 Operational Notes

To write an icon application, a programmer must obtain a unique file type. Contact your
ViewPoint consultant to obtain one.

In the example above, the application in its initialization code checks to be sure a
prototype file exists and, if not, creates one. This usually involves creating a file with the
proper file type for this application. This allows the user to get started with the
application, usually by copying the blank prototype out of a special folder of prototypes.

ViewPoint Programmer’s Manual 3

Note: There is a clear distinction between a prototype file for an application and a bed file
that contains the code for the application. All bed files are of the same type, while each
prototype file is different for each application.

3.3 Flow Descriptions

The following flow descriptions are intended to show how everything ties together. For
each example scenario, the exact sequence of calls is described, including ViewPoint
interfaces and clients.

3.3.1 Select an Icon

The user points at an icon on the desktop.

When the mouse button goes down over an icon picture, the notification goes to the
desktop implementation’s TiP.NotifyProc. The NotifyProc will be passed a window.Place
and a “PointDown” atom. The desktop implementation determines what file is
represented by that icon picture. Fine Point: The desktop implementation maintains a mapping
from icon picture locations to NSFile.References.

The desktop implementation calls Containee.Getimplementation, passing in the file
type of the file and getting back the Containee.Implementation for that file type.

The desktop implementation calls the Containee.PictureProc that is in the
implementation; i.e., impl.pictureProc, passing in.

® data: the Nsrile.Reference for the file

® old: normal

© new: highlighted

The application’s PictureProc displays a highlighted version of its icon picture,
perhaps simply calling Display.Invert.

When the mouse button goes up (a “PointUp” atom), the desktop implementation
becomes the current selection manager by calling Selection.Set. It sets the desktop
window to be the current input focus by calling Tip.SetinputFocus. Setting the input
focus to be the desktop window ensures that keys such as OPEN, PROPS, COPY, etc,. will
all go to the desktop’s NotifyProc.

END

3.3.2 pPrOPS of an Icon

Assume an icon on the desktop is selected. The user presses PROPS. After changing some
items in the property sheet, the user selects Done.

The desktop implementation’s TIP.NotifyProc gets the notification (a “PropsDown”
atom) and determines which icon picture is currently selected and what file is
represented by that icon picture.

3-15

3 Programmer’s Guide

3-16

The desktop implementation calls Containee.Getimplementation, passing in the file
type of the file and getting back the Containee.Implementation for that file type.

The desktop implementation calls the Containee.GenericProc that is in the
Implementation; i.e., impl.genericProc, passing in:

® data: the nsFile.Reference for the file
® atom: "Props”
® changeProc: a Containee.ChangeProc that belongs to the desktop implementation

® changeProcData: a pointer to some desktop implementation data that identifies
the icon/file being operated on

The application’s GenericProc creates a property sheet by calling PropertySheet.Create.
It probably also opens and retrieves some data out of the file (using various NSFile
operations) and uses that data to set the initial values of the items in the property
sheet.

Typically, the client will want to save the NsFile.Handle for the file while the property
sheet is open. In addition, if the opening and closing of the property sheet might cause
the file’s attributes to change, the application’s GenericProc must save the passed
changeProc and changeProcData. A typical example is when the file’s name is one of
the items in the property sheet and the user can change the name. This data is saved
by allocating a record with this data in it and passing a pointer to the record as the
clientData parameter to PropertySheet.Create. Later, when the user selects Done or
Apply, this data may be recovered (see the rest of this flow description). Note: This
data cannot be saved in a local frame (such as that of the GenericProc) since the
GenericProc must return to the notifier after creating the property sheet, and when
the user selects Done or Apply that is a new call stack. The client data should not be
saved in a global frame either, because there may be more than one property sheet
open at a time for a particular application.

The application’s GenericProc returns the Starwindowshell.Handle for the property
sheet.

The desktop implementation displays the property sheet by calling
Starwindowshell.Push, then the desktop’s NotifyProc returns to the notifier.

The user changes some items and then selects Done.

The PropertySheet implementation calls the client’s PropertySheet.MenultemProc that
was passed in to PropertySheet.Create, passing in:

® shell: the StarWindowsShell for the property sheet

o formWindow: the FormWindow for the property sheet

® menultem: done

e clientData: the pointer to the client’s data that was passed to PropertySheet.Create.
The client’s MenultemProc recovers the client’s data (the file handle, the changeProc

and changeProcData, and any other relevant client data) from the clientData
parameter. It determines if the user made any changes and, if so, updates the file

ViewPoint Programmer’s Manual 3

accordingly and calls the changeProc, passing in the changeProcData, the file
reference, and a list of the changed file attributes.

The desktop’s ChangeProc causes the icon picture to be redisplayed, since changing an
attribute such as the name requires the picture to be updated with the new name.

The client’s MenultemProc returns to the PropertySheet implementation, indicating
that the property sheet should be destroyed.

The PropertySheet implementation destroys the property sheet by calling
starwWindowsShell.POp and returns to the notifier.

 END.

3.3.3 OPEN an Icon

Opening an icon is similar to opening a property sheet for an icon.

3.3.4 coPY Something to an Icon

Assume something has been selected. The user presses COPY and, then points at an icon.

When COPY is pressed, the NotifyProc for the window that currently has the input
focus (and the selection) is called. It calls Tipstar.SetMode [copy] to set the
environment into copy mode and then returns to the notifier. It might also call
Cursor.Set to change the cursor shape to indicate move mode. '

SetMode will replace the NormaiMouse. TIP table with the CopyModeMouse.TIP table.
The user presses the mouse button down over an icon on the desktop.

The desktop’s NotifyProc gets called with a “CopyModeDown” atom (instead of a
“PointDown” atom because of the TIP table switch). It determines what file is
represented by the icon picture the wuser is pointing at. It calls
Containee.Getimplementation, passing in the file’s type and getting back a
Containee.Implementation. It calls the Implementation’s GenericProc passing in:

® data: the nsFile.Reference for the file

¢ atom: “CanYouTake”

The application’s GenericProc calls Selection.CanYouConvert or selection.HowHard to
determine if the current selection can be converted to target type(s) that the
application can take. For example, if the icon being copied to is a printer icon, it will
call HowHard with targets of interpressMaster and file.

The current selection manager’s Selection.ConvertProc is called by the Selection
implementation and returns an indication of how hard it would be to convert the
selection to the given target types. ’

The application’s GenericProc returns a pointer to TRUE if it determines that it can take
the current selection and FALSE if it cannot,

Programmer’s Guide

® The desktop implementation changes the cursor shape to a question mark if the
application’s GenericProc returns FALSE. Otherwise, it leaves the cursor as it was.

® Now the user lifts up the mouse button.

® The desktop’s NotifyProc gets called with a "CopyModeUp” atom. It determines what
file is represented by the icon picture the user is pointing at. It calls
Containee.Getimplementation passing in the file's type and getting back a
Containee.Implementation. [t calls the Implementation’s GenericProc, passing in:

® data: the NsFile.Reference for the file

® atom: “TakeSelectionCopy”

® changeProc: a Containee.ChangeProc that belongs to the desktop implementation

® changeProcData: a pointer to some desktop implementation data that identifies

the icon/file being copied to

® The application’s GenericProc calls Selection.Convert or (Selection.Enumerate) to convert
the selection to the desired type. The application then operates on the converted
selection value as appropriate for that application. For example, the printer icon
application would convert the selection to an interpressMaster and send the master to
the printer. (See the Selection chapter for a full flow description of the selection
mechanism.)

® The application’s GenericProc returns to the desktop’s NotifyProc, which returns to
the notifier.

e END.

3.4 Programming Conventions

3-18

The ViewPoint environment assumes that the programs that run in it are friendly and
that they are not trying to circumvent or sabotage the system. The system does not enforce
many of the conventions described here but assumes that application programmers will
adhere -to them voluntarily. If these conventions are not followed, the ViewPoint
environment may degrade or break down altogether.

The most important principle is that users should have complete control over their
environment. In particular, clients shall not pre-empt users. A user should never be forced
by a client into a situation where the only thing that can be done is to interact with only
one application. Furthermore, the client should avoid falling into a particular mode when
interacting with the user; that is, an application should avoid imposing unnecessary
restrictions on the permitted sequencing of user actions.

This goal of user control has implications for the designs of applications. A client should
never seize control of the processor while getting user input. This tends to happen when
the client wants to use the "get a command from the user and execute it" mode of
operation. Instead, an application should arrange for ViewPoint to notify it when the user
wishes to communicate some event to the application. This is known as the “Don't call us,
we’ll call you” principle.

~

-

ViewPoint Programmer’s Manual 3

The user owns the window layout on the screen. Although it is possible for the client to
rearrange the windows, this is discouraged. Users have particular and differing tastes in
the way they wish to lay out windows on the display; it is not the client’s role to override
the user's decisions. In particular, clients should avoid making windows jump up and
down to try to capture the user's attention. If the user has put a window off to the side,
then he does not want to be bothered by it.

3.4.1 Notifier

ViewPoint sends most user input actions to the window that has set itself to be the focus
for user input; the rest of the actions are directed to the window containing the cursor. (See
the TIP interface for details on how the decision is made where to send these actions.) A
process in ViewPoint notes all user input actions and determines which window should
receive each one. A client is concerned only with the actions that are directed to its
window and need not concern itself with determining which actions are intended for it.

The basic notification mechanism directs user input to one of many windows in the
window tree. Each window has a TIP.Table and a TIP.NotifyProc. The table is a structure
that translates a sequence of user actions into a sequence of results that are then passed to
the notify procedure of the window. '

There are two processes that share the notification responsibilities, the Stimulus process
and the Notifier process. The Stimulus process is a high-priority process that wakes up
approximately 50 times a second. When it runs, it makes the cursor follow the mouse and
watches for keyboard keys going up or down, mouse motion, and mouse buttons going up
or down, enqueuing these events for the Notifier process.

The Notifier process dequeues these events, determines which window the event is for,
and tries to match the events in the window’s table. [f it finds a match in the table, it calls
the window’s notify procedure with the results specified in the table. If no match is found,
it tries the next table in the window’s chain of tables. If no match is found in any table, the
event is discarded.

The Notifier process is important. To avoid multi-process interference, some operations in
the system are restricted to happening only in the Notifier process. Setting the selection is
one such operation. The Notifier process is also the one most closely tied to the user. The
Notifier waits until a NotifyProc finishes for one user action before processing the next
user action. If an operation will take an extended time to complete (more than three to five
seconds), it should be forked from the notifier process to run in a separate process so that
the Notifier process is free to respond to the user’s actions. Of course, the application
writer must take great care when stepping into this world of parallel processing.

3.4.2 Multiple Processes, Multiple Instances

ViewPoint makes it possible to have many programs running simultaneously. The
designer of a client-callable package should bear in mind that his package may be invoked
by several different asynchronous clients. One implication of this constraint is that a
package should be monitored.

The simplest design is to have a single entry procedure that all clients must call. While
one client is using the package, all other clients will block on the monitor lock. Of course,

3-19

Programmer’s Guide

3-20

no state should be maintained internally between successive calls to the package since
there is no guarantee that the same client is calling each time.

This simple approach has the disadvantage that clients are simply stopped for what may
be a long time, with no option of taking alternate action. This restriction can be eased by
having the entry procedure check a "busy” bit in the package. If the package is busy, the
procedure can return this result to the client. The client can then decide whether to give
up, try something else, or try again. This flexibility is less likely to tie up an application
for a long period, and the user can use the application for other purposes.

If the package is providing a collection of procedures and cannot conform to the constraint
that it provide its services in a single procedure, the package and its clients must pass
state back and forth in the form of an object. The package can use a single monitor on its
code to protect the object, or it can provide a monitor as part of each object. If it does the
latter, then several clients can be executing safely at the same time.

Some packages require that a client provide procedures that will be called by the package.
The designer of such a package should have these client-provided procedures take an extra
parameter, a long pointer to client instance data. When the client provides the package
with the procedures, it also provides the instance data to pass to the procedures when they
are called. This instance data can then be used by the client to distinguish between several
different instances of itself that are sharing the same code.

3.4.3 Resource Management

Programs in the Xerox Development Environment must explicitly manage resources. For
example, memory is explicitly allocated and deallocated by programs; there is no garbage
collector to reclaim unused memory. All programs share the same pool of resources, and
there is no scheduler watching for programs using more than their share of execution
time, memory, or any other resource.

Programs must manage resources carefully. If a program does not return a resource when
it is done with it, that resource will never become available to any other program and the
performance of the environment will degrade. The most common resource, and one of the
more difficult to manage, is memory.

When interfaces exchange resources, clients must be very careful about who is responsible
for the resource. We say that the program that is responsible for the deallocation of a
resource is the owner of that resource. One example of a resource is a file handle. If a
program passes a file handle to another program, both programs must agree about who
owns that file handle. Did the caller transfer ownership by passing the file handle, or is it
retaining ownership and only letting the called procedure use the file handle? If there is
disagreement between the two programs, either the file will be released twice, or it will
never be released at all. All interfaces involving resources must state explicitly whether
ownership is transferred. To ease the problem of memory management when the
ownership of memory can change, called the system heap is a common heap used in
ViewPoint. If a piece of memory can have its ownership transferred, it is either allocated
from the system heap or a deallocation procedure must be provided for it.

The most common resource appearing in interfaces is an XString (Reader or ReaderBody).
There must be agreement about which program is responsible for deallocating the string’s
bytes. Typically, a string passed as an input parameter does not, carry ownership with it;

~

i

ViewPoint Programmer’s Manual 3

implementors of such procedures should not deallocate or change the string. If it is
necessary for the implementor to modify the string or use it after the procedure returns,
the implementor should first copy it. Clients should be particularly careful when a
procedure returns a string to note whether ownership has come with it.

3.4.4 Stopping Applications

The ViewPoint environment consists of cooperating processes. There are no facilities for
cleanly terminating an arbitrary collection of processes. It is assumed that application
writers will be good citizens and design their tools to stop voluntarily when asked to stop.

An application should stop if the user aborts the application. There are two ways to
determine if the user has aborted an application. An application’s window can have a
TIP.AttentionProc that will be called as soon as the user presses the STOP key. Or,
procedures in the TIP interface can check whether a user has aborted an application with
the STOP key in the application’s window. An application should check for a user abort at
frequent intervals and be prepared to stop executing and clean up after itself. Because the
application controls when it checks, it can check at points in its execution when its state is
easy to clean up. Packages that can be called from several programs should take a
procedure parameter that can be called to see whether the user has aborted.

3.4.5 Multinationality

. ViewPoint is designed to support easy transport of applications to other countries. The
string package (XString, XChar, XFormat, etc.) supports the Xerox Character Code
Standard, which allows for strings in many languages to be intermixed. The XMessage
interface supports the translation of user messages into other languages by allowing the
application programmer to put all these messages into a module separate from the rest of
the application code. The KeyboardKey interface supports the addition of keyboards for
many languages.

Application programmers are strongly encouraged to allow their application to be
multinational. This means for example, using XString for all string operations and using
XMessage to manage any text that will be displayed to the user. It also means not making
any language assumptions about characters received from the user. An application that

expects typing input from the user should be prepared to receive characters from any
character set.

3.5 Summary of Interfaces
Atom provides the mechanism for making TIP, Event, and Containee atoms.
AtomicProfile provides a mechanism for storing and retrieving global values.
Attention provides a means of displaying messages to the user.

BlackKeys provides the capability to change the interpretation of the central (black)
section of the keyboard.

3-21

Programmer’s Guide

3-22

Containee is an application registration facility. It allows an application to register its
implementation for files of a particular type.

ContainerCache provides a simple cacheing mechanism for the implementor of a container
source.

ContainerSource defines the procedures that must be implemented to provide a source of
items for a container window.

ContainerWindow creates a window that displays an ordered list of items that behave like
icons on a desktop.

Context provides a mechanism for clients to associate data with windows.

Cursor provides facilities for a client to manipulate the appearance of the cursor that
represents the mouse position on the screen.

Display provides facilities to display bits in windows.

Event provides clients with the ability to be notified of events that take place
asynchronously on a system-wide basis.

FileContainerShell creates a StarWindowShell with a ContainerWindow as a body
window that is backed by a FileContainerSource.

FileContainerSource creates a container source that is backed by a file that has children.
FormWindow creates a window with various types of form items in it, such as text,
boolean, choice (enumerated), command, and window. FormWindow is used to create

property sheets.

FormWindowMessageParse provides procedures that parse strings to produce various
FormWindow TYPEs.

ldleControl provides access to the basic controlling module of ViewPoint.
KeyboardKey is a client keyboard (the central black keys) registration facility.
KéyboardWindow provides a particular implementation for a keyboard window.
LevellVKeys defines the names of the physical keys.

MenuData allows menus and menu items to be created.

MessageWindow provides a facility for posting messages to the user in a window.
PopupMenu allows a menu to be displayed (popped up) anywhere on the screen.

PropertySheet creates a property sheet. A property sheet is used to show the properties of
some object to the user and allows the user to change the properties.

Selection provides the facilities for a client to manipulate the user's current selection. It
also provides procedures that enable someone other than the originator of the selection to

ViewPoint Programmer’s Manual 3

request information relating to the selection and to negotiate for a copy of the selection in
a particular format.

SimpleTextDisplay provides facilities for displaying, measuring, and resolving strings of
Xerox Character Code Standard text. [t can handle only non-attributed single-font text.

SimpleTextEdit provides facilities for presenting short, editable pieces of text to the user.

SimpleTextFont provides access to the default system font that is used to display
ViewPoint's text, such as the text in menus, the attention wmdow window names,
containers, property sheet text items, and so forth.

SoftKeys provides for client defined function keys designated to be the isolated row of
function keys at the top of the physical keyboard.

StarDesktop provides access to the user's desktop file and window.
StarWindowShell provides facilities for creating Star-like windows.

TIP provides basic user input facilities through a flexible mechanism that translates
hardware level actions from the keyboard and mouse into higher-level client action
requests.

TIPStar provides access to ViewPoint's normal set of TIP tables.

Undo provides facilities that allow an application to register undo opportunities, so that
when the user requests that something be undone, the application is called to do so.

Window defines the low-level window management package used by ViewPoint.

XChar defines the basic character type as defined in the Xerox Character Code Standard as
well as some operations on it.

XCharSetNNN enumerates the character codes in character set NNN.
XCharSets enumerates the character sets defined in the Xerox Character Code Standard.

XComSoftMessage defines messages for some commonly used strings, such as Yes, No,
day-of-the-week, month, ete.

XFormat converts various TYPEs into XStrings.
XLReal supports manipulation of real numbers with greater precision than Mesa REALs.

XMessage supports the multinational requirements of systems that require the text
displayed to the user be separable from the code and algorithms that use it.

XString provides the basic data structures for representing encoded sequences of
characters as defined in the Xerox Character Code Standard. It also provides several
operations on these data structures.

XTime provides facilities to acquire and edit times into XStrings and XStrings into times.

XToken parses XStrings into other Types

3-23

3 Programmer’s Guide

3-24

ApplicationFolder

4.1 Overview

ApplicationFolder provides access to the folder that contains all the component files of an
application. A full application is composed of one or more beds, a message file, a
description file, and other data files such as .TIP or .Icons. These components are all put
together into a folder with a specific file type, called an Application {or ApplicationFolder).

-When the application is loaded and started, one of the first things it does is get its data
files. The actual file names of the data files are specified in the application’s description
file, which is a file that may be read by using the OptionFile interface. The application
gets its data files by using ApplicationFolder.FromName to obtain the ApplicationFolder file,
using ApplicationfFolder.FindDescriptionFile to get the description file from the
ApplicationFolder file, and then using OptionFile.GetStringValue to get the data files
names. (See Usage/Examples.)

4.2 Interface Items

FromName: PROCEDURE [internalName: xstring.Reader]
RETURNS [applicationFolder: NsFile.Reference];

Returns the folder for the given application. internalName is the section name in the
description file. Returns NsFile.nullReference if not found.

FindDescriptionFile: PROCEDURE [applicationFolder: NSFile.Handle]
RETURNS [descriptionFile: nNsFile.Reference];

Finds a file with file type = OptionFile in the applicationFolder. Returns
NsFile.nullReference if not found.

EventData: TYPE = RECORD [
applicationFolder: NsFile.Reference,
internalName: xstring.Reader];

The application loader also notifies the ApplicationLoaded event after loading and
starting an application. EventData is passed as Event.EventData for this event.

4-1

4

ApplicationFolder

4.3 Usage/Examples

4-2

This example code obtains the message file.

-- File: SampleMsgFilelnitimpl.mesa - last edit:

-- Copyright (C) 1985 by Xerox Corporation. All rights reserved.
DIRECTORY

ApplicationFolder usinG [FindDescriptionFile, FromName],
Heap usING [systemZone],

NSFile usinG [Close, Error, GetReference, Handle, nullHandle, nullReference, OpenByName,

OpenByReference, Reference, Type],
NSString UsING [FreeString, String],
OptionFile usiNG [GetStringValue],
SampleBWSApplicationOps,

XMessage usING [ClientData, FreeMsgDomainsStorage, Handle, MessagesFromReference,

MsgDomains],
XString usING [FromSTRING, NSStringFromReader, Reader, ReaderBody];

SampleMsgFilelmpl: PROGRAM
IMPORTS ApplicationFolder, Heap, NSFile, NSString, OptionFile, XMessage, XString
EXPORTS SampleBWSApplicationOps = {

-- Data

h: XMessage.Hand|e «— NIL;

localZone: UNCOUNTED ZONE « Heap.systemZone;

-- Procedures

DeleteMessages: PROCEDURE [clientData: Xxmessage.ClientData] = {};
GetMessageHandle: PUBLIC PROCEDURE RETURNS [XMessage.Handle] = {rReturn[h]};

InitMessages: PROCEDURE = {
internalName: xstring.ReaderBody &~ xString.FromSTRING ["SampleBWSApplication”L];
msgDomains: XMessage.MsgDomains « NiL;
msgDomains « xMessage.MessagesFromReference [:
file: GetMessageFileRef [ApplicationFolder.FromName [@internalNamel],
clientData: NiL,
proc: DeleteMessages |;
h « msgDomains{0].handle;
XMessage.FreeMsgDomainsStorage [msgDomains];

Y

GetMessageFileRef: PROCEDURE [folder: NsFile.Reference]
RETURNS [msgFile: NsFile.Reference « NsFile.nullReference] = {
folderHandle: Nsrile.Handle « nsFile.OpenByReference [folder];

ViewPoint Programmer’s Manual 4

internalName: Xstring.ReaderBody « xstring.FromsTRING ["SampleBWSApplication“L];
messageFile: xstring.ReaderBody « Xstring. FromsTRING ["MessageFile"L];

FindMessageFileFromName: PROCEDURE [value: Xxstring.Reader] = {
nssName: NSString.String « Xstring. NSStringFromReader [r: value, z: localZone];
msgFileHandle: NsFile.Handle « NsFile.nullHandle;
msgFileHandle « NsFile.OpenByName [directory: folderHandle, path: nssName'!
NSFile.Error = > {msgFileHandle « nsFile.nullHandle; CONTINUE}];
IF msgFileHandle = Nsrile.nullHandle THEN ERROR; -- no message file!
msgFile « NSFile.GetReference [msgFileHandle];
NSFile.Close [msgFileHandle];
NSString.FreeString [z: localZone, s: nssName];

Y

OptionFile.GetStringValue [section: @internalName, entry: @messageFile,
callBack: FindMessageFileFromName,
file: ApplicationFolder.FindDescriptionFile [folderHandle]];

nsrile.Close [folderHandle];

Y

-- Mainline code
InitMessagesl];

}...

4

ApplicationFolder

4.4 Indéx of Interface Items

4-4

Item

EventData: TYPE
FindDescriptionFile: PROCEDURE
FromName: PROCEDURE

Page

Atom

5.1 Overview

The Atom interface provides the definitions and proceduresfor creating and manipulating
atoms. An atom is a one-word datum that has a one-to-one correspondence with a textual
name. It is often convenient to name an object using a textual name, but XStrings are
somewhat clumsy to compare and pass around. Using atoms, objects may be named
textually without paying the expense of actually storing, copying, and comparing the
strings themselves. Atoms were made popular by the Lisp language.

The textual name associated with an atom is called its PName, just as it is in Lisp. If two

atoms are equal, they correspond to the same PName, and vice versa. An atom may also
have properties associated with it; a property is a [name, value] pair.

5.2 Interface Items

5.2,1 Making Atoms
ATOM: TYPe[1];
null: ATOM = LoopPHOLE[O].

An ATOM is a one-word datum that has a one-to-one correspondence with a textual name,
or PName. If two ATOMs are equal, they correspond to the same PName. If two PNames -
are equal, they correspond to the same ATOM.

Make: PROCEDURE [pName: xstring.Reader] RETURNS [atom: ATOM];

MakeAtom: PROCEDURE [pName: LONG STRING] RETURNS [atom: ATOM];

MakeAtom and Make return the ATOM corresponding to pName, creating one if
necessary. In pName, uppercase and lowercase characters are different, and will result in

different ATOMs. The atom returned is valid for the duration of the boot session, and the
pName will be remembered for the duration of the boot session.

GetPName: PROCEDURE [atom: ATOM] RETURNS [pName: xstring.Reader];

5-1

Atom

GetPName returns the name of atom, returning NiL if atom is null. It raises the error -~

NoSuchAtom if atom is not valid. |

5.2.2 Error
NoSuchAtom: ERROR;
NoSuchAtom may be raised by GetPName, PutProp, GetProp, or RemoveProp. It is raised

when an operation is presented with an ATOM for which no Make or MakeAtom operation
has been done in the boot session. Such atoms are called invalid atoms.

5.2.3 Property Lists
Pair: TYPE = RECORD [prop: ATOM, value: RefAny];
RefAny: TYPE = LONG POINTER;
RefPair: TYPE = LONG POINTER TO READONLY Pair;

Pair defines the [name, value] pair for a property. Properties are named by atoms and have
long pointers as values. Property pairs are referenced by a readonly pointer.

PutProp: PROCEDURE [onto: ATOM, pair: Pairl;

PutProp adds a property pair to onto. If the property already exists, the value is updated. A,
If onto is null, no action takes place. PutProp will raise the error NoSuchAtom if onto is 1
not valid.

GetProp: PROCEDURE [onto, prop: ATOM] ReTURNS [pair: RefPair];
GetProp returns the property pair, whose property name is the atom prop, from atom
onto. If onto does not have a property whose name is prop or onto is null, NiL is returned.

GetProp raises the error NoSuchAtom if onto is not valid. Note: The client may not
change the property pair.

RemoveProp: PROCEDURE [onto, prop: ATOM];

RemoveProp removes the property pair, whose property name is the atom prop, from atom
onto. If onto is null, no action takes place. RemoveProp raises the error NoSuchAtom if
onto is not valid.

5.2.4 Enumerating Atoms and Property Lists
MapAtomProc: TYPE = PROCEDURE [ATOM)] RETURNS [BOOLEAN];

MapAtomProc is used by MapAtom to enumerate atoms. When it returns TRUE, the
enumeration stops.

MapAtoms: PROCEDURE [proc: MapAtomProc] RETURNS [lastAtom: ATOM]; Ay,

ViewPoint Programmer’s Manual 5

MapAtoms enumerates the atoms, calling proc once for each atom. If proc returns TRUE,
MapAtoms returns that atom. If proc never returns TRUE, MapAtoms returns null.

MapPListProc: TYPE = PROCEDURE [RefPair] RETURNS [BOOLEAN];

MapPListProc is used by MapPList to enumerate property lists. When it returns TRUE, the
enumeration stops. Note: The client may not change the property pair.

MapPList: PROCEDURE [atom: ATOM, proc: MapPListProc] RETURNS [lastPair: RefPair];

MapPList enumerates the property list of atom, calling proc once for each pair. If proc
returns TRUE, MapPList returns that pair. If proc never returns TRUE, MapPList returns NiL.

5.2 Usage/Examples

Two of the major uses of atoms are in the Event and TIP interfaces. In the Event interface,
atoms name events. In the TIP interface they are used in TIP tables and TIP results to name
actions. (See those interfaces for more information.)

The names of atoms are case sensitive. For example, atom1 and atom2 are not equal,
while atom1 and atom3 are equal.

atom1: ATOM = MakeAtom{“Atom“L];
atom2: ATOM = MakeAtom["ATOM"L];
atom3: ATOM = Make[GetPName[atom1]];

The value of an atom is a function of the characters of its name and the names of the atoms
that have been previously created. Atoms may not be pickled (put in a permanent
representation that may be filed and recovered later) or transmitted to another system.
The atom is just a convenient way to represent and manipulate the name, which is the
permanent representation.

5-3

3]

Atom

5.4 Index of Interface Items

5-4

Item

ATOM: TYPE
GetPName: PROCEDURE
GetProp: PROCEDURE
Make: PROCEDURE
MakeAtom: PROCEDURE
MapAtomProc: TYPE
MapPList: PROCEDURE
MapPListProc: Type
MapAtoms: PROCEDURE
NoSuchAtom: ERROR
null: ATOM

Pair: TYPE

PutProp: PROCEDURE
RefAny: TYpe

RefPair: TYPE
RemoveProp: PROCEDURE

Page

NNNNN=2 NWWWN>2=2N &2

AtomicProfile

6.1 Overview

The AtomicProfile interface provides a general mechanism for storing and retrieving
global values, such as user name and password. Values are named by atoms and may have
a type of either boolean, long integer, or string. Only one value isassociated with each
atom, regardless of type.

Boolean and long integer values are simple values, unlike string values, which are passed
by reference. The value of strings may be gotten by calling the GetString routine, in which

case they must be returned to the implementation using DoneWithString, or they may be
" gotten using a callback procedure in EnumerateString.

6.2 Interface [tems

6.2.1 Boolean Values
GetBOOLEAN: PROCEDURE [atom: Atom.ATOM] RETURNS [BOOLEAN];

GetBOOLEAN returns the boolean value associated with atom. If there is no boolean value
associated with atom, GetBOOLEAN returns FALSE.

SetBOOLEAN: PROCEDURE [atom: Atom.ATOM, boolean: BOOLEAN];
SetBOOLEAN associates the boolean value boolean with atom. If atom previously had

another value associated with it, that value is replaced. The event AtomicProfileChange is
notified, with event data being a long pointer to atom.

6.2.2 Integer Values
GetLONGINTEGER: PROCEDURE [atom: Atom.ATOM] RETURNS [LONG INTEGER];

GetLONGINTEGER returns the long integer value associated with atom. If there is no long
integer value associated with atom, GetLONGINTEGER returns 0.

6-1

AtomicProfile

SetLONGINTEGER: PROCEDURE [atom: Atom.ATOM, int: LONG INTEGER];

SetLONGINTEGER associates the long integer value int with atom. If atom previously had
another value associated with it, that value is replaced. The event AtomicProfileChange is
notified, with event data being a long pointer to atom.

6.2.3 String Values

GetString: PROCEDURE [atom: Atom.ATOM] RETURNS [Xxstring.Reader];

GetString returns the string value associated with atom. The string is reference counted,
and the client must return the string by calling DoneWithString. If there is no string
value associated with atom, GetString returns NiL.

DoneWithString: PROCEDURE [string: xstring.Reader];

After obtaining a reader using GetString, it must be returned via DoneWithString so the

implementation's use-count will be correct. Failure to do so will result in a storage leak if

the value of the atom is replaced (see the example below).

EnumerateString: PROCEDURE [
atom: Atom.ATOM, proc: PROCEDURE [XString.Reader]];

EnumerateString provides an alternate method of examining the string value of an atom.
If atom has a string value, proc will be called with the string value. proc is called from
within the monitor if the implementation. The reader is valid for the duration of the
callback, but proc must not call any of the operations in the implementation. If atom has
no string value, proc will not be called.

SetString: PROCEDURE [atom: Atom.ATOM, string: xstring.Reader,
immutable: BOOLEAN «FALSE];

SetString associates the string value string with atom. If atom previously had another
value associated with it, that value is replaced. If immutable is FaLSE, SetString will copy
string's body and byte sequence, otherwise it only copies the reader body. The client must
not deallocate the byte sequence in this case. The event AtomicProfileChange is notified
with event data being a long pointer to atom.

6.3 Usage/Examples

6-2

AtomicProfile provides a general mechanism for storing and retrieving values. Actual use
by a client depends on knowing the names and expected types of values. ViewPoint defines
some basic values such as user name and password. Other systems may define other
values.

The following example has a client keeping track of the user name, which depends on the
AtomicProfileChange event. UserNameChanged is called when any AtomicProfile value is
changed. By examining the event data of the agent procedure, the example can act on
changes to the user name.

ViewPoint Programmer’s Manual

atomicProfileChange: Atom ATOM = Atom.MakeAtom[”AtomicProfileChange”L];
fullUserName: Atom. ATOM = Atom.MakeAtom["FullUserName"L];
debugging: Atom. ATOM = Atom.MakeAtom[”“Debugging”L];

UserNameChanged: event.AgentProc = {
atomChanged: LONG POINTER TO Atom.ATOM = eventData;
iFatomChanged 1 = fullUserName THEN {
name: xstring.Reader = GetString[fullUserName];
< < do processing of new name > >
I GetBOOLEAN[debugging] THEN { < < do debugging only code> >1};
DoneWithString[name]}};

event.AddDependency|
agent: UserNameChanged, myData: NiL, event: atomicProfileChangel;

6-3

6

AtomicProfile

6.4 Index of Interface Items

6-4

Item

DoneWithString: PROCEDURE
EnumerateString: PROCEDURE
GetBOOLEAN: PROCEDURE
GetLONGINTEGER: PROCEDURE
GetString: PROCEDURE
SetBOOLEAN: PROCEDURE
SetLONGINTEGER: PROCEDURE
SetString: PROCEDURE

.
)
1))
o

NIN=N=2 = NN

Attention

7.1

Overview

The Attention interface provides a means of displaying messages to the user. It
implements a single window into which messages are displayed. In addition to displaying
messages, the Attention window has a menu to which clients can add system-wide
commands.

There are three types of messages: simple messages, sticky messages, and confirmed
messages. Simple messages have no special semantics. Sticky messages are redisplayed
when a non-sticky message is cleared. Attention keeps track of one sticky message.
Confirmed messages ask for confirmation by the user.

Attention allows messages to be logically appended. Each of the posting operations, Post,
PostSticky, and PostAndConfirm, contain a boolean parameter clear. If clear is TRUE, the
window is cleared before the message is displayed. If not, the message is appended to the
currently displayed message. This allows the client to use Attention to construct complex
messages.

The single global Attention window and construction of messages does not work well if
multiple processes try to display messages simultaneously. To work around this conflict,
the following restriction is imposed: The Attention interface may only be called from the
notifier process. If another process wishes to post a message in the Attention window, it
should use the periodic notification mechanism provided by the TIP interface. Following
this rule guarantees that only well-formed messages will be displayed.

To facilitate construction of messages, an XfFormat.Handle is provided whose format
procedure will post a simple message without clearing the window. See the example below
and the XFormat chapter for more information.

The Attention window has a global system menu. Operations are provided so clients may
add menu items to this menu, remove items from the menu, or swap items in the menu.

7-1

7 Attention

7.2 Interface Items =

7.2.1 Simple Messages

Post: PROCEDURE [s: xstring.Reader, clear: BOOLEAN « TRUE, beep: BOOLEAN « FALSE,
blink: BOOLEAN « FALSE];

Post displays the message s in the Attention window. If clear is TRUE, it clears the
Attention window before displaying s; otherwise, it displays it after whatever text is
currently showing. Attention makes its own copy of the reader body and bytes of s. beep
and blink stipulate that the corresponding feedback be presented to the user.

Clear: PROCEDURE;

Clear clears the Attention window of any simple message. If a simple message is being
displayed and there is a current sticky message, the sticky message will be displayed.
Clear has no effect if a sticky message is being displayed.

formatHandle: xFormat.Handle;

formatHandle is an xFormat.Handle provided by the Attention window that clients can use
to post simple messages. Its format procedure logically calls Post with clear being FALSE.
(See below for an example.)

7.2.2 Sticky Messages i

Sticky messages are redisplayed when a non-sticky message is cleared. Attention keeps
track of one sticky message.

PostSticky: PROCEDURE [s: xstring.Reader, clear: BOOLEAN « TRUE],
beep: BOOLEAN « FALSE, blink: BOOLEAN < FALSE;

PostSticky appends s to, or replaces, the current sticky message, and then displays this
new message in the window. Its operation is: (1) if the window has a simple message or
clear, then clear the window; (2) if clear, then clear the current sticky message; (3) append
s to the current sticky message; and (4) display the new current sticky message. Attention
makes its own copy of the reader body and bytes of s. beep and blink are the same as in
Post above.

ClearSticky: PROCEDURE;

ClearSticky clears any current sticky message. If a sticky message is being displayed, the
window is cleared. ClearSticky has no effect if there is no sticky message.

7.2.3 Confirmation Messages

PostAndConfirm: PROCEDURE [
s: xstring.Reader, clear: BOOLEAN « TRUE, confirmChoices: ConfirmChoices « [NiL, NIL], -,
timeout: Process.Ticks « dontTimeout, |

7-2

ViewPoint Programmer’s Manual 7

beep: BOOLEAN «FALSE, blink: BOOLEAN «FALSE]
RETURNS [confirmed, timedQut: BOOLEAN];

ConfirmChoices: TYPE = RECORD [yes, no: xstring.Reader];
dontTimeout: Process.Ticks = 0;

PostAndConfirm acts like Post in displaying the message s but waits for confirmation by
the user. The confirmChoices messages are displayed, and the user should select one of the
choices with the mouse. If the user selects yes, confirmed is returned TRUE; if no is selected
or the sTOP key is depressed, confirmed is returned FaLse. If confirmChoices.yes # NIL and
confrmChoices.no = NIL, then only confirmChoices.yes is posted and confirmChoices.no
is ignored. This is useful for posting a- message that the user must see, but for which the
user gets no choice, such as "Unable to communicate with the printer: CONTINUE".
PostAndConfirm absorbs all user input except the sTOP key and mouse actions over the yes
and no messages. The client may specify a timeout value, which will cause
PostAndConfirm to return confirmed FALSE and timedOut TRUE if the user does not act
within timeout ticks. The default value dontTimeout disables this timeout feature.
Attention makes its own copy of the reader body and bytes of's.

" 7.2.4 System Menu
AddMenultem: PROCEDURE [item: MenuData.ltemHandle];
AddMenultem adds item to the global system menu.
RemoveMeﬁultem: PROCEDURE [item: MenuData.itemHandle];

RemoveMenultem removes item from the global system menu. There is no effect if item is
not in the menu.

SwapMenultem: PROCEDURE [old, new: MenuData.ltemHandle];

SwapMenultem swaps new for old in the global system menu. SwapMenuitem[old: niL,
new: item] is equivalent to AddMenultem[item: item] and SwapMenuitem[old: item,
new: NiL] is equivalent to RemoveMenultem{item: item].

7.3 Usage/Examples

The following example has a client displaying the name and size of a file. It uses the NSFile
interface to access the file and get the name and size attributes. See the Services
Programmer’s Guide (610E00180): Filing Programmer’s Manual for documentation on the
NSFile interface.

- PostNameAndSize: PROCEDURE [file: NSFile. Handle] = {
nameSelections: NsFile.Selections = [interpreted: [name: TRUE]];
attributes: NsFile.AttributesRecord;
rb: xstring.ReaderBody « Message[theFile];
Attention.Post[s: @rb, clear: TRUE]; -- start a new message
XFormat.NSString[Attention.formatHandle, attributes.name];
XFormat.ReaderBody[h: attention.formatHandle, rb: Message[contains]];
XFormat.Decimal[h: Attention.formatHandle, n: nNsFile.GetSizelnBytes[file]l;

7-3

Attention

7-4

rb « Message[bytes];
Attention.Post[s: @rb]}; -- clear defaults to FaLSE - i ’!2"1

Message: PROCEDURE [key: {theFile, contains, bytes}] RETURNS [xstring.ReaderBody] = {

b
An example of the resulting message displayed in the Attention window is
The file Foo contains 53324 bytes

The example intermixes use of the format handle and use of the Post procedure. A client
could clear first, using the Clear procedure, and then display the message just using the
format handle.

ViewPoint Programmer’s Manual

7.4 Index of Interface Items

Item

AddMenultem: PROCEDURE
Clear: PROCEDURE

ClearSticky: PROCEDURE
ConfirmChoices: TYPE
dontTimeout: Process. Ticks
formatHandle: xFormat.Handle
Post: PROCEDURE
PostAndConfirm: PROCEDURE
PostSticky: PROCEDURE
RemoveMenuitem: PROCEDURE
SwapMenultem: PROCEDURE

g

)
[+1-3

o

W W INNNNWWNNW

7-5

Attention

7-6

-’

BlackKeys

8.1

Overview

The BlackKeys interface provides the capability to change the interpretation of the main
(central) section of the physical keyboard. Included are the data structures that define a
keyboard record, as well as the procedures used to manipulate the keyboard stack.

The average client will use only the data structures that are provided by the BlackKeys
interface. The procedures are reserved for a keyboard manager interested in interfacing
between the user and the blackkeys stack of keyboards.

8.2 Interface Items

8.2.1 Keyboard Data Structures

The BlackKeys data structures provide the framework for client-defined keys in the main
(central) section of the physical keyboard. This includes interface to a keyboard picture
whose keytops may be selected with the mouse to simulate pressing of the physical key on
the keyboard.

Keyboard: TYPE = LONG POINTER TO KeyboardObject « NiL;

KeyboardObject: TYPE = RECORD [
table: Tir.Table «nNIL,
charTranslator: Tie.CharTranslator « [proc: niL, data: NiL),
pictureProc: PictureProc « NiL,
label: xstring.ReaderBody « xstring.nullReaderBody,
clientData: LONG POINTER « NIL);

KeyboardObject is the keyboard interpretation data structure. The client may provide its
own Tip.Table or default it to NiL, in which case the Normalkeyboard.TIP table is used. (See
Appendix A for productions returned by NormaiKeyboard.TIP.) A Tip.CharTranslator may be
provided to handle CHAR and BUFFEREDCHAR productions from a Tip.Table. A PictureProc may
be provided to be called when installing or removing this keyboard. Absence of such a
procedure assumes there is not a picture associated with this keyboard. label is the string

8-1

BlackKeys

that will appear in the SoftKeys window when the KEYBOARD key is pressed down.
Pressing (or mousing) the key marked label will invoke this keyboard. clientData is
provided to associate any other information the client might need to keep with the
keyboard.

PictureProc: TYPE = PROCEDURE [
keyboard: Keyboard,
action: PictureAction]
RETURNS [
picture: Picture « nullPicture,
geometry: GeometryTable «niL];

PictureProc is a client-provided procedure that will be called by a keyboard window
application when the client's keyboard is being installed (action = acquire) or removed
(action = release) from the top of the blackkeys stack of active keyboards. The client may
use this opportunity to map or unmap the picture and geometry table used by the
" keyboard window application.

PictureAction: TYPe = {acquire, release};

acquire = client's keyboard is being installed at the top of the keyboard stack
(becoming the current keyboard)

release = client’s keyboard is being removed from the top of the keyboard stack

PictureType: Tyre = {bitmap, text};

Picture: TYPE = RECORD [

variant: SELECT type: PictureType FROM
bitmap = > [bitmap: LONG POINTER],
text = > [text: XString.Reader]
ENDCASE];

The variant of the record, Picture, allows the client the choice of presenting his keyboard
window in either bitmap or textual form. (See the KeyboardWindow interface for
discussion of the structure behind a keyboard bitmap.) text is pointed to by an
xstring.Reader. The text will not be copied.

nullPicture: bitmap Blackkeys.Picture = [bitmap(NIL)];
The variable nullPicture represents a null entry to the keyboard window.
GeometryTéble: TYPE = LONG POINTER;

A geometry table allows access to the data structure. (See the KeyboardWindow interface
chapter for discussion of the structure of a geometry table.)

8.2.2 Getting a Handle to the Current Keyboard

BlackKeysChange: Event.EventType; -- ATOM defined as “BlackKeysChange”

ViewPoint Programmer’s Manual 8

Changing the keyboard at the top of the blackkeys stack of keyboards will result in the
notification BlackKeysChange through the Event mechanism. The eventData supplied by
the event.Notify will be the current keyboard handle.

GetCurrentKeyboard: PROCEDURE RETURNS [current: Keyboard];

GetCurrentKeyboard returns the current keyboard from the top of the blackkeys stack.

8.2.3 Procedures
Push: PROCEDURE [keyboard: Keyboard];

The Push procedure installs a black key interpretation at the top of the blackkeys stack of
keyboards. The TIp.Table and/or TiP.CharTranslator will be registered with TP and the event
BlackKeysChange will be broadcast.

Remove: PROCEDURE [keyboard: Keyboard];

The Remove procedure removes the keyboard from the stack of active keyboards and
resets the TiP.Table and Tip.CharTranslator as applicable. The event BlackKeysChange will
be broadcast if keyboard is on the top of the blackkeys stack.

May raise the ERROR BlackKeys.InvalidHandle.

Swap: PROCEDURE [old:Keyboard, new:Keyboard];

The Swap procedure is designed to change black keys' interpretations without returning
to some previous or other default value in between. It is essentially the equivalent of a
Remove followed by a Push. The event BlackKeysChange will be broadcast if the keyboard

being removed was on top of the stack.

May raise the ERROR BlackKeys.InvalidHandle.

8.2.4 Errors
InvalidHandle: ERROR;

This error is raised if the keyboard passed to Remove or Swap (old) is not in the set of
active BlackKeys keyboards.

8.3 Usage/Examples

8.3.1 Defining a Keyboard Record

DefineKeyboard: PROCEDURE =
BEGIN
nameString: xstring.ReaderBody « xstring. FromSTRING["Swahili“L]

swahiliKeyboardRecord: Blackkeys.KeyboardObject « [
table: NIL,
charTranslator: [MakeChar, NiL),

8-3

BlackKeys

pictureProc: MapBitmapfFile,
label: xstring.CopyToNewReaderBody[@nameString, Heap.systemZonel]);
--save the pointer to the record somewhere for future use --
END; --DefineKeyboard --

MapBitmapFile: Blackkeys.PictureProc =

BEGIN

pixPtr: BlackKeys.Picture.bitmap « Blackkeys.nullPicture;
SELECT action FROM
acquire =>

{--Do the right thing to map the bitmap. Uses the default geometry table. --

RETURN[pixPtr, Keyboardwindow.defaultGeometry] };
release = > {--Do the right thing to unmap the bitmap --
RETURN[BlackKeys.nullPicture, NIL] }
END; -- MapBitmapFile

MakeChar: Tip.KeyToCharProc =

BEGIN

--map bufferedChar to desired xstring.Character --
END; -- MakeChar

ViewPoint Programmer’s Manual

8.4 Index of Interface Items

Item

BlackKeysChange: Event.EventType
GeometryTable: TypE
GetCurrentKeyboard: PROCEDURE
InvalidHandle: ERROR

Keyboard: TvpPe
KeyboardObject: TypEe
nullPicture:bitmap Picture

Picture: TYPE

PictureAction: TYPE

PictureProc: TYPE

PictureType: TYPE

Push: PROCEDURE

Remove: PROCEDURE

Swap: PROCEDURE

~
&)
[1-3
[«

WWWNNNNNDQ2QWWNNN

8-5

BlackKeys

8-6

BWSAttributeTypes

9.1 Overview

BWSAttributeTypes defines the NsFile.ExtendedAttributeTypes that are used by
ViewPoint and defines the first NsFile.ExtendedAttributeType available for client use.

The only extended attributes defined here are the ones that can be attached to any file,
such as mailing and filing application attributes. Attributes that are unique to a
particular application’s files should be defined privately within that application rather
than defined here. It is acceptable for several applications to use the same extended
attributes because application A should never be reading the attributes from application
B's files and vice versa. Fine Point: Several application-specific attribute types are included in this
interface for compatibility.

Here we define the extended attributes that can be attached to any file, leaving a few
spare ones for future use. We also define the first available “application attribute”
(firstAvailableApplicationType). Caution: No application should use an extended
attribute smaller than this one! Nor should an application use an extended attribute
larger than lastBWSType.

9.2 Interface Items

9.2.1 Available Application Types
firstAvailableApplicationType: Nsrile.ExtendedAttributeType = ...;
lastBWSType: NsFile.ExtendedAttributeType = .. .;

Applications should only use the types in the range [firstAvailableApplicationType .
lastBWSType). firstAvailableApplicationType is the first extended attribute type that
applications can use to store application-specific attributes. Caution: No application
should use an extended attribute smaller than firstAvailableApplicationType.
lastBWSType is the last extended attribute type that applications can use to store
application-specific attributes. Caution: No application should use an extended attribute
larger than lastBWSType.

9-1

BWSAttributeTypes

If a Viewpoint client needs more attributes than the number in this range, the client
should see the NSFiling group to obtain a range specific to that client.

9.2.2 Viewpoint Types

Please consult the Mesa interface for the exact assignment of ViewPoint-specific types.

9-2

!

ViewPoint Programmer’s Manual

9.3 Index of Interface Items
Item

firstAvailableApplicationType: nsFile.ExtendedAttributeType
lastBWSType: nNsFile.ExtendedAttributeType

Page

1
1

9-3

BWSAttributeTypes

)

10

BWSFileTypes

10.1 Overview

BWSFileTypes defines several NSFile.Types used by ViewPoint, These types should not be
used by applications. (Also see the Catalog and Prototype interfaces.)

All file types used by ViewPoint clients must be managed by the client. Ranges of file
types may be obtained from the Filing group.

10.2 Interface Items
root: NsFile.Type =

The root file of the volume has this type. The root has children that are called (by
convention) catalogs.

desktop, desktopCatalog: NsFile.Type = ... ;

The desktop catalog contains all the desktops on a workstation. An individual desktop has
the same type as the desktop catalog.

prototypeCatalog: NsFile.Type = ... ;

The prototype catalog contains prototype files for each application. A prototype file is a
blank application file that the user can make copies of, such as Blank Folder, Blank
Document. (See the Prototype interface.)

systemFileCatalog: NsFile.Type = ... ;

The system file catalog contains system files, such as the beds for an application, message
files, font files, TIP files, ete. (See the Catalog interface.)

10-1

10

BWSFileTypes

10.3 Index of Interface Items

10-2

Item

desktop: NsFile.Type
desktopCatalog: NsFile.Type
prototypeCatalog: NsFile.Type
root: NsFile.Type
systemFileCatalog: NsFile. Type

Page

B I e T)

11

BWSZone

11.1 Overview

BWSZone defines several zones, each with different characteristics, that may be used by
ViewPoint clients as appropriate.

11.2 Interface Items
All these zones are created at boot time and exist for the duration of the boot session.
permaneht: UNCOU&TED ZONE;
Permanent: PROCEDURE RETURNS [UNCOUNTED ZONE];

permanent is intended for nodes that are never deallocated. It has infinite threshold.
Permanent returns permanent.

logonSession: UNCOUNTED ZONE;

LogonSession: PROCEDURE RETURNS [UNCOUNTED ZONE];

logonSession is intended for nodes that last for a logon/logoff session. logonSession is
emptied of all nodes at each logoff (i.e., Heap.Flush). LogonSession returns logonSession.
logonSession is created at boot time, and is flushed at logoff.

shoriLifetime: UNCOUNTED ZONE;

ShortLifetime: PROCEDURE RETURNS [UNCOUNTED ZONE];

shortLifetime is intended for nodes that are allocated for a very short time, such as during
a notification. ShortLifetime returns shortLifetime.

semiPermanent: UNCOUNTED ZONE;
SemiPermanent: PROCEDURE RETURNS [UNCOUNTED ZONE];

semiPermanent is intended for nodes that are allocated for a very long time but that might
occasionally have to be expanded. SemiPermanent returns semiPermanent.

11

BWSZone

11.3 Index of Interface Items

11-2

Item

LogonSession: PROCEDURE
logonSession: UNCOUNTED ZONE
Permanent: PROCEDURE
permanent: UNCOUNTED ZONE
SemiPermanent: PROCEDURE

semiPermanent: UNCOUNTED ZONE .

ShortLifetime: PROCEDURE
shortLifetime: UNCOUNTED ZONE

Page

-— ad ed el el wd D)

12

Catalog

12.1 Overview

Catalog manipulates files that are direct descendants of the root file on a NSFiling
volume. These files are referred to as catalogs. Each catalog is uniquely identified by its
file type. Files can be opened and created within a catalog. Catalogs can be opened,
created, and enumerated.

Viewpoint creates a system file catalog and a prototype catalog (see the Prototype
interface) at boot time. The system file catalog typically holds font files, TIP files, icon
picture files, message files, etc.

12.2 Interface Items

12.2.1 Finding and Creating Files in a Catalog

GetFile: PROCEDURE [
catalogType: NSFile. Type ¢« BWSFileTypes.systemFileCatalog,
name: XString.Reader,
readonly: BOOLEAN «FALSE,
session: NSFile.Session « Nsrile.nullSession]
RETURNS [file: NSFile.Handle];

GetFile finds a file with name name in the catalog with type catalogType. If the file cannot
be found, NsFile.nullHandle is returned.

CreateFile: PROCEDURE [
catalogType: NSFile.Type « BWSFileTypes.systemFileCatalog,
name: Xstring.Reader,
type: NSFile.Type,
isDirectory: BOOLEAN « FALSE,
size: LONG CARDINAL « 0,
session: NSFile.Session « NsFile.nullSession]
RETURNS [file: NSFile.Handle];

12-1

12 Catalog

CreateFile creates a file with the specified attributes (name, type, isDirectory, size in £,

i

bytes) in the catalog with type catalogType. |

12.2.2 Operating on Catalogs

Open: PROCEDURE [
catalogType: NsFile.Type,
session: NSFile.Session «NsFile.nullSession]
RETURNS [catalog: NsFile.Handle];

Opens the catalog with type catalogType. If the catalog cannot be opened,
NsFile.nullHandle is returned.

Create: PROCEDURE [
name: xstring.Reader,
catalogType: nsrile. Type,
session: NsFile.Session « NsFile.nullSession]
RETURNS [catalog: NsFile.Reference];

Creates a catalog with the specified name and type. If the catalog already exists or cannot
be created, NsFile.nullReference is returned. Note: Even though the file can be identified by
type only, the name should be logical (e.g., "System Files") so that any tools written to
manipulate catalogs can display these names.

Enumerate: PROCEDURE [proc: CatalogProc]; -,

CatalogProc: TYyPe = PROCEDURE [catalogType: NSFile.Typel]
RETURNS [continue: BOOLEAN « TRUE];

Enumerate calls the client supplied proc for each existing catalog or until proc returns
FALSE.

beforeLogonSession: NSFile.Session;
beforeLogonSession is a session that can be used when calling a Catalog procedure before

any user has logged on, such as at boot time. [t is set to be the default session until a user
logs on.

12-2

ViewPoint Programmer’s Manual

12

12.3 Index of Interface Items
Item

beforeLogon$5ession: NsFile.Session
CatalogProc: TYPE

Create: PROCEDURE

CreateFile: PROCEDURE

Enumerate: PROCEDURE

GetFile: PROCEDURE

Open: PROCEDURE

Page

W =2 N=2NNN

12-3

12 Catalog

12-4

= 13

Containee

13.1 Overview

Containee is an application registration facility. An application is a software package that
implements the manipulation of one type of file. Containee is a facility for associating an
application with a file type.

13.1.1 Background

All NSFiles have:

a name
a file type (LONG CARDINAL)

a set of attributes, such as create date

either:

® content, such as a document

¢ children that are also NSFiles, such as a folder

An NSFile that has children is often called a directory. Fine Point: An NSFile can actually have
both content and children, that is ignored for now to simplify this discussion. Since the children of an
NSFile can themselves have children, NSFile supports a hierarchical file system.

A ViewPoint desktop is backed by an NSFile that has children. Each child file of the
desktop's NSFile is represented on the screen by an iconic picture.

Each application operates on NSFiles of a particular file type. For example, ViewPoint
documents operate on NSFiles with file type of 4353. Each document icon is actually an
NSFile of type 4353. Each application needs a way to register its ability to operate on files
of a particular type. Containee is such a facility.

13.1.2 Containee.Implementation

An application’s ability to operate on files of a particular type includes such operations as:

13-1

13

Containee

Display of the iconic picture (full size and tiny).

Open, performed when the user selects an icon and presses OPEN.

Properties, performed when the user selects an icon and presses PROPS.

Take the current selection, performed when the user drops an object onto an icon
by COPYing or MOVEing a selected object to an icon.

An application registers itself by calling Containee.Setimplementation, supplying a file
type and a Containee.implementation. A ContaineeImplementation is a record that contains
two important procedures:

® A procedure for displaying an icon picture (Containee.PictureProc).
® A procedure for performing various operations on an icon, such as open, create a
property sheet, and take the current selection (Containee.GenericProc).

This application registration allows the ViewPoint desktop implementation to be open-
ended. The desktop implementation itself does not know how any file behaves. Rather it
depends on applications registering their ability to operate on particular file types. The
desktop implementation, at logon, simply enumerates the child files of the desktop's
NSFile (using NsFile.List), obtaining the file type for each child. For each child file, the
desktop implementation gets an application's Containee.lmplementation by using the child
file's file type (and Containee.Getimplementation) and then calls that application's
Containee.PictureProc to actually display an icon picture. Similarly, when the user selects
an icon on the desktop and presses OPEN, the desktop implementation uses the file type of
the file at that place on the desktop to get the application’s Containee.Implementation and
then calls the application’s Containee.GenericProc to get a StarWindowShell created. The
implementations of Folders and File Drawers are similar to the desktop implementation
in this respect.

13.1.3 Containee.Data

An application needs to distinguish one file from another. Two different documents may
be the same file type, but probably have different names and different contents. Whenever
an application’s Containee.DisplayProc or Containee.GenericProc is called, the particular file
being operated on by the user is passed to the procedure through the Containee.DataHandle
parameter. A Containee.DataHandle is a pointer to a Containee.Data that is simply a record
with an NSFile.Reference in it. An NSFile.Reference uniquely identifies a particular file and
allows the application to utilize various NSFile file-accessing procedures for manipulating
the file.

13.2 Interface Items

13-2

13.2.1 Items for Application Implementors

Setimplementation: PROCEDURE [NSFile. Type, Implementation]
RETURNS [Implementation];

Setimplementation associates an Implementation record with a particular file type and
returns the previous Implementation that was associated with that file type. An

ViewPoint Programmer’s Manual 13

application calls Setimplementation to register its ability to operate on files of a
particular type. -

Implementation: TYPE = RECORD [
implementors: LONG POINTER « NIL,
name: xstring.ReaderBody « xstring.nullReaderBody,
smallPictureProc: SmallPictureProc « niL,
pictureProc:PictureProc ¢« niL,
convertProc: Selection.ConvertProc « NiL,
genericProc:GenericProc «—nNiL |;

When an application registers its ability to operate on files of a particular type (i.e, calls
Setimplementation), it supplies an Implementation record. The Implementation record
defines the behavior of all files of that type.

implementors is provided for the convenience of clients that may want to associate some -
application-specific data with the Implementation record. Note: This data is one per .
application, not one per file.

name is a user-sensible name for the objects that the implementation manipulates, such
as "Document" or "Spreadsheet.” This string typically comes from XMessage. The bytes of
name are not copied--the storage for name must be allocated forever (which is easy to do
using XMessage).

smaliPictureProc is a procedure of type SmallPictureProc that returns a character. This
procedure is describe below.

pictureProc is called whenever the file’s full-sized icon picture needs to be painted. (See
PictureProc.)

convertProc is called to convert the file into another form, such as an Interpress master.
This procedure is used when the owner of the current selection is a container, such as a
folder, and the selection is actually a file (row) in the container. The owner of the selection
(i.e., the container implementation) may be called to convert the selected file (row), but
only the application that implements that file's type can do the conversion. The
convertProc allows the owner of the selection to pass the conversion request along to the
application. The data parameter to the convertProc is a Containee.DataHandle. This
convertProc does not need to be able to convert to a target type of file or fileType, but
rather should call Containee.DefaultFileConvertProc for these target types. If the
application does not perform conversion to any target types,
Containee.DefaultFileConvertProc should be provided as the convertProc.

genericProc is where most of the application’s real implementation resides. genericProc is
called, for example, to open an icon, to produce a property sheet for an icon, to drop
something on an icon, etc. See GenericProc.

SmallPictureProc: TYPE = PROCEDURE [
data: DataHandle < nit,
type: NsFile.Type « ignoreType,
normalOrReference: PictureState]
RETURNS [smallPicture: xstring.Character];

PictureState: TyPe = { garbage, normal, highlighted, ghost,
reference, referenceHighlighted };

13-3

13

Containee

13-4

ignoreType: NsFile.Type = LAST[LONG CARDINAL];

The SmallPictureProc should return a character for the application, which should be
obtained by passing a 13x13-bit icon picture to SimpleTextFont. AddClientDefinedCharacter.
This character is used when the file is inside a folder. normalOrReference will be either
normal or reference, and the appropriate small picture should be returned. The
SmallPictureProc should try to use the type parameter first if it is not
Containee.ignoreType. If it is ignoreType, the SmallPictureProc should use the data
parameter. This change is necessary for allowing the reference icon application to work
properly. Fine Point: The picture for normalOrReference = reference/referenceHighlighted will not
normally be used by the folder application directly, but rather would be used by a generic reference icon

application.

Data: TYPE = RECORD [
reference: NsFile.Reference « NsFile.nullReference |;

DataHandle: TYPE = LONG POINTER TO Data;
nullData:Data;

Data uniquely identifies a file. An application needs to distinguish one file from another.
Two documents may be the same file type, but probably have different names and
different contents. Whenever an application's PictureProc or GenericProc or
Implementation.convertProc is called, the particular file being operated on by the user is
passed to the procedure through the DataHandle parameter. An nsrile.Reference uniquely
identifies a particular file and allows the application to utilize various NSFile file-
accessing procedures for manipulating the file. nullData is a constant that should be used
to represent a null Containee.Data.

GenericProc: TYPE = PROCEDURE [
atom: Atom.ATOM,
data:DataHandle,
changeProc:ChangeProc « NIL,
changeProcData: LONG POINTER &~ NIL]
RETURNS [LONG UNSPECIFIED];

A GenericProc is a procedure supplied by an application as part of an Implementation. The
GenericProc will be called to perform one of several operations that a user can invoke.
atom tells the GenericProc what operation to perform. For example, when the user selects
an icon and presses the OPEN key, the application’s GenericProc is called with an atom of
Open.

data identifies the particular NSFile to be operated on. The NSFile’s file type will be the one
for which this application has registered its Implementation.

A GenericProc must return a value. The type of the return value depends on the atom
passed in. Some atoms, their meaning to the GenericProc, and the expected return values
are as follows:

Atom Return Value and Meaning

CanYouTakeSelection LONG POINTER TO BOOLEAN
If the application is willing to have the current selection
dropped onto it, the GenericProc should return TRUE. This

ViewPoint Programmer’s Manual 13

Open

Props

TakeSelection

TakeSelectionCopy

occurswhen the user has selected something, pressed COPY or
MOVE, and then selected one of this application’s files. While
the user has the mouse button down, the cursor changes to a
question mark if the GenericProc returns FALSE; otherwise, the
cursor stays the same and the icon picture flashes. This
operation should be efficient and usually involves calling
Selection.CanYouConvert or Selection.HowHard or Selection.Query
to determine what Selection.Targets the selected object can be
converted to. For example, the printing application’s
GenericProc returns TRUE if the current selection can be
converted to an Interpress Master.

StarwindowShell.Handle
The application should create a StarWindowShell. Usually,
the content displayed in the StarWindowsShell will be derived

from the contents of the file. For example, the ViewPoint

document editor application displays the text and graphics
contained in the file, thus making the file ready for viewing
and/or editing.

starwindowShell.Handle

The application should create a PropertySheet. Usually, the
properties shown reflect some attributes of the file. For
example, the Folder property sheet shows the name of the
folder, how it is sorted, and how many objects it contains.
These properties are all NSFile attributes of the file.

LONG POINTER TO BOOLEAN

The action performed for this atom is highly dependent on the
particular application. This atom is passed when the user has
selected something, pressed MOVE, then selected one of this
application’s files. For some applications, this means the
selected object should be moved into this application; for
example, the Folder application converts the selected object to
a file and adds the file to the folder. For other applications, this
means the selected object should be operated on in some
application-specific fashion; for example, the printing
application converts the selected object to an Interpress Master
(file or stream) and then sends the master to a printer. The
GenericProc should return TRUE if the operation was successful,
FALSE otherwise.

LONG POINTER TO BOOLEAN

This atom has the same meaning as TakeSelection, except it
corresponds to the COPY key being pressed rather than MOVE.
Again, the meaning of this is highly application dependent.

If the execution of the GenericProc causes any change to the NSFile's attributes, the
changeProc should be called. This allows containers (such as Desktop, Folders) to update
the display to reflect the changes. For example, when the atom is Props, the GenericProc
must save the changeProc and return the Starwindowshell.Handle for the property sheet.
Then later, if the user changes the file's name, for example, the application's

13-5

13 Containee

FormWindow.MenultemProc gets control when the user is done and must then retrieve the -
changeProc and call it. (See the section on Usage/Examples for more detail.) T

If the client's GenericProc is called with an atom that it does not recognize, it should call
the previous GenericProc (using the old Implementation that was returned when it called
Containee.SetiImplementation). The original system-supplied GenericProc acts to backstop
all possible atoms.

ChangeProc: TYPE = PROCEDURE [
changeProcData: LONG POINTER « NIL,
data:DataHandle,
changedAttributes: NSFile.Selections «[]
noChanges: BOOLEAN «FALSE];

A ChangeProc is a callback procedure that is passed to a GenericProc. [t must always be
called by the client regardless of whether an attribute of the file being operated has
changed. The reason for always calling the changeProc is to allow deallocation of the
changeProcData. The noChanges boolean indicates the effect on the relevant file's
attributes. The changeProcData parameter must be correctly supplied even for the
noChanges = TRUE case. This is used, for example, when the user changes the name of a
file by using a property sheet. When the property sheet is taken down, the application
changes the file's name and the ChangeProc that was passed to the GenericProc must then
be called by the application. (See more detail in the section on Usage/Examples).

PictureProc: TYPE = PROCEDURE [
data:DataHandle, ' L i
window: window.Handle, ‘
box: window.Box,
old, new: PictureState];

PictureState: Type = {garbage, normal, highlighted, ghost, reference, referenceHighlighted};

A PictureProc is a procedure supplied by an application as part of an Implementation. The
PictureProc is called whenever the desktop implementation needs to have the application's
icon picture repainted or painted differently.

data identifies the particular NSFile whose picture should be painted. The NSFile's file type
will be the one for which this application has registered its Implementation. Even though
all files of the same type will have the same PictureProc and therefore the same-shaped
picture, each picture will differ because the name of the NSFile is often displayed on the
picture. An application's PictureProc can obtain an NSFile's name by using NsFile
operations, but may more easily obtain it using Containee.GetCachedName. This is one of
the primary intended uses for GetCachedName. (See the section on Attribute Cache).

window and box should be passed to any display procedures used to paint the icon picture,
such as Display.Bitmap and SimpleTextDisplay.StringintoWindow.

The old and new arguments describe the current and desired states of the icon picture.
garbage is the unknown state. PictureProc will be called with new =garbage before
moving or otherwise altering the icon; this lets an application remember an icon's .
placement. The application can thus continually update the icon (for example, to represent |)
time-of-day) or can force a repaint by using window.lnvalidate (to change the shape of an
InBasket icon, for example), normal is the picture displayed when the icon is not selected.

13-6

ViewPoint Programmer’s Manual 13

highlighted is the picture displayed when the icon is selected. ghost is the picture
displayed when the icon is currently open. reference is the picture displayed to represent a
remote file. referenceHighlighted is the highlighted version of reference. The desktop
implementation will never use these last two states, but a generic reference icon
application might.

DefaultFileConvertProc: selection.ConvertProc;

DefaultFileConvertProc is a Selection.ConvertProc that knows how to convert to
selection.Targets of file and fileType. DefaultFileConvertProc should be called from an
application’s Implementation.convertProc for these targets, or should be provided as the
application’s Implementation.convertProc if the application has no convertProc of its own.
No file-backed application’s convertProc should need to worry about these target types.

13.2.2 Items for Application Consumers

These items would not ordinarily be used by an application implementation (provider),
but rather by a consumer such as the Desktop or Folder implementation.

Getlmplementation: PROCEDURE [NSFile. Type] RETURNS [Implementation];

Getimplementation returns the current Implementation for a particular file type.

13.2.3 Defaultimplementation

Containee supports a single global default Implementation. This default Implementation is
used when the user operates on an NSFile for which no Implementation has yet been
registered.

GetDefaultimplementation: PROCEDURE RETURNS [Implementation];
GetDefaultimplementation returns the current default Implementation.

SetDefaultimplementation: PROCEDURE [Implementation]
RETURNS [Implementation];

The default implementation provides a dummy display and appropriate “Sorry, Desktop is
Unable to Open That Object” complaints in the absence of a particular implementation.
Most clients will not call SetDefaultimplementation.

13.2.4 Attribute Cache

Clients often want to use several common NSFile.Attributes, but it is awkward to pass the
attributes around in calls, because the attributes are long, of variable length, and
frequently not needed by the called routine. Therefore, Containee provides a cache
mechanism that can remember and supply popular attributes. Currently, the name and
file type attributes are supported. Containee decouples the management of in-memory
copies of a file's name from parameter-passing arrangements.

13-7

13

Containee

13-8

GetCachedName: PROCEDURE [data:DataHandle]
RETURNS [name: xstring.ReaderBody, ticket:Ticket];

GetCachedName returns the name attribute of theNSFile referred to by data. If the name
is not in the cache, it is looked up and added to the cache. ticket must be returned (by using
ReturnTicket) when the client is through with the name. The ticket is to prevent one client
from changing the name while another is looking at it.

GetCachedType: PROCEDURE [data:DataHandle]
RETURNS [type:NsFile.Type];

GetCachedType returns the type attribute of the NSFile referred to by data. If the type is
not in the cache, it is looked up and added to the cache.

InvalidateCache: PROCEDURE [data:DataHandle] ;

InvalidateCache clears any information about the NSFile from the cache. It is typically
called when the attributes of an NSFile are changed by an application.

InvalidateWholeCache: PROCEDURE ;
InvalidateWholeCache clears the entire cache. Information about all files is cleared.
ReturnTicket: PROCEDURE [ticket: Ticket];

ReturnTicket should be called after calling GetCachedName, when the client no longer
needs the string.

SetCachedName: pROCEDURE [data:DataHandle, newName: xstring.Reader];

SetCachedName allows a client to change a cached name. Care should be taken to keep
the filed name consistent with the cached name.

SetCachedType: PROCEDURE [data:DataHandle, newType:NsFile.Type];

SetCachedType allows a client to change a cached type. Care should be taken to keep the
filed type consistent with the cached type.

Ticket: Type[2];

A Ticket is returned when GetCachedName is called. When the client is done using the
cached name, the ticket must be returned by calling ReturnTicket. This is to prevent one
client from changing the name while another is looking at it.

ViewPoint Programmer’s Manual 13

13.3 Errors and Signals

Error: ERROR [misg: xstring.Reader « NIL, error: ERROR « NiIL,
errorData: LONG POINTER TO UNSPECIFIED «— NIL];

Signal: SIGNAL [msg: Xstring.Reader « NiL, error: ERROR ¢ NIL,
errorData: LONG POINTER TO UNSPECIFIED < NiL;

An application's GenericProc (and PictureProc and ConvertProc) should never assume that
it has been called by a desktop, and therefore should never call such facilities as
Attention.POSt or UserTerminal.BlinkDisplay. (The application might be called by CUSP, for
example.) Rather, the application should raise Containee.Error or Signal with an
appropriate message. Containee will not catch these errors. The caller of the application's
GenericProc should catch them and do the appropriate thing. In the typical case, the
ViewPoint desktop calls the application's GenericProc; it catches the error and calls
Attention.Post with the passed message. CUSP could catch the error and log the message in
a log file.

msg is the message to display to the user. error is the actual lower-level error that ocurred
that caused Error or Signal to be raised. errorData points to any additional data that
accompanied the lower-level error.

13.4 Usage/Examples

13.4.1 Sample Containee

The folder application is used as an example of a simple application that implements a
particular file type.

-- Constants and global data

folderFileType: NSFile.Type =...;
oldimpl, newimpl: Containee.Implementation «- [];

-- Containee.Implementation procedures

FolderGenericProc: Containee.GenericProc =
< < [atom: Atom.ATOM,
data: Containee.DataHandle,
changeProc: Containee. ChangeProc « niL,
changeProcData: LONG POINTER « NiL]
RETURNS [LONG UNSPECIFIED] > >
BEGIN
SELECT atom FROM
open = > RETURN [MakeFolder[data, changeProc, changeProcDatal };
props = > RETURN [MakePropertySheet[data, changeProc, changeProcDatal];
canYouTakeSelection = > RETURN [iF CanlTake[] THEN @true eLSE @false];
takeSelection = > RETURN [IFf Take[data, move, changeProc, changeProcData] THEN
@true eLsE @false |;

13-9

13

Containee

takeSelectionCopy = > ReTURN [IFf Take[data, copy, changeProc, changeProcData]
THEN @true eLSE @false];
ENDCASE = > RETURN [
oldFolder.genericProc [atom, data, changeProc, changeProcData] |;
END;

MakeFolder: PROCEDURE [
data: Containee.DataHandle,
changeProc: Containee.ChangeProc «nit,
changeProcData: LONG POINTER « NiL]
RETURNS [shell: starwindowshell.Handle] = {...};

Take: PROCEDURE [
data: Containee.DataHandle,
copyOrMove: Selection.CopyOrMove,
changeProc: Containee.ChangeProc «NiL,
changeProcData: LONG POINTER « NiL]
RETURNS [ok: BoOLEAN] = {...};

-- Initialization procedures

InitAtoms: PROCEDURE = {
open « Atom.MakeAtom["“Open”L];
props « Atom.MakeAtom{"Props"L];
canYouTakeSelection « Atom.MakeAtom["CanYouTakeSelection"L];
takeSelection « Atom.MakeAtom["TakeSelection“L];
takeSelectionCopy « Atom.MakeAtom["TakeSelectionCopy"“L];

Y

Setimplementation: PROCEDURE = {
newlmpl.genericProc « FolderGenericProc;
newlmpl.pictureProc « PictureProc;
oldimpl & Containee.Setimplementation [folderFileType, newimpl |;

Y

-- Mainline code
InitAtoms(];
Setimplementation(];

13.4.2 ChangeProc example

13-10

The folder property sheet is used to demonstrate a callback to a ChangeProc.

DataObject: TYPE = RECORD [
fh: NsFile.Handle,
changeProc: Containee.ChangeProc «NiL,
changeProcData: LONG POINTER «—NiL];

Data: TYPE = LONG POINTER TO DataObject;

MakePropertySheet: PROCEDURE [
data: Containee.DataHandle,

ViewPoint Programmer’s Manual

13

changeProc: Containee.ChangeProc «-Nit,
changeProcData: LONG POINTER « NIL]
RETURNS [pSheetShell: starwindowshell.Handle] = {

-- Pass changeProc to Makeltems through clientData.

mydata: DataObject « [
fh: NSFile.OpenByReference[@data.reference],
changeProc: changeProc,
changeProcData: changeProcData];

pSheetShell & propertysheet.Create [
formWindowltems: Makeltems,
menulternProc: MenultemProc,
menultems: [done: TRUE, cancel: TRUE, defaults: TRUE],
title: XxMessage.Get [...],
formWindowltemsLayout: DoLayout,
display: FALSE,
clientData: @mydatal;
Y

Makeltems: Formwindow.MakeltemsProc = {
-- Make property sheet items with calls to Formwindow.MakeXXXitem.

}:

“MenultemProc: propertySheet.MenultemProc = { .

< < [shell: starwindowshell. Handle, formWindow: window.Handle,
menultem: Propertysheet. MenultemType, clientData: LONG POINTER]
RETURNS [destroy:-BOOLEAN « FALSE] > >

mydata: Data = clientData;

SELECT menultem FROM
done = > reTurN[destroy: ApplyAnyChanges[formWindow, mydatal.ok];
cancel = > ReTURN{destroy: TRUE];
defaults = > ...
ENDCASE;

RETURN[destroy: FALSE];

%

ApplyAnyChanges: PROC [fw: window.Handle, mydata: Data] RETURNS [ok: BOOLEAN] =

-- Collect any changes in the property sheet items.
Nsrile.ChangeAttributes [mydata.fh, ...];

BEGIN -- Call the changeProc.

data: Containee.Data « [NSFile.GetReference [mydata.fh] |;

i mydata.changeProc # NiL THEN
mydata.changeProc[mydata.changeProcData, @data, changedAttributes];

END;

RETURN [ok: TRUE];

¥

{

13-11

13

Containee

13.4.3 Error and Signal Usage |

13-12

This client catches an NSFile.Error and raises Containee.Error, passing along the ERROR and
the Nsrile.ErrorRecord:

message: xstring.ReaderBody;

errorRecord: NsFile.ErrorRecord;

signal: --GENERIC-- SIGNAL «NIL;

file «~NsFile.OpenByReference [reference: ... !
NsFile.Error = > {

errorRecord « error;

signal & LoOPHOLE[NSFile.Error, SIGNAL];

GOTO ErrorExit}];

< < Operate on the file.> >

nsFile.Close{file];

EXITS
ErrorExit = > {

message « xstring. FromSTRING{ “nsFile.Error™L];

Containee.Error [msg: @message, error: signal, errorData: @errorRecord];

<

ViewPoint Programmer’s Manual

13

.

13.5 Index of Interface Items

Item

ChangeProc: TYPE

Data: TYPE

DataHandle: Type
DefaultFileConvertProc: selection.ConvertProc
Error:ERROR

GenericProc: TYPE

GetCachedName: PROCEDURE
GetCachedType: PROCEDURE
GetDefaultimplementation: PROCEDURE
Getlmplementation: PROCEDURE
ignoreType:NSFile

Implementation: TYPE
InvalidateCache: PROCEDURE
InvalidateWholeCache: PROCEDURE
nuliData:Data

PictureProc: TYpE

PictureState: TYPE

PictureState: TYPE

ReturnTicket: PROCEDURE
SetCachedName: PROCEDURE
SetCachedType: PROCEDURE
SetDefaultimplementation: PROCEDURE
Setimplementation: PROCEDURE
Signal:siGNAL

SmallPictureProc:Type

Ticket: TYPE

<

&
g

o

B WUONNORXIDAD WA DROWEBNNVOLONLLEN

13-13

13

Containee

13-14

14

ContainerCache

14.1 Overview

The ContainerCache interface provides the writer of a ContainerSource with a cache for
the container’s items. ContainerCache supports storing strings and client data with each
item.

14.2 Interface Items

14.2.1 Cache Allocation and Management
| Handle: TYP; = LONG POINTER TO Object;
Object: TYPE;
AllocateCache: PROCEDURE RETURNS [Handle];

AllocateCache returns handle on a cache that can be filled with BeginFill. The client
should call ResetCache before calling BeginfFill.

ResetCache: PROCEDURE [Handle];

ResetCache clears the cache so that, for example, the cache can be refilled by calling
BeginFill.

FreeCache: PROCEDURE [Handle];

Frees the resources used by a cache.

14.2.2 Filling the Cache

The client initially fills a cache with items by calling BeginFill with a FillProc. The FillProc
adds items to the cache by repeatedly calling Appenditem.

FillProc: TYPe = PROCEDURE [cache: Handle]
RETURNS [errored: BOOLEAN « FALSE];

14-1

14

ContainerCache

The client provides a FillProc to the BeginFill procedure. The FillProc should fill the cache
using Appenditem. errored is an indication of whether an error occurred during the
filling of the cache (errored = TRUE).

BeginFill: PROCEDURE [
cache: Handle,
fillProc: FillProc,
clients: LONG POINTER,
fork: BOOLEAN « TRUE];

Clients: PROCEDURE [cache: Handle] :
RETURNS [clients: LONG POINTER];

BeginFill begins filling the cache. fillProc is called to actually add items to the cache. If fork
is TRUE, then fillProc is forked as a separate process. clients is stored with the cache and
may be retrieved by calling Clients.

CacheFillStatus: TYPe = {no, inProgress, inProgressPendingAbort,
inProgressPendingloin, yes, yesWithError, spare };

StatusOfFill: PROCEDURE [cache: Handle]
RETURNS [CachefFiliStatus];

StatusOfFill returns the current status of the cache fill. yes indicates that the fill has
sucessfully completed; no means the cache has not been filled yet, inProgress indicates
that the fill is running right now. inProgressPendingAbort indicates that an abort has
been received but the fillProc has not yet returned. inProgressPendingloin, yesWithError,
and spare are not currently used.

14.2.3 Item Operations

14-2

ItemHandle: TYPE = LONG POINTER TO [temObject;
ItemObject: TYPE;

AddData: TYPE = RECORDI[
clientData: LONG POINTER, -- TO ARRAY [0..0) OF WORD
clientDataCount: CARDINAL,
clientStrings: LONG DESCRIPTOR FOR ARRAY OF XString.ReaderBody];

An AddData record is passed to the Appendltem, Insertitem,and Replaceltem procedures.
clientData should contain any data that the client wants to cache with the item, usually
some type of reference to the actual item. clientDataCount is the size (in words) of the
clientData. clientData is copied into the cache; therefore the clientData should contain no
pointers to other data. clientStrings should contain the strings to be displayed for the item.
clientStrings are also copied into the cache, allowing them to be freed by the client.

The standard use of clientStrings is to implement the ContainerSource.StringOfltemProc,
which can be accessed efficiently using ItemNthString. See the section on item content
operations for more details on accessing the contents of items. Caution: There are

ViewPoint Programmer’s Manual 14

restrictions on the total length of an item (strings plus client data) that may be added to a
cache. Currently, no item should be longer than 512 bytes.

Appenditem: PROCEDURE [
cache: Handle,
addData: AddDatal
RETURNS [handle:ItemHandle];

Appendltem appends an item to the end of cache. It is usually called repeatedly from
within a FillProc. handle is a pointer that can be used to access the new item.

DeleteNItems: PROCEDURE [
cache: Handle,
item: CARDINAL,
nitems: CARDINAL «1];

DeleteNitems deletes one or more consecutive items from cache, starting at item. Fine Point:
Since the cache is maintained as a contiguous string of bits, this operation is likely to be slow compared to

Appenditem and GetNthitem.

GetNthltem: PROCEDURE [cache: Handle, n: CARDINAL]
RETURNS [ItemHandle];

GetNthltem returns the nth item in cache. The items are numbered from zero. Returns NiL
if no such item exists. The ItemHandle returned is not guaranteed to be valid after any
operation that modifies the cache (DeleteNltems, Insertitem, Replaceltem). If the cache
status is inProgress (someone is in the process.of filling the cache), GetNthitem will not
return until the nth item has been appended to the cache or until the fill is complete.

Insertltem: PROCEDURE [
cache: Handle,
before: CARDINAL,
addData: AddData]
RETURNS [handle: itemHandle];

Insertitem inserts an item in cache. The new item is inserted before item before. Note that
all the items after this item will be renumbered. Fine Point: Since the cache is maintained as a
contiguous string of bits, this operation is likely to be slow compared to Appenditem and GetNthitem.

Replaceltem: PROCEDURE [
cache: Handle,
item: CARDINAL,
addData: AddDatal
RETURNS [handle: itemHandle];

Replaceltem replaces the contents of item in cache with the information in addData. Fine
Point: This operation is implemented as DeleteNitems followed by Insertitem, and so is likely to be slow
compared to Appenditem and GetNthitem,

14-3

14

ContainerCache

14-4

14.2.4 Item Content Operations

Itemindex: PROCEDURE [item: ItemHandle] RETURNS [index: CARDINAL];
Given the handle item, Itemindex returns its index in the cache.
ItemClients: PROCEDURE [item: ItemHandle] RETURNS {clientData: LONG POINTER];

Returns the client data associated with item. If the client data passed in was NIL,
clientData will be NIL.

ItemClientsLength: PROCEDURE [item: ItemHandle] ReTuRNS [datalength: cARDINAL];
Returns the length of the client data passed in with item.

ItemStringCount: PROCEDURE [item: [temHandle] RETURNS [strings: CARDINAL];

Returns the number of client strings associated with item.

ItemNthString: PROCEDURE [item: I[temHandle, n: CARDINAL] RETURNS [XString.ReaderBody];

Returns the nth client string associated with item. This operation can be used to
implement a ContainerSource.StringOfitemProc .

14.2.5 Marking Items in the Cache

Whenever items are deleted or inserted in a ContainerCache, all the items are
renumbered. This allows a client to keep track of items by marking them. ContainerCache
keeps track of the marked items across any changes to the cache. A mark is a handle on a
cache item that tracks the item when the item number changes. This facility is handy for
container source implementations that use ContainerCache and want to perform all the
various combinations of moving and copying items within the source.

Mark: TYPE = LONG POINTER TO MarkObject;
MarkObject: TYPE; ’

SetMark: PROCEDURE |
cache: ContainerCache.Handle, index: CARDINAL]
RETURNS [mark: Mark];
-- seta mark at index

IndexFromMark: PROCEDURE [mark: Mark]
RETURNS [index: CARDINAL];
-- get the current value of this mark

MoveMark: PROCEDURE [mark: Mark, newindex: CARDINAL];
-- allows the resetting of a mark without using a new one

FreeMark: PROCEDURE [mark: Mark];
-- mark no longer needed

ViewPoint Programmer’s Manual 14

14.3 Usage/Examples

After the client allocates a cache, the client starts filling the cache by calling BeginFill
with a FillProc. BeginFill immediately calls the FillProc. Inside the FillProc, the client will
usually do some kind of enumeration on the source backing (for example, if the source is
backed by files, the client would do an NsFile.List). For each item enumerated by the
FillProc, the client builds the required strings for that item and then passes the strings
along with any item data to Appenditem. The item data is usually some information that
is needed to uniquely identify the item (for the file example, this might be a fileID). This
process continues until all the items in the source have been enumerated, at which time
the FllIProc returns.

The call to BeginFill may indicate that the FillProc should be forked into a separate process.
This allows the enumeration of the source’s items to go on in the background, an
advantage if the source has a large number of items. If the source is being displayed in a
ContainerWindow while this background fill is taking place, the window displays each
new item as it is appended to the cache. Fine Point: ContainerWindow can display the items as they
are added because during the filling of the cache, GetNthltem will wait until the requested item is in the cache

instead of returning with an indication that the requested item isn’t available.

Once the cache has been created, operations on the container source that owns the cache
may cause items in the cache to become invalid. One way to bring the cache back into
synch is to invoke BeginFill and rebuild the cache. If reenumerating the items in the
source is expensive, items in the cache can be updated with the operations DeleteNItems,
Insertitem, and Replaceltem. The disadvantage of these operations is that they may cause-
performance degradation. Fine Point: The current implementation tries to maintain the cache as a
contiguous series of strings of bits to minimize swapping. Using these operations may force large amounts of data
to be moved around or fragment the cache data. If a large number of changes are to be made, it may pay to rebuild

the cache.

Use of ContainerCache may not always be appropriate. In some cases, the structure of
items in a source may be simple enough that a simple data structure in the source may
suffice to hold all the information necessary to respond to source operations.

14.3.1 Example of ContainerCache Use

The following example is taken from the implementation of FileContainerSource and gives
an example FillProc that uses Appendltem to build the cache.

ReaderSeq: TYPE = RECORD [SEQUENCE length: CARDINAL OF XString.ReaderBody];
ReaderSeqPtr: TYPE = LONG POINTER TO ReaderSeq;

WriterSeq: TYPE = RECORD [SEQUENCE length: CARDINAL OF XString.WriterBody];
WriterSeqPtr: TYPE = LONG POINTER TO WriterSeq;

FillCachelnBackground: ContainerCache.FillProc =
< < [cache: Handle] RETURNS [errored: BOOLEAN « FALSE]> >
BEGIN
fs: FS « containerCache.Clients{cache]; -- get container source context
parentHandle: NsFile.Handle;
writers: WriterSeqPtr « AllocateWriters [fs.columns.length];

14-5

14 ContainerCache)

readers: ReaderSeqPtr « z.NEW [ReaderSeq[fs.columns.length]]; -_—

Enumerator: NSrile. AttributesProc =
BEGIN
itemData: itemFileData;
addData: ContainerCache.AddData;

addData « BuildRow [fs, writers, readers, @itemData, attributes];
[] & ContainerCache.Appenditem [cache, addData];

RETURN;

END;

BEGIN
parentHandle « NsFile.OpenByReference [fs.parentReference];
Process.SetPriority [Process.priorityBackground];

NsFile.List [directory: parentHandle, proc: Enumerator,
selections: fs.selections, scope: fs.scope];
NsFile.Close [parentHandle];

END;

z.FREE [@readers];

FreeWriters [writers];

RETURN;
END;

BuildRow: PROCEDURE |
fs: FS,
writers: LONG POINTER TO WriterSeq,
readers: LONG POINTER TO ReaderSeq,
itemData: ItemFileDataHandle,
attributes: NSFile.Attributes]
RETURNS [addData: ContainerCache.AddData] =
BEGIN
attr: NsFile.Attribute;
ci: Containee.Implementation;

Ci & Containee.Getimplementation [attributes.typel;
FOR i: CARDINALIN [0..fs.columns.length) po
xstring.ClearWriter [@writers[il];
-- decide the type of column we have (passed in as Column info to
FileContainerSource.Create) and call proper format proc to format attribute(s)
into a string -- ,
wITH column: fs.columns[i] SELECT FROM
attribute = > { .
attr « AttributeFromAttributeRecord [
attributes, column.attr];
column.formatProc [ci, attr, @writerslill; };
extendedAttribute = > {
attr « ExtendedAttributeFromAttributeRecord [-~
attributes, column.extendedAttr]; |
column.formatProc [ci, attr, @writers[i]l; };
multipleAttributes = >

14-6

ViewPoint Programmer’s Manual 14

column.formatProc [ci, attributes, @writers|ill;
ENDCASE;
ENDLOOP;

itemData 1 &« [id: attributes.filelD, type: attributes.type];

FOR i: CARDINAL IN [0..writers.length) 0o
readers[i] « (xstring.ReaderFromWriter [@writers(i]]) 1 ;
ENDLOOP;

addData « [
clientData: itemData,
clientDataCount: size[ltemFileData],
clientStrings: DescripTOR[readers]];

ReTuRN[addDatal;
END;

14-7

14

ContainerCache

14.4 Index of Interface Items

14-8

Item

AddData: TYPE
AllocateCache: PROCEDURE
Appenditem: PROCEDURE
BeginFill: PROCEDURE
CacheFillStatus: Type
Clients: PROCEDURE
DeleteNitems: PROCEDURE
FillProc: TYpe

FreeCache: PROCEDURE
FreeMark:PROCEDURE
GetNthitem: PROCEDURE
Handle: TYPe
IndexFromMark :PROCEDURE
Insertitem: PROCEDURE
ItemClients: PROCEDURE
ItemClientsLength: PROCEDURE
ItemHandle: TyPe
Itemindex: PROCEDURE
itemNthString: PROCEDURE
ltemObject: TYPe
ItemStringCount: PROCEDURE
Mark:TYPE
MarkObjects:TYpE
MoveMark:pProcedure
Object: TYPE

Replaceltem: PROCEDURE
ResetCache: PROCEDURE
SetMark:PROCEDURE
StatusOfFill: PROCEDURE

Page

N & =2 W=Dl NLBAOBNDDAWBAEB=S WAL WNNNW-AN

15

ContainerSource

15.1 Overview

The Container interfaces (ContainerSource, ContainerWindow, FileContainerSource,
FileContainerShell, and ContainerCache) provide the services needed to implement an
application that appears as an ordered list of items to be manipulated by the user.
ViewPoint Folders are a typical example of such an application. ContainerWindow
provides the user interface for containers. It displays each item as a list of strings and
handles selection highlighting, scrolling, and so forth. When a ContainerWindow is
created, a record of procedures is passed in. ContainerWindow obtains the strings of each
item by calling one of these procedures. ContainerWindow also performs user operations
on items, such as open, props, delete, insert, take the current selection, and selection
conversion by calling other procedures in the record. This record of procedures and their
implementation is called a container source. A container source can be thought of as a
supply (source) of items for a ContainerWindow. A container source is responsible for
implementing container source operations on its underlying representation of the items in
the source.

The ContainerSource interface contains the procedure TyPes that make up the record of
procedures that a container source must implement. These procedure definitions
encompass all the operations that a source of items must be able to perform.
ContainerSource also provides a place to save data specific to a particular container
source.

The procedure TYPEs defined by ContainerSource fall into two categories. ActOnProc,
CanYouTakeProc, GetLengthProc, and TakeProc are operations on the source as a whole.
ConvertitemProc, DeleteitemsProc, -ItemGenericProc, and StringOfltemProc are
operations on the individual items within the source.

Note that the items in a container must exhibit behavior similar to the behavior defined
by the Containee interface, such as open, props, take selection, convert. However, also
note that the Containee interface defines the behavior of NSFiles, whereas
ContainerSource is totally independent of NSFile. The items in a container may be backed
by anything. The FileContainerSource interface is an example of a container source that is
backed by NSFiles. The ViewPoint Directory application contains examples of container

15-1

15

ContainerSource

sources that are backed by Clearinghouse entries (such as the Filing and Printing
dividers) and by simple strings in virtual memory (such as a domain divider).

The ContainerCache interface provides a mechanism for caching the strings and item-
specific data for the items in a container source. The implementor of a container source
might find ContainerCache to be handy.

15.2 Interface Items

15-2

15.2.1 Handle, Procedures, and ProceduresObject

Handle: TYPE = LONG POINTER TO Procedures;
Procedures: TYPE = LONG POINTER TO ProceduresObject;

ProceduresObject: TYPE = RECORD [
acton: ActOnProc,
canYouTake: CanYouTakeProc,
columnCount: ColumnCountProc,
convertltem: ConvertitemProc,
deleteltems: DeleteltemsProc,
getLength: GetLengthProc,
itemGeneric: [temGenericProc,
stringOfitem: StringOfltemProc,
take: TakeProc];

Handle identifies a particular container source. Handle is a pointer to a’ pointer
(Procedures) to a record of procedures (ProceduresObject) that are implemented by the
container source. A container source typically EXPORTs a Create procedure that return a
Handle. This Handle is then passed to Containerwindow.Create. Whenever
ContainerWindow needs the container source to do something, it calls the appropriate
procedure in the ProceduresObject by using Handle 1 1, and passing in the Handle. Note:
Every procedure in the ProceduresObject takes a Handle as its first parameter. Fine Point:
Actually, ContainerWindow will call the INLINE procedures described in the INLINE section, which in turn call
the procedures in the ProceduresObject.

Handle is a pointer to a pointer (rather than just a pointer to the ProceduresQbject) to
allow a container source to save data specific to the source. For example, a file-backed
source would need to keep a pointer to the file. See the section on Usage/Examples for an
explanation of how this is done.

15.2.2 Procedures That Operate on Individual Items

Itemindex: TYPE = CARDINAL;
nullitem: Iltemindex = Itemindex.LAST;

All the procedures that operate on individual items take a Handle and an Itemindex. An
Itemindex is simply a CARDINAL that uniquely identifies an item in the source. Note: A
container source is an ordered list of items. An Itemindex of “n” indicates the “nth” item in
the source. An Itemindex of zero corresponds to the first source item. An Itemindex should

I

1

ViewPoint Programmer’s Manual]. 5

be thought of as a loose binding: the index of a particular item may change as a result of
changes to the source. For example, if an item is deleted, all the items below it will be
renumbered. nullltem is a constant used to represent no item or unknown item.

StringOfltemProc: TYPE = PROCEDURE [
source: Handle,
itemindex: Itemindex,
stringindex: CARDINAL]
RETURNS [Xstring.ReaderBody];

The source’s StringOfltemProc should return the string stringindex of item itemindex in
source. Each item’s display is composed of strings, one for each column of the container
window. For example, an open Folder shows four columns: the icon picture, the name, the
size, and the date. stringindex will be IN [0..source.columnCount(]) (see also
ColumnCountProc in the next section). If there is no such item or string, StringOfitemProc
should return xstring.nullReaderBody. StringOfitemProc is used extensively and its
implementation should be efficient.

ItemGenericProc: TYPE = PROCEDURE [
source: Handle,
itemindex: Itemindex,
atom: Atom.ATOM,
changeProc: ChangeProc «nit,
changeProcData: LONG POINTER « NiL]
RETURNS [LONG UNSPECIFIED];

The source’s temGenericProc is invoked to perform an operation on one of the items in the
container. itemindex indicates which item to operate on. The operation, specified by
atom, may be any one of the following set: Open, Props, CanYouTakeSelection,
TakeSelection, TakeSelectionCopy. This procedure is just like the genericProc that a
Containee.Implementation must provide (see the Containee interface for a complete
description of the atoms and their return values.) changeProc must be called if the
ItemGenericProc causes the source to change. changePro¢ and changeProcData are
described in more detail below in the section on changeProc types.

ConvertltemProc: TYPE = PROCEDURE [
source: Handle,
itemindex: Itemindex,
N: CARDINAL « 1,
target: selection.Target,
Zone: UNCOUNTED ZONE,
info: selection.Conversioninfo « [convert[]],
changeProc: ChangeProc «nNi,
changeProcData: LONG POINTER « NIL]
RETURNS [value: Selection.Value];

The source’s ConvertltemProc is invoked to convert one or more of the items in source, just
as if the item was the current selection and selection.Convert had been called. itemindex
indicates the first item to convert. n indicates how many consecutive items to convert.
target, zone, info, and value are all identical to the parameters for Selection.ConvertProc
(see the Selection interface). If n>1, then info is the enumeration variant; otherwise, it is
the convert variant. changeProc must be called if the ConvertitemProc causes the source

15-3

15

ContainerSource

15-4

to change, for example, when an item is moved out of the source. changeProc and
changeProcData are described in more detail in the section on changeProc types.

DeleteltemsProc: TYPE = PROCEDURE [
source: Handle,
itemindex: Itemindex,
n: CARDINAL « 1,
changeProc: ChangeProc «NiL,
changeProcData: LONG POINTER «—NiL];

The source’s DeleteltemsProc is invoked to delete consecutive items from source.
itemindex is the first item to delete. n is the number of items to delete. changeProc must
be called if the DeleteitemsProc causes the source to change, that is, if the deletion is
successful. changeProc and changeProcData are described in more detail in the section on
changeProc types.

15.2.3 Procedures That Operate on the Entire Source

ColumnCountProc: TYPE = PROCEDURE [source: Handle] RETURNS [columns: CARDINAL];

The source’s ColumnCountProc should return the number of columns in source, that is,
the number of strings in each item. Fine point: typically, the number of columns is the same as COUNT
[ContainerWindow.ColumnHeaders].

GetlengthProc: TYPE = PROCEDURE [source: Handle]
RETURNS [length: caRDINAL, totalOrPartial: TotalOrPartial _ total];

TotalOrPartial: Type = {total, partial};

The source’s GetLengthProc should return the total number of items currently in the
source. This operation is performed often and should be efficient. Some container sources
have indeterminate length until after an initial enumeration has completed (for example,
clearinghouse enumerations). These sources may return [totalOrPartial: partial] while the
initial enumeration is in progress. This lets the ContainerWindow display mechanism
know that there are more items coming, while giving it some information along the way.
Once a source knows how many items are in the source, (or for those sources that know
right from the start how many items are in the source, (such as NSFile-backed sources), the
GetLengthProc should return [totalOrPartial: totall.)

ActOnProc: TYPE = PROCEDURE [source: Handle, action: Action];
Action: Tyre = {destroy, reList, sleep, wakeup};

The source’s ActOnProc is invoked to request some action of the source. Action indicates
what the source should or can do.

destroy The term destroy means that the source should destroy itself, freeing
all storage and releasing all resources associated with the container
source instance.

;%
1

ViewPoint Programmer’s Manual 15

sleep The term sleep means that the source should release whatever
resources it can without losing information; it is a hint that the
container source will not be used for a while.

wakeup The term wakeup means that the source is going to be used and should
resume its normal state, undoing whatever was done for sleep.

relist The term reList means that the source should re-enumerate itself
because its backing store has been changed.

CanYouTakeProc: TYPE = PROCEDURE [
source: Handle,
selection: selection.ConvertProc « nNiL)
RETURNS [yes: BOOLEAN];

The source’s CanYouTakeProc is invoked to determine if the container source can take the
selection. If selection is NIL, the current selection should be used (call Selection.Convert.)
Otherwise the Selection.ConvertProc is used to obtain an arbitrary selection. If the
CanYouTakeProc returns yes = TRUE, then the source’s TakeProc may be called. Fine point:
The Selection interface does not support passing in an arbitrary ConvertProc. It is the responsibilty of clients
who pass in arbitrary selections to make sure the source can properly handle this case. This routine is
intended to provide an efficient check on the compatibility of the objects being copied or
moved. The common use of this routine is to provide feedback to the user. If a
CanYouTakeProc returns TRUE, the client may choose to highlight the target. This is
normally at the level of a file-type check. More elaborate checking is not necessary; for
example, a file-backed container source would not want to check the source for protection
or uniqueness violations. These should be handled by the TakeProc.

TakeProc: TYPE = PROCEDURE [
source: Handle, ‘
copyOrMove: selection.CopyOrMove,
afterHint: Itemindex « nullitem,
withinSameSource: BOOLEAN « FALSE,
changeProc: ChangeProc «Nit,
changeProcData: LONG POINTER « NiL,
selection: selection.ConvertProc ¢« niL]
RETURNS [0k : BOOLEAN];

beforeltemZero: Itemindex = ltemindex.LAST - 1;

The source’s TakeProc is invoked to add items to the container source. copyOrMove tells
the source whether to do a move or a copy of the selection. afterHint indicates the item the
new item should be inserted after. Fine point: This is only a hint to the container source, since the
ultimate position of the new item may depend on a sort order built in to the source. afterHint defaults to
nullitem, which indicates that the caller doesn’t care where the new item goes. If afterHint
= beforeltemZero, the source should insert the new item before the first item.
changeProc must be called if the TakeProc causes the source to change.
withinSameSource = TRUE indicates to the source that the item(s) being moved or copied
into the source are also in that same source; such as when the user moves or copies
something from one place in a container to another place in the same container. This case
usually involves some special case processing by the source (especially for move).
changeProc and changeProcData are described in more detail in the next section.

15-5

]. 5 ContainerSource

selection indicates the objects to be moved or copied. If selection is NiL, the current -~
selection should be used(call selection.Convert.) Otherwise the Selection.ConvertProc is used B
to obtain an arbitrary selection. Fine Point: Refer to the CanYouTakeProc description for further

discussion of arbitrary selections. OK indicates whether the TakeProc was successful or not. The

use of this routine is usually be preceded by a call to the source’s CanYouTakeProc.

15.2.4 ChangeProc Types

A source’s ConvertProc, DeleteltemsProc, ItemGenericProc, and TakeProc all take a
ChangeProc as an input parameter. This ChangeProc must be called by the source
whenever any item or items in the source changes. This allows the ContainerWindow
display code to keep the display up to date with the source. For example, a call to the
source’s ItemGenericProc with an atom of Props will cause a property sheet to be displayed
for an item. If the user then edits, for example, the name of the item, and then closes the
property sheet, the source must detect this change, update its backing, and call the
ChangeProc .that was passed into the ItemGenericProc. This ChangeProc (supplied by
ContainerWindow) then causes the changed item(s) to be redisplayed.

ChangeProc: TYPE = PROCEDURE |
changeProcData: LONG POINTER,
changeinfo: Changelnfo];

A ChangeProc and changeProcData are passed to a source’s ConvertProc,
DeleteltemsProc, ItemGenericProc, and TakeProc . Since the changeProcData had to be

allocated from someplace the changeProc must always be called, even if there were no. g?
changes to the source. The source must call the ChangeProc with the changeProcData and

any changelnfo.

Changelnfo: TYPE = RECORD [
var: SeLecT changeType: ChangeType FROM
replace = > [item: Itemindex],
insert = > [insertinfo: LONG DESCRIPTOR FOR ARRAY OF Editinfo],
delete = > [deletelnfo: Editinfo],
all, noChanges = > NuLL,
ENDCASE |;

ChangeType: TYPE = { replace, insert, delete, all, noChanges};

Changelnfo is passed to the ChangeProc to tell the display code exactly what changed. A
container source can be smart and pass specific Changelnfo (for example, “3 items were
inserted after item 4 and 2 items were inserted after item 6” may be constructed with the
insert variant), or be dumb and simply pass the all variant, which causes a total repaint of
the container display. replace indicates that a single item has changed. insert indicates
that one or more items have been inserted. delete indicates that one or more items have
been deleted. all indicates that the entire source has been changed.

15-6

ViewPoint Programmer’s Manual 15

Editinfo: TYPE = RECORD [
afteritem: Itemindex,
nitems: CARDINAL];

Editinfo is used with the insert and delete variants of Changeinfo to indicate how many
items have been inserted or deleted, and where they were inserted at or deleted from.

15.2.5 Errors
A container source may raise Error or Signal as appropriate.

Error: ERROR [code: ErrorCode, msg: XString.Reader « NiL,
error: ERROR «— NiL, errorData: LONG POINTER TO UNSPECIFIED «— NIL];

Signal: siGNAL [code: ErrorCode, msg: XString.Reader « NiL,
error: ERROR «— NIL, errorData: LONG POINTER TO UNSPECIFIED €« NIL];

A source's ItemGenericProc (and ConvertitemProc and DeleteltemsProc) should never
assume that it has been called by a ContainerWindow, and therefore should never call
such facilities as Attention.Post or UserTerminal.BlinkDisplay. (The application might be
called by CUSP, for example.) Rather, the source should raise ContainerSource.Error or
Signal with an appropriate message. The caller of the source's ItemGenericProc should
catch these errors and do the appropriate thing. In the typical case, the ContainerWindow
will call the source's ItemGenericProc and catch the error and call Attention.Post with the
passed message. CUSP could catch the error and log the message in a log file. msg is the
message to display to the user. error is the actual lower-level error that ocurred that
caused Error or Signal to be raised. errorData points to any additional data that
accompanied the lower level error.

ErrorCode: TYPE = MACHINE DEPENDENT {invalidParameters(0), accessError, fileError,
noSuchltem, other, last(15)};

invalidParameters indicates that some parameters were invalid; for example, the
source was not the correct type (the Procedures did not match).

accessError indicates an attempt to perform an operation that violates the
created access option (for sources that implement access
controls).

fileError indicates a file system error (for sources that are backed by
files).

noSuchitem A container source implementation should raise

Error[noSuchitem] if one of the container source's procedures is
called with an Itemindex for an item that is not in the source.

other may be raised to indicate any other problem.

Fine point: Error and Signal are EXPORTed by the FileContainerSource implementation since ContainerSource

has no implementation.

15-7

1 5 ContainerSource

15.2.6 INLINES %
i

The following INLINE procedures are provided as a convenience to clients who wish to use
object notation when calling a container source. ContainerWindow is the only typical
client of these procedures.

ActOn: ActOnProc = INLINE {...};

CanYouTake: CanYouTakeProc = INLINE {...};
ColumnCount: ColumnCountProc = INLINE {...};
Convertltem: ConvertitemProc = INUNE {...};
Deleteltems: DeleteltemsProc = INLINE {...};
GetLength: GetLengthProc = INLINE {...};
ItemGeneric: itemGenericProc = INLINE {...};
StringOfitem: StringOfitemProc = INLINE {...};
Take: TakeProc = INLINE {...};

15.3 Usage/Examples

The reason that Handle is a pointer to a pointer (rather than just a pointer to the
ProceduresObject) is to allow a container source to save data specific to the source. For
example, a file-backed source would need to keep a pointer to the file. This is done in the
following example.

15.3.1 ContainerSource Example

1. Declare a ContainerSource.ProceduresObject in the global frame of the module and fill it [
with the appropriate procedures.

mySourceProcs: ContainerSource.ProceduresObject & |
acton: MyActOn,
canYouTake: CaniTake,
columnCount: MyColumnCount,
convertitem: ConvertMyitem,
deleteltems: DeleteMyitems,
getLength: GetMyLength,
itemGeneric: MyltemGeneric,
stringOfltem: StringOfMyltem,
take: MyTake];

2. Declare a record that has a ContainerSource.Procedures (Procedures, not
ProceduresObject!) as its first field and initialize this field to point to the
ProceduresObject declared in the global frame. The rest of the record should contain
whatever data the source needs in order to perform all the operations it will be
requested to perform. Also declare a pointer to this record.

MySource: TYPE = LONG POINTER TO MySourceObject;
MySourceObject: TYPE = RECORD [

procs: ContainerSource.Procedures « @mySourceProcs, -,
otherStuff:...]; 1

15-8

ViewPoint Programmer’s Manual]. 5

3. When creating the source, allocate the MySourceObject record and fill it with any
Lr— relevant data. Return a pointer to the Procedures field of the record (@ms.procs
below). Note: This return value is a pointer to a ContainerSource.Procedures, which is a

ContainerSource.Handle.

Create: puBLIC PROCEDURE [otherStuff: . . .] RETURNS [source: Containersource.Handle] = {
ms: MySource « z.NEW [MySourceObject [otherStuff: otherStuff]];
RETURN[@ms.procs];

}:

4. The first thing that every procedure in the ProceduresObject should do is LOOPHOLE the
ContainerSource.Handle that was passed in into a pointer (MySource) to the source’s data
record (MySourceObject). After the LOOPHOLE, the fields of the source’s data record can
be directly accessed, e.g., ms.otherStuff. This all works because the first field in the
source’s data record is a Procedures. Note that the LOOPHOLE is actually performed in a
procedure that also checks to be sure that the Procedures field of the passed source
actually points to this source’s procedures (IF source 1 # @mySourceProcs THEN).

ActOnFile: containerSource. ActOnProc = {
ms: MySource = ValidMySource[source];

... ms.otherStuff. ..
ValidMySource: PROCEDURE [source: ContainerSource.Handle] RETURNS [ms: MySource] = {
IF SOurce = NIL THEN ContainerSource.Error [invalidParameters] ; '

IFsource T # @mySourceProcs THEN ContainerSource.Error[invalidParameters];

Y

15.3.2 Errors and Signals

For example, this client catches an NsFile.Error and raises Containee.Error, passing along the
ERROR and the NSFile.ErrorRecord:

message: Xstring.ReaderBody;
errorRecord: NsFile.ErrorRecord;
signal: --GENERIC-- SIGNAL e~ NIL;
file «~NsFile.OpenByReference [reference: ... 1
NSFile.Error = > {
errorRecord « error;
signal « LOOPHOLE[NSFile.Error, SIGNAL];
GOTO ErrorExit}];
-- Operate on the file.--
NsFile.Close[file];
EXITS
ErrorExit = >
message « Xstring. FromSTRING[" NsFile.Error"L];
ContainerSource.Error [
-’ code: fileError, msg: @message, error: signal, errorData: @errorRecord];

15-9

15

ContainerSource

15.4 Index of Interface Items

15-10

Item

Action: TYpE

ActOn: ActOnProc

ActOnProc: TYPE
beforeltemZero: Itemindex
CanYouTake: CanYouTakeProc
CanYouTakeProc: TYPE
Changelnfo: Type

ChangeProc: TYPE
ChangeType: TYPE
ColumnCount: ColumnCountProc
ColumnCountProc: TYPE
Convertltem: ConvertitemProc
ConvertltemProc: TYpPe
Deleteltemns: DeleteltemsProc
DeleteltemsProc: TYPE
Editinfo: Type

Error: ERROR

ErrorCode: TYPE

Getlength: GetLengthProc
GetLengthProc: Type '
Handle: TYPe .
ItemGeneric: itemGenericProc
ItemGenericProc: TYPE
itemindex: TYPE

nullitem: Itemindex
Procedures: TYPE
ProceduresObject: Type

Signal: sIGNAL

StringOfitem: StringOfltemProc
StringOfitemProc: Type

Take: TakeProc

TakeProc: TYPE
TotalOrPartial:TyPE

N

&)
103

©

AUV WRNNNNNWONDONNGOODRDOOWIRMROANDAANNNHNSL

16

ContainerWindow

16.1 Overview

The ContainerWindow interface supports the creation of ViewPoint-like container
windows. A container window provides a user interface that operates on a list of objects.
The objects are displayed in rows. Each container window has one or more columns, with
all rows displaying the same number of columns.

The ContainerWindow implementation maintains the display and manages user-invoked
actions such as scrolling, selection, notifications, open within, show next/previous, and so
forth. ContainerWindow takes a body window, a ContainerSource, and a specification of
the columns and makes the window behave like a container. Note: This interface does not
depend on NSFile: the objects represented by rows in the container do not have to be backed
by NSFiles.

16.2 Interface Items

16.2.1 Create and Destroy a ContainerWindow

Create: PROCEDURE [
window: window.Handle,
source: ContainerSource.Handle,
columnHeaders: ColumnHeaders,
firstitem: ContainerSource.ltemindex « 0]
RETURNS [regularMenultems, topPusheeMenultems: MenuData.ArrayHandle];

ColumnHeaders: TYPE = LONG DESCRIPTOR FOR ARRAY OF ColumnHeaderinfo;

ColumnHeaderinfo: TYPE = RECORD [
width: CarRDINAL,
wrap: BOOLEAN,
heading: xstring.ReaderBody];

16-1

16

ContainerWindow

Create turns an ordinary window into a container window. window must be a
StarWindowsShell body window. source supplies a source of items to be displayed and
manipulated (see the ContainerSource and FileContainerSource interfaces).

columnHeaders describes the column widths and supplies column headings. The columns
will be displayed in the order given by this array. For each column, width is the number of
bits the column should take, and heading is a string that will be displayed at the top of the
column. wrap indicates what to do when a string that the container window wants to
display is wider than width. If wrap = TRUE , the string should be wrapped around,
otherwise, it will be truncated. Fine Point: columnHeaders is copied by Create, so this structure may be in
the client’s local frame.

firstitem indicates the item that should be displayed first when the container window is
initially displayed.

reguiarMenuitems and topPusheeMenultems are the menu items that the container
window needs to have in the StarWindowShell. They should be added (by the client) to the
menu that is installed in the StarWindowsShell which this container window is a part of
(these contain menu items such as Show Next and Show Previous).

Destroy: PROCEDURE [window: window.Handle];

Destroys the data associated with the container window. Does not destroy the window
itself. May raise Error [notAContainerWindow].

16.2.2 Item operations

The individual containees in a container window are referred to as items (from
ContainerSource.ltemindex) They are sequentially numbered starting with zero.

DeleteAndShowNextPrevious: PROCEDURE [
window: window.Handle,
item: ContainerSource.ltemindex,
direction: Direction « next];

Direction: Tvype = {next, previous};

Deletes item from the container source and the display, then displays the next or previous
item. May raise Error[notAContainerWindow] or Error[noSuchitem].

GetOpenitem: PROCEDURE [window: window.Handle]
RETURNS [item: ContainerSource.ltemindex « ContainerSource.nullitem];

Returns the item that is currently open within the container. If no item is open, returns
ContainerSource.nullltem . May raise Error[notAContainerWindow].

18-2

(

ViewPoint Programmer’s Manual 16

GetSelection: PROCEDURE [window: window.Handle]
RETURNS [first, lastPlusOne: ContainerSource.ltemindex];

Returns the items currently selected in the ContainerWindow. first = last =
ContainerSource.nullltem means there is no selection.

Selectltem: PROCEDURE [window: window.Handle,
item: ContainerSource.ltemindex];

Selects the specified item and implicitly calls MakeltemVisible. MakeltemVisible is in a
friends-level interface. Note: MakeltemVisible Forces item to be visible in window. If
there is more than a screenful of items left following item, it is put at the top of the
window. If less than a screenful remains, item is put at the bottom of the window with as
many items as will fit before it. May raise Error[notAContainerWindow] or
Error[noSuchltem].

16.2.3 Operations on a ContainerWindow

Isit: PROCEDURE [window: window.Handle] RETURNS [yes: BOOLEAN];
Returns TRUE if the window passed in is a ContainerWindow.

GetSource: PROCEDURE [window: window.Handle]
RETURNS [source: ContainerSource.Handle];

Returns the ContainerSourf:e associated with this window. May raise
Error[notAContainerWindow]. SetSource allows the client to change the source and the
SourceModifyProc allows the client to modify the source.

SetSource: PROCEDURE {
window: window.Handle, newSource: ContainerSource.Handle]
RETURNS [oldSource: Handle];

SourceModifyProc: TYPE = PROCEDURE [
window: window.Handle, source: Containersource.Handle]
RETURNS [changelnfo: Changelinfo];

ModifySource: PROCEDURE [window: window.Handle, proc: SourceModifyProc];
ModifySource calls the source modification proc from within its monitor.

Update: PROCEDURE [window: window.Handle];

Called when the correspondence between the source and the display is invalid. Items in
the display will be redisplayed to reflect any changes in the source. May raise
Error[notAContainerWindowl]. Fine Point: Clients will not normally need to call this routine unless they

manipulate the source directly. All user-initiated operations on a ContainerWindow cause the display to be

updated automatically.

16-3

16

ContainerWindow

16.2.4 Errors

Error: ERROR [code: ErrorCode];
ErrorCode: TYPE = MACHINE DEPENDENT {notAContainerWindow(0), noSuchltem, last(7)};

Any operations that operate on a container window may raise this error.
notAContainerWindow is raised if the window passed in is not a container window (i.e.,
was not passed to Create). noSuchltem may be raised if an operation specifies a non-
existent item.

16.3 Usage/Examples

16-4

The following example is taken from the implementation of the FileContainerShell
interface. It illustrates the steps involved in creating a container window: creating a
container source, creating a StarWindowShell, creating a body window inside the shell,
creating the container window, and finally merging the menu items returned by
Containerwindow.Create with its own menu commands and installing those commands in
the shell. It also gives a sample StarWindowShell transition procedure that will destroy
the container source and the container window.

-- From FileContainerShelllmpl.mesa

MenultemSeq: TYPE = RECORD [
SEQUENCE length: CARDINAL OF MenuData.ltemHandle];

Create: PUBLIC PROCEDURE [
file: NsFile.Reference,
columnHeaders: Containerwindow.ColumnHeaders,
columnContents: FileContainerSource.ColumnContents,
regularMenultems, topPusheeMenultems: MenubData.ArrayHandle « NiL,
scope: NSFile.Scope «[],
position: ContainerSource.ltemindex 0,
options: FileContainerSource.Options &« []]
RETURNS [shell: starwindowshell. Handle] =

BEGIN
body: window.Handle « NiL;

source: ContainerSource.Handle « NiL;

cwRegularMenultems, cwTopPusheeMenultems: MenuData.ArrayHandle;
mergedMenultems: LONG POINTER TO MenultemSeq « NIL;

menu: MenuData.MenuHandle;

name: xString.ReaderBody;

ticket: Containee.Ticket;

data: Containee.Data « [file];

type: NsFile.Type;

smallPicture: xstring.Character;

if file = NSFile.nullReference THEN RETURN [[NIL]];
source ¢ FileContainerSource.Create [
file: file,

ViewPoint Programmer’s Manual 16

columns: columnContents,
scope: scope,
options: options];

[name, ticket] « Containee.GetCachedName [@data];
type « Containee.GetCachedType[@datal;
smallPicture « Containee.Getimplementation{typel.smallPicture;

shell « starwindowsShell.Create [
name: @name,
namePicture: smaliPicture,
sleeps: FALSE,
transitionProc: DestroyProc];

Containee.ReturnTicket [ticket];
body & starwindowshell.CreateBody [sws: shell, box: [[0,0],[700, 29999]]1;

[ewRegularMenultems, cwTopPusheeMenultems] « ContainerWindow.Create |
window: body,
source: source,
columnHeaders: columnHeaders,
firstitem: position];

mergedMenultems « MergeMenuArrays [cwRegularMenuitems, regularMenultems];
I mergedMenultems # NIL THEN
BEGIN
menu « MenuData.CreateMenu [
zone: starWindowShell.GetZone[shell],
title: niL,
array: DESCRIPTOR[mergedMenultems],
copyltemsintoMenusZone: TRUE |;
starwindowshell.SetRegularCommands [shell, menul;
2.FREE[@mergedMenultems];
END;

mergedMenultems « MergeMenuArrays [cwTopPusheeMenultems,
topPusheeMenultems];
menu « MenuData.CreateMenu |

zone: StarWindowshell.GetZone[shell],

title: Ni,

array: DESCRIPTOR[mergedMenultems],

copyltemsintoMenusZone: FALSE |;
starwindowsShell.SetTopPusheeCommands [shell, menu];
RETURN [shell];
END;

DestroyProc: StarWindowShell.TransitionProc =
< <[sws: StarWindowShell.Handle, state: StarWindowsShell.State] > >
BEGIN
IF state = dead THEN {
cw: Window.Handle « GetContainerWindow([sws];

16-5

1 6 ContainerWindow

ContainerSource.ActOn [source, destroy];
ContainerWindow.Destroy[cw]; };
RETURN;
END;

source: ContainerSource.Handle « GetContainerSource[sws]; ?

MergeMenuArrays: PROC [itemArray1, itemArray2: MenuData.ArrayHandle]
RETURNS [mergedSeq: LONG POINTER TO MenultemSeq] =
BEGIN
i: CARDINAL «0;
IFitemArray1 = NILAND itemArray2 = NiL THEN RETURN[NIL];
mergedSeq « z.NEW [MenultemSeq[itemArray1.LENGTH + itemArray2.LENGTH]];
FOR j: CARDINAL IN [0..itemArray1.LENGTH) DO
mergedSeq]i] « itemArray1{jl;
ie—i+1;
ENDLOOP;
FOR j: CARDINAL IN [0..itemArray2.LENGTH) DO
mergedSeqli] « itemArray2[jl;
ie—i+1;
ENDLOOP;
RETURN[mergedSeq];
END;

16-6

ViewPoint Programmer’s Manual 16

16.4 Index of Interface Items
Item Page

ColumnHeaderinfo: TYPE
ColumnHeaders: TYPE

Create: PROCEDURE
DeleteAndShowNextPrevious: PROCEDURE
Destroy: PROCEDURE

Direction: TYpe

Error: ERROR

ErrorCode: TYPE
GetOpenltem: PROCEDURE
GetSelection:PROCEDURE
GetSource: PROCEDURE

Islt: PROCEDURE
MakeltemVisible: PROCEDURE
ModifySource:PROCEDURE
Selectitem:PROCEDURE
SetSource:PROCEDURE
SourceModifyProc:PROCEDURE
Update: PROCEDURE

W W WwwWwwwwwwiNOBALANNN= =2 -

16-7

16 ContainerWindow

16-8

17

Context

17.1 Overview

[n performing various functions, an application may wish to save and retrieve state from
one notification to the next. This is an immediate consequence of the notification scheme,
for a tool cannot keep its state in the program counter without stealing the processor after
responding to an event. Thus, it becomes necessary for the application to explicitly store
its state in data. Because most notification calls to the application provide a window
handle, it is natural to associate these contexts with windows. The context mechanism is
provided as an alternative to the application’s having to build its own associative memory
to retrieve its context, given a window handle. ’

Typically, an application obtains a unique Type for its context data by calling UniqueType
in the start-up code for the application. Then whenever a window is created, the client
allocates some context data and calls Create to associate that data with the window.
Whenever the client is called to perform some operation on the window (For example, to
display the contents of the window or to handle a notification), it calls Find to retrieve the
data saved with the window. Finally, when the window is being destroyed, the client
(orViewPoint) calls Destroy, which calls the client’s DestroyProcType to give the client an
opportunity to free the data.

17.2 Interface [tems
17.2.1 Creating/Destroying a Context

UniqueType: PROCEDURE RETURNS [type: Typel;

The procedure UniqueType is called if a client needs a unique Type not already in use by
either Viewpoint or another client. If no more unique types are available, the ERROR
Error[tooManyTypes] is raised.

Create: PROCEDURE [
type: Type, data: Data, proc: DestroyProcType, window: Window.Handle];

17-1

17

Context

17-2

The procedure Create creates a new context of type type that contains data. The context is

associated with window; it is said to "hang” on the window. If window already possesses a

context of the specified type, the eRROR Error[duplicateType] is raised. If the window is NiL,
the ERROR Error[windowisNIL] is raised. The proc is supplied so that when the window is
destroyed is all of the context data can be destroyed (deallocated).

Type: TYPE = MACHINE DEPENDENT{
all(0), first(1), lastAllocated(37737B), last(37777B)};

Type is unique for each client of the context mechanism. An argument of this type is
passed to most of the procedures in this interface so that the correct client data can be
identified.

Data: TYPE = LONG POINTER TO UNSPECIFIED;

Data is the value that a client may associate with each window. [t is typically a pointer to
a record containing the client's state for some window.

DestroyProcType: TYPE = PROCEDURE [Data, Window.Handle];

A DestroyProcType is passed to Create so that the client can be notified when the context
should be destroyed. This may be the result of the window being destroyed.

Destroy: PROCEDURE [type: Type, window: Window.Handle];

The procedure Destroy destroys a context of a specific type on window. If the context
exists on the window, it will call the DestroyProcType for the context being destroyed.

DestroyAlil: PROCEDURE [window: Window.Handle];
The procedure DestroyAll destroys all the contexts on window. Fine Point: DestroyAll can be

very dangerous because ViewPoint keeps its window-specific data in contexts on the window. DestroyAll should
not be used except in special circumstances. It is called by the routines that destroy windows.

NopDestroyProc: DestroyProcType;

The procedure NopDestroyProc does nothing. It is provided as a convenience to clients
that do not want to create their own do-nothing DestroyProcType to pass to Create.

SimpleDestroyProc: DestroyProcType;

The procedure SimpleDestroyProc merely calls the system heap deallocator on the data
field. It is provided for clients whose context data is a simple heap node in the system zone.

17.2.2 Finding a Context on a Window

Find: PROCEDURE [type: Type, window: Window.Handle] ReTurNS [Datal;

The procedure Find retrieves the data field from the specified context for window. NIL is
returned if no such context exists on the window.

ViewPoint Programmer’s Manual 17

FindOrCreate: PROCEDURE [
type: Type, window: Window.Handle, createProc: CreateProcType] RETURNS [Data];

The procedure FindQOrCreate solves the race that exists when creating new contexts in a
multi-process environment. If a context of type type exists on window, it returns the
context's data; otherwise, it creates a context of type by calling createProc and then
returns data. If the window is NIL, the ERROR Error[windowlsNIL] is raised. ’

CreateProcType: TYPE = PROCEDURE RETURNS [Data, DestroyProcTypel;

Createi’rocType is used by FindOrCreate. The procedure passed in as an argument to
FindOrCreate is called to create a context only if a context of the appropriate type cannot
be found.

Set: PROCEDURE [type: Type, data: Data, window: window.Handlel;

The procedure Set changes the actual data pointer of a context. Subsequent Finds will
return the new data. Note: The client can change the data pointed to by the data field of a
context at any time. This could lead to race conditions if multiple processes are doing
Find’s for the same context and modifying the data. It is the client’s responsibility to
MONITOR the data in such cases. If the window is NiL, the eRROR Error[windowlsNIL] is
raised.

17.2.3 Acquiring/Releasing the Context

Acquire: PROCEDURE [type: Type, window: Window.Handle] RETURNS [Data];

The procedure Acquire retrieves the data field from the specified window. NIL is returned if
no such context exists on the window. It also locks the context object so that no other calls
on Acquire or Destroy with the same type and window will complete until the context is
freed by a call on Release.

Release: PROCEDURE [type: Type, window: Window.Handle];

The procedure Release releases the lock on the specified context object for window that
was locked by the call on Acquire. If the specified context cannot be found or it is not
locked, Release is a no-op.

17.2.4 Errors

ErrorCode: Tyre = {duplicateType, windowisNIL, tooManyTypes, other};

duplicateType is raised by Create if a context of the given type already exists on the
window passed as an argument.

windowlisNIL is raised if the client has passed in a NIL window.
tooManyTypes is raised if UniqueType has been called too many times.
Error: ERROR [code: ErrorCode];

Error is the only error raised by any of the Context procedures.

17-3

17

Context

17.3 Usage/Examples

Acquire and Release can be used in much the same manner as a Mesa MONITOR (See Mesa
Language Manual: 610E00150). It is important that the client call Release for every

context that has been obtained by Acquire; this is not done automatically. The cost of

doing an Acquire is barely more than entering a MONITOR and doing a Find. Using this
technique allows the client to monitor his data rather than his code.

If it is necessary for several tools to share global data, it is possible to place a context on
window.rootWindow that is never destroyed, even when the bitmap is turned off. To share
a Type without having to EXPORT a variable, it is possible to use one in the range
(lastAllocated..last]. Contact the support organization to have one allocated to you.

17.3.1 Example
- myContextType: Context.Type « Context.UniqueTypel];
MyContext: TYPE = LONG POINTER TO MyContextObject;
MyContextObject: TYPE = RECORD[...];
SysZ: UNCOUNTED ZONE « Heap.SystemZone;

MakeShellAndBodyWindow: PROCEDURE = {
myContext: MyContext « sysZ.New [MyContextObject « [
-- initialize fields of MyContextObject --]];
-- Note: If some field of MyContextObject was a pointer to some more allocated
storage, then the Context.SimpleDestroyProc would not be used, but rather a client
supplied DestroyProcType would have to be provided that freed both
MyContextObject and the storage pointed to by MyContextObject.

shell: starwindowshell.Create [...];
body: starwindowshell.CreateBody [sws: shell,
repaintProc: MyRepaint,
bodyNotifyProc: MyNotifyl;
Context.Create [type: myContextType,
data: myContext,
proc: Context.SimpleDestroyProc,
window: body];

Y

17-4

ViewPoint Programmer’s Manual 17

MyRepaint: PROCEDURE [window: window.Handle] = {
myContext: MyContext « FindContext [window];

Y
MyNotify: Tip.NotifyProc = {
myContext: MyContext « FindContext [window];

};
FindContext: PROCEDURE [window: window.Handle]
RETURNS [myContext: MyContext] = {

myContext « Context.Find [myContextType, window];
IF myContext = NIL THEN ERROR;

}:

17-5

17

Context

17.4 Index of Interface [tems

17-6

Item

Acquire: PROCEDURE

Create: PROCEDURE
CreateProcType: TYPE
Data: TYPE

Destroy: PROCEDURE
DestroyAll: PROCEDURE
DestroyProcType: TYPE
Error: ERROR

ErrorCode: TYPE

Find: PROCEDURE
FindOrCreate: PROCEDURE
NopDestroyProc: PROCEDURE
Release: PROCEDURE

Set: PROCEDURE
SimpleDestroyProc: PROCEDURE
Type: TYPE

UniqueType: PROCEDURE

Page

= NNWWNWNWWNNNNW=2W

18

Cursor

18.1 Overview

The Cursor interface provides a procedural interface to the hardware mechanism that
implements the cursor on the screen. Several cursor shapes are defined in this interface,
as well as operations for client-defined cursors. Because there is a single global cursor, it
should be manipulated only through this interface and only from the notifier process.

The major data structure defined in this interface is the Object, which defines not only the
array of bits that defines the picture of the cursor, but also its hot spot. The hot spot of a
cursor consists of the coordinates within the 16-by-16 array that are meant to indicate the
screen position pointed to by the mouse. The hardware position of the cursor is always in
the upper-left corner of the bit array. For many cursor shapes, this position is not where
the cursor points. For example, the pointRight cursor shape is a right-pointing arrow and
has its hot spot at the tip of the arrow.

There can be up to 256 different cursors, limited by the size of the Type enumeration. The
first several types are system-defined. Clients may call UniqueType to allocate an unused
type for their own use.

The typical use of this interface is to change the cursor either by calling Set to set it to one
- of the system-defined cursors or by calling Store. The cursor may be restored by saving it
into an Object by calling Fetch before it is changed.

18.2 Interface Items

18.2.1 Major Data Structures
Handle: TYPE = LONG POINTER TO Object;
Object: TYPE = RECORD [info: Info, array: UserTerminal.CursorArrayl;

Info: TYPE = RECORD [type: Type, hotX: [0..16), hotY: [0..16)];

18-1

18 Cursor
Type: TYPE = MACHINE DEPENDENT{ >
blank(0), bullseye(1), confirm(2), ftpBoxes(3), hourGlass(4), lib(5), menu(6), T

18-2

mouseRed(7), pointDown(8), pointLeft(9), pointRight(10), pointUp(11),
questionMark(12), scroliDown(13), scrollLeft(14), scrollLeftRight(15), scrollRight(16),
scrollUp(17), scrollUpDown(18), textPointer(19), groundedText(20), move(21),
copy(22), sameAs(23), adjust(24), row(25), column(26), last(3778)};

Object defines the type and hot spot of the cursor as well as the 16-by-16 array of bits that
represent the cursor's picture.

The cursors in the subrange Type[blank..column] are system-defined.
Info contains the type and the hot spot of a cursor.
Defined: TYPe = Type[blank..column];

Defined is the subrange of Type that contains the system-defined cursors.

18.2.2 Setting the Cursor Picture

Set: PROCEDURE [type: Defined];

Set sets the displayed cursor to be one of the system-defined cursors.

Store: PROCEDURE [h: Handle]; -,
Store sets the displayed cursor to the cursor described by h.

StoreCharacter: PROCEDURE [c: XChar.Character];

StoreCharacter stores the system font picture of character c into the cursor. The info is set
to [type: column.succ, hotX: 8, hotY: 8].

StoreNumber: PROCEDURE [n: CARDINAL];
StoreNumber sets the cursor picture to be the number n Mmoo 100. If n is less than 10, the

single digit is centered in the cursor. The info is set to [type: column.succ.succ, hotX: 8,
hotY: 8].

18.2.3 Getting Cursor Information

Fetch: pPROCEDURE [h: Handle];

Fetch copies the current cursor object into the object pointed to by h.
GetiInfo: PROCEDURE RETURNS [info: Info];

Getinfo returns the hot spot and type of the current cursor.

FetchFromType: PROCEDURE [h: Handle, type: Defined]; ﬂhx

ViewPoint Programmer’s Manual 18

FetchFromType copies the system-defined cursor object corresponding to type into the
object pointed to by h.

18.2.4 Miscellaneous Operations

MovelntoWindow: PROCEDURE [
window: window.Handle, place: window.Place];

MovelntoWindow moves the cursor to the window-relative place in window.
Swap: PROCEDURE [old, new: Handle];

Swap places the displayed cursor object in old 1 and Stores the new. It is equivalent to
Fetch{old]; Store[new].

18.2.5 Client-Defined Cursors
UniqueType: PROCEDURE RETURNS [Typel;
UniqueType lets clients assign a unique type to their defined cursors. It returns a Type

that is different from all predefined types and from any that has previously been returned
by UniqueType. The value is only valid during the current boot session.

18.2.6 Cursor Picture Manipulation
Invert: PROCEDURE RETURNS [BOOLEAN];

Invert inverts each bit of the cursor picture and inverts the positive/negative state of the
picture. It returns TRUE if the new state of the cursor is positive.

MakeNegative: PROCEDURE;

MakeNegative is equivalent to MakePositive followed by Invert. [t sets the
positive/negative state of the cursor to negative.

MakePositive: PROCEDURE;

MakePositive sets the positive/negative state of the cursor to positive. The state is set to
positive whenever Set or Store is invoked.

18.3 Usage/Examples

The following example shows a client setting the cursor to an hourglass while performing
some time-consuming action. It first saves the current cursor and restores it when it is
done, if the action did not change the cursor. If the client knew what the cursor should be,
it would not have to be saved, but could be unconditionally set .

savedCursor: Cursor.Object;

cursor.Fetch[@savedCursor];
Cursor.Set[hourglass]

18-3

18

Cursor

18-4

-- do action --
IF Cursor.GetInfo[].type = hourglass THEN Cursor.Store[@savedCursor];

StoreCharacter is typically used to put small pictures in the cursor by using characters
obtained from simpleTextFont.AddClientDefinedCharacter.

ViewPoint Programmer’s Manual

18

18.4 Interface Item Index

Item

Defined: TYPE

Fetch: PROCEDURE
FetchFromType: PROCEDURE
Getinfo: PROCEDURE
Handle: TYpE

Info: Type

Invert: PROCEDURE
MovelntoWindow: PROCEDURE
MakeNegative: PROCEDURE
MakePositive: PROCEDURE
Object: TYPE

Set: PROCEDURE

Store: PROCEDURE
StoreCharacter: PROCEDURE
StoreNumber: PROCEDURE
Swap: PROCEDURE

Type: TYPE

UniqueType: PROCEDURE

©
)
1))
(<4

WNWENNNN=2 WWWW=2=2aNNNN

18-5

18 Cursor

18-6

19

Directory

19.1 Overview

Directory provides a mechanism for clients to add dividers to the directory icon. Directory
maintains a directory divider containing three top-level dividers, the workstation divider,
containing those objects that exist on a per-workstation basis; the user divider, containing
those objects that exist on a per-user or per-desktop basis; and the network divider,
containing those objects that exist in the internet. See the Divider and CHDivider
interfaces for more information about dividers .

19.1.1 Predefined Divider Structure

Directory automatically creates a top-level divider, which backs the directory icon. To this
divider it adds the workstation divider, the user divider, and the network divider. It adds
three entries to the workstation divider: the prototype folder, the office aids divider, and
the local devices divider. The user divider is emptied at each logout. Clients of the user
divider should add their entries at each logon. Directory also automatically adds the
organization divider to the network divider, and the domain divider to the organization
divider. Clients can add entries to the domain divider, (see Figure 19.1). See the Prototype
interface for details of how to add prototype icons to the prototype folder, and the Divider
interface for details of how to add entries to the office aids, local devices, and user dividers.

19.2 Interface Items

19.2.1 Adding Items to a Predefined Divider
DividerType: TYPe = {top, ws, user, domain, localDevices, officeAids};

A parameter of type DividerType is passed to AddDividerEntryto specify one of the
predefined dividers. A value of top specifies adding a new top-level divider.

AddDividerEntry: PROCEDURE [
divider: DividerType,
type: NSFile. Type,
label: xstring.Reader,

19-1

1 9 Directory

data: LONG POINTER «NIL,
convertProc: Divider.ConvertProc « NiL,
genericProc: Divider.GenericProc «—NiL];

AddDividerEntry adds an entry to the divider specified by divider. If divider is equal to
top, a new top-level divider is added. type specifies the NSFile.Type of the entry and is used
to obtain the Containee.Implementation for the entry. label is used to label the entry when
it appears in the divider's container window. The xstring.Reader bytes will be copied. data
is an optional data pointer to be supplied in subsequent calls to the GenericProc and the
ConvertProc. convertProc is a Divider.ConvertProc for the entry and genericProc is a
Divider.GenericProc for the entry. (See the Divider interface for details.) Fine Point: The
predefined dividers are actually implemented using the Divider interface. AddDividerEntry is actually the same
as Divider. AddEntry with the handle arguement replaced by a pirectory.DividerType.

19.2.2 GetDividerHandle

GetDividerHandle: procepure [divider: DividerType] RETURNS [handle: Divider.Handle];

GetDividerHandle returns the pivider.handle for the predefined divider specified by
divider. Clients can use this handle to manipulate the predefined divider with the Divider
interface. (See the Divider chapter for more information.)

19.3 Usage/Examples

See the Divider and CHDivider interfaces for examples of how to add entries to the
directory. The Divider interface also shows the implementation of AddDividerEntry.

19-2

ViewPoint Programmer’s Manual

19

—

Directory

Workstation
- +— Basic Documents,
_’ Folders, and
Record Files
—_—
| — —> Office Aids
R e W
_’ Local Devices

B &

Network User

Organizations

l

Domains

(=]

Figure 19.1 Predefined Divider Structure

19-3

19

Directory

19.4 Index of Interface [tems

19-4

Item

AddDividerEntry: PROCEDURE
GetDividerHandle: PROCEDURE
DividerType: TYPE

Page

20

Display

20.1 Overview

The Display interface provides elementary routines for painting into windows on the
display screen. Procedures are provided for painting points, lines, bitmaps, repeating
patterns, boxes filled with black, gray, white, or small patterns, circles, circular arcs,
ellipses, conics, and for painting a brush as it moves along an arbitrary trajectory.
Another procedure allows shifting the current content of .a window. Procedures for
painting text are available in the SimpleTextDisplay interface.

The Window interface supplies facilities for managing windows, and the introduction
section of the Window chapter describes the window coordinate system and the process of
painting into a window. The reader should be familiar with that material.

As described in the Window chapter, the display background color, which is represented
by a pixel value of zero, is commonly called white and a value of one called black. Note
however, that the display hardware also has the ability to render the picture using zero for
black and one for white. Clearing or erasing an area of the screen means setting all of its
pixels to zero, or “white.”

The Display interface currently contains procedures that apply to text, namely Block,
MeasureBlock, ResolveBlock, Character, Text, Textinline. They are not supported. Text
painting operations are provided by the SimpleTextDisplay interface.

As described in the Window chapter, the standard way for a client to paint into its window
is to update its data structures, invalidate the portion of its window that needs to be
painted, and then call a window.Validate routine. Window will respond by calling back

into the client’s display procedure to do the painting. Nonstandard ways of painting are
discussed in the Usage/Examples section of this chapter.

20.2 Interface [tems

20.2.1 Painting Filled Boxes, Horizontal Lines, and Vertical Lines

Handle: TYPE = window.Handle;

21-1

20

Display

20-2

Black: PROCEDURE [window: window.Handle, box: window.Box];

Invert: PROCEDURE [window: window.Handle, box: window.Box];

White: PROCEDURE [window: window.Handle, box: window.Box];

Black and White paint black and white boxes. Invert changes all black pixels to white and
all white pixels to black in the box. These procedures perform their operation on the
specified box in window. Horizontal and vertical black lines can be painted by using Black

with a box that is one pixel wide or tall.

Display.Handle is provided for backward compatibility.

20.2.2 Painting Bitmaps and Gray Bricks

The procedures in this section allow the client to paint bitmaps and gray bricks into a

window. Bitmaps and gray bricks are described in the Mesa Processor Principles of

Operation.

The first items below define some convenience types and constants that are used in
conjunction with bitmaps and painting.

BitAddress: TYPE = Environment.BitAddress;
DstFunc: TYPe = BitBlt.DstFunc;
BitBltFlags: Type = sitBit.BitBItFlags;

A Bitsit.BitBItFlags is an argument of the Bitmap and Trajectory operations. These flags
control how source pixels and existing display pixels are combined to produce the final
display pixels. The flag constants defined below cover most of the common cases.
gitBit.BitBItFlags are described in detail in the Mesa Processor Principles of Operation.

replaceFlags: BitBltFlags = [
direction: forward, disjoint: TRUE, disjointitems: TRUE, gray: FALSE,
srcFunc: null, dstFunc: null, reserved: 0];

replaceFlags is used to paint opaque black and opaque white from a bitmap. Source pixels
from the bitmap overwrite the previous display pixels.

textFlags, paintFlags: BitBItFlags = [
direction: forward, disjoint: TRUE, disjointitems: FALSE, gray: FALSE,
srcFunc: null, dstFunc: or, reserved: 0};

textFlags and its synonym paintFlags are used to paint opaque black and transparent
white from a bitmap source. Black source pixels cause black display pixels. White source
pixels leave display pixels unchanged.

xorFlags: BitBltFlags = [
direction: forward, disjoint: TRUE, disjointltems: FALSE, gray: FALSE,
srcFunc: null, dstFunc: xor, reserved: 0];

ViewPoint Programmer’s Manual 20

xorFlags is used with a source bitmap to selectively video invert existing display pixels.
Video inverting is the process of changing white to black and black to white. Black source
pixels cause the existing display pixels to be inverted. White source pixels leave display
pixels unchanged.

paintGrayFlags, bitFlags: BitBltFlags = [
direction: forward, disjoint: TRUE, disjointitems: TRUE, gray: TRUE,
srcFunc: null, dstFunc: or, reserved: 0];

paintGrayFlags is used to paint opaque black and transparent white from a gray brick
source. Black source pixels cause black display pixels. White source pixels leave display
pixels unchanged.

replaceGrayFlags, boxFlags: BitBItFlags = [
direction: forward, disjoint: TRUE, disjointitems: TRUE, gray: TRUE,
srcFunc: null, dstFunc: null, reserved: 0];

replaceGrayFlags is used to paint opaque black and opaque white from a gray brick source.
Source pixels overwrite the previous display pixels.

xorGrayFlags, xorBoxFlags: BitBItFlags = [
direction: forward, disjoint: TRUE, disjointitems: TRUE, gray: TRUE,
srcFunc: null, dstFunc: xor, reserved: 0}];

xorGrayFlags is used with a source gray brick to selectively video invert existing display
pixels. Black source pixels cause the existing display pixels to be inverted. White source
pixels leave display pixels unchanged.

eraseFlags: BitBItFlags = [
direction: forward, disjoint: FALSE, disjointitems: FALSE, gray: FALSE,
srcFunc: complement, dstFunc: and, reserved: 0];

eraseFlags is used to erase objects. Previous display pixels are overwritten.

Bitmap: PROCEDURE [
window: window.Handle, box: window.Box, address: Environment.BitAddress,
bitmapBitWidth: cARDINAL, flags: BitBit.BitBltFlags « paintFlags];

Bitmap paints the bitmap described by address and bitmapBitWidth into box in window,
using flags to control the interaction with pixels already being displayed. Bitmap may be
used to display a gray pattern that is not aligned relative to the window origin.
box.dims.w must be less than or equal to bitmapBitWidth; this is not checked. flags.gray
is ignored.

BitAddressFromPlace: PROCEDURE [
base: Environment.BitAddress, x, y: NATURAL, raster: CARDINAL]
RETURNS [Environment.BitAddress];

BitAddressFromPlace returns the Environment.BitAddress of the pixel at coordinates x and y
in the bitmap described by base. raster is the number of pixels per line in the bitmap. This
procedure is useful for calculating the address parameter of Bitmap.

20-3

20

Display

20-4

Brick: TYPE = LONG DESCRIPTOR FOR ARRAY OF CARDINAL;

Bricks are used by Gray and Trajectory to describe a repeating pattern with which to fill an
area. The maximum size of a Brick is 16 words; each word is one row of the pattern.

fiftyPercent: Brick;
fiftyPercent is a brick containing a 50% gray pattern.
Gray: PROCEDURE [
window: window.Handle, box: window.Box, gray: Brick « fiftyPercent,
dstFunc: sitBit.DstFunc « null];
Gray uses the source gray brick to completely fill box in window. If the content of the
brick to be displayed is not aligned with the window origin, use Bitmap instead. The table

below describes the effect of dstFunc.

dstFunc resulting display pixels

null Source pixels overwrite display pixels.

or Black source pixels cause black display pixels. White source pixels leave
display pixels unchanged.

xor Black source pixels cause the existing display pixels to be inverted. White
source pixels leave display pixels unchanged.

and Black source pixels cause black display pixels wherever the display pixels are
already black. All other display pixels will be made white.

20.2.3 Painting points, slanted lines, and curved lines

The procedures below paint points, oblique straight lines, and circular arcs and conics.
Point: PROCEDURE [window: window.Handle, point: window.Place];
Point makes the single pixel at point in window black.
LineStyle: TYPE = LONG POINTER TO LineStyleObject;
LineStyleObject: TYPE = RECORD [

widths: ARRAY [0..DashCnt) OF CARDINAL,

thickness: CARDINAL];
DashCnt: CARDINAL = 6;
LineStyle describes the style of lines for the Line, Circle, Ellipse, Arc and Conic operations.
thickness defines how many pixels wide the line is. widths defines what the dash structure
is. Each pair of elements is number of pixels of black followed by number of pixels of white.

For example [widths: [4,2,0,0,0,0], thickness: 2] defines the style for a dashed line, two
pixels thick where the dashes are four pixels on, and two off.

ViewPoint Programmer’s Manual 20

Line: PROCEDURE [
window: window.Handle, start, stop: window.Place, lineStyle: LineStyle «niL,
bounds: window.BoxHandle «NiL};

Line paints a line from start to stop in window. If bounds # NiL, the line is clipped to the
box bounds. If lineStyle is defaulted the line is solid and a single pixel wide.

Circle: PROCEDURE [
window: window.Handle, place: window.Place, radius: INTEGER,
lineStyle: LineStyle « NiL, bounds: window.BoxHandle « NiL];

Circle paints a circle centered at place in window, with the given radius. If bounds # NiL,
the circle is clipped to the box bounds. If lineStyle is defaulted the circle is solid and a
single pixel wide.

Ellipse: PROCEDURE [
window: window.Handle, center: window.Place, xRadius, yRadius: INTEGER,
lineStyle: LineStyle « nit, bounds: window.BoxHandle « NiL];

Ellipse paints an ellipse with axes centered at center with an x radius of xRadius and a y
radius of yRadius in window. The axes of the ellipse are parallel to the x-y coordinate
system. Ellipses with oblique axes may be displayed using Conic. If bounds # Nit, the
ellipse is clipped to the box bounds. If lineStyle is defaulted the ellipse is solid and a single
pixel wide.

Arc: PROCEDURE |
window: window.Handle, place: window.Place, radius: INTEGER,
startSector, stopSector: CARDINAL, start, stop: window.Place,
lineStyle: LineStyle « NiL, bounds: window.BoxHandle « NiL];

Arc paints a portion of a circular arc centered at place in window, with the given radius.
The arc goes from the angle defined by start in the startSector to stop in the stopSector.
Sectors are simply octants numbered from 1 to 8, with northeast being one and increasing
clockwise. If bounds # NIL, the arc is clipped to the box bounds. If lineStyle is defaulted the
arc is solid and a single pixel wide. '

Conic: PROCEDURE [
window: window.Handle, a, b, ¢, d, e, errorTerm: LONG INTEGER,
start, stop, errorRef: window.Place,
sharpCornered, unboundedStart, unboundedStop: BOOLEAN,
lineStyle: LineStyle «niL, bounds: window.BoxHandle « NIL];

Conic paints the portion of the curve of the equation ax2 + by2 + cxy +dx + ey + f=0in
window from start to stop. Instead of passing in the last coefficient f, this procedure takes
the errorTerm resulting from substituting start into the equation. If the conic contains
points whose radius of curvature is less than or equal to two pixels, it must be displayed
using multiple calls with sharpCornered set to TRUE; otherwise sharpCornered should be
FALSE. These “sharp-cornered” conics must be broken up into segments where the corners
become a new segment’s start and stop points. For example, a very long skinny ellipse
must be displayed in two pieces. errorRef, unboundedStart and unboundedStop are

20-5

20

Display

20-6

ignored. If bounds # NiL, the conic is clipped to the box bounds. If lineStyle is defaulted the P
conic is solid and a single pixel wide. |

20.2.3 Painting parallelograms and trapezoids

These types and procedures are used to paint parallelograms and trapezoids:

FixdPtNum: TYPE = MACHINE DEPENDENT RECORD [
SELECT OVERLAID * FROM
wholeThing = > [li: LONG INTEGER],
parts = > [frac: CARDINAL, int: INTEGER],
ENDCASE];

A FixdPtNum is a fixed-point integer with 16 bits of fraction and 16 bits of integer part.
These numbers can be added and subtracted in a straightforward manner; while division
and multiplication are more difficult. By using the overlaid record, the fraction and
integer part may be obtained without shifting or dividing. FixdPtNum can express all
practical slopes with only small errors.

Interpolator: TYPE = RECORD [
val, dVal: FixdPtNum];

Interpolator is used to define parallelograms and trapezoids. The dVal term is the
derivative with respect to y; for example, x.dVal is dx/dy.

BlackParallelogram: proc [|
window: Handle, p: Parallelogram, dstFunc: DstFunc _ null];

Parallelogram: TYPE = RECORD [
x: Interpolator, y: INTEGER, -- upper left
W: NATURAL, -- across top, must be positive
h:NATURAL];

BlackParallelogram paints the parallelogram defined by p in window. dstFunc acts as in
the procedure Gray. The parallelogram is defined as below with the slope of the
parallelogram being p.x.dVal. In Figure 20.1 the slope is two fifths. BlackParallelogram

(p.x.val, p.y) ~ f—— pw —

Figure 20.1Parallelogram definition *ﬁ;

optimizes a common case (e.g., diagonal lines) and runs about twice as fast as

ViewPoint Programmer’s Manual 20

GrayTrapezoid by avoiding the second interpolation, the non-integer width, and the gray
alignment calulations

GrayTrapezoid: pPrOC [
window: Handle, t: Trapezoid, gray: Brick __fiftyPercent, dstFunc: DstFunc __ null];

Trapezoid: TYPE = RECORD [i
x: Interpolator, y: INTEGER, -- upper left
w: Interpolator, -- across top; must be positive
h: NATURAL];

GrayTrapezoid paints the trapezoid defined by t in window. gray and dstFunc act as in the
procedure Gray. The trapezoid is defined in Figure 20.2 with the slope of the left side of the
trapezoid being t.x.dVal and the slope of the right side of the trapezoid being t.x.dVal
minus t.w.dVal. In Figure 20.2, t.x.dVal is minus one half and t.w.dVal is nine tenths.

(t.x.val, t.y) ~, |‘_——— t.w.val —’l
t.h

Figure 20.2 Trapezoid definition

20.2.5 Painting along trajectories, shifting window contents
Shift: PROCEDURE [window: window.Handle, box: window.Box, newPlace: window.Place];

Shift does a block move of a rectangular portion of window’s current content. No client
display procedures are invoked by this operation. box describes the region of window to
be moved to newPlace. If Display does not have the pixels for a visible area of the
destination box, that area is filled with trash and marked invalid. The client should
validate the window when it has finished altering the window content. Shift does not
invalidate the areas vacated by the move; if they should be repainted, the client should
invalidate them. If Shift is executed from within a display procedure, it nevertheless does
not clip the region painted to window’s invalid area list. Invalid area lists are explained in
the Window chapter.

20-7

20

Display

Trajectory: PUBLIC PROCEDURE [
window: window.Handle, box: window.Box « Window.nullBox, proc: TrajectoryProc,
source: LONG POINTER & NiL, bpl: CARDINAL <~ 16, height: CARDINAL « 16,
flags: sitsit.BitBItFlags « bitFlags, missesChildren: BOOLEAN « FALSE,
brick: Brick «niL];

TrajectoryProc: TYPE = PROCEDURE [Handle] RETURNS [window.BoX, INTEGER];

Trajectory repeatedly calls proc and paints a brush where proc specifies. The brush may
be either a gray brick or a portion of the bitmap source. Trajectory is designed to avoid
much of the overhead of successive calls to the normal Display routines. box is the window
region in which painting may occur. The client must not try to paint outside box; this is
not checked. flags controls the type of painting performed. If flags.gray = TRUE, the gray
brick is painted; otherwise a bitmap is painted. Trajectory repeatedly calls proc for
instructions. If proc returns a box having dims.w = 0 (e.g. Window.nullBox), iteration
ceases and Trajectory returns. Otherwise dims.w # 0; Trajectory will paint the brush and
then loop to call proc again. The returned Box in the window is painted with the brush as
follows. If a gray brick is being painted, the brick is used to fill completely the returned
Box. If a bitmap is being painted, the bitmap starts at a bit offset of <INTEGER> from
source, is Box.dims.h high, and has bpl pixels per line. The client may wish to alter the
brush content along the trajectory. It can do this by having source be a large bitmap
containing several different brush patterns, and having proc return the bit offset and
Box.dims of the desired portion. BitBit.BitBItFlags are described in §21.2.2. height and
missesChildren are unused. proc must not call any procedures in Dlsplay or Window;
doing so will result in a deadlock.

20.3 Usage/Examples

20-8

20.3.1 Special topic: Direct painting

As described in the Window chapter, the standard way for a client to paint into its window
is to update its data structures, invalidate the portion of its window that needs to be
painted, and then call a window.Validate routine. Window will respond by calling back
into the client’s display procedure to do the painting.

The client may also paint directly into a window without going through window.Validate.
However, this direct painting approach is subject to several pitfalls and system bugs.
Clients commonly choose direct painting only when high painting performance is
required, such as dynamically extending an inverted selection while tracking the mouse
or in implementing a blinking caret.

Pitfall 1: One consequence of doing direct painting is that the window’s display procedure
must not depend on Window clearing invalid areas for it. As described in the Window
chapter, if clearingRequired = TRUE, Window guarantees that when the display procedure
is called to paint the window, all of the window’s pixels that should be white indeed are
white. In that situation, the window might contain any combination of its previous
contents and erased areas. Notice that the following sequence of events might occur:
Window clears invalid area; then client direct paints into some part of the invalid area;
then Window calls the window’s display procedure. In this situation, Window’s guarantee
of the content of the invalid area has been voided by the parallel direct-paint activity. To

ViewPoint Programmer’s Manual 20

handle this case, the display routine must erase or otherwise completely overpaint the
invalid areas itself.

Pitfall 2: A client can get into trouble when it wishes to change the state of the backing
data being displayed within a display procedure—and attempts to render the change by
painting from the display procedure rather than invalidating the affected area and
painting later. The display procedure’s paint will be clipped to its invalid area list and
thus will fail to achieve the desired effect. There are several ways to solve this problem:

® Do not change backing data inside a display procedure. This approach matches nicely
with the intended function of a display procedure. One does not expect a display
procedure to change data—its job is to repaint.

¢ Have the display procedure just invalidate the areas affected by the data being
changed. Since a validate is already in progress, it is not necessary to call
Window.Validate; when the display procedure returns, it will be called back with any
new invalid areas that are waiting for it.

® Have the display procedure call window.FreeBadPhosphorList before changing the
data. This will allow paint from the display procedure to affect the entire window, not
just the invalid areas.

20.3.2 Example 1

- The program fragments below demonstrate the use of Display in a window’s display
procedure.

-- Enumerated TYPEs for displaying the games background.
Background: Tyre = {gray, white};
background: Background - gray;

DisplayBoardSW: proc [window: window.Handle] = {
-- This is the body window'’s display procedure.
vLine, hLine: window.Box;
left, right, top, bottom: INTEGER;

FindBounds: prROC [window: window.Handle, box: window.Box] = {
left «min[left, box.place.x];
top « min[top, box.place.yl;
right &~ Max[right, box.place.x + box.dims.wl];
bottom « max[bottom, box.place.y + box.dims.hl};

-- paint borders and background.
Display.Black[window: window, box: boardAndBorderBox];
PaintBackground[window: window, box: boardBox];
vLine « [upperLeft, [lineWidth, (boardSize - 1)*unitH + 1]];
hLine « [upperLeft, [(boardSize - 1)*unitW + 1, lineWidth]];
THROUGH [firstDimboardSize] bo

Display.Black[window, vLine];

Display.Black[window, hLine];

vLine.place.x « vLine.place.x + unitw;

20-9

20

Display

20-10

hLine.place.y « hLine.place.y + unitH; PN
ENDLOOP; |

left « tOp €« INTEGER.LAST;
right « bottom « INTEGER.FIRST;
window.EnumerateinvalidBoxes[FindBounds]

Y

PaintBackground: PROC [window: window.Handle, box: window.Box] = {

SELECT background FROM
gray = > Display.Gray[window, box];
white = > Display.White[window, box];
ENDCASE

};

PaintStone: pusLIC PROC [who: BlackWhite, u, v: Dim, play: CARDINAL] = {

center: window.Place;
stoneBox: Window.Box;
numsStr: STRING « [3];

iF -ValidCoords[u, v] THEN RETURN;

center « BoardToPlace[u, v]; -~
stoneBox « [|
place: [center.x - stoneRadius, center.y - stoneRadius],

dims: [stoneSize, stoneSize]];

-- paint a bitmap that represents game pieces.
Display.Bitmap[
window: boardSW, box: stoneBox, address: outerStone,
bitmapBitWidth: stoneBpl, flags: pisplay.paintFlags];
IFwho = white THEN
Display.Bitmap|
window: boardSW, box: stoneBox, address: innerStone,
bitmapBitWidth: stoneBpl, flags: eraseFlags];

7

CreateGOSWS: PUBLIC PROCEDURE [

reference: Nsrile.ReferenceRecord, name: Environment.Block]
RETURNS [StarwindowShell.Handle] = {

-- This procedure is invoked via a system menu.

s2Z: Starwindowshell.Handle;

StarwindowsShell.SetPreferredDims [sz, [592, 661]];

-- The display procedure is set here.

boardSW « starwindowshell.CreateBody ['
SW5: sz,

ViewPoint Programmer’s Manual

20

repaintProc: DisplayBoardSW,
bodyNotifyProc: TIPMe];

20-11

20

Display

20.4 Index of Interface Items

20-12

Item

Arc: PROCEDURE

BitAddress: TYPE
BitAddressFromPlace: PROCEDURE
BitBItFlags: TYPE

bitFlags: sitBit.BitBltFlags
Bitmap: PROCEDURE

Black: PROCEDURE
BlackParallelogram: PROCEDURE
boxFlags: sitsit.BitBItFlags
Brick: TYPE

Circle: PROCEDURE

Conic: PROCEDURE

DashCnt: PROCEDURE

DstFunc: TYPE

Ellipse: PROCEDURE

eraseFlags: BitBit.BitBItFlags
fiftyPercent: Brick
FixdPtNum: TYPE

Gray: PROCEDURE
GrayTrapezoid: PROCEDURE
Handle: TypPe

Interpolater: TYPE

Invert: PROCEDURE

Line: PROCEDURE

LineStyle: Type
LineStyleObject: TYPE
paintBitFlags:sitsit.BitBltFlags
paintFlags: sitsit.BitBitFlags
paintGrayFlags: Bitsit.BitBItFlags
Parallelogram: Type

Point: PROCEDURE
replaceboxFlags: sitsit.BitBItFlags
replaceFlags: sitBit.BitBlItFlags
replaceGrayFlags: sitsit.BitBItFlags
Shift: PROCEDURE

textFlags: sitsit.BitBItFlags
Trajectory: PROCEDURE
TrajectoryProc: TYPE
Trapezoid: TYPE

White: PROCEDURE
xorBoxFlags: Bitit.BitBltFlags
xorFlags: sitsit.BitBlItFlags
xorGrayFlags: Bitsit.BitBItFlags

T
)
a
o

21

Divider

21.1 Overview

Divider maintains a table of entries in memory, each representing an icon. The entries
may or may not be backed by files. Divider does not operate on these entries directly; it
uses a Divider.ConvertProc and a pDivider.GenericProc associated with each entry to operate
on the entry.

Also associated with each entry is an NSFile.Type used to identify the entry's
Containee.Implementation, a label, and a pointer to instance-specific data for the entry.

Associated with each divider when it is created is an NSFile.Type. Divider automatically
sets a Containee.Implementation for this file type that supports converting the divider to a
file and opening the divider as a container window displaying the entries.

Also associated with each divider is a cH.Pattern specifing a clearinghouse domain and
organization. This is inherited from a parent divider and is passed to all entries through
the Divider.ConvertProc and the pivider.GenericProc associated with each entry. When the
divider is converted to a file, the pattern is automatically encoded in an attribute of the
file.

21.2 Interface [tems

21.2.1 Creating and Destroying
Handle: TYPE = LONG POINTER TO Object;
Object: TYPE;

Create: PROCEDURE |
type: NSFile.Type,
name: Xstring.Reader,
initialSize: CARDINAL « Divider.defaultinitialSize,
increment; CARDINAL « Divider.defaultincrement,

21

Divider

21-2

Zone: UNCOUNTED ZONE «— NiL]
RETURNS [handie: Handle];

Create creates a divider. type specifies the NSFile.Type the divider will have if it is
converted to a file. A Containee.Implementation is automatically set for this type. name
specifies the name of the divider. It will appear in the window header when the divider is
opened, and it is the name of the file if the divider is converted to a file. The Xstring.Reader
bytes will be copied. The divider is created with a table large enough to hold initialSize
entries. When the table becomes full, it grows by increment entries. Storage for the
divider is allocated from zone. If zone is defaulted, the storage is allocated from a heap
maintained by Divider.

Destroy: PROCEDURE [handle: Handle];

This releases all storage associated with the given divider. handle is no longer valid when
this procedure returns.

21.2.2 ConvertProc and GenericProc

Divider.COnvertProc: TYPE = PROCEDURE [
data: LONG POINTER,
pattern: cH.Pattern,
target: selection.Target,
Zone: UNCOUNTED ZONE,
info: selection.Conversioninfo « [convert[]}]
RETURNS [value: Selection.Value];

A ConvertProc is the same as a Selection.ConvertProc except that it has the extra argument,
pattern, that specifies a clearinghouse domain and organization. See the Selection
interface for the definition of the other arguments. The divider calls the ConvertProc
associated with an entry, with pattern set to the domain and organization associated with
the divider, whenever the divider is requested to convert one of its entries.

GenericProc: TYPE = PROCEDURE [
atom: Atom.ATOM,
data: LONG POINTER,
pattern: cH.Pattern,
changeProc: Containee.ChangeProc « NiL,
changeProcData: LONG POINTER «— NiL]
RETURNS [LONG UNSPECIFIED];

A GenericProc is the same as a Containee.GenericProc except that it has the extra argument,
pattern, that specifies a clearinghouse domain and organization. See the Containee
interface for the definition of the other arguments. The divider calls the GenericProc
associated with an entry, with pattern set to the domain and organization associated with
the divider, whenever the divider is requested to operate on one of its entries.

DividerConvertProc: ConvertProc;

DividerGenericProc: GenericProc;

ViewPoint Programmer’s Manual 2 1

These procedures may be associated with entries that themselves are dividers. In this case
the Handle associated with the divider should be provided as the instance-specific data
handle. See below for an example of a divider contained in another divider.

21.2.3 Adding Entries

AddEntry: PROCEDURE [
handle: Handle,
type: NSFile.Type,
label: xstring.Reader,
data: LONG POINTER & NIL,
convertProc: ConvertProc « NiL,
genericProc: GenericProc e nNiL];

AddEntry adds an entry to the divider specified by handle. type is used to obtain the
Containee.implementation for the entry. label is used to label the entry in the divider's
container window. The xstring.Reader bytes will be copied. data is item-specific data for the
entry that will be passed to the ConvertProc and GenericProc associated with the entry. If
convertProc or genericProc is defaulted, the divider uses the corresponding procedure in
the entry's Containee.lImplementation.

21.3 Usage/Examples

21.3.1 Fragment from DirectoryImpl.mesa

This fragment is from Directorylmpl.mesa, which implements the Directory interface. It
shows the implementation of Directory.AddDividerEntry and the mainline code to create the
top-level directory dividers. See the CHDivider interface for more examples.

-- File types for the directory implementation --
directory: starfileTypes.FileType =...;

folder: starfileTypes.FileType = ...;

workstation: starfileTypes.FileType = ...;

user: StarfileTypes.FileType = ...;

domain: starfileTypes.FileType =...;

-- The reference for the prototype folder --
prototypeReference: nsFile.Reference « ...;

-- Handles for the top-level dividers --
dividers: ARRAY Directory.DividerType 0Of Divider.Handle « aLL [NiL];

AddDividerEntry: PUBLIC PROCEDURE [

divider: pirectory.DividerType,

type: NsFile.Type,

label: xstring.Reader,

data: LONG POINTER «— NIL,

convertProc: Divider.ConvertProc « NiL,

genericProc: divider.GenericProc «~NiL] =
BEGIN

Divider.AddEntry [

21-3

21 Divider

handle: dividers[divider], ' -_
type: type, |
label: label,
data: data,
convertProc: convertProc,
genericProc: genericProc];

END;

-- Create the top-level dividers (top will back the directory icon) --
dividers[top] « Divider.Create [directory, stringDirectory];
dividers[ws] « pivider.Create [workstation, stringWorkstation];
dividers[user] « Divider.Create [user, stringUser];

-- Insert the workstation divider into the directory --
Directory. AddDividerEntry [

divider: top,

type: workstation,

label: stringWorkstation,

data: dividers{ws],

convertProc: pivider.DividerConvertProc,

GenericProc: Divider.DividerGenericProc];

-- Insert the user divider into the directory --

Directory.AddDividerEntry [» -~
divider: top, ‘ :
type: user,
label: stringUser,
data: dividers[user],
convertProc: pivider.DividerConvertProc,
genericProc: Divider.DividerGenericProc];

-- Insert the prototype folder into the workstation divider --
-- (Note: this is an actual file that will use the folder implementation) --
Directory.AddDividerEntry [

divider: ws,

type: folder,

label: stringPrototypes,

data: @prototypeReference];

21-4

ViewPoint Programmer’s Manual

21

21.4 Index of Interface Items

Item

AddEntry: PROCEDURE
ConvertProc: TYPE

Create: PROCEDURE

Destroy: PROCEDURE
Divider.ConvertProc: TYpre
DividerConvertProc: ConvertProc
DividerGenericProc: GenericProc
GenericProc: TYPE

Handle: TYpE

Object: TYPE

o
©
1))

[+]

== = NNNNN=NW

21-5

21 Divider

21-6

22

Event

22.1 Overview

ViewPoint provides a facility that permits clients to register procedures that are to be
called when specified events occur. For example, a client may wish to be notified whenever
a document is closed, or perhaps just the next time a document is closed. Clients need not
know which module can cause the event.

22.2 Interface Items

22.2.1 Registering Dependencies

A client wishing to be notified of some future event calls either AddDependency or
AddDependencies, specifying the EventType and a procedure to be called when the event
occurs, an AgentProcedure. Note: ViewPoint need not know in advance what EventType
is implemented, nor which modules implement them.

AddDependency: PROCEDURE [
agent: AgentProcedure,
myData: LONG POINTER TO UNSPECIFIED,
event: EventType,
remove: FreeDataProcedure « NIL]
RETURNS [dependency: Dependency];

AddDependencies: PROCEDURE [
agent: AgentProcedure,
myData: LONG POINTER TO UNSPECIFIED,
events: LONG DESCRIPTOR FOR ARRAY OF EventType,
remove: FreeDataProcedure « NiL]
RETURNS [dependency: Dependency];

AgentProcedure: TYPE = PROCEDURE [
event: EventType,
eventData, myData: LONG POINTER TO UNSPECIFIED]
RETURNS [remove, veto: BOOLEAN « FALSE];

22-1

22

Event

22-2

FreeDataProcedure: TYPE = PROCEDURE [mydata: LONG POINTER TO UNSPECIFIED];
Dependency: Tyee [2]; -- Opaque --

A dependency may be added to an event or an entire set of events by calling
AddDependency or AddDependencies Both of these procedures return a private type,
Dependency, that uniquely identifies that set of dependencies. The value returned may be
saved and subsequently used in a call to RemoveDependency, which will remove the
dependency(ies) associated with the earlier AddXXX call. The AgentProcedure may also
remove the dependency as discussed below.

When the specified event occurs, agent is called with the EventType, the eventData for
the event, and the client data passed as myData. If a client wishes to "veto” the event (for
instance, to disallow a world-swap), its AgentProcedure should return veto: TRUE. This
aborts the notification; that is, no other clients dependent on the event will be notified.
However, there is no guarantee as to the order in which multiple clients are notified. If
any client vetoes the event, the call to Notify returns TRUE. There is no way to prevent a
client from vetoing; instead, implementors of events that should not be vetoed should raise
an ERROR if Notify returns TRUE. To remove its dependency on an event a client’s
AgentProcedure should return remove: TRUE. If the dependency is removed and a
FreeDataProcedure was provided, it is called at this time to allow the client to free any
private data.

EventType: TYPE = Atom.ATOM,;

The ATOM (strings) used to identify different events must of course be distinct. The
following examples are possibilities of how this could be managed. (1) There is a central
authority whose job it is to guarantee uniqueness of EventTypes. This could be the same
person in charge of other such allocations, such as NSFile types. (2) There is a hierarchical
naming structure, managed by a distributed authority. (3) There could be a file that lists
all known EventTypes within a given system,; this file would be managed by the Librarian
to ensure against parallel allocation of new EventTypes. (In effect, this is the same as case
1, but the Librarian takes the place of the central authority.)

RemoveDependency: proc [dependency: Dependency];
NoSuchDependency: ERROR;

If RemoveDependency is called with a Dependency that is invalid (possibly because the
dependency has already been removed), it raises the error NoSuchDependency.

22.2.2 Notification

Notify: PROCEDURE [event: EventType, eventData: LONG POINTER TO UNSPECIFIED ¢« NiL]
RETURNS [veto: BOOLEAN];

When the event occurs, the implementor calls Notify, giving it the EventType for the
event and any implementation-specific data (eventData) required by the client.
(Presumably it is uncommon for a single operation to wish to Notify more than one event;
this is why Notify does not take an ARRAY argument.) The Event interface then invokes
each AgentProcedure that is dependent on the EventType. Each AgentProcedure is given

ViewPoint Programmer’s Manual 22

the EventType causing the notification, the client data provided when the dependency was
created, and the eventData given by the implementor in the call to Notify.

22.3 Usage/Examples

The Event database is monitored to disallow changes while a Notify is in progress. An
AgentProcedure is allowed to call Notify; that is, one event may trigger another.
However, an AgentProcedure must not¢ call AddDependency or RemoveDependency, or
deadlock will result. Since it is relatively common for an AgentProcedure to wish to
remove its own dependency, this facility is provided by allowing the AgentProcedure to
return remove: TRUE to cause the dependency to be removed. If the dependency was added
via AddDependencies, then all of the dependencies created by that call are removed. The
dependency is removed even though some later client of the same event might choose to
veto the event. (If an earlier client has already vetoed, of course, then this AgentProcedure
never gets called.) If an application requires that a dependency be removed only if the
event is not vetoed, this can be handled by having the implementor notify a second event
that informs clients whenever the first event is vetoed.

Three notes regarding the preceding paragraph: First, it is possible for an
AgentProcedure to get called twice even if it always returns remove: TRUE. This is because
two separate processes may be doing parallel calls to Notify Once an AgentProcedure
returns remove: TRUE, no subsequent calls to Notify will invoke that dependency, but any
parallel calls in progress will complete normally. Second, since an AgentProcedure might
be invoked at any time, it is a bad idea to call Add/RemoveDependency from within a
private monitor, lest it lock trying to modify the Event database while a Notify is inside
your AgentProcedure trying to grab your lock. On the other hand, the Notify call may
very well be within the implementor’s monitor, which means the AgentProcedure will
typically be limited as to what use it can make of the eventData. Finally, if an
AgentProcedure really needs to call Add/RemoveDependency, it may be possible to get
the desired effect by FORKing the call, such that it will take place shortly after the
completion of the Notify already in progress.

22.3.1 Example 1l

-- Module interested in an event
eventType: Event.EventType « Atom.MakeAtom [“SampleEvent”L];

EventAction: Event.AgentProcedure = {
-- Do appropriate thing for eventType -- };

event.AddDependency [
agent: EventAction,
myData: NiL,
event: eventType];

-- Module that signals the event
eventType: eEvent.EventType « atom.MakeAtom [“SampleEvent”L}];
eventData: -- relevantinfo, a record, a window handle, etc. --;

22-3

22 Event

[] « Event.Notify [event: eventType, eventData: eventDatal; |

22.3.2 Example 2

-- Declare event and eventData --
desktopWindowAuvailable: event.EventType;
desktopWindowHandle: window.Handle «niL;

-- Declare AgentProcedure --

StarUp: Event. AgentProcedure = {
If eventData = NIL THEN RETURN {veto: TRUE];
desktopWindowHandle « eventData };

-- Register event this is mainline code --
[1 ¢ event.AddDependency [StarUp, NiL, desktopWindowAvailable];

-- In Desktop code, another module, notify occurrence of the event --
[1 « Event.Notify [desktopWindowAvailable, window};
-- window is desktop window --

22-4

ViewPoint Programmer’s Manual

22

22.4 Index of Interface Items
Item

AddDependencies: PROCEDURE
AddDependency: PROCEDURE
AgentProcedure: TYPE
Dependency: TYPE

EventType: TYPE
FreeDataProcedure: TYPE
NoSuchDependency: ERROR
Notify: PROCEDURE
RemoveDependency: PROCEDURE

Page

NNNNMNMNN=2

22-5

22 Event

22-6

-’

23

FileContainerShell

23.1 Overview

FileContainerShell provides a simple way to implement a container application thatis
backed by an NSFile. FileContainerShell takes an NSFile and column information (such as
headings, widths, formatting), and creates a FileContainerSource, a StarWindowShell, .
and a ContainerWindow body. (See also the FileContainerSource, ContainerSource,
StarWindowsShell, and ContainerWindow interfaces). Most NSFile-backed container
applications can use this interface, thereby greatly simplifying the writing of applications
such as Folders and FileDrawers.

23.2 Interface Items

23.2.1 Create a FileContainerShell

Create: PROCEDURE [
file: NSFile.Reference,
columnHeaders: Containerwindow.ColumnHeaders,
columnContents: FileContainerSource.ColumnContents,
regularMenultems, topPusheeMenultems: MenuData.ArrayHandle «niL,
scope’NSFile.Scope « [],
position: ContainerSource.ltemindex « 0,
options: FileContainerSource.Options « []]
RETURNS [shell: starwindowsShell.Handle];

Create creates a StarWindowShell with a container window as the body window. file is the
backing for the container; it must be an NSFile with children. columnHeaders and
columnContents specify all the necessary information about the columns to be displayed
for the open container. (See the ContainerWindow and FileContainerSource interfaces for
the specifics of the headers and contents.) scope specifies ordering, filtering, and
direction, if any. position indicates the item that should be displayed first.
regularMenultems and topPusheeMenultems are the menu items that the client would
like to be put in the header of the StarWindowShell. Create puts these items in the header
along with its own menu items, such as Show Next and Show Previous. Fine point: The client is
responsible for putting any bottomPusheeCommands in the window header.

23-1

23

FileContainerShell

23.2.2 Operations on the Shell

GetContainerWindow: PROCEDURE [shell: starwindowShell.Handle]
RETURNS [window: window.Handle];

Returns the container window that was created by the Create procedure. May raise
ContainerWindow.Error[notAContainerWindow] if the shell does not have a container
window in it.

GetContainerSource: PROCEDURE [shell: starwindowShell. Handle]
RETURNS [source:ContainerSource.Handle];

Returns the container source that was created by the Create procedure. May raise
Containerwindow.Error[notAContainerWindow] if the shell does not have a container
window in it.

23.3 Usage/Examples

23-2

23.3.1 Example: Creating a FileContainerShell and Specifying Columns

The following example presents the procedure CreateFileSWS, which takes an
NsFile.Reference and creates a file container shell with two columns: the name of the file
and a version date. See the ContainerSource interface for details on columns. The name
column uses the predefined ContainerSource.NameColumn; the version column is given in
the example. The version column differs from the standard ContainerSource.DateColumn in
that it displays the lastModifiedDate for directories instead of ---.

ContentSeq: TYPE = RECORD [

SEQUENCE c0ls: CARDINAL OF FileContainerSource.ColumnContentsinfo];
HeaderSeq: TYPE = RECORD [

SEQUENCE cols: CARDINAL OF ContainerwWindow.ColumnHeaderinfo};
NumberOQfColumns: CARDINAL = 2;
Z: UNCOUNTED ZONE = ...;

CreateFileSWS: PROCEDURE [reference: NsFile.Reference]
RETURNS [StarwindowShell.Handle] =
BEGIN
shell: starwindowshell. Handle;
headers: LONG POINTER TO HeaderSeq « MakeColumnHeaders(};
contents: LONGPOINTER TO ContentSeq « MakeColumnContents|];
shell « FileContainerShell.Create|
file: reference,
columnHeaders: pescrirTor[headers],
columnContents: DescrIPTOR[contents]];
z.FREE[@headers];
z.FREE[@contents];
RETURN[shell];
END;

DateFormatProc: FileContainerSource.MultiAttributeFormatProc =
BEGIN

ViewPoint Programmer’s Manual 23

-- If non-directory, show createdOn date. For directory, show last date modified
(the last time anything was changed in directory) --
template: xstring.ReaderBody «
XString. FrOMSTRING[" <2>-<6>-<4> <8>:<9>:<10>"L];
XTime.Append(
displayString,
IF attrRecord.isDirectory THEN attrRecord.modifiedOn ELSE attrRecord.createdOn,
@template]};
END;

MakeColumnContents: PROCEDURE
RETURNS [columnContents: LONG POINTER TO ContentSeq] =
BEGIN
dateSelections: NsFile.Selections « [interpreted: {
isDirectory: TRUE, createdOn: TRUE, modifiedOn: TRUE]];

columnContents ¢« z.NEW[ContentSeq[NumberOfColumns];

columnContents[0] « FileContainerSource.NameColumn(];

columnContents[1] « [multipleAttributes [attrs: dateSelections, formatProc:
DateFormatProc]];

RETURN [columnContents];

END;

MakeColumnHeaders: PROCEDURE

RETURNS [columnHeaders: LONG POINTER TO HeaderSeq] =
BEGIN
columnHeaders « z.NEW[HeaderSeq[NumberOfColumns]];
columnHeaders[0] « |

width: 367,

heading: XString.FromSTRING[“"NAME"] |;
columnHeaders[1] « [

width: 135,

heading: xstring. FromSTRING["VERSION OF"]];
RETURN [columnHeaders];
END;

23-3

23 FileContainerShell

23.4 Index of Interface Items

Item

Create: PROCEDURE
GetContainerSource: PROCEDURE
GetContainerWindow: PROCEDURE

23-4

Page

N

24

FileContainerSource

24.1 Overview

FileContainerSource supports the creation of NSFile-backed container sources (see
ContainerSource). It also provides facilities for specifying the columns that will be
displayed for each item in the source.

FileContainerSource implements all of the procedure types described in the
ContainerSource interface, as well as all the procedures described below.

| — 24.2 Interface Items

24.2.1 Creation

Options: TYPE = RECORD [
readOnly: BOOLEAN e FALSE];

Create: PROCEDURE [
file: NSFile.Reference,
columns: ColumnContents,
scope: NSFile.Scope «[],
options: Options «[]]
RETURNS [source: ContainerSource.Handle];

Creates a container source backed by file, which must be an NSFile with children. columns
describes the information that should be displayed for each entry in the container.
columns is copied by this procedure, so the client may release any storage associated with
columns after calling Create. scope specifies the range of files that will be displayed.
options specifies global information about the container source. Display formatting is
managed by the container window. (See the ContainerWindow and FileContainerShell
interfaces.)

24.2.2 Specifiying Columns

When a file container source is created, columns may be specified. Each column represents
information that will be displayed for each item. The container window requests the

24-1

24

FileContainerSource

24-2

columns one at a time in the form of strings. In a file container source, each column must

be based on some combination of NSFile attributes. For each column, the creator of file

container source specifies which attributes are required to format a string for that column

and supplies a procedure that will be called with the specified attributes. When the files in
the source are enumerated, the procedure for a particular column is called with the values
of the specified attributes for each file, which should be used to generate the string for that
file.

ColumnContents: TYPE =
LONG DESCRIPTOR FOR ARRAY OF ColumnContentsinfo;

ColumnContents describes a set of columns, where each column is some information that
is displayed for each item in the container display. The columns are displayed in the order
given by this array.

ColumnType:Tyre = {attribute, extendedAttribute, multipleAttributes};

ColumnContentsinfo: TYPE = RECORD [
info: seLecT type: ColumnType FROM
attribute = > |
attr: nNsFile.AttributeType,
formatProc: AttributeFormatProc «niL],
needsDataHandle: BOOLEAN «FALSE],
extendedAttribute = > |
extendedAttr: nsFile.ExtendedAttributeType, .
formatProc: AttributeFormatProc «nit,
extendedAttribute = > |
extendedAttr: NsFile.ExtendedAttributeType,
formatProc: AttributeFormatProc «niLl,
multipleAttributes = > [
attrs: NsFile.Selections,
formatProc: MultiAttributeFormatProc «nit],
ENDCASE];

ColumnContentsinfo describes a single column of information that can be displayed for
each item in a container display. Each column may be backed by one of three things: an
NSFile interpreted attribute (the attribute variant), and NSFile extended attribute (the
extendedAttribute variant), or some combination of several attributes (the
multipleAttributes variant). The attribute and extendedAttribute variants both take a
specification of what attribute is being described (attr and extendedAttr) and an
AttributeFormatProc that is called to render the attribute as a string. If needsDataHandle
= TRUE, then a valid Containee.DataHandle is passed to the format procedure as the
containeeData parameter, else the containeeData parameter is NiL. If the column needs a
Containee.DataHandle in order to format it, then needsDataHandle should be TRUE. This
addition is for performance: obtaining a Containee.DataHandle requires an extra access to
the file, thus slowing up the enumeration. The multipleAttributes variant is for columns
that may require more than one attribute. (The typical example is the SIZE column in
folders, in which some items display the numberOfChildren attribute and others display
the sizeInPages attribute, depending on the isDirectory attribute.) attrs specifies all the
attributes required for this column. formatProc is the procedure that will be called to
format the column.

I

ViewPoint Programmer’s Manual 24

See the common types of columns provided below in the section on commonly used
columns.

AttributeFormatProc: TYPE = PROCEDURE [
containeelmpl: Containee.Implementation,
containeeData: Containee.DataHandle,
attr: NsFile.Attribute,
displayString: Xstring.Writer];

When the container display mechanism displays a column that represents an NSFile
attribute, it calls the AttributeFormatProc specified for that column. attr contains the
attribute to be formatted for display. displayString is used to return a formatted string
that represents the desired attribute. containeelmpl may be used to make calls on the
underlying implementation of the item being displayed. '

MultiAttributeFormatProc: TYPE = PROCEDURE [
containeelmpl: Containee.implementation,
containeeData: Containee.DataHandle,
attrRecord: NsFile.Attributes, -- LONG POINTER TO NSFile. AttributesRecord
displayString: Xstring.Writer];

When the container display mechanism displays a column that represents multiple NSFile
attributes, it calls the MultiAttributeFormatProc specified for that column. attrRecord
contains the attributes to be formatted for display. displayString is used to return a
formatted string that represents the desired attribute. containeeimpl may be used to
make calls on the underlying implementation of the item being displayed.

24.2.3 Operations on Sources

Getlteminfo: PROCEDURE [
source: ContainerSource.Handle, itemindex: ContainerSource.ltemindex]
. RETURNS [file:NsFile.Reference, type: NSFile.Type];

Returns an nsrile.Reference and type for the specified item.

Info: PROCEDURE [sOurce: ContainerSource.Handle]
RETURNS |
file: NSFile.Reference,
columns: ColumnContents,
scope: NSFile.Scope,
options: Options];

The Info procedure returns information about a file container source; the information
returned is the same information that was used to create the source (see the Create
procedure).

Islt: PROCEDURE [source: ContainerSource.Handle] RETURNS [BOOLEAN];

Islt returns TRUE if source is a file container source.

ChangeScope: PROCEDURE [source: ContainerSource.Handle, newScope: NsFile.Scope];

24-3

24

FileContainerSource

Allows the scope (passed in to Create) to be changed. A call to ChangeScope is typically
followed by a source.ActOn[relist], then a Containerwindow.Update.

24.2.4 Commonly Used Columns

These predefined procedures can be used in building a ColumnContents array.

lconColumn: PROCEDURE
RETURNS [attribute ColumnContentsinfol;

lconColumn represents a column with a small icon picture in it. The small picture is
obtained from the containeelmpl.smallPicture that is passed in.

NameColumn: PROCEDURE
RETURNS [attribute ColumnContentsinfol;

NameColumn represents a column with the file’s name in it.

SizeColumn: PROCEDURE
RETURNS [multipleAttributes ColumnContentsinfo];

SizeColumn represents a column with the file’s size in it, as follows: If the file has the
isDirectory attribute, the numberOfChildren attribute is displayed with the label
“Objects”; if the file does not have the isDirectory attribute, the sizelnPages attribute is
displayed with the label “Disk Pages”.

DateColumn: PROCEDURE
RETURNS [multipleAttributes ColumnContentsinfo];

DateColumn represents a column with the file's creation date in it, as follows: If the file
has the isDirectory attribute, dashes (---) are displayed; if the file does not have the
isDirectory attribute, the createDate attribute is displayed.

24.3 Usage/Examples

24-4

24.3.1 Example: Specifying Columns using FileContainerSource

The following example presents the procedure MakeFolderLikeShell, which takes an
NsFile.Reference (Containee.DataHandle) and creates a file container shell with the
number of columns dependent on some internal procedures. {See the ContainerSource
interface for details on columns.) The columns use the predefined columns such as
ContainerSource.NameColumn.

Columns: Tvpe = {icon, name, version, nameAndVersion, size, createDate};
HeaderSeq: TYPE = RECORD [SEQUENCE cOls: CARDINAL OF Containerwindow.ColumnHeaderinfo];
ContentSeq: TYPE = RECORD [
SEQUENCE ¢Ols: CARDINAL OF FileContainerSource.ColumnContentsinfol;
ColumnArray:TYPE = ARRAY {icon, name, version, size, date} OF CARDINAL;
columnWidths: LONG POINTER TO ColumnArray « z.New[ColumnArray «nNuLL];

-~

ViewPoint Programmer’s Manual 24:

ClientsGenericProc: Containee.GenericProc =

< <[atom: Atom. ATOM,

data: containee.DataHandle,

changeProc: Containee.ChangeProc «nit,

changeProcData: LONG POINTER « NiL]

RETURNS [LONG UNSPECIFIED] > > ‘

BEGIN

SELECT atom FROM
open = > RETURN [
MakeFolderLikeShell |

data: data,
changeProc: changeProc,
changeProcData: changeProcDatal };

ENDCASE = > RETURN [oldFolder.genericProc [atom, data] |;
END;

FreeColumnContents: puBLIC PROCEDURE [columnContents: LONG POINTER TO ContentSeq] =
BEGIN '
z.FREE[@columnContents];

END;

FreeColumnHeaders: puBLIC PROCEDURE [columnHeaders: LONG POINTER TO HeaderSeq] =
BEGIN _

z.FREe[@columnHeaders];

END;

MakeFolderLikeShell: PROCEDURE [
data: Containee.DataHandle,
changeProc: Containee.ChangeProc « Nit,
changeProcData: LONG POINTER €« NiL]
RETURNS [shell: starwindowsShell.Handle] = {
file: NsFile.Reference;
columnHeaders: LONG POINTER TO HeaderSeq «— MakeColumnHeadersf];
columnContents: LONG POINTER TO ContentSeq « MakeColumnContents[];

mydata: Data « z.New [DataObject « [
cd: data,
changeProc: changeProc,
changeProcData: changeProcDatall;
isLocal: BOOLEAN;
BEGIN ENABLE
UNWIND = > {
z.FREE[@mydata];
FreeColumnHeaders [columnHeaders];
FreeColumnContents [columnContents];

Y

24-5

24

FileContainerSource

24-6

shell «FileContainershell.Create |
file: file,
columnHeaders: DescrIPTOR[columnHeaders],
columnContents: DESCRIPTOR[columnContents],
regularMenultems: if “isLocal THEN remoteRegularMenultems ELSE NIL];

IF shell = NIL THEN RETURN [shell];

starwindowsShell.SetlsCloseLegalProc [shell, Closing];
context.Create[context, mydata, DestroyContext, shell];
FreeColumnHeaders [columnHeaders];
FreeColumnContents [columnContents];
starWindowshell.SetPreferredDims [shell, [700, 0]];

RETURN [shell];
END; -- ENABLE

}

MakeColumnContents: PUBLIC PROCEDURE RETURNS [columnContents: LONG POINTER TO
ContentSeq] =
BEGIN
i: INTEGER —-1;
columnContents « z.Nnew[ContentSeq[CountColumns[]]];
IF Showlcon[] THEN
columnContents|i « i + 1] « FileContainerSource.lconColumn(];
-- Procedures called below are not neccessary to the example.
columnContentsfi «—i + 1] «
IF ShowNameAndVersion(]
THEN FileContainerSourceExtra.NameAndVersionColumn(]
ELSE FileContainerSource.NameColumnl};
iIF ShowVersion([] THEN
columnContents|i «i + 1] « FileContainerSourceExtra.VersionColumnl];
iIF ShowsSize[] THEN
columnContentsfi &« i + 1] «FileContainerSource.SizeColumn(];
i ShowCreateDate[] THEN
columnContents[i & i + 1] «FileContainerSource.DateColumn(];
RETURN [columnContents];
END;

ViewPoint Programmer’s Manual

24

24.4 Index of Interface Items

Item

AttributeFormatProc: TYpe
ChangeScope:PROCEDURE
ColumnContents: TYpe
ColumnContentsinfo: TYPe
ColumnType: TYPE

Create: PROCEDURE
DateColumn: PROCEDURE
Getlteminfo: PROCEDURE
lconColumn: PROCEDURE
Info: PROCEDURE

islt: PROCEDURE
MultiAttributeFormatProc: TYPE
NameColumn: PROCEDURE
Options: TYPE
SizeColumn: PROCEDURE

"
)
o
o

A=A WWWhLhWha=2NNNWW

24-7

24 FileContainerSource

24-8

25

FormWindow

25.1 Overview

The FormWindow interface provides clients the ability to create and manipulate form
items in a window.

There are several types of items, each of which serves a different purpose and behaves
differently for the user. All items except tagonly and command have a current value that
can be obtained and set by the client and user. The user obtains the current value of an
item by simply looking at it and sets the current value of an item by pointing at it
appropriately with the mouse. The client obtains and sets the value of items by calling
appropriate FormWindow procedures.

A boolean item is an item with two states (on and off, or TRUE and FALSE). A boolean
item’s value is of type BOOLEAN.

A choice item has an enumerated list of choices, only one of which can be selected at any
point in time. A choice item’s value is of type Formwindow.Choicelndex.

A multiplechoice item is a choice item that can have an initial value of more than one
choice selected, but any succeeding values can have only one choice selected. A
multiplechoice item’s value is of type LONG DESCRIPTOR FOR ARRAY OF CARDINAL.

A text item is a user-editable text string. It contains nonattributed text only. A text item’s
value is of type XString.ReaderBody.

A decimal item is a text item that has a value of type XLReal. Number.
An integer item is a text item that has a value of type LONG INTEGER.

A command item allows a user to invoke a command. When the user clicks over a
command item, a client procedure is called.

‘A tagonly item is an uneditable, nonselectable text string.

A window item is a window that is a child of the FormWindow. It can contain whatever
the client desires. A window item’s value is a window.Handle. A client must provide its own
TiP.NotifyProc and window display proc for the window item.

25-1

25

FormWindow

25-2

25.1.1 Creating a FormWindow

A client creates a FormWindow by calling Formwindow.Create. Create does not actually
create a window, but rather it takes an already .existing window and turns it into a
FormwWindow. Windows are usually created by calling Starwindowshell.CreateBody.

The client supplies a MakeltemsProc and optionally a LayoutProc to Formwindow.Create.
Create calls these two client procedures, first the MakeltemsProc, then the LayoutProc. In
the MakeltemsProc, the client creates the individual items in the form by calling
FormWindow procedures that make items (see §25.1.2 and §25.2.2). In the LayoutProc, the
client specifies where each created item should be positioned in the window by calling
FormWindow procedures that specify layout (see the sections labeled Layout in this
chapter).

25.1.2 Making Form Items

There is a procedure for making each type of item: MakeBooleanitem, MakeChoiceltem,
MakeCommanditem, MakeDecimalltem, Makeintegeritem, MakeMultipleChoiceltem,
MakeTagOnlyltem, MakeTextitem, MakeWindowlitem. Each item must have a unique
"key", a FormWindow.ltemKey. This is a CARDINAL supplied by the client to each
MakeXXXlItem call. This key is then used in any future calls to manipulate that item, such
as to get the value of the item. The key must be unique within the FormWindow.

All items have some common characteristics and some type-unique characteristics. The

common ones are described here. Every item can have a tag that will appear to the left of

the item and a suffix that will appear to the right of the item. An item can have a box
drawn around it or not. The default is to draw the box. Items can be read-only, that is the
user cannot change the value of the item. [tems can be visible or invisible, and invisible
items can either take up white space in the window or not. See §25.2.2 for more details.

25.1.3 Getting and Setting Values

Every item that has a value that the user can change (all except tagonly and command
items) also has procedures for the client to get and set the value. These are:

GetBooleanitemValue DoneLookingAtTextltemValue
GetChoiceltemValue SetBooleanitemValue
GetDecimalltemValue SetChoiceltemValue
GetintegeritemValue SetDecimalitemValue
GetMultipleChoiceltemValue SetintegeritemValue
GetTextltemValue ~ SetMultipleChoiceltemValue
GetWindowltemValue SetTextltemValue

LoookAtTextitemValue

ViewPoint Programmer’s Manual 25

Note: All allocation of storage for values of items is handled by FormWindow. The client
need not keep copies of item values while the FormWindow exists. Obtaining the current
value of an item is a simple call to one of the GetXXXitemValue procedures. This makes it
easy to ensure that the internal value of an item is always in sync with the display. (See
§25.2.3 for more details.) Fine Point: This storage allocation scheme is opposite to the one used by XDE’s

FormSW, where the client owns the storage for items.

25.1.4 "Changed” BOOLEAN

Every item that has a value that the user can change (all except tagonly, command, and
window items) has a “changed” boolean associated with it. All items are created with this
boolean set to FALSE. FormWindow automatically sets this boolean to TRUE whenever the
user changes the item. This allows the client to determine which items have changed
when, for example, the .user selects "Done" or "Apply"” on a property sheet. The client is
responsible for resetting the changed boolean to false by calling ResetChanged or
ResetAllChanged after examining the changed boolean with HasBeenChanged or
HasAnyBeenChanged. See §25.2.1 for more detail.

Boolean and choice items can have a client-supplied procedure that will be called
whenever the item’s value changes (see BooleanChangeProc and ChoiceChangeProc in
§25.2.1 and 25.2.2. The client may also supply a GlobalChangeProc that will be called
whenever any item changes (see §25.2.1).

25.1.5 Visibility

Each item is either displayed in the form window or not. If an item is displayed in the form
window, it is visible. If an item is not currently displayed, it is either invisible or
invisibleGhost. If it is invisible, it does not take up any space on the screen, that is any
items below it move up to take its screen space. If an item is invisibleGhost, the space that
it would occupy were it visible is white on the screen. An item’s visibility can be changed
at any time by calling SetVisibility (see §25.2.5.)

25.1.6 Layout

The exact layout of items in a form window is done by calling various layout procedures
after creating the items to be laid out. If an item is not explicitly laid out, it will not appear
in the form window at all. A DefaultLayout procedure is provided that places each created
item on a separate line.

A form window consists of horizontal lines with zero or more items on each line. Each line
may be a different height. Any desired vertical spacing may be accomplished by using
appropriate heights for lines. Any desired horizontal spacing may be accomplished by
using appropriate margins between items. Items may be lined up horizontally by using
TabStops. Lines are created by calling AppendLine or InsertLine. Items are placed on a
line by calling Appendltem or Insertitem. (See §25.2.6 for more detail.)

25-3

25

FormWindow

25.2 Interface Items T
25.2.1 Creating a FormWindow, etc.
Create: PROCEDURE[
window: window.Handle,
makeltemsProc: MakeltemsProc,
layoutProc: LayoutProc «nit,
windowChangeProc: GlobalChangeProc « nit,
minDimsChangeProc: MinDimsChangeProc « Nit,
Zone: UNCOUNTED ZONE «— NIL,
clientData: LONG POINTER «—NIL];
Create takes an ordinary window and makes it a form window.
window is a window created by the client. Windows are usually created by calling
StarwindowsShell.CreateBody.
makeltems is a client-supplied procedure that is called to make the form items in the
window. makeltems should call various Formwindow.MakeXXXitem procedures (see
§25.2.2). Fine Point: makeltems is not called after Create returns, so makeltems can be a nested procedure.
layoutProc is a client-supplied procedure that is called to specify the desired position of the
items in the window. layoutProc is called after makeltems has been called. layoutProc
should call various layout procedures (see §25.2.6), such as AppendLine and Appenditem.
If the default is taken, the DefaultLayout of one item per line will be used. T
windowChangeProc is the global change proc for the entire window. Any time any item in ‘
the window changes, this procedure is called.
zone is the zone from which storage for the items will be allocated. FormWindow uses a
private zone if none is supplied.
clientData is passed to makeltems, layoutProc, and windowChangeProc when called.
May raise Error[alreadyAFormWindow].
DefaultLayout: LayoutProc;
The default for the Create layoutProc parameter. Specifies a layout of one item per line.
Destroy: PROCEDURE [window: window.Handle];
Destroy destroys all FormWindow data associated with window, turning it back into an
ordinary window. All form items are destroyed, but the window itself is not destroyed.
May raise Error[notAFormWindow].
GetClientData: PROCEDURE [window: Window.Handle]
RETURNS [clientData: LONG POINTER];
GetClientData returns the clientData that was passed to Create. May raise
Error[notAFormWindow]. -~

25-4

GlobalChangeProc: TYPE = PROCEDURE [
window: window.Handle,

ViewPoint Programmer’s Manual 25

item: ItemKey,
calledBecauseOf: ChangeReason,
clientData: LONG POINTER];

The client may supply a GlobalChangeProc to Create. Any time the value of any item in
the window is changed, the GlobalChangeProc is called with the key of the item that was
changed. If more than one item was changed at one time (such as by a client call to
FormWindow.Restore), nullitemKey will be passed in and the client must examine the
"changed" boolean of all items to see what was changed (see §25.2.4). calledBecauseOf
indicates what kind of action caused the GlobalChangeProc to be called. clientData is the
LONG POINTER that was passed to Create.

GetGlobalChangeProc: PROCEDURE [window: window.Handle]
RETURNS [proc: GlobalChangeProc];

GetGlobalChangeProc returns the GlobalChangeProc that was passed to Create. 'V[ay
raise Error[notAFormWindow].

SetGlobalChangeProc: PROCEDURE [window: window.Handle,
proc: GlobalChangeProc] ReTURNS [old: GlobalChangeProc];

SetGlobalChangeProc changes the GlobalChangeProc that was passed to Create. May
raise Error[notAFormWindow].

MinDimsChangeProc: TYPE = PROCEDURE [window: window.Handle,
old, new: window.Dims];

Whenever the minimum dimensions of the FormWindow change, the client supplied
MinDimsChangeProc is called. This is useful for form windows that are nested as window
items inside another outer form window. Whenever the dimensions of the nested form
window change (due to items being made visible or invisible or a text item growing or

. shrinking or new items being added or...), the client that created the window item and the

nested form window can be called so that it can make the window item bigger or smaller
for the nested form window to be completely visible. See also NeededDims.

GetZone: PROCEDURE [window: window.Handle]
RETURNS [zOne: UNCOUNTED ZONE];

GetZone returns the zone associated with the FormWindow. May raise
Error[notAFormWindow].

Islt: PROCEDURE [window: window.Handle] RETURNS [yes: BOOLEAN];

islt is used to determine if a window is a form window. If window was made into a form
window by calling Formwindow.Create, then Islt returns TRUE, else FALSE.

LayoutProc:TYPE = PROCEDURE [window: window.Handle, clientData: LONG POINTER];

The client supplies a LayoutProc to Create to specify the location of items created by the
MakeltemsProc. See §25.2.6 for details of layout.

25-5

25

FormWindow

25-6

25.2.2

MakeltemsProc: TYPE = PROCEDURE [
window: window.Handle,
clientData: LONG POINTER];

The client supplies a MakeltemsProc to Create to make the form items in the window,
Create will call the client’s MakeltemsProc, and it should call various MakeXXXltem
procedures (see §25.2.2) to make the items. window should be passed to the various
MakeXXXitem. clientData is the same as that passed to Create. Fine point for clients of
PropertySheet: clientData can be passed to PropertySheet.Create and will be passed on to FormWindow.Create
and the MakeitemsProc.

NeededDims: PROCEDURE [window: window.Handle]
RETURNS [window.Dims];

NeededDims returns the minimum dimensions required for a window to hold all the
currently visible items in the form.

NumberOfltems: PROCEDURE [window: Window.Handle] RETURNS [CARDINAL];

NumberOfltems returns the current number of form items in window. This count will
include visible and invisible items. This is useful for clients that create additional items
dynamically after the form has been created. May raise Error[notAFormWindow].

Repaint: PROCEDURE [window: window.Handle];

Repaint causes the entire form to be repainted. This is used in conjunction with the
SetXXXltemValue, SetVisibility, Appenditem, and insertltem procedures. All these
procedures take a repaint: BOOLEAN parameter. To minimize screen flashing while
changing several items at the same time, the client may call these procedures with repaint:
= FALSE, then call Formwindow.Repaint. The form window will not be repainted until
Repaint is called. Warning: After calling any procedure with repaint = FALSE,
FormWindow.Repaint must be called. Otherwise, the screen will be inconsistent with the
internal values. May raise Error[notAFormWindow].

Making Form Items, etc.

Create procedures are provided for each type of item. These MakeXXXItem routines are
used to originally create items in a form window as well as to add items to an existing
window.

A number of parameters to each MakeXXXltem procedure are identical and are described
here, rather than with each procedure. If all of the defaults are taken for an item, it will be
boxed, with no tags and not read-only. All of these may raise Error[notAFormWindow];

window is the form window the item is contained in. It should be the same as the window
passed to the client’s MakeltemsProc.

myKey is a client-defined key (ItemKey) for the item. The item key uniquely identifies the
item and should be used to make calls on other FormWindow procedures, such as
GetXXXltemValue. Caution: The key must be unique within this form window.

tag is the text to be displayed before (to the left of) the item on the same line. (To put a tag
on a separate line, use MakeTagOnlyltem.)

ViewPoint Programmer’s Manual 25

suffix is the text to be displayed after (to the right of) the item on the same line.

visibility indicates whether the item should be displayed on the screen.

boxed indicates whether the item should have a box drawn around it or not.

readOnly = TRUE indicates that the item can not be edited by the user. The item can still be
changed by calling a SetXXXltemValue procedure.

ItemKey: TYPE = CARDINAL;

ItemKey uniquely identifies an item. An ltemiey is supplied by the client whenever an
item is made (MakeXXXitem) and should be used thereafter to identify the item to
FormWindow, such as then calling GetXXXltemValue or SetVisibility.

ItemType: TYPE = MACHINE DEPENDENT {choice(0), multiplechoice, decimal, integer,
boolean, text, command, tagonly, window, last(15)};

There are several types of items, each of which serves a different purpose and behaves
differently for the user. All items except tagonly and command have a current value that
can be obtained (GetXXXItemValue) and set (SetXXXltemValue).

A choice item has an enumerated list of choices, only one of which can be selected at any
point in time. A choice item’s value is of type Formwindow.Choicelndex.

A multiplechoice item is a choice item that can have an initial value of more than one
choice selected, but any succeeding values can have only one choice selected. A multiple
choice item’s value is of type LONG DESCRIPTOR FOR ARRAY OF CARDINAL.

A text item is a user-editable text string, and contains only nonattributed text. A text
item’s value is of type Xstring.ReaderBody.

A decimal item is a text item that has a value of type XLReal.Number.
An integer item is a text item that has a value of type LONG INTEGER.

A boolean item is an item with two states (on and off, or TRUE and FALSE). A boolean
item’s value is of type BOOLEAN.

A command item allows a user to invoke a command. When the user clicks over a
command item, a client procedure is called.

A tagonly item is an uneditable, nonselectable text string.

A window item is a window that is a child of the FormWindow and can contain whatever
the client desires. A window item’s value is a window.Handle. A client must provide its own
Tip.NotifyProc and window display procedure for the window item.

nullitemKey: itemKey;

nullltemKey is used to indicate no item.

25.2.2.1 Boolean Items

MakeBooleanitem: PROCEDURE [
window: window.Handle,
myKey: ItemKey,
tag: xstring.Reader « NiL,

25-7

25

FormWindow

25-8

suffix: xstring.Reader « NiL, -
visibility: Visibility « visible, '
boxed: BOOLEAN « TRUE,

readOnly: BOOLEAN «FALSE,
changeProc: BooleanChangeProc « NiL,
label: BooleanltemLabel,

initBoolean: BOOLEAN « TRUE];

MakeBooleanltem creates a boolean item. A boolean item value is of type BOOLEAN. When
the value is TRUE, the item is highlighted. When FALSE, it is not highlighted. When the user
clicks over the label part of a boolean item, the value toggles.

Tag LABEL suffix

Unhighlighted boolean item, value = FALSE

changeProc is a client-supplied procedure that will be called whenever the value of the
item changes.

label is the string or bitmap that the user points at to toggle the item’s value. If label is a
string, the string is copied. If label is a bitmap, the bits are not copied, so the client must
ensure that the bitmap pointer is valid for the lifetime of the form window.

initBoolean is the initial value of the item. ’ Sl

May raise Error[notAFormWindow, duplicateitemKey].

BooleanltemLabel: TYPE = RECORD [
var: SELECT type: BooleanltemLabelType FROM
string = > [string: xstring.ReaderBody], -
bitmap = > [bitmap: Bitmap]
ENDCASE];

BooleanitemLabelType: TYPE = {string, bitmap};

A BooleanltemLabel is passed to MakeBooleanitem. It is the part of the item that the user
points at and is or is not highlighted, depending on the value of the item. A label may be
either a string or a bitmap. (See §25.2.8 on Miscellaneous TYPEs for the definition of
Bitmap). If label is a string, the string is copied. If label is a bitmap, the bits are not¢ copied,
so the client must ensure that the bitmap pointer is valid for the lifetime of the form
window.

BooleanChangeProc: TYPE = PROCEDURE [
window: window.Handle, ‘
item: ItemKey,
calledBecauseOf: ChangeReason,
newValue: BOOLEAN];

The client may provide a BooleanChangeProc to MakeBooleanltem. Whenever the item’s -1 !!‘*,

value changes (TRUE to FALSE or FALSE to TRUE), this procedure is called. window is the form !
window that the item is in. item is the key of the boolean item to which this

ViewPoint Programmer’s Manual 25

BooleanChangeProc is attached. calledBecauseOf indicates what kind of action caused the
change proc to be called. newValue is the vew value of the item. The item will already
have the new value when this procedure is called.

Caution: If a BooleanChangeProc does a SetXXXltemValue, the client should take
extreme care to prevent infinite recursion. (See §25.3.1.)

25.2.2.2 Choice Items

MakeChoiceltem: PROCEDURE |
window: window.Handle,
myKey: ItemKey,
tag: XString.Reader « NiL,
suffix: xstring.Reader «NiL,
visibility: Visibility < visible,
boxed: BOOLEAN « TRUE,
readOnly: BOOLEAN « FALSE,
values: Choiceltems,
initChoice: Choiceindex,
fullyDisplayed: BOOLEAN « TRUE,
verticallyDisplayed: BOOLEAN «FALSE,
hintsProc: ChoiceHintsProc « i,
changeProc: ChoiceChangeProc « NiL,
outlineOrHighlight: OutlineOrHighlight « highlight]; -

MakeChoiceltem creates a choice item. A choice item is an enumerated list of choices, only
one of which can be selected at any time . The choices can be displayed to the user as either
strings or bitmaps, or some of each. The current choice is highlighted. When the user
clicks on a choice, it becomes the current choice and is highlighted. Each choice has a
client-defined Choicelndex associated with it that uniquely identifies that choice. The
value of a choice item is of type Choicelndex.

values is the list of all the possible choices. An indication of where to wrap the display
around to the next line can be made by specifying a wraplndicator variant in the
appropriate place in the values array. If a choice is a string, the string is copied. If a choice
is a bitmap, the bits are not copied, so the client must ensure that the bitmap pointer is
valid for the lifetime of the form window.

initChoice is the value of the initial choice.

fullyDisplayed indicates whether ali the choices should be displayed or not. If
fullyDisplayed = TRUE, all the choices are displayed. If fullyDisplayed = FALSE, only the
current choice is displayed, with the rest of the choices being accessed via a popup menu.

lverticallyDisplayed indicates whether the choices should be displayed vertically or
horizontally. If fullyDisplayed = FALSE, the value of verticallyDisplayed is ignored. Any
wraplndicators are skipped over when choices are displayed vertically.

If hintsProc is supplied, it is called to make a popup hint menu. If the default is taken, the
form window will make a hint menu with all choices. Note: Since menus can only contain
strings (not bitmaps), a bitmap choice will appear in the hints menu as a number
indicating the choice’s position. Note: This is not the same as the Choicelndex for that
choice.

25-9

25

FormWindow

25-10

If changeProc is supplied, it is called whenever the choice changes.

May raise Error[notAFormWindow,duplicateltemKey, invalidChoiceNumber].
OutlineOrHighlight: Tyre = {outline, highlight};

Normally the selected choice for a choice item is indicated by highlighting the choice. The
outlineOrHighlight parameter allows the selected choice to be indicated by outlining the
choice with a black box. This is intended to support the Shading choice item on, for
example, the triangle and ellipse property sheets in the ViewPoint editor.

Choiceltems: TYPE = LONG DESCRIPTOR FOR ARRAY Choicelndex of Choiceltem;

Choiceltems is the list of possible choice for a choice item. A Choiceltems ARRAY is passed to
MakeChoiceltem. The choices are displayed in the order they appear in the Choiceltems;
ARRAY,

Choiceltem: TYPE = RECORD [
var: SELECT type: ChoicelitemType FROM
string = > [
choiceNumber: Choicelndex,
string: xstring.ReaderBody],
bitmap = >|
choiceNumber: Choicelndex,
bitmap: Bitmap],
wrapindicator = > NuLL];

ChoiceltemType: TYPe = {string, bitmap, wraplndicator};
Choicelndex: TYPE = CARDINAL[0..37777B];

A choice item consists of an array of choices (Choiceltems). Each choice (Choiceltem)
consists of a unique number that identifies the choice (Choicelndex) and either a string or
a bitmap to display to the user. In addition, the Choiceltems array can contain a
wrapindicator wherever the client desires the choices be wrapped around to begin another
line of choices. A wraplindicator Choiceltem is not a real choice and serves only as
additional layout information for the FormWindow. If Choiceltem is a string, the string is
copied. If Choiceltem is a bitmap, the bits are not copied, so the client must ensure that the
bitmap pointer is valid for the lifetime of the FormWindow.

The client must construct a Choiceltems array before calling MakeChoiceltem. This can
be simplified if all the choices are strings by using the FormWindowMessageParse
interface. This allows all the choices for a choice item to be stored as a single XMessage
with embedded syntax indicating individual choice strings and choice numbers. (See
FormWindowMessageParse for more detail.)

ChoiceChangeProc: TYPE = PROCEDURE [
window: window.Handle,
item: ItemKey,
calledBecauseOf: ChangeReason,
oldValue, newValue: Choiceindex];

ViewPoint Programmer’s Manual 25

The client may provide a ChoiceChangeProc to MakeChoiceltem. Whenever the choice
changes, this procedure is called. window is the form window that the item is in. item is
the key of the choice item to which this ChoiceChangeProc is attached. calledBecauseOf
indicates what kind of action caused the change proc to be called. oldValue and newValue
correspond to the choice numbers assigned to the choices in MakeChoiceltem. The item
will have the new value when this procedure is called.

Caution: If a ChoiceChangeProc does a SetXXXltemValue, the client should take extreme
care to prevent infinite recursion. See §25.3.1, Calling ChangeProcs.

ChoiceHintsProc: TYPE = PROCEDURE [
window: window.Handle,
item: ItemKey]
RETURNS |
hints: LONG DESCRIPTOR FOR ARRAY OF Choicelndex,
freeHints: FreeChoiceHintsProc];

FreeChoiceHintsProc: TYPE = PROCEDURE |
window: window.Handle,
item: ItemKey,
hints: LONG DESCRIPTOR FOR ARRAY OF Choiceindex];

The client may provide a ChoiceHintsProc to MakeChoiceltem. Whenever the user points
at the mouse menu for a choice item, this procedure is called and the hints returned are
used to construct a popup menu that is displayéd. If the user selects one of the choices from
the popup menu, that choice becomes the current choice.

window is the form window that the item is in.
item is the key of the choice item to which this ChoiceHintsProc is attached.

hints is an array of choice numbers for the choices that the client wants to appear in the
menu. This allows a client to show a subset of all the choices to the user for situations in
which not all the choices make sense.

freeHints is a procedure that will be called after the hint menu has been taken down to
allow the client to free any storage that was allocated when creating the hints array.

MakeMultipleChoiceltem: PROCEDURE [
window: window.Handle,
myKey: ItemKey,
tag: xstring.Reader « NIL,
suffix: xstring.Reader «NiL,
visibility: Visibility « visible,
boxed: BOOLEAN « TRUE,
readOnly: BOOLEAN « FALSE,
values: Choiceltems,
initChoice: LONG DESCRIPTOR FOR ARRAY OF Choicelndex,
verticallyDisplayed: BOOLEAN « FALSE,
hintsProc: ChoiceHintsProc « i,
changeProc: MultipleChoiceChangeProc « NiL];

May raise Error[notAFormWindow, duplicateitemKey].

25-11

25 FormWindow

MultipleChoiceChangeProc: TYPE = PROCEDURE [ﬂg
window: window.Handle, L
item: ItemKey,
calledBecauseOf: ChangeReason,
oldValue: LONG DESCRIPTOR FOR ARRAY OF Choicelndex,
newValue: LONG DESCRIPTOR FOR ARRAY OF Choiceindex];

A multiple choice item is identical to a choice item, except that it may have more than one
initial value. See MakeChoiceltem above for details of choice items. A multiple choice
item is useful for showing the properties of a heterogenous selection, such as the font
property of a text selection that has more than one font.

25.2.2.3 Command Items

MakeCommanditem: PROCEDURE [
window: window.Handle,
myKey: ItemKey,
tag: XString.Reader « NiL,
suffix: xstring.Reader «niL,
visibility: Visibility < visible,
boxed: BOOLEAN « TRUE,
readOnly: BOOLEAN «FALSE,
commandProc: CommandProc,
commandName: Xxstring.Reader,
clientData: LONG POINTER « NiL]; %

Creates a command item. A command item allows a user to invoke a command. When the
user clicks over the commandName, commandProc is called. If boxed is TRUE, the
commandName appears with a rounded corner box drawn around it (rather than a square-
cornered box, to distinguish a command item from a boolean item). May raise
Error[notAFormWindow, duplicateltemKey].

CommandProc: TYPE = PROCEDURE |
window: window.Handle,
item:ltemKey, clientData: LONG POINTER];

A CommandProc is supplied by the client to MakeCommandlitem. It is called whenever
the user selects the command item. window is the FormWindow that the item is in. item
is the key of the command item to which this CommandProc is attached.

25.2.2.4 Tagonly items

MakeTagOnlyltem: PROCEDURE [
window: window.Handle,
myKey: ItemKey,
tag: xstring.Reader,
visibility: Visibility « visible];

Creates a tagonly item. Tagonly items are displayed as uneditable, nonselectable S
text.May raise Error[notAFormWindow, duplicateltemKey]. !

25-12

ViewPoint Programmer’s Manual ' 25

25.2.2.5 Text and Number Items

MakeTextltem: PROCEDURE |
window: window.Handle,
myKey: I[temKey,
tag: xstring.Reader « NiL,
suffix: Xstring.Reader «NiL,
visibility: Visibility « visible,
boxed: BOOLEAN « TRUE,
readOnly: BOOLEAN «FALSE,
width: CARDINAL, -- in screen dots
initString: xstring.Reader « NiL,
wrapUnderTag: BOOLEAN « FALSE,
passwordFeedback: BOOLEAN « FALSE,
hintsProc: TextHintsProc «niL,
nextOutOfProc: NextOutOfProc « NiL,
SPECIALKeyboard: BlackKeys.Keyboard « NiL];

Creates a text item. Text items are user-editable text strings. The value of a text item is of
type Xstring.ReaderBody. The user may select text, extend the selection, insert text, delete
text, move and copy text, etc. Text items are fixed width but may grow and shrink
vertically as the user enters and deletes text. A text item will contain nonattributed text
only. FormWindow handles all storage allocation for the backing string.

width is the number of screen dots wide that the item should be. The. item may grow
arbitrarily long as the user enters text, but it will always retain the same width.

initString is the initial string to place in the text item. The bytes are copied by
FormWindow.

wrapUnderTag specifies whether any text wider than the width of the text item should
appear underneath the tag (wrapUnderTag = TRUE) or start at the left edge of the text
item (wrapUnderTag = FALSE). Note: This feature is not yet implemented.

passwordFeedback indicates that the text should be displayed in an unreadable form
rather than as normal characters. The correct value of the string is maintained internally,
so that a call to GetTextltemValue will return the proper value.

If hintsProc is supplied, it is called to make a list of strings to be displayed to the user as a
popup hint menu. (See TextHintsProc below.) :

If nextOutOfProc is supplied, it is called when the user presses the NEXT key while the
input focus is in this text item. This gives the client an opportunity to create more text
items. After calling the nextOutOfProc or if no nextOutOfProc is supplied, the NEXT key
causes the selection and input focus to move to the next text or window item in the form.
See NEXT key in this chapter for further explanation.

If SPECIALKeyboard is supplied, it allows clients to make a special keyboard available to
the user when typing into a text or number field.

May raise Error[notAFormWindow, duplicateltemKey].

MakeDecimallitem: PROCEDURE [
window: Window.Handle,
myKey: ItemKey,
tag: xstring.Reader « NIL,

25-13

25

FormWindow

25-14

suffix: xstring.Reader « NiL,

visibility: Visibility < visible,

boxed: BOOLEAN « TRUE,

readOnly: BOOLEAN «FALSE,

signed: BOOLEAN «FALSE,

width: CARDINAL, -- in screen dots --
initDecimal: xLReal.Number ¢« XLReal.zero,
wrapUnderTag: BOOLEAN «FALSE,
hintsProc: TextHintsProc «nNiL,
nextOutOfProc: NextOutOfProc « NiL,
displayTemplate: xstring.Reader «nNiL,
SPECIALKeyboard: Blackkeys.Keyboard e niL];

Creates a decimal item. A decimal item is a text item that has a value of type
XLReal.Number. (See MakeTextltem above for details of text items.) The user can type any
text into the decimal item, but when the client calls GetDecimalltemValue to retrieve the
value, FormWindow converts the string to XLReal.Number. initDecimal is the initial

decimal value to place in the item. displayTemplate parameter is defined as in the -

XLReal.PictureReal. xtRreal.PictureReal is used to display the value of the decimal item. The
client may provide a keyboard interpretation with the SPECIALKeyboard parameter (see
Chapter 8, §2.1). May raise Error[notAFormWindow, duplicateitemKey].

Makeintegeritem: PROCEDURE [
window: window.Handle,
myKey: ItemKey,
tag: Xstring.Reader « NiL,
suffix: Xstring.Reader « NiL,
visibility: Visibility « visible,
boxed: BOOLEAN « TRUE,
readOnly: BOOLEAN « FALSE,
signed: BOOLEAN «-FALSE,
width: cArRDINAL, -- in screen dots --
initinteger: LONG INTEGER « 0,
wrapUnderTag: BOOLEAN «FALSE,
hintsProc: TextHintsProc «ni,
nextOutOfProc: NextOutOfProc « NiL,
SPECIALKeyboard: Blackkeys.Keyboard «nNiL];

Creates an integer item. An integer item is a text item that has a value of type LONG
INTEGER. (See MakeTextltem above for details of text items.) The user can type any text
into the integer item, but when the client calls GetIntegeritemValue to retrieve the value,
FormWindow converts the string to a LONG INTEGER. initinteger is the initial number to
place in the item. The client may provide a keyboard interpretation with the
SPECIALKeyboard parameter (see Chapter 8, §2.1). May raise Error[notAFormWindow,
duplicateltemKey].

TextHintAction: Tyre = {replace, append, nil};

TextHintsProc: TYPE = PROCEDURE [
window: window.Handle,
item: ItemKey]
RETURNS [

ViewPoint Programmer’s Manual 2 5

hints: LONG DESCRIPTOR FOR ARRAY OF XString.ReaderBody,
freeHints: FreeTextHintsProc,
hintAction: TextHintAction < replace];

FreeTextHintsProc: TYPE = PROCEDURE [
window: window.Handle,
item: ItemKey,
hints: LONG DESCRIPTOR FOR ARRAY OF XString.ReaderBody];

The client may provide a TextHintsProc to MakeTextltem, MakeDecimalltem, and
Makeintegeritem. Whenever the user points at the mouse menu for a text item, this
procedure is called and the hints returned are used to construct a popup menu that is
displayed. '

When the user selects one of the strings from the popup menu, one of three things will
happen, depending on the hintAction returned by the TextHintsProc. If hintAction =
replace, the selected string will replace the current value of the text item. If hintAction =
append, the selected string will be appended to the current value of the text item. If
hintAction = nil, the current value of the text item will not change. hintAction = nil is
useful for displaying “help-like” information to the user for text items that do not have a
finite number of possible values, such as a file name.

freeHints is a procedure that will be called after the hint menu has been taken down to
allow the client to free any storage that was allocated when creating the hints array.

25.2.2.6 Window Items

MakeWindowltem: PROCEDURE [
window: window.Handle,
myKey: ltemKey,
tag: xString.Reader « NiL,
visibility: Visibility « visible,
boxed: BOOLEAN « TRUE,
size: Window.Dims,
nextintoProc: NextintoProc « Nit]
RETURNS [clientWindow: window.Handle];

Creates a window item. A window item is a window (window.Handle) that is a child of the
FormWindow and can contain anything the client desires. A window with dimensions size
is created and returned as clientWindow. It is expected that the client will associate a
display proc (see Window.SetDisplayProc) and a mip.NotifyProc with the window. The
window may be treated just like any other window, except Formwindow.SetWindowltemSize
must be used to change the size of the window rather than calling window.SlideAndSize
directly. This allows FormWindow to move any other items, if necessary, to accomodate
the different-sized window item.

If nextintoProc is supplied, it is called when the user presses the NEXT key in an item just
before this window item. This gives the window item an opportunity to gain control of the
NEXT key by setting the input focus to be the window item’s window. The window item
may then retain control of the NEXT key within the window item. When the window item
no longer wants to process the NEXT key (for instance, when the NEXT key should move the
selection outside the window item), the window item client must call

25-15

25

FormWindow

FormWindow.TakeNEXTKey, which returns the NEXT key processing to the form window.
(See §25.2.10 for an explanation of the NEXT key.)

May raise Error[notAFormWindow, duplicateltemKeyl].

SetWindowltemSize: PROCEDURE |
window: window.Handle,
windowltemKey: ItemKey,
newsSize: window.Dims];

SetWindowltemSize should be used to change the size of a window item’s window. The
client should never call window.SlideAndSize directly. Any items below the window item
are moved down or up to accommodate the new dimensions. window is the form window
that the window item is in. windowitemKey must be the key of a window item. newSize
indicates the new dimensions. May raise Error[notAFormWindow, invaliditemKey,
wrongitemType].

25.2.2.7 Destroying Items

Destroyitem: PROCEDURE [
window:window.Handle,
item: ItemKey,
repaint: BOOLEAN « TRUE];

Destroyitem destroys item. Most clients will not need to use this procedure, since
FormWindow.Destroy destroys all the items in the FormWindow. May raise
Error[notAFormWindow, invaliditemKey].

Destroyltems: PROCEDURE [
window:window.Handle,
item: LONG DESCRIPTOR FOR ARRAY OF ItemKey,
repaint: BOOLEAN &« TRUE];

Destroyltems destroys several items at once. Most clients will not need to use this
procedure, since FormWindow.Destroy destroys all the items in the FormWindow. May raise
Error[notAFormWindow, invalidltemKey].

25.2.3 Getting and Setting Values

25-16

The client may examine or change the value of an item. All GetXXXitem procedures
return the current value of an item. All SetXXXlItem procedures take a given new value
and change the value internally, as well as updating the screen if necessary.

In all these procedures, window is the FormWindow the item is in. item uniquely
identifies the item to get/set the value of.

Note: There are two ways to get the value of a text item. GetTextltemValue copies the
bytes of the string so that the storage for the returned value is owned by the client.
LookAtTextltemValue simply returns a pointer to the FormWindow-owned backing
string. This value is therefore read-only and must be released when the client is done
examining it by calling DoneLookingAtTextitemValue.

|

-

ViewPoint Programmer’s Manual 25

All of these may raise Error[notAFormWindow, invaliditemKey, wrongitemType].

25.2.3.1 Getting Values

GetBooleanltemValue: PROCEDURE [
window: window.Handle,
item: ItemKey]
RETURNS [value: BOOLEAN];

GetChoiceltemValue: PROCEDURE [
window:window.Handle,
item: ltemKey]
RETURNS [value: Choicelndex];

GetDecimalltemValue: PROCEDURE [
window: window.Handle,
item: itemKey]
RETURNS [value:xLReal.Number];

May raise xLReal.Error [notANumber].

GetintegeritemValue: PROCEDURE |
window: window.Handle,
item: ltemKey]
RETURNS [value: LONG INTEGER];

May raise xString.InvalidNumber or XString.Overflow.

GetMultipleChoiceltemValue: PROCEDURE [
window:window.Handle,
item: ItemKey, zone: UNCOUNTED ZONE]
RETURNS [values: LONG DESCRIPTOR FOR ARRAY OF Choicelndex];

The zone parameter is added. The storage for the DESCRIPTOR will be allocated out of zone
and the storage must be freed by the client.

GetTextitemValue: PROCEDURE [
window: window.Handle,
item: ItemKey,
Zone: UNCOUNTED ZONE]
RETURNS [value: xstring.ReaderBody];

GetTextitemValue copies the string. Storage for the bytes is allocated out of zone. The
client should free the storage using xstring.FreeReaderBytes and zone.

GetWindowitemValue: PROCEDURE [
window: window.Handle,
item: ItemKey]
RETURNS [value: window.Handle];

LookAtTextlitemValue: PROCEDURE |
window: window.Handle,

25-17

25

FormWindow

item: ltemKey]
RETURNS [value: xstring.ReaderBody];

DoneLookingAtTextltemValue: PROCEDURE [
window: window.Handle,
item: ItemKey];

LookAtTextltemValue does not copy the string but returns a pointer to it. value should not
be changed by the client. Clients using LookAtTextltemValue must ecall
DonelLookingAtTextltemValue when done examining it. During the time between these
calls, if another client calls LookAtTextitemValue or SetTextitemValue for the same text
item, the second client’s process will waIT.

GetNextAvailableKey: PROCEDURE [window: window.Handle]
RETURNS [key: ItemKey];

Returns the next available item key: MAXx[usedKeys] + 1.

25.2.3.2 Setting Values

25-18

All the SetXXXltem procedures take a repaint: BOOLEAN. If repaint = TRUE and the item is
currently visible, it will be repainted with the new value. If repaint = FALSE, the item will
not be repainted until Formwindow.Repaint is called. This allows the client to change the
values of several items at once without the screen flashing for each item. Warning: After
calling any procedure with repaint = FALSE, FormWindow.Repaint must be called.
Otherwise, the screen will be inconsistent with the internal values.

Caution: [f a change proc does a SetXXXIltemValue, the client should take extreme care to
prevent infinite recursion. (See §25.3.1.)

SetBooleanitemValue: PROCEDURE [
window: window.Handle,
item: ItemKey,
newValue: BOOLEAN,
repaint: BOOLEAN «TRUE];

SetChoiceltemValue: PROCEDURE [
window: window.Handle,
item: ItemKey,
newValue: Choicelndex,
repaint: BOOLEAN «TRUE];

May raise Formwindow.Error[invalidChoiceNumber].

SetDecimalltemValue: PROCEDURE [
window: window.Handle,
item: ItemKey,
newValue: xLtReal.Number,
repaint: BOOLEAN «TRUE];

SetintegeritemValue: PROCEDURE [
window: window.Handle,

ViewPoint Programmer’s Manual 25

item: ItemKey,
newValue: LONG INTEGER,
repaint: BOOLEAN «TRUE];

SetMultipleChoiceltemValue: PROCEDURE [
window:window.Handle,
item: ItemKey,
newValue: LONG DESCRIPTOR FOR ARRAY OF Choicelndex,
repaint: BOOLEAN «TRUE];

May raise FormWindow.Error[invalidChoiceNumber].

SetTextltemValue: PROCEDURE [
window: window.Handle,
item: itemKey,
newValue: xstring.Reader,
repaint: BOOLEAN «TRUE];

25.2.4 "Changed" BOOLEAN

Every item that has a value that the user can change (all except tagonly and command
items) has a “changed” boolean associated with it. All items are created with this boolean
set to FALSE. FormWindow automatically sets this boolean to TRUE whenever the user
changes the item. This allows the client to determine which items have changed when, for
example, the user selects “Done” or “Apply” on a property sheet. The client is responsible
for resetting the changed boolean to false by calling ResetChanged or ResetAllChanged
after examining the changed boolean with HasBeenChanged or HasAnyBeenChanged.

HasAnyBeenChanged: PROCEDURE [
window: Window.Handle]
RETURNS [yes: BOOLEAN];

HasAnyBeenChanged returns true if any item’s changed boolean is TRUE. May raise
Error[notAFormWindow].

HasBeenChanged: PROCEDURE [
window: window.Handle,
item: ItemKey]

RETURNS [yes: BOOLEAN];

HasBeenChanged returns TRUE if the user has changed item. The client may reset the
changed boolean to FALSE by using ResetChanged or ResetAllChanged. May raise
Error[notAFormWindow, invalidltemKeyl].

ResetChanged: PROCEDURE [window: window.Handle, item: ItemKey];

ResetChanged sets the changed boolean of item to FALSE. May raise Error[
notAFormWindow, invaliditemKey].

ResetAllChanged: PROCEDURE [window: window.Handle];

25-19

25 FormWindow

ResetAllChanged sets the changed boolean of all items to FALSE. May raise Error[-
notAFormWindow]. P

SetChanged: PROCEDURE [
window: window.Handle,
item: itemKey];

SetChanged sets the changed boolean of item to TRUE. May raise Error[notAFormWindow,
invaliditemKey].

SetAllChanged: PROCEDURE [
window: window.Handlel;

SetAllChanged sets the changed boolean of all items to TRUE. May raise Error(
notAFormWindow].

25.2.5 Visibility
Visibility: TvypPe = {visible, invisible, invisibleGhost};

An item either is or is not displayed in the form window. If an item is displayed in the form
window, it is visible. If an item is not currently displayed, it is either invisible or
invisibleGhost. If it is invisible, it does not take up any space on the screen; any items
below it move up to take its screen space. If an item is invisibleGhost, the space that it
would occupy were it visible is white on the screen. An item’s visibility can be changed ~
anytime by calling SetVisibility. | :

GetVisibility: PROCEDURE [
window: window.Handle,
item: ItemKey]

RETURNS [visibility: Visibility];

GetVisibility returns the current visibility of item. May raise Error[notAFormWindow,
invaliditemKey].

SetVisibility: PROCEDURE |
window: window.Handle,
item: ItemKey,
visibility: Visibility,
repaint: BOOLEAN «TRUE];

SetVisibility sets the visibility of item. If repaint = TRUE and the item’s visibility is
changing, the form window will be repainted. If repaint = FALSE, the form window will not
be repainted until Formwindow.Repaint is called. This allows the client to change the
visibility of several items at once without the screen flashing for each item. Warning:
After calling SetVisibility with repaint = FALSE, Formwindow.Repaint must be called.
Otherwise, the screen will be inconsistent with internal values. May raise
Error[notAFormWindow, invaliditemKey].

25-20

ViewPoint Programmer’s Manual 25

25.2.6 Layout

The exact layout of items in a form window is done by calling various procedures specified
below, after creating the items to be laid out. If an item is not explicitly laid out, it will not
appear in the form window at all. Note that Formwindow.DefaultLayout may be used when
the client is not concerned with the exact placement of items, but wants a functional form
window.

There are two different types of layout. The most common is flexible layout, which allows
text, decimal, integer, and window items to grow and shrink (and all other items are
moved around accordingly) as the user or client changes their values. Flexible layout is
done by calling such procedures as AppendLine and Appenditem. The other is fixed
layout, which allows the client to specify exactly where items will go by calling
SetitemBox, but does not allow text, decimal, integer, and window items to grow or shrink.
All items stay where they are laid out unless the client calls SetitemBox again.

25.2.6,1 Flexible Layout

A form window with flexible layout consists of horizontal lines with zero or more items on
each line. Lines now are always just tall enough to hold the items on that line. The
spaceAboveline parameter specifies the amount of white spae to leave above each line.
Any desired horizontal spacing may be accomplished by using appropriate margins
between items. Items may be lined up horizontally by using TabStops (see §25.2.6.2
below).

Lines are created by calling AppendLine or insertLine. Items are placed on a line by
calling Appendltem or Insertitem. The Append routines are used to add items after the
previously created line or item. The Insert routines are used to add items between
previously created items or lines.

AppendLine: PROCEDURE [
window: window.Handle,
spaceAboveLine: CARDINAL « 0]
RETURNS [line: Line);

AppendLine creates a new line and appends it to the bottom of the form window. All items
must be placed on a line, so AppendLine must be called before any calls to Appenditem.
The line returned by AppendLine should be passed to Appenditem or Insertitem. window
is the FormWindow the line is being appended to. May raise Error[notAFormWindow].

Line: TYPE;

Line uniquely identifies a line and is returned by AppendLine and InsertLine. A Line must
be passed to Appenditem and Insertitem.

Appendltem: PROCEDURE [
window: window.Handle,
item: ItemKey,
line: Line,
preMargin: CARDINAL « 0,

25-21

25

FormWindow

25-22

tabStop: CARDINAL « nextTabStop,
repaint: BOOLEAN «TRUE];

Appenditem appends item to line.

preMargin is the number of pixels of white space to place before the left edge of this item.
If tabs have been set, preMargin is added after placing the item at its tab stop.

tabStop is the ordinal number of the tab stop at which to place this item. If the default is
taken, the next tab stop on the line after the previous item is used. If no tabs have been
defined (i.e., SetTabStops has never been called), tabStop is ignored. See §25.2.6.2 for
more detail on tabs.

repaint specifies whether the screen should be repainted after the Appenditem is done.
When called from the client’s LayoutProc, repaint is ignored and the items are not painted
until the LayoutProc returns. When not called from the client’s LayoutProc, and repaint =
TRUE, the form window will be repainted immediately after appending the item. When not
called from the client’s LayoutProc, and repaint = FALSE, the form window will not be
repainted until Formwindow.Repaint is called. This allows the client to add several items at
once without the screen flashing for each new item. Warning: After calling Appenditem
with repaint = FALSE, FormWindow.Repaint must be called. Otherwise, the screen will be
inconsistent with internal values.

May raise Error[notAFormWindow, invaliditemKey, noSuchLine].

InsertLine: PROCEDURE [
window: window.Handle,
before: Line,
spaceAbovelLine: CARDINAL « 0]
RETURNS [line: Line];

InsertLine inserts a new line before (above) an existing line. The spaceAboveline
parameter indicates how much space (in screen dots) to leave between the previous line
and this line. This allows clients to leave white space at the top of the form before the first
line and also provides an easy way to put white space in a form. (See AppendLine for
details of creating a line.)May raise Error[notAFormWindow, noSuchLine].

Insertitem: PROCEDURE |
window: window.Handle,
item: ItemKey,
line: Line,
beforeltem: ItemKey,
preMargin: CARDINAL « 0,
tabStop: CARDINAL « nextTabStop,
repaint: BOOLEAN «TRUE];

Insertltem inserts item to the left of beforeltem on line. See Appendltem for details of
placing an item on a line. May raise Error [notAFormWindow, invaliditemKey,
noSuchLine, itemNotOnLine].

RemoveltemFromLine: PROCEDURE [
window: window.Handle,
item: ItemKey,

ViewPoint Programmer’s Manual 25

line: Line,
repaint: BOOLEAN ¢— TRUE];

RemoveltemFromLine will "unlayout" an item that has been previously laid out. This
allows clients to move an item from one place on the form to another without destroying
and recreating the item, by calling RemoveltemFromLine followed by a call to
Appenditem or Insertitem. RemoveltemFromLine will not destroy the item. The item will
be "in limbo" until it is laid out again using Appenditem or Insertltem.

LayoutinfoFromlitem: PROCEDURE [
window: window.Handle, item: ItemKey]
RETURNS [line: Line, margin: CARDINAL,
tabStop: CARDINAL, box: Window.Box];

LayoutinfoFromltem returns various layout characteristics of item. May raise
Error{notAFormWindow, invaliditemKey].)

LineUpBoxes: PROCEDURE [window: window.Handle,
items: LONG DESCRIPTOR FOR ARRAY OF I[temKey €~ NiL];

Calling this procedure will force the boxes of the specified items to line up vertically, as in
most ViewPoint property sheets. If no items are specified, and a fixed-pitch font is used,
the first item on every line will line up as shown in Figure 25.1.

tag1 boxed boolean item

tagOnlLine2 boxed choice item

boxed text item

verylongTagline4d boxed boolean item

Figure 25.1 LineUpBoxes

The specified items must be the first item on their line. The longest tag is measured; then
the boxed part of each item appears at the next available tab stop after the longest tag.
This also works for non-boxed items.

25.2.6.2 Tabs

TabType: Tyre = {fixed, vary};

TabStops: TYPE = RECORD [
variant: SELECT type: TabType FROM
fixed = > [interval: cARDINAL],

25-23

25

FormWindow

vary = > [list: LONG DESCRIPTOR FOR ARRAY OF CARDINAL]
ENDCASE |;

The client may specify tab stops to facilitate lining up items one directly below the other.
Tabs may be specified two ways: fixed and varying. Fixed tab stops are specified by a
single CARDINAL (interval) that indicates a tab stop at each interval pixel, such as if interval
= 100, there will be tab stops at 10, 20, 30, etc. Varying tab stops are specified by an ARRAY
OF CARDINAL, each element of the ARRAY indicating the number of pixels from the left edge of
the window. Typically, a client will call SetTabStops at the beginning of the LayoutProc,
then call AppendLine and Appendltem repeatedly, taking the nextTabStop default for
each item.

noTabStop: CARDINAL = CARDINAL.LAST-1;

Can be used with Appendltem and Insertitem to indicate that this item should ignore tab
stops completely.

defaultTabStops: TabStops = [fixed[interval: 100]};
SetTabStops: PROCEDURE [window: window.Handle, tabStops: TabStops];

SetTabStops sets the tab stops for window. Any items laid out before to this call will now
be moved to conform to these tab stops. May raise Error{ notAFormWindow].

nextTabStop: CARDINAL = .. . ;

Used for item layout, it is the default for the tabStop parameter for Appenditem and
Insertitem. Indicates that the next item should be placed at the next tab stop.

GetTabStops: PROCEDURE [window: window.Handle]
RETURNS {tabStops: TabStops];

GetTabStops returns the current tab stops for window. If no tab stops have been set for
window, tabStops will be fixed with an interval of 0. May raise Error[
notAFormWindow].

25.2.6.3 Fixed Layout

25-24

SetitemBox: PROCEDURE [
window: window.Handle,
item: ItemKey,
box: window.Box];

SetltemBox is used to set the exact position of an item for fixed layout. With fixed layout,
all items stay right where they are laid out unless the client calls SetltemBox again. With
fixed layout, text, decimal, integer, and window items will not grow or shrink. SetltemBox
is incompatible with flexible layout (such as. AppendLine, Appenditem, SetTabStops,
etc). Note: Either all layout must be flexible, or all layout must be fixed. Attempting to
mix them will raise Error[notAFormWindow, invaliditemKey].

ViewPoint Programmer’s Manual 25

25.2.7 Save and Restore
Restore: PROCEDURE [window: window.Handle};
Save: PROCEDURE [window: window.Handle];

Restore and Save deal with restoration of a form window to a previous state. Save causes
the current item values to be saved. Restore causes the previously saved values to be
copied back into the form. A Restore done before a Save is a no-op. Save done after Save
(but before a Restore) overwrites the first Save. These procedures support the Defaults
and Reset functions of property sheets. May raise Error[notAFormWindow].

25.2.8 Miscellaneous TYPEs

Bitmap: TYPE = RECORD][
height, width: cARDINAL,
bitsPerLine: CARDINAL,
bits: environment.BitAddress];

A Bitmap is the data structure that is passed to MakeBooleanitem and MakeChoiceltem
for items that are to be displayed as bitmaps. height is the height in pixels, of the bitmap.
width is the width in pixels, of the bitmap. bits is a pointer to the actual bits in the bitmap.
bitsPerLine is the number of bits in each line of bits. bitsPerLine is usually greater than or
equal to width, and is often a multiple of 16.

ChangeReason: TYpe = {user, client, restore};

A ChangeReason is passed to a GlobalChangeProc, BooleanChangeProc, and
ChoiceChangeProc. It indicates whether the change was caused by the user, or by the
client calling SetXXXItemValue, or by the client calling Restore,

25.2.9 Miscellaneous Item Operations

GetReadOnly: PROCEDURE [window: window.Handle, item: ItemKey]
RETURNS [readOnly: BOOLEAN];

GetReadOnly‘returns the current value of the readOnly BooLeaN for item. May raise
Error[notAFormWindow, invaliditemKey].

GetTag: PROCEDURE [
window: window.Handle,

item: ItemKey]

RETURNS [tag: Xstring.Reader];

GetTag returns the tag associated with item. May raise Error[notAFormWindow,
invaliditemKey].

SetSelection: PROCEDURE [
window: Window.Handle,
item: ItemKey,

25-25

25

FormWindow

firstChar: CARDINAL « 0,
lastChar: CARDINAL « CARDINAL.LAST];

SetSelection sets the current selection to be item. This is useful for helping the user
correct an incorrect user entry. item must be a text, decimal, or integer item. firstChar is
the first character of the portion of the string to be selected and highlighted. lastChar is the
last character of the portion of the string to be selected and highlighted. The defaults for
firstChar and lastChar causes the entire string to be selected. May raise
Error[notAFormWindow, invaliditemKey, wrongltemTypel.

SetlnputFocus: PROCEDURE [
window: window.Handle,
item: [temKey,
beforeChar: CARDINAL « CARDINAL.LAST];

SetinputFocus sets the current input focus to be in item. This is useful for highlighting an
incorrect user entry. item must be a text, decimal, or integer item. beforeChar is the
character before which the input focus should go. The default causes the input focus to be
at the end of the string. May raise Error[notAFormWindow, invaliditemKey,
wrongltemType].

SetReadOnly: PROCEDURE [
window: window.Handle,
item: ltemKey,
readOnly: BOOLEAN]
RETURNS [0ld: BOOLEAN];

SetReadOnly sets the current "readOnly-ness" of item and returns the old value. May
raise Error[notAFormWindow, invaliditemKey].

SetltemWidth: PROCEDURE [window: window.Handle, item: ItemKey,
width: cArDINAL];

This procedure sets the width of an item. Normally, items are as wide as they need to be to
display the text of the item (except text, decimal, and integer items whose width is
specified when the items are created). SetitemWidth overrides the normal width of the
item and thus could result in the text of the item being truncated. SetltemWidth should
therefore be used with great caution. In particular, programmers should keep in mind that
applications are intended to be multinational and strings in other languages are often
longer than their English equivalents. This layout procedure can only be used with a
flexible layout.

25.2.10 NEXT Key

25-26

When the user presses the NEXT key while the input focus is in a form window (more
exactly: in a text, decimal, or integer item in a form window), the form window does the
following:

1. Ifthe item with the input focus has a NextOutOfProc,it is called. This gives the client
- an opportunity to, for example, add another blank text item after this one.

ViewPoint Programmer’s Manual 25

2. Find the next text, decimal, integer, or window item. Note: If the client added another
text item after the one that had the input focus, that new item will be the one found by
form window.

3a. If the next item is a text, decimal, or integer item, the input focus and selection are
moved to that item.

3b. If the next item is a window item and the window item has a NextintoProc, it is called,
giving the window item an opportunity to take the input focus. For example, if the
window item contains a table of values, the NEXT key could be used to step from entry
to entry through the table, but the window item’s TiP.NotifyProc would have to do this.
Note: If a NextIntoProc is supplied for a window item, it MUST call Tie.SetInputFocus
so that all further NEXT key notifications will go to the window item. When the
window item no longer wants the NEXT key (such as the user has NEXTed out of the last
entry of the table), it must call Formwindow.TakeNEXTKey. TakeNEXTKey proceeds as in
steps 2 and 3.

3c. If the next item is a window item, but the window item does not have a NextintoProc,
the form window repeats steps 2 and 3.

NextintoProc: TYPE = PROCEDURE [
window: window.Handle,
item: ItemKey];

A NextintoProc can be provided by the client with window items. If provided, the
NextintoProc will be called when the user NEXTs into the item using the NEXTkey. (See the
discussion above.)

NextOutOfProc: TYPE = PROCEDURE |
window: window.Handle,
item: ItemKey];

A NextOutOfProc can be provided by the client with text, decimal, and integer items. If
provided, the NextOutOfProc is called when the user hits the NEXT key while the input
focus is in an item just before this one. See the discussion above.

SetNextOutOfProc: PROCEDURE [
window: window.Handle,
item: ItemKey,
nextOutOfProc: NextOutOfProc]
RETURNS [old: NextOutOfProc];

SetNextOutOfProc sets the NextOutOfProc for a text, decimal, or integer item. This is
useful when the NextOutOfProc for a text item creates another text item after itself. After
creating the new item, the client will probably want to set the NextOutOfProc for the old
item to NIL, so that next time the user NEXTs out of the old item, the selection and input
focus will simply move to the new item rather than creating yet another new item.

25-27

25

FormWindow

GetNextOutOfProc: PROCEDURE [-_—
window: window.Handle, ‘
item: ItemKey] '
RETURNS [NextOutOfProc];

GetNextOutOfProc returns the NextOutOfProc for item.

TakeNEXTKey: PROCEDURE [
window: window.Handle,
item: ItemKey];

TakeNEXTKey informs form window that the window item which was handling the NEXT
item is done with it and the input focus should be passed on to the next item that can take
it. item identifies the window item that is involved. May raise Error[notAFormWindow,
wrongltemType].

25.2.11 SIGNALs and ERRORs

25-28

Error: eRROR [code: ErrorCode];

ErrorCode: TYPE = MACHINE DEPENDENT {notAFormWindow(0), wrongltemType,
invalidChoiceNumber, noSuchLine, alreadyAFormWindow,
invaliditemKey, itemNotOnLine, duplicateltemKey,
incompatibleLayout, alreadylLaidOut, last(15)};

i

notAFormWindow The term notAFormWindow means the window passed in to) ‘
the procedure is not a form window. Any FormWindow
procedure, except Create and Isit, may raise this error.

wrongltemType The term wrongltemType means the item passed in to the
FormWindow procedure is the wrong type. For example,
GetChoiceltemValue must be passed a choice item.

invalidChoiceNumber The term invalidChoiceNumber means the choice number
supplied does not match any of the choice numbers in the
Choiceltems.

noSuchline The term noSuchLine means the line supplied to
Appenditem or Insertitem was not previously created.

alreadyAFormWindow The term alreadyAFormWindow means the window passed
in is already a form window. Raised if a FormWindow is
passed into Create.

invaliditemKey The term invaliditemKey means an ItemKey was used for
which there was no item created.

itemNotOnLine The term itemNotOnLine means an attempt was made to
insert an item on a line before an item that is not on that
line. See Insertltem.

duplicateltemKey The term duplicateltemKey means an item was created with
the key of another item. ItemKeys must be unique. %

ViewPoint Programmer’s Manual 25

incompatibleLayout The term incompatibleLayout means the client is
attempting to intermix fixed and flexible layout styles.

alreadylLaidOut The term alreadylaidOut means an attempt was made to
specify the layout for an item more than once.

LayoutError: siGNAL [code: LayoutErrorCode];

LayoutErrorCode: Type = {onTopOfAnotherltem, notEnufTabsDefined};

25.2.12 Multinational items
Flushness: TYPE = SimpleTextDisplay.Flushness;
StreakSuccession: TYPE = SimpleTextDisplay.StreakSuccession;

GetFlushness: PROCEDURE [
window: window.Handle,
item: ItemKey]

RETURNS [old: Flushness];

SetFlushness: PROCEDURE [
window: window.Handle,
item: ItemKey,
new:Flushness]

RETURNS [old:Flushness];

GetStreakSuccession: PROCEDURE |
window: window.Handle,
item: ltemKey]
RETURNS [old: StreakSuccession];

" SetStreakSuccession: PROCEDURE [
window: window.Handle,
item: ItemKey,
new:StreakSuccession]
RETURNS [old:StreakSuccession];

25.3 Usage/Examples

25.3.1 Calling ChangeProcs

There are three ways for a client to determine if an item has been changed. (1) The client
may supply a GlobalChangeProc that governs the entire window, (2) it may supply a
XXXChangeProc for certain items (such as choice and boolean), and (3) it may examine the
“changed” boolean associated with each item.

An item can change because the user changes the item, or because a client calls
SetXXXltemValue, or because a client calls RestoreAllltems.

25-29

25

FormWindow

The two kinds of change procs are called whenever the “changed” boolean goes from false
to true (whether that is caused by user actions or client actions). The following describes
the exact order of events for each source of change:

® User action

1. Change value of item and set "changed” boolean.
2. Call local change proc, if any.
3. Call global change proc, if any.

¢ Client call to SetXXXItemValue

1. Change value of item and set “changed” boolean.
2. Call local change proc, if any.
3. Call global change proc, if any.

¢ Client call to RestoreAllltems

1. Change value of item and set “changed” boolean.
2. Call global change proc, if any, with nullltemKey.

Note: If a change proc does a SetXXXltemValue, the client should take extreme care to
prevent infinite recursion.

25.3.2 Creating a Simple FormWindow

25-30

Myltems: TYPe = {boolean, choice, text};

shell: starwindowsheil.Create [...];

formWindow: starwindowshell.CreateBody [shell];

FormWindow.Create [window: formWindow, makeitems: Makeltems,
layoutProc: DolLayout];

Makeltems: Formwindow.MakeltemsProc = {
< < [window: Window.Handle, clientData: LONG POINTER]> >
tag: xstring.ReaderBody;

-- Make a boolean item

BEGIN

booleanLabel: Formwindow.BooleanltemLabel & [string
xstring.FromSTRING ["This is a boolean item™]]];

tag « xstring.FromSTRING ["Tag"];

FormWindow.MakeBooleanitem [

window: window, myKey: Myltems.boolean.orp,

tag: @tag, label: booleanLabel,

ViewPoint Programmer’s Manual 25

initBoolean: FALSE];
END;

-- Make a choice item
BEGIN
choice1: xstring.ReaderBody ¢« xstring. FromSTRING["Choice One"];
choice2: xstring.ReaderBody « xstring. FromSTRING["Choice 2"];
choices: ARRAY [0..2) OF FormWindow.Choiceltern «{

[string[0, choice1]],

[string[1, choice2]]11;
tag e xstring.FromSTRING ["Choice item"];
FormWindow.MakeChoiceltem [

window: window, myKey: Myltems.choice.Oro,

tag: @tag, values: DescriPTOR[choices],

initChoice: 0];
END;

-- Make a text item

tag « xstring.FromSTRING ["Text item™];
FormWindow.MakeTextltem(

window: window, myKey: Myltems.text.ORD,
tag: @tag, width: 30];

Y

DolLayout: Formwindow.LayoutProc = {
< < [window: window.Handle, clientData: LONG POINTER] > >

FormWindow.SetTabStops [window: window, tabStops: [fixed [100]]];
line: Formwindow.Line & Formwindow.AppendLine [window];

-- Put boolean and choice item on iline 1
FormWindow.Appendltem[window, Myitems.boolean.oRrp, line];
FormWindow.Appenditem{window, Myltems.choice.orp, line];

-- Put text item on line 2
line « Formwindow.AppendLine [window];
FormWindow.Appendltem[window, Myltems.text.orp, line];

};

25.3.3 Specifying Bitmaps in Choice [tems

This example creates a choice item with three possible values. Two of them are bitmaps,
one is a string. The initial value to be highlighted is #2, the string.

--The bits. (These are in a global frame or a file. They MUST be around for the duration of
the FormWindow since the bits are NOT copied.)

bm1: Formwindow.Bitmap « [height: 48, width: 64, bitsPerLine: 64, bits: [mybits1, 0, 0]];
bm2:Formwindow.Bitmap « [height: 48, width: 64, bitsPerLine: 64, bits: [mybits2, 0, 0]];
mybits1: LONG POINTER TO UNSPECIFIED « @bitmap1(0];

bitmap1: ARRAY [0..192) OF WORD « [--some bits--];

mybits2: LONG POINTER TO UNSPECIFIED « @bitmap2[0];

25-31

25

FormWindow

bitmap2: ARRAY [0..192) OF WORD & [--some bits--]; P
choiceOther: xstring.ReaderBody « xstring.FromSTRING["OTHER"];]
choices: ARRAY [0..3) OF FormWindow.Choiceltem « [‘

[bitmap[0, bm1]],

[bitmap[1, bm2]],

[string[2, choiceOther]]

|H

FormWindow.MakeChoiceltem(
window: window,
tag: @tag,
myKey: Myltems.choice.orp,
values: DeSCRIPTOR[choices],
changeProc: ChoiceChangeProc,
initChoice: 2];

25.3.4 The NEXT Key and Text [tems

This example creates a text item that inserts a new item after itself every time the user
presses the NEXT key.

--Make the text item
Makeltems: Formwindow.MakeltemsProc =
BEGIN

Formwindow.MakeTextitem|
window: window,
myKey: Myitems.text.oRrD,
width: 50,
tag: @taq,
initString: @initStringLong,
nextOutOfProc: TextNextOut];

END,

TextNextQut: Formwindow.NextOutOfProc =
BEGIN
tag: xstring.ReaderBody « xstring.FromSTRING(["Inserted Item:"];
initString: xstring.ReaderBody « xstring.FromSTRING(["I DARE you! Edit ME!"];

--create a new line on which to display the new item

nextLine: FormWindow.Line « Formwindow.LayoutinfoFromitem
[window, Myltems.testChoice2.0RrD].line;

line: Formwindow.Line « Formwindow.InsertLine[window, nextLine, 60];

--create the new item.

FormWindow.MakeTextltem] %.
window: window, |
myKey: cntr,

25-32

(

ViewPoint Programmer’s Manual 25

--cntr is a counter to keep track of the next available
-- key number since all ItemKeys are unique
width: 50,
tag: @tag,
initString: @initString ,
nextOutOfProc: TextNextOut];

--put the new item on the line
FormWindow.Appenditem|
window: window,
item: cntr,
line: line);
cntr «centr +1;

--set the last item’s NextOutOfProc to NIL
] < Formwindow.SetNextOutOfProc[window, item, NIL];
END;

25.3.5 Window Items (Including Interaction with the NEXT Key)

This example creates a window item that wishes to be given control when a user NEXTs
into it.

--create the item

Makeltems: Formwindow.MakeltemsProc¢ =
BEGIN
dims: window.Dims « [200,200];

myWindow ¢« FormWindow.MakeWindowltem|
window: window,
myKey: Myltems.window.ORD,
tag: @tag,
size: dims,
destroyProc: Nit,
nextintoProc: MyNexiinto];

--set the display and notify procs
[] « window.SetDisplayProc][myWindow, WindowltemDisplayProc];
[1 «~1ip.SetTableAndNotifyProc [window: myWindow,

table: Tipstar.NormaiTable[], notify: MyNotify];

END;
--MyNextinto is called when a user presses the NEXT key "into" the window item
MyNextinto: Formwindow.NextintoProc =

BEGIN

--set the input focus so the window item gets all of the notifications

Tip.SetinputFocus [w: myWindow, takesinput: TRUE];
END;

25-33

25 FormWindow

--FormWindow is notified so the window item no longer requires the NEXT key so
FormWindow can pass it along to the appropriate item

MyNotify: Tir.NotifyProc =
BEGIN
FOR input: TiIP.Results « results, input.next UNTILinput = NILDO
WITH Z: input SELECT FROM
atom = > SELECT z.a FROM
nextDown = >
FormWindow.TakeNEXTKey
[window: myWindow.GetParent, item: Myltems.window.orp];
ENDCASE;
ENDCASE;
ENDLOOP;
END;

25.3.6 Hints
This example creates a text item that has a popup menu associated with it:

Makeltems: Formwindow.MakeltemsProc =
BEGIN

FormWindow.MakeTextltem(
window: window,
myKey: Myltems.text.orD,
width: 50,
tag: @tag,
initString: @initString,
hintsProc: TextHints];

END;
--Every time TextHints is called, specify the strings to put into the popup menu. The

hintAction specifies that when a string is selected from the hints menu, it should replace
the string in the text item

TextHints: Formwindow.TextHintsProc =
BEGIN
hintsArray « --some computation--;
RETURN [hints: pDescriPTOR[hintsArray], freeHints: FreeHints, hintAction: replace];
END;

FreeHints: Formwindow.FreeTextHintsProc =
BEGIN
--free the strings and whatever other storage here
END;

25-34

e
i

ViewPoint Programmer’s Manual 25

25.3.7 Saving and Restoring Items

The following example saves the original values of the items in a form window and
restores them when the user presses RESET.

--When creating the FormWindow also call
FormWindow.Save[{window];

--user changes some values
--user decides he wants the original values back; presses Reset
FormWindow.Restore[window];

25-35

25

FormWindow

25.4Index of Interface Items

Item

Appendltem: PROCEDURE
AppendLine: PROCEDURE

Bitmap: TYPe
BooleanChangeProc: TYpE
BooleanltemLabel: Type
BooleanltemLabelType: TYPE
ChangeReason: TYPE
ChoiceChangeProc: TYpE
ChoiceHintsProc: TYPe
Choicelndex: TYPE

Choiceltem: TYPE

Choiceltems: TYpE
ChoiceltemType: TYPE
CommandProc: TYPE

Create: PROCEDURE
DefaultLayout: LayoutProc
defaultTabStops:TabStops
Destroy: PROCEDURE

Destroyitem: PROCEDURE
Destroyltems: PROCEDURE
DoneLookingAtTextltemValue: PROCEDURE
Error: ERROR

ErrorCode: TYPE

Flushness: Type
FreeChoiceHintsProc: Type
FreeTextHintsProc: TYpe
GetBooleanltemValue: PROCEDURE
GetChoiceltemValue: PROCEDURE
GetClientData: PROCEDURE
GetDecimalltemValue: PROCEDURE
GetFlushness: PROCEDURE
GetGlobalChangeProc: PROCEDURE
GetintegeritemValue: PROCEDURE
GetMultipleChoiceltemValue: PROCEDURE
GetNextAvailableKey:PROCEDURE
GetNextOutOfProc: PROCEDURE
GetReadOnly: PROCEDURE
GetStreakSuccession: PROCEDURE
GetTabStops: PROCEDURE

GetTag: PROCEDURE
GetTextitemValue: PROCEDURE
GetVisibility: PROCEDURE
GetWindowltemValue: PROCEDURE
GetZone: PROCEDURE
GlobalChangeProc: TYPE
HasAnyBeenChanged: PROCEDURE
HasBeenChanged: PROCEDURE

25-36

Page

21
21
25

[}

25
10
11
10
10
10
10
12

24

16
16
18
28
28
29
"
15
17
17

17
29

17
17
18
28
25
29
24
25
17
20
17

19
19

Item

Insertitem: PROCEDURE

insertLine: PROCEDURE

Islt: PROCEDURE

item:itemKey

ItemKey: TYPE

ItemType : TYPE

LayoutError: SIGNAL
LayoutErrorCode: Type
LayoutinfoFromitem: PROCEDURE
LayoutProc: TYPE

Line: TYPE
LineUpBoxes:PROCEDURE
LookAtTextitemValue: PROCEDURE
MakeBooleanitem: PROCEDURE
MakeChoiceltem: PROCEDURE
MakeCommandltem: PROCEDURE
MakeDecimalltem: PROCEDURE
Makelntegeritem: PROCEDURE
MakeltemsProc: TyPe
MakeMultipleChoiceltem: PROCEDURE
MakeTagOnlyltem: PROCEDURE
MakeTextltem: PROCEDURE
MakeWindowltem: PROCEDURE
MinDimsChangeProc:TyYpE
MultipleChoiceChangeProc: Tyee
NeededDims: PROCEDURE
NextintoProc: TYpe
NextOutOfProc: TYPE
nextTabStop: CARDINAL
noTabStop:CARDINAL
nullitemKey: itemKey
NumberOfitems: PROCEDURE
OutlineOrHighlight:Type
Repaint: PROCEDURE
RemoveltemFromLine :PROCEDURE
ResetAllChanged: PROCEDURE
ResetChanged: PROCEDURE
Restore: PROCEDURE

Save: PROCEDURE

SetAllChanged: PROCEDURE
SetBooleanitemValue: PROCEDURE
SetChanged: PROCEDURE
SetChoiceltemValue: PROCEDURE
SetDecimalltemValue: PROCEDURE
SetFlushness: PROCEDURE
SetGlobalChangeProcs:PROCEDURE
SetinputFocus: PROCEDURE

Page

ViewPoint Programmer’s Manual

25

Item

SetintegeriterValue: PROCEDURE
SetltemBoOx: PROCEDURE
SetltemWidth:PROCEDURE

SetMultipleChoiceltemValue: PROCEDURE

SetNextOutOfProc: PROCEDURE
SetReadOnly: PROCEDURE
SetSelection: PROCEDURE
SetStreakSuccession: PROCEDURE
SetTabStops: PROCEDURE
SetTextltemValue: PROCEDURE
SetVisibility: PROCEDURE
SetWindowltemSize: PROCEDURE
StreakSuccession: TYPE
TabStops: TYPE

TabType: TYPE

TakeNEXTKey: PROCEDURE
TextHintAction: Type
TextHintsProc: TYPE

Visibility: TYPE

Page

18
24
26
19
27
26
25
29
24
19
20
16
29
23
23
28
14
14
20

25-37

25 FormWindow

25-38

26

FormWindowMessageParse

26.1 Overview

The FormWindowMessageParse interface provides procedures that parse strings to
produce various FormWindow TyYPes. These strings are usually acquired from a message
file. Currently, only Formwindow.Choiceltems are supported.

26.2 Interface [tems

ParseChoiceltemMessage: PROCEDURE [
choiceltemMaessage: xstring.Reader,
zZone: UNCOUNTED ZONE]

RETURNS [choiceltems :Formwindow.Choiceltems];

Parses a choiceltemMessage (presumably retrieved using XMessage.Get) with the
following syntax: “choiceString:choiceNumber@choiceString:choiceNumber@|”, where
choiceString is the string to be displayed for that choice, choiceNumber is the fixed
number associated with that choice, @ is the separator between choices, and | indicates
the point at which to wrap the choices. The choices will be displayed in the order they
appear in the message. choiceltems is a descriptor for an array that must be freed using
FreeChoiceltems.

FreeChoiceltems: PROCEDURE [
choiceltems:Formwindow.Choiceltems,
zone: UNCOUNTED ZONE];

Frees the array and everything it points to (strings).

26.3 Usage/Examples

The following example is taken from the folder implementation. The message acquired by
XMessage.Get looks like “Sorted:0@Unsorted: 1",

choices: Formwindow.Choiceltems « FormWindowMessageParse.ParseChoiceltemMessage [
XMessage.Get[mh, FoiderOps.kpsSorted], z];

26-1

26

FormWindowMessageParse

26-2

‘ FormWindow.MakeChoiceltem |

window: window,

myKey: MyltemType.sorted.ORD,
values: choices,

initChoice: sorted.ORD,
changeProc: SortedChanged |;

FormWindowMessageParse.FreeChoiceltems|[choices, z];

ViewPoint Programmer’s Manual

26

26.4 Index of Interface Items
Item

FreeChoiceltems: PROCEDURE
ParseChoiceltemMessage: PROCEDURE

Page

26-3

26

FormWindowMessageParse

26-4

27

IdleControl

27.1 Overview

The ldleControl interface provides access to ViewPoint’s basic controlling module.

ViewPoint’s control loop is organized as a series of two out-calls to a greeter procedure and
a desktop procedure. Each procedure is implemented as a procedure variable, initialized to
an appropriate no-op.

Interface procedures allow the client to plug in its own greeter and desktop procedures. A
plugged-in procedure will then be called the next time that the control routine goes
around the loop.

27.2 Interface Items

IdleControl keeps track of one GreeterProc and a list of DesktopProcs. A client may plug
in a number of DesktopProcs and specify the one to be called by the value of the Atom.ATOM
returned by the GreeterProc.

27.2.1 DesktopPlug-in

DesktopProc: TYPE = PROCEDURE;

SetDesktopProc: PROCEDURE [atom: Atom.aTOM, desktop: DesktopProc] RETURNS [old:
DesktopProc];

SetDesktopProc allows the client to specify the desktop procedure to be called in the
control loop. desktop is the procedure to be called. atom is the Atom.ATOM associated with

desktop. old is the previously plugged-in desktop procedure.

GetDesktopProc: PROCEDURE [atom: Atom. ATOM] RETURNS [DesktopProc];

27.2.2 Greeter Plug-in

GreeterProc: TYPE = PROCEDURE RETURNS [Atom. ATOM];

[AV]
-1
—

27

IdleControl

SetGreeterProc: PROCEDURE [new: GreeterProc] RETURNS [old: GreeterProc];

SetGreeterProc allows the client to specify the greeter procedure to be called in the control
loop. new is the procedure to be called. old is the previously plugged-in greeter procedure.

GetGreeterProc: PROCEDURE RETURNS [GreeterProc];
DoTheGreeterProc: GreeterProc;

DoTheGreeterProc calls the currently plugged-in GreeterProc.

27.2.3 Idle Loop

The control loop is the logical equivalent of :

Do
atom: Atom.ATOM « pluggedinGreeterProc [];
pluggedinDesktopProc « GetDesktopProcWithAtom[atom];
pluggedinDesktopProc[];
ENDLOOP;

Idle: PROCEDURE

Idle is called or FORKed to enter the idle state.
Only clients who start the world should call Idle.

27.3 Usage/Examples

27-2

In the following example, the GreeterProc (ldleProc) displays a bouncing square on the
screen. The GreeterProc is set in the mainline code of the module The DesktopProc and
GreeterProc can be initialized in different modules as long as they agree on the Atom.ATOM
(in this case StarDesktop).

starDesktopAtom: Atom.ATOM « Atom.MakeAtom["StarDesktop”L];

IdieProc: idleControl.GreeterProc = BEGIN--display a bouncing square until the user
presses any key

RETURN [starDesktopAtom];

END;

StarDesktop: PROCEDURE = BEGIN
--do Star logon

--initialize and display Star desktop
--wait until Logoff

END;

Init: PROCEDURE =
BEGIN
[1 «1diecontrol.SetGreeterProc[idieProc];
[1 «idleControl.SetDesktopProc [starDesktopAtom, StarDesktop];
END; -- of Init

ViewPoint Programmer’s Manual

27

27.4 Index of Interface Items
Item

DesktopProc: TYPE
DoTheGreeterProc:GreeterProc
DoTheGreeterProc: PROCEDURE
GetDesktopProc
GetGreeterProc:PROCEDURE
GreeterProc: TYPE

Idle: PROCEDURE
SetDesktopProc: PROCEDURE
SetGreeterProc:PROCEDURE

o]

v
0
1=
[«

N =2 N=2N=a2NN-=

[\
~1
o

27

IdieControl

27-4

28

KeyboardKey

28.1 Overview

KeyboardKey is a keyboard registration facility. It provides clients with a means of
registering "system-wide" keyboards (available all the time, like English, French,
European), a special keyboard (like Equations), and/or client-specific keyboards (such as
these available only when the client has the input focus). The labels from these registered
keyboards are displayed in the softkeys when the user holds down the KEYBOARD key.

The client adds system keyboards by calling AddToSystemKeyboards. The client registers
a special keyboard by calling RegisterClientKeyboards with the SPECIALKeyboard
parameter. The client registers client-specific = keyboards by calling
RegisterClientKeyboards with the keyboards parameter.

28.2 Interface Items
28.2.1 System Keyboards

A system keyboard is defined as one that is available to all clients who wish to recognize
some general set of keyboards. (The default case is for a client to recognize system
keyboards.) Examples of system keyboards are the various language keyboards--English,
French, European, etc., and the general-purpose keyboards - Math, Office, Logic, and
Dvorak.

AddToSystemKeyboards: PROCEDURE [keyboard: Blackkeys.Keyboard];

The AddToSystemKeyboards procedure registers a client's keyboard interpretation with
the keyboard key manager. The client is expected to provide a pointer to a keyboard
record. This keyboard will be made available whenever system keyboards are available.

May raise ErrorfalreadylnSystemKeyboards].

RemoveFromSystemKeyboards: PROCEDURE [keyboard: Blackkeys.Keyboard];

28-1

28

KeyboardKey

28-2

Removes a Keyboard from the list of system keyboards.

May raise Error[notinSystemKeyboards].

28.2.2 Client Keyboards

A client keyboard is defined as one that is specific to the application and would have no
meaning in a different context. Examples are the special keyboards (such as equations and
fields) and Spreadsheet and 3270 keyboards.

A client registers its keyboards with the keyboard manager when it gets control (gets the
inputFocus). RegisterClientKeyboards tells the keyboard manager what keyboards should
be made available to the user when the KEYBOARD key is held down. When the client loses
control (releases the input Focus) it should call RemoveClientKeyboards to release its
keyboards. Only 0-1 set of client keyboards is registered at any given time. If no client is
registered, then all system keyboards are available to the user.

RegisterClientKeyboards: PROCEDURE [
wantSystemKeyboards: BOOLEAN « TRUE,
SPECIALKeyboard: Blackkeys.Keyboard « NiL.
keyboards: LONG DESCRIPTOR FOR ARRAY OF BlackKeys.KeyboardObject « NiLJ;

RegisterClientKeyboards establishes a list of client keyboards with the keyboard
manager. This should occur at the same time the client takes the input focus.
wantSystemKeyboards specifies whether the client wishes to recognize system keyboards.

SPECIALKeyboard denotes the keyboard to be invoked by pressing the key combination of

KEYBOARD key and the softkey labeled “Special”. The keyboards array contains any other
client keyboards. A typical case is for a client to provide only a Special keyboard and

- wantSystemKeyboards = TRUE. If wantSystemKeyboards = FALSE the client should set one

of his keyboards using SetKeyboard (see section 2.3)
RemovedlientKeyboards: PROCEDURE ;

RemoveClientKeyboards removes the clients keyboards from the keyboard managers list.
This list of available keyboards will revert to system keyboards only. The “Set” keyboard
will be the last system keyboard that was “Set” (either by the user or a call to
SetKeyboard). It is the client’s responsibility to make sure his keyboards are removed
when relinquishing control. [t would be appropriate for this to be done as part of a
Tip.LosingFocusProc.

28.2.3 Setting and Enumerating Keyboards

Note: Most clients will probably not have reason to use the information in this section.
SetKeyboard: PROCEDURE [keyboard: Blackkeys.Keyboard];

SetKeyboard sets the current keyboard to keyboard. This keyboard will remain the
current keyboard until the user presses a KEYBOARD key/SoftKeyOption/Set combination,

which chooses a new keyboard, or until another SetKeyboard command is encountered.

SetKeyboard is provided for those clients who have reason to set a keyboard
programmatically. The usual case is for the user to cause a keyboard to be set by pressing

ViewPoint Programmer’s Manual 28

the key combination KEYBOARD key/SomeSoftKeyDesignatingAKeyboard. However, for a
client calling RegisterClientKeyboards with wantSystemKeyboards = FALSE it is
appropriate to call SetKeyboard{@oneOfClientKeyboards] . (Otherwise there would be no
typing possible until the user made a keyboard choice through the KEYBOARD key/SoftKey
routine.) The other primary reason for calling SetKeyboard would be to set an initial
keyboard at boot time.

EnumerateKeyboards: PROCEDURE [class: KeyboardClass, enumProc: EnumerateProc];

EnumerateProc: TYre = PROCEDURE[keyboard: BlackKeys.Keyboard, class: KeyboardClass]
RETURNS[StOp: BOOLEAN « FALSE];

EnumerateKeyboards calls the specified EnumerateProc until the Stop boolean becomes
TRUE or until there are no more keyboards to enumerate. When calling
EnumerateKeyboards, the client may specify which keyboards he wants enumerated:
system, client, special, or all of the registered keyboards. When the keyboard manager
calls the client's EnumerateProc, the keyboard returned will be qualified by class: client,
system, or the special keyboard..

KeyboardClass: TYpe = {system, client, special, all, none};

system = A system keyboard is defined as one that is available to all clients who wish to
recognize some general set of keyboards. Examples of system keyboards are
the various language keyboards - Fnglish, French, European, etc.,and the
general-purpose keyboards--Math, Office, Logic, and Dvorak.

client = A client keyboard is defined as one that is specific to the application. These
are the keyboards registered in the keyboards array by the client calling
RegisterClientKeyboards.

special = A client-specific keyboard is invoked by pressing the combination of
KEYBOARD key and the softkey labeled "Special”. Specifically, this is the
keyboard registered by the client as SPECIALKeyboard when calling
RegisterClientKeyboards.

all = All keyboards: system, client, and special.

28.2.4 Keyboard Window Plug-in /

This section pertains only to those clients interested in implementing a Keyboard Window
facility.

ShoWKeyboardProc: TYPE = PROCEDURE;
SetShowKeyboardProc: PROCEDURE [ShowKeyboardProc);
GetShowKeyboardProc: PROCEDURE RETURNS [ShowKeyboardProc);

SetShowKeyboardProc and GetShowKeyboardProc provide an interface between a
keyboard window application and KeyboardKey’s “Show” key. The clients

28-3

28

KeyboardKey

ShowKeyboardProc will be called whenever the user presses the key combination -~
KEYBOARD key/Show. This gives the client the opportunity to display a keyboard window. o

28.2.5 Errors

Error: ERROR[cOde: ErrorCode];

ErrorCode: TYPE = {alreadyinSystemKeyboards, notinSystemKeyboards,
insufficientSpace):

28.3 Usage/Examples

28.3.1 AddToSystemKeyboards Example

In this application a keyboard has been defined that will be useful across all applications.
Registering it as a system keyboard will make it available globally.

usefulKeyboard: Blackkeys.KeyboardObject «
[charTranslator: {proc: MyCharTrans, data: NiL],
pictureProc: MapPicture,
label « xstring.FromString(”Useful Keyboard “L]};

Keyboardkey.AddToSystemKeyboards{@myUsefulKeyboard];

The keyboard manager will add the keyboard usefulKeyboard to the list of registered ::T%
system keyboards and a key labeled Useful Keyboard to its labels for the KeyboardKey
soft keys. When the user pushes the soft key labeled Useful Keyboard, MyCharTrans will
be registered as the Tip.CharTranslator, and if the keyboard window is open, MapPicture
will be called so that the picture and geometry table can be mapped.

28.3.2 Special Keyboard Example

28-4

This example contains a keyboard that is specific to a particular application and will be
available to the user through the “Special” key. The user should also be able to use the
system keyboards in this application. Notice that it is appropriate to default the label
when specifying a Special keyboard, because this keyboard will be presented to the user as
the current Special keyboard and labeled as such.

AddMyClientKeyboards: PROCEDURE =
BEGIN
specialKeyboard: Blackkeys.KeyboardObject;
fileName: xstring.ReaderBody « xstring.FromSTRING(["JSpecial. TIP L];
table: Tip.Table « Tip.CreateTable(@fileName];
(1 «Tip.SetNotifyProcForTable[table, NotifyProc];
specialKeyboard «[table: table);
Keyboardkey.RegisterClientKeyboards|
wantSystemKeyboards:TRUE, :
SPECIALKeyboard: @specialKeyboard]; o~
END; -- AddMyClientKeyboards !

ViewPoint Programmer’s Manual 28

LosingFocusProc: TiP.LosingFocusProc =
< <[w: Window.Handle, data: LONG POINTER]> >
BEGIN
KeyboardKey.RemovecClientKeyboardsi);
--release any data structures | don’t want to keep around
END; -- LosingFocusProc

28.3.3 Registering Multiple Client Keyboards Example

This example deals with a client who has a special keyboard and several client-specific
keyboards and does not plan to allow the user to use any system keyboards while in this
application.

keyboardRecords: ARRAY [0..3) OF BlackKeys.KeyboardObject; -- records filled in
specialKeyboard: Blackkeys.Keyboard; -- elsewhere

AddClientKeyboards: PROCEDURE =
BEGIN
KeyboardKey.RegisterClientKeyboards[
wantSystemKeyboards: FALSE,
SPECIALKeyboard: specialKeyboard,
keyboards: DESCRIPTOR(keyboardRecords]);
KeyboardKey.SetKeyboard(@keyboardRecords{0]]
END; -- AddClientKeyboards

LosingFocusProc: Tip.LosingFocusProc =
< <[w: window.Handle, data: LONG POINTER] > >
BEGIN
KeyboardKey.RemoveClientKeyboardsi);
--release any data structures | don’t want to keep around
END; -- LosingFocusPro --

28

KeyboardKey

28.4 Index of Interface Items

28-6

Item

AddToSystemKeyboards: PROCEDURE
EnumerateKeyboards: PROCEDURE
EnumerateProc: TYPE

Error: ERROR

ErrorCode: TYPE
GetShowKeyboardProc: PROCEDURE
KeyboardClass: TYPE
RegisterClientKeyboards: PROCEDURE
RemovecClientKeyboards: PROCEDURE
RemoveFromSystemKeyboards: PROCEDURE
SetKeyboard: PROCEDURE
SetShowKeyboardProc: PROCEDURE
ShowKeyboardProc: Type

1

[
g

©

WWN=SNNWWLEREWW=

29

KeyboardWindow

29.1 Overview

The BlackKeys and KeyboardKey interfaces provide the framework for including a
keyboard window in ViewPoint. The window implementation is a plug-in (see
KeyboardKey.SetShowKeyboardProc). This KeyboardWindow interface and its
implementation provide one such keyboard window.

29.2 Interface Items
29.2.1 Default Values
defaultPicture: BlackKeys.Picture;
defaultGeometry: slackkeys.GeometryTable;

The default values provided by this keyboard window implementation correspond to the
standard English keyboard.

DefaultPictureProc: BlackKeys.PictureProc;

DefaultPictureProc returns defaultPicture and defaultGeometry to the caller when
action =acquire. Clients may specify pictureProc: Keyboardwindow.DefaultPictureProc in
their Blackkeys.KeyboardQbject if they wish to display the default picture in the keyboard
window while their keyboard is in effect.

picture = BlackKeys.nullPicture or BlackKeys.PictureProc = NiL will result in the keyboard
window displaying only gray in the viewing region.

29-1

29

KeyboardWindow

29.2.2 Geometry Table Structure

GeometryTableEntry: TYPE = RECORD[
box: Box, key: KeyStations, shift: ShiftState];

Box: TYPE = RECORD(place: window.Place, width: INTEGER, height: INTEGER];

Area within the bitmap that will generate a particular keystroke when selected with the
mouse.

KeyStations: TYPE = MACHINE DEPENDENT {
k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14, k15, k16, k17,
k18, k19, k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k30, k31, k32,
k33, k34, k35, k36, k37, k38, k39, k40, k41, k42, ka3, ka4, kas, kae, ka7,
ka8, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, last(96) };

The following is a translation to Levelivkeys.KeyName:

k1l = > One:
k2 =>Q;

k3 =>A;

k4 = > Two;
k5 => 7,

k6 => W;
k7=>8;

k8 = > Three;
k9 => X;

k10 => E;
kil => D;
k12 = > Four;
k13 =>C;
k14 => R;
ki5 => F;
k16 = > Five;
k17T =>V;
k18 =>T;
k19 => G;
k20 = > Six;
k21 => B;
k22 => Y,
k23 => H;
k24 = > Seven;
k25 => N;
k26 => U,
k27 = > J;
k28 = > Eight;
k29 = > M;
k30 =>1;
k31 => K;
k32 = > Nine;
k33 = > Comma;
k34 = > O;
k35 => L;

29-2

ViewPoint Programmmer’s Manual 29

k36 = > Zero;

k37 = > Period;
k38 => P;

k39 = > SemiColon;
k40 = > Minus;

k41 => Slash;

k42 = > LeftBracket;
k43 = > CloseQuote;
k44 = > Equal,

k45 = > RightBracket;
k46 = > OpenQuote;
k47 = > Key4T,

k48 = > Tab:;

al = > ParaTab;

a2 = > BS;

a3 = > Lock;

a4 = > NewPara;

a5 = > LeftShift;

a6 = > RightShift;
a7 = > Space;

a8 = > AS8;

a9 => A9;

al0 => Al0;

all => All;

al2 => Al12;

ShiftState: Type = {None, One, Two, Both};

Simulates the position of the shift keys associated with the keystroke.

29.2,3 Bitmap Structure

BlackKeys.Picture.bitmap is a LONG POINTER. It is further defined within this keyboard
window implementation as follows: bitmap points to the bits of the keyboard bitmap
where dims = [505, 145] and bitmapBitWidth = 32*16.

29.2.4 Getting to the Keyboard Window Handle
GetDisplayWindow: PROCEDURE RETURNS [window.Handle];

Returns handle to the body window of the keyboard window.
29.3 Usage/Examples

29.3.1 Using DefaultPictureProc

DefineKeyboard: PROCEDURE =
BEGIN
nameString: xstring.ReaderBody « xstring.FromSTRING["Zulu"L]

29-3

29 KeyboardWindow

zuluKeyboardRecord: BlackKeys.KeyboardObject «[A~
table: NiL, |
charTranslator: [MakeChar, NiL],
pictureProc: KeyboardWindow.DefaultPictureProc,
label: xstring.CopyToONewReaderBody[@nameString, Heap.systemZone]];
--save the pointer to the record somewhere for future use --
END; --DefineKeyboard --

29.3.2 Using defaultGeometry

DefineKeyboard: PROCEDURE =
BEGIN
namesString: xstring.ReaderBody « xString.FromSTRING["Swahili“L]

swahiliKeyboardRecord: Blackkeys.KeyboardObject « [
table: NiL,
charTranslator: [MakeChar, NiL],
pictureProc: MapBitmapFile,
label: xstring.CopyToNewReaderBody[@nameString, Heap.systemZone]);
--save the pointer to the record somewhere for future use --
END; --DefineKeyboard --

MapBitmapFile: BlackKeys.PictureProc =

BEGIN -
pixPtr: BlackKeys.Picture.bitmap « Blackkeys.nullPicture; i
SELECT action FROM
acquire =>
{--Do the right thing to map the bitmap. Uses the default Geometry table --.
RETURN[piXPtr, Keyboardwindow.defaultGeometry] };
release = > (--Do the right thing to unmap the bitmap
RETURN[BiackKeys.nullPicture, NIL] }
END; -- MapBitmapFile
29.3.3 Sample Geometry Table Entries
box: [place: [x: XXX, y: XXX], w idth: XXX, height: XXX], key: XXX, shift: XXX
(19, 11], 27, 27], k48, None -- ‘tab’ key, dims: whole key picture
[[51,11],27, 14}, k1, One -- shifted ‘1’ key, dims: upper half key
[[51, 24], 27, 14], k1, None -- ‘1’ key, dims: lower half key
([83, 11], 27, 14], k4, One -- shifted ‘2" key, dims: upper half key
[[83, 24], 27, 14}, k4, None -- ‘2’ key, dims: lower half key

29-4

ViewPoint Programmer’s Manual 29

29.4 Index of Interface Items

Item Page
bitmap structure 3
Box: TYPE 2
defaultGeometry: BlackKeys.GeometryTable 1
defaultPicture: BlackKeys.Picture 1
DefaultPictureProc: BlackKeys.PictureProc 1
GeometryTableEntry: TYPE 2
GetDisplayWindow: PROCEDURE 3
KeyStations: TYPE 2
ShiftState: Tyee 3

29-5

29 KeyboardWindow

29-6

30

Levell VKeys

30.1 Overview

LeveliVKeys is documented in the Pilo¢ Programmer’s Manual: 610E00160: however, the
names of several keys were changed for ViewPoint. The key names now more closely
match the names on the physical keys.

30.2 Interface Items
oPEN ks: KeyboardWindow.KeyStations;
DownUp: TYPE = ks.DownUp;
Bit: TYPE = ks.Bit;
KeyBits: TYPE = PACKED ARRAY KeyName oF DownUp;

KeyName: TYPE = MACHINE DEPENDENT {
notAKey(0),
Keyset1(ks.KS1), Keyset2(ks.KS2), Keyset3(ks.KS3), Keysetd(ks.KS4),
Keyset5(ks.KS5),
Mouseleft(ks.M1), MouseRight(ks.M3), MouseMiddle{ks.M2),
Five(ks.k16), Four(ks.k12), Six(ks.k20), E(ks.k10), Seven(ks.k24),
D(ks.k11), U(ks.k26), V(ks.k17), Zero(ks.k36), K(ks.k31), Minus(ks.k40),
P(ks.k38), Slash(ks.k41), Font(ks.R8), Same(ks.L8), BS(ks.A2),
Three(ks.k8), Two(ks.k4), W(ks.k6), Q(ks.k2), S(ks.k7), A(ks.k3),
Nine(ks.k32), I(ks.k30), X(ks.k9), O(ks.k34), L(ks.k35), Comma(ks.k33),
CloseQuote(ks.k43), RightBracket(ks.k45), Open(ks.L11), Keyboard(ks.R11),
One(ks.k1), Tab(ks.k48), ParaTab(ks.A1), F(ks.k15), Props(ks.L12),
Clks.k13), J(ks.k27), B(ks.k21), Z(ks.k5), LeftShift(ks.A5),
Period(ks.k37), SemiColon(ks.k39), NewPara({ks.A4),
OpenQuote(ks.k46), Delete(ks.L3), Next(ks.R1), R(ks.k14), T(ks.k18),
G(ks.k19), Y(ks.k22), H(ks.k23), Eight(ks.k28}, N(ks.k25), M(ks.k29),
Lock(ks.A3), Space(ks.A7), LeftBracket(ks.k42), Equal(ks.k44),

30-1

30

Levell VKeys

30-2

RightShift(ks.A6), Stop(ks.R12), Move(ks.L9), Undo(ks.R6), Margins(ks.R5),
R9(ks.R9), L10(ks.L10), L7(ks.L7), L4(ks.L4), L1(ks.L1), A9(ks.A9),
R10(ks.R10), A8(ks.A8), Copy(ks.L6), Find(ks.L5), Again(ks.L2),

Help(ks.R2), Expand(ks.R7), R4(ks.R4), D2(ks.D2), D1(ks.D1),

Center(ks.T2), T1(ks.T1), Bold(k"s.T3), Italics(ks.T4), Underline(ks.T5),
Superscript(ks.T6), Subscript(ks.T7), Smaller(ks.T8), T10(ks.T10),

R3(ks.R3), Keyd7(ks.k47), A10(ks.A10), Defaults(ks.T9), A11(ks.A11),
A12(ks.A12)};

ViewPoint Programmer’s Manual 30

30.3 Index of Interface [tems

Item Page

DownUp: Type 1

Bit: Type 1

KeyBits: Type: 1

KeyName: Type 1

OPEN ks:KeyboardWindow.KeyStations 1
-’

30-3

30 LevellVKeys

30-4

31

MenuData

31.1 Overview

The MenuData interface defines the data abstraction that is a titled list of named
commands. It defines the object formats for a menu item and a menu as well as how to
create and manipulate these objects. It is not concerned with how a menu might be
displayed to a user.

31.2 Interface Items
31.2.1 Menu and Item Creation

Items and menus are the two primary data objects in the MenuData interface. [tems are a
name-procedure pair that constitute a command. Menus are an abstraction representing a
collection of items to be presented to the user. These objects can be built and deallocated
through this interface.

Createltem: PROCEDURE [
zone: UNCOUNTED ZONE,
name:xstring.Reader,
proc: MenuProc,
itemData: LONG UNSPECIFIED « 0]
RETURNS [ItemHandle];

ItemHandle: TYPE = LONG POINTER TO Item;
tem: TYPE = Privateltem;

MenuProc: TYPE = PROCEDURE [
window: window.Handle, menu: MenuHandle, itemData: LONG UNSPECIFIED];

Createltem builds an item record in the indicated zone to be added to a menu. The name
parameter is copied so it can be in the client’s local frame. The proc parameter is the
command procedure that will be associated with a command name in an item. Client data

31-1

31

MenuData

31-2

that must be available when the MenuProc is called can be passed via the itemData
parameter.

An Item is the representation for a {command-name, command-procedure} pair. The
“nameWidth” field, if non-zero, is the display width of the name. It may be set by a module
that computes the width using SetltemNameWidth(see §31.2.3). Except for that, an item
is read-only.

Destroyltem: PROCEDURE [zOne: UNCOUNTED ZONE, item: ItemHandle];

This procedure destroys the item, recovering the space. zone must be the zone in which the
item was created, and item is the itemHandle returned by Createltem. The item should
not be in use when this procedure is called.

CreateMenu: PROCEDURE [
zone: UNCOUNTED ZONE,
title: ItemHandle,
array: ArrayHandle,
copyltemsintoMenusZone: BOOLEAN «—FALSE |
RETURNS [MenuHandle];

ArrayHandle: TYPE = LONG DESCRIPTOR FOR ARRAY OF ItemHandle;
MenuHandle: TYPE = LONG POINTER TO MenuObject;
MenuObject: TYPe = PrivateMenu;

CreateMenu builds a menu record in zone. title is an item containing the menu’s title and
array contains the collection of items that make up the menu. The items pointed to by the
array and the title parameters will only be copied if copyltemsintoMenusZone is TRUE.
Since item records are "read-only,” an item can be in several menus without copying. The
procedure associated with the title item is currently unused and should be NiL for future
compatibility.

DestroyMenu: PROCEDURE [zOne: UNCOUNTED ZONE, menu: MenuHandle]

DestroyMenu destroys the menu, recovering the space. zone must be the zone in which
the menu was created; menu is the MenuHandle returned by CreateMenu. It should only
be called when the menu is not in use. There is no explicit way to test if a menu is in use.

Items are not typically destroyed, but their space may be recovered by calling zone.FreE
[itemHandle]. The zone below is exported for clients that do not wish to manage their own.

PublicZone: PROCEDURE RETURNS [UNCOUNTED ZONE];

31.2.2 Menu Manipulation

Addltem: PROCEDURE [menu: MenuHandle, new: ItemHandle] =
INLINE {menu.swapltemProc [menu: menu, old: NiL, new: newl};

-~

I

ViewPoint Programmer’s Manual 3 1

Subtractitem: PROCEDURE [
menu: MenuHandle, old: ItemHandle] =
INLINE {menu.swapltemProc [menu: menu, old: old, new: niL]};

Swapltem: PROCEDURE [
menu: MenuHandle, new, old: ItemHandle] =
INLINE {menu.swapltemProc [menu: menu, old: old, new: new]};

These procedures alter a menu in the obvious ways. They call through the swapltemProc
field in the menu object. This allows a module that posts a menu to “plant” a procedure in
the swapltemProc field and thus get control on add/subtract/swap requests. With control,
data can be monitored appropriately.

SetSwapltemProc: PROCEDURE [menu: MenuHandle, new: SwapitemProc]
RETURNS [old: SwapltemProc];

SwapltemProc: TYPE = PROCEDURE |
menu: MenuHandle, old, new: itemHandle];

The SwapltemProc is the work horse for manipulating menus, as evidenced by the INLINE
calls above. It can be changed by calling SetSwapltemProc.

UnpostedSwapltemProc: SwapltemProc;

This procedure is the standard procedure that is placed in a menu’s swapltemProc when
the menu is created. It is in the MenuData implementation, and it can handle altering a
menu when it is not posted. As discussed above, if a routine that posts a menu wants to get
control on attempted menu alterations, it should alter the swapltemProc in the menu.
When it has finished posting the menu, it should store MenubData.UnpostedSwapltemProc
as the swapltemProc. Alternatively, it can call Menubata.UnpostedSwapltemProc from
within its own swapltemProc to perform the actual alteration of the menu object.

31.2.3 Accessing Data

The following provide procedural access to the internal data structures for an item or
menu.

itemData: PROCEDURE [item: [temHandle] RETURNS [LONG UNSPECIFIED];

ItemName: PROCEDURE [item: ItemHandle]
RETURNS [name: xstring.ReaderBody];

SetltemNameWidth: PROCEDURE [item: ItemHandle, width: CARDINAL] =
INLINE {item.nameWidth « width};

ItemNameWidth: pPROCEDURE [item: ItemHandle] RETURNS [CARDINAL] =
INLINE (RETURN [item.nameWidth]};

ItemProc: PROCEDURE [item: ItemHandle] RETURNS [proc: MenuProc] =
INLINE {RETURN [item.procl};

31-3

3 1 MenuData

MenuArray: PROCEDURE [menu: MenuHandle] RETURNS [array: ArrayHandle] =
INLINE {RETURN [menu.arrayl};

MenuTitle: PROCEDURE [menu: MenuHandle] ReTURNS [title: ItemHandle] =
INLINE {RETURN [menu.title]};

Note: MenuObjects and Items are private records that are of use to menu posters, but not
of interest to general clients. The private records shown below are purely informative in
nature.

Privateltem: TYPE = PRIVATE RECORD [

proc: MenuProc,

nameWidth: NATURAL,

nameBytes: NATURAL,

body: seLeCT haslitemData: BOOLEAN FROM
FALSE = > [name XString.ByteSequence],
TRUE = > [itemData: LONG UNSPECIFIED, name: Xstring.ByteSequence]
ENDCASE];

PrivateMenu: TYPE = PRIVATE RECORD [
Zzone: UNCOUNTED ZONE,
swapltemProc: SwapltemProc,
title: ItemHandle «nitL,
array: ArrayHandle &N,
arrayAllocateditemHandles: NATURAL «0,
itemsinMenusZone: BOOLEAN « FALSE];

31.3 Usage/Examples

A menu is displayed to the user by a mechanism outside the scope of this interface. A
given menu instance cannot ordinarily be displayed more than once at the same time.

When the user asks that a command be executed, the command item’s procedure is called.
The argument is a pointer that is dependent on the display mechanism; it might be the
starWindowshell. Handle that the menu is posted in.

31.3.1 Example 1.
sysZ: UNCOUNTED ZONE = Heap.SystemZone;

Init: prROC = {
sampleTool: xstring.ReaderBody « xString. FromSTRING[" Sample Tool"L];
Attention.AddMenultem [
MenuData.Createltem [
zone: sysZ,:
name: @sampleTool,
proc: MenuProc]] };

MenuProc: MenuData.MenuProc = {
another: xstring.ReaderBody « xstring. FromSTRING{"Another"L];
repaint: xstring.ReaderBody « xstring. FromSTRING["Repaint™L];
post: xstring.ReaderBody « xstring. FromSTRING["Post A Message"L];

31-4

ViewPoint Programmer’s Manual 3 1

sampleTool: xstring.ReaderBody « xstring.FromSTRING["Sample Tool"L];

-- Create the StarWindowShell. --
shell: starwindowshell.Handle = starwindowsShell.Create [name: @sampleTooll;

-- Create some menu items. --

Z: UNCOUNTED ZONE « StarwindowShell.GetZone [shell];

items: ARRAY [0..3) OF MenuData.ltemHandle « [
MenuData.Createltem [zone: z, name: @another, proc: MenuProc],
MenuData.Createltem [zone: z, name: @repaint, proc: RepaintMenuProc],
MenuData.Createltem [zone: z, name: @post, proc: Post]];

myMenu: MenuData.MenuHandle = MenuData.CreateMenu [
zone: z,
title: NIL,
array: DESCRIPTOR [items] |;

starwindowshell.SetRegularCommands [sws: shell, commands: myMenu};

Y
Post: Menubata.MenuProc = {
msg: Xstring.ReaderBody « xstring. FromSTRING ["This is a sample attention window

message."L];
Attention.Post [@msg] };

RepaintMenuProc: MenubData.MenuProc = {
body: window.Handle = starwindowshell.GetBody[[window]];
window.InvalidateBox[body, {[0, 0], [30000, 30000]]1;
window.Validate[body] };

-- Mainline code --

Init{];

31.3.2 Example 2

-- Declare and create an item title and command array to be placed in a menu --
mouseMenuTitle: MenuData.ltemHandle « InitMouseMenuTitle {];
mouseMenuCmnds: ARRAY [0..10) OF MenuData.itemHandle;

-- Create the menu --

mouseMenu: MenuData.MenuHandle «-MenuData.CreateMenu [
zone: MenuData.PublicZone [],-- could be a client-supplied zone --
title: mouseMenuTitle,
array: DESCRIPTOR [@mouseMenuCmnds[0], 1] I;

31-5

31

MenuData

31-6

CommandProc: MenubData.MenuProc = {
--does something reasonable for the corresponding item -- };

InitMouseMenuTitle: PROCEDURE RETURNS [MenuData.ltemHandie] = {
zone: UNCOUNTED ZONE ¢« MenuData.PublicZone [];
mouseBitMap: ARRAY [0..15) OF WORD « [-- ... octal code -- |;
mouseSymbolChar: xstring.Character «
simpleTextfont.AddClientDefinedCharacter [-- ... parameters -- |;
mouseString: xstring.ReaderBody « xstring.FromChar [@mouseSymbolChar];
cmndTitle: xstring.ReaderBody ¢ xString. FromSTRING ["Command”];
mouseMenuCmnds{0] « Menubata.Createitem [zone, @cmndTitle, CommandProc];
RETURN [MenuData.Createltem [zone, @mouseString, NIL]] };

The above example is just one technique for initializing a menu. The routine
InitMouseMenuTitle is used to place variables in the local frame that don’t need to be
global. Close attention should be paid to placement of variables to prevent dangling
references.

)

ViewPoint Programmer’s Manual

31

31.4 Index of Interface Items

Item

Addltem: PROCEDURE
ArrayHandle: Tvpe
Createltem: PROCEDURE
CreateMenu: PROCEDURE
Destroyltem: PROCEDURE
DestroyMenu: PROCEDURE
Item: TYPE

ItemData: PROCEDURE
ItemHandle: TYpe
ItemName: PROCEDURE
ItemNameWidth: PROCEDURE
ItemProc: PROCEDURE
MenuArray: PROCEDURE
MenuHandle: Type
MenuObject: TYPE
MenuProc: TYPE

MenuTitle: PROCEDURE
Privateltem: TYPe
PrivateMenu: TYPE
PublicZone: PROCEDURE
SetltemNameWidth: PROCEDURE
SetSwapltemProc: PROCEDURE
Subtractitem: PROCEDURE
Swapltem: PROCEDURE
SwapltemProc: TYPE

UnpostedSwapltemProc: SwapltemProc

<

]
a0

()

WwWWwwWwwwiNlREREBAGSNNBDBWWW=RW=a2NNN=SNN

31-7

31

MenuData

31-8

32

MessageWindow

32.1 Overview

MessageWindow provides a facility for posting messages to the user in a window. This is
similar to posting messages using the Attention interface, but there can be many message
windows on the screen at once, while there is only one attention window. A message
window is usually a short window with less than 10 lines of text in it. As more messages
are posted, previous messages scroll off.

Messagewindow.Create takes a “plain” window, typically obtained by calling
StarWindowshell.CreateBody or Formwindow.MakeWindowltem, and turns it into a message
window. Messages may then be posted by calling Post. The window can be cleared by
calling Clear. Various TYPEs may be formatted into messages to be posted in the window by
using the xFormat.Object returned by XFormatObject.

32.2 Interface Items

32.2.1 Create, Destroy, etc.

Create: PROCEDURE [window: window.Handle,
Zone: UNCOUNTED ZONE « NIL, lines: CARDINAL « 10];

Create turns window into a message window. zone will be used for storage of any strings
posted. If zone is NIL, a private zone is used. lines is the number of lines of text to display.
After more than lines of text are posted, the oldest lines are scrolled out of the window. Fine
Point: The current ViewPoint implementation does not support user scrolling.

Destroy: PROCEDURE [Window.Handle];

Destroy turns the window back into an ordinary window, destroying any
MessageWindow specific context associated with the window. It does not destroy the
window.

Islt: PROCEDURE [Window.Handle] RETURNS [yes: BOOLEAN];

Islt returns TRUE if the window was made into a message window by a call to Create.

32-1

32

MessageWindow

32.2.2 Posting messages

Post: PROCEDURE [window: window.Handle,
r: xstring.Reader, clear: BOOLEAN « TRUE];

Post displays r in window. If clear is TRUE, r starts on a new line. If clear is FALSE, r is
appended to the last line posted.

PostSTRING: PROCEDURE {[window: Window.Handle,
$: LONG STRING, clear: BOOLEAN « TRUE] = INLINE
BEGIN
r: xstring.ReaderBody « xsString.FromSTRING [s];
MessageWindow.Post [window, @r, clear];
END;

PostSTRING posts s in window. If clear is TRUE, r starts on a new line. If clear is FALSE, r is
appended to the last line posted.

Clear: PROCEDURE [window: window.Handle];
Clear clears the entire window.
XFormatObject: PROCEDURE [window: Window.Handle] RETURNS [0: XFormat.Object];

XFormatObject returns an XFormat.Object that can be used to post messages in window.
The format procedure logically calls Post with clear = FALSE. See examples.

32.3 Usage/Examples

32-2

The following example has a client displaying the name and size of a file. It uses the NSFile
interface to access the file and get the name and size attributes. See the Services
Programmer’s Guide - 610E00180 - Filing Programmer’s Manual for documentation on
the NSFile interface. The example intermixes use of the format handle and use of the Post
procedure.

msgW: window.Handle « Formwindow.MakeWindowltem [. . .];
MessageWindow.Create [window: msgW, lines: 5];

PostNameAnNdSize [file, msgW];

PostNameAndSize: PROCEDURE [file: NSFile.Handle, msgW: window.Handle] = {
nameSelections: NsFile.Selections = [interpreted: [name: TRUE]];
attributes: Nsrile.AttributesRecord;
msgWFormat: xFormat.Object « Messagewindow.XFormatObjectimsgwj;
rb: xstring.ReaderBody « Message[theFile];
Messagewindow.Post[window: msgW, s: @rb, clear: TRUE]; -- start a new message
XFormat.NSString[@msgWFormat, attributes.name];
XFormat.ReaderBody[h: @msgWFormat, rb: Message[contains]l;
XFormat.Decimal[h: @msgWFormat, n: NsFile.GetSizelnBytes[file]];

ViewPoint Programmer’s Manual 32

rb « Message[bytes];
MessageWindow.Post[window: msgW, s: @rb]}; -- clear defaults to TRUE

Message: PROCEDURE [key: {theFile, contains, bytes}] RETURNS [xstring.ReaderBody] = {

...}l
An example of the resulting message displayed in the message window is

The file Foo contains 53324 bytes

32-3

32

MessageWindow

32.4 Index of Interface Items

32-4

Item

Clear: Type

Create: PROCEDURE
Destroy: TYpE

Islt: TYPE

Post: TYPE
PostSTRING: TYPE
XFormatObiject: TYPE

Page

NNN=2 2 aNn

33

OptionFile

33.1 Overview
OptionFile reads values from profile files (text files) with the following format:

[Section]

Entryl: TRUE -- a boolean entry
Entry2: A string value

Entry3: 123 -- an integer entry

These files are primarily used for keeping user options across logon and boot sessions (thus
the name profile file). Applications will typically read various options out of the current
user profile file at logon. These options often specify default values for properties and/or
behavior of the application.

33.2 Interface Items

33.2.1 Getting Values from a File

Each GetXXXValue procedure takes a section name and an entry name that identifies the
entry. It is expected that the section and entry strings will be obtained from XMessage.
Each also takes a file. If file is defaulted, the current user profile is used (see the Current
Profiles section below). All these procedures may raise Error [invalidParameters,
inconsistentValue, notFound, syntaxgrror].

GetBooleanValue: PROCEDURE [section, entry: xstring.Reader,
file: NsFile.Reference « NsFile.nuliReference]
RETURNS [value: BOOLEAN];

GetBooleanValue returns the value of a boolean entry. The entry must contain either
“TRUE” or "FALSE” or the translated string for TRUE or FALSE as defined in the message
files.

GetintegerValue: PROCEDURE [section, entry: xstring.Reader,
index: cARDINAL « O, file: NsFile.Reference «- NSFile.nullReference}
RETURNS [value: LONG INTEGER];

33-1

33

OptionFile

33-2

GetintegerValue returns the value of an integer entry. The entry must contain a number
that can be parsed by xstring.ReaderToNumber. index causes the indexth entry to be read,

for repeating entries.

GetStringValue: PROCEDURE [section, entry: xstring.Reader,
callBack: PROCEDURE [value: xstring.Reader], index: CARDINAL « 0,
file: NsFile.Reference « nsrile.nullReference];

GetStringValue calls callBack with the value of a string entry. index causes the indexth
entry to be read, for repeating entries.

33.2.2 Current Profiles

ViewPoint supports a current User profile file and a Workstation profile file. The current
User profile is automatically changed whenever a user logs on or off. The Workstation
profile contains entries specific to the workstation rather than specific to each user. There
is one Workstation profile on each workstation.

GetUserProfile: PROCEDURE RETURNS [file: NSFile.Reference];

GetUserProfile returns the current User profile file. Note: Each of the Get and Enumerate
procedures will use this file as the file parameter is defaulted.

GetWorkstationProfile: PROCEDURE RETURNS [file: NSFile.Reference];

GetWorkstationProfile returns the current Workstation profile file.

33.2.3 Enumerating a File

EnumerateXXX are useful for applications that look for the same entry in all sections.

EnumerateSections: PROCEDURE [callBack: SectionEnumProc,
file: NSFile.Reference « NsFile.nullReference];

SectionEnumProc: TYPE = PROCEDURE [section: xstring.Reader]
RETURNS [StOp: BOOLEAN & FALSE];

EnumerateSections will call callBack for each section in file, until stop = TRUE. If file is
defaulted, the current user profile is used.

EnumerateEntries: PROCEDURE [section: xstring.Reader, callBack: EntryEnumProc,
file: NsFile.Reference « Nsrile.nullReference];

EntryEnumProc: TYPE = PROCEDURE [entry: xstring.Reader]
RETURNS [StOp: BOOLEAN «FALSE];

EnumerateEntries will call callBack for each entry in section in file, until stop = TRue. If
file is defaulted, the current user profile is used.

ViewPoint Programmer’s Manual 33

33.2.4 Errors
Error: ERROR [code: ErrorCode];
ErrorCode: TYpe = {invalidParameters, inconsistentValue, notFound, syntaxError};

invalidParameters such as passing in a NIL string.

inconsistentValue calling GetBooleanValue for an entry that does not have TRUE
or FALSE as its value, or calling GetintegerValue for an entry
that will not parse as number.

notFound asking for an entry that is not in the file.
invalidFile reading from a file that is not a profile file.
syntaxError garbage in the file.

NotAProfileFile: siGNAL; .

The passed file is not a profile file; that is it has the wrong file type. RESUMEing will read
the file anyway.

33.3 Usage/Examples

-- In global frame

displayMessage: BOOLEAN - TRUE; : ‘
whereToDisplay: SampleBWSApplicationops.WhereToDisplay « window;
messageToDisplay: xstring.Reader « niL;

-- Called from initialization code
GetOptionsAtLogon: PROCEDURE = {
logon: Atom.ATOM « atom.MakeAtom["Logon"L];
desktopRef: nsFile.Reference;
[] « event.AddDependency [agent: LogonEvent, myData: niL, event: logon};
if (desktopRef & StarDesktop.GetCurrentDesktopFile []) # Nsrile.nullReference THEN {
-- If the desktop is NOT null, then a user’s already logged on,
--i.e., we got loaded after logon.
-- S0 we go read the options immediately by calling our
--Event. AgentProcedure directly. --
desktop: nsFile.Handle « NsFile.OpenByReference [desktopRef];
[] « LogonEvent [event: logon, eventData: LOOPHOLE [desktop], myData: NIL];
NSFile.Close [desktop];
Y
j

LogonEvent: Event.AgentProcedure = {
< <[event: event.EventType, eventData: LONG POINTER,
myData: LONG POINTER]
RETURNS [remove: BOOLEAN « FALSE, vet0: BOOLEAN « FALSE] > >
OPEN Ops: SampleBWSApplicationOps;
mh: XMessage.Handle = Ops.GetMessageHandle(];

33-3

33

OptionFile

33-4

CopyMessageToDisplay: PROCEDURE [value: xstring.Reader] = {
messageToDisplay « xstring.CopyReader [value, sysz]};

GetWhereToDisplay: PROCEDURE [value: xstring.Reader] = {
window: xstring.ReaderBody « xMessage.Get [mh, Ops.kwindow];
attention: xstring.ReaderBody « xMessage.Get [mh, Ops.kattention];
both: xstring.ReaderBody « xMessage.Get [mh, ops.kboth];
whereToDisplay « SELECT TRUE FROM
Xstring.Equivalent [value, @window] = > window,
xstring.Equivalent [value, @attention] = > attention,
xstring.Equivalent [value, @both] = > both,
ENDCASE = > window;

&
section: xstring.ReaderBody « XMessage.Get [mh, ops.kApplicationName];

entry: xstring.ReaderBody e xMessage.Get [mh, ops.kDisplayMessage];
displayMessage « Optionfile.GetBooleanValue [@section, @entry !
OptionFile.Error = > CONTINUE];

entry « xMmessage.Get [mh, ops.kMessageToDisplay];
OptionFile.GetStringValue [@section, @entry, CopyMessageToDisplay !
OptionFile.Error = > CONTINUE];

. entry e XMessage.Get [mh, o_ps.kWher_eToDisplay];
OptionFile.GetStringValue [@section, @entry, GetWhereToDisplay !
OptionFile.Error = > CONTINUE];

};

ViewPoint Programmer’s Manual 33

w 33.4 Index of Interface Items
Item Page

EntryEnumProc: TYPE
EnumerateEntries: PROCEDURE
EnumerateSections: PROCEDURE
Error: ERROR

ErrorCode: TYPE
GetBooleanValue: PROCEDURE
GetintegerValue: PROCEDURE
GetStringValue: PROCEDURE
GetUserProfile: PROCEDURE
GetWorkstationProfile: PROCEDURE
NotAProfilefile: siGNAL
SectionEnumProc: TYPE

N WNNN=== WWNNN

33-5

33 OptionFile

33-6

34

- PopupMenu

34.1 Overview
The PopupMenu interface provides a single procedufe that posts a popup menu.

34.2 Interface Items

Popup: PROCEDURE [
menu: MenubData.MenuHandle,
clients:window.Handle,
showTitle: BOOLEAN €~ TRUE,
place: window.Place « [-1,-1]];

This procedure causes the display of the client’s menu at or near the indicated place in the
rootWindow; if the place [-1,-1] is given, the current cursor position is used. If the point
button goes up while the cursor is over one of the menu items, then that item’s
MenuData.MenuProc is called. clients will be passed to the MenubData.MenuProc as the
window parameter. The showTitle field indicates whether the menu’s title should be
displayed above its command-strings.

The implementation assumes that the “point” button is down; consequently, the menu is

displayed until the “point” button goes up Popup does not return until the menu is taken
down, regardless of whether a menu item is selected or not.

34.3 Usage/Examples
Much of the complication in using the PopupMenu interface stems from its reliance on

MenuData. A thorough understanding of how to create a menu is needed before using this
interface (see the MenuData chapter for details).

34.3.1 Example

-- Create the menu:
myMenu: MenuData.MenuHandle « MenuData.CreateMenu [

34-1

34

PopupMenu

34-2

--...-- pass in miscellaneous parameters; see the MenuData interface for details --

I

PopupMenu.Popupl
menu: myMenu,
clients: currentWindow];
-- showTitle and place are defaulted in this call.

ViewPoint Programmer’s Manual

34

34.4 Index of Interface Items
Item

Popup: PROCEDURE

Page

34-3

34

PopupMenu

4.4

35

ProductFactoring

35.1 Overview
ProductFactoring allows an application to determine whether the customer has purchased
the application for the workstation the application is running on. ProductFactoring
maintains a record of the applications that have been purchased (enabled) on the
workstation’s disk. Tools are provided to customers for enabling various applications
(options). The enabling of an application is outside the scope of this interface.

ProductFactoring also allows an application to register a name for its product option, thus
allowing the product factoring tools to display meaningful names to the user of the tools.

35.2 Interface Items

35.2.1 Products and ProductOptions
Product: TYPE = CARDINAL [0..16);

A Product refers to a large set of software, (also see the ProductFactoringProducts
interface.)

ProductOption: TYpe = CARDINAL [0..28);

A ProductOption refers to a particular piece of software that a customer can buy within a
Product, such as Spreadsheets, Advanced Star Graphics, or Print Service. To obtain a
ProductOption for a particular application, see your Xerox Sales Represenative.

Option: TYPE = RECORD [product: Product, productOption: ProductOption];
nullOption: Option = .. .;

An Option uniquely identifies a ProductOption within a Product.

35.2.2 Checking for an Enable Option

Enabled: PROCEDURE [Option: Option] RETURNS [enabled: BOOLEAN];

35-1

35

ProductFactoring

Enabled returns TRUE if option is enabled on this workstation, otherwise FALSE. Typically,
an application will call Enabled every time it is called to perform some user operation such |
as opening an icon. Enabled is fast; it does not read the file every time it is called. It may

raise Error[notStarted] if there is no product factoring file on the workstation.

35.2.3 Describing an Product and an Option
DescribeProduct: PROCEDURE [product: Product, desc: xstring.Reader];

Provides a name for product. desc will be copied to an internal zone. May raise
ErrorfillegalProduct] if the value of product is out of range.

DescribeOption: PROCEDURE [Option: Option, desc: xstring.Reader,
prerequisite: Prerequisite « nullPrerequisite];

Prerequisite: TYPE = RECORD [
prerequisiteSpec: BOOLEAN «FALSE,
option: Option];

nullPrerequisite: Prerequisite = [FALSE, nullOption];

Describes option. desc is a name for the option. prerequisite specifies any other options

that this option depends on. All data will be copied to an internal zone. Use of this
procedure overrides any earlier definition with the same option value. May raise
Error[illegalProduct] if the value of option.product is out of range. May raise A,
ErrorfillegalOption] if the value of option.productOption is out of range. May raise T
Error[missingPraduct] if option.product has not yet been defined.

35.2.4 Errors
Error: ERROR [type: ErrorType];
ErrorType: TYPe = {
dataNotFound, notStarted, illegalProduct, illegalOption,

missingProduct, missingOption};

dataNotFound The term dataNotFound means the product data file is missing.

notStarted The term notStarted means Start proc has not been called yet.
illegalProduct The term illegalProduct means not a legal Product value.
illegalOption The term illegalOption means not a legal ProductOption value.

missingProduct The term missingProduct means the Product specified has not yet been
defined.

missingOption The term missingOption means the ProductOption specified has not
yet been defined. -~
=

356-2

ViewPoint Programmer’s Manual ‘ 35

35.3 Usage/Examples

-- In global frame --

sampleApplicationPFOption: pProductfactoring.ProductOption = 27;
-- 27 was chosen arbitrarily for this sample. --
-- A real application should obtain a real ProductOption! --

-- Called during initialization --
InitProductFactoring: PROCEDURE = {
mh: XMessage.Handle = SampleBWSApplicationops.GetMessageHandle[];
rb: Xstring.ReaderBody ¢- xMessage.Get [mh,
SampleBWSApplicationops.kApplicationName];
ProductFactoring.DescribeOption [
option: [product: ProductFactoringProducts.Star,
productOption: sampleApplicationPFOption],
desc: @rb];
t

-- GenericProc --
GenericProc: Containee.GenericProc = {
IF ~ProductFactoring.Enabled [option: [
product: ProductFactoringProducts.Star,
productOption: sampleApplicationPFOption]] THEN {
mh: xMessage.Handle « SampleBWSApplicationops.GetMessageHandle[];
rb: xstring.ReaderBody « xmessage.Get [mh, SampleBWSApplicationops.kNotEnabled];
ERROR Containee.Error {@rb];
Y

SELECT atom FROM

i

35-3

35

ProductFactoring

35.4 Index of Interface Items

35-4

Item

DescribeProduct: PROCEDURE
DescribeOption:PROCEDURE
Enabled: PROCEDURE

Error: ERROR

ErrorType: TYPE

nullOption: Option
nullPrerequisite: Prerequisite
Option: TYPE

Prerequisite: TYPE

Product: TYPE
ProductOption: TYPE

T
[
1))

[s°]

= e N =N = NN= NN

36

ProductFactoringProducts

36.1 Overview

ProductFactoringProdcuts defines the Productfactoring.Products for various Xerox products,
(see the ProductFactoring interface.)

36.2 Interface Items
Product: TYPE = ProductFactoring.Product;
Star: Product = 0;
Star defines the Xerox Star workstation product.
Services: Product = 1;
Services defines the Xerox network services product.
Fonts: Product = 2;

Fonts defines the product for Xerox printer fonts. Fine Point: In ViewPoint, this is in
ProductFactoringProdcutsExtras.

Spinnaker: Product = 3;

Spinnaker defines the Xerox Spinnaker product. Fine Point: In ViewPoint, this is in
ProductFactoringProdcutsExtras.

36-1

36

ProductFactoringProducts

36.3 Index of Interface Items

36-2

Item

Product: TYPE
Fonts: Product
Services: Product
Spinnaker: Product
Star: Product

Page

- owd emd md b

37

PropertySheet

37.1 Overview

The PropertySheet interface allows clients to create property sheets. A property sheet
shows the user the properties of an object and allows the user to change these properties.
Several different types of properties are supported. The most common ones are boolean,
choice (enumerated), and text. (See Figure 37.1.)

Tag BOOLEAN Suffix

CHOICE 1

]CHOICE 3

Tag Textitem

+
Form Window /—» T
[— — |-

Figure 37.1. A Property Sheet

From a client’s point of view, a property sheet is a Star window shell with a form window
as a body window. See the StarWindowShell and FormWindow interfaces. The
FormWindow interface especially must be understood in order to create a property sheet.

A property sheet is created by calling PropertySheet.Create, providing a procedure that will
make the form items in the form window (a Formwindow.MakeltemsProc), a list of
commands to put in the header of the property sheet, such as Done, Cancel, and Apply
(PropertySheet.Menultems), and a procedure to call when the user selects one of these
commands (a PropertySheet.MenultemProc). PropertySheet.Create returns the

371

37

PropertySheet

starwindowshell. Handle for the property sheet. When the user selects one of the commands
in the header of the property sheet, the client’s Propertysheet.MenultemProc is called. If the
user selected Done , for example, the client can then verify and apply any changes the user
made to the object’s properties.

PropertySheet also provides the capability to create linked property sheets. Several
property sheets may be logically linked together in the same property sheet shell. This is
accomplished by changing form windows within a property sheet’s Star window shell, and
having an additional choice item that specifies which form window is currently displyed.
Linked property sheets are further described in the section on Linked Property Sheets
below.

37.2 Interface Items

37.2.1 Create a PropertySheet (Not a Linked One)

37-2

Create: PROCEDURE [
formWindowltems: Formwindow.MakeltemsProc,
menultemProc: MenultemProc,
size: window.Dims,
menultems: Menultems « propertySheetDefaultMenu,
title: xstring.Reader «nNit,
placeToDisplay: window.Place « nuliPlace,
formWindowltemsLayout:FormWindow.LayoutProc « Nit,
windowAttachedTo: starwindowshell.Handle « [NiL],
globalChangeProc: Formwindow.GlobalChangeProc « NiL,
display: BOOLEAN « TRUE,
clientData: LONG POINTER « NIL,
afterTakenDown: MenultemProc « NiL,
zone: UNCOUNTED ZONE « NiL]
RETURNS [shell: starwindowsShell. Handle];

Create creates a property sheet.

formWindowiltems is a client-supplied procedure that is passed a body window of the
property sheet. It should fill the window with the form items that make up the main body
of the property sheet. (See the FormWindow interface for a full description of how to create
form items in a window.)

menultemProc is a client-supplied procedure that is called whenever the user selects one
of the menu items in the header of the property sheet window. (See §37.2.2 below.)

size is the preferred size of the property sheet star window shell.

menultems specifies the menu items that are displayed in the header of the property
sheet. The default is ? (help), Done, and Cancel.

title is the title to be displayed in the header of the property sheet.

placeToDispiay is the preferred location on the screen of the property sheet. If the default
is taken, Create will calculate the place to display.

formWindowltemsLayout specifies the desired position of the form items in the

FormWindow. (See Formwindow.LayoutProc for a full description.). If

)

ViewPoint Programmer’s Manual 37

formWindowltemslLayout is NiL, then Formwindow.DefaultLayout of one item per line is
used

windowAttachedTo is the StarWindowsShell that this property sheet is showing
properties for. If windowAttachedTo is not NiL, then the user will not be able to close
windowAttachedTo until this property sheet is closed. (See also
StarWindowShell.Create.host.)

globalChangeProc is called if any item in the property sheet is changed. (See
FormWindow.GlobalChangeProc for a full description).

display indicates whether the property sheet should actually be displayed on the screen
(inserted into the visible window tree) or just created but not actually painted on the
screen (not inserted into the visible window tree). If this is a property sheet for a file (i.e., if
it is being created as the result of a call to a Containee.GenericProc [atom: Props]), then
display should be FALSE and the Starwindowshell.Handle should be returned from the
GenericProc so that, for example, the desktop implementation can put the property sheet
on the display by calling StarwindowsShell.Push.

clientData will be passed to formWindowitems, formWindowltemsLayout, and
menultemProc. Fine Point: formWindowitems will not be called after Create returns and therefore may be
nested.

The afterTakenDown is called after the property sheet has been removed from the screen.
The return parameter of the MenultemProc is ignored in this case. Note: Clients must
still provide a regular MenuiltemProc.

Clients may pass in a zone to be used instead of the default zone created by the
StarWindowsShell implementation.

shell is the property sheet.
nullPlace: window.Place;

nullPlace defines the default for placement of a property sheet. If the default is used, the
property sheet is placed at an appropriate place on the screen.

37.2.2 Menu Items and the MenultemProc
MenultemType: TYPE = {done, apply, cancel, defaults, start, reset};
Menultems: TYPE = PACKED ARRAY MenultemType oF BooleanFalseDefault;
BooleanFalseDefault: TYpe = BOOLEAM—FALSE;
propertySheetDefaultMenu: Menultems = [done: TRUE, apply: TRUE, cancel: TRUE];
optionSheetDefaultMenu: Menultems = [start: TRUE, cancel: TRUE];
The client specifies a set of commands to be placed in the header of the property sheet.
MenultemType specifies all of the possible commands. Menultems specifies a set of these
commands and is passed to PropertySheet.Create. propertySheetDefaultMenu and

optionSheetDefaultMenu specify two common sets of commands.

MenultemProc: TYPE = PROCEDURE [
shell: starwindowshell.Handle,

37-3

37

PropertySheet

37-4

formWindow: window.Handle,
menultem: MenultemType]
RETURNS [Ok: BOOLEAN « FALSE];

The client supplies a MenultemProc when a property sheet is created. It is called
whenever the user selects one of the menu items in the header of the property sheet.
formWindow is the main form window of the property sheet. menultem is the type of
menu item that the user selected. The client typically (when the user selects Done or
Apply) retrieves the values of the items that the user edited (using
FormWindow.HasChanged and formwindow.GetXXXItemValue procedures), verifies that the
values are meaningful (for example, numbers that are within proper range), and applies
the new values to the properties of the object this property sheet represents.

The return parameter ok has slightly different meanings in the following two cases:

1. For an ordinary property sheet (not a linked property sheet), the MenultemProc is
called when the user selects a command and the return parameter indicates whether
the property sheet should be destroyed.

2. For a linked property sheet, the MenultemProc is called both when the user selects a
command in the header (in which the case above applies) and when the client calls
SwapExistingFormWindows or SwapFormWindows with apply = TRUE. In this case
the MenultemProc is called to allow the client to apply any changes made to the form
window sheet being linked from. The menultem parameter will be “done”; the return
parameter indicates whether to allow the swap to actually occur. ok = FALSE indicates
that there is something invalid in the form window and the client does not want the
swap to occur (the client typically posts a message before returning). If ok = TRUE, the
sSwap occurs.

Note: The client need not worry about these cases when writing the MenultemProc, but
can simply write the "done" code as usual. If the user selects Done and the MenultemProc
returns ok = TRUE, the property sheet is destroyed. If the user links to another sheet on a
linked property sheet and the MenultemProc returns ok = TRUE, the sheets are swapped,
rather than the whole property sheet being destroyed.

37.2.3 Linked PropertySheets

Several property sheets may be logically linked together in the same property sheet. This
is accomplished by changing form windows within a property sheet’s Star window shell,
and having an additional choice item that specifies which form window is currently
displayed. See Figure 37.2 below.

ViewPoint Programmer’s Manual 37

Display SHEET 1 [SHEET3

Tag BOOLEAN Suffix

| | ¢—

CHOICE 1 CHOICE 3

Tag Text item

+
Form Window /—> T

H — — [+

Figure 37.2 A Linked Property Sheet

This additional choice item actually resides in an additional form window, called a (ink
window. This link window is another body window of the Star window shll. The link
window remains visible all the time, while the main form window may be swapped. The
client does this by supplying a Formwindow.ChoiceChangeProc for the single choice item in
the link window. Then when the user selects a new choice for that item, the client (in the
ChoiceChangeProc) calls SwapFormWindows or SwapExistingformWindows to change
the main form window. Note: Only one main form window is installed in the Star window
shell at a time. A linked property sheet is created by calling CreateLinked.

CreateLinked: PROCEDURE [
formWindowltems: Formwindow.MakeltemsProc,
menultemProc: MenultemProc,
size: window.Dims,
menultems: Menultems « propertySheetDefaultMenu,
title: xstring.Reader <N,
placeToDisplay: window.Place « nullPlace,
formWindowltemsLayout:FormWindow.LayoQutProc « NiL,
windowAttachedTo: starwindowsShell.Handle « [NiL],
globalChangeProc: Formwindow.GlobalChangeProc « NiL,
display: BOOLEAN « TRUE,
linkWindowltems: FormWindow.MakeltemsProc,
linkWindowltemsLayout:Formwindow.LayoutProc « NiL,
clientData: LONG POINTER «-NiL,
afterTakenDownProc: MenuitemProc « NiL,
zone: UNCOUNTED ZONE « NiL)
RETURNS [shell: starwindowshell. Handle];

CreatelLinked creates a linked property sheet. Creating a linked property sheet is almost
identical to creating an ordinary property sheet, (see Create above for a full description of

37-5

37

PropertySheet

37-6

all the parameters), except CreateLinked has the additional parameters linkWindowitems
and linkWindowltemsLayout. linkWindowltems is called to make the choice item in the
link window. It should create a single choice item with a Formwindow.ChoiceChangeProc.
linkWindowltemsLayout is called to specify the position of the choice item in the link
window. The default places the item appropriately in the link window, so most clients will
want to take the default for linkWindowltemstLayout. Note: formWindowltems and
formWindowltemslLayout specify the main form window that is initially visible in the
property sheet.

SwapFormWindows: PROCEDURE [
shell: starwindowshell.Handle,
newFormWindowltems: Formwindow.MakeltemsProc,
newFormWindowltemsLayout:Formwindow.LayoutProc «nit,
apply: BOOLEAN « TRUE,
destroyOld: BOOLEAN « TRUE,
newMenultemProc: MenultemProc «NiL,
newMenulitems: Menultems « ALL[FALSE],
newTitle: xstring.Reader < Nit,
newGlobalChangeProc: Formwindow.GlobalChangeProc «Nit,
newAfterTakenDownProc: MenultemProc «nit|
RETURNS [old: window.Handle};

SwapFormWindows swaps the main form window of a property sheet with a new one. This
will usually be called from the Formwindow.ChoiceChangeProc of the choice item in the link
window. May raise Error [notAPropSheet].

shell is the property sheet.
newFormWindowltems supplies the items for the new window.
newFormWindowltemsLayout specifies the layout for the items in the new form window.

apply specifies whether any changes to the current form window should be applied before
the swap. If apply = TRUE, the current MenultemProc for shell is called with menultem =
apply. If apply = FALSE, the MenultemProc is not called.

The destroyOld parameter indicates whether the old form window should be destroyed or
not. If destroyOld = FALSE, then the return parameter is the old form window, else the
return parameter is NIL. This allows clients to perform the following typical sequence of
events:

1. Create a linked property sheet using Createlinked.

2. The first time the user links to another sheet, call SwapFormWindows with
destroyOld = FALSE and save the old form window.

3. When the user goes back to the first sheet, call SwapExistingFormWindows,
supplying the previously saved old form window, and thus avoiding having to create
the first form window again.

newMenultemProc allows the client to install a different MenultemProc than the one that
was supplied with Createlinked.

newAfterTakenDownProc allows the client to install a different takedown MenultemProc
than the one that was supplied with CreateLinked.

ViewPoint Programmer’s Manual 37

newMenultems, newTitle, and newGlobalChangeProc allow the client to change these as
well.

If the default newMenultemProc¢, newMenultems, newTitle, or newGlobalChangeProc is
taken, the current values are retained.

SwapExistingFormWindows: PROCEDURE [
shell: starwindowshell.Handle,
new: window.Handle,
apply: BOOLEAN « TRUE,
newMenultemProc: MenultemProc «NiL,
newMenultems: Menultems < ALL[FALSE],
newTitle: xstring.Reader «-NiL,
newAfterTakenDownProc: MenultemProc « nit}
RETURNS [old: window.Handle];

SwapExistingFormWindows swaps the main form window of a property sheet with a new
one. The new form window must already exist. If it does not, use SwapFormWindow. new
is the new form window. apply, newMenultemProc, newMenultems, and newTitle are the
same as in SwapFormWindow. old is the previous main form window. May raise Error
[notAPropSheet].

37.2.4 Miscellaneous

GetFormWindows: PROCEDURE [shell: starwindowsShell.Handle]
RETURNS [form, link: window.Handle];

GetFormWindows returns the current form windows of shell. If shell is not a linked
property sheet, link is NiL. May raise Error [notAPropSheet].

InstallFormWindow: PROCEDURE [
shell: starwindowshell.Handle,
menultemProc¢: MenultemProc,
menultems: Menultems « propertySheetDefauitMenu,
title: xstring.Reader «nNiL,
formWindow: window.Handle,
afterTakenDownProc: MenultemPro¢ «nNiL];

InstallFormWindow installs formWindow in shell. May raise Error [notAPropSheet].

37.2.5 Signals and Errors
Error: ERROR [code: ErrorCode];
ErrorCode: TYPE = {notAPropSheet};

Error [notAPropSheet] is raised if a StarwindowShell. Handle that is not a property sheet is
passed to a PropertySheet procedure .

37-7

37

PropertySheet

37.3 Usage/Examples

37.3.1 Flow Description of Creating a Property Sheet

37-8

The following describes the sequence of calls involved in creating and taking down a
property sheet, including ViewPoint interfaces and clients.

1.

10.

11.

12.

13.

14.

Client calls PropertySheet.Create, supplying a Formwindow.MakeltemsProc, a
FormWindow.LayoutProc (optional), and a PropertySheet.MenultemProc.

PropertySheet.Create creates a Star window shell and a body window inside the
StarWindowsShell. [t then calls Formwindow.Create, passing in the body window.

FormWindow.Create calls the client’s FormWindow.MakeltemsProc.

The client’s Formwindow.MakeltemsProc creates the items in the property sheet by
calling various Formwindow.MakeXXXlItem procedures.

FormWindow.Create calls the client’s Formwindow.LayoutProc. If the client did not
provide one, a default LayoutProc provided by Formwindow is called.

The Formwindow.LayoutProc makes calls to Formwindow.AppendLine and
Formwindow.Appenditem to specify the layout of the items created by the
FormWindow.MakeltemsProc.

FormWindow.Create returns to PropertySheet.Create. PropertySheet.Create returns to the
client. The client returns to the notifier process.

The property sheet is now on the screen and the notifier process is waiting for the user.

The user changes some values in the property sheet. This is all managed by
FormWindow; the client gets called only if there is a Formwindow.BooleanChangeProc
or Formwindow.ChoiceChangeProc or Formwindow.GlobalChangeProc.

The user selects Done in the header of the property sheet.

A procedure inside of PropertySheet is called. PropertySheet calls the client’s
PropertySheet.MenultemProc.

The client’s PropertySheet.MenultemProc checks for any changed values
(Formwindow.HasBeenChanged and Formwindow.HasAnyBeenChanged) and calls the
appropriate Formwindow.GetXXXitemValue to obtain the new values. The client
validates and applies these new values, then returns an indication of whether the
property sheet should be taken down.

PropertySheet takes down the property sheet and returns to the notifier.

END.

ViewPoint Programmer’s Manual 37

37.3.2 An Ordinary Property Sheet

This example creates a property sheet from some arbitrary properties and then applies the
user’s changes to those properties. [t uses a rather contrived set of properties described by
Properties and PropertiesObject. In general, a real property sheet would get its properties
from some real object. This example will produce the property sheet shown in Figure 37.1.

-- PropertySheetExample.mesa

DIRECTORY
FormWindow USING [

" Choiceltem, GetBooleanltemValue, GetChoiceltemValue, GetTextltemValue,
HasAnyBeenChanged, HasBeenChanged, ItemKey, MakeBooleanitem,
MakeChoiceltem, MakeltemsProc, MakeTextltem, SetBooleanltemValue,
SetChoiceltemValue, SetTextltemValue],

PropertySheet UsING [Create, MenultemProc],
StarWindowsShell using [Handle],

XString usiNG [FreeReaderBytes, FromSTRING, ReaderBody],
Window usiNG [Handle];

PropertySheetExample: PROGRAM IMPORTS FormWindow, PropertySheet, XString = {
Properties: TYPE = LONG POINTER TO PropertiesObject;

PropertiesObject: TYPE = RECORD [
boolean: BooOLEAN,
choice: Choices,
text: xstring.ReaderBody];

Items: TYPe = {boolean, choice, text};
Choices: Type = {choicel, choice2, choice3};
zone: UNCOUNTED ZONE & . . . ;

MakePropertySheet: PROCEDURE [props: Properties]
RETURNS [shell: starwindowshell.Handle] = {
title: xstring.ReaderBody « xstring.FromSTRING ["Title"L];

shell « propertysheet.Create [
formWindowitems: Makeltems,
menulternProc: MenultemProc,
menultems: [help: TRUE, done: TRUE, cancel: TRUE,
apply: TRUE, defaults: TRUE],
size: [w: 300, h: 200],
title: @title,
clientData: props];

37-9

37 PropertySheet

Makeltems: Formwindow.MakeltemsProc = {
props: Properties « clientData;
tag: XString.ReaderBody « xstring.FromSTRING["Tag"L];

BEGIN
label: xstring.ReaderBody ¢ xstring.FromSTRING["BOOLEAN"L];
suffix: xstring.ReaderBody « xstring. FromSTRING["suffix"L];
FormwWindow.MakeBooleanltem [

window: window,

myKey: Items.boolean.oro,

tag: @taqg,

suffix: @suffix,

label: [string [label]],

initBoolean: props.boolean];
END;

BEGIN
¢1: Xstring.ReaderBody « xstring. FromSTRING["CHOICE 1"L];
c2: xstring.ReaderBody « xstring. FromSTRING["CHOICE 2"L];
c3: xstring.ReaderBody & xString.FromSTRING["CHOICE 3"L};
choices: ARRAY [0..3) OF Formwindow.Choiceltem & [
[string[Choices.choice1.0rD, ¢1]],
[string[Choices.choice2.0rD, c2]],
[string[Choices.choice3.0rD, c3]]];
Formwindow.MakeChaoiceltem [
window: window,
myKey: items.choice.orD,
values: DESCRIPTOR[choices],
initChoice: props.choice.orp];
END;

FormWindow.MakeTextitem [
window: window,
myKey: Items.text.orD,
tag: @tag,
width: 40,
initString: @props.text];

}:

MenultemProc: PropertySheet. MenultemProc¢ = {

props: Properties « clientData;

SELECT menultem FROM
help=>...;
done = > ReTURN[destroy: ApplyAnyChanges[formWindow, props].ok];
cancel = > ReTURN[destroy: TRUE];
apply = > [] « ApplyAnyChanges[formWindow, props];
defaults = > SetDefaults[formWindow, props];
ENDCASE = > ERROR;

RETURN[destroy: FALSE];

}

37-10

ViewPoint Programmer’s Manual 37

ApplyAnyChanges: proc [window: window.Handle, props: Properties]
RETURNS [Ok: BOOLEAN] = BEGIN ‘
IF ~FormWindow.HasAnyBeenChanged [window] THEN RETURN [ok: TRUE];
FOR eachltem: Items IN Items DO
itemKey: Formwindow.ltemKey = eachitem.ORrD;
IF -FormWindow.HasBeenChanged [window, itemKey] THEN LOOP;
SELECT eachltem FROM
boolean = > props.boolean « Formwindow.GetBooleanitemValue[window, itemKey];
choice = > props.choice « vaL[Formwindow.GetChoiceltemValue[window, itemKey] |;
text = > {
xstring.FreeReaderBytes [r: @props.text, z: zone];
props.text «- Formwindow.GetTextltemValue [window, itemKey, zonel};
ENDCASE;
ENDLOOP;
RETURN [ok: TRUE];
END;-- ApplyAnyChanges

SetDefaults: PrROC [window: window.Handle, props: Properties] =

BEGIN
defaultText: xstring.ReaderBody « xString. FromSTRING["Text item"L];
FormWindow.SetBooleanitemValue [

window: window,

item: Items.boolean.orp,

newValue: FALSE];
FormWindow.SetChoiceltemValue [

window: window,

item: Items.choice.oRrD,

newValue: Choices.choice2.0rRD |;
FormWindow.SetTextitemValue [

window: window,

item: Items.text.ORD,

newValue: @defaultText];
END;

37-11

37

PropertySheet

37.4 Index of Interface Items

37-12

Item

BooleanFalseDefault: Type

Create: PROCEDURE

CreateLinked: PROCEDURE

Error: ERROR

ErrorCode: TYPe

GetFormWindows: PROCEDURE
installFormWindow: PROCEDURE
MenultemProc: TYPE

Menultems: TYpe

MenultemType: TYPE

nullPlace: window.Place
optionSheetDefaultMenu: Menultems
propertySheetDefaultMenu: Menultems
SwapExistingFormWindows: PROCEDURE
SwapFormWindows: PROCEDURE

<

&
o

)

A NWWWWWANNNNUAUNW

)

38

Prototype

38.1 Overview

Prototype manipulates prototype files. A prototype file is a blank copy of an application’s
file that the user can copy. Prototype files are in the Directory icon under “Blank
Documents, Folders, etc.”

A prototype file resides in the prototype catalog (see the Catalog interface) and is uniquely
identified by it is file type, subtype, and version. Subtype is used to distinguish between
objects of the same file type, such as the blank document and the basic graphics transfer
document. Subtype is stored in an extended attribute on the prototype file. A nonexistent
subtype is equivalent to subtype 0. ’

Version is stored in the BWS-standard version extended attribute (see
BWSAttributeTypes). The intent is that clients need only examine the version to
determine if the prototype is current. A nonexistent version attribute is equivalent to
version 0.

Prototype provides Find and Create procedures. A client will typically call Find and if it
returns NSFile.nullReference, then call Create.

38.2 Interface Items
Version: TYPE = CARDINAL;
Subtype: TYPE = CARDINAL;
Find: PROCEDURE [type: NSFile.Type, version: Version,
subtype: Subtype « 0, session: NSFile.Session « NsFile.nullSession]

RETURNS [reference: NsFile.Reference];

Find returns a reference for the file with the specified type, version, and subtype. If the
file does not exist, NSFile.nuilReference is returned.

Create: PROCEDURE [
name: xstring.Reader,
type: NSFile.Type,

38-1

38

Prototype

version: Version,

subtype: Subtype <0,

size: LONG CARDINAL « 0,

isDirectory: BOOLEAN « FALSE,

5ession: NSFile.Session « NsFile.nullSession]
RETURNS [prototype: NsFile.Handle];

Creates a file in the prototype catalog with the specified name, type, version, subtype,
size in bytes, and isDirectory attribute.

Add: PROCEDURE [file: NSFile.Handle, version: Version,
subtype: Subtype « 0, session: NSFile.Session « NSFile.nullSession];

Moves an already existing file into the prototype catalog, assigning it the given version
and subtype. Fine Point: This is in PrototypeExtra in ViewPoint.

PurgeOldVersions: PROCEDURE [type: NSFile.Type, current: Version, subtype: Subtype « 0];

Deletes any versions of the given prototype that are older (smaller number) than current.
PurgeOldVersions assumes that higher version numbers are more recent than lower
version numbers. [f this is not true for your version numbers, do not call this operation .

38.3 Usage/Examples

38-2

- This is an example of a procedure that an application would probably call at initialization

time.
samplelconFileType: NSFile.Type = ... ;
version: CARDINAL = ... ;

FindOrCreatelconFile: PROCEDURE = {
name: xstring.ReaderBody « xstring.FromSTRING["Sample Icon"L];
-- This name should really come from XMessage.
IF (Prototype.Find [
type: samplelconFileType, version: version] = Nsfile.nullReference) THEN
NSFile.Close [Prototype.Create [
name: @name, type: samplelconFileType, version: version] |;

ViewPoint Programmer’s Manual 38

-’ 38.4 Index of Interface Items
Item Page

Add: PROCEDURE

Create: PROCEDURE

Find: PROCEDURE
PurgeOldVersions: PROCEDURE
Subtype: TYPE

Version: TYPE

- ek N) = - N

38-3

38

Prototype

38-4

39

Selection

39.1 Overview

The Selection interface defines the abstraction that is the user’s current selection. It
provides a procedural interface to the abstraction that allows it to be set, saved, cleared,
and so forth. It also provides procedures that enable someone other than the originator of
the selection to request information relating to the selection and to negotiate for a copy of
the selection in a particular format.

39.1.1 Requestors and Managers

The Selection interface is used by two different classes of clients. Most clients wish merely
to obtain the value of the current selection in some particular format; such clients are
called requestors. These programs call Convert (or ConvertNumber, which in turn calls
Convert), Query, or Enumerate. These clients need not be concerned with many of the
details of the Selection interface.

The other class of clients consists of those who wish to own or set the current selection;
these clients are called managers. A manager calls Selection.Set and provides procedures
that may be called to convert the selection or to perform various actions on it. The
manager remains in control of the current selection until some other program calls
selection.Set. These clients do need to understand most of the details of the Selection
interface.

The goal of the Selection interface is that the requestor need never know, and should
never care, what module is managing the selection. All that matters is whether the
selection can be rendered in a suitable form. For example, suppose the user presses COPY
and selects a printer icon as the destination. The printer implementation needn’t know
what is printable and what isn’t. It simply queries the selection to determine whether it
can be rendered as an Interpress master, and if so it obtains it and sends it. Otherwise, it
queries whether the selection can be enumerated as a sequence of Interpress masters (as
would be true of a folder, for instance). If this also fails, the object is rejected.

The selection is the expression of the user indicating the datum to be operated on. As such,
it is conceptually owned by the user. The selection manager is a slave following the user’s
instructions.

39-1

39

Selection

39-2

To maintain this user interface model, the selection must only be changed at the explicit
direction of the user. Software must allow the user to change the selection at will. To
implement this user model, the selection is only changed from within the user process or
notifier. The notifier is the system process that passes the user’s actions, encoded as TIP
results, to application software.

Software that wishes to read the selection must deal with the fact that the selection may
be changed at any time that the notifier process is running. The way to synchronize with
this potentially asynchronous activity is to only read the selection in the notifier process.
This guarantees that the selection will not be altered while it is being read. Application
software running in the notifier process can be assured that the selection will not change
until after the application returns to the system. Thus the first rule for dealing with the
selection is:

The selection may only be read or changed in the notifier process.

Once an application returns to the notifier, any knowledge it retains about the selection
may be invalidated at any instant when the user subsequently changes the selection.
Similarly, if an application running in the notifier passes some information about the
selection to another process, that information may similarly be invalidated at any time. In
these circumstances, the application must copy the selection’s value, using Copy, Move, or
CopyMove, to assure that its data remains valid. Thus the second rule for dealing with the
selection is:

Copy the selection’s value before returning to the system or before passing it to another
process.

Fine point: If an application is not running in the notifier process and needs to obtain or manipulate the selection,
a TiP.PeriodicNotify may be used. TIP.CreatePeriodicNotify allows the application to be called back from inside
the notifier process.

39.1.2 Essentials for a Requestor

Clients that need the value of the current selection.

39.1.2.1 Convert, Target, Value, Enumerate, CanYouConvert

The fundamental operation performed by a selection requestor is to obtain the value of the

current selection by calling Selection.Convert. Convert takes a Selection.Target and returns a

selection.Value. The Target specifies what TYpe of data the selection should be converted to.
The Value contains a pointer to the converted selection. For example, Selection.Convert
[target: string] will return a pointer to a string, i.e., an Xstring.Reader.

Not all selections can be converted to all Targets; in fact most selections can be converted
to only a small number of Targets. For example, if the selection is a text string, it can be
converted to Target string and perhaps to integer, but probably not to file or fileType.
Note: Converting to some Targets is not so much requesting the value of the selection as
requesting some general information about the selection or its environment. For example,
Selection.Convert [target: window] is a request for the window that the selection is in,
Selection.Convert [target: help] is a request for user help information about the selection,
etc. Note that Target is an open-ended enumeration and that clients can create new

ViewPoint Programmer’s Manual 39

Targets by using Selection.UniqueTarget. The TYPE associated with each Target is
determined by system-wide convention. Several of these Type/Target conventions are
defined below under the description of Target. Other Type/Target conventions are
documented in §39.2.1.1, Convert.

A requestor can also enumerate the selection if it is more than a single item or if it can be
split into smaller pieces. This is done by calling Selection.Enumerate.

Finally, a requestor can determine what Targets the selection can be converted to without
actually doing the conversion by calling Selection.CanYouConvert, Selection.Query, or
Selection.HowHard.

39.1.2.2 Resource Allocation/Deallocation Considerations

It is a strict rule that the Values produced by Selection.Convert and Selection.Enumerate
describe objects owned by the selection manager. The requestor may examine the data
referenced by the value field, but must not alter it. Furthermore, the requestor must free
the Value (using Selection.Free) once he no longer needs it.

If the requestor wishes to (1) keep the value after it returns to the system, or (2) pass the
value to another process, it must call Selection.COpy, Selection.Move, or Selection.CopyMove.
These in turn invoke a procedure supplied by the selection manager that modifies the
Value such that the requestor may then make changes to value 1 without affecting the
selection manager. Fine Point: The procedure supplied by the manager is returned by the manager as part of
the Value record. If a Move is performed, the item is also deleted from the manager’s domain.
After the Move or Copy, any storage associated with the Value is now owned by the
requestor. This storage may be freed by calling Selection.Free.

For example, if the current selection is a document icon, then Convert[file] yields a Value
containing a LONG POINTER TO NsFile.Reference for the file containing the document. If the
requestor were to create a new document and associate it with the same file, it would
probably have undesirable effects. Instead, the requestor should call Copy, passing in
data:LONG POINTER TO NSFile.Reference for the destination directory of the new file. When
Copy returns, the Value contains a reference to a copy of the original file, and the
requestor can use this freely.

As a second example, suppose the selection manager uses a Mesa STRING as the internal
selection representation. Then Convert[string] simply builds the string pointer into an
Xstring.Reader using xstring.FromSTRING. If the requestor wants to save the string for very
long, he should call Copy, and the manager will allocate a copy of the original string using
the zone passed to Convert. An alternative, somewhat simpler, is for the requestor to call
Xstring.CopyReader or xstring.CopyToNewReaderBody or xstring.CopyToNewWriterBody
to copy the bytes, and then call Selection.Free to dispose of the original Reader.

39.1.3 Essentials for a Manager

Clients that own and manage the current selection.

39-3

39

Selection

39-4

39.1.3.1 Set, ConvertProc, ActOnProc, ManagerData

The implementor of a selection manager needs to know everything that the implementor
of a selection requestor knows, plus more (see the previous section Essentials for a
Requestor).

The fundamental operation performed by a selection manager is to become the current
manager by calling Selection.Set. Set takes a ConvertProc, an ActOnProc, and a LONG
POINTER (ManagerData).

The ConvertProc is called to obtain the value of the selection, whenever a requestor calls
Selection.Convert or Selection.Enumerate. The ConvertProc is also called to determine what
Targets the selection can be converted to, whenever a requestor calls
selection.CanYouConvert, Selection.Query, or Selection.HowHard. Conversioninfo is a variant
record passed to the ConvertProc that indicates which operation to perform: convert,
enumeration, or query.

The ActOnProc is called to perform various Actions on the selection, such as mark,
unmark, and clear.

The ManagerData passed to Set is passed back to the ConvertProc and the ActOnProc.
Typically, the ManagerData identifies exactly what portion of the manager’s domain is
currently selected. For example, if the current selection is some text in a document, the
actual manager is the document application, which has some ManagerData that indicates
exactly which characters are currently selected. ’

When a manager calls Selection.Set, the previous manager is told to ActOn [clear], and
Selection forgets about the previous manager. Hence, there is only one selection at a time.
However, Selection also supports the notion of a “saved” selection. A client can become the
current manager by calling Selection.SaveAndSet, which does a Set but also saves the
previous selection. Later, the manager that did the SaveAndSet can do a Selection.Restore,
which restores the previous selection.

39.1.3.2 More on Selection.Value, ValueFreeProc, and ValueCopyMoveProc

The Value produced by a manager’s ConvertProc contains more than simply a pointer to
the converted selection. It also contains a pointer to two procedures, a ValueFreeProc and a
ValueCopyMoveProc. The ValueFreeProc is called when the requestor calls Selection.Free so
that the manager can release any resources that were allocated when the selection was
converted. The manager’s ValueCopyMoveProc is called when the requestor calls Copy,
Move, or CopyMove. The ValueCopyMoveProc should copy or move the converted
selection value so that the manager no longer owns the resources associated with the
value. A third field in the Value record is a LONG UNSPECIFIED that may be used to store data
for the ValueFreeProc and the ValueCopyMoveProc.

If the converted selection value can be copied or moved, the manager must return a
ValueCopyMoveProc with the Value. For example, Targets string and file can be moved or
copied, while it does not make sense to move or copy Targets window and fileType. The
ValueCopyMoveProc modifies the Value such that the requestor may then make changes
to value T without affecting the selection manager. If a Move is performed, the item is
also deleted from the manager’s domain. (Some managers may implement Copy but raise

)

ViewPoint Programmer’s Manual 39

Error[invalidOperation] if asked to do a Move.) The inﬁerpretation of the data given to a
ValueCopyMoveProc depends on the manager; the typical use is to specify a destination
for the object.

39.1.3.3 Storage Considerations for ConvertProc

As stated above, it is a strict rule that the Values produced by the ConvertProc describe
objects owned by the manager. If the manager allocated any resources to produce the
converted selection value, then a ValueFreeProc must be returned with the Value so that
the resources can be released. If a ValueCopyMoveProc was returned with the Value, after
the converted selection value has been copied or moved, the manager must ensure that the
correct things will happen when the Value’s ValueFreeProc is called (i.e., when the
requestor calls Selection.Free). This may involve replacing the original ValueFreeProc.

The manager’s ConvertProc takes a zone that Selection guarantees is valid (except for the
query operation). The manager should allocate any storage for the converted selection
value from that zone. The ConvertProc can store the zone in the context (LONG UNSPECIFIED)
field of the Value record (or in a record pointed to by the context field). The ValueFreeProc
and ValueCopyMoveProc can then retrieve this zone to free the storage.

Numerous defaults are provided by Selection to ease the manager’s task of proper storage
management. In practice, the ConvertProc can simply default the context field and
Selection will place the zone there. Also, procedures such as FreeStd and FreeContext are
provided that perform the LOOPHOLESs, FREE the storage, and store null and/or no-op values
such as NopFree in the Value record.

39.1.3.4 Storage Considerations for ManagerData

The ManagerData that identifies exactly what part of the manager’s domain is currently
selected should be allocated whenever a Selection.Set is done and deallocated whenever
ActOn [clear] is requested. In particular, a manager should not assume that there will be
only one selection at a time in his domain. The existence of SaveAndSet and Restore
implies that the same manager code could have several pushed selections at once and
therefore would have several ManagerData records allocated at once.

39.2 Interface Items

39.2.1 Requestor items

39.2.1.1 Convert

Convert: PROCEDURE [target: Target, zone: UNCOUNTED ZONE « NIL]
RETURNS [value: Value];

Value: TYPE = RECORD [value: LONG POINTER, .. .];

nullValue: Value = [value: Nu,...];

39-56

39

Selection

39-6

Convert is a request to the current selection manager to produce the selection as a TYPE
specified by target, if possible. value.value will be a LONG POINTER TO the converted
selection. The TYPE of object pointed to by value.value depends on target and is described
below under Target. If the conversion requires that storage be allocated, it will be
allocated out of zone. If zone is defaulted, the system heap is used.

The value returned is read-only; it belongs to the manager. If the requestor wishes to (1)
keep the value after it returns to the system, or (2) pass the value to another process, it
must call Copy, Move, or CopyMove to make a copy of the value, which is then owned by
the requestor. If Copy, Move, or CopyMove is called, the requestor must still call Free.

If Copy, Move, or CopyMove is not called, the requestor must call Free after calling
Convert. This allows the manager to free any resources that were allocated to perform the
conversion. If Copy, Move, or CopyMove is called, the requestor then owns any resources
and may retain them indefinitely and/or may free them by calling Free.

There are other fields in the Value record, but the requestor need not be concerned with
them. They are described in the section on Manager Items

nullValue is returned if the selection manager does not implement the desired conversion,
or if the particular selection is incompatible with the target (e.g., Convert[integer] when
non-numeric characters are selected).

Target: TYPE = MACHINE DEPENDENT(
window(0), shell, subwindow, string, length, position,
integer, interpressMaster, file, fileType, token, help,
interscriptScript, interscriptFragment, serializedFile, name, firstFree, last(17778)};

Target describes the type of data to which a selection may be converted (see Convert).
Modules that manage the current selection may choose not to implement conversion to
some (or even most) of these types. The values described below are those stored in the
value field of the Selection.Value returned by Convert.

Special note for Targets that produce a stream.Handle: The stream.Object pointed to by the
stream.Handle is read-only. Thus the requestor cannot even read the stream because that
alters the stream state and thus the stream.Object. Before using the stream, the requestor

must do a Copy, after which the ownership of the storage for the stream.Object and any of

its ancillary data moves to the requestor. Note also that the stream itself is read-only even
after the Copy. The requestor should never attempt to write to the stream. After reading
the stream, the requestor can free the stream and any associated resources by calling
stream.Delete. Thus a typical stream requestor will do Convert[stream]; Copy[]; <read
stream>; stream.Delete[]; Note for selection managers: this last point means that the
stream.Delete must be able to free any ancillary data associated with the stream.

Note that some Target values refer to types that are not defined within the context of

ViewPoint. Such targets so far include pieceList, help, interscriptScript, and
interscriptFragment. Popular target types are included in the Selection interface as a
convenience for clients. New target types will be put either into a SelectionExtras
interface or, for little-used types, into private interfaces negotiated between managers and
requestors and using Selection.UniqueTarget. The TYPE associated with each Target is
determined by system-wide convention. Several of these TYPE/Target conventions are
defined here. Other TYpe/Target conventions are documented elsewhere, see §39.2.2.8,
UniqueTarget.

ViewPoint Programmer’s Manual 39

Fine Point: This Selection interface is intended to support both Tajo and ViewPoint clients, so there may be
Targets that do not make sense in one domain or the other. Targets that only make sense in one domain show that

domain in parentheses.
window

shell

subwindow

string

length

position

piecelList

integer

interpressMaster

file

fileType

token

help

yields a window.Handle for the window containing the selection.

yields a Starwindowshell.Handle for the window containing the
selection. (Star)

yields a window.Handle for the subwindow containing the
selection. (Tajo)

yields a LONG POINTER TO XString.ReaderBody (an Xstring.Reader)
representing the text of the selection. If the current selection is
too large, the manager of the selection may return nullValue
when asked to convert to a string. The requestor should then ask
to enumerate the selection as a sequence of smaller strings. Note:
The requestor must copy the ReaderBody before altering it.

yields a LONG POINTER TO LONG CARDINAL containing the length of the
selection in characters.

yields a LONG POINTER TO LONG CARDINAL containing the position
within the source.

yields a list of pieces, understood by the internals of Tajo’s
PieceSource interface. (Tajo)

yields a LONG POINTER TO LONG INTEGER containing the result of
converting the contents of the selection to a number.

yields a stream.Handle onto an Interpress master, according to the
Interpress standard.

yields a LONG POINTER TO NSFile.Reference for the file (if any)
associated with the selection, e.g., the backing file for a Star
document icon. When calling Copy, Move, or CopyMove, the
data parameter must be a LONG POINTER TO NSFile.Reference of the
parent directory to where the file should be copied or moved. (Star)

yields a LONG POINTER TO NSFile.Type for the file (if any) associated
with the selection. (Star)

yields a LONG POINTER TO XString.ReaderBody (an xstring.Reader)
that contains the first token of the current selection. Note: The
requestor must copy the ReaderBody before altering it.

yields a LONG POINTER to a value or data structure that specifies
what should happen if the HELP key is pressed. Consult the Help
documentation (not in this manual) for the exact TYPE.

39-7

39

Selection

39-8

interscriptScript yields a stream.Handle onto a complete script, according to the
Interscript standard. [t begins with the “Interscript 1.0 . . .”, and
is in machine code.

interscriptFragment yields a Stream.Handle onto a single Interscript node, in machine
code.

serializedFile A Target of serializedFile results in a Stream.Handle.
Stream.GetXXX operations can be performed on the stream. This is
useful for retrieving files from non-NSFile mediums such as a
floppy disk.

name A Target of name results in a Xstring.Reader that contains the
name of the object.

firstFree is used internally by UniqueTarget and should not be used by
clients.

ConvertNumber: PROCEDURE [target: Target]
RETURNS [ok: BOOLEAN, number: LONG UNSPECIFIED];

This procedure lets the requestor streamline his code in many cases. ConvertNumber calls
Convert and assumes that the resulting value.value references a 32-bit object. (This is
true of the targets length, position, integer, and fileType, and may also be true of targets
defined using UniqueTarget.) The object is returned as number, and the Value is then
freed (selection.Free). If the selection manager does not support the desired conversion (that
is, it returns nuliValue), or if the selection could not be converted to a number,
ConvertNumber returns ok:FALSE; otherwise, it returns ok:TRUE.

Free: PROCEDURE [v: ValueHandle];
ValueHandle: TYPE = LONG POINTER TO Value;
Free frees any storage associated with v. If the requestor has not done a Copy, Move, or

CopyMove, that storage is owned by the manager. After doing a Copy, Move, or
CopyMove, that storage is owned by the requestor.

39.2.1.2 Query

A requestor can determine exactly which Targets the current selection can be converted to
and how difficult the conversion would be. The most common way to do this is
CanYouConvert, which takes a Target and returns a BOOLEAN indicating whether the
selection can be converted to that Target. HowHard is similar to CanYouConvert but
returns a Difficulty. Query allows a requestor to determine the Difficulty of conversion for
an ARRAY of Targets.

Note: For all these queries, the manager is indicating how hard it would be to attempt to
convert the selection to that target type. Attempt is a key word. The manager might be
willing to attempt to convert the selection to an Interpress master and yet run out of disk
space when the conversion is actually requested. Likewise, the manager might support

ViewPoint Programmer’s Manual 39

conversion to integer, but the conversion could still fail if the selection contains invalid
characters.

CanYouConvert: PROCEDURE [target: Target, enumeration: BOOLEAN « FALSE]
RETURNS [yes: BOOLEAN] = INLINE {
RETURN [HowHard [target, enumeration] # impossible] };

CanYouConvert determines whether the selection manager supports conversions to the
specified target. enumeration = TRUE means the requestor wants to know if the manager
supports enumerating the selection in the specified target form. (See the section on
Enumeration below.)

HowHard: PROCEDURE [target: Target, enumeration: BOOLEAN « FALSE]
RETURNS [difficulty: Difficulty];

Difficulty: TYPe = {easy, moderate, hard, impossible};

HowHard determines the difficulty the selection manager would have attempting to
convert to the specified target. enumeration = TRUE means the requestor wants to know
the difficulty of enumerating the selection in the specified target form. (See the section on
Enumeration below.)

The difficulty ratings are interpreted roughly as follows:

easy Requires virtually no computation (other than allocating
storage for the Value). Example: length when the selection is
being maintained as two character indices within a string.

moderate Requires some amount of computation but nothing outrageously
time-consuming. Example: converting the above-mentioned
substring representation to a string or integer target.

hard Requires extensive computation. Example: interpressMaster.

impossible The selection manager does not support this conversion.
Query: PROCEDURE [targets: LONG DESCRIPTOR FOR ARRAY OF QueryElement];

QueryElement: TYPE = RECORD [
target: Target,
enumeration: BOOLEAN « FALSE,
difficulty: Difficulty « TRASH];

Query allows a requestor to determine the difficulty of conversion for several Targets. The
requestor should construct the ARRAY OF QueryElement, filling in target and enumeration
for each QueryElement. The manager will then store a Difficulty in each QueryElement
indicating how hard it would be to attempt to convert the selection to that target. The
requestor can then examine the difficulty field of each QueryElement after the call to

Query.

39.2.1.3 Enumeration

The selection is sometimes a collection of items (for example, several rows of a folder) or a
single large item that can be split up (for example, a long string can be broken into several

39-9

39

Selection

39-10

smaller ones). A requestor can request that each item or part of such selections be
converted to some Target by calling Selection.Enumerate. Enumerate is logically similar to
calling Convert for each item and the same storage ownership rules apply (see Convert).
Not all selection managers support enumerating the selection; for example, they do not

support. a selection that is more than one item. Often a requestor will call Convert and if

that fails (returns nullValue), call Enumerate.

Enumerate: PROCEDURE [
proc: EnumerationProc, target: Target, data: RequestorData « NiL,
zone: UNCOUNTED ZONE « NIL]
RETURNS [aborted: BOOLEAN];

EnumerationProc: TYPE = PROCEDURE [element: Value, data: RequestorDatal]
RETURNS [stOp: BOOLEAN « FALSE];

RequestorData: TYPE = LONG POINTER;

Enumerate is a request to the selection manager to enumerate the current selection,
converting each element to target. proc is called for each element. data is passed back to
proc each time it is called. As with the Value returned by Convert, the requestor must
consider each element o be read-only until Copy, Move, or CopyMove is called, and the
requestor may free the value by calling Free.

stop is returned from proc by the requestor and indicates whether the enumeration should
be stopped. aborted indicates whether the enumeration completed normally or terminated
prematurely.

If the manager cannot convert the selection to the target type or if the manager does not
implement enumeration, proc will not be called.

Reconversion: SIGNAL [
target: Target, zone: UNCOUNTED ZONE] RETURNS [Value];

ReconvertDuringEnumerate: PROCEDURE [
target: Target, zone: UNCOUNTED ZONE « NIL] RETURNS [Value];

A requestor may wish to reconvert the current item during an enumeration of the
selection. The requestor should call ReconvertDuringEnumerate, which will raise the
signal Reconversion. If the manager supports reconversion, it should catch the signal and
return the reconverted value. If the manager does not support reconversion, it should
ignore the signal. Enumerate will catch the signal and return nullValue.
ReconvertDuringEnumerate acts like Convert with respect to zone.

maxStringLength: CARDINAL = 200;

maxStringlength is the largest string that is produced by a Convert[string]. Further, a
manager that supports target: string should be prepared to yield strings up to this length,
and should never yield a string longer than this. Thus the requestor knows that (1)
Convert[string] will never produce too large a string, and (2) if Convert[string] fails but
the selection manager claims to support conversion to strings, the selection must be rather
long (and thus might be deemed uninteresting without further examination). If the

-~

ViewPoint Programmer’s Manual 39

requestor wants the selection as a string regardless of its length, he should use
Enumerate.

39.2.1.4 Copy, Move, Free, etc.

The Values produced by Convert and Enumerate are strictly read-only. The storage is
owned by the manager. The requestor may examine the data referenced by the value field
but must not alter it.

If the requestor wishes to (1) keep the value past when it returns to the system, or (2) pass
the value to another process, it must call Copy, Move, or CopyMove. These in turn invoke
a procedure supplied by the selection manager that modifies the Value such that the
requestor may then make changes to value.valuef without affecting the selection
manager. Fine Point: This procedure is returned by the manager as part of the Value record, but the requestor
never needs to know about these details. [f a Move is performed, the item is also deleted from the
manager’s domain. After the Move or Copy, any storage associated with the Value is now
owned by the requestor. This storage may be freed by calling Free.

For example, if the current selection is a document icon, then Convert[file] yields a Value
containing a LONG POINTER TO NSFile.Reference for the file containing the document. If the
requestor were to create a new document and associate it with the same file, it would
probably have undesirable effects. [nstead, the requestor should call Copy, giving it a LONG
POINTER TO NsFile.Reference for the destination directory of the new file. When Copy
returns, the Value contains a reference to a copy of the original file, and the requestor can
use this freely. Furthermore, whereas calling Free with the original Value might have
deleted the file (since the file then belonged to the manager, who might have created it
solely for the Convert request), calling Free for the new Value frees only the
nsrile.Reference storage (since the file is now a permanent object belonging to the
requestor).

Copy: PROCEDURE [v: ValueHandle, data: LONG POINTER] = INLINE {
CopyMovelv, copy, datal};

Move: PROCEDURE [v: ValueHandle, data: LONG POINTER] = INLINE {
CopyMovelv, move, data}};

CopyMove: ValueCopyMoveProc;

ValueCopyMoveProc: TYPE = PROCEDURE [
v: ValueHandle, op: CopyOrMove, data: LONG POINTER];

CopyOrMove: TYype = {copy, move};

Copy, Move, and CopyMove request the manager to make a copy of the converted
selection value (v.value 1) and, for Move, also delete the selection from the manager’s
domain. A requestor may call these procedures after calling Convert or from an
EnumerationProc while doing an Enumerate. data will be passed to the manager; what it
points to depends on the particular Target. data often points to a destination container for
the copied value. For example, for Target file, data is a LONG POINTER TO NsFile.Reference for
the destination directory. The exact meaning of data for each target is specified in the

39-11

39

Selection

description of that target under Target above. Copy, Move, and CopyMove may raise
Error [invalidOperation].

39.2.2 Manager Items

39.2.2.1 Set

39-12

Set: PROCEDURE [pointer: ManagerData, conversion: ConvertProg, actOn: ActOnProc];
ManagerData: TYPE = LONG POINTER;

The Set procedure allows a client to become the manager of the current selection by
supplying the Selection interface with a pair of procedures. The ActOnProc is called to

modify or manipulate the current selection. The ConvertProc is called to get the value of

the current selection. The value of pointer passed to Set is used as the data argument in
calls to conversion or actOn. pointer typically points to a record that describes what part
of the manager’s domain is currently selected. If there is already a selection manager
when Set is called, Set first calls that manager with ActOn[unmark] and ActOn[clear]. Set
automatically calls the new ActOnProc with an action of mark.

Either conversion or actOn can be explicitly NiL. If conversion is NIL, then Convert always

returns nullValue, Enumerate is a no-op, and Query will always respond impossible. If

actOn is NIL, then ActOn is a a no-op for all actions.

ConvertProc: TYPE = PROCEDURE [
data: ManagerData,
target: Target,
zone: UNCOUNTED ZONE,
info: Conversioninfo « [convert[]]]
RETURNS [value: Valuel;

Conversioninfo: TYPE = RECORD [SELECT type: * FROM
convert = > NULL,
enumeration = > [proc: PROCEDURE [Value] RETURNS [stop: BOOLEAN]],
query = > [query: LONG DESCRIPTOR FOR ARRAY OF QueryElement],
ENDCASE];

A ConvertProc is provided by a manager when becoming the manager; that is, when
calling Set or- SaveAndSet. The manager’s ConvertProc is called when a requestor calls
Convert, Enumerate, or Query. The ConvertProc should perform the conversion, the
enumeration, or the query. info is a variant record indicating which operation to perform:;
it contains data appropriate to each operation. The ConvertProc should use wiTH info
SELECT to determine which operation is requested. Each operation is described in detail in
the following sections. data is the pointer that was passed to Set or SaveAndSet and
typically points to a record that describes what part of the manager’s domain is currently
selected. target indicates the TYPE of object that the selection should be converted to and is
meaningful only for conversion and enumeration. zone should be used to allocate any
storage for the converted selection value and is meaningful only for conversion and
enumeration.

ViewPoint Programmer’s Manual 39

ActOnProc: TYPE = PROCEDURE [data: ManagerData, action: Action]
RETURNS [cleared: BOOLEAN « FALSE];

An ActOnProc is provided by the manager of the selection to perform various actions on
the selection. ActOnProc is fully described later in this chapter.

39.2.2.2 Conversion

Conversioninfo: TYPE = RECORD [SELECT type: * FROM
convert = > NULL,

ENDCASE];

Value: TYPE = RECORD [
value: LONG POINTER,
Ops: LONG POINTER TO ValueProcs « NiL,
context: LONG UNSPECIFIED « 0];

Convert calls the manager’s ConvertProc with convert Conversioninfo to perform the
requested conversion. The ConvertProc returns a value: Value. If the conversion can be
performed, value.value should point to the converted selection value; value.ops should
point to a pair of procedures, a ValueFreeProc that will release any resources that were
allocated to perform the conversion and a ValueCopyMoveProc that will copy or move the
converted value; value.context can be used to save any information that the pair of
procedures might need. value.ops and value.context are described in much more detail
later. If the manager does not support the requested Target or there is some problem with
the conversion, the ConvertProc should return nullValue. See Target for the effect of
different conversion targets.

If the conversion requires that an object be allocated, the ConvertProc should allocate it
out of zone. If the requestor passed a NiL zone to Convert, Convert passes the system zone
to ConvertProc. The ConvertProc can assume that it is always given a valid zone.

39.2.2.3 Query

Conversioninfo: Type = RECORD [SELECT type: * FROM
query = > [query: LONG DESCRIPTOR FOR ARRAY OF QueryElement],
ENDCASE];

QueryElement: TYPE = RECORD [
target: Target,
enumeration: BOOLEAN « FALSE,
difficulty: Difficulty « TRASH];

Query, HowHard, and CanYouConvert call the manager’s ConvertProc with query
Conversioninfo. The ConvertProc should examine the target and enumeration fields of
each QueryElement (these were filled in by the requestor) and fill in the difficulty field
indicating how hard it would be to attempt to convert the selection to that target
(enumeration = FALSE) or to convert the selection to an enumeration of that target
(enumeration = TRUE).

39-13

39

Selection

All managers are expected to implement queries; the assumption is that most difficulty
ratings can be determined simply by indexing into a constant array. The Value actually
returned by the ConvertProc in response to a query is ignored; nullValue or TRASH may be
returned.

Note that the manager is indicating how hard it would be to attempt to convert the
selection to that target type. Attempt is a key word. The manager might be willing to
attempt to convert the selection to an Interpress master, and yet run out of disk space
when the conversion is actually requested. Likewise, the manager might support
conversion to integer, but the conversion could still fail if the selection contains invalid
characters.

39.2.2.4 Enumeration

Conversioninfo: TYPE = RECORD [SELECT type: * FROM

enumeration = > [proc: PROCEDURE [Value] RETURNS [stop: BOOLEAN]],

ENDCASE];

Enumerate calls the manager’s ConvertProc with enumeration Conversioninfo. The
ConvertProc should convert each element or part of the selection according to target and
call proc for each element. The Value passed to proc is just as it is for conversion (see the
section on Conversion above and the following section). If proc returns stop = TRUE, the

ConvertProc should stop the enumeration and return. The Value returned by the

ConvertProc after an enumeration is ignored; nullValue or TRASH may be returned. Not all
selection owners are expected to implement enumerations; if an enumeration is requested
and not supported, the ConvertProc should simply return and take no other action. Fine
Point: The ConvertProc does not call the requestor’s EnumerationProc directly; rather. proc is inside Enumerate
and Enumerate calls the requestor’s EnumerationProc. This lets Enumerate insert the zone into the
Value.context if it is zero, just as Convert does for Values produced by a simple conversion.

maxStringlLength: CARDINAL = 200;

maxStringLength is the largest string that should be produced by a ConvertProc. Further,
a ConvertProc that supports target: string should be prepared to yield strings up to this
length, and should never yield a string longer than this. Thus the requestor knows that (1)
Convert[string] will never produce too large a string, and (2) if Convert[string] fails but
the selection manager claims to support conversion to strings, the selection must be rather
long (and thus might be deemed uninteresting without further examination).

39.2.2.5 Free, Copy, Move, etc.

39-14

ValueHandle: TYPE = LONG POINTER TO Value;

Value: TYPE = RECORD [
value: LONG POINTER,
Ops: LONG POINTER TO ValueProcs « NiL,
context: LONG UNSPECIFIED « 0];

ViewPoint Programmer’s Manual 39

39.2.2.5.1

The selection manager provides the value of the selection, or other selection-related
information, to the requestor by means of Value records. These records are typically either
returned by a ConvertProc or passed as elements to the requestor’s EnumerationProc. The
ops field defines the effect of Free, Copy, Move, and CopyMove. The context field may be
used to store data for use by the ops procedures. If the context field is defaulted (zero) by
the selection manager, Selection stores the zone that was passed to the ConvertProc there
before the Value is handed to the requestor.

ValueProcs: TYPE = RECORD [
free: ValueFreeProc « NiL,
copyMove: ValueCopyMoveProc « NiL];

ValueProcs are returned by the manager as part of a Value record. If the manager
allocated any resources to produce the converted selection value, then a ValueFreeProc
must be returned with the Value so that the resources can be released. free is called when
the requestor calls Free. If the converted selection value can be copied or moved, the
manager must return a ValueCopyMoveProc with the Value. For example, Targets string
and file can be moved or copied, while it does not make sense to move or copy Targets
window and fileType. copyMove will be called when the requestor calls Copy, Mave, or
CopyMove.

Free
ValueFreeProc: TYPE = PROCEDURE [v: ValueHandle];

If any resources were allocated to produce the converted selection value, they should be
released in the manager’s ValueFreeProc. The ValueFreeProc is returned as part of the ops
field of a Value. The ValueFreeProc will be called when the requestor calls Free. v points to
the Value that represents the converted selection.

Defaults are provided such that for the most common case when the ConvertProc simply

_allocates one node of storage from the passed zone, the manager need not supply a

ValueFreeProc. Selection takes care of freeing the storage when the requestor calls Free.
The details of how this works are as follows:

The manager’s ConvertProc takes a zone that Selection guarantees is valid. The manager
should allocate any storage for the converted selection value from that zone. The
ConvertProc can store the zone in the context field of the Value record (or in a record
pointed to by the context field); then the ValueFreeProc can retrieve this zone to free the
storage. Selection stores this zone in the context field if context is zero (the default) in the
Value returned by the ConvertProc (or passed to the EnumerationProc). v.value points at
the converted selection object to be freed. Now, Free calls FreeStd if the Value passed to
Free has ops = NiL or ops.free = NiL. FreeStd treats v.context as a zONE and calls
v.context.FREE[@v.value].

If there are in fact no resources that should be freed (for example, after Convert{window]),
the selection manager should use NopFree as the ValueFreeProc. (See also
nopFreeValueProcs.)

39-15

39

Selection

FreeStd: ValueFreeProc;

FreeStd assumes the resources of the Value can be freed by treating v.context as a ZONE
and calling v.context.FREe[@v.value]. If a Value has ops = NiLor ops.free = NiL, Free will
call FreeStd.

NopFree: ValueFreeProc;

The NopFree procedure should be used as the ops.free for a Value involving no temporary
resources owned by the selection manager. Thus, a Value created by Convert[window]
would probably use NopFree, as would Convert[string] if the Value.value pointed to a
permanent Xstring.ReaderBody belonging to the manager.(See also nopFreeValueProcs.)

39.2.2.5.2 Copy and Move

39-16

ValueCopyMoveProc: TYPE = PROCEDURE [
v: ValueHandle, op: CopyOrMove, data: LONG POINTER];

CopyOrMove: TYrPe = {copy, move};

The manager’s ValueCopyMoveProc is called to copy or move the converted selection
value. A ValueCopyMoveProc is returned by the manager’s ConvertProc as part of the ops
field of a Value. The ValueCopyMoveProc is called when the requestor calls Copy, Move,
or CopyMove. The ValueCopyMoveProc should modify the Value such that it no longer
involves any manager-owned storage. [f a Move is performed, the item is also deleted from
the manager’s domain. (Some managers may implement Copy but raise
Error[invalidOperation] if asked to do a Move.) data is the data parameter that the
requestor passed to copy or move. It is often a pointer to the destination container for the
copied value. The interpretation of data depends on the Target; it is specified in the
description of each target under Target above. v points to the Value representing the
converted selection. op indicates whether to do a copy or move. Note: v.context can be
used by the manager to save information between the ConvertProc and the
ValueCopyMoveProc.

The ValueCopyMoveProc should release (or perhaps simply turn over control of) any
resources that were allocated by the ConvertProc to produce the original converted value.
Conceptually, the ValueCopyMoveProc makes a copy of the converted value, then releases
any resources that were used to produce the original converted value. If the original
converted value itself was a copy produced by the conversion process, this effect might be
achieved by doing nothing -- the requestor just becomes the owner of the copy.

If the converted value can only be copied once (the typical case), the ValueCopyMoveProc
should also set v.ops.copyMove to NIL to prevent the manager’s ValueCopyMoveProc from
being called again. If the requestor does call Copy or Move again, Selection raises Error
[invalidOperation].

The ValueCopyMoveProc should also ensure that v.ops.free and v.context have
appropriate values so that when the requestor calls Free, the right thing happens. For
example, if the newly copied selection was allocated from a zone, v.ops.free should free it
from that zone (see ValueFreeProc and FreeStd); or if the newly copied selection has no
storage allocated for it, v.ops.free should be NopFree.

ViewPoint Programmer’s Manual ' 39

nopFreeValueProcs: READONLY LONG POINTER TO ValueProcs; -- @[NopFree, NiL]

This is provided for use as the ops vector in Values that require no temporary storage and
that cannot be moved or copied. The window and subwindow Targets typically produce
such values.

FreeContext: PROCEDURE [v: ValueHandle, zone: UNCOUNTED ZONE] = INLINE {
zone.FREE[LOOPHOLE[@v.context, LONG POINTER TO LONG POINTER]];
v.context «-LOOPHOLE[zOne]};

When the requestor calls Copy or Move, the manager’s ValueCopyMoveProc is expected
to modify the Value that it no longer involves any manager-owned storage. If the manager
has been using the context field as a pointer to additional private data, this private data
must be freed. This would normally require merely a zone.FREe[@v.context]; however,
since the context is a LONG UNSPECIFIED, a LOOPHOLE is needed. FreeContext hides this
LOOPHOLE from the implementor and does the required zone.FReE. It also stores the zone in
place of v.context, for possible later use by FreeStd.

39.2.2.6 ActOn

ActOnProc: TYPE = PROCEDURE [data: ManagerData, action: Action]
RETURNS [cleared: BOOLEAN « FALSE];

An ActOnProc is provided by the manager of the selection to perform various actions on
the selection. data is the pointer that was passed to Set or SaveAndSet and typically points
to a record that describes what part of the manager’s domain is currently selected. action
indicates what action to perform (see Action below). An ActOnProc should return cleared:
TRUE if the action resulted in the selection being cleared; that is, the manager is no longer
responsible for the selection. (This should always be the case for action: clear and may also
occur for delete or clearifHasInsert.)

Action: TYPE = MACHINE DEPENDENT{
clear(0), mark, unmark, delete, clearifHaslinsert, save, restore, firstFree, last(255)};

clear unselects the current selection by freeing any associated
private data, undoing TIP notification changes, etc.

mark highlights the current selection. If the selection is already
highlighted, this is a no-op.

unmark dehighlights the current selection. If the selection is not
already highlighted, this is a no-op.

delete deletes the contents of the current selection. The selection
manager may decide against actually deleting it.

clearlfHasInsert same as unmark plus clear, but only if the insertion point
(input focus) is in the selection. This action is used when a
secondary selection has been completed (for copy-from); if the
place to which the secondary selection is to be copied (the
insertion point) is within the selection itself, the selection is

39-17

39 Selection

cleared after obtaining its contents and before the insertion
takes place.

save unselects the current selection, but does not necessarily free
any associated private data, because the selection is expected
to be restored later. This action will often be a no-op, but the
manager might need to undo a special TIP notifier, for example.

restore restores a previously saved selection.

firstFree is used internally by UniqueAction and should not be used by

clients.

Observe that, contrary to the interpretations used in the XDE Selection interface, the
clear action does not dehighlight the selection. Selection.Clear (usually) does an explicit
unmark before clearing the selection. Likewise, save does not imply unmark, nor does
restore imply mark. This lets a client choose to leave a primary selection highlighted
while a secondary selection is being made.

39.2.2.7 Save and Restore

39-18

SaveAndSet: PROCEDURE [
pointer: ManagerData, conversion: ConvertProc, actOn: ActOnProc,
unmark: BOOLEAN « TRUE]
RETURNS [old: Saved];

SaveAndSet is the same as Selection.Set except that the existing selection, if any, is told to
ActOn[save] rather than ActOn[clear]. That is, the existing selection is expected to retain
any private state so that it can later be restored via Selection.Restore. If it subsequently
turns out that the saved selection is never going to be restored, it should be given to
Selection.Discard so that the former selection manager will have a chance to discard any
associated private data. A saved selection must always be given eventually to either
Restore or Discard; furthermore, once that has been done, the Selection.Saved must not be
used for anything else.

It is perfectly acceptable to call SaveAndSet when there is no selection. If the resulting
Selection.Saved is passed to Selection.Restore, it acts like selection.Clear. Also, unlike for
Clear, ClearOnMatch, and Restore, it is quite reasonable to call SaveAndSet with unmark:
FALSE, thereby requesting that the saved selection remain highlighted while a secondary
selection is performed. If this is done, the caller will usually wish to specify mark: FaLSE
when the saved selection is restored. Note: Calling SaveAndSet with unmark: raLsE does
not necessarily mean that the old selection is marked. The selection manager, or some
other client, might have unmarked it. The present caller is simply saying, “Do not change
the highlighting on my account,” but has no way of knowing whether the saved selection is
in fact highlighted. That is why it is always up to the selection manager to decide whether
ActOn[mark] or ActOn{unmark] is a no-op.

Saved: TyeE [6];

Objects of this type are created by Selection.SaveAndSet to encapsulate a selection that is to
be restored later. It is opaque to prevent requestors from invoking the manager directly.

ViewPoint Programmer’s Manual 39

Restore: PROCEDURE [saved: Saved, mark, unmark: BOOLEAN « TRUE];

This procedure re-institutes a previously saved selection as the current manager. The
existing selection, if any, is requested to ActOn[unmark] (unless unmark is FALSE; see
Selection.Clear) and then ActOn[clear]. The selection being restored is asked to
ActOn[restore] and then ActOn[mark] (unless mark is FALSE).

Discard: PROCEDURE [saved: Saved, unmark: BOOLEAN « TRUE];

If a client, having saved somebody else’s selection (see SaveAndSet), determines that it
should never be restored, he should call this procedure to free the associated resources.
The current selection is not affected. The ActOnProc of the saved selection is called with
action: unmark (unless unmark is FALSE; see Clear) and again with action: clear. Thus the
ActOnProc must be prepared to handle these operations while the corresponding selection
is saved.

39.2.2.8 Miscellaneous

On all of the procedures below, use unmark: FALSE only if you know the area of the screen
containing the selection is going to be repainted soon anyway; for example, if the window
is going away.

Clear: PROCEDURE [unmark: BOOLEAN « TRUE];

The Clear procedure requests that the current selection be cleared. It is equivalent to
calling ActOn[clear], preceded by ActOn[unmark] if unmark is TRUE. The only time unmark
should be FALSE is if the caller knows the area of the screen containing the selection is
going to be repainted soon anyway; for example, if the window containing the selection is
going away. ‘

ClearOnMatch: PROCEDURE [pointer: ManagerData, unmark: BOOLEAN « TRUE];

[t is sometimes difficult to determine if you are the manager of the current selection. The
ClearOnMatch procedure is the same as Clear except that no action is taken unless pointer
matches the ManagerData of the current selection. ClearOnMatch is equivalent to I
Selection.Match[pointer] THEN Selection.Clear[unmark].

ActOn: PROCEDURE [action: Action];

The ActOn procedure communicates a request for an action to the manager of the current
selection. (See also UniqueAction.) Calling ActOn{clear] is not recommended, since there
would be a tendency to forget to unmark first. Use Selection.Clear instead.

Match: PROCEDURE [pointer: ManagerData] RETURNS [match: BOOLEAN];

This procedure returns TRUE if the caller is the current selection manager, which is
assumed to be the case if and only if pointer is equal to the ManagerData associated with
the current selection (as specified by Set, SaveAndSet, or Restore). Note: A selection
manager may opt to have Nit as the ManagerData. In this case, the manager should not
use Match since it would not be able to distinguish itself from other managers using Nit.

39-19

39

Selection

However, Match[NiL] always returns FALSE if there is no selection; that is, after
Selection.Clear.

UniqueTarget: PROCEDURE RETURNS [Target];

The UniqueTarget procedure allows a client to define its own private conversion type. [t
returns a new Target in [firstFree..last]. May raise Error [tooManyTargets]. The use of
private target types severely limits the exchange of information between applications and
should be avoided if possible.

UniqueAction: PROCEDURE RETURNS [Action];

The UniqueAction procedure allows an application to define its own private operations on
the selection. It returns a new Action in [firstFree..last]. May raise Error
[tooManyActions].

39.2.3 Errors

Error: ERROR [code: ErrorCode];

ErrorCode: TYPE = {
tooManyActions, tooManyTargets, invalidOperation,
operationFailed, didntAbort, didntClear};
tooManyActions may be raised by UniqueAction.

tooManyTargets may be raised by UniqueTarget.

invalidOperation raised if Copy or Move is called with a Value that does not
implement the operation.

operationFailed may be raised by a ValueCopyMoveProc if the operation is
permitted but nevertheless fails, for example due to an NSFile
error.

didntAbort and didntClear are never raised.

39.3 Usage/Examples

39.3.1 What Selection Is NOT

39-20

The trash bin and insertion features of the Mesa interface are not supported. If they are
needed, a separate (smaller) interface should be created for them, as they do not really
require the generality available for actual selections.

The Selection interface could, in theory, be extended to keep track of objects other than the
current selection. A parameter could be added to Set, Convert, Enumerate, etc., that would
describe the data object to be manipulated; the default would be the highlighted selection.
Thus general information handles could be passed among modules, allowing one module
to access another’s data in whatever target format is most convenient. If there is sufficient

ViewPoint Programmer’s Manual 39

demand for such a facility, it may be added someday. (It would probably call for a more
suitable name than “Selection”. Perhaps “OpaqueData”?)

39.3.2 Random Details
Requestors need to understand one slightly tricky concept: if they want the selection as a
string and are prepared to handle very large strings, they should also be prepared to get

the selection as an enumeration of strings if the selection is longer than
Selection.maxStringLength. (The XDE Selection.Source mechanism has been eliminated.)

39.3.3 Examples of Storage Allocation for Manager’s ConvertProc

Here the various storage allocation cases are discussed that arise, depending on Target,
how the selection is maintained by the manager, ete.

® Simplest case: no storage associated with this Target, no copy/move.
¢ Example: selection is a string in a window and Target = window.
® Manager’s ConvertProc should have:
RETURN [[value: window, ops: Selection.nopFreeValueProcs]]

There is nothing allocated, nothing to free, so ops.free is Selection.NopFree. [t makes no
_sense to copy or move a window this way, so ops.copyMove isNIL.

® Slightly more complex case: no storage associated with this Target, allow copy/move.

o Example: selection is a piece of a larger backing string and is maintained as an
xstring.ReaderBody and Target = string.

® Manager’s global frame:
myValueProcs: selection.ValueProcs « [
free: selection.NopFree, copyMove: CopyMoveString];
SelectionData: TYPE = RECORD [substring: xstring.ReaderBody,...];
-- substring points at the same bytes as the backing string

® Manager’s ConvertProc:

OPEN selectionData: NARROW [data, LONG POINTER TO SelectionDatal;
RETURN [[value: @selectionData.substring, ops: @myValueProcs] |;
-- Selection will put zone into the context field.

Here the requestor points directly at the SelectionData.substring. The value.value 1
cannot be changed by the requestor until after the CopyMoveString is called.

® Manager’s CopyMoveString:

39-21

39 Selection

v.value « xstring.CopyReader [r: NARROW [v.value, xstring.Reader], %
Z: NARROW [v.context, UNCOUNTED ZONE]];]
v.ops.free «nNiL;

After doing the copy, v.ops.free is replaced with NiL, which causes Free to call FreeStd,
which frees the copied ReaderBody and bytes. Note: CopyReader allocates both the
ReaderBody and the bytes from a single allocation unit.

Note: The storage for the SelectionData is allocated when he Selection.Set is done and
deallocated when ActOn [clear] is called.

¢ Typical case: some storage dssociated with this Target, allow copy/move

Example: selection is a piece of a larger backing string and is maintained as an

°
Environment.Block and Target = string.
® Manager’s global frame:
myValueProcs: Selection.ValueProcs « [free: NiL, copyMove: CopyMoveString |;
SelectionData: TYrPe = RECORD [block: Environment.Block,... |;
-- block represents the selection.
-- block.pointer points to the backing string.
® Manager’s ConvertProc:
OPEN selectionData: NARROW [data, LONG POINTER TO SelectionData]; | i
RETURN [['
value: zone.NEw [xstring.ReaderBody «
xstring.FromBlock [selectionData.block],
ops: @myValueProcs] |;
-- Selection will put zone into the context field.
-- ops.free = NIiLmeans that FreeStd will be called.
Here we allocate a ReaderBody that points directly into our backing string. Free will call
FreeStd, which will free the ReaderBody.
¢ Manager’s CopyMoveString:
OPEN zone: NARROW [v.context, UNCOUNTED ZONE] ;
OPEN selectionSubstring: NARROW [v.value, xstring.Reader] ;
v.value « xstring.CopyReader [selectionSubstring, zone |;
zone.rrReE [@selectionSubstring]; -- frees the ReaderBody
CopyReader copies both the ReaderBody and the bytes. After doing the copy, we free the
ReaderBody. Note: After the copy, Free will still call FreeStd, which will free the copied
ReaderBody and bytes.
39.3.4 Detailed Flowchart of a Selection.Convert
Ay,

Following is the exact sequence of events that takes place in performing a i

Selection.Convert, showing what the requestor does, what the manager does, and what
Selection does. Various storage allocation cases arise, depending on the Target, what the

39-22

ViewPoint Programmer’s Manual 39

requestor wants to do, etc.Most of the cases are covered here. This will be most useful to
managers, but anyone desiring an overall understanding of Selection will benefit from
following these details.

Requestor calls selection.Convert.

Convert calls the manager’s ConvertProc. If the requestor provided a NiL zone, Convert
passes Heap.systemZone.

Manager constructs a Value, potentially allocating storage for value.value T and/or
for value.context 1 . value.ops may or may not be provided, depending on the selection
Target and the manager. Manager returns value to Convert.

If value.context is defaulted, Convert puts zone into value.context and returns to
requestor.

If requestor just wants to look at the converted value (not copy or move it):
® Requestor looks at value.value 1.
® Requestor calls Selection.Free [@value];
e [fvalue.ops is NiLor value.ops.free is NiL:
® Freecalls FreeStd.

® FreeStd recovers the zone from value.context, does a zone.FREE
[@value.value], and replaces value.ops with [free: NopFree, copyMove: NiL].

® [fvalue.ops.free is not NiL:
® Free calls value.ops.free [@value] (that is, the manager’s ValueFreeProc).

® The manager’s ValueFreeProc recovers the zone from value.context (possibly
a field in a record pointed to by value.context) and releases any resources that
were allocated in the ConvertProc. This includes not only the obvious freeing
of storage from the zone (zone.FRee [@value.value] and/or selection.FreeContext
[@value, zonel), but also, for example, closing or deleting any files that were
created.

¢ END
If the requestor wants to move or copy the selection:

® Requestor calls Selection.Move, Selection.Copy, or Selection.CopyMove, perhaps
passing in data: LONG POINTER , which points to a destination for the move/copy.

® If value.ops is NiL or value.ops.copyMove is NiL, CopyMove raises Error
[InvalidOperation]. Otherwise, CopyMove calls value.ops.copyMove [@value,
{copy, move}, data] (that is, the manager’s ValueCopyMoveProc).

® The manager’s ValueCopyMoveProc recovers the zone from value.context, gets
the destination of the move/copy from data (if appropriate), does the move or copy,

39-23

39

Selection

calls selection.FreeContext [@value, zone] if necessary, does a zoOne.FREE
[@oldValue.value] if necessary. Note: This is freeing the original value.value, not
the copied one! Now the manager can either leave value.ops.free as is, or replace
value.ops.free with Selection.FreeStd (if the newly copied value was allocated from
zone and zone is in value.context), or replace value.ops.free with
selection.NOpFree (if there is nothing left to free).

® CopyMove replaces value.ops.copyMove with NiL to prevent another copy or move
from being done. ’

® Requestor may retain the copied value indefinitely and/or call Selection.Free to free
the copied value after using it (see above).

e END

39.3.5 Sample ConvertProc and Requestor

39-24

In this example of a simple selection manager, the selection is represented internally as a
pair of indices within a single Mesa STRING. The string is inside a window. The indices
designate the first character selected and the position beyond the last character selected.
It isassume that there are several windows of this type, and that each contains a single
string within which selections may be made. It is also assumed that the manager’s module
contains a procedure TextForWindow that obtains the string associated with a window,
and various other obvious utilities and signals. The procedure Select makes a new
selection.

A ConvertProc is shown that implements the common targets. Observe the extremely
heavy use of the defaults for the ops and context fields in the Value records. Since the
Selection interface detects these defaults and applies the most common interpretations for
Copy, Move, and Free, both the requestor and the manager are spared much of the coding
effort.

-- use dynamic storage for data; global variables make savelrestore awkward
myZone: UNCOUNTED ZONE = ...;
SelectionData: TYPE = RECORD |

w: window.Handle, -- window containing this selection

left, right: CARDINAL,

marked: BOOLEAN & FALSE];

ValueContext: TYPE = RECORD [-- for use in Value.context fields
zone: UNCOUNTED ZONE,
w: Window.Handle];

Select: PROCEDURE [w: window.Handle, left, right: carDINAL] = {
text: LONG STRING = TextForWindow([w];
IF text = NiL OR left > text.length OR right NOT IN [left..text.length] THEN
ERROR BogusSelection;
Selection.Set[
myZone.NEW[SelectionData « [w, left, right]],
ConvertSelection, ActOnSelection]};

ViewPoint Programmer’s Manual 39

ConvertSelection: selection.ConvertProc = {
< < [data: ManagerData, target: Target, zone: UNCOUNTED ZONE, info: Conversioninfo]
RETURNS [value: Value] > >
OPEN selectionData: NARROW [data, LONG POINTER TO SelectionDatal;
WITH i:info SELECT FROM
query = >
FOR ¢: CARDINAL IN [0..LENGTH[i.query]) bo
i.query[c].difficulty «
IF ~i.query[c].enumeration THEN SELECT i.query{c].target FROM
window, string, length, position = > easy,
integer = > moderate,
ENDCASE = > impossible
ELSE --enumerated-- f i.query[c].target = string THEN moderate
ELSE impossible;
ENDLOOP;
convert = >
SELECT target FROM
window = > ReTURN[| selectionData.w, Selection.nopFreeValueProcs]];
length = > RETURN[[zOne.NEW[LONG CARDINAL «
selectionData.right - selectionData.left]]];
position = > RETURN[[zOne.NEW[LONG CARDINAL « selectionData.left]]];
string, integer = >
iF selectionData.right - selectionData.left > selection.maxStringLength THEN
RETURN([Selection.nullValue]
ELSE {
bik: Environment.Block = [LOOPHOLE[@TextForWindow(rec.w].text],
selectionData.left, selectionData.right];
r: Xstring.ReaderBody « Xstring.FromBlock[bik];
IF target = integer THEN {
bad: BOOLEAN & FALSE;
numM: LONG INTEGER; .
num « Xstring.StringToNumber[@r
! xstring.InvalidNumber, xstring.Overflow = >
{bad « TRUE; CONTINUE}];
RETURN[IF bad THEN Selection.nullValue ELSE
[zone.NEW[LONG INTEGER ¢~ num]]1};
-- target = string
RETURN(][
value: zone.NEw(xstring.ReaderBody «r],
ops: @stringOps,
context: zone.New([ValueContext « [zone, selectionData.wl]]1};
ENDCASE;
enumeration = > IF target = string THEN {
blk: Environment.Block « [LooPHOLE[@TextForWindow(selectionData.w].text],
selectionData.left, TRASH];
wHILE block.startindex < selectionData.right po
block.stopindexPlusOne «
min[block.startindex + Selection.maxStringLength, selectionData.right];
IF i.proc[[
value: zone.NEw([xstring.ReaderBody & xstring.FromBlock([blk]],
ops: @stringOps,
context: zone.NEw[ValueContext «- [zone, selectionData.w]] |

39-25

39

Selection

39-26

].stop THEN EXIT;
block.startindex « block.stopindexPlusOne;
ENDLOOP};
ENDCASE;
RETURN[Selection.nullValuel};

stringOps: Selection.ValueProcs « [FreeString, CopyString];

FreeString: selection.ValueFreeProc -- [v: ValueHandle] -- = {
context: LONG POINTER TO ValueContext = v.context;
context.zone.FRee[@v.value]; -- free the ReaderBody, but not the text bytes
selection.FreeContext| v, context.zonel};

CopyString: selection.ValueCopyMoveProc = {
< < [v: ValueHandle, op: CopyOrMove, data: LONG POINTER] > >
context: LONG POINTER TO ValueContext = v.context;
old: xstring.Reader = v.value;
IF Op = move THEN ERROR Selection.Error[invalidOperation];
v.value « xstring.CopyReader[old, context.zone];
context.zone.FrRee[@old];
Selection.FreeContext[v, context.zone];
v.ops.free «NIL};

ActOnSelection: selection.ActOnProc = {
< < [data: ManagerData, action: Action] RETURNS [cleared: BOOLEAN « FALSE] > >
OPEN selectionData: NARROW [data, LONG POINTER TO SelectionDatal;
SELECT action FROM
mark, unmark = > if selectionData.marked # (action = mark) THEN
InvertHighlighting[rec];
save, restore = > NULL; -- no special action need be taken
delete = > NuLL; -- deletion is not allowed via this interface
clearifHasinsert = > NuLL; -- assume that this tool never has the insertion point
clear = > {myZone.rrRee[@data]; cleared « TRUE};
ENDCASE};

Here are three sample requestors that might invoke the above manager code. The first
requestor wishes to interpret the selection, if possible, as a string of digits and obtain the
corresponding integer value. The second wishes to open a file whose name is the current
selection. (Assume the existence of an NSFile routine that deals with XString-format file
names.) The third wishes to copy the current selection to a Stream unless the selection
comprises more than 10000 characters Since copying an NSFile to an arbitrary Stream is
awkward at best, it does not use Convert[file], but rather attempts to get the selection as
one or more strings to send to the Stream.

-- Example 1: obtain selection as an integer and do something with it
NuUM: L