
XEROX Interlisp-D Reference Manual
Volume II: Environment

3101273
October, 1985

Copyright (c) 1985 Xerox Corporation

All rights reserved.

Portions from" Interlisp Reference Manual" Copyright (c) , 983
Xerox Corporation, and It Interlisp Reference Manual" Copyright
(c) 1974, 1975, 1978 Bolt, Beranek & Newman and Xerox
Corporation.

This publication may not be reproduced or transmitted in any
form by any means, electronic, microfilm, xerography, or
c)therwise, or incorporated into any information retrieval system,
without the written permission of Xerox Corporation.

TABLE OF CONTENTS

13. Interlisp Executive 13.1

13.1. Input Formats 13.3

13.2. Programmer's Assistant Commands 13.5

13.2.1. EventSpecification 13.6

13.2.2. Commands 13.8

13.2.3. P.A. Commands Applied to P.A. Commands 13.20

13.3. Changing The Programmer's Assistant 13.21

13.4. Undoing 13.26

13.4.1. Undoing Out of Order 13.27

13.4.2. SAVESET 13.28

1·3.4.3. UNDONLSETQ and RESETUNDO 13.29

13.5. Format and Use of the History List 13.31

13.6. Programmer's Assistant Functions 13.35

13.7. The Editor and the Programmer's Assistant 13.43

14. Errors and Breaks 14.1

14.1. Breaks 14.1

14.2. Break Windows 14.3

14.3. Break Commands 14.5

14.4. Controlling When to Break 14.13

14.5. Break Window Variables 14.14

14.6. Creating Breaks with BREAK1 14.16

14.7. Signalling Errors 14.19

14.8. Catching Errors 14.21

14.9. Changing and Restoring System State 14.24

14.10. Error List 14.27

15. Breaking, Tracing, and Advising 15.1

15.1. Breaking Functions·and Debugging 15.1

15.2. Advising 15.9

15.2.1. Implementation of Advising 15.10

TABLE OF CONTENTS TOC. 1

TABLE OFCONTENTS

15.2.2. Advise Functions 15.10

16. List Structure Editor 16.1

16.1. DEdit 16.1

16.1.1. Calling DEdit 16.2

16.1.2. Selecting Objects and Lists 16.4

16.1.3. Typing Characters to DEdit 16.5

16.1.4. Copy-Selection 16.5

16.1.5. DEdit Commands 16.6

16.1.6. Multiple Commands 16.10

16.1.7. DEdit Idioms 16.10

16.1.8. DEdit Parameters 16.12

16.2. Local Attention-Changing Commands 16.13

16.3. Commands That Search 16.18

16.3.1. Search Algorithm 16.20

16.3.2. Search Commands 16.21

16.3.3. Location Specification 16.23

16.4. Commands That Save and Restore the Edit Chain .16.27

16.5. Commands That Modify Structure 16.29

16.5.1. Implementation 16.30

16.5.2. The A, 8, and: Commands 16.31

16.5.3. Form Oriented Editing and the Role of UP 16.34

16.5.4. Extract and Embed 16.35

16.5.5. The MOVE Command 16.37

16.5.6. Commands That Move Parentheses 16.40

16.5.7. TO and THRU 16.42

16.5.8. The R Command 16.45

16.6. Commands That Print 16.47

16.7. Commands for Leaving the Editor 16.49

16.8. Nested Calls to Editor 16.51

16.9. Manipulating the Characters of an Atom or String 16.52

16.10. Manipulating Predicates and Conditional Expressions 16.53

16.11. History commands in the editor 16.54

16.12. Miscellaneous Commands 16.55

16.13. Commands That Evaluate 16.57

TOC.2 TABLE OF CONTENTS

TABLE OF CONTENTS

16.14. Commands That Test 16.60

16.15. Edit Macros 16.62

16.16. Undo 16.64

16.17. EDITDEFAULT 16.66

16.18. Editor Functions 16.68

16.19. Time Stamps 16.76

17. File Package 17.1

17.1. Loadi ng Files 17.5

17.2. Storing Files 17.10

17.3. Remaking a Symbolic File 17.15

17.4. Loading Files in a Distributed Environment 17.16

17.5. Marking Changes 17.17

17.6. Noticing Files 17.19

17.7. Distributing Change Information 17.21

17.8. File Package Types 17.21

17.8.1. Functions for Manipulating Typed Definitions 17.24

17.8.2. Defining New File Package Types 17.29

17.9. File Package Commands 17.32

17.9.1. Functions and Macros 17.34

17.9.2. Variables 17.35

17.9.3. Litatom Properties 17.37

17.9.4. Miscellaneous File Package Commands 17.38

17.9.5. DECLARE: 17.40

17.9.6. Exporting Definitions 17.42

17.9.7. FileVars 17.44

17.9.8. Defining New File Package Commands 17.45

17.10. Functions for Manipulating File Command Lists 17.48

17.11. Symbolic File Format 17.50

17.11.1. Copyright Notices 17.52

17.11.2. Functions Used Within Source Files 17.54

17.11.3. File Maps 17.55

18. Compiler 18. 1

18.1. Compiler Printout 18.3

18.2. Global Variables 18.4

TABLE OFCONTENTS TOC3

TABLE OF CONTENTS

18.3. Local Variables and Special Variables 18.5

18.4. Constants 18.7

18.5. Compiling Function Calls 18.8

18.6. FUNCTION and Functional Arguments 18.10

18.7. Open Functions 18.11

18.8. COMPILETYPELST 18.11

18.9. Compiling CLISP 18.11

18.10. Compiler Functions 18.13

18.11. Block Compiling 18.17

18.11.1. Block Declarations 18.17

18.11.2. Block Compiling Functions 18.20

18.12. Compiler ErI'or Messages 18.22

19. Masterscope 19.1

19.1. Command Language 19.3

19.1.1. Commands 19.4

19.1.2. Relations 19.7

19.1.3. Set Specifications 19.10

19.1.4. Set Determi ners 19.13

19.1.5. Set Types 19.13

19.1.6. Conjunctions of Sets 19.14

19.2. SHOW PATHS 19.15

19.3. Error Messages 19.17

19.4. Macro Expansion 19.17

19.5. Affecting Masterscope Analysis 19.18

19.6. Data Base Updating 19.22

19.7. Masterscope Entries 19.22

19.8. Noticing Changes that Require Recompiling 19.25

19.9. Implementation Notes 19.25

20. DWIM 20.1

20.1. Spelling Cor""'dion Protocol 20.4

20.2. Parentheses Errors Protocol 20.5

20.3. Undefined Function TErrors 20.6

20.4. DWIM Operation 20.7

20.4.1. DWIM Correction: Unbound Atoms 20.8

TOC.4 TA3LE OF CONTENTS

TABLE OF CONTENTS

21.1. CLiSP Interaction with User

21.2. CLiSP Character Operators

21.3. Declarations

21.4. CLiSP Operation

21.5. CLiSP Translations

21.6. DWIMIFY 21.18 --
21.7. CLiSPIFY 21.22

21.S. Miscellaneous Functions and Variables 21.25 --
21.9. CLiSP Internal Conventions 21.27 --

22. Performance Issues 22.1

23. Processes

TABLE OF CONTENTS

22.1. Storage Allocation and Garbage Collection 22.1

22.2. Variable Bindings 22.5

22.3. Performance Measuring 22.7

22.3.1. BREAKDOWN 22.9

22.4. GAINSPACE 22.11

22.5. Using Data Types Instead of Records 22.13

22.6. Using Incomplete File Names 22.13

22.7. Using "Fast" and "Destructive" Functions 22.14
--------~--

23.1. Creating and Destroying Processes

23.2. Process Control Constructs

23.3. Events

23.4. Monitors

23.1

23.2

23.5

23.7

23.8

TOCS

TABLE OF CONTENTS

23.5. Global Resources 23.10

23.6. Typei n and the TTY Process 23.11

23.6.1. Switching the TTY Process 23.12

23.6.2. Handling of Interrupts 23.14

23.7. Keeping the Mouse Alive 23.15

23.8. Process Status Window 23.16

23.9. Non-Process Compatibility 23.17

Toe6 TAB LE OF CON TENTS

TABLE OF CONTENTS

13. Interlisp Executive 13.1

13.1. Input Formats 13.3

13.2. Programmer's Assistant Commands 13.5

13.2.1. Event Specification 13.6

13.2.2. Commands 13.8

13.2.3. P.A. Commands Applied to P.A. Commands 13.20

13.3. Changing The Programmer's Assistant 13.21

13.4. Undoing 13.26

13.4.1. UndoingOutofOrder 13.27

13.4.2. SAVESET 13.28

13.4.3. UNDONLSETQ and RESETUNDO 13.29

13.5. Format and Use of the History List 13.31

13.6. Programmer's Assistant Functions 13.35

13.7. The Editor and the, Programmer's Assistant 13.43

TABLE OF CONTENTS TOC. 1

TABLE OFCONTENTS

[This page intentionally left blank]

TOC 2 TABLE OF CONTENTS

INTERUSP EXECUTIVE

13. INTERLISP EXECUTIVE

With any interactive computer language, the user interacts with
the system through an "executive", which interprets and

executes typed-in commands. In most implementations of Lisp,
the executive is a simple "read-eval-print" loop, which

repeatedly reads a Lisp expression, evaluates it, and prints out
the value of the expression. Interlisp has an executive which
allows a much greater range of inputs, other than just regular
Interlisp expressions.

In particular, the Interlisp executive implements a facility known
as the" programmer's assistant" (or" p.a."). The central idea of
the programmer's assistant is that the user is addressing an active
intermediary, namely his assistant. Normally, the assistant is
invisible to the user, and simply carries out the user's requests.

However, the assistant remembers what the user has done, so
the user can give commands to repeat a particular operation or
sequence of operations, with possible modifications, or to undo
the effect of specified operations. Like DWIM, the programmer's
assistant embodies an approach to system design whose ultimate
goal is to construct an environment that" cooperates" with the
user in the development of his programs, and frees him to
concentrate more fully on the conceptual difficulties and
creative aspects of the problem at hand.

The programmer's assistant facility features the use of memory
structures called "history lists." A history list is a list of the

information associated with each of the individual" events" that
have occurred in the system, where each event corresponds to
one user input. Associated with each event on the history list is
the input and its value, plus other optional information such as
side-effects, formatting information, etc.

The 'following dialogue, taken from an actual session at the
terminal, contains illustrative examples and gives the flavor of
the programmer's assistant facility in Interlisp. The number
before each prompt is the "event number" (see page 13.31').

12+-(SETQ FOO 5)

5
13+-(SETQ FOO 10)
(FOO reset)

10

The p.a. notices that the user has reset the value of FOO and
informs the user.

14+-UNDO

13.1

INTERLISP EXECUTIVE

13.2

SETQ undone.

1S+-FOOcr

5

This is the first example of direct communication with the p.a.
The user has said to UNDO the previous input to the executive.

2S+-SET(LST1 (A B C»

(A B C)
26+-{SETQ LST2 '(0 E F»

(0 E F)

27+-(FOR X IN LST1 DO (REMPROP X 'MYPROP]

NIL

The user asked to remove the property MYPROP from the atoms
A, B, and C. Now lets assume that is not what he wanted to do,
but rather use the elements of LST2.

28+-UNOO FOR

fOR undone.

First he undoes the REMPROP, by undoing the iterative
statement. Notice the UNDO accepted an "argument, " although
in this case UNDO by itself would be sufficient.

29+-USE LST2 FOR LST1 IN 27

NIL

The user just instructed to go back to event number 27 and
substitute LST2 for LST1 and then reexecute the expression. The
user could have also specified -2 instead of 27 to specify a relative
address.

47+-(PUTHASH 'Faa (MKSTRING 'FOO) MYHASHARRA Y)
D'FOO"

If MKSTRING was a computationally expensive function (which it
is not), then the user might be cacheing its value for later use.

48+-USE FIE FUM FOE FOR Faa IN MKSTRING

'''FIE''

'''FUM''

'''FOE''

The user now decides he would like to redo the PUTHASH several
times with different values. He specifies the event by "IN
MKSTRING" rather than PUTHASH.

49+-77 USE

48. USE FIE FUM FOE FOR Faa IN MKSTRING

+-(PUTHASH (QUOTE FIE) (MKSTRING (QUOTE FIE»

MYHASHARRA Y)

INTERLISP EXECUTIVE

13.1 Input Formats

INTERLISP EXECUTIVE

INTERLISP EX~CUTIVE

"FIE"

~PUTHASH (QUOTE FUM) (MKSTRING (QUOTE FUM))
MYHASHARRA Y)

"FUM"

~PUTHASH (QUOTE FOE) (MKSTRING (QUOTE FOE»
MYHASHARRA Y)

"FOE"

Here we see the user ask the p.a. (using the ?? command) what
it has on its history list for the last input to the executive. Since
the event corresponds to a programmer's assistant command
that evaluates several forms, these forms are saved as the input,
although the user's actual input, the p.a. command, is also saved
in order to clarify the printout of that event.

As stated earlier, the most common interaction with the
programmer's assistant occurs at the top level read-eval-print
loop, or in a break, where the user types in expressions for
evaluation, and sees the values printed out. In this mode, the
assistant acts much like a standard Lisp executive, except that
before attempting to evaluate an input, the assistant first stores
it in a new entry on the history list. Thus if the operation is
aborted or causes an error, the input is still saved and available
for modification and/or reexecution. The assistant also notes
new functions and variables to be added to its spelling lists to
enable future corrections. Then the assistant executes the
computation (i.e., evaluates the form or applies the function to
its arguments), saves the value in the entry on the history list
corresponding to the input, and prints the result, followed by a
prompt character to indicate it is again ready for input.

If the input typed by the user is recognized as a p.a. command,
the assistant takes special action. Commands such as UNDO and
7? are immediately performed. Commands that involved
reexecution of previous inputs, such as REDO and USE, are
achieved by computing the corresponding input expression(s)
and then unreading them. The effect of this unreading
operation is to cause the assistant's input routine, lISPXREAD, to
act exactly as though these expressions were typed in by the user.
These expressions are processed exactly as though they had been
typed, except that they are not saved on new and separate
entries on the history list, but associated with the history
command that generated them.

The Interlisp-D executive accepts inputs in the following formats:

13.3

INPUT FORMA TS

EVALV-format input

EVAL-format input

APPLY-format input

Other input

13.4

If the user types a single litatom, followed by a carriage-return,
the value of the litatom is returned. For example, if the value of
the variable FOO is the list (A B C):

~FOOcr

(A B C)

If the user types a regular Interlisp expression, beginning with a
left parenthesis or square bracket and terminated by a matching
right parenthesis or square bracket, the form is simply passed to
EVAL for evaluation. A right bracket matches any number of left

parentheses, back to the last left bracket or the entire
expression. Notice that it is not necessary to type a carriage
return at the end of such a form; Interlisp will supply one
automatically. If a carriage-return is typed before the final
matching right parenthesis or bracket, it is treated as a space,
and input continues. The following examples are all interpreted
the same:

,.-(PLUS 1 (TIMES 2 3»

7
,.-(PLUS 1 (TIMES 2 3]
'7

'~PLUS 1 (TIMEScr
23]
7

Often, the user, typing at the keyboard, calls functions with
constant argument values, which would have to be quoted if the
user typed it in "EVAL-format." For convience, if the user types a
litatom immediately followed by a list form, the litatom is
APPL Yed to the elements within the list, unevaluated. The input

is terminated by the matching right parenthesis or bracket. For
example, typing LOAD(FOO) is equivalent to typing (LOAD
'FOO), and GETPROP(X COLOR) is equivalent to (GETPROP 'X
·COLOR).

APPLY-format input is useful in some situations, but note that it
may produce unexpected results when an nlambda function is
called that explicitly evaluates its arguments (see page 10.2). For
example, typing SETQ(FOO BAR) will set FOO to the value of
BAR, not to the litatom BAR itself.

Sometimes, a user does not want to terminate the input when a
dosing parenthesis is typed. For example, some programmer's
assistant commands take several arguments, some of which can
be lists. If the L.~ ~r types a sequence of litatoms and lists
beginning with a litatom and a space (to distinguish it from
APPLY-format), terminated by a carriage return or an extra right
parenthesis or bracket, the Interlisp-D executive interprets it
differently depending on the number of expressions typed.

INTERUSP EXECUTIVE

INPUT FORMATS

If only one expression is typed (a litatom), it is interpreted as an
EVALV-format input, and the value of the litatom is returned:

~FOO < space> cr
(A Be)

If exactly two expressions are typed, it is interpreted as
APPLY-format input:

~LlST (A B)cr
(A B)

If three or more expressions are typed, it is interpreted as
EVAL-format input. To warn the user, the full expression is
printed out before it is executed. For example:

~PLUS (TIMES 23) 1 cr
== (PLUS (TIMES 2 3) 1)

7

Note: If LlSPXREADFN (page 13.36) is set to READ (rather than
the default, TIVINREAD), then whenever one of the elements
typed is a list and the list is terminated by a right parenthesis or
bracket, Interlisp will type a carriage-return and" ... " to indicate
that further input will be accepted. The user can type further
expressions or terminate the whole expression by a
carriage-retu rn.

13.2 Programmer's Assistant Commands

INTERLISP EXECUTIVE

The programmer's assistant recognizes a number of commands,
which usually refer to past events on the history list. These
commands are treated specially; for example, they may not be
put on the history list.

Note: If the user defines a function by the same name as a p.a.
command, a warning message is printed to remind him that the
p.a. command interpretation will take precedence for type-i n.

All programmer's assistant commands use the same conventions
and syntax for indicating which event or events on the history list
the command refers to, even though different commands may
be concerned with different aspects of the corresponding
event(s), e.g., side-effects, value, input, etc. Therefore, before
discussing the various p.a. commands, the following section
describes the types of event specifications currently
implemented.

13.5

PROGRAMMER'S ASSISTANT COMMANDS

13.2.1 Event Specification

13.6

N (an integer)

+-LlTATOM

An event address identifies one event on the history list. It
consists of a sequence of "commands" for moving an imaginary
cursor up or down the history list, much in the manner of the
arguments to the @ break command (see page 14.6). The event
identified is the one "under" the imaginary cursor when there
are no more commands. (If any command fails, an error is
generated and the history command is aborted.) For example,
the event address 42 refers to the event with event num ber 42,

42 FOO refers to the first event (searchi ng back from event 42)

whose input contains the word FOO, and 42 FOO -1 refers to the
event preceeding that event. Usually, an event address will
(ontain only one or two commands.

Most of the event address commands perform searches for
events which satisfy some condition. Unless the +- command is
given (see below), this search always goes backwards through
the history list, from the most recent event specified to the
oldest. Note that each search skips the current event. For
example, if FOO refers to event N, FOO FIE will refer to some
event before event N, even if there is a FIE in event N.

The event address commands are interpreted as follows:

If N is the first command in an event address, refers to the event
with event number N. Otherwise, refers to the event N events
forward (in direction of increasing event number). If N is
negative, it always refers to the event -N events backwards.

For example, -1 refers to the previous event, 42 refers to event
number 42 (if the first command in an event address), and 42 3
refers to the event with event num ber 45.

Specifies the last event with an APPLY-format input whose
function matches LlTA TOM.

Note: There must not be a space between +- and LlTATOM.

+- Specifies that the next search is to go forward instead of
backward. If given as the first event address command, the next
search begins with last (oldest) event on the history list.

F Specifies that the next object in the event address is to be
searched for, regardless of what it is. For example, F -2 looks for
an event containing -2.

= Specifies that the next object (presumably a pattern) is to be
matched against the values of events, instead of the inputs.

\

SUCHTHAT PRED

Specifies the event last located.

Specifies an event for which the function PRED returns true.
PRED should be a function of two arguments, the input portion
of the event, and the event itself. See page 13.31 for a discussion
of the format of events on the history list.

INTERUSP EXECU TIVE

PROGRAMMER'S ASSISTANT COMMANDS

PAT Any other event address command specifies a n event whose
input contains an expression that matches PAT as described in
page 16.18.

FROM EventAddress1 THRU EventAddress2

EventAddressl THRU EventAddress2

FROM EventAddressl TO EventAddress2

EventAddressl TO EventAddress2

FROM EventAddressl

THRU EventAddress2

TO EventAddress2

ALL EventAddress 1

empty

The matching is performed by the function HISTORYMATCH
(page 13.40), which is initially defined to call EDITFINDP but can

be advised or redefined for specialized applications.

Note: Symbols used below of the form EventAddress; refer to

event addresses, described above. Since an event address may
contain multiple words, the event address is parsed by searching
for the words which delimit it. For example, in FROM

EventAddress1 THRU EventAddress2, the symbol EventAddressl

corresponds to all words between FROM and THRU in the event
specification, and EventAddress2 to all words from THRU to the

end of the event specification.

Specifies the sequence of events from the event with address

EventAddressl through the event with address EventAddress2.

For example, FROM 47 THRU 49 specifies events 47, 48, and 49.

EventAddressl can be more recent than EventAddress2. For

example, FROM 49 THRU 47 specifies events 49,48, and 47 (note
reversal of order).

Same as THRU but does not include event EventAddress2.

Same as FROM EventAddressl THRU -1. For example, if the

current event is number 53, then FROM 49 specifies events 49,50,
51,and52.

Same as FROM -1 THRU EventAddress2. For example, if the

current event is number 53, then THRU 49 specifies events 52, 51,
50, and 49 (note reversal of order).

Same as FROM -1 TO EventAddress2.

Specifies all events satisfying EventAddressr For example, ALL

LOAD, ALL SUCHTHAT Faa.

If nothing is specified, it is the same as specifying -1.

Note: In the special case that the last event was an UNDO, it is
the same as specifying -2. For example, if the user types (NCONC
FOO FIE), he can then type UNDO, followed by USE NCONC1.

EventSpecl AND EventSpec2 AND ... AND EventSpecN

@LlTATOM

INTERUSP EXECUTIVE

Each of the EventSpeci is an event specification. The lists of

events are concatenated. For example, FROM 30 THRU 32 AND
35 THRU 37 is the same as 30 AND 31 AND 32 AND 35 AND 36
AND 37.

If LlTATOM is the name of a command defined via the NAME
command (page 13.14), specifies the event(s) defining LlTATOM.

13.7

PROGRAMMER'S ASSISTANT COMMANDS

@@ EventSpec EventSpec is an event specification interpreted as above, but

with respect to the archived history list (see the ARCHIVE

command, page 13.16).

If no events can be found that satisfy the event specification,
spelling correction on each word in the event specification is
performed using LlSPXFINDSPLST as the spelling list. For

example, REDO 3 THRUU 6 will work correctly. If the event
specification still fails to specify any events after spelling
correction, an error is generated.

13.2.2 Commands

13.8

REDO EventSpec

REDO EventSpec N TIMES

All programmer's assistant commands can be input as list forms,

or as lines (see page 13.36). For example, typing REDO 5cr and

(REDO 5) are equivalent.

EventSpec is used to denote ~n event specification. Unless
specified otherwise, omitting EventSpec is the same as specifying
EventSpec = -1. For exam pie, REDO and REDO -1 are the same.

[Prog. Asst. Command]

Redoes the event or events specified by EventSpec. For example,
REDO FROM ·3 redoes the last three events.

[Prog. Asst. Command]

Redoes the event or events specified by EventSpec N times. For
example, REDO 10 TIMES redoes the last event ten times.

REDO EventSpec WHILE FORM [Prog. Asst. Command]

Redoes the specified events as long as the value of FORM is true.
FORM is evaluated before each iteration so if its initial value is
NIL, nothing will happen.

REDO EventSpec UNTIL FORM [Prog. Asst. Command]

REPEA T EventSpec

Same as REDO EventSpec WHILE (NOT FORM).

[Prog. Asst. Command]

Same as REDO EventSpec WHILE T. The event(s) are repeated

until an error occurs, or the user types control-E or control-D.

REPEAT EventSpecWHILE FORM [Prog. Asst. Command]

REPEAT EventSpec UNTIL FORM [Prog. Asst. Command]

Same as REDO.

INTERLISP EXECUTIVE

RETRY EventSpec

PROGRAMMER'S ASSISTANT COMMANDS

For all history commands that perform multiple repetitions, the
variable REOOCNT is initialized to 0 and incremented each
iteration. If the event terminates gracefully, i.e., is not aborted
by an error or control-D, the number of iterations is printed.

[Prog. Asst. Command]

Similar to REDO except sets HELPCLOCK (page 14.14) so that any

errors that occur while executing EventSpec will cause breaks.

USE EXPRS FOR ARGSIN EventSpec [Prog. Asst. Command]

USE EXPRS IN EventSpec

INTERLISP EXECUTIVE

Substitutes EXPRS for ARGS in EventSpec, and redoes the result.
Substitution isdone by ESUBST (page 16.73), and is carried out as
described below. EXPRS and ARGS can include non-atomic
members.

For example, USE LOG (MINUS X) FOR ANTILOG X IN -2 AND -1
will substitute LOG for every occurrence of ANTILOG in the
previous two events, and substitute (MINUS X) for every

occurrence of X, and reexecute them. Note that these
substitutions do not change the information saved about these
events on the history list.

Any expression to be substituted can be preceded by a !,
meaning that the expression is to be substituted as a segment,
e.g., LlST(A B C) followed by USE! (X Y Z) FOR B will produce
LlST(A X Y Z C), and USE! NIL FOR B will produce L1ST(A C).

If IN EventSpec is omitted, the first member of ARGS is used for

EventSpec. For example, USE PUTD FOR @UTO is equivalent to
USE PUTO FOR @UTO IN F @UTO. The F is inserted to handle

correctly the case where the first member of ARGS could be
interpreted as an event address command.

[Prog. Asst. Command]

If ARGS are omitted, and the event referred to was itself a USE

command, the arguments and expression substituted into are
the same as for the indicated USE command. In effect, this USE
command is thus a continuation of the previous USE command.
For example, following USE X FOR Y IN 50, typing USE Z IN -1 is

equivalent to USE Z FOR Y IN 50.

If ARGS are omitted and the event referred to was not a USE
command, substitution is for the "operator" in that command.
For example ARGLlST(FF) followed by USE CALLS IN -1 is
equivalent to USE CALLS FOR ARGLIST IN -1.

If IN EventSpec is omitted, it is the same as specifying IN -1.

, 3.9

PROGRAMMER'S ASSISTANT COMMANDS

13.10

USE EXPRS 1 FOR ARGS1 AND ... AND EXPRSN FOR ARGSN IN EventSpec

Command]

[Prog. Asst.

... VARS

More general form of USE command. See description of the

substitution algorithm below.

Note: The USE command is parsed by a small finite state parser
to distinguish the expressions and arguments. For example, USE
FOR FOR AND AND AND FOR FOR will be parsed correctly.

Every USE command involves three pieces of information: the

. expressions to be substituted, the arguments to be substituted
for, and an event specification, which defines the input
expression in which the substitution takes place. If the USE
command has the same number of expressions as arguments, the
substitution procedure is straightforward. For example, USE X Y
FOR U V means substitute X for U and V for V, and is equivalent

to USE X FOR U AND V FOR V. However, the USE command also
permits distributive substitutions, for substituting several
expressions for the same argument. For example, USE ABC FOR
X means first substitute A for X then substitute B for X (i n a new
copy of the expression), then substitute C for X. The effect is the
same as three separate USE commands. Similarly, USE ABC FOR
o AND X V Z FOR W is equivalent to USE A FOR 0 AND X FOR W,

followed by USE B FOR 0 AND V FOR W, followed by USE C FOR

D AND Z FOR W. USE ABC FOR 0 AND X FOR V also corresponds
to three substitions, the first with A for 0 and X for V, the second

with B for 0, and X for V, and the third with C for 0, and again X
for V. However, USE ABC FOR D AND X V FOR Z is ambiguous
and will cause an error. Essentially, the USE command operates
by proceeding from left to right handling each "AND"

separately. Whenever the num ber of expressions exceeds the
number of expressions available, multiple USE expressions are
generated. Thus USE ABC 0 FOR E F means substitute A for E at

the same time as substituting B for F, then in another copy of the

indicated expression, substitute C for E and 0 for F. Note that
this is also equivalent to USE A C FOR E AND B D FOR F.

Note: Parsing the USE command gets more complicated when
one of the arguments and one of the expressions are the same,
e.g., USE X Y FOR V X, or USE X FOR V AND V FOR X. This

situation is noticed when parsing the command, and handled
correctly.

[Prog. Asst. Command]

Similar to USE except substitutes for the (first) operand.

For example, EXPRP{FOO) followed by ... FIE FUM is equivalent to
USE FIE FUM FOR FOO.

INTERLISP EXECUTIVE

$ X FOR YIN EventSpec

$ Y X IN EventSpec

$ Y TO X IN EventSpec

$ Y = X IN EventSpec

$ Y -> X IN EventSpec

INTERLISP EXECUTIVE

PROGRAMMER'S ASSISTANT COMMANDS

Note: In the following discussion, $ is used to represent the
character "escape," since this is how this character is echoed.

[Prog. Asst. Command]

$ (escape) is a special form of the USE command for conveniently

specifying character substitutions in litatoms or strings. In
addition, it has a number of useful properties in connection with
events that involve errors (see below).

Equivalent to USE X FOR $ Y$ IN EventSpec, which will do a
character substitution of the characters in X for the characters in

Y.

For example, if the user types MOVD(FOO FOOSAVE T), he can
then type $ FIE FOR FOO IN MOVD to perform MOVD(FIE
FIESAVE, T). Note that USE FIE FOR FOO would perform

MOVD(FIE FOOSAVE T).

[Prog. Asst. Command]

[Prog. Asst. Command]

[Prog. Asst. Command]

[Prog. Asst. Command]

Abbreviated forms of the $ (escape) command: the same as $ X
FOR YIN EventSpec, which changes Ys to Xs.

$ does event location the same as the USE command, i.e., if IN
EventSpec is not specified, $ searches for Y. However, unlike

USE, $ can only be used to specify one substitution at a time.
After $ finds the event, it looks to see if an error was involved in

that event, and if the indicated character substitution can be
performed in the object of the error message, called the
offender. If so, $ assumes the substitution refers to the offender,
performs the indicated character substitution in the offender
only, and then substitutes the result for the original offender
throughout the event. For example, suppose the user types
(PRETTYDEF FOOFNS 'FOO FOOOVARS) causing a U.S.A.
FOOOVARS error message. The user can now type $ 00 0, which
will change FOOOVARS to FOOVARS, but not change FOOFNS or

FOO.

If an error did occur in the specified event, the user can also omit
specifying the object of the substitution, Y, in which case the
offender itself is used. Thus, the user could have corrected the
above example by simply typing $ FOOVARS. Since ESUSST is
used for performing the substitution (see page 16.73), $ can be
used in X to refer to the characters in Y. For example, if the user

13.11

PROGRAMMER'S ASSISTANT COMMANDS

FIX EventSpec

13.12

types LOAD(PRSTRUC PROP}, causing the error FILE NOT FOUND

PRSTRUC, he can request the file to be loaded from LISP's
directory by simply typing $ < IISP>$. This is equivalent to
performing (R PRSTRUC < IISP>$) on the event, and therefore

replaces PRSTRUC by <lISP>PRSTRUC.

Note that $ never searches for an error. Thus, if the user types
LOAD(PRSTRUC PROP) causing a FILE NOT FOUND error, types

CLOSEALLO, and then types $ <lISP>$, lISPX will complain that
there is no error in CLOSEALLO. In this case, the user would have
to type $ < LISP >$ IN LOAD, or $ PRS < LISP> PRS (which wou Id
cause a search for PRS).

Note also that $ operates on input, not on programs. If the user

types FOO(), and within the call to Faa gets a U.D.F. CONDO
error, he cannot repair this by $ CONDo lISPX will type CONDO
NOT FOUND IN FOO().

[Prog. Asst. Command]

Envokes the default program editor (Dedit or the teletype
editor) on a copy of the input(s) for EventSpec. Whenever the
user exits via OK, the result is unread and reexecuted exactly as
with REDO.

FIX is provided for those cases when the modifications to the

input(s) are not simple substitutions of the type that can be
specified by USE. For example, if the default editor is the
teletype editor, then:

,E-{DEFINEQ Faa (LAMBDA (X) (FIXSPELL SPELlINGS2 X 70]

~NCORRECT DEFINING FORM

faa

'f-FIX
EDIT
*P
(DEFINEQ Faa (LAMBDA & &»
"'(lI 2)

*P
(DEFINEQ (FOO &»
"'OK
(Faa)
of-

The user can also specify the edit command(s) to lISPX, by typing

n folloh ~d by the command(s) after the event specification, e.g.,
FIX - (ll 2). In this case, the editor will not type EDIT, or wait for
an OK after executing the commands.

Note: FIX calls the editor on the "input sequence" of an event,
adjusting the editor so it is initially editing the expression typed.
However, the entire input sequence is being edited, so it is

INTERLISP EXECUTIVE

?? EventSpec

UNDO EventSpec

INTERLISP EXECUTIVE

PROGRAMMER'S ASSISTANT COMMANDS

possible to give editor commands that examine this structure
further. For more information on the format of an event's input,
see page 13.31.

[Prog. Asst. Command]

Prints the specified events from the history list. If EventSpec is
omitted, ?? prints the entire history list, beginning with most
recent events. Otherwise?? prints only those events specified in
EventSpec (in the order specified). For example, ?? -1, ?? 10

THRU 15, etc.

For each event specified, ?? prints the event number, the prompt,
the input line(s), and the value(s). If the event input was a p.a.
command that "unread" some other input lines, the p.a.
command is printed without a preceding prompt, to show that
they are not stored as the input, and the input lines are printed
with prompts.

Events are initially stored on the history list with their value field
equal to the character "bell" (control-G). Thefore, if an
operation fails to complete for any reason, e.g., causes an error,
is aborted, etc., ?? will print a bell as its "value".

?? commands are not entered on the history list, and so do not

affect relative event numbers. In other words, an event
specification of -1 typed following a ?? command will refer to

the event immediately preceding the ?? command.

?? is implemented via the function PRINTHISTORY, page 13.42,

which can also be called directly by the user. Printing is
performed via the function SHOWPRIN2 (page 25.1 OL so that if

the value of SYSPRETTYFLG = T, events will be prettypri nted.

[Prog. Asst. Command]

Undoes the side effects of the specified events. For each event
undone, UNDO prints a message: RPLACA undone, REDO
undone etc. If nothing is undone because nothing was saved,
UNDO types nothing saved. If nothing was undone because the
event(s) were already undone, UNDO types already undone.

If EventSpec is not given, UNDO searches back for the last event
that contained side effects, was not undone, and itself was not
an UNDO command. Note that the user can undo UNDO
commands themselves by specifying the corresponding event
address, e.g., UNDO -7 or UNDO UNDO.

In order to restore all pointers correctly, the user should UNDO
events in the reverse order from which they were executed. For
example, to undo all the side effects of the last five events,
perform UNDO THRU -5, not UNDO FROM -5. Undoing out of
order may have unforseen effects if the operations are

13.13

PROGRAMMER.S ASSISTANT COMMAN OS

13.14

UNDO EventSpec : X 1 ... XN

NAME LlTATOM EventSpec

dependent. For example, if the user performed (NCONC1 FOO

FIE), followed by (NCONC1 FOO FUM), and then undoes the
(NCONC1 FOO FIE), he will also have undone the (NCONC1 FOO
FUM). If he then undoes the (NCONC1 FOO FUM), he will cause

the FIE to reappear, by virtue of restoring FOO to its state before
the execution of (NCONC1 FOO FUM). For more details, see page

13.27.

[Prog. Asst. Command]

Each Xi is a pattern that is matched to a message printed by

DWIM in the event(s) specified by EventSpec. The side effects of
the corresponding DWIM corrections, and only those side effects,
are undone.

For example, if DWIM printed the message PRINTT [IN FOO] - >
PRINT, then UNDO: PRINTT or UNDO: PRINT would undo the

correction.

Some portions of the messages printed by DWIM are strings, e.g.,
the message FOO UNSAVED is printed by printing FOO and then
.. UNSAVED". Therefore, if the user types UNDO: UNSAVED, the

DWIM correction will not be found. He should instead type
UNDO: FOO or UNDO: $UNSAVED$ «esc>UNSAVED<esc>,
see R command in editor, page 16.45).

[Prog. Asst. Command]

Saves the event(s) (including side effects) specified by EventSpec
on the property list of LlTATOM (under the property HISTORY).

For example, NAME FOO 10 THRU 15. NAME commands are

undoable.

Events saved on a litatom can be retrieved with the event
specification @ LlTATOM. For example, ?? @ FOO, REDO @ FOO,

etc.

Commands defined by NAME can also be typed in directly as

though they were built-in commands, e.g., FOOcr is equivalent

to REDO @ Faa. However, if Faa is the name of a variable, it

would be evaluated, i.e., FOOer would return the value of FOO.

Commands defined by NAME can also be defined to take
arguments:

NAME LlTATOM(ARG1 ... ARGN): EventSpec LF'rog. Asst. Command]

NAME LlTATOM ARG 1 ... ARGN : EventSpec [Prog. Asst. Command]

The arguments ARG; are interpreted the same as the arguments

for a USE command. When LlTATOM is invoked, the argument

INTERLISP EXECU TIVE

RETRIEVE LlTATOM

BEFORE LlTATOM

AFTER LlTATOM

INTERUSP EXECUTIVE

PROGRAMMER'S ASSISTANT COMMANDS

values are substituted for ARGl ... ARGN using the same

substitution algorithm as for USE.

NAME Faa EventSpec is equivalent to NAME Faa: EventSpec.

In either case, if Faa is invoked with arguments, an error is

generated.

For example, following the event (PUTD 'Faa (COPY (GETPROP

'FIE 'EXPR))), the user types NAME MOVE FOO FIE: PUTD. Then
typing MOVE TEST1 TEST2 would cause (PUTD 'TEST1 (COpy
(GETPROP 'TEST2 'EXPR))) to be executed, i.e., would be

equivalent to typing USE TEST1 TEST2 FOR Faa FIE IN MOVE.
Typing MOVE ABC D would cause two PUTD's to be executed.
Note that !IS and $IS can also be employed the same as with USE.

For example, if following

~PREPINDEX(< MANUAL> 14L1SP.XGP)
~FIXFILE(< MANUAL> 14L1SP.XGPIDX)

the user performed NAME Faa 14 : ·2 AND ·1, then Faa 15

would perform the indicated two operations with 14 replaced by
15.

[Prog. Asst. Command]

Retrieves and reenters on the history list the events named by
LlTATOM. Causes an error if LlTA TOM was not named by a
NAME command.

For example, if the user performs NAME Faa 10 THRU 15, and at

some time later types RETRIEVE Faa, 6 new events will be
recorded on the history list (whether or not the corresponding
events have been forgotten yet). Note that RETRIEVE does not

reexecute the events, it simply retrieves them. The user can then
REDO, UNDO, FIX, etc. any or all of these events. Note that the

user can combine the effects of a RETRIEVE and a subsequent
history command in a single operation, e.g., REDO FOO is
equivalent to RETRIEVE Faa, followed by an appropriate REDO.
Actually, REDO FOO is better than RETRIEVE followed by REDO
since in the latter case, the corresponding events would be
entered on the history list twice, once for the RETRIEVE and once
for the REDO. Note that UNDO Faa and ?? FOO are permitted.

[Prog. Asst. Command]

Undoes the effects of the events named by LlTATOM.

[Prog. Asst. Command]

Undoes a BEFORE LlTATOM.

13.15

PROGRAMMER'S ASSISTANT COMMANDS

ARCHIVE EventSpec

FORGET EventSpec

13.16

BEFORE and AFTER provide a convenient way of flipping back

and forth between two states, namely the state before a
specified event or events were executed, and that state after
execution. For example, if the user has a complex data structure
which he wants to be able to interrogate before and after
certain modifications, he can execute the modifications, name
the corresponding events with the NAME command, and then

can turn these modifications off and on via BEFORE or AFTER
commands. Both BEFORE and AFTER are no-ops if the L1TATOM

was already in the corresponding state; both generate errors if
LlTATOMwas not named by a NAME command.

The alternative to BEFORE and AFTER for repeated switching
back and forth involves typing UNDO, UNDO of the UNDO,
UNDO of that etc. At each stage, the user would have to locate
the correct event to undo, and furthermore would run the risk of
that event being "forgotten" if he did not switch at least once
per time-slice.

Note: Since UNDO, NAME, RETRIEVE, BEFORE, and AFTER are
recorded as inputs they can be referenced by REDO, USE, etc. in
the normal way. However, the user must again remember that
the context in which the command is reexecuted is different than
the original context. For example, if the user types NAME FOO

DEFINEQ THRU COMPILE, then types , .. FIE, the input that will be
reread will be NAME FIE DEFINEQ THRU COMPILE as was
intended, but both DEFINEQ and COMPILE, will refer to the most

recent event containing those atoms, namely the event
consisting of NAME FOO DEFINEQ THRU COMPILE.

[Prog. Asst. Command]

Records the events specified by EventSpec on a permanent
"archived" history list, ARCHIVELST (page 13.31). This history list

can be referenced by preceding a standard event specification
with @@ (see page 13.8). For example, ?? @@ prints the
archived history list, REDO @@ -1 will recover the corresponding

event from the archived history list and redo it, etc.

The user can also provide for automatic archiving of selected
events by appropriately defining ARCHIVEFN (page 13.23), or by

putting the history list property *ARCHIVE*, with value T, on the
event (page 13.33). Events that are referenced by history
commands are automatically marked for archiving in this
fashion.

[Prog. Asst. Command]

Permanently erases the record of the side effects for the events
specified by EventSpec. If EventSpec is omitted, forgets side
effects for entire history list.

INTERLISP EXECU TIVE

REMEMBER EventSpec

PL LlTATOM

PB LlTATOM

INTERUSP EXECUTIVE

PROGRAMMER'S ASSIST~,NT COMMANDS

FORGET is provided for users with space problems. For example,
if the user has just performed SETs, RPLACAs, RPLACOs, PUTO,
REMPROPs, etc. to release storage, the old pointers would not be
garbage collected until the corresponding events age sufficiently
to drop off the end of the history list and be forgotten. FORGET

can be used to force immediate forgetting (of the side-effects
only). FORGET is not undoable (obviously).

[Prog. Asst. Com m a nd]

Instructs the file package to "remember" the events specified by
EventSpec. These events will be marked as changed objects of
file package type EXPRESSIONS, which can be written out via the
file package command P. For example, after the user types:

+-MOVO?(OELFILE IDELFILE)

DELFILE
+-REMEMBER -1
(MOVD? (QUOTE DELFILE) (QUOTE IDELFILE))

+-

If the user calls FILES?, MAKEFILES, or CLEANUP, the command (P
(MOVD? (QUOTE DELFILE) (QUOTE IDELFILE»)) will be

constructed by the file package and added to the filecoms
indicated by the user, unless the user has already explicitly added
the corresponding expression to some P command himself.

Note that "remembering" an event like (PUTPROP 'FOO

'CLlSPTYPE EXPRESSION) will not result in a (PROP CLlSPTYPE

FOO) command, because this will save the current (at the time of
the MAKEFILE) value for the CLlSPTYPE property, which mayor

may not be EXPRESSION. Thus, even if there is a PROP command
which saves the CLlSPTYPE property for FOO in some FILECOMS,

remembering this event will still require a (P (PUTPROP 'Faa

'CLlSPTYPE EXPRESSION» command to appear.

[Prog. Asst. Command]

"Print Property List." Prints out the property list of LlTA TOM ina
nice format, with PRINTLEVEL reset to (2.3). For example,

+-PL +

CLlSPTYPE: 12
ACCESSFNS: (PLUS IPLUS FPLUS)

PL is implemented via the function PRINTPROPS.

[Prog. Asst. Command]

"Print Bindings." Prints the value of LlTATOM with PRINTLEVEL
reset to (2 . 3). If LlTATOM is not bound, does not attempt
spelling correction or generate an error. PB is implemented via
the function PRINTBINDINGS.

13.17

PROGRAMMER'S ASSISTANTCOMMANDS

; FORM

SHH FORM

TYPE-AHEAD

13.18

PB is also a break command (page 14.8). As a break command, it

ascends the stack and, for each frame in which LlTATOM is
bound, prints the frame name and value of LlTATOM. If typed in
to the programmer's assistant when not at the top level, e.g. in
the editor, etc., PB will also ascend the stack as it does with a

break. However, as a programmer's assistant command, it is
primarily used to examine the top level value of a variable that
mayor may not be bound, or to examine a variable whose value
is a large list.

[Prog.Asst. Command]

Allows the user to type a line of text without having the
programmer's assistant process it. Useful when linked to other
users, or to annotate a dribble file (page 30.12).

[Prog. Asst. Command]

Allows the user to evaluate an expression without having the
programmer's assistant process it or record it on a history list.
Useful when one wants to bypass a programmer's assistant
command or to keep the evaluation off the history list.

[Prog. Asst. Command]

A command that allows the user to type-ahead an indefinite
number of inputs.

The assistant responds to TYPE-AHEAD with a prompt character
of >. The user can now type in an indefinite number of lines of

input, under ERRORSET protection. The input lines are saved

,and unread when the user exits the type-ahead loop with the
command $GO (escape-GO). While in the type-ahead loop, ??

can be used to print the type-ahead, FIX to edit the type-ahead,
and $Q (escape-Q) to erase the last input (may be used

repeatedly). The TYPE-AHEAD command may be aborted by
$STOP (escape-STOP); control-E simply aborts the current line of
input.

For exam pie:

'E-TYPE-AHEAD

>SYSOUT(TEM)

> MAKEFI LE(EDln

> BRECOMPILE{(EDIT WEDIT»

>F
>$Q
\\F

>$Q
\\BRECOMPllE

> LOAD(WEDIT PROP)

> BRECOMPILE«EDIT WEDIT»

INTERLISP EXECUTIVE

(VALUEOF LINE)

INTERLISP EXECUTIVE

PROGRAMMER'S ASSISTANT COMMANDS

>F
> MAKEFILE(BREAK)
> L1STFILES(EDIT BREAK)

>SYSOUT(CURRENT)

>LOGOUT]

>??
>SYSOUT(TEM)
> MAKEFILE(EDIT)
> LOAD(WEDIT PROP)

> BRECOMPILE«EDIT WEDIT»

>F
> MAKEFILE(BREAK)

> L1STFILES(EDIT BREAK)
> SYSOUT(CURRENT)

>LOGOUT]
>FIX
EDIT
*(R BRECOMPILE BCOMPL)
*P
«LOGOUT) (SYSOUT &) (L1STFILES &) (MAKEFILE &) (F) (BCOMPL

&)

(LOAD &) (MAKEFILE &) (SYSOUT &»

*(DELETE LOAD)

*OK
>$GO

Note that type-ahead can be addressed to the compiler, since it
uses L1SPXREAD for input. Type-ahead can also be directed to

the editor, but type-ahead to the editor and to L1SPX cannot be

intermixed.

The following are some useful functions and variables:

[NLambda NoSpread Function]

An nlambda function for obtaining the value of a particular
event, e.g., (VALUEOF -1), (VALUEOF ~FOO -2). The value of an

event consisting of several operations is a list of the values for
each of the individual operations.

Note: The value field of a history entry is initialized to bell
(control-G). Thus a value of bell indicates that the corresponding
operation did not complete, i.e., was aborted or caused an error
(or else it returned bell).

Note: Although the input for VALUEOF is entered on the history
list before VALUEOF is called, (VALUEOF -1) still refers to the
value of the expression immediately before the VALUEOF input,
because VALUEOF effectively backs the history list up one entry

when it retrieves the specified event. Similarly, (VALUEOF FOO)
will find the first event before this one that contains a FOO.

13.19

PROGRAMMER'S ASSISTANT COMMANDS

IT [Variable]

The value of the variable IT is always the value of the last event
executed, i.e. (VALUEOF .1). For example,

~SQRT2)

1.414214

~SQRTIT)

1.189207

If the last event was a multiple event, e.g. REDO -3 THRU -1, IT is
set to value of the last of these events. Following a ?? command,
IT is set to value of the last event printed. In other words, in all

~ases, IT is set to the last value printed on the terminal.

13.2.3 P.A. Commands Applied to P.A. Commands

13.20

Programmer's assistant commands that unread expressions, such
as REDO, USE, etc. do not appear in the input portion of events,
although they are stored elsewhere in the event. They do not
interfere with or affect the searching operations of event
specifications. As a result, p.a. commands themselves cannot be
recovered for execution in the normal way. For example, if the
user types USE ABC FOR 0 and follows this with USE E FOR 0, he
will not produce the effect of USE ABC FOR E, but instead will
simply cause E to be substituted for 0 in the last event containing

a D. To produce the desired effect, the user should type USE 0
FOR E IN USE. The appearance of the word REDO, USE or FIX in

an event address specifies a search for the corresponding
programmer's assistant command. It also specifies that the text
of the programmer's assistant command itself be treated as
though it were the input. However, the user must remember
that the context in which a history command is reexecuted is that
,of the current history, not the original context. For example, if
the user types USE FOO FOR FIE IN -1, and then later types REDO
USE, the ·1 will refer to the event before the REDO, not before
the USE.

The one exception to the statement that programmer's assistant
commands "do not interfere with or affect the searching
operations of event specifications" occurs when a p.a. command
fails to produce any input. For example, suppose the user types
USE LOG FOR ANTILOG AND ANTILOG FOR LOGG, mispelling the
second LOG. This will cause an error, LOGG 7. Since the USE
command did not produce any input, the user can repair it by
typing USE LOG FOR LOGG, without having to specify IN USE.
This latter USE command will invoke a search for LOGG, which
will find the bad USE command. The programmer's assistant
then performs the indicated substitution, and unreads USE LOG
FOR ANTILOG AND ANTILOG FOR LOG. In turn, this USE
command invokes a search for ANTILOG, which, because it was

INTERLISP EXECU TIVE

PROGRAMMER'S ASSISTANT COMMANDS

not typed in but reread, ignores the bad USE command which

was found by the earlier search for LOGG, and which is still on
the history list. In other words, p.a. commands that fail to
produce input are visible to searches arising from event
specifications typed in by the user, but not to secondary event
specifications.

In addition, if the most recent event is a history command which
failed to produce input, a secondary event specification will
effectively back up the history list one event so that relative
event numbers for that event specification will not count the bad
p.a. command. For example, suppose the user types USE LOG

FOR ANTILOG AND ANTILOG FOR LOGG IN ·2 AND .', and after
the p.a. types LOGG 7, the user types USE LOG FOR LOGG. He
thus causes the command USE LOG FOR ANTILOG AND ANTILOG

FOR LOG IN ·2 AND ·1 to be constructed and unread. In the
normal case, -1 would refer to the last event, i.e., the" bad" USE

command, and·2 to the event before it. However, in this case,-'
refers to the event before the bad USE command, and the ·2 to
the event before that. In short, the caveat above that "the user
must remember that the context in which a history command is
reexecuted is that of the current history, not the original
context" does not apply if the correction is performed
immediately.

13.3 Changing The Programmer's Assistant

(CHANGESLICE N HISTORY -) [Function]

INTERUSP EXECUTIVE

Changes the time-slice of the history list HISTORY to N (see page
13.31). If HISTORY is NIL, changes both the top level history list

LlSPXHISTORY and the edit history list EDITHISTORY.

Note: The effect of increasing the time-slice is gradual: the
history list is simply allowed to grow to the corresponding length
before any events are forgotten. Decreasing the time-slice will
immediately remove a sufficient number of the older events to
bring the history list down to the proper size. However,
CHANGESLICE is undoable, so that these events are (temporarily)
recoverable. Therefore, if the user wants to recover the storage
associated with these events without waiting N more events until
the CHANGESLICE event drops off the history list, he must
perform a FORGET command (page 13.16).

13.21

CHANGING THE PROGRAMMER'S ASSISTANT

PROMPT#FLG

PROMPTCHARFORMS

HISTORYSAVEFORMS

RESETFORMS

13.22

[Variable]

When this variable is set to T, the current event number to be

printed before each prompt character. See PROMPTCHAR, page
13.38. PROMPT#FLG is initially T.

[Variable]

The value of PROMPTCHARFORMS is a list of expression which

are evaluated each time PROMPTCHAR (page 13.38) is called to
print the prompt character. If PROMPTCHAR is going to print
something, it first maps down PROMPTCHARFORMS evaluating
each expression under an ERRORSET.

These expressions can access the special variables HISTORY (the
current history list), 10 (the prompt character to be printed), and
,PROMPTSTR, which is what PROMPTCHAR will print before 10, if

anything. When PROMPT#FLG is T, PROMPTSTR will be the

event number. The expressions on PROMPTCHARFORMS can
change the shape of a cursor, update a clock, check for mail, etc.
or change what PROMPTCHAR is about to print by resetting 10

and/or PROMPTSTR. After the expressions on

PROMPTCHARFORMS have been evaluated, PROMPTSTR is
printed if it is (still) non-NIL, and then 10 is printed, if it is (still)
non-NIL.

[Variable]

The value of HISTORYSAVEFORMS is a list of expressions that are

evaluated under errorset protection each time HISTORYSAVE
(page 13.38) creates a new event. This happens each tim e there
is an interaction with the user, but not when performing an
operation that is being redone.

The expressions on HISTORYSAVEFORMS are presumably
executed for effect, and can access the special variables HISTORY

(the current history list), 10 (the current prompt character), and

EVENT (the current event which HISTORYSAVE is going to
return).

Note that PROMPTCHARFORMS and HISTORYSAVEFORMS
together enable bracketing each interaction with the user.
These can be used to measure how long the user takes to
respond, to use a different readtable or terminal table, etc.

[Variable]

The value of RESETFORMS is a list of forms that are evaluated at
each RESET, i.e. when user types control-D, or calls function
RESET.

INTERLISP EXECUTIVE

ARCHIVEFN

ARCHIVEFLG

L1SPXMACROS

L1SPXHISTORYMACROS

INTERLISP EXECUTIVE

CHANGING THE PROGRAMMER'S ASSISTANT

(Variable]

If the value of ARCHIVEFN is T, and an event is about to drop off
the end of the history list and be forgotten, ARCHIVEFN is called
as a function with two arguments: the input portion of the
event, and the entire event (see page 13.31 for the format of
events). If ARCHIVEFN returns T, the event is archived on a

permanent history list (see page 13.16). Note that ARCHIVEFN

must be both set and defined. ARCHIVEFN is initially NIL and
undefined.

For example, defining ARCHIVEFN as (LAMBDA (X Y) {EQ (CAR X)

'LOAD» will keep a record of all calls to LOAD.

[Variable]

If the value of ARCHIVEFLG is non-NIL, the system automatically

marks all events that are referenced by history commands so that
they will be archived when they drop off the history list.
ARCHIVEFLG is initially T, so once an event is redone, it is
guaranteed to be saved.

An event is "marked for archiving" by putting the property
ARCHIVE, value T, on the event (see page 13.31). The user
could do this by means of an appropriately defined LlSPXUSERFN

(see below).

[Variable]

L1SPXMACROS provides a macro facility that allows the user to
define his own programmer's assistant commands. It is a list of
elements of the form (COMMAND OfF). Whenever COMMAND

appears as the first expression on a line in a LlSPX input, the
variable L1SPXLlNE is bound to the rest of the line, the event is

recorded on the history list, OfF is evaluated, and DfF's value is
stored as the value of the event. Similarly, whenever COMMAND
appears as CAR of a form in a LlSPX input, the variable LlSPXLlNE
is bound to CDR of the form, the event is recorded, and OfF is

evaluated.

An element of the form (COMMANO NIL OfF) is interpreted to
mean bind LlSPXLlNE and evaluate DfF as described above,
except do not save the event on the history list.

[Variable]

L1SPXHISTORYMACROS allows the user to define programmer's
assistant commands that re-execute other events.
LlSPXHISTORYMACROS is interpreted the same as
L1SPXMACROS, except that the result of evaluating DfF is
treated as a list of expressions to be unread, exactly as though
the expressions had been retrieved by a REDO command, or
computed by a USE command. Note that returning NIL means

13.23

CHANGING THE PROGRAMMER'S ASSISTANT

L1SPXUSERFN

13.24

nothing else is done. This provides a mechanism for defining

L1SPX commands which are executed for effect only.

Many programmer's assistant commands, such as RETRIEVE,
BEFORE, AFTER, etc. are implemented through L1SPXMACROS or

L1SPXHISTORYMACROS.

Note: Definitions of commands on L1SPXMACROS or

L1SPXHISTORYMACROS can be saved on files with the file

package command L1SPXMACROS (see page 17.39).

[Variable]

When L1SPXUSERFN is set to T, it is applied as a function to all
inputs not recognized as a programmer's assistant command, or
on L1SPXMACROS or L1SPXHISTORYMACROS. If L1SPXUSERFN

decides to handle this input, it simply processes it (the event was
already stored on the history list before L1SPXUSERFN was

called), sets L1SPXVALUE to the value for the event, and returns

T. The programmer's assistant will then know not to call EVAL or

APPLY, and will simply store L1SPXVALUE into the value slot for
the event, and print it .. If L1SPXUSERFN returns NIL, EVAL or

APPLY is called in the usual way. Note that L1SPXUSERFN must be

both set and defined.

L1SPXUSERFN is given two arguments: X and LINE. X is the first

expression typed, and LINE is the rest of the line, as read by
READLINE (page 13.36). For example, if the user typed FOO(A B

C), X = Faa, and LINE = «A B C»; if the user typed (Faa A B C),

X = (Faa A B C), and LINE = NIL; and if the user typed FOO ABC,

X = Faa and LINE = (A B C).

By appropriately defining (and setting) L1SPXUSERFN, the user

can with a minimum of effort incorporate the features of the
programmer's assistant into his own executive (actually it is the
other way around). For example, L1SPXUSERFN could be defined

to parse all input (other than p.a. commands) in an alternative

way. Note that since L1SPXUSERFN is called for each input

(except for p.a. commands), it can also be used to monitor some
condition or gather statistics.

INTERLISP EXECUTIVE

CHANGING THE PROGRAMMER'S ASSISTANT

(L1SPXPRINT X Y Z NODOFLG) [Function]

(L1SPXPRIN1 X Y Z NODOFLG) [Function]

(L1SPXPRIN2 X Y Z NODOFLG) [Function]

(L1SPXSPACES X Y Z NODOFLG) [Function]

(L1SPXTERPRI X Y Z NODOFLG) [Function]

(L1SPXTAB X Y Z NODOFLG) [Function]

(L1SPXPRINTDEF fXPR FILE LEFT DfF TAIL NODOFLG) [Function]

In addition to saving inputs and values, the programmer's
assistant saves most system messages on the history list. For
example, FILE CREATED ___ , (FN REDEFINED), (VAR RESET), output

of TIME, BREAKDOWN, STORAGE, DWIM messages, etc. When
?? prints the event, the output is also printed. This facility is

implemented via these functions.

These functions print exactly the same as their non-L1SPX
counterparts. Then, they put the output on the history list under
the property *L1SPXPRINT* (see page 13.31).

If NODOFLG is non-NIL, these fuctions do not print, but only put

their output on the history list.

To perform output operations from user programs so that the
output will appear on the history list, the program needs simply
to call the corresponding L1SPX printing function.

(USERLlSPXPRINT X FILE Z NODOFLG) [Function]

LI SPXPRI NTFLG

INTERUSP EXECUTIVE

The function USERLlSPXPRINT is available to permit the user to
define additional L1SPX printing functions. If the user has a

function FN that takes three or fewer arguments, and the second
argument is the file name, he can define a L1SPX printing
function by simply giving L1SPXFN the definition of
USERLlSPXPRINT, for example, with MOVD(USERLlSPXPRINT

L1SPXFN). USERLlSPXPRINT is defined to look back on the stack,
find the name of the calling function, strip off the leading
IL1SPX", perform the appropriate saving information, and then

call the function to do the actual printing.

[Variable]

If L1SPXPRINTFLG = NIL, the L1SPX printing functions wi II not
store their output on the history list. L1SPXPRINTFLG is initially T.

, 3.25

UNDOING

13.4 Undoing

Note: This discussion only applies to undoing under the
executive and break; the editors handles undoing itself in a
slightly different fashion.

The UNDO capability of the programmer's assistant is
implemented by requiring that each operation that is to be
undoable be responsible itself for saving on the history list
enough information to enable reversal of its side effects. In
other words, the assistant does not "know" when it is about to
perform a destructive operation, i.e., it is not constantly checki ng
or anticipating. Instead, it simply executes operations, and any
undoable changes that occur are automatically saved on the
history list by the responsible functions. The UNDO command,

which involves recovering the saved information and performing
the corresponding inverses, works the same way, so that the user
can UNDO an UNDO, and UNDO that etc.

At each point, until the user specifically requests an operation to
be undone, the assistant does not know, or care, whether
information has been saved to enable the undoing. Only when
the user attempts to undo an operation does the assistant check
to see whether any information has been saved. If none has
been saved, and the user has specifically named the event he
wants undone, the assistant types nothing saved. (When the
user simply types UNDO, the assistant searches for the last
undoable event, ignoring events already undone as well as
UNDO operations themselves.)

This implementation minimizes the overhead for undoing. Only
those operations which actually make changes are affected, and
the overhead is small: two or three cells of storage for saving the
information, and an extra function call. However, even this small
price may be too expensive if the operation is sufficiently
primitive and repetitive, i.e., if the extra overhead may seriously
degrade the overall performance of the program. Hence not
every destructive operation in a program should necessarily be
undoable; the programmer must be allowed to decide each case
individually.

Therefore for each primitive destructive function, Interlisp has
defined an undoable version which always saves information. By
convention, the name of the undoable version of a function is
the function name, preceeded by "I." For example, there is

RPLACA and IRPLACA, REMPROP and IREMPROP, etc. The
"slash" functions that are currently implemented can be found
as the value of IFNS.

The various system packages use the appropriate undoable
functions. For example, BREAK uses IPUTD and IREMPROP so as
to be undoable, and DWIM uses IRPLACA and IRPLACD, when it
makes a correction. Sim ilarly, the user can sim ply use the

13.26 INTERLISP EXECU TIVE

13.4.1 Undoing Out of Order

INTERUSP EXECUTIVE

UNDOING

corresponding I function if he wants to make a destructive
operation in his own program undoable. When the I function is
called, it will save the UNDO information in the current event on

the history list.

The effects of the following functions are always undoable:
DEFINE, DEFINEQ, DEFC (used to give a function a compiled code
definition), DEFLlST, LOAD, SAVEDEF, UNSAVEDEF, BREAK,
UNBREAK, REBREAK, TRACE, BREAKIN, UNBREAKIN,

CHANGENAME, EDITFNS, EDITF, EDITV, EDITP, EDITE, EDITL,

ESUBST, ADVISE, UNADVISE, READVISE, plus any changes caused
byOWIM.

The programmer's assistant cannot know whether efficiency and
overhead are serious considerations for the execution of an
expression in a user program, so the user must decide if he wants
these operations undoable by explicitly calling IMAPCONC, etc.
However, typed-in expressions rarely involve iterations or
lengthy computations directly. Therefore, before evaluating the
user input, the programmer's assistant substitutes the
corresponding undoable function for any destructive function
(using LlSPXI, page 13.41). For example, if the user types
(MAPCONC NASDIC ...), it is actually (lMAPCONC NASDIC ...) that

is evaluated. Obviously, with a more sophisticated analysis of
both user input and user programs, the decision concerning
which operations to make undoable could be better advised.
However, we have found the configuration described here to be
a very satisfactory one. The user pays a very small price for being
able to undo what he types in, and if he wishes to protect himself
from malfunctioning in his own programs, he can have his
program explicitly call undoable functions.

Note: The user can define new "slash" functions to be translated
on type-in by calling NEW/FN (page 13.41).

IRPLACA operates undoably by saving (on the history list) the list
cell that is to be changed and its original CAR. Undoing a
IRPLACA simply restores the saved CAR. This implementation can

produce unexpected results when multiple IRPLACAs are done
on the same list cell, and then undone out of order. For example,
if the user types (RPLACA Faa 1), followed by (RPLACA Faa 2),
then undoes both events by undl)ing the most recent event first,
then undoing the older event, Faa will be restored to its state
before either RPLACA operated. However if the user undoes the
first event, then the second event, (CAR Faa) will be 1, since this
is what was in CAR of Faa before (RPLACA Faa 2) was executed.
Similarly, if the user types (NCONC1 Faa 1), followed by
(NCONC1 Faa 2), undoing just (NCONC1 FOO 1) will remove

1327

UNDOING

13.4.2 SAVESET

13.28

both 1 and 2 from FOO. The problem in both cases is that the

two operations are not "independent." In general, operations
are always independent if they affect different lists or different
sublists of the same list. Undoing in reverse order of execution,
or undoing independent operations, is always guaranteed to do
the "right" thing. However, undoing dependent operations out
of order may not always have the predicted effect.

Property list operations, (i.e., PUTPROP, ADDPROP and

REMPROP) are handled specially, so that operations that affect
different properties on the same property list are always
independent. For example, if the user types (PUTPROP 'FOO
'BAR 1) then (PUTPROP 'FOO 'BAZ 2), then undoes the first event,

the BAZ property will remain, even though it may not have been
on the property list of FOO at the time the first event was

executed.

Typed-in SETs are made undoable by substituting a call to

'SAVESET. SETQ is made undoable by substituting SAVESETQ,

.and SETQQ by SAVESETQQ, both of which are implemented in
terms of SAVESET.

In addition to saving enough information on the history list to
enable undoing, SAVESET operates in a manner analogous to
SAVEDEF (page 17.27) when it resets a top level value: when it

<changes a top level binding from a value other than NOBIND to a
new value that is not EQUAL to the old one, SAVESET saves the
old value of the variable being set on the variable's property list
under the property VALUE, and prints the message (VARIABLE

:RESET). The old value can be restored via the function UNSET,

which also saves the current value (but does not print a
message). Thus UNSET can be used to flip back and forth
between two values.

Of course, UNDO can be used as long as the event containing this
call to SAVESET is still active. Note however that the old value
will remain on the property list, and therefore be recoverable via
UNSET, even after the original event has been forgotten.

RPAQ and RPAQQ are implemented via calls to SAVESET. Thus
old values will be saved and messages printed for any variables
that are reset as the result of loading a file.

For top level variables, SAVESET also adds the variable to the
appropriate spelling list, thereby noticing variables set in files via
RPAQ or RPAQQ, as well as those set via type-in.

INTERLISP EXECUTIVE

UNDOING

(SAVESET NAME VALUE TOPFLG FLG) [Function]

(UNSET NAME)

An undoable SET. SAVESET scans the stack looking for the last
binding of NAME, sets NAME to VALUE, and returns VALUE.

If the binding changed was a top level binding, NAME is added
to the spelling list SPElLlNGS3 (see page 20.17). Furthermore, if
the old value was not NOBIND, and was also not EQUAL to the
new value, SAVESET calls the file package to update the
necessary file records. Then, if DFNFLG is not equal to T,

SAVESET prints (NAME RESET), and saves the old value on the
property list of NAME, under the property VALUE.

If TOPFLG = T, SAVESET operates as above except that it always
uses NAME's top-level value cell. When TOPFLG is T, and DFNFLG

is ALLPROP and the old value was not NOBIND, SAVESET simply
stores VALUE on the property list of NAME under the property
VALUE, and returns VALUE. This option is used for loading files
without disturbing the current value of variables (see page
10.10).

If FLG = NOPRINT, SAVESET saves the old value, but does not
print the message. This option is used by UNSET.

If FL"G= NOSAVE, SAVESET does not save the old value on the
property list, nor does it add NAME to SPELLlNGS3. However,
the call to SAVESET is still undoable. This option is used by /SET.

If FLG= NOSTACKUNDO, SAVESET is undoable only if the
binding being changed is a top-level binding, i.e. this says when
resetting a variable that has been rebound, don't bother to
make it undoable.

[Function]

If NAME does not contain a property VALUE, UNSET generates
an error. Otherwise UNSET calls SAVESET with NAME, the

property value, TOPFLG = T, and FLG = NOPRINT.

13.4.3 UNDONLSETQ and RESETUNDO

INTERUSP EXECUTIVE

The function UNDONLSETQ provides a limited form of
backtracking: if an error occurs under the UNDONLSETQ, all
undoable side effects executed under the UNDONLSETQ are
undone. RESETUNDO, used in conjunction with RESETLST and
RESETSAVE (page 14.24), provides a more general undo
capability where the user can specify that the side effects be
undone after the specified computation finishes, is aborted by
an error, or by a control-D.

13.29

UNDOING

13.30

(UNDONLSETQ UNDOFORM -) [NLambda Function]

An nlambda function similar to NLSETQ (page 14.22).

UNDONLSETQ evaluates UNDOFORM, and if no error occurs
during the evaluation, returns (LIST (EVAL UNDOFORM» and
passes the undo information from UNDOFORM (if any) upwa rds.
If an error does occur, the UNDONLSETQ returns NIL, and any

undoable changes made during the evaluation of UNDOFORM
are undone.

Any undo information is stored directly on the history event (if
L1SPXHIST is not NIL), so that if the user control~D's out of the

UNDONLSETQ, the event is still undoable.

UNDONLSETQ will operate correctly if #UNDOSAVES is or has
been exceeded for this event, or is exceeded while under the
scope of the UNDONLSETQ.

Note: Caution must be exercised in using coroutines or other
non-standard means of exiting while under an UNDONLSETQ.
See discussion in page 14.24.

(RESETUNDO X STOPFLG) [Function]

For use in conjunction with RESETLST (page 14.24).
(RESETUNDO) initializes the saving of undo information and
returns a value which when given back to RESETUNDO undoes

the intervening side effects. For example, (RESETLST
(RESETSAVE (RESETUNDO) . FORMS) will undo the side effects

of FORMS on normal exit, or if an error occurs or a control-D is
typed.

If STOPFLG = T, RESETUNDO stops accumulating undo
information it is saving on X. Note that this has no bearing on
the saving of undo information on higher RESETUNDO's, or on
being able to undo the entire event.

For example,

(RESETLST

(SETQ FOO (RESETUNDO»

(RESETSAVE NIL (LIST 'RESETUNDO FOO»
(ADVISE ...)

(RESETUNDO FOO T)

. FORMS)

would cause the advice to be undone, but not any of the side
effects inFORMS.

INTERLISP EXECU TIVE

FORMAT AND USE OF THE HISTORY LIST

13.5 Format and Use of the History List

INTERLISP EXECUTIVE

The system currently uses three history lists, L1SPXHISTORY for
the top-level Interlisp executive, EDITHISTORY for the editors,
and ARCHIVELST for archiving events (see page 13.16). All

history lists have the same format, use the same functions,
HISTORYSAVE, for recording events, and use the same set of

functions for implementing commands that refer to the history
list, e.g., HISTORYFIND, PRINTHISTORY, UNDOSAYE, etc.

Each history list is a list of the form (L EVENT# SIZE MOD), where

L is the list of events with the most recent event first, EVENT# is
the event num ber for the most recent event on L, SIZE is the size
of the time-slice (below), i.e., the maximum length of L, and
MOD is the highest possible event number. L1SPXHISTORY and
EDITHISTORY are both initialized to (NIL 0 100 100). Setting
L1SPXHISTORY or EDITHISTORY to NIL disables all history

features, so L1SPXHISTORY and EDITHISTORY act like flags as
well as repositories of events.

Note: One of the reasons why users may disable the history list
facility is to allow the garbage collector to reclaim objects stored
on the history list. Simply setting L1SPXHISTORY to NIL will not
necessarily remove all pointers to the history list. GAINSPACE
(page 22.12) is a useful function when trying to reclaim memory
space.

Each history list has a maximum length, called its "time-slice." As
new events occur, existing events are aged, and the oldest events
are .. forgotten." For efficiency, the storage used to represent
the forgotten event is reused in the representation of the new
event, so the history list is actually a ring buffer. The time-slice of
a history list can be changed with the function CHANGESLICE
(page 13.21). Larger time-slices enable longer" memory spans,"
but tie up correspondingly greater amounts of storage. Since
the user seldom needs really" ancient history," and a facility is
provided for saving and remembering selected events (see NAME
and RETRIEVE, page 13.14), a relatively small time-slice such as 30

events is more than adequate, although some users prefer to set
the time-slice as large as 1 00 events.

If PROMPT#FLG (page 13.22) is set to T, an "event number" will
be printed before each prompt. More recent events have higher
numbers. When the event number of the current event is 100,
the next event will be given number 1. If the time-slice is greater
than 100, the "roll-over" occurs at the next highest hundred, so
that at no time will two events ever have the same event
number. For example, if the time-slice is 150, event number 1
will follow event number 200.

Each individual event on L is a list of the form (INPUT 10 VALUE.

PROPS). ID is the prompt character for this event, e.g., ~, :, *,

etc. VALUE is the value of the event, and is initialized to bell. On

13 31

FORMAT AND USE OFTHE HISTORY LIST

1332

User Input

PlUS[1 1]

(PLUS 11)

PLUS 11 cr

EDITHISTORY, this field is used to save the side effects of each

command (see page 13.43). PROPS is a property list used to
associate other information with the event (described below).

INPUT is the input sequence for the event. Normally, this is just
the input that the user typed-in. For an APPLY-format input (see
page 13.4), this is a list consisting of two expressions; for an
EVAL-format input, this is a list of just one expression; for an
input entered as list of atoms, INPUT is simply that list. For
example,

INPUT is:

(PLUS (1 1))

«PLUS 1 1))

(PLUS 11)

If the user types in a programmer's assistant command that
II unreads" and reexecutes other events (REDO, USE" etc.), INPUT

contains a "sequence" of the inputs from the redone events.
Specifically, the INPUT fields from the specified events are
concatenated into a single list, seperated by special markers
called "pseudo-carriage returns," which print out as the string
II < c.r. > ". When the result of this concatenation is "reread, II the
pseudo-carriage-returns are treated by L1SPXREAD and
READLINE exactly as real carriage returns, i.e., they serve to

distinguish between APPLY-format and EVAL-format inputs to
LlSPX, and to delimit line commands to the editor.

Note: The value of the variable HISTSTRO is used to represent a
pseudo-carriage return. This is initially the string II < c.r. > ".
Note that the functions that recognize pseudo-carriage returns
compare them to HISTSTRO using EQ, so this marker will never be

confused with a string that was typed in by the user.

The same convention is used for representing multiple inputs
when a USE command involves sequential substitutions. For
example, if the user types GETD(FOO) and then USE FIE FUM FOR
FOO, the input sequence that will be constructed is (GETD (FIE)
"<c.r.>'" GETD (FUM», which is the result of substituting FIE for

FOO in (GETD (FOO» concatenated with the result of
substituting FUM for FOO in {GElD (FOO)).

Note that once a multiple input has been entered as the input
portion of a new event, that event can be treated exactly the
same as one resulting from type-in. In other words, no special
checks have to be made when referencing an event, to see if it is
simple or multiple. This implementation permits an event
specification to refer to a single simple event, or to several
events, or to a single event originally constructed from several
events (which may themselves have been multiple input events,
etc.) without having to treat each case separately.

INTERLISP EXECU TI V E

INTERUSP EXECUTIVE

SIDE

PRINT

USE-ARGS
... ARGS

ERROR
CONTEXT

LlSPXPRINT

ARCHIVE

GROUP
HISTORY

FORMAT AND USE OF TH E HISTORY LIST

REDO, RETRY, USE, ... , and FIX commands, i.e., those commands

that reexecute previous events, are not stored as inputs, because
the input portion for these events are the expressions to be
"reread". The history commands UNDO, NAME, RETRIEVE,

BEFORE, and AFTER are recorded as inputs, and 17 prints them

exactly as they were typed.

PROPS is a property list of the form (PROPERTY 1 VALUE 1

PROPERTY2 VALUE2 ...), that can be used to associate arbitrary

information with a particular event. Currently, the following
properties are used by the programmer's assistant:

A list of the side effects of the event. See UNDOSAVE, page
13.40.

Used by the 11 command when special formatting is required, for

example, when printing events corresponding to the break
commands OK, GO, EVAL, and 1 =.

The USE-ARGS and ... ARGS properties are used to save the

arguments and expression for the corresponding history
command.

ERROR and *CONTEXT* are used to save information when
errors occur for subsequent use by the $ command. Whenever
an error occurs, the offender is automatically saved on that
event's entry in the history list, under the *ERROR* property.

Used to record calls to LlSPXPRINT, LlSPXPRIN1, etc. (see page
13.25).

The property * ARCHIVE* on an event causes the event to be
automatically archived when it "falls off the end" of the history
list (see page 13.16).

The *HISTORY* and *GROUP* properties are used for commands
that reexecute previous events, i.e., REDO, RETRY, USE, ... , and
FIX. The value of the *HISTORY* property is the history
command that the user actually typed, e.g., REDO FROM F. This
is used by the 11 command when printing the event. The value

of the *GROUP* property is a structure containing the side
effects, etc. for the individual inputs being reexecuted. This
structure is described below.

When LlSPX is given an input, it calls HISTORYSAVE (page 13.38)

to record the input in a new event (except for the commands 11,
FORGET, TYPE-AHEAD, $BUFS, and ARCHIVE, that are executed
immediately and are not recorded on the history list). Normally,
HISTORYSAVE creates and returns a new event. L1SPX binds the
variable LlSPXHIST to the value of HISTORYSAVE, so that when
the operation has completed, L1SPX knows where to store the
value. Note that by the time it completes, the operation may no

13.33

FORMAT AND USE OF THE HISTORY LIST

13.34

longer correspond to the most recent event on the history list.
For example, all inputs typed to a lower break will appear later
on the history list. After binding L1SPXHIST, L1SPX executes the

input, stores its value in the value field of the L1SPXHIST event,

prints the value, and returns.

'Nhen the input is a REDO, RETRY, USE, ,.,' or FIX command, the
procedure is similar, except that the event is also given a
'''GROUP* property, initially NIL, and a *HISTORY* property, and
LlSPX simply unreads the input and returns. When the input is

"reread", it is HISTORYSAVE, not L1SPX, that notices this fact,
and finds the event from which the input originally came. If
HISTORYSAVE cannot find the event, for example if a user

program unreads the input directly, and not via a history
<:ommand, HISTORYSAVE proceeds as though the input were
typed. HISTORYSAVE then adds a new (INPUT 10 VALUE. PROPS)

Hntry to the *GROUP* property for this event, and returns this

Hntry as the" new event." LlSPX then proceeds exactly as when
its input was typed directly, i.e., it binds lISPXHIST to the value of
I-IISTORYSAVE, executes the input, stores the value in CADDR of
I.ISPXHIST, prints the value, and returns. In fact, lISPX never
notices whether it is working on freshly typed input, or input
that was reread. Similarly, UNDOSAVE will store undo

information on L1SPXHIST the same as always, and does not

know or care that L1SPXHIST is not the entire event, but one of
the elements of the *GROUP* property. Thus when the event is
finished, its entry will look like:

(INPUT 10 VALUE

HISTORY
COMMAND

GROUP

«INPUT1'D1 VALUE1 SIDE SIDE1)

(INPUT2'D2 VALUE2 SIDE SIDE2)

... »
In this case, the value field of the event with the *GROUP*
property is not being used; VALUEOF instead returns a list of the
values from the *GROUP* property. Similarly, UNDO operates by
(ollecting the SIDE properties from each of the elements of the

GROUP property, and then undoing them in reverse order.

This implementation removes the burden from the function
(ailing HISTORYSAVE of distinguishing between new input and
reexecution of input whose history entry has already been set up.

INTERLISP EXECUTIVE

PROGRAMMER'S ASSISTANT FUNCTIONS

13.6 Programmer's Assistant Functions

(LlSPX LlSPXX LlSPXID LlSPXXMACROS LlSPXXUSERFN LlSPXFLG) [Function]

LlSPX is the primary function of the programmer's assistant.

LlSPX takes one user input, saves it on the history list, evaluates

it, saves its value, and prints and returns it. LlSPX also interpretes

p.a. commands, LlSPXMACROS, LlSPXHISTORYMACROS, and
LlSPXUSERFN.

If LlSPXX is a list, it is interpreted as the input expression.
Otherwise, LlSPX calls READLlNE, and uses LlSPXX plus the value
of READLINE as the input for the event. If LlSPXX is a list CAR of
which is LAMBDA or NLAMBDA, LlSPX calls lISPXREAD to obtain

the arguments.

LlSPXID is the prompt character to print before accepting user
input. The user should be careful about usi ng the prom pt
characters "+-," "*," or ":," because in certain cases LlS?X uses

the value of L1SPXID to tell whether or not it was called from the
break package or editor.

If LlSPXXMACROS is not NIL, it is used as the list of LlSPX macros,

otherwise the top level value of the variable LlSPXMACROS is

used.

If LlSPXXUSERFN is not NIL, it is used as the LlSPXUSERFN. In this
case, it is not necessary to both set and define LlS?XUSERFN as

described on page 13.24.

L1SPXFLG is used by the E command in the editor (see page
13.43).

Note that the history is not one of the arguments to LlSPX, i.e.,
the editor must bind (reset) LlSPXHISTORY to EDITHISTORY

before calling LlSPX to carry out a history command. LlSPX will
continue to operate as an EVAUAPPL Y function if LlSPXHISTORY

is NIL. Only those functions and commands that involve the

history list will be affected.

LlSPX performs spelling corrections using LlSPXCOMS, a list of its
commands, as a spelling list whenever it is given an unbound
atom or undefined function, before attempting to evaluate the
input.

LlSPX is responsible for rebinding HELPCLOCK, used by

BREAKCHECK (page 14.13) for computing the amount of time
spent in a computation, in order to determine whether to go
into a break if and wh~" an error occurs.

(USEREXEC LlSPXID LlSPXXMACROS LlSPXXUSERFN) [Function]

INTERLISP EXECUTIVE

Repeatedly calls LlSPX under errorset protection specifying
LlSPXXMACROS and LlSPXXUSERFN, and using LlSPXID (or E- if

13 35

PROGRAMMER'S ASSISTANT FUNCTIONS

13.36

LlSPXID = Nil) as a prompt character. USEREXEC is exited via the

command OK, or else with a RETFROM.

(LlSPXEVAl LlSPXFORM LlSPXID) [Function]

READBUF

Evaluates LlSPXFORM (using EVAl) the same as though it were
typed in to lISPX, i.e., the event is recorded, and the evaluation is

made undoable by substituting the slash functions for the
corresponding destructive functions (see page 13.27).
LlSPXEVAl returns the value of the form, but does not print it.

When LlSPX recieves an "input," it may come from the user
typing it in, or it may be an input that has been" unread." LlSPX
handles these two cases by getting inputs with L1SPXREAD and
READLlNE, described below. These functions use the following
variable to store the expressions that have been unread:

[Variable]

This variable is used by L1SPXREAD and READLINE to store the
expressions that have been unread. When READBUF is not Nil,

READLINE and LlSPXREAD "read" expressions from READBUF
until READBUF is Nil, or until they read a pseudo-carriage return
(see page 13.32). Both functions return a list of the expressions
that have been .. read." (The pseudo-carriage return is not
included in the list.)

When READBUF is Nil, both LlSPXREAD and READLINE actually
obtain their input by performing (APPl V'" L1SPXREADFN FILE),
where LlSPXREADFN is initially set to ITVINREAD (page 26.28).

The user can make LlSPX, the editor, break, etc. do their reading
via a different input function by simply setting L1SPXREADFN to
the name of that function (or an appropriate lAMBDA
expression).

Note: The user should only add expressions to READBU Fusing

the function LlSPXUNREAD (page 13.38), which knows about the
format of READBU F.

(READLINE RDTBL --) [Function]

Reads a line from the terminal, returning it as a list. If (READP T)
is Nil, READLINE returns NIl. Otherwise it reads expressions until
it encounters either:

• an EOl (typed by the user) that is not preceded by any spaces,
e.g.,

•

A B Ccr

and READLINE returns (A B C)

a list terminating in a "]", in which case the list is included in the
value of READLlNE, e.g.,

INTERLISP EXECUTIVE

INTERUSP EXECUTIVE

PROGRAMMER'S ASSISTANTFUNCTIONS

A B (C 0]

and REAOLINE returns (A B (C 0».

• an unmatched right parentheses or right square bracket, which is
not included in the value of REAOLlNE, e.g.,

ABC]

and REAOLINE returns (A B C).

In the case that one or more spaces precede a carriage-return, or
a list is terminated with a")", REAOLINE will type and
continue reading on the next line, e.g.,

A B ecr

... (0 E F)

... (X Y Z]

and REAOLINE returns (A Be (0 E F) (X Y Z».

If the user types another carriage-return after the" , the line
will terminate, e.g.,

A Becr

cr

and REAOLINE returns (A Be).

Note that carriage-return, i.e., the EOL character, can be
redefined with SETSYNTAX (page 25.37). REAOLINE actually

checks for the EOL character, whatever that may be. The same is
true for right parenthesis and right bracket.

When REAOLINE is called from LlSPX, it operates differently in
two respects:

(1) If the line consists of a single) or], READLINE returns (NIL)

instead of NIL, i.e., the) or J is included in the line. This permits

the user to type Faa) or Faa], meaning call the function FOO

with no arguments, as opposed to FOOcr

(FOO<carriage-return », meaning evaluate the variable Faa.

(2) If the first expression on the line is a list that is not preceded
by any spaces, the list terminates the line regardless of whether
or not it is terminated by J. This permits the user to type
EOITF(FOO) as a single input.

Note that if any spaces are inserted between the atom and the
left parentheses or bracket, REAOLINE will assume that the list
does not terminate the line. This is to enable the user to type a
line command such as USE (Faa) FOR Faa. Therefore, i; he user
accidentially puts an extra space between a function and its
arguments, he will have to complete the input with another
carriage return, e.g.,

+-EOITF (Faa)

cr

, 337

PROGRAMMER'S ASSISTANT FUNCTIONS

13.38

(LlSPXREAD FILE RDTBL)

(L1SPXREADP FLG)

(L1SPXUNREAD LST-)

EDIT

Note: READLINE reads expressions by performing (APPl Y*

L1SPXREADFN T). L1SPXREADFN (page 13.36) is initially set to

nVINREAD (page 26.28).

[Function]

A generalized READ. If READBUF = Nil, L1SPXREAD performs
(APPl V'*' L1SPXREADFN FILE), which it returns as its value. If

READBUF is not Nil, L1SPXREAD "reads" and returns the next
expression on READBUF.

lISPXREAD also sets REREADFlG (page 13.39) to Nil when it

reads via L1SPXREADFN, and sets REREADFlG to the value of
IREADBUF when rereading.

[Function]

A generalized READP. If FLG = T, L1SPXREADP returns T if there is
any input waiting to be "read", in the manner of L1SPXREAD. If

FLG = Nil, L1SPXREADP returns T only if there is any input waiting
to be "read" on this line. In both cases, leading spaces are
ignored, i.e., skipped over with READC, so that if only spaces

have been typed, L1SPXREADP will return NIl.

[Function]

Unreads LST, a list of expressions.

(PROMPTCHAR ID FLG HISTORy) [Function]

Called by L1SPX to print the prompt character 10 before each
input. PROMPTCHAR will not print anything when the next
input will be "reread", i.e., when READBUF is not NIl.

I)ROMPTCHAR will not print when (READP) = T, unless FLG is T.

The editor calls PROMPTCHAR with FLG = Nil so that extra '*' 's are
not printed when the user types several commands on one line.
However, EVAlQT calls PROMPTCHAR with FLG = T, since it
always wants the ~ printed (except when" rereading").

If PROMPT#FlG (page 13.22) is T and HISTORY is not Nil,

PROMPTCHAR prints the current event number (of HISTORy)

before printing ID.

The value of PROMPTCHARFORMS (page 13.22) is a list of
expressions that are evaluated by PROMPTCHAR before, and if, it
does any printing.

(HISTORVSAVE HISTORY ID INPUT1 INPUT2 INPUT3 PROPS) (Function]

Records one event on HISTORY.

INTERLISP EXECUTIVE

PROGRAMMER'S ASSISTANTFUNCTIONS

If INPUT1 is not NIL, the input is of the form (INPUT1 INPUT2 .

INPUT3)' If INPUT1 is NIL, and INPUT2 is not NIL, the input is of

the form (/NPUT2 .INPUT3)' Otherwise, the input is just INPUT3'

HISTORYSAVE creates a new event with the corresponding
input, 10, value field initialized to bell, and PROPS. If the
HISTORY has reached its full size, the last event is removed and
cannibalized.

The value of HISTORYSAVE is the new event. However, if
REREADFLG is not NIL, and the most recent event on the history
list contains the history command that produced this input,
HISTORYSAVE does not create a new event, but simply adds an
(INPUT 10 bell. PROPS) entry to the *GROUP* property for that

event and returns that entry. See discussion on page 13.34.

HISTORYSAVEFORMS (page 13.22) is a list of expressions that are

evaluated under errorset protection each time HISTORYSAVE
creates a new event.

(LlSPXSTOREVALUE EVENT VALUE) [Function]

Used by LlSPX for storing the value of an event. Can be advised
by user to watch for particular values or perform other
monitoring functions.

(LlSPXFIND HISTORY LINE TYPE BACKUP-) [Function]

INTERLISP EXECUTIVE

LINE is an event specification, TYPE specifies the format of the
value to be returned by LlSPXFIND, and can be either ENTRY,
ENTRIES, COPY, COPIES, INPUT, or REDO. LlSPXFIND parses LINE,

and uses HISTORYFIND (page 13.40) to find the corresponding
events. LlSPXFIND then assembles and returns the appropriate
structure.

LlSPXFIND incorporates the following special features:

(1) if BACKUP = T, LlSPXFIND interprets LINE in the context of the
history list before the current event was added. This feature is
used, for example, by VALUEOF, so that (VALUEOF -1) will not
refer to the VALUEOF event itself.

(2) if LINE = NIL and the last event is an UNDO, the next to the last
event is taken. This permits the user to type UNDO followed by
REDO or USE.

(3)

(4)

LlSPXFIND recognizes @@, and searches the archived history list

instead of HISTORY (see the ARCHIVE command, page 13.16).

LlSPXFIND recognizes @, and retrieves the correspondi ng
event(s) from the property list of the atom following @ (see
page 13.14).

1339

PROGRAMMER'S ASSISTANT FUNCTIONS

13.40

(HISTORYFIND LST INDEX MOD EVENTADDRESS-) [Function]

Searches LST and returns the tails of LST beginning with the
event corresponding to EVENTADDRESS. LST, INDEX, and MOD

are the first three elements of a "history list" structure (see page
13.31). EVENTADDRESS is an event address (see page 13.6) e.g.,
(43), (-1), (FOO FIE), (LOAD +- FOO), etc. If HISTORYFIND cannot

find EVENTADDRESS, it generates an error.

(HISTORYMATCH INPUT PAT EVENn [Fu nctionl

(ENTRY # HIST X)

Used by HISTORYFIND for "matching" when EVENTADDRESS

specifies a pattern. Matches PAT against INPUT, the input
portion of the history event EVENT, as matching is defined on
page 16.18. Initially defined as (EDITFINDP INPUT PArT), but can
be advised or redefined by the user.

[Function]

HISTis a history list (see page 13.31). X is EQ to one of the events
on HIST. ENTRY # returns the event num ber for X.

(UNDOSAVE UNDOFORM HISTENTRy) [Function]

UNDOSAVE adds the "undo information" UNDOFORM to the
SIDE property of the history event HISTENTRY. If there is no SIDE
property, one is created. If the value of the SIDE property is

NOSAVE, the information is not saved.

HISTENTRY specifies an event. If HISTENTRY = NIL, the val ue of
LlSPXHIST is used. If both HISTENTRY and LlSPXHIST are NIL,

UNDOSAVE is a no-op. Note that HISTENTRY (or L1SPXHIST) can
either be a "real" event, or an event within the *GROUP*

property of another event (see page 13.34).

The form of UNDOFORM is (FN . ARGS) ... Undoing is done by
performing (APPLY (CAR UNDOFORM) (CDR UNDOFORM)). For

example, if the definition of FOO is DEF, (/PUTD FOO NEWDEF)

will cause a call to UNDOSAVE with UNDOFORM= (/PUTD FOO
DEF).

Note: In the special case of IRPLNODE and IRPLNODE2, the

format of UNDOFORM is (X OLDCAR . OLDCDR). When
UNDOFORM is undone, this form is recognized and handled
specially. This implementation saves space.

CAR of the SIDE property of an event is a count of the num ber of
UNDOFORMs saved for this event. E;:lch call to UNDOSAVE

increments this count. If this count is set to -', then it is never
incremented, and any number of UNDOFORMs can be saved. If
this count is a positive number, UNDOSAVE restricts the number

of UNDOFORMs saved to the value of #UNDOSAVES, described

below. LOAD initializes the count to -', so that regardless of the

INTERLISP EXECUTIVE

#UNDOSAVES

(NEW/FN FN)

(L1SPx/ X FN VARS)

INTERUSP EXECUTIVE

PROGRAMMER'S ASSISTAN T FUNCTIONS

value of #UNDOSAVES, no message will be printed, and the

LOAD will be undoable.

[Variable]

The value of #UNDOSAVES is the maximum number of
UNDOFORMs to be saved for a single event. When the count of
UNDOFORMs reaches this number, UNDOSAVE prints the
message CONTINUE SAVING?, asking the user if he wants to

continue saving. If the user answers NO or defaults, UNDOSAVE
discards the previously saved information for this event, and
makes NOSAVE be the value of the property SIDE, which disables
any further saving for this event. If the user answers YES,
UNDOSAVE changes the count to -1, which is then never
incremented, and continues saving. The purpose of this feature
is to avoid tying up large quantities of storage for operations
that will never need to be undone.

If #UNDOSAVES is negative, then when the count reaches
-#UNDOSAVES, UNDOSAVE simply stops saving without printing

any messages or interacting with the user. #UNDOSAVES = NIL is
equivalent to #UNDOSAVES = infinity. #UNDOSAVES is initially
NIL.

[Function]

NEW/FN performs the necessary housekeeping operations to
make FN be translated to the undoable version IFN when

typed-in. For example, RADIX can be made undoable when

typed-in by performing:

+- (DEFINEQ (/RADIX (X)
(UNDOSAVE (LIST '/RADIX (RADIX X))

(lRADIX)

+- (NEW/FN 'RADIX)

[Function]

L1SPx/ performs the substitution of I functions for destructive
functions that are typed-in. If FN is not NIL, it is the name of a
function, and X is its argument list. If FN is NIL, X is a form. In
both cases, L1SPx/ returns X with the appropriate substitutions.
VARS is a list of bound variables (optional).

L1SPx/ incorporates information about the syntax and semantics
of Interlisp expressions. For example, it does not bother to make
undoable operations involving variables bound in X. It does not
perform substitution inside of expressions CAR of which is an
nlambda function (unless CAR of the form has the property INFO
value EVAL, see page 21.21). For example, (BREAK PUTD) typed
to L1SPX, will break on PUTD, not IPUTD. Similarly, substitution
should be performed in the arguments for functions like MAPC,
RPTQ, etc., since these contain expressions that will be evaluated

13_41

PROGRAMMER'S ASSISTANT FUNCTIONS

, 3.42

(UNDOLlSPX LINE)

or applied. For example, if the user types (MAPC '(F001 F002

F003) 'PUTD) the PUTD must be replaced by /PUTD.

[Function]

LINE is an event specification. UNDOLlSPX is the function that
executes UNDO commands by calling UNDOLlSPX1 on the
appropriate entry(s).

(UNDOLlSPX1 EVENT FLG-) [Function]

Undoes one event. UNDOLlSPX1 returns NIL if there is nothing

to be undone. If the event is already undone, UNDOLlSPX1
prints already undone and returns T. Otherwise, UNDOLlSPX1

undoes the event, prints a message, e.g., SETQ undone, and
returns T.

If FLG= T and the event is already undone, or is an undo
command, UNDOLlSPX1 takes no action and returns NIL.

UNDOLlSPX uses this option to search for the last event to undo.
Thus when LINE = NIL, UNDOLlSPX simply searches history until it

finds an event for which UNDOLlSPX1 returns T.

Undoing an event consists of mapping down (CDR of) the
property value for SIDE, and for each element, applying CAR to

(DR, and then marking the event undone by attaching (with
IATTACH) a NIL to the front of its SIDE property. Note that the
undoing of each element on the SIDE property will usually cause
undosaves to be added to the current LlSPXHIST, thereby
enabling the effects of UNDOLlSPX1 to be undone.

(PRINTHISTORY HISTORY LINE SKIPFN NOVALUES FILE) [Function]

LINE is an event specification. PRINTHISTORY prints the events

on HISTORY specified by LINE, e.g., (-1 THRU -10). Printing is

performed via the function SHOWPRIN2, so that if the value of
:SYSPRETTYFLG = T, events will be prettyprinted.

SKIPFN is an (optional) functional argument that is applied to
each event before printing. If it returns non-NIL, the event is
skipped, i.e., not printed.

If NOVALUES = T, or NOVALUES applied to the correspondi ng
event is true, the value is not printed. For example, NOVALUES is
T when printing events on EDITHISTORY.

IFor example, the following LlSPXMACRO will define ??' as a
command for printing the history list while skipping all "large
events" and not printing any values.

(11' (PRINTHISTORY

LlSPXHISTORY
LlSPXLlNE
(FUNCTION (LAMBDA (X)

INTERLISP EXECU TIVE

PROGRAMMER'S ASSISTAN T FUNCTIONS

(lGREATERP (COUNT (CAR X» 5»)
T
T»

13.7 The Editor and the Programmer's Assistant

INTERLISP EXECUTIVE

As mentioned earlier, all of the remarks concerning "the
programmer's assistant" apply equally well to user interactions
with EVALQT, BREAK or the editor. The differences between the
editor's implementation of these features and that of L1SPX are

mostly obvious or inconsequential. However, for completeness,
this section discusses the editor's implementation of the
programmer's assistant.

The editor uses PROMPTCHAR to print its prompt character, and
LlSPXREAD, LlSPXREADP, and READLINE for obtaining inputs.
When the editor is given an input, it calls HISTORYSAVE to
record the input in a new event on its history list, EDITHISTORY,
except that the atomic commands OK, STOP, SAVE, P, 7, PP and E
are not recorded. In addition, number commands are grouped
together in a single event. For example, 3 3 -1 is considered as
one command for changing position. EDITHISTORY follows the
same conventions and format as L1SPXHISTORY (page 13.31).

However, since edit commands have no value, the editor uses the
value field for saving side effects, rather than storing them under
the property SIDE.

The editor recognizes and processes the four commands DO, !E,
!F, and IN which refer to previous events on EDITHISTORY. The

editor also processes UNDO itself, as described below. All other
history commands are simply given to LlSPX for execution, after

first binding (resetting) LlSPXHISTORY to EDITHISTORY. The
editor also calls LlSPX when given an E command (page 16.57).

In this case, the editor uses the fifth argument to L1SPX,
LlSPXFLG, to specify that any history commands are to be
executed by a recursive call to L1SPX, rather than by unreading.
For example, if the user types E REDO in the editor, he wants the
last event on L1SPXHISTORY processed as L1SPX input, and not to
be unread and processed by the editor.

Note: The editor determines which history commands to pass to
LlSPX by looking at HISTORYCOMS, a list of the history
commands. EDITDEFAULT (page 16.66) interrogates
HISTORYCOMS before attempting spelling correction. (All of
the commands on HISTORYCOMS are also on EDITCOMSA and
EDITCOMSL so that they can be corrected if misspelled in the
editor.) Thus if the user defines a LlSPXMACRO and wishes it to
operate in the editor as we", he need simply add it to

13.43

THE EDITOR AND THE PROGRAMMER'S ASSISTANT

1344

HISTORYCOMS. For example, RETRIEVE is implemented as a

LlSPXMACRO and works equallywell in LlSPX and the editor.

The major implementation difference between the editor and
LlSPX occurs in undoing. EDITHISTORY is a list of only the last N

commands, where N is the value of the time-slice. However the
editor provides for undoing all changes made in a single editing
session, even if that session consisted of more than N edit
commands. Therefore, the editor saves undo information
independently of the EDITHISTORY on a list called UNDOLST,

(although it also stores each entry on UNDOLST in the field of
the corresponding event on EDITHISTORY.) Thus, the commands
UNDO, !UNDO, and UNBLOCK, are not dependent on

EDITHISTORY, and in fact wi" work if EDITHISTORY = NIL, or
even in a system which does not contain LlSPX at a". For
example, UNDO specifies undoing the last command on
UNDOLST, even if that event no longer appears on
EDITHISTORY. The only interaction between UNDO and the

history list occurs when the user types UNDO followed by an
event specification. In this case, the editor calls LlSPXFIND to find

the event, and then undoes the corresponding entry on
UNDOLST. Thus the user can only undo a specified command
within the scope of the EDITHISTORY. (Note that this is also the

only way UNDO commands themselves can be undone, that is, by
using the history feature, to specify the corresponding event,
e.g., UNDO UNDO.)

The implementation of the actual undoing is similar to the way it
is done in LlSPX: each command that makes a change in the

structure being edited does so via a function that records the
change on a variable. After the command has completed, this
variable contains a list of all the pointers that have been changed
and their original contents. Undoing that command simply
involves mapping down that list and restoring the pointers.

INTERLISP EXECUTIVE

TABLE OF CONTENTS

14. Errors and Breaks 14.1

14.1. Breaks 14.1

14.2. Break Windows 14.3

14.3. Break Commands 14.5

14.4. Controlling When to Break 14.13

14.5. Break Window Variables 14.14

14.6. Creating Breaks with BREAK1 14.16

14.7. Signalling Errors 14.19

14.8. Catching Errors 14.21

14.9. Changing and Restoring System State 14.24

14.10. Error List 14.27

TABLE OF CONTENTS TOCl

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TAB LE OF CON TENTS

14.1 Breaks

ERRORS AND BREAKS

14. ERRORS AND BREAKS

Occasionally, while a program is running, an error may occur
which stops the computation. Errors can be caused in different
ways. A coding mistake may have caused the wrong arguments
to be passed to a function, or caused the function to try doing
something illegal. For example, PLUS will cause an error if its

arguments are not numbers. It is also possible to interrupt a
computation at any time by typing one of the "interrupt
characters," such as control-D or control-E (the Interlisp-D
interrupt characters are listed on page 30.1). Finally, the
programmer can specify that certain functions automatically
cause an error whenever they are entered (see page 15.1). This
facilitates debugging by allowing examination of the context
within the computation.

When an error occurs, the system can either reset and unwind
the stack, or go into a "break", an environment where the user
can examine the state of the system at the point of the error, and
attempt to debug the program. The mechanism that decides
whether to unwind the stack or break can be modified by the
user, and is described on page 14.13 of this chapter. Within a
break, Interlisp offers an extensive set of "break commands"
which assist with debugging.

This chapter explains what happens when errors occur. It also
tells the user how to handle program errors using breaks and
break commands. The debugging capabilities of break window
facility are described, as well as the variables that control its
operation. Finally, advanced facilities for modifying and
extending the error mechanism are presented.

One of the most useful debugging facilities in Interlisp is the
ability to put the system into a "break", stopping a computation
at any point and allowing the user to interrogate the state of the
world and affect the course of the computation. When a break
occurs, a "break window" (see page 14.3) is brought up near the
tty window of the process that broke. The break window
appears to the user like a top-level executive window, except
that the prompt character ":" is used to indicate that the
executive is ready to accept input, in the same way that "~" is

141

BREAKS

14.2

used at the top-level executive. However, a break saves the

Emvironment where the break occurred, so that the user may
evaluate variables and expressions in the environment that was
broken. In addition, the break program recognizes a number of
useful "break commands", which provide an easy way to
interrogate the state of the broken computation.

Breaks may be entered in several different ways. Some interrupt
characters (page 30.1) automatically cause a break to be entered
whenever they are typed. Function errors may also cause a
break, depending on the depth of the computation (see page
14.13). Finally, Interlisp provides facilities which make it easy to
"break" suspect functions so that they always cause a break
whenever they are entered, to allow examination and
debugging (see page 15.5).

Within a break the user has access to all of the power of Interlisp;
he can do anything that he can do at the top-level executive. For
example, the user can evaluate an expression, see that the value
is incorrect, call the editor, change the function, and evaluate
the expression again, all without leaving the break. The user can
also type in commands to the programmer's assistant (page
13.1), e.g. to redo or undo previously executed events, including
break commands.

Similarly, the user can prettyprint functions, define new
functions or redefine old ones, load a file, compile functions,
time a computation, etc. In short, anything that he can do at the
top level can be done while inside of the break. In addition the
user can examine the stack (see page 11.1), and even force a
return back to some higher function via the function RETFROM
or RETEVAL.

It is important to emphasize that once a break occurs, the user is
in complete control of the flow of the computation, and the
computation will not proceed without specific instruction from
him. If the user types in an expression whose evaluation causes
an error, the break is maintained. Similarly if the user aborts a
computation initiated from within the break (by typing
control-E), the break is maintained. Only if the user gives one of
the commands that exits from the break, or evaluates a form
which does a RETFROM or RETEVAL back out of BREAK1, will the

computation continue. Also, BREAK1 does not "turn off"
(ontrol-D, so a control-D will force an immediate return back to
the top level.

ERRORS AND BREAKS

14.2 Break Windows

ERRORS AND BREAKS

BREAK WINDOWS

When a break occurs, a break window is brought up near the tty
window of the process that broke and the terminal stream
switched to it. The title of the break window is changed to give
the name of the broken function and the reason for the break. If
a break occurs under a previous break, a new break window is
created.

Note: If a break is caused by a storage full error, the display
break package will not try to open a new break window, since
this would cause the error to occur repeatedly.

While in a break window, the clicking middle button brings up a
menu of break commands: !EVAL, EVAL, EDIT, revert, i, OK, BT,
BT!, and? =. Clicking on most of these commands is equivalent
to typing the corresponding break com mand (page 14.5).
Clicking BT and BT!, however, is different from the typed-in

backtrace break commands.

The BT and BT! menu commands bring up a backtrace menu
beside the break window showing the frames on the stack. BT
shows frames for which REALFRAMEP is T; BT! shows all frames.
When one of the frames is selected from the backtrace menu, it is
grayed and the function name and the variables bound in that
frame (including local variables and PROG variables) are printed
in the "backtrace frame window." If the left button ·is used for
the selection, only named variables are printed. If the middle
button is used, all variables are printed (variables without names
will appear as *var*N). The "backtrace frame" window is an

inspect window (see page 26.1). In this window, the left button
can be used to select the name of the function, the names of the
variables or the values of the variables. For exam pie, below is a
picture of a break window with a backtrace menu created by BT.
The OPENSTREAM stack frame has been selected, so its variables

are shown in an inspect window on top of the break window:

143

BREAK WINDOWS

~~(;.;.;.;.;.;.;.;.;.;.;.;.;';';';';';';';';.;.;.;.;.;,;.;,;,;.;,;.;,;,;,;,;.;.;,;.;,;,;,;.;,;,;,;,;,;,;,;,;';';';';';';';';';';';.;';';';';';';';';~~

OPENSTREAM- Frame
'I', :.:' ,',' .',' FIE :;:;:+: L:+:
:::: *ACCE88* :.:.

OPEN8TF-:EAr,1
{D8to::}FOO
INPUT

.... *F:ECOG*
:~:~ *PAF-:Ar,1ETEF-::::*

OLD
NIL

'IIi

;:;: *Oe,80LETE* NIL
,',' ~ :;:; * ',.,'.:s r':+: 0

:::: *·",·,:sr·:+:7 :.:.
:::: *·,.··.=sr·*e
,',I .:.:
'III :.: .
• '.1

:::: --­
:;:; EF:F:OR::;ET
;:;: BF:E,uKl

OLD
NIL
NIL

{DSK}FOa - FILE NOT FOUNl:t Dreal(: ,...

:::: EV,LrLA FILE NOT FOUND
:;:; !*E~$:~t~ {D8~;:}FOO
:::: EV,LrL
;:;: LI~;P~

jjj~ ~~~~~ET
;:;; EF:F:OF:SET
.'.' T ::::

(OPEN8TREAM broken)
46 :A

~ i ~ i:::::::::::::::::::::::::::: :::::: :::::: ::: ::::::::::::::::::::::::::: :::::::::::: ::::::::: :::::::::::: :::::::::::: ::: ::::::::: ::: ::: ::::::::: :::

14.4

After selecting an item, the middle button brings up a menu of
c:ommands that apply to the selected item. If the function name
is selected, a choice of editing the function or seeing the
c:ompiled code with INSPECTCODE (page 26.2) will be given. If

the function is edited in this way, the editor is called in the
broken process, so variables evaluated in the editor will be in the
broken process.

If a variable name is selected, the command SET will be offered.

Selecting SET will READ a value and set the selected to the value
read. (Note: The inspector will only allow the setting of named
variables. Even with this restriction it is still possible to crash the
system by setting variables inside system frames. It is
recommended that you exercise caution in setting variables in
other than your own code.) If the item selected is a value, the
inspector will be called on the selected value.

The internal break variable LASTPOS (page 14.6) is set to the

selected frame of the backtrace menu so that the normal break
commands EDIT, revert, and? = work on the currently selected
frame. The commands EVAL, revert, i, OK, and? = in the break
menu cause the corresponding commands to be "typed in." This
means that these break commands will not have the intended
effect if characters have already been typed in. Note also that
the typed-in break commands BT, BTV, etc. use the value of

l.ASTPOS to determine where to start listing the stack, so
selecting a stack frame name in the backtrace menu will effect
these commands.

ERRORS AND BREAKS

14.3 Break Commands

•

GO

OK

EVAL

ERRORS AND BREAKS

BREAK COMMANDS

The basic function of the break package is BREAK1. BREAK1 is

just another Interlisp function, not a special system feature like
the interpreter or the garbage collector. It has arguments, and
returns a value, the same as any other function. For more
information on the function BREAK1, see page 14.16.

The value returned by BREAK1 is called "the value of the break. II

The user can specify this value explicitly by using the RETURN

break command (page 14.6). But in most cases, the value of a
break is given implicitly, via a GO or OK command, and is the
result of evaluating "the break expression." The break
expression, stored in the variable BRKEXP, is an expression

equivalent to the computation that would have taken place had
no break occurred. For example, if the user breaks on the
function FOO, the break expression is the body of the definition
of FOO. When the user types OK or GO, the body of FOO is
evaluated, and its value returned as the value of the break, i.e.,
to whatever function called FOO. BRKEXP is set up by the
function that created the call to BREAK1. For functions broken
with BREAK or TRACE, BRKEXP is equivalent to the body of the

definition of the broken function (see page 15.5). For functions
broken with BREAKIN, using BEFORE or AFTER, BRKEXP is NIl.

For BREAKIN AROUND, BRKEXP is the indicated expression (see

page 15.6).

BREAK1 recognizes a large set of break commands. These are
typed in without parentheses. In order to facilitate debugging
of programs that perform input operations, the carriage return
that is typed to complete the GO, OK, EVAL, etc. commands is
discarded by BREAK1, so that it will not be part of the input

stream after the break.

[Break Command]

Evaluates BRKEXP, prints this value, and returns it as the value of
the break. Releases the break and allows the computation to
proceed.

[Break Command]

Same as GO except that the value of BRKEXP is not printed.

[Break Command]

Same as OK except that the break is maintained after the
evaluation. The value of this evaluation is bound to the local
variable !VALUE, which the user can interrogate. Typing GO or
OK following EVAL will not cause BRKEXP to be reevaluated, but
simply returns the value of !VALUE as the value" of the break.
Typing another EVAL will cause reevaluation. EVAL is useful

145

BREAK COMMANDS

RETURN FORM

f

!EVAL

!GO

!OK

UB

@

14.6

when the user is not sure whether the break will produce the
correct value and wishes to examine it before continuing with

the computation.

[Break Command]

FORM is evaluated, and returned as the value of the break. For
example, one could use the EVAL command and follow this with

RETURN (REVERSE !VALUE).

[Break Command]

Calls ERROR! and aborts the break, making it "go away" without.

returning a value. This is a useful way to unwind to a higher level
break. All other errors, including those encountered while
executing the GO, OK, EVAL, and RETURN commands, maintain
the break.

The following four commands refer to "the broken function."
This is the function that caused the break, whose name is stored
in the BREAK1 argument BRKFN.

[Break Command]

The broken function is first unbroken, then the break expression
is evaluated (and the value stored in !VALUE), and then the
function is rebroken. This command is very useful for dealing
with recursive functions.

[Break Command]

Equivalent to !EVAL followed by GO. The broken function is

unbroken, the break expression is evaluated, the function is
rebroken, and then the break is exited with the value typed.

[Break Command]

Equivalent to !EVAL followed by OK. The broken function is

unbroken, the break expression is evaluated, the function is
rebroken, and then the break is exited.

[Break Command]

Unbreaks the broken function.

[Break Command]

Resets the variable LASTPOS, which establishes a context for the

commands? = I ARGS, BT, BTV, BTV"', EDIT, and IN? described
below. LASTPOS is the position of a function call on the stack. It
is initialized to the function just before the call to BREAK1, i.e.,
(STKNTH -1 'BREAK1).

ERRORS AND BREAKS

?=

ERRORS AND BREAKS

BREAK COMMANDS

Note: When control passes from BREAK1, e.g. as a result of an

EVAL, OK, GO, REVERT, i command, or via a RETFROM or
RETEVAL typed in by the user, (RELSTK LASTPOS) is executed to
release this stack pointer.

@ treats the rest of the teletype line as its argument(s). It first

resets LASTPOS to (STKNTH -1 'BREAK1) and then for each atom

on the line, @ searches down the stack for a call to that atom.
The following atoms are treated specially:

@ Do not reset LASTPOS to (STKNTH -1 'BREAK1) but leave it as it

was, and continue searching from that point.

a number N If negative, move LASTPOS down the stack N frames. If positive,
move LASTPOS up the stack N frames.

1 The next atom on the line (which should be a number) specifies
that the previous atom should be searched for that many times.
For example, "@ FOO 13" is equivalent to "@ FOO FOO FOO".

:II Resets LASTPOS to the value of the next expression, e.g., if the
value of FOO is a stack pointer, "@ = FOO FIE" will search for FIE

in the environment specified by (the value of) FOO.

For example, if the push-down stack looks like:

[9J BREAK1

[8J FOO

[7J COND

[6J FIE

[5J COND

[4J FIE

[3J COND

[2J FIE

[1J FUM

then "@ FIE COND" will set LASTPOS to the position

corresponding to [5J; "@ @ COND" will then set LASTPOS to [3J;
and "@ FIE/3 -1" to [1].

If @ cannot successfully complete a search for function FN, it

searches the stack again from that point looking for a call to a
function whose name is close to that of FN, in the sense of the
spelling corrector (page 20.15). If the search is still unsuccessful,
@ types (FN NOT FOUND), and then aborts.

When @ finishes, it types the name of the function at LASTPOS,

i.e., (STKNAME LASTPOS).

@ can be used on BRKCOMS (see page 14.17). In this case, the
next command on BRKCOMS is treated the same as the rest of
the teletype line.

[Break Command]

This is a multi-purpose command. Its most common use is to
interrogate the value(s) of the arguments of the broken

147

BREAK COMMANDS

PB

14.8

function. For example, if FOO has three arguments (X V Z), then

typing? = to a break on FOO will produce:

:1=
X = value of X

V = value ofY

Z = valueofZ

? = operates on the rest of the teletype line as its arguments. If
th·e line is empty, as in the above case, it operates on all of the
arguments of the broken function. If the user types? = X (CAR

V), he will see the value of X, and the value of (CAR V). The

difference between using? = and typing X and (CAR V) directly
to BREAK1 is that? = evaluates its inputs as of the stack frame

LASTPOS, i.e., it uses STKEVAL. This provides a way of examining
variables or performing computations as of a particular point on
the stack. For example, @ FOO I 2 followed by ? = X will allow
the user to examine the value of X in the previous call to FOO,

etc.

7 = also recognizes numbers as referring to the correspondingly
numbered argument, i.e., it uses STKARG in this case. Thus

:@FIE

F~E

:1 = 2

will print the name and value of the second argument of FIE.

7 = can also be used on BRKCOMS (page 14.17, in which case the
next command on BRKCOMS is treated as the rest of the teletype

line. For example, if BRKCOMS is (EVAL ? = (X V) GO), BRKEXP

will be evaluated, the values of X and V printed, and then the

function exited with its value being printed.

Note: ? = prints variable values using the function SHOWPRINT

(page 25.10), so that if SVSPRETIVFLG = T, the value will be
prettyprinted.

7 = is a universal mnemonic for displaying argument names and
their corresponding values. In addition to being a break
command, ? = is an edit macro which prints the argument names
and values for the current expression (page 16.48), and a read
macro (actually? is the read macro character) which does the

same for the current level list being read.

[Break Command]

Prints the bindings of a given variable. Similar to 7 =, except
ascends the stack starting from LASTPOS, and, for each frame in
which the given variable is bound, prints the frame name and
value of the variable (with PRINTLEVEL reset to (2. 3», e.g.

ERRORS AND BREAKS

BT

BTV

BTV+

BTV*

BTV!

ERRORS AND BREAKS

:PB FOO
@ FN1: 3
@ FN2: 10
@ TOP: NOBIND

BREAK COMMANDS

PB is also a programmer's assistant command (page 13.17) that

can be used when not in a break. PB is implemented via the
function PRINTBINDINGS.

[Break Command]

Prints a backtrace of function names only starting at LASTPOS.
The value of LASTPOS is changed by selecting an item from the
backtrace menu page 14.15 or by the @ command. The several
nested calls in system packages such as break, edit, and the top
level executive appear as the single entries **BREAK**,
EDITOR, and **TOP** respectively.

[Break Command]

Prints a backtrace of function names with variables beginning at
LASTPOS.

The value of each variable is printed with the function
SHOWPRINT (page 25.10), so that if SYSPRETTYFLG = T, the value
will be prettyprinted.

[Break Command]

Same as BTV except also prints local variables and arguments to
SUBRs. •

[Break Command]

Same as BTV except prints arguments to local variables and eval
blips (see page 11.14).

[Break Command]

Same as BTV except prints everything on the stack.

BT, BTV, BTV +, BTV*, and BTV! all take optional functional

arguments. These arguments are used to choose functions to be
skipped on the backtrace. As the backtrace scans down the
stack, the name of each stack frame is passed to each of the
arguments of the backtrace command. If any of these functions
returns a non-NIL value, then that frame is skipped, and not
shown in the backtrace. For example, BT EXPRP will skip all
functions definied by expr definitions, BTV (LAMBDA (X) (NOT
(MEMB X FOOFNS») will skip all but those functions on FOOFNS.
If used on BRKCOMS (page 14.17) the functional argument is no
longer optional, i.e., the next element on BRKCOMS must either

14.9

BREAK COMMANDS

ARGS

REVERT

ORIGINAL

= FORM

14.10

be a list of functional arguments, or Nil if no functional

argument is to be applied.

For BT, BTV, BTV +, BTV*, and BTV!, if control-P is used to change
a printlevel during the backtrace, the printlevel will be restored
after the backtrace is completed.

The value of BREAKDEUMITER, initially the carriage return

character, is printed to delimit the output of ? = and backtrace

commands. This can be reset (e.g. to the comma) for more linear
output.

[Break Command]

Prints the names of the variables bound at LASTPOS, i.e.,

(VARIABLES lASTPOS) (page 11.7). For most cases, these are the

arguments to the function entered at that position, i.e.,
(ARGUST (STKNAME lASTPOS)).

[Break Command]

Goes back to position lASTPOS on stack and reenters the
function called at that point with the arguments found on the
stack. If the function is not already broken, REVERT first breaks
it, and then unbreaks it after it is reentered.

REVERT can be given the position using the conventions
'described for @, e.g., REVERT FOO ·1 is equivalent to @ FOO ·1

followed by REVERT.

REVERT is useful for restarting a computation in the situation
where a bug is discovered at some point below where the
problem actually occurred. REVERT essentially says II go back
there and start over in a break." REVERT will work correctly if
the names or arguments to the function, or even its function
type, have been changed.

[Break Command]

For use in conjunction with BREAKMACROS (see page 14.17).

Form is (ORIGINAL. CaMS). CaMS are executed without regard

for BREAK MACROS. Useful for redefining a break command in
terms of itself.

The following two commands are for use only with unbound
atoms or undefined function breaks.

[Break Command]

Can only be used in a break following an unbound atom error.
Sets the atom to the value of FORM, exits from the break
returning that value, and continues the computation, e.g.,

UNBOUND ATOM

ERRORS AND BREAKS

-> EXPR

EDIT

ERRORS AND BREAKS

(Faa BROKEN)
: = (COpy FIE)

sets Faa and goes on.

BREAK COMMANDS

Note: FORM may be given in the form FN[ARGS).

[Break Command]

Can be used in a break f.ollowing either an unbound atom error,
or an undefined function error. Replaces the expression
containing the error with EXPR (not the value of EXPR) , and
continues the computation. -> does not just change BRKEXP; it
changes the function or expression containing the erroneous
form. In other words, the user does not have to perform any

additional editing.

For example,

UNDEFINED CAR OF FORM

(F001 BROKEN)

:-> Faa

changes the F001 to Faa and continues the computation. EXPR

need not be atomic, e.g.,

UNBOUNDATOM

(Faa BROKEN)

:-> (QUOTE Faa) .
For undefined function breaks, the user can specify a function
and initial arguments, e.g.,

UNDEFINED CAR OF FORM

MEMBERX

(MEMBERX BROKEN)

:-> MEMBER X

Note that in the case of a undefined function error occurring
immediately following a call to APPLY (e.g., (APPLY X Y) where
the value of X is Faa and Faa is undefined), or a unbound atom
error immediately following a call to EVAL (e.g., (EVAL X), where
the value of X is Faa and FOO is unbound), there is no
expression containing the offending atom. In this case, ->
cannot operate, so? is printed and no action is taken.

[Break Command]

Designed for use in conjunction with breaks caused by errors.
Facilitates editing the expression causing the break:

NON-NUMERIC ARG
NIL

14.11

BREAK COMMANDS

1412

• (lPLUS BROKEN)

:EDIT
IN FOO ...
(lPLUS X Z)

EDIT
*(3 Y)

*OK
FOO

and the user can continue by typing OK, EVAL, etc.

This command is very simple conceptually, but its
implementation is complicated by all of the exceptional cases
involving interactions with compiled functions, breaks on user
functions, error breaks, breaks within breaks, et al. Therefore,
we shall give the following simplified explanation which will
account for 90% of the situations arising in actual usage. For
those others, EDIT will print an appropriate failure message and

return to the break.

EDIT begins by searching up the stack beginning at LASTPOS (set

by @ command, initially position of the break) looking for a
form, i.e., an internal call to EVAL. Then EDIT continues from

that point looking for a call to an interpreted function, or to
EVAL. It then calls the editor on either the EXPR or the argument

to EVAL in such a way as to look for an expression EQ to the form
that it first found. It then prints the form, and permits
interactive editing to begin. Note that the user can then type
successive O's to the editor to see the chain of superforms for this

computation.

If the user exits from the edit with an OK, the break expression is

reset, if possible, so that the user can continue with the
computation by simply typing OK. (Note that evaluating the
new BRKEXP will involve reevaluating the form that causes the
break, so that if (PUTD (QUOTE (FOO» BIG-COMPUTA T/ON) were
handled by EDIT, BIG-COMPUTA T/ON would be reevaluated.}

However, in some situations, the break expression cannot be
reset. For example, if a compiled function FOO incorrectly called

PUTD and caused the error ARG NOT ATOM followed by a break
on PUTD, EDIT might be able to find the form headed by FOO,
and also find that form in some higher interpreted function. But
after the user corrected the problem in the FOO-form, if any, he
would still not have informed EDIT what to do about the

immediate problem, i.e., the incorrect call to PUTD. However, if
Faa were interpreted, EDIT would find the PUTD form itself, so
that when the user corrected that form, EDIT could use the new

corrected form to reset the break expression.

ERRORS AND BREAKS

IN?

BREAK COMMANDS

[Break Command]

Similar to EDIT, but just prints parent form, and superform, but

does not call the editor, e.g.,

ATIEMPT TO RPLAC NIL

T

(RPLACD BROKEN)

:IN?
FOO: (RPLACD X Z)

Although EDIT and IN? were designed for error breaks, they can
also be useful for user breaks. For example, if upon reaching a
break on his function FOO, the user determines that there is a
problem in the call to FOO, he can edit the calling form and reset
the break expression with one operation by using EDIT.

14.4 Controlling When to Break

When an error occurs, the system has to decide whether to reset
and unwind the stack, or go into a break. In the middle of a
complex computation, it is usually helpful to go into a break, so
that the user may examine the state of the computation.
However, if the computation has only proceeded a little when
the error occurs, such as when the user mistypes a function
name, the user would normally just terminate a break, and it
would be more convenient for the system to simply cause an
error and unwind the stack in this situatuation. The decision
over whether or not to induce a break depends on the depth of
computation, and the amount of time invested in the
computation. The actual algorithm is described in detail below;
suffice it to say that the parameters affecting this decision have
been adjusted empirically so that trivial type-in errors do not
cause breaks, but deep errors do.

(BREAKCHECK ERRORPOS ERXN) [Function]

ERRORS AND BREAKS

BREAKCHECK is called by the error routine to decide whether or
not to induce a break when a error occurs. ERRORPOS is the
stack position at which the error occurred; ERXN is the error
number. Returns T if a break should occur; NIL otherwise.

BREAKCHECK ret.'~ns T (and a break occurs) if the "computation
depth" is greater than or equal to HELPDEPTH. HELPDEPTH is
initially set to 7, arrived at empirically by taking into account the
overhead due to LlSPX or BREAK.

If the depth of the computation is less than HELPDEPTH,
BREAKCHECK next calculates the length of time spent in the

14.13

CONTROLLING WHEN TO BREAK

14.5 Break Window Variables

14.14

computation. If this time is greater than HELPTIME milliseconds,

initially set to 1000, then BREAKCHECK returns T (and a break

occurs), otherwise NIL.

BREAKCHECK determines the "computation depth" by searching

back up the stack looking for an ERRORSET frame (ERRORSETs
indicate how far back unwinding is to take place when an error
occurs, see page 14.21). At the same time, it counts the num ber
of internal calls to EVAL. As soon as the number of calls to EVAL

exceeds HELPDEPTH, BREAKCHECK immediately stops searching
for an ERRORSET and returns T. Otherwise, BREAKCHECK
continues searching until either an ERRORSET is found or the top

of the stack is reached. (Note: If the second argument to
ERRORSET is INTERNAL, the ERRORSET is ignored by
BREAKCHECK during this search.) BREAKCHECK then counts the

number of function calls between the error and the last
ERRORSET, or the top of the stack. The number of function calls
plus the number of calls to EVAL (already counted) is used as the
"computation depth".

BREAKCHECK determines the computation time by subtracting
the value of the variable HELPCLOCK from the value of (CLOCK
2), the number of milliseconds of compute time (see page 12.15).

HELPCLOCK is rebound to the current value of (CLOCK 2) for
each computation typed in to LlSPX or to a break. The time
criterion for breaking can be suppressed by setting HELPTIME to
NIL (or a very big number), or by setting HELPCLOCK to NIL. Note

that setting HELPCLOCK to NIL will not have any effect beyond

the current computation, because HELPCLOCK is rebound for
each computation typed in to LlSPX and BREAK.

The user can suppress all error breaks by setting the top level
binding of the variable HELPFLAG to NIL using SErrOPVAL

(HELPFLAG is bound as a local variable in LlSPX, and reset to the
global value of HELPFLAG on every LlSPX line, so just SETQing it

will not work.) If HELPFLAG = T (the initial value), the decision
whether to cause an error or break is decided based on the
computation time and the computation depth, as described
above. Finally, if HELPFLAG = BREAK!, a break will always occur
following an error.

The appearance and use of break windows is controlled by the
following variables:

ERRORS AND BREAKS

(WBREAK ONFLG)

MaxBkMenuWidth

MaxBkMenuHeight

AUTOBACKTRACEFLG

NIL

T

BT!

ALWAYS

ALWAYS!

BACKTRACEFONT

CLOSEBREAKWI NDOWFLG

BREAKREGIONSPEC

ERRORS AND BREAKS

BREAK WINDOW VARIABLES

[Function]

If ONFLG is non-NIL, break windows and trace windows are

enabled. If ONFLG is NIL, break windows are disabled (break
windows do not appear, but the executive prompt is changed to
":" to indicate that the system is in a break). WBREAK returns T
if break windows are currently enabled; NIL otherwise.

[Variable]

[Variable]

The variables MaxBkMenuWidth (default 125) and
MaxBkMenuHeight (default 300) control the maximum size of

the backtrace menu. If this menu is too small to contain all of the
frames in the backtrace, it is made scrollable in both vertical and
horizontal directions.

[Variable]

This variable controls when and what kind of backtrace menu is
automatically brought up. The value of AUTOBACKTRACEFLG

can be one of the following:

The backtrace menu is not automatically brought up (the
default).

On error breaks the BT menu is brought up.

On error breaks the BT! menu is brought up.

The BT menu is brought upon both error breaks and user breaks

(calls to functions broken by BREAK).

On both error breaks and user breaks the BT! menu is brought

up.

[Variable]

The backtrace menu is printed in the font BACKTRACEFONT.

(Variable]

The system normally doses break windows after the break is
exited. If CLOSEBREAKWINDOWFLG is NIL, break windows will

not be dosed on exit. Note that in this case, the user must close
all break windows.

(Variable]

Break windows are positioned near the tty window of the
broken process, as determined by the variable
BREAKREGIONSPEC. The value of this variable is a region (page
27.1) whose LEFT and BOTTOM fields are an offset from the LEFT
and BOTTOM of the tty window. The WIDTH and HEIGHT fields
of BREAKREGIONSPEC determine the size of the break window.

14 15

BREAK WINDOW VARIABLES

TRACEWINDOW

TRACEREGION

[Variable]

The trace window, TRACEWINDOW, is used for tracing functions.

It is brought up when the first tracing occurs and stays up until
the user closes it. TRACEWINDOW can be set to a particular
window to cause the tracing formation to print there.

[Variable]

The trace window is first created in the region TRACEREGION.

14.6 Creating Breaks with BREAK1

14.16

The basic function of the break package is BREAK1, which

creates a break. A break appears to be a regular executive, with
the prom pt ":", but BREAK1 also detects and interpretes break
commands (page 14.5).

(BREAK1 BRKEXP BRKWHEN BRKFN BRKCOMS BRKTYPE ERRORN) [N Lam bda Function]

If BRKWHEN (evaluated) is non-NIL, a break occurs and

commands are then taken from BRKCOMS or the terminal and
interpreted. All inputs not recognized by BREAK1 are simply
passed on to the programmer's assistant.

If BRKWHEN is NIL, BRKEXP is evaluated and returned as the
value of BREAK1, without causing a break.

When a break occurs, if ERRORN is a list whose CAR is anum ber,

ERRORMESS (page 14.20) is called to print an identifying
message. If ERRORN is a list whose CAR is not anum ber,
ERRORMESS1 (page 14.21) is called. Otherwise, no preliminary

message is printed. Following this, the message (BRKFN broken)
is printed.

Since BREAK1 itself calls functions, when one of these is broken,
an infinite loop would occur. BREAK1 detects this situation, and
prints Break within a break on FN, and then simply calls the
function without going into a break.

The commands GO, !GO, OK, !OK, RETURN and i are the only
ways to leave BREAK 1. The com mand EVAL causes BRKEXP to be
evaluated, and saves the value on the variable !VALUE. Other
COrTI,. ands can be defined for BREAK1 via BREAKMACROS
(below).

BRKTYPE is NIL for user breaks, INTERRUPT for control-H breaks,
and ERRORX for error breaks. For breaks when BRKTYPE is not
NIL, BREAK1 will clear and save the input buffer. If the break

ERRORS AND BREAKS

BREAKMACROS

ERRORS AND BREAKS

CREATING BREAKS WITH BREAK 1

returns a value (Le., is not aborted via i or control-D) the input
buffer will be restored.

The fourth argument to BREAK1 is BRKCOMS, a list of break
commands that BREAK1 interprets and executes as though they
were keyboard input. One can think of BRKCOMS as another
input file which always has priority over the keyboard.
Whenever BRKCOMS = NIL, BREAK1 reads its next command
from the keyboard. Whenever BRKCOMS is not NIL, BREAK1
takes (CAR BRKCOMS) as its next command and sets BRKCOMS to
(CDR BRKCOMS). For exam pie, suppose the user wished to see
the value of the variable X after a function was evaluated. He

could set up a break with BRKCOMS = {EVAL (PRINT X) OK),
which would have the desired effect. Note that if BRKCOMS is
not NIL, the value of a break command is not printed. If you

desire to see a value, you must print it yourself, as in the above
example. The function TRACE (page 15.5) uses BRKCOMS: it sets
up a break with two commands; the first one prints the
arguments of the function, or whatever the user specifies, and
the second is the command GO, which causes the function to be

evaluated and its value printed.

Note: If an error occurs while interpreting the BRKCOMS
commands, BRKCOMS is set to NIL, and a full interactive break

occurs.

The break package has a facility for redirecting ouput to a file.
All output resulting from BRKCOMS will be output to the value
of the variable BRKFILE, which should be the name of an open

file. Output due to user typein is not affected, and will always go
to the terminal. BRKFILE is initially T.

[Variable]

BREAKMACROS is a list of the form { (NAME 1 COM 11 ... COM 1 n)

{NAME2 COM21 ..• COM2n} ...). Whenever an atomic command

is given to BREAK1, it first searches the list BREAKMACROS for
the command. If the command is equal to NAMEj, BREAK1

simply appends the corresponding commands to the front of
BRKCOMS, and goes on. If the command is not found on
BREAKMACROS, BREAK1 then checks to see if it is one of the
built in commands, and finally, treats it as a function or variable
as before.

If the command is not the name of a defined function, bound
variable, or LlSPX command, BREAK1 will attempt spelling
correction using BREAKCOMSLST as a spelling list. If spelling
correct.on is unsuccessful, BREAK1 will go ahead and call LISPX
anyway, since the atom may also be a misspelled history
command.

14.17

CREATING BREAKS WITH BREAK 1

(BREAKREAD TYPE)

BREAKRESETFORMS

14.18

For example, the command ARGS could be defined by including

on BREAKMACROS the form:

{ARGS (PRINT (VARIABLES LASTPOS T)))

[Function]

Useful within BREAKMACROS for reading arguments. If

BRKCOMS is non-Nil (the command in which the call to

BREAK READ appears was not typed in), returns the next break

command from BRKCOMS, and sets BRKCOMS to (CDR
BRKCOMS).

If BRKCOMS is NIL (the command was typed in), then

BREAKREAD returns either the rest of the commands on the line
as a list (if TYPE = LINE) or just the next command on the line (if
TYPE is not LINE).

For example, the BT command is defined as {BAKTRACE LASTPOS

Nil (BREAKREAD 'LINE) 0 T). Thus, if the user types BT, the third
argument to BAKTRACE will be NIL. If the user types BT SUBRP,

the third argument will be (SUBRP).

[Variable]

If the user is developing programs that change the way a user
and Interlisp normally interact (e.g., change or disable the
interrupt or line-editi ng characters, tu rn off echoing, etc.),
debugging them by breaking or tracing may be difficult, because
Interlisp might be in a "funny" state at the time of the break.
BREAKRESETFORMS is designed to solve this problem. The user

puts on BREAKRESETFORMS expressions suitable for use in
conjunction with RESETFORM or RESETSAVE (page 14.24). When

a break occurs, BREAK1 evaluates each expression on
BREAKRESETFORMS before any interaction with the term inal,
and saves the values. When the break expression is evaluated via
an EVAL, OK, or GO, BREAK1 first restores the state of the system
with respect to the various expressions on BREAKRESETFORMS.

When control returns to BREAK1, the expressions on

BREAKRESETFORMS are again evaluated, and their values saved.
When the break is exited with an OK, GO, RETU RN, or i
command, by typing control-D, or by a RETFROM or RETEVAL
typed in by the user, BREAK1 again restores state. Thus the net
effect is to make the break invisible with respect to the user's
programs, but nevertheless allow the user to interact in the
break in the normal fashion.

Note: All user type-in is scanned in order to make the operations
undoable as described on page 13.27. At this point, RETFROMs
and RETEVALs are also noticed. However, if the user types in an
expression which calls a function that then does a RETFROM, this
RETFROM will not be noticed, and the effects of
BREAKRESETFORMS will not be reversed.

ERRORS AND BREAKS

14.7 Signalling Errors

(ERRORX ERXM)

(REATING BREAKS WITH BREAK 1

As mentioned earlier, BREAK1 detects "Break within a break"

situations, and avoids infinite loops. If the loop occurs because
of an error, BREAK1 simply rebinds BREAKRESETFORMS to Nil,

and calls HELP. This situation most frequently occurs when there

is a bug in a function called by BREAKRESETFORMS.

Note: SETQ expressions can also be included on

BREAKRESETFORMS for saving and restoring system parameters,

e.g. (SETQ lISPXHISTORY Nil), (SETQ DWIMFlG Nil), etc. These
are handled specially by BREAK1 in that the current value of the

variable is saved before the SETQ is executed, and upon

restoration, the variable is set back to this value.

[Function]

The entry to the error routines. If ERXM = Nil, (ERRORN) is used

to determine the error-message. Otherwise, (SETERRORN (CAR
ERXM) (CADR ERXM» is performed, "setting" the error number

and argument. Thus following either (ERRORX '(10 T» or (PLUS
T), (ERRORN) is (10 T). ERRORX calls BREAKCHECK, and either

induces a break or prints the message and unwinds to the last
ERRORSET (page 14.13). Note that ERRORX can be called by any

program to intentionally induce an error of any type. However,
for most applications, the function ERROR will be more useful.

(ERROR MESS 1 MESS2 NOBREAK) [Function]

ERRORS AND BREAKS

Prints MESSI (using PRIN1), followed by a space if MESS1 is an

atom, otherwise a carriage return. Then MESS2 is printed (using
PRIN1 if MESS2 is a string, otherwise PRINT). For example,

(ERROR "NON-NUMERIC ARG" T) prints

NON-NUMERIC ARG

T

and (ERROR 'FOO "NOT A FUNCTION") prints FOO NOT A

FUNCTION. If both MESS1 and MESS2 are Nil, the message

printed is simply ERROR.

If NOBREAK = T, ERROR prints its message and then c ; ERROR!
(below). Otherwise it calls (ERRORX '(17 (MESSI . ME -,52»), i.e.,

generates error number 17, in which case the decision as to

whether or not to break, and whether or not to print a message,
is handled as per any other error.

If the value of HElPFlAG (page 14.14) is BREAK!, a break will
always occur, irregardless of the value of NOBREAK.

14.19

SIGNALLING ERRORS

Note: If ERROR causes a break, the "break expression" (page

14.5) will be (ERROR MESS1 MESS2 NOBREAK). Using the GO,

OK, or EVAL break commands (page 14.5) will simply call ERROR

again. It is sometimes helpful to design programs that call

E:RROR such that if the call to ERROR returns (as the result of

Llsing the RETURN break command), the operation is tried again.

This allows the use to fix any problems within the break

environment, and try to continue the operation.

(HELP MESS 1 MESS2 BRKTYPE) [Function]

(SHOULDNT MESS)

(ERROR!)

(RESET)

(ERRORN)

(SETERRORN NUM MESS)

(FRRORMESS U)

1420

Prints MESS 1 and MESS2 similar to ERROR, and then calls BREAK1

passing BRKTYPE as the BRKTYPE argument. If both MESS1 and

MESS2 are NIL, Help! is used for the message. HELP is a

convenient way to program a default condition, or to terminate
some portion of a program which the computation is
theoretically never supposed to reach.

[Function]

Useful in those situations when a program detects a condition
that should never occur. Calls HELP with the message arguments
MESS and "Shouldn't happen! II and a BRKTYPE argument of

'ERRORX.

[Function]

Programmable control-E; immediately returns from last

ERRORSET or resets.

[Function]

Programmable control-D; immediately returns to the top level.

[Function]

Returns information about the last error in the form (NUM EXP)

where NUM is the error number (page 14.27) and EXP is the
expression which was printed out after the error message. For
example, following (PLUS T), (ERRORN) would return (10 T).

[Function]

Sets the value returned by ERRORN to (NUM MESS).

[Function]

Prints message corresponding to an ERRORN that yielded U. For
example, (ERRORMESS '(10 T)) would print

f\ION-NUMERIC ARG

T

ERRORS AND BREAKS

SIGNALLING ERRORS

(ERRORMESS1 MESSl MESS2 MESS3) [Function]

(ERRORSTRING X)

14.8 Catching Errors

(ERRORSET FORM FLAG -)

ERRORS AND BREAKS

Prints the message corresponding to a HELP or ERROR break.

[Function]

Returns as a new string the message corresponding to error
number X, e.g., (ERRORSTRING 10) = "NON-NUMERIC ARG ".

All error conditions are not caused by program bugs. For some
programs, it is reasonable for some errors to occur (such as file
not found errors) and it is possible for the program to handle the
error itself. There are a number of functions that allow a
program to II catch II errors, rather than abort the computation or
cause a break.

[Function]

Performs (EVAL FORM). If no error occurs in the evaluation of

FORM, the value of ERRORSET is a list containing one element,
the value of (EVAL FORM). If an error did occur, the value of
ERRORSET is NIL.

ERRORSET is a lambda function, so its arguments are evaluated
before it is entered, i.e., (ERRORSET X) means EVAL is called with

the value of X. In most cases, ERSETQ and NLSETQ (below) are
more usefu I.

Performance Note: When a call to ERSETQ or NLSETQ is
compiled, the form to be evaluated is compiled as a separate
function. However, compiling a call to ERRORSET does not
compile FORM. Therefore, if FORM performs a lengthy
computation, using ERSETQ or NLSETQ can be much more
efficient than using ERRORSET.

The argument FLAG controls the printing of error messages if an
error occurs. Note that if a break occurs below an ERRORSET, the
message is pri nted regardless of the val ue of FLAG.

If FLAG = T, the error message is printed; if FLAG = NIL, the error
message is not printed (unless NLSETQGAG is NIL, see below).

If FLAG = INTERNAL, this ERRORSET is ignored for the purpose of

deciding whether or not to break or print a message ~~.:e page
14.13). However, the ERRORSET is in effect for the purpose of
flow of control, i.e., if an error occurs, this ERRORSET returns NIL.

If FLAG = NOBREAK, no break will occur, even if the time
criterion for breaking is met (see page 14.13). Note that
FLAG = NOBREAK will not prevent a break from occurring if the

1421

CA TCHING ERRORS

(ERSETQ FORM)

(NLSETQ FORM)

NLSETQGAG

ERRORTYPELST

ERRORMESS

14.22

error occurs more than HELPDEPTH function calls below the

errorset, since BREAKCHECK will stop searching before it reaches
the ERRORSET. To guarantee that no break occurs, the user
would also either have to reset HELPDEPTH or HELPFLAG (page
14.13).

[NLam bda Function]

Performs (ERRORSET 'FORM T), evaluating FORM and printing

error messages.

[NLambda Function]

Performs (ERRORSET 'FORM NIL), evaluating FORM without

printing error messages.

[Variable]

If NLSETQGAG is NIL, error messages will print! regardless of the
FLAG argument of ERRORSET. NLSETQGAG effectively changes

all NLSETQs to ERSETQs. NLSETQGAG is initially T.

Occasionally the user may want to treat certain types of errors
differently from others, e.g., always break, never break, or
perhaps take some corrective action. This can be accomplished
via ERRORTYPELST:

[Variable]

ERRORTYPELST is a list of elements, where each element is of the

form (NUM FORM1 ... FORMN)' NUM is one of the error numbers

(page 14.27). During an error, after BREAKCHECK has been

completed, but before any other action is taken, ERRORTYPELST
is searched for an element with the same error number as that
causing the error. If one is found, the corresponding forms are
·evaluated, and if the last one produces a non-NIL value, this

value is substituted for the offender, and the function causing
the error is reentered.

Note: ERRORTYPELST is accessed as a special variable (see page

18.5), so it can be rebound in a function argument list of .PROG
form to catch errors ina dyna m ic context.

Within ERRORTYPELST entries, the following variables may be
useful:

[Variable]

CAR is the error number, CADR the "offender", e.g., (10 NIL)
corresponds to a NON-NUMERIC ARG NIL error.

ERRORS AND BREAKS

ERRORPOS

BREAKCHK

PRINTMSG

ERRORS AND BREAKS

CATCHING ERRORS

[Variable]

Stack pointer ,to the function in which the error occurred, e.g.,
(STKNAME ERRORPOS) might be IPLUS, RPLACA, INFILE, etc.

Note: If the error is going to be handled by a RETFROM, RETTO,
or a RETEVAL in the ERRORTYPELST entry, it probably is a good

idea to first release the stack pointer ERRORPOS, e.g. by
performing (RELSTK ERRORPOS).

[Variable]

Value of BREAKCHECK, i.e., T means a break will occur, NIL
means one will not. This may be reset within the ERRORTYPELST

entry.

[Variable]

If T, means print error message, if NIL, don't print error message,

i.e., corresponds to second argument to ERRORSET. The user can
force or suppress the printing of error messages for various error
types by including on ERRORTYPELST an expression which
explicitly sets PRINTMSG.

For example, putting

[10 {AND {NULL (CADR ERRORMESS»
{SELECTQ (STKNAME ERRORPOS)

{(IPLUS ADD1 SUB1) 0)

(ITIMES 1)
{PROGN (SETQ BREAKCH K T) NIL]

on ERRORTYPELST would specify that whenever a
NON-NUMERIC ARG - NIL error occurred, and the function in
question was IPLUS, ADD1, or SUB1, 0 should be used for the NIL.
If the function was ITIMES, 1 should be used. Otherwise, always

break. Note that the latter case is achieved not by the value
returned, but by the effect of the evaluation, i.e., setting
BREAKCHK to T. Similarly, (16 (SETQ BREAKCHK NIL)) would

prevent END OF FILE errors from ever breaking.

ERRORTYPELST is initially {(23 {SPELLFILE (CADR ERRORMESS)

NIL NOFILESPELLFLG»), which causes SPELLFILE to be called in
case of a FILE NOT FOUND error (see page 24.32). If SPELLFILE is
successful, the operation will be reexecuted with the new
(corrected) file name.

14,23

CHANGING AND RESTORING SYSTEM STA TE

14.9 Changing and Restoring System State

14.24

In Interlisp, a computation can be interrupted/aborted at any
point due to an error, or more forcefully, because a control-D
was typed, causing return to the top level. This situation creates
problems for programs that need to perform a computation with
the system in a "different state", e.g., different radix, input file,
readtable, etc. but want to be able to restore the state when the
(amputation has completed. While program errors and
c:ontrol-E can be "caught" by ERRORSETs, control-D is not. Note
that the program could redefine control-D as a user interrupt
(page 30.3), check for it, reenable it, and call RESET or something

similar. Thus the system may be left in its changed state as a
result of the computation being aborted. The following
functions address this problem.

Note that these functions cannot handle the situation where
their environment is exited via anything other than a normal
return, an error, or a reset. Therefore, a RETEVAL, RETFROM,

ftESUME, etc., will never be seen.

(RESETLST FORM 1 ... FORM N) [NLambda NoSpread Function]

(RESETSAVE X y)

nESETLST evaluates its arguments in order, after setting up an

ERRORSET so that any reset operations performed by RESETSAVE

(see below) are restored when the forms have been evaluated
(or an error occurs, or a control-D is typed). If no error occurs, the

value of RESETLST is the value of FORMN' otherwise RESETLST

~Jenerates an error (after perform ing the necessary restorations).

FtESETLST compiles open.

[NLambda NoSpread Function]

RESETSAVE is used within a call to RESETLST to change the

system state by calling a function or setting a variable, while
specifying how to restore the original system state when the
RESETLST is exited (normally, or with an error or control-D).

If X is atomic, resets the top level value of X to the value of Y. For

example, (RESETSAVE L1SPXHISTORY EDITHISTORY) resets the
value of L1SPXHISTORY to the value of EDITHISTORY, and

provides for the original value of L1SPXHISTORY to be restored

when the RESETLST completes operation, (or an error occurs, or
a control-D is typed).

Note: If the variable is simply rebound, thA RESETSAVE will not
affect the most recent binding but will change only the top level
value, and therefore probably not have the intended effect.

If X is not atomic, it is a form that is evaluated. If Y is NIL, X must

return as its value its "former state", so that the effect of
evaluating the form can be reversed, and the system state can be
restored, by applying CAR of X to the value of X. For example,

ERRORS AND BREAKS

CHANGING AND RESTORI NG SYSTEM STA TE

(RESETSAVE (RADIX 8» performs (RADIX 8), and provides for

RADIX to be reset to its original value when the RESETLST

completes by applying RADIX to the value returned by (RADIX 8).

In the special case that CAR of X is SETQ, the SETQ is transparent
for the purposes of RESETSAVE, i.e. the user could also have
written (RESETSAVE (SETQ X (RADIX 8»), and restoration would

be performed by applying RADIX, not SETQ, to the p.-evious
value of RADIX.

If Y is not NIL, it is evaluated (before X), and its value is used as

the restoring expression. This is useful for functions which do
not return their" previous setting". For exam pie,

[RESETSAVE (SETBRK ..•) (LIST 'SETBRK (GETBRK]

will restore the break characters by applying SETBRK to the value
returned by (GETBRK), which was computed before the (SETBRK

...) expression was evaluated. Note that the restoration
expression is "evaluated" by applying its CAR to its CDR. This
insures that the "arguments" in the CDR are not evaluated
again.

If X is NIL, Y is still treated as a restoration expression. Therefore,

(RESETSAVE NIL (LIST 'CLOSEF FILE»

will cause FILE to be closed when the RESETLST that the
RESETSAVE is under completes (or an error occurs or a control-D
is typed).

Note: RESETSAVE can be called when not under a RESETLST. In
this case, the restoration will be performed at the next RESET,

i.e., control-D or call to RESET. In other words, there is an
"implicit" RESETLST at the top-level executive.

RESETSAVE compiles open. Its value is not a "useful" quantity.

(RESETVAR VAR NEWVALUE FORM) [NLambda Function]

ERRORS AND BREAKS

Simplified form of RESETLST and RESETSAVE for resetting and
restoring global variables. Equivalent to (RESETLST (RESETSAVE

VAR NEWVALUE) FORM). For example, (RESETVAR

L1SPXHISTORY EDITHISTORY (FOO» resets L1SPXHISTORY to the
value of EDITHISTORY while evaluating (FOO). RESETVAR

compiles open. If no error occurs, its val ue is the value of FORM.

[NLambda NoSpread Function]

Similar to PROG, except that the variables in VARSLST are global
variables. In a deep bound system (such as Interlisp-D), each
variable is "rebound" using RESETSAVE.

In a shallow bound system (such as Interlisp-1 0) RESETVARS and
PROG are identical, except that the compiler insures that

1425

CHANGING AND RESTORING SYSTEM STA TE

variables bound in a RESETVARS are declared as SPECVARS (see

page 18.5).

RESETVARS, like GETATOMVAL and SETATOMVAL (page 2.4), is

provided to permit compatibility (i.e. transportablility) between
a shallow bound and deep bound system with respect to
conceptually global variables.

Note,: like PROG, RESETVARS returns NIL unless a RETURN

statement is executed.

(RESETFORM RESETFORM FORM1 FORM2 ... FORMN) [NLambda NoSpread Function]

1426

Simplified form of RESETLST and RESETSAVE for resetting a
system state when the corresponding function returns as its
value the 10 previous setting." Equivalent to (RESETLST

(RESETSAVE RESETFORM) FORM1 FORM2 ... FORMN). For

example, (RESETFORM (RADIX 8) (FOO». RESETFORM compiles
open. If no error occurs, it returns the value returned by FORMN.

For some applications, the restoration operation must be
different depending on whether the computation completed
successfully or was aborted somehow (e.g., by an error or by
typing control-D). To facilitate this, while the restoration
operation is being performed, the value of RESETSTATE will be
bound to NIL, ERROR, RESET, or HARDRESET depending on

whether the exit was normal, due to an error, due to a reset (i.e.,
control-D), or due to call to HARDRESET (page 23.1). As an
-example of the use of RESETSTATE,

{RESETLST
{RESETSAVE (lNFILE X)

{LIST '[LAMBDA (FL)

{COND {(EQ RESETSTATE 'RESET)

(CLOSEF FL)

X»
FORMS)

(DELFILE FL]

will cause X to be closed and deleted only if a control-D was
typed during the execution of FORMS.

When specifying complicated restoring expressions, it is often
necessary to use the old value of the saving expression. For
example, the following expression will set the primary input file
(to FL) and execute some forms, but reset the primary input file
only if an error or control-D occurs.

(RESETLST

(SETQ TEM (INPUT FL»
{RESETSAVE NIL

{LIST '{LAMBDA (X) {AND RESETSTATE (INPUT X)))

TEM»

ERRORS AND BREAKS

14.10 Error List

ERRORS AND BREAKS

(HANGING AND RESTORI NG SYSTEM STATE

FORMS)

So that you will not have to explicitely save the old value, the
variable OLDVALUE is bound at the time the restoring operation

is performed to the value of the saving expression. Using this,
the previous example could be recoded as:

(RESETLST
(RESETSAVE (INPUT FL)

'(AND RESETSTATE (INPUT OLDVALUE))

FORMS)

As mentioned earlier, restoring is performed by applying CAR of
the restoring expression to the CDR, so RESETSTATE and (INPUT
OLDVALUE) will not be evaluated by the APPLY. This particular
example works because AND is an nlambda function that

explicitly evaluates its arguments, so APPLYing AND to
(RESETSTATE (INPUT OLDVALUE» is the same as EVALing (AND
RESETSTATE (INPUT OLDVALUE». PROGN also has this property,
so you can use a lambda function as a restoring form by
enclosing it within a PROGN.

The function RESETUNDO (page 13.30) can be used in
conjunction with RESETLST and RESETSAVE to provide a way of
specifying that the system be restored to its prior state by
undoing the side effects of the computations performed under
the RESETLST.

There are currently fifty-plus types of errors in the Interl isp
system. Some of these errors are implementation dependent,
i.e., appear in Interlisp-D but may not appear in other Interlisp
systems. The error number is set internally by the code that
detects the error before it calls the error handling functions. It is
also the value returned by ERRORN if called subsequent to that
type of error, and is used by ERRORMESS for printing the error
message.

Most errors will print the offending expression following the
message, e.g., NON-NUMERIC ARG NIL is very common. Error
number 18 (control-B) always causes a break (unless HELPFLAG is

NIL). All other errors cause breaks if BREAKCHECK returns T (see
page 14. iJ).

The errors are listed below by error number:

o SYSTEM ERROR

Low-level Interlisp system error. It is quite possible that random
programs or data structures might have already been smashed.

14.27

ERROR LIST

1428

Unless he is sure he knows what the problem is, the user is best
advised to save any important information, and reload the
Interlisp system as soon as possible.

No longer used.

2 STACK OVERFLOW

Occurs when computation is too deep, either with respect to
number of function calls, or number of variable bindings.
Usually because of a non-terminating recursive computation, i.e.,
a bug.

3 ILLEGAL RETU RN

Call to RETURN when not inside of an interpreted PROG.

4 ARG NOT LIST

RPLACA called on a non-list.

5 HARD DISK ERROR

An error with the local disk drive.

6 A TIEMPT TO SET NIL

Via SET or SETQ

7 A TIEMPT TO RPLAC NIL

Attempt either to RPLACA or to RPLACD NIL with something
other than NIl.

8 UNDEFINED OR ILLEGAL GO

GO when not inside of a PROG, or GO to nonexistent label.

9 FILE WON'T OPEN

From OPENSTREAM (page 24.2).

lONON-NUMERIC ARG

A numeric function e.g., PLUS, TIMES, GREATERP, expected a
number.

11 ATOM TOO LONG

Attempted to create a litatom (via PACK, or typing one in, or

reading from a file) with too many characters. In Interlisp-D, the
maximum number of characters in a litatom is 255.

12 ATOM HASH TABLE FULL

No room for any more (new) atoms.

13 FILE NOT OPEN

From an I/O function, e.g., READ, PRINT, CLOSEF.

14 ARG NOT lITATOM

15

16

SETQ, PUTPROP, GETTOPVAL, etc., given a non-atomic argo

TOO MANY FILES OPEN

END OF FILE

ERRORS AND BREAKS

ERRORS AND BREAKS

ERROR LIST

From an input function, e.g., READ, READC, RATOM. After the

error occurs, the file will still be left open.

Note: It is possible to use an ERRORTYPELST entry (page 14.22)
to return a character as the value of the call to ERRORX, and the
program will continue, e.g. returning "]" may be used to

complete a read operation.

17 ERROR

Call to ERROR (page 14.19).

18 BREAK

Control-B was typed.

19 ILLEGAL STACK ARG

A stack function expected a stack position and was given
something else. This might occur if the arguments to a stack
function are reversed. Also occurs if user specified a stack
position with a function name, and that function was not found
on the stack. See page 11.1.

20 FAULT IN EVAL

Artifact of bootstrap process. Never occurs after FAULTEVAL is
defined.

21 ARRAYS FULL

System will first initiate a garbage collection of array space, and
if no array space is reclaimed, will then generate this error.

22 FILE SYSTEM RESOURCES EXCEEDED

Includes no more disk space, disk quota exceeded, directory
full,etc.

23 FILE NOT FOUND

File name does not correspond to a file in the corresponding
directory. Can also occur if file name is ambiguous.

Interlisp is initialized with an entry on ERRORTYPELST (page
14.22) to call SPELLFILE for this error. SPELLFILE will search
alternate directories or perform spelling correction on the
connected directory. If SPELLFILE fails, then the user will see this
error.

24 BAD SYSOUT FILE

Date does not agree with date of MAKESYS, or file is not a sysout
file at all (see page 12.8).

25 UNUSUAL CDR ARG LIST

A form ends in a non-list other than NIL, e.g., (CONS T. 3).

26 HASH TABLE FULL

27

See hash array functions, page 6.1.

ILLEGAL ARG

1429

ERROR LIST

14.30

Catch-all error. Currently used by PUTD, EVALA, ARG, FUNARG,

E!tC.

28 ARG NOT ARRA V

EL T or SETA given an argument that is not a legal array (see page

S.1).

29 ILLEGAL OR IMPOSSIBLE BLOCK

(Interlisp-10) Not enough free blocks available (from GETBLK or

RELBLK).

30 STACK PTR HAS BEEN RELEASED

A released stack pointer was supplied as a stack descriptor for a
purpose other than as a stack pointer to be re-used (see page
11.10).

31 STORAGE FULL

Following a garbage collection, if not enough words have been
collected, and there is no un-allocated space left in the system,
this error is generated.

32 ATTEMPT TO USE ITEM OF INCORRECT TYPE

Before a field of a user data type is changed, the type of the item
is first checked to be sure that it is the expected type. If not, this
error is generated (see page 8.20).

33 ILLEGAL DATA TYPE NUMBER

The argument is not a valid user data type number (see page
8.20).

34 DATA TYPES FULL

All available user data types have been allocated (see page 8.20).

35 ATTEMPT TO BIND NIL OR T

In a PROG or LAMBDA expression.

36 TOO MANY USER INTERRUPT CHARACTERS

Attempt to enable a user interrupt character when all user
channels are currently enabled (see page 30.3).

37 READ-MACRO CONTEXT ERROR

(Interlisp-l0 only) Occurs when a READ is executed from within a

read macro function and the next token is a) or a] (see page
25.39).

38 IL.LEGAL READTABLE

The argument was expected to be a valid read table (see page
25.33).

39 Il.LEGAL TERMINAL TABLE

The argument was expected to be a valid terminal table (see
page 30.4).

ERRORS AND BREAKS

ERROR LIST

40 SWAPBLOCK TOO BIG FOR BUFFER

(Interlisp-1 0) An attempt was made to swap ina function/a rray
which is too large for the swapping buffer.

41 PROTECTION VIOLATION

Attempt to open a file that user does not have access to. Also
reference to unassigned device.

42 BAD FILE NAME

Illegal character in file specification, illegal syntax, e.g. two; 's

etc.

43 USER BREAK

Error corresponding to user interrupt character. See page 30.3.

44 UNBOUND ATOM

This occurs when a variable (litatom) was used which had neither
a stack binding (wasn't an argument to a function nor a PROG

variable) nor a top level value. The "culprit" «CADR
ERRORMESS)) is the litatom. Note that if DWIM corrects the
error, no error occurs and the error number is not set. However,
if an error is going to occur, whether or not it will cause a break,
the error number will be set.

45 UNDEFINED CAR OF FORM

Unaefined function error. This occurs when a form is evaluated
whose function position (CAR) does not have a definition as a
function. Culprit is the form.

46 UNDEFINED FUNCTION

This error is generated if APPLY is given an undefined function.
Culprit is (LIST FN ARGS)

47 CONTROL-E

The user typed control-E.

48 FLOATING UNDERFLOW

Underflow during floating-point operation.

49 FLOA TI NG OVERFLOW

Overflow during floating-point operation.

SO OVERFLOW

Overflow during integer operation.

51 ARG NOT HARRA Y

Hash array operations given an argument that is not a hash
array.

52 TOO MANY ARGUMENTS

Too many arguments given to a lambda-spread,
lambda-nospread, or nlambda-spread function.

ERRORS AND BREAKS 14.31

ERROR LIST

1432

Note that Interlisp-D does not cause an error if more arguments
are passed to a function than it is defined with. This argument
occurs when more individual arguments are passed to a function
than Interlisp-D can store on the stack at once. The limit is
currently 80 arguments.

In addition, many system functions, e.g., DEFINE, ARGLlST,
ADVISE, LOG, EXPT, etc, also generate errors with appropriate
messages by calling ERROR (see page 14.19) which causes error
number 17.

ERRORS AND BREAKS

TABLE OF CONTENTS

15. Breaking, Tracing, and Advising 15.1

15.1. Breaking Functions and Debugging 15.1

15.2. Advising 15.9

15.2.1. Implementation of Advising 15.10

15.2.2. Advise Functions 15.10

TABLE OF CONTENTS TOC1

TABLE OF CONTENTS

[This page intentionally left blank]

TOC 2 TABLE OF CONTENTS

15. BREAKING, TRACING, AND
ADVISING

It is frequently useful to be able to modify the behavior of a
function without actually editing its definition. Interlisp
provides several different facilities for doing this. By "breaking"
a function, the user can cause breaks to occur at various times in
the running of an incomplete program, so that the program
state can be inspected. "Tracing" a function causes information
to be printed every time the function is entered or exited. These
are very useful debugging tools.

"Advising" is a facility for specifying longer-term function
modifications. Even system functions can be changed through
advising.

15.1 Breaking Functions and Debugging

BREAKING. TRACING. AND ADVISING

Debugging a collection of LISP functions involves isolating
problems within particular functions and/or determining when
and where incorrect data are being generated and transmitted.
In the Interlisp system, there are three facilities which allow the
user to (temporarily) modify selected function definitions so that
he can follow the flow of control in his programs, and obtain this
debugging information. All three redefine functions in terms of
a system function, BREAK1 (see page 14.16).

BREAK (page 15.5) modifies the definition of a function FN, so

that whenever FN is called and a break condition (defined by the
user) is satisfied, a function break occurs. The user can then
interrogate the state of the machine, perform any computation,
and continue or return from the call.

TRACE (page 15.5) modifies a definition of a function FN so that
whenever FN is called, its arguments (or some other values
specified by the user) are printed. When the val ue of FN is
computed it is printed also. TRACE b a special case of BREAK.

BREAKIN (page 15.6) allows the user to insert a breakpoint inside

an expression defining a function. When the breakpoint is
reached and if a break condition (defined by the user) is satisfied,
a temporary halt occurs and the user can again investigate the
state of the computation.

15.1

BREAKING FUNCTIONS AND DEBUGGING

15.2

The following two examples illustrate these facilities. In the first

example, the user traces the function FACTORIAL. TRACE
redefines FACTORIAL so that it print its arguments and value,
and then goes on with the computation. When an error occurs
on the fifth recursion, a full interactive break occurs. The
situation is then the same as though the user had originally
performed (BREAK FACTORIAL) instead of (TRACE FACTORIAL),

and the user can evaluate various Interlisp forms and direct the
course of the computation. In this case, the user examines the
variable N, and instructs BREAK1 to return 1 as the value of this

cell to FACTORIAL. The rest of the tracing proceeds without
incident. The user would then presumably edit FACTORIAL to
change L to 1.

+-PP FACTORIAL

,(FACTORIAL

[LAMBDA(N)

(COND

«ZEROP N)
L)

(T (ITIMES N (FACTORIAL (SUB1 N])
FACTORIAL
+-(TRACE FACTORIAL)
(FACTORIAL)

+-(FACTORIAL 4)

FACTORIAL:

N-4

FACTORIAL:
N.3

FACTORIAL:

N-2

FACTORIAL:

N = 1

FACTORIAL:

N-O

UNBOUND ATOM
L

(FACTORIAL BROKEN)
:N
o
:RETURN 1

FACTORIAL = 1

BREAKING, TRACING, AND ADVISING

BREAKING. TRACING, AND ADVISING

BREAKING FUNCTIONS AND DEBUGGING

FACTORIAL = 1

FACTORIAL = 2
FACTORIALI= 6

FACTORIAL = 24
24

In the second example, the user has constructed a non-recursive
definition of FACTORIAL. He uses BREAKIN to insert a call to
BREAK1 just after the PROG label LOOP. This break is to occur

only on the last two iterations, when N is less than 2. When the
break occurs, the user tries to look at the value of N, but
mistakenly types NN. The break is maintained, however, and no

damage is done. After examining Nand M the user allows the
computation to continue by typing OK. A second break occurs
after the next iteration, this time with N = o. When this break is
released, the function FACTORIAL returns its value of 120.

~PP FACTORIAL
(FACTORIAL
[LAMBDA (N)

(PROG «M 1»
LOOP (COND

«ZEROP N)
(RETURN M»)

(SETQ M (lTIMES M N»

(SETQ N (SUB1 N»
(GO LOOP))

FACTORIAL
+-(BREAKIN FACTORIAL (AFTER LOOP) (ILESSP N 2]

SEARCHING .•.
FACTORIAL
+-(FACTORIAL 5)

«FACTORIAL) BROKEN)

:NN

U.B.A.
NN
(FACTORIAL BROKEN AFTER LOOP)
:N
1

:M
120

:OK
(FACTORIAL)

«FACTORIAL) BROKEN)
:N
o
:OK

153

BREAKING FUNCTIONS AND DEBUGGING

(FACTORIAL)

120

Note: BREAK and TRACE can also be used on CLiSP words which
appear as CAR of form, e.g. FETCH, REPLACE, IF, FOR, DO, etc.,

even though these are not implemented as functions. For
conditional breaking, the user can refer to the entire expression
via the variable EXP, e.g. (BREAK (FOR (MEMB 'UNTIL EXP»).

(BREAKO FN WHEN COMS --) [Function]

15.4

Sets up a break on the function FN; returns FN. If FN is not
defined, returns (FN NOT DEFINED).

The value of WHEN, if non-NIL, should be an expression that is
evaluated whenever FN is entered. If the value of the expression
is non-NIL, a break is entered, otherwise the function simply

called and returns without causing a break. This provides the
means of conditionally breaking a function.

The value of COMS, if non-NIL, should be a list of break

commands, that are interpreted and executed if a break occurs.
·(See the BRKCOMS argument to BREAK1, page 14.17.)

BREAKO sets up a break by doing the following: (1) it redefines

FN as a call to BREAK1 (page 14.16), passing an equivalent
definition of FN, WHEN, FN, and COMS as the BRKEXP,
BRKWHEN, BRKFN, and BRKCOMS arguments to BREAK1; (2) it
defines a GENSYM (page 2.1 O) with the original definition of FN,

and puts it on the property list of FN under the property
BROKEN; (3) it puts the form (BREAKO WHEN COMS) on the

property list of FN under the property BRKINFO (for use in
conjunction with REBREAK); and (4) it adds FN to the front of the

list BROKENFNS.

If FN is non-atomic and of the form (FN1 IN FN2), BREAKO breaks
every call to FN1 from within FN2. This is useful for breaking on a
function that is called from many places, but where one is only
interested in the call from a specific function, e.g., (RPLACA IN

FOO), (PRINT IN FIE), etc. It is similar to BREAKIN described

below, but can be performed even when FN2 is compiled or
blockcompiled, whereas BREAKIN only works on interpreted
functions. If FN1 is not found in FN2, BREAKO returns the value
(FN1 NOT FOUND IN FN2).

BREAKO breaks one function inside another by first calling a
function which chan~es the name of FN1 wherever it appears
inside of FN2 to that of a new function, FN1-IN-FN2, which is
initially given the same function definition as FN1. Then BREAKO
proceeds to break on FN1-IN-FN2 exactly as described above. In
addition to breaking FN1-IN-FN2 and adding FN1-IN-FN2 to the
list BROKENFNS, BREAKO adds FN1 to the property value for the

BREAKING. TRACING. AND ADVISING

(BREAK X)

(TRACE X)

BREAKING, TRACING, AND ADVISING

BREAKING FUNCTIONS AND DEBUGGING

property NAMESCHANGED on the property list of FN2 and puts

(FN2. FN1) on the property list of FN1-IN-FN2 under the property
ALIAS. This will enable UNBREAK to recognize what changes
have been made and restore the function FN2 to its original
state.

If FN is nonatomic and not of the above form, BREAKO is called
for each member of FN using the same values for WHEN, COMS,
and FILE. This distributivity permits the user to specify
complicated break conditions on several functions. For example,

(BREAKO '(F001 «PRINT PRIN1) IN (F002 F003»)
'(NEQ X T)
'(EVAL 7 = (Y Z) OK))

will break on F001, PRINT-IN-F002, PRINT-IN-F003,
PRIN1-IN-F002 and PRIN1-IN-F003.

If FN is non-atomic, the value of BREAKO is a list of the functions
broken.

[NLambda NoSpread Function]

For each atomic argument, it performs (BREAKO ATOM T). For
each list, it performs (APPLY 'BREAKO LlSn. For exam pie, (BREAK
F001 (F002 (GREATERP N 5) (EVAL)) is equivalent to (BREAKO
'F001 T) and (BREAKO 'F002 '(GREATERP N 5) '(EVAL».

[NLambda NoSpread Function]

For each atomic argument, it performs (BREAKO ATOM T '(TRACE
7::a - NIL GO». The flag TRACE is checked for in BREAK1 and

causes the message "FUNCTION : II to be pri nted instead of
(FUNCTION BROKEN).

For each list argument, CAR is the function to be traced, and CDR

the forms the user wishes to see, i.e., TRACE performs:

(BREAKO (CAR LlSn T (LIST 'TRACE '7 = (CDR LlSn 'GO»

For example, (TRACE F001 (F002 V)) will cause both F001 and
F002 to be traced. All the arguments of F001 will be printed;
only the value of Y will be printed for F002. In the special case
that the user wants to see only the val ue, he can perform (TRACE

(FUNCTION». This sets up a break with commands (TRACE? =
(NIL) GO).

Note: the user can always call BREAKO himself to obtain
combination of options of BREAK1 not directly available with
BREAK and TRACE. These two functions merely provide
convenient ways of calling BREAKO, and will serve for most uses.

Note: BREAKO, BREAK, and TRACE print a warning if the user

tries to modify a function on the list UNSAFE.TO.MODIFY.FNS
(page 10.10).

, 55

BREAKING FUNCTIONS AND DEBUGGING

(BREAKIN FN WHERE WHEN COMS) [NLambda Function]

15.6

BREAKIN enables the user to insert a break, i.e., a call to BREAK1

(page 14.16), at a specified location in the interpreted function
FN. BREAKIN can be used to insert breaks before or after PROG

labels, particular SETQ expressions, or even the evaluation of a
variable. This is because BREAKIN operates by calling the editor

and actually inserting a call to BREAK1 at a specified point inside

of the function. If FN is a compiled function, BREAKIN returns
(FN UNBREAKABLE) as its value.

\NHEN should be an expression that is evaluated whenever the
break is entered. If the value of the expression is non-NIL, a

break is entered, otherwise the function simply called and
returns without causing a break. This provides the means of
creating a conditional break. Note: For BREAKIN, unlike
BREAKO, if WHEN is NIL, it defaults to T.

COMS, if non-NIL, should be a list of break commands, that are

interpreted and executed if a break occurs. (See the BRKCONMS

argument to BREAK1, page 14.17.)

WHERE specifies where in the definition of FN the call to BREAK1
is to be inserted. WHERE should be a list of the form (BEFORE ...),
(AFTER ...), or (AROUND ...). The user specifies where the break is

to be inserted by a sequence of editor commands, preceded by
one of the litatoms BEFORE, AFTER, or AROUND, which BREAKIN

uses to determine what to do once the editor has found the
specified point, i.e., put the call to BREAK1 BEFORE that point,

AFTER that point, or AROUND that point. For example, (BEFORE
COND) will insert a break before the first occurrence of COND,
(AFTER COND 2 1) will insert a break after the predicate in the
first COND clause, (AFTER BF (SETQ X &» after the last place X is

set. Note that (BEFORE TTY:) or (AFTER TTY:) permit the user to
type in commands to the editor, locate the correct point, and
verify it, and exit from the editor with OK. BREAKIN then inserts
the break BEFORE, AFTER, or AROUND that point.

!\Iote: A STOP command typed to TTY: produces the same effect

as an unsuccessful edit command in the original specification,
e.g., (BEFORE CONDO). In both cases, the editor aborts, and
13REAKIN types (NOT FOUND).

If WHERE is (BEFORE ...) or (AFTER ...), the break expression is NIL,
since the value of the break is irrelevant. For (AROUND ...), the
break expression will be the indicated form. In this case, the user
can use the EVAL command to evaluate that form, an~ examine

its value, before allowing the computation to proceed. For
example, if the user inserted a break after a COND predicate,

'~.g., (AFTER (EQUAL X Y», he would be powerless to alter the
flow of computation if the predicate were not true, since the
break would not be reached. However, by breaking (AROUND

BREAKING, TRACING, AND ADVISING

(UNBREAK X)

(UNBREAKO FN-)

BREAKING, TRACING, AND ADVISING

BREAKING FUNCTIONS AND DEBUGGING

(EQUAL X V», he can evaluate the break expression, i.e., (EQUAL
X V), look at its value, and return something else if he wished.

If FN is interpreted, BREAKIN types SEARCHING ... while it calls
the editor. If the location specified by WHERE is not found,
BREAKIN types (NOT FOUND) and exits. If it is found, BREAKIN

puts T under the property BROKEN-IN and (WHERE WHEN COMS)

under the the property BRKINFO on the property list of FN, and

adds FN to the front of the list BROKENFNS.

Multiple break points, can be inserted with a single call to
BREAKIN by using a list of the form «BEFORE ...) ... (AROUND ...))
for WHERE. It is also possible to call BREAK or TRACE on a
function which has been modified by BREAKIN, and conversely

to BREAKIN a function which has been redefined by a call to
BREAK or TRACE.

The message typed for a BREAKIN break is «FN) BROKEN), where
FN is the name of the function inside of which the break was
inserted. Any error, or typing control-E, will cause the full
identifying message to be printed, e.g., (FOO BROKEN AFTER
COND 2 1).

A special check is made to avoid inserting a break inside of an
expression headed by any member of the list NOBREAKS,
initialized to (GO QUOTE *), since this break would never be

activated. For example, if (GO L) appears before the label L,
BREAKIN (AFTER L) will not insert the break inside of the GO

expression, but skip this occurrence of L and go on to the next L,
in this case the label L. Similarly, for BEFORE or AFTER breaks,
BREAKIN checks to make sure that the break is being inserted at
a "safe" place. For example, if the user requests a break (AFTER
X) in (PROG ... (SETQ X &) ...), the break will actually be inserted

after (SETQ X &), and a message printed to this effect, e.g.,

BREAK INSERTED AFTER (SETQ X &).

[NLambda NoSpread Function]

UNBREAK takes an indefinite number of functions modified by
BREAK, TRACE, or BREAKIN and restores them to their original
state by calling UNBREAKO. Returns list of values of UNBREAKO.

(UNBREAK) will unbreak all functions on BROKENFNS, in reverse

order. It first sets BRKINFOLST to NIL.

(UNBREAK T) unbreaks just the first function on BROKENFNS,
i.e., the most recently broken function.

[Function]

Restores FN to its original state. If FN was not broken, value is
(NOT BROKEN) and no changes are made. If FN was modified by
BREAKIN, UNBREAKIN is called to edit it back to its original state.

15.7

BREAKING FUNCTIONS AND DEBUGGING

(UNBREAKIN FN)

(REBREAK X)

~f FN was created from (FN1 IN FN2), (i.e., if it has a property

ALIAS), the function in which FN appears is restored to its

original state. All dummy functions that were created by the
break are eliminated. Adds property value of BRKINFO to (front
of) BRKINFOlST.

Note: (UNBREAKO '(FNl IN FN2)) is allowed: UNBREAKO will

operate on (FN1-IN-FN2) instead.

[Function]

Performs the appropriate editing operations to eliminate all
changes made by BREAKIN. FN may be either the name or
definition of a function. Value is FN.

UNBREAKIN is automatically called by UNBREAK if FN has
property BROKEN-IN with value T on its property list.

[NLambda NoSpread Function]

Nlambda nospread function for rebreaking functions that were
previously broken without having to respecify the break
information. For each function on X, REBREAK searches
BRKINFOlST for break(s} and performs the corresponding
operation. Value is a list of values corresponding to calls to
BREAKO or BREAKIN. If no information is found for a particular
function, returns (FN - NO BREAK INFORMATION SAVED).

(REBREAK) rebreaks everything on BRKINFOlST, so (REBREAK) is
the inverse of (UNBREAK).

(REBREAK T) rebreaks just the first break on BRKINFOlST, i.e., the

function most recently unbroken.

(CHANGENAME FN FROM TO) [Function]

(VIRGINFN FN FLG)

15.8

Replaces all occurrences of FROM by TO in the definition of FN. If
FN is defined by an expr definition, CHANGENAME performs
(ESUBST TO FROM (GETD FN)) (see page 16.73). If FN is compiled,
CHANGENAME searches the literals of FN (and all of its com pil er

generated subfunctions), replacing each occurrence of FROM

with TO.

Note that FROM and TO do not have to be functions, e.g., they
can be names of variables, or any other literals.

CHANGENAME returns FN if at least one instance of FROM was
found, otherwise NIl.

[Function]

The function that knows how to restore functions to their
original state regardless of any amount of breaks, breakins,
advising, compiling and saving exprs, etc. It is used by
iPRETTYPRINT, DEFINE, and the compiler.

BREAKING. TRACING. AND ADVISING

15.2 Advising

BREAKING. TRACING. AND ADVISING

BREAKING FUNCTIONS AND DEBUGGING

If FLG = NIL, as for PRETIVPRINT, it does not modify the

definition of FN in the process of producing a "dean" version of
the definition; it works on a copy.

If FLG = T, as for the compiler and DEFINE, it physically restores
the function to its original state, and prints the changes it is
making, e.g., FOO UNBROKEN, FOO UNADVISED, FOO NAMES

RESTORED, etc.

Returns the virgin function definition.

The operation of advising gives the user a way of modifying a
function without necessarily knowing how the function works or
even what it does. Advising consists of modifying the interface
between functions as opposed to modifying the function
definition itself, as in editing. BREAK, TRACE, and BREAKDOWN,
are examples of the use of this technique: they each modify user
functions by placing relevant computations between the
function and the rest of the programming environment.

The principal advantage of advising, aside from its convenience,
is that it allows the user to treat functions, his or someone else's,
as "black boxes," and to modify them without concern for their
contents or details of operations. For example, the user could
modify SVSOUT to set SYSDATE to the time and date of creation

by (ADVISE 'SYSOUT '(SETQ SYSDATE (DATE»).

As with BREAK, advising works equally we" on compiled and
interpreted functions. Similarly, it is possible to effect a
modification which only operates when a function is called from
some other specified function, i.e., to modify the interface
between two particular functions, instead of the interface
between one function and the rest of the world. This latter
feature is especially useful for changing the internal workings of
a system function.

For example, suppose the user wanted TIME (page 22.8) to print

the results of his measurements to the file FOO instead of the
terminal. He could accomplish this by (ADVISE '((PRIN1 PRINT
SPACES) IN TIME) 'BEFORE '(SETQQ U FOO».

Note that advising PRIN1, PRINT, or SPACES directly would have

affected a" calls to these very frequently used function, whereas
advising «PRIN1 PRINT SPACES) IN TIME) affects just those calls
to PRIN1, PRINT, and SPACES from TIME.

Advice can also be specified to operate after a function has been
evaluated. The value of the body of the original function can be
obtained from the variable !VALUE, as with BREAK1.

15.9

ADVISING

15.2.1 Implementation of Advising

15.2.2 Advise Functions

15.10

After a function has been modified several times by ADVISE, it
will look like:

(LAMBDA arguments
(PROG (!VALUE)

(SETQ !VALUE
(PROG NIL

advice1

. advice before

advicen
(RETURN BODy»)

advice1

advice after

advicem
(RETURN !VALUE))

where BODY is equivalent to the original definition. If FN was
originally an expr definition, BODY is the body of the definition,
otherwise a form using a GENSYM which is defined with the
original definition.

Note that the structure of a function modified by ADVISE allows
a piece of advice to bypass the original definition by using the
function RETURN. For example, if «(OND «ATOM X) (RETURN
Y)) were one of the pieces of advice BEFORE a function, and this
function was entered with X atomic, Y would be returned as the

value of the inner PROG, !VALUE would be set to Y, and control

passed to the advice, if any, to be executed AFTER the function.

If this same piece of advice appeared AFTER the function, Y
would be returned as the value of the entire advised function.

The advice «(OND «ATOM X) (SETQ !VALUE Y») AFTER the
function would have a similar effect, but the rest of the advice
AFTER the function would still be executed.

Note: Actually, ADVISE uses its own versions of PROG, SETQ, and

RETURN, (called ADV-PROG, ADV-SETQ, and ADV-RETURN) in
order to enable advisi ng these functions.

ADVISE is a function of four arguments: FN, WHEN, WHERE, and
WHAT. FN is the function to be modified by advising, WHAT is
the modification, or piece of advice. WHEN is either BEFORE,
AFTER, or AROUND, and indicates whether the advice is to
operate BEFORE, AFTER, or AROUND the body of the function

BREAKING. TRACING. AND ADVISING

ADVISING

definition. WHERE specifies exactly where in the list of advice the
new advice is to be placed, e.g., FIRST, or (BEFORE PRINT)
meaning before the advice containing PRINT, or (AFTER 3)
meaning after the third piece of advice, or even (: ITV:). If

WHERE is specified, ADVISE first checks to see if it is one of LAST,
BOTTOM, END, FIRST, or TOP, and operates accordingly.

Otherwise, it constructs an appropriate edit command and calls
the editor to insert the advice at the corresponding location.

Both WHEN and WHERE are optional arguments, in the sense
that they can be omitted in the call to ADVISE. In other words,
ADVISE can be thought of as a function of two arguments
(ADVISE FN WHA n, or a function of three arguments: (ADVISE
FN WHEN WHA n, or a function of four arguments: (ADVISE FN

WHEN WHERE WHA n. Note that the advice is always the last

argument. If WHEN = NIL, BEFORE is used. If WHERE = NIL, LAST is
used.

(ADVISE FN WHEN WHERE WHA n [Function]

BREAKING, TRACING, AND ADVISING

FN is the function to be advised, WHEN = BEFORE, AFTER, or
AROUND, WHERE specifies where in the advice list the advice is
to be inserted, and WHA T is the piece of advice.

If FN is of the form (FN1 IN FN2), FN1 is changed to FN1-IN-FN2

throughout FN2, as with break, and then FN1-IN-FN2 is used in
place of FN. If FN1 and/or FN2 are lists, they are distributed as
with BREAKO, page 15.4.

If FN is broken, it is unbroken before advising.

If FN is not defined, an error is generated, NOT A FUNCTION.

If FN is being advised for the first time, i.e., if (GETP FN

'ADVISED) = NIL, a GENSVM is generated and stored on the
property list of FN under the property ADVISED, and the
GENSVM is defined with the original definition of FN. An
appropriate expr definition is then created for FN, using private
versions of PROG, SETQ, and RETURN, so that these functions can
also be advised. Finally, FN is added to the (front of)
ADVISEDFNS, so that (UNADVISE T) always unadvises the last
function advised (see page 15.12).

If FN has been advised before, it is moved to the front of
ADVISEDFNS.

If WHEN = BEFORE or AFTER, the advice is inserted in FN's

definition either BEFORE or AFTER the original body of the
function. Within that context, its position is determined by
WHERE. If WHERE = LAST, BOTTOM, END, or NIL, the advice is
added following all other advice, if any. If WHERE = FIRST or
TOP, the advice is inserted as the first piece of advice. Otherwise,
WHERE is treated as a command for the editor, similar to
BREAKIN, e.g., (BEFORE 3), (AFTER PRINT).

15 11

ADVISING

(UNADVISE X)

(READVISE X)

15.12

If WHEN = AROUND, the body is substituted for *' in the advice,
and the result becomes the new body, e.g., (ADVISE 'FOO
"AROUND '(RESETFORM (OUTPUT T) *'». Note that if several
pieces of AROUND advice are specified, earlier ones will be

embedded inside later ones. The value of WHERE is ignored.

Finally (LIST WHEN WHERE WHA n is added (by ADDPROP) to the
value of property ADVICE on the property list of FN, so that a
record of all the changes is available for subsequent use in
readvising. Note that this property value is a list of the advice in
order of calls to ADVISE, not necessarily in order of appearance
of the advice in the definition of FN.

The value of ADVISE is FN.

If FN is non-atomic, every function in FN is advised with the same
values (but copies) for WHEN, WHERE, and WHAT. In this case,
ADVISE returns a list of individual functions.

Note: advised functions can be broken. However if a function is
broken at the time it is advised, it is first unbroken. Sim ilarly,
advised functions can be edited, including their advice.
UNADVISE will still restore the function to its unadvised state,
but any changes to the body of the definition will survive. Since
the advice stored on the property list is the same structure as the
advice inserted in the function, editing of advice can be
performed on either the function's definition or its property list.

[NLambda NoSpread Function]

An nlambda nospread like UNBREAK. It takes an indefinite

number of functions and restores them to their original
unadvised state, including removing the properties added by
ADVISE. UNADVISE saves on the list ADVINFOLST enough
information to allow restoring a function to its advised state
using READVISE. ADVINFOLST and READVISE thus correspond to
BRKINFOLST and REBREAK. If a function contains the property
JtEADVICE, UNADVISE moves the current value of the property
ADVICE to READVICE.

(UNADVISE) unadvises all functions on ADVISEDFNS in reverse

order, so that the most recently advised function is unadvised
last. It first sets ADVINFOLST to NIL.

(UNADVISE T) unadvises the first function of ADVISEDFNS, i.e.,
the most recently advised function.

[NLambda NoSpread Function]

An nlambda nospread like REBREAK for restoring a function to
its advised state without having to specify all the advise
information. For each function on X, READVISE retrieves the
advise information either from the property READVICE for that

BREAKING, TRACING, AND ADVISING

(ADVISEDUMP X FLG)

BREAKING, TRACING, AND ADVISING

ADVISING

function, or from ADVINFOlST, and performs the corresponding
advise operation(s). In addition it stores this information on the
property READVICE if not already there. If no information is
found for a particular function, value is (FN - NO ADVICE SAVED).

(READVISE) readvises everything on ADVINFOlST.

(READVISE T) readvises the first function on ADVINFOlST, i.e.,
the function most recently unadvised.

A difference between ADVISE, UNADVISE, and READVISE versus
BREAK, UNBREAK, and REBREAK, is that if a function is not

rebroken between successive {UNBREAK)'s, its break information
is forgotten. However, once READVISE is called on a function,
that function's advice is permanently saved on its property list
(under READVICE); subsequent calls to UNADVISE will not
remove it. In fact, calls to UNADVISE update the property
READVICE with the current value of the property ADVICE, so that
the sequence READVISE, ADVISE, UNADVISE causes the

augmented advice to become permanent. Note that the
sequence READVISE, ADVISE, READVISE removes the
"intermediate advice" by restoring the function to its earlier
state.

[Function]

Used by PRETTYDEF when given a command of the form (ADVISE

...) or (ADVICE ...). If FLG = T, ADVISEDUMP writes both a DEFLIST
and a READVISE (this corresponds to (ADVISE ...)). If FLG = Nil,

only the DEFLIST is written (this corresponds to (ADVICE ... ». In
either case, ADVISEDUMP copies the advise information to the
property READVICE, thereby making it 10 permanent 10 as

described above.

15.13

ADVISING

[This page intentionally left blank]

15.14 BREAKING, TRACING, AND ADVISiNG

16. List Structure Editor

16.1. DEdit

16.1.1.

16.1.2.

16.1.3.

16.1.4.

16.1.5.

16.1.6.

16.1.7.

16.1.8.

TABLE OF CONTENTS

Calling DEdit

Selecting Objects and Lists

Typing Characters to DEdit

Copy-Selection

DEdit Commands

Multiple Commands

DEdit Idioms

DEdit Parameters

16.'

16.1

16.2

16.4

16.5

16.5

16.6

16.10

16.10

16.12

16.2. Local Attention-Changing Commands 16.13

16.3. Commands That Search 16.18

16.3.1. Search Algorithm 16.20

16.3.2. Search Commands 16.21

16.3.3. Location Specification 16.23

16.4. Commands That Save and 'Restore the Edit Chain 16.27

16.5. Commands That Modify Structure 16.29

16.5.1. Implementation 16.30

16.5.2. The A, S, and: Commands 16.31

16.5.3. Form Oriented Editing and the Role of UP 16.34

16.5.4. Extract and Embed 16.35

16.5.5. The MOVE Command 16.37

16.5.6. Commands That Move Parentheses 16.40

16.5.7. TO and THRU 16.42

16.5.8. The R Command 16.45

16.6. Commands That Print 16.47

16.7. Commands for Leaving the Editor 16.49

16.8. Nested Calls to Editor 16.51

16.9. Manipulating the Characters of an Atom or String 16.52

TABLE OF CONTENTS TOCl

TABLE OF CONTENTS

16.10. Manipulating Predicates and Conditional Expressions 16.53

16.11. History commands in the editor 16.54

16.12. Miscellaneous Commands 16.55

16.13. Commands That Evaluate 16.57

16.14. Commands That Test 16.60

16.15. Edit Macros 16.62

16.16. Undo 16.64

16.17. EDITDEFAULT 16.66

16.18. Editor Functions 16.68

16.19. Time Stamps 16.76

TOC.2 TABLE OF CONTENTS

16.1 DEdit

LIST STRUCTURE EDITOR

16. LIST STRUCTURE EDITOR

Many important objects such as function definitions, property
lists, an.d variable values are represented as list structures. The
Interlisp-D environment includes a list structure editor to allow
the user to rapidly and conveniently modify list structures.

The list structure editor is most often used to edit function
definitions. Editing function definitions "in core" is a facility not
offered by many lisp systems, where typically the user edits
external text files containing function definitions, and then loads
them into the environment. In Interlisp, function definitions are
edited in the environment, and written to an external file using
the file package (page 17.1), which provides a complex set of
tools for managing function definitions.

Early implementations of Interlisp using primitive terminals
offered a teletype-oriented editor, which included a large set of
cryptic commands for printing different parts of a list structure,
searching a list, replacing elements, etc. Interlisp-D includes an
extended, display-oriented version of the teletype list structure
editor, called DEdit. The teletype editor is still available, as it
offers a facility for doing complex modifications of program
structure under program control. For example, BREAKIN (page
15.6) calls the teletype editor to insert a function break within
the body of a function. DEdit also provides facilities for using the
complex teletype editor commands from within DEdit. By calling
the function EDITMODE (page 16.4) it is possible to set the

"default editor" (TELETYPE or DISPLAY) called by Masterscope,

the break package, etc.

This chapter documents both DEdit and the teletype list structure
editor (sometimes referred to as "Edit"). The first part
documents DEdit, the most commonly used editor of the two.
Then, the,re are a large number of sections describing the
commands of the older teletype editor. Most users will only
need to reference the DEdit documentation.

DEdit is a structure oriented, modeless, display based editor for
objects represented as list structures, such as functions, property

161

DEDIT

16.1.1 Calling DEdit

(OF FN NEW?)

(DV VAR)

(OP NAME PROP)

16.2

lists, data values, etc. DEdit is an integral part of the standard

Interlisp-D environment.

DEdit is designed to be the user's primary editor for programs
and data. To that end, it has incorporated the interfaces of the
(older) teletype oriented Interlisp editor so the two can be used
interchangeably. In addition, the full power of the teletype
editor, and indeed the full Interlisp system itself, is easily
accessible from within DEdit.

DEdit is structure, rather than character, oriented to facilitate
selecting and operating on pieces of structure as objects in their
own right, rather than as collections of characters. However, for
the occasional situation when character oriented editing is
appropriate, DEdit provides access to the Interlisp-D text editing
facilities. DEd it is modeless, in that all commands operate on
previously selected arguments, rather than causing the behavior
of the interface to change during argument specification.

DEdit is normally called using the following functions:

[NLambda NoSpread Function]

Calls DEdit on the definition of the function FN. OF handles
exceptional cases (the function is broken or advised, the expr
definition is on the property list, the function needs to be loaded
from a file, etc.) the same as EOITF (see page 16.68).

If OF is called on a name with no function definition, the user is
prompted with "No FNS defn for FN. Do you wish to edit a
dummy defn1". If the user confirms by typing Yes, a "blank"
definition (stored on the variable
DUMMY-EOIT-FUNCTION-BOOY) is displayed in the Dedit
window. If any changes are made, on exit from the editor, the
definition will be installed as the name's function definition.
Exiting the editor with the STOP command will prevent any
changes to the function definition.

If OF is called with a second arg of NEW, as in (OF FNNAME NEW),
a blank definition will be edited whether the function already
has a definition or not.

[NLambda NoSpread FtJnction]

Calls DEdit on the value of the variable VAR.

[NLambda NoSpread Function]

Calls DEdit on the property PROP of the atom NAME. If PROP is
110t given, the whole property list of NAME is edited.

LIST STRUCTURE EDITOR

(DC FILE)

DEDIT

[NLambda NoSpread Function]

Calls DEdit on the file package commands (or filecoms, see page
17.32) for the file FILE.

When DEdit is called for the first time, it prompts for an edit
window, which is preserved and reused for later DEdits, and
pretty prints the expression to be edited therein. (Note: The
DEdit pretty printer ignores user PRETIVPRINTMACROS because
they do not provide enough structural information during
printing to enable selection.) The expression being edited can be
scrolled by using a standard Interlisp-D scroll bar on the left edge
of the window. DEdit adds an edit command menu, which
remains active throughout the edit, on the right edge of the edit
window. If anything is typed by the user, an "edit buffer"
window is positioned below the edit window. Below is a picture
of a Dedit window, displaying the function definition for FACT:

OE<li"t of function FACT - ... EditOps: '.

(LAt,1e.DA (::<) (:+: mj$ " 7·1).::t-i35 16:04")
. (if (LE:~8'P >~ 2)

.l!..fter
Eiefcwe
Delete

Repl~3.ce
S·,.··,.dtct-I

then 1
else (T I r11E:3 ::t~

LL~~I __ C:~~~eJ;: __ K ~l)))

E(Jit Duffer- . .
(' F f'f:T d H_ (' D I FFEF:ENCE ~< 1 tt

(RESETDEDIT)

LIST STRUCTURE EDITOR

()
() out
Undo
Find

Sv· ... ap
F:epdnt

Edit
Ec~itCorn

Eit"eak
E'y';'~t.I

E::<it

While Dedit is running, it yields control so that background
activities, such as mouse commands in other windows, continue
to be performed.

[Function]

Completely reinitializes DEdit. Closes all DEdit windows, so that
the user must specify the window the next time DEdit is envoked.
RESETDEDIT is also used to make DEdit recognize the new values

, 63

DEDIT

(EDITMODE NEWMODE)

16.1.2 Selecting Objects and Lists

16.4

of variables such as DEDITIVPEINCOMS (page 16.12), when the

user changes them.

DEdit is normally installed as the default editor for all editing
operations, including those invoked by other subsystems, such as
the Programmer's Assistant and Masterscope. DEdit provides
functions EF, EV and EP (analogous to the corresponding Ox

functions) for conveniently accessing the teletype editor from
within a DEdit context, e.g. from under a call to DEdit or if DEdit
is installed as the default editor.

The default editor may be set with EDITMODE:

[Function]

If NEWMODE is non-NIL, sets the default editor to be DEdit (if

NEWMODE is DISPLA V), or the teletype editor (if NEWMODE is

TELETVPE). Returns the previous setting.

()Edit operates by providing an alternative, plug-compatible
definition of EDITL (DEDITL). The normal user entries operate by

redefining EDITL and then calling the corresponding teletype
editor function (i.e., OF calls EOITF etc). Thus, the normal

teletype editor file package, spelling correction, etc. behavior is
obtained.

If teletype editor commands are specified in a call to DEOITL
(e.g., in calls to the editor from Masterscope), DEDITL will pass

those commands to EDITL, after having placed a TIV: entry on
I:DITMACROS which will cause DEdit to be invoked if any

interaction with the user is called for. In this way, automatic
edits can be made completely under program control, yet DEdit's
interactive interface is available for direct user interaction.

Selection in a DEdit window is as follows: the LEFT button selects

the object being directly pointed at; the MIDDLE button selects
the containing list; and the RIGHT button extends the current

selection to the lowest common ancestor of that selection and
the current position. The only things that may be pointed at are
atomic objects (literal atoms, numbers, etc) and parentheses,
which are considered to represent the list they delimit. White
space is not selectable or editable.

When a se.lection is made, it is pushed on a selection stack which
will be the source of operands for DEdit commands. As each new
selection pushes down the selections made before it, this stack
can grow arbitrarily deep, so only the top two selections on the
stack are highlighted on the screen. This highlighting is done by

LIST STRUCTURE EDITOR

16.1.3 Typing Characters to DEdit

16.1.4 Copy-Selection

LIST STRUCTURE EDITOR

DEDIT

underscoring the topmost (most recent) selection with a solid
black line and the second topmost selection with a dashed line.
The patterns used were chosen so that their overlappings would
be both visible and distinct, since selecting a sub-part of another
selection is quite common. For example, in the picture below,
the last selection is the list (FACT (SUB1 X)), and the previous

selection is the'single litatom SUB1:

DEdit of function FACT ~

(LAMe.DA (>::)
. (if (LE:3S'P ::< 2)

then 1
else (T I M E :3: >~

JFACT (SUe.1 ~.~ .~ .~ 'I 'I 'I
It 6.6.' .' .'

Because one can invoke DEdit recursively, there may be several
DEdit windows active on the screen at once. This is often useful
when transferring material from one object to another (as when
reallocating functionality within a set of programs). Selections
may be made in any active DEdit window, in any order. When
there is more than one DEdit window, the edit command menu
(and the type-in buffer, see below) will attach itself to the most
recently opened (or current) DEdit window.

Characters may be typed at the keyboard at any time. This will
create a type-in buffer window which will position itself under
the current DEdit window and do a LlSPXREAD (which must be
terminated by a right parenthesis or a return) from the
keyboard. During the read, any character editing subsystem
(such as ITVIN) that is loaded can be used to do character level
editing on the typein. When the read is complete, the typein will
become the current selection (top of stack) and be available as
an operand for the next command. Once the read is complete,
objects displayed in the type-in buffer can be selected from,
scrolled, or even edited, just like those in the main window.

One can also give some editing commands directly into the
typein buffer. Typing control-Z will interpret the rest of the line
as a teletype editor command which will be interpreted when
the line is dosed. Likewise, "control-S OLD NEW" will substitute
NEW for OLD and "control-F X" will find the next occurrence of
X.

Often, significant pieces of what one wishes to type can be
found in an active DEdit window. To aid in transferring the

16.5

DEDIT

16.1.5 DEdit Commands

16.6

keystrokes that these objects represent into the typein buffer,
DEdit supports copy-selection. Whenever a selection is made in
the DEdit window with either shift key down (or the COpy key

on the Xerox 1108), the selection made is not pushed on the
'5election stack, but is instead unread into the keyboard input
{and hence shows up in the typein buffer}. A characteristically
different highlighting is used to indicate when copy selection (as
opposed to normal selection) is taking place.

Note that copy-selection remains active even when DEdit is not.
Thus one can unread particularly choice pieces of text from DEdit
windows into the typescript window.

A DEdit command is invoked by selecting an item from the edit
command menu. This can be done either directly, using the LEFT

mouse button in the usual way, or by selecting a subcommand.
Subcommands are less frequently used commands than those on
the main edit command menu and are grouped together in
submenus "under" the command on the main menu to which
they are most closely related. For example, the teletype editor
defines six commands for adding and removing parentheses
(define~ in terms of transformations on the underlying list
structure). Of these six commands, only two (inserting and
removing parentheses as a pair) are commonly used, so DEdit
provides the other four as subcommands of the common two.
The subcommands of a command are accessed by selecting the
command from the commands menu with the MIDDLE button.

This will bring up a menu of the subcommand options from
which a choice can be made. Subcommands are flagged in the
list below with the name of the top level command of which they
are options.

If one has a large DEdit window, or several DEdit windows active
at once, the edit command window may be far away from the
area of the screen in which one is operating. To solve this
problem, the DEdit command window is a "snuggle up" menu.
Whenever the TAB key is depressed, the command window will

move over to the current cursor position and stay there as long as
either the TAB key remains down or the cursor is in the command
window. Thus, one can "pull" the command window over, slide
the cursor into it and then release the TAB key (or not) while one

makes a command selection in the normal way. This eliminates a
great deal of mouse movement.

Whenever a change is made, the prettyprinter reprints until the
printing stablizes. As the standard pretty print algorithm is used
and as it leaves no information behind on how it makes its
choices, this is a somewhat heuristic process. The Reprint

LIST STRUCTURE EDITOR

After

Before

Delete

Replace

Switch

o

DEDIT

command can be used to tidy the result up if it is not, in fact,
"pretty" .

All commands take their operands from the selection stack, and
may push a result back on. In general, the rule is to select target
selections first and source selections second. Thus, a Replace

command is done by selecting the thing to be replaced, selecting
(or typing) the new material, and then buttoning the Replace

command in the command menu. Using TOP to denote the

topmost (most recent) element of the stack and NXT the second
element, the DEdit commands are:

[DEdit Command1

Inserts a copy of TOP after NXT.

[DEdit Command]

Inserts a copy of TOP before NXT.

[DEdit Command1

Deletes TOP from the structure being edited. (A copy of) TOP

remains on the stack and will appear, selected, in the edit buffer.

[DEdit Command]

Replaces NXTwith a copy of TOP obtained by substituting a copy

of NXT wherever the value of the atom EDITEMBEDTOKEN

(initially, the & character) appears in TOP. This provides a facility

like the MBD edit command (page 16.36), see Idioms below.

[DEdit Command]

Exchanges TOP and NXTi n the structure being edited.

[DEdit Command]

Puts parentheses around TOP and NXT (which can, of course, be

the same element).

(in [DEdit Command1

) in

Oout

LIST STRUCTURE EDITOR

Subcommand of O. Inserts (before TOP (like the LI Edit
command, page 16.41)

[DEdit Command]

Subcommand of O. Inserts) after TOP (like the RI Edit command,
page 16.41)

[DEdit Command]

Removes parentheses from TOP.

16.7

DEDIT

(out

) out

Undo

!Undo

?Undo

&Undo

Find

Swap

Center

Clear

16.8

[DEdit Command]

Subcommand of () out. Removes (from before TOP (like the LO

Edit command, page 16.41)

[DEdit Command]

Subcommand of () out. Removes) from after TOP (like the RO

Edit command, page 16.41)

[DEdit Command]

Undoes last command.

[DEdit Command]

Subcommand of Undo. Undoes all changes since the start of this

call on DEdit. This command can be undone.

[DEdit Command]

[DEdit Command]

Subcommands of Undo. Allows selective undoing of other than

the last command. Both of these commands bring up a menu of
all the commands issued during this call on DEdit. When the user
selects an item from this menu, the corresponding command
(and if &Undo, all commands since that point) will be undone.

[DEdit Command]

Selects, in place of TOP, the first place after TOP which matches
NXT. Uses the Edit subsystem's search routine, so supports the
full wildcarding conventions of Edit.

[DEdit Command]

Exchanges TOP and NXT on the stack, i.e. the stack is changed,
the structure being edited isn't.

The following set of commands are grouped together as
subcommands of Swap because they all affect the stack and the
selections, rather than the structure being edited.

[DEdit Command]

Subcommand of Swap. Scrolls until TOP is visible in its window.

[DEdit Command]

Subcommand of Swap. Discards all selections (i.e., "clears" the
stack).

LIST STRUCTURE EDITOR

Copy

Pop

Reprint

Edit

EditCom

Break

Eval

LIST STRUCTURE EDITOR

DEDIT

[DEdit Command]

Subcommand of Swap. Puts a copy of TOP into the edit buffer

and makes it the new TOP.

[DEdit Command]

Subcommand of Swap. Pops TOP off the selection stack.

[DEdit Command]

Reprints TOP.

[DEdit Command]

Runs DEdit on the definition of the atom TOP (or CAR of list
TOP). Uses TYPESOF to determine what definitions exist for TOP

and, if there is more than one, asks the user, via menu, which one
to use. If TOP is defined and is a non-list, calls INSPECT on that
value. Edit also has a variety of subcommands which allow
choice of editor (DEdit, TTYEdit, etc.) and whether to invoke that
editor on the definition of TOP or the form itself.

Note: DEdit caches each subordinate edit window in the window
from which it was entered, for as long as the higher window is
active. Thus, multiple DEdit commands do not incur the cost of
repeatedly allocating a new window.

[DEdit Command]

Allows one to run arbitrary Edit commands on the structure
being DEdited (there are far too many of these for them all to
appear on the main menu). TOP should be an Edit command,
which will be applied to NXT as the current Edit expression. On
return to DEdit, the (possibly changed) current Edit expression
will be selected as the new TOP. Thus, selecting some expression,
typing (R FOO BAZ), and buttoning EditCom will cause FOO to be
replaced with BAZ in the expression selected.

In addition, a variety of common Edit commands are available as
subcommands of EditCom. Currently, these include? = , GETO,
Cl, OW, REPACK, CAP, LOWER, and RAISE.

[DEdit Command]

Does a BREAKIN AROUND the current expression TOP. (See page
15.6.)

[DEdit Command]

Evaluates TOP, whose value is pushed onto the stack in place of
TOP, and which will therefore appear, selected, in the edit
buffer.

169

DEDIT

E.xit

OK

Stop

16.1.6 Multiple Commands

16.1.7 DEdit Idioms

16.10

[DEdit Command]

Exits from DEdit (equivalent to Edit OK, page 16.49).

[DEdit Command]

[DEdit Command]

Subcommands of Exit. OK exits without an error; STOP exits
with an error. Equivalent to the Edit commands with the same
names.

It is occasionally useful to be able to give several commands at
once - either because one thinks of them as a unit or because the
intervening reprettyprinting is distracting. The stack
architecture of DEdit makes such multiple commands easy to
construct - one just pushes whatever arguments are required for
the complete suite of commands one has in mind. Multiple
commands are specified by holding down the CONTROL key

during command selection. As long as the CONTROL key is

down, commands selected will not be executed, but merely
saved on a list. Finally, when a command is selected without the
CONTROL key down, the command sequence is terminated with

that command being the last one in the sequence.

One rarely constructs long sequences of commands in this
fashion, because the feedback of being able to inspect the
intermediate results is usually worthwhile. Typically, just two or
three step idioms are composed in this fashion. Some common
examples are given in the next section.

As with any interactive system, there are certain common idioms
on which experienced users depend heavily. Not only is
discovering the idioms of a new system tiresome, but in places
the designer may have assumed familiarity with one or more of
them, so not knowing them can make life quite unbearable. In
the case of DEdit, many of these idioms concern easy ways to
achieve the effects of specific commands from the Edit system,
with which many users are already familiar. The DEdit idioms
described below are the result of the experience of the early
users of the system and are by no means exhaustive. In addition
to those that each user will develop to fit his or her own
particular style, there are many more to be discovered and you
are encouraged to share your discoveries.

LIST STRUCTURE EDITOR

LIST STRUCTURE EDITOR

DEDIT

Because of the novel argument specification technique (postfix;
target first) many of the DEdit idioms are very simple, but
opaque until one has absorbed the "target-source-command"
way of looking at the world. Thus, one selects where typein is to
go before touching the keyboard. After typing, the target will
be selected second and the typei n selected on top, so that an
After, Before or Replace will have the desired effect. If the order
is switched, the command will try to change the typein (which
mayor may not succeed), or will require tiresome Swapping'or

reselection. Although this discipline seems strange at first, it
comes easily with practice.

Segment selection and manipulation are handled in DEdit by
first making them into a sublist, so they can be handled in the
usual way. Thus, if one wants to remove the three elements
between A and E in the list (A BCD E), one selects B, then D
(either order), then makes them into a sublist with the "0"
command (pronounced "both in"). This will leave the sublist (B C

D) selected, so a subsequent Delete will remove it. This can be
issued as a single "0; Del~te" command using multiple command
selection, as described above, in which case the intermediate
state of (A (B C D) E) will not show on the screen.

Inserting a segment proceeds in a similar fashion. Once the
location of the insertion is selected, the segment to be inserted is
typed as a list (if it is a list of atoms, they can be typed without
parentheses and the READ will make them into a list, as one
would expect). Then, the command sequence "After (or Before
or Replace); () out" (given either as a multiple command or as

two separate commands) will insert the typein and splice it in by
removing its parentheses.

Moving an expression to another place in the structure being
edited is easily accomplished by a delete followed by an insert.
Select the location where the moved expression is to go to; select
the expression to be moved; then give the command sequence
"Delete; After (or Before or Replace)". The expression will first

be deleted into the edit buffer where it will remain selected. The
subsequent insertion will insert it back into the structure at the
selected location.

Embedding and extracting are done with the Replace command.
Extraction is simply a special case of replacing something with a
subpiece of itself: select the thing to be replaced; select the
subpart that is to replace it; Replace. Embedding also uses
Replace, in conjunction with the "embed token" (the value of
EDITEMBEDTOKEN, initially the single character atom &). Thus,
to embed some expression in a PROG, select the expression; type
"(PROG VARSLST &)"; Replace.

Switch can also be used to generate a whole variety of complex
moves and embeds. For example, switching an expression with

16.11

DEDIT

16.1.8 DEdit Parameters

EDITEMBEDTOKEN

DEditLinger

DEDITIVPEINCOMS

DT.EDITMACROS

1612

typein not only replaces that expression with the typein, but

provides a copy of the expression in the buffer, from where it can
be edited or moved to somewhere else.

Finally, one can exploit the stack structure on selections to queue
multiple arguments for a sequence of commands. Thus, to

replace several expressions by one common replacement, select
each of the expressions to be replaced (any number), then the
replacing expression. Now hit the Replace command as many

times as there are replacements to be done. Each Replace will

pop one selection off the stack, leaving the most recently
replaced expression selected. As the latter is now a copy of the

original source, the next Replace will have the desired effect, and
soon.

There are several global variables that can be used to affect

various aspects of DEdit's operation. Although most have been
alluded to above, they are summarized here for reference.

[Variable]

Initially &. Used in both DEdit and the teletype editor to indicate

the special atom used as the II embed token" .

[Variable]

Initially T. The default behavior of the topmost DEdit window is

to remain active on the screen when exited. This is occasionally
inconvenient for programs that call DEdit directly, so it can be
made to close automatically when exited by setting this variable
to NIL.

[Variable]

Defines the control characters recognized as commands during
DEdit typein. The elements of this list are of the form (LEITER

COMMANDNAME FN), where LEITER is the alphabetic

corresponding to the control character desired (e.g., A for

control-A), COMMANDNAME is a litatom used both as a prompt

and internal tag, and FN is a function appl ied to the expressions
typed as arguments to the command. See the current value of
[)EDITIVPEINCOMS for examples. DEDITIVPEINCOMS is only

accessed when DEdit is initialized, so DEdit should be
reinitialized with RESETDEDIT (page 16.3) if it is changed.

[Variable]

Defines the behavior of the Edit command when invoked on a
form that is not a list or litatom, thus telling DEdit how to edit

LIST STRUCTURE EDITOR

DEDIT

instances of certain datatypes. DT.EDITMACROS is an association

list keyed by data type name; entries are of the form (DATA TYPE

MAKESOURCEFN INSTALLEDITFN). When told to Edit an object

of type DATA TYPE, DEdit calls MAKESOURCEFN with the object
as its argument. MAKESOURCEFN can either do the editing
itself, in which case it should return NIL, or it should
"destructure" the object into an editable list and return that list.
In the latter case, DEdit is then invoked recursively on the list;
when that edit is finished, DEdit calls INSTALLEDITFN with two
arguments, the original object and the edited list. If
INSTALLEDITFN causes an error, the recursive Dedit is invoked
again, and the process repeats until the user either exits the
lower editor with STOP, or exits with an expression that

INSTALLEDITFN accepts.

For example, suppose the user has a datatype declared by
(DATA TYPE FOO (NAME AGE SEX». To make instances of FOO

editable, an entry (FOO DESTRUCTUREFOO INSTALLFOO) is

added to DT.EDITMACROS, where the functions are defined by

(DESTRUCTUREFOO (OBJECT)
(LIST (fetch NAME of OBJECT)

(fetch AGE of OBJECT)

(fetch SEX of OBJECT»)

(lNSTALLFOO (OBJECT CONTENTS)

(if (EQLENGTH CONTENTS 3)
then (replace NAME of OBJECT with (CAR CONTENTS»

(replace AGE of OBJECT with (CADR CONTENTS»
(replace SEX of OBJECT with (CADDR CONTENTS»

else (ERROR "Wrong number of fields for FOO" CONTENTS»)

16.2 local Attention-Changing Commands

UP

LIST STRUCTURE EDITOR

This section describes commands that change the current
expression (i.e., change the edit chain) thereby "shifting the
editor's attention." These commands depend only on the
structure of the edit chain, as compared to the search commands
(presented later), which search the contents of the structu reo

[Editor Command]

UP modifies the edit chain so that the old current expression (i.e.,
the one at the time UP was called) is the first element in the new
current expression. If the current expression is the first element
in the next higher expression UP simply does a O. Otherwise UP
adds the corresponding tail to the edit chain.

16.13

LOCALAITENTION-CHANGING COMMANDS

16.14

If a P command would cause the editor to type ... before typing

the current expression, ie., the current expression is a tail of the
next higher expression, UP has no effect.

For Example:

irpp

{COND {(NULL X) (RETURN V»~)

*1 P

<:OND
irUP P

(COND (& &»
~rQ1 P

«NULL X) (RETURN Y»

*UPP

..• {(NULL X) (RETURN Y»

*UPP

... {(NULL X) (RETURN Y»)
*F NULL P

(NULL X)

*UPP

«NULL X) (RETURN Y»
*Upp

.0. {(NULL X) (RETURN Y»)

The execution of UP is straightforward, except in those cases
where the current expression appears more tha nonce in the
next higher expression. For example, if the current expression is
(A NIL B NIL C NIL) and the user performs 4 followed by UP, the

current expression should then be ... NIL C NIL). UP can
determine which tail is the correct one because the commands
that descend save the last tail on an internal editor variable,
LASTAIL. Thus after the 4 command is executed, LASTAIL is (NIL

C NIL). When UP is called, it first determines if the current

expression is a tail of the next higher expression. If it is, UP is

finished. Otherwise, UP computes (MEMB
CURRENT-EXPRESSION NEXT-HIGHER-EXPRESSION) to obtain a

tail beginning with the current expression. The current
expression should a/ways be either a tailor an element of the
next higher expression. If it is neither, for example the user has
directly (and incorrectly) manipulated the edit chain, UP

generates an error. If there are no other instances of the current
expression in the next higher expression, this tail is the correct
one. Otherwise UP uses LASTAIL to select the correct tail.

Occasionally the user can get the edit chain into a state where
LASTAIL cannot resolve the ambiguity, for example if there were
two non-atomic structures in the same expression that were EQ,
and the user descended more than one level into one of them
and then tried to come back out using UP. In this case, UP prints
LOCATION UNCERTAIN and generates an error. Of course, we

LIST STRUCTURE EDITOR

N(N) = 1)

-N(N) = 1)

o

!O

LIST STRUCTURE EDITOR

LOCALATIENTION-CHANGING COMMANDS

could have solved this problem completely in our
implementation by saving at each descent both elements and
tails. However, this would be a costly solution to a situation that
arises infrequently, and when it does, has no detrimental effects.
The LASTAIL solution is cheap and resolves almost all of the

ambiguities.

[Editor Command]

Adds the Nth element of the current expression to the front of
the edit chain, thereby making it be the new current expression.
Sets LASTAIL for use by UP. Generates an error if the current
expression is not a list that contains at least N elements.

[Editor Command]

Adds the Nth element from the end of the current expression to
the front of the edit chain, thereby making it be the new current
expression. Sets LASTAIL for use by UP. Generates an error if the
current expression is not a list that contains at least N elements.

[Editor Command]

Sets the edit chain to CDR of the edit chain, thereby making the

next higher expression be the new current expression. Generates
an error if there is no higher expression, i.e., CDR of edit chain is

NIL.

Note that 0 usually corresponds to going back to the next higher
left parenthesis, but not always. For example:

*P

(A BCD E F B)

*3 UPP

.•. C 0 E F G)

*3 UPP

... E F G)

*0 P
... CD E F G)

If the intention is to go back to the next higher left parenthesis,
regardless of any intervening tails, the command !O can be used.

[Editor Command]

Does repeated O's until it reaches a point where the current
expression is not a tail of the next higher expreSSIUn, i.e., always
goes back to the next higher left parenthesis.

16.15

LOCALATIENTION-CHANGING COMMANDS

t

NX

BK

(NX N)

(BK N)

!NX

16.16

[Editor Command]

Sets the edit chain to LAST of edit chain, thereby making the top
level expression be the current expression. Never generates an
f:!rror.

[Editor Command]

Effectively does an UP followed by a 2, thereby making the
current expression be the next expression. Generates an error if
the current expression is the last one in a list. (However, !NX
described below will handle this case.)

[Editor Command]

Makes the current expression be the previous expression in the
next higher expression. Generates an error if the current
expression is the first expression in a list.

For example,

*PP
(COND «NULL X) (RETURN Y»)

*F RETURN P
(RETURN Y)

*BK P

(NULL X)

80th NX and BK operate by performing a !O followed by an

appropriate number, i.e., there won't be an extra tail above the
new current expression, as there would be if NX operated by
performing an UP followed by a 2.

[Editor Command]

(N > = 1) Equivalent to N NX commands, except if an error

occurs, the edit chain is not changed.

[Editor Command]

(N > = 1) Equivalent to N BK commands, except if an error
occurs, the edit chai n is not changed.

Note: (NX -N) is equivalent to (BK N), and vice versa.

[Editor Command]

Iv .3kes the current expression be the next expression at a higher
level, i.e., goes through any number of right parentheses to get
to the next expression. For example:

*PP
(PROG «L L)

(UF L»

LIST STRUCTURE EDITOR

(NTH N)

LIST STRUCTURE EDITOR

LP (COND

{(NULL (SETQ L (CDR L»)
(ERROR!)

LOCALATTENTION-CHANGING COMMANDS

([NULL (CDR (FMEMB {CAR L} (CADR L]

(GO LP»)

{EDITCOM (QUOTE NX»

(SETQ UNFIND UF)

(RETURN L))

*F CDR P

(CDR L)

*NX

NX ?
*!NXP

(ERROR!)

*!NXP

({NULL &) (GO LP»

*!NXP
{EDITCOM (QUOTE NX))

*

!NX operates by doing O's until it reaches a stage where the

current expression is not the last expression in the next higher
expression, and then does a NX. Thus !NX always goes through

at least one unmatched right parenthesis, and the new current
expression is always on a different level, i.e., !NX and NX always
produce different results. For example using the previous
current expression:

*F CAR P

(CAR L)

*!NXP

(GO LP)

*\P P

(CAR L)

*NXP
(CADR L)

*

[Editor Command]

(N - = 0) Equivalent to N followed by UP, i.e., causes the list

starting with the Nth element of the current expression (or Nth
from the end if N < 0) to become the current expression. Causes
an error if current expression does not have at least N elements.

(NTH 1) is a no-op, as is (NTH -L) where L is the length of the
current expression.

16.17

LOCAL A TIENTION-CHANGI NG COM MAN DS

line-feed

Control-X

Control-Z

[Editor Command]

Moves to the "next" expression and prints it, i.e. performs a NX if

possible, otherwise performs a !NX. (The latter case is indcated
by first printing" >".)

[Editor Command]

Control-X moves to the "previous" thing and then prints it, i.e.

performs a BK if possible, otherwise a !O followed by a BK.

[Editor Command]

Control-Z moves to the last expression and prints itt i.e. does -1

followed by P.

Line-feed, control-X, and control-Z are implemented as
immediate read macros; as soon as they are read, they abort the
current printout. They thus provide a convenient way of moving
around in the editor. In order to facilitate using different control
characters for those macros, the function SETIERMCHARS is
provided (see page 16.75).

16.3 Commands That Search

16.18

All of the editor commands that search use the same pattern
matching routine (the function EDIT4E, page 16.72). We will

therefore begin our discussion of searching by describing the
pattern match mechanism. A pattern PAT matches with X if any
of the following conditions are true:

(1) If PATis EQ toX.

(2) IfPATis&.

(3) If PATis a number and EQP to X.

(4) If PAT is a string and (STREQUAL PA T X) is true.

(5) If (CAR PAn is the atom *ANY*, (CDR PAn is a list of patterns,
and one of the patterns on (CDR PA n matches X.

(6) If PAT is a literal atom or string containing one or more $s
(escapes), each $ can match an indefinite number (including 0) of
contiguous characters in the atom or string X, e.g., VER$ matches
both VERYLONGATOM and "VERH\ONGSTRING" as do $LONG$
(but not $LONG), and VLT. Note: the litatom $ (escape)

matches only with itself.

(7) !f PATis a literal atom or string ending in $$ (escape, escape), PAT

matches with the atom or string X if it is "close" to PAT, in the

LIST STRUCTURE EDITOR

LIST STRUCTU R E EDI TOR

COMMANDS THAT SEARCH

sense used by the spelling corrector (page 20.15). E.g. CONSS$$

matches with CONS, CNONC$$ with NCONC or NCONC1.

The pattern matching routine always types a message of the
form = MATCHING-ITEM to inform the user of the object

matched by a pattern of the above two types, unless

EDITQUIETFLG = T. For example, if VER$ matches

VERYLONGATOM, the editor would print = VERYLONGATOM.

(8) If (CAR PA n is the atom --, PAT matches X if (CDR PA n matches

with some tail of X. For example, (A -- (&» will match with (A B C

(D», but not (A BCD), or (A B C (D) E). However, note that (A -­
(&) _.) will match with (A B C (D) E). In other words, -- can match

any interior segment of a list.

If (CDR PA n = NIL, i.e., PAT = (.-), then it matches any tai I of a list.
Therefore, (A _.) matches (A), (A B C) and (A . B).

(9) If (CAR PA n is the atom = = , PAT matches X if and only if (CDR

PA n is EQ to X.

This pattern is for use by programs that call the editor as a
subroutine, since any non-atomic expression in a command

typed in by the user obviously cannot be EQ to already existing

structure.

(10) If {CADR PA n is the atom .. (two periods), PAT matches X if (CAR

PAn matches (CAR X) and (COOR PAn is contained in X, as

described on page 16.27.

(11) Otherwise if X is a list, PAT matches X if {CAR PA n matches (CAR

X), and {CDR PA n matches (CDR X).

When the editor is searching, the pattern matching routine is

called to match with elements in the structure, unless the pattern
begins with ... (three periods), in which case CDR of the pattern is

matched against proper tails in the structure. Thus,

*P
{A B C (B C»
*F (B --)
*P
(B C)

*0 F (... B --)
*P
... B C (B C»

Matching is also attempted with atomic tails (except for NIL).

Thus,

*P
{A (B. C»
*FC
*P
.... C)

16.19

COMMANDS THAT SEARCH

16.3.1 Search Algorithm

1620

Although the current expression is the atom C after the final

command, it is printed as C) to alert the user to the fact that C
is a tail, not an element. Note that the pattern C will match with

either instance of C in (A C (B. C», whereas (.... C) will match only

the second C. The pattern NIL will only match with NIL as an

element, i.e., it will not match in (A B), even though CODR of (A

B) is NIL. However, (.... NIL) {or equivalently (... ») may be used to

specify a NIL tail, e.g., (.... NIL) will match with CDR of the third

subexpression of ({A. B) (C . D) (E».

Searching begins with the current expression and proceeds in
print order. Searching usually means find the next instance of
this pattern, and consequently a match is not attempted that
would leave the edit chain unchanged. At each step, the pattern
is matched against the next element in the expression currently
being searched, unless the pattern begins with ... (three periods)
in which case it is matched against the next tail of the expression.

If the match is not successful, the search operation is recursive
first in the CAR direction, and then in the CDR direction, i.e., if
the element under examination is a list, the search descends into
that list before attempting to match with other elements (or
tails) at the same level. Note: A find command of the form (F

PA TTERN NIL) will only attempts matches at the top level of the

current expression, i.e., it does not descend into elements, or
ascend to higher expressions.

However, at no point is the total recursive depth of the search
(sum of number of CARs and CDRs descended into) allowed to
exceed the value of the variable MAXLEVEL. At that point, the

search of that element or tail is abandoned, exactly as though
the element or tail had been completely searched without
finding a match, and the search continues with the element or
tail for which the recursive depth is below MAXLEVEL. This

feature is designed to enable the user to search circular list
structures (by setting MAXLEVEL small), as well as protecting him
from accidentally encountering a circular list structure in the
course of normal editing. MAXLEVEL can also be set to NIL,
which is equivalent to infinity. MAXLEVEL is initially set to 300.

If a successful match is not found in the current expression, the
search automatically ascends to the next higher expression, and
<:ontinues searching there on the next expression after the
expression it just finished searching. If there is none, it ascends
again, etc. This process continues until the entire edit chain has
been searched, at which point the search fails, and an error is
generated. If the search fails (or is aborted by control-E), the edit
chain is not changed (nor are any CONSes performed).

LIST STRUCTURE EDITOR

16.3.2 Search Commands

F PATTERN

FPATTERNN

F PATTERNT

LIST STRUCTURE EDITOR

COMMANDS THAT SEARCH

If the search is successful, i.e., an expression is found that the

pattern matches, the edit chain is set to the val ue it wou Id have
had had the user reached that expression via a sequence of

integer commands.

If the expression that matched was a list, it will be the fi na Iii n kin

the edit chain, i.e., the new current expression. If the expression
that matched is not a list, e.g., is an atom, the current expression
will be the tail beginning with that atom, unless the atom is a
tail, e.g., Bin (A . B). In this case, the current expression will be B,

but will print as Bf In other words, the search effectively does

an UP (unless UPFINDFLG = NIL (initially T). See" Form Oriented

Editing", page 16.34).

All of the commands below set LASTAIL for use by UP, set

UNFIND for use by \ (page 16.28), and do not change the edit

chain or perform any CONSes if they are unsuccessful or aborted.

[Editor Command]

Actually two commands: the F informs the editor that the next
command is to be interpreted as a pattern. This is the most
common and useful form of the find command. If successful, the
edit chain always changes, i.e., F PA TTERN means find the next

instance of PA TTERN.

If (MEMB PA TTERN CURRENT-EXPRESSION) is true, F does not

proceed with a full recursive search. If the value of the MEMB is

NIL, F invokes the search algorithm described on page 16.20.

Note that if the current expression is (PROG NIL LP (COND (_. (GO

LP1») ... LP1 ...), then F LP1 will find the PROG label, not the LP1

inside of the GO expression, even though the latter appears first

(in print order) in the current expression. Note that typing 1

(making the atom PROG be the current expression) followed by F

LP1 would find the first LP1.

[Editor Command]

Same as F PA TTERN, i.e., Finds the Next instance of PA TTERN,
except that the MEMB check of F PA TTERN is not perform ed.

[Editor Command]

Similar to F PA TTERN, except that it may succeed without

changing the edit chain, and it does not perform the MEMB

check.

16.21

COMMANDS THAT SEARCH

16.22

(F PA TTERN N)

(F PATTERN)

F PA TTERN Nil

For example, if the current expression is (COND ...), F COND will

look for the next COND, but (F COND T) will "stay here" .

[Editor Command]

(N > = ') Finds the Nth place that PA TTERN matches.
Equivalent to (F PA TTERN T) followed by (F PA TTERN N) repeated

N-' times. Each time PATTERN successfully matches, N is
decremented by', and the search continues, until N reaches O.
Note that PATTERN does not have to match with N identical
expressions; it just has to match N times. Thus if the current
expression is (F001 F002 F003), (F FOOS 3) will find F003.

If PA TTERN does not match successfully N times, an error is
generated and the edit chain is unchanged (even if PA TTERN

matched N-' times).

[Editor Command]

[Editor Command]

Similar to F PA TTERN, except that it only matches with elements
at the top level of the current expression, i.e., the search will not
descend into the current expression, nor will it go outside of the
current expression. May succeed without changing the edit
chain.

For example, if the current expression is (PROG Nil (SETQ X

(CaND & &» (CaND &) ...), the command F COND will find the
(OND inside the SETQ, whereas (F (CaND --» will find the top

level CaND, i.e., the second one.

(FSPATTERN1'" PATTERNN) [Editor Command]

(F = EXPRESSION X)

Equivalent to F PATTERNl followed by F PATTERN2 ... followed

by F PA TTERNN, so that if F PA TTERNM fails, the edit chain is left

at the place PATTERNM_l matched.

[Editor Command]

Equivalent to (F (= = . EXPRESSION) X), i.e., searches for a

structure EQ to EXPRESSION (see page 16.18).

(ORF PATTERN 1 ... PATTERNN) [Editor Command]

Equivalent to (F (* ANY* PA TTERN 1 ... PA TTERN N) N), i.e.,

searches for an expression that is matched by either PA TTERN 1,

PA TTERN2, .. , or PA TTERN N (see page 16.18).

LIST STRUCTURE EDITOR

BF PATTERN

BFPATTERNT

(BF PA TTERN)

BF PA TTERN NIL

(GO LABEL)

16.3.3 Location Specification

LIST STRUCTURE EDITOR

COMMANDS THAT SEARCH

[Editor Command]

"Backwards Find". Searches in reverse print order, beginning
with the expression immediately before the current expression
(unless the current expression is the top level expression, in
which case BF searches the entire expression, in reverse order).

BF uses the same pattern match routine as F, and MAXLEVEL and
UPFINDFLG have the same effect, but the searching begins at the

end of each list, and descends into each element before
attempting to match that element. If unsuccessf~I, the search
continues with the next previous element, etc., until the front of
the list "is reached, at which point BF ascends and backs up, etc.

For example, if the current expression is

(PROG NIL (SETQ X (SETQ Y (LIST Z») (COND «SETQ W _.) --» --),

the command F LIST followed by BF SETQ will leave the current
expression as (SETQ Y (LIST Z)), as will F COND followed by BF

SETQ.

[Editor Command]

Similar to BF PA TTERN, except that the search always includes the

current expression, i.e., starts at the end of current expression
and works backward, then ascends and backs up, etc.

Thus in the previous example, where F COND followed by BF

SETQ found (SETQ Y (LIST Z», F COND followed by (BF SETQ T)

would find the (SETQ W _.) expression.

[Editor Command]

[Editor Command]

Same as BF PA TTERN.

[Editor Command]

Makes the current expression be the first thing after the PROG

label LABEL, i.e. goes where an executed GO would go.

Many of the more sophisticated coml,ands described later in this
chapter use a more general method of specifying position called
a "location specification." A location specification is a list of edit
commands that are executed in the normal fashion with two
exceptions. First, all commands not recognized by the editor are
interpreted as though they had been preceded by F; normally
such commands would cause errors. For exam pie, the location

1623

COMMANDS THAT SEARCH

(LC. @)

(LCL. @)

(2ND. @)

16,24

specification (COND 2 3) specifies the 3rd element in the first

clause of the next CONDo Note that the user could always write F
COND followed by 2 and 3 for (COND 2 3) if he were not sure

whether or not COND was the name of an atomic command.

Secondly, if an error occurs while evaluating one of the
commands in the location specification, and the edit chain had
been changed, i.e., was not the same as it was at the beginning
of that execution of the location specification, the location
operation will continue. In other words, the location operation
keeps going unless it reaches a state where it detects that it is
"looping", at which point it gives up. Thus, if (COND 2 3) is being

located, and the first clause of the next COND contained only
two elements, the execution of the command 3 would cause an
error. The search would then continue by looking for the next
CONDo However, if a point were reached where there were no
further CONDs, then the first command, COND, would cause the

error; the edit chain would not have been changed, and so the
entire location operation would fail, and cause an error.

The IF command (page 16.60) in conjunction with the ##
function (page 16.59) provide a way of using arbitrary predicates
applied to elements in the current expression. IF and ## will be
described in detail later in the chapter, along with examples
illustrating their use in location specifications.

Throughout this chapter, the meta-symbol @ is used to denote a

location specification. Thus @ is a list of commands interpreted

as described above. @ can also be atomic, in which case it is

interpreted as (LIST @).

[Editor Command]

Provides a way of explicitly invoking the location operation, e.g.,
(LC COND 2 3) will perform the the search described above.

[Editor Command]

Same as LC except the search is confined to the current
'expression, i.e., the edit chain is rebound during the search so
that it looks as though the editor were called on just the current
expression. For example, to find a COND containing a RETURN,
one might use the location specification {COND (LCL RETURN) \)
where the \ would reverse the effects of the LCL command, and

make the final current expression be the CONDo

[Editor Command]

Same as (LC . @) followed by another (LC . @) except that if the

first succeeds and second fails, no change is made to the edit
chain.

LIST STRUCTURE EDITOR

(3ND. @)

(~PATTERN)

(BELOW COM X)

(BELOW COM)

COMMANDS THA T SEARCH

[Editor Command]

Similar to 2ND.

[Editor Command]

Ascends the edit chain looking for a link which matches
PA TTERN. In other words, it keeps doing O's until it gets to a
specified point. If PA TTERN is atomic, it is matched with the first
elemeht of each link, otherwise with the entire link. If no match
is found, an error is generated, and the edit chain is unchanged.

Note: If PATTERN is of the form (IF EXPRESSION), EXPRESSION is
evaluated at each link, and if its value is NIL, or the evaluation

causes an error, the ascent continues. See page 16.60.

For example:

*pp

[PROG NIL

(COND

[(NULL (SETQ L (CDR L»)

(COND

(FLG (RETURN L]

([NULL (CDR (FMEMB (CAR L)

(CADR L]]

*F CADR

*(~COND)

*P
(COND (& &) (& &»

*

Note that this command differs from BF in that it does not search

inside of each link, it simply ascends. Thus in the above example,
F CADR followed by BF COND would find (COND (FLG (RETURN

L»), not the higher CONDo

[Editor Command]

Ascends the edit chain looking for a link specified by COM, and
stops X links below that (only links that are elements are
counted, not tails). In other words BELOW keeps doing 0'5 until
it gets to a specified point, and then backs off X 0'5.

Note that X is evaluated, so one can type {BELOW COM (IPLUS X

V».

[Editor Command]

Same as (BELOW COM 1).

For example, (BELOW COND) will cause the COND clause

containing the current expression to become the new current

-------,---LlSTSTRU(TURE EDITOR 16.25

COMMANDS THATSEARCH

(NEX COM)

NEX

(NTH COM)

16.26

expression. Thus if the current expression is as shown above, F

CADR followed by (BELOW COND) will make the new expression

be ([NULL (CDR (FMEMB (CAR L) (CADR LJ (GO LP», and is

therefore equivalent to 0 0 0 O.

The BELOW command is useful for locating a substructure by

specifying something it contains. For example, suppose the user
is editing a list of lists, and wants to find a sublist that contains a
FOO (at any depth). He simply executes F FOO (BELOW \).

[Editor Command]

Same as (BELOW COM) followed by NX.

For example, if the user is deep inside of a SELECTQ clause, he
can advance to the next clause with (NEX SELECTQ).

[Editor Command]

Same as (NEX +-).

The atomic form of NEX is useful if the user will be performing
repeated executions of (NEX COM). By simply MARKing (see

page 16.28) the chain corresponding to COM, he can use NEX to
step through the sublists.

[Editor Command]

Generalized NTH command. Effectively performs (LCL . COM),
followed by (BELOW\), followed by UP.

If the search is unsuccessful, NTH generates an error and the edit

chain is not changed.

Note that (NTH NUMBER) is just a special case of (NTH COM), and

in fact, no special check is made for COM a number; both
commands are executed identically.

In other words, NTH focates COM, using a search restricted to the
current expression, and then backs up to the current level, where
the new current expression is the tail whose first element
contains, however deeply, the expression that was the terminus
of the location operation. For example:

*P
(PROG (& &) LP (COND & &) (EDITCOM &) (SETQ UNFIND UF)

(RETURN L»
*(NTH UF)

*P
... (SETQ UNFIND UF) (RETURN L»

LlSTSTRUCTURE EDITOR

PATTERN .. @

COMMANDS THAT SEARCH

[Editor Command]

E.g., (COND .. RETURN). Finds a COND that contains a RETURN, at
any depth. Equivalent to (but more efficient than) (F PA TTERN

N), (LCL. @) followed by (~PA TTERN).

An infix command, " .. " is not a meta-symbol, it is the name of

the command. @ is CDDR of the command. Note that (PA TTERN

.. @) can also be used directly as an edit pattern as descri bed on
page 16.18, e.g. F (PA TTERN .. @).

For exam pie, if the current expression is

(PROG NIL [COND «NULL L) (COND (FLG (RETURN L] --),

then (COND .. RETURN) will make (COND (FLG (RETURN L») be

the current expression. Note that it is the innermost COND that
is found, because this is the first COND encountered when
ascending from the RETURN. In other words, (PA TTERN .. @) is
not a/ways equivalent to (F PA TTERN N), followed by (LCL . @)

followed by\.

Note that @ is a location specification, not just a pattern. Thus
(RETURN .. COND 2 3) can be used to find the RETURN which

contains a COND whose first clause contains (at least) three

elements. Note also that since @ permits any edit command, the
user can write commands of the form (COND .. (RETURN ..
COND», which will locate the first COND that contains a RETURN

that contains a CONDo

16.4 Commands That Save and Restore the Edit Chain

MARK

LIST STRUCTURE EDITOR

Several facilities are available for saving the current edit chain
and later retrieving it: MARK, which marks the current chain for
future reference, ~, which returns to the last mark without

destroying it, and ~, which returns to the last mark and also
erases it.

[Editor Command]

Adds the current edit chain to the front of the list MARKLST.

[Editor Command]

Makes the new edit chain be (CAR MARKLST). Generates an

error if MARKLST is NIL, i.e., no MARKs have been performed, or
all have been erased.

This is an atomic command; do not confuse it with the list
command (~PA TTERN).

16.27

COMMANDS THAT SAVE AND RESTORE THE EDIT CHAIN

(MARK LlTATOM)

(\LlTATOM)

\

\P

16.28

[Editor Command]

Similar to +- but also erases the last MARK, i.e., performs (SETQ

MARKLST (CDR MARKLST».

Note that if the user has two chains marked, and wishes to return
to the first chain, he must perform +-+-, which removes the

second mark, and then +-. However, the second mark is then no

longer accessible. If the user wants to be able to return to either
of two (or more) chains, he can use the following generalized
MARK:

[Editor Command]

Sets LlTATOMto the current edit chain,

[Editor Command]

Makes the current edit chain become the value of LlTATOM.

If the user did not prepare in advance for returning to a
particular edit chain, he may still be able to return to that chain
with a single command by using \ or \P.

[Editor Command]

Makes the edit chain be the value of UNFIND. Generates an error
if UNFIND = NIl.

UNFIND is set to the current edit chain by each command that
makes a "big jump", i.e., a command that usually performs more
than a single ascent or descent, namely i, +-, +-+-, !NX, all
commands that involve a search, e.g., F, LC, .. , BELOW, et al and \
and \P themselves. One exception is that UNFIND is not reset

when the current edit chain is the top level expression, since this
(ould always be returned to via the i command.

For example, if the user types F COND, and then F CAR, \ would
take him back to the CONDo Another \ would take him back to
1the CAR, etc.

[Editor Command]

Restores the edit chain to its state as of the last print operation,
i.e., P, 7, or PP. If the edit chain has not changed since the last

printing, \P restores it to its state as of the printing bef0r e that
c)ne, i.e., two chains are always saved.

For example, if the user types P followed by 3 2 1 P, \P will return
to the first P, i.e., would be equivalent to 00 O. Another \P would
then take him back to the second P, i.e., the user could use \P to
flip back and forth between the two edit chains.

LIST STRUCTURE EDITOR

S LlTATOM@

COMMANDS THAT SAVE AND RESTORE THE EDIT CHAIN

Note that jf the user had typed P followed by F CONO, he could

use either\ or \P to return to the P, i.e., the action of \ and \P are
independent.

[Editor Command]

Sets LlTATOM (using SETQ) to the current expression after

performing (LC. @). The edit chain is not changed.

Thus (S FOO) will set Faa to the current expression, and (S Faa

-1 1) will set Faa to the first element in the last element of the

current expression.

16.5 Commands That Modify Structure

(N) (N) = 1)

(-N E1'" EM) (N) ::I 1)

LIST STRUCTU RE EDITOR

The basic structure modification comma nds in the editor are:

[Editor Command]

Deletes the corresponding element from the current expression.

[Editor Command]

Replaces the Nth element in the current expression with E 1

EM'

[Editor Command]

Inserts E 1 ... EM before the Nth element in the current

expression.

[Editor Command]

Attaches E 1 ... EM at the end of the current expression.

As mentioned earlier: all structure modification done by the
editor is destructive, i. e., the editor uses RPLACA and RPLACD to
physically change the structure it was given. However, all
structure modification is undoable, see UNDO (page 16.64).

All of the above commands generate errors if the current
expression is not a list, or in the case of the first three commands,
if the list contains fewer than N elements. In addition, the
command (1), i.e., delete the first element, will cause an error if
there is only one element, since deleting the first elem ent must
be done by replacing it with the second element, and then
deleting the second element. Or, to look at it another way,
deleting the first element when there is only one element would

16.29

COMMANDS THAT MODIFY STRUCTURE

16.5.1 Implementation

16.30

require changing a list to an atom (i.e., to NIL) which cannot be

done. However, the command DELETE will work even if there is

only one element in the current expression, since it will ascend to

a point where it can do the deletion.

If the value of CHANGESARRA V is a hash array, the editor will

mark all structures that are changed by doing (PUTHASH

STRUCTURE FN CHANGESARRAV), where FN is the name of the
function. The algorithm used for marking is as follows: (1) If the

expression is inside of another expression already marked as

being changed, do nothing. (2) If the change is an insertion of
or replacement with a list, mark the list as changed. (3) If the

change is an insertion of or replacem ent with an atom, or a
deletion, mark the parent as changed.

CHANGESARRA V is primarily for use by PREITVPRINT (page

26.40). When the value of CHANGECHAR is non-NIL,

PRETTVPRINT, when printing to a file or display terminal, prints

CHANGECHAR in the right margin while printing an expression

marked as having been changed. CHANGECHAR is initially I.

Note: Since all commands that insert, replace, delete or attach
,structure use the same low level editor functions, the remarks
made here are valid for all structure changing commands.

For all replacement, insertion, and attaching at the end of a list,
unless the command was typed in directly to the editor, copies of
the corresponding structure are used, because of the possibility

that the exact same command, (i.e., same list structure) might be
used again. Thus if a program constructs the command (1 (A B

C» e.g., via (LIST 1 Faa), and gives this command to the editor,

the (A B C) used for the replacement will not be EQ to Faa. The

us'er can circumvent this by using the I command (page 16.58),

which computes the structure to be used. In the above example,
the form of the command would be {I 1 Faa), which would

replace the first element with the value of Faa itself.

Note: Some editor commands take as arguments a list of edit

commands, e.g., (LP F Faa (1 (CAR Faa»). In this case, the
command (1 (CAR Faa» is not considered to have been "typed

in" even though the LP command itself may have been typed in.
Similarly, commands originating from macros, or commands
given to the editor as arguments to EDITF, EDITV, et ai, e.g.,

IEDITF(FOO F COND (N --» are not considered typed in.

The rest of this section is included for applications wherein the
editor is used to modify a data structure, and pointers into that
data structure are stored elsewhere. In these cases, the actual
mechanics of structure modification must be known in order to
predict the effect that various commands may have on these

LIST STRUCTU RE EDITOR

16.5.2 The A, 8, and: Commands

LIST STRUCTURE EDITOR

COMMANDS THAT MODIFY STRUCTURE

outside pointers. For example, if the value of Faa is CDR of the
current expression, what will the commands (2), (3), (2 X Y Z), (-2
X Y Z), etc. do to Faa?

Deletion of the first element in the current expression is
performed by replacing it with the second element and deleting
the second element by patching around it. Deletion of any other
element is done by patching around it, i.e., the previous tail is
altered. Thus if FOO is EQ to the current expression which is (A B
CO), and FIE is CDR of FOO, after executing the command (1),
FOO will be (B C D) (which is EQUAL but not EQ to FIE). However,
under the same initial conditions, after executing (2) FIE will be
unchanged, i.e., FIE will still be (B C D) even though the current

expression and FOO are now (A CD).

A general solution of the problem isn't possible, as it would
require being able to make two lists EQ to each other that were
originally different. Thus if FIE is CDR of the current expression,

and FUM is CDDR of the current expression, perform i ng (2)
would have to make FIE be EQ to FUM if all subsequent

operations were to update both FIE and FUM correctly.

Both replacement and insertion are accomplished by smashing
both CAR and CDR of the corresponding tail. Thus, if Faa were

EQ to the current expression, (A BCD), after (1 X Y Z), Faa
would be(X Y Z BCD). Similarly, if FOO were EQ to the current
expression, (A BCD), then after (-1 X Y Z), Faa would be (X Y Z A
BCD).

The N command is accomplished by smashing the last CDR of the
current expression a la NCONC. Thus if Faa were EQ to any tail
of the current expression, after executing an N command, the

corresponding expressions would also appear at the end of Faa.

In summary, the only situation in which an edit operation will
not change an external pointer occurs when the external poi nter
is to a proper tail of the data structure, i.e., to CDR of some node
in the structure, and the operation is deletion. If all external
pointers are to elements of the structure, i.e., to CAR of some
node, or if only insertions, replacements, or attachments are
performed, the edit operation will a/ways have the same effect
on an external pointer as it does on the current expression.

In the (N), (N E 1 ... EM), and (-N E 1 ... EM) commands, the sign of

the integer is used to indicate the operation. As a result, there is
no direct way to express insertion after a particular element,
(hence the necessity for a separate N command). Similarly, the
user cannot specify deletion or replacement of the Nth element

16.31

COMMANDS THAT MODIFY STRUCTURE

DELETE

(:)

1632

from the end of a list without first converting N to the

(orresponding positive integer. Accordingly, we have:

[Editor Command]

Inserts E 7 ... EM before the current expression. Equivalent to UP

followed by (-1 E 7 ... EM).

For example, to insert FOO before the last element in the current

expression, perform -1 and then (B FOO).

[Editor Command]

Inserts E 1 ... EM after the current expression. Equivalent to UP

followed by (-2 E 7 ... EM) or (N E 1 ... EM), whichever is

appropriate.

[Editor Command]

Replaces the current expression by E, ... EM. Equivalent to UP

followed by (1 E 7 ... EM).

[Editor Command]

[Editor Command]

Deletes the current expression.

DELETE first tries to delete the current expression by perform i ng

an UP and then a (1). This works inmost cases. However, if after

performing UP, the new current expression contains only one

element, the command (1) will not work. Therefore, DELETE

starts over and performs a BK, followed by UP, followed by (2).

For example, if the current expression is (COND {(MEMB X Y» (T

V», and the user performs -1, and then DELETE, the BK-UP-(2)

method is used, and the new current expression will be

«MEMB X Y»).

However, if the next higher expression contains only one
element, BK will not work. So in this case, DELETE performs UP,

followed by (: NIL), i.e., it replaces the higher expression by NIL.

For example, if the current expression is (COND {(MEMB X Y» (T

Y» and the user performs F MEMB and then DELETE, the new

current expression will be ... NIL (T Y» and the original expression

would now be (COND NIL (T Y». The rationale behind this is that

deleting (MEMB X Y) from «MEMB X Y» changes a list of one

element to a list of no elements, i.e., 0 or NIL.

If the current expression is a tail, then B, A, :, and DELETE all
work exactly the same as though the current expression were the
first element in that tail. Thus if the current expression were ...

LIST STRUCTU RE EDI TOR

COMMANDS THAT MODIFY STRUCTURE

(PRINT Y) (PRINT Z)), (B (PRINT X)) would insert (PRINT X) before

(PRINT V), leaving the current expression ... (PRINT X) (PRINT Y)

(PRINT Z)).

The following forms of the A, B, and: commands incorporate a

location specification:

(INSERT E 1 ... EM BEFORE. @) [Editor Command]

(@ is {CDR (MEMBER 'BEFORE COMMAND») Similar to (LC .@)

followed by (B E 1 ... EM)'

Warning: If @ causes an error, the location process does not

continue as described on page 16.23. For example if @ = (COND

3) and the next COND does not have a 3rd element, the search

stops and the INSERT fails. Note that the user can always write

(LC COND 3) if he intends the search to continue.

*P
{PROG (& & X) **COMMENT** (SELECTQ ATM & NIL) (OR & &)

(PRIN1 & T)

(PRIN1 & T) {SETQ X &

*(lNSERT LABEL BEFORE PRIN1)

*P
{PROG (& & X) **COMMENT** (SELECTQ ATM & NIL) (OR & &)

LABEL

(PRIN1 & T) (user typed control-E

*
Current edit chain is not changed, but UNFIND is set to the edit

chain after the B was performed, i.e., \ will make the edit chain

be that chain where the insertion was performed.

(INSERT E 1'" EM AFTER. @) [Editor Command]

(INSERT E 1'" EM FOR. @)

(REPLACE @ BY E 1 ... EM)

(REPLACE @ WITH E 1 ... EM)

LIST STRUCTURE EDITOR

Similar to INSERT BEFORE except uses A instead of a.

[Editor Command]

Similar to INSERT BEFORE except uses: for B.

[Editor Command1

[Editor Command1

Here @ is the segment of the command between REPLACE and

WITH. Same as (INSERT E 1'" EM FOR. @).

Example: (REPLACE COND -1 WITH (T (RETU RN L)))

, 633

COMMANDS THAT MODIFY STRUCTURE

(CHANGE @ TO E 1 ... EM)

(DELETE. @)

[Editor Command]

Same as REPLACE WITH.

[Editor Command]

Does a (LC . @) followed by DELETE (see warning about INSERT,

page 16.33). The current edit chain is not changed, but UNFIND

is set to the edit chain after the DELETE was performed.

Note: the edit chain will be changed if the current expression is
no longer a part of the expression being edited, e.g., if the
current expression is ... C) and the user performs (DELETE 1), the
tail, (C), will have been cut off. Similarly, if the current expression

is (CDR Y) and the user performs (REPLACE WITH (CAR X».

Example: (DELETE -1), (DELETE COND 3)

Note: if @ is NIL (i.e., empty), the corresponding operation is
performed on the current edit chain.

For example, {REPLACE WITH (CAR X» is equivalent to {: (CAR

X». For added readability, HERE is also permitted, e.g., {INSERT

(PRINT X) BEFORE HERE) will insert (PRINT X) before the current
expression (but not change the edit chain).

Note: @ does not have to specify a location within the current
expression, i.e., it is perfectly legal to ascend to INSERT, REPLACE,

or DELETE

For example, (INSERT (RETURN) AFTER i PROG ~1) will go to the

top, find the first PROG, and insert a (RETURN) at its end, and not
change the current edit chain.

The A, B, and : commands, commands, (and consequently

INSERT, REPLACE, and CHANGE), all make special checks in E 1

thru EM for expressions of the form (## . CaMS). In this case,

the expression used for inserting or replacing is a copy of the
current expression after executing CaMS, a list of edit commands
(the execution of caMS does not change the current edit chain).
For example, (INSERT (## F COND -1 -1) AFTER 3) will make a

copy of the last form in the last clause of the next COND, and
insert it after the third element of the current expression. Note
that this is not the same as (INSERT F COND -1 (## -1) AFTER 3),
which inserts four elements after the third element, namely F,

COND, -1, and a copy of the last element in the current
expression.

16.5.3 Form Oriented Editing and the Role of UP

1634

The UP that is performed before A, B, and : commands (and
therefore in INSERT, CHANGE, REPLACE, and DELETE commands
after the location portion of the operation has been performed)

LIST STRUCTURE EDITOR

16.5.4 Extract and Embed

(XTR. @)

LIST STRUCTURE EDITOR

COMMANDS THAT MODIFY STRUCTURE

makes these operations form-oriented. For example, if the user
types F SETQ, and then DELETE, or simply (DELETE SETQ), he will
delete the entire SETQ expression, whereas (DELETE X) if X is a

variable, delet~s just the variable X. In both cases, the operation

is performed on the corresponding form, and in both cases is
probably what the user intended. Similarly, if the user types
{INSERT (RETURN Y) BEFORE SETQ), he means before the SETQ

expression, not before the atom SETQ. A consequent of this
procedure is that a pattern of the form (SETQ Y --) can be viewed
as simply an elaboration and further refinement of the pattern
SETQ. Thus (INSERT (RETURN Y) BEFORE SETQ) and (INSERT

(RETURN Y) BEFORE (SETQ Y --» perform the same operation

{assuming the next SETQ is of the form (SETQ Y --» and, in fact,
this is one of the motivations behind making the current
expression after F SETQ, and F (SETQ Y --) be the same.

Note: There is some ambiguity in (INSERT EXPR AFTER
FUNCTIONNAME), as the user might mean make EXPR be the

function's first argument. Similarly, the user cannot write
(REPLACE SETQ WITH SETQQ) meaning change the name of the
function. The user must in these cases write (INSERT EXPR AFTER
FUNCTIONNAME 1), and (REPLACE SETQ 1 WITH SETQQ).

Occasionally, however, a user may have a data structure in which
no special significance or meaning is attached to the position of
an atom in a list, as Interlisp attaches to atoms that appear as
CAR of a list, versus those appearing elsewhere in a list. In
general, the user may not even know whether a particular atom
is at the head of a list or not. Thus, when he writes (INSERT EXPR
BEFORE Faa), he means before the atom Faa, whether or not it

is CAR of a list. By setting the variable UPFINDFLG to NIL (initially
T), the user can suppress the implicit UP that follows searches for

atoms, and thus achieve the desired effect. With
UPFINDFLG = NIL, following F Faa, for example, the current
expression will be the atom Faa. In this case, the A, B, and :

operations will operate with respect to the atom Faa. If the user
intends the operation to refer to the list which Faa heads, he
simply uses instead the pattern (Faa --).

Extraction involves replacing the current expression with one of
its subexpressions (from any depth).

[Editor Command]

Replaces the original current expression with the expression that
is current after performing (LCL . @) (see warning about INSERT,
page 16.33). If the current expression after (LCL . @) is a tail of a
higher expression, its first element is used.

16.35

COMMANDS THAT MODIFY STRUCTURE

16.36

If the extracted expression is a list, then after XTR has finished,

the current expression will be that list. If the extracted
expression is not a list, the new current expression will be a tail

whose first element is that non-list.

For example, if the current expression is (COND «NULL X) (PRINT

Y»), (XTR PRINT), or (XTR 2 2) will replace the COND by the

PRINT. The current expression after the XTR would be (PRINT V).

If the current expression is (COND ({NULL X) Y) (T Z)), then (XTR

Y) will replace the COND with V, even though the current

expression after performing (LCL V) is ... V). The current

expression after the XTR would be ... V followed by whatever

followed the CONDo

If the current expression initially is a tail, extraction works exactly
the same as though the current expression were the first element

in that tail. Thus if the current expression is ... (COND «NULL X)

(PRINT V))) (RETURN Z», then (XTR PRINT) will replace the COND

by the PRINT, leaving (PRINT V) as the current expression.

The extract command can also incorporate a location

specification:

[Editor Command]

Performs (LC . @2) and then (XTR . @1) (see warni ng about

INSERT, page 16.33). The current edit chain is not changed, but

UNFIND is set to the edit chain after the XTR was performed.

Note: @1 is the segment between EXTRACT and FROM.

For example: If the current expression is (PRINT (COND «NULL X)

Y) (T Z») then following (EXTRACT V FROM COND), the current

expression will be (PRINT V). (EXTRACT 2 -1 FROM COND),

(EXTRACT V FROM 2), and (EXTRACT 2 -1 FROM 2) will all

produce the same result.

While extracting replaces the current expression by a
subexpression, embedding replaces the current expression with

one containing it as a subexpression.

[Editor Command]

MBD substitutes the current expression for all instances of the

atom & in E 1 ... EM, and replaces the current f"\Yoression with the

result of that substitution. As with SUBST, a fresh copy is used
for each substitution.

If & does not appear in E 1 ... EM, the MBD is interpreted as (MBD

(El ... EM&»'

LIST STRUCTURE EDITOR

(EMBED @IN.X)

EDITEMBEDTOKEN

16.5.5 The MOVE Command

COMMANDS THAT MODIFY STRUCTURE

MBD leaves the edit chain so that the larger expression is the

new current expression.

Examples:

If the current expression is (PRINT V), (MBD (COND {(NULL X) &)

({NULL (CAR Y» & (GO LP»» would replace (PRINT Y) with (COND

({NULL X) (PRINT V»~ ({NULL (CAR V»~ (PRINT Y) (GO LP»).

If the current expression is (RETURN X), (MBD (PRINT Y) (AND FLG
&» would replace it with the two expressions (PRINT Y) and {AND

FLG (RETURN X» i.e., if the (RETURN X) appeared in the (ond

clause (T (RETURN X», after the MBD, the clause would be {T
(PRINT Y) (AND FLG (RETURN X»).

If the current expression is (PRINT V), then (MBD SETQ X) wi II

replace it with (SETQ X (PRINT Y». If the current expression is
(PRINT V), (MBD RETURN) will replace it with (RETURN (PRINT Y».

If the current expression initially is a tail, embedding works
exactly the same as though the current expression were the first
element in that tail. Thus if the current expression were ... (PRINT
Y) (PRINT Z», (MBD SETQ X) would replace (PRINT Y) with (SETQ

X (PRI NT Y».

The embed command can also incorporate a location

specification:

[Editor Command]

(@ is the segment between EMBED and IN.) Does (LC . @) and

then (MBD . X) (see warning about INSERT, page 16.33). Edit

chain is not changed, but UNFIND is set to the edit chain after the

MBD was performed.

Examples: (EMBED PRINT IN SETQ X), (EMBED 3 2 IN RETURN),

{EMBED COND 3 1 IN (OR & (NULL X»).

WITH can be used for IN, and SURROUND can be used for
EMBED, e.g., {SURROUND NUMBERP WITH {AND & (MINUSP X»).

[Variable]

The special atom used in the MBD and EMBED commands is the
value of this variable, initially &.

The MOVE command allows the user to specify (1) the expression
to be moved, (2) the place it is to be moved to, and (3) the
operation to be performed there, e.g., insert it before, insert it
after, replace, etc.

--LIST STRUCTURE EDITOR 16.37

COMMANDS THAT MODIFY STRUCTURE

(MOVE@1 TO COM. @2) [Editor Command]

16.38

(@1 is the segment between MOVE and TO.) COM is BEFORE,

AFTER, or the name of a list command, e.g., :, N, etc. Performs

(LC . @1) (see warning about INSERT, page 16.33), and obt.ains

the current expression there {or its first element, if it is a tail},

which we will call EXPR; MOVE then goes back to the original

edit chain, performs (LC , @2) followed by (COM EXPR) {setting

an internal flag so EXPR is not copied}, then goes back to @1 and

deletes EXPR. The edit chain is not changed. UNFIND is set to the

edit chain after (COM EXPR) was performed.

If @2 specifies a location inside of the expression to be moved, a

message is printed and an error is generated, e.g., (MOVE 2 TO
AFTER X), where X is contained inside of the second element.

For example, if the current expression is (A BCD), (MOVE 2 TO

AFTER 4) will make the new current expression be (A COB).

Note that 4 was executed as of the original edit chain, and that

the second element had not yet been removed.

As the following examples taken from actual editing will show,

the MOVE command is an extremely versatile and powerful
feature of the editor.

*7
(PROG «L L» (EDLOC (CDDR C» (RETURN (CAR L»)
*(MOVE 3 TO : CAR)
*7
(PROG «L L» (RETURN (EDLOC (CDDR C»»

*P

... (SELECTQ OBJPR & &) (RETURN &) LP2 (COND & &»
*(MOVE 2 TO N 1)
*p

... (SELECTQ OBJPR & & &) LP2 (COND & &»

...

*p

(OR (EQ X LASTAIL) (NOT &) (AND & & &»

*(MOVE 4 TO AFTER (BELOW COND»

*P
(OR (EQ X LASTAIL) (NOT &»

"'\P
.... (& &) (AND & & &) (T & &))

*
*p

«NULL X) **COMMENT** (COND & &»
*(-3 (GO NXT]

LIST STRUCTU RE EDI TOR

LIST STRUCTURE EDITOR

COMMANDS THAT MODIFY STRUCTURE

*(MOVE 4 TO N (+- PROG))
*P
«NULL X) **COMMENT** (GO NXT»
*\ P
(PROG (&) **COMMENT** (COND & & &) (COND & & &) (COND &

&»
*(lNSERT NXT BEFORE -1)
*P
(PROG (&) **COMMENT** (COND & & &) (COND & & &) NXT

(COND & &»

Note that in the last example, the user could have added the
PROG label NXT and moved the COND in one operation by
performing (MOVE 4 TO N (+- PROG) (N NXT». Similarly, in the
next example, in the course of specifying @2, the location where

the expression was to be moved to, the user also performs a
structure modification, via (N (T», thus creati ng the structu re
that wi" receive the expression being moved.

*P
«CDR &) **COMMENT** (SETQ CL &) (EDITSMASH CL & &»
*MOVE 4 TO NO (N (T» -1]
*P
«CDR &) **COMMENT** (SETQ CL &»
*\P
*(T (EDITSMASH CL & &»

*
If @2 is NIL, or (HERE), the current position specifies where the

operation is to take place. In this case, UNFIND is set to where
the expression that was moved was originally located, i.e., @1'

For exam pie:

*P
(TENEX)
*(MOVE t F APPLY TO N HERE)
*P

(TENEX (APPLY & &»

*
*P

(PROG (& & & ATM IND VAL) (OR & &) **COMMENT** (OR & &)
(PRIN1 & T) (
PRIN1 & T) (SETQ IND user typed control-E

*(MOVE * TO BEFORE HERE)
*P

(PROG (& & & ATM IND VAL) (OR & &) (OR & &) (PRIN1 &

*P

(T (PRIN1 C-EXP T»

16.39

COMMANDS THAT MODIFY STRUCTURE

*(MOVE f BF PRIN1 TO N HERE)

*P

{T (PRIN1 C-EXP T) (PRIN1 & T»

*
Finally, if @1 is NIL, the MOVE command allows the user to

specify where the current expression is to be moved to. In this

case, the edit chain is changed, and is the chain where the
current expression was moved to; UNFIND is set to where it was .

. "..p

(SELECTQ OBJPR (&) (PROGN & &))

'''''(MOVE TO BEFORE LOOP)
."..p

..• (SELECTQ OBJPR & &) LOOP (FRPLACA DFPRP &) (FRPLACD

DFPRP

&) (SELECTQ user typed control-E

16.5.6 Commands That Move Parentheses

(BI N M)

16.40

The commands presented in this section permit modification of

the list structure itself, as opposed to modifying components

thereof. Their effect can be described as inserting or removing a
single left or right parenthesis, or pair ,of left and right
parentheses. Of course, there will always be the same num ber of
left parentheses as right parentheses in any list structure, since
the parentheses are just a notational guide to the structure
provided by PRINT. Thus, no command can insert or remove just

one parenthesis, but this is suggestive of what actually happens.

In all six commands, Nand M are used to specify an element of a
list, usually of the current expression. In practice, Nand Mare

lJsuaily positive or negative integers with the obvious

interpretation. However, all six commands use the generalized
NTH command (NTH COM) to find their element(s), so that Nth
element means the first element of the tail found by performing
(NTH N). In other words, if the current expression is (LIST (CAR X)

(SETQ Y (CONS W Z))), then (BI 2 CONS), (BI X ·1), and (BI X Z) all

specify the exact same operation.

All six commands generate an error if the element is not found,
i.e., the NTH fails. All are undoable.

[Editor Command]

'"Both In". Inserts a left parentheses' before the Nth element and
after the Mth element in the current expression. Generates an
error if the Mth element is not contained in the Nth tail, i.e., the
Mth element must be "to the right" of the Nth element.

LIST STRUCTURE EDITOR

(BI N)

(BO N)

(UN)

(La N)

(RI N M)

(RO N)

COMMANDS THAT MODIFY STRUCTURE

Example: If the current expression is (A B (C 0 E) F G), then (BI 2

4) will modify it to be (A (B (C 0 E) F) G).

[Editor Command]

Same as (BI N N).

Example: If the current expression is (A B (C 0 E) F G), then (BI -2)

will modify it to be (A B (C 0 E) (F) G).

[Editor Command]

"Both Out". Removes both parentheses from the Nth element.
Generates an error if Nth element is not a list.

Example: If the current expression is (A B (C 0 E) F G), then (BO D)

will modify it to be (A BCD E F G).

[Editor Command]

"Left In". Inserts a left parenthesis before the Nth elem ent (and
a matching right parenthesis at the end of the current
expression), i.e. equivalent to (BI N -1).

Example: if the current expression is (A B (C 0 E) F G), then (LI 2)

will modify it to be (A (B (C 0 E) F G».

[Editor Command]

"Left Out". Removes a left parenthesis from the Nth element.
AI/ elements following the Nth element are deleted. Generates
an error if Nth element is not a list.

Example: If the current expression is (A B (C 0 E) F G), then (LO 3)

will modify it to be (A BCD E).

[Editor Command]

"Right In". Inserts a right parenthesis after the Mth element of
the Nth element. The rest of the Nth element is brought up to
the level of the current expression.

Example: If the current expression is (A (B C 0 E) F G), (RI 22) will
modify it to be (A (B C) 0 E F G). Another way ("'f thinking about
RI is to read it as "move the right parenthesis at the end of the
Nth element in to after its Nth element. "

[Editor Command]

"Right Out". Removes the right parenthesis from the Nth
element, moving it to the end of the current expression. All

--LIST STRUCTURE EDITOR 16.41

COMMANDS THAT MODIFY STRUCTURE

16.5.7 TO and THRU

1642

elements following the Nth element are moved inside of the Nth

element. Generates an error if Nth element is not a list.

Example: If the current expression is (A B (C 0 E) F G), (RO 3) will

modify it to be (A B (C D E F G». Another way of thinking about

RO is to read it as "move the right parenthesis at the end of the

Nth element out to the end of the current expression. "

EXTRACT, EMBED, DELETE, REPLACE, and MOVE can be made to
operate on several contiguous elements, i.e., a segment of a list,
by using in their respective location specifications the TO or

THRU command.

[Editor Command]

Does a (LC . @1), followed by an UP, and then a (BI 1 @2),

thereby grouping the segment into a single element, and finally
does a 1, making the final current expression be tha.t element.

For example, if the current expression is (A (B (C D) (E) (F G H) I) J

K), following (C THRU G), the current expression will be «C D) (E)

(F G H».

[Editor Command]

Same as THRU except the last element not included, i.e., after the

BI, an (RI 1 -2) is performed.

If both @1 and @2 are numbers, and @2 is greater than @1'

then @2 counts from the beginning of the current expression,

the same as @1' In other words, if the current expression is (A B

C D E F G), (3 THRU 5) means (C THRU E) not (C THRU G). In this

case, the corresponding BI command is (BI 1 @2-@1 + 1).

THRU and TO are not very useful commands by themselves; they

are intended to be used in conjunction with EXTRACT, EMBED,

DELETE, REPLACE, and MOVE. After THRU and TO hc1ve

operated, they set an internal editor flag informing the above
commands that the element they are operating on is actually a

'Segment, and that the extra pair of parentheses should be
removed when the operation is complete. Thus:

*P
(PROG (& & ATM IND VAL WORD) (PRIN1 & T) (PRIN1 & T) (SETQ
IND&)

(SETQ VAL &) **COMMENT** (SETQQ user typed contro/-E

LIST STRUCTURE EDI TOR

LIST STRUCTU RE EDITOR

COMMANDS THAT MODIFY STRUCTURE

*(MOVE (3 THRU 4) TO BEFORE 7)

*P

(PROG (& & ATM IND VAL WORD) (SETQ IND &) (SETQ VAL &)

(PRIN1 & T)

(PRIN1 & T) **COMMENT** user typed control-E

*
*P

(* FAIL RETURN FROM EDITOR. USER SHOULD NOTE THE VALUES

OF SOURCEXPR

AND CURRENTFORM. CURRENTFORM IS THE LAST FORM IN

SOURCEXPR WHICH WILL

HAVE BEEN TRANSLATED, AND IT CAUSED THE ERROR.)

*(DELETE (USER THRU CURR$»

= CURRENTFORM.

*P

(* FAIL RETURN FROM EDITOR. CURRENTFORM IS user typed
control-E

*

*P

... LP (SELECTO & & & & NIL) (SETQ Y &) OUT (SETQ FLG &)

(RETURN Y»
*(MOVE (1 TO OUT) TO N HERE]

*P

... OUT (SETQ FLG &) (RETURN Y) LP (SELECTQ & & & & NIL) (SETQ

Y &»
*
*PP

[PROG (RF TEMP1 TEMP2)

(COND

«NOT (MEMB REMARG LISTING»

(SETQ TEMP1 (ASSOC REMARG NAMEDREMARKS»

COMMENT

(SETQ TEMP2 (CADR TEMP1»

(GO SKIP»

(T **COMMENT* *

(SETQ TEMP1 REMARG»)

(NCONC1 LISTING REMARG)

(COND

«NOT (SETQ TEMP2 (SASSOC

*(EXTRACT (SETQ THRU CADR) FROM COND)

*P

(PROG (RF TEMP1 TEMP2) (SETQ TEMP1 &) **COMMENT* *
(SETQ TEMP2 &) (NCONC1 LISTING REMARG) (COND & & user
typed control-E

16.43

COMMANDS THAT MODIFY STRUCTURE

(@1 TO)

(@1 THRU)

16.44

TO and THRU can also be used directly with XTR, because XTR

involves a location specification while A, B, :, and MBD do not.

Thus in the previous example, if the current expression had been

the COND, e.g., the user had first performed F COND, he could

have used (XTR (SETQ THRU CADR» to perform the extraction.

[Editor Command]

[Editor Command]

Both are the same as (@1 THRU -1), i.e., from @1 through the

f~nd of the list.

Examples:

*P

(VALUE (RPLACA DEPRP &) (RPLACD &) (RPLACA VARSWORD &)

(RETURN»

"'(MOVE (2 TO) TO N (Eo- PROG»

"'(N (GO VAR»

*P

(VALUE (GO VAR»

*P

(T **COMMENT** (COND &) **COMMENT** (EDITSMASH CL &

&) (COND &»
*(-3 (GO REPLACE»

*(MOVE (COND TO) TO N t PROG (N REPLACE»

*P

(T **COMMENT"'* (GO REPLACE»

*\ P
(PROG (&) **COMMENT** (COND & & &) (COND & & &) DELETE

(COND & &) REPLACE

(COND &) **COMMENT** (EDITSMASH CL & &) (COND &»

*PP

[LAMBDA (CLAUSALA X)

(PROG (A D)

(SETQ A CLAUSALA)

LP (COND

«NULL A)

(RETURN»)

(SERCH X A)

(RUMARK (CDR A))

(NOTICECL (CAR A»

(SETQ A (CDR A))

(GO LP]

LIST STRUCTURE EDITOR

16.5.8 The R Command

(RX y)

LIST STRUCTURE EDITOR

COMMANDS THAT MODIFY STRUCTURE

*(EXTRACT (SERCH THRU NOT$) FROM PROG)

= NOTICECL
*P
(LAMBDA (CLAUSALA X) (SERCH X A) (RUMARK &) (NOTICECL

&»
*(EMBED (SERCH TO) IN (MAP CLAUSALA {FUNCTION (LAMBDA
(A) *]

*PP
[LAMBDA (CLAUSALA X)

(MAP CLAUSALA

'*

(FUNCTION (LAMBDA (A)
(SERCH X A)·

(RUMARK (CDR A»
(NOTICECL {CAR A]

[Editor Command]

Replaces all instances of X by Y in the current expression, e.g., (R
CAADR CADAR). Generates an error if there is not at least one
instance.

The R command operates in conjunction with the search

mechanism of the editor. The search proceeds as described on
page 16.20, and X can employ any of the patterns on page 16.18.
Each time X matches an element of the structure, the element is
replaced by (a copy of) Y; each time X matches a tail of the
structure, the tail is replaced by (a copy of) Y.

For example, if the current expression is (A (B C) (B . C»,

(R C D) will change it to (A (B D) (B. 0»,

(R (.... C) D) wi II change it to {A (B C) (B . 0»,

(R C (D E» will change it to {A (B (D E» (B 0 E», and

{R (.... NIL) D) wi II change it to (A (B C . D) (B . C) . 0).

If X is an atom or string containing $s (escapes), $s appearing in Y
stand for the characters matched by the corresponding $ in X.

For example, (R FOO$ FIE$) means for all atoms or strings that
begin with FOO, replace the characters" FOO" by "FIE". Applied
to the list (FOO F002 XF001), (R FOO$ FIE$) woul d produce (FIE

FIE2 XF001), and (R FOO FIE) would produce (FIE FIE2
XFIE1). Similarly, (R 0 A) will change (LIST (CAOR X) (CAODR
Y» to (LIST (CAAR X) (CAAOR». Note that CAODR was not
changed to CAAAR, i.e., (R 0 A) does not mean replace
every 0 with A, but replace the first 0 in every atom or stri ng by

16.45

COMMANDS THAT MODIFY STRUCTURE

(RCX y)

(R1 X y)

(RC1 X y)

16.46

A. If the user wanted to replace every 0 by A, he could perform

(LP (R 0 A)).

The user will be informed of all such $ replacements by a

message of the form X-> Y, e.g., CAOR->CAAR.

If X matches a string, it will be replaced by a string. Note that it
does not matter whether X or Ythemselves are strings, i.e. (R 0
A), (R "OU A), (R 0 "A"), and (R "0" UA") are

equivalent. Note also that X will never match with a number,
i.e., (R $1 $2) will not change 11 to 12.

Note that the $ (escape) feature can be used to delete or add
characters, as well as replace them. For example, (R $1 $) will

delete the terminating l's from all literal atoms and strings.
Similarly, if an $ in X does not have a mate in Y, the characters
matched by the $ are effectively deleted. For exam pie, (R $/$ $)
will change AN~/OR to AND. There is no similar operation for
changing AN~/OR to OR, since the first $ in Y always corresponds

to the first $ in X, the second $ in Yto the second in X, etc. Y can
also be a list containing $s, e.g., (R $1 (CAR $» will change FOOl

to (CAR FOO), FIE1 to (CAR FIE).

If X does not contain $s, $ appearing in Y refers to the entire

expression matched by X, e.g., (R LONGATOM '$) changes

LONGATOM to 'LONGATOM, (R (SETQ X &) (PRINT $» changes
every (SETQ X &) to (PRINT (SETQ X &». If X is a pattern
containing an $ pattern somewhere within it, the characters

matched by the $s are not available, and for the purposes of
replacement, the effect is the same as though X did not contain
any $s. For example, if the user types (R (CAR F$) (PRINT $», the

second $ will refer to the entire expression matched by (CAR F$).

Since (R X Y) is a frequently used operation for Replacing

Characters, the following command is provided:

[Editor Command]

Equivalent to (R X $ Y$)

Rand RC change all instances of X to Y. The commands R1 and
RC1 are available for changing just one, (i.e., the first) instance of

Xto Y.

[Editor Command]

Find the first instance of X and replace it by Y.

[Editor Command]

(R 1 X $ Y$).

LIST STRUCTU RE EDITOR

(SW N M)

16.6 Commands That Print

PP

P

(P M)

LIST STRUCTURE EDITOR

COMMANDS THAT MODIFY STRUCTURE

In addition, while Rand RC only operate within the current

expression, R1 and RC1 will continue searching, a la the F
command, until they find an instance of x, even if the search
carries them beyond the current expression.

[Editor Command]

Switches the Nth and Mth elements of the current expression.

For example, if the current expression is (LIST (CONS (CAR X)

(CAR Y» (CONS (CDR X) (CDR Y»), (SW 2 3) will modify it to be

(LIST (CONS (CDR X) (CDR Y» (CONS (CAR X) (CAR Y»). The

relative order of Nand M is not important, i.e., (SW 3 2) and (SW
23) are equivalent.

SW uses the generalized NTH command (NTH COM) to find the

Nth and Mth elements, a la the 81-80 commands.

Thus in the previous example, (SW CAR CDR) would produce the

same result.

[Editor Command]

Like SW except switches the expressions specified by @1 and @2,

not the corresponding elements of the current expression, i.e.
@1 and @2 can be at different levels in current expression, or

one or both be outside of current expression.

Thus, using the previous example, (SWAP CAR CDR) would result

in {LIST (CONS (CDR X) (CAR Y» (CONS (CAR X) (CDR Y»).

[Editor Command]

Prettyprints the current expression.

[Editor Command]

Prints the current expression as though PRINTLEVEL (page 25.11)

were set to 2.

[Editor Command]

Prints the Mth element of the current expression as though
PRINTLEVEL were set to 2.

16.47

COMMANDS THAT PRINT

(P 0)

(PMN)

(PO N)

?

PP*

PPV

PPT

7=

16.48

[Editor Command]

Same as P.

[Editor Command]

Prints the Mth· element of the current expression as though
PRINTLEVEL were set to N.

[Editor Command]

Prints the current expression as though PRINTLEVEL were set to
N.

[Editor Command]

Same as (P 0 100).

Both (P M) and (P M N) use the generalized NTH command (NTH

COM) to obtain the corresponding element, so that M does not
have to be a number, e.g., (P COND 3) will work. PP causes all
comments to be printed as **COMMENT** (see page 26.43). P

.and 7 print as **COMMENT** only those comments that are (top
level) elements of the current expression. Lower expressions are
not really seen by the editor; the printing command simply sets
PRINTLEVEL and calls PRINT.

[Editor Command]

Prettypri nts current expression, including comments.

I'P* is equivalent to PP except that it first resets
·rr*COMMENT**FLG to NIL (see page 26.43).

[Editor Command]

Prettyprints the current expression as a variable, i.e., no special
treatment for LAMBDA, COND, SETQ, etc., or for CLiSP.

[Editor Command]

Prettyprints the current expression, printing CLiSP translations, if
any.

[Editor Command]

Prints the argument names and corresponding values for the
current expression. Analagous to the 7 = break command (page
14.7). For example,

'''p

(STRPOS "A0777" X N (QUOTE 7) T)
'''? :::
X = "A07?7"
y = X

LIST STRUCTURE EDITOR

START = N
SKIP = (QUOTE 7)
ANCHOR = T

TAIL =

COMMANDS THAT PRINT

The command MAKE (page 16.57) is an imperative form of? =. It

allows the user to specify a change to the element of the current
expression that corresponds to a particular argument name.

All printing functions print to the terminal, regardless of the
primary output file. All use the readtable T. No pri nti ng

function ever changes the edit chain. All record the current edit
chain for use by \P (page 16.28). All can be aborted with

control-E.

16.7 Commands for Leaving the Editor

OK

STOP

SAVE

LIST STRUCTURE EDITOR

[Editor Command]

Exits from the editor.

[Editor Command]

Exits from the editor with an error. Mainly for use in conjunction
with TTY: commands (page 16.51) that the user wants to abort.

Since all of the commands in the editor are errorset protected,
the user must exit from the editor via a command. STOP provides
a way of distinguishing between a successful and unsuccessful
(from the user's standpoint) editing session. For example, if the
user is executing (MOVE 3 TO AFTER COND TTY:), and he exits

from the lower editor with an OK, the MOVE command will then
complete its operation. If the user wants to abort the MOVE
command, he must make the TTY: command generate an error.
He does this by exiting from the lower editor with a STOP

command. In this case, the higher editor's edit chain will not be
changed by the TTY: command.

Actually, it is also possible to exit the editor by typing control-D.
STOP is preferred even if the user is editing at the EVALQT level,
as it will perform the necessary I\NrapUp" to insure that the
changes made while editing will be undoable.

[Editor Command]

Exits from the editor and saves the "state of the edit" on the
property list of the function or variable being edited under the
property EDIT-SAVE. If the editor is called again on the same

16.49

COMMANDS FOR LEAVING THE EDITOR

16.50

structure, the editing is effectively" continued," i.e., the edit
chain, mark list, value of UNFIND and UNDOLST are restored.

For example:

*P
(NULL X)

*F COND P
(COND (& &) (T &))

*SAVE
f:OO

(-.

(-EDITF(FOO)

I:DIT

*P
(COND (& &) (T &))

*\P
(NULL X)

SAVE is necessary only if the user is editing many different
E~xpressions; an exit from the editor via OK always saves the state
()f the edit of that call to the editor on the property list of the
atom EDIT, under the property name LASTVALUE. OK also
remprops EDIT-SAVE from the property list of the function or
variable being edited.

Whenever the editor is entered, it checks to see if it is editing the
same expression as the last one edited. In this case, it restores the
mark list and UNDOLST, and sets UNFIND to be the edit chain as
()fthe previous exit from the editor. For example:

(-EDITF(FOO)

EDIT

*P

(LAMBDA (X) (PROG & & LP & & & &»

*P
(COND & &)

*OK
1:00

4':- •

any number of LISP X inputs
except for calls to the editor

(-EDITF(FOO)

EDIT

*P

LIST STRUCTURE EDITOR

16.8 Nested Calls to Editor

nv:

LIST STRUCTURE EDITOR

COMMANDS FOR LEAVING THE EDITOR

(LAMBDA (X) (PROG & & LP & & & &))

*\P
(COND & &)

*
Furthermore, as a result of the history feature, if the editor is

called on the same expression within a certain number of L1SPX

inputs (namely, the size of the history list, which can be changed
with CHANGESLlCE, page 13.21) the state of the edit of that

expression is restored, regardless of how many other expressions

may have been edited in the meantime. For example:

~EDITF(FOO)

EDIT

*

*P

(COND (& &) (& &) (&) (T &»

*OK

. FOO

a small numberofLlSPX inputs,
including editing

~EDITF(FOO)

EDIT

*\P

(COND (& &) (& &) (&) (T &»

*
Thus the user can always continue editing, including undoing

changes from a previous editing session, if (1) No other
expressions have been edited since that session (since saving
takes place at exit time, intervening calls that were aborted via
control-D or exited via STOP will not affect the editor's memory);

or (2) That session was "sufficiently" recent; or (3) It was ended
with a SAVE command.

[Editor Command]

Calls the editor recursively. The user can then type in commands,
and have them executed. The nv: command is completed when

the user exits from the lower editor. (see OK and STOP above).

1651

NESTED CALLS TO EDITOR

EF

EV

EP

The nv: command is extremely useful. It enables the user to set

up a complex operation, and perform interactive
attention-changing commands part way through it. For exam pie
the command (MOVE 3 TO AFTER COND 3 P nv:) allows the user

to interact, in effect, within the MOVE command. Thus he can

verify for himself that the correct location has been found, or
complete the specification "by hand." In effect, nv: says "I'll

tell you what you should do when you get there."

The nv: command operates by printing nv: and then calling

the editor. The initial edit chain in the lower editor is the one
that existed in the higher editor at the time the nv: command

was entered. Until the user exits from the lower editor, any

attention changing commands he executes only affect the lower
editor's edit chain. Of course, if the user performs any structure
modification commands while under a nv: command, these will

modify the structure in both editors, since it is the same
structure. When the nv: command finishes, the lower editor's

edit chain becomes the edit chain of the higher editor.

[Editor Command]

[Editor Command]

[Editor Command]

Calls EDITF or EDITV or EDITP on CAR of current expression.

16.9 Manipulating the Characters of an Atom or String

RAISE

LOWER

CAP

1652

[Editor Command]

An edit macro defined as UP followed by (I 1 (U-CASE (## 1)),

i.e., it raises to upper-case the current expression, or if a tail, the
first element of the current expression.

[Editor Command]

Similar to RAISE, except uses L-CASE.

[Editor Command]

First does a RAISE, and then lowers all but the first character, i.e.,

the first character is left capitalized.

Note: RAISE, LOWER, and CAP are all no-ops if the
corresponding atom or string is already in that state.

lISTSTRUCTURE EDITOR

(RAISE X)

(LOWER X)

REPACK

(REPACK @)

MANIPULATING THE CHARACTERS OF AN ATOM OR STRING

[Editor Command]

Equivalent to (I R (L-CASE X) X), i.e., changes every lower-case X

to upper-case in the current expression.

[Editor Command]

Similar to RAISE, except performs (I R X (L-CASE X)).

Note that in both (RAISE X) and (LOWER X), X should be typed in
upper case.

[Editor Command]

Permits the" editi ng" of an atom or string.

REPACK operates by calling the editor recursively on UNPACK of

the current expression, or if it is a list, on UNPACK of its first
element. If the lower editor is exited successfully, i.e., via OK as
opposed to STOP, the list of atoms is made into a single atom or
string, which replaces the atom or string being" repacked." The
new atom or string is always printed.

Example:

*P
..• "THIS IS A LOGN STRING")
*REPACK
*EDIT
P

(T HIS % I S % A % LOG N % S T R I N G)

*(SW G N)

*OK
"THIS IS A LONG STRING"

*

Note that this could also have been accomplished by (R GN
NG) or sim ply (RC GN NG).

[Editor Command]

Does (LC. @) followed by REPACK, e.g. (REPACK THISS).

~ 6.10 Manipulating Predicates and Conditional Expressions

JOINC

LIST STRUCTURE EDITOR

[Editor Command]

Used to JOin two neighboring COND's together, e.g. (COND

CLAUSE 1 CLAUSE2) followed by (COND CLAUSE3 CLAUSE4)

becomes (COND CLAUSE 1 CLAUSE2 CLAUSE3 CLAUSE4)· JOINC

16.53

MANIPULATING PREDICATES AND CONDITIONAL EXPRESSIONS

16.11

1654

(SPlITC X)

NEGATE

SWAPC

does an (F COND T) first so that you don't have to be at the first

CONDo

[Editor Command]

Splits one COND into two. X specifies the last clause in the first

COND, e.g. (SPLITC 3) splits (COND CLAUSEI CLAUSE2 CLAUSE3

CLAUSE4) into (COND CLAUSE 1 CLAUSE2) (COND CLAUSE3

CLAUSE4)' Uses the generalized NTH command (NTH COM), so

that X does not have to be a number, e.g., the user can say
(SPlITC RETURN), meaning split after the clause containing
RETURN. SPlITC also does an (F COND T) first.

[Editor Command]

Negates the current expression, i.e. performs (MBD NOT), except

that is smart about simplifying. For example, if the current
expression is: (OR (NULL X) (L1STP X», NEGATE would change it

to (AND X (NLlSTP X».

NEGATE is implemented via the function NEGATE (page 3.20).

[Editor Command]

Takes a conditional expression of the form (COND (A B)(T C» and
rearranges it to an equivalent (COND {(NOT A) C)(T B», or (COND
(A B) (C 0» to (COND «NOT A) (COND (C 0») (T B}).

SWAPC is smart about negations (uses NEGATE) and simplifying

CONDs. It always produces an equivalent expression. It is useful
for those cases where one wants to insert extra clauses or tests.

History commands in the editor

00 COM

All of the user's inputs to the editor are stored on the history list
EDITHISTORY (see page 13.43, the editor's history list, and all of

the programmer's assistant commands for manipulating the
history list, e.g. REDO, USE, FIX, NAME, etc., are available for use
on events on EDITHISTORY. In addition, the following four
history commands are recognized specially by the editor. They
always operate on the last, i.e. most recent, event.

[Editor Command]

Allows the user to supply the command name when it was
omitted.

USE is useful when a command name is incorrect.

LIST STRUCTURE EDITOR

!F

!E

!N

HISTORY COMMANDS IN THE EDITOR

For example, suppose the user wants to perform (-2 (SETQ X (LIST
Y Z») but instead types just (SETQ X (LIST Y Z». The editor will
type SETQ 7, whereupon the user can type DO -2. The effect is
the same as though the user had typed FIX, followed by (LI 1), (-1

-2), and OK, i.e., the command (-2 (SETQ X (LIST Y Z») is

executed. DO also works if the command is a line com mand.

[Editor Command]

Same as DO F.

In the case of !F, the previous command is always treated as
though it were a line command, e.g., if the user types (SETQ X &)

and then !F, the effect is the same as though he had typed F
(SETQ X &), not (F (SETQ X &».

[Editor Command]

Same as DO E.

[Editor Command]

Same as DO N.

16.12 Miscellaneous Commands

NIL

CL

ow

IFY

GET'*'

LIST STRUCTURE EDITOR

[Editor Command]

Unless preceded by F or BF, is always a no-op. Thus extra right

parentheses or square brackets at the ends of commands are
ignored.

[Editor Command]

Clispifies the current expression (see page 21.22).

[Editor Command]

Dwimifies the current expression (see page 21.18).

[Editor Command]

If the current statement is a (OND statement (page 9.4), replaces
it with an eqivalent IF statement (page 9.5).

[Editor Command]

If the current expression is a comment pointer (see page 26.44),
reads in the full text of the comment, and replaces the current
expressi on by it.

16.55

MISCELLANEOUS COMMANDS

(* . X)

GETD

[Editor Command]

X is the text of a comment. * ascends the edit chain looking for a

"safe" place to insert the comment, eog., in a COND clause, after
a PROG statement, etc., and inserts (* . X) after that point, if

possible, otherwise before. For example, if the current
expression is (FACT (SUB1 N)) in

[COND
«ZEROP N) 1)
(T (lTIMES N (FACT (SUB1 N]

then (* CALL FACT RECURSIVELY) would insert (* CALL FACT

RECURSIVELY) before the ITIMES expression. If inserted after the
ITIMES, the comment would then be (incorrectly) returned as the

value of the CONDo However, if the COND was itself a PROG
statement, and hence its value was not being used, the comment
could be (and would be) inserted after the ITIMES expression.

* does not change the edit chain, but UNFIND is set to where the
comment was actually inserted.

[Editor Command]

Essentially "expands" the current expression in line: (1) if (CAR

of) the current expression is the name of a macro, expands the
macro in line; (2) if a CLISP word, translates the current
expression and replaces it with the translation; (3) if CAR is the

name of a function for which the editor can obtain a symbolic
definition, either in-core or from a file, substitutes the argument
expressions for the corresponding argument names in the body
of the definition and replaces the current expression with the
result; (4) if CAR of the current expression is an open lambda,
substitutes the arguments for the corresponding argument
names in the body of the lambda, and then removes the lambda
and argument list.

Warning: When expanding a function definition or open
lambda expression, GETD does a simple substitution of the actual
arguments for the formal arguments. Therefore, if any of the
function arguments are used in other ways in the function
definition (as functions, as record fields, etc.), they will simply be
replaced with the actual arguments.

(MAKEFN (FN. ACTUALARGS) ARGLIST Nl N2) [Editor Command]

16.56

The inverse of GETD: makes the current expression into a

function. FN is the function name, ARGLIST its arguments. The
argument names are substituted for the correspondi ng
argument values in ACTUALARGS, and the result becomes the
body of the function definition for FN. The current expression is
then replaced with (FN . ACTUALARGS).

LIST STRUCTURE EDITOR

(MAKE ARGNAME EXP)

Q

o

MISCELLANEOUS COMMANDS

If N1 and N2 are supplied, (N1 THRU N2) is used rather than the

current expression; if just N1 is supplied, (N1 THRU -1) is used.

If ARGLIST is omitted, MAKEFN will make up some arguments,

using elements of ACTUALARGS, if they are literal atoms,
otherwise arguments selected from (X Y Z ABC ...), avoiding

duplicate argument names.

Example: If the current expression is (COND {(CAR X) (PRINT Y T»

(T (HELP»), then (MAKEFN (Faa (CAR X) Y) (A B» will define Faa

as {LAMBDA (A B) (COND (A (PRINT B T» (T (HELP»» and then
replace the current expression with (Faa (CAR X) V).

[Editor Command]

Makes the value of ARGNAME be EXP in the call which is the
current expression, i.e. a ? = command following a MAKE will

always print ARGNAME = EXP. For example:

*P
(JSYS)

*7 =
JSYS[N;AC1 ,AC2,AC3,RESUL TAC]

*(MAKE N 10)

*(MAKE RESULTAC 3)

*P

(JSYS 10 NIL NIL NIL 3)

[Editor Command]

Quotes the current expression, i.e. MBD QUOTE.

[Editor Command]

Deletes the current expression, then prints new current
expression, i.e. (:) I P.

16.13 Commands That Evaluate

E

LIST STRUCTURE EDI TOR

[Editor Com mand]

Causes the editor to call the Interlisp executive L1SPX givi ng it the
next input as argument. Example:

*E BREAK(FI E FU M)
(FIE FUM)

*E (Faa)

(FIE BROKEN)

16.57

COMMANDS THAT EVALUATE

(EX)

(EXT)

EVAl

GETVAl

1658

Note: E only works when when typed in, e.g, (INSERT 0 BEFORE

E) will treat E as a pattern, and search for E.

[Editor Command1

Evaluates X, i.e., performs (EVAl X), and prints the result on the

terminal.

[Editor Command1

Same as (E x) but does not print.

The (E X) and (E X T) commands are mainly intended for use by

macros and subroutine calls to the editor; the user would
probably type in a form for evaluation using the more
convenient format of the (atomic) E command.

[Editor Command1

Executes the editor command (C Y 1 .•. YN) where Yi = (EVAl Xi)'

If C is not an atom, C is evaluated also.

Examples:

(I 3 (GETD 'FOO)) will replace the 3rd element of the current
expression with the definition of FOO.

{I N FOO (CAR FIE» will attach the value of FOO and CAR of the

value of FIE to the end of the current expression.

(I F:I FOO T) will search for an expression EQ to the value of FOO.

(I (COND {(NUll FlG) '·1) (T 1» FOO), if FlG is Nil, inserts the

value of FOO before the first element of the current expression,

otherwise replaces the first element by the val ue of FOO.

The I command sets an internal flag to indicate to the structure

modification commands not to copy expression(s) when
inserting, replacing, or attaching.

[Editor Command]

Does an EVAl of the current expression.

Note that EVAl, line-feed, and the GO command together

effectively allow the user to "single-step" a program through its
symbolic definition.

[Editor Command]

Replaces the current expression by the result of evaluating it.

LIST STRUCTURE EDITOR

(COMS Xl"· XM)

(COMSQ COM1'" COMN)

LIST STRUCTURE EDITOR

COMMANDS THAT EVALUATE

[NLambda NoSpread Function]

An nlambda, nospread function (not a command). Its value is
what the current expression would be after executing the edit
commands COMl ... COMN starting from the present edit chain.

Generates an error if any of COM 1 thru COMN cause errors. The

current edit chain is never changed.

Note: The A, 8, :, INSERT, REPLACE, and CHANGE commands

make special checks for ## forms in the expressions used for
inserting or replacing, and use a copy of ## form instead (see
page 16.34). Thus, (INSERT (## 3 2) AFTER 1) is equivalent to (I

INSERT (COPY (## 3 2)) 'AFTER 1).

Example: (I R 'X (## (CONS .. Z))) replaces all X's in the current
expression by the first CONS containing a Z.

The I command is not very convenient for computing an entire
edit command for execution, since it computes the command
name and its arguments separately. Also, the I command cannot
be used to compute an atomic command. The following two
commands provide more general ways of computing commands.

[Editor Command]

Each Xi is evaluated and its value is executed as a command.

For exam pie, (COMS (COND (X (LIST 1 X»)) wi II replace the first
element of the current expression with the value of X if non-NIL,

otherwise do nothing. The editor command NIL is a no-op (page
16.55),

[Editor Command]

Executes COM 1 ... COM N·

COMSQ is mainly useful in conjunction with the COMS
command. For example, suppose the user wishes to compute an
entire list of commands for evaluation, as opposed to computing
each command one at a time as does the COMS command. He
would then write (COMS (CONS 'COMSQ X» where X computed
the list of commands, e.g., (CaMS (CONS 'COMSQ (GET? FOO

'COMMANDS»).

1659

COMMANDS THAT TEST

16.14 Commands That Test

(IF X)

(IF X CaMS 1 CaMS 2)

(IF X COMS1)

(LP CaMS 1 ... COMSN)

1660

[Editor Command]

Generates an error unless the value of (EVAL X) is true. In other

words, if (EVAL X) causes an error or (EVAL X) = NIL, IF will cause

an error.

For some editor commands, the occurrence of an error has a well
defined meaning, i.e., they use errors to branch on, as COND uses

NIL and non-NIL For example, an error condition in a location
specification may simply mean" not this one, try the next." Thus
the location specification (lPLUS (E {OR {NUMBERP (## 3»

(ERROR!) T» specifies the first IPLUS whose second argument is a

number. The IF command, by equating NIL to error, provides a

more natural way of accomplishing the same result. Thus, an
equivalent location specification is (IPLUS (IF {NUMBERP (##

3»».

The IF command can also be used to select between two

alternate lists of commands for execution.

[Editor Command]

If (EVAL X) is true, execute CaMS 1; if (EVAL X) causes a n error or

is equal to NIL, execute COMS 2.

Thus IF is equivalent to

'(COMS {CONS 'COMSQ
(COND

«CAR (NLSETQ (EVAL X»)

COMS1)

(T COMS 2»»

For example, the command {IF (READP T) NIL (P» will print the

current expression provided the input buffer is empty.

[Editor Command]

if (EVAL X) is true, execute CaMS 1; otherwise generate an error.

[Editor Command]

Repeatedly executes CaMS 1 ... COMSN until an error occurs.

For example, (LP F PRINT (N T» will attach a T at the end of every

I'RINT expression. (LP F PRINT (IF (## 3) NIL ({N T»» will attach a

T at the end of each print expression which does not already
have a second argument. The form (## 3) will cause an error if

the edit command 3 causes an error, thereby selecting ({N T» as

LIST STRUCTURE EDITOR

(LPQ COMS 1 ... COMS N)

(SHOW X)

(EXAM X)

(ORR COMS 1 '" COMSN)

LIST STRUCTURE EDITOR

COMMANDS THAT TEST

the list of commands to be executed. The IF could also be written

as (IF (CDDR (##)) NIL «N T»)).

When an error occurs, LP prints N OCCURRENCES where N is the

number of times the commands were successfully executed. The
edit chain is left as of the last complete successful execution of

COMS1 ... COMSN'

[Editor Command]

Same as LP but does not print the message N OCCURRENCES.

In order to prevent non-terminating loops, both LP and LPQ
terminate when the number of iterations reaches MAXLOOP,
initially set to 30. MAXLOOP can be set to NIL, which is
equivalent to setting it to infinity. Since the edit chain is left as
of the last successful completion of the loop, the user can simply
continue the LP command with REDO (page 13.8).

[Editor Command]

X is a list of patterns. SHOW does a LPQ printing all instances of

the indicated expression(s), e.g. (SHOW FOO (SETQ FIE &» will
print all FOO's and all (SETQ FIE &)'s. Generates an error if there
aren't any instances of the expression(s).

[Editor Command]

Like SHOW except calls the editor recursively (via the TTY:
command, see page 16.51) on each instance of the indicated
espression(s) so that the user can examine and/or change them.

[Editor Command]

ORR begins by executing COMS1, a list of commands. If no error

occurs, ORR is finished. Otherwise, ORR restores the edit chain to

its original value, and continues by executing COMS2' etc. If

none of the command lists execute without errors, i.e., the ORR
"drops off the end", ORR generates an error. Otherwise, the
edit chain is left as of the completion of the first command list
which executes without an error.

NIL as a command list is perfectly legal, and will always execute
successfully. Thus, making the last "argument" to ORR be NIL
will insure that the ORR never causes an error. Any other atom is
treated as (ATOM), i.e., the above example could be written as
(ORR NX !NX NIL).

For example, (ORR (NX) (!NX) NIL) will perform a NX, if possible,

otherwise a !NX, if possible, otherwise do nothing. Similarly,
DELETE could be written as (ORR (UP (1» (BK UP (2» (UP (: NIL»).

16.61

EDIT MACROS

16.15

16.62

Edit Macros

(M C COMS 1 ... COMS N)

Many of the more sophisticated branching commands in the
editor, such as ORR, IF, etc., are most often used in conjunction
with edit macros. The macro feature permits the user to define
new commands and thereby expand the editor's repertoire, or
redefine existing commands (to refer to the original definition of
a built-in command when redefining it via a macro, use the
ORIGINAL command, page 16.64).

Macros are defined by using the M command:

[Editor Command]

For C an atom, M defines C as an atomic command. If a macro is
redefined, its new definition replaces its old. Executing C is then

the same as executing the list of comm ands COMS 1 ... COMS N.

For example, (M BP BK UP P) will define BP as an atomic
command which does three things, a BK, and UP, and a P.

Macros can use commands defined by macros as well as built in
commands in their definitions. For exam pie, suppose Z is defined
by (M Z -1 (IF (READP T) NIL (P»), i.e., Z does a -1, and then if
nothing has been typed, a P. Now we can define ZZ by (M ZZ ·1
Z),.and ZZZ by (M ZZZ -1 -1 Z) or (M ZZZ -1 ZZ).

Macros can also define list commands, i.e., commands that take
arguments.

(M (C) (ARG1 ... ARGN) COMS1 ... COMSM) [Editor Command]

C an atom. M defines C as a list command. Executing (C E 1 ... EN)

is then performed by substituting E1 for ARG1, ... EN for ARGN

throughout COMS 1 ... COMSM' and then executing COMS 1

COMSM·

For example, we could define a more general BP by (M (BP) (N)

(BK N) UP Pl. Thus, (BP 3) would perform (BK 3), followed by an
UP, followed by a P.

A list command can be defined via a macro so as to take a fixed
or indefinite number of "arguments", as with spread vs.
nospread functions. The form given above specified a macro
with a fixed number of arguments, as indicated by its argument
list. If the "argument list" is atomic, the (-.;cn mand takes an
indefinite number of arguments.

(M (C) ARG COMS 1 ... COMSM) [Editor Command]

If C, ARG are both atoms, this defines C as a list command.
Executing (C E 1 ... EN) is performed by substituting (E 1 '" EN), i.e.,

LIST STRUCTURE EDITOR

(BIND COMS 1 ... COMSN)

LIST STRUCTURE EDITOR

EDIT MACROS

CDR of the command, for ARG throughout COMS 1 ... COMSM,

and then executing COMS1 ... COMSM.

For example, the command 2ND (page 16.24), could be defined

as a macro by (M (2ND) X (ORR «lC . X) (lC . X)))).

Note that for all editor commands, "built in" commands as well

as commands defined by macros as atomic commands and list
definitions are completely independent. In other words, the
existence of an atomic definition for C in no way affects the
treatment of C when it appears as CAR of a list command, and

the existence of a list definition for C in no way affects the
treatment of C when it appears as an atom. In particular, C can

be used as the name of either an atomic command, or a list
command, or both. In the latter case, two entirely different
definitions can be used.

Note also that once C is defined as an atomic command via a
macro definition, it will not be searched for when used ina
location specification, unless it is preceded by an F. Thus (INSERT
a_ BEFORE BP) would not search for BP, but instead perform a BK,

and UP, and a P, and then do the insertion. The corre.sponding
also holds true for list commands.

Occasionally, the user will want to employ the S command in a

macro to save some temporary result. For example, the SW

command could be defined as:

(M (SW) (N M)

(NTH N)

(S FOO 1)

MARK

o
(NTH M)

(S FIE 1)
(11 FOO)

~

(11 FIE»

Since this version of SW sets FOO and FIE, using SW may have

undesirable side effects, especially when the editor was called
from deep in a computation, we would have to be careful to
make up unique names for dummy variables used in edit macros,
which is bothersome. Furthermore, it would be impossible to
define a command that called itself recursively while setting free
variables. The BIND command solves both problems.

[Editor Command]

Binds three dummy variables #1, #2, #3, (initialized to Nil), and

then executes the edit commands COMS 1 ... COMSN' BIND uses a

PROG to make these bindings, so they are only in effect while the

16.63

EDIT MACROS

16.16

16.64

commands are being executed and BINDs can be used

recursively; the variables #1, #2, and #3 will be rebound each
time BIND is invoked.

Thus, we can write SW safely as:

(M (SW) (N M)

(BIND (NTH N)
(S #11)

MARK
o
(NTH M)

(S #2 1)

(11 #1)
~

(11 #2»)

(ORIGINAL COMS,.,. COMSN) [Editor Command]

Undo

UNDO

~UNDO

Executes COMS 1 ... COMSN without regard to macro definitions.

Useful for redefining a built in command in terms of itself., i.e.
effectively allows user to" advise" edit commands.

User macros are stored on a list USERMACROS. The fi Ie package
command USERMACROS (page 17.34), is available for dumping

all or selected user macros.

Each command that causes structure modification automatically
adds an entry to the front of UNDOLST that contains the
information required to restore all pointers that were changed
by that command.

[Editor Command]

Undoes the last, i.e., most recent, structure modification
(ommand that has not yet been undone, and prints the name of
that command, e.g., MBD undone. The edit chain is then exactly
what it was before the "undone" command had been
performed. If there are no commands to undo, UNDO types
nothing saved.

[Editor Command]

Undoes all modifications performed during this editing session,
i.e. this call to the editor. As each command is undone, its name

LIST STRUCTURE EDITOR

UNBLOCK

TEST

LIST STRUCTURE EDITOR

UNDO

is printed a la UNDO. If there is nothing to be undone, !UNDO

prints nothing saved.

Undoing an event containing an I, E, or S command will also
undo the side effects of the evaluation(s), e.g., undoing {I 3
(lNCONC FOO FIE» will not only restore the 3rd element but also

restore FOO. Similarly, undoing an S command will undo the set.

See the discussion of UNDO in page 13.13. (Note that if the I
command was typed directly to the editor, INCONC would

automatically be substituted for NCONC as described in page
13.27.)

Since UNDO and !UNDO cause structure modification, they also
add an entry to UNDOLST. However, UNDO and !UNDO entries
are skipped by UNDO, e.g., if the user performs an INSERT, and
then an MBD, the first UNDO will undo the MBD, and the second

will undo the INSERT. However, the user can also specify
precisely which commands he wants undone by identifying the
corresponding entry. In this case, he can undo an UNDO
command, e.g., by typing UNDO UNDO, or undo a !UNDO
command, or undo a command other than that most recently
performed.

Whenever the user continues an editing session, the undo
information of the previous session is protected by inserting a
special blip, called an undo-block, on the front of UNDOLST. This

undo-block will terminate the operation of a !UNDO, thereby
confining its effect to the current session, and will similarly
prevent an UNDO command from operating on commands

executed in the previous session.

Thus, if the user enters the editor continuing a session, and
immediately executes an UNDO or !UNDO, the editor will type
BLOCKED instead of NOTHING SAVED. Similarly, if the user
executes several commands and then undoes them all, another
UNDO or !UNDO will also cause BLOCKED to be typed.

[Editor Command]

Removes an undo-block. If executed at a non-blocked state, i.e.,
if UNDO or !UNDO could operate, types NOT BLOCKED.

[Editor Command]

Adds an undo-block at the front of UNDOLST.

Note that TEST together with !UNDO provide a "tentative"
mode for editing, i.e., the user can perform a number of
changes, and then undo all of them with a single !UNDO
command.

1665

UNDO

(UNDO EventSpec)

16.17 EDITDEFAULT

16.66

[Editor Command]

EventSpec is an event specification (see page 13.6). Undoes the
indicated event on the history list. In this case, the event does
not have to be in the current editing session, even if the previous
session has not been unblocked as described above. However,
the user does have to be editing the same expression as was
being edited in the indicated event.

If the expressions differ, the editor types the warning message
"different expression," and does not undo the event. The editor

enforces this to avoid the user accidentally undoing a random
command by giving the wrong event specification.

Whenever a command is not recognized, i.e., is not "built in" or
defined as a macro, the editor calls an internal function,
EDITDEFAULT, to determine what action to take. Since

EDITDEFAUL T is part of the edit block, the user cannot advise or
redefine it as a means of augmenting or extending the editor.
However, the user can accomplish this via EDITUSERFN. If the

value of the variable EDITUSERFN is T, EDITDEFAUL T calls the
function EDITUSERFN giving it the command as an argument. If
EDITUSERFN returns a non-NIL value, its value is interpreted as a
single command and executed. Otherwise, the error correction
procedure described below is performed.

If a location specification is being executed, an internal flag
informs EDITDEFAUL T to treat the (om mand as though it had
been preceded by an F.

If the command is a list, an attempt is made to perform spelling
correction on the CAR of the command (unless DWIMFLG = NIL)
using EDITCOMSL, a list of all list edit commands. If spelling
correction is successful, the correct command name is RPLACAed

into the command, and the editor continues by executing the
command. In other words, if the user types (LP F PRINT (MBBD
AND (NULL FLG))), only one spelling correction will be necessary
to change MBBD to MBD. If spelling correction is not successful,
an error is generated.

Note: When a macro is defined via the M command, the

command name is added to EOITCOMSA or EDITCOMSL,
depending on whether it is an atomic or list command. The
USERMACROS file package command is aware of this, and
provides for restoring EDITCOMSA and EDITCOMSL.

If the command is atomic, the procedure followed is a little more
elaborate.

LIST STRUCTURE EDITOR

LIST STRUCTURE EDITOR

EDITDEFAULT

(1) If the command is one of the list commands, i.e., a member of
EDITCOMSL, and there is additional input on the same terminal

line, treat the entire line as a single list command. The line is
read using.READLlNE (page 13.36), so the line can be terminated

by a square bracket, or by a carriage return not preceded by a
space. The user may omit parentheses for any list command

typed in at the top level (provided the command is not also an
atomic command, e.g. NX, BK). For example,

*P
(COND (& &) (T &»

*XTR 32]
*MOVE TO AFTER LP

*
If the command is on the list EDITCOMSL but no additional input

is on the terminal line, an error is generated, e.g.

*P
(COND (& &) (T &»

*MOVE

MOVE?

*

If the command is on EDITCOMSL, and not typed in directly, e.g.,

it appears as one of the commands in a LP command, the

procedure is similar, with the rest of the command stream at that
level being treated as "the terminal line" ,e.g. (LP F (COND (T &»
XTR 2 2).

Note that if the command is being executed in location context,
EDITDEFAULT does not get this far, e.g., (MOVE TO AFTER COND

XTR 3) will search for XTR, not execute it. However, (MOVE TO
AFTER COND (XTR 3» will work.

(2) If the command was typed in and the first character in the

command is an 8, treat the 8 as a mistyped left parenthesis, and
and the rest of the line as the arguments to the command, e.g.,

*P
(COND (& &) (T &»

*8·2 (Y (RETURN Z»)

= (·2
*P

(COND (Y &) (& &) (T &»

(3) If the command was typed in, is the name of ~ function, and is
followed by NIL or a list CAR of which is not an edit command,

assume the user forgot to type E and means to apply the
function to its arguments, type = E and the function name, and
perform the indicated computation, e.g.

*BREAK(FOO)

= E BREAK

16.67

EDITDEFAULT

16.18

1668

Editor Functions

(EDIT NAME -)

(Faa)

*
(4) If the last character in the command is P, and the first N-1

characters comprise a number, assume that the user intended

two commands, e.g.,

*P
(COND (& &) (T &»
*OP
=op
(SETQ X (COND & &»

(5) Attempt speliing correction using EDITCOMSA, and if successful,

execute the corrected command.

(6) If there is additional input on the same line, or command stream,

spelling correct using EDITCOMSL as a spelling list, e.g.,

*MBBD SETQ X

=MBD

(6) Otherwise, generate an error.

[Function]

General purpose function for calling the editor. Figures out
what type of definition NAME has (function, variable, macro,

etc.), and calls the editor to edit it. If NAME has more than one
definition of different types, the user is prompted for which type
of definition to edit.

(EDITF NAMECOMl COM2 ... COMN) [NLambda NoSpread Function]

Nlambda, nospread function for EDITing a Function. NAME is

the name of the function, COM1, COM2, ... , COMn are (optional)

edit commands. EDITF returns NAME.

If NAME is NIL, it defaults to the val ue of LASTWORD (page

20.18), the last function or variable referred to by the user.

Note: EDITF initially calls HASDEF (page 17.26), which does

s elling correction on NAME using the spelling list USERWORDS

(unless DWIMFLG = NIL).

The action of EDITF is somewhat complicated, because the
function may be broken or advised, the expr definition of the
function may be saved on the property list of NAME, the

L1STSTRUCTURE EDITOR

LIST STRUCTURE EDITOR

EDITOR FUNCTIONS

function may need to be loaded from a file, etc. There are many
special cases that have to be handled differently. When EDITF is
called, it tries the followi ng, in order:

(1) In the most common case, if the definition of NAME is an expr
definition (not as a result of its being broken or advised), EDITE
(page 16.71) is called to edit the function definition.

(2) If NAME has an expr definition by virtue of its being broken or
advised, and the original definition is also an expr definition,
then the broken/advised definition is given to EDITE to be edited
(since any changes there will also affect the original definition
because all changes are destructive). However, a warning
message (e.g. "Note: you are editing a BROKEN definition") is
printed to alert the user that the function definition is
surrounded by a call to BREAK1 or ADV-PROG.

(3) If NAME has an expr definition by virtue of its being broken or
advised, the original definition is not an expr definition, there is
no EXPR property, and the file package "knows" which file
NAME is contained in (see EDITLOADFNS?, page 16.73), then the
expr definition of NAME is loaded onto its property list as
described below, and the editor proceeds to the next possibility.
Otherwise, a warning message is printed (e.g. "Note: you are
editing a BROKEN compiled definition"), and the edit proceeds,
e.g., the user may have called t~e editor to examine the advice
on a compiled function.

(4) If NAME has an expr definition by virtue of its being broken or
advised, the original definition is not an EXPR, and there is an
EXPR property, then the function is unbroken/unadvised (latter
only with user's approval, since the user may really want to edit
the advice) and the editor proceeds to the next possibility.

(5) If NAME does not have an expr definition, but has an EXPR
property, EDITF prints prop, and calls EDITE (page 16.71 to edit
this saved expr definition. In this case, if the edit completes and
no changes have been made, EDITE prints" not changed, so not
ut:'1saved." If changes were made, but the value of DFNFLG (page
10.10) is PROP, EDITE pri nts "changed, but not unsaved."
Otherwise if changes were made, EDITE prints unsaved and does
an UNSAVEDEF (page 17.28).

(6) If NAME neither has an expr definition nor an EXPR property,
and the file package" knows" which file NAME is contained in
(see EDITLOADFNS?, page 16.73), the expr definition of NAME is
automatically loaded (using LOADFNS, page 17.6) onto the EXPR
property, and EDITE proceeds as described above. Because of the
existence of file maps (page 17.55), this operation is extremely
fast, essentially requiring only the time to perform the READ to
obtain the actual definition. In addition, if NAME is a member of
a block, the user will be asked whether he wishes the rest of the
functions in the block to be loaded at the same time.

1669

EDITOR FUNCTIONS

1670

The editor's behaviour in this case is controlled by the value of
EDITLOADFNSFLG, which is a dotted pair of two flags. The CAR
of EDITLOADFNSFLG controls the loading of the function, and
the CDR controls the loading of the block. A value of NIL for
either flag means "load but ask first," a value of T means "don't

ask, just do it" and anything else means "don't ask, don't do it."
The initial value of EDITLOADFNSFLG is (T . NIL), meaning to load
the function without asking, and ask about loading the block.

(7) If NAME has neither an expr definition nor an EXPR property, but
it does have a macro definition, that definition is edited.

(8) If NAME has neither an expr definition nor an EXPR property nor

a macro definition, the user is prompted with "No FNS defn for
NAME. Do you wish to edit a dummy defn?". If the user
confirms by typing Yes, a "blank" definition (stored on the
variable DUMMY-EDIT-FUNCTION-BODY) is edited. If any
changes are made, on exit from the editor, the definition will be
installed as the name's function definition. Exiting the editor
with the STOP command will prevent any changes to the
function definition.

(9) Otherwise, the editor generates an NAME not editable error.

In all cases, if a function is edited, and changes were made, the
function is time-stamped (by EDITE), which consists of inserting a
comment of the form (* USERS-INITIALS DATE) (see page 16.76).
If the function was already time-stamped, then only the date is
changed.

(EDITFNS NAME COM1 COM2 ... COMN) [NLambda NoSpread Function]

An nlambda, nospread function, used to perform the same
editing operations on several functions. NAME is evaluated to
obtain a list of functions. If NAME is atomic, and its value is not a
list, and it is the name of a file, (FILEFNSLST 'NAME') will be used

as the list of functions to be edited.

COM1' COM2, ... , COMN are (optional) edit commands. EDITFNS

maps down the list of functions, prints the name of each
fu nction, and calls the editor (via EDITF) on that fu nction. The
value of EDITFNS is NIL.

For example, (EDITFNS FOOFNS (R FIE FUM» will change every FIE
to FUM in each of the functions on FOOFNS.

The call to the editor is ERRORSET protected (page 14.21), so that

if the editing of one function causes an error, EDITFNS will
proceed to the next function. In particular, if an error occurred
while editing a function via its EXPR property, the function
would not be unsaved. Thus in the above example, if one of the
functions did not contain a FIE, the R command would cause an
error, it would not be unsaved, and editing would continue with
the next function.

lISTSTRU(TURE EDITOR

EDITOR FUNCTIONS

(EDITV NAMECOM1 COM2"· COMN) [NLambda NoSpread Function]

Similar to EDITF, for editing values of variables. NAME is the

name of the variable, COM1, COM2, ... , COMn are (optional) edit

commands.

If NAME is NIL, it defaults to the val ue of LASTWORD (page

20.18), the last function or variable referred to by the user.

If NAME is bound as a variable on the stack, EDITV edits its value,
otherwise if NAME has a top-level variable binding, EDITV edits
the top-level value. EDITV returns NAME if it is bound or has a

top-level value, NIL otherwise.

EDITV calls EDITE (page 16.71) to edit the value of the variable.
Note that if the value of the variable is not a list, this causes an
error: II EXPR not editable."

Note: EDITV initially calls HASDEF (page 17.26), which does
spelling correction on NAME using the spelling list USERWORDS

(unless DWIMFLG = NIL).

(EDITP NAME COM1 COM2 ... COMN) [NLambda NoSpread Function]

Similar to EDITF for editing property lists. If the property list of
NAME is NIL, EDITP attempts spelling correction using

USERWORDS (unless DWIMFLG = NIL). Then EDITP calls EDITE on
the property list of NAME, (or the corrected spelling thereof),
with TYPE = PROPLST.

EDITP returns the atom whose property list was edited.

(EDITE EXPR COMS A TM TYPE IFCHANGEDFN) [Function]

LIST STRUCTURE EDITOR

Edits the expression, EXPR, by calling EDITL on (LIST EXPR) and
returning the last element of the value returned by EDITL.

Generates an error if EXPR is not a list: "EXPR not editable."

ATM and TYPE are for use in conjunction with the file package.
If supplied, ATM is the name of the object that EXPR is associated
with, and TYPE describes the association (i.e., TYPE corresponds
to the TYPE argument of MARKASCHANGED, page 17.17.) For
example, if EXPR is the definition of FOO, ATM= FOO and
TYPE = FNS. When EDITE is called from EDITP, EXPR is the

property list of ATM, and TYPE = PROPLST, etc.

EDITE calls EDITL to do the editing (described below). Upon
return, if both ATM and TYPE are non-NIL, ADDSPELL is called to
add ATM to the appropriate spelling list. Then, if EXPR was
changed, and the value of IFCHANGEDFN is not NIL, the value of
IFCHANGEDFN is applied to the arguments ATM, EXPR, TYPE,

and a flag which is T for normal edits from editor, NIL for calls
that were aborted via control-D or STOP. Otherwise, if EXPR was
changed, and the value of IFCHANGEDFN is NIL, and TYPE is not
NIL, MARKASCHANGED (page 17.17) is called on ATM and TYPE.

1671

EDITOR FUNCTIONS

, 6.72

EDITE uses RESETSAVE to insure that IFCHANGEDFN and

MARKASCHANGED are called if any change was made even if
editing is subsequently aborted via control-D. (In this case, the
fourth argument to IFCHANGEDFNwill be NIL.)

Note: For TYPE = FNS or TYPE = PROP, i.e., calls from EDITF,
EDITE performs some additional operations as described earlier

under EDITF.

(EDITl L COMS ATM MESS EDITCHANGES) [Function]

(EDITlO L COMS MESS-)

(EDIT4E PA T X -)

EDITl is the editor. Its first argument is the edit chain, and its
value is an edit chain, namely the value of L at the time EDITL is
exited. L is a SPECVAR, and so can be examined or set by edit
commands. For example, f is equivalent to {E (SETQ L (LAST L))

T). However, the user should only manipulate or examine L

directly as a last resort, and then with caution.

COMS is an optional list of commands. For interactive editing,
coms is NIL. In this case, EDITL types" edit" (or MESS, if it not NIL)

and then waits for input from terminal. All input is done with
EDITRDTBL as the read table. Exit occurs only via an OK, STOP, or

SAVE command.

If COMS is not NIL, no message is typed, and each member of

COMS is treated as a command and executed. If an error occurs
in the execution of one of the commands, no error message is
printed, the rest of the commands are ignored, and EDITL exits

with an error, i.e., the effect is the same as though a STOP
command had been executed. If all commands execute
successfully, EDITL returns the current val ue" of L.

ATM is optional. On calls from EDITF, it is the name of the
function being edited; on calls from EDITV, the name of the

variable, and calls from EDITP, the atom whose property list is
being edited. The property list of ATM is used by the SAVE
command for saving the state of the edit. Thus SAVE will not

save anything if ATM= NIL, i.e., when editing arbitrary

expressions via EDITE or EDITl directly.

EDITCHANGES is used for communicating with EDITE.

[Function}

Like EDITL, except it does not rebind or initialize the editor's
various state variables, such as LASTAll, UNFIND, UNDOLST,

MARKlST, etc. Should only be called when already under a call
to EDITl.

[Function}

The editor's pattern match routine. Returns T, if PAT matches X.

See page 16.18 for definition of "match".

LIST STRUCTURE EDITOR

(EDITFPAT PAT -)

(EDITFINDP X PAT FLG)

EDITOR FUNCTIONS

Note: Before each search operation in the editor begins, the
entire pattern is scanned for atoms or strings containing $s
(<esc >s). Atoms or strings containing $s are replaced by lists of
the form ($...), and atoms or strings ending in double $s are
r·eplaced by lists of the form ($$...). Thus from the standpoint of

EDIT4E, single and double $ patterns are detected by {CAR PA n
being the atom $ «esc» or the atom $$ «esc><esc».
Therefore, if the user wishes to call EDIT4E directly, he must first

convert any patterns which contain atoms or strings containing
$s to the form recognized by EDIT4E. This is done with the
function EDITFPAT:

[Function]

Makes a copy of PAT with all atoms or strings containing $s
«esc >s) converted to the form expected by EDIT4E.

[Function]

Allows a program to use the edit find command as a pure
predicate from outside the editor. X is an expression, PAT a
pattern. The value of EDITFINDP is T if the command F PAT

would succeed, NIL otherwise. EDITFINDP calls EDITFPAT to
convert PAT to the form expected by EDIT4E, unless FLG = T.
Thus, if the program is applying EDITFINDP to several different
expressions using the same pattern, it will be more efficient to
call EDITFPAT once, and then call EDITFINDP with the converted

pattern and FLG = T.

(ESUBST NEW OLD EXPR ERRORFLG CHARFLG) [Function]

Equivalent to performing (R OLD NEW) with EXPR as the current

expression, i.e., the order of arguments is the same as for SUBST.
Note that OLD and/or NEW can employ $s «esc>s). The value
of ESUBST is the modified EXPR. Generates an error if OLD not
found in EXPR. If ERRORFLG = T, also prints an error message of
the form OLD ?

If CHARFLG = T and no $s «esc>s) are specified in NEW or OLD,
it is equivalent to (RC OLD NEW). In other words, if CHARFLG = T,

and no $s appear, ESUBSTwili supply them.

ESUBST is always undoable.

(EDITLOADFNS? FN STR ASKFLG FILES) [Function]

LIST STRUCTURE EDITOR

FN is the name of a function. EDITLOADFNS? reh .. 'ns the name
of file FN is contained in, or NIL if no file is found.

EDITLOADFNS? performs (WHEREIS FN 'FNS FILES) to obtai n the
name of the file(s) containing FN, if any (see page 17.14), If
WHEREIS returns more than one file, EDITLOADFNS? asks the
user to indicate which fileto use.

16.73

EDITOR FUNCTIONS

16.74

If the file has been LOADed or LOADFROMed, the file name
saved on the FILEDATES property (page 17.20) of the file is
checked by calling INFILEP. If not found, FINDFILE is called to find
the file. If a file is found, the file date (see FILEDATE, page 17.52)

is compared to the file date saved on the FILEDATES property of

the file, to determine whether this file is the one that was
originally loaded. If not, EDITLOADFNS? prints ,,*** note:

FILENAME dated DATE isn't current version; FILENAME dated

DA TE is." and then uses the file found.

In the case that FILES = T and the WHEREIS library package has
been loaded, files(s) may be found that have not been loaded or
otherwise noticed, and thus will not have FILEDATES property.

In this case, EDITLOADFNS? does not do any version checks, but
simply uses the latest version.

Having decided which file the function is on, if ASKFLG = NIL,
EDITLOADFNS? prints the value of STR followed by the name of

the file, and returns the name of the file. If ASKFLG = NIL and
STR = NIL, EDITLOADFNS? prints "loading definition of FN from
FILENAME."

If ASKFLG = T, EDITLOADFNS? calls ASKUSER (page 26.12) giving
(LIST FN STR FILENAME) as the message to be printed. If

ASKUSER returns V, EDITLOADFNS? returns the filename.

EDITLOADFNS? is used by the editor, LOADFNS (when the file
name is not supplied), by PRETIVPRINT, and by DWIM.

The function EDITCALLERS provides a way of rapidly searching a
file or entire set of files, even files not loaded into Interlisp or
"noticed" by the file package, for the appearance of one or
more key words (atoms) anywhere in the fi Ie.

(EDITCALLERS A TOMS FILES COMS) [Function]

Uses FFILEPOS to search the file(s) FILES for occurrences of the
atom(s) ATOMS. It then calls EDITE on each of those objects,

performing the edit commands COMS. If COMS = NIL, then
(EXAM. ATOMS) is used. Both ATOMS and FILES may be single
atoms. If FILES is NIL, FILELST is used. Elements on ATOMS may

contain $s «esc>s).

EDITCALLERS prints the name of each file as it searches it, and
when it finds an occurrence of one of ATOMS, it prints out either
the name of the containing function or, if the atom occurred
oL.{side a function definition, it prints out the byte position at
which the atom was found.

EDITCALLERS will read in and use the filemap of the file. In the
case that the editor is actually called, EDITCALLERS will
LOADFROM the file if the file has not previously been noticed.

LIST STRUCTURE EDITOR

EDITOR FUNCTIONS

EDITCAllERS uses GETDEF (page 17.25) to obtai n the
"definition" for each object. When EDITE returns, if a change
was made, PUTDEF is called to store the changed object.

(FINDCAllERS ATOMS FILES) [Function]

EDITRACEFN

Like EDITCAllERS, except does not call the editor, but instead
simply returns the list of files that contain one of A TOMS.

[Variable]

This variable is available to help the user debug complex edit
macros, or subroutine calls to the editor. If EDITRACEFN is set to
T, the function EDITRACEFN (initially undefined) is called
whenever a command that was not typed in by the user is about
to be executed, giving it that command as its argument.
However, the TRACE and BREAK options described below are
probably sufficient for most applications.

If EDITRACEFN is set to TRACE, the name of the command and

the current expression are printed. If EDITRACEFN = BREAK, the
same information is printed, and the editor goes into a break.
The user can then examine the state of the editor.

EDITRACEFN is initially NIl.

(SETIERMCHARS NEXTCHAR BKCHAR LASTCHAR UNQUOTECHAR 2CHAR PPCHAR)

[Function]

LIST STRUCTURE EDITOR

Used to set up the immediate read macros used by the editor, as
well as the control-Y read macro (page 25.42). NEXTCHAR,

BKCHAR, LASTCHAR, 2CHAR and PPCHAR specify which control
character should perform the edit commands NXP, BKP, -1 P, 2P
and PP*, respectively; UNQUOTECHAR corresponds to control-Y.
For each non-Nil argument, SETIERMCHARS makes the

corresponding control character have the indicated function.
The arguments to SETIERMCHARS can be character codes, the
control characters themselves, or the alphabetic letters
corresponding to the control characters.

If an argument to SETIERMCHARS is currently assigned as an
interrupt character, it cannot be a read macro (since the reader
will never see it); SETIERMCHARS prints a message to that effect

and makes no change to the control character. However, if
SETIERMCHARS is given a list as one of its arguments, it uses CAR
of the list even if the character is an interrupt. In this case, if
CADR of the list is non-Nil, SETIERMCHARS reassigns the
interrupt function to CADR. For example, if control-X is an

interrupt, (SETIERMCHARS '(X W» assigns control-W the
interrupt control-X had, and makes control-X be the NEXTCHAR

operator.

16.75

EDITOR FUNCTIONS

•
16.19 Time Stamps

16 76

As part of the greeting operation, SETIERMCHARS is applied to
the value of EDITCHARACTERS, which is initially (J X Z Y N) in
Interlisp-D and in Interlisp-10 under Tenex, (J A L Y K) under
Tops-20 (control-J is line-feed). SETIERMCHARS is called after

the user's init file is loaded, so it works to reset EDITCHARACTERS

in the init file; alternatively, SEITERMCHARS can be called
explicitly .

Whenever a function is edited, and changes were made, the
function is time-stamped (by EDITE), which consists of inserting a
comment of the form (* USERS-INITIALS DATE). USERS-INITIALS

is the value of the variable INITIALS. After greeting (page 12.1),
the function SETINITIALS is called. SETINITIALS searches
INITIALSLST, a list of elements of the form (USERNAME .

INITIALS) or (USERNAME FIRSTNAME INITIALS). If the user's
name is found, INITIALS is set accordingly. If the user's name is

not found on INITIALSLST, INITIALS is set to the value of
DEFAULTINITIALS, initially edited:. Thus, the default is to always

time stamp. To suppress time stamping, the user must either
include an entry of the form (USERNAME) on INITIALSLST, or set
DEFAULTINITIALS to NIL before greeting, i.e. in his user profile,
or else, after greeting, explicitly set INITIALS to NIL.

If the user wishes his functions to be time stamped with his
initials when edited, he should include a file package command
command of the form (ADDVARS (INITIALSLST (USERNAME .

INITIALS») in the user's INIT.LlSP file (see page 12.2).

The following three functions may be of use for specialized
applications with respect to time-stamping: (FIXEDITDATE EXPR)

which, given a lambda expression, inserts or smashes a
time-stamp comment; (EDITDATE? COMMEND which returns T if
COMMENT is a time stamp; and (EDITDATE OLDATE INITLS)

which returns a new time-stamp comment. If OLDATE is a
time-stamp comment, it will be reused.

LIST STRUCTURE EDITOR

TABLE OF CONTENTS
•

f

17. File Package 17 1

17.1. Loading Files 17 5

17.2. StoringFiles 17.10

17.3. Remaking a Symbolic File 17.15

17.4. Loading Files in a Distributed Environment 1716

17.5. Marking Changes 1717

17.6. Noticing Files 1/19

17.7. Distributing Change Information 17 21

17.8. File Package Types 17.21

17.8.1. Functions for Manipulating Typed Definitions 17 24

17.8.2. Defining New File Package Types 17 29

17.9. File Package Commands 17 32

17.9.1. FunctionsandMacros 17.34

17.9.2. Variables 1735

17.9.3. Litatom Properties

17.9.4. Miscellaneous File Package Commands 17.38

17.9.5. DECLARE: 17 40

17.9.6. Exporting Definitions 1742

17.9.7. FileVars 17 44

17.9.8. Defining New File Package Commands 17 45

17.10. Functions for Manipulating File Command Lists 1748

17.11. Symbolic File Format 17 50

17.11.1. Copyright Notices 17 52

17.11.2. Functions Used Within Source Files 17 54

17.11.3. File Maps 17 5~

TABLE OF(ONTENTS roc 1

TABLE OF(ONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CON TEN fS

FILE PACKAGE

17. FILE PACKAGE

Warning: The subsystem within the Interlisp-D environment
used for managing collections of definitions (of functions,
variables, etc.) is known as the "File Package." This terminology
is confusing, because the won:/t "file" is also used in the more
conventional sense as meaning a collection of data stored some
physical media. Unfortunately, it is not possible to change this
terminology at this time, because many functions and variables
(MAKEFllE, FllEPKGTVPES, etc.) incorpora te the word "file" in
their names. Eventually, the system and the documentation will
be revamped to consistantly use the term "module" or
"definition group" or "defgroup. "

Most implementations of Lisp treat symbolic files as unstructured
text, much as they are treated in most conventional
programming environments. Function definitions are edited
with a character-oriented text editor, and then the changed
definitions (or sometimes the entire file) is read or compiled to
install those changes in the running memory image. Interlisp
incorporates a different philosophy. A symbolic file is considered
as a database of information about a group of data
objects---fu.nction definitions, variable val ues, record
declarations, etc. The text in a symbolic file is never edited
directly. Definitions are edited only after their textual
representations on files have been converted to data-structures
that reside inside the Lisp address space. The programs for

< editing definitions inside Interlisp can therefore make. u~e of the
full set of data-manipulation capabilities that the environment
already provides, and editing operations can be easily intermixed
with the processes of evaluation and compilation.

Interlisp is thus a "resident" programming environment, and as
such it provides facilities for moving definitions back and forth
between memory and the external databases on symbolic files,
and for doing the bookkeeping involved when definitions on
many symbolic files with compiled counterparts are being
manipulated. The file package provides those capabilities. It
removes from the user the burden of keeping track of where
things are and what things have changed. The file package also
keeps track of which files have been modified and need to be
updated and recompiled.

The file package is integrated into many other system packages.
For example, if only the compiled version of a file is loaded and
the user attempts to edit a function, the file package will
attempt to load the source of that function from the appropriate
symbolic file. In many cases, if a datum is needed by some

17.1

FILE PACKAGE

17.2

program, the file package will automatically retrieve it from a
file if it is not already in the user's working environment.

Some of the operations of the file package are rather complex.
For example, the same function may appear in several different
files, or the symbolic or compiled files may be 'in different
directories, etc. Therefore, this chapter does not document how
the file package works in each and every situation, but instead
makes the deliberately vague statement that it does the II right II
thing with respect to keeping track of what has been changed,
and what file operations need to be performed in accordance
with those changes.

For a simple illustration of what the file package does, suppose
that the symbolic file Faa contains the functions F001 and
f002, and that the file BAR contains the functions BAR1 and
SAR2. These two files could be loaded into the environment
with the function LOAD:

'r- (LOAD "FOO)
FILE CREATED 4-MAR-83 09:26:55
fOOCOMS
{DSK}FOO.; 1
cEo- (LOAD 'BAR)
fiLE CREATED 4-MAR-83 09:27:24
BARCOMS
{DSK}BAR.; 1

Now, suppose that we change the definition of F002 with the
editor, and we define two new functions, NEW1 and NEW2. At
that point, the file package knows that the in-memory definition
of F002 is no longer consistent with the definition in the file
FOO, and that the new functions have been defined but have
not yet been associated with a symbolic file and saved on
permanent storage. The function FILES? summarizes this state of
affairs and enters into an interactive dialog in which we can
specify what files the new functions are to belong to.

+- (FILES?)
FOO ... to be dumped.

plus the functions: NEW1,NEW2
want to say where the above go? Yes
(functions)
NEW1 File name: BAR
NEW2 File name: ZAP
new file? Yes

NIL

The file package knows that the file FOO has been changed, and
needs to be dumped back to permanent storage. This can be
done with MAKEFILE.

~MAKEFILE 'Faa)
(DSK}FOO.;2

FI LE PACKAG E

FILE PACKAGE

FI LE PACKAG E

Since we added NEW1 to the old file BAR and established a new
file ZAP to contain NEW2, both BAR and ZAP now also need to
be dumped. This is confirmed by a second call to FILES?:

+- (FILES?)
BAR, ZAP ... to be dumped.
FOO ... to be listed.
FOO ... to be compiled
NIL

We are also informed that the new version we made of Foa
needs to be listed (sent to a printer) and that the functions on
the file must be compiled.

Rather than doing several MAKEFILEs to dump the files BAR and
ZAP, we can simply call CLEANUP. Without any further user
interaction, this will dump any files whose definitions have been
modifred. CLEANUP will also send any unlisted files to the
printer and recompile any files which need to be recompiled.
CLEANUP is a useful function to use at the end of a debugging
session. It will call FILES? if any new objects have been defined,
so the user does not lose the opportunity to say explicitly where
those belong. In effect, the function CLEANUP executes all the
operations necessary to make the user's permanent files
consistent with the definitions in his current core-image.

+- (CLEANUP)
FOO ... compiling {DSK}FOO.;2

BAR ... compiling {DSK}BAR.;2

ZAP ... compiling {DSK}ZAP.; 1

In addition to the definitions of functions, symbolic files in
Interlisp can contain definitions of a variety of other types, e.g.
variable values, property lists, record declarations, macro
definitions, hash arrays, etc. In order to treat such a diverse
assortment of data uniformly from the standpoint of file
operations, the file package uses the concept of a typed
definition, of which a function definition is just one example. A
typed definition associates with a name (usually a litatom), a
definition of a given type (called the file package type). Note
that the same name may have several definitions of different
types. For example, a litatom may have both a function

17 3

FILE PACKAGE

174

definition and a variable definition. The file package also keeps
track of the files that a particular typed definition is stored on, so
one can think of a typed definition as a relation between four
elements: a name, a definition, a type, and a file.

Symbolic files on permanent storage devices are referred to by
names that obey the naming conventions of those devices,
usually including host, directory, and version fields. When such
definition groups are noticed by the file package, they are
assigned simple root names and these are used by all file

•
package operations to refer to those groups of definitions. The
root name for a group is computed from its full permanent
storage name by applying the function ROOTFILENAME; this
strips off the host, directory, version, etc., and returns just the
simple name field of the file. For each file, the file package also
has a data structure that describes what definitions it contains.
This is known as the commands of the file, or its" filecoms". By
convention, the filecoms of a file whose root name is X is stored
cIS the value of the litatom XCOMS. For example, the value of
FOOCOMS is the filecoms for the file FOO. This variable can be
directly manipulated, but the file package contains fac.ilities such
as FILES? which make constructing and updating filecoms easier,
and in some cases automatic. See page 17.48.

The file package is able to maintain its databases of information
because it is notified by various other routines in the system
when events take place that may change that database. A file is
"noticed" when it is loaded,' or when a new file is stored
(though .there are ways to explicitly notice files without
completely loading all their definitions). Once a file is noticed,
the file package takes it into account when modifying filecoms,
dumping files, etc. The file package also needs to know what
typed definitions have been changed or what new definitions
have been introduced, so it can determine which files need to be
updated. This is done by "marking changes". All the system
functions that perform file package operations (LOAD, TCOMPL,
PRETTYDEF, etc.), as well as those functions that define or
change data, (EDITF, EDITV, EDITP, DWIM corrections to user
functions) interact with the file package. Also, typed-in
assignment of variables or property values is noticed by the file
package. (Note that modifications to variable or property values
during the execution of a function body are not noticed.) In
some cases the marking procedure can be subtle, e.g. if the user
edits a property list using EDITP, only those properties whose
values are actually changed (or added) are marked.

All file package operations can be disabled with FILEPKGFLG.

FI LE PACKAG E

FllEPKGFlG

1701 Loading Files

FILE PACKAGE

FI LE PACKAG E

[Variable]

The file package can be disabled by setting FllEPKGFLG to NIl.
This will turn off noticing files and marking changes.
FllEPKGFlG is initially T.

The rest of this chapter goes into further detail about the file
package. Functions for loading and storing symbolic files are
presented first, followed by functions for adding and removing
typed definitions from files, moving typed definitions from one
file to another, determining which file a particular definition is
stored in, and so on.

The functions below load information from symbolic files into
the Interlisp environment. A symbolic file contains a sequence of
Interlisp expressions that can be evaluated to establish specified
typed definitions. The expressions on symbolic files are read
using FllERDTBl as the read table.

The loading functions all have an argument LDFLG. LDFLG
affects the operation of DEFINE, DEFINEQ, RPAQ, RPAQ?, and
RPAQQ. While a source file is being loaded, DFNFlG (page 10.10)
is rebound to LDFLG. Thus, if LDFLG = Nil, and a function is
redefined, a message is printed and the old definition saved. If
LDFLG = T, the old definition is simply overwritten. If
LDFLG=PROP, the functions are stored as "saved" definitions on
the property lists under the property EXPR instead of bei ng
installed as the active definitions. If LDFLG = AlLPROP, not only
function definitions but also variables set by RPAQQ, RPAQ,
RPAQ? are stored on property lists (except when the variable has
the value NOBIND, in which case they are set to the indicated
value regardless of DFNFlG).

Another option is available for users who are loading systems for
others to use and who wish to suppress the savi ng of
information used to aid in development and debugging If
LDFLG=SYSlOAD, lOAD will: (1) Rebind DFNFlG to T, so old
definitions are simply overwritten; (2) Rebind lISPXHIST to Nil,
thereby making the lOAD not be undoable and eliminating the
cost of saving undo information (See page 13.~~); (3) Rebind
ADDSPELlFlG to Nil, to suppress adding to spelling lists; (4)
Rebind FllEPKGFlG to Nil, to prevent the file from being
"noticed" by the file package; (5) Rebind BUllDMAPFLG to NIL,
to prevent a file map from being constructed; (6) Aher the load
has completed, set the filecoms variable and any filevars

17.5

LOADING FILES

176

variables to NOBIND; and (7) Add the file name to SYSFILES

rather than FILELST.

Note: A filevars variable is any variable appearing in a file
package command of the form (FILECOM * VARIABLE) (see page
17.44). Therefore, if the filecoms includes (FNS * FOOFNS),
FOOFNS is set to NOBIND. If the user wants the value of such a
variable to be retained, even when the file is loaded with
LDFLG = SYSLOAD, then he should replace the variable with an
equivalent, non-atomic expression, such as (FNS * (PROG N

FOOFNS». •

All functions that have LDFLG as an argument perform spelling
correction using LOADOPTIONS as a spelling list when LDFLG is
not a member of LOADOPTIONS. LOADOPTIONS is initially (Nil T
PROP ALLPROP SYSLOAD).

(LOAD FILE LDFLG PRINTFLG) [Function]

Reads successive expressions from FILE (with FILERDTBL as read
table) and evaluates each as it is read, until it reads either NIL, or
the single atom STOP. Note that LOAD can be used to load both
symbolic and compiled files. Returns FILE (full name).

If PRINTFLG = T, LOAD prints the value of each expression;
otherwise it does not.

(LOAD? FILE LDFLG PRINTFL(1) [Function]

Similar to LOAD except that it does not load FILE if it has already
been loaded, in which case it returns NIL.

Note: LOAD? loads FILE except when the same version of the file
has been loaded (either from the same place, or from a copy of it
from a different place). Specifically, LOAD? considers that FILE
has already been loaded if the full name of FILE is on
lOADEDFILELST (page 17.20) or the date stored on the
FILEDATES property of the root file name of FILE is the same as
theFILECREATED expression on FILE.

(LOADFNS FNS FILE LDFLG VARS) [Function]

Permits selective loading of definitions. FNS is a list of function
names, a single function name, or T, meaning to load all of the
functions on the file. FILE can be either a compiled or symbolic
file. If a compiled definition is loaded, so are all
:"'",piler-generated subfunctions. The interpretation of LDFLG is
the same as for LOAD.

If FILE = NIL, LOADFNS will use WHEREIS (page 17.14) to
determine where the first function in FNS resides, and load from
that file. Note that the file must previously have been II noticed II
(see page 17.19). If WHEREIS returns NIL, and the WHEREIS

FI LE PACKAG E

FILE PACKAGE

LOADING FILES

library package has been loaded, LOADFNS will use the WHEREIS
data base to find the file containing FN.

VARS specifies which non-DEFINEQ expressions are to be loaded
(i.e., evaluated). It is interpreted as follows:

T Means to load all non-DEFINEQ expressions.

NIL Means to load none of the non-DEFINEQ expressions.

VARS Means to evaluate all, variable assignment expressions
(beginning with RPAQ, RPAQQ, or RPAQ?, see page 17.54).

Any other litatom Means the same as specifying a list containing that atom.

A list If VARS is a list that is not a valid function definition, each
element in VARS is "matched" against each non-DEFINEQ
expression, and if any elements in VARS "match" successfully, the
expression is evaluated. "Matching" is defined as follows: If an
element of VARS is an atom, it matches an expression if it is EQ to
either the CAR or the CADR of the expression. If an element of
VARS is a list, it is treated as an edit pattern (page 16.18), and
matched with the entire expression (using EDIT4E, page 16.72).
For example, if VARS was (FOOCOMS DECLARE: (DEFLIST &
(QUOTE MACRO»), this would cause (RPAQQ FOOCOMS ...), all
DECLARE:s, and all DEFLISTs which set up MACROs to be read
and evaluated.

A function definition If VARS is a list and a valid function definition «FNTYP VARS) is

true), then LOADFNS will invoke that function on every
non-DEFINEQ expression being considered, applying it to two
arguments, the first and second elements in the expression. If
the function returns NIL, the expression will be skipped; if it
returns a non-NIL litatom (e.g. T), the expression wi II be
evaluated; and if it returns a list, this list is evaluated instead of
the expression. Note: The file pointer is set to the very
beginning of the expression before calling the VARS function
definition, so it may read the entire expression if necessary. If
the function returns a litatom, the file pointer is reset and the
expression is READ or SKREAD. However, the file pointer is not
reset when the function returns'a list, so the function must leave
it set immediately after the expression that it has presumably
read.

LOADFNS returns a list of: (1) The names of the functions that
were found; (2) A list of those functions not found (if any)
headed by the litatom NOT-FOUND:; (3) All of the expressions
that were evaluated; (4) A list of those members of VARS for
which no corresponding expressions were found (if any), again
headed by the litatom NOT-FOUND:. For example,

~ (LOADFNS '(FOO FIE FUM) FILE NIL '(SAZ (DEFLIST &»)
(FOO FIE (NOT-FOUND: FUM) (RPAQ SAZ ...) (NOT-FOUND:
(DEFLIST &»)

177

LOADING FILES

178

(LOADVARS VARS FILE LDFLG) [Function]

Same as (LOADFNS NIL FILE LDFLG VARS).

(LOADFROM FILE FNS LDFLG) [Function]

Same as (LOADFNS FNS FILE LDFLG T).

Once the file package has noticed a file, the user can edit
functions contained in the file without explicitly loading them.
Similarly, those functions which have not been modified do not
have to be loaded in order to write out an updated version of
the file. Files are normally noticed (i.e., their contents become
known to the file package; see page 17.19) when either the
symbolic or compiled versions of the file are loaded. If the file is
not going to be loaded completely, the preferred way to notice
it is with LOADFROM. Note that the user can also load some
functions at the same time by giving LOADFROM a second
argument, but it is normally used simply to inform the file
package about the existence and contents of a particular file.

(LOADBLOCK FN FILE LDFLG) [Function]

(LOADCOMP FILE LDFLG)

(LOADCOMP? FILE LDFLG)

Calls LOADFNS on those functions contained in the block
declaration containing FN (See page 18.17). LOADBLOCK is
designed primarily for use with symbolic files, to load the EXPRs
for a given block. It will not load a function which already has an
in-core EXPR definition, and it will not load the block name,
unless it is also one of the block functions.

[Function]

Performs all operations on FILE associated with compilation, i.e.
evaluates all expressions under a DECLARE: EVAL@COMPILE (see
page 17.40), and "notices" the function and variable names by
adding them to the lists NOFIXFNSLST and NOFIXVARSLST (see
page 21.21).

Thus, if building a system composed of many files with
compilation information scattered among them, all that is
required to compile one file is to LOADCOMP the others.

[Function]

Similar to LOADCOMP, except it does not load if file has already
been loaded (with LOADCOMP), in vlI"lich case its value is NIL.

Note: LOADCOMP? will load the file even if it has been loaded
with LOAD, LOADFNS, etc. The only time it will not load the file
is if the file has already been loaded with LOADCOMP.

FILESLOAD provides an easy way for the user to load a series of
files, setting various options:

FILE PACKAGE

FILE PACKAGE

(FILESLOAD FILE 1 ... FILEN)

LOADING FILES

[NLambda NoSpread Function]

Loads the files FILE 1 ... FILE N (all arguments uneval uated). If any

of these arguments are lists, they specify certain loading options
for all following files (unless changed by another list). Within
these lists, the following commands are recognized:

FROM DIR Search the specified directories for the file. DIR can either be a
single directory, or a list of directories to search in order. For
example, (FILESLOAD (FROM {ERIS}< LlSPCORE>SOURCES »
...) will search the directory {ERIS}<LlSPCORE>SOURCES> for
the files. If this is not specified, the default is to search the
contents of DIRECTORIES (page 24.31).

SOURCE

COMPILED

LOAD

LOADCOMP

LOADFROM

If FROM is followed by the key word VALUEOF, the following
word is evaluated, and the value is used as the list of directories
to search. For example, (FILESLOAD (FROM VALUEOF FOO) ...)
will search the directory list that is the value of the variable FOO.

As a special case, if DIR is a litatom, and the litatom
DIRDIRECTORIES is bound, the value of this variable is used as the
directory search list. For example, since the variable
LlSPUSERSDIRECTORIES (page 24.32) is commonly used to
contain a list of directories containing "library" packages,
(FILESLOAD (FROM LlSPUSERS) ...) can be used instead of
(FllESLOAD (FROM VALUEOF LlSPUSERSDIRECTORIES) ...)

Note: If a FILESLOAD is read and evaluated while loading a file,
and it doesn't contain a FROM expression, the default is to search
the directory containing the FILESLOAD expression before the
value of DIRECTORIES. FILESlOAD expressions can be dumped
on files using the FILES file package command (page 17.39).

Load the source version of the file rather than the compiled
version.

Load the compiled version of the file.

Note: If COMPILED is specified, the compiled version will be
loaded, if it is found. The source will not be loaded. If neither
SOURCE or COMPILED is specified, the compiled version of the
file will be loaded if it is found, otherwise the source will be
loaded if it is found.

Load the file by calling LOAD, if it has not already been loaded.
This is the default unless LOADCOMP or LOADFROM is specified.

Note: If LOAD is specified, FILESLOAD considers that the file has
already been loaded if the root name of the file has a non-NIL
FILEDATES property. This is a somewhat different algorithm
than LOAD? uses. In particular, FILESLOAD will not load a newer
version of a file that has already been loaded.

Load the file with LOADCOMP? rather than LOAD.
Automatically implies SOURCE.

Load the file with LOADFROM rather than LOAD.

179

LOADING FILES

17.2 Storing Files

Nil

T

PROP
AllPROP
SYSlOAD

NOERROR

The loading function is called with its LDFLG argument set to the
specified token (see page 17.S). LDFLG affects the operati on of
the loading functions by resetting DFNFlG (page 10.10) to LDFLG
during the loading. If none of these tokens are specified, the
value of the variable LDFLG is used if it is bound, otherwise NIL is
used.

If NOERROR is specified, no error occurs when a file is not found.

Each list determines how all further files in the lists are loaded,
unless changed by another list. The tokens above can be joined
together in a single list. For example,

(FILESLOAD (LOADCOMP) NET (SYSLOAD FROM VALUEOF
NEWDIRECTORIES) CJSYS)

will call LOADCOMP? to load the file NET searching the value of
DIRECTORIES, and then call LOADCOMP? to load the file CJSYS
with LDFLG set to SYSLOAD, searching the directory list that is
the value of the variable NEWDIRECTORIES.

FILESLOAD expressions can be dumped on files using the FILES
file package command (page 17.39).

(MAKEFILE FILE OPTIONS REPRINTFNS SOURCEFILE) [Function]

1710

C

Makes a new version of the file FILE, storing the information
specified by FILE's filecoms. Notices FILE if not previously noticed
(see page 17.19). Then, it adds FILE to NOTLISTEDFILES and
NOTCOMPI LEDFI LES.

OPTIONS is a litatom or list of litatoms which specify options. By
specifying certain options, MAKEFllE can automatically compile
or list FILE. Note that if FILE does not contain any function
definitions, it is not compiled even when OPTIONS specifies C or
RC. The options are spelling corrected using the list
MAKEFILEOPTIONS. If spelling correction fails, MAKEFILE
generates an error. The options are interpreted as follows:

RC After making FILE, MAKEFllE will compile FILE by calling
TCOMPL (if C is specified) or RECOMPILE (if RC is specified), If
there are any block declarations specified in the filecoms for FILE,
BCOMPL or BRECOMPILE wi" be called instead.

FI LE PACKAG E

FILE PACKAGE

STORING FILES

If F, ST, STF, or S is the next item on OPTIONS following e or Re, it
is given to the compiler as the answer to the compiler's question
LISTING? (see page 18.1). For example, (MAKEFILE 'Faa '(e F
LIST» will dump FOO, then TeOMPL or BeOMPL it specifying that
functions are not to be redefined, and finally list the file.

LIST After making FILE, MAKEFILE calls LlSTFILES to print a hardcopy
listing of FILE.

eLiSPIFY MAKEFILE calls PRETTYDEF with CLiSPIFYPRETTYFLG = T (see
page 21.26). This causes CLiSPIFY to be called on each function
defined as an EXPR before it is prettyprinted.

Alternatively, if FILE has the property FILETYPE with value CLISP
or a list containing CLlSP, PRETTYDEF is called with
CLiSPIFYPRETTYFLG reset to CHANGES, which will cause CLiSPIFY
to be called on all functions marked as having been changed. If
FILE has property FILETYPE with value CLlSP, the comptler will
DWIMIFY its functions before compiling them (see page 18.11).

FAST MAKEFILE calls PRETTYDEF with PRETTYFLG = NIL (see page
26.48). Thi~ causes data objects to be printed rather than
prettyprinted, which is much faster.

REMAKE MAKEFILE "remakes" FILE: The prettyprinted definitions of
functions that have not changed are copied from an earlier
version of the symbolic file. Only those functions that have
changed are prettyprinted. See page 17.15.

NEW MAKEFILE does not remake FILE. If MAKEFILEREMAKEFLG = T
(the initial setting), the default for all calls to MAKEFILE is to
remake. The NEW option can be used to override this default.

REPRINTFNS and SOURCEFILE are used when remaking a file, as
described on page 17.15.

Note: FILE is not added to NOTLISTEDFILES if FILE has on its
property list the property FILETYPE with value DON'TLlST, or a
list containing DON'TLIST. FILE is not added to
NOTCOMPILEDFILES if FILE has on its property list the property
FILETYPE with value DON'TeOMPILE, or a list containing
DON'TCOMPILE. Also, if FILE does not contain any function
definitions, it is not added to NOTCOMPILEDFILES, and it is not
compiled even when OPTIONS specifies C or RC.

If a remake is not being performed, MAKEFILE checks the state of
FILE to make sure that the entire source file was actually
LOADed. If FILE was loaded as a compiled file, MAKEFILE prints
the message CAN'T DUMP: ONLY THE COMPILED FILE HAS BEEN
LOADED. Similarly, if only some of the symbolic definitions were
loaded via LOADFNS or LOADFROM, MAKEFILE prints CAN'T
DUMP: ONLY SOME OF ITS SYMBOLICS HAVE BEEN LOADED. In
both cases, MAKEFILE will then ask the user if it should dump

17.11

STORING FILES

1712

anyway; if the user declines, MAKEFILE does not call PRETIVDEF,
but simply returns (FILE NOT DUMPED) as its value.

The user can indicate that FILE. must be block compiled together
with other files as a unit by putting a list of those files on the
property list of each file under the property FllEGROUP. If FILE
has a FllEGROUP property, the compiler will not be called until
all files on this property have been dumped that need to be.

MAKEFILE operates by rebinding PRETTYFlG, PRETIVTRANFLG,
and CLiSPIFYPRETTYFLG, evaluating each expression on
MAKEFILEFORMS (under errorset protection), and then calling
PRETTVDEF (page 17.50).

Note: PRETTYDEF calls PRETTYPRINT with its second argument
PRETTYDEFLG = T, so whenever PRETTVPRINT (and hence
MAKEFllE) start printing a new function, the name of that
function is printed if more than 30 seconds (real time) have
elapsed since the last time it printed the name of a function.

(MAKEFILES OPTIONS FILES) [Function]

Performs (MAKEFILE FILE OPTIONS) for each file on FILES that
needs to be dumped. If FILES = NIL, FllELST is used. For example,
(MAKEFILES 'LIST) will make and list all files that have been
changed. In this case, if any typed definitions for any items have
been defined or changed and they are not contained in one of
the files on FILElST, MAKEFILES calls ADDTOFILES? to allow the
user to specify where these go. MAI<EFILES returns a list of all
files that are made.

(CLEANUP FILE 1 FILE2 ... FILEN) [NLambda NoSpread Function]

(FILES?)

Dumps, lists, and recompiles (with RECOMPILE or BREeOMPILE)
any of the specified files (unevaluated) requiring the
corresponding operation. If no files are specified, FILELST is
lJsed. CLEANUP returns NIl.

CLEANUP uses the value of the variable CLEANUPOPTIONS as the
OPTIONS argument to MAKEFILE. CLEANUPOPTIONS is initially
(Re), to indicate that the files should be recompiled. If
CLEANUPOPTIONS is set to (Re F), no listing will be performed,
and no functions will be redefined as the result of compiling.
Alternatively, if FILE 1 is a list, it will be interpreted as the list of

options regardless of the value of CLEANUPOPTIONS.

[Function]

Prints on the terminal the names of those files that have been
modified but not dumped, dumped but not listed, dumped but
not compiled, plus the names of any functions and other typed
definitions (if any) that are not contained in any file. If there are

FILE PACKAGE

FILE PACKAGE

(ADDTOFILES? -)

A file name
A filevar

line-feed

space
carriage return

@

STORI NG FILES

any, FILES? then calls ADDTOFILES? to allow the user to specify
where these go.

[Function]

Called from MAKEFILES, CLEANUP, and FILES? when there are
typed definitions that have been marked as changed which do
not belong to any file. ADDTOFILES? lists the names of the
changed items, and asks the user if he wants to specify where
these items should be put. If user answers N{o), ADDTOFILES?
returns NIL without taking any action. If the user answers], this
is taken to be an answer to each question that would be asked,
and all the changed items are marked as dummy items to be
ignored. Otherwise, ADDTOFILES? prints the name of each
changed item, and accepts one of the following responses:

If the user gives a file name or a variable whose value is a list (a
filevar), the item is added to the corresponding file or list, using
ADDTOFILE.

If the user response is not the name of a file on FILELST or a
variable whose value is a list, the user will be asked whether it is a
new file. If he says no, then ADDTOFILES? will check whether the
item is the name of a list, i.e. whether its value is a list. If not, the
user will be asked whether it is a new list.

Same as the user's previous response.

Take no action.

The item is marked as a dummy item by adding it to NILCOMS.
This tells the file package simply to ignore this item.

The "definition" of the item in question is prettyprinted to the
terminal, and then the user is asked again about its disposition.

ADDTOFILES? prompts with "LiSTNAME: (", the user types in the
name of a list, i.e. a variable whose value is a list, terminated by a
). The item will then only be added to (under) a command in
which the named list appears as a filevar. If none are fou nd, a
message is printed, and the user is asked again. For example, the
user defines a new function F003, and when asked where it
goes, types (FOOFNS). If the command (FNS * FOOFNS) is found,
F003 will be added to the value of FOOFNS. If instead the user
types (FOOCOMS), and the command (COMS * FOOCOMS) is
found, then F003 will be added to a command for dunlping
functions that is contained in FOOCOMS.

Note: If the named list is not also the name of a file, the user can
simply type it in without parenthesis as described above.

ADDTOFILES? prompts with "Near: (", the user types in the name
of an object, and the item is then inserted in a command for

17 13

STORING FILES

1714

dumping objects (of its type) that contains the indicated name.
The item is inserted immediately after the indicated name.

(liSTFILES FILE 1 FILE2 ... FILEN) [NLambda NoSpread Function]

Lists each of the specified files (unevaluated). If no files are
given, NOTLISTEDFILES is used. Each file listed is removed from
NOTLISTEDFILES if the listing is completed. For each file not
found, lISTFILES prints the message "FILENAME NOT FOUND"
and proceeds to the next file.

lISTFILES calls the function lISTFILES1 on each file to be listed.
Normally, LlSTFILES1. is defined to simply call
SEND.FILE.TO.PRINTER (page 29.1), but the user can advise or
redefine lISTFILES1 for more specialized applications.

Any lists inside the argument list to LlSTFILES are interpreted as
property lists that set the various printing options, such as the
printer, number of copies, banner page name, etc (see page
29.1). Later properties override earlier ones. For example,

(liSTFILES FOO (HOST JEDI) FUM (#COPIES 3) FIE)

will cause one copy of FOO to be printed on the default printer,
and 1 copy of FUM and 3 copies of FIE to be printed on the
printer JEDI.

(COMPILEFILES FILE1 FILE2 ... FILEN) [NLambda NoSpread Function]

Executes the RC and C options of MAKEFILE for each of the
specified files (unevaluated). If no files are given,
NOTCOMPILEDFILES is used. Each file compiled is removed from
NOTCOMPILEDFILES. If FILE 1 is a list, it is interpreted as the

OPTIONS argument to MAKEFILES. This feature can be used to
supply an answer to the compiler's LISTING? question, e.g.,
(COMPILEFILES (STF» will compile each file on
NOTCOMPILEDFILES so that the functions are redefi ned without
the EXPRs definitions being saved.

(WHEREIS NAME TYPE FILES FN) [Function]

TYPE is a file package type. WHEREIS sweeps through all the files
on the list FILES and returns a list of all files containing NAME as a
TYPE. WHEREIS knows about and expands all file package
commands and file package macros. TYPE = NIL defaults to FNS
(to retrieve function definitions). If FILES is not a list, the value of
FILELST is used.

If FN is given, it should be a function (with arguments NAME,
FILE, and TYPE) which is applied for every file in FILES that
contains NAME as a TYPE. In this case, WHEREIS returns NIL.

If the WHEREIS library package has been loaded, WHEREIS is
redefined so that FILES = T means to use the whereis package

FI LE PACKAG E

STORING FILES

data base, so WHEREIS will find NAME even if the file has not
been loaded or noticed. FILES = NIL always means use FILELST.

17.3 Remaking a Symbolic File

FILE PACKAGE

Most of the time that a symbolic file is written using MAKEFILE,
only a few of the functions that it contains have been changed ,
since the last time the file was written. Rather than prettprinting
all of the functions, it is often considerably faster to "remake"
the file, copying the prettprinted definitions of unchanged
functions from an earlier version of the symbolic file, and only
prettyprinting those functions that have been changed.

MAKEFILE will remake the symbolic file if the REMAKE option is
specified. If the NEW option is given, the file is not remade, and
all of the functions are prettprinted. The default action is
specified by the value of MAKEFILEREMAKEFLG: if T (its initial
value), MAKEFILE will remake files unless the NEW option is
given; if Nil, MAKEFILE will not remake unless the REMAKE
option is given.

Note: If the file has never been loaded or dumped, for example
if the filecoms were simply set up in memory, then MAKEFILE will
never attempt to remake the file, regardless of the setting of
MAKEFILEREMAKEFLG, or whether the REMAKE option was
specified.

When MAKEFILE is remaking a symbolic file, the user can
explicitly indicate the functions which are to be prettypri nted
and the file to be used for copying the rest of the function
definitions from via the REPRINTFNS and SOURCEFILE arguments
to MAKEFllE. Normally, both of these arguments are defaulted
to Nil. In this case, REPRINTFNS will be set to those functions
that have been changed since the last version of the file was
written. For SOURCEFILE, MAKEFILE obtains the full name of the
most recent version of the file (that it knows about) from the
FllEDATES property of the file, and checks to make sure that the
file still exists and has the same file date as that stored on the
FILEDATES property. If it does, MAKEFILE uses that file as
SOURCEFILE. This procedure permits the user to LOAD or
LOADFROM a file in a different directory, and still be able to
remake the file with MAKEFILE. In the case where the most
recent version of the file cannot be found, MAKEFILE will
attempt to remake using the original version of the file (i.e., the
one first loaded), specifying as REPRINTFNS the union of all
changes that have been made since the file was first loaded,
which is obtained from the FILECHANGES property of the file. If
both of these fail, MAKEFILE prints the message "CAN'T FIND

1715

REMAKING A SYMBOLIC FILE

EITHER THE PREVIOUS VERSION OR THE ORIGINAL VERSION OF
FILE, SO IT WILL HAVE TO BE WRITIEN ANEW", and does not
remake the file, i.e. will prettyprint all of the functions.

When a remake is specified, MAKEFILE also checks to see how the
file was originally loaded (see page 17.19). If the file was
originally loaded as a compiled file, MAKEFILE will call
LOADVARS to obtain those DECLARE: expressions that are
contained on the symbolic file, but not the compiled file, and
henc,e have not been loaded. If the file was loaded by LOADFNS
(but not LOADFROM), then LOADVARS is called to obtain any
non-DEFINEQ expressions. Before calling LOADVARS to re-Ioad
definitions, MAKEFILE asks the user, e.g ... Only the compiled

version of FOO was loaded, do you want to LOADVARS the
(DECLARE: DONTCOPY ..) expressions from
{DSK}< MYDIR>FOO.;37". The user can respond Yes to execute
the LOADVARS and continue the MAKEFllE, No to proceed with
the MAKEFILE without performing the LOADVARS, or Abort to
abort the MAKEFILE. The use may wish to skip the LOADVARS if
the lIser had circumvented the file package in some way, and
loading the old definitions would overwrite new ones.

Note: Remaking a symbolic file is considerably faster if the
earlier version has a file map indicating where the function
definitions are located (page 17.55), but it does not depend on
this information.

17 .. 4 Loading Files in a Distributed Environment

17 16

Each Interlisp source and compiled code file contains the full
filename of the file, including the host and directory names, in a
FILECREATED expression at the beginning of the file. The
compiled code file also contains the full file name of the source
file it was created from. In earlier versions of Interlisp, the file
package used this information to locate the appropriate source
file when "remaking" or recompiling a file.

This turned out to be a bad feature in distributed environments,
where users frequently move files from one place to another, or
where files are stored on removable media. For example,
suppose you MAKEFILE to a floppy, and then copy the file to a
file server. If you loaded and edited the file from a file server,
and tried to do MAKEFILE, it would try to locate the source file
on the floppy, which is probably no longer loaded.

Currently, the file package searches for sources file on the
connected directory, and on the directory search path (on the
variable DIRECTORIES). If it is not found, the hostJdirectory
information from the FILECREATED expression be used.

FI LE PACKAG E

17.5 Marking Changes

LOADING FILES IN A DISTRIBUTED ENVIRONMENT

Warning: One situation where the new algorithm does the
wrong thing is if you explicitly LOADFROM a file that is not on
your directory search path. Future MAKEFILEs and CLEANUPs
will search the connected directory and DIRECTORIES to find the
source file, rather than using the file that the LOADFROM was
done from. Even if the correct file is on the directory search path,
you could still create a bad file if there is another version of the
file in an earlier directory on the search path. In general, you
should either explicitly specify the SOURCEFILE argument to
MAKEFILE to tell it where to gettthe old source, or connect to the
directory where the correct source file is.

The file package needs to know what typed definitions have
been changed, so it can determine which files need to be
updated. This is done by "marking changes". All the system
functions that perform file package operations (LOAD, TCOMPL,
PRETTYDEF, etc.), as well as those functions that define or
change data, (EDITF, EDITV, EDITP, DWIM corrections to user
functions) interact with the file package by marking changes.
Also, typeq-in assignment of variables or property values is
noticed by the file package. (Note that if a program modifies a
variable or property value, this is not noticed.) In some cases the
marking procedure can be subtle, e.g. if the user edits a property
list using EDITP, only those properties whose values are actually
changed (or added) are marked.

The various system functions which create or modify objects call
MARKASCHANGED to mark the object as changed. For example,
when a function is defined via DEFINE or DEFINEQ, or modified
via EDITF, or a DWIM correction, the function is marked as being
a changed object of type FNS. Similarly, whenever a new record
is declared, or an existing record rededared or edited, it is
marked as being a changed object of type RECORDS, and so on
for all of the other file package types.

The user can also call MARKASCHANGED directly to mark objects
of a particular file package type as changed:

(MARKASCHAN~;:D NAME TYPE REASON) [Function]

FILE PACKAGE

Marks NAME of type TYPE

MARKASCHANGED returns NAME.

undoable.

as being changed.
MARKASCHANGED is

REASON is a litatom that indicated how NAME was changed.
MARKASCHANGED recognizes the following values for REASON:

17.17

MARKING CHANGES

DEFINED

CHANGED

DELETED

CLiSP

Used to indicate the creation of NAME, e.g. from DEFINEQ (page

10.9).

Used to indicate a change to NAME, e.g. from the editor.

Used to indicate the deletion of NAME, e.g. by DELDEF (page
17.27).

Used to indicate the modification of NAME by CLiSP translation.

For backwards compatibility, MARKASCHANGED also accepts a
REASON of T (= DEFINED) and NIL (= CHANGED). New programs
should avoid using these values.

Note: The variable MARKASCHANGEDFNS is a list of functions
that MARKASCHANGED calls (with arguments NAME, TYPE, and
REASON). Functions can be added to this list to "advise"
MARKASCHANGED to do additional work for all types of objects.
The WHENCHANGED file package type property (page 17.31) can
be used to specify additional actions when MARKASCHANGED
gets called on specific types of objects.

(UNMARKASCHANGED NAME TYPE) [Function]

17 18

Unmarks NAME of type TYPE as being changed. Returns NAME if
NAME was marked as changed and is now unmarked, NIL
otherwise. UNMARKASCHANGED is undoable.

(FILEPKGCHANGES TYPE LSn [NoSpread Function]

If LST is not specified (as opposed to being NIL), returns a list of
those objects of type TYPE that have been marked as changed
but not yet associated with their corresponding files (See page
'17.21). If LST is specified, FllEPKGCHANGES sets the
corresponding list. (FILEPKGCHANGES) returns a list of all objects
marked as chClnged as a list of elements of the form (TYPENAME .

CHANGEDOBJECTS).

Some properties (e.g. EXPR, ADVICE, MACRO, I.S.0PR, etc ..) are
used to implement other file package types. For example, if the
user changes the value of the property I.S.0PR, he is really
changing an object of type I.S.0PR, and the effect is the same as
though he had redefined the i.s.opr via a direct call to the
function I.S.0PR. If a property whose value has been changed or
added does not correspond to a specific file package type, then it
is marked as a changed object of type PROPS whose name is
(VARIABLENAME PROPNAME) (except if the property name has
a property PROPTYPE with value IGNORE).

Similarly, if the user changes a variable which implements the file
package type ALISTS (as indicated by the appearance of the
property VARTYPE with value ALIST on the variable's property
list), only those entries that are actually changed are marked as
being changed objects of type ALISTS, and the "name" of the

FI LE PACKAG E

17.6 Noticing Files

(ADDFILE FILE - --)

FILE

FILE PACKAGE

MARKING CHANGES

object will be (VARIABLENAME KEy) where KEY is CAR of the
entry on the alist that is being marked. If the variable
corresponds to a specific file package type other than ALiSTS,
e.g. USERMACROS, L1SPXMACROS, etc., then an object of that
type is marked. In this case, the name of the changed object will
be CAR of the corresponding entry on the alist. For example, if
the user edits L1SPXMACROS and changes a definition for PL,
then the object PL of type L1SPXMACROS is marked as bei ng

changed.

Already existing files are "noticed" by LOAD or LOADFROM (or
by LOADFNS or LOADVARS when the VARS argument is T. New
files are noticed when they are constructed by MAKEFILE, or
when definitions are first associated with them via FILES? or
ADDTOFILES? Noticing a file updates certain lists and properties
so that the file package functions know to indude the file in
their operations. For example, CLEANUP will only dump files
that have been noticed.

The user can explicitly tell the file package to notice a
newly-created file by defining the filecoms for the file (see page
17.32), and calling ADDFILE:

[Function]

Tells the file package that FILE should be recognized as a file; it
adds FILE to FILELST, and also sets up the FILE property of FILE to
reflect the current set of changes which are" registered against"
FILE.

The file package uses information stored on the property list of
the root name of noticed files. The following property names
are used:

[Property Name]

When a file is noticed, the property FILE, value «FILECOMS .

LOADTYPE» is added to the property list of its root name.
FILECOMS is the variable contain;r"l the filecoms of the file (see
page 17.32). LOADTYPE indicates how the file was loaded, e.g.,
completely loaded, only partially loaded as with LOADFNS,
loaded as a compiled file, etc.

The property FILE is used to determine whether or not the
corresponding file has been modified since the last time it was
loaded or dumped. CDR of the FILE property records by type

1719

NOTICING FILES

FILECHANGES

FllEDATES

FllEMAP

FllELST

lOADEDFllEL::. J

17.20

those items that have been changed since the last MAKEFILE.
Whenever a file is dumped, these items are moved to the
property FILECHANGES, and CDR of the FILE property is reset to

NIL.

[Property Name]

The property FILECHANGES contains a list of all changed items
since the file was loaded (there may have been several sequences
of editing and rewriting the file). When a file is dumped, the
changes in CDR of the FILE property are added to the
FllECHANGES property.

[Property Name]

The property FllEDATES contains a list of version numbers and
corresponding file dates for this file. These version numbers and
dates are used for various integrity checks in connection with
remaking a file (see page 17.15).

[Property Name]

The property FllEMAP is used to store the filemap for the file
(see page 17.55). This is used to directly load individual functions
from the middle of a file.

To compute the root name, ROOTFllENAME is applied to the
name of the file as indicated in the FllECREATED expression
appearing at the front of the file, since this name corresponds to
the name the file was originally made under. The file package
detects that the file being noticed is a compiled file (regardless
of its name), by the appearance of more than one FILECREATED
expressions. In this case, each of the files mentioned in the
following FllECREATED expressions are noticed. For example, if
the user performs (BeOMPL '(FOO FIE», and subsequently loads
FOO.DeOM, both FOO and FIE will be noticed.

When a file is noticed, its root name is added to the list FILELST:

[Variable]

Contains a list of the root names of the files that have been
noticed.

[Variable]

Contains a list of the actual names of the files as loaded by LOAD,
LOADFNS, etc. For example, if the user performs (LOAD
'<NEWlISP>EDITA.eOM;3), EDITA will be added to FILELST, but
<NEWlISP>EDITA.COM;3 is added to LOADEDFllELST.
LOADEDFllElST is not used by the file package; it is maintained
solely for the user's benefit.

FI LE PACKAG E

DISTRIBUTING CHANGE INFORMATION

17.7 Distributing Change Information

(UPDATEFILES --)

17 as File Package Types

FILE PACKAGE

Periodically, the function UPDATEFILES is called to find which
file(s) contain the elements that have been changed.
UPDATEFILES is called by FILES?, CLEANUP, and MAKEFILES, i.e.,
any procedure that requires the FILE property to be up to date.
This procedure is followed rather than updating the FILE
property after each change because scanning FILELST and
examining each file package command can be a time-consuming
process; this is not so noticeable when performed in conjunction
with a large operation like loading or writing a file.

UPDATEFILES operates by scanning FILELST and interrogating
the file package commands for each file. When (if) any files are
found that contain the corresponding typed definition, the
name of the element is added to the value of the property FILE
for the corresponding file. Thus, after UPDATEFILES has
completed operating, the files that need to be dumped are
simply those files on FILELST for which CDR of their FILE property
is non-NIl. For example, if the user loads the file FOO containing
definitions for F001, F002, and F003, edits F002, and then
calls UPDATEFILES, (GETPROP 'FOO 'FILE) will be «FOOCOMS . T)
(FNS F002)). If any objects marked as changed have not been
transferred to the FILE property for some file, e.g., the user
defines a new function but forgets (or declines) to add it to the
file package commands for the corresponding file, then both
FILES? and CLEANUP will print warning messages, and then call
ADDTOFILES? to permit the user to specify on which files these
items belong.

The user can also invoke UPDATEFILES directly:

[Function]

(UPDATEFILES) will update the FILE properties of the noticed
files.

In addition to the definitions of functions and values of
variables, source files in Interlisp can contain a variety of other
information, e.g. property lists, record declarations, macro
definitions, hash arrays, etc. In order to treat such a diverse
assortment of data uniformly from the standpoint of file
operations, the file package uses the concept of a typed
definition, of which a function definition is just one example. A
typed definition associates with a name (usually a litatom), a
definition of a given type (called the file package type). Note

17 21

FILE PACKAGE TYPES

FllEPKGTYPES

ADVICE

AliSTS

1722

that the same name may have several definitions of different
types. For example, a litatom may have both a function
definition and a variable definition. The file package also keeps
track of the file that a particular typed definition is stored on, so
one can think of a typed definition as a relation between four
elements: a name, a definition, a type, and a file.

A file package type is an abstract notion of a class of objects
which share the property that every object of the same file
package type is stored, retrieved, edited, copied etc., by the file
package in the same way. Each file package type is identified b\t
a litatom, which can be given as an argument to the functions
that manipulate typed definitions. The user may define new file
package types, as described in page 17.32.

[Variable]

The value of FllEPKGTYPES is a list of all file package types,
including any that may have been defined by the user.

The file package is initialized with the following built-in file
package types:

[File Package Type]

Used to access" advice" modifying a function (see page 15.9).

[File Package Type]

Used to access objects stored on an association list that is the
value of a litatom (see page 3.15).

A variable is declared to have an association list as its value by
putting on its property list the property VARTYPE with value
AliST. In this case, each dotted pair on the list is an object of
type AliSTS. When the value of such a variable is changed, only
those entries in the association list that are actually changed or
added are marked as changed objects of type ALiSTS (with
"name" (LITATOM KEY». Objects of type AliSTS are dumped via
the AliSTS or ADDVARS file package commands.

Note that some association lists are used to "implement" other
file package types. For example, the value of the global variable
lISERMACROS implements the file package type USERMACROS
and the values of lISPXMACROS and lISPXHISTORYMACROS
implement the file package '<lpe lISPXMACROS. This is indicated
by putting on the property list of the variable the property
VARTYPE with value a list of the form (ALIST FILEPKGTYPE). For
example, (GETPROP 'lISPXHISTORYMACROS 'VARTYPE) = >
(ALIST lISPXMACROS).

FILE PACKAGE

COURIERPROGRAMS

EXPRESSIONS

FIELDS

FILEPKGCOMS

FILES

FILEVARS

FNS

I.S.OPRS

LISPXMACROS

FILE PACKAGE

FILE PACKAGE TYPES

[File Package Type]

Used to access Cou rier programs (see page 31. 15}.

[File Package Type]

Used to access lisp expressions that are put on a file by using the
REMEMBER programmers assistant command (page 13.17), or by

explicitly putting the P file package command (page 17.40) on

the filecoms.

[File Package Type]

Used to access fields of records. The "definition" of an object of
type FIELDS is a list of all the record declarations which contain

the name. See page 8.1.

[File Package Type]

Used to access file package commands and types. A single name
can be defined both as a file package type and a file package
command: The "definition" of an object of type FILEPKGCOMS

is a list structure of the form «COM . COMPROPS) (TYPE .
TYPEPROPS)), where COMPROPS is a property list specifying how

the name is defined as a file package command by FILEPKGCOM

(page 17.47), and TYPEPROPS is a property list specifying how
the name is defined as a file package type by FILEPKGTYPE (page

17.32).

[File Package Type]

Used to access files. This file package type is most useful for
renaming files. The "definition" of a file is not a useful structure.

[File Package Type]

Used to access Filevars (see page 17.44).

[File Package Type]

Used to access function definitions.

[File Package Type]

Used to access the definitions of iterative statement operators
(see page 9.9).

[File Package Type]

Used to access programmer's assistant commands defined on the
variables LlSPXMACROS and LlSPXHISTORYMACROS (see page
13.23).

17 23

FILE PACKAGE TYPES

MACROS

PROPS

RECORDS

RESOURCES

TEMPLATES

USERMACROS

VARS

[File Package Type]

Used to access macro definitions (see page 10.21).

[File Package Type]

Used to access objects stored on the property list of a litatom (see
page 2.5). When a property is changed or added, an object of
type PROPS, with "name" (LiTATOM PROPNAME) is marked as

being changed.

Note that some litatom properties are used to implement other
file package types. For example, the property MACRO
implements the file package type MACROS, the property ADVICE
implements ADVICE, etc. This is indicated by putting the
property PROPTYPE, with value of the file package type on the
property list of the property name. For example, (GETPROP
'MACRO 'PROPTYPE) = > MACROS. When such a property is
changed or added, an object of the corresponding file package
type is marked. If (GETPROP PROPNAME 'PROPTYPE) = >
IGNORE, the change is ignored. The FILE, FILEMAP, FILEDATES,
etc. properties are all handled this way. (Note that IGNORE
cannot be the name of a file package type implemented as a
property).

[File Package Type]

Used to access record declarations (see page 8.1).

[File Package Type]

Used to access resources (see page 12.19).

[File Package Type]

Used to access Masterscope templates (see page 19.18).

[File Package Type]

Used to access user edit macros (see page 16.62).

[File Package Type]

Used to access top-level variable values.

17.8.1 Functions for Manipulating Typed Definitions

17.24

The functions described below can be used to manipulate typed
definitions, without needing to know how the manipulations
are done. For example, (GETDEF 'FOO 'FNS) will return the
function definition of FOO, (GETDEF 'FOO 'VARS) will return the
variable value of FOO, etc. All of the functions use the following
conventions:

FI LE PACKAG E

FILE PACKAGE

CURRENT

SAVED

FilE

FILE PACKAGE TYPES

(1) All functions which make destructive changes are undoable.

(2) Any argument that expects a list of litatoms will also accept a
single litatom, operating as though it were enclosed in a list. For
example, if the argument FILES should be a list of files, it may
also be a single file.

(3) TYPE is a file package type. TYPE = Nil is equivalent to
TYPE = FNS. The singular form of a file package type is also
recognized, e.g. TYPE = VAR is equivalent to TYPE = VARS.

(4) FILES = Nil is equivalent to FILES = FllElST.

(S) SOURCE is used to indicate the source of a definition, that is,
where the definition should be found. SOURCE can be one of:

Get the definition currently in effect.

Get the "saved" definition, as stored by SAVEDEF (page 17.27).

Get the definition contained on the (first) file determined by
WHEREIS (page 17.14).

Note: WHEREIS is called with FILES = T, so that if the WHERE IS
library package is loaded, the WHEREIS data base will be used to
find the file containing the definition.

7 Get the definition currently in effect if there is one, else the
saved definition if there is one, otherwise the definition from a
file determined by WHEREIS. Like specifying CURRENT, SAVED,
and FilE in order, and taking the first definition that is fou nd.

a file name
a list of file names Get the definition from the first of the indicated files that

contains one.

Nil In most cases, giving SOURCE = Nil (or not specifying it at all) is
the same as giving 7, to get either the current,· saved, or filed
definition. However, with HASDEF, SOURCE = NIL is interpreted
as equal to SOURCE = CURRENT, which only tests if there is a
current definition.

The operation of most of the functions described below can be
changed or extended by modifying the appropriate properties
for the corresponding file package type using the function
FllEPKGTVPE, described on page 17.32.

(GETDEF NAME TYPE SOURCE OPTIONS) [Function]

NOERROR

Returns the definition of NAME, of type TYPE, from SOURCE. For
most ty~'''''i, GETDEF returns the expression which would be
pretty printed when dumping NAME as TYPE. For example, for
TYPE = FNS, an EXPR definition is returned, for TYPE = VARS, the
value of NAME is returned, etc.

OPTIONS is a list which specifies certain options:

GETDEF causes an error if an appropriate definition cannot be
found, unless OPTIONS is or contains NOERROR. In this case,

17.25

FILE PACKAGE TYPES

17.26

a string

NOCOPY

GETDEF returns the value of the NULLDEF file package type

property (page 17.30), usually NIL.

If OPTIONS is or contains a string, that string will be returned if
no definition is found (and NOERROR is not among the options).
The caller can thus determine whether a definition was found,
even for types for which NIL or NOBIND are acceptable

definitions.

GETDEF returns a copy of the definition unless OPTIONS is or

contains NOCOPY.

EDIT If OPTIONS is or contains EDIT, GETDEF returns a copy of the
definition unless it is possible to edit the definition "in place."
'Nith some file package types, such as functions, it is meaningful
(and efficient) to edit the definition by destructively modifying
the list structure, without calling PUTDEF. However, some file
package types (like records) need to be "installed" with PUTDEF
after they are edited. The default EDITDEF (see page 17.31) calls
GETDEF with OPTIONS of (EDIT NOCOPY), so it doesn 't use a copy
unless it has to, and only calls PUTDEF if the result of editing is
not EQUAL to the old definition.

NODWIM A FNS definition will be dwimified if it is likely to contain eLisP
unless OPTIONS is or contains NODWIM.

(PUTDEF NAME TYPE DEFINITION REASON) [Function]

Defines NAME of type TYPE with DEFINITION. For TYPE = FNS,
does a DEFINE; for TYPE = VARS, does a SAVESET, etc.

For TYPE = FILES, PUTDEF establishes the command list, notices
NAME, and then calls MAKEFILE to actually dump the file NAME,

copying functions if necessary from the "old" file (supplied as
part of DEFINITION).

PUTDEF calls MARKASCHANGED (page 17.17) to mark NAME as
changed, giving a reason of REASON. If REASON is NIL, the
default is DEFINED.

Note: If TYPE = FNS, PUTDEF prints a warning if the us~r tries to
redefine a function on the list UNSAFE.TO.MODIFY.FNS (page
10.10). '

(HASDEF NAME TYPE SOURCE SPELLFLG) [Function]

Returns (OR NAME T) if NAME is the name of something of type
TYPE. If not, attempts spelling correction if SPELLFLG = T, and
returns the spelling-corrected NAME. Otherwise returns NIL.

(HASDEF NIL TYPE) returns T if NIL has a valid definition.

Note: if SOURCE = NIL, HASDEF interprets this as equal to
SOURCE = CURRENT, which only tests if there is a current
definition.

FILE PACKAGE

FILE PACKAGE

FILE PACKAGE TYPES

(TYPESOF NAME POSSIBLETYPES IMPOSSIBLETYPES SOURCE) (Function]

Returns a list of the types in POSSIBLETYPES but not in
IMPOSSIBLETYPES for which NAME has a definition.
FILEPKGTYPES is used if POSSIBLETYPES is NIL.

(COPYDEF OLD NEW TYPE SOURCE OPTIONS) (Function]

(DELDEF NAME TYPE)

Defines NEW to have a copy of the definition of OLD by doing
PUTDEF on a copy of the definition retrieved by (GETDEF OLD
TYPE SOURCE OPTIONS). NEW is substituted fot OLD in the
copied definition, in a manner that may depend on the TYPE.

For example, (COPYDEF 'PDQ 'RST 'FILES) sets up RSTCOMS to be
a copy of PDQCOMS, changes things like (VARS * PDQVARS) to
be (VARS * RSTVARS) in RSTCOMS, and performs a MAKEFILE on
RST such that the appropriate definitions get copied from PDQ.

COPYDEF disables the NOCOPY option of GETDEF, so NEW will
always have a copy of the definition of OLD.

Note: COPYDEF substitutes NEW for OLD throughout the
definition of OLD. This is usually the right thing to do, but in
some cases, e.g., where the old name appears within a quoted
expression but was not used in the same context, the user must
re-edit the definition.

[Function]

Removes the definition of NAME as a TYPE that is currently in
effect.

(SHOWDEF NAME TYPE FILE) [Function]

Prettyprints the definition of NAME as a TYPE to FILE. This shows
the user how NAME would be written to a file. Used by
ADDTOFILES? (page 17.13).

(EDITDEF NAME TYPE SOURCE EDITCOMS) [Function]

Edits the definition of NAME as a TYPE. Essentially performs

{PUTDEF NAME TYPE
{EDITE (GETDEF NAME TYPE SOURCE)

ED/TCOMS))

(SAVEDEF NAME TYPE DEFINITION) [Function]

Sets the "saved" definition of NAME as a TYPE to DEFINITION. If
DEFINITION = NIL, the current definition of NAME is saved.

If TYPE = FNS (or NIL), the function definition is saved on NAME's
property list under the property EXPR, or CODE (depending on
the FNTYP of the function definition). If (GETD NAME) is
non-NIL, but (FNTYP FN) = NIL, SAVEDEF saves the definition on
the property name LIST. This can happen if a function was

1727

FILE PACKAGE TYPES

1728

somehow defined with an illegal expr definition, such as
(LAMMMMDA (X) ...).

If TYPE = VARS, the definition is stored as the value of the VALUE
property of NAME. For other types, the definition is stored in an
internal data structure, from where it can be retrieved by
GETDEF or UNSAVEDEF.

(UNSAVEDEF NAME TYPE-) [Function]

Restores the "saved" definition of NAME as a TYPE, making it be
the current definition. Returns PROP.

If TYPE = FNS (or NIL), UNSAVEDEF unsaves the function
definition from the EXPR property if any, else CODE, and returns
the property name used. UNSAVEDEF also recogni zes
TYPE = EXPR, CODE, or LIST, meaning to unsave the definition
()nly from the corresponding property only.

If DFNFLG is not T (see page 10.10), the current definition of
NAME, if any, is saved using SAVEDEF. Thus one can use
UNSAVEDEF to switch back and forth between two definitions.

(LOADDEF NAME TYPE SOURCE) [Function]

Equivalent to (PUTDEF NAME TYPE (GETDEF NAME TYPE

SOURCE». LOADDEF is essentially a generalization of LOADFNS,
e.g. it enables loading a single record declaration from a file.
Note that (LOADDEF FN) will give FN an EXPR definition, either
obtained from its property list or a file, unless it already has one.

(CHANGECALLERS OLD NEW TYPES FILES METHOD) [Function]

Finds all of the places where OLD is used as any of the types in
TYPES and changes those places to use NEW. For example,
(CHANGECALLERS 'NLSETQ 'ERSETQ) will change all calls to
NLSETQ to be calls to ERSETQ. Also changes occurrences of OLD

to NEW inside the filecoms of any file, inside record declarations,
properties, etc.

CHANGECALLERS attempts to determine if OLD might be used as
more than one type; for example, if it is both a function and a
record field. If so, rather than perform ing the transformation
OLD·> NEW automatically, the user is allowed to edit all of the
places where OLD occurs. For each occurrence of OLD, the user is
asked whether he wants to make the replacem ent. If he
responds with anything except Yes or No, the editor is invoked
on the expression containing that occurrence.

There are two different methods for determining which
functions are to be examined. If METHOD:: EDITCALLERS,
EDITCALLERS is' used to search FILES (see page , 6.74). If
METHOD:: MASTERSCOPE, then the Masterscope database is
used instead. METHOD = NIL defaults to MASTERSCOPE if the

FI LE PACKAG E

FILE PACKAGE TYPES

value of the variable OEFAULTRENAMEMETHOO is
MASTERSCOPE and a Masterscope database exists, otherwise it
defaults to EOITCALLERS.

(RENAME OLD NEW TYPES FILES METHOD) [Function]

First performs (COPYOEF OLD NEW TYPE) for all TYPE inside
TYPES. It then calls CHANGECALLERS to change all occurrences
of OLD to NEW, and then "deletes" OLD with OELOEF. For
example, if the user has a function FOO which he now wishes to
call FIE, he simply performs (RENAME 'FOO 'FIE), and FIE will be
given FOO's definition, and all places that FOO are called will be
changed to call FIE instead.

METHOD is interpreted the same as the METHOD argument to
CHANGECALLERS, above.

(COMPARE NAME1 NAME2 TYPE SOURCE 1 SOURCE2) [Function]

Compares the definition of NAMEl with that of NAME2, by
calling COMPARELISTS (page 3.19) on (GETOEF NAME1 TYPE

SOURCE1) and (GETOEF NAME2 TYPE SOURCE2), which prints
their differences on the terminal.

For example, if the current value of the variable A is (A B C (0 E F)
G), and the value of the variable S on the file <lisp>FOO is (A B
C (0 F E) G), then:

+-(COMPARE 'A'S 'VARS 'CURRENT' < lisp> FOO)
A from CURRENT and B from <lisp>TEST differ:
(E - > F) (F -> E)
T

(COMPAREOEFS NAME TYPE SOURCES) [Function]

Calls COMPARELISTS (page 3.19) on all pairs of definitions of
NAME as a TYPE obtained from the various SOURCES

(interpreted as a list of source specifications).

17.8.2 Defining New File Package Types

FILE PACKAGE

All manipulation of typed definitions in the file package is done
using the type-independent functions GETOEF, PUTOEF, etc.
Therefore, to define a new file package type, it is only necessary
to specify (via the function FILEPKGTYPE) what these functions
should do when dealing with a typed definition of the new type.
Each file package type has the following properties, whose
values are functions or lists of functions:

Note: These functions are defined to take a TYPE argument so
that the user may have the same function for more than one
type.

17.29

FILE PACKAGE TYPES

GETDEF

NULLDEF

FILEGETDEF

CANFILEDEF

PUTDEF

HASDEF

1730

[File Package Type Property]

Value is a function of three arguments, NAME, TYPE, and
OPTIONS, which should return the current definition of NAME as
a type TYPE. Used by GETDEF (page 17.25), which passes its

OPTIONS argument.

If there is no GETDEF property, a file package command for
dumping NAME is created (by MAKENEWCOM). This command
is then used to write the definition of NAME as a type TYPE onto
the file FILEPKG.SCRATCH (in Interlisp-D, this file is created on
the {CORE} device). This expression is then read back in and
returned asthe current definition.

Note: In some situations, the function HASDEF (page 17.26)
needs to call GETDEF to determine whether a definition exists. In
this case, OPTIONS will include the litatom HASDEF, and it is
permissable for a GETDEF function to return T or NIL, rather than
creating a complex structure which will not be used.

[File Package Type Property]

The value of the NULLDEF property is returned by GETDEF (page
17.25) when there is no definition and the NOERROR option is
supplied. For example, the NULLDEF of VARS is NOBIND.

[File Package Type Property]

This enables the user to provide a way of obtaining definitions
from a file that is more efficient than the default procedure used
by GETDEF (page 17.25). Value is a function of four arguments,
NAME, TYPE, FILE, and OPTIONS. The function is applied by
GETDEF when it is determined that a typed definition is needed
from a particular file. The function must open and search the
given file and return any TYPE definition for NAME that it finds.

[File Package Type Property]

If the value of this property is non-NIL, this indicates that
definitions of this file package type are not loaded when a file is
loaded with LOADFROM (page 17.8). The default is NIL. Initially,
only FNS has this property set to non-NIL.

[File Package Type Property]

Value is a function of three arguments, NAME, TYPE, and
DEFINITION, which should s\""e DEFINITION as the definition of
NAME as a type TYPE. Used by PUTDEF (page 17.26).

[File Package Type Property]

Value is a function of three arguments, NAME, TYPE, and
SOURCE, which should return (OR NAME T) if NAME is the name

FILE PACKAGE

EDITDEF

DELDEF

NEWCOM

WHENCHANGED

FILE PACKAGE

FILE PACKAGE TYPES

of something of type TYPE. SOURCE is as interpreted by HASDEF
(page 17.26), which uses this property.

[File Package Type Property]

Value is a function of four arguments, NAME, TYPE, SOURCE,
and ED/TCOMS, which should edit the definition of NAME as a
type TYPE from the source SOURCE, interpreting the edit
commands ED/TCOMS. If sucessful, should return NAME (or a
spelling-corrected NAME). If it returns NIL, the "default" editor
is called. Used by EDITDEF (page 17.27).

[File Package Type Property]

Value is a function of two arguments, NAME, and TYPE, which
removes the definition of NAME as a TYPE that is currently in
effect. Used by DELDEF (page 17.27).

[File Package Type Property]

Value is a function of four arguments, NAME, TYPE, LlSTNAME,
and F/LE. Specifies how to make a new (instance of a) file
package command to dump NAME, an object of type TYPE. The
function should return the new file package command. Used by
ADDTOFILE and SHOWDEF.

If LlSTNAME is non-NIL, this means that the user specified
LlSTNAME as the filevar in his interaction with ADDTOFILES?
(see page 17.44).

If no NEWCOM is specified, the default is to call
DEFAULTMAKENEWCOM, which will construct and return a
command of the form (TYPE NAME). DEFAULTMAKENEWCOM
can be advised or redefined by the user.

[File Package Type Property]

Value is a list of functions to be applied to NAME, TYPE, and
REASON when NAME, an instance of type TYPE, is changed or
defined (see MARKASCHANGED, page 17.17). Used for various
applications, e.g. when an object of type I.S.0PRS changes, it is
necessary to clear the corresponding translatons from
CLiSPARRAY.

The WHENCHANGED functions are called before the object is
marked as changed, so that it can, in fact, decide that the object
is not to be marked as changed, and execute (RETFROM
'MARKASCHANGED).

Note: For backwards compatibility, the REASON argument
passed to WHENCHANGED functions is either T (for DEFINED)
and NIL (for CHANGED).

1731

FILE PACKAGE TYPES

WHENFllED

WHENUNFllED

DESCRIPTION

[File Package Type Property]

Value is a list of functions to be applied to NAME, TYPE, and FILE

when NAME, an instance of type TYPE, is added to FILE.

[File Package Type Property]

Value is a list of functions to be applied to NAME, TYPE, and FILE

when NAME, an instance of type TYPE, is removed from FILE.

[File Package Type Property]

Value is a string which describes instances of this type. For
example, for type RECORDS, the value of DESCRIPTION is the
string "record declarations".

The function FllEPKGTYPE is used to define new file package
types, or to change the properties of existing types. Note that it
is possible to redefine the attributes of system file package types,
such as FNS or PROPS.

(FllEPKGTYPE TYPE PROPI VAL 1 ... PROPN VALN) [NoSpread Function]

1709 File Package Commands

1732

Nospread function for defining new file package types, or
changing properties of existing file package types. PROP; is one

of the property names given above; VAL; is the value to be given

to that property. Returns TYPE.

(FllEPKGTYPE TYPE PROP) returns the value of the property
PROP, without changing it.

(FllEPKGTYPE TYPE) returns an alist of all of the defi ned
properties of TYPE, using the property names as keys.

Note: Specifying TYPE as the litatom TYPE can be used to define
one file package type as a synonym of another. For example,
(FllEPKGTYPE 'R 'TYPE 'RECORDS) defines R as a synonym for the
file package type RECORDS.

The basic mechanism for creating symbolic files is the function
MAKEFllE (page 17.10). For each file, the file package has a data
structure known as the "filecoms", which specifies what typeu
descriptions are contained in the file. A filecoms is a list of file
package commands, each of which specifies objects of a certain
file package type which should be dumped. For example, the
filecoms

((FNS FOO)

(VARS FOO BAR BAZ)

FI LE PACKAG E

FILE PACKAGE

FILE PACKAGE COMMANDS

(RECORDS XYZZY))

has a FNS, a VARS, and a RECORDS file package command. This
filecoms specifies that the function definition for FOO, the
variable values of FOO, BAR, and BAZ, and the record declaration
for XYZZY should be dumped.

By convention, the filecoms of a file X is stored as the value of the
litatom XCOMS. For example, (MAKEFILE 'FOO.;27) will use the
value of FOOCOMS as the filecoms. This variable can be directly
manipulated, but the file package contains facilities which make
constructing and updating filecoms easier, and in some cases
automatic (See page 17.48).

A file package command is an instruction to MAKEFILE to
perform an explicit, well-defined operation, usually printing an
expression. Usually there is a one-to-one correspondence
between file package types and file package commands; for
each file package type, there is a file package command which is
used for writing objects of that type to a file, and each file
package command is used to write objects of a particular type.
However, in some cases, the same file package type can be

'" dumped by several different file package commands. For
example, the file package commands PROP, IFPROP, and PROPS
all dump out objects with the file package type PROPS. This
means if the user changes an object of file package type PROPS
via EDITP, a typed-in call to PUTPROP, or via an explicit cal! to
MARKASCHANGED, this object can be written out with any of
the above three commands. Thus, when the file package
attempts to determine whether this typed object is contained on

" a particular file, it must look at instances of all three file package
commands PROP, IFPROP, and PROPS, to see if the corresponding
atom and property are specified. It is also permissible for a single
file package command to dum p several different file package
types. For example, the user can define a file package command
which dumps both a function definition and its macro.
Conversely, some file package comands do not dump any file
package types at all, such as the E command.

For each file package command, the file package must be able to
determine what typed definitions the command will cause to be
printed so that the file package can determine on what file (if
any) an object of a given type is contained (by searching through
the filecoms). Similarly, for each file package type, the file
package must be able to construct a command that will print out
an object of that type. In other words, the file package must be
able to map file package commands into file package types, and
vice versa. Information can be provided to the file package
about a particular file package command via the function
FILEPKGCOM (page 17.47), and information about a particular
file package type via the function FILEPKGTYPE (page 17.32). In
the absence of other information, the default is simply that a file

17.33

FILE PACKAGE COMMANDS

package command of the form (X NAME) prints out the
definition of NAME as a type X, and, conversely, if NAME is an
object of type X, then NAME can be written out by a command
of the form (X NAME).

If a file package function is given a command or type that is not
defined, it attempts spelling correction using FILEPKGCOMSPLST
as a spelling list (unless DWIMFLG or NOSPELLFLG = NIL; see page
20.13). If successful, the corrected version of the list of file
package commands is written (again) on the output file, since at
this point, the uncorrected list of file package commands would
already have been printed on the output file. When the file is
loaded, this will result in FILECOMS being reset, and may cause a
message to be printed, e.g., (FOOCOMS RESET). The value of
FOOCOMS would then be the corrected version. If the spelli ng
correction is unsuccessful, the file package functions generate an
error, BAD FILE PACKAGE COMMAND.

File package commands can be .used to save on the output file
definitions of functions, values of variables, property lists of
atoms, advised functions, edit macros, record declarations, etc.
The interpretation of each file package command is documented
in the following sections.

(USERMACROS LlTATOM, ... LlTATOMN) [File Package Command]

17.9.1 Functions and Macros

(ADVISE FN 1 ... FN N)

1734

Each litatom LlTATOM; is the name of a user edit macro. Writes

,expressions to add the edit macro definitions of LlTATOMj to

USERMACROS, and adds the names of the commands to the
appropriate spelling lists.

If LlTATOMj is not a user macro, a warning message "no EDIT

MACRO for LlTATOMj" is printed.

[File Package Command1

Writes a DEFINEQ expression with the function definitions of FN,

... FNN·

The user should never print a DEFINEQ expression directly onto a
file himself (by using the P file package command, for example),
because MAKEFILE generates the filem.ap of function definitions
from the FNS file package commands (see page 17.55).

[File Package Command]

For each function FNj, writes expressions to reinstate the

function to its advised state when the file is loaded. See page
15.9.

FILE PACKAGE

(ADVICE FN 1 ... FN N)

FILE PACKAGE COMMANDS

Note: When advice is applied to a function programmatically or
by hand, it is additive. That is, if a function already has some
advice, further advice is added to the already-existing advice.
However, when advice is applied to a function as a result of
loading a file with an ADVISE file package command, the new
advice replaces any earlier advice. ADVISE works this way to
prevent problems with loading different versions of the same
advice. If the user really wants to apply additive advice, a file
package command such as (P (ADVISE ... » should be used (see
page 17.40).

[File Package Command]

For each function FNi, writes a PUTPROPS expression which will

put the advice back on the property list of the function. The user
can then use READVISE (page 15.12) to reactivate the advice.

(MACROS LlTATOM,,,, LlTATOMN) [File Package Command]

17.9.2 Variables

(VARS VAR, ... VARN)

FILE PACKAGE

Each LlTATOMi is a litatom with a MACRO definition (and/or a

DMACRO, 10MACRO, etc.). Writes out an expression to restore
all of the macro properties for each LlTATOM;, embedded ina

DECLARE: EVAL@COMPILE so the macros will be defined when
'the file is com piled. See page 10.21.

[File Package Command]

For each VAR;, writes an expression to set its top level value

when the file is loaded. If VAR; is atomic, VARS writes out an

expression to set VARi to the top-level value it had at the time

the file was written. If VAR; is non-atomic, it is interpreted as

(VAR FORM), and VARS write out an expression to set VAR to the
value of FORM (evaluated when the file is loaded).

VARS prints out expressions using RPAQQ and RPAQ, which are
like SETQQ and SETQ except that they also perform some special
operations with respect to the file package (see page 17.54).

Note: VARS cannot be used for putting arbitrary variable values
on files. For example, if the value of a variable is an array (or
many other data types), a litatom which I ~presents the array is
dumped in the file instead of the array itself. The
HORRIBLEVARS file package command (page 17.36) provides a
way of saving and reloading variables whose values contain
re-entrant or circular list structure, user data types, arrays, or
hash arrays.

17.35

FILE PACKAGE COMMANDS

1736

(lNITVARS VAR1 ... VARN) [File Package Command]

INITVARS is used for initializing variables, setting their values
only when they are currently NOBIND. A variable value defined
in an INITVARS command will not change an already established
value. This means that re-Ioading files to get some other
information will not automatically revert to the initialization

values.

The format of an INITVARS command is just like VARS. The only
difference is that if VARj is atomic, the current value is not

dumped; instead NIL is defined as the initialization value.
Therefore, (INITVARS FOO (FUM 2» is the same as (VARS (FOO
NIL)(FUM 2», if FOO and FUM are both NOBIND.

INITVARS writes out an RPAQ? expression on the file instead of

RPAQ or RPAQQ.

(ADDVARS (VAR1 . LST1) ... (VARN' LSTN» [File Package Command]

For each (VARi . LSTj), writes an ADDTOVAR (page 17.54) to add

each element of LSTi to the list that is the value of VARj at the

time the file is loaded. The new value of VARj will be the union

of its old value and LSTi. If the value of VARj is NOBIND, it is first

set to NIL.

For example, (ADDVARS (DIRECTORIES LISP L1SPUSERS» will add
l.ISP and L1SPUSERS to the value of DIRECTORIES.

If LSTi is not specified, VARj is initialized to NIL if its current value

is NOBIND. In other words, (ADDVARS (VAR» will initialize VAR

to NIL if VAR has not previously been set.

(APPENDVARS (VAR1 . LST1) .. , (VARN' LSTN» [File Package Command]

(UGLYVARS VAR1'" VARN)

The same as ADDVARS, except that the values are added to the
end of the lists (using APPENDTOVAR, page 17.55), rather than

at the beginning.

[File Package Command]

Like VARS, except that the value of each VARj may contain

structures for which READ is not an inverse of PRINT, e.g. arrays,
readtables, user data types, etc. Uses HPRINT (page 25.17).

(HORRIBLEVARS VAR VARN) [File Package Command]

Like UGLYVARS, except structures may also contain circular
pointers. Uses HPRINT (page 25.17). The values of VAR 1 ... VARN

are printed in the same operation, so that they may contain
pointers to common substructures.

UGLYVARS does not do any checking for circularities, which
results in a large speed and internal-storage advantage over

FI LE PACKAG E

(SPECVARS VAR1'" VARN)

FILE PACKAGE COMMANDS

HORRIBLEVARS. Thus, if it is known that the data structures do
not contain circular pointers, UGLYVARS should be used instead
of HORRIBLEVARS.

[File Package Command]

VARi is a variable whose value is an association list, such as

EDITMACROS, BAKTRACELST, etc. For each VAR;, ALISTS writes

out expressions which will restore the values associated with the
specified keys. For example, (ALISTS (BREAKMACROS BT BTV»
will dump the definition for the BT and BTV commands on
BREAKMACROS.

)

Some association lists (USERMACROS, L1SPXMACROS, etc.) are
used to implement other file package types, and they have thei r
own file package commands.

[File Package Command]

(LOCALVARS VAR1'" VARN) [File Package Command]

(GLOBALVARS VAR1 ... VARN) [File Package Command]

Outputs the corresponding compiler declaration embedded in a
DECLARE: DOEVAL@COMPILE DONTCOPY. See page 18.5.

(CONSTANTS VAR1'" VARN) [File Package Command]

Like VARS, for each VARi writes an expression to set its top level

value when the file is loaded. Also writes a CONSTANTS
expression to declare these variables as constants (see page 18.8).
Both of these expressions are wrapped In a (DECLARE:
EVAL@COMPILE ...) expression, so they can be used by the
compiler.

Like VARS, VARi can be non-atomic, in which case it is

interpreted as (VAR FORM), and passed to CONSTANTS (along
with the variable being initialized to FORM).

17.9.3 Litatom Properties

FILE PACKAGE

(PROP PROPNAME LlTATOM1'" LlTATOMN) [File Package Command]

Writes a PUTPROPS expression to restore the value of the
PROPNAME property of each litatom LlTATOMj when the file is

loaded.

If PROPNAME is a list, expressions will be written for each
property on that list. If PROPNAME is the litatom ALL, the values
of all user properties (on the property list of each LlTATOMj) are

17.37

FILE PACKAGE COMMANDS

saved. SYSPROPS is a list of properties used by system functions.

Only properties not on that list are dumped when the ALL option
is used.

If LlTA TOMj does not have the property PROPNAME (as opposed

to having the property with value NIL), a warning message "NO
PROPNAME PROPERTY FOR LlTATOMj" is printed. The com mand

IFPROP can be used if it is not known whether or not an atom
will have the corresponding property.

(IFPROP PROPNAME LlTATOM1 ... LlTATOMN) [File Package Command]

Same as the PROP file package command, except that it only
saves the properties that actually appear on the property list of
the corresponding atom. For example, if F001 has property
PROP1 and PROP2, F002 has PROP3, and F003 has property
PROP1 and PROP3, then {IFPROP (PROP1 PROP2 PROP3) F001
F002 F003) will save only those five property values.

{PROPS (LITATOM1 PROPNAME1) ... (LITATOMNPROPNAMEN» [File Package Command]

Similar to PROP command. Writes a PUTPROPS expression to
restore the value of PROPNAMEi for each LlTATOMi when the

file is loaded.

As with the PROP command, if LlTATOMj does not have the

property PROPNAME (as opposed to having the property with
NIL value), a warning message "NO PROPNAMEj PROPERTY FOR

UTATOMi" is printed.

17.9.4 Miscellaneous File Package Commands

1738

(RECORDS REC 1 ... RECN) [File Package Command]

Each RECj is the name of a record (see page 8.1). Writes

expressions which will redeclare the records when the file is
loaded.

(INITRECORDS REC 1 ... RECN) [File Package Command]

Similar to RECORDS, INITRECORDS writes expressions on a file
that will, when loaded, perform whatever
initialization/allocation is ~~cessary for the indicated records.
However, the record declarations themselves are not written out.
This facility is useful for building systems on top of Interlisp, in
which the implementor may want to eliminate the record
declarations from a production version of the system, but the
allocation for these records must still be done.

FILE PACKAGE

FILE PACKAGE

FILE PACKAGE COMMANDS

(L1SPXMACROS LlTATOM,,,, LlTATOMN) [File Package Command]

(I.S.OPRS OPR"" OPRN)

Each LlTATOMj is defined on L1SPXMACROS or

L1SPXHISTORYMACROS (see page 13.23). Writes expressions
which will save and restore the definition for each macro, as well
as making the necessary additions to L1SPXCOMS

[File Package Command]

Each OPR; is the name of a user-defined i.s.opr (see page 9.20).

Writes expressions which will redefine the i.s.oprs when the file is
loaded.

(RESOURCES RESOURCE 1 ... RESOURCEN) [File Package Command]

Each RESOURCESj is the name of a resource (see page 12.19).

Writes expressions which will redeclare the resource when the
file is loaded.

(INITRESOURCES RESOURCE 1'" RESOURCEN) [File Package Command]

Parallel to INITRECORDS (page 17.38), INITRESOURCES writes
expressions on a file to perform whatever
initialization/allocation is necessary for the indicated resources,
without writing the resource declaration itself.

(COURIERPROGRAMS NAME, ... NAMEN) [File Package Command]

Each NAMEj is the name of a Courier progra m (see page 31.15).

Writes expressions which will redeclare the Courier program
when the file is loaded.

(TEMPLATES LlTATOM, ... LlTATOMN) [File Package Command]

(FILES FILE 1 ... FILEN)

Each LlTATOM; is a litatom which has a Masterscope template

(see page 19.21). Writes expressions which will restore the
templates when the file is loaded.

[File Package Command]

Used to specify auxiliary files to be loaded in when the file is
loaded. Dumps an expression calling FILESlOAD (page 17.9),
with FILE, ... FILEN as the arguments. FILESLOAD interprets FILE 1

... FILEN as files to load, possibly interspersed with lists used to

specify certain loading options.

(FILEPKGCOMS LlTATOM, ... LlTATOMN) [File Package Command]

Each Iitatom LlTATOM; is either the name of a user-defined file

package command or a user-defined file package type (or both).
Writes expressions which will restore each command/type.

1739

FILE PACKAGE COMMANDS

(*. TEXn

(E FORM1'" FORMN)

(COMS COM1". COMN)

(ORIGINAL COM1'" COMN)

17.9.5 DeCLARE:

If LlTATOM; is not a file package command or type, a warning

message "no FILE PACKAGE COMMAND for LlTATOM(is

printed.

[File Package Command]

Used for inserting comments in a file. The file package command
is simply written on the output file; it will be ignored when the
file is loaded.

If the first element of TEXT is another *, a form-feed is printed on
the file before the comment.

[File Package Command]

Writes each of the expressions EXPI ... EXPN on the output file,

where they will be evaluated when the file is loaded.

[File Package Command]

Each of the forms FORMI ... FORMN is evaluated at output time,

when MAKEFILE interpretes this file package command.

[File Package Command]

Each of the commands COMI COMN is interpreted as a file

package command.

[File Package Command]

Each of the commands COM; will be interpreted as a file package

command without regard to any file package macros (as defined
by the MACRO property of the FILEPKGCOM function, page
17.47). Useful for redefining a built-in file package command in
terms of itself.

Note that some of the "built-in" file package commands are
defined by file package macros, so interpreting them (or new
user-defined file package commands) with ORIGINAL will fail.
ORIGINAL was never intended to be used outside of a file
package command macro.

(DECLARE: . FILEPKGCOMSIFLAGS) [File Package Command]

1740

Normally expressions written onto a symbolic file are (1)
evaluated when loaded; (2) copied to the compiled file when the
symbolic file is compiled (see page 18.1); and (3) not evaluated at
compile time. DeCLARE: allows the user to override these
defaults.

FILE PACKAGE

FILE PACKAGE

EVAL@LOAD
DOEVAL@LOAD

DONTEVAL@LOAD

EVAL@LOADWHEN

COpy

DOCOPY

DONTCOPY

FILE PACKAGE COMMANDS

FILEPKGCOMSIFLAGS is a list of file package commands, possibly
interspersed with "tags". The output of those file package
commands within FILEPKGCOMSIFLAGS is embedded in a
DECLARE: expression, along with any tags that are specified. For
example, (DECLARE: EVAL@COMPILE DONTCOPY (FNS ...) (PROP
...)} would produce (DECLARE: EVAL@COMPILE DONTCOPY
(DEFINEQ ..•) (PUTPROPS ... ». DECLARE: is defined as an
nlambda nospread function, which processes its arguments by
evaluating or not evaluating each expression depending on the
setting of internal state variables. The initial setting is to
evaluate, but this can be overridden by specifying the
DONTEVAL@LOAD tag.

DECLARE: expressions are specially processed by the compiler.
For the purposes of compilation, DECLARE: has two principal
applications: (1) to specify forms that are to be evaluated at
compile time, presumably to affect the compilation, e.g., to set
up macros; and/or (2) to indicate which expressions appeari ng in
the symbolic file are not to be copied to the output file.
(Normally, expressions are not evaluated and are copied.) Each
expression in CDR of a DECLARE: form is either
evaluated/not-evaluated and copied/not-copied depending on
the settings of two internal state variables, initially set for copy
and not-evaluate. These state variables can be reset for the
remainder of the expressions in the DECLARE: by means of the
tags DONTCOPY, EVAL@COMPILE, etc.

The tags are:

Evaluate the following forms when the file is loaded (unless
overridden by DONTEVAL@LOAD).

Do not evaluate the following forms when the file is loaded.

This tag can be used to provide conditional evaluation. The
value of the expression immediately following the tag
determines whether or not to evaluate subsequent expressions
when loading. . .. EVAL@LOADWHEN T ... is equivalent to ...
EVAL@LOAD ...

When compiling, copy the following forms into the compiled
file.

When compiling, do not copy the following forms into the
compjlplj file.

Note: If the file package commands following DONTCOPY
include record declarations for datatypes, or records with
initialization forms, it is necessary to include a INITRECORDS file
package command (page 17.38) outside of the DONTCOPY form
so that the initialization information is copied. For example, if
FOO was defi ned as a datatype,

'741

FILE PACKAGE COMMANDS

(DECLARE: DONTCOPY (RECORDS FOO)

(lNITRECORDS FOO)

would copy the data type declaration for FOO, but would not
copy the whole record declaration.

COPYWHEN When compiling, if the next form evaluates to non-NIL, copy the
following forms intothe compiled file.

EVAL@COMPILE
DOEVAL@COMPILE When compiling, evaluate the following forms.

DONTEVAL@COMPILE When compiling, qo not evaluate the following forms.

EVAL@COMPILEWHEN When compiling, if the next form evaluates to non-NIL, evaluate
the following forms.

FIRST For expressions that are to be copied to the compiled file, the tag
FIRST can be used to specify that the following expressions in the
DECLARE: are to appear at the front of the compiled file, before
anything else except the FILECREATED expressions (see page
17.51). For example, (DECLARE: COpy FIRST (P (PRINT MESS 1 T))
NOTFIRST (P (PRINT MEss2 T») will cause (PRINT MESSl T) to
appear first in the compiled file, followed by any functions, then
(PRINT MEss2 T).

NOTFIRST Reverses the effect of FIRST.

The value of DECLARETAGSLST is a list of all the tags used in
DeCLARE: expressions. If a tag not on this list appears in a
DECLARE: file package command, spelling correction is
performed using DECLARETAGSLST as a spelling list.

Note that the function LOADCOMP (page 17.8) provides a
convenient way of obtaining information from the DECLARE:
expressions in a file, without reading in the entire file. This
information may be used for compiling other files.

(BLOCKS BLOCK 1 ... BLOCKN) [File Package Command]

For each BLOCKj, writes a DECLARE: expression which the block

compile functions interpret as a block declaration. See page
18.17.

17.9.6 Exporting Definitions

17.42

When building a large system in Interlisp, it is often the case that
there are record definitions, macros and the like that are needed
by several different system files when running, analyzing and
compiling the source code of the system, but which are not
needed for running the compiled code. By using the DECLARE:
file package command with tag DONTCOPY (page 17.40), these
definitions can be kept out of the compiled files, and hence out
of the system constructed by loading the compiled files files into

FI LE PACKAG E

FILE PACKAGE

FILE PACKAGE COMMANDS

Interlisp. This saves loading time, space in the resulting system,
and whatever other overhead might be incurred by keeping
those definitions around, e.g., burden on the record package to
consider more possibilities in translating record acces'ses, or
conflicts between system record fields and user record fields.

However, if the implementor wants to debug or compile code in
the resulting system, the definitions are needed. And even if the
definitions had been copied to the compiled files, a similar
problem arises if one wants to work on system code in a regular
Interlisp environment where none of the system files had been
loaded. One could mandate that any definition needed by more
than one file in the system should reside on a distinguished file
of definitions, to be loaded into any environment where the
system files are worked on. Unfortunately, this would keep the
definitions away from where they logically belong. The EXPORT
mechanism is designed to solve this problem.

To use the mechanism, the implementor identifies any
definitions needed by files other than the one in which the
definitions reside, and wraps the corresponding file package
commands in the EXPORT file package command. Thereafter,
GATHEREXPORTS can be used to make a single file containing all
the exports.

(EXPORT COMf '" COMN) [File Package Command]

This command is used for" exporting" definitions.. Like COM,
each of the commands COM1 ... COMN is interpreted as a file

package command. The commands are also flagged in the file as
being "exported" commands, for use with GATHEREXPORTS (see
page 17.43).

(GATHEREXPORTS FROMFfLES raFfLE FLG) [Function]

FROMFfLES is a list of files containing EXPORT commands.
GATHEREXPORTS extracts all the exported commands from
those files and produces a loadable file rOFfLE contai ni ng them,
If FLG = EVAL, the expressions are evaluated as they are
gathered; i.e., the exports are effectively loaded into the current
environment as well as being written to rOFfLE.

(lMPORTFILE FILE RErURNFLG) [Function]

If RErURNFLG is NIL, this loads any exported definitions from FfLE
into the current environment. If RETURNFLG is T, this returns a
list of the exported definitions (evaluable expressions) without
actually evaluating them.

(CHECKIMPORTS FILES NOASKFLG) [Function]

Checks each of the files in FILES to see if any exists ina version
newer than the one from which the exports in memory were

17.43

FILE PACKAGE COMMANDS

17.9.7 FileVars

17.44

taken (GATHEREXPORTS and IMPORTFILE note the creation
dates of the files involved), or if any file in the list has not had its
exports loaded at all. If there are any such files, the user is asked
for permission to IMPORTFILE each such file. If NOASKFLG is
non-NIL, IMPORTFILE is performed without asking.

For example, suppose file FOO contains records R1, R2, and R3,
macros BAR and BAZ, and constants CON1 and CON2. If the
definitions of R1, R2, BAR, and BAl are needed by files other
than FOO, then the file commands for FOa might contain the
command

(DECLARE: EVAL@COMPILE DONTCOPV
{EXPORT (RECORDS R1 R2)

(MACROS BAR BAZ»
(RECORDS R3)
(CONSTANTS BAl»

None of the commands inside this DECLARE: would appear on
I:OO's compiled file, but (GATHEREXPORTS '(FOO) 'MVEXPORTS)

would copy the record definitions for R1 and R2 and the macro
definitions for BAR and BAl to the file MVEXPORTS.

In each of the file package commands described above, if the
litatom * follows the command type, the form following the *,

i.e., CADDR of the command, is evaluated and its value used in
executing the command, e.g., (FNS * (APPEND FNS1 FNS2).
When this form is a litatom, e.g. (FNS * FOOFNS), we say that the
variable is a "filevar". Note that (COMS * FORM) provides a way
of computing what should be done by MAKEFILE.

Example:

(- {SETQ FOOFNS '(F001 F002 F003))
(F001 F002 F003)
(- {SETQ FOOCOMS

'((FNS * FOOFNS)
(VARS FIE)
(PROP MACRO F001 F002)
{P (MOVD 'F001 'FIE1»]

(- (MAKEFILE 'FOO)

would create a file FOO containing:

(FILECREATED "time and date the file was made" . "other
information")
(PRETIVCOMPRINT FOOCOMS)
(RPAQQ FOOCOMS {(FNS * FOOFNS) ...)
{RPAQQ FOOFNS (F001 F003 F003»

FI LE PACKAG E

FILE PACKAGE COMMANDS

(DEFINEQ "definitions ofF001, F002, and F003")
(RPAQQ FIE "value of FIE")
(PUTPROPS F001 MACRO PROPVALUE)
(PUTPROPS F002 MACRO PROPVALUE)
(MOVD (QUOTE F001) (QUOTE FIE1»
STOP

Note: For the PROP and IFPROP commands (page 17.37), the *
follows the property name instead of the command, e.g., (PROP
MACRO * FOOMACROS). Also, in the form (* * comment ...), the
word comment is not treated as a filevar.

17.9.8 Defining New File Package Commands

MACRO

ADD

FILE PACKAGE

A file package command is defined by specifying the values of
certain properties. The user can specify the various attributes of
a file package command for a new command, or respecify them
for an existing command. The following properties are used:

[File Package Command Property]

Defines how to dump the file package command. Used by
MAKEFILE. Value is a pair (ARGS . COMS). The 01 arguments 01 to

the file package command are substituted for ARGS throughout
COMS, and the result treated as a list of file package commands.
For example, following (FILEPKGCOM 'FOO 'MACRO '«X Y) .
COMS», the file package command (FOO A B) will cause A to be
substituted for X and B for Y throughout COMS, and then COMS
treated as a list of commands.

The substitution is carried out by SUBPAIR (page 3.14), so that
the "argument list" for the macro can also be atomic. For
example, if (X . COMS) was used instead of «X Y) . COMS), then
the command (FOO A B) would cause (A B) to be substituted for
X throughout COMS.

Note: Filevars are evaluated before substitution. For example, if
the litatom * follows NAME in the command, CADDR of the
command is evaluated substituting in COMS.

[File Package Command Property]

Specifies how (if possible) to add an instance of an object of a
particular type to a given file package command. Used by
ADDTOFILE. Value is FN, a function of three arguments, COM, a
file package command CAR of which is EQ to COMMANDNAME,
NAME, a typed object, and TYPE, its type. FN should return T if it
(undoably) adds NAME to COM, NIL if not. If no ADD property is
specified, then the default is (1) if (CAR COM) = TYPE and (CADR
COM) = *, and (CADDR COM) is a filevar (i.e. a literal atom), add

17.45

FILE PACKAGE COMMANDS

DELETE

CONTENTS

CONTAIN

1746

NAME to the value of the filevar, or (2) if (CAR COM) = TYPE and
(CADR COM) is not *, add NAME to (CDR COM).

Actually, the function is given a fourth argument, NEAR, which if
non-NIL, means the function should try to add the item after
NEAR. See discussion of ADDTOFILES?, page 17.13.

[File Package Command Property]

Specifies how (if possible) to delete an instance of an object of a
particular type from a given file package command. Used by
DELFROMFILES. Value is FN, a function of three arguments,
COM, NAME, and TYPE, same as for ADD. FN should return T if it
(undoably) deletes NAME from COM, NIL if not. If no DELETE
property is specified, then the default is (1) (CAR COM) = TYPE

and (CADR COM) = *, and (CADDR COM) is a filevar (i.e. a literal
atom), and NAME is contained in the value of the filevar, then
remove NAME from the filevar, or (2) if (CAR COM) = TYPE and
(CADR COM) is not *, and NAME is contained in (CDR COM), then
remove NAME from (CDR COM).

If FN returns the value of ALL, it means that the command is now
"empty", and can be deleted entirely from the command list.

[File Package Command Property]

[File Package Command Property]

Determines whether an instance of an object of a given type is
contained in a given file package command. Used by WHEREIS
and INFILECOMS? Value is FN, a function of three arguments,
COM, a file package command CAR of which is EO to
COMMANDNAME, NAME, and TYPE. The interpretation of
NAME is as follows: if NAME is NIL, FN should return a list of
elements of type TYPE contained in COM. If NAME is T, FN

should return T if there are any elements of type TYPE in COM. If
NAME is an atom other than T or NIL, return T if NAME of type
TYPE is contained in COM. Finally, if NAME is a list, return a list
of those elements of type TYPE contained in COM that are also
contained in NAME.

Note that it is sufficient for the CONTENTS function to simply
return the list of items of type TYPE in command COM, i.e. it can
in fact ignore the NAME argument. The NAME argument is
supplied mainly for those situations where producing the entire
list of items involves significantly more computation or creates
more storage than simply determining whether a particular item
(or any item) of type TYPE is contained in the command.

If a CONTENTS property is specified and the corresponding
function application returns NIL and (CAR COM) = TYPE, then
the operation indicated by NAME is performed (1) on the value

FILE PACKAGE

FILE PACKAGE

FILE PACKAGE COMMANDS

of (CADDR COM), if (CADR COM) = *, otherwise (2) on (CDR

COM). In other words, by specifying a CONTENTS property that
returns NIL, e.g. the function NILL, the user specifies that a file
package command of name FOO produces objects of file
package type FOO and only objects of type FOO.

If the CONTENTS property is not provided, the command is
simply expanded according to its MACRO definition, and each
command on the resulting command list is then interrogated.

Note that if COMMANDNAME is a file package command that is
used frequently, its expansion by the various parts of the system
that need to interrogate files can result ina large num ber of
CONSes and garbage collections. By informing the file package
as to what this command actually does and does not produce via
the CONTENTS property, this expansion is avoided. For example,
suppose the user has a file package command called GRAMMARS
which dumps various property lists but no functions. The file
package could ignore this command when seeking information
about FNS.

The function FILEPKGCOM is used to define new file package
commands, or to change the properties of existing commands.
Note that it is possible to redefine the attributes of system file
package commands, such as FNS or PROPS, and to cause
unpredictable results.

(FILEPKGCOM COMMANDNAME PROP, VAL, ... PROPN VALN) [NoSpread Function]

Nospread function for defining new file package commands, or
changing properties of existing file package commands. PROP; is

one of of the property names described above; VAL; is the value

to be given that property of the file package command
COMMANDNAME. Returns COMMANDNAME.

(FILEPKGCOM COMMANDNAME PROP) returns the value of the
property PROP, without changing it.

(FILEPKGCOM COMMANDNAME) returns an alist of all of the
defined properties of COMMANDNAME, using the property
names as keys.

Note: Specifying TYPE as the litatom COM can be used to define
one file package command as a synonym of another. For
example, (FILEPKGCOM 'INITVARIABlES 'COM 'INITVARS)
defines INITVARIABLES as a synonym for the file package
command INITVARS.

1747

FUNCTIONS FOR MANIPULATING FILE COMMAND LISTS

1748

Functions for Manipulating File Command Lists

The following functions may be used to manipulate filecoms.
The argument CaMS does not have to correspond to the
filecoms for some file. For example, CaMS can be the list of
commands generated as a result of expanding a user defined file
package command.

Note: The following functions will accept a file package
command as a valid value for their TYPE argument, even if it
does not have a corresponding file package type. User-defined
file package commands are expanded as necessary.

(INFILECOMS? NAME TYPE CaMS -) [Function]

caMS is a list of file package commands, or a variable whose
value is a list of file package commands. TYPE is a file package
type. INFILECOMS? returns T if NAME of type TYPE is
.. conta i ned" in caMS.

If NAME= NIL, INFILECOMS? returns a list of all elements of type
TYPE.

If NAME = T, INFILECOMS? returns T if there are any elements of
type TYPE in CaMS.

(ADDTOFILE NAME TYPE FILE NEAR LlSTNAME) [Function]

Adds NAME of type TYPE to the file package commands for FILE.

If NEAR is given and it is the name of an item of type TYPE

already on FILE, then NAME is added to the command that
dumps NEAR. If LlSTNAME is given and is the name of a list of
items of TYPE items on FILE, then NAME is added to that list.
Uses ADDTOCOMS and MAKENEWCOM. Returns FILE.

ADDTOFILE is undoable.

(DELFROMFILES NAME TYPE FILES) [Function]

Deletes all instances of NAME of type TYPE from the filecoms for
each of the files on FILES. If FILES is a non-NIL litatom, (LIST FILES)

is used. FILES = NIL defaults to FILELST. Returns a list of files from
which NAME was actually removed. Uses DELFROMCOMS.
DELFROMFILES is undoable.

Note: Deleting a function will also remove the function from
any BLOCKS declarations in the filecoms.

(ADDTOCOMS CaMS NAME TYPE NEAR LlSTNAME) [Function]

Adds NAME as a TYPE to CaMS, a list of file package commands
or a variable whose value is a list of file package commands.
Returns NIL if ADDTOCOMS was unable to find a command
appropriate for adding NAME to CaMS. NEAR and LlSTNAME

FILE PACKAGE

FILE PACKAGE

FUNCTIONS FOR MANIPULATING FILE COMMAND LISTS

are described in the discussion of ADDTOFILE. ADDTOCOMS is

undoable.

Note that the exact algorithm for adding commands depends
the particular command itself. See discussion of the ADD
property, in the description of FILEPKGCOM, page 17.47.

Note: ADDTOCOMS will not attempt to add an item to any
command which is inside of a DECLARE: unless the user specified
a specific name via the LlSTNAME or NEAR option of
ADDTOFILES?

(DELFROMCOMS COMS NAME TYPE) [Function]

Deletes NAME as a TYPE from COMS. Returns NIL if
DELFROMCOMS was unable to modify COMS to delete NAME.

DELFROMCOMS is undoable.

(MAKENEWCOM NAME TYPE - -) [Function]

Returns a file package command for dumping NAME of type
TYPE. Uses the procedure described in the discussion of
NEWCOM, page 17.32.

(MOVETOFILE TOFILE NAME TYPE FROMFILE) [Function]

..

(FILECOMSLST FILE TYPE -)

(FILEFNSLST FILE)

(FILECOMS FILE TYPE)

(SMASHFILECOMS FILE)

Moves the definition of NAME as a TYPE from FROMFILE to
TOFILE by modifying the file commands in the appropriate way
(with DELFROMFILES and ADDTOFILE).

Note that if FROMFILE is specified, the definition will be
retrieved from that file, even if there is another definition
currently in the user's environment.

[Function]

Returns a list of all objects of type TYPE i n FILE.

[Function]

Same as (FILECOMSLST FILE 'FNS).

[Function]

Returns (PACK* FILE (OR TYPE 'COMS». Note that (FILECOMS
'FOO) returns the litatom FOOCOMS, not the value of
FOOCOMS.

[Function]

Maps down (FILECOMSLST FILE 'FILEVARS) and sets to NOBIND
all filevars (see page 17.44), i.e. any variable used in a command
of the form (COMMAND * VARIABLE). Also sets (FILECOMS FILE)

to NOBIND. Returns FILE.

'749

SYMBOLIC FILE FORMAT

17.50

Symbolic File Format

The file package manipulates symbolic files in a particular
format. This format is defined so that the information in the file
is easily readable when the file is listed, as well as being easily
manipulated by the file package functions. In general, there is
no reason for the user to manually change the contents of a
symbolic file. However, in order to allow users to extend the file
package, this section des.cribes some of the functions used to
write symbolic files, and other matters related to their format.

(PRETIVDEF PRTTYFNS PRTTYFILE PRTTYCOMS REPRINTFNS SOURCEFILE CHANGES)
(Function]

Writes a symbolic file in PRETTVPRINT format for loading, using
flLERDTBL as its read table. PRETIVDEF returns the name of the
symbolic file that was created.

I'RETTVDEF operates under a RESETLST (see page 14.24), so if an
error occurs, or a control-D is typed, all files that PRETTVDEF has
opened will be closed, the (partially complete) file being written
will be deleted, and any undoable operations executed will be
undone. The RESETLST also means that any RESETSAVEs
executed in the file package commands will also be protected.

PRTTYFNS is an optional list of function names. It is equivalent to
including (FNS * PRTTYFNS) in the file package commands in
PR TTYCO MS. PRTTYFNS is an anachronism from when
PRETTVDEF did not use a list of file package commands, and
should be specified as NIL.

PRTTYFILE is the name of the file on which the output is to be
written. If PRTTYFILE = NIL, the primary output file is used. If
PRTTYFILE is atomic the file is opened if not already open, and it
becomes the primary output file. PRTTYFILE is closed at end of
PRETTVDEF, and the primary output file is restored. Finally, if
PRTTYFILE is a list, CAR of PRTTYFILE is assumed to be the file
name, and is opened if not already open. In this case, the file is
left open at end of PRETTVDEF.

PRTTYCOMS is a list of file package commands interpreted as
described on page 17.32. If PRTTYCOMS is atom ic, its top level
value is used and an RPAQQ is written which will set that atom to
the list of commands when the file is subsequently loaded. A
PRETTVCOMPRINT expression (see below) will also be written
which informs the user of the named atom or list of commands
when the file is subsequently loaded. In addition, if any of the
functions in the file are nlambda functions, PRETTVDEF will
automatically print a DECLARE: expression suitable for
informing the compiler about these functions, in case the user
recompiles the file without having first loaded the nlambda
functions (see page 18.8).

FILE PACKAGE

FILE PACKAGE

SYMBOLIC FILE FORMAT

REPRINTFNS and SOURCEFILE are for use in conjunction with
remaking a file (see page 17.15). REPRINTFNS can be a list of
functions to be prettyprinted, or EXPRS, meaning prettyprint all
functions with EXPR definitions, or ALL meaning prettyprint all
functions either defined as EXPRs, or with EXPR properties. Note
that doing a remake with REPRINTFNS = NIL makes sense if there
have been changes in the file, but not to any of the functions,
e.g., changes to variables or property lists. SOURCEFILE is the
name of the file from which to copy the definitions for those
functions that are not going to be prettyprinted, i.e., those not
specified by REPRINTFNS. SOURCEFILE = T means to use most
recent version (i.e., highest number) of PRTTYFILE, the second
argument to PRETTYDEF. If SOURCEFILE cannot be found,
PRETTYDEF prints the message "FILE NOT FOUND, SO IT WILL BE
WRITTEN ANEW", and proceeds as it does when REPRINTFNS and
SOURCEFILE are both NIL.

PRETTYDEF calls PRETTYPRINT with its second argument
PRETTYDEFLG = T, so whenever PRETTYPRINT starts a new
function, it prints (on the terminal) the name of that function if
more than 30 seconds (real time) have elapsed since the last time
it printed the name of a function.

Note that normally if PRETTYPRINT is given a litatom which is not
defined as a function but is known to be on one of the files
noticed by the file package, PRETTYPRINT will load in the
definition (using LOADFNS) and print it. This is not done when
PRETTYPRINT is called from PRETTYDEF.

(PRINTFNS X -) [Function]

X is a list of functions. PRINTFNS prettyprints a DEFINEQ
epression that defines the functions to the primary output
stream using the primary read table. Used by PRETTYDEF to
implement the FNS file package command.

(PRINTDATE FILE CHANGES) [Function]

Prints the FILECREATED expression at beginning of PRETTYDEF
files. CHANGES used by the file package.

(FILECREATED X) [NLambda NoSpread Function]

Prints a message (using USPXPRINT) followed by the time and
date the file was made, which is (CAR X). The message is the
value of PRETTYHEADER, initially "FILE CREATED", If
PRETTYHEADER = NIL, nothing is printed. (CDR X) contains
information about the file, e.g., full name, address of file map,
list of changed items, etc. FILECREATED also stores the time and
date the file was made on the property list of the file under the
property FILEDATES and performs other initialization for the file
package.

1751

SYMBOLIC FILE FORMAT

{PRETIVCOMPRI NT X} [NLambda Function]

Prints X (uneval uated) using LlSPXPRINT, unless

PRETIVHEADER = NIl.

PRETIVHEADER [Variable]

Value is the message printed by FILECREATED. PRETIVHEADER is
initially "FILE CREATED". If PRETIVHEADER = NIL, neither
FILECREATED nor PRETIVCOMPRINT will print anything. Thus,
setting PRETIVHEADER to NIL will result in "silent loads".
PRETIVHEADER is reset to NIL during greeting (page 12.1).

(FILECHANGES FILE TYPE) [Function]

(FllEDATE FILE -)

(LiSPSOURCEFllEP FILE)

17.11.1 Copyright Notices

17 52

Returns a list of the changed objects of file package type TYPE
from the FllECREATED expression of FILE. If TYPE = Nil, returns
an alist of all of the changes, with the file package types as the
CARs of the elements ..

[Function]

Returns the file date contained in the FllECREATED expression of
FILE.

[Function]

Returns a non-Nil value if FILE is an Interlisp source file, Nil
otherwise.

The system has a facility for automatically printing a copyright
notice near the front of files, right after the FllECREATED
expression, specifying the years it was edited and the copyright
owner. The format of the copyright notice is:

(* Copyright (e) 1981 by Foo Bars Corporation)

Once a file has a copyright notice then every version will have a
new copyright notice inserted into the file without user
intervention. (The copyright information necessary to keep the
copyright up to date is stored at the end of the file.).

Any year the file has been edited is considered a "copyright
year" and therefore kept with the copyright information. For
example, if a file has been edited in 1981,1982, and 1984, then
the copyright notice would look like:

(* Copyright (e) 1981,1982,1984 by Foo Bars Corporation)

When a file is made, if it has no copyright information, the
system will ask the user to specify the copyright owner (if
COPVRIGHTFlG = T). The user may specify one of the names

FI LE PACKAG E

COPYRIGHTFLG

SYMBOLIC FI LE FORMA T

from COPYRIGHTOWNERS, or give one of the following
responses:

(1) Type a left-square-bracket. The system wi II then prom pt for
an arbitrary string which will be used as the owner-string

(2) Type a right-square-bracket, which specifies that the user
really does not want a copyright notice.

(3) Type "NONE" which specifies that this file should never have
a copyright notice.

For example, if COPYRIGHTOWNERS has the value

«BBN "Bolt Beranek and Newman Inc. ")
(XEROX "Xerox Corporation"»

then for a new file FOO the following interaction will take place:

Do you want to Copyright FOO? Yes
Copyright owner: (user typed 7)

one of:
BBN· Bolt Beranek and Newman Inc.
XEROX· Xerox Corporation
NONE· no copyright ever for this file
[- new copyright owner·· type one line of text
] • no copyright notice for this file now

Copyright owner: BBN

Then 01 Foo Bars Corporation" in the above copyright notice
example would have been "Bolt Beranek and Newman Inc."

The following variables control the operation of the copyright
facility:

[Variable]

The value of COPYRIGHTFLG determines whether copyright
information is maintained in files. Its value is interpreted as
follows:

NIL The system will preserve old copyright information, but will not
ask the user about copyrighting new files. This is the default
value of COPYRIGHTFLG.

T When a file is made, if it has no copyright information, the
system will ask the user to specify the copyright owner.

NEVER The system will neither prompt for new copyright information
nor preserve old copyright information.

DEFAULT The value of DEFAULTCOPYRIGHTOWNER (below) is used for
putting copyright information in files that don't have any other
copyright. The prompt "Copyright owner for file xx:" will still
be printed, but the default will be filled in immediately_

FILE PACKAGE 17 53

SYMBOLIC FILE FORMAT

COPVRIGHTOWNERS [Variable]

COPVRIGHTOWNERS is a list of entries of the form (KEY

OWNERSTRING), where KEY is used as a response to ASKUSER
and OWNERSTRING is a string which is the full identification of
the owner.

DEFAULTCOPVRIGHTOWNER [Variable]

If the user does not respond in DWIMWAIT seconds to the
c:opyright query, the value of DEFAUL TCOPYRIGHTOWNER is
used.

17.11.2 Functions Used Within Source Files

1754

(RPAQ VAR VALUE)

(RPAQQ VAR VALUE)

(RPAQ? VAR VALUE)

The following functions are normally only used within symbolic
files, to set variable values, property values, etc. Most of these
have special behavior depending on file package variables.

[NLambda Function]

An nlambda function like SETQ that sets the top level binding of
VAR (unevaluated) to VALUE.

[NLambda Function]

An nlambda function like SETQQ that sets the top level binding
of VAR (unevaluated) to VALUE (unevaluated).

, [NLambda Function]

Similar to RPAQ, except that it does nothing if VAR already has a
top level value other than NOBIND. Returns VALUE if VAR is
reset, otherwise NIL.

RPAQ, RPAQQ, and RPAQ? generate errors if X is not a litatom.
All are affected by the value of DFNFLG (page 10.10). If
DFNFLG =ALLPROP (and the value of VAR is other than NOBIND),
instead of setting X, the corresponding value is stored on the
property list of VAR under the property VALUE. All are
undoable.

(ADDTOVAR VAR X, X2'" XN) [NLambda NoSpread Function]

Each Xi that is not a member of the value of VAR is added to it,

i.e. after ADDTOVAR completes, the value of VAR will be (UNION
(LIST X 1 X2 ... XN) VAR). ADDTOVAR is used by PRETIVDEF for

implementing the ADDVARS command. It performs some file
package related operations, i.e. "notices" that VAR has been
changed. Returns the atom VAR (not the value of VAR).

FI LE PACKAG E

SYMBOLIC FI LE FORMA T

[NLambda NoSpread Function]

Similar to ADDTOVAR, except that the values are added to the
end tof the list, rather than at the beginning.

(PUTPROPSATMPROPl VALl'" PROPN VALN) [NLambda NoSpread Function]

(SAVEPUT ATM PROP VAL)

17.11.3 File Maps

FILE PACKAGE

Nlambda nospread version of PUTPROP (none of the arguments
are evaluated). For i = 1 ... N, puts property PROPj, value VAL;, on

the property list of ATM. Performs some file package related
operations, i.e., "notices" that the corresponding properties
have been changed.

[Function]

Same as PUTPROP, but marks the corresponding property value
as having been changed (used by the file package).

A file map is a data structure which contains a symbolic 'map' of
the contents of a file. Currently, this consists of the begin and
end byte address (see GETFILEPTR, page 25.19) for each DEFINEQ

expression in the file, the begin and end address for each
function definition within the DEFINEQ, and the begin and end
address for each compiled function.

MAKEFILE, PRETTYDEF, LOADFNS, RECOMPILE, and numerous
other system functions depend heavily on the file map for
efficient operation. For example, the file map enables LOADFNS

to load selected function definitions simply by setting the file
pointer to the corresponding address using SETFILEPTR, and then
performing a single READ. Similarly, the file map is heavily used
by the "remake" option of MAKEFILE (page 17.15): those
function definitions that have been changed since the previous
version are prettyprinted; the rest are simply copied from the old
file to the new one, resulting in a considerable speedup.

Whenever a file is written by MAKEFILE, a file map for the new
file is built. Building the map in this case essentially comes for
free, since it requires only reading the current file pointer before
and after each definition is written or copied. However, building
the map does require that PRETTYPRINT know that it is printing
a DEFINEQ expression. For this reason, the user should never
print a DE:dNEQ expression onto a file himself, but should
instead always use the FNS file package command (page 17.34).

The file map is stored on the property list of the root name of the
file, under the property FILEMAP. In addition, MAKEFILE writes
the file map on the file itself. For cosmetic reasons, the file map
is written as the last expression in the file. However, the address
of the file map in the file is (over)written into the FILECREATED

17 55

SYMBOLIC FILE FORMAT

BUILDMAPFLG

USEMAPFLG

1756

expression that appears at the beginning of the file so that the
file map can be rapidly accessed without having to scan the
entire file. In most cases, LOAD and LOADFNS do not have to
build the file map at all, since a file map will usually appear in the
corresponding file, unless the file was written with
BUILDMAPFLG = NIL, or was written outside of Interlisp.

Currently, file maps for compiled files are not written onto the
files themselves. However, LOAD and LOADFNS will build maps
for a compiled file when it is loaded,and store it on the property
FILEMAP. Similary, LOADFNS will obtain and use the file map for

. a compiled file, when available.

The use and creation of file maps is controlled by the fall owi ng
variables:

[Variable]

Whenever a file is read by LOAD or LOADFNS, or written by
MAKEFILE, a file map is automatically built unless
BUILDMAPFLG = NIL. (BUILDMAPFLG is initially T.)

While building the map will not help the first reference to a file,
it will hel p in future references. For exam pie, if the user
performs (LOADFROM 'FOO) where FOO does not contain a file
map, the LOADFROM will be (slightly) slower than if FOO did
contain a file map, but subsequent calls to LOADFNS for this
version of FOO will be able to use the map that was built as the
result of the LOADFROM, since it will be stored on FOO's
flLEMAP property.

[Variable]

If USEMAPFLG = T (the initial setting), the functions that use file
maps will first check the FILEMAP property to see if a file map for
this file was previously obtained or built. If not, the first
expression on the file is checked to see if it is a FI LECREATED

.~xpression that also contains the address of a file map. If the file
map is not on the FILEMAP property or in the file, a file map will
be built (unless BUILDMAPFLG = NIL).

If USEMAPFLG = NIL, the FILEMAP property and the file will not
be checked for the file map. This allows the user to recover in
those cases where the file and its map for some reason do not
agree. For example, if the user uses a text editor to change a
symbolic file that contains a map (not recommended), inserting
or deleting just one character will throw that map off, The
functions which use file maps contain various integrity checks to
enable them to detect that something is wrong, and to generate
the error FILEMAP DOES NOT AGREE WITH CONTENTS OF FILE.

In such cases, the user can set USEMAPFLG to NIL, causing the
map contained in the file to be ignored, and then reexecute the
operation.

FI LE PACKAG E

TABLE OF CONTENTS

18. Compiler 18.1

18.1. Compiler Printout 18.3

18.2. Global Variables 18.4

18.3. Local Variables and Special Variables 18.5

18.4. Constants 18.7

18.5. Compiling Function Calls 18.8

18.6. FUNCTION and Functional Arguments 18.10

18.7. Open Functions 18.11

18.8. COMPILETYPELST 18.11

18.9. Compiling CLISP 18.11

18.10. Compiler Functions 18.13

18.11. Block Compiling 18.17

18.11.1. Block Declarations 18.17

18.11.2. Block Compiling Functions 18.20

18.12. Compiler Error Messages 18.22

TABLE OF CONTENTS Toe1

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

COMPILER

LISTING?

1

2

VES

NO

FILE:

REDEFINE?

18. COMPILER

The compiler is contained in the standard Interlisp system. It may
be used to compile functions defined in the user's Interlisp
system, or to compile definitions stored in a file. The resulting
compiled code may be stored as it is compited, so as to be
available for immediate use, or it may be written onto a file for
subsequent loading.

The most common way to use the compiler is to use one of the
file package functions, such as MAKEFILE (page 17.10), which
automatically updates source files, and produces compiled
versions. However, it is also possible to compile individual
functions defined in the user's Interlisp system, by directly calling
the compiler using functions such as COMPILE (page 18.14). No
matter how the. compiler is called, the function COMPSET is
called which asks the user certain questions concerning the
compilation. (COMPSET sets the free variables LAPFLG, STRF,
SVFLG, LCFIL and LSTFIL which determine various modes of
operation.) Those that can be answered "yes" or "no" can be
answered with VES, V, or T for "yes"; and NO, N, or NIL for "no".
The questions are:

This asks whether to generate a listing of the compiled code.
The LAP and machine code are usually not of interest but can be
helpful in debugging macros. Possible answers are:

Prints output of pass 1, the LAP macro code.

Prints output of pass 2, the machine code.

Prints output of both passes.

Prints no listings.

The variable LAPFLG is set to the answer.

This question (which only appears if the answer to LISTING? is
affirmative) ask where the compiled code listing(s) should be
written. Answering T will print the listings at the terminal. The
variable LSTFIL is set to the answer.

This question asks whether the functions compiled should be
redefined to their compiled definitions. If this is answered VES,
the compiled code is stored and the function definition changed,
otherwise the function definition remains unchanged.

Note: The compiler does NOT respect the value of DFNFLG (page
10.10) when it redefines functions to their compiled definitions.
Therefore, if you set DFNFLG to PROP to completely avoid

181

COMPILER

18.2

SAVE EXPRS?

OUTPUT FILE?

inadvertantly redefining something in your running system, you
MUST not answer YES to this question.

The variable STRF is set to T (if this is answered YES) or NIL.

This question asks whether the original defining EXPRs of
functions should be saved. If answered YES, then before
redefining a function to its compiled definition, the EXPR
definition is saved on the property list of the function name.
Otherwise they are discarded.

It is very useful to save the EXPR definitions, just in case the
compiled function needs to be changed. The editing functions
will retrieve this saved definition if it exists, rather than reading
from a source file. .

The variable SVFLG is set to T (if this is answered YES) or NIL.

This question asks whether (and where) the compiled definitions
should be written into a file for later loading. If you answer with
the name of a file, that file will be used. If you answer Y or YES,
you will be asked the name of the file. If the file named is
already open, it will continue to be used. If you answer T or TTY:,
the output will be typed on the teletype (~ot particularly useful).
If you answer N, NO, or NIL, output will not be done.

The variable LCFIL is set to the name of the file.

In order to make answering these questions easier, there are four
other possible answers to the LISTING? question, which specify
common compiling modes:

S Same as last setting. Uses the same answers to compiler
questions as given for the last compi lation.

F Compile to File, without redefining functions.

ST STore new definitions, saving EXPR definitions.

STF STore new definitions; Forget EXPR definitions.

Implicit in these answers are the answers to the questions on
disposition of compiled code and EXPR definitions, so the
questions REDEFINE? and SAVE EXPRS? would not be asked if
these answers were given. OUTPUT FILE? would still be asked,
however. For example:

~OMPILE«FACT FACT1 FACT2»
LISTING? ST
OUTPUT FILE? FACT.DCOM
(FACT COMPILING)

(FACT REDEFINED)

(FACT2 REDEFINED)

COMPI LER

18.1 Compiler Printout

COMPILER

(FACT FACT1 FACT2)

+-

COMPILER

This process caused the functions FACT, FACT1, and FACT2 to be
compiled, redefined, and the compiled definitions also written
on the file FACT.DCOM for subsequent loading.

In Interlisp-D, for each function FN compiled, whether by
TCOMPL, RECOMPILE, or COMPILE, the compiler prints:

(FN(ARG1 .•• ARGN)(uses: VAR1 ..• VARN) (calls: FNI ... FNN))

The message is printed at the beginning of the second pass of
the compilation of FN. (ARGI ..• ARGN) is the list of arguments to

FN; following "uses:" are the free variables referenced or set in
FN (not including global variables); following "calls:" are the
undefined functions called within FN.

If the compilation of FN causes the generation of one or more
auxilary functions (see page 18.10), a compiler message will be
printed for these functions before the message for FN, e.g.,

(FOOA0027 (X) (uses: XX))
(FOO (A B))

When compiling a block, the compiler first prints (BLKNAME

BLKFNI BLKFN2 ...). Then the normal message is printed for the

entire block. The names of the arguments to..the block are
generated by suffixing" #" and a number to the block name,
e.g., (FOOBLOCK (FOOBLOCK#O FOOSLOCK#1)

FREE-VARIABLES). Then a message is printed for each entry to
the block.

In addition to the above output, both RECOMPILE and
BRECOMPILE print the name of each function that is being
copied from the old compiled file to the new compiled file. The
normal compiler message is printed for each function that is
actually compiled.

The compiler prints out error messages when it encounters
problems compiling a function. For example:

·····In SAl:
***** (BAl· illegal RETURN)

The above error message indicates that an "illegal RETURN"

compiler error occurred while trying to compile the function
BAl. Some compiler errors cause the compilation to terminate,
producing nothing; however, there are other compiler errors

18.3

COMPILER PRINTOUT

18 .. 2 Global Varia·bles

18.4

which do not stop compilation. The compiler error messages are
described on page 18.22.

Compiler printout and error messages go to the file COUTFllE,

initially T. COUTFllE can also be set to the name of a file opened
for output, in which case all compiler printout will go to
COUTFllE, i.e. the compiler will compile "silently." However, any
error messages will be printed to both COUTFllE as well as T.

Variables that appear on the list GlOBAlVARS, or have the
property GlOBAlVAR with value T, or are declared with the
GlOBAlVARS file package command (page 17.37), are called
global variables. Such variables are always accessed through
their top level value when they are used freely in a compiled
function. In other words, a reference to the value of a global
variable is equivalent to calling GETIOPVAl (page 2.4) on the
variable, regardless of whether or not it is bound in the current
ilccess chain. Similarly, (SETQ VARIABLE VALUE) will compile as
(SETIOPVAl (QUOTE VARIABLE) VALUE).

All system parameters, unless otherwise specified, are declared as
~Jlobal variables. Thus, rebinding these variables in a deep
bound system (like Interlisp-D) will not affect the behavior of the
system: instead, the variables must be reset to their new values,
and if they are to be restored to their original values, reset again.
For example, the user might write

(SETQ GLOBAL VARIABLE NEWVALUE)
FORM
(SETQ GLOBAL VARIABLE OLDVALUE)

Note that in this case, if an error occurred during the evaluation
of FORM, or a control-D was typed, the global variable would
not be restored to its original value. The function RESETVAR

(page 14.25) provides a convenient way of resetting global
variables in such a way that their values are restored even if an
error occurred or control-D is typed.

Note: The variables that a given function accesses as global
variables can be determined by using the function CAllS (page
19.22).

COMPILER

LOCAL VARIABLES AND SPECIAL VARIABLES

18.3 Local Variables and Special Variables

COMPILER

In normal compiled and interpreted code, all variable bindings
are accessible by lower level functions because the variable's
name is associated with its value. We call such variables special
variables, or specvars. As mentioned earlier, the block compiler
normally does not associate names with variable values. Such
unnamed variables are not access'ible from outside the function
which binds them and are therefore local to that function. We
call such unnamed variables local variables, or localvars.

The time economies of local variables can be achieved without
block compiling by use of declarations. Using local variables wi"
increase the speed of compiled code; the price is the work of
writing the necessary specvar declarations for those variables
which need to be accessed from outside the block.

LOCALVARS and SPECVARS are variables that affect compilation.
During regular compilation, SPECVARS is normally T, and
LOCALVARS is NIL or a list. This configuration causes a" variables
bound in the functions being compiled to be treated as special
except those that appear on LOCALVARS. During block
compilation, LOCALVARS is normally T and SPECVARS is NIL or a
list. All variables are then treated as local except those that
appea r on SPECVARS.

Declarations to set LOCALVARS and SPECVARS to other values,
and therefore affect how variables are treated, may be used at
several levels in the compilation process with varying scope.

(1) The declarations may be included in the filecoms of a file, by
using the LOCALVARS and SPECVARS file package commands
(page 17.37). The scope of the declaration is then the entire file:

... (LOCALVARS . T) (SPECVARS X Y) ...

(2) The declarations may be included in block declarations; the
scope is then the block, e.g.,

(BLOCKS «FOOBLOCK FOO FIE (SPECVARS. T) (LOCALVARS X»)

(3) The declarations may also appear in individual functions, or
in PROG's or LAMBDA's within a function, using the DECLARE
function. In this case, the scope of the declaration is the function
or the PROG or LAMBDA in which it appears. LOCALVARS and
SPECVARS declarations must appear immediately after the
variable list in the function, PROG, or LAMBDA, but intervening
comments are permitted. For example:

(DEFINEQ «FOO
(LAMBDA (X Y)

(DECLARE (LOCALVARS Y»
(PROG (X Y Z)

(DECLARE (LOCALVARS X»
...]

18.5

LOCAL VARIABLES AND SPECIAL VARIABLES

If the above function is compiled (non-block), the outer X will be

special, the X bound in the PROG will be local, and both bindings
of V will be local. .

Declarations for LOCALVARS and SPECVARS can be used in two
ways: either to cause variables to be treated the same whether
the function(s) are block compiled or compiled normally, or to
affect one compilation mode while not affecting the default in
the other mode. For example:

(LAMBDA (X V)
(DECLARE (SPECVARS . T))
(PROG (Z) ...]

will cause X, V, and Z to be specvars for both block and normal

compilation while

(LAMBDA (X V)
(DECLARE (SPECVARS X))
...]

will make X a specvar when block compiling, but when regular
compiling the declaration will have no effect, because the
default value of specvars would be T, and therefore both X and Y
will be specvars by default.

Although LOCALVARS and SPECVARS declarations have the
same form as other components of block declarations such as
(lINKFNS . T), their operation is somewhat different because the
two variables are not independent. (SPECVARS. T) will cause
SPECVARS to be set to T, and LOCALVARS to be set to NIL.

(SPECVARS V1 V2 ...) will have no effect if the value of
SPECVARS is T, but if it is a list (or NIL), SPECVARS will be set to
the union of its prior value and (V1 V2 ...). The operation of
L.OCALVARS is analogous. Thus, to affect both modes of
compilation one of the two (LOCALVARS or SPECVARS) must be
declared T before specifying a list for the other.

Note: The variables that a given function binds as local variables
or accesses as special variables can be determined by using the
function CALLS (page 19.22).

Note: LOCALVARS and SPECVARS declarations affect the
compilation of local variables within a function, but the
arguments to functions are always accessable as specvars. This
can be changed by re-defining the foliowing function:

(DASSEM.SAVELOCALVARS FN) [Function]

18.6

This function is called by the compiler to determine whether
argument information for FN should be written on the compiled
file for FN. If it returns NIL, the argument information is not

saved, and the function is stored with arguments U, V, W, etc
instead of the originals.

COMPILER

18.4 Constants

(CONSTANT X)

COMPILER

LOCAL VARIABLES AND SPECIAL VARIABLES

Initially, DASSEM.SAVELOCALVARS is defined to return T.
(MOVD 'NILL 'DASSEM.SAVELOCALVARS) causes the compiler to
retain no local variable or argument names. Alternatively,
DASSEM.SAVELOCALVARS could be redefined as a more
complex predicate, to allow finer discrimination.

Interlisp allows the expression of constructions which are
intended to be description of their constant values. The
following functions are used to define constant values. The
function SELECTC (page 9.7) provides a mechanism for
comparing a value to a number of constants.

[Function]

This function enables the user to define that the expression X
should be treated as a "constant" value. When CONSTANT is
interpreted, X is evaluted each time it is encountered. If the
CONSTANT form is compiled, however, the expression will be
evaluated only once.

If the value of X has a readable print name, then it will be
evaluated at compile-time, and the value will be saved as a literal
in the compiled function's definition, as if (QUOTE
VALUE-Of-EXPRESSION) had appeared instead of (CONSTANT
EXPRESSION).

If the value of X does not have a readable print name, then the
expression X itself will be saved with the function, and it will be
evaluated when the function is first loaded. The value will then
be stored in the function's literals, and will be retrieved on future
references.

If a user program needed a list of 30 NILs, the user could specify
(CONSTANT (to 30 collect NIL» instead of (QUOTE (NIL NIL ... ».
The former is more concise and displays the important parameter
much more directly than the latter.

CONSTANT can also be used to denote values that cannot be
quoted directly, such as (CONSTANT (PACK NIL», (CONSTANT
(ARRA Y 10». It is also useful to parameterize quantities that are
constant at run time but may differ at compile time, e.g.,
(CONSTANT BITSPERWORD) in a program is exactly equivalent to
36, if the variable BITSPERWORD is bound to 36 when the
CONSTANT expression is evaluated at compile time.

Whereas the function CONSTANT attempts to evaluate the
expression as soon as possible (compile-time, load-time, or

18.7

CONSTANTS

(LOADTIMECONSTANT X)

(DEFERREDCONSTANT X)

first-run-time), other options are available, using the folowing

two function:

[Function]

Similar to CONSTANT, except that the evaluation of X is deferred
until the compiled code for the containing function is loaded in.
For example, (LOADTIMECONSTANT (DATE» will return the date
the code was loaded. If LOADTIMECONSTANT is interpreted, it
merely returns the val ue of X.

[Function]

Similar to CONSTANT, except that the evaluation of X is always
deferred until the compiled function is first run.. This is useful
when the storage for the constant is excessive so that it shouldn't
be allocated until (unless) the function is actually invoked. If
DEFERREDCONSTANT is interpreted, it merely returns the value
ofX.

(CONSTANTS VARI VAR2 ... VARN) [NLambda NoSpread Function]

18.5 Compiling Function Calls

188

Defines VAR1, ... VARN (unevaluated) to be compile-time

constants. Whenever the compiler encounters a (free) reference
to one of these constants, it will compile the form (CONSTANT
VARi) instead.

If VARi is a list of the form (VAR FORM), a free reference to the

variable will compile as (CONSTANT FORM).

The compiler prints a warning if user code attempts to bind a
variable previously declared as a constant.

Constants can be saved using the CONSTANTS file package
command (page 17.37).

When compiling the call to a function, the compiler must know
the type of the function, to determine how the arguments
should be prepared (evaluated/unevaluated, spread/nospread).
There are three seperate cases: lambda, nlambda spread, and
nlambda nospread functions.

To determine which of these three cases is appropriate, the
compiler will first look for a definition among the functions in
the file that is being compiled. The function can be defined
anywhere in any of the files given as arguments to BCOMPl,
TCOMPl, BRECOMPllE or RECOMPilE. If the function is not
contained in the file, the compiler will look for other

COMPILER

NlAMA

NLAMl

LAMS

COMPllEUSERFN

COMPILER

COMPILING FUNCTION CALLS

information in the variables NLAMA, NlAMl, and lAMS, which
can be set by the user:

[Variable]

(for NLAMbda Atoms) A list of functions to be treated as
nlambda nospread functions by the compiler.

[Variable]

(for NLAMbda list) A list of functions to be treated as nlambda
spread functions by the compiler.

[Variable]

A list of functions to be treated as lam bda functions by the
compiler. Note that including functions on lAMS is only
necessary to override in-core nlambda definitions, since in the
absence of other information, the compiler assumes the function
isa lambda.

If the function is not contained in a ·file, or on the lists NlAMA,
NLAMl, or LAMS, the compiler will look for a current definition
in the Interlisp system, and use its type. If there is no current
definition, next COMPllEUSERFN is called:

[Variable]

When compiling a function call, if the function type cannot be
found by looking in files, the variables NLAMA, NLAMl, or LAMS,
or at a current definition, then if the value of COMPllEUSERFN is
not Nil, the compiler calls (the value of) COMPllEUSERFN giving
it as arguments CDR of the form and the form itself, i.e., the
compiler does (APPl V* COMPllEUSERFN (CDR FORM) FORM). If
a non-Nil value is returned, it is compiled instead of FORM. If Nil
is returned, the compiler compiles the original expression as a
call to a lambda spread that is not yet defined.

Note that COMPllEUSERFN is only called when the compiler
encounters a list CAR of which is not the name of a defined
function. The user can instruct the compiler about how to
compile other data types via COMPllETVPELST, page 18.11.

CLiSP uses COMPllEUSERFN to tell the compiler how to compile
iterative statements, IF-THEN-ELSE statements, and pattern
match constructs (See page 18.11).

If the compiler cannot determine the function type by any of the
means above, it assumes that the function is a lambda function,
and its arguments are to be evaluated.

If there are nlambda functions called from the functions being
compiled, and they are only defined in a separate file, they must

18.9

COMPILING FUNCTION CALLS

be included on NLAMA or NLAMl, or the compiler will

incorrectly assume that their arguments are to be evaluated, and
compile the calling function correspondingly. Note that this is
only necessary if the compiler does not "know" about the
function. If the function is defined at compile time, or is handled
via a macro, or is contained in the same group of files as the
functions that call it, the compiler will automatically handle calls
to that function correctly.

18.6 FUNCTION and Functional Arguments

18.10

Compiling the function FUNCTION (page 10.18) may involve
creating and compiling a seperate "auxiliary function", which
will be called at run time. An auxiliary function is named by
attaching a GENSYM (page 2.10) to the end of the name of the
function in which they appear, e.g., FOOA0003. For example,
suppose FOO is defined as (LAMBDA (X) ... (FOOl X (FUNCTION
... » ...) and compiled. When FOO is run, FOOl will be called with
two arguments, X, and FOOAOOON and FOOl will call FOOAOOON
each time it uses its functional argument.

Compiling FUNCTION will not create an auxiliary function if it is a
functional argument to a function that compiles open, such as
most of the mapping functions (MAPCAR, MAPLlST, etc.). Note
that a considerable savings in time could be achieved by making
FOOl compile open via a computed macro (page 10.21), e.g.

(PUTPROP 'FOOl 'MACRO
'(Z (LIST (SUBST (CADADR Z)

(QUOTE FN)
OEF)

(CAR Z»)

DEF is the definition of FOOl as a function of just its first
argument, and FN is the name used for its functional argument
in its definition. In this case, (FOOl X (FUNCTION ...)) would
compile as an expression, containing the argument to FUNCTION
as an open LAMBDA expression. Thus you save not only the
function call to FOOl, but also each of the function calls to its
functional argument. For example, if FOOl operates on a list of
length ten, eleven function calls will be saved. Of course, this
savings in time costs space, and the user must decide which is
more important.

COMPILER

18.7 Open Functions

18.8 COMPILETYPELST

COMPILETYPELST

18.9 Compiling CLISP

COMPILER

OPEN FUNCTIONS

When a function is called from a compiled function, a system
routine is invoked that sets up the parameter and control push
lists as necessary for variable bindings and return information. If
the amount of time spent inside the function is small, this
function calling time will be a significant percentage of the total
time required to use the function. Therefore, many "small"
functions, e.g., CAR, CDR, EQ, NOT, CONS are always compiled
"open ", i.e., they do not result in a function call. Other larger
functions such as PROG, SELECTQ, MAPC, etc. are compiled open
because they are frequently used. The user can make other
functions compile open via MACRO definitions (see page 10.21).
The user can also affect the compiled code via COMPILEUSERFN
(page 18.9) and COMPILETYPELST (page 18.11).

Most of the compiler's mechanism deals with how to handle
forms (lists) and variables (literal atoms). The user can affect the
compiler's behaviour with respect to lists and literal atoms in a
number of ways, e.g. macros, declarations, COMPILEUSERFN
(page 18.9), etc. COMPILETYPELST allows the user to tell the
compiler what to do when it encounters a data type otherthan a
list or an atom. It is the facility in the compiler that corresponds
to DEFEVAL (page 10.13) for the interpreter.

[Variable]

A list of elements of the form (TYPENAME . FUNCTION).

Whenever the compiler encounters a datum that is not a list and
not an atom (or a number) in a context where the datum is being
evaluated, the type name of the datum is looked up on
COMPILETYPELST. If an entry appears CAR of which is equal to
the type name, CDR of that entry is applied to the datum. If the
value returned by this application is not EQ to the datum, then
that value is compiled instead. If the value is EQ to the datum, or
if there is no entry on COMPILETYPELST for this type name, the
compiler simply compiles the datum as (QUOTE DATUM).

Since the compiler does not know about CLlSP, in order to
compile functions containing CLiSP constructs, the definitions

18.11

COMPILING CliSP

18.12

must first be DWIMIFYed (page 21.18). The user can automate

this process in several ways:

(1) If the variable DWIMIFYCOMPFLG is T, the compiler will
always DWIMIFY expressions before compiling them.
OWIMIFYCOMPFLG is initially NIL.

(2) If a file has the property FILETYPE with value CLiSP on its
property list, TCOMPL, BCOMPL, RECOMPILE, and BRECOMPILE
will operate as though DWIMIFYCOMPFLG is T and DWIMIFY all

caxpressions before compiling.

(3) If the function definition has a local CLiSP declaration (see
page 21.13), including a null declaration, i.e., just (CLlSP:), the
definition wi" be automatically DWIMIFYed before compiling.

Note: COMPILEUSERFN (page 18.9) is defined to call DWIMIFY
on iterative statements, IF-THEN statements, and fetch, replace,
and match expressions, i.e., any CLiSP construct which can be
recognized by its CAR of form. Thus, if the only CLiSP constructs
in a function appear inside of iterative statements, IF statements,
etc., the function does not have to be dwimified before
compiling.

If DWIMIFY is ever unsuccessful in processing a CLiSP expression,
it wi" print the error message UNABLE TO DWIMIFY followed by
the expression, and go into a break unless DWIMESSGAG = T. In
this case, the expression is just compiled as is, i.e. as though CLiSP
had not been enabled. The user can exit the break in several
different ways: (1) type OK to the break, which will cause the
compiler to try again, e.g. the user could define some missing
I"ecords while in the break, and then continue; or (2) type i,
which will cause the compiler to simply compile the expression as
is, i.e. as though CLiSP had not been enabled in the first place; or
(3) return an expression to be compiled in its place by using the
RETURN break command (page 14.6).

Note: TCOMPL, BCOMPL, RECOMPILE, and BRECOMPILE all scan
the entire file before doing any compiling, and take note of the
names of all functions that are defined in the file as well as the
names of all variables that are set by adding them to
NOFIXFNSLST and NOFIXVARSLST, respectively. Thus, if a
function is not currently defined, but is defined in the file being
compiled, when DWIMIFY is called before compiling, it will not
attempt to interpret the function name as CLiSP when it appears
as CAR of a form. DWIMIFY also takes into account variables that
have been declared to be LOCALVARS, or SPECVARS, either via
block declarations or DECLARE expressions in the function being
compiled, and does not attempt spelling correction on these
variables. The declaration USEDFREE may also be used to declare
variables simply used freely in a function. These variables will
also be left alone by DWIMIFY. Finally, NOSPELLFLG (page 20.13)
is reset to T when compiling functions from a file (as opposed to

COMPILER

18a 10 Compiler Functions

COMPILER

COMPILING CliSP

from their in-core definition) so as to suppress spelling
correction.

Normally, the compiler is envoked through file package
commands that keep track of the state of functions, and manage
a set of files, such as MAKEFILE (page 17.10). However, it is also
possible to explicitly call the compiler using one of a number of
functions. Functions may be compiled from in-core definitions
(via COMPILE), or from definitions in files (TCOMPL), or from a
combination of in-core and file definitions (RECOMPILE).

TCOMPL and RECOMPILE produce "compiled" files. Compiled
files usually have the same name as the symbolic file they were
made from, suffixed with DeOM (the compiled file extension is
stored as the value of the variable COMPILE.EXn. The file name
is constructed from the name field only, e.g., (TCOMPL

'<BOBROW>FOO.TEM;3) produces FOO.DCOM on the
connected directory. The version number will be the standard
default.

A "compiled file" contains ~he same expressions as the original
symbolic file, except that (1) a special FILECREATED expression
appears at the front of the file which contains information used
by the file package, and which causes the message COMPILED

ON DATE to be printed when the file is loaded (the actual string
printed is the value of COMPILEHEADER); (2) every DEFINEQ in
the symbolic file is replaced by the corresponding compiled
definitions in the compiled file; and (3) expressions following a
DONTCOPY tag inside of a DECLARE: (page 17.40) that appears
in the symbolic file are not copied to the compiled file. The
compiled definitions appear at the front of the compiled file, i.e.,
before the other expressions in the sym bolic file, regardless of
where they appear in the symbolic file. The only exceptions are
expressions that follow a FIRST tag inside of a DECLARE: (page
17.40). This "compiled" file can be loaded into any Interlisp
system with LOAD (page 17.6).

Note: When a function is compiled from its in-core definition (as
opposed to being compiled from a definition in a file), and the
function has been modified by BREAK, TRACE, BREAKIN, or
ADVISE, it is first restored to its original state, and a message is
printed out, e.g., FOO UNBROKEN. If the function is not defined
by an expr definition, the value of the function's EXPR property is
used for the compilation, if there is one. If there is no EXPR

property, and the compilation is being performed by
RECOMPILE, the definition of the function is obtained from the

18.13

COMPILER FUNCTIONS

(COMPilE X FLG)

(COMPllE1 FN DEF-)

(TCOMPl FILES)

18.14

file (using lOADFNS). Otherwise, the compiler prints (FN NOT

COMPllEABlE), and goes on to the next function.

[Function]

X is a list of functions (if atomic, (LIST X) is used). COMPilE first
asks the standard compiler questions (page 18.1), and then
compiles each function on X, using its in-core definition. Returns
x.
If compiled definitions are being written to a file, the file is
closed unless FLG = T.

[Function]

Compiles DEF, redefining FN if STRF = T (STRF is one of the
variables set by COMPSET, page 18.1). COMPIlE1 is used by
COMPilE, TCOMPl, and RECOMPilE.

If DWIMIFYCOMPFlG is T, or OEF contains a eLisP declaration,
OEF is dwimified before compiling. See page 18.11.

[Function]

TCOMPl is used to "compile files"; given a symbolic LOAD file
(e.g., one created by MAKEFllE), it produces a "compiled file".
FILES is a list of symbolic files to be compiled (if atomic, (LIST

FILES) is used). TCOMPl asks the standard compiler questions
(page 18.1), except for "OUTPUT FILE:". The output from the
compilation of each symbolic file is written on a file of the same
name suffixed with DCOM, e.g., (TCOMPl '(SYM1 SYM2))

produces two \LIes, SYM1.DCOM and SYM2.DCOM.

TCOMPl processes the files one at a time, reading in the entire
file. For each FllECREATED expression, the list of functions that
were marked as changed by the file package is noted, and the
flLECREATED expression is written onto the output file. For each
DEFINEQ expression, TCOMPl adds any nlambda functions
defined in the DEFINEQ to NlAMA or NLAMl, and adds lambda
functions to LAMS, so that calls to these functions will be
compiled correctly (see page 18.9). NLAMA, NlAMl, and LAMS

are rebound to their top level values (using RESETVAR) by all of
the compiling functions, so that any additions to these lists while
inside of these functions will not propagate outside. Expressions
beginning with DECLARE: are processed specially (see page
17.40). All other expressions are collected to be subsequently
written onto the output file.

After processing the file in this fashion, TCOMPl compiles each
function, except for those functions which appear on the list
DONTCOMPllEFNS (initially Nil), and writes the com pi led
definition onto the output file. TCOMPl then writes onto the
output file the other expressions found in the symbolic file.

COMPILER

COMPILER

COMPILER FUNCTIONS

DONTCOMPILEFNS might be used for functions that compile
open, since their definitions would be superfluous when
operating with the compiled file. Note that DONTCOMPILEFNS
can be set via block declarations (see page 18.17).

Note: If the rootname of a file has the property FILETYPE with
value CLlSP, or value a list containing CLlSP, TCOMPL rebinds
DWIMIFYCOMPFLG to T while compiling the functions on FILE, so
the compiler will DWIMIFY all expressions before compiling
them. See page 18.11.

TCOMPL returns a list of the names of the output files. All files
are properly terminated and closed. If the compilation of any
file is aborted via an error or control-D, all files are properly
closed, and the (partially complete) compiled file is deleted.

(RECOMPI LE PFILE CFILE FNS) [Function1

The purpose of RECOMPILE is to allow the user to update a
compiled file without recompiling every function in the file.
RECOMPILE does this by using the results of a previous
compilation. It produces a compiled file similar to one that
would have been produced by TCOMPL, but at a considerable
savings in time by only compiling selected functions, and copying
the compiled definitions for the remainder of the functions in
the file from an earlier TCOMPL or RECOMPILE file.

PFILE is the name of the Pretty file (source file) to be com pi led;
CFILE is the name of the Compiled file containing compiled
definitions that may be copied. FNS indicates which functions in
PFILE are to be recompiled, e.g., have been changed or defined
for the first time since CFILE was made. Note that PFILE, not FNS,
drives RECOMPI LE.

RECOMPILE asks the standard compiler questions (page 18.1),
except for "OUTPUT FILE:". As with TCOMPL, the output
automatically goes to PFILE.DCOM. RECOMPILE processes PFILE
the same as does TCOMPL except that DEFINEQ expressions are
not actually read into core. Instead, RECOMPILE uses the filemap
(page 17.55) to obtain a list of the functions contained in PFILE.
The filemap enables RECOMPILE to skip over the DEFINEQs in the
file by simply resetting the file pointer, so that in most cases the
scan of the symbolic file is very fast (the only processing required
is the reading of the non-DEFINEQs and the processing of the
DECLARE: expressions as with TCOMPL). A map is built if the
symbolic file does not aln:~ady contain one, for example if it was
written in an earlier system, or with BUILDMAPFLG = NIL (page
17.56).

After this initial scan of PFILE, RECOMPILE then processes the
functions defined in the file. For each function in PFILE,
RECOMPILE determines whether or not the function is to be
(re)compiled. Functions that are members of DONTCOMPILEFNS

18.15

COMPILER FUNCTIONS

1816

are simply ignored. Otherwise, a function is recompiled if (1) FNS

is a list and the function is a member of that list; or (2) FNS = Tor
EXPRS and the function is defined by an expr definition; or (3)
PNS = CHANGES and the function is marked as having been
changed in the FILECREATED expression in PFILE; or (4)
FNS=ALL. If a function is not to be recompiled, RECOMPILE
()btains its compiled definition from CFILE, and copies it (and all
generated subfunctions) to the output file, PFILE.DCOM. If the
function does not appear on CFILE, RECOMPILE simply
recompiles it. Finally, after processing all functions, RECOMPILE
writes out all other expressions that were collected in the
prescan of PFILE.

Note: If FNS = ALL, CFILE is superfluous, and does not have to be
specified. This option may be used to compile a symbolic file that
has never been compiled before, but which has already been
loaded (since using TCOMPL would require reading the file ina
second time).

If CFILE = NIL, PFILE.DCOM (the old version of the output file) is
used for copying from. If both FNS and CFILE are NIL, FNS is set to
the value of RECOMPILEDEFAUL T, which is initially CHANGES.
Thus the user can perform his edits, dump the file, and then
simply (RECOMPILE 'FILE) to update the compiled file.

The value of RECOMPILE is the file name of the new compiled
file, PFILE.DCOM. If RECOMPILE is aborted due to an error or
control-D, the new (partially complete) compiled file will be
closed and deleted.

RECOMPILE is designed to allow the user to conveniently and
efficiently update a compiled file, even when the corresponding
symbolic file has not been (completely) loaded. For example, the
user can perform a LOADFROM (page 17.8) to "notice" a
symbolic file, edit the functions he wants to change (the editor
will automatically load those functions not already loaded), call
MAKEFILE (page 17.10) to update the symbolic file (MAKEFILE
will copy the unchanged functions from the old symbolic file),
and then perform (RECOMPILE PFILE).

Note: Since PRETTYDEF automatically outputs a suitable
DECLARE: expression to indicate which functions in the file (if
any) are defined as NLAMBDAs, calls to these functions will be
handled correctly, even though the NLAMBDA functions
themselves may never be loaded, or even looked at, by
RECOMPILE.

COMPILER

18.11 Block Compiling

18.11.1 Block Declarations

COMPILER

BLOCK COMPILING

In Interlisp-10, block compiling provides a way of compiling
several functions into a single block. Function calls between the
component functions of the block are very fast. Thus, compiling
a block consisting of just a single recursive function may be yield
great savings if the function calls itself many times. The output
of a block compilation is a single, usually large, function. Calls
from within the block to functions outside of the block look like
regular function calls. A block can be entered via several
different functions, called entries. These must be specified when
the block is compiled.

In Interlisp-D, block compiling is handled somewhat differently;
block compiling provides a mechanism for hiding function names
internal to a block, but it does not provide a performance
improvement. Block compiling in Interlisp-D works by
automatically renaming the block functions with special names,
and calling these functions with the normal function-calling
mechanisms. Specifically, a function FN is renamed to
\BLOCK-NAMEIFN. For example, function FOO in block BAR is
renamed to "\BAR/FOO". Note that it is possible with this
scheme to break functions internal to a block.

Block compiling a file frequently involves giving the compiler a
lot of information about the nature and structure of the
compilation, e.g., block functions, entries, specvars, etc. To help
with this, there is the BLOCKS file package command (page
17.42), which has the form:

(BLOCKS BLOCK 1 BLOCK2 ..• BLOCKN)

where each BLOCK; is a block declaration. The BLOCKS command

outputs a DECLARE: expression, which is noticed by BCOMPL and
BRECOMPILE. BCOMPL and BRECOMPILE are sensitive to these
declarations and take the appropriate action.

Note: Masterscope (page 19.1) includes a facility for checking
the block declarations of a file or files for various anomalous
conditions, e.g. functions in block declarations which aren't on
the file(s), functions in ENTRIES not in the block, variables that
may not need to be SPECVARS because they are not used freely
below the places they are bound, etc.

A block declaration is a list of the form:

(BLKNAME BLKFN1 ... BLKFNM

(VAR 1 . VALUE 1) ..• (VARN· VALUEN»

BLKNAME is the name of a block. BLKFN1 ... BLKFNM are the

functions in the block and correspond to BLKFNS in the call to

18.17

BLOCK COMPILING

18.18

BlOCKCOMPllE. The (VARj . VALUE;) expressions indicate the

settings for variables affecting the compilation of that block. If
VALUEj is atomic, then VARj is set to VALUEj, otherwise VARj is

set to the UNION (page 3.11) of VALUEi and the current value of

the variable VARj. Also, expressions of the form (VAR * FORM)

will cause FORM to be evaluated and the resulting list used as
described above (e.g. (GlOBAlVARS * MYGlOBAlVARS)).

For example, consider the block declaration below. The block
name is EDITBlOCK, it includes a number of functions (EDITlO,
EDlTl1, ... EDITH), and it sets the variables ENTRIES, SPECVARS,
RETFNS, and GlOBAlVARS.

(EDITBlOCK
EDITlO EDITl1 UNDOEDITl EDITCOM EDITCOMA
EDITMAC EDITCOMS EDIT]UNDO UNDOEDITCOM EDITH
(ENTRIES EDITlO ## UNDOEDITl)
(SPECVARS l COM lCFlG #1 #2 #3 lISPXBUFS)
(RETFNS EDITlO)
(GlOBAlVARS EDITCOMSA EDITCOMSL EDITOPS))

Whenever BCOMPL or BRECOMPILE encounter a block
declaration, they rebind RETFNS, SPECVARS, GlOBALVARS,
BlKlIBRARY, and DONTCOMPILEFNS to their top level values,
bind BLKAPPLYFNS and ENTRIES to NIL, and bind BLKNAME to
the first element of the declaration. They then scan the rest of
the declaration, setting these variables as described above.
When the declaration is exhausted, the block compiler is called
and given BLKNAME, the list of block functions, and ENTRIES.

If a function appears in a block declaration, but is not defined in
one of the files, then if it has an in-core definition, this definition
i~) used and a message printed NOT ON FILE, COMPILING IN CORE
[)EFINITION. Otherwise, the message NOT COMPILEABlE, is
printed and the block declaration processed as though the
function were not on it, i.e. calls to the function will be compiled
as external function calls.

Note that since all compiler variables are rebound for each block
declaration, the declaration only has to set those variables it
wants changed. Furthermore, setting a variable in one
declaration has no effect on the variable's value for another
declaration.

After finishing all blocks, BCOMPL and BRECOMPILE treat any
functions ir. +,e file that did not appear in a block declaration in
the same way as do TCOMPL and RECOMPILE. If the user wishes
a function compiled separately as well as in a block, or if he
wishes to compile some functions (not blockcompile), with some
compiler variables changed, he can use a special pseudo-block
declaration of the form

COMPI LER

RETFNS

BLKAPPL YFNS

BLKAPPL YFNS

COMPILER

BLOCK COMPILING

which means that BLKFN1 ... BLKFNM should be compiled after

first setting VAR1 ... VARN as described above.

The following variables control other aspects of compiling a
block:

[Variable]

Value is a list of internal block functions whose names must
appear on the stack, e.g., if the function is to be returned from
RETFROM, RETTO, RETEVAL, etc. Usually, internal calls between
functions ina block are not put on the stack.

[Variable]

Value is a list of internal block functions called by other functions
in the same block using BLKAPPLY or BLKAPPLY* for efficiency
reasons.

Normally, a call to APPLY from inside a block would be the same
as a call to any other function outside of the block. If the first
argument to APPLY turned out to be one of the entries to the
block, the block would have to be reentered. BLKAPPLYFNS

enables a program to compute the name of a function in the
block to be called next, without the overhead of leaving the
block and reentering it. This is done by including on the list
BLKAPPLYFNS those functions which will be called in this
fashion, and by using BLKAPPLY in place of APPLY, and
BLKAPPL Y* in place of APPL Y*. If BLKAPPL Y or BLKAPPL y* is
given a function not on BLKAPPL YFNS, the effect is the same as a
call to APPLY or APPLY* and no error is generated. Note
however, that BLKAPPLYFNS must be set at compile time, not
run time, and furthermore, that all functions on BLKAPPL YFNS

must be in the block, or an error is generated (at compile time),
NOT ON BLKFNS.

[Variable]

Value is a list of functions that are considered to be in the" block
library" of functions that should automatically be included in the
block if they are called within the block.

Compiling a function open via a macro provides a way of
eliminating a function call. For block compiling, the same effect
can be achieved by including the function in the block. A further
advantage is that the code for this function will appear only once
in the block, whereas when a function is compiled open, its code
appears at each place where it is called.

The block library feature provides a convenient way of including
functions in a block. It is just a convenience since the user can
always achieve the same effect by specifying the function(s) in
question as one of the block functions, provided it has an expr

18.19

BLOCK COMPILING

18.11.2 Block Compiling Fu nctions

definition at compile time. The block library feature simply
E~liminates the burden of supplying this definition.

To use the block library feature, place the names of the functions
of interest on the list BLKLIBRARY, and their expr definitions on
the property list of the functions under the property
ULKLIBRARYDEF. When the block compiler compiles a form, it
first checks to see if the function being called is one of the block
functions. If not, and the function is on BLKLIBRARY, its
definition is obtained from the property value of
BLKLIBRARYDEF, and it is automatically included as part of the
block.

There are three user level functions for block compiling,
BLOCKCOMPILE, BCOMPL, and BRECOMPILE, corresponding to
COMPILE, TCOMPL, and RECOMPILE. Note that all of the remarks
c)n macros, globalvars, compiler messages, etc., all apply equally
for block compiling. Using block declarations, the user can
intermix in a single file functions compiled normally and block
compiled functions.

(BLOCKCOMPILE BLKNAME BLKFNS ENTRIES FLG) [Function]

1820

BLKNAME is the name of a block, BLKFNS is a list of the functions
comprising the block, and ENTRIES a list of entries to the block.

Each of the entries must also be on BLKFNS or an error is
generated, NOT ON BLKFNS. If only one entry is specified, the
block name can also be one of the BLKFNS, e.g., {BLOCKCOMPILE

'IFOO '(FOO FIE FUM) '(FOO)). However, if more than one entry is
specified, an error will be generated, CAN'T BE BOTH AN ENTRY

AND THE BLOCK NAME.

If ENTRIES is NIL, (LIST BLKNAME) is used, e.g., (BLOCKCOMPILE
'COUNT '(COUNT COUNT1))

If BLKFNS is NIL, (LIST BLKNAME) is used, e.g., (BLOCKCOMPILE

'fEQUAL)

BLOCKCOMPILE asks the standard compiler questions (page
18.1), and then begins compiling. As with COMPILE, if the
compiled code is being written to a file, the file is closed unless
FIG = T. The value of BLOCKCOMPILE is a list of the entries, or if
ENTRIES = NIL, the value is BLKNAME.

The output of a call to BLOCKCOMPILE is one function definition
for BLKNAME, plus definitions for each of the functions on
ENTRIES if any. These entry functions are very short functions
which immediately call BLKNAME.

COMPILER

COMPILER

BLOCK COMPILING

(BCOMPl FILES CFILE - -) [Function]

FILES is a list of symbolic files (if atomic, (LIST FILES) is used).
BCOMPl differs from TCOMPl in that it compiles all of the files at
once, instead of one at a time, in order to permit one block to
contain functions in several files. (If you have several files to be
BCOMPled separately, you must make several calls to BCOMPl.)
Output is to CFILE if given, otherwise to a file whose name is
(CAR FILES) suffixed with DCOM. For example, {BCOMPl '(EDIT
WEOtT» produces one file, EDIT.DCOM.

BCOMPl asks the standard compiler questions (page 18.1),
except for" OUTPUT FilE:", then processes each file exactly the
same as TCOMPl (pag,e 18.14). BCOMPl next processes the block
declarations as described above. Finally, it compiles those
functions not mentioned in one of the block declarations, and
then writes out all other expressions.

If any of the files have property FllETYPE with value ClISP, or a
list containing ClISP, then DWIMIFYCOMPFLG is rebound to T for
all of the files. See page 18.11.

The value of BCOMPl is the output file (the new compiled file).
If the compilation is aborted due to an error or control-O, all files
are closed and the (partially complete) output file is deleted.

Note that it is permissible to TCOMPl files set up for BCOMPL;
the block declarations will simply have no effect. Similarly, you
can BCOMPl a file that does not contain any block declarations
and the result will be the same as having TCOMPLed it.

(BRECOMPILE FILES CFILE FNS -) [Function]

BRECOMPllE plays the same role for BCOMPL that RECOMPILE
plays for TCOMPl. Its purpose is to allow the user to update a
compiled file without requiring an entire BCOMPL.

FILES is a list of symbolic files (if atomic, (LIST FILES) is used).
CFILE is the compiled file produced by BCOMPl or a previous
BRECOMPILE that contains compiled definitions that may be
copied. The interpretation of FNS is the same as with
RECOMPilE.

BRECOMPILE asks the standard compiler questions (page 18.1),
except for "OUTPUT FILE:". As with BCOMPL, output
automatically goes to FILE.DCOM, where FILE is the first file in
FILES.

BRECOMPllE processes each file the same as RECOMPILE (page
18.15), then processes each block declaration. If any of the
functions in the block are to be recompiled, the entire block
must be (is) recompiled. Otherwise, the block is copied from
CFILE as with RECOMPILE. For pseudo-block declarations of the
form (Nil FN1 ...), all variable assignments are made, but only
those functions indicated by FNS are recompiled.

18.21

BLOCK COMPILING

.After completing the block declarations, BRECOMPllE processes
all functions that do not appear in a block declaration,
recompiling those dictated by FNS, and copying the compiled
definitions of the remaining from CFILE.

Finally, BRECOMPllE writes onto the output file the "other
expressions II collected in the initial scan of FILES.

The value of BRECOMPllE is the output file (the new compiled
file). If the compilation is aborted due to an error or control-D,
all files are closed and the (partially complete) output file is
deleted.

Ilf CFILE = Nil, the old version of FILE.DCOM is used, as with
RECOMPilE. In addition, if FNS and CFILE are both Nil, FNS is set
to the value of RECOMPIlEDEFAUl T, initially CHANGES.

18.12 Compiler Error Messages

Messages describing errors in the function being compiled are
also printed on the terminal. These messages are always
preceded by *****. Unless otherwise indicated below, the
compilation will continue.

(FN NOT ON FilE, COMPILING IN CORE DEFINITION)

(FN NOT COMPllEABlE)

(FN NOT FOUND)

(FN NOT ON BlKFNS)

From calls to BCOMPl and BRECOMPILE.

An EXPR definition for FN could not be found. In this case, no
c:ode is produced for FN, and the compiler proceeds to the next
1function to be compiled, if any.

Occurs when RECOMPilE or BRECOMPllE try to copy the
compiled definition of FN from CFILE, and cannot find it. In this
case, no code is copied and the compiler proceeds to the next
function to be compiled, if any.

FN was specified as an entry to a block, or else was on
13lKAPPl YFNS, but did not appear on the BLKFNS. In this case, no
code is produced for the entire block and the compiler proceeds
to the next function to be compiled, if any.

(FN CANIT BE BOTH AN ENTRY AND THE BLOCK NAME)
In this case, no code is produced for the entire block and the
compiler proceeds to the next function to be compiled, if any.

(BLKNAME - USED BlKAPPl Y WHEN NOT API)lICABlE)

13lKAPPl Y is used in the block BLKNAME, but there are no
13lKAPPl YFNS or ENTRIES declared for the block.

(VAR SHOULD BE A SPECVAR - USED FREELY BY FN)

18.22

While compiling a block, the compiler has already generated
code to bind VAR as a lOCALVAR, but now discovers that FN uses

COMPILER

«* ._) COMMENT USED FOR VALUE)

«FORM) • NON-ATOMIC CAR OF FORM)

«SETQ VAR EXPR _.) BAD SETQ)

(FN· USED AS ARG TO NUMBER FN?)

COMPILER ERROR MESSAGES

VAR freely. VAR should be declared a SPECVAR and the block
recom pi led.

A comment appears in a context where its value is being used,
e;g. (LIST X (* _.) V). The compiled function will run, but the

value at the point where the comment was used is undefined.

If user intended to treat the value of FORM as a function, he
should use APPL V* (page 10.12). FORM is compiled as if APPL V*
had been used.

SETQ of more than two arguments.

The value of a predicate, such as GREATERP or EQ, is used as an
argument to a function that expects numbers, such as IPLUS.

(FN· NO LONGER INTERPRETED AS FUNCTIONAL ARGUMENT)

(FN -ILLEGAL RETURN)

(TG • ILLEGAL GO)

(TG .. MUL TIPL V DEFINED TAG)

(TG· UNDEFINED TAG)

(VAR - NOT A BINDABLE VARIABLE)

(VAR VAL _ .. BAD PROG BINDING)

(TG - MUL TIPL V DEFINED TAG, LAP)

(TG - UNDEFINED TAG, LAP)

The compiler has assumed FN is the name of a function. If the
user intended to treat the value of FN as a function, APPL y*
(page 10.12) should. be used. This message is printed when FN is
not defined, and is also a local variable of the .function being
compiled.

RETURN encountered when not in PROG.

GO encountered when not in a PROG.

TG is a PROG label that is defined more than once in a single
PROG. The second definition is ignored.

TG is a PROG label that is referenced but not defined ina PROG.

VAR is NIL, T, or else not a literal atom.

Occurs when there is a prog binding of the form (VAR VAL 1 ...

VALN)'

TG is a label that was encountered twice during the second pass
of the compilation. If this error occurs with no indication of a
multiply defined tag during pass one, the tag is ina LAP macro.

TG is a label that is referenced during the second pass of
compilation and is not defined. LAP treats TG as though it were
a COREVAL, and continues the compilation.

(TG - MULTIPLY DEFINED TAG, ASSEMBLE) TG is a label that is defined more than once in an assemble form.

(TG - UNDEFINED TAG, ASSEMBLE)

(OPe OPCODE?· ASSEMBLE)

TG is a label that is referenced but not defined in an assemble
form.

OP appears as CAR of an assemble statement, and is illegal.

(NO BINARV CODE GENERATED OR LOADED FOR FN)

COMPILER

A previous error condition was sufficiently serious that binary
code for FN cannot be loaded without causing an error.

1823

COMPILER ERROR MESSAGES

[This page intentionally left blank]

18.24 COMPILER

TABLE OF CONTENTS

19. Masterscope 19.1

19.1. Command Language 19.3

19.1.1. Commands 19.4

19.1.2. Relations 19.7

19.1.3. Set Specifications 19.10

19.1.4. Set Determiners 19.13

19.1.5. Set Types 19.13

19.1.6. Conjunctions of Sets 19.14

19.2. SHOW PATHS 19.15

19.3. Error Messages 19.17

19.4. Macro Expansion 19.17

19.5. Affecting Masterscope Analysis 19.18

19.6. Data Base Updating 19.22

19.7. Masterscope Entries 19.22

19.8. Noticing Changes that Require Recompiling 19.25

19.9. Implementation Notes 19.25

TABLE OF CONTENTS TOC.l

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

MA$TERSCOPE

19. MASTERSCOPE

Masterscope is an interactive program for analyzing and cross
referencing user programs. It contains facilities for analyzing
user functions to determine what other functions are called, how
and where variables are bound, set, or referenced, as well as
which functions use particular record declarations. Masterscope
is able to analyze definitions directly from a file as well as in-core
definitions.

Masterscope maintains a database of the results of the analyses it
performs. Via a simple command language, the user may
interrogate the database, call the editor on those expressions in
functions that were analyzed which use variables or functions in
a particular way, or display the tree structure of function calls
among any set of functions.

Masterscope is interfaced with the editor and file package so
that when a function is edited or a new definition loaded in,
Masterscope knows that it must re-analyze that function.

The following sample session illustrates some of these facilities.

50+-. ANAL VZE FUNCTIONS ON RECORD

NIL

51 +-. WHO CALLS RECFIELDLOOK

(RECFIELDLOOK ACCESSDE'F ACCESSDEF2 EDITREC)

52+-. EDITWHERE ANV CALL RECFIELDLOOK

RECFIELDLOOK:

{RECFIELDLOOK (CDR V) FIELD)

tty:
5*OK

ACCESSDEF:

(RECFIELDLOOK DECLST FIELD VAR1)

6*OK

(RECFIELDLOOK USERRECLST FIELD)

7*N VAR1

8*OK

ACCESSDEF2 :

{RECFIELDLOOK (RECORD.SUBDECS TRAN) FILLD)

tty:
{RECFIELDLOOK (RECORD.SUBDECS TRAN) FJELD)

9*N {CAR TAIL]

10*OK

EDITREC:

{RECFIELDLOOK USERRECLST (CAR EDITRECX»

19.1

MASTERSCOPE

Statement 50

Statement 51

19.2

11*OK

NIL
53+-. WHO CALLS ERROR

(EDITREC)
54+-. SHOW PATHS TO RECFIELDLOOK FROM ACCESSDEF

(inverted tree)

1. RECFIELDLOOK RECFIELDLOOK

2. ACCESSDEF
3. ACCESSDEF2 ACCESSDEF2

4.
5.
NIL

ACCESSDEF
RECORDCHAIN ACCESSDEF

55+-. WHO CALLS WHO IN IFNS
RECORDSTATEMENT -- IRPLNODE
RECORDECL 1 -- INCONC, IRPLACD, IRPLNODE

RECREDECLARE1 -- IPUTHASH
UNCLlSPTRAN -- IPUTHASH,/RPLNODE2

RECORDWORD -- IRPLACA
RECORD1 -- IRPLACA,/SEITOPVAL

EDITREC -- ISEITOPVAL

The user directs that the functions on file RECORD be analyzed.
The leading period and space specify that this line is a
Masterscope command. The user may also call Masterscope
directly by typing (MASTERSCOPE). Masterscope prints a

greeting and prompts with "+-. ". Within the top-level executive

of Masterscope, the user may issue Masterscope commands,
programmer's assistant commands, (e.g., REDO, FIX), or run
programs. The user can exit from the Masterscope executive by
typing OK. The function. is defined as a nlambda nospread
function which interprets its argument as a Masterscope
command, executes the command and returns.

Masterscope prints a . whenever it (re)analyzes a function, to let
the user know what it is happening. The feedback when
Masterscope analyzes a function is controlled by the flag
MSPRINTFLG: if MSPRINTFLG is the atom".", Masterscope will

print out a period. (If an error in the function is detected, "?" is

printed instead.) If MSPRINTFLG is a number N, Masterscope will
print the name of the function it is analyzing every Nth function.
If MSPRINTFLG is NIL, Masterscope won't print anything. Initial
setting is ".". Note that the function name is printed when
Masterscope starts analyzing, and the comma is printed when it
finishes.

The user asks which functions call RECFIElDLOOK. Masterscope
responds with the list.

MASTERSCOPE

Statement 52

Statement 53

Statement 54

Statement 55

19.1 Command Language

MASTERSCOPE

MASTERSCOPE

The user asks to edit the expressions where the function
RECFIELDLOOK is called. Masterscope calls EDITF on the
functions it had analyzed that call RECFIELDLOOK, directing the
editor to the appropriate expressions. The user then edits some
of those expressions. In this example, the teletype editor is used.
If Dedit is enabled as the primary editor, it would be called to
edit the appropriate functions (see page 16.1).

Next the user asks which functions call ERROR. Since some of the

functions in the database have been changed, Masterscope
re-analyzes the changed definitions (and prints out .'s for each

function it analyzes). Masterscope responds that EDITREC is the
only analyzed function that calls ERROR.

The user asks to see a map of the ways in which RECFIELDLOOK is

called from ACCESSDEF. A tree structure of the calls is displayed.

The user then asks to see which functions call which functions in
the list IFNS. Masterscope responds with a structured printout of

these relations.

The user communicates with Masterscope using an English-like
command language, e.g., WHO CALLS PRINT. With these
commands, the user can direct that functions be analyzed,
interrogate Masterscope's database, and perform other
operations. The commands deal with sets of functions, variables,
etc., and relations between them (e.g'., call, bind). Sets
correspond to English nouns, relations to verbs.

A set of atoms can be specified in a variety of ways, either
explicitly, e.g., FUNCTIONS ON FIE specifies the atoms in
(FILEFNSLST 'FIE), or implicitly, e.g., NOT CALLING V, where the

meaning must be determined in the context of the rest of the
command. Such sets of atoms are the basic building blocks which
the command language deals with.

Masterscope also deals with relations between sets. For
example, the relation CALL relates functions and other
functions; the relations BIND and USE FREEL V relate functions
and variables. These relations are what get stored in the
Masterscope database when functions are analyzed. In addition,
Masterscope "knows" about file package conventions; CONTAIN
relates files and various types of objects (functions, variables).

Sets and relations are used (along with a few additional words)
to form sentence-like commands. For example, the command
WHO ON 'FOO USE 'X FREEL V will print out the list of functions
contained in the file FOO which use the variable X freely. The

193

COMMAND LANGUAGE

19.1.1 Commands

ANALYZE SET

REANALYZE SET

19.4

command EDIT WHERE ANY CALLS 'ERROR will call EDITF on

those functions which have previously been analyzed that
directly call ERROR, pointing at each successive expression where

the call to ERROR actually occurs.

The normal mode of communication with Masterscope is via
"commands". These are sentences in the Masterscope command
language which direct Masterscope to answer questions or
perform various operations.

Note: any command may be followed by OUTPUT FILENAME to

send output to the given file rather than the terminal, e.g. WHO
('"..ALLS WHO OUTPUT CROSSREF.

[Masterscope Command]

Analyze the functions in SET (and any functions called by them)
and include the information gathered in the database.
Masterscope will not re-analyzing a function if it thinks it already
has valid information about that function in its database. The
lJser may use the command REANALYZE (below) to force
re-analysis.

Note that whenever a function is referred to in a command as a
"subject" of one of the relations, it is automatically analyzed;
the user need not give an explicit ANALYZE command. Thus,
WHO IN MYFNS CALLS FIE will automatically analyze the

functions in MYFNS if they have not already been analyzed.

Note also that only expr definitions will be analyzed; that is,
Masterscope will not analyze compiled code. If necessary, the
definition will be DWIMIFYed before analysis. If there is no

in-core definition for a function (either in the function definition
cell or an EXPR property), Masterscope will attempt to read in
the definition from a file. Files which have been explicitly
mentioned previously in some command are searched first. If the
definition cannot be found on any of those files, Masterscope
looks among the files on FILELST for a definition. If a function is
found in this manner, Masterscope will print a message
"(reading from FILENAME)". If no definition can be found at all,
Masterscope will print a message "FN can't be analyzed". If the
function previously was known, the message" FN disappeared!"
is printed.

[Masterscope Command]

Causes Masterscope to reanalyze the functions inSET (and any
functions called by them) even if it thinks it already has valid
information in its database. For example, this would be

MASTERSCOPE

MASTERSCOPE

ERASE SET

COMMAND LANGUAG E

necessary if the user had disabled or subverted the file package,
e.g. performed PUTD's to change the definition of functions.

[Masterscope Command]

Erase all information about the functions in SET from the
database. ERASE by itself dears the entire database.

SHOW PATHS PATHOPTIONS [Masterscope Command]

SET RELA TlON SET

SETIS SET

SET ARE SET

Displays a tree of function calls. This is described on page 19.1 s.

[Masterscope Command]

[Masterscope Command]

[M astersco pe Com man d]

This command has the same format as an English sentence with a
subject (the first SEn, a verb (the RELA TlON or IS or ARE), and an
object (the second SEn. Any of the SETs within the command
may be preceded by the question determiners WHICH or WHO
(or just WHO alone). For example, WHICH FUNCTIONS CALL X

prints the list of functions that call the function X. RELA TlON
may be one of the relation words in present tense (CALL, BIND,
TEST, SMASH, etc.) or used as a passive (e.g., WHO IS CALLED BY

WHO). Other variants are allowed, e.g. WHO DOES X CALL, IS
FOO CALLED BY FIE, etc.

The interpretation of the command depends on the number of
question elements present:

(1) If there is no question element, the command is treated as an
assertion and Masterscope returns either T or NIL, depending on
whether that assertion is true. Thus, ANY IN MYFNS CALL HELP
will print T if any function in MYFNS call the function HELP, and
NIL otherwise.

(2) If there is one question element, Masterscope returns the list
of items for which the assertion would be true. For example
MYFN BINDS WHO USED FREELY BY YOURFN prints the list of

variables bound by MYFN which are also used freely by YOURFN.

(3) If there are two question elements, Masterscope will print a
doubly indexed list:

~. WHO CALLS WHO IN IFNScr

RECORDSTATEMENT -- IRPLNODE
RECORDECL 1 -- INCONC, IRPLACD, IRPLNODE
RECREDECLARE1 -- IPUTHASH
UNCLlSPTRAN -- IPUTHASH,/RPLNODE2
RECORDWORD -- IRPLACA
RECORD1 -- IRPLACA,/SETTOPVAL

195

COMMAND LANGUAGE

196

EDITREC -- ISETIOPVAL

EDIT WHERE SET RELA TlON SET f- ED/TeaMS] [Masterscope Command]

(WHERE may be omitted.) The first SET refers to a set of

functions. The EDIT command calls the editor on each expression
where the RELATION actually occurs. For example, EDIT WHERE
ANY CALL ERROR will call EDITF on each (analyzed) function

which calls ERROR stopping within a TIY: at each call to ERROR.
Currently one cannot EDIT WHERE a file which CONTAINS a

datum, nor where one function CALLS another SOMEHOW.

ED/TeaMS, if given, are a list of commands passed to EDITF to be
performed at each expression. For example, EDIT WHERE ANY
CALLS MYFN DIRECTLY - (SW 2 3) P will switch the first and

second arguments to MYFN in every call to MYFN and print the
result. EDIT WHERE ANY ON MYFILE CALL ANY NOT @ GETD will

call the editor on any expression involving a call to an undefined
function. Note that EDIT WHERE X SETS Y will point only at those

expressions where Y is actually set, and will skip over places
where Y is otherwise mentioned.

SHOW WHERE SET RELA TlON SET [Masterscope Command]

EDIT SETf- ED/TeaMS]

DESCRIBE SET

Like the EDIT command except merely prints out the expressions
without calling the editor.

[Masterscope Command]

Calls EDITF on each function in SET. ED/TeaMS, if given, will be
passed as a list of editor commands to be executed. For example
EDIT ANY CALLING FN1 - (R FN1 FN2) will replace FN1 by FN2 in

those functions that call FN1.

[Masterscope Command]

Prints out the BIND, USE FREELY and CALL information about the

functions in SET. For example, the command DESCRIBE
I)RINTARGS might print out:

I)RINTARGS[N,FLG]

binds: TEM,LST,X

calls: MSRECORDFI LE,SPACES,PRI N 1
called by: PRINTSENTENCE,MSHELP,CHECKER

This shows that PRINTARGS has two arguments, Nand FLG, binds
internally the variables TEM, LST and X, calls M';RECORDFILE,

SPACES and PRIN1 and is called by PRINTSENTENCE, MSHELP,
and CHECKER.

The user can specify additional information to be included in the
description. DESCRIBELST is a list each of whose elements is a list
containing a descriptive string and a form. The form is evaluated
(it can refer to the name of the funtion being described by the

MAsTERSCOPE

CHECK SET

FOR VARIABLE SET 1.5. TAIL

19.1.2 Relations

CALL

MASTERSCOPE

COMMAND LANGUAGE

free variable FN); if it returns a non-NIL value, the description
string is printed followed by the value. If the value is a list, its
elements are printed with commas between them. For example,
the entry ("types: It (GETRELATION FN '(USE TYPE) T) would

include a listing of the types used by each function.

[Masterscope Command]

Checks for various anomolous conditions (mainly in the compiler
declarations) for the files in SET (if SET is not given, FILELST is
used). For example, this command will warn about variables
which are bound but never referenced, functions in BLOCKS
delarations which aren't on the file containing the declaration,
functions declared as ENTRIES but not in the block, variables
which may not need to be declared SPECVARS because they are

not used freely below the places where they are bound, etc.

[Masterscope Command]

This command provides a way of combining ClISP iterative
statements with Masterscope. An iterative statement will be
constructed in which VARIABLE is iteratively assigned to each
element of SET, and then the iterative statement tail 1.5. TAIL is
executed. For example,

FOR X CALLED BY FOO WHEN CCODEP DO (PRINTOUT T X II'
(ARGUST X) T)

will print out the name and argument list of all of the com pi led
functions which are called by FOO.

A relation is specified by one of the keywords below. Some of
these "verbs" accept modifiers. For example, USE, SET, SMASH
and REFERENCE all may be modified by FREELY. The modifier

may occur anywhere within the command. If there is more than
one verb, any modifier between two verbs is assumed to modify
the first one. For example, in USING ANY FREELY OR SETIING X,

the FREELY modifies USING but not SETIING; the entire phrase is
interpreted as the set of all functions which either use any
variable freely or set the variable X, whether or not X is set freely.
Verbs can occur in the present tense (e.g., USE, CALLS, BINDS,
USES) or as present or past participles (e.g., CALLING, BOUND,

". ESTED). The relations (with their modifiers) recognized by
Masterscope are:

[Masterscope Relation]

Function F1 calls F2 if the definition of F1 contai ns a form (F2 --).
The CALL relation also includes any instance where a function

197

COMMAND LANGUAGE

CAll SOMEHOW

USE

SET

SMASH

TEST

REFERENCE

19.8

uses a name as a function, as in (APPLY (QUOTE F2) eel,

(FUNCTION F2), etc.

[Masterscope Relation]

One function calls another SOMEHOW if there is some path from
the first to the other. That is, if F1 calls F2, and F2 calls F3, then F1
(:AllS F3 SOMEHOW.

This information is not stored directly in the database; instead,
Masterscope stores only information about direct function calls,
and (re)computes the CALL SOMEHOW relation as necessary.

[Masterscope Relation]

If unmodified, the relation USE denotes variable usage in any
way; it is the union of the relations SET, SMASH, TEST, and
ItEFERENCE.

[Masterscope Relation]

A function SETs a variable if the function contains a form (SETQ
var _e), (SETQQ var _e), etc.

[Masterscope Relation]

A function SMASHes a variable if the function calls a destructive
list operation (RPlACA, RPlACD, DREMOVE, SORT, etc.) on the

value of that variable. Masterscope will also find instances
where the operation is performed on a .. part" of the val ue of the
variable; for example, if a function contains a form (RPlACA
(NTH X 3) T) it will be noted as SMASHING X.

Note that if the function contains a sequence (SETQ Y X),
(RPLACA Y T) then Y is noted as being smashed, but not X.

[Masterscope Relation]

A variable is TESTed by a function if its value is only distinguished

between Nil and non-NIl. For example, the form {COND «AND
X --) _e»~ tests the value of X.

[Masterscope Relation]

This relation includes all variable usage except for SET.

The verbs USE, SET, SMASH, TEST and REFERENCE may be
modified by the words FREELY or lOCALLY. A variable is used
FREELY if it is not bound in the function at the place of its use;
alternatively, it is used LOCALLY if the use occurs within a PROG
or LAMBDA that binds the variable.

Masterscope also distinguishes between CALL DIRECTLY and
CALL INDIRECTLY. A function is called DIRECTLY if it occurs as

MASTERSCOPE

BIND

USE AS A FIELD

FETCH

REPLACE

USE AS A RECORD

CREATE

USE AS A PROPERTY NAME

USE AS A CLiSP WORD

MASTERSCOPE

COMMAND LANGUAGE

CAR-of-form in a normal evaluation context. A function is called

INDIRECTLY if its name appears in a context which does not
imply its immediate evaluation, for example (SETQ Y (LIST
(FUNCTION Faa) 3)). The distinction is whether or not the

compiled code of the caller would contain a direct call to the
callee. Note that an occurrence of (FUNCTION Faa) as the
functional argument to one of the built-in mapping functions
which compile open is considered to be a direct call.

In addition, CALL FOR EFFECT (where the value of the function is

not used) is distinguished from CALL FOR VALUE.

[Masterscope Relation]

The BIND relation between functions and variables includes both
variables bound as function arguments and those bound in an
internal PROG or LAMBDA expression.

[Masterscope Relation]

Masterscope notes all uses of record field names within FETCH,

REPLACE or CREATE expressions.

[Masterscope Relation]

Use of a field within a FETCH expression.

[Masterscope Relation]

Use of a record field name within a REPLACE or CREATE
expressi on.

[Masterscope Relation]

Masterscope notes all uses of record names within CREATE or
TYPE? expressions. Additionally, in (fetch (Faa FIE) of X), Faa is

used as a record name.

[Masterscope Relation]

Use of a record name within a CREATE expression.

[Masterscope Relation]

Masterscope notes the property names used in GETPROP,
PUTPROP, GETLlS, etc. expressions if the name is quoted. E.g. if a
function contains a form (GETPROP X (QUOTE INTERP», then
that function USEs INTERP as a pruperty name.

[Masterscope Relation]

Masterscope notes all iterative statement operators and user
defined CLiSP words as being used as a CLiSP word.

199

COMMAND LANGUAGE

CONTAIN

DECLARE AS LOCALVAR

DECLARE AS SPECVAR

19.1.3 Set Specifications

'ATOM

19.10

[Masterscope Relation]

Files contain functions, records, and variables. This relation is not

stored in the database but is computed using the file package.

[Masterscope Relation]

[Masterscope Relation]

Masterscope notes internal "calls" to DECLARE from within

functions.

The following abbreviations are recognized: FREE = FREELY,

LOCAL = LOCALLY, PROP = PROPERTY, REF = REFERENCE. Also,
the words A, AN and NAME (after AS) are "noise" words and

may be omitted.

Note: Masterscope uses "templates" (page 19.18) to decide
which relations hold between functions and their arguments.
For example, the information that SORT SMASHes its first

argument is contained in the template for SORT. Masterscope

initially contains templates for most system functions which set
variables, test their arguments, or perform destructive
operations. The user may change existing templates or insert
new ones in Masterscope's tables via the SETIEMPLATE function
(page 19.21).

A "set" is a collection of things (functions, variables, etc.). A set is
specified by a set phrase, consisting of a determiner (e.g., ANY,

WHICH, WHO) followed by a type (e.g., FUNCTIONS, VARIABLES)

followed by a specification (e.g., IN MYFNS, @ SUBRP). The

determiner, type and specification may be used alone or in
combination. For example, ANY FUNCTIONS IN MYFNS, ANY @

SUBRP, VARIABLES IN GLOBALVARS, and WHO are all acceptable
set phrases. Set specifications are explained below:

[Masterscope Set Specification]

The simplest way to specify a set consisting of a single thing is by
the name of that thing. For example, in the command WHO

CALLS 'ERROR, the function ERROR is referred to by its name.

Although the' can be left out, to resolve possible ambiguities

names should usually be quoted; e.g., WHO CALLS 'CALLS will

return the list of functions which call the function CALLS.

MASTERSCOPE

'UST

IN EXPRESSION

@PREDICATE

LIKE ATOM

RELA TlONING SET

MASTERSCOPE

COMMAND LANGUAGE

[Masterscope Set Specification]

Sets consisting of several atoms may be specified by naming the
atoms. For example, the command WHO USES '(A B) returns the

list of functions that use the variables A or B.

[Masterscope Set Specification]

The form EXPRESSION is evaluated, and its value is treated as a
list of the elements of a set. For example, IN GLOBALVARS

specifies the list of variables in the value of the variable

GLOBALVARS.

[Masterscope Set Specification]

A set may also be specified by giving a predicate which the
elements of that set must satisfy. PREDICATE is either a function
name, a LAMBDA expression, or an expression in terms of the
variable X. The specification @ PREDICATE represents all atom

for which the value of PREDICATE is non-NIL. For example, @

EXPRP specifies all those atoms which have expr definitions; @

(STRPOSL X CLlSPCHARRA Y) specifies those atoms which contain

CLiSP characters. The universe to be searched is either
determined by the context within the command (e.g., in WHO IN

FOOFNS CALLS ANY NOT @ GETD, the predicate is only applied

to functions which are called by any functions in the list
FOOFNS), or in the extreme case, the universe defaults to the

entire set of things which have been noticed by Masterscope, as
in the command WHO IS @ EXPRP.

[Masterscope Set Specification]

ATOM may contain ESCs; it is used as a pattern to be matched (as

in the editor). For example, WHO LIKE IRS IS CALLED BY ANY

would find both IRPLACA and IRPLNODE.

A set may also be specified by giving a relation its members must
have with the members of another set:

[Masterscope Set Specification]

RELA TlONING is used here generically to mean any of the

relation words in the present partici pie form (possi bly with a
modifier), e.g., USING, SETIING, CALLING, BINDING.

RELA TlONING SET specifies the set of all objects which have that
relation with some element of SET. For example, CALLING X

specifies the set of functions which call the function X; USING
ANY IN FOOVARS FREELY specifies the set of functions which
uses freely any variable in the value of FOOVARS.

19.11

COMMAND LANGUAGE

RELA T10NED BY SET

RELA T10NED IN SET

BLOCKTYPE OF FUNCTIONS

BLOCKTYPE ON FILES

F~ELDS OF SET

KNOWN

THOSE

19.12

[Masterscope Set Specification]

[Masterscope Set Specification]

This is similar to the RELA T10NING construction. For example,
CALLED BY ANY IN FOOFNS represents the set of functions which
are called by any element of FOOFNS; USED FREELY BY ANY
CALLING ERROR is the set of variables which are used freely by

,any function which also calls the function ERROR.

[Masterscope Set Specification]

[Masterscope Set Specification]

These phrases allow the user to ask about BLOCKS declarations
on files (see page 18.17). BLOCKTYPE is one of LOCALVARS,
SPECVARS, GLOBALVARS, ENTRIES, BLKFNS, BLKAPPL YFNS, or

RETFNS.

BLOCKTYPE OF FUNCTIONS specifies the names which are
declared to be BLOCKTYPE in any blocks declaration which
contain any of FUNCTIONS (a "set" of functions). The
"functions" in FUNCTIONS can either be block names or just
functions in a block. For example, WHICH ENTRIES OF ANY
CALLING 'y BIND ANY GLOBALVARS ON 'FOO.

BLOCKTYPE ON FILES specifies all names which are declared to be
BLOCKTYPE on any of the given FILES (a "set" of files).

[Masterscope Set Specification]

SET is a set of records. This denotes the field names of those
records. For example, the command WHO USES ANY FIELDS OF

BRECORD returns the list of all functions which do a fetch or
replace with any of the field names declared in the record
declaration of BRECORD.

[Masterscope Set Specification]

The set of all functions which have been analyzed. For example,
the command WHO IS KNOWN will print out the list of functions
which have been analyzed.

[Masterscope Set Specification]

The set of things printed out by the last Masterscope question.
For ~xample, following the command WHO IS USED FREELY BY

PARSE, the user could ask WHO BINDS THOSE to find out where
those variables are bound.

MASTERSCOPE

ON PATH PATHOPTIONS

19.1.4 Set Determiners

19.1.5 Set Types

MASTERSCOPE

COMMAND LANGUAGE

[Masterscope Set Specification]

Refers to the set of functions which would be printed by the
command SHOW PATHS PATHOPTIONS. For example, IS FOa
BOUND BY ANY ON PATH TO 'PARSE tests if FOO might be

bound "above" the function PARSE. SHOW PATHS is explained
in detail on page 19.1 S.

Note: sets may also be specified with "relative clauses"
introduced by the word THAT, e.g. THE FUNCTIONS THAT BIND
"X.

Set phrases may be preceded by a determiner. A determiner is
one of the words THE, ANY, WHO or WHICH. The "question"

determiners (WHO and WHICH) are only meaningful in some of
the commands, namely those that take the form of questions.
ANY and WHO (or WHOM) can be used alone; they are

"wild-card" elements, e.g., the command WHO USES ANY
FREELY, will print out the names of all (known) functions which

use any variable freely. If the determiner is omitted, ANY is
assumed; e.g. the command WHO CALLS '(PRINT PRIN1 PRIN2)

will print the list of functions which call any of PRINT, PRlN1,

PRIN2. THE is also allowed, e.g. WHO USES THE RECORD FIELD
FIELDX.

Any set phrase has a type; that is, a set may specify either
functions, variables, files, record names, record field names or
property names. The type may be determined by the context
within the command (e.g., in CALLED BY ANY ON FOO, the set

ANY ON FOO is interpreted as meaning the functions on FOa
since only functions can be CALLED), or the type may be given
explicitly by the user (e.g., FUNCTIONS ON FIE). The following
types are recognized: FUNCTIONS, VARIABLES, FILES, PROPERTY
NAMES, RECORDS, FIELDS, I.S.0PRS. Also, the abbreviations

FNS, VARS, PROPNAMES or the singular forms FUNCTION, FN,
VARIABLE, VAR, FILE, PROPNAME, RECORD, FIELD are
recognized. Note that most of these types correspond to built-in
"file package types" (see page 17.21).

The type is used by Masterscope in a variety of ways when
interpreting the set phrase:

(1) Set types are used to disambiguate possible parsings. For
example, both commands WHO SETS ANY BOUND IN X OR USED
BY Y and WHO SETS ANY BOUND IN X OR CALLED BY Y have the

19.13

COMMAND LANGUAGE

19.1.6 Conjunctions of Sets

19.14

same general form. However, the first case is parsed as WHO

SETS ANY (BOUND BY X OR USED BY Y) since both BOUND BY X
and USED BY Y refer to variables; while the second case as WHO
SETS ANY BOUND IN (X OR CALLED BY Y), since CALLED BY Yand

X must refer to functions. Note that parentheses may be used to

~~roup phrases.

(2) The type is used to determine the modifier for USE: FOO

USES WHICH RECORDS is equivalent to FOO USES WHO AS A

RECORD FIELD.

(3) The interpretation of CONTAIN depends on the type of its
object: the command WHAT FUNCTIONS ARE CONTAINED IN

MYFILE prints the list of functions in MVFILE; WHAT RECORDS
ARE ON MYFILE prints the list of records.

(4) The implicit "universe" in which a set expression is
interpreted depends on the type: ANV VARIABLES @ GETD is

interpreted as the set of all variables which have been noticed by
Masterscope (i.e., bound or used in any function which has been
analyzed) that also have a definition. ANY FUNCTIONS @ (NEQ
(GETTOPVAL X) 'NOBIND) is interpreted as the set of all functions

which have been noticed (either analyzed or called by a function
which has been analyzed) that also have a top-level value.

Sets may be joined by the conjunctions AND and OR or preceded

by NOT to form new sets. AND is always interpreted as meaning
"intersection"; OR as "union", while NOT means "complement".

For example, the set CALLING X AND NOT CALLED BY Y specifies
the set of all functions which call the function X but are not

called by Y.

Masterscope's interpretation of AND and OR follow LISP
(onventions rather than the conventional English interpretation.
For example "calling X and V" would, in English, be interpreted
as the intersection of (CALLING X) and (CALLING Y); but

Masterscope interprets CALLING X AND Y as CALLING (,X AND
IV); which is the null set. Only sets may be joined with

(onjunctions: joining modifiers, as in USING X AS A RECORD
fiELD OR PROPERTV NAME, is not allowed; in this case, the user
must say USING X AS A RECORD FIELD OR USING X AS A
PROPERTY NAME.

As described above, the type of sets is used to disambiguate
parsings. The algorithm used is to first try to match the type of
the phrases being joined and then try to join with the longest
preceding phrase. In any case, the user may group phrases with
parentheses to specify the manner in which conjunctions should
be parsed.

MASTERSCOPE

19.2 SHOW PATHS

MASTERSCOPE

SHOW PATHS

In trying to work with large programs, the user can lose track of
the hierarchy of functions. The Masterscope SHOW PATHS
command aids the user by providing a map showing the calling
structure of a set of functions. SHOW PATHS prints out a tree

structure showing which functions call which other functions.
For example, the command SHOW PATHS FROM MSPARSE will

print out the structure of Masterscope 's parser:

1.MSPARSE MSINIT MSMARKINVALID
2. I MSINITH MSINITH
3. MSINTERPRET MSRECORDFI LE

4. I MSPRINTWORDS
5. I PARSECOMMAND GETNEXTWORD CHECKADV

6. I I PARSERELATION {a}
7. I I PARSESET {b}

8. I I PARSEOPTIONS {c}
9. I I MERGECONJ GETNEXTWORD {5}
10. I GETNEXTWORD {5}
11. I FIXUPTYPES SUBJTYPE

12. I I OBJTYPE
13. I FIXUPCONJUNCTIONS MERGECONJ {9}

14. I MATCHSCORE
15. MSPRI NTSENTENCE

-- ove rfl ow - a
16.PARSERELATION GETNEXTWORD {5}
17. CHECKADV

-- ove rfl 0 w - b
19.PARSESET PARSESET

20. GETNEXTWORD {5}
21. PARSERElATION {6}
22. SUBPARSE GETNEXTWORD {5}

-- 0 v e rfl 0 w . c
23.PARSEOPTIONS GETNEXTWORD {5}

24. PARSESET {19}

The above printout displays that the function MSPARSE calls
MSINIT, MSINTERPRET, and MSPRINTSENTENCE. MSINTERPRET
in turn calls MSRECORDFILE, MSPRINTWORDS,
PARSECOMMAND, GETNEXTWORD, FIXUPTYPES, and
FIXUPCONJUNCTIONS. The numbers in braces {} after a function

name are backward references: they indicate that the tree for
that function was expanded on a previous line. The lowercase
letters in braces are forward references: they indicate that the
tree for that function will be expanded below, since there is no
more room on the line. The vertical bar is used to keep the
output aligned.

19.15

SHOW PATHS

FROM SET

TO SET

AVOIDING SET

NOTRACESET

SEPARATE SET

19.16

Note: Loading the Browser library package modifies the SHOW

PATHS command so the command's output is displayed as an

IJndirected graph.

The SHOW PATHS command takes the form: SHOW PATHS
followed by some com bi nation of the following path options:

[Masterscope Path Option]

Display the function calls from the elements of SET.

[Masterscope Path Option]

Display the function calls leading to elements of SET. If TO is
given before FROM (or no FROM is given), the tree is "inverted"
and a message, (inverted tree) is printed to warn the user that if

FN1 appears after FN2 it is because FN1 is called by FN2.

When both FROM and TO are given, the first one indicates a set

of functions which are to be displayed while the second restricts
the paths that will be traced; i.e., the command SHOW PATHS
IFROM X TO Y will trace the elements of the set CALLED

SOMEHOW BY X AND CALLING Y SOMEHOW.

If TO is not given, TO KNOWN OR NOT @ GETD is assumed; that
is, only functions which have been analyzed or which are
undefined will be included. Note that Masterscope will analyze
a function while printing out the tree if that function has not
previously been seen and it currently has an expr definition;
thus, any function which can be analyzed will be displayed.

[Masterscope Path Option]

Do not display any function in SET. AMONG is recognized as a
synonym for AVOIDING NOT. For example, SHOW PATHS TO
!ERROR AVOIDING ON FILE2 will not display (or trace) any
function on FILE2.

[Masterscope Path Option]

Do not trace from any element of SET. NOTRACE differs from

AVOIDING in that a function which is marked NOTRACE will be
printed, but the tree beyond it will not be expanded; the
functions in an AVOIDING set will not be printed at all. For
,example, SHOW PATHS FROM ANY ON FILE1 NOTRACE ON FILE2

will display the tree of calls eminating from FILE1, but will not
expand any function on FILE2.

[Masterscope Path Option]

Give each element of SET a separate tree. Note that FROM and
TO only insure that the designated functions will be displayed.
SEPARATE can be used to guarantee that certain functions will

MASTERSCOPE

LlNELENGTH N

19.3 Error Messages

19.4 Macro Expansion

MSMACROPROPS

MASTERSCOPE

SHOW PATHS

begin new tree structures. SEPARATE functions are displayed in
the same manner as overflow lines; i.e., when one of the
functions indicated by SEPARATE is found, it is printed followed
by a forward reference (a lower-case letter in braces) and the
tree for that function is then expanded below.

[Masterscope Path Option]

Resets LINELENGTH to N before displaying the tree. The
linelength is used to determine when a part of the tree should
"overflow" and be expanded lower.

When the user gives Masterscope a command, the command is
first parsed, i.e. translated to an internal representation, and
then the internal representation is interpreted. If a command
cannot be parsed, e.g. if the user typed SHOW WHERE CALLED
BY X, the message "Sorry, I can't parse that!" is printed and an
error is generated. If the command is of the correct form but
cannot be interpreted (e.g., the command EDIT WHERE ANY
CONTAINS ANY) Masterscope will print the message" Sorry, that
isn't implemented!" and generate an error. If the command

requires that some functions having been analyzed (e.g., the
command WHO CALLS X) and the database is empty,
Masterscope will print the message "Sorry, no functions have
been analyzed!" and generate an error.

As part of analysis, Masterscope will expand the macro definition
of called functions, if they are not otherwise defined (see page
10.21). Masterscope macro expansion is controlled by the
variable MSMACROPROPS:

[Variable]

Value is an ordered list of macro-property names that
Masterscope will seard, to find a macro definition. Only the
kinds of macros that appear on MSMACROPROPS will be
expanded. All others will be treated as function calls and left
unexpanded. Initially (MACRO).

Note: MSMACROPROPS initially contains only MACRO (and not
10MACRO, DMACRO, etc.) in the theory that the

19.17

MACRO EXPANSION

machine-dependent macro definitions are more likely

"optimizers" .

Note that if you edit a macro, Masterscope will know to
reanalyze the functions which call that macro. However, if your
macro is of the "computed-macro" style, and it calls functions
which you edit, Masterscope will not notice. You must be careful
to tell masterscope to REANALYZE the appropriate functions
(e.g., if you edit FOOEXPANDER which is used to expand FOO
macros, you have to . REANALYZE ANY CALLING FOO.

19.5 Affecting Masterscope Analysis

PPE

NIL

SET

SMASH

19.18

Masterscope analyzes the expr definitions of functions and notes
in its database the relations that function has with other
functions and with variables. To perform this analysis,
Masterscope uses templates which describe the behavior of
functions. For example, the information that SORT destructively
modifies its first argument is contained in the template for SORT.

Masterscope initially contains templates for most system
functions which set variables, test their arguments, or perform
destructive operations.

A template is a list structure containing any of the following
atoms:

[in Masterscope template]

If an expression appears in this location, there is most Ii kely a
parenthesis error.

Masterscope notes this as a "call" to the function "ppe"
(lowercase). Therefore, SHOW WHERE ANY CALLS ppe will print

out all possible parenthesis errors. When Masterscope finds a
possible parenthesis error in the course of analyzing a function
definition, rather than printing the usual".", it prints out a"?"
instead.

[in Masterscope template]

The expression occuring at this location is not evaluated.

[in Masterscope template]

A variable appearing at this place is set.

[in Masterscope template]

The value of this expression is smashed.

MASTERSCOPE

TEST

PROP

FUNCTION

FUNCTIONAL

EVAL

RETURN

TESTRETURN

EFFECT

FETCH

REPLACE

MASTERSCOPE

AFFECTING MASTERSCOPE ANALYSIS

[in Masterscope template]

This expression is used as a predicate (that is, the only use of the
value of the expression is whether it is NIL or non-NIL).

[in Masterscope template]

The value of this expression is used as a property name. If the
expression is of the form (QUOTE ATOM), Masterscope will note
that ATOM is USED AS A PROPERTY NAME. For example, the

template for GETPROP is (EVAL PROP. PPE).

[in Masterscope template]

The expression at this point is used as a functional argument. For
example, the template for MAPC is (SMASH FUNCTION
FUNCTION. PPE).

[in Masterscope template]

The expression at this point is used as a functional argument.
This is like FUNCTION, except that Masterscope distinguishes
between functional arguments to functions which "compile
open" from those that do not. For the latter (e.g. SORT and

APPLY), FUNCTIONAL should be used rather tha n FUNCTION.

[in Masterscope template·]

The.expression at this location is evaluated (but not set, smashed,
tested, used as a functional argument, etc.).

[in Masterscope template]

The value of the function (of which this is the template) is the
value of this expression.

[in Masterscope template]

A combination of TEST and RETURN: If the value of the function

is non-NIL, then it is returned. Forinstance, a one-element COND
clause is this way.

[in Masterscope template]

The expression at this location is evaluated, but the value is not
used.

[in Masterscope tf?l.lplate]

An atom at this location is a field which is fetched.

[in Masterscope template]

An atom at this location is a field which is replaced.

1919

AFFECTING MASTERSCOPE ANALYSIS

RECORD

CREATE

BIND

CALL

CLiSP

.. TEMPLATE

[in Masterscope template]

An atom at this location is used as a record name.

[in Masterscope template]

An atom at this location is a record which is created.

[in Masterscope template]

An atom at this location is a variable which is bound.

[i n Masterscope template]

An atom at this location is a function which is called.

[in Masterscope template]

An atom at this location is used as a CLiSP word.

[in Masterscope template]

This atom, which can only occur as the first element of a
template, allows one to specify a template for the CAR of the

function form. If! doesn't appear, the CAR of the form is treated
as if it had a CALL specified for it. In other words, the templates
(.. EVAL) and (! CALL .. EVAL) are equivalent.

If the next atom after a ! is NIL, this specifies that the function
name should not be remembered. For example, the template for
AND is (! NIL .. TEST RETURN), which means that if you see an

"AND", don't remember it as being called. This keeps the

Masterscope database from being cluttered by too many
uninteresting relations; Masterscope also throws away relations
for COND, CAR, CDR, and a couple of others.

In addition to the above atoms which occur in templates, there
are some "special forms" which are lists keyed by their CAR.

[in Masterscope template]

Any part of a template may be preceded by the atom .. (two

periods) which specifies that the template should be repeated an
indefinite number (N) = 0) of times to fill out the expression.
For example, the template for COND might be (.. (TEST .. EFFECT
RETURN» while the template for SELECTQ is (EVAL .. (NIL ..
EFFECT RETURN) RETURN).

(BOTH TEMPLATE 1 TEMPLATE2) [in Masterscope template]

19.20

Analyze the current expression twice, using the each of the
templates in turn.

MASTERSCOPE

MASTERSCOPE

AFFECTING MASTERSCOPE ANALYSIS

(IF EXPRESSION TEMPLATE1 TEMPLATE2) [in Masterscope template]

Evaluate EXPRESSION at analysis time (the variable EXPR will be

bound to the expression which corresponds to the IF), and if the

result is non-NIL, use TEMPLATE 1, otherwise TEMPLATE2. If

EXPRESSION is a literal atom, itis APPLY'd to EXPR. For example,

{IF LlSTP (RECORD FETCH) FETCH) specifies that if the current
expression is a list, then the first element is a record name and
the second element a field name, otherwise it is a field name.

(@ EXPRFORM TEMPLATEFORM) [in Masterscope template]

(MACRO. MACRO)

function:

DREVERSE

AND

MAPCAR

COND

(GETTEMPLA TE FN)

Evaluate EXPRFORM. giving EXPR, evaluate TEMPLA TEFORM
giving TEMPLATE. Then analyze EXPR with TEMPLATE. @ lets

the user compute on the fly both a template and an expression
to analyze with it. The forms can use the variable EXPR, which is

bound to the current expression.

[in Masterscope template]

MACRO is interpreted in the same way as a macro (see page
10.21) and the resulting form is analyzed. If the template is the
atom MACRO alone, Masterscope will use the MACRO property
of the function itself. This is useful when analyzing code which
contains calls to user-defined macros. If the user changes a
macro property (e.g. by editing it) of an atom which has
template of MACRO, Masterscope will mark any function which

used that macro as needing to be reanalyzed.

Some examples of templates:

template:

(SMASH. PPE)

(! NIL TEST .. RETURN)

(EVAL FUNCTION FUNCTION)

{! NIL .. {IF CDR (TEST .. EFFECT RETURN) (TESTRETURN . PPE»)

Templates may be changed and new templates defined using the
functions:

[Function]

Returns the current template of FN.

(SETTEMPLATE FN TEMPLA TE) [Function]

Changes the template for the function FN and returns the old
value. If any functions in the database are marked as calling FN,
they will be marked as need ing re-analysis.

19.21

DATA BASE UPDATING

19.6 Data Base Updating

19.7 Masterscope Entries

Masterscope is interfaced to the editor and file package so that it
notes whenever a function has been changed, either through
editing or loading in a new definition. Whenever a command is
given which requires knowing the information about a specific
function, if that function has been noted as being changed, the
function is automatically re-analyzed before the command is
interpreted. If the command requires that all the information in
the database be consistent (e.g., the user asks WHO CALLS X)
then all functions which have been marked as changed are
re-analyzed.

(CALLS FN USEDATABASE -) [Function]

19.22

(CALLSCCODE FN --)

FN can be a function name, a definition, or a form. Note: CALLS

will also work on compiled code. CALLS returns a list of four
elements: a list of all the functions called by FN, a list of all the
variables bound in FN, a list of all the variables used freely in FN,

and a list of the variables used globally in FN. For the purpose of
CALLS, variables used freely which are on GLOBALVARS or have a

property GLOBALVAR value T are considered to be used globally.
If USEDATABASE is NIL (or FN is not a litatom), CALLS will
perform a one-time analysis of FN. Otherwise (i.e. if
USEDATABASE is non-NIL and FN a function name), CALLS will
lJse the information in Masterscope's database (FN will be
analyzed first if necessary).

[Function]

The sub-function of CALLS which analyzes compiled code.
CALLSCCODE returns a list of five elements: a list of all the
functions called via "linked" function calls (not implemented in
Interlisp-D), a list of all functions called regularly, a list of
variables bound in FN, a list of variables used freely, and a list of
variables used globally.

(FREEVARS FN USEDATABASE) [Function]

Equivalent to (CADDR (CALL..) FN USEDATABASE». Returns the
list of variables used freely within FN.

(MASTERSCOPE COMMAND-) [Function]

Top level entry to Masterscope. If COMMAND is NIL, will enter

into an executive in which the user may enter commands. If

MASTERSCOPE

MASTERSCOPE

MASTERSCOPE ENTRIES

COMMAND is not NIL, the command is interpreted and

MASTERSCOPE will return the value that would be printed by
the command. Note that only the question commands return
meaningful values.

(SETSYNONYM PHRASE MEANING -) [Function]

Defines a new synonym for Masterscope's parser. Both
OLDPHRASE and NEWPHRASE are words or lists of words;
anywhere OLDPHRASE is seen in a command, NEWPHRASE will
be substituted. For example, (SETSYNONYM 'GLOBALS '(VARS

IN GLOBALVARS OR @(GETPROP X 'GLOBALVAR))) would allow
the user to refer with the single word GLOBALS to the set of

variables which are either in GLOBAlVARS or have a
GLOBALVAR property.

The following functions are provided for users who wish to write
their own routines using Masterscope's database:

(PARSERELATION RELATION) [Function]

RELATION is a relation phrase; e.g., (PARSERELATION '(USE

FREEL V)). PARSERELA TION returns an internal representation
for RELA TlON. For use in conjunction with GETRELATION.

(GETRELATION ITEM RELA TlON INVERTED) [Function]

RELA TlON is an internal representation as returned by
PARSERELATION (if not, GETRElATION will first perform
(PARSERElATION RELATION)); ITEM is an atom. GETRELATION

returns the list of all atoms which have the given relation to
ITEM. For example, (GETRELA TION 'X '(USE FREELY)) returns the

list of variables that X uses freely. If INVERTED is T, the inverse
relation is used; e.g. (GETRELATION 'X '(USE FREELY) T) returns
the list of functions which use X freely.

If ITEM is NIL, GETRELA TION will return the list of atoms which
have RELATION with any other item; i.e., answers the question
WHO RELATIONS ANY. Note that GETRELATION does not check
to see if ITEM has been analyzed, or that other functions that
have been changed have been re-analyzed.

(TESTRELATION ITEM RELATION ITEM2INVERTED) [Function]

Equivalent to (MEMB ITEM2 (GETRELATION ITEM RELA TlON

INVERTED)), that is, tests if ITEM and ITEM2 are related via
RELA TlON. If ITEM2 is NIL, the call is equivalent to (NOT (NULL

(GETRELATION ITEM RELATION INVERTED))), i.e., TESTRELATION

tests if ITEM has the given RELA TlON with any other item.

19.23

MASTERSCOPE ENTRIES

1924

(MAPRELATION RELA TlON MAPFN) [Function]

Calls the function MAPFN on every pair of items related via ,
RELA TlON. If (NARGS MAPFN) is 1, then MAPFN is called on every
item which has the given RELA TlONto any other item.

(MSNEEDUNSAVE FNS MSG MARKCHANGEFLG) [Function]

Used to mark functions which depend on a changed record
declaration (or macro, etc.), and which must be LOADed or
UNSAVEd (see below). FNS is a list of functions to be marked,
and MSG is a string describing the records, macros, etc. on which
they depend. If MARKCHANGEFLG is non-NIL, each function in
the list is marked as needing re-analysis.

(UPDATEFN FN EVENIFVALID-) [Function]

(UPDATECHANGED)

Equivalent to the command ANALYZE 'FN; that is, UPDATEFN
will analyze FN if FN has not been analyzed before or if it has
been changed since the time it was analyzed. If EVENIFVALID is
non-NIL, UPDATEFN will re-analyze FN even if Masterscope
thinks it has a valid analysis in the database.

[Function]

Performs (UPDATEFN FN) on every function which has been
marked as changed.

(MSMARKCHANGED NAME TYPE REASON) [Function]

(DUMPDATABASE FNLSn

Mark that NAME has been changed and needs to be reanalyzed.
See MARKASCHANGED, page 17.17.

[Function]

Dumps the current Masterscope database on the current output
file in a LOADable form. If FNLST is not NIL, DUMPDATABASE

will only dump the information for the list of functions in FNLST.

The variable DATABASECOMS is initialized to «E
(DUMPDATABASE»); thus, the user may merely perform
(MAKEFILE 'DATABASE.EXTENSION) to save the current

Masterscope database. If a Masterscope database already exists
when a DATABASE file is loaded, the database on the file will be

merged with the one in core. Note that functions whose
definitions are different from their definition when the database
was made must be REANALYZEd if their new definitions are to
be noticed.

The Databasefns library package provides a more convenient
way of saving data bases along with the source files which they
correspond to.

MASTERSCOPE

NOTICING CHANGES THAT REQUIRE RECOMPILING

19.8 Noticing Changes that Require Recompiling

(U NSA VEFNS -)

19.9 Implementation Notes

MASTERSCOPE

When a record declaration, iterative statement operator or
macro is changed, and Masterscope has" noticed" a use of that
declaration or macro (i.e. it is used by some function known
about in the data base), Masterscope will alert the user about
those functions which might need to be re-compiled (e.g. they
do not currently have expr definitions). Extra functions may be
noticed; for example if FOO contains (fetch (REC X) --), and some

declaration other than REC which contains X is changed,

Masterscope will still think that FOO needs to be
loaded/unsaved. The functions which need recompiling are
added to the list MSNEEDUNSAVE and a message is printed out:

The functions FN1, FN2, ... use macros which have changed.
Call UNSAVEFNS(} to load and/or unsave them.

In this situation, the following function is useful:

[Function]

Uses LOADFNS or UNSAVEDEF to make sure that all functions in
the list MSNEEDUNSAVE have expr definitions, and then sets

MSNEEDUNSAVE to NIL.

Note: If RECOMPILEDEFAULT (page 18.16) is set to CHANGES,
UNSAVEFNS prints out "WARNING: you must set

. RECOMPILEDEFAUL T to EXPRS in order to have these functions
recompiled automatically" .

Masterscope keeps a database of the relations noticed when
functions are analyzed. The relations are intersected to form
"primitive relationships" such that there is little or no overlap of
any of the primitives. For example, the relation SeT is stored as
the union of SET LOCAL and SET FREE. The BIND relation is
divided into BIND AS ARG, BIND AND NOT USE, and seT LOCAL,

SMASH LOCAL, etc. Splitting the relations in this manner
reduces the size of the database considerably, to the point where
it is reasonable to maintain a Masterscope database for a large
system of functions during a normal debugging session.

Each primlLive relationship is stored in a pair of hash-tables, one
for the "forward" direction and one for the "reverse". For
example, there are two hash tables, USE AS PROPERTY and USED
AS PROPERTY. To retrieve the information from the database,
Masterscope performs unions of the hash-values. For example,
to answer FOO BINDS WHO Masterscope will look in all of the
tables which make up the BIND relation. The "internal

19 25

IMPLEMENTATION NOTES

19.26

representation II returned by PARSERELATION is just a list of

dotted pairs of hash-tables. To perform GETRELATION requires
only mapping down that list, doing GETHASH's on the

appropriate hash-tables and UNIONing the result.

Hash tables are used for a variety of reasons: storage space is
smaller; it is not necessary to maintain separate lists of which
functions have been analyzed (a special table, DOESN'T DO
ANYTHING is maintained for functions which neither call other
functions nor bind or use any variables); and accessing is
relatively fast. Within any of the tables, if the hash-value would
be a list of one atom, then the atom itself, rather than the list, is
stored as the hash-value. This also reduces the size of the
database significantly.

MASTERSCOPE

TABLE OF CONTENTS

20. DWIM 20.1

20.1. Spelling Correction Protocol 20.4

20.2. Parentheses Errors Protocol 20.5

20.3. Undefined Function TErrors 20.6

20.4. DWIM Operation 20.7

20.4.1. DWIM Correction: Unbound Atoms 20.8

20.4.2. Undefined CAR of Form 20.9

20.4.3. Undefined Function in APPL Y 20.10

20.5. DWIMUSERFORMS 20.11

20.6. DWIM Functions and Variables 20.13

20.7. Spelling Correction 20.15

20.7.1. Synonyms 20.16

20.7.2. Spelling Lists 20.16

20.7.3. Generators for Spelling Correction 20.19

20.7.4. Spelling Corrector Algorithm 20.19

20.7.5. Spelling Corrector Functions and Variables 20.21

TABLE OFCONTENTS TOC 1

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

DWIM

20. DWIM

A surprisingly large percentage of the errors made by Interlisp
users are of the type that could be corrected by another Lisp
programmer. without any information about the purpose of the
program or expression in question, e.g., misspellings, certain
kinds of parentheses errors, etc. To correct these types of errors
we have implemented in Interlisp a DWIM facility, short for
Do-What-I-Mean. DWIM is called automatically whenever an
error occurs in the evaluation of an Interlisp expression.
(Currently, DWIM only operates on unbound atoms and
undefined function errors.) DWIM then proceeds to try to
correct the mistake using the current context of computation
plus information about what the user had previously been
doing, (and what mistakes he had been making) as guides to the
remedy of the error. If DWIM is able to make the correction, the
computation continues as though no error had occurred.
Otherwise, the procedure is the same as though DWIM had not
intervened: a break occurs, or an unwind to the last ERRORSET
(page 14.21). The following protocol illustrates the operation of
DWIM.

For example, suppose the user defines the factorial function
(FACT N) as follows:

+-OEFINEQ«FACT (LAMBDA (N) (COND
«ZEROP NO 1) «T (ITIMS N (FACCT 9SUB1 N]
(FACT)

Note that the definition of FACT contains several mistakes:
ITIMES and FACT have been misspelled; the 0 in NO was intended
to be a right parenthesis, but the shift key was not depressed;
similarly, the 9 in 9SUB1 was intended to be a left parenthesis;

and finally, there is an extra left parenthesis in front of the T that
begins the final clause in the conditional.

+-PRETIVPRNT«FACCT]
= PRETIVPRINT
• FACT

(FACT
[LAMBDA (N)
(COND

«ZEROP NO 1)
«T (ITIMS N (FACCT 9SUB1 N])

(FACT)

20.1

DWIM

20.2

+--

After defining FACT, the user wishes to look at its definition
using PRETIYPRINT, which he unfortunately misspells. Since
there is no function PRETIYPRNT in the system, an undefined
function error occurs, and DWIM is called. DWIM invokes its
spelling corrector, which searches a list of functions frequently
used (by this user) for the best possible match. Finding one that
is extremely close, DWIM proceeds on the assumption that
PRETIYPRNT meant PRETIVPRINT, notifies the user of this, and

calls PRETIYPRINT.

At this point, PRETIVPRINT would normally print (FACCT NOT

PRINTABLE) and exit, since FACCT has no definition. Note that
this is not an Interlisp error condition, so that DWIM would not
be called as described above. However, it is obviously not what
the user meant.

This sort of mistake is corrected by having PRETIYPRINT itself
explicitly invoke the spelling corrector portion of DWIM
whenever given a function with no EXPR definition. Thus, with
the aid of DWIM PRETIYPRINT is able to determine that the user
wants to see the definition of the function FACT, and proceeds
accordingly.

+--FACT(3]
NO [IN FACT] a> N)? YES

[IN FACT] (COND a_ «T --»))- >
(COND a_ (T --))

ITIMS [IN FACT] -> ITIMES

FACCT [IN FACT] - > FACT

9SUB1 [IN FACT] -> (SUB1 ? YES

6

+-PP FACT
(fACT

[LAMBDA (N)

(COND

«ZEROP N)
1)

(T (ITIMES N (FACT (SUB1 N))

FACT

+-

The user now calls FACT. During its execution, five errors occur,
and DWIM is called five times. At each point, the error is
corrected, a message is printed describing the action taken, and
the computation is allowed to continue as if no error had
occurred. Following the last correction, 6 is printed, the value of
(FACT 3). Finally, the user prettyprints the new, now correct,
definition of FACT. -,.

In this particular example, the user was shown operating in
TRUSTING mode, which gives DWIM carte blanche for most

DWIM

DWIM

DWIM

corrections. The user can also operate in CAUTIOUS mode, in
which case DWIM will inform him of intended corrections before
they are made, and allow the user to approve or disapprove of
them. If DWIM was operating in CAUTIOUS mode in the

example above, it would proceed as follows:

+-FACT(3)
NO [IN FACT] -> N)? YES
U.D.F. T [IN FACT] FIX? YES
[IN FACT] (COND .- «T •• ») . >

(COND _. (T --»
ITIMS [IN FACT].> ITIMES? ... YES

FACCT[IN FACT]·> FACT? ... YES
9SUB1 [IN FACT] • > (SUB1 ? NO

U.B.A.
(9SUB1 BROKEN)

For most corrections, if the user does not respond in a specified
interval of time, DWIM automatically proceeds with the
correction, so that the user need intervene only when he does
not approve. Note that the user responded to the first, second,
and fifth questions; DWIM responded for him on the third and
fourth.

Note: DWIM uses ASKUSER for its interactions with the user
(page 26.12). Whenever an interaction is about to take place
and the user has typed ahead, ASKUSER types several bells to
warn the user to stop typing, then clears and saves the input
buffers, restoring them after the interaction is complete. Thus if
the user has typed ahead before a DWIM interaction, DWIM will
not confuse his type ahead with the answer to its question, nor
will his typeahead be lost. The bells are printed by the function
PRINTBEllS, which can be advised or redefined for specialized

applications, e.g. to flash the screen for a display terminal.

A great deal of effort has gone into making DWIM "smart", and
experience with a large number of users indicates that DWIM
works very well; DWIM seldom fails to correct an error the user
feels it should have, and almost never mistakenly corrects an
error. However, it is important to note that even when OWIM is

wrong, no harm is done: since an error had occurred, the user
would have had to intervene anyway if OWIM took no action.
Thus, if DWIM mistakenly corrects an error, the user simply
interrupts or aborts the computation, UNDOes the OWIM change
using UNDO (page 13.13), and makes the correction hE:' lIould
have had to make without DWIM. An exception is if OWIM's
correction mistakenly caused a destructive computation to be
initiated, and information was lost before the user could
interrupt. We have not yet had such an incident occur.

203

DWIM

(DWIMX) [Function]

Used to enable/disable DWIM. If X is the litatom C, DWIM is

enabled in CAUTIOUS mode, so that DWIM will ask the user
before making corrections. If X is T, DWIM is enabled in
"rRUSTING mode, so DWIM will make most corrections

automatically. If X is NIL, DWIM is disabled. Interlisp initially has

DWIM enabled in CAUTIOUS mode.

DWIM returns CAUTIOUS, TRUSTING or NIL, depending to what

mode it has just been put into.

For corrections to expressions typed in by the user for immediate
execution (typed into LlSPX, page 13.35), DWIM always acts as
though it were in TRUSTING mode, i.e., no approval necessary.

For certain types of corrections, e.g., run-on spelling corrections,
9-0 errors, etc., DWIM always acts like it was in CAUTIOUS mode,
and asks for approval. In either case, DWIM always informs the

user of its action as described below.

20.1 Spelling Correction Protocol

20.4

(1)

(2)

One type of error that DWIM can correct is the misspelling of a
function or a variable name. When an unbound litatom or
undefined function error occurs, DWIM tries to correct the
spelling of the bad litatom. If a litatom is found whose spelling is
"'close" tothe offender, DWIM proceeds as follows:

If the correction occurs in the typed-in expression, DWIM prints

= CORRECT-SPELLlNG,r and continues evaluating the expression.

For example:

·.-(SETQ FOO (lPLUSS 1 2»

= IPLUS
3

If the correction does not occur in type-in, DWIM pri nts

.BAD-SPELLING [IN FUNCTION-NAME] -> CORRECT-SPELLING

The appearance of • > is to call attention to the fact that the
user's function will be or has been changed.

Then, if DWIM is in TRUSTING mode, it prints a carriage return,
makes the correction, and continues the computation. If DWIM
is in CAUTIOUS mode, it prints a few spaces and? and then wait
for approval. The user then has six options:

Type Y. DWIM types es, and proceeds with the correction.

Type N. DWIM types 0, and does not make the correction.

DWIM

SPELLING CORRECTION PROTOCOL

(3) Type i. DWIM does not make the correction, and furthermore

guarantees that the error will not cause a break.

(4) Type control-E. For error correction, this has the same effect as
typing N.

(5) Do nothing. In this case DWIM waits for DWIMWAIT seconds,

and if the user has not responded, DWIM will type ... followed by
the default answer.

The default on spelling corrections is determined by the value of
the variable FIXSPELLDEFAULT, whose top level value is initia"y
V.

(6) Type space or carriage-return. In this case DWIM will wait
indefinitely. This option is intended for those cases where the
user wants to think about his answer, and wants to insure that
DWIM does not get "impatient" and answer for him.

The procedure for spelling correction on other than Interlisp
errors is analogous. If the correction is being handled as type-in,
DWIM prints :II followed by the correct spelling, and returns it to
the function that called DWIM. Otherwise, DWIM prints the
incorrect spelling, followed by the correct spelling. Then, if
DWIM if in TRUSTING mode, DWIM prints a carriage-return and

returns the correct spelling. Otherwise, DWIM prints a few
spaces and a ? and waits for approval. The user can then respond

with V, N, control-E, space, carriage return, or do nothing as

described above.

Note that the spelling corrector itself is not ERRORSET protected

like the DWIM error correction routines. Therefore, typing Nand
typing control-E may have different effects when the spelling
corrector is called directly. The former simply instructs the
spelling corrector to return NIL, and lets the calling function

decide what to do next; the latter causes an error which unwinds
to the last ERRORSET, however far back that may be.

20.2 Parentheses Errors Protocol

DWIM

When an unbound litatom or undefined error occurs, and the
offending litatom contains 9 or 0, DWIM tries to correct errors
caused by typing 9 for left parenthesis and 0 for right
parenthesis. In these cases, the interaction with the user is
similar to that for spelling correction. If the error occurs in

type-in, DWIM types = CORRECTlONcr, and continues evaluating
the expression. For example:

~SETQ FOO 91PLUS 1 2]
:II (IPLUS

3

20.5

PARENTH ESES ERRORS PROTOCOL

If the correction does not occur in type-in, DWIM prints

BAD-ATOM [IN FUNCTION-NAME] m> CORRECTION?

and then waits for approval. The user then has the same six
options as for spelling correction, except the waiting time is
3*DWIMWAIT seconds. If the user types Y, DWIM then operates
as if it were in TRUSTING mode, i.e., it makes the correction and

prints its message.

Note: Actually, DWIM uses the value of the variables lPARKEY

and RPARKEY to determine the corresponding lower case

character for left and right parentheses. lPARKEY and RPARKEY

are initially 9 and 0 respectively, but they can be reset for other
keyboard layouts, e.g., on some terminals left parenthesis is over
8, and right parenthesis is over 9.

20.3 Undefined Function TErrors

206

(COND --) (T --)

{COND -- {-- & (T --»)
{COND -- ({T --))

When an undefined function error occurs, and the offending
function is T, DWIM tries to correct certain types of parentheses
errors involving a T clause in a conditional. DWIM recognizes
errors of the following forms:

The T clause appears outside and immediately following the
(:OND.

The T clause appears inside a previous clause.

The T clause has an extra pair of parentheses around it.

For undefined function errors that are not one of these three
types, DWIM takes no corrective action at all, and the error will
occur.

If the error occurs in type-in, DWIM simply types T FIXED and
makes the correction. Otherwise if DWIM is in TRUSTING mode,
DWIM makes the correction and prints the message:

[IN FUNCTION-NAME] {BAD-COND}. >
{CORRECTED·COND}

If DWIM is in CAUTIOUS mode, DWIM prints

UNDEFINED FUNCTION T
[IN FUNCTION-NAME] FIX?

and waits for approval. Thn IJser then has the same options as
for spelling corrections and parenthesis errors. If the user types Y
or defaults, DWIM makes the correction and prints its message.

Having made the correction, DWIM must then decide how to
proceed with the computation. In the first case, (COND --) (T ._),

DWIM cannot know whether the T clause would have been
E~xecuted if it had been inside of the CONDo Therefore DWIM

DWIM

20.4 DWIM Operation

DWIM

UNDEFI NED FUNCTION TERRORS

asks the user CONTINUE WITH T CLAUSE (with a default of YES).

If the user types N, DWIM continues with the form after the
COND, i.e., the form that originally followed the T clause.

In the second case, (COND -- (-- & (T --»), DWIM has a different
problem. After moving the T clause to its proper place, DWIM
must return as the value of & as the value of the CONDo Since this

value is no longer around, DWIM asks the user, OK TO
REEVALUATE and then prints the expression corresponding to &.

If the user types Y, or defaults, DWIM continues by reevaluating
&, otherwise DWIM aborts, and a U.D.F. T error will then occur
(even though the COND has in fact been fixed). If DWIM can

determine for itself that the form can safely be reevaluated, it
does not consult the user before reevaluating. DWIM can do this
if the form is atomic, or CAR of the form is a member of the list
OKREEVALST, and each of the arguments can safely be
reevaluated. For example, (SETQ X (CONS (lPLUS Y Z) W» is safe

to reevaluate because SETQ, CONS, and IPLUS are all on
OKREEVALST.

In the third case, (COND -- «T --»), there is no problem with
continuation, so no further interaction is necessary.

Whenever the interpreter encounters an atomic form with no
binding, or a non-atomic form CAR of which is not a function or
function object, it calls the function FAULTEVAL. Similarly, when
APPLY is given an undefined function, FAULTAPPLY is called.

When DWIM is enabled, FAULTEVAL and FAULTAPPLY are
redefined to first call the DWIM package, which tries to correct
the error. If DWIM cannot decide how to fix the error, or the
user disapproves of DWIM's correction (by typing N), or the user

types control~E, then FAULTEVAL and FAULTAPPL Y cause an

error or break. If the user types i to DWIM, DWIM exits by
performing (RETEVAL 'FAULTEVAL '(ERROR!», so that an error

will be generated at the position of the call to FAUL TEVAL

If DWIM can (and is allowed to) correct the error, it exits by
performing RETEVAL of the corrected form, as of the position of
the call to FAULTEVAL or FAULTAPPLY. Thus in the example at
the beginning of the chapter, when DWIM determined that
ITIMS was ITIMES misspelled, DWIM called RETEVAL with (ITIMES

N (FACCT 9SUB1 N». Since the interpreter uses the value
returned by FAULTEVAL exactly as though it were the value of
the erroneous form, the computation will thus proceed exactly
as though no error had occurred.

20 7

DWIM OPERA TION

In addition to continuing the computation, DWIM also repairs
the cause of the error whenever possible; in the above example,
DWIM also changed (with RPLACA) the expression {ITIMS N

(FACCT 9SUB1 N» that caused the error. Note that if the user's

program had computed the form and called EVAL, it would not
be possible to repair the cause of the error, although DWIM
could correct the misspelling each time it occurred.

Error correction in DWIM is divided into three categories:
unbound atoms, undefined CAR of form, and undefined
function in APPLY. Assuming that the user approves DWIM's

corrections, the action taken by DWIM for the various types of
errors in each of these categories is summarized below.

20.4.1 DWIM Correction: Unbound Atoms

20.8

If DWIM is called as the result of an unbound atom error, it
proceeds as follows:

(1) If the first character of the unbound atom is ., DWIM assumes
that the user (intentionally) typed 'ATOM for (QUOTE A TOM)

and makes the appropriate change. No message is typed, and no
approval is requested.

If the unbound atom is just' itself, DWIM assumes the user wants
the next expression quoted, e.g., (CONS X '(A B C» will be
changed to (CONS X (QUOTE (A B C»). Again no message will be
printed or approval asked. If no expression follows the " DWIM
gives up.

Note: 'is normally defined as a read-macro character which

converts 'Faa to (QUOTE Faa) on input, so DWIM will not see

the' in the case of expressions that are typed-in.

(2) If CLiSP (page 21.1) is enabled, and the atom is part of a CLiSP
<construct, the CLiSP transformation is performed and the result
returned. For example, N·1 is transformed to (SUB1 N), and (. ..
FOO~3 ...) is transformed into { ... (SETQ Faa 3) ...).

(3) If the atom contains an 9 (actually LPARKEY, see page 20.14),

DWIM assumes the 9 was intended to be a left parenthesis, and
calls the editor to make appropriate repairs on the expression
containing the atom. DWIM assumes that the user did not notice
the mistake, i.e., that the entire expression was affected by the
missing left parenthesis. For example, if the user types (SETQ X
(LIST (CONS 9CAR Y) (CDR Z» V), the expression will be changerl
to (SETQ X (LIST (CONS (CAR Y) (CDR Z» Y». Note that the 9 does
not have to be the first character of the atom: DWIM will handle
(CONS X9CAR Y) correctly.

(4) If the atom contains a 0 (actually RPARKEY, see page 20.14),

DWIM assumes the 0 was intended to be a right parenthesis and

operates as in the case above.

DWIM

DWIM OPERATION

(5) If the atom begins with a 7, the 7 is treated as a '. For example,

7FOO becomes 'FOO, and then (QUOTE FOO).

(6) The expressions on DWIMUSERFORMS (see page 20 11) are

evaluated in the order that they appear. If any of these
expressions returns a non-NIL value, this value is treated as the

form to be used to continue the computation, it is evaluated and
its value is returned by DWIM.

(7) If the unbound atom occurs in a function, DWIM attempts
spelling correction using the LAMBDA and PROG variables of the
function as the spelling list.

(8) If the unbound atom occurred in a type-in to a break, DWIM
attempts spelling correction using the LAMBDA and PROG
variables of the broken function as the spelling list.

(9) Otherwise, DWIM attempts spelling correction using SPELLlNGS3
(see page 20.17).

(10) If all of the above fai I, DWIM gives up.

20.4.2 Undefined CAR of Form

DWIM

If DWIM is called as the result of an undefined CAR of form error,

it proceeds as follows:

(1) If CAR of the form is T, DWIM assumes a misplaced T clause and
operates as described on page 20.6.

(2) If CAR of the form is FIL, DWIM changes the "F/L" to
"FUNCTION(LAMBDA". For example, (F/L (Y) (PRINT (CAR Y») is
changed to (FUNCTION (LAMBDA (Y) (PRINT (CAR Y»). No

message is printed and no approval requested. If the user omits
the variable list, DWIM supplies (X), e.g., (F/L (PRINT (CAR X») is

changed to (FUNCTION (LAMBDA (X) (PRINT (CAR X»». DWIM

determines that the user has supplied the variable list when
more than one e~pression follows FIL, CAR of the first expression
is not the name of a function, and every element in the first
expression is atomic. For example, DWIM will supply (X) when
correcting (F/L (PRINT (CDR X» (PRINT (CAR X»).

(3) If CAR of the form is a CLISP word (IF, FOR, DO, FETCH, etc.), the

indicated CLISP transformation is performed, and the result is
returned as the corrected form. See page 21.1.

(4) If CAR of the form has a function definition, DWIM attempts
spelling cc·!'"ection on CAR of the definition using as spelling list
the value of LAMBDASPLST, initially (LAMBDA NLAMBDA).

(5) If CAR of the form has an EXPR or CODE property, DWIM prints
CAR-Of-FORM UNSAVED, performs an UNSAVEDEF, and
continues. No approval is requested.

209

DWIM OPERATION

(6) If CAR of the form has a FILEDEF property, the definition is

loaded from a file (except when DWIMIFYing). If the value of the
property is atomic, the entire file is to be loaded. If the value is a
list, CAR is the name of the file and CDR the relevant functions,

and LOADFNS will be used. For both cases, LDFLG will be

SYSLOAD (see page 17.5). DWIM uses FINDFILE (page 24.32), so
that the file can be on any of the directories on DIRECTORIES,

initially (NIL NEWLISP LISP L1SPUSERS). If the file is found, DWIM

types SHALL I LOAD followed by the file name or list of functions.
If the user approves, DWIM loads the function(s) or file, and

continues the computation.

(7) If CliSP is enabled, and CAR of the form is part of a CLiSP
construct, the indicated transformation is performed, e.g.,
(N~N-1) becomes (SETQ N (SUB1 N».

(8) If CAR of the form contains an 9, DWIM assumes a left

parenthesis was intended e.g., (CONS9CAR X).

(9) If CAR of the form contains a 0, DWIM assumes a right

parenthesis was intended.

(10) If CAR of the form is a list, DWIM attempts spelling correction on
CAAR of the form using LAMBDASPLST as spelling list. If

successful, DWIM returns the corrected expression itself.

(11) The expressions on DWIMUSERFORMS are evaluated in the order
they appear. If any returns a non-NIL value, this value is treated

as the corrected form, it is evaluated, and DWIM returns its value.

(12) Otherwise, DWIM attempts spelling correction using SPELLlNGS2
as the spelling list (see page 20.17). When DWIMIFYing, DWIM

also attemps spelling correction on function names not defined
but previously encountered, using NOFIXFNSLST as a spelling list
(see page 21.21).

(13) If all of the above fail, DWIM gives up.

20.4.3 Undefined Function in APPLY

20.10

If DWIM is called as the result of an undefined function in APPLY
error, it proceeds as follows:

(1) If the function has a definition, DWIM attempts spelling
correction on CAR of the definition using LAMBDASPLST as

spelling list.

(2) If the function has an EXPR or CODE property, DWIM prints FN

UNSAVED, performs an UNSAVEDEF and continues. No approval

is requested.

(3) If the function has a property FILEDEF, DWIM proceeds as in case
6 of undefined CAR ofform.

DWIM

20.5 DWIMUSERFORMS

DWIM

DWIM OPERATION

(4) If the error resulted from type-in, and CliSP is enabled, and the
function name contains a CliSP operator, DWIM performs the
indicated transformation, e.g., the user types FOOE-(APPEND FIE
FUM).

(5) If the function name contains an 9, DWIM assumes a left

parenthesis was intended, e.g., EDIT9FOO].

(6) If the "function" is a list, DWIM attempts spelling correction on
CAR of the list using LAMBDASPLST as spelling list.

(7) The expressions on DWIMUSERFORMS are evaluated in the order
they appear, and if any returns a non-NIL value, this value is
treated as the function used to continue the computation, i.e., it
will be applied to its arguments.

(8)

(9)

(10)

DWIM attempts spelling correction using SPELLlNGS1 as the
spelling list.

DWIM attempts spelling correction using SPELLI NGS2 as the
spelling list.

If all fail, DWIM gives up.

The variable DWIMUSERFORMS provides a convenient way of
adding to the transformations that DWIM performs. For
example, the user might want to change atoms of the form $X to
(QA4LOOKUP X). Before attempting spelling correction, but
after performing other transformations (F/L, 9, 0, ClISP, etc.),
DWIM evaluates the expressions on DWIMUSERFORMS in the

order they appear. If any expression returns a non-NIL value, this
value is treated as the transformed form to be used. If DWIM
was called from FAULTEVAL, this form is evaluated and the
resulting value is returned as the value of FAULTEVAL. If DWIM

is called from FAULTAPPLY, this form is treated as a function to
be applied to FAULTARGS, and the resulting value is returned as
the value of FAULTAPPL Y. If all of the expressions on
DWIMUSERFORMS return NIL, DWIM proceeds as though

DWIMUSERFORMS = NIL, and attempts spelling correction. Note
that DWIM simply takes the value and returns it; the expressions
on DWIMUSERFORMS are responsible for making any

modifications to the original expression. The expressions on
DWIMUSERFORMS should make the transformation permanent,
either by associating it with FAUL TX via CLlSPTRAN, or by
destructively changing FAUL TX.

In order for an expression on DWIMUSERFORMS to be able to be
effective, it needs to know various things about the context of
the error. Therefore, several of DWIM's internal variables have

20.11

DWIMUSERFORMS

FAUlTX

FAUlTARGS

FAUlTAPPl YFlG

TAil

PARENT

TYPE-IN?

FAUlTFN

2012

been made SPECVARS (see page 18.5) and are therefore "visible"

to DWIMUSERFORMS. Below are a list of those variables that
may be useful.

[Variable]

For unbound atom and undefined car of form errors, FAUl TX is

the atom or form. For undefined function in APPLY errors,
FAUl TX is the name of the function.

[Variable]

For undefined function in APPLY errors, FAUl TARGS is the list of

arguments. FAUl TARGS may be modified or reset by expressions
on DWIMUSERFORMS.

[Variable]

Value is T for undefined function in APPLY errors; Nil otherwise.

The value of FAUl TAPPl YFlG after an expression on
DWIMUSERFORMS returns a non-Nil value determines how the
latter value is to be treated. Following an undefined function in
APPLY error, if an expression on DWIMUSERFORMS sets
FAUl TAPPl YFlG to Nil, the value returned is treated as a form to

be evaluated, rather than a function to be applied.

FAUl TAPPl YFlG is necessary to distinguish between unbound
atom and undefined function in APPLY errors, since FAUlTARGS

may be Nil and FAUl TX atomic in both cases.

[Variable]

For unbound atom errors, TAil is the tail of the expression CAR

of which is the unbound atom. DWIMUSERFORMS expression

can replace the atom by another expression by perform i ng
(lRPLACA TAil EXPR)

[Variable]

For unbound atom errors, PARENT is the form in which the
unbound atom appears. TAil is a tail of PARENT.

[Variable]

True if the error occurred in type-in.

[Variable]

Name of the function in which error occurred. FAUl TFN is
TYPE·IN when the error occurred in type-in, and EVAl or APPLY
when the error occurred under an explicit call to EVAl or APPLY.

DWIM

DWIMIFYFLG

EXPR

DWIMUSERFORMS

[Variable]

True if the error was encountered while DWIMIFYing (as

opposed to happening while running a program).

[Variable]

Definition of FAULTFN, or argument to EVAL, i.e., the superform
in which the error occurs.

The initial value of DWIMUSERFORMS is «DWIMLOADFNS?)).

DWIMLOADFNS? is a function for automatically loading
functions from files. If DWIMLOADFNSFLG is T (its initial value),
and CAR of the form is the name of a function, and the function

is contained on a file that has been noticed by the file package,
the function is loaded, and the computation continues.

20.6 DWIM Functions and Variables

DWIMWAIT

FIXSPELLDEFAULT

ADDSPELLFLG

NOSPELLFLG

DWIM

[Variable]

Value is the number of seconds that DWIM will wait before it
assumes that the user is not going to respond to a question and
uses the defau It response FIXSPELLDEFAU LT.

DWIM operates by dismissing for 250 milliseconds, then checking
to see if anything has been typed. If not, it dismisses again, etc.
until DWIMWAIT seconds have elapsed. Thus, there will be a

delay of at most 1/4 second before DWIM responds to the user's
answer.

[Variable]

If approval is requested for a spelling correction, and user does
not respond, defaults to value of FIXSPELLDEFAULT, initially Y.

FIXSPELLDEFAULT is rebound to N when DWIMIFYing.

[Variable]

If NIL, suppresses calls to ADDSPELL. Initially T.

[Variable]

If T, suppresses all spelling correction. If some other non-NIL
value, suppresses spelling correction in programs but not type-in.
NOSPELLFLG is initially NIL. It is rebound to T when compiling

from a file.

20 13

DWIM FUNCTIONS AND VARIABLES

RUNONFLG

DWIMLOADFNSFLG

LPARKEY

RPARKEY

OKREEVALST

DWIMFLG

APPROVEFLG

LAMBDASPLST

20.14

[Variable]

If NIL, suppresses run-on spelling corrections. Initially NIL.

[Variable]

If T, tells DWIM that when it encounters a call to an undefined

function contained on a file that has been noticed by the file
package, to simply load the function. DWIMLOADFNSFLG is

initially T. See page 20.13.

[Variable]

[Variable]

DWIM uses the value of the variables LPARKEY and RPARKEY
(initially 9 and 0 respectively) to determine the corresponding

lower case character for left and right parentheses. LPARKEY
and RPARKEY can be reset for other keyboard layouts. For
E~xample, on some terminals left parenthesis is over 8, and right

parenthesis is over 9.

[Variable]

The value of OKREEVALST is a list of functions that DWIM can
safely reevaluate. If a form is atomic, or CAR of the form is a
member of OKREEVALST, and each of the arguments can safely
be reevaluated, then the form can be safely reevaluated. For
example, (SETQ X (CONS (IPLUS Y Z) W)) is safe to reevaluate
because SETQ, CONS, and IPLUS are all on OKREEVALST.

[Variable]

DWIMFLG = NIL, all DWIM operations are disabled. (DWIM 'C)
and (DWIM T) set DWIMFLG to T; (DWIM NIL) sets DWIMFLG to

NIL.

[Variable]

APPROVEFLG = T if DWIM should ask the user for approval
before making a correction that will modifythe definition of one
of his functions; NIL otherwise.

When DWIM is put into CAUTIOUS mode with (DWIM 'C),
APPROVEFLG is set to T; for TRUSTING mode, APPROVEFLG is set

to NIL.

[Variable]

DWIM uses the value of LAMBDASPLST as the spelling list when
correcting "bad" fu nction defi nitions. Initially (LAMBDA
NLAMBDA). The user may wish to add to LAMBDASPLST if he
elects to define new "function types" via an appropriate

DWIM

2007 Spelling Correction

DWIM

DWIM FUNCTIONS AND VARIABLES

DWIMUSERFORMS entry. For example, the QLAMBDAs of SRI's

QL1SP are handled in this way.

The spelling corrector is given as arguments a misspelled word
(word means literal atom), a spelling list (a list of words), and a

. number: XWORD, SPLST, and REL respectively. Its task is to find
that word on SPLST which is closest to XWORD, in the sense
described below. This word is called a respelling of XWORD. REL

specifies the minimum "closeness" between XWORD and a
respelling. If the spelling corrector cannot find a word on SPLST

closer to XWORD than REL, or if it finds two or more words
equally close, its value is NIL, otherwise its value is the respelling.
The spelling corrector can also be given an optional functional
argument, FN, to be used for selecting out a subset of SPLST, i.e.,
only those members of SPLSTthat satisfy FN will be considered as
possible respellings.

The exact algorithm for computing the spelling metric is
described later, but briefly "closeness" is inversely proportional
to the number of disagreements between the two words, and
directly proportional to the length of the longer word. For
example, PRTTYPRNT is "closer" to PRETTYPRINT than CS is to
CONS even though both pairs of words have the same number of

disagreements. The spelling corrector operates by proceeding
down SPLST, and computing the closeness between each word
and XWORD, and keeping a list of those that are closest. Certain
differences between words are not counted as disagreements,
for example a single transposition, e.g., CONS to CNOS, or a

doubled letter, e.g., CONS to CONSS, etc. In the event that the
spelling corrector finds a word on SPLST with no disagreements,
it will stop searching and return this word as the respelling.
Otherwise, the spelling corrector continues through the entire
spelling list. Then if it has found one and only one "closest"
word, it returns this word as the respelling. For example, if
XWORD is VONS, the spelling corrector will probably return

CONS as the respelling. However, if XWORD is CONZ, the
spelling corrector will not be able to return a respelling, since
CONZ is equally close to both CONS and CONDo If the spelling
corrector finds an acceptable respelling, it interacts with the user
as described earlier.

In the special case that the misspelled word contains one or more
$s (escape), the spelling corrector searches for those words on
SPLST that match XWORD, where a $ can match any number of
characters (including 0), e.g., FOO$ matches F001 and FOO, but
not NEWFOO. FOO matches all three. Both completion and

20 15

SPELLING CORRECTION

20.7.1 Synonyms

20.7.2 Spelling Lists

20.16

correction may be involved, e.g. RPETIV$ will match

PRETIVPRINT, with one mistake. The entire spelling list is always
searched, and if more than one respelling is found, the spelling
corrector prints AMBIGUOUS, and returns NIl. For example,
CONS would be ambiguous if both CONS and COND were on the

spelling list. If the spelling corrector finds one and only one
respelling, it interacts with the user as described earlier.

For both spelling correction and spelling completion, regardless
of whether or not the user approves of the spelling corrector's
choice, the respelling is moved to the front of SPLST. Since many
respellings are of the type with no disagreements, this procedure
has the effect of considerably reducing the time required to
correct the spelling of frequently misspelled words.

Spelling lists also provide a way of defining synonyms for a
particular context. If a dotted pair appears on a spelling list
(instead of just an atom), CAR is interpreted as the correct
spelling of the misspelled word, and CDR as the antecedent for
that word. If CAR is identical with the misspelled word, the
antecedent is returned without any interaction or approval
being necessary. If the misspelled word corrects to CAR of the
dotted pair, the usual interaction and approval will take place,
and then the antecedent, i.e., CDR of the dotted pair, is
returned. For example, the user could make IFLG synonymous
with CLISPIFTRANFLG by adding (lFLG . CLISPIFTRANFLG) to

SPELLlNGS3, the spelling list for unbound atoms. Similarly, the
user could make OTHERWISE mean the same as ELSEIF by adding
(OTHERWISE . ELSEIF) to CLISPIFWORDSPLST, or make L be

synonymous with LAMBDA by adding (L . LAMBDA) to

LAMBDASPLST. Note that L could also be used as a variable
without confusion, since the association of L with LAMBDA
occurs only in the appropriate context.

Any list of atoms can be used as a spelling list, e.g., BROKENFNS,
FILELST, etc. Various system packages have their own spellings
lists, e.g., L1SPXCOMS, CLlSPFORWORDSPLST, EDITCOMSA, etc.

These are documented under their corresponding ::.~ctions, and
are also indexed under "spelling lists." In addition to these
spelling lists, the system maintains, i.e., automatically adds to,
and occasionally prunes, four lists used solely for spelling
correction: SPELLlNGS1, SPELLlNGS2, SPELLlNGS3, and
USERWORDS. These spelling lists are maintained only when
ADDSPELLFLG is non-NIl. ADDSPELLFLG is initially T.

DWIM

SPELLlNGS1

SPELLlNGS2

SPELLlNGS3

USERWORDS

DWIM

SPELLING CORRECTION

[Variable]

SPELLlNGS1 is a list of functions used for spelling correction

when an input is typed in apply format, and the function is
undefined, e.g., EDTIF(FOO). SPELLlNGS1 is initialized to contain

DEFINEQ, BREAK, MAKEFILE, EDITF, TCOMPL, LOAD, etc.

Whenever L1SPX is given an input in apply format, i.e., a function

and arguments, the name of the function is added to

SPELLlNGS1 if the function has a definition.

For example, typing CALLS(EDITF) will cause CALLS to be added

to SPELLlNGS1. Thus if the user typed CALLS(EDITF) and later

typed CALLLS(EDITV), since SPELLlNGS1 would then contain

CALLS, DWIM would be successful in correcting CALLLS to CALLS.

[Variable]

SPELLlNGS2 is a list of functions used for spelling correction for

all other undefined functions. It is initialized to contain functions
such as ADD1, APPEND, COND, CONS, GO, LIST, NCONC, PRINT,

PROG, RETURN, SETQ, etc. Whenever L1SPX is given a non-atomic

form, the name of the function is added to SPELLlNGS2. For
example, typing (RETFROM (STKPOS (QUOTE FOO) 2» to a break

would add RETFROM to SPELLlNGS2. Function names are also

added to SPELLlNGS2 by DEFINE, DEFINEQ, LOAD (when loading

compiled code), UNSAVEDEF, EDITF, and PRETTYPRINT.

[Variable]

SPELLlNGS3 is a list of words used for spelling correction on all

unbound atoms. SPELLlNGS3 is initialized to EDITMACROS,

BREAKMACROS, BROKENFNS, and ADVISEDFNS. Whenever

L1SPX is given an atom to evaluate, the name of the atom is
added to SPELLlNGS3 if the atom has a value. Atoms are also

added to SPELLlNGS3 whenever they are edited by EDITV, and

whenever they are set via RPAQ or RPAQQ. For example, when a

file is loaded, a" of the variables set in the file are added to
SPELLlNGS3. Atoms are also added to SPELLlNGS3 when they are

set by a L1SPX input, e.g., typing (SETQ FOO (REVERSE (SETQ FIE

",))) will add both FOO and FIE to SPELLlNGS3.

[Variable]

USERWORDS is a list containing both functions and variables

that the user has referred to, e.g., by breaking or editing.
USERWORDS is used for spelling correction by ARGLlST,

lJNSAVEDEF, PRETTYPRINT, BREAK, EDITF, ADVISE, etc.

USERWORDS is initially NIl. Function names are added to it by
DEFINE, DEFINEQ, LOAD, (when loading compiled code, or

loading exprs to property lists) UNSAVEDEF, EDITF, EDITV, EDITP,
PRETTYPRINT, etc. Variable names are added to USERWORDS at

the same time as they are added to SPELLlNGS3. In addition, the

20 17

SPELLING CORRECTION

#SPELLlNGS1

#SPELLlNGS2

#SPELLlNGS3

#USERWORDS

20.18

variable LASTWORD is always set to the last word added to

USERWORDS, i.e., the last function or variable referred to by the

user, and the respelling of NIL is defined to be the value of
LASTWORD. Thus, if the user has just defined a function, he can

then prettyprint it by typing PPO.

Each of the above four spelling lists are divided into two ~ections
separated by a special marker (the value of the variable
SPELLSTR1). The first section contains the "permanent" words;

the second section contains the temporary words. New words
are added to the corresponding spelling list at the front of its
temporary section (except that functions added to SPELLlNGS1
or SPELLlNGS2 by LlSPX are always added to the end of the
permanent section. If the word is already in the temporary
section, it is moved to the front of that section; if the word is in
the permanent section, no action is taken. If the length of the
temporary section then exceeds a specified number, the last
(oldest) word in the temporary section is forgotten, i.e., deleted.
This procedure prevents the spelling lists from becoming
cluttered with unimportant words that are no longer being used,
and thereby slowing down spelling correction time. Since the
spelling corrector usually moves each word selected as a
respelling to the front of its spelling list, the word is thereby
moved into the permanent section. Thus once a word is
misspelled and corrected, ~t is considered important and will
never be forgotten.

Note: The spelling correction algorithm will not alter a spelling
list unless it contains the special marker (the value of SPELLSTR1).

This provides a way to ensure that a spelling list will not be
altered.

[Variable]

[Variable]

[Variable]

[Variable]

The maximum length of the temporary section for SPELLlNGS1,
SPELLlNGS2, SPELLlNGS3 and USERWORDS is given by the value

of #SPELLlNGS1, #SPELLlNGS2, #SPELLlNGS3, and
#USERWORDS, initialized to 30, 30, 30, and 60 respectively.

Users can alter these values to modify the performance behavior
of spelling correction.

DWIM

SPELLING CORRECTION

20.7.3 Generators for Spelling Correction

20.7.4 Spelling Corrector Algorithm

DWIM

For some applications, it is more convenient to generate

candidates for a respelling one by one, rather than construct a
complete list of all possible candidates, e.g., spelling correction
involving a large directory of files, or a natural language data
base. For these purposes, SPLSTcan be an array (of any size). The
first element of this array is the generator function, which is
called with the array itself as its argument. Thus the function can
use the remainder of the array to store "state" information, e.g.,
the last position on a file, a pointer into a data structure, etc. The
value returned by the function is the next candidate for
respelling. If NIL is returned, the spelling "list" is considered to
be exhausted, and the closest match is returned. If a candidate is
found with no disagreements, it is returned immediately without
waiting for the "list" to exhaust.

SPLST can also be a generator, i.e. the value of the function
GENERATOR (page 11.17). The generator SPLSTwili be started up
whenever the spelling corrector needs the next candidate, and it
should return candidates via the function PRODUCE. For
example, the following co.uld be used as a "spelling list" which
effectively contains all functions in the system:

[GENERATOR
(MAPATOMS (FUNCTION (LAMBDA (X) (if (GETD X) then

(PRODUCE X]

The basic philosophy of DWIM spelling correction is to count the
number of disagreements between two words, and use this
number divided by the length of the longer of the two words as
a measure of their relative disagreement. One minus this
number is then the relative agreement or closeness. For example,
CONS and CONX differ only in their last character. Such

substitution errors count as one disagreement, so that the two
words are in 75% agreement. Most calls to the spelling corrector
specify a relative agreement of 70, so that a single substitution
error is permitted in words of four characters or longer.
However, spelling correction on shorter words is possible since
certain types of differences such as single transpositions are not
counted as disagreements. For example, AND and NAD have a
relative agreement of 100. Calls to the spelling corrector from
DWIM use the value of FIXSPELLREL, which is initially 70. Note
that by setting FIXSPELLREL to 100, only spelli ng corrections with
"zero" mistakes, will be considered, e.g., transpositions, double
characters, etc.

The central function of the spelling corrector is CHOOZ. CHOOZ
takes as arguments: a word, a minimum relative agreement, a

20.19

SPELLING CORRECTION

20.20

spelling list, and an optional functional argument, XWORD, REL,

SPLST, and FN respectively.

CHOOZ proceeds down SPLST examining each word. Words not
satisfying FN (if FN is non-NIL), or those obviously too long or too

short to be sufficiently close to XWORD are immediately
rejected. For example, if REL = 70, and XWORD is 5 characters
long, words longer than 7 characters will be rejected.

Special treatment is necessary for words shorter than XWORD,

since doubled letters are not counted as disagreements. For
example, CONNSSS and CONS have a relative agreement of 100.
CHOOZ handles this by counting the number of doubled
characters in XWORD before it begins scanning SPLST, and
taking this into account when deciding whether to reject shorter
words.

If TWORD, the current word on SPLST, is not rejected, CHoaz
computes the number of disagreements between it and XWORD

by calling a subfunction, SKOR.

'SKOR operates by scanning both words from left to right one
character at a time. SKOR operates on the list of character codes
for each word. This list is computed by CHOOZ before calling
'SKOR. Characters are considered to agree if they are the same
characters or appear on the same key (i.e., a shift mistake). The
variable SPELLCASEARRAY is.a CASEARRAY which is used to
determine equivalence classes for this purpose. It is initiallzed to
equivalence lowercase and upper case letters, as well as the
standard key transitions: for example, 1 with !, 3 with #/ etc.

If the first character in XWORD and TWORD do not agree, SKOR
checks to see if either character is the same as one previously
encountered, and not accounted-for at that time. (In other
words, transpositions are not handled by lookahead, but by
lookback.) A displacement of two or fewer positions is counted
as a tranposition; a displacement by more than two positions is
counted as a disagreement.ln either case, both characters are
now considered as accounted for and are discarded, and
SKORing continues.

If the first character in XWORD and TWORD do not agree, and
neither agree with previously unaccounted-for characters, and
TWORD has more characters remaining than XWORD, SKOR
removes and saves the first character of TWORD, and continues
by comparing the rest of TWORD with XWORD as described
above. If TWORD has the same or fewer characters remaining
than XWORD, the procedure is the same except that the
character is removed from XWORD. In this case, a special check is
first made to see if that character is equal to the previous
character in XWORD, or to the next character in XWORD, i.e., a
double character typo, and if so, the character is considered
accounted-for, and not counted as a disagreement. In this case,

DWIM

SPELLING CORRECTION

the "length" of XWORD is also decremented. Otherwise making
XWORD sufficiently long by adding double characters would
make it be arbitrarily close to TWORD, e.g., XXXXXX would

correct to PP.

When SKOR has finished processing both XWORD and TVtIORD in
this fashion, the value of SKOR is the number of unaccounted-for

characters, plus the number of disagreements, plus the number
of tranpositions, with two qualifications: (1) if both XWORD and
TWORD have a character unaccounted-for in the same position,
the two characters are counted only once, i.e., substitution errors
count as only one disagreement, not two; and (2) if there are no
unaccounted-for characters and no disagreements,
transpositions are not counted. This permits spelling correction
on very short words, such as edit commands, e.g., XRT- > XTR.
Transpositions are also not counted when FASTYPEFLG = T, for
example, IPULX and IPLUS will be in 80% agreement with
FASTYPEFLG = T, only 60% with FASTYPEFLG = NIL. The rationale
behind this is that transpositions are much more common for fast
typists, and should not be counted as disagreements, whereas
more deliberate typists are not as likely to combine tranpositions
and other mistakes in a single word, and therefore can use more
conservative metric. FASTYPEFLG is initially NIL.

20.7.5 Spelling Corrector Functions and Variables

DWIM

(ADDSPELL X SPLST N) [Function]

Adds X to one of the spelling lists as determined by the value of
SPLST:

NIL Adds Xto USERWORDS and to SPELLlNGS2. Used by DEFINEQ.

o Adds X to USERWORDS. Used by LOAD when loading EXPRs to

property lists.

1 Adds X to SPELLlNGS1 (at end of permanent section). Used by
L1SPX.

2 Adds X to SPELLlNGS2 (at end of permanent section). Used by
L1SPX.

3 Adds X to USERWORDS and SPELLlNGS3.

a spelling list If SPLST is a spelling list, X is added to it. In this case, N is the
(optional) length of the temporary section.

If X is already on the spelling list, and in its temporary section,
ADDSPELL moves X to the front of that section.

ADDSPELL sets LASTWORD to Xwhen SPLST= NIL, 0 or 3.

If X is not a literal atom, ADDSPELL takes no action.

2021

SPELLING CORRECTION

2022

Note that the various systems calls to ADDSPELL, e.g. from

DEFINE, EDITF, LOAD, etc., can all be suppressed by setting or
binding ADDSPELLFLG to NIL (page 20.13).

(MISSPELLED? XWORD REL SPLST FLG TAIL FN) [Function]

If XWORD = NIL or $ «esc», MISSPELLED? prints = followed by
the value of LASTWORD, and returns this as the respelling,
without asking for approval. Otherwise, MISSPELLED? checks to

see if XWORD is really misspelled, i.e., if FN applied to XWORD is
true, or XWORD is already contained on SPLST. In this case,
MISSPELLED? simply returns XWORD. Otherwise MISSPELLED?
computes and returns (FIXSPELL XWORD REL SPLST FLG TAIL FN).

(FIXSPELL XWORDREL SPLST FLG TAIL FN TlEFLG DONTMOVETOPFLG --) [Function]

The value of FIXSPELL is either the respelling of XWORD or NIL. If

for some reason XWORD itself is on SPLST, then FIXSPELL aborts
and calls ERROR!. If there is a possibility that XWORD is spelled

c:orrectly, MISSPELLED? should be used instead of FIXSPELL.
FIXSPELL performs all of the interactions described earlier,
including requesting user approval if necessary.

If XWORD = NIL or $ (escape), the respelling is the value of
L.ASTWORD, and no approval is requested.

If XWORD contains lowercase characters, and the corresponding
uppercase word is correct, i.e. on SPLST or satisfies FN, the
uppercase word is returned and no interaction is performed. If
FIXSPELL.UPPERCASE.QUIET is NIL (the default), a warning
"=XX" is printed when coercing from "xx" to "XX". If
FIXSPELL.UPPERCASE.QUIET is non-NIL, no warning is given.

If REL = NIL, defaults to the value of FIXSPELLREL (initially 70).

If FLG = NIL, the correction is handled in type-in mode, i.e.,
approval is never requested, and XWORD is not typed. If FLG = T,
XWORD is typed (before the =) and approval is requested if

APPROVEFLG = T. If FLG = NO-MESSAGE, the correction is
returned with no further processing. In this case, a run-on
correction will be returned as a dotted pair of the two parts of
the word, and a synonym correction as a list of the form (WORD 1

WORD2), where WORD 1 is (the corrected version of) XWORD,

and WORD2 is the synonym. Note that the effect of the function
CHOOZ can be obtained by calling FIXSPELL with
FLG = NO·MESSAGE.

If TAIL is not NIL, and the correction is successful, CAR of TAIL is
replaced by the respelling (using IRPLACA).

FIXSPELL will attempt to correct misspellings caused by running
two words together, if the global variable RUNONFLG is non-NIL
(default is Nil). In this case, approval is always requested. When
a run-on error is corrected, CAR of TAIL is replaced by the two

DWIM

DWIM

SPELLING CORRECTION

words, and the value of FIXSPELL is the first one. For example, if
FIXSPELL is called to correct the edit command (MOVE TO
AFTERCOND 3 2) with TAIL = (AFTERCOND 3 2), TAIL would be
changed to (AFTER COND 2 3), and FIXSPELL would return AFTER

(subject to user approval where necessary). If TAIL = T, FIXSPELL

will also perform run-on corrections, returning a dotted pair of
the two words in the event the correction is of this type.

If TlEFLG = NIL and a tie occurs, i.e., more than one word on SPLST

is found with the same degree of .. closeness", FIXSPELL returns

NIL, i.e., no correction. If TlEFLG = PICKONE and a tie occurs, the
first word is taken as the correct spelling. If TlEFLG = LIST, the
value of FIXSPELL is a list of the respellings (even if there is only
one), and FIXSPELL will not perform any interaction with the
user, nor modify TAIL, the idea being that the calling program
will handle those tasks. Similarly, if TlEFLG = EVERYTHING, a list
of all candidates whose degree of closeness is above REL will be
returned, regardless of whether some are better than others. No
interaction will be performed.

If DONTMOVETOPFLG = T and a correction occurs, it will not be
moved to the front of the spelling list. Also, the spelling list will
not be altered unless it contains the special marker used to
separate the temporary and perminant parts of the system
spelling lists (the value of SPELLSTR1).

(FNCHECK FN NOERRORFLG SPELLFLG PROPFLG TAIL) [Function]

The task of FNCHECK is to check whether FN is the name of a

function and if not, to correct its spelling. If FN is the name of a
function or spelling correction is successful, FNCHECK adds the
(corrected) name of the function to USERWORDS using
ADDSPELL, and returns it as its value.

Since FNCHECK is called by many low level functions such as
ARGLlST, UNSAVEDEF, etc., spelling correction only takes place

when DWIMFLG = T, so that these functions can operate in a
smallinteriisp system which does not contain DWIM.

NOERRORFLG informs FNCHECK whether or not the calling
function wants to handle the unsuccessful case: if NOERRORFLG
is T, FNCHECK simply returns NIL, otherwise it prints fn NOT A
FUNCTION and generates a non-breaking error.

If FN does not have a definition, but does have an EXPR property,
then spelling correction is not attempted. Instead, if
PROPFLG = T, FN is considered to be the name of a function, and
is returned. If PROPFLG = NIL, FN is not considered to be the
name of a function, and NIL is returned or an error generated,
depending on the value of NOERRORFLG.

FNCHECK calls MISSPELLED? to perform spelling correction, so
that if FN= NIL, the value of LASTWORD will be returned.

20.23

SPELLING CORRECTION

20.24

SPELLFLG corresponds to MISSPELLED?'s fourth argument, FLG.

If SPELLFLG = T, approval will be asked if DWIM was enabled in
CAUTIOUS mode, i.e., if APPROVEFLG = T. TAIL corresponds to
the fifth argument to MISSPELLED?

FNCHECK is currently used by ARGLlST, UNSAVEDEF,
PRETTYPRINT, BREAKO, BREAKIN, ADVISE, and CALLS. For

example, BREAKO calls FNCHECK with NOERRORFLG = T since if
FNCHECK cannot produce a function, BREAKO wants to define a
dummy one. CALLS however calls FNCHECK with

NOERRORFLG = NIL, since it cannot operate without a function.

Many other system functions call MISSPELLED? or FIXSPELL
directly. For example, BREAK1 calls FIXSPELL on unrecognized
atomic inputs before attempting to evaluate them, using as a
spelling list a list of all break commands. Similarly, L1SPX calls
FIXSPELL on atomic inputs using a list of all L1SPX commands.
When UNBREAK is given the name of a function that is not

broken, it calls FIXSPELL with two different spelling lists, first
with BROKENFNS, and if that fails, with USERWORDS. MAKEFILE

calls MISSPELLED? using FILELST as a spelling list. Finally, LOAD,
BCOMPL, BRECOMPILE, TCOMPL, and RECOMPILE all call
MISSPELLED? if their input file(s) won't open.

DWIM

TABLE OF CONTENTS

21,_ CLISP 21.1

21.1. CLISP Interaction with User 21.6

21.2. CLISP Character Operators 21.7

21.3. Decla rati ons 21.12

21.4. CLISP Operation 21.14

21.5. CLISP Translations 21.17

21.6. DWIMIFY 21.18

21.7. CLISPIFY 21.22

21.8. Miscellaneous Functions and Variables 21.25

21.9. CLISP Internal Conventions 21.27

TABLE OFCONTENTS TOC 1

TABLE OFCONTENTS

[This page intentionally left blank]

TOC 2 TABLEOFCONTENTS

CLiSP

21. (LISP

The syntax of Lisp is very simple, in the sense that it can be
described concisely, but not in the sense that Lisp programs are
easy to read or write! This simplicity of syntax is achieved by, and
at the expense of, extensive use of explicit structuring, namely
grouping through parenthesization. Unlike many languages,
there are no reserved words in Lisp such as IF, THEN, FOR, DO,

etc., nor reserved characters like +,., =,~, etc. The only special
characters are left and right parentheses and period, which are
used for indicating structure, and space and end-of-line, which
are used for delimiting identifiers. This eliminates entirely the
need for parsers and precedence rules in the Lisp interpreter and
compiler, and thereby makes program manipulation of Lisp
programs straightforward. In other words, a program that
"looks at" other Lisp programs does not need to incorporate a
lot of syntactic information. For example, a Lisp interpreter can
be written in one or two pages of Lisp code. It is for this reason
that Lisp is by far the most suitable, and frequently used,
programming language for writing programs that deal with
other programs as data, e.g., programs that analyze, modify, or
construct other programs.

However, it is precisely this same simplicity of syntax that makes
Lisp programs difficult to read and write (especially for
beginners). 'Pushing down' is something programs do very well,
and people do poorly. As an example, consider the following
two "equivalent" sentences:

"The rat that the cat that the dog that I owned chased caught
ate the cheese. "

versus

"I own the dog that chased the cat that caught the rat that ate
the cheese."

Natural language contains many linguistic devices such as that
illustrated in the second sentence above for minimizing
embedding, because embedded sentences are more difficult to
grasp and understand than equivalent non-embedded ones
(even if the la~,:r sentences are somewhat longer). Similarly,
most high level programming languages offer syntactic devices
for reducing apparent depth and complexity of a program: the
reserved words and infix operators used in ALGOL-like languages
simultaneously delimit operands and operations, and also
convey meaning to the programmer. They are far more intuitive
than parentheses. In fact, since Lisp uses parentheses (i.e., lists)

21 1

CLiSP

21.2

for almost all syntactic forms, there is very little information

contained in the parentheses for the person reading a Lisp
program, and so the parentheses tend mostly to be ignored: the
meaning of a particular Lisp expression for people is found
almost enti rely in the words, not in the structu reo For exam pie,
the expression

(COND (EQ N 0) 1) (T TIMES N FACTORIAL «SUB1 N)))

is recognizable as factorial even though there are five misplaced
or missing parentheses. Grouping words together in
parentheses is done more for Lisp's benefit, than for the
programmer's.

CLiSP is designed to make Interlisp programs easier to read and
write by permitting the user to employ various infix operators, IF
statements (page 9.5), and iterative statements (page 9.9), which
are automatically converted to equivalent Interlisp expressions
when they are first interpreted. For example, factorial could be
written in CLlSP:

(IF N = 0 THEN 1 ELSE N*(FACTORIAL N-1))

Note that this expression would become an equivalent COND
after it had been interpreted once, so that programs that might
have to analyze or otherwise process this expression could take
advantage of the simple syntax.

There have been similar efforts in other Lisp systems. CLiSP
differs from these in that it does not attempt to rep/ace the Lisp
syntax so much as to augment it. In fact, one of the principal
criteria in the design of CLiSP was that users be able to freely
intermix Lisp and CLiSP without having to identify which is
which. Users can write programs, or type in expressions for
evaluation, in Lisp, CLlSP, or a mixture of both. In this way, users
do not have to learn a whole new language and syntax in order
to be able to use selected facilities of CLiSP when and where they
find them useful.

CLiSP is implemented via the error correction machinery in
Interlisp (see page 20.1). Thus, any expression that is
well-formed from Interlisp's standpoint will never be seen by
CLiSP (i.e., if the user defined a function IF, he would effectively
turn off that part of CLlSP). This means that interpreted
programs that do not use CLiSP constructs do not pay for its
availability by slower execution time. In fact, the Interlisp
interpreter does not "know" about CLiSP at all. It operates as
before, and when an erroneous form is encountered, the
interpreter calls an error routine which in turn invokes the
Do-What-I-Mean (DWIM) analyzer which contains CLiSP. If the
expression in question turns out to be a CLiSP construct, the
equivalent Interlisp form is returned to the interpreter. In
addition, the original CLiSP expression, is modified so that it

CLiSP

CLiSP

CLiSP

becomes the correctly translated Interlisp form. I n this way, the
analysis and translation are done only once.

Integrating CLiSP into the Interlisp system (instead of, for
example, implementing it as a separate preprocessor) makes
possible Do-What-I-Mean features for CLiSP constructs as well as
for pure Lisp expressions. For example, if the user has defined a
function named GET-PARENT, CLiSP would know not to attempt
to interpret the form (GET-PARENT) as an arithmetic infix

operation. (Actually, CLiSP would never get to see this form,
since it does not contain any errors.) If the user mistakenly writes
(GET-PRAENT), CLiSP would know he meant (GET-PARENT), and
not (DIFFERENCE GET PRAENT), by using the information that
PRAENT is not the name of a variable, and that GET-PARENT is
the name of a user function whose spelling is "very close" to that
of GET-PRAENT. Similarly, by using information about the

program's environment not readily available to a preprocessor,
CLiSP can successfully resolve the following sorts of ambiguities:

(1) (LIST X*FACT N), where FACT is the name of a variable, means
(LIST (X*FACT) N).

(2) (LIST X*FACT N), where FACT is not the name of a variable but
instead is the name of a function, means (LIST X*(FACT N», i.e., N

is FACT's argument.

(3) (LIST X*FACT(N», FACT the name of a function (and not the

name of a variable), means (LIST X*(FACT N».

(4) cases (1), (2) and (3) with FACT misspelled!

The first expression is correct both from the standpoint of CLiSP
syntax and semantics and the change would be made without
the user being notified. In the other cases, the user would be
informed or consulted about what was taking place. For
example, to take an extreme case, suppose the expression (LIST
X*FCCT N) were encountered, where there was both a function
named FACT and a variable named FCT. The user would first be
asked if FCCT were a misspelling of FCT. If he said YES, the

expression would be interpreted as (LIST (X*FCT) N). If he said
NO, the user would be asked if FCCT were a misspelling of FACT,
i.e., if he intended X*FCCT N to mean X*(FACT N). If he said YES
to this question, the indicated transformation would be
performed. If he said NO, the system would then ask if X*FCCT
should be treated as CLlSP, since FCCT is not the name of a
(bound) variable. If he said YES, the expression would be
transformed, if NO, it would be left alone, i.e., a~ lLlST X*FCCT
N). Note that we have not even considered the case where
X*FCCT is itself a misspelling of a variable name, e.g., a variable
named XFCT (as with GET-PRAENT). This sort of transformation

would be considered after the user said NO to X*FCCT N - >
X*(FACT N).

21 3

CLiSP

21 4

The question of whether X*FCCT should be treated as CLiSP is

important because Interlisp users may have programs that
employ identifiers containing CLISP operators. Thus, if CLISP
encounters the expression AlB in a context where either A or B
are not the names of variables, it will ask the user if A/B is

intended to be CLlSP, in case the user really does have a free
variable named AlB.

Note: Through the discussion above, we speak of CLiSP or DWIM
asking the user. Actually, if the expression in question vyas typed
in by the user for immediate execution, the user is simply
informed of the transformation, on the grounds that the user
would prefer an occasional misinterpretation rather than being
continuously bothered, especially since he can always retype
what he intended if a mistake occurs, and ask the programmer's
assistant to UNDO the effects of the mistaken operations if
necessary. For transformations on expressions in user programs,
the user can inform CLISP whether he wishes to operate in
CAUTIOUS or TRUSTING mode. In the former case (most typical)
the user will be asked to approve transformations, in the latter,
CLiSP will operate as it does on type-in, i.e., perform the
transformation after informing the user.

CLiSP can also handle parentheses errors caused by typing 8 or 9
for "(" or ")". (On most terminals, 8 and 9 are the lower case
characters for "(" and ")", i.e., "(" and 8 appear on the same key,

as do ")" and 9.) For example, if the user writes N*8FACTORIAL

N·1, the parentheses error can be detected and fixed before the
infix operator * is converted to the Interlisp function TIMES.

CLiSP is able to distinguish this situation from cases like N*8*X
meaning (TIMES N 8 X), or N*8X, where 8X is the name of a
variable, again by using information about the programming
environment. In fact, by integrating CLiSP with DWIM, CLiSP has
been made sufficiently tolerant of errors that almost everything
can be misspelled! For example, CLiSP can successfully translate
the definition of FACTORIAL:

(IFF N. 0 THENN1 ESLE N*8FACTTORIALNN.1)

to the corresponding COND, while making 5 spelling corrections
and fixing the parenthesis error. CLISP also contains a facility for
converting from Interlisp back to CLlSP, so that after running the
above incorrect definition of FACTORIAL, the user could
"clispify" the now correct version to obtain (IF N = 0 THEN 1 ELSE
N*(FACTORIAL N·1».

This sort of robustness prevails throughout CLiSP. For example,
the iterative statement permits the user to say things like:

(FOR OLD X FROM M TO N DO (PRINT X) WHILE (P'RIMEP X»

However, the user can also write OLD (X~M), (OLD X~M), (OLD
(X~M», permute the order of the operators, e.g., (DO PRINT X
TO N FOR OLD X~M WHILE PRIMEP X), omit either or both sets

CLiSP

CLiSP

CLiSP

of parentheses, misspell any or all of the operators FOR, OLD,

FROM, TO, ~O, or WHILE, or leave out the word DO entirely!
And, of course, he can also misspell PRINT, PRIMEP, M or N! In
this example, the only thing the user could not misspell is the first
X, since it specifies the name of the variable of iteration. The
other two instances of X could be misspelled.

CLiSP is well integrated into the Interlisp system. For example,
the above iterative statement translates in~o an following
equivalent Interlisp form using PROG, CONO, GO, etc. When the
interpreter subsequently encounters this CLiSP expression, it
automatically obtains and evaluates the translation. Similarly,
the compiler "knows" to compile the translated form. However,
if the user PRETTYPRINTs his program, PRETTYPRINT "knows" to
print the original CLiSP at the corresponding point in his
function. Similarly, when the user edits his program, the editor
keeps the translation invisible to the user. If the user modifies
the CLlSP, the translation is automatically discarded and
recomputed the next time the expression is evaluated.

In short, CLiSP is not a language at all, but rather a system. It
plays a role analagous to that of the programmer's assistant
(page 13.1). Whereas the programmer's assistant is an invisible
intermediary agent between the user's console requests and the
Interlisp executive, CLiSP sits between the user's programs and
the Interlisp interpreter.

Only a small effort has been devoted to defining the core syntax
of CLiSP. Instead, most of the effort has been concentrated on
providing a facility which "makes sense" out of the input
expressions using context information as well as built-in and
acquired information about user and system programs. It has
been said that communication is based on the intention of the
speaker to produce an effect in the recipient. CLiSP operates
under the assumption that what the user said was intended to
represent a meaningful operation, and therefore tries very hard
to make sense out of it. The motivation behind CLiSP is not to
provide the user with many different ways of saying the same
thing, but to enable him to worry less about the syntactic aspects
of his communication with the system. In other words, it gives
the user a new degree of freedom by permitting him to
concentrate more on the problem at hand, rather than on
translation into a formal and unambiguous language.

DWIM and CLiSP are invoked on iterative statements because
CAR of the iterative statement is not the name of a function, and
hence generates an error. If the user defines a function by the
same name as an i.s. operator, e.g., WHILE, TO, etc., the operator
will no longer have the CLiSP interpretation when it appears as
CAR of a form, although it will continue to be treated as an i.s.
operator if it appears in the interior of an i.s. To alert the user, a

215

CUSP

warning message is printed, e.g., (WHILE DEFINED, THEREFORE

DISABLED IN CLlSP).

21.1 (LISP Interaction with User

216

Syntactically and semantically well formed CliSP transformations
are always performed without informing the user. Other CLiSP

transformations described in the previous section, e.g.,
misspellings of operands, infix operators, parentheses errors,
unary minus - binary minus errors, all follow the same protocol as
other DWIM transformations (page 20.1). That is, if DWIM has
been enabled in TRUSTING mode, or the transformation is in an

expression typed in by the user for immediate execution, user
approval is not requested, but the user is informed. However, if
the transformation involves a user program, and DWIM was
enabled in CAUTIOUS mode, the user will be asked to approve.
If he says NO, the transformation is not performed. Thus, in the
previous section, phrases such as "one of these (transformations)
succeeds" and "the transformation LAST-ELL;'> LAST·EL would

be found" etc., all mean if the user is in CAUTIOUS mode and the
error is in a program, the corresponding transformation will be
performed only if the user approves (or defaults by not
responding). If the user says NO, the procedure followed is the
same as though the transformation had not been found. For
example, if A *B appears in the function FOO, and B is not bound

(and no other transformations are found) the user would be
asked A *B [IN FOO] TREAT AS CLlSP? (The waiting time on such

interactions is three times as long as for simple corrections, i.e.,
3*DWIMWAIT).

In certain situations, DWIM will ask for approval even if DWIM is
enabled in TRUSTING mode. For example, the user will always be
asked to approve a spelling correction that might also be
interpreted as a CliSP transformation, as in LAST·ELL - > LAST·EL.

If the user approved, A *B would be transformed to (lTIMES A 8),
which would then cause a U.B.A. B error in the event that the

program was being run (remember the entire discussion also
applies to DWIMIFYing). If the user said NO, A *8 would be left
alone.

If the value of CLiSPHELPFLG = NIL (initally T), the user will not be
asked to approve any CliSP transformation. Instead, in those
situations where approval would be required, the effect is the
same as though the user had been asked and said NO.

cusp

CLiSP CHARACTER OPERATORS

21.2 CLISP Character Operators

+

...

f

CLiSP

CLiSP recognizes a number of special characters operators, both
prefix and infix, which are translated into common expressions.
For example, the character + is recognized to represent
addition, so CLiSP translates the litatom A + B to the form (lPlUS

A B). Note that CLiSP is envoked, and this translation is made,

only if an error occurs, such as an unbound atom error or an
undefined function error for the perfectly legitamate litatom

A + B. Therefore the user may choose not to use these facilities

withno penalty, similar to other CLiSP facilities.

The user has. a lot of flexability in using CLiSP character
operators. A list, can always be substituted for a litatom, and
vice versa, without changing the interpretation of a phrase. For
example, if the value of (Faa X) is A, and the value of (FIE Y) is B,

then (LIST (Faa X) + (FIE Y» has the same val ue as (LIST A + B).
Note that the first expression is a list of four elements: the atom
"LIST", the list "(Faa X)", the atom" + ", and the list "(FIE X)",

whereas the second expression, (LIST A + B), is a list of only two

elenients: the litatom "LIST" and the litatom "A + B". Since (LIST

(Fad> X) + (FIE Y» is indistinguishable from (LIST (Faa X) + (FIE

Y» lJecause spaces before or after parentheses have no effect on

the Interlisp READ program, to be consistent, extra spaces have
no effect on atomic operands either. In other words, CLiSP will
treat (LIST A + B), (LIST A + B), and (LIST A + B) the same as (LIST

A + B).

Note: CLiSP does not use its own special READ program because
this would require the user to explicitly identify CLiSP
expressions, instead of being able to intermix Interlisp and CLiSP.

[CLISP Operator]

[CLISP Operator]

[CLISP Operator]

[CLISP Operator]

[CLISP Operator]

CLiSP recognizes +,., ... , I, and f as the normal arithmetic infix

operators. • is also recognized as the prefix operator, unary

minus. These are converted to PLUS, DIFFERENCE (or in the case

of unary minus, MINUS), TIMES, QUOTIENT, and EXPT.

Normally, CLiSP uses the "generic" arithmetic functions PLUS,
TIMES, etc. CLiSP contains a facility for declaring which type of
arithmetic is to be used, either by making a global declaration, or

21 7

CLiSP CHARACTER OPERATORS

=

GT

LT

GE

LE

by separate declarations about individual functions or variables

(see page 21.12).

The usual precedence rules apply (although these can be easily
changed by the user), i.e., * has higher precedence than + so

that A + B*e is the same as A + (B*e), and both * and I are lower

than i so that 2*X i 2 is the same as 2*(X i 2). Operators of the

same precedence group from left to right, e.g., AlBIC is
equivalent to (A/B)/e. Minus is binary whenever possible, i.e.,

except when it is the first operator ina list, as in (-A) or (-A), or

when it immediately follows another operator, as in A *-B. Note

that grouping with parentheses can always be used to override
the normal precedence grouping, or when the user is not sure
how a particular expression will parse. The complete order of
precedence for eLisP operators is given below.

Note that + in front of a number will disappear when the

number is read, e.g., (Faa x + 2) is indistinguishable from (Faa
x 2). This means that (Faa x + 2) will not be interpreted as

CLlSP, or be converted to (Faa (lPLUS x 2». Similarly, (Faa x -2)

will not be interpreted the same as (Faa X-2). To circumvent
this, always type a space between the + or - and a number if an

infix operator is intended, e.g., write (FOO X + 2).

[CLISP Operator]

[CLISP Operator]

[CLISP Operator]

[CLISP Operator]

[CLISP Operator]

These are infix operators for "Equal", "Greater Than", "Less
Than", "Greater Than or Equal", and" Less Than or Equal" .

GT, LT, GE, and LE are all affected by the same declarations as +

and *, with the initial default to use GREATERP and LESSP.

Note that only single character operat.ors, e.g., +, +-, =, etc., can

appear in the interior of an atom. All other operators must be
set off from identifiers with spaces. For example, XLTY will not

be recognized as CLiSP. In some cases, DWIM will be able to
diagnose this situation as a run-on spelling error, in wr,i'.:h case
after the atom is split apart, CLiSP will be able to perform the
indicated transformation.

A number of lisp functions, such as EQUAL, MEMBER, AND, OR,

etc., can also be treated as CLiSP infix operators. New infix

21.8 CLiSP

CLiSP

CLiSP CHARACTER OPERATORS

operators can be easily added (see page 21.27). Spelling
correction on misspelled infix operators is peformed using
CLISPINFIXSPLST as a spelling list.

AND is higher than OR, and both AND and OR are lower than the

other infix operators, so (X OR V AND Z) is the same as {X OR (Y
AND Z)), and (X AND V EQUAL Z) is the same as {X AND (V EQUAL

Z». All of the infix predicates have lower precedence than
Interlisp forms, since it is far more common to apply a predicate
to two forms, than to use a Boolean as an argument to a
function. Therefore, (FOO X GT FIE V) is translated as {(FOO X) GT

(FIE V», rather than as (FOO {X GT (FIE V»). However, the user
can easily change this.

[CLISP Operator]

X:N extracts the Mh element of the list X. FOO:3 specifies the
third element of FOO, or (CADDR FOO). If N is less than zero, this
indicates elements counting from the end of the list; i.e. FOO:-'
is the last element of FOO. : operators can be nested, so FOO:' : 2
means the second element of the first element of FOO, or
(CADAR FOO).

The: operator can also be used for extracting substructures of
records (see page 8.1). Record operations are implemented by
replacing expressions of the form X:FOO by (fetch FOD of X).
Both lower and upper case are acceptable.

: is also used to indicate operations in the pattern match facility
(page 12.24). X:{& 'A -- 'B) translates to {match X with (&' A -- 'B))

[CLISP Operator]

In combination with :, a period can be used to specify the" data

path" for record operations. For example, if FOO is a field of the
BAR record, X:BAR.FOO is translated into {fetch (BAR FOO) of X).

Subrecord fields can be specified with multiple periods:
X:BAR.FOO.BAZ translates into {fetch (BAR FOO BAZ) of X).

Note: If a record contains fields with periods in them, CLiSPIFV
will not translate a record operation into a form usi ng periods to
specify the data path. For example, CLISPIFV will NOT translate
(fetch A.B of X) into X:A.B.

[CLISP Operator]

X:N. returns the Mh tail of the list X. For example, FOO::3 is
(CDDUR FOO), and FOO: :-1 is (LAST FOO).

[CLISP Operator]

~ is used to indicate assignment. For example, X~V translates to
(SETQ X V). If X does not have a value, and is not the name of

one of the bound variables of the function in which it appears,

21 9

CLiSP CHARACTER OPERA TORS

<

>

21.10

spelling correction is attempted. However, since this may simply
be a case of assigning an initial value to a new free variable,
DWIM will always ask for approval before making the correction.

In conjunction with: and ::, ~ can also be used to perform a
more general type of assignment, involving structure
modification. For example, X:2~V means "make the second
element of X be V", in Interlisp terms {RPlACA (CDR X) V). Note

that the value of this operation is the value of RPlACA, which is
(CDR X), rather than V. Negative numbers can also be used, e.g.,
X:-2~V, which translates to {RPlACA (NlEFT X 2) V}.

The user can indicate he wants IRPlACA and IRPlACD used
(undoable version of RPlACA and RPlACD, see page 13.26), or
FRPLACA and FRPlACD (fast versions of RPlACA and RPlACD,

see page 3.3), by means of CLiSP declarations (page 21.12). The
initial default is to use RPlACA and RPlACD.

~ is also used to indicate assignment in record operations
(X:FOO~V translates to (replace FOO of X with V).), and pattern

match operations (page 12.24).

~ has different precedence on the left from on the right. On the
left, +- is a "tight" operator, i.e., high precedence, so that
A + B+-C is the same as A + {B~C}. On the right, ~ has broader

scope so that A~B + C is the same as A+-{B + C).

On typein, $~FORM (where $ is the escape key) is equivalent to

set the "last thing mentioned", i.e., is equivalent to (SET
LASTWORD FORM) (see page 20.18). For example, immediately

after examining the value of LONGVARIABLENAME, the user

could set it by typing $+- followed by a form.

Note that an atom of the form X~V, appearing at the top level

of a PROG, will not be recognized as an assignment statement
because it will be interpreted as a PROG label by the Interlisp

interpreter, and therefore will not cause an error, so DWIM and
CLiSP will never get to see it. Instead, one must write (X~V).

[CLISP Operator]

[CLISP Operator]

Angle brackets are used in CLISP to indicate list construction. The
appearance of a II < II corresponds to a "{" and indicates that a

list is to be constructed containing all the elements up to the
corresponding ">". For example, <A B <C> > translates to
(LIST A B (LIST C». ! can be used to indicate that the next
expression is to be inserted in the list as a segment, e.g., <A B !
C> translates to (CONS A (CONS B C» and <! A ! B C> to
(APPEND A B (LIST C». !! is used to indicate that the next
expression is to be inserted as a segment, and furthermore, all list

CLiSP

CLiSP

CLiSP CHARACTER OPERATORS

structure to its right in the angle brackets is to be physically
attached to it, e.g., <!! A B> translates to (NCONC1 A B), and
<!fA! B !C> to (NCONC A (APPEND B C}). Not {NCONC (APPEND

A B) C), which would have the same value, but would attach C to

Bf and not attach either to A. Note that <, !, !!, and> need not
be separate atoms, for example, <A B ! C> may be written
equally well as < A B !C >. Also, arbitrary Interlisp or CLiSP
forms may be used within angle brackets. For example, one can
write <FOO~(FIE X) ! v> which translates to (CONS (SETQ FOO
(FIE X)) V). CLiSPIFV converts expressions in CONS, LIST, APPEND,

NCONC, NCONC1, INCONC, and INCONC1 into equivalent CLiSP

expressions using <, >, !,·and!!.

Note: brackets differ from other CLiSP operators. For example,
<A B 'C> translates to (LIST A B (QUOTE C» even though
following " all operators are ignored for the rest of the
identifier. (This is true only if a previous unmatched < has been
seen, e.g., (PRINT 'A>B) will print the atom A>B.) Note

however that <A B ' C> 0> is equivalent to (LIST A B (QUOTE
C» D).

[CUSP Operator]

CLiSP recognizes' as a prefix operator. 'means QUOTE when it is
the first character in an identifier, and is ignored when it is used
in the interior of an identifier. Thus, X = 'V means (EQ X (QUOTE
V»~, but X = CAN'T means (EQ X CAN'T), not (EQ X CAN) followed
by (QUOTE T). This enables users to have variable and function
names with' in them (so long as the' is not the first character).

Following " all operators are ignored for the rest of the
identifier, e.g., '*A means (QUOTE *A), and 'X = Y means (QUOTE

X = Y), not (EQ (QUOTE X) V). To write (EQ (QUOTE X) V}, one

writes Y = 'X, or 'X = Y. This is one place where an extra space
does make a difference.

On typein, '$ (escape) is equivalent to (QUOTE

VALUE-OF-LASTWORD) (see page 20.18). For example, after
calling PRETIYPRINT on LONGFUNCTION, the user could move its
definition to FOO by typing (MOVD '$ 'FOO).

Note that this is not (MOVD $ 'FOO), which would be equivalent
to (MOVD LONGFUNCTION 'FOO), and would (probably) cause a
U.B.A. LONGFUNCTION error, nor MOVD{$ FOO), which would

actually move the definition of $ to FOO, since DWIM and the
spelling corrector would never be invrked.

[CLISP Operator]

CLiSP recognizes - as a prefix operator meaning NOT. - can
negate a form, as in -(ASSOC X V), or -X, or negate an infix
operator, e.g., (A -GT B) is the same as (A LEQ B). Note that -A = B
means {EQ (NOT A) B).

21.11

CLiSP CHARACTER OPERATORS

21.3 Declarations

(CLlSPDEC DECLSn

21 12

When - negates an operator, e.g., - = , -L T, the two operators are

treated as a single operator whose precedence is that of the
second operator. When - negates a function, e.g., CFOO X V), it

negates the whole form, i.e., C(FOO X Y».

Order of Prededence of eLisP Operators:

+- (left precedence)
• (unary), -

i
*,1
+,. (binary)

+- (right precedence)

=
Interlisp forms
L T, GT, EQUAL, MEMBER, etc.
AND

OR
IF, THEN, ELSEIF, ELSE

iterative statement operators

CLiSP declarations are used to affect the choice of Interl isp
function used as the translation of a particular operator. For
example, A + B can be translated as either (PLUS A B), (FPLUS A

B), or (IPLUS A B), depending on the declaration in effect.

Similarly X:1+-Y can mean (RPLACA X V), (FRPLACA X V), or

(/RPLACA X V), and <!! A B> either (NeONC1 A B) or (lNCONC1

A B). Note that the choice of function on all CLiSP

transformations are affected by the CLiSP declaration in effect,
i.e., iterative statements, pattern matches, record operations, as
well as infix and prefix operators.

[Function]

Puts into effect the declarations in DECLST. eLlSPDEC performs

spelling corrections on words not recognized as declarations.
CLlSPDEC is undoable.

The user can makes (changes) a global declaration by calling
tCLlSPDEC with DECLST a list of declarations, e.g., (CLlSPDEC

"(FLOATING UNDOABLE». Changing a global declaration does

not affect the speed of subsequent eLlsP transformations, since

CliSP

CLiSP

Declaration:

MIXED

INTEGER or FIXED

FLOATING

DECLARA TIONS

all CLiSP transformation are table driven (i.e., property list), and
global declarations are accomplished by making the appropriate
internal changes to CLiSP at the time of the declaration. If a
function employs local declarations (described below), there will
be a slight loss in efficiency owing to the fact that for each CLiSP
transformation, the declaration list must be searched for possibly
relevant declarations.

Declarations are implemented in the order that they are given,
so that later declarations override earlier ones. For example, the
declaration FAST specifies that FRPLACA, FRPLACD, FMEMB, and

FLAST be used in place of RPLACA, RPLACD, MEMB/ and LAST;
the declaration RPLACA specifies that RPLACA be used.
Therefore, the declarations (FAST RPLACA RPLACD) will cause

FMEMB, FLAST, RPLACA, and RPLACD to be used.

The initial global declaration is MIXED and STANDARD.

The table below gives the declarations available in CLlSP, and the
Interlisp functions they indicate:

Interlisp Functions to be used:

PLUS, MINUS, DIFFERENCE, TIMES, QUOTIENT, LESSP, GREATERP

IPLUS, IMINUS, IDIFFERENCE, ITIMES, IQUOTIENT, ILESSP,

IGREATERP

FPLUS, FMINUS, FDIFFERENCE, FTIMES, FQUOTIENT, LESSP,

FGREATERP

FAST FRPLACA, FRPLACD, FMEMB, FLAST, FASSOC

UNDOABLE

STANDARD

RPLACA, RPLACD, IRPLACA, etc.

IRPLACA, IRPLACD, INCONC, INCONC1/ IMAPCONC/ IMAPCON

RPLACA, RPLACD/ MEMB, LAST/ ASSOC, NCONC, NCONC1/
MAPCONC, MAPCON

corresponding function

The user can also make local declarations affecting a selected
function or functions by inserting an expression of the form
(CLlSP: . DECLARA TlONS) immediately following the argument
list, i.e., as CADDR of the definition. Such local declarations take
precedence over global declarations. Declarations affecting
selected variables can be indicated by lists, where the first
element is the name of a variable, and the rest of the list the
declarations for that variable. For example/ (CLlSP: FLOATING (X
INTEGER)) specifies that in this function integer arithmetic be
used for computations involving X, and floating arithmetic for all
other computations, where "involving" means where the
variable itself is an operand. For exam pie/ with the declaration
{FLOATING (X INTEGER)) in effect, (FOO X) + (FIE X) would
translate to FPLUS, i.e./ use floating arithmetic, even though X
appears somewhere inside of the operands, whereas X + (FIE X)

21.13

DECLARATIONS

21.4 (LISP Operation

21.14

would translate to IPLUS. If there are declarations involving both
operands, e.g., X + V, with (X FLOATING) (V INTEGER), whichever

appears first in the declaration list will be used.

The user can also make local record declarations by inserting a
record declaration, e.g., (RECORD --), (ARRA VRECORD --), etc., in

the local declaration list. In addition, a local declaration of the
form (RECORDS A B C) is equivalent to having copies of the
global declarations A, B, and C in the local declaration. Local
record declarations override global record declarations for the
function in which they appear .. Local declarations can also be
used to override the global setting of certain DWIM/CLISP
parameters effective only for transformations within that
function, by including in the local declaration an expression of
the form (VARIABLE = VALUE), e.g., (PATVARDEFAULT =
QUOTE).

The CLlSP: expression is converted to a comment of a special
form recognized by CLiSP. Whenever a CLiSP transformation
that is affected by declarations is about to be performed ina
function, this comment will be searched for a relevant
declaration, and if one is found, the corresponding function will
be used. Otherwise, if none are found, the global declaration(s)
currently in effect will be used.

Local declarations are effective in the order that they are given,
so that later declarations' ca n be used to override earl ier ones,
e.g., (CLlSP: FAST RPlACA RPLACD) specifies that FMEMB, FlAST,

RPlACA, and RPlACD be used. An exception to this is that

declarations for specific variables take precedence of general,
function-wide declarations, regardless of the order of
appearance, as in (CLlSP: (X INTEGER) FLOATING).

CLiSPIFV also checks the declarations in effect before selecting an

infix operator to ensure that the corresponding CLiSP construct
would in fact translate back to this form. For example, if a
FLOATING declaration is in effect, CLISPIFV will convert (FPlUS X
Y) to X + V, but leave (IPLUS X V) as is. Note that if (FPlUS X V) is

CLiSPIFVed while a FLOATING declaration is under effect, and
then the declaration is changed to INTEGER, when X + V is
translated back to Interlisp, it will become (IPlUS X V).

CliSP is a part of the basic Interlisp system. Without any special
preparations, the user can include CLISP constructs in programs,
or type them in directly for evaluation (in EVAl or APPLY

format), then, when the "error" occurrs, and DWIM is called, it
will destructively transform the CLISP to the equivalent Interlisp

CliSP

CLiSP

CLiSP OPERATION

expression and evaluate the Interlisp expression. CLiSP
transformations, like all DWIM corrections, are undoable. User
approval is not requested, and no message is pri nted. Note that

this entire discussion also applies to CLiSP transformation
initiated by calls to DWIM from DWIMIFV.

However, if a CLiSP construct contains an error, an appropriate
diagnostic is generated, and the form is left unchanged. For
example, if the user writes (LIST X + V*), the error diagnostic

MISSI,NG OPERAND AT X + V* IN (LIST X + V*) would be

generated. Similarly, if the user writes (LAST + EL X), CLiSP knows

that ((IPLUS LAST EL) X) is not a valid Interlisp expression, so the

error diagnostic MISSING OPERATOR IN (LAST + EL X) is

generated. (For example, the user might have meant to say
(LAST + EL *X).) Note that if LAST + EL were the name of a

defined function, CLiSP would never see this form.

Since the bad CLiSP transformation might not be CLiSP at all, for

example, it might be a misspelling of a user function or variable,
DWIM· holds all CLiSP error messages until after trying other

corrections. If one of these succeeds, the CLiSP message IS

discarded. Otherwise, if all fail, the message is printed (but no
change is made). For example, suppose the user types (R/PLACA

X V). CLiSP generates a diagnostic, since ((IQUOTIENT R PLACA) X

Y) is obviously not right. However, since R/PLACA spelling
corrects to IRPLACA, this diagnostic is never printed.

Note: CLiSP error messages are not printed on type-in. For

example, typing X + *Y will just produce a U.S.A. X + *V message.

If a CLiSP infix construct is well formed from a syntactic
standpoint, but one or both of its operands are atomic and not
bound, it is possible that either the operand is misspelled, e.g.,
the user wrote X + VV for X + V, or that a eLisP transformation

operation was not intended at all, but that the entire expression
is a misspelling. For the purpose of DWIMIFVing, II not bound"

means no top level value, not on list of bound variables built up
by DWIMIFY during its analysis of the expression, and not on

NOFIXVARSLST, i.e., not previously seen.

For example, if the user has a varia ble named LAST-EL, and writes

(LIST LAST-ELL). Therefore, CLiSP computes, but does not

actually perform, the indicated infix transformation. DWIM then
continues, and if it is able to make another correction, does so,
and ignores the CLiSP interpretation. For example, with

LAST-ELL, the transformation LAST-ELL - > LAST-EL would be
found.

If no other transformation is found, and DWIM is about to
interpret a construct as CLiSP for which one of the operands is
not bound, DWIM will ask the user whether CLiSP was intended,
in this case by printing LAST-ELL TREAT AS CLISP 7.

21 15

CliSP OPERA TION

21 16

Note: If more than one infix operator was involved in the CLiSP

construct, e.g., X + Y + Z, or the operation was an assignment to a

variable already noticed, or TREATASCLlSPFLG is T (initially NIL),

the user will simply be informed of the correction, e.g., X + Y + Z

TREATED AS CLISP. Otherwise, even if DWIM was enabled in

TRUSTING mode, the user will be asked to approve the

correction.

The same sort of procedure is followed with 8 and 9 errors. For

example, suppose the user writes F008*X where F008 is not

bound. The CLiSP transformation is noted, and DWIM proceeds.
It next asks the ·user to approve F008*X -> FOO {*X. For

example, this would make sense if the user has (or plans to
define) a function named *X. If he refuses, the user is asked

whether F008*X is to be treated as eLisP. Similarly, if F008
were the name of a variable, and the user writes F0008*X, he

will first be asked to approve F0008*X -> FOOO { XX, and if he

refuses, then be offered the F0008 - > F008 correction. The 8-9

transformation is tried before spelling correction since it is
empirically more likely that an unbound atom or undefined

function containing an 8 or a 9 is a parenthesis error, rather than
a spelling error.

CLiSP also contains provision for correcting misspellings of infix
operators (other than single characters), IF words, and i.s.

operators. This is implemented in such a way that the user who
does not misspell them is not penalized. For example, if the user

writes IF N = 0 THEN 1 ELSSE N*{FACT N-1) eLisP does not operate

by checking each word to see if it is a misspelling of IF, THEN,

ELSE, or ELSEIF, since this would seriously degrade eLlSP's

performance on aI/IF statements. Instead, eLisP assumes that all

of the IF words are spelled correctly, and transforms the

expression to {COND «ZEROP N) 1 ELSSE N*{FACT N-1 »). Later,

after DWIM cannot find any other interpretation for ELSSE, and
using the fact that this atom originally appeared in an IF
statement, DWIM attempts spelling correction, using (IF THEN

ELSE ELSEIF) for a spelling list. When this is successful, DWIM

"fails" all the way back to the original IF statement, changes

ELSSE to ELSE, and starts over. Misspellings of AND, OR, LT, GT,

etc. are handled similarly.

eLisP also contains many Do-What-I-Mean features besides
spelling corrections. For example, the form (LIST + X Y) would

generate a MISSING OPERATOR error. However, (LIST -X Y)

makes sense, if the minus is unary, so 9WIM offers this
interpretation to the user. Another common error, especially for
new users, is to write (LIST X*FOO{Y» or (LIST X*FOO Y), where

FOO is the name of a function, instead of (LIST X*{FOO Y».

Therefore, whenever an operand that is not bound is also the
name of a function (or corrects to one), the above
interpretations are offered.

CLiSP

21.5 (LISP Translations

CliSP

CLiSP TRANSLATIONS

The translation of CLiSP character operators and the CLiSP word
IF are handled by rep/acing the CLiSP expression with the

corresponding Interlisp expression, and discarding the original
CLiSP. This is done because (1) the CLiSP expression is easily
recomputable (by CLISPIFY) and (2) the Interlisp expressions are
simple and straightforward. Another reason for discarding the
original CLiSP is that it may contain errors that were corrected in
the course of translation (e.g., FOO~FOOO:1, N*8FOO X), etc.).

If the original CLiSP were retained, either the user would have to
go back and fix these errors by hand, thereby negating the
advantage of having DWIM perform these corrections, or else

DWIM would have to keep correcting these errors over and over.

Note that CLISPIFY is sufficiently fast that it is practical for the
user to configure his Interlisp system so that all expressions are
automatically CLlSPIFYed immediately before they are presented

to him. For example, he can define an edit macro to use in place
of P which calls CLISPIFY on the' current expression before
printing it. Similarly, he can inform PRETIYPRINT to call CLISPIFY
on each expression before printing it, etc.

Where (1) or (2) are not the case, e.g., with iterative statements,
pattern matches, record expressions, etc. the original CLiSP is
retained (or a slightly modified version thereof), and the
translation is stored elsewhere (by the function CLlSPTRAN, page
21.25), usually in the hash array CLISPARRAY. The interpreter
automatically checks this array when given a form CAR of which
is not a function. Similarly, the compiler performs a GETHASH
when given a form it does not recognize to see if it has a
translation, which is then compiled instead of the form.
Whenever the user changes a CLiSP expresson by editing it, the
editor automatically deletes its translation (if one exists), so that
the next time it is evaluated or dwimified, the expression will be
retranslated (if the value of CLISPRETRANFLG is T, DWIMIFY will

also (re)translate any expressions which have translations stored
remotely, see page 21.22). The function PPT and the edit
commands PPT and CLlSP: are available for examining
translations (page 21.26).

The user can also indicate that he wants the original CLiSP
retained by embedding it in an expression of the form (CLISP .
CUSP-EXPRESSION), e.g., (CLISP X:S:3) or (CLISP <A B C ! 0». In

such cases, the translation will be stored remotely as described
above. Furthermore, such expressions will be treated as CLiSP
even if infix and prefix transformations have been disabled by
setting CLlSPFLG to NIL (page 21.25). In other words, the user
can instruct the system to interpret as CLiSP infix or prefix
constructs only those expressions that are specifically flagged as
such. The user can also include CLiSP declarations by writing

21 17

CLiSP TRANSLA TIONS

21.6 DWIMIFY

21.18

(CLISP DECLARA nONS. FORM), e.g., {CLISP (CLlSP: FLOATING) 0 ••

). These declarations will be used in place of any CLiSP
declarations in the function definition. This feature provides a
way of including CLiSP declarations in macro definitions.

Note: CLiSP translations can also be used to supply an
interpretation for function objects, as well as forms, either for
function objects that are used openly, i.e., appearing as CAR of

form, function objects that are explicitly APPL Yed, as with

arguments to mapping functions, or function objects contained
in function definition cells. In all cases, if CAR of the object is not
LAMBDA or NLAMBDA, the interpreter and compiler will check

CLISPARRA Y.

OWIMIFY is effectively a preprocessor for CLiSP. DWIMIFY
operates by scanning an expression as though it were being
interpreted, and for each form that would generate an error,
calling DWIM to "fix" it. DWIMIFY performs all DWIM

transformations, not just CLiSP transformations, so it does
spelling correction, fixes 8-9 errors, handles F/L, etc. Thus the
user will see the same messages, and be asked for approval in the
same situations, as he would if the expression were actually run.
If DWIM is unable to make a correction, no message is printed,
the form is left as it was, and the analysis proceeds.

OWIMIFY knows exactly how the interpreter works. It knows the

syntax of PROGs, SELECTQs, LAMBDA expressions, SETQs, et al. It
knows how variables are bound, and that the argument of
NLAMBDAs are not evaluated (the user can inform DWIMIFY of a
function or macro's nonstandard binding or evaluation by giving
it a suitable INFO property, see page 21.21). In the course of its

analysis of a particular expression, DWIMIFY builds a list of the
bound variables from the LAMBDA expressions and PROGs that it

encounters. It uses this list for spelling corrections. DWIMIFY
also knows not to try to "correct" variables that are on this list
since they would be bound if the expression were actually being
run. However, note that DWIMIFY cannot, a priori, know about
variables that are used freely but would be bound in a higher
function if the expression were evaluated in its normal context.
Therefore, DWIMIFY will try to "correct" these variables.

Similarly, DWIMIFY will attempt to correct forms for which CAR is
undefined, even when the form is not in error from the us"er's
standpoint, but the corresponding function has simply not yet
been defined.

CLiSP

CLISP

DWIMIFY

Note: DWIMIFY rebinds FIXSPELLDEFAULT to N, so that if the
user is not at the terminal when dwimifying (or compiling),
spelling corrections will not be performed.

DWIMIFY will also inform the user when it encounters an
expression with too many arguments (unless
DWIMCHECK#ARGSFLG = NIL), because such an occurrence,
although does not cause an error in the Interlisp interpreter,
nevertheless is frequently symptomatic of a parenthesis error.
For example, if the user wrote (CONS (QUOTE Faa X» instead of .
(CONS (QUOTE Faa) X), DWIMIFY will print:

POSSIBLE PARENTHESIS ERROR IN
(QUOTE Faa X)
TOO MANY ARGUMENTS (MORE THAN 1)

DWIMIFY will also check to see if a PROG label contains a clisp

character (unless DWIMCHECKPROGLABELSFLG = NIL, or the
label is a member of NOFIXVARSLST), and if so, will alert the user
by printing the message SUSPICIOUS PROG LABEL, followed by

the label. The PROG label will not be treated as CLiSP.

Note that in most cases, an attempt to transform a form that is
already as the user intended will have no effect (because there
will be nothing to which that form could reasonably be
transformed). However, in order to avoid needless calls to DWIM
or to avoid possible confusion, the user can inform DWIMIFY not
to attempt corrections or transformations on certain functions or
variables by adding them to the list NOFIXFNSLST or
NOFIXVARSLST respectively. Note that the user could achieve
the same effect by simply setting the corresponding variables,
and giving the functions dummy definitions.

DWIMIFY will never attempt corrections on global variables, i.e.,
variables that are a member of the list GLOBALVARS, or have the
property GLOBALVAR with value T, on their property list.

Similarly, DWIMIFY will not attempt to correct variables declared

to be SPECVARS in block declarations or via DECLARE expressions

in the function body. The user can also declare variables that are
simply used freely in a function by using the USEDFREE
declaration.

DWIMIFY and DWIMIFYFNS (used to DWIMIFY several functions)
maintain two internal lists of those functions and variables for
which corrections were unsuccessfully attempted. These lists are
initialized to the values of NOFIXFNSLST and NOFIXVARSLST.
Once an attempt is made t('\ fix a particular function or variable,
and the attempt fails, the function or variable is added to the
corresponding list, so that on subsequent occurrences (within
this call to DWIMIFY or DWIMIFYFNS), no attempt at correction is
made. For example, if Faa calls FIE several times, and FIE is
undefined at the time Faa is dwimified, DWIMIFY will not
bother with FIE after the first occurrence. In other words, once

21 19

DWIMIFY

(DWIMIFY X QUIETFLG L)

(DWIMIFYFNS FN1 ". FNN)

DWIMINMACROSFLG

21.20

DWIMIFY "notices" a function or variable, it no longer attempts

to correct it. DWIMIFY and DWIMIFYFNS also "notice" free

variables that are set in the expression being processed.
Moreover, once DWIMIFY "notices" such functions or variables,

it subsequently treats them the same as though they were
actually defined or set.

Note that these internal lists are local to each call to DWIMIFY
and DWIMIFYFNS, so that if a function containing FOOO, a

misspelled call to Faa, is DWIMIFYed before FOO is defined or
mentioned, if the function is DWIMIFYed again after FOO has

been defined, the correction will be made.

The user can undo selected transformations performed by
DWIMIFY, as described on page 13.14.

[Function]

Performs all DWIM and CLiSP corrections and transformations on
X that would be performed if X were run, and prints the result
unless QUIETFLG = T.

If X is an atom and L is NIL, X is treated as the n~me of a function,
and its entire definition is dwimified. If X is a list or L is not NIL, X
is the expression to be dwimified. If L is not NIL, it is the edit
push-down list leading to X, and is used for determining context,
i.e., what bound variables would be in effect when X was
evaluated, whether X is a form or sequence of forms, e.g., a
(OND clause, etc.

If X is an iterative statement and L is NIL, DWIMIFY will also print

the translation, i.e., what is stored in the hash array.

[NLam bda NoSpread Function]

Dwimifies each of the functions given. If only one argument is
given, it is evalued. If its value is a list, the functions on this list
are dwimified. If only one argument is given, it is atomic, its
value is not a list, and it is the name of a known file,
DWIMIFYFNS will operate on (FILEFNSLST FN1), e.g.

(DWIMIFYFNS FOO.LSP) will dwimify every function in the file
fOO.LSP.

rEvery 30 seconds, DWIMIFYFNS prints the name of the function it
is processing, a la PRETIYPRINT.

Value is a list of the functions dwimified.

[Variable]

Controls how DWIMIFY treats the arguments in a "call" to a

macro, i.e., where the CAR of the form is undefined, but has a
macro definition. If DWIMINMACROSFLG is T, then macros are
treated as LAMBDA functions, i.e., the arguments are assumed to

CLiSP

CLiSP

INFO

NOFIXFNSLST

DWIMIFY

be evaluated, which means that DWIMIFY will descend into the
argument list. If DWIMINMACROSFLG is NIL, macros are treated
as NLAMBDA functions. DWIMINMACROSFLG is initially T.

[Property Name]

Used to inform DWIMIFY of nonstandard behavior of particular
forms with respect to evaluation, binding of arguments, etc. The
INFO property of a litatom is a single atom or list of atoms chosen

from among the following:

EVAL Informs DWIMIFY (and CLISP and Masterscope) that an nlambda
function does evaluate its arguments. Can also be placed on a
macro name to override the behavior of DWIMINMACROSFLG =
NIL.

NOEVAL

BINDS

LABELS

Informs DWIMIFY that a macro does not evaluate all of its
arguments, even when DWIMINMACROSFLG = T.

Placed on the INFO property of a function or the CAR of a special

form to inform DWIMIFY that the function or form binds
variables. In this case, DWIMIFY assumes that CADR of the form

is the variable list, i.e., a list of litatoms, or lists of the form (VAL

VALUE). LAMBDA, NLAMBDA, PROG, and RESETVARS are
handled in this fashion.

Informs CLISPIFY that the form interprets top-level litatoms as
labels, so that CLISPIFY will never introduce an atom (by packing)
at the top level of the expression. PROG is handled in this

fashion.

[Variable] ---List of functions that DWIMIFY will not try to correct.

NOFIXVARSLST [Variable] ---

NOSPELLFLG

CLISPHELPFLG

List of variables that DWIMIFY will not try to correct.

[Variable]

If T, DWIMIFY will not perform any spelling corrections. Initially
NIL. NOSPELLFLG is reset to T when compiling functions whose

definitions are obtained from a file, as opposed to being in core.

[Variable] ---If NIL, DWIMIFY will not ask the user for approval of any CllSP
transformations. Instead, in those situations where approval
would be required, the effect is the same as though the user had
been asked and said NO. Initially T.

21.21

DWIMIFY

OWl MI FYCOMPFlG

OWl MCH ECK#ARGSFlG

[Variable]

If T, OWIMIFY is called before compiling an expression. Initially

NIl.

[Variable]

If T, causes OWIMIFY to check for too many arguments in a form.
Initially T.

OWIMCHECKPROGlABElSFlG [Variable]

OWIMESSGAG

CliSPRETRANFlG

21.7 CLISPIFY

21.22

If T, causes OWIMIFY to check whether a PROG label contains a

CLiSP character. Initially T.

[Variabl e]

If T, suppresses all OWIMIFY error messages. Initially NIl.

[Variable]

If T, informs OWIMIFY to (re)translate all expressions which have

remote translations in the CLiSP hash array. Initially NIL.

CliSPIFY converts Interlisp expressions to CLiSP. Note that the
expression given to CliSPIFY need not have originally been input

as CLlSP, i.e., CliSPIFY can be used on functions that were written

before CLiSP was even implemented. CliSPIFY is cognizant of

declaration rules as well as all of the precedence rules. For

example, CliSPIFY will convert (lPlUS A (ITIMES B C» into

A + B*C, but (lTIMES A (lPlUS B C)) into A *(B + C). CliSPIFY

handles such cases by first OWIMIFYing the expression. CLiSPIFY

also knows how to handle expressions consisting of a mixture of
Interlisp and CLlSP, e.g., (IPlUS A B*C) is converted to A + B*C,

but (lTIMES A B + C) to (A *(B + C». CLiSPIFY converts calls to the

six basic mapping functions, MAP, MAPC, MAPCAR, MAPLlST,

MAPCONC, and MAPCON, into equivalent iterative statements.

It also converts certain easily recognizable internal PROG loops

to the corresponding iterative statements. CLiSPIFY can convert

all iterative statements input in CLiSP back to CLlSP, regardless of
how complicated the translation was, because the original CLiSP
,s saved.

CliSPIFY is not destructive to the original Interlisp expression,

i.e., CliSPIFY produces a new expression without changing the
original. The new expression may however contain some
"pieces" of the original, since CliSPIFY attempts to minimize the

number of CONSes by not copying structure whenever possible.

CliSP

CliSP

(CLISPIFY X EDITCHAIN)

CliSPIFY

CLISPIFY will not convert expressions appearing as arguments to

NLAMBDA functions, except for those functions whose INFO
property is or contains the atom EVAL. CLISPIFY also contains
built in information enabling it to process special forms such as
PROG, SELECTQ, etc. If the INFO property is or contains the atom
LABELS, CLISPIFY will never create an atom (by packing) at the

top level of the expression. PROG is handled in this fashion.

Note: Disabling a CLiSP operator with CLDISABLE (page 21.26)
will also disable the corresponding CLiSPIFY transformation.
Thus, if ~ is "turned off", A~B will not transform to (SETQ A B),

nor vice versa.

[Function]

Clispifies X. If X is an atom and EDITCHAIN is NIL, X is treated as
the name of a function, and its definition (or EXPR property) is

clispified. After CLiSPIFY has finished, X is redefined (using
/PUTD) with its new CLiSP defi'nition. The value of CLiSPIFY is X.
If X is atomic and not the name of a function, spelling correction
is attempted. If this fails, an error is generated.

If X is a list, or EDITCHAIN is not NIL, X itself is the expression to
be clispified. If EDITCHAIN is not NIL, it is the edit push-down list
leading to X and is used to determine context as with DWIMIFY,
as well as to obtain the local declarations, if any. The value of
ClISPIFY is the clispified version of X.

(ClISPIFYFNS FN1 ... FNN) [NLambda NoSpread Function]

Like DWIMIFYFNS (page 21.20) except calls CLiSPIFY instead of
DWIMIFY.

CL:FLG [Variable]

CLREMPARSFLG

Affects CLlSPIFY's handling of forms beginning with CAR, CDR, ...
CDDDDR, as well as pattern match and record expressions. If
CL:FLG is NIL, these are not transformed into the equivalent:

expressions. This will prevent ClISPIFY from constructing any
expression employing a : infix operator, e.g., (CADR X) will not

be transformed to X:2. If CL:FLG is T, CLiSPIFY will convert to :
notation only when the argument is atomic or a simple list (a
function name and one atomic argument). If CL:FLG is ALL,
ClISPIFY will convert to: expressions whenever possible.

CL:FLG is initially T.

[Variable]

If T, CLiSPIFY will remove parentheses in certain cases from

simple forms, where "simple" means a function name and one or
two atomic arguments. For example, {COND «ATOM X) --)} will
CLISPIFY to (IF ATOM X THEN --). However, if CLREMPARSFLG is

21.23

CLiSPIFY

CLISPIFYPACKFLG

CLISPIFYUSERFN

FUNNYATOMLST

21.24

set to NIL, CLISPIFY will produce (IF (ATOM X) THEN me}. Note that

regardless of the setting of this flag, the expression can be input

in either form.

CLREMPARSFLG is initially NIL.

[Variable]

CLISPIFYPACKFLG affects the treatment of infix operators with

atomic operands. If CLISPIFYPACKFLG is T, CLISPIFY will pack

these into single atoms, e.g., (lPLUS A (lTIMES B C)} becomes

A + B*C. If CLISPIFYPACKFLG is NIL, no packing is done, e.g., the

above becomes A + B * C.

CLISPIFYPACKFLG is initially T.

[Variable]

If T, causes the function CLISPIFYUSERFN, which should be a

function of one argument, to be called on each form (list) not
otherwise recognized by CLISPIFY. If a non-NIL value is returned,

it is treated as the clispified form. Initially NIL

Note that CLISPIFYUSERFN must be both set and defined to use

this feature.

[Variable]

Suppose the user has variables named A, B, and A * B. If CLISPIFY

were to convert (JTIMES A B) to A *B, A *B would not translate

back correctly to (ITIMES A B), since it would be the name of a

variable, and therefore would not cause an error. The user can
prevent this from happening by adding A*B to the list
FUNNYATOMLST. Then, (JTIMES A B) would CLISPIFY to A * B.

Note that A*B's appearance on FUNNYATOMLST would not
enable DWIM and CLiSP to decode A*B + C as (JPLUS A*B C);

FUNNYATOMLST is used only by CLISPIFY. Thus, if an identifier

contains a CLiSP character, it should always be separated (with
spaces) from other operators. For exam pie, if X* is a variable, the
user should write (SETQ X* FORM) in CLiSP as X* +-FORM, not

X*+-FORM. In general, it is best to avoid use of identifiers

containing CLiSP character operators as much as possible.

CliSP

MISCELLANEOUS FUNCTIONS AND VARIABLES

21.8 Miscellaneous Functions and Variables

CLlSPFLG

CLlSPCHARS

CLlSPCHARRA Y

CLISPINFIXSPLST

CLISPARRAY

(CLlSPTRAN X TRAN)

(CLlSPDEC DECLSn

CLiSP

[Variable]

If CLlSPFLG = NIL, disables all CLiSP infix or prefix transformations

(but does not affect IFITHEN/ELSE statements, or iterative

statements).

If CLlSPFLG = TYPE-IN, CLiSP transformations are performed only

on expressions that are typed in for evaluation, i.e., not on user

programs.

If CLlSPFLG = T, CLiSP transformations are performed on all

expressions.

The initial value for CLlSPFLG is T. CLlSPIFYing anything will

cause CLlSPFLG to be set to T.

[Variable]

A list of the operators that can appear in the interior of a n atom

Currently (+ - * I i -, = +-: < > + - - = @ !).

[Variable]

A bit table of the characters on CLlSPCHARS used for ca lis to

STRPOSL (page 4.6). CLlSPCHARRAY is initialized by performing

(SETQ CLlSPCHARRAY (MAKEBITIABLE CLlSPCHARS».

[Variable]

A list of infix operators used for spelling correction.

[Variable]

Hash array used for storing CLiSP translations. CLISPARRA Y is

checked by FAULTEVAL and FAULTAPPLY on erroneous forms

before calling DWIM, and by the compiler.

[Function]

Gives X the translation TRAN by storing (key X, value TRAN) in

the hash array CLISPARRA Y. CLlSPTRAN is called for all CLiSP

translations, via a non-linked, external function call, so it can be

advised.

[Function]

Puts into effect the declarations in DECLST (see page 21.12).

CLlSPDEC performs spelling corrections on words not recognized
as declarations. CLlSPDEC is undoable.

2125

MISCELLANEOUS FUNCTIONS AND VARIABLES

21.26

(CLDISABLE OP)

CLiSPIFTRANFLG

CliSPIFVPRETIVFLG

(PPT X)

CLlSP:

ALL

Tor EXPRS

CHANGES

a list

[Function]

Disables the CLiSP operator OP. For example, (CLDISABLE '-)

makes - be just another character. CLDISABLE can be used on all
CLiSP operators, e.g., infix operators, prefix operators, iterative
statement operators, etc. CLDISABLE is undoable.

Note: Simply removing a character operator from CLlSPCHARS

will prevent it from being treated as a CLiSP operator when it
appears as part of an atom,--but it will continue to be an operator
when it appears as a separate atom, e.g. (Faa + X) vs Faa + X.

[Variable]

Affects handling of translations of IF-THEN-ELSE statements (see
page 9.5). If T, the translations are stored elsewhere, and the
(modified) CLiSP retained. If NIL, the corresponding caND

expression replaces the CLiSP. Initially T.

[Variable]

If non-NIL, causes PRETIVPRINT (and therefore PP and
MAKEFILE) to CLiSPIFV selected function definitions before
printing them according to the following interpretations of
CLiSPIFVPRETIVFLG:

Clispify all functions.

'Clispify all functions currently defined as EXPRs.

Clispify all functions marked as having been changed.

Clispify all functions in that list.

CLiSPIFVPRETIVFLG is (temporarily) reset to T when MAKEFILE is
called with the option CLiSPIFV, and reset to CHANGES when the
file being dumped has the property FILETVPE value CLiSP.
CLiSPIFVPREITVFLG is initially NIL.

Note: If CLiSPIFVPRETIVFLG is non-NIL, and the only

transformation performed by DWIM are well formed CLISP

transformations, i.e., no spelling corrections, the function will
not be marked as changed, since it would only have to be
re-dispified and re-prettyprinted when the file was written out.

[NLambda NoSpread Function]

Both a function and an edit macro for prettyprinting
translations. It performs a PP after first resetting

PRETIVTRANFLG to T, thereby causing any translations to be
printed instead of the corresponding CLiSP.

[Editor Command]

Edit macro that obtains the translation of the correct expression,
if any, from CLiSPARRA V, and calls EDITE on it.

ClIS?

CL

ow

(LOWERCASE FLG)

MISCELLANEOUS FUNCTIONS AND VARIABLES

[Editor Command]

Edit macro. Replaces current expression with CLlSPIFYed current
expression. Current expression can be an element or tail.

[Editor Command]

Edit macro. DWIMIFYs current expression, which can be an
element (atom or list) or tail.

Both CL and OW can be called when the current expression is
either an element or a tail and will work properly. Both consult
the declarations in the function being edited, if any, and both
are undoable.

[Function]

If FLG = T, LOWERCASE makes the necessary internal

modifications so that CLISPIFY will use lower case versions of
AND, OR, IF, THEN, ELSE, ELSEIF, and all i.s. operators. This
produces more readable output. Note that the user can always
type in either upper or lower case (or a combination), regardless
of the action of LOWERCASE. If FLG = NIL, CLISPIFY will use
uppercase versions of AND, OR, et al. The value of LOWERCASE
is its previous "setting". LOWERCASE is undoable. The initial
setting for LOWERCASE is T.

21.9 (LISP Internal Conventions

CLlSPTYPE

CLiSP

CLiSP is almost entirely table driven by the property lists of the
corresponding infix or prefix operators. For example, much of
the information used for translating the + infix operator is
stored on the property list of the litatom "+". Thus it is

relatively easy to add new infix or prefix operators or change old
ones, simply by adding or changing selected property values.
(There issome built in information for handling minus,:,', and -,
i.e., the user could not himself add such "special" operators,
although he can disable or redefine them.)

Global declarations operate by changing the L1SPFN and

CLISPINFIX properties of the appropriate operators.

[Property Name]

The property value of the property CLlSPTYPE is the precedence
number of the operator: higher values have higher precedence,
i.e., are tighter. Note that the actual value is unimportant, only
the value relative to other operators. For example, CLlSPTYPE
for :, i, and * are 14,6, and 4 respectively. Operators with the

2127

CLiSP INTERNAL CONVENTIONS

UNARYOP

BROADSCOPE

LlSPFN

SETFN

21 28

same precedence group left to right, e.g., I also has precedence

4, so A/8*C is (A/B)*C.

An operator can have a different left and right precedence by
making the value of CLlSPTYPE be a dotted pair of two numbers,

e.g., CLlSPTYPE of +- is (8 . -12). I n this case, CAR is the left
precedence, and CDR the right, i.e., CAR is used when comparing

with operators on the left, and CDR with operators on the right.
For example, A *B+-C + D is parsed as A *(B+-(C + 0» because the
left precedence of +- is 8, which is higher than that of *, which is

4. The right precedence of +- is -12, which is lower than that of
+, which is 2.

If the CLlSPTYPE property for any operator is removed, the
corresponding CLiSP transformation is disabled, as well as the
inverse CLiSPIFY transformation.

[Property Name J

The value of property UNARYOP must be T for unary operators
or brackets. The operand is always on the right, i.e., unary
operators or brackets are always prefi x operators.

[Property Name J

The value of property BROADSCOPE is T if the operator has
lower precedence than Interlisp forms, e.g., L T, EQUAL, AND, etc.
For example, (FOO X AND Y) parses as «FOO X) AND V). If the

BROADSCOPE property were removed from the property list of

AND, (FOO X AND Y) would parse as (FOO (X AND Y».

[Property Name]

The value of the property LlSPFN is the name of the function to
which the infix operator translates. For example, the value of
L1SPFN for t is EXPT, for I QUOTE, etc. If the value of the

property L1SPFN is NIL, the infix operator itself is also the

function, e.g., AND, OR, EQUAL.

[Property Name]

If FOO has a SETFN property FIE, then (FOO -·)+-X translates to
(FIE _. X). For example, if the user makes ELT be an infix operator,

e.g. #, by putting appropriate CLlSPTYPE and L1SPFN properties
on the property list of # then he can also make # followed by +­
translate to SETA, e.g., X#N+-Y to (SETA' X NY), by putting SETA
on the property list of EL T under the property SETFN. Putti ng the
list (ELT) on the property list of SETA under property SETFN wi /I
lenable SETA forms to CLISPIFY back to ELT's.

CLiSP

CLiSPINFIX

CLlSPWORD

CLiSP

CLiSP INTERNAL CONVENTIONS

(Property Name]

The value of this property is the CLiSP infix to be used in
CLiSPIFYing. This property is stored on the property list of the
corresponding Interlisp function, e.g., the value of property

CLiSPINFIX for EXPT is i, for QUOTE is ' etc.

(Property Name]

Appears on the property list of clisp operators which can appear
as CAR of a form, such as FETCH, REPLACE, IF, iterative statement

• operators, etc. Value of property is of the form (KEYWORD.

NAME), where NAME is the lowercase version of the operator,

and KEYWORD is its type, e.g. FORWORD, IFWORD,

RECORDWORD, etc.

KEYWORD can also be the name of a function. When the atom
appears as CAR of a form, the function is applied to the form and

the result taken as the correct form. In this case, the function
should either physically change the form, or call CLlSPTRAN

(page 21.25) to store the translation.

As an example, to make & be an infix character operator

meaning OR, the user could do the following:

~PUTPROP '& 'CLlSPTYPE (GETPROP 'OR 'CLlSPTYPE»

~PUTPROP '& 'LlSPFN 'OR)

~PUTPROP '& 'BROADSCOPE T)

~PUTPROP 'OR 'CLISPINFIX • &)

~SETQ CLlSPCHARS (CONS' & CLlSPCHARS»

~SETQ CLlSPCHARRA Y (MAKEBITTABLE CLlSPCHARS»

21 29

CLiSP INTERNAL CONVENTIONS

[This page intentionally left blank]

21 30 (LIS?

TABLE OF CONTENTS

22. Performance Issues 22.1

22.1. Storage Allocation and Garbage Collection 22.1

22.2. Variable Bindings 22.5

22.3. Performance Measuring 22.7

22.3.1. BREAKDOWN 22.9

22.4. GAINSPACE 22.11

22.5. Using Data Types Instead of Records 22.13

22.6. Using Incomplete File Names 22.13

22.7. Using "Fast" and "Destructive" Functions 22.14

TABLE OF CONTENTS Toe1

TABLE OF CONTENTS

[This page intentionally left blank]

TOC2 TABLE OF CONTENTS

22. PERFORMANCE ISSUES

This chapter describes a number of areas that often contribute to
performance problems in Interlisp-D programs. Many
performance problems can be improved by optimizing the use of
storage, since allocating and reclaiming large amounts of
storage is expensive. Another tactic that can sometimes yield
performance improvements is to change the use of variable
bindings on the stack to reduce variable lookup time. There are
a number of tools that can be used to determine which parts of a
computation cause performance bottlenecks.

22.1 Storage Allocation and Garbage Collection

PERFORMANCE ISSUES

As an Interlisp-D applications program runs, it creates data
structures (allocated out of free storage space), manipulates
them, and then discards them. If there were no way of
reclaiming this space, over time the Interlisp-D memory (both the
physical memory in the machine and the virtual memory stored
on the disk) would fill up, and the computation would come to a
halt. Actually, long before this could happen the system would
probably become intolerably slow, due to "data fragmentation,"
which occurs when the data currently in use are spread over
many virtual memory pages, so that most of the computer time
must be spent swapping disk pages into physical memory. The
problem of fragmentation will occur in any situation where the
virtual memory is significantly larger than the real physical
memory. To reduce swapping, it is desirable to keep the
"working set" (the set of pages containing actively referenced
data) as small as possi ble.

It is possible to write programs that don't generate much
"garbage" data, or which recycle data, but such programs tend
to be overly complicated and difficult to debug. Spending effort
writing such programs defeats the whole point of using a system
with automatic storrloe allocation. An important part of any Lisp
implementation is the "garbage collector" which identifies
discarded data and reclaims its space. There are several
well-known approaches to garbage collection. One method is
the traditional mark-and-sweep garbage collection algorithm,
which identifies "garbage" data by marking all accessible data
structures, and then sweeping through the data spaces to find all

22.1

STORAGE ALLOCATION AND GARBAGE COLLECTION

22.2

unmarked objects (i.e., not referenced by any other object).
Although this method is guaranteed to reclaim all garbage, it
t.akes time proportional to the number of allocated objects,
which may be very large. (Some allocated objects will have been
marked during the "mark" phase, and the remainder will be
c:ollected during the "sweep" phase; so all will have to be
touched in some way.) Also, the time that a mark-and-sweep
garbage collection takes is independent of the amount of
garbage collected; it is possible to sweep through the whole
virtual memory, and only recover a small amount of garbage.

For interactive applications, it is not acceptable to have long
interruptions in a computation for the 'purpose of garbage
c:ollection. Interlisp-D solves this problem by using a
reference-counting garbage collector. With this scheme, there is
CI table containing counts of how many times each object is
referenced. This table is incrementally updated as pointers are
c:reated and discarded, incurring a small overhead distributed
over the computation as a whole. (Note: References from the
stack are not counted, but are handled separately at "sweep"
time; thus the vast majority of data manipulations do not cause
updates to this table.) At opportune moments, the garbage
collector scans this table, and reclaims all objects that are no
longer accessible (have a reference count of zero). The pause
while objects are reclaimed is only the time for scanning the
reference count tables (small) plus time proportional to the
amount of garbage that has to be collected (typically less than a
second). "Opportune" times occur when a certain number of
cells have been allocated or when the system has been waiting
for the user to type something for long enough. The frequency
of garbage collection is controlled by the functions and variables
described below. For the best system performance, it is desirable
to adjust these parameters for frequent, short garbage
collections, which will not interrupt interactive applications for
very long, and which will have the added benefit of reducing
data fragmentation, keeping the working set small.

One problem with the Interlisp-D garbage collector is that not all
9arbage is guaranteed to be collected. Circular data structures,
which point to themselves directly or indirectly, are never
reclaimed, since their reference counts are always at least one.
'vVith time, this unreclaimable garbage may increase the working
set to unacceptable levels. Some users have worked with the
same Interlisp-D virtual memory for a very long time, but it is a
good idea to occasionally save all of your functions in files,
reinitialize Interlisp-D, and rebuild your system. Many users end
their working day by issuing a command to rebuild their system
and then leaving the machine to perform this task in their
absence. If the system seems to be spending too much time
swapping (an indication of fragmented working set), this
procedure is definitely recommended.

PERFORMANCE ISSUES

(RECLAIM)

(RECLAIMMIN N)

RECLAIMWAIT

(GCGAG MESSAGE)

(GCTRP)

STORAGE ALLOCATION AND GARBAGE COLLECTION

Garbage collection in Interlisp-D is controlled by the following
functions and variables:

[Function]

Initiates a garbage collection. Returns O.

[Function]

Sets the frequency of garbage collection. Interlisp keeps track of
the num ber of cells of any type that have been allocated; whe n it
reaches a given number, a garbage collection occurs. If N is
non-NIL, this number is set to N. Returns the current setting of

the number.

[Variable]

Interlisp-D will invoke a RECLAIM if the system is idle and waiting
for user input for RECLAIMWAIT seconds (currently set for 4
seconds).

[Function]

Sets the behavior that occurs while a garbage collection is taking
place. If MESSAGE is non-NIL, the cursor is complemented during

a RECLAIM; if MESSAGE = NIL, nothing happens. The value of

GCGAG is its previous setting.

[Function]

Returns the number of cells until the next garbage collection,
according to the RECLAIMMIN number.

The amount of storage allocated to different data types, how
much of that storage is in use, and the amount of data
fragmentation can be determined using the following function:

(STORAGE TYPES PAGETHRESHOLD) [Function]

PERFORMANCE ISSUES

STORAGE prints out a summary, for each data type, of the
amount of space allocated to the data type, and how much of
that space is currently in use. If TYPES is non-NIL, STORAGE only

lists statistics for the specified types. TYPES can be a litatom or a
list of types. If PAGETHRESHOLD is non-NIL, then STORAGE only

lists statistics for types that have at least PAGETHRESHOLD pages
allocated to them.

STORAGE prints out a table with the column headings Type,
Assigned, Free Items, In use, and Total alloe. Type is the name of

the data type. Assigned is how much of your virtual memory is

set aside for items of this type. Currently, memory is allocated in
quanta of two pages (1024 bytes). The numbers under Assigned

show the number of pages and the total number of items that fit

223

STORAGE ALLOCATION AND GARBAGE COLLECTION

on those pages. Free Items shows how many items are available

to be allocated (using the create construct, page 8.3); these
constitute the "free list" for that data type. In use shows how
many items of this type are currently in use, i.e., have pointers to
them and hence have not been garbage collected. If this number
is higher than your program seems to warrant, you may want to
look for storage leaks. The sum of Free Items and In use is always

the same as the total Assigned items. Total alloc is the total
number of items of this type that have ever been allocated (see
BOXCOUNT, page 22.8).

Note: The information about the number of items of type L1STP
is only approximate, because list cells are allocated in a special
way that precludes easy computation of the number of items per
page.

Note: When a data type is redeclared, the data type name is
reassigned. Pages which were assigned to instances of the old
data type are labeled **OEALLOC**.

At the end of the table printout, STORAGE prints a "Data Spaces
Summary" listing the number of pages allocated to the major
data areas in the virtual address space: the space for fixed-length
items (including datatypes), the space for variable-length items,
and the space for litatoms. Variable-length data types such as
arrays have fixed-length "headers," which is why they also
appear in the printout of fixed-length data types. Thus, the line
printed for the BITMAP data type says how many bitmaps have
been allocated, but the "assigned pages" column counts only the
headers, not the space used by the variable-length part of the
bitmap. This summary also lists" Remaining Pages" in relation to
the largest possible virtual memory, not the size of the virtual
memory backing file in use. This file may fill up, causing a
STORAGE FULL error, long before the .. Remaining Pages"

numbers reach zero.

STORAGE also prints out information about the sizes of the

entries on the variable-length data free list. The block sizes are
broken down by the value of the variable
STORAGE.ARRA YSIZES, initially (4 16 64 256 1024 4096 16384
NIL), which yields a pri ntout of the form:

variable-datum free list:
Ie 4 26 items; 104 cells.
Ie 16 72 items; 783 cells.
Ie 64

Ie 256
Ie 1024

36 items; 964 cells.

28 items; 3155 cells.

3 items; 1175 cells.
Ie 4096 5 items; 8303 cells.
Ie 16384 3 items; 17067 cells.
others 1 items; 17559 cells.

224 PERFORMANCE ISSUES

(STORAGE.LEFT)

MDSFREE

MDSFRAC

8MBFRAC

A TOMFREE

A TOMFRAC

22.2 Variable Bindings

PERFORMANCE ISSUES

STORAGE ALLOCATION AND GARBAGE COLLECTION

This information can be useful in determining if the
variable-length data space is fragmented. If most of the free
space is composed of small items, then the allocator may not be
able to find room for large items, and will extend the variable
datum space. If this is extended too much, this could cause an
ARRAYS FULL error, even if there is a lot of space left in little

chunks.

(Function]

Provides a progra~matic way of determining how much storage
is left in the major data areas in the virtual address space.
Returns a list of the form (MDSFREE MDSFRAC 8MBFRAC
A TOMFREE A TOMFRAC), where the elements are interpreted as

follows:

The number of free pages left in the main data space (which
includes both fixed-length and variable-length data types).

The fraction of the total possible main data space that is free.

The fraction of the total main data space that is free, relative to
eight megabytes.

This number is useful when using Interlisp-D on some early
computers where the hardware limits the address space to eight
megabytes. The function 32MBADDRESSABLE returns non-NIL if
the currently running Interlisp-D system can use the full 32
megabyte address space.

The number of free pages left in the litatom space.

The fraction of the totallitatom space that is free.

Note: Another important space resource is the amount of the
virtual memory backing file in use (see VMEMSIZE, page 12.11).
The system will crash if the virtual memory file is full, even if the
address space is not exhausted.

Different implementations of lisp use different methods of
accessing free variables. The binding of variables occurs when a
function or a PROG is entered. For example, if the function Faa
has the definition (LAMBDA (A B) BODy), the variables A and B

are bound so that any reference to A or B from BODY or any
function called from BODY will refer to the arguments to the
function Faa and not to the value of A or B from a higher level
function. All variable names (Iitatoms) have a top level value cell
which is used if the variable has not been bound in any function.
In discussions of variable access, it is useful to distinquish

22.5

VARIABLE BINDINGS

22.6

between three types of variable access: local, special and global.
Local variable access is the use of a variable that is bound within
the function from which it is used. Special variable access is the
use of a variable that is bound by another function. Global
variable access is the use of a variable that has not been bound in
any function. We will often refer to a variable all of whose
accesses are local as a "local variable. If Similarly, a variable all of
whose accesses are global we call a "global variable."

In a "deep" bound system, a variable is bound by saving on the
stack the variable's name together with a value cell which
contains that variable's new value. When a variable is accessed,
its value is found by searching the stack for the most recent
binding (occurrence) and retrieving the value stored there. If the
variable is not found on the stack, the variable's top level value
cell is used.

In a "shallow" bound system, a variable is bound by saving on
the stack the variable name and the variable's old value and
putting the new value in the variable's top level value cell. When
a variable is accessed, its value is always found in its top level
value cell.

The deep binding scheme has one disadvantage: the amount of
cpu time required to fetch the value of a variable depends on the
stack distance between its use and its binding. The compiler can
determine local variable accesses and com piles them as fetches
directly from the stack. Thus this computation cost only arises in
the use of variable not bound in the local frame ("free"
variables). The process of finding the value of a free variable is
called free variable lookup.

In a shallow bound system, the amount of cpu time required to
fetch the value of a variable is constant regardless of whether
the variable is local, special or global. The disadvantages of this
scheme are that the actual binding of a variable takes longer
(thus slowing down function call), the cells that contain the
current in use values are spread throughout the space of all
litatom value cells (thus increasing the working set size of
functions) and context switching between processes requires
unwinding and rewinding the stack (thus effectively prohibiting
the use of context switching for many applications).

Interlisp-D uses deep binding, because of the working set
considerations and the speed of context switching. The free
variable lookup routine is microcoded, thus greatly reducing the
search time. In benchma.: ;, the largest percentage of free
variable lookup time was 20 percent of the total ellapsed time;
the normal time was between 5 and 10 percent.

One consequence of Interlisp-D's deep binding scheme is that
users may significantly improve performance by declaring global
variables in certain situations. If a variable is declared global, the

PERFORMANCE ISSUES

22.3 Performance Measuring

VARIABLE BINDINGS

compiler will compile an access to that variable as a retrieval of
its top level value, completely bypassing a stack search. This
should be done only for variables that are never bound in
functions, such as global databases and flags.

Global variable declarations should be done using the
GlOBAlVARS file package command (page 17.37). Its form is

(GlOBAlVARS VARl ... VARN)'

Another way of improving performance is to declare variables as
local within a function. Normally, all variables bound within a
function have their names put on the stack, and these names are
scanned during free variable lookup. If a variable is declared to
be local within a function, its name is not put on the stack, so it is
not scanned during free variable lookup, which may increase the
speed of lookups. The compiler can also make some other
optimizations if a variable is known to be local to a function.

A variable may be declared as local within a function by
including the form (DECLARE (lOCAlVARS VAR1 ... VARN))

following the argument list in the definition of the function.
Note: local variable declarations only effect the compilation of a
function. Interpreted functions put all of their variable names
on the stack, regardless of any declarations.

This section describes functions that gather and display statistics
about a computation, such as as the elapsed time, and the
number of data objects of different types allocated. TIMEAll
and TIME gather statistics on the evaluation of a specified form.

BREAKDOWN gathers statistics on individual functions called
during a computation. These functions can be used to determine
which parts of a computation are consuming the most resources
(time, storage, etc.), and could most profitably be improved.

(TIMEAll T1MEFORM NUMBEROFTIMES T1MEWHAT INTERPFLG-) [NLambda Function]

PERFORMANCE ISSUES

Evaluates the form TlMEFORM and prints statistics on time spent
in various categories (elapsed, keyboard wait, swapping time, gc)
and data type allocation.

For more accurate measurement on small computations,
NUMBEROFTIMES may be specified (its default is 1) to cause
T1MEFORM to be executed NUMBEROFTIMES times. To improve
the accuracy of timing open-coded operations in this case,
TIMEALL compiles a form to execute TlMEFORM
NUMBEROFTIMES times (unless INTERPFLG is non-NIL), and then
times the execution of the com pi led form.

22.7

PERFORMANCE MEASURING

Note: If TIMEALL is called with NUMBEROFTIMES> 1, the

dummy form is compiled with compiler optimizations on. This ,
means that it is not meaningful to use TIMEALL with very simple

forms that are optimized out by the compiler. For example,
(TIMEALL '(lPLUS 2 3) 1000) will time a compiled function which

simply returns the number 5, since (lPLUS 2 3) is optimized to the

integer 5.

TlMEWHAT restricts the statistics to specific categories. It can be
an atom or list of datatypes to monitor, and/or the atom TIME to

monitor time spent. Note that ordinarily, TIMEALL monitors all

time and datatype usage, so this argument is rarely needed.

TIMEALL returns the value of the last evaluation of TlMEFORM.

(TIME TIMEX TlMEN TlMETYP) [NLambda Function]

(BOXCOU NT TYPE N)

(CONSCQU NT N)

(PAGEFAUL TS)

22.8

TIME evaluates the form TIMEX, and prints out the number of

CONS cells allocated and computation time. Garbage collection

time is subtracted out. This function has been largely replaced
by TIMEALL.

If TlMEN is greater than 1, TIMEX is executed TlMEN times, and
TIME prints out (number of conses)/TIMEN, and (computation

time)/TIMEN. If TlMEN = NIL, it defaults to 1. This is useful for

more accurate measurement on small computations.

If TlMETYP is 0, TIME'measures and prints total real time as well

as computation time. If TlMETYP = 3, TIME mea"sures and prints

garbage collection time as well as computation time. If
TlMETYP= T, TIME measures and prints the number of

pagefaults.

TIME returns the value of the last evaluation of TIMEX.

[Function]

Returns the number of data objects of type TYPE allocated since
this Interlisp system was created. TYPE can be any data type
name (see TYPENAME, page 8.20). If TYPE is NIL, it defaults to
FIXP. If N is non-NIL, the corresponding counter is reset to N.

[Function]

Returns the number of CONS cells allocated since this Interlisp

system was created. If N is non-NIL, resets the counter to N.

Equivalent to (BOXCOUNT 'USTP N).

[Function]

Returns the number of page faults since this Interlisp system was
created.

PERFORMANCE ISSUES

22.3.1 BREAKDOWN

(BREAKDOWN FN 1 .,. FN N)

PERFORMANCE MEASURING

TIMEALl collects statistics for whole computations.
BREAKDOWN is available to analyze the breakdown of

computation time (or any other measureable quantity) function
by function.

[NLambda NoSpread Function]

The user calls BREAKDOWN giving it a list of function names

(unevaluated). These functions are modified so that they keep

track of various statistics.

To remove functions from those being monitored, sim ply
UNBREAK (page 15.7) the functions, thereby re~toring them to

their original state. To add functions, call BREAKDOWN on the

new functions. This will not reset the counters for any functions
not on the new list. However (BREAKDOWN) will zero the

counters of all functions being monitored.

The procedure used for measuring is such that if one function
calls other and both are "broken down", then the time (or
whatever quantity is being measured) spent in tt"le inner function
is not charged to the outer function as well.

Note: BREAKDOWN will not give accurate results if a function
being measured is not returned from normally, e.g., a lower
RETFROM (or ERROR) bypasses it. In this case, all of the time (or

whatever quantity is being measured) between the time that
function is entered and the time the next function being

measured is entered will be charged to the first function.

(BRKDWNRESULTS RETURNVALUESFLG) [Function]

PERFORMANCE ISSUES

BRKDWNRESUL TS prints the analysis of the statistics requested as

well as the number of calls to each function. If
RETURNVALUESFLG is non-NIL, BRKDWNRESUL TS will not to

print the results, but instead return them in the form of a list of
elements of the form (FNNAME #CALLS VALUE).

Example:

+- (BREAKDOWN SUPERPRINT SUBPRINT COMMENT1)

(SUPERPRINT SUBPRINT COMMENT1)
+- (PRETIVDEF '(SUPERPRINT) 'FOO)

FOO.;3

+- (BRKDWNRESULTS)

FUNCTIONS TIME #CALLS PER CALL %

SUPERPRINT 8.261 365 0.023 20

SUBPRINT 31.910 141 0.226 76

COMMENT1 1.612 8 0.201 4
TOTAL 41.783 514 0.081

NIL

229

PERFORMANCE MEASURING

BRKDWNTYPE

BRKDWNTYPES

22.10

~ (BRKDWNRESULTS T)

«SUPERPRINT 365 8261) (SUBPRINT 141 31910) (COMMENT1 8

1612»

BREAKDOWN can be used to measure other statistics, by setting

the following variables:

[Variable]

To use BREAKDOWN to measure other statistics, before calling

BREAKDOWN, set the variable BRKDWNTYPE to the quantity of

interest, e.g., TIME, CONSES, etc, or a list of such quantities.
Whenever BREAKDOWN is called with BRKDWNTYPE not NIL,

BREAKDOWN performs the necessary changes to its internal

state to conform to the new analysis. In particular, if this is the
first time an analysis is being run with a particular statistic, a
measuring function will be defined, and the compiler will be
called to compile it. The functions being broken down will be
redefined to call this measuring function. When BREAKDOWN is

through initializing, it sets BRKDWNTYPE back to NIL.

Subsequent calls to BREAKDOWN will measure the new statistic

until BRKDWNTYPE is again set and a new BREAKDOWN

performed.

[Variable]

The list BRKDWNTYPES contains the information used to analyze

new statistics. Each entry on BRKDWNTYPES should be of the

form (TYPE FORM FUNCTION), where TYPE is a statistic name (as

would appear in BRKDWNTYPE), FORM computes the statistic,

and FUNCTION (optional) converts the value of form to some

more interesting quantity. For example, (TIME (CLOCK 2)

(LAMBDA (X) (FQUOTIENT X 1000)}) measures computation time

and reports the result in seconds instead of milliseconds.
BRKDWNTYPES currently contains entries for TIME, CONSES,

PAGEFAULTS, BOXES, and FBOXES.

Example:

+- (SETQ BRKDWNTYPE '(TIME CONSES»

(TIME CONSES)

+- (BREAKDOWN MATCH CONSTRUCT)

(MATCH CONSTRUCT)

+- (FLIP '(A BCD E F G H C Z) '(.. $1 .. #2 ..) '(.. #3 .. »
(A B D E F G HZ)

+- (BRKDWNRESU L TS)

fUNCTIONS TIME #CALLS PER CALL %
MATCH 0.036 1 0.036 54

CONSTRUCT 0.031 1 0.031 46

TOTAL 0.067 2 0.033

fUNCTIONS CONSES #CALLS PER CALL %

PERFORMANCE ISSU ES

22.4 GAINSPACE

PERFORMANCE ISSUES

PERFORMANCE MEASURING

MATCH 32 1 32.000 40

CONSTRUCT 49 1 49.000 60
TOTAL 81 2 40.500

NIL

Occasionally, a function being analyzed is sufficiently fast that
the overhead involved in measuring it obscures the actual time
spent in the function. If the user were using TIME, he would
specify a value for TlMEN greater than 1 to give greater accuracy.
A similar option is available for BREAKDOWN. The user can
specify that a function(s) be executed a multiple number of times
for each measurement, and the average value reported, by
including a number in the list of functions given to
BREAKDOWN, e.g., BREAKDOWN(EDITCOM EDIT4F 10 EDIT4E
EQP} means normal breakdown for EDITCOM and EDIT4F but
executes (the body of) EDIT4E and EQP 10 times each time they
are called. Of course, the functions so measured must not cause
any harmful side effects, since they are executed more than once
for each call. The printout from BRKDWNRESUL TS will look the

same as though each function were run only once, except that
the measurement will be more accurate.

Another way of obtaining more accurate measurement is to
expand the call to the measuring function in-line. If the value of
BRKDWNCOMPFLG is non-NIL (initially NIL), then whenever a
function is broken-down, it will be redefined to call the
measuring function, and then recompiled. The measuring
function is expanded in-line via an appropriate macro. In
addition, whenever BRKDWNTYPE is reset, the compiler is called

for all functions for which BRKDWNCOMPFLG was set at the time
they were originally broken-down, i.e. the setting of the flag at
the time a function is broken-down determines whether the call
to the measuring code is compiled in-line.

Users with large programs and data bases may sometimes find
themselves in a situation where they needs to obtain more space,
and are willing to pay the price of eliminating some or all of the
context information that the various user-assistance facilities
such as the programmer's assistant, file package, CLlSP, etc., have
accumulated during the course of his seSSlun. The function
GAINSPACE provides an easy way to selectively throwaway

accum u lated data:

2211

GAINSPACE

(GAINSPACE)

22 12

[Function]

Prints a list of deletable objects, allowing the user to specify at

each point what should be discarded and what should be
retained. For example:

E-(GAINSPACE)

purge history lists? Yes

purge everything, or just the properties, e.g., SIDE, L1SPXPRINT,

etc. ?
just the properties

discard definitions on property lists? Yes
discard old values of variables? Yes

erase properties? No

erase eLlsP translations? Yes

GAINSPACE is driven by the list GAINSPACEFORMS. Each

element on GAINSPACEFORMS is of the form (PRECHECK

MESSAGE FORM KEYLSn. If PRECHECK, when evaluated, returns
NIL, GAINSPACE skips to the next entry. For example, the user
will not be asked whether or not to purge the history list if it is
not enabled. Otherwise, ASKUSER (page 26.12) is called with the

indicated MESSAGE and the (optional) KEYLST. If the user

responds No, i.e., ASKUSER returns N, GAINSPACE skips to the

next entry. Otherwise, FORM is evaluated with the variable
RESPONSE bound to the value of ASKUSER. In the above

example, the FORM for the "purge history lists" question calls

ASKUSER to ask "purge everything, ... " only if the user had

responded Yes. If the user had responded with Everything, the
second question would not have been asked.

The "erase properties" question is driven by a list

SMASHPROPSMENU. Each element on this list is of the form

(MESSAGE. PROPS). The user is prompted with MESSAGE (by

ASKUSER), and if he responds Yes, PROPS is added to the list

SMASH PROPS. The "discard definitions on property lists" and

"discard old values of variables" questions also add to

SMASH PROPS. The user will not be prompted for any entry on

SMASHPROPSMENU for which all of the corresponding

properties are already on SMASH PROPS. SMASH PROPS is
initially set to the value of SMASHPROPSLST. This permits the

user to specify in advance those properties which he always
wants to be discarded, and not be asked about them
subsequently. After finishing all the entries on
GAINSPACEFORMS, GAINSPACE checks to see if the value of

SMASHPROPS is non-NIL, and if so, does a MAPATOMS, i.e.,

looks at every atom in the system, and erases the indicated
properties.

Note that the user can change or add new entries to
GAINSPACEFORMS or SMASHPROPSMENU, so that GAINSPACE

PERFORMANCE ISSUES

GAINSPACE

can also be used to purge structures that the user's programs
have accumulated.

22.5 Using Data Types Instead of Records

If a program uses large numbers of large data structures, there
are several advantages to representing them as user data types
rather than as list structures. The primary advantage is increased
speed: accessing and setting the fields of a data type can be
significantly faster than walking through a list with repeated
CARs and CDRs. Also, compiled code for referencing data types is
usually smaller. Finally, by reducing the number of objects
created (one object against many list cells), this can reduce the
expense of garbage collection.

User data types are declared by using the DATATYPE record type
(page 8.9). If a list structure has been defined using the RECORD
record type (page 8.7), and all accessing operations are written
using the record package's fetch, replace, and create operations,

changing from RECORDs to DATATYPEs only requires editing the
record declaration (using EDITREC, page 8.16) to replace
declaration type RECORD by DATATYPE, and recom piling.

Note: There are some minor disadvantages with allocating new
data types: First, there is an upper limit on the number of data
types which can exist. Also, space for data types is allocated a
page at a time, so each data type has at least one page assigned
to it, which may be wasteful of space if there are only a few
examples of a given data type. These problems should not effect
most applications programs.

22.6 Using Incomplete File Names

PERFORMANCE ISSUES

Currently, Interlisp allows you to specify an open file by giving
the file name. If the file name is incomplete (it doesn't have the
devicelhost, directory, name, extension, and version number all
supplied), the system converts it to a complete file name, by
supplying defaults and searching through directories (which may
be on remote file servers), and then searches the open streams
for one corresponding to that file name. This file
name-completion process happens whenever any 1/0 function is
given an incomplete file name, which can cause a serious
performance problem if I/O operations are done repeatedly. In
general, it is much faster to convert an incomplete file name to a
stream once, and use the stream from then on. For example,

USING INCOMPLETE FILE NAMES

suppose a file is opened with (SETQ STRM (OPENSTREAM

'MYNAME 'INPUT». After doing this, (READC 'MYNAME) and
(READC STRM) would both work, but (READC 'MYNAME) would

take longer (sometimes orders of magnitude longer). This could
seriously effect the performance if a program which is doing
many I/O operations.

Note: At some point in the future, when multiple streams are
supported to a single file, the feature of mapping file names to
streams will be removed. This is yet another reason why
programs should use streams as handles to open files, instead of
file names.

For more information on efficiency considerations when uSing
files, see page 24.13.

22.7 Using "Fast" and "Destructive" Functions

22.14

Among the functions used for manipulating objects of various
data types, there are a number of functions which have "fast"
and "destructive" versions. The user shou Id be aware of what
these functions do, and when they should be used.

"Fast" functions: By convention, a function named by prefixing
an existing function name with F indicates that the new function
is a "fast" version of the old. These usually have the same
definitions as the slower versions, but they compile open and run
without any "safety" error checks. For example, FNTH runs faster
than NTH, however, it does not make as ma ny checks (for lists
ending with anything but NIL, etc). If these functions are given

arguments that are not in the form that they expect, their
behavior is unpredictable; they may run forever, or cause a
system error. In general, the user should only use "fast"
functions in code that has already been completely debugged, to
speed it up.

"Destructive" functions: By convention, a function named by
prefixing an existing function with D indicates the new function

is a "destructive" version of the old one, which does not make
any new structure but cannibalizes its argument(s}. For example,
REMOVE returns a copy of a list with a particular element
removed, but DREMOVE actually changes the list structure of the
list. (Unfortun~tely, not all destructive functions follow this
naming convention: the destructive version of APPEND is

NCONC.) The user should be careful when using destructive
functions that they do not inadvertantly change data structures.

PERFORMANCE ISSUES

23. Processes

TABLE OF CONTENTS

TABLE OF CONTENTS

23.1. Creati ng and Destroying Processes

23.2. Process Control Constructs

23.3. Events

23.4. Monitors

23.5. Global Resources

23.6. Typein and the TIV Process

23.6.1. Switching the TIV Process

23.6.2. Handling of Interrupts

23.7. Keeping the Mouse Alive

23.8. Process Status Window

23.9. Non-Process Compatibility

231

23.2

23.5

23.7

23.8

23.10

23.11

23.12

23.14

23.15

23.16

23.17

TOCl

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TAB LE OF CON TENTS

(PROCESSWORLD FLG)

(HARDRESET)

PROCESSES

23. PROCESSES

The Interlisp-D Process mechanism provides an environment in
which multiple Lisp processes can run in parallel. Each executes
in its own stack space, but all share a global address space. The
current process implementation is cooperative; i.e., process
switches happen voluntarily, either when the process in control
has nothing to do or when it is in a convenient place to pause.
There is no preemption or guaranteed service, so you cannot run
something demanding (e.g., Chat) at the same tim e as
something that runs for long periods without yielding control.
Keyboard input and network operations block with great
frequency, so processes currently work best for highly interactive
tasks (editing, making remote files).

In Interlisp-D, the process mechanism is already turned on, and is
expected to stay on during normal operations, as some system
facilities (in particular, most network operations) require it.
However, under exceptional conditions, the following function
can be used to tu rn the world off and on:

[Function]

Starts up the process world, or if FLG = OFF, kills all processes

and turns it off. Normally does not return. The environment
starts out with two processes: a top-level EVALQT (the initial
"tty" process) and the "background" process, which runs the
window mouse handler and other system background tasks.

Note: PROCESSWORLD is intended to be called at the top level
of Interlisp, not from within a program. It does not toggle some
sort of switch; rather, it constructs some new processes in a new
part of the stack, leaving any callers of PROCESSWORLD ina now
inaccessible part of the stack. Calling (PROCESSWORLD 'OFF) is
the only way the call to PROCESSWORLD ever returns.

[Function]

Resets the whole world, and rebuilds the stack from scratch. This
is "harder" than doing RESET to every process, because it also
resets system internal processes (such as the keyboard handler).

HARDRESET automatically turns the process world on (or resets it
if it was on), unless the variable AUTOPROCESSFLG is NIL.

23.1

CREATING AND DESTROYING PROCESSES

23.1 Creating and Destroying Processes

232

(ADD.PROCESS FORM PROP1 VALUE1'" PROPN VALUEN) [NoSpread Function]

NAME

SUSPEND

Creates a new process evaluating FORM, and returns its process
handle. The process's stack environment is the top level, i.e., the
new process does not have access to the environment in which
ADD.PROCESS was called; all such information must be passed as

arguments in FORM. The process runs until FORM returns or the
process is explicitly deleted. An untrapped error within the
process also deletes the process (unless its RESTART ABLE
property is T), in which case a message is pri nted to that effect.

The remaining arguments are alternately property names and
values. Any property/value pairs acceptable to PROCESSPROP

may be given, but the following two are directly relevant to
ADD.PROCESS:

Value should be a litatom; if not given, the process name is taken
from (CAR FORM). ADD.PROCESS may pack the name with a
number to make it unique. This name is solely for the
c:onvenience of manipulating processes at Lisp typein; e.g., the
name can be given as the PROC argument to most process
functions, and the name appears in menus of processes.
However, programs should normally only deal in process
handles, both for efficiency and to avoid the confusion that can
result if two processes have the same defining form.

If the value is non-NIL, the new process is created but then
immediately suspended; i.e., the process does not actually run
until woken by a WAKE.PROCESS (below).

(PROCESSPROP PROC PROP NEWVALUE) [NoSpread Function]

NAME

FORM

RESTARTABLE

Used to get or set the values of certain properties of process
I'ROC, in a manner analogous to WINDOWPROP. If NEWVALUE

is supplied (including if it is NIL), property PROP is given that

value. In all cases, returns the old value of the property. The
following properties have special meaning for processes; all
others are uninterpreted:

Value is a litatom used for identifying the process to the user.

Value is the Lisp form used to start the process (readonly).

Value is a flag indicating the disposition of the process following
errors or hard resets:

NIL or NO (the default): If an untrapped error (or control-E or
control-D) causes its form to be exited, the process is deleted.
The process is also deleted if a HARDRESET (or control-D from
RAID) occurs, causing the entire Process world to be reinitialized.

T or YES: The process is automatically restarted on errors or
HARDRESET. This is the normal setting for persistent

PROCESSES

RESTARTFORM

BEFOREEXIT

AFTEREXIT

INFOHOOK

WINDOW

ITVENTRYFN

ITVEXITFN

PROCESSES

CREA TI NG AND DESTROYING PROCESSES

"background" processes, such as the mouse process, that can

safely restart themselves on errors.

HARDRESET: The process is deleted as usual if an error causes its

form to be exited, but it is restarted on a HARDRESET. This

setting is preferred for persistent processes for which an error is
an unusual condition, one that might repeat itself if the process
were simply blindly restarted.

If the value is non--NIL, it is the form used if the process is

restarted (instead of the value of the FORM property). Of course,

the process must also have a non-NIL RESTARTABLE prop for this

to have any effect.

If the value is the atom DON'T, it will not be interru pted by a

LOGOUT. If LOGOUT is attempted before the process finishes, a
message will appear saying that Interlisp is waiting for the
process to finish. If you want the LOGOUT to proceed without

waiting, you must use the process status window (from the
background menu) to delete the process.

Value indicates the disposition of the process fol/owing a

resumption of Lisp after some exit (LOGOUT, SVSOUT,

MAKESYS). Possible values are:

DELETE: Delete the process.

SUSPEND: Suspend the process; i.e., do not let it run until it is

explicitly woken.

An event: Cause the process to be suspended waiting for the
event (page 23.7).

Value is a function or form used to provide information about

the process, in conjunction with the INFO command in the

process status window (page 23.16).

Value is a window associated with the process, the process's

"main" window. Used to switch the tty process to this process
when the user clicks in this window (see page 23.12).

Note: Setting the WINDOW property does not set the primary i/o
stream (NIL) or the terminal i/o stream (T) to the window. When

a process is created, i/o operations to the NIL or T stream wi II

cause a new window to appear. ITVDISPLA VSTREAM (page

28.29) should be used to set the terminal i/o stream of a process
to a specific window.

Value is a function that is applied to the process when the
process is made the tty process (page 23.13).

Value is a function that is applied to the process when the

process ceases to be the tty proc~ss (page 23.13).

233

CREATING AND DESTROYING PROCESSES

234

(THIS.PROCESS)

(DEL.PROCESS PROC-)

(PROCESS.RETURN VALUE)

[Function]

Returns the handle of the currently running process, or NIL if the

Process world is turned off.

[Function]

Deletes process PROC. PROC may be a process handle (returned
by ADD.PROCESS), or its name. Note that if PROC is the currently

running process, DEL.PROCESS does not return!

[Function]

Terminates the currently running process, ca usi ng it to II return II

VALUE. There is an implicit PROCESS.RETURN around the FORM

argument given to ADD.PROCESS, so that normally a process can

finish by simply returning; PROCESS.RETURN is supplied for

earlier termination.

(PROCESS.RESUL T PROCESS WAITFORRESUL n [Function]

If PROCESS has terminated, returns the value, if any, that it
returned. This is either the value of a PROCESS.RETURN or the

value returned from the form given to ADD.PROCESS. If the

process was aborted, the value is NIL. If WAITFORRESUL T is true,

PROCESS.RESULT blocks until PROCESS finishes, if necessary;

,otherwise, it returns NIL immediately if PROCESS is still running.

Note that PROCESS must be the actual process handle returned
from ADD.PROCESS, not a process name, as the association
between handle and name disappears when the process finishes

(and the process handle itself is then garbage collected if no one
else has a pointer to it).

(PROCESS.FINISHEDP PROCESS) [Function]

(PROCESSP PROC)

True if PROCESS has terminated. The value returned is an

indication of how it finished: NORMAL or ERROR.

[Function]

True if PROC is the handle of an active process, i.e., one that has
not yet finished.

(RELPROCESSP PROCHANDLE) [Function]

True if PROCHANDLE is the handle of a deleted process. This is
analogous to RELSTKP. It differs from PROCESS.FINISHEDP in

that it never causes an error, while PROCESS.FINISHEDP can

cause an error if its PROC argument is not a process at all.

PROCESSES

CREATI NG AND DESTROYING PROCESSES

(RESTART.PROCESS PROC) [Function]

(MAP.PROCESSES MAPFN)

Unwinds PROC to its top level and reevaluates its form. This is

effectively a DEL.PROCESS followed by the original

ADD.PROCESS.

[Function]

Maps over all processes, calling MAPFN with three arguments:
the process handle, its name, and its form.

(FIND.PROCESS PROC ERRORFLG) [Function]

If PROC is a process handle or the name of a process, returns the
process handle for it, else NIL. If ERRORFLG is T, generates an

error ifPROCis not, and does not name, a live process.

23.2 Process Control Constructs

PROCESSES

(BLOCK MSECSWAIT TIMER) [Function]

Yields control to the next waiting process, assuming any is ready
to run. If MSECSWAIT is specified, it is a number of milliseconds
to wait before returning, or T, meaning wait forever (until

explicitly woken). Alternatively, TIMER can be given as a
millisecond timer (as returned by SETUPTIMER, page 12.17) of an

absolute time at which to wake up. In any of those cases, the
process enters the waiting state until the time limit is up. BLOCK

with no arguments leaves the process in the runnable state, i.e.,

it returns as soon as every other runnable process of the same

priority has had a chance.

BLOCK can be aborted by interrupts such as control-D, control-E,

or control-B. Note that BLOCK will return before its timeout is

completed, if the process is woken by WAKE.PROCESS,

PROCESS.EVAL, or PROCESS.APPl Y.

(DISMISS MSECSWAIT TIMER NOBLOCK) [Function]

DISMISS is used to dismiss the current process for a given period

of time. Similar to BLOCK, except that (1) DISMISS is guaranteed

not to return until the specified time has elapsed; (2)
MSECSWAITcannot be Tto wait forever; and (3) If NOBLOCK is T,
DISMISS will not allow other processes to run, but will busy-wait
until the amount of time given has elapsed.

(WAKE.PROCESS PROC STATUS) [Function]

Explicitly wakes process PROC, i.e., makes it runnable, and causes
its call to BLOCK (or other waiti ng function) to return STATUS.

23 ')

PROCESS CONTROL CONSTRUCTS

23 6

(SUSPEND.PROCESS PROC)

This is one simple way to notify a process of some happening;

however, note that if WAKE.PROCESS is applied to a process
more than once before the process actually gets its turn to run, it
sees only the latest STATUS.

[Function]

Blocks process PROC indefinitely, i.e., PROC will not run until it is
woken by a WAKE.PROCESS.

The following three functions allow access to the stack context
of some other process. They require a little bit of care, and are
computationally non-trivial, but they do provide a more
powerful way of manipulating another process than
WAKE.PROCESS allows.

(PROCESS.EVALV PROC VAR) [Function]

Performs (EVALV VAR) in the stack context of PROC.

(PROCESS.EVAL PROC FORM WAITFORRESUL n [Function]

Evaluates FORM in the stack context of PROC. If
WAITFORRESUL T is true, blocks until the evaluation returns a
result, else allows the current process to run in parallel with the
evaluation. Any errors that occur will be in the context of PRO(,

so be careful. In particular, note that

(PROCESS.EVAL PROC '(NLSETQ (FOO))

and

{NLSETQ (PROCESS.EVAL PROC '(FOO»)

behave quite differently if FOO causes an error. And it is quite

permissible to intentionally cause an error in proc by performing

(PROCESS.EVAL PROC '(ERROR!))

If errors are possible and WAITFORRESUL T is true, the caller
should almost certainly make sure that FORM traps the errors;
otherwise the caller could end up waiting forever if FORM

unwinds back into the pre-existing stack context of PROC.

Note: After FORM is evaluated in PROC, the process PROC is
woken up, even if it was running BLOCK or AWAIT.EVENT. This is
necessary because an event of interest may have occurred while
the process was evaluating FORM.

(PROCESS.APPLY PROC FN ARGS WAITFORRESUL n [Function]

Performs (APPLY FN ARGS) in the stack context of PROC. Note
the same warnings as with PROCESS.EVAL.

PROCESSES

EVENTS

23.3 Events

PROCESSES

(CREATE. EVENT NAME)

An "event" is a synchronizing prrmltlve used to coordinate
related processes, typically producers and consumers. Consumer
processes can "wait" on events, and producers "notify" events.

[Function]

Returns an instance of the EVENT datatype, to be used as the

event argument to functions listed below. NAME is arbitrary,
and is used for debugging or status information.

(AWAIT. EVENT EVENT TIMEOUT TlMERP) [Function]

Suspends the current process until EVENT is notified, or until a
timeout occurs. If TIMEOUT is Nil, there is no timeout.

Otherwise, timeout is either a number of milliseconds to wait, or,
if TlMERP is T, a millisecond timer set to expire at the desired

time using SETUPTIMER (see page 12.16).

(NOTIFY .EVENT EVENT ONCEONL y) [Function]

If there are processes waiting for EVENT to occur, causes those
processes to be placed in the running state, with EVENT returned
as the value from AWAIT.EVENT. If ONCEONL Y is true, only runs

the first process waiting for the event (this should only be done if
the programmer knows that there can only be one process
capable of responding to the event at once).

The meaning of an event is up to the programmer. In general,
however, the notification of an event is merely a hint that
something of interest to the waiting process has happened; the

process should still verify that the conceptual event actually
occurred. That is, the process should be written so tha t it
operates correctly even if woken up before the timeout and in
the absence of the notified event. In particular, the completion
of PROCESS.EVAl and related operations in effect wakes up the

process in which they were performed, since there is no secure
way of knowing whether the event of interest occurred while
the process was busy performing the PROCESS.EVAL.

There is currently one class of system-defined events, used with
the network code. Each Pup and NS socket has associated with it
an event that is notified when a packet arrives on the socket; the
event can be obtained by calling PUPSOCKETEVENT (page 31.29)

or NSOCKETEVENT (page 31.37), respectively.

23 7

MONITORS

23.4 Monitors

238

It is often the case that cooperating processes perform
operations on shared structures, and some mechanism is needed
to prevent more than one process from altering the structure at
the same time. Some languages have a construct called a
monitor, a collection of functions that access a common structure
with mutual exclusion provided and enforced by the compiler via
the use of monitor locks. Interlisp-D has taken this
implementation notion as the basis for a mutual exclusion
capability suitable fOf" a dynamically-seoped environment.

A monitorloek is an object created by the user and associated
with (e.g., stored in) some shared structure that is to be
protected from simultaneous access. To access the structure, a
program waits for the lock to be free, then takes ownership of
the lock, accesses the structure, then releases the lock. The
functions and macros below are used:

(CREATE.MONITORlOCK NAME -) [Function]

Returns an instance of the MONITORlOCK datatype, to be used
as the lock argument to functions listed below. NAME is
arbitrary, and is used for debugging or status information.

(WITH.MONITOR LOCK FORM1 ... FORMN) [Macro]

Evaluates FORM 1 ... FORM N while owning LOCK, and returns the

value of FORMN' This construct is implemented so that the lock

is released even if the form is exited via error (currently
implemented with RESETlST).

Ownership of a lock is dynamically scoped: if the current process
already owns the lock (e.g., if the caller was itself inside a
WITH.MONITOR for this lock), WITH.MONITOR does not wait for

the lock to be free before evaluating FORM 1 ... FORMN.

(WITH.fAST.MONITOR LOCK FORM 1 ... FORM N) [Macro]

Like WITH.MONITOR, but implemented without the RESETlST.
User interrupts (e.g., control-E) are inhibited during the

E~valuation of FORM1 ... FORMN'

Programming restriction: the evaluation of FORM1 .'. FORMN

must not error (the lock would not be released). This construct is
mainly useful when the forms perform a small, safe computation
that never errors and need never be interru pted.

(MONITOR.AWAIT.EVENT RELEASELOCK EVENT TIMEOUT TlMERP) [Function]

For use in blocking inside a monitor. Performs (AWAIT. EVENT
EVENT TIMEOUT TlMERP), but releases RELEASELOCK first, and
reobtains the lock (possibly waiting) on wakeup.

PROCESSES

PROCESSES

MONITORS

Typical use for MONITOR.AWAIT.EVENT: A function wants to

perform some operation on FOO, but only if it is'i n a certain
state. It has to obtain the lock on the structure to make sure that
the state of the structure does not change between the time it
tests the state and performs the operation. If the state turns out
to be bad, it then waits for some other process to make the state
good, meanwhile releasing the lock so that the other process can
alter the structure.

(WITH.MONITOR FOO-LOCK

(until CONDITION-OF-FOO

do (MONITOR.AWAIT,EVENT FOO-LOCK

EVENT-FOO-CHANGED TlMEOUn)

OPERA TE-ON-FOO)

It is sometimes convenient for a process to have WITH.MONITOR

at its top level and then do all its interesting waiting using
MONITOR.AWAIT.EVENT. Not only is this often cleaner, but in

the present implementation in cases where the lock is frequently
accessed, it saves the RESETLST overhead of WITH. MONITOR.

Programming restriction: There must not be an ERRORSET

between the enclosing WITH.MONITOR and the call to

MONITOR.AWAIT.EVENT such that the ERRORSET would catch
an ERROR! and continue inside the monitor, for the lock would

not have been reobtained. (The reason for this restriction is that,
although MONITOR.AWAIT.EVENT won't itself error, the user

could have caused an error with an interrupt, or a PROCESS.EVAl

in the context of the waiting process that produced an error.)

On rare occasions it may be useful to manipulate monitor locks
directly. The following two functions are used in the
implementation of WITH.MONITOR:

(OBTAIN.MONITORLOCK LOCK DONTVVAIT UNWINDSAVE) [Function]

Takes possession of LOCK, waiting if necessary until it is free,
unless DONTVVAIT is true, in which case it returns Nil

immediately. If UNWINDSAVE is true, performs a RESETSAVE to

be unwound when the enclosing RESETLST exits. Returns LOCK

if LOCK was successfully obtained, T if the current process already

owned LOCK.

(RElEASE.MONITORlOCK LOCK EVENIFNOTMINE) [Function]

Releases LOCK if it is owned by the current process, and wakes up
the next process, if any, waiting to obtain the lock.

If EVENIFNOTMINE is non-NIL, the lock is released even if it is not

owned by the current process.

When a process is deleted, any locks it owns are released.

23.9

GLOBAL RESOURCES

23.5 Global Resources

2310

The biggest source of problems in the multi-processing

environment is the matter of global resources. Two processes
cannot both use the same global resource if there can be a
process switch in the middle of their use (currently this means

calls to BLOCK, but ultimately with a preemptive scheduler

means anytime). Thus, user code should be wary of its own use
of global variables, if it ever makes sense for the code to be run
in more than one process at a time. "State" variables private to a
process should generally be bound in that pro€ess; structures
that are shared among processes (or resources used privately but
expensive to duplicate per process) should be protected with
monitor locks or some other form of synchronization.

Aside from user code, however, there are many system global
variables and resources. Most of these arise historically from the
single-process Interlisp-10 environment, and will eventually be
changed in Interlisp-D to behave appropriately in a
multi-processing environment. Some have already been
changed, and are described below. Two other resources not
generally thought' of as global variables-the keyboard and the
mouse-are particularly idosyncratic, and are discussed in the

next section.

The following resources, which are global in Interlisp-10, are
allocated per process in Interlisp-D: primary input and output
(the streams affected by INPUT and OUTPUT), terminal input and

output (the streams designated by the name T), the primary read

table and primary terminal table, and dribble files. Thus, each
process can print to its own primary output, print to the
terminal, read from a different primary input, all without
interfering with another process's reading and printing.

Each process begins life with its primary and terminal

input/output streams set to a dummy stream. If the process
attempts input or output using any of those dummy streams,
e.g., by calling (READ T), or (PRINT & T), a tty window is

automatically created for the process, and that window becomes
the primary input/oL!tput and terminal input/output for the
process. The default tty window is created at or near the region
specified in the variable DEFAULTTIYREGION.

A process can, of course, call TTYDISPLAVSTREAM explicitly to

give itself a tty window of its own choosing, in which case the
automatic mechanism never comes into play. Calling
TIVDISPLAYSTREAM when a process has no tty window not only

sets the terminal streams, but also sets the primary input and
output streams to be that window, assuming they were still set
to the dummy streams.

PROCESSES

GLOBAL RESOURCES

(HASTTYWINDOWP PROCESS) [Function]

Returns T if the process PROCESS has a tty window; NIL

otherwise. If PROCESS is NIL, it defaults to the current process.

Other system resources that are typically changed by
RESETFORM, RESETLST, or RESETVARS are all global entities. In

the multiprocessing environment, these constructs are suspect,
as there is no provision for II undoing" them whe n a process
switch occurs. For example, in the current release of Interlisp-D,
it is not possible to set the print radix to 8 inside only one process,

as the print radix is a global entity.

Note that RESETFORM and similar expressions are perfectly valid

in the process world, and even quite useful, when they
manipulate things strictly within one process. The process world
is arranged so that deleting a process also unwinds any RESETxxx
expressions that were performed in the process and are still
waiting to be unwound, exactly as if a control-D had reset the
process to the top. Additionally, there is an implicit RESETLST at

the top of each process, so that RESETSAVE ca n be used as a way

of providing "cleanup" functions for when a process is deleted.
For these, the value of RESETSTATE (page 14.26) is NIL if the
process finished normally, ERROR if it was aborted by an error,

RESET if the process was explicitly deleted, and HARDRESET if the

process is being restarted after a HARDRESET or a
RESTART.PROCESS.

23.6 Typein and the TTY Process

PROCESSES

There is one global resource, the keyboard, that is particularly

problematic to share among processes. Consider, for example,
having two processes both perform ing (READ T). Si nce the

keyboard input routines block while there is no input, both
processes would spend most of their time blocking, and it would
simply be a matter of chance which process received each
character of typein.

To resolve such dilemmas, the system designates a distinguished
process, termed the tty process, that is assu med to be the process
that is involved in terminal interaction. Any typein from the
keyboard goes to that process. If a process other than the tty
process requests keyboard input, it blocks until it becomes the tty
process. When the tty process is switched (in any of the ways
described further below), any typeahead that occurred before
the switch is saved and associated with the current tty process.
Thus, it is always the case that keystrokes are sent to the process

23.11

TYPEIN AND THE TTY PROCESS

23.6.1 Switching the TTY Process

(TTV.PROCESS PROC)

(TTV.PROCESSP PROC)

that is the tty process at the time of the keystrokes, regardless of
when that process actually gets around to reading them.

It is less immediately obvious how to handle keyboard interrupt
characters, as their action is asynchronous and not always tied to
typein. Interrupt handling is described on page 23.14.

Any process can make itself be the tty process by calling
TTV.PROCESS.

[Function]

Returns the handle of the current tty process. In addition, if
PROC is non-NIL, makes it be the tty process. The specia I case 0 f

PROC = T is interpreted to mean the executive process; this is
sometimes useful when a process wants to explicitly give up
bei ng the tty process.

[Function]

True if PROC is the tty process; PROC defaults to the running
process. Thus, (TTV.PROCESSP) is true if the caller is the tty

process.

(WAIT.FOR.TTV MSECS NEEDWINDOW) [Function]

2312

Efficiently waits until (TTV.PROCESSP) is true. WAIT.FOR.TTV is

called internally by the system functions that read from the
terminal; user code thus need only call it in special cases.

If MSECS is non-NIL, it is the number of milliseconds to wait
before timing out. If WAIT.FOR.TTV times out before
(TTV.PROCESSP) is true, it returns NIL, otherwise it returns T. If

MSECS is NIL, WAIT.FOR.TTV will not time out.

If NEEDWINDOW is non-NIL, WAIT.FOR.TTV opens a TTY window
for the current process if one isn't already open.

WAIT.FOR.TTV spawns a new mouse process if called under the
mouse process (see SPAWN.MOUSE, page 23.15).

In some cases, such as in functions invoked as a result of mouse
action or a user's typed-in call, it is reasonable for the function to
invoke TTV.PROCESS itself so that it can take sut"~quent user
type in. In other cases, however, this is too undisciplined; it is
desirable to let the user designate which process typein should
be directed to. This is most conveniently done by mouse action.

The system supports the model that "to type to a process, you
click in its window." To cooperate with this model, any process
desiring keyboard input should put its process handle as the

PROCESSES

PROCESSES

TYPEI NAND TH E TTY PROCESS

PROCESS property of its window(s). To handle the common

case, the function TTVDISPLA YSTREAM does this automatically
when the ttydisplaystream is switched to a new window. A
process can own any number of windows; clicking in any of

those windows gives the process the tty.

This mechanism suffices for most casual process writers. For
example, if a process wants all its input/output interaction to
occur in a particular window that it has created, it should just
make that window be its tty window by calling
ITVDISPLAVSTREAM. Thereafter, it can PRINT or READ to/from

the T stream; if the process is not the tty process at the time that

it calls READ, it will block until the user clicks in the window.

For those needing tighter control over the tty, the default
behavior can be overridden or supplemented. The remainder of
this section describes the mechanisms involved.

There is a window property WINDOWENTRVFN that controls
whether and how to switch the tty to the process owning a
window. The mouse handler, before invoking any normal

BUITONEVENTFN, specifically notices the case of a button going

down in a window that belongs to a process (i.e., has a PROCESS

window property) that is not the tty process. In this case, it
invokes the window's WINDOWENTRVFN of one argument
(WINDOW). WINDOWENTRYFN defaults to GIVE.TTV.PROCESS:

(GIVE.ITV.PROCESS WINDOW) [Function]

If WINDOW has a PROCESS property, performs (TTV.PROCESS

(WINDOWPROP WINDOW 'PROCESS» and then invokes

WINDOW's BUITONEVENTFN function (or RIGHTBUTTONFN if

the right button is down).

There are some cases where clicking in a window does not always
imply that the user wants to talk to that window. For example,
clicking in a text editor window with a shift key held down

means to "shift-select" some piece of text into the input buffer
of the current tty process. The editor supports this by supplying a
WINDOWENTRYFN that performs GIVE.TTY.PROCESS if no shift

key is down, but goes into its shift-select mode, without
changing the tty process, if a shift key is down. The shift-select
mode performs a BKSYSBUF of the selected text when the shift
key is let up, the BKSVSBUF feeding input to the current tty

process.

Sometimes a process wants to be notified when it becomes the
tty process, or stops being the tty process. To support this, there
are two process properties, ITVEXITFN and TTVENTRYFN. The

actions taken by ITV.PROCESS when it switches the tty to a new
process are as follows: the former tty process '5 TTVEXITFN is

called with two arguments (OLDTTYPROCESS NEWTTYPROCESS);

2313

TYPEIN AND THE TTY PROCESS

23.6.2 Handling of Interrupts

2314

RESET (initially control-D)

ERROR (initially control-E)

HELP (initially control-G)

the new process is made the tty process; finally, the new tty
process's TTYENTRYFN is called with two arguments
(NEWITYPROCESS OLDITYPROCESS). Normally the
TTYENTRYFN and TTYEXITFN need only their first argument, but

the other process involved in the switch is supplied for
completeness. In the present system, most processes wa nt to
interpret the keyboard in the same way, so it is considered the
responsibility of any process that changes the keyboard
interpretation to restore it to the normal state by its TTYEXITFN.

A window is "owned" by the last process that anyone gave as the
window's PROCESS property. Ordinarily there is no conflict here,

as processes tend to own disjoint sets of windows (though, of
course, cooperating processes can certainly try to confuse each
other). The only likely problem arises with that most global of
windows, PROMPTWINDOW. Programs should not be tempted
to read from PROMPTWINDOW. This is not usually necessary

anyway, as the first attempt to read from T in a process that has
not set its TTYDISPLAYSTREAM to its own window causes a tty
window to be created for the process (see page 23.10).

At the time that a keyboard interrupt character (page 30.1) is
struck, any process could be running, and some decision must be
made as to which process to actually interrupt. To the extent
that keyboa rd interru pts are related to typei n, most interrupts
are taken in the tty process; however, the following are handled
specially:

These interrupts are taken in the mouse process, if the mouse is
not in its idle state; otherwise they are taken in the tty process.
Thus, control-E can be used to abort some mouse-invoked
window action, such as the Shape command. As a consequence,
note that if the mouse invokes some lengthy computation that
the user thinks of as "background", control-E still aborts it, even
though that may not have been what the user intended. Such
lengthy computations, for various reasons, should generally be
performed by spawning a separate process to perform them.

The RESET interrupt in a process other than the executive is

interpreted exactly as if an error unwound the process to its top
level: if the process was designated RESTART ABLE = T, it is
restarted; otherwise it is killed.

A menu of processes is presented to the user, who is asked to
select which one the interrupt should occur in. The current tty
process appears with a * next to its name at the top of the menu.
The menu also includes an entry "[Spawn Mouse]", for the
common case of needing a mouse because the mouse process is

PROCESSES

BREAK (initially control-B)

RUBOUT (initially DELETE)

RAID

STACK OVERFLOW

STORAGE FULL

23.7 Keeping the Mouse Alive

(SPAWN.MOUSE -)

TYPEI NAND TH E TTY PROCESS

currently tied up running someone's BUTTONEVENTFN; selecting

this entry spawns a new mouse process, and no break occurs.

Performs the HELP interrupt in the mouse process, if the mouse is

not in its idle state; otherwise it is performed in the tty process.

This interrupt clears typeahead in all processes.

These interrupts always occur in whatever process was running at

the time the interrupt struck. In the cases of STACK OVERFLOW

and STORAGE FULL, this means that the interrupt is more likely

to strike in the offending process (especially if it is a "runaway"
process that is not blocking). Note, however, that this process is
still not necessarily the guilty party; it could be an innocent

bystander that just happened to use up the last of a resource
prodigiously consumed by some other process.

Since the window mouse handler runs in its own process, it is not
available while a window's BUTTONEVENTFN function (or any of

the other window functions invoked by mouse action) is
running. This leads to two sorts of problems: (1) a long
computation underneath a BUTTONEVENTFN deprives the user

of the mouse for other purposes, and (2) code that runs as a
BUTTONEVENTFN cannot rely on other BUTTONEVENTFNs

running, which means that there some pieces of code that run
differently from normal when run under the mouse process.

These problems are addressed by the following functions:

[Function]

Spawns another mouse process, allowing the mouse to run even
if it is currently "tied up" under the current mouse process. This
function is intended mainly to be typed in at the Lisp executive
when the user notices the mouse is busy.

(ALLOW.BUTTON.EVENTS) [Function]

PROCESSES

Performs a (SPAWN.MOUSE) only when called underneath the

mouse process. This should be called (once, on entry) by any
function that relies on BUTTONlVENTFNs for completion, if

there is any possibility that the function will itself be invoked by
a mouse function.

It never hurts, at least logically, to call SPAWN.MOUSE or

ALLOW.BUTTON.EVENTS needlessly, as the mouse process

2315

KEEPING TH E MOUSE ALIVE

23.8 Process Status Window

BT,BTV,BTV*,BTV!

WHO?

KBD~

INFO

BREAK

KILL

23.16

arranges to quietly kill itself if it returns from the user's

BunONEVENTFN and finds that another mouse process has
sprung up in the meantime. (There is, of course, some

computationa I expense.)

The background menu command PSW (page 28.6) and the

function PROCESS.STATUS.WINDOW (below) create a "Process
Status Window", that allows the user to examine and
manipulate all of the existing processes:

::;: PAC: E 1",1 I N D (I 1, •• 1

TEcJi t
MOUSE

ERIS#LEAF
\1~1t.1e.I,.,IA TCHEF:

::::::::::::::::::::: f: i~ e:C:::::::::::::::::::::
. \.r.j :::'13'A T E' C i :::: t· E)j E F:'
\PUPGATELISTENER

EiT
EiT\/
8T\/:+:
EiT\/!

\TIMER.PROCE88
e,AC~~ 13 ROUND

\NHO'?
~<'8D f­
It···JFC)

EiF:E.6,V.

~<'ILL
F:EST,6,F:T

l't,·",',U.~<.E

SUSF'Et···JD

The window consists of two menus. The top menu lists all the
processes at the moment. Commands in the bottom menu
operate on the process selected in the top menu (EXEC in the
example above). The commands are:

Displays a backtrace of the selected process.

Changes the selection to the tty process, i.e., the one currently in
control of the keyboard.

Associates the keyboard with the selected process; i.e., makes

the selected process be the tty process.

If the selected process has an INFOHOOK property, calls it. The
hook may be a function, which is then applied to two arguments,
the process and the button (LEFT or MIDDLE) used to invoke

INFO, or a form, which is simply EVAL'ed. The APPLY or EVAL

happens in the context of the selected process, usi ng
PROCESS.APPLY or PROCESS.EVAL. The INFOHOOK process

property can be set using PROCESSPROP (page 23.2).

Enter a break under the selected process. This has the side effect

of waki ng the process with the va I u e retu rned from the brea k.

Deletes the selected process.

PROCESSES

RESTART

WAKE

SUSPEND

PROCESS STATUS WINDOW

Restarts the selected process.

Wakes the selected process. Prompts for a value to wake it with

(see WAKE.PROCESS).

Suspends the selected process; i.e., causes it to block indefinitely

(until explicitly woken).

(PROCESS.STATUS.WINDOW WHERE) [Function]

Puts up a process status window that provides several debugging
commands for manipulating running processes. If the window is
already up, PROCESS.STATUS.WINDOW refreshes it. If WHERE is

a position, the window is placed in that position; otherwise, the
user is prompted for a position.

Currently, the process status window runs under the mouse
process, like other menus, so if the mouse is unavailable (e.g., a
mouse function is performing an extensive computation), you
may be unable to use the process status window (you can try

SPAWN.MOUSE, of course).

23.9 Non-Process Compatibility

This section describes some considerations for authors of
programs that ran in the old single-process Interlisp-D

environment, and now want to make sure they run properly in
the Multi-processing world. The biggest problem to watch out
for is code that runs underneath the mouse handler. Writers of
mouse handler functions should remember that in the process
world the mouse handler runs in its own process, and hence (a)
you cannot depend on finding information on the stack (stash it
in the window instead), and (b) while your function is running,
the mouse is not available (if you have any non-trivial

computation to do, spawn a process to do it, notify one of your
existing processes to do it, or use PROCESS.EVAL to run it under

some other process).

The following functions are meaningful even if the process
world is not on: BLOCK (invokes the system background routine,

which includes handling the mouse); TTY.PROCESS,
THIS.PROCESS (both return NIL); and TIY.PROCESSP (returns T,

i.e., anyone is allowed to take tty input).
following two functions exist in both worlds:

In addition, the

(EVAL.AS.PROCESS FORM) [Function]

Same as (ADD.PROCESS FORM 'RESTARTABLE 'NO), when

processes are running, EVAL when not. This is highly

PROCESSES 23 17

NON-PROCESS COMPATIBILITY

recommended for mouse functions that perform any non-trivial

activity.

{EVAL.IN.TIY.PROCESS FOR/VI WAITFORRESUL n [Function]

23.18

Same as (PROCESS.EVAL (TTY.PROCESS) FORM

WAITFORRESUL n, when processes are running, EVAl when not.

Most of the process functions that do not take a process
argument can be called even if processes aren't running.
ADD.PROCESS creates, but does not run, a new process (it runs

when PROCESSWORLD'is called).

PROCESSES

A

(A E 1 .. , EM) (Editor Command) II: 16.32

AOOOn (gensym) I: 2.11

ABBREVLST (Variable) III: 26.46; 26.47

(ABS X) I: 7.4

ACCESS (File Attribute) III: 24.19

Access chai n (on stack) I: 11.3

ACCESSFNS (Record Type) I: 8.12; 8.14

?ACTIVATEFLG (Variable) III: 26.36

Active frame I: 11.3

(ADD DATUM ITEM11TEM2 ...) (Change Word) I:

8.18

ADD (File Package Command Property) II: 17.45

(\ADD.PACKET.FIL TER FILTER) (Function) III: 31.40

(ADD.PROCESS FORM PROP1 VALUE1'" PROPN

VALUEN) II: 23.2

(ADD1 X) I: 7.6

(ADDFILEFILE---) II: 17.19

(ADDMENU MENU WINDOW POSITION

DONTOPENFLG) III: 28.38

(ADDPROP ATM PROP NEW FLG) I: 2.6

(ADDSPELL X SPLST N) II: 20.21; 20.23

ADDSPELLFLG (Variable) II: 20.13; 17.5; 20.16,22

(ADDTOCOMS COMS NAME TYPE NEAR LlSTNAME)

II: 17.48

(ADDTOFILE NAME TYPE FILE NEAR LlSTNAME) II:

17.48

(ADDTOFILES?-) II: 17.13

(ADDTOSCRATCHLIST VALUE) I: 3.8

(ADDTOVAR VAR X 1 X2 ... XN) II: 17.54; 17.36

(ADDVARS (VAR1 . LST1) '" (VARN' LSTN» (File

Package Command) II: 17.36

(ADIEU VAL) I: 11.21

(ADJUSTCURSORPOSITION DEL TAX DELTA Y) III:

30.17

ADV-PROG (Function) II: 15.10-11

ADV-RETURN (Function) II: 15.10-11

ADV-SETQ (Function) II: 15.10-11

(ADVICE FN1 ... FNN) (File Package Command) II:

17.35; 15.13

ADVICE (File Package Type) II: 17.22

ADVICE (Property Name) II: 15.12-13; 17.18

INDEX

INDEX

Advice to functions II: 15.9

ADVINFOLST (Variable) II: 15.12-13

(ADVISE FN1 ... FNN) (File Package Command) II:

17.34; 15.13

(ADVISE FN WHEN WHERE WHA nil: 15.11; 15.10

ADVISED (Property Name) I: 10.9; II: 15.11

ADVISEDFNS (Variable) II: 15.11-12

(ADVISEDUMP X FLG) II: 15.13

Advising functions II: 15.9

AFTER (as argument to ADVISE) II: 15.10; 15.11

AFTER (as argument to BREAK IN) II: 15.6; 14.5

After (DEdit Command) II: 16.7

AFTER (in INSERT editor command) II: 16.33

AFTER (in MOVE editor command) II: 16.38

AFTER LlTATOM (Prog. Asst. Command) II: 13.15;

13.24,33
AFTEREXIT (Process Property) II: 23.3

AFTERMOVEFN (Window Property) III: 28.20

AFTERSYSOUTFORMS (Variable) I: 12.9

ALIAS (Property Name) II: 15.5; 15.8

ALINK (in stack frame) I: 11.3

(ALISTS (VAR 1 KEY 1 KEY2 ...) ... (VARN KEY 3 KEY 4

... » (File Package Command) II: 17.37

ALISTS (File Package Type) II: 17.22

ALL (in event specification) II: 13.7

ALL (in PROP file package command) II: 17.37

(ALLATTACHEDWINDOWS WINDOW) III: 28.48

(\ALLOCATE.ETHERPACKET) (Function) III: 31.39

(ALLOCATE.PUP) III: 31.28

(ALLOCATE.XIP) III: 31.36

(ALLOCSTRING N INITCHAR OLD FATFLG) I: 4.2

&ALLOW-OTHER-KEYS (DEFMACRO keyword) I:

10.26
(ALLOW.BUnON.EVENTS) II: 23.15

ALLPROP (Litatom) I: 10.10; II: 13.29; 17.5,54

ALON E (type of read macro) III: 25.40

(ALPHORDER A B CASEARRA Y) I: 3.17

already undone (Printed by System) II: 13.13; 13.42

ALWAYS FORM (1.5. Operator) I: 9.11

ALWA YS (type of read macro) III: 25.40

AMBIGUOUS (printed by DW/M) II: 20.16

AMBIGUOUS DATA PATH (Error Message) I: 83

INDEX.1

INDEX

AMBIGUOUS RECORD FIELD (Error Message) I: 8.2

AMONG (Masterscope Path Option) II: 19.16

ANALYZE SET (Masterscope Command) II: 19.4

(AND X 1 X2 ... XN) I: 9.3

AND (in event specification) II: 13.7

AND (in USE command) II: 13.10

ANSWER (Variable) III: 26.15

(ANTILOG X) I: 7.13

* ANY* (in edit pattern) II: 16.18

APPEND (File access) III: 24.2

(APPEND X 1 X2 ... XN) I: 3.5

(APPENDTOVAR VARX1 X2'" XN) II: 17.55; 17.36

(APPENDVARS (VAR1 . LST1) ... (VARN' LSTN» (File

Package Command) II: 17.36

(APPLY FNARGLIST -) I: 10.11; II: 18.19

(APPLY* FN ARGl ARG2 ... ARGN) I: 10.12; II:

18.19
APPLY-format input II: 13.4

Applying functions to arguments I: 10.11
Approval of DWIM corrections II: 20.4; 20.3

APPROVEFLG (Variable) II: 20.14; 20.22,24

(APROPOS STRING ALLFLG QUIETFLG OUTPUn I:

2.11
Arbitrary-size integers I: 7.1

(ARCCOS X RADIANSFL G) I: 7.14

ARCCOS: ARG NOT IN RANGE (Error Message) I:
7.14

* ARCHIVE* (history list property) II: 13.33

ARCHIVE EventSpec (Prog. Asst. Command) II:
13.16

ARCHIVEFLG (Variable) II: 13.23

ARCHIVEFN (Variable) II: 13.23; 13.16

ARCHIVELST (Variable) II: 13.31; 13.16

(ARCSIN X RADIANSFL G) I: 7.14

ARCSIN: ARG NOT IN RANGE (Error Message) I:
7.14

(ARCTAN X RADIANSFLG) I: 7.14
(ARCTAN2 Y X RADIANSFLG) I: 7.14

SETARE SET (Masterscope Command) II: 19.5
(ARG VAR M) I: 10.5

* ARGN (Stack blip) I: 11.15

ARG NOT ARRAY (ErrorMessage) I: 5.1-2; II: 14.30

ARG NOT HARRAY (Error Message) II: 14.31

ARG NOT LIST (Error Message) I: 3.2,5,15-16; II:
14.28

ARG NOT LlTATOM (Error Message) I: 2.3,5,7; 9.8;
10.3,11; II: 14.28; 17.54

(ARGLIST FN) I: 10.8; II: 14.10

INDEX.2

ARGNAMES (Property Name) I: 10.8

ARGS (Break Command) II: 14.10

... ARGS (history list property) II: 13.33

ARGS NOT AVAILABLE (Error Message) I: 10.8

(ARGTYPE FN) I: 10.7

Argument lists of functions I: 10.2

* ARGVAL * (stack blip) I: 11.16

Arithmetic I: 7.1

AROUND (as argument to ADVISE) II: 15.10;
15.11-12

AROUND (as argument to BREAKIN) II: 15.6; 14.5

(ARRA Y SIZE TYPE INIT ORIG -) I: 5.1

(ARRAYORIG ARRA y) I: 5.2

(ARRAYP X) I: 5.1; 9.2

ARRA YRECORD (Record Type) I: 8.8

Arrays I: 5.1; 9.2

ARRAYS FULL (Error Message) II: 14.29; 22.5
(ARRA YSIZE ARRA y) I: 5.2

(ARRAYTYP ARRA y) I: 5.2

AS VAR (1.5. Operator) I: 9.15

ASCENT (Font property) III: 27.27

(ASKUSER WAIT DEFAUL T MESS KEYLST

TYPEAHEAD LlSPXPRNTFLG OPTIONSLST FILE)

III: 26.12

ASKUSERTTBL (Variable) III: 26.17
Assignments in CLISP II: 21.9

Assignments in pattern matchi ng I: 12.28

{ASSOC KEY ALSn I: 3.15

Association lists I: 3.15

Association lists in EVALA I: 10.13

ASSOCRECORD (Record Type) I: 8.8

{ATOM X) 1:2.1;9.1

ATOM HASH TABLE FULL (Error Message) II: 14.28

ATOM TOO LONG (Error Message) I: 2.2; II: 14.28

ATOMRECORD (Record Type) I: 8.9
Atoms 1:2.1;9.1

(AITACH X L) I: 3.5

Attached windows III: 28.45; 28.1

(AITACHEDWINDOWS WINDOW COM) III: 28.47

AITACHEDWINDOWS (Window Property) III:
28.54

(ATTACHMENU MENU MAINWINDOW EDGE

PC~'T10NONEDGE NOOPENFLG) III: 28.48
(AITACHWINDOW WINDOWTOA TTACH

MAINWINDOW EDGE POSITIONONEDGE
WINDOWCOMACTlON) III: 28.45

A ITEMPT TO BIND NIL OR T (Error Message) I: 9.8;
10.3; II: 14.30

INDEX

attempt to read DATATYPE with different field

specification than currently defined (Error

Message) III: 25.18
ATTEMPT TO RPLAC NIL (Error Message) I: 3.2; II:

14.28
A TIEMPT TO SET NIL (Error Message) I: 2.3; II:

14.28
A TIEMPT TO SET T (Error Message) I: 2.3
A TIEMPT TO USE ITEM OF INCORRECT TYPE (Error

Message) II: 14.30
(AU-REVOI R VAL) I: 11.21
AUTHOR (File Attribute) III: 24.18
AUTOBACKTRACEFLG (Variable) II: 14.15
AUTOCOMPLETEFLG (ASKUSER option) III: 26.17
AUTOPROCESSFLG (Variable) II: 23.1
&AUX (DEFlWACRO keyword) I: 10.26
AVOIDING SET (MasterscopePath Option) II: 19.16
(AWAIT. EVENT EVENT TIMEOUT TlMERP) II: 23.7

B

(B E 1 .. , EM) (Editor Command) II: 16.32

Background menu III: 28.6
Background shade III: 30.22
BACKGROUNDBUTIONEVENTFN (Variable) III:

28.29
BackgroundCopyMenu (Variable) III: 28.8
BackgroundCopyMenuCommands (Variable) III:

28.8
BACKGROUNDCURSORINFN (Variable) III: 28,29
BACKGROUNDCURSORMOVEDFN (Variable) III:

28.29
BACKGROUNDCURSOROUTFN (Variable) III: 28.29
BackgroundMenu (Variable) III: 28.8
BackgroundMenuCommands (Variable) III: 28.8
BACKGROUNDPAGEFREQ (Variable) I: 12.10
BACKGROUNDWHENSELECTEDFN (Function) III:

28.40
Backquote (') III: 25.42
Backslash functions I: 10.10
Backspace III: 30.5; 25.2; 26.23
(BACKTRACE IPOS EPOS FLAGS FILE PRINTFN) I:

11.11
Backtrace t~nak commands II: 14.9
Backtrace frame window II: 14.3
Backtrace functions I: 11.11
BACKTRACEFONT (Variable) II: 14.15
BAD FILE NAME (Error Message) II: 14.31
BAD FILE PACKAGE COMMAND (Error Message) II:

17.34

INDEX

BAD PROG BINDING (Error Message) I!: 18.23
BAD SETQ (Error Message) II: 18.23
BAD SYSOUT FILE (Error Message) II: 14.29
(BAKTRACE IPOS EPOS SKIPFNS FLAGS FILE) I"

11.11
BAKTRACELST (Variable) I: 11.12
Barson cursor 111:30,16
.BASE (PRINTOUT command) III: 25.27
Basic frames on stack I: 11.3; 11.1,6
(BCOMPL FILES CFILE--) II: 18.21; 18.17-18
(BEEPOFF) III: 30.24
(BEEPON FREQ) III: 30.24

INDEX

BEFORE (as argument to ADVISE) II: 15.10; 15.11
BEFORE (as argument to BREAK IN) II: 15.6; 14.5
Before (DEdit Command) II: 16.7
BEFORE (in INSERT editor command) II: 16.33
BEFORE (in MOVE editor command) II: 16.38
BEFORE LlTATOM (Prog. Asst. Command) II: 13.15;

13.24,33
BEFOREEXIT (Process Property) II: 23.3
BEFORESYSOUTFORMS (Variable) I: 12.9
\BeginDST (Variable) I: 12.16
Bell (in history event) II: 13.19; 13.13,31,39
Bell in terminal III: 30.24
Bells printed by DWIM II: 20.3
(BELOW COM X) (Editor Command) II: 16.25
(BELOW COM) (Editor Command) II: 16.25
BF PATTERN NIL (EditorCommand) II: 16.23
(BF PA TTERN) (Editor Command) II: 16.23
BF PA TTERN T (Editor Command) II: 16.23
BF PA TTERN (Editor Command) II: 16.23
(BI N M) (Editor Command) II: 16.40
(BI N) (Editor Command) II: 16.41
Bignums I: 7.1
(BIN STREAM) III: 25.5
(BIND COMS 1 ... COMSN) (Editor Command) II:

16.63
BIND VARS (1.5. Operator) I: 9.12
BIND VAR (1.5. Operator) I: 9.12
BIND (in Masterscope template) II: 19.20
BIND (Masterscope Relation) II: 19.9
Bindings in stack frames I: 11.6
BINDS (Litatom) II: 21.21
BIR (Font face) III: 27.26
Bit tables I: 4.6
(BITBL T SOURCE SOURCELEFT SOURCEBOTTOM

DES TINA TlON DES TINA TlONLEFT
DES TINA TlONBOTTOM WIDTH HEIGHT

INDEX.3

INDEX

SOURCETYPE OPERA TlON TEXTURE
CLiPPINGREGION) III: 27.14

(BITCLEAR N MASK) (Macro) I: 7.9

BITMAP (Data Type) 1/1: 27.3

(BITMAPBIT BITMAP X Y NEWVALUE) III: 27.3

(BITMAPCOPY BITMAP) 11/: 27.4

(BITMAPCREATE WIDTH HEIGHT BITSPERPIXEL) III:

27.3

(BITMAPHEIGHT BITM.AP) Ill: 27.3
(BITMAPIMAGESIZE BITMAP DIMENSION STREAM)

III: 27.16
(BITMAPP X) 1/1: 27.3

Bitmaps III: 27.3

(BITMAPWIDTH BITMAP) III: 27.3

BITS (as a field specification) I: 8.21

BITS (record field type) I: 8.10

(BITSET N MASK) (Macro) I: 7.9

(BITSPERPIXEL BITMAP) III: 27.3
(BIITEST N MASK) (Macro) I: 7.9

(BK N) (Editor Command) II: 16.16

BK (EditorCommand) II: 16.16

(BKLlNBUF STR) III: 30.12

(BKSYSBUFXFLGRDTBL) 1/1: 30.11; 30.12

BLACKSHADE (Variable) III: 27.7

BLINK (in stack frame) I: 11.3

Blips on the stack I: 11.14
(BLIPSCAN BLIPTYP IPOS) I: 11.16

(BLlPVAL BLiPTYP IPOS FLG) I: 11.16

BLKAPPL Y (Function) II: 18.19

BLKAPPL Y* (Function) II: 18.19

BLKAPPL YFNS (in Masterscope Set Specification) II:

19.12
BLKAPPLYFNS (Variable) II: 18.19; 18.18

BLKFNS (in Masterscope Set Specification) II: 19.12

BLKLIBRARY (Variable) II: 18.20; 18.18

BLKLIBRARYDEF (Property Name) 1/: 18.20

BLKNAME (Variable) 1/: 18.18

(BLOCK MSECSWAIT TIMER) II: 23,5

Block compiling II: 18.17

Block compiling functions 1/: 18.20

Block declarations II: 18.17; 17.42

Block library II: 18.19

(BLOCKCOMPILE BLKNAME BLKFNS ENTRIES FLG)

II: 18.20; 18.18

BLOCKED (Printed by Editor) II: 16.65

BLOCKRECORD (Record Type) I: 8.11

(BLOCKS BLOCK 1 ... BLOCKN) (File Package

Command) II: 17.42; 18.17

INDEXA

(BL TSHADE TEXTURE DES TINA TlON
DES TINA TlONLEFT DESTINA TlONBOTTOM
WIDTH HEIGHT OPERA TlON CLlPPfNGREGION)

III: 27.16

(BO N) (Editor Command) 1/: 16.41

&BOOY (DEFMACRO keyword) I: 10.25

BOLDITALIC (Font face) II!: 27.26

BORDER (Window Property) III: 28.33

BOTH (File access) III: 24.2

(BOTH TEMPLATE 1 TEMPLATE2) (in Masterscope

template) II: 19.20

BOITOM (as argument to ADVISE) II: 15.11

Bottommargin 111:27.11

(BOTTOMOFGRIDCOORD GRIDY GRIDSPEC) III:

27.23

(BOUNDP VAR) I: 2.3

(BOUT STREAM BYTE) III: 25.9

(BOXCOUNT TYPE N) II: 22.8

BOXCURSOR (Variable) III: 28.9; 30.15

Boxing numbers I: 7.1

Boyer-Moore fast string searching algorithm III:

25.21
BQUOTE (Function) III: 25.42

Break (DEdit Command) II: 16.9

BREAK (Error Message) II: 14.29

(B R EA K X) II: 1 5.5; 1 4.5; 1 5. 1 ,7

**BREAK* * (in backtrace) II: 14.9

BREAK (Interrupt Channel) II: 23.15; III: 30.3

BREAK (Syntax Class) III: 25.37

Break characters III: 25.36; 25.4; 30.10

Break commands II: 14.5; 14.17

Break expression II: 14.5; 14.12

BREAK INSERTED AFTER (Printed by BREAKIN) II:

15.7

Break package II: 14.1

Break windows II: 14.3; 14.1

Break within a break on FN (Printed by system) II:

14.16

(BREAK.NSFILlNG.CONNECTION HOSn III: 24.38

(BREAKO FN WHEN COMS - -) II: 15.4; 15.5,8

(BREAK1 BRKEXP BRKWHEN BRKFN BRKCOMS

BRKTYPE ERRORN) II: 14.16; 14.20; 15.1,3-6;

20.24
BREAKCHAR (Syntax Class) III: 25.35

(BREAKCHECK ERRORPOS ERXN) II: 14.13;

14.19,22,27
BREAKCH K (Variable) II: 14.23

BREAKCOMSLST (Variable) II: 14.17

BREAKCONNECTION (Function) III: 24.37

INDEX

BREAKDELIMITER (Variable) II: 14.10

(BREAKDOWN FN1 ... FNN) II: 22.9

(BREAKIN FN WHERE WHEN COMS) II: 15.6; 14.5;

15.1,3-4,7-8
Breaking CLiSP expressions II: 15.4

Breaki ng functions II: 15.1
BREAKMACROS (Variable) II: 14.17; 14.16

(BREAKREAO TYPE) II: 14.18

BREAKREGIONSPEC (Variable) II: 14.15
BREAKRESETFORMS (Variable) II: 14.18

(BRECOMPILE FILES CFILE FNS -) II: 18.21; 17.12;
18.17-18

BRKCOMS (Variable) II: 14.17; 14.7-8,16; 15.4
BRKDWNCOMPFLG (Variable) II: 22.11
(BRKDWNRESULTS RETURNVALUESFLG) II: 22.9

BRKDWNTYPE (Variable) II: 22.10; 22.11

BRKDWNTYPES (Variable) II: 22.10
BRKEXP (Variable) II: 14.5; 14.8,11-12,16; 15.4

BRKFILE (Variable) II: 14.17
BRKFN (Variable) II: 14.16; 14.6; 15.4
BRKINFO (Property Name) II: 15.4,7-8
BRKINFOLST (Variable) II: 15.7-8
BRKTYPE (Variable) II: 14.16
BRKWHEN (Variable) II: 14.16; 15.4

BROADSCOPE (Property Name) II: 21.28

BROKEN (Property Name) I: 10.9; II: 15.4
BROKEN-IN (Property Name) I: 10.9; II: 15.7; 15.8
BROKENFNS (Variable) II: 15.4,7; 20.24

Brushes for drawing curves III: 27.18
BT (Break Command) II: 14.9
BT (Break Window Command) II: 14.3

BT! (Break Window Command) II: 14.3
BTV (Break Command) II: 14.9
BTV! (Break Command) II: 14.9

BTV* (Break Command) II: 14.9
BTV + (Break Command) II: 14.9
BUF (Editor Command) III: 26.29
BUFFERS (File Attribute) III: 24.19
BUILDMAPFLG (Variable) II: 17.56; 17.5; 18.15
Bulk Data Transfer III: 31.24
Bury (Window Menu Command) III: 28.4
(BURYW WINDOW) III: 28.20

BUTTONEVENTFN (Window Property) III: 28.4B;

28.38
(BUnONEVENTINFN IMAGEOBJ WINDOWSTREAM

SELECTION RELX REL Y WINDOW HOSTSTREAM
BUTTON) (lMAGEFNS Method) III: 27.38

Buttons on mouse III: 30.17
BY FORM (without INION) (I.S. Operator) I: 9.14

INDEX

INDEX

BY FORM (with INION) (I.S. Operator) I: 9.14; 9.18

BY (in REPLACE editor command) II: 16.33
BYTE (as a field specification) I: 8.21
(BYTE SIZE POSITION) (Macro) I: 7.10

BYTE (record field type) I: 8.10
(BYTEPOSITION BYTESPEC) (Macro) I: 7.10

BYTESIZE (File Attribute) III: 24.17

(BYTESIZE BYTESPEC) (Macro) I: 7.10

C

C (MAKEFILEoption) II: 17.10
c. .. R functions I: 3.2'
CAAR (Function) I: 3.2
CADR (Function) I: 3.2

CALCULATEREGION (Window Property) III: 28.20

CALL (in Masterscope template) II: 19.20
CALL (Masterscope Relation) II: 19.7
CALL DIRECTLY (Masterscope Relation) II: 19.8
CALL FOR EFFECT (Masterscope Relation) II: 19.9
CALL FOR VALUE (Masterscope Relation) II: 19.9
CALL INDIRECTLY (Masterscope Relation) II: 19.8
CALL SOMEHOW (Masterscope Relation) II: 19.8
(CALLS FN USEDATABASE -) II: 19.22

(CALLSCCODEFN--) II: 19.22

CAN'T - AT TOP (Printed by Editor) II: 16.15
CAN'T BE BOTH AN ENTRY AND THE BLOCK NAME

(Error Message) II: 18.22; 18.20

CAN'T FIND EITHER THE PREVIOUS VERSION ...

(Printed by System) II: 17.16
CANFILEDEF (File Package Type Property) II: 17.30
(CANONICAL.HOSTNAME HOSTNAME) III: 24.39
CAP (Editor Command) II: 16.52
(CARX) /:3.1
CAR/CDRERR (Variable) I: 3.1

#CAREFULCOLUMNS (Variable) III: 26.47

(CARET NEWCARED III: 28.31
(CARETRATE ONRATE OFFRATE) III: 28.31

Carets III: 28.30
Carriage-return II: 13.37; III: 25.8; 25.4

Case arrays III: 25.21
(CASEARRAY OLDARRA Y) III: 25.21
CAUTIOUS (DWIM mode) II: 20.4; 20.3,24; 21.4,6

CCODEP (data type) I: 10.6
(CCODEP FN) I: 10.7

CDAR (Function) I: 3.2
CDDR (Function) I: 3.2
(CDR X) I: 3.1
Center (DEdit Command) II: 16.8
.CENTER POS EXPR (PRINTOUT command) III: 25.29

INDEX 5

INDEX

.CENTER2 POS EXPR (PRINTOUT command) III:

25.29
CENTERFLG (Menu Field) III: 28.41

(CENTERPRINTINREGION EXP REGION STREAM) III:

27.21

CEXPR (Litatom) I: 10.7

CEXPR* (Litatom) I: 10.7

CFEXPR (Litatom) I: 10.7

CFEXPR* (Litatom) I: 10.7; 10.8

CH.DEFAULT.DOMAIN (Variable) I: 12.3; III: 31.8

CH.DEFAUl T.ORGANIZATION (Variable) I: 1.2.3; III:

31.8

(CH.lSMEMBER GROUPNAME PROPERTY

SECONDARYPROPERTY NAME) III: 31.12

(CH.LlST.ALlASES OBJECTNAMEPATTERN) III:

31.11

(CH.LlST.ALlASES.OF OBJECTPA TTERN) III: 31.11

(CH.LlST.DOMAINS DOMAINPA TTERN) III: 31.11

(CH.LlST.OBJECTS OBJECTPA TTERN PROPERTy) III:

31.11

(CH.LlST.ORGANIZATIONS

ORGANIZATIONPATTERN) III: 31.11

(CH.LOOKUP.OBJECT OBJECTPA TTERN) III: 31.10

CH.NET.HINT (Variable) I: 12.3; III: 31.9

(CH.RETRIEVE.lTEM OBJECTPA TTERN PROPERTY

INTERPRETATION) III: 31.11

(CH.RETRIEVE.MEMBERS OBJECTPA TTERN

PROPERTY -) III: 31.11

(CHANGE DATUM FORM) (Change Word) I: 8.19

(CHANGE @ TO E 1 ... EM) (Editor Command) II:

16.34

(CHANGEBACKGROUND SHADE -) III: 30.22

(CHANGEBACKGROUNDBORDER SHADE -) III:

30.23

(CHANGECALLERS OLD NEW TYPES FILES METHOD)

II: 17.28

CHANGECHAR (Variable) II: 16.30; III: 26.49

CHANGED (MARKASCHANGED reason) II: 17.18

changed, but not unsaved (Printed by Editor) II:

16.69

CHANGEFONT (Font class) III: 27.32

(CHANGEFONT FONT STREAM) III: 27.34

(CHANGENAME FN FROM TO) II: 15.8

CHANGEOFFSETFLG (Menu Field) III: 28.42

(CHANGEPROP X PROP1 PROP2) I: 2.6

CHANGESARRA Y (Variable) II: 16.30

(CHANGESLICE N HISTORY -) I: 12.3; II: 13.21;

13.31

Changetran I: 8.17

INDEX 6

CHANGEWORD (Property Name) I: 8.19

(CHARACTER N) I: 2.13

Character codes I: 2.12

Character echoing III: 30.6

Character I/O III: 25.22

Character sets I: 2.14; III: 25.22

CHARACTERNAMES (Variable) I: 2.14

Characters I: 2.12

CHARACTERSETNAM ES (Variable) I: 2.14

(CHARCODE CHAR) I: 2.13

CHARDELETE (syntax class) III: 30.5,8

(CHARSET STREAM CHARACTERSED III: 25.23

(CHARWIDTH CHARCODE FOND III: 27.30

(CHARWIDTHY CHARCODE FOND III: 27.30

(CHCON X FLG RDTBL) I: 2.13

(CHCON1X) 1:2.13

CHECK SET (Masterscope Command) II: 19.7

(CHECKIMPORTS FILES NOASKFLG) II: 17.43

(\CHECKSUM BASE NWORDS INITSUM) (Function)

III: 31.40

CHOOZ (Function) II: 20.19

CL (Editor Command) II: 16.55; 21.27

CL: FLG (Variable) II: 21.23

(CLDISABLE OP) I: 9.11; II: 21.26

(CLEANPOSLST PLSn I: 11.21

(CLEANUP FILE 1 FILE2 ... FILEN) II: 17.12

CLEANUPOPTIONS (Variable) II: 17.12

Clear (DEdit Command) II: 16.8

Clear (Window Menu Command) III: 28.4

(CLEARBUFFILEFLG) III: 30.11; 30.12

Clearinghouse III: 31.8

(CLEARPUP PUP) III: 31.28

(CLEARSTK FLG) I: 11.9

CLEARSTKLST (Variable) I: 11.9

(CLEARW WINDOW) III: 28.31

CLINK (in stack frame) I: '11.3

Clipping region III: 27.11

CLiSP II: 21.1; 20.8,10-11

CLiSP (as CAR of form) II: 21.17

CLiSP (in Masterscope template) II: 19.20

CLiSP (MARKASCHANGED reason) II: 17.18

CLiSP and compiler II: 18.9,14

CLiSP declarations II: 21.12; 21.17

CLiSP interaction with use r II: 21.6

CLiSP internal conventions II: 21.27

CLiSP operation II: 21.14

CLiSP words II: 20.9

CLlSP: (Editor Command) II: 21.26; 21.17

CLiSPARRAY (Variable) II: 21.25; 21.17,26

INDEX

CLlSPCHARRA Y (Variable). II: 21.25

CLlSPCHARS (Variable) II: 21.25

(CLlSPDEC DECLSn II: 21.12; 21.25

CLlSPFLG (Variable) II: 21.25

CLlSPFONT (Font class) III: 27.32

CLlSPFORWORDSPLST (Variable) I: 9.10

CLISPHELPFLG (Variable) II: 21.21; 21.6

CLlSPI.S.GAG (Variable) I: 9.20

CLlSPIFTRANFLG (Variable) II: 21.26

CLISPIFWORDSPLST (Variable) I: 9.5

(CLISPIFY X EDITCHAIN) II: 21.22; 21.23; 17.11;

21.14
CLISPIFY (MAKEFILEoption) II: 17.11;21.26

(CLISPIFYFNS FNl'" FNN) II: 21.23

CLISPIFYPACKFLG (Variable) II: 21.24

CLISPIFYPRETTYFLG (Variable) I: 12.3; II: 21.26;

17.11; III: 26.48

CLISPIFYUSERFN (Variable) II: 21.24

CLISPINFIX (Property Name) II: 21.29

CLISPINFIXSPLST (Variable) II: 21.25; 21.9

CLISPRECORDTYPES (Variable) I: 8.15
CLISPRETRANFLG (Variable) II: 21.22; 21.17

(CLlSPTRAN X TRAN) II: 21.25

CLlSPTYPE (Property Name) II: 21.27; 21.28

CLlSPWORD (Property Name) I: 8.19; II: 21.29

(CLOCK N-) I: 12.15

Close (Window Menu Command) III: 28.3

(CLOSEALL ALLFLG) III: 24.5; 24.20

CLOSEBREAKWINDOWFLG (Variable) II: 14.15
(CLOSEF FILE) III: 24.4

(CLOSEF? FILE) III: 24.4

CLOSEFN (Window Property) III: 28.15

(CLOSENSOCKET NSOC NOERRORFLG) III: 31.37

(CLOSEPUPSOCKET PUPSOC NOERRORFLG) III:

31.29

(CLOSEW WINDOW) III: 28.15

Closing and reopening files III: 24.20
CLREMPARSFLG (Variable) II: 21.23

(CLRHASH HARRA Y) I: 6.2
(CLRPROMPT) III: 28.3

(CNDIRHOSTIDIR) III: 24.10

CNTRLV (syntax class) III: 30.6

CODE (Property Name) II: 17.27

CODERDTBL (Variable) III: 25.34

COLLECT FORM (1.5. Operator) I: 9.10
COMMAND (Variable) III: 26.38

COMMENT (printed by editor) II: 16.48
COMMENT (printed by system) III: 26.43
Comment pointers II: 16.55; III: 26.44

INDEX

INDEX

COMMENT USED FOR VALUE (Error Message) II.

18.23
COMMENTFLG (Variable) III: 26.43

(COMMENT1 L-) III: 26.43

COMMENTFLG (Variable) III: 26.43; 26.45

COMMENTFONT (Font class) III: 27.32

COMMENTLINELENGTH (Variable) III: 27.34

Comments in functions III: 26.42

(COMPARE NAME 1 NAME2 TYPE SOURCE 1

SOURCE2) II: 17.29
(COMPAREDEFS NAME TYPE SOURCES) II: 17.29

(COMPARELISTS X Y) I: 3.19

Comparing lists I: 3.19
(COMPILEXFLG) II: 18.14

COMPILE.EXT (Variable) II: 18.13

(COMPILE1 FNDEF-) II: 18.14

Compiled files II: 18.13

Compiled function objects I: 10.6
COMPILED ON (printed when file is loaded) 1/:

18.13

(COMPILEFILES FILEI FILE2 ... FILEN) II: 17.14

COMPILEHEADER (Variable) II: 18.13

Compiler II: 18.1

Com piler error messages II: 18.22

Compiler functions II: 18.13; 18.20

Compiler printout II: 18.3

Compiler questions II: 18.1

COMPILERMACROPROPS (Variable) I: 10.22

COMPILETYPELST (Variable) I: 10.14; II: 18.11; 18.9

COMPILEUSERFN (Function) II: 18.12

COMPILEUSERFN (Variable) II: 18.9; 18.11

Compiling CLiSP II: 18.11; 18.9,14

Compiling data types II: 18.11

Compiling files II: 18.14; 18.21

Compiling FUNCTION II: 18.10

Compiling function calls II: 18.8

Compiling functional arguments II: 18.10
Compiling open functions II: 18.11

COMPLETEON (ASKUSER option) III: 26.16

COMPSET (Function) II: 18.1

Computed macros I: 10.23

(COMS XI'" XM) (Editor Command) II: 16.59

(COMS COM 1 ... COM N) (File Package Command)

II: 17.40

(COMSQ COM"" COMN) (Editor Command) 1/:

16.59

(CONCAT Xl X2 ... XN) I: 4.4

(CONCATLIST L) I: 4.4

INDEX 7

INDEX

(COND CLAUSE 1 CLAUSE2 ... CLAUSEK) I: 9.4

COND clause I: 9.4
CONFIRMFLG (ASKUSER option) III: 26.15

Conjunctions in Masterscope II: 19.14
CONN HOSTIDIR (Prog. Asst. Command) III: 24.11

Connected directory III: 24.9
Connection Lost (Error Message) III: 24.41
(CONS X y) I: 3.1
(CONSCOUNT N) II: 22.8
(CONSTANT X) II: 18.7
(CONSTANTS VARl ... VARN) (File Package

Command) II: 17.37

(CONSTANTS VARl VAR2'" VARN) II: 18.8

Constants in compiled code II: 18.7
Constructing lists in CLiSP II: 21.10
CONTAIN (File Package Command Property) II:

17.46
CONTAIN (Masterscope Relation) II: 19.10
CONTENTS (File Package Command Property) II:

17.46
"CONTEXT*' (history list property) II: 13.33
Context switching I: 11.4
CONTINUE SAVING? (Printed by System) II: '13.41
CONTINUE WITH T CLAUSE (printed by DWlfvl) II:

20.7
Continuing an edit session II: 16.50
(CONTROL MODE TTBL) III: 30.10; 25.3,5
Control chain (on stack) I: 11.3
Control-A III: 30.5; 25.41; 26.23
Control-B (lnterruptCharacter) II: 14.27,29; 23.15;

III: 30.2
Control-character echoing III: 30.6
Control-D (Interrupt Character) II: 14.2,17,20;

16.49; 18.4; 23.14; III: 30.2; 30.11
CONTROl-E (Error Message) II: 14.31
Control-E (Interrupt Character) II: 13.18;

14.2,20,31; 15.7; 20.5,7; 23.14; III: 30.2; 24.40;
30.11

Control-F III: 26.23
Control-G (in history list) II: 13.19; 13.13
Control-G (Interrupt Character) II: 23.14; III: 30.2;

30.1 'I

Control-L III: 2";::!6
Control-P (interrupt character) II: 14.10; III: 30.2;

30.11
Control-Q III: 30.5; 25.2,41; 26.23
Control-R III: 30.6; 26.23
Control-T (Interrupt Character) III: 30.2
Control-V III: 30.6; 25.3

INDEX.S

Control-W III: 30.6; 25.2; 26.23

Control-X III: 26.24
Control-X (Editor Command) II: 16.18
Control-Y II: 16.75; III: 25.42; 26.23

Control-Z (Editor Command) II: 16.18
CONVERT.FILE.TO.TYPE.FOR.PRINTER (Function)

. III: 29.2

Coordi nate Systems III: 28.23
COPY (DECLARE: Option) II: 17.41
Copy (DEdit Command) II: 16.9
(COpy X) I: 3.8

(COPYAlL X) I: 3.8
(COPYARRA YARRA y) I: 5.2
COPYBUnONEVENTFN (Window Property) III:

27.41
(COPYBUnONEVENTINFN fMAGEOBJ

WINDOWSTREAM) (lMAGEFNS Method) III:

27.38
(COPYBYTES SRCFIL DSTFiL START END) III: 25.20
(COPYCHARS SRCFIL DSTFIL START END) III: 25.20
(COPYDEF OLD NEW TYPE SOURCE OPTIONS) II:

17.27
(COPYFILE FROMFILE TOFfLE) III: 24.31
(COPYFN IMAGEOBJ SOURCEHOSTSTREAM

TARGETHOSTSTREAM) (lMAGEFNS Method)

III: 27.38
COPYING (in CREATE form) I: 8.4
Copying files III: 24.31
Copying image objects between windows III:

27.41
Copying lists I: 3.8; 3.5,13-14,19
(COPYINSERT IMAGEOBJ) III: 27.42
COPYINSERTFN (Window Property) III: 27.42
(COPYREADTABLE RDTBL) III: 25.35
COPYRIGHTFLG (Variable) I: 12.3; II: 17.53
COPYRIGHTOWNERS (Variable) I: 12.3; II: 17.54
(COPYTERMTABLE TTBL) III: 30.5
COPYWHEN (DECLARE: Option) II: 17.42
CORE (file device) III: 24.29
(COREDEVICE NAME NODIRFLG) III: 24.30
(COROUTINE CALLPTR COROUTPTR COROUTFORM

ENDFORM) I: 11.19
Coroutines I: 11.18
(COS X RADfANSFLG) I: 7.13
(COUNT X) I: 3.10
COUNT FORM (1.5. Operator) I: 9.11
(COUNTDOWN X N) I: 3.11
Courier III: 31.15
Courier programs III: 31.15

INDEX

(COURIER.BROADCAST.CALL DESTSOCKET#
PROGRAM PROCEDURE ARGS RESUL TFN
NETHINT MESSAGE) III: 31.23

(COURIER.CALL STREAM PROGRAM PROCEDURE

ARG1'" ARGNNOERRORFLG) III: 31.21

(COURIER.CREATE TYPE FIELDNAME ~ VALUE ...

FIELDNAME ~ VALUE) (Macro) III: 31.18

(COURIER.EXPEDITED.CALL ADDRESS SOCKET#
PROGRAM PROCEDURE ARG 1 ... ARGN

NOERRORFLG) III: 31.22

(COURIER.FETCH TYPE FIELD OBJECn (Macro) III:

31.1.9
(COURIER.OPEN HOSTNAME SERVER TYPE

NOERRORFLG NAME WHENCLOSEDFN
OTHERPROPS) III: 31.20

(COURIER.READ STREAM PROGRAM TYPE) III:

31.25
(COURIER.READ.BULKDATA STREAM PROGRAM

TYPE DONTCLOSE) III: 31.25

(COURIER.READ.REP LIST. OF. WORDS PROGRAM

TYPE) /11:31.26

(COURIER.READ.SEQUENCE STREAM PROGRAM

TYPE) III: 31.25

(COURIER.WRITE STREAM ITEM PROGRAM TYPE)

Ill: 31.25

(COURIER.WRITE.REP VALUE PROGRAM TYPE) III:

31.26

(COURIER.WRITE.SEQUENCE STREAM ITEM

PROGRAM TYPE) III: 31.26

(COURIER.WRITE.SEQUENCE.UNSPECIFIED STREAM

ITEM PROGRAM TYPE) III: 31.26

COURIERDEF (Property Name) III: 31.19

(COURIERPROGRAM NAME ...) III: 31.15

(COURIERPROGRAMS NAME 1 ... NAMEN) (File

PackageCommand) II: 17.39; III: 31.15

COURIERPROGRAMS (File Package Type) II: 17.23;
III: 31.15

COUTFILE (Variable) II: 18.4

CREATE (in Masterscope template) II: 19.20
CREA TE (in record declarations) I: 8.14

CREATE (Masterscope Relation) II: 19.9

CREATE (Record Operator) I: 8.3; 8.14

CREATE NOT DEFINED FOR THIS RECORD (Error

Message) I: 8.13
(CREATE.EVENT NAME) II: 23.7

(CREATE.MONITORLOCK NAME -) II: 23.8
(CREATEDSKDIRECTORY VOLUMENAME -) III:

24.22

INDEX

INDEX

(CREATEMENUEDWINDOW MENU WINDOWTlTLE

LOCA TlON WINDOWSPEC) III: 28.49

(CREATEREGION LEFT BOTTOM WIDTH HEIGHD

III: 27.2

(CREATETEXTUREFROMBITMAP BITMAP) III: 27.7

(CREATEW REGION TITLE BORDERSIZE NOOPENFL G)

III: 28.13

CREATIONDATE (File Attribute) III: 24.17

CROSSHAIRS (Variable) III: 28.9; 30.15

CTRLV (syntax class) III: 30.6
CTRLVFLG (Variable) III: 26.31

Current expression in editor II: 16.13; 16.20

Current position of image stream III: 27.13

CURRENTITEM (Window Property) III: 26.8

Cursor III: 30.13

(CURSOR NEWCURSOR-) III: 30.14

CURSOR (Record) III: 30.14

(CURSORBITMAP) III: 30.13
(CURSORCREATE BITMAP X y) III: 30.14

CURSORHEIGHT (Variable) III: 30.14

CURSORINFN (Window Property) III: 28.28; 28.38

CURSORMOVEDFN (Window Property) III: 28.28;

28.38
CURSOROUTFN (Window Property) III: 28.28

(CURSORPOSITION NEWPOSITION DISPLA YSTREAM

OLDPOSITlON) III: 30.17

CURSORS (File Package Command) III: 30.14

CURSORWIDTH (Variable) III: 30.14

o
o (Editor Command) II: 16.57

Dashing of curves III: 27.18

(DASSEM.SAVELOCALVARS FN) II: 18.6
Data fragmentation II: 22.1
Data type compiling II: 18.11

Data type eval uati ng I: 10.13

Data type names I: 8.20

Data types I: 8.20; II: 22.13

DATA TYPES FULL (Error Message) II: 14.30

DATABASECOMS (Variable) II: 19.24

DATATYPE (Record Type) I: 8.9
(DATATYPES -) I: 8.20

(DATE FORMAn I: 12.13

(DATEFORMAT KEY1'" KEYN) I: 12.14

DATUM (in Changetran) I: 8.19
DATU M (Variable) I: 8.12,14

DATUM (Window Property) III: 26.8

DATU M OF I NCORRECT TYPE (Error Message) I:

8.22

INDEX 9

INDEX

(DC FILE) II: 16.3

(DCHCON X SCRATCHLISTFLG RDTBL) I: 2.13
DCOM (fiienameextension) II: 18.13; 18.14,21
DEALLOC (data type name) I: 8.21
Debugging functions II: 15.1
DeciarationsinCLISP II: 21.12
DECLARE (Function) II: 18.5; 21.19
DECLARE DECL (1.5. Operator) I: 9.17
DECLARE AS LOCALVAR (Masterscope Relation) II:

19.10
DECLARE AS SPECVAR (Masterscope Relation) II:

19.10
(DECLARE: . FILEPKGCOMSIFLAGS) (File Package

Command) II: 17.40; 18.14,17
DECLARE: (Function) II: 17.41
DECLARE: DECL (1.5. Operator) I: 9.17
(DECLAREDATATYPE TYPENAME FIELDSPECS --)

I: 8.21
DECLARETAGSLST (Variable) II: 17.42
(DECODE.WINDOW.ARG WHERESPEC WIDTH

HEIGHT TITLE BORDER NOOPENFLG) III:
28.14

(DECODEIWINDOW/OR/DISPLA YSTREAM DSORW

WINDOWVAR TITLE BORDER) III: 28.32
(DECODEBUTTONS BUTTONSTA TE) III: 30.19
Dedit II: 16.1
DEDITL (Function) II: 16.4
DEditLinger (Variable) II: 16.12
DEDITRDTBL (Variable) III: 25.34
DEDITTYPEINCOMS (Variable) II: 16.12
Deep binding I: 11.1; 2.4; II: 22.6
DEFAULT.lNSPECTW.PROPCOMMANDFN (Function)

III: 26.7
DEFAULT.lNSPECTW.TITLECOMMANDFN (Function)

III: 26.8
DEFAULT.lNSPECTW,VALUECOMMANDFN

(Function) III: 26.8
DEFAUL TCARET (Variable) III: 28.31
DEFAULTCARETRATE (Variable) III: 28.31
DEFAULTCOPYRIGHTOWNER (Variable) I: 12.3; II:

17.54
DEFAULTCURSOR (Variable) III: 30.14; 30.15
DEFAULTEOFCLOSE (Variable) III: 24.21
DEFAUL TFILETYPE (Variable) III: 24.18
DEFAULTFONT (Font class) III: 27.32
(DEFAULTFONT DEVICE FONT -) III: 27.29
DEFAUL TINITIALS (Variable) II: 16.76
DEFAUL TMAKENEWCOM (Function) II: 17.31
DEFAULTMENUHELDFN (Function) III: 28.40

INDEX.l0

DEFAULTPAGEREGION (Variable) III: 27.10; 29.2
DEFAULTPRINTERTYPE (Variable) III: 29.5
DEFAULTPRINTINGHOST (Variable) I: 12.3; III: 29.4
DEFAUL TPROMPT (Variable) III: 26.30
DEFAULTRENAMEMETHOD (Variable) II: 17.29
DEFAULTSUBITEMFN (Function) III: 28.39
DEFAUL TTTYREGION (Variable) II: 23.10
DEFAULTWHENSELECTEDFN (Function) III: 28.40
DEFC (Function) II: 13.27
(DEFERREDCONSTANT X) II: 18.8
(DEFEVAL TYPE FN) I: 10.13
Defgroups II: 17.1
(DEFINE X -) I: 10.9
DEFINED (MARKASCHANGEDreason) II: 17.18
DEFINED, THEREFORE DISABLED IN CLiSP (Error

Message) 1:9.10;11:21.6

(DEFINEQ X 1 X2 ... XN) I: 10.9

Defining file package commands II: 17.45
Defining file package types II: 17.29
Defining functions I: 10.9
Defining iterative statement operators I: 9.20
Definition groups II: 17.1
(DEFLIST L PROP) I: 2.6
(DEFMACRO NAME ARGS FORM) I: 10.24
(DEFPRINT TYPE FN) III: 25.16
(\DEL.PACKET.FILTER FIL TER) (Function) III: 31.40
(DEL.PROCESS PROC -) II: 23.4
DELDEF (File Package Type Property) II: 17.31
(DELDEF NAME TYPE) II: 17.27
Delete III: 30.11; 26.23
Delete (DEdit Command) II: 16.7
(DELETE. @) (Editor Command) II: 16.34
DELETE (Editor Command) II: 16.32; 16.30
DELETE (File Package Command Property) II: 17.46
DELETE (Interrupt Character) II: 23.15; III: 30.3
(DELETECONTROL TYPE MESSAGE TTBL) III: 30.8
DELETED (MARKASCHANGED reason) II: 17.18
(DELETEMENU MENU CLOSEFLG FROMWINDO'N)

III: 28.38
Deleting files III: 24.31
(DELFILE FILE) III: 24.31
(DELFROMCOMS CaMS NAME TYPE) II: 17.49
(DELFROMFILES NAME TYPE FILES) II: 17.48
(DEPOSITBYTE N pas SIZE VAL) I: 7.10
(\DEQUEU E Q) (Function) III: 31.41
DESCENT (Font property) III: 27.27
DESCRIBE SET (Masterscope Command) II: 19.6
DESCRIBELST (Variable) II: 19.6
DESCRIPTION (File Package Type Property) II: 17.32

INDEX

Destination bitmap I": 27.23
DESTINATION IS INSIDE EXPRESSION BEING MOVED

(Printed by Editor) II: 16.38
Destructive functions I: 3.13,19; II: 22.14
Destructuring argument lists I: 10.27
(DETACHALLWINDOWS MAINWINDOIN) III: 28.47
(DETACHWINDOW WINDOWTODETACH) "I: 28.47
Determiners in Masterscope II: 19.13
DEVICE (File name field) III: 24.5
DEVICE (Font property) III: 27.27
Device-independent graphics III: 27.42
DEVICESPEC (Font property) III: 27.28.
(OF FN NEW?) II: 16.2
DFNFLG (Variable) I: 10.10; II: 13.29; 16.69; 17.5,28
(DIFFERENCE X Y) I: 7.3
different expression (Printed by Editor) II: 16.66
DIG (Device-Independent Graphics) III: 27.42
(DIR FILEGROUPCOM1'" COMN) III: 24.35

DIRCOMMANDS (Variable) III: 24.35
Directories III: 24.31
DIRECTORIES (Variable) I: 12.3; II: 17.16; III: 24.31;

24.32
DIRECTORY (File name field) III: 24.6
(DIRECTORY FILES COMMANDS DEFAUL TEXT

DEFAUL TVERS) III: 24.33
(DIRECTORYNAME DIRNAME STRPTR-) III: 24.11
(DIRECTORYNAMEP DIRNAME HOSTNAME) III:

24.11
Disabling CLISP operators II: 21.26
(DISCARDPUPS SOC) III: 31.30
(DISCARDXIPS NSOC) III: 31.38
(DISKFREEPAGES VOLUMENAME -) III: 24.23;

24.21
(DISKPARTITION) III: 24.23; 24.21
(DISMISS MSECSWAIT TIMER NOBLOCK) II: 23.5
DISPLAY (Image stream type) III: 27.23; 27.8
Display screens I: 12.4; III: 30.22
Display streams III: 27.23; 27.8
(DISPLAYDOWN FORM NSCANLINES) III: 30.24
(DISPLA YFN IMAGEOBJ IMAGESTREAM

IMAGESTREAMTYPE HOSTSTREAM)

(lMAGEFNS Method) III: 27.37
•. ASPlAYFONTDIRECTORIES (Variable) I: 12.3; III:

27.31
DISPLAYFONTEXTENSIONS (Variable) I: 12.3; III:

27.31
DISPlAYHELP (Function) III: 26.30
DISPLA YTYPES (Variable) III: 26.39
Division by zero I: 7.2

INDEX

INDEX

DMACRO (Property Name) I: 10.21

(DMPHASH HARRA Y 1 HARRA Y 2··· HARRA Y N) I:

6.3
DO COM (Editor Command) II: 16.54; 13.43
DO FORM (1.5. Operator) I: 9.10
(DOBACKGROUNDCOM) III: 28.7
(DOCOLLECT ITEM LSn I: 3.7
DOCOPY (DECLARE: Option) II: 17.41
Document printing III: 29.1
DOEVAL@COMPILE (DECLARE: Option) II: 17.42
DOEVAL@LOAD (DECLARE: Option) II: 17.41
DON'T.CHANGE.DATE (OPENSTREAM parameter)

III: 24.3
DONTCOMPILEFNS (Variable) II: 18.14; 18.15,'8
DONTCOPY (DECLARE: Option) II: 17.41
DONTEVAL@COMPILE (DECLARE: Option) II: 17.42
DONTEVAL@LOAD (DECLARE: Option) II: 17.41
(DOSELECTEDITEM MENU ITEM BUn-ON) III: 28.43
DOSHAPEFN (Window Property) III: 28.18
DOVER (Printer type) III: 29.5
(DOWINDOWCOM WINDOW) III: 28.7
DOWINDOWCOMFN (Window Property) III: 28.7
(DP NAME PROP) II: 16.2
(DPB N BYTESPEC VAL) (Macro) I: 7.10
(DRAWBETWEEN POSITION 1 POSITlON2 WIDTH

OPERATION STREAM COLOR DASHING) III:

27.17
(DRAWCIRCLE CENTERX CENTERY RADIUS BRUSH

DASHING STREAM) III: 27.19
(DRAWCURVE KNOTS CLOSED BRUSH DASHING

STREAM) III: 27.19
(DRAWELLIPSE CENTERX CENTERY

SEMIMINORRADIUS SEMIMAJORRADIUS
ORIENTATION BRUSH DASHING STREAM) III:

27.19
(DRAWLINE X 1 Y 1 X2 Y 2 WIDTH OPERA TlON

STREAM COLOR DASHING) III: 27.17
(DRAWPOINT X Y BRUSH STREAM OPERA nON) III:

27.20
(DRAWTO X Y WIDTH OPERA TlON STREAM COLOR

DASHING) III: 27.17
(DREMOVE X L) I: 3.19
(DREVERSE L) I: 3.19
(DRIBBLE FILE APPENDFLG THAWEDFLG) III: 30.12
Dribble files III: 30.12
(DRIBBLEFILE) III: 30.13
DSK (file device) III: 24.21
(DSKDISPLAY NEWSTATE) III: 24.23
DSKDISPLA Y .POSITION (Variable) III: 24.23

INDEX 11

INDEX

DSP (Window Property) III: 28.34

(DSPBACKCOLOR COLOR STREAM) III: 27.13

(DSPBACKUP WIDTH DISPLA YSTREAM) III: 27.25

(DSPBOnOMMARGIN YPOSITION STREAM) III:

27.11

(DSPCLlPPINGREGION REGION STREAM) III: 27.11

(DSPCOLOR COLOR STREAM) III: 27.13

(DSPCREATE DESTINATION) III: 27.23

(DSPDESTINATION DES TINA TlON DISPLA YSTI?EAM)

III: 27.23
(DSPFILL REGION TEXTURE OPERA TlON STREAM)

III: 27.20

(DSPFONT FONT STREAM) III: 27.11

(DSPlEFTMARGI N XPOSITION STREAM) III: 27.11

(DSPlINEFEED DELTAYSTREAM) III: 27.12

(DSPNEWPAGE STREAM) III: 27.21

(DSPOPERATION OPERATION STREAM) III: 27.12

(DSPRESET STREAM) III: 27.21
(DSPRIGHTMARGIN XPOSITION STREAM) III: 27.11

(DSPSCALE SCALE STREAM) III: 27.12

(DSPSCROLL SWITCHSETTING DISPLA YSTREAM)

III: 27.24

(DSPSOURCETYPE SOURCETYPE DISPLA YSTREAM)

III: 27.24

(DSPSPACEFACTOR FACTOR STREAM) III: 27.12

(DSPTEXTURE TEXTURE DISPLAYSTREAM) III:

27.24

(DSPTOPMARGIN YPOSITION STREAM) III: 27.11

(DSPXOFFSET XOFFSET DISPLAYSTREAM) III: 27.23

(DSPXPOSITION XPOSITION STREAM) III: 27.13

(DSPYOFFSET YOFFSET DISPLA YSTREAM) III: 27.23

(DSPYPOSITION YPOSITION STREAM) III: 27.13

(DSUBLISALSTEXPRFLG) I: 3.14

(OSUBST NEW OLD EXPR) I: 3.13

DT.EDITMACROS (Variable) II: 16.12

DUMMY-EDIT-FUNCTION-BODY (Variable) II:

16.70; 16.2

(DUMMYFRAMEPPOS) I: 11.13

(DUMPDATABASE FNLSn II: 19.24

(DUNPACK X SCRATCHLISTFLG RDTBL) I: 2.9

Duration Functions I: 12.16

during INTERVAL (1.5. Operator) I: 12.18

(DV VAR) II: 16.2

OW (Editor Command) II: 16.55; 21.27

DWIM II: 20.1

(DWIM X) II: 20.4

DWIM interaction with user II: 20.4

DWIM variables II: 20.12
DWIMCHECK#ARGSFlG (Variable) II: 21.22

INDEX.12

DWIMCHECKPROGLABELSFlG (Variable) II: 21.22;

21.19
DWIMESSGAG (Variable) II: 21.22; 18.12

DWIMFLG (Variable) II: 20.14; 16.66,68,71; 20.23

(DWIMIFY X QUIETFLG L) II: 21.18; 21.20; 21.15

DWIMIFYCOMPFLG (Variable) II: 21.22;

18.12,15,21
DWIMIFYFLG (Variable) II: 20.13

(DWIMIFYFNSFN1'" FNN) II: 21.20; 21.19

DWIMINMACROSFLG (Variable) II: 21.20

DWIMLOADFNS? (Function) II: 20.13

DWIMLOADFNSFLG (Variable) II: 20.14; 20.13

DWIMUSERFORMS (Variable) II: 20.11; 20.9-10

DWIMWAIT (Variable) II: 20.13; 20.5-6

E
(E X T) (Editor Command) II: 16.58

(E X) (Editor Command) II: 16.58

E (EditorCommand) II: 16.57; 13.43; 16.55

(E FORM1'" FORMN) (File Package Command) II:

17.40

E (ina floating point number) I: 7.11; III: 25.3

E (use in comments) III: 26.43

EACHTIME FORM (1.5. Operator) I: 9.16; 9.18

(ECHOCHAR CHARCODE MODE TTBL) III: 30.6

(ECHOCONTROL CHAR MODE TTBL) III: 30.7

Echoi ng characters III: 30.6

(ECHOMODE FLG TTBL) III: 30.7

ED (Editor Command) III: 26.29

RELA TlONED BY SET (Masterscope Set

Specification) II: 19.12

RELA TlONED IN SET (Masterscope Set Specification)

II: 19.12

EDIT (Break Command) II: 14.11; 14.12-13

EDIT (Break Window Command) II: 14.3

Edit (DEdit Command) II: 16.9

(EDIT NAME -) II: 16.68

EDIT (Litatom) II: 16.50

EDIT SET £- EDITCOMS] (Masterscope Command) II:

19.6

edit (Printed by Editor) II: 16.72

Editchain II: 16.13; 16.20

Edit macros II: 16.62

EDIT WHERE SET RELA TlON SET £- EDITCOMS]

(Masterscope Command) II: 19.6

EDIT·SAVE (Property Name) II: 16.49-50
(EDIT4E PAT X -) II: 16.72

(EDITBM BMSPEC) III: 27.4

(EDITCALLERS A TOMS FILES CaMS) II: 16.74

INDEX

(EDITCHAR CHARCODE FOND III: 27.31

EDITCHARACTERS (Variable) I: 12.4; II: 16.76

EditCom (DEdit Command) II: 16.9

EDITCOMSA (Variable) II: 16.68; 16.66

EDITCOMSl (Variable) II: 16.66; 16.67-68

EDITDATE (Function) II: 16.76

EDITDATE? (Function) II: 16.76

EDITDEF (File Package Type Property) II: 17.31

(EDITDEF NAME TYPE SOURCE EDITCOMS) II:

17.27

EDITDEFAUl T (Function) II: 16.66; 13.43

(EDITE EXPR COMS ATM TYPE IFCHANGEDFN) II:

16.71

EDITEMBEDTOKEN (Variable) II: 16.12; 16.37

(EDITF NAME COMI COM2 .,. COMN) II: 16.68

(EDITFINDP X PAT FLG) II: 16.73

(EDITFNS NAME COM 1 COM2 ... COMN) II: 16.70

(EDITFPAT PAT -) II: 16.73

EDITHISTORY (Variable) II: 13.43;

13.31-32,35,42,44; 16.54

Editing compiled code II: 15.8

(EDITl L COMS ATM MESS EDITCHANGES) II: 16.72

(EDITlO L COMS MESS-) II: 16.72

(EDITlOADFNS? FN STR ASKFLG FILES) II: 16.73

EDITlOADFNSFlG (Variable) II: 16.70

(EDITMODE NEWMODE) II: 16.4

EDITOR (in backtrace) II: 14.9

(EDITPNAMECOMI COM2'" COMN) II: 16.71

EDITPREFIXCHAR (Variable) III: 26.25; 26.39

EDITQUIETFlG (Variable) II: 16.19

EDITRACEFN (Variable) II: 16.75

EDITRDTBL (Variable) II: 16.72; III: 25.34

(EDITRECNAMECOM1'" COMN) I: 8.16

(EDITSHADE SHADE) III: 27.7

EDITUSERFN (Variable) II: 16.66

(EDITV NAME COMI COM2 ... COMN) II: 16.71

EE (Editor Command) III: 26.29

EF (Editor Command) II: 16.52

EF (Function) II: 16.4

EFFECT (in Masterscope template) II: 19.19

(EFTP HOST FILE PRINTOPTIONS) III: 31.7

Element patterns in pattern matching I: 12.25

(EL T ARRA Y N) I: 5.1

(EMBED @ IN. X) (Editor Command) II: 16.37

EMPRESS#SIDES (Variable) III: 29.2

Empty list I: 3.3

(ENCAPSULATE.ETHERPACKET NOB PACKET PDH

NBYTES ETYPE) III: 31.40

INDEX

Encapsulated image objects III: 27.41

END (as argument to ADVISE) II: 15.11

END OF FILE (Error) III: 24.19

INDEX

END OF FILE (Error Message) III: 25.3,6,19

End-of-linecharacter I: 2.14; III: 24.19; 25.8-9,19

(ENDCOLLECT LSTTAIL) I: 3.7

\EndDST (Variable) I: 12.16

(ENDFILE FILE) III: 25.33

ENDOFSTREAMOP (File Attribute) III: 24.19

(\ENQUEU E 0 ITEM) (Function) III: 31.41

ENTRIES (in Masterscope Set Specification) II: 19.12

ENTRIES (Variable) II: 18.18

Entriestoa block II: 18.17; 18.20

(ENTRY # HIST X) II: 13.40

Enumerating files III: 24.33

(ENVAPPL Y FN ARGS APOS CPOS AFLG CFLG) I:

11.8

(ENVEVALFORMAPOSCPOSAFLGCFLG) I: 11.7

(EOFP FILE). III: 25.6; 31.14

EOl (File Attribute) III: 24.19

EOL (syntax class) III: 30.6

EP (Editor Command) II: 16.52

EP (Function) II: 16.4

(EQ X y) I: 9.3

(EQLENGTH X N) I: 3.10

(EQMEMB X y) I: 3.13

(EQP X Y) I: 7.2; 9.3; 11.4

(EQUAL X Y) I: 9.3; 3.4; 7.2

(EQUALALL X y) I: 9.3

(EQUALN X Y DEPTH) I: 3.11

ERASE SET (Masterscope Command) II: 19.5

ERROR (Error Message) II: 14.29; 14.19

(ERROR MESS 1 MESS2 NOBREAK) II: 14.19;

14.29,32

ERROR (history list property) II: 13.33

ERROR (Interrupt Channel) II: 23.14; III: 30.3

Error correction II: 20.1

Error numbers II: 14.27; 14.20,22

(ERROR!) II: 14.20; 14.6

(ERRORMESS U) II: 14.20; 14.16,27

ERRORM ESS (Variable) II: 14.22

(ERRORMESS1 MESSI MESS2 MESS3) II: 14.21;

14.16

(ERRORN) II: 14.20; 14.27

ERRORPOS (Variable) II: 14.23

Errors in iterative statements I: 9.19

Errors messages from compiler II: 18.22

(ERRORSET FORM FLAG -) II: 14.21; 14.14,19-20

(ERRORSTRI NG X) II: 14.21

INDEX 13

INDEX

ERRORTYPELST (Variable) II: 14.22; III: 24.3

(ERRORX ERXM) II: 14.19
ERRORX (Litatom) II: 14.16
(ERSETQ FORM) I: 9.9; II: 14.22
ESC (type of read macro) III: 25.40
(ESCAPE FLG RDTBL) III: 25.39
ESCAPE (Syntax Class) III: 25.35
Escape ($) (in CLlSP) II: 21.10-11
Escape ($) (in Edit Pattern) II: 16.18
Escape ($) (in Editor) II: 16.45-46
Escape ($) (in spelling correction) II: 20.15; 20.22
Escape ($) (in TTYIN) III: 26.23
Escape ($) (Prog. Asst. Command) II: 13.11
Escape ($) (use in ASKUSER) III: 26.19
Escape-GO ($GO) (TYPE-AHEAD command) II:

13.18
Escape-Q ($Q) (TYPE-AHEAD command) II: 13.18
Escape-STOP ($STOP) (TYPE-AHEAD command) II:

13.18
ESCQUOTE (type of read macro) III: 25.40
(ESUBST NEW OLD EXPR ERRORFLG CHARFLG) II:

16.73; 13.9
(ETHERHOSTNAME PORT USE. OCTAL.DEFAUL n

III: 31.6
(ETHERHOSTNUMBER NAME) III: 31.6
Ethernet 111:31.1
ETHERPACKET (data type) III: 31.26
(ETHERPORT NAME ERRORFLG MULTFLG) III: 31.6
\ETHERTIMEOUT (Variable) III: 31.38
EV (Editor Command) II: 16.52
EV (Function) II: 16.4
EVAL (Break Command) II: 14.5; 14.6; 15.6
EVAL (Break Window Command) II: 14.3
Eval (DEdit Command) II: 16.9
EVAL (Editor Command) II: 16.58
(EVALX-) I: 10.12

EVAL (in Masterscope template) II: 19.19
EVAL (Litatom) II: 21.21
EVAL-format input II: 13.4
(EVAL.AS.PROCESS FORM) II: 23.17
(EVAL.IN.ITY.PROCESS FORM WAITFORRESUL n

II: 23.18
EVAL@COMPILE (DECLARE: Option) II: 17.42
EVAL@COMPILEWHEN (DECLARE: Option) II:

17.42
EVAL@LOAD (DECLARE: Option) II: 17.41
EVAL@LOADWHEN (DECLARE: Option) II: 17.41
(EVALAXA) I: 10.13
(EVALHOOK FORM EVALHOOKFN) I: 10.14

INDEX.14

Evaluating arguments to functions I: 10.2: 10.12

Eval uating data types I: 10.13
Evaluating expressions I: 10.11
Evaluating functions I: 10.11
Evaluating nlambda arguments I: 10.5
(EVALV VAR pas RELFLG) I: 11.8

EVALV-format input II: 13.4
(EVENP X y) I: 7.9
EVENT (Variable) II: 13.22
Event addresses II: 13.6
Event numbers II: 13.31; 13.6,13,22,40

Event specifications II: 13.5; 13.21
(EVERY EVERYX EVERYFNI EVERYFN2) I: 10.17
(EXAM X) (Editor Command) II: 16.61
(EXCHANGEPUPS SOC OUTPUP DUMMY IDFIL TER

T1MEOUn III: 31.30
(EXCHANGEXIPS SOC OUTXIP IDFIL TER TlMEOUn

III: 31.38
Executive II: 13.1
Executive window III: 28.3
Exit (DEdit Command) II: 16.10
EXP (Variable) II: 15.4
Expand (Window Menu Command) III: 28.5
(EXPANDBITMAP BITMAP WIDTHFACTOR

HEIGHTFACTOR) III: 27.4
EXPANDFN (Window Property) III: 28.23
EXPANDINGBOX (Variable) III: 30.15
(EXPANDMACRO EXP QUIETFLG - -) I: 10.24
(EXPANDW ICONW) III: 28.22
EXPANSION (Font property) III: 27.27
EXPLAINDELIMITER (ASKUSER option) III: 26.17
EXPLAINSTRING (ASKUSER option) III: 26.16
(EXPORT COM 1 ... COM N) (File Package Command)

II: 17.43
EXPR (Litatom) I: 10.7
EXPR (Property Name) I: 10.10; II: 16.69-70;

17.5,18,27; 18.13; 20.9-10
EXPR (Variable) II: 20.13; 19.21
Expr definitions I: 10.2; 10.1
EXPR* (Litatom) I: 10.7
EXPRESSIONS (File Package Type) II: 17.23; 13.17
(EXPRP FN) I: 10.7
(EXPT A N) I: 7.13
(EXTENDREGION REGION INCLUDEREGION) III:

27.2
EXTENSION (File name field) III: 24.6
EXTENT (Window Property) III: 28.26; 28.23-25,34
Extents III: 28.23

INDEX

(EXTRACT @1 FROM. @2) (Editor Command) II:

16.36

$$EXTREME (Variable) I: 9.1 2

F
F PATTERN NIL (EditorCommand) II: 16.22

(F PA TTERN N) (Editor Command) II: 16.22

(F PA TTERN) (Editor Command) II: 16.22

F PA TTERN T (Editor Command) II: 16.21

F PA TTERN N (Editor Command) II: 16.21; 16.55

F (in event address) II: 13.6

.FFORMAT NUMBER (PRINTOUT command) III:

25.30
F (Response to Compiler Question) II: 18.2
F PATTERN (Editor Command) II: 16.21

F/L (as a DWIM construct) II: 20.9

(F = EXPRESS/ON X) (Editor Command) II: 16.22

FACE (Font property) III: 27.27

FAMILY (Font property) III: 27.27

(FASSOCKEYALSD I: 3.15; II: 21.13

FAST (MAKEFILEoption) II: 17.11

Fast functions II: 22.14
FASTYPEFLG (Variable) II: 20.21

FAULTIN EVAL (Error Message) II: 14.29

FAULTAPPLY (Function) II: 20.7; 20.11

FAULTAPPLYFLG (Variable) II: 20.12

FAULTARGS (Variable) II: 20.12

FAULTEVAL (Function) II: 20.7; 14.29; 20.11

FAUL TFN (Variable) II: 20.12

FAUL TX (Variable) II: 20.12

(FCHARACTER N) I: 2.13

(FDIFFERENCE X y) I: 7.12

(FEQP X y) I: 7.12

FETCH (in Masterscope template) II: 19.19

FETCH (Masterscope Relation) II: 19.9

FETCH (Record Operator) I: 8.2; II: 21.9

(FETCHFIELD DESCRIPTOR DATUM) I: 8.21

FETCHFN (Window Property) III: 26.8

FEXPR (Litatom) I: 10.7

FEXPR* (Litatom) I: 10.7; 10.8

FFETCH (Record Operator) I: 8.3

(FFILEPOS PA TTERN FILE START END SKIP TAIL

CASEARRA y) III: 25.21

(FGREATERPXy) I: 7.12

(FIELDLOOK FIELDNAME) I: 8.16

FI ELDS (File Package Type) II: 17.23

FIELDS OF SET (Masterscope Set Specification) II:

19.12
(FILDIR FILEGROUP) III: 24.35

INDEX

FILE (GETFN Property) III: 27.40

FILE (Property Name) II: 17.19

File access rights III: 24.2

File attributes III: 24.17

File devices III: 24.1

File directories III: 24.31

File enumeration III: 24.33

File maps II: 17.55

File names II: 22.13; III: 24.5; 24.1,9,12-13

FILE NOT FOUND (Error Message) II: 14.29; III:

24.3,31

FILE NOT OPEN (Error Message) II: 14.28; .III:

24.4,14; 25.2,6,20

Filepackage 11:17.1

File package commands II: 17.32

File package types II: 17.21

File pointers III: 25.18; 25.19,23

File servers III: 24.36

FILE SYSTEM RESOURCES EXCEEDED (Error

Message) II: 14.29; III: 24.3,13

FILE WON'T OPEN (Error Message) II: 14.28; III:

24.3

FILE: (Compiler Question) II: 18.1

(FILECHANGES FILE TYPE) II: 17.52

FILECHANGES (PropertyName) II: 17.20; 17.15

Filecoms II: 17.32; 17.4-5,48

(FILECOMS FILE TYPE) II: 17.49

(FILECOMSLST FILE TYPE -) II: 17.49

(FILECREATEDX) II: 17.51; 18.13

(FILEDATE FILE -) II: 17.52

FILEDATES (PropertyName) II: 17.20; 17.15,51

FILEDEF (Property Name) II: 20.10
(FILEFNSLST FILE) II: 17.49

INDEX

FILEGETDEF (File Package Type Property) II: 17.30

FILEGROUP (Property Name) II: 17.12

FILELJNELENGTH (Variable) III: 25.11; 26.48

FILELST (Variable) II: 17.20; 17.6,12; 20.24

FILEMAP (Property Name) II: 17.20; 17.55

FILEMAP DOES NOT AGREE WITH CONTENTS OF

(Error Message) II: 17.56
(FILENAMEFIELD FILENAME FIELDNAME) III: 24.8

\FILEOUTCHARFN (Function) III: 27.48

FILEPKG.SCRJ.\ j-CH (file) II: 17.30

(FILEPKGCHANGES TYPE LSD II: 17.18

(FILEPKGCOM COMMANDNAME PROPl VALl ...

PROPN VALN) II: 17.47

(FILEPKGCOMS LlTATOM1'" LlTATOMN) (File

Package Command) II: 17.39

FILEPKGCOMS (File Package Type) II: 17.23

INDEX.15

INDEX

FILEPKGCOMSPLST (Variable) II: 17.34

FILEPKGFLG (Variable) II: 17.5

(FILEPKGTYPE TYPE PROPl VAL 1 ... PROPN VALN)

II: 17.32

FILEPKGTYPES (Variable) II: 17.22

(FILEPOS PA TTERN FILE START END SKIP TAIL

CASEARRA y) III: 25.20; 25.21

FILERDTBL (Variable) II: 17.5-6,50; III: 25.34;

25.7,33; 26.44
Files III: 24.1

(FILES FILE 1 ... FILE N) (File Package Command) II:

17.39

FILES (File Package Type) II: 17.23

(FILES?) II: 17.12

(FILESLOAD FILE 1 n. FILEN) II: 17.9

FILETYPE (Property Name) II: 18.12,15; 21.26

Filevars II: 17.44; 17.5,49

FILEVARS (File Package Type) II: 17.23

FILlNG.ENUMERATION.DEPTH (Variable) III: 24.38

FILlNG.TYPES (Variable) III: 24.18

(FILLCIRCLE CENTERX CENTERY RADIUS TEXTURE

STREAM) III: 27.21

(FILLPOLYGON POINTS TEXTURE STREAM) III:
27.20

FINALLY FORM (1.5. Operator) I: 9.16; 9.18

Find (DEdit Command) II: 16.8

FIND (1.5. Operator) I: 9.22

(FIND.PROCESS PROC ERRORFLG) II: 23.5

(FINDCALLERS ATOMS FILES) II: 16.75

(FINDFILE FILE NSFLG DIRLSn III: 24.32

FIRST (as argument to ADVISE) II: 15.11

FIRST (DECLARE: Option) II: 17.42

FIRST FORM (1.5. Operator) I: 9.16; 9.18

FIRST (type of read macro) III: 25.40

FIRSTCOL (Variable) I: 12.3; III: 26.47; 26.48

FIRSTNAME (Variable) I: 12.2

(FIXN) 1:7.7

FIX EventSpec (Prog. Asst. Command) II: 13.12;

13.33

FIX format (in PRINTNUM) III: 25.15

FIXEDITDATE (Function) II: 16.76

FIXP (as a field specification) I: 8.21

(FIXP AJ I: 7.2; 9.1

FIXP (record field type) I: 8.10
(FIXR N) I: 7.7

(FIXSPELL XWORD REL SPLST FLG TAIL FN TlEFLG

DONTMOVETOPFLG --) II: 20.22; 20.24

FIXSPELL.UPPERCASE.QUIET (Variable) II: 20.22

FIXSPELLDEFAULT (Variable) II: 20.13; 20.5; 21.19

INDEX.16

FIXSPELLREL (Variable) II: 20.22

FLAG (record field type) I: 8.10

Flashing bars on cursor III: 30.16

(FLASHWINDOW WIN? N FLASHINTERVAL SHADE)

III: 28.32

(FLAST X) I: 3.9; II: 21.13

(FLENGTH X) I: 3.10

(FLESSPXy) 1:7.12

(FLlPCU RSOR) III: 30.14

(FLOAT X) I: 7.13

FLOAT format (in PRINTNUM) III: 25.15

FLOATING (record field type) I: 8.10

FLOATING OVERFLOW (Error Message) II: 14.31

Floating point arithmetic I: 7.11

Floating point numbers I: 7.11; 7.1-2; 9.1; III: 25.3

Floating point overflow I: 7.2

FLOATING UNDERFLOW (Error Message) II: 14.31
FLOA TP (as a field specifica tion) I: 8.21

(FLOATP X) I: 7.2; 9.1

FLOATP (record field type) I: 8.10

FLOPPY (file device) III: 24.24

Floppy disk drive III: 24.24

Floppydisk modes III: 24.24

Floppy image file III: 24.27

(FLOPPY.ARCHIVE FILES NAME) III: 24.28

(FLOPPY.CAN.READP) III: 24.27

(FLOPPY.CAN.WRITEP) III: 24.27

(FLOPPY. FORMAT NAME AUTOCONFIRMFLG

SLOWFLG) III: 24.26

(FLOPPY.FREE.PAGES) III: 24.27

(FLOPPY.FROM.FILE FROMFILE) III: 24.28

(FLOPPY.MODE MODE) III: 24.24

(FLOPPY.NAME NAME) III: 24.27

(FLOPPY.SCAVENGE) III: 24.27

(FLOPPY.TO.FILE TOFfLE) III: 24.27

(FLOPPY.UNARCHIVE HOST/DIRECTORy) III: 24.28

(FLOPPY.WAIT.FOR.FLOPPY NEWFLG) III: 24.27

(FL TFMT FORMA n III: 25.13

(FLUSHRIGHT POS X MIN P2FLAG CENTERFLAG FILE)

III: 25.32

(FMAXX1X2",XN) 1:7.13

(F ME M B X y) I: 3.13; II: 2 1 . 1 3

(FMIN Xl X2'" XN) I: 7.12

(FMINUS X) I: 7.12

FN (stack blip) I: 11.16

FN (Variable) II: 19.7

(FNCHECK FN NOERRORFLG SPELLFLG PROPFLG

TAfL) I: 10.8; II: 20.23

INDEX

(FNS FN, ... FNN) (File Package Command) II: 17.34

FNS (File Package Type) II: 17.23

IFNS (Variable) II: 13.26

(FNTH X N) I: 3.9

(F NTY P F N) I: 10.7; II: 1 7.27

.FONT FONTSPEC (PRINTOUT command) III: 25.27

Font configurations III: 27.33

Font descriptors III: 27.26

. FONT NOT FOUND (Error Message) III: 27.27

FONTCHANGEFLG (Variable) III: 27.34

(FONTCOPY OLDFONT PROP, VAL 1 PROP2 VAL2 ...)

III: 27.28

(FONTCREATE FAMIL Y SIZE FACE ROTA nON DEVICE

NOERRORFLG CHARSED III: 27.26

(FONTCREATEFN FA MIL Y SIZE FACE ROTA nON

DEVICE) (Image Stream Method) III: 27.43

FONTDEFS (Variable) III: 27.34

'FONTDEFSVARS (Variable) III: 27.34

FONTESCAPECHAR (Variable) III: 27.34

FONTFNS (Variable) III: 27.32

(FONTNAME NAME) III: 27.33

(FONTP X) III: 27.27

(FONTPROFILE PROFILE) III: 27.32

FONTPROFILE (Variable) III: 27.33

(FONTPROP FONT PROP) III: 27.27

Fonts III: 27.25; 27.11

FONTS.WIDTHS (File name) III: 27.29,31

(FONTSAVAILABLE FA MIL Y SIZE FACE ROTA nON

DEVICE CHECKFILESTOO?) III: 27.28

(FONTSAVAILABLEFN FA MIL Y SIZE FACE ROTA nON

DEVICE) (Image Stream Method) III: 27.43

(FONTSET NAME) III: 27.34

(FOO BAR BAZ-) I: 1.8

FOR VARS (1.5. Operator) I: 9.12

FOR VAR (1.5. Operator) I: 9.12

FOR (in INSERT editor command) II: 16.33

FOR (in USE command) II: 13.9

FOR VARIABLE SET 1.5. TAIL (Masterscope

Command) II: 19.7

FOR OLD VAR (1.5. Operator) I: 9.12

(FORCEOUTPUT STREAM WAITFORFINISH) III:

25.10
FORCEPS (Variable) III: 30.15

forDuration INTERVAL (1.5. Operator) I: 12.18

FORGET EventSpec (Prog. Asst. Command) II:

13.16; 13.21

FORM (Process Property) II: 23.2

*FORM * (stack blip) I: 11.16

Form-feed III: 25.26

INDEX

(FPLUS X, X2'" XN) I: 7.12

(FQUOTIENT X y) I: 7.12

.FR POS EXPR (PRINTOUT command) III: 25.29

.FR2 POS EXPR (PRINTOUT command) III: 25.29

Fragmentation of data space II: 22.1

Frame extensions of stack frames I: 11.3

Frame names of stack frames I: 11.3

Frames on the stack I: 11.2

(FRAMESCANATOMPOS) I: 11.7

INDEX

Free variable access II: 22.5
(FREEATTACHEDWINDOW WINDOW) III: 28.47

FREELY (use in Masterscope) II: 19.8

(FREERESOURCE RESOURCENAME . ARGS) (Macro)

I: 12.23

(FREEVARS FN USEDA TABASE) II: 19.22

(FREMAINDER X y) I: 7.12

FREPLACE (Record Operator) I: 8.3

(FRESHLINE STREAM) III: 25.10

FROM FORM (1.5. Operator) I: 9.14; 9.15

FROM (in event specification) II: 13.7

FROM (in EXTRACT editor command) II: 16.36

FROM SET (Masterscope Path Option) II: 19.16

(FRPLACA X y) I: 3.3; II: 21.13

(FRPLACD X Y) I: 3.3; II: 21.13

(FRPLNODE X A D) I: 3.3

(FRPLNODE2 X y) I: 3.3

(FRPTQ N FORM, FORM2'" FORMN) I: 10.15

(FS PA TTERN 1 ... PA TTERN N) (Editor Command) II:

16.22

(FTI ME S X 1 X 2 ... X N) I: 7.1 2

\FTPAVAILABLE (Variable) III: 24.36

Full file names III: 24.12

(FULLNAME X RECOG) III: 24.12

FULLPRESS (Printer type) III: 29.5

FUNARG (Litatom) I: 10.19; 10.7

(FUNCTION FN ENV) I: 10.18

FUNCTION (in Masterscope template) II: 19.19

Fu nction debuggi ng II: 15.1

Function definition cells I: 10.9; 2.5

Function definitions I: 10.2; 10.9

Fu nction types I: 10.2

FUNCTIONAL (in Masterscope template) II: 19.19

Functional arguments I: 10.18; II: 18.10

FUNNYATOMLST (Variable) II: 21.24

G
(GAINSPACE) II: 22.12

GAINSPACEFORMS (Variable) II: 22.12

Garbage collection II: 22.1

INDEX.17

INDEX

(GATHEREXPORTS FROMFILES TOFILE FLG) II:

17.43

(GCD N1 N2) I: 7.7

(GCGAG MESSAGE) II: 22.3

(GCTRP) II: 22.3

(GDATE DATE FORMAT -) I: 12.14

GE (CLlSPOperator) II: 21.8

(GENERATE HANDLE VAL) I: 11.17

(GENERATOR FORMCOMVAR) I: 11.17

Generator handles I: 11.17

Generators I: 11.16

Generators for spell ing correction II: 20.19

Generic arithmetic I: 7.3

GENNUM (Variable) I: 2.11

(GENSYMPREFIX----) I: 2.10; II: 15.10-11

(GEQ X Y) I: 7.4

GET (old name for LlSTGET1) I: 3.16

GET* (EditorCommand) II: 16.55; III: 26.44

(GETATOMVAL VAR) I: 2.4

(GETBOXPOSITION BOXWIDTH BOXHEIGHTORGX

ORGY WINDOW PROMPTMSG) III: 28.9

(GETBOXREGION WIDTH HEIGHT ORGX ORGY

WINDOW PROMPTMSG) III: 28.11

(GETBRK RDTBL) '": 25.38
(GETCASEARRA Y CASEARRA Y FROMCODE) ",:

25.22

(GETCHARBITMAP CHARCODE FONn III: 27.30

(GETCOMMENT X DESTFL -) III: 26.44

(GETCONTROL TTBL) III: 30.10

GETD (Editor Command) II: 16.56

(GETD FN) I: 10.10

GETDEF (File Package Type Property) II: 17.30

(GETDEF NAME TYPE SOURCE OPTIONS) II: 17.25

(GETDELETECONTROL TYPE TTBL) III: 30.9

(GETDESCRIPTORS TYPENAME) I: 8.22

GETDUMMYVAR (Function) I: 9.20

(GETECHOMODE TTBL) III: 30.7

(GETEOFPTR FILE) III: 25.20

(GETFIELDSPECS TYPENAME) I: 8.22

(GETFILEINFOFILEATTRIB) III: 24.17

(GETFILEPTR FILE) '": 25.19
(GETFN FILESTREAM) (IMAGEFNS Method) III:

27.37

(GETHASH KEY HARRA Y) I: 6.2; ,,: 21.17

(GETLIS X PROPS) I: 2.7

(GETMENUPROP MENU PROPERTy) III: 28.43

(GETMOUSESTATE) '": 30.19
GETP (old name of GET PROP) I: 2.5

(GETPOSITION WINDOW CURSOR) III: 28.9

INDEX 18

(GETPROMPTWINDOW MAINWINDOW #L1NES

FONT DONTCREA TE) III: 28.50

(GETPROP ATM PROP) I: 2.5

(GETPROPLIST A TM) I: 2.7

(GETPUP PUPSOC WAin III: 31.30

(GETPUPBYTE PUP BYTE#) III: 31.31

(GETPUPSTRING PUP OFFSED III: 31.32

(GETPUPWORD PUP WORD#) III: 31.31

(GETRAISE TTBL) III: 30.8

(GETREADTABLE RDTBL) III: 25.34

(GETREGION MINWIDTH MINHEIGHT OLDREGION
NEWREGIONFN NEWREGIONFNARG
INITCORNERS) III: 28.10

(GETRELATION ITEM RELA TlON INVERTED) II:

19.23

(GETRESOURCE RESOURCENAME . ARGS) (Macro)

I: 12.23

(GETSEPR RDTBL) III: 25.38

(GETSTREAM FILE ACCESS) III: 25.2

(GETSYNTAX CH TABLE) III: 25.36

(GETTEMPLATE FN) II: 19.21

(GETTERMTABLE TTBL) III: 30.5

(GETTOPVAL VAR) I: 2.4

GETV AL (Editor Command) II: 16.58

(GETXIPNSOCWA/D III: 31.37

(GIVE.TTY.PROCESS WINDOVll) II: 23.13

(GLC X) I: 4.3

Global variables II: 18.4; 21.19; 22.5

GLOBALVAR (PropertyName) II: 18.4; 21.19

Globalva rs ,,: 18.4

(GLOBALVARS VAR1 ... VARN) (File Package

Command) II: 17.37; 18.4

GLOBALVARS (in Masterscope Set Specification) II:

19.12

GLOBALVARS (Variable) ,,: 18.4; 18.18; 21. 19

(GNC X) I: 4.3

GO (Break Command) II: 14.5; 14.6

(GO LABEL) (Editor Command) II: 16.23

(GO U) I: 9.8

GO (in iterative statement) I: 9.18

$GO (escape-GO) (TYPE-AHEAD command) II:

13.18

GRAYSHADE (Variable) II!: 27.7

(GREATERP X Y) I: 7.3

(GREET NAME-) I: 12.2

GREETDATES (Variable) I: 12.2

(GREETFILENAME USER) I: 12.2

Greeting I: 12.1

INDEX

(GRID GRIDSPEC WIDTH HEIGHT BORDER STREAM

GRIDSHADE) III: 27.22

Grid specification III: 27.22

Grids III: 27.22

(GRIDXCOORD XCOORD GRIDSPEC) III: 27.22

(GRIDYCOORD YCOORD GRIDSPEC) III: 27.22

GROUP (history list property) II: 13.33

GT (CLlSPOperator) II: 21.8

H

Hard disk device III: 24.21

HARD DISK ERROR (Error Message) II: 14.28; III:

24.24

Hardcopy (Background Menu Command) III: 28.6

Hardcopy (Window Menu Command) III: 28.4

Hardcopy facilities III: 29.1

HARDCOPYFN (Window Property) III: 28.34

(HARDCOPYW WINDOWIBITfV!APIREGION FILE

HOST SCALEFACTOR ROTA TlON PRINTERTYPE)

III: 29.3

(HARDRESET) II: 23.1; 14.26

(HARRA Y MINKEYS) I: 6.2

(HARRAYP X) I: 6.2; 9.2

(HARRAYPROP HARRA Y PROP NEWVALUE) I: 6.2

(HARRA YSIZE HARRA Y) I: 6.2

HASDEF (File Package Type Property) II: 17.30

(HASDEF NAME TYPE SOURCE SPELLFLG) II: 17.26

HASH ARRA Y FULL (Error Message) I: 6.3

Hash arrays I: 6.1

Hash keys I: 6.1

Hash overflow I: 6.3

HASH TABLE FULL (Error Message) I: 6.3; II: 14.29

Hash values I: 6.1

(HASHARRA Y MINKEYS OVERFLOW HASHBITSFN

EQUIVFN) I: 6.1

Hashing functions I: 6.4

HASHLINK (Record Type) I: 8.9

HASHOVERFLOW (Function) I: 6.3

(HASITYWINDOWP PROCESS) II: 23.11

(HCOPYALL X) I: 3.8; III: 25.18

HEIGHT (Font property) III: 27.28

HEIGHT (Window Property) III: 28.34

(H EI GHTI FWI NDOW INTERIORHEIGHT TlTLEFLG

BORDER) III: 28.32

(HELP MESS 1 MESS2 BRKTYPE) II: 14.20

HELP (lnterruptChannel) II: 23.14; III: 30.3

Help! (Error Message) II: 14.20

HELPCLOCK (Variable) II: 14.14; 13.9,35

HELPDEPTH (Variable) II: 14.13

HELPFLAG (Variable) II: 14.14; 14.27

HELPTIME (Variable) II: 14.14

HERALDSTRING (Variable) I: 12.9

HERE (in edit command) II: 16.34

HISTORY (history list property) II: 13.33

HISTORY (Property Name) II: 13.14

HISTORY (Variable) II: 13.22

History list format II: 13.31

History lists II: 13.1; 13.31; 16.54

HISTORYCOMS (Variable) II: 13.43

INDEX

(HISTORYFIND LST INDEX MOD EVENTADORESS-)

II: 1 3.40; 1 3.3 9

(HISTORYMATCH INPUT PA T EVEND II: 13.40

(HISTORYSAVE HISTORY 10 INPUT1 INPUT2 INPUT3

PROPS) II: 13.38; 13.31,33-34,43

HISTORYSAVEFORMS (Variable) II: 13.22

HISTSTRO (Variable) II: 13.32

HISTSTR1 (Variable) III: 26.32

HorizScrollCursor (Variable) III: 30.16

HorizThumbCursor (Variable) III: 30.16

(HORRIBLEVARS VAR1 ... VARN) (File Package

Command) II: 17.36; III: 25.18

HOST (File name field) III: 24.5

(HOSTNAMEP NAME) III: 24.11

Hotspot of cursor 111:30.14

Hotspot III: 30.14

(HPRINT EXPR FILE UNCIRCULAR DA TA TYPESEEN)

III: 25.17

HPRINT.SCRATCH (File name) III: 25.17

(HREAD FILE) III: 25.18

(I C Xl'" XN) (Editor Command) II: 16.58

.IFORMAT NUMBER (PRINTOUT command) III:

25.30

(I.S.0PR NAME FORM OTHERS EVALFLG) I: 9.20

I.S.0PR (Property Name) II: 17.18

I.s.oprs I: 9.9

(I.S.0PRS OPR 1 ... OPRN) (File Package Command)

I: 9.22; II: 17.39

I.S.0PRS (File Package Type) II: 17.23

I.s.types I: 9.10; 9.20

ICON (Window Property) III: 28.22

ICONFN (Window Property) III: 28.22

Icons III: 28.21; 28.5

ICONWINDOW (Window Property) III: 28.23

IconWindowMenu (Variable) III: 28.8

IconWindowMenuCommands (Variable) III: 28.8

ICREATIONDA TE (File Attribute) III: 24.18

-IN-D-EX---I-ND-E-X-'9

INDEX

10 (Variable) II: 13.22
(lDATE STR) I: 12.13
(lDIFFERENCE X y) I: 7.6
Idle (Background Menu Command) III: 28.6
IDLE (Function) I: 12.4
Idle mode I: 12.4
(IDLE.BOUNCING.BOX WINDOW BOX WAIn I:

12.6
IDLE.BOUNCING.BOX (Variable) I: 12.6
IDLE.FUNCTIONS (Variable) I: 12.6
IDLE.PROFILE (Variable) I: 12.4
Idling I: 12.4
(lEQP X y) I: 7.7
(IF X COMS1 COMS2) (Editor Command) II: 16.60

(IF X COMS1) (Editor Command) II: 16.60

(IF X) (Editor Command) II: 16.60

(IF EXPRESSION TEMPLATE 1 TEMPLATE2) (in

Masterscope template) II: 19.21
IF (Statement) I: 9.5
IF-THEN-ELSE statements I: 9.5

(lFPROP PROPNAME LlTATOM1'" LlTATOMN) (File

Package Command) II: 17.38; 17.45
IFY (Editor Command) II: 16.55
(lGEQ X y) I: 7.7 '

IGNORE (Litatom) III: 26.38
IGNOREMACRO (Litatom) I: 10.23
(lGREATERPXy) I: 7.6
(lLEQXy) I: 7.7
(lLESSP X Y) I: 7.7
ILLEGAL ARG (Error Message) I: 2.9; 5.1; 10.11;

11.6; II: 14.29; III: 24.12

ILLEGAL DATA TYPE (Error Message) I: 8.22
ILLEGAL DATA TYPE NUMBER (Error Message) II:

14.30
ILLEGAL EXPONENTIATION (Error Message) I: 7.13
ILLEGAL GO (Error Message) II: 18.23
ILLEGAL OR IMPOSSIBLE BLOCK (Error Message) II:

14.30

ILLEGAL READTABLE (Error Message) II: 14.30; III:
25.34-35; 30.6

ILLEGAL RETURN (Error Message) I: 9.8; II: 14.28;
18.23

ILLEGAL STACK ARG (Error Message) I: 11.5; II:

14.29
ILLEGAL TERMINAL TABLE (Error Message) II:

14.30; III: 30.5-6
Image objects III: 27.35
Image stream types III: 27.8

INDEX 20

Image streams III: 27.8; 24.1
IMAGEBOX (Record) III: 27.37
(lMAGEBOXFN IMAGEOBJ IMAGESTREAM

CURRENTX RIGHTMARGIN) (lMAGEFNS

Method) III: 27.37
IMAGEDATA (Stream Field) III: 27.43
IMAGEFNS (Data Type) III: 27.35
(lMAGEFNSCREATE DISPLA YFN IMAGEBOXFN

PUTFN GETFN COPYFN BUTTONEVENTlNFN
COPYBUTTONEVENTlNFN WHENMOVEDFN
WHENINSERTEDFN WHENDELETEDFN
WHENCOPIEDFN WHENOPERATEDONFN
PREPRINTFN -) III: 27.36

(lMAGEFNSP X) III: 27.36
IMAGEHEIGHT (Menu Field) III: 28.42
IMAGEOBJ (Data Type) III: 27.35
(IMAGEOBJCREATE OBJECTDA TUM IMAGEFNS)

III: 27.36
IMAGEOBJGETFNS (Variable) III: 27.40
(lMAGEOBJP X) III: 27.36
(lMAGEOBJPROP IMAGEOBJECT PROPERTY

NEWVALUE) III: 27.36
IMAGEOPS (Data type) III: 27.43
IMAGEOPS (Stream Field) III: 27.43
(lMAGESTREAMP X IMAGETYPE) III: 27.10
(IMAGESTREAMTYPE STREAM) III: 27.10
(lMAGESTREAMTYPEP STREAM TYPE) III: 27.10
IMAGESTREAMTYPES (Variable) III: 27.42
IMAGETYPE (lMAGEOPS Field) III: 27.44
IMAGEWIDTH (Menu Field) III: 28.42

(IMAX Xl X2 ... XN) I: 7.7

(lMBACKCOLOR STREAM COLOR) (Image Stream

Method) III: 27.48

(IMBITBLT SOURCEBITMAP SOURCELEFT
SOURCEBOTTOM STREAM DESTINA T10NLEFT
DES TINA TlONBOTTOM WIDTH HEIGHT
SOURCETYPE OPERA TlON TEXTURE
CLIPPINGREGION CLIPPEDSOURCELEFT
CLIPPEDSOURCEBOTTOM SCALE) (Image

Stream Method) III: 27.45
(lMBITMAPSIZE STREAM BITMAP DIMENSION)

(Image Stream Method) III: 27.46
(lMBL TSHADE TEXTURE STREAM DESTINA T10NLEFT

DES TINA TlONBOTTOM WIDTH HEIGHT
OPERA TlON CLtPPINGREGION) (Image Stream

Method) III: 27.45
(lMBOnOMMARGIN STREAM YPOSITlON) (Image

Stream Method) III: 27.47
(lMCHARWIDTH STREAM CHARCODE) (Image

Stream Method) III: 27.46

INDEX

(lMCHARWIDTHY STREAM CHARCODE) (Image

Stream Method) III: 27.46
(lMCLlPPINGREGION STREAM REGION) (Image

Stream Method) III: 27.47
(lMCLOSEFN STREAM) (Image Stream Method) III:

27.44
(lMCOLOR STREAM COLOR) (Image Stream

Method) III: 27.48
(lMDRAWCIRCLE STREAM CENTERX CENTERY

RADIUS BRUSH DASHING) (Image Stream

Method) III: 27.44

(lMDRAWCURVE STREAM KNOTS CLOSED BRUSH

DASHING) (Image Stream Method) III: 27.44
(lMDRAWELLlPSE STREAM CENTERX CENTERY

SEMIMINORRADIUS SEMIMAJORRADIUS
ORIENTA TlON BRUSH DASHING) (Image

Stream Method) III: 27.45

(lMDRAWLlNE STREAM X 1 Y, X2 Y2 WIDTH

OPERA TlON COLOR DASHING) (Image Stream

Method) III: 27.44
(IMFILLCIRCLE STREAM CENTERX CENTERY RADIUS

TEXTURE) (Image Stream Method) III: 27.45
(lMFILLPOL YGON STREAM POINTS TEXTURE)

(Image Stream Method) III: 27.45

(lMFONT STREAM FOND (Image Stream Method)

III: 27.47
IMFONTCREATE (lMAGEOPSField) III: 27.44

(lMIN X 1 X2'" XN)' I: 7.7

(lMINUS X) I: 7.6
(lMLEFTMARGIN STREAM LEFTMARGIN) (Image

Stream Method) III: 27.47
(lMLlNEFEED STREAM DELTA) (Image Stream

Method) III: 27.47
IMMED (type of read macro) III: 25.41
IMMEDIATE (type of read macro) III: 25.41

(lMMOVETO STREAM X Y) (Image Stream Method)

III: 27.45
(lMNEWPAGE STREAM) (Image Stream Method)

III: 27.46
(lMOD X N) I: 7.6

(lMOPERATION STREAM OPERA TlON) (Image

Stream Method) III: 27.48
(lMPORTFILE FILE RETL·.'"' NFL G) II: 17.43
(lMRESET STREAM) (Image Stream Method) III:

27.46
(lMRIGHTMARGIN STREAM RIGHTMARGIN) (Image

Stream Method) III: 27.47
(lMSCALE STREAM SCALE) (Image Stream Method)

III: 27.48; 27.44

INOEX

(lMSCALEDBITBL T SOURCEBITMAP SOURCELEFT
SOURCEBOTTOM STREAM DESTINA TlONLEFT
DES TINA TlONBOTTOM WIDTH HEIGHT
SOURCETYPE OPERA TlON TEXTURE
CLiPPINGREGION CLiPPEDSOURCELEFT
CLiPPEDSOURCEBOTTOM SCALE) (Image

Stream Method) III: 27.45

(lMSPACEFACTOR STREAM FACTOR) (Image Stream

Method) III: 27.48
(IMSTRINGWIDTH STREAM STR RDTBL) (Image

Stream Method) III: 27.46
(lMTERPRI STREAM) (Image Stream Method) III:

27.46
(IMTOPMARGIN STREAM YPOSITlON) (Image

Stream Method)' III: 27.47

(lMXPOSITION STREAM XPOSITlON) (Image Stream

Method) III: 27.47

(lMYPOSITION STREAM YPOSITlON) (Image Stream

. Method) III: 27.47

(FN1IN FN2) (arg to BREAKO) II: 15.4
IN FORM (1.5. Operator) I: 9.13; 9.14,18
IN (in EMBED editor command) II: 16.37

IN (in USE command) II: 13.9
IN EXPRESSION (Masterscope Set Specification) II:

19.11
ON OLD (VAR~FORM) (1.5. Operator) I: 9.13

IN OLD (VAR~FORM) (1.5. Operator) I: 9.13
IN OLD VAR (1.5. Operator) I: 9.13
IN? (Break Command) II: 14.13
Incomplete file names II: 22.13; III: 24.9; 24.14

INCORRECT DEFINING FORM (Error Message) I:

10.9
(lNFILEFILE) 111:24.15

(lNFILECOMS? NAME TYPE COMS -) II: 17.48
(lNFILEP FILE) III: 24.13
INFIX (type of read macro) III: 25.39
Infix operators in CLiSP II: 21.7
INFO (Property Name) I: 10.4; II: 21.21; 13.41;

21.18,23
INFOHOOK (Process Property) II: 23.16; 23.3
RELA TlONING SET (Masterscope Set Specification)

II: 19.11
INIT (in record declarations) I: 8.14

Init files I: 12.1
INIT.L1SP (File name) I: 12.1
INITCORNERSFN (Window Property) III: 28.18
Initialization files I: 12.1
INITIALS (Variable) II: 16.76
INITIALSLST (Variable) I: 12.4; II: 16.76

-IN-O-EX----------------------------------;:NDt.:.X.21

INDEX

(lNITRECORDS REC 1 ... RECN) (File Package

Command) I: 8.11; II: 17.38

(lNITRESOURCE REsOURCENAME . ARGS) (Macro)

I: 12.23
(lNITRESOURCES RESOURCE , ... RESOURCEN) (File

Package Command) I: 12.20,24; II: 17.39
(lNITVARS VAR 1 ... VARN) (File Package Command)

II: 17.36
INPUT (File access) III: 24.2
(INPUT FILE) III: 25.3
Input buffer II: 14.16; III: 30.11; 25.6
Input functions III: 25.2
Input/Output functions III: 25.1
(lNREADMACROP) III: 25.42

(INSERT El'" EMBEFORE. @) (EditorCommand)

II: 16.33
(INSERT E, .,' EMAFTER. @) (EditorCommand) II:

16.33

(INSERT El'" EMFOR. @) (EditorCommand) II:

16.33
INSIDE FORM (1.5. Operator) I: 9.13
(lNSIDEP REGION POSORX y) III: 27.3
(INSPECT OBJECT AS TYPE WHERE) III: 26.2
INSPECT/ARRAY (Function) III: 26.5
INSPECTALLFIELDSFLG (Variable) III: 26.6
(INSPECTCODEFNWHERE----) III: 26.2
INSPECTMACROS (Variable) III: 26.6
Inspector III: 26.1
INSPECTPRINTLEVEL (Variable) III: 26.5
(lNSPECTW.CREATE DATUM PROPERTIES FETCHFN

5 TOREFN PROPCOMMANDFN
VALUECOMMANDFN TlTLECOMMANDFN
TITLE SELECTlONFN WHERE PROPPRINTFN)

111:26.7

(INSPECTW.REDISPLAY INSPEC7W PROPS -) III:

26.9
(I NSPECTW.REPLACE /NSPEC7W PROPERTY

NEWVALUE) III: 26.9
(I NSPECTW.SELECTITEM /NSPEC7W PROPERTY

VALUEFLG) III: 26.9
INSPECTWTITLE (Window Property) III: 26.8
(lNSTALLBRUSH BRUSHNAME BRUSHFN

BRUSHARRA y) III: 27.19
INSTRUCTIONS (Litatom) I: 10.23
INTEGER (record field type) I: 8.10
Integer arithmetic I: 7.5
Integer input syntax I: 7.4; III: 25.3,9
(lNTEGERLENGTH X) I: 7.9
Integers I: 7.4; 9.1

INDEX.22

Interlisp-D executive II: 13.1

Interlisp-D executive window III: 28.3
INTERPRESS (Image stream type) III: 27.8
Interpressformat I: 12.3; III: 27.8-10,12,31,33;

29.1,5
INTERPRESSFONTDIRECTORIES (Variable) I: 12.3;

III: 27.31
Interpreter and the stack I: 11.14
Interpreting expressions I: 10.11
Interpretor blips on the stack I: 11.14
INTERRUPT (Litatom) II: 14.16
Interru pt characters III: 30.1
(INTERRUPTABLE FLAG) III: 30.4
(lNTERRUPTCHAR CHAR TYPIFORM HARDFLG-)

III: 30.3
(INTERSECTION X y) I: 3.11

(lNTERSECTREGIONS REG/ONI REG/ON2'"

REG/ONn) III: 27.2

Inverted cursor III: 30.16
(INVERTW WINDOW SHADE) III: 28.31
(lOFILE FILE) III: 24.15

(lPLUS X 1 X2'" XN) I: 7.6

(lQUOTIENT X y) I: 7.6
IREADDATE (File Attribute) III: 24.18
(lREMAINDER X Y) I: 7.6

SETIS SET (Masterscope Command) II: 19.5
ISTHERE (1.5. Operator) I: 9.22
IT (Variable) II: 13.20
ITALIC (Font face) III: 27.26
ITEMHEIGHT (Menu Field) III: 28.41
ITEMS (Menu Field) III: 28.39
ITEMWIDTH (Menu Field) III: 28.41
Iterative statements I: 9.9

(lTIMES Xl X2'" XN) I: 7.6

IT~datum (Inspect Window Command) III: 26.4
IT~selection (Inspect Window Command) III: 26.5
IWRITEDATE (File Attribute) III: 24.18

J

JMACRO (Property Name) I: 10.21
JOIN FORM (1.5. Operator) I: 9.11
JOINC (Editor Command) II: 16.53

K

&KEY (DEFMACRO keyword) I: 10.25
Key names III: 30.19
(KEYACTION KEYNAME ACTIONS -) III: 30.20
Keyboard III: 30.19
(KEYDOWNP KEYNAME) III: 30.19

INDEX

KEYLST (ASKUSER argument) III: 26.13
KEYLST (ASKUSER option) III: 26.15
Keys on mouse III: 30.17
KEYSTRING (ASKUSER option) III: 26.16
Keyword macro arguments I: 10.24
KNOWN (MasterscopeSetSpecification) II: 19.12
(KWOTEX) I: 10.13

L

(L-CASEXFLG) I: 2.10; II: 16.52
LABELS (Litatom) II: 21.21,23
LAMBDA (Litatom) I: 10.2
LAMBDA (Macro Type) I: 10.22
Lam bda functions I: 10.2
Lambda-nospread functions I: 10.5
Lambda-spread functions I: 10.3
LAMBDAFONT (Font class) III: 27.32
LAMBDASPLST (Variable) I: 10.8; II: 20.14; 20.9-11
LAMS (Variable) II: 18.9; 18.14
Landscape fonts III: 27.27
LAPFLG (Variable) II: 18.1
Large integers I: 7.1; 7.2; 9.1
LARGEST FORM (1.5. Operator) I: 9.12
LAST (as argument to ADVISE) II: 15.11
(LAST X) I: 3.9
LASTAIL (Variable) II: 16.14; 16.15,21,72
(LASTC FILE) III: 25.5
LASTKEYBOARD (Variable) III: 30.19
LASTMOUSEBUnONS (Variable) III: 30.18
(LASTMOUSESTATE BUTTONFORM) (Macro) III:

30.18
(LASTMOUSEX DISPLAYSTREAM) III: 30.18
LASTMOUSEX (Variable) III: 30.18
(LASTMOUSEY DISPLAYSTREAM) III: 30.18
LASTMOUSEY (Variable) III: 30.18
(LASTN L N) I: 3.10
LASTPOS (Variable) II: 14.6; 14.4,7-10,12
LASTVALUE (Property Name) II: 16.50
\LASTVMEMFILEPAGE (Variable) I: 12.11
LASTWORD (Variable) II: 20.18; 20.21-23; 21.10
(LC. @) (Editor Command) II: 16.24
LCASELST (Variable) III :'26.46
LCFIL (Variable) II: 18.1-2
(LCL. @) (Editor Command) II: 16.24
(LCONC PTR X) I: 3.6; 3.7
(LOB BYTESPEC VAL) (Macro) I: 7.10
LDFLG (Argument to LOAD) II: 17.5
(LDIFF LSTTAIL ADD) I: 3.12
LDIFF: NOT A TAIL (Error Message) I: 3.12

INDEX

(LDIFFERENCE X Y) I: 3.11
LE (CLISP Operator) 1\: 21.8
LEFT (key indicator) III: 30.17
Left margin III: 27.11

INDEX

LEFTBRACKET (Syntax Class) III: 25.35
(LEFTOFGRIDCOORD GRIDX GRIDSPEC) III: 27.23
LEFTPAREN (Syntax Class) III: 25.35
LENGTH (File Attribute) III: 24.17
(LENGTH X) I: 3.10
(LEQ X Y) I: 7.4
(LESSP X y) I: 7.4

(LET VARLST E 1 E2 ... EN) (Macro) I: 9.9

(LET* VARLST E 1 E2 ... EN) (Macro) I: 9.9

(L1 N) (Editor Command) II: 16.41
LI KE A TOM (Masterscope Set Specifica tion) II:

19.11
(LiNBUF FLG) III: 30.11; 30.12
LINE (Variable) III: 26.38
Line buffer III: 30.9; 30.11
Line length III: 27.12
Line-buffering III: 30.9; 25.3-6
line-feed (Editor Command) II: 16.18
L1NEDELETE (syntax class) III: 30.5,8
(L1NELENGTH NFILE) III: 25.11; 27.12
L1NELENGTH N (Masterscope Path Option) II: 19.17
(L1SP-IMPLEMENTATION-TYPE) I: 12.12
(L1SP-IMPLEMENTATION-VERSION) I: 12.12
(LlSPDIRECTORYP VOLUMENAME) III: 24.23
LlSPFN (Property Name) II: 21.28
(L1SPINTERRUPTS) III: 30.4
(LiSPSOURCEFILEP FILE) II: 17.52
L1SPUSERSDIRECTORI ES (Variable) I: 12.3; II: 17.9;

III: 24.32
(L1SPX LlSPXX LlSPXID LlSPXXMACROS

LlSPXXUSERFN LlSPXFLG) II: 13.35;
13.12,19,32-34,36,43; 16.5',57; 20.4,17,24

L1SPX Printing Functions II: 13.25
(L1SPXJ X FN VARS) II: 13.41; 13.27
L1SPXCOMS . (Variable) II: 13.35; 17.39
(L1SPXEVAL LlSPXFORM LlSPXID) II: 13.36
(L1SPXFIND HISTORY LINE TYPE BACKUP -) II:

13.39; 13.44
ll..JPXFINDSPLST (Variable) II: 13.8
L1SPXHIST (Variable) II: 13.33; 13.30,34,42
L1SPXHISTORY (Variable) II: 13.31; 13.3 5,43
L1SPXHISTORYMACROS (Variable) II: 13.23
L1SPXLlNE (Variable) II: 13.23
(L1SPXMACROS LlTATOM 1 ... LlTA TOMN) (File

Package Command) II: 17.39

INDEX 23

INDEX

L1SPXMACROS (File Package Type) II: 17.23

L1SPXMACROS (Variable) II: 13.23; 13.35

(L1SPXPRIN1 X Y Z NODOFLG) II: 13.25

(L1SPXPRIN2 X Y Z NODOFLG) II: 13.25

(L1SPXPRINT X Y Z NODOFLG) II: 13.25; 13.33

L1SPXPRINT (history list property) II: 13.33

(L1SPXPRINTDEF EXPR FILE LEFT OEF TAIL NODOFLG)

II: 13.25

L1SPXPRINTFLG (Variable) II: 13.25

(L1SPXREAD FILE RDTBL) II: 13.38; 13.3,19,32,35,43

L1SPXREADFN (Variable) II: 13.36; 13.5,38; III:

26.28

(L1SPXREADP FLG) II: 13.38; 13.43

(L1SPXSPACES X Y Z NODOFLG) II: 13.25

(L1SPXSTOREVALUE EVENT VALUE) II: 13.39

(L1SPXTAB X Y Z NODOFLG) II: 13.25

(L1SPXTERPRI X Y Z NOOOFLG) II: 13.25

(L1SPXUNREAD LST -) II: 13.38

L1SPXUSERFN (Variable) II: 13.24; 13.35

L1SPXVALUE (Variable) II: 13.24

(LIST X 1 X2 ... XN) I: 3.4

LIST (MAKEFILE option) II: 17.11

LIST (Property Name) II: 17.27

List cells I: 3.1; 9.2

List structure editor II: 16.1

(L1ST* X, X2 ... XN) I: 3.4

(L1STFILESFILE,FILE2 ... FILEN) II: 17.14; 17.11

L1STFILES1 (Function) II: 17.14

L1STFILESTR (Variable) III: 27.34

(L1STGET LSTPROP) I: 3.16

(L1STGET1 LSTPROP) I: 3.16

Listing file directories III: 24.33

LISTING? (Compiler Question) II: 18.1

(L1STP X) I: 3.1; 9.2

LlSTP checks in pattern matching I: 12.25

(L1STPUTLSTPROPVAL) I: 3.16

(L1STPUT1 LSTPROP VAL) I: 3.16

Li s t s I: 3.1; 3.3

(L1TATOM X) I: 2.1; 9.1

Litatoms I: 2.1; 9.1

Literal atoms I: 2.1

(LLSH X N) I: 7.8

(LO N) (Editor Command) II: 16.41

(LOAD FILE LDFLG PRINTFLG) II: 17.6; 13.40; 18.13

(LOAD? FILE LOFLG PRINTFLG) II: 17.6

(LOAD BLOCK FN FILE LDFLG) II: 17.8

(LOADBYTE N POS SIZE) I: 7.10

(lOADCOMP FILE LDFLG) II: 17.8

INDEX.24

(LOADCOMP? FILE LDFLG) II: 17.8

(LOADDEF NAME TYPE SOURCE) II: 17.28

LOADEDFllELST (Variable) I: 12.11; II: 17.20

(LOADFNS FNS FILE LDFLG VARS) II: 17.6

(LOADFROM FILE FNS LDFLG) II: 17.8; 18.16

Loading files II: 17.5

LOADOPTIONS (Variable) II: 17.6

(LOADTIMECONSTANT X) II: 18.8

(LOADVARS VARS FILE LDFLG) II: 17.8

Local CLiSP declarations II: 21.13

Local hard disk device III: 24.21

Local record declarations I: 8.7,11; II: 21.13

Local variables I: 9.8; II: 18.5; 22.5

LOCALLY (use in Masterscope) II: 19.8

\LOCALNDBS (Variable) III: 31.39

Localvars II: 18.5

(LOCALVARS VARl ... VARN) (File Package

Command) II: 17.37

LOCALVARS (in Masterscope Set Specification) II:

19.12

LOCALVARS (Variable) II: 18.5

Location specification in the editor II: 16.23;

16.24,60

LOCATION UNCERTAIN .(Printed by Editor) II: 16.14

LOCF (Macro) I: 8.11

(LOG X) I: 7.13

(LOGAND Xl X2 ... XN) I: 7.8

Logging into file servers III: 24.39

Logical arithmetic functions I: 7.8

Logical volumes III: 24.21

(LOGIN HOSTNAME FLG DIRECTORY MSG) III:

24.40

LOGINHOST/DIR (Variable) I: 12.3; III: 24.11

(LOGNOT N) (Macro) I: 7.9

Logo window III: 28.2

(LOGOR X, X2 ... XN) I: 7.8

(LOGOUT FASn I: 12.7

(LOGOW STRING WHERE TITLE ANGLEDEL TA) III:

28.2

LOGOW (Variable) III: 28.2

(LOGXOR X 1 X2 ... XN) I: 7.8

(LONG-SITE-NAME) I: 12.12

(LOOKUP.NS.SERVER NAME TYPE FULLFLG) III:

31.10

(LOWER X) (Editor Command) II: 16.53

LOWER (Editor Command) II: 16.52

Lower case characters I: 2.10

Lower case comments III: 26.46

INDEX

Lower case in CLiSP II: 21.27

Lower case input III: 30.8
(LOWERCASE FLG) II: 21.27

LowerLeftCursor (Variable) III: 30.15

LowerRightCursor (Variable) III: 30.15

(LP COMS1 ... COMSN) (Editor Command) II: 16.60;

16.61
LPARKEY (Variable) II: 20.14; 20.6

(LPQ COMS1'" COMSN) (EditorCommand) II:

16.61
LPT (printer device) III: 29.4

(LRSH X N) I: 7.8

(LSH X N) I: 7.8

LSTFIL (Variable) II: 18.1

(LSUBST NEW OLD EXPR) I: 3.13

L T (CLISP Operator) II: 21.8

(LVLPRIN1 XFILECARLVLCDRLVL TAIL) III: 25.13

(LVLPRIN2 X FILE CARL VL CDRL VL TAIL) III: 25.13

(LVLPRINTXFILECARLVLCDRLVL TAIL) III: 25.13

M
(M (C) (ARG 1 ... ARGN) COMS1 ... COMSM) (Editor

Command) II: 16.62

(M (C) ARG COMS 1 ... COMSM) (Editor Command)

II: 16.62

(M CCOMS1'" COMSN) (EditorCommand) II:

16.62

(MACHINE-INSTANCE) I: 12.12

(MACHINE-TYPE) I: 12.12

(MACHINE-VERSION) I: 12.12

(MACHINETYPE) I: 12.13

MACRO (File Package Command Property) II: 17.45

(MACRO. MACRO) (in Masterscope template) II:

19.21

MACRO (Property Name) I: 10.21; II: 17.18; 18.11

MACRO (type of read macro) III: 25.39

Macro expansion in Masterscope II: 19.17

MACROCHARS (ASK USER option) III: 26.17

MACROPROPS (Variable) I: 10.21

Macros I: 10.21

(MACROS UTATOM1'" UTATOMN) (File Package

Command) II: 17.35

MACROS (File Package Type) II: 17.24

Macros in the editor II: 16.62

Maintanance panel III: 30.24
(MAINWINDOW WINDOW RECURSEFLG) III: 28.47

MAINWINDOW (Window Property) III: 28.54

INDEX

INDEX

MAINWINDOWMAXSIZE (Window Property) III:

28.54
MAINWINDOWMINSIZE (Window Property) III:

28.54
(MAKE ARGNAME EXP) (Editor Command) II: 16.57

(MAKEBITTABLE L NEG A) I: 4.6

(MAKEFILE FILE OPTIONS REPRINTFNS SOURCEFILE)

II: 17.10; 17.14; 18.16; 20.24

MAKEFILE and CLiSP II: 21.26

MAKEFILEFORMS (Variable) II: 17.12

MAKEFILEOPTIONS (Variable) II: 17.10

MAKEFILEREMAKEFLG (Variable) II: 17.15; 17.11

(MAKEFILES OPTIONS FILES) II: 17.12

(MAKEFN (FN. ACTUALARGS) ARGUST N1 N2)

(Editor Command) II: 16.56

(MAKEKEYLST LST DEFAUL TKEY LCASEFLG

AUTOCOMPLETEFLG) III: 26.13

(MAKENEWCOM NAME TYPE - -) II: 17.49

(MAKESYS FILE NAME) I: 12.9

MAKESYSDATE (Variable) I: 12.13; 12.10

MAKESYSNAME (Variable) I: 12.13

(MAKEWITHINREGION REGION LlMITREGION) III:

27.2

Manipulating file names III: 24.5

(MAP MAPX MAPFN 1 MAPFN2) I: 10.15

(MAP.PROCESSES MAPFN) II: 23.5

(MAP2C MAPX MAPY MAPFN 1 MAPFN2) I: 10.16

(MAP2CAR MAPX MAPY MAPFN 1 MAPFN2) I:

10.16
(MAPATOMS FN) I: 2.11

(MAPC MAPX MAPFN 1 MAPFN2) I: 10.15

(MAPCAR MAPX MAPFN 1 MAPFN2) I: 10.15

(MAPCON MAPX MAPFNl MAPFN2) I: 10.15; II:

21.13
(MAPCONC MAPX MAPFNl MAPFN2) I: 10.16; II:

21.13
(MAPDL MAPDLFN MAPDLPOS) I: 11.13

(MAPHASH HARRA Y MAPHFN) I: 6.3

(MAPLIST MAPX MAPFN1 MAPFN2) I: 10.15

(MAPRELATION RELA TlON MAPFN) II: 19.24

(MAPRI NT LST FILE LEFT RIGHT SEP PFN

USPXPRINTFLG) I: 10.17

(MARK UTA TOM) (Editor Command) II: 16.28

MARK (Editor Command) 1/: 16.27; 16.28

Mark-and-sweep garbage collection II: 22.1
(MARKASCHANGED NAME TYPE REASON) II:

17.17

MARKASCHANGEDFNS (Variable) II: 17.18

Marking changes II: 17.17

INDEX 25

INDEX

MARKLST (Variable) II: 16.27; 16.72

(MASK.O'S POSITION SIZE) (Macro) I: 7.9

(MASK.1'S POSITION SIZE) (Macro) I: 7.9

Masterscope II: 19.1

(MASTERSCOPE COMMAND-) II: 19.22

Masterscope commands II: 19.4

Masterscope templates II: 19.18

MATCH (Pattern Matching Operator) I: 12.24

(MAX Xl X2 ... XN) I: 7.4

MAX.FIXP (Variable) I: 7.5

MAX. FLOAT (Variable) I: 7.11; 7.12

MAX.JNTEGER (Variable) I: 7.5; 7.7

MAX.SMALLP (Variable) I: 7.5

MaxBkMenuHeight (Variable) II: 14.15
MaxBkMenuWidth (Variable) II: 14.15

MAXINSPECTARRAYLEVEL (Variable) III: 26.5

MAXINSPECTCDRLEVEL (Variable) III: 26.5
MAXLEVEL (Variable) II: 16.20; 16.23

MAXLOOP (Variable) II: 16.61

MAXLOOP EXCEEDED (Printed by Editor) II: 16.61

(MAXMENUITEMHEIGHT MENU) III: 28.42

(MAXMENUITEMWIDTH MENU) III: 28.42
MAXSIZE (Window Property) III: 28.53

(MBD E1 ... EM) (Editor Command) II: 16.36

(MEMB X y) I: 3.12

(MEMBERX y) I: 3.13

MEMBERS (Clearinghouse Group property) III:
31.12

(MENU MENU POSITION RELEASECONTROLFLG -)

III: 28.37

MENUBORDERSIZE (Menu Field) III: 28.41

MENUBUTTONFN (Function) III: 28.38

MENUCOLUMNS (Menu Field) III: 28.41
MENUFONT (Menu Field) III: 28.41

MENU FONT (Variable) III: 28.8,41

MENUHELDWAIT (Variable) III: 28.40

(MENUITEMREGION ITEM MENU) III: 28.43

MENU OFFSET (Menu Field) III: 28.40

MENUOUTlINESIZE (Menu Field) III: 28.42

MENUPOSITION (Menu Field) III: 28.40

(MENU REGION MENU) III: 28.42

MENUROWS (Menu Field) III: 28.41
Menus III: 28.37; 28.1

MENUTITLEFONT (Menu Field) III: 28.41

(MENUWINDOW MENU VERTFLG) III: 28.48
(MERGE A B COMPAREFN) I: 3.17

(MERGEINSERT NEW LSTONEFLG) I: 3.18

Meta-character echoi ng III: 30.6

(METASHIFT FLG) III: 30.22

INDEX.26

MIDDLE (key indicator) III: 30.17

Middle-blank key III: 26.23,25
MILLISECONDS (Timer Unit) I: 12.16

(MIN Xl X2'" XN) I: 7.4

MIN.FIXP (Variable) I: 7.5

MIN.FLOAT (Variable) I: 7.11; 7.13
MIN.INTEGER (Variable) I: 7.5; 7.7

MIN.SMALLP (Variable) I: 7.5

(MINATTACHEDWINDOWEXTENT WINDOW) III:

28.48

(MINIMUMWINDOWSIZE WINDOW) III: 28.33

MINSIZE (Window Property) III: 28.53; 28.33

(MINUS X) I: 7.3

(MINUSP X) I: 7.4

MIR (Font face) III: 27.26

MISSING OPERAND (DWIM error message) II: 21.15

MISSING OPERATOR (CLISP error message) II: 21.15

(MISSPELLED? XWORD REL SPLST FLG TAIL FN) II:

20.22; 20.23-24

(MKATOM X) I: 2.8

(MKlIST X) I: 3.4

(MKSTRING X FLG RDTBL) I: 4.2

MODIFIER (Litatom) I: 9.22

(MODIFY.KEYACTIONS KEYACTIONS

SAVECURRENT?) III: 30.21

Modules II: 17.1

(MONITOR.AWAIT.EVENT RELEASELOCK EVENT

TIMEOUT TlMERP) II: 23.8

Mouse III: 30.13
Mouse buttons III: 30.17

Mouse Keys III: 30.17

(MOUSECONFIRM PROMPTSTRING HELPSTRING

WINDOW DON'TCLEARWINDO'vVFLG) III:

28.11

MOUSECONFIRMCU RSOR (Variable) III: 28.11;

30.15
(MOUSESTA TE BUTTONFORM) (Macro) III: 30.17

(MOVD FROM TO COPYFL G -) I: 10.11

(MOVD? FROM TO COPYFLG -) I: 10.11

(MOVE @1 TO COM. @2) (Editor Command) II:

16.38; 16.37

Move (Window Menu Command) III: 28.5

MOVEFN (Window Property) III: 28.20
(MOVETO X Y STREAM) III: 27.13

(MOVETOFILE TOFILE NAME TYPE FROMFILE) II:
17.49

(MOVETOUPPERLEFT STREAM REGION) III: 27.14

(MOVEW WINDOW POSorX Y) III: 28.19

INDEX

MRR (Font face) III: 27.26

MSMACROPROPS (Variable) II: 19.17

(MSMARKCHANGED NAME TYPE REASON) II:

19.24

(MSNEEDUNSAVE FNS MSG MARKCHANGEFLG) II:

19.24

MSNEEDUNSAVE (Variable) II: 19.25

MSPRINTFLG (Variable) II: 19.2

Multiple streams to a file III: 24.15

MULTIPLY DEFINED TAG (Error Message) II: 18.23

MULTIPLY DEFINED TAG, ASSEMBLE (Error

Message) II: 18.23

MULTIPLY DEFINED TAG, LAP (Error Message) II:

18.23

N

(-N E 1 ... EM) (N) = 1) (Editor Command) II: 16.29

(N E 1 ... E M)(N > = 1) (Editor Command) II: 16.29

(N E 1 ... EM) (Editor Command) II: 16.29

(N) (N> = 1) (Editor Command) II: 16.29

-N (N) = 1) (Editor Command) II: 16.15

N(N) = 1) (Editor Command) II: 16.15; 16.29;

16.55

-N (N a number) (PRINTOUT command) III: 25.26

N (N a number) (PRINTOUT command)· III: 25.25;

25.30

NAME (File name field) III: 24.6

NAME (Process Property) II: 23.2

NAM E LlTA TOM (ARG 1 ... ARG N) : EventSpec (Prog.

Asst. Command) II: 13.14

NAME LlTATOM ARG 1 ... ARGN: EventSpec (Prog.

Asst. Command) II: 13.14

NAME LlTATOM EventSpec (Prog. Asst. Command)

II: 13.14; 13.16,33

NAMES RESTORED (Printed by System) II: 15.9

NAMESCHANGED (Property Name) II: 15.5

(NARGS FN) I: 10.8

(NCHARS X FLG RDTBL) I: 2.9; 4.2

(NCONC Xl X2·" XN) I: 3.5; 3.6; II: 21.13

(NCONC1 LSTX) I: 3.5; 3.6; II: 21.13

(NCREA TE TYPE OLDOB}) I: 8.22

(NDIR FILEGROUPCOM1 .. ' COMN) III: 24.35

NEGATE (Editor Command) II: 16.54

(NEGATE X) I: 3.20; II: 16.54

(NEQ X y) I: 9.3

NETWORKOSTYPES (Variable) III: 24.38

NEVER FORM (/.5. Operator) I: 9.11

NEW (MAKEFILE option) II: 17.11

INDEX

INDEX

(NEW/FN FN) II: 13.41

N EWCO M (File Package Type Property) 1\: 17.31

NEWREGIONFN (Window Property) III: 28.18

(NEWRESOURCE RESOURCENAME . ARGS) (Macro)

I: 12.23

NEWVALUE (Variable) I: 8.12

(NEX COM) (Editor Command) 1\: 16.26

NEX (Editor Command) II: 16.26

NIL (Editor Command) II: 16.55; 16.59

NIL (in block declarations) II: 18.18

NIL (in Masterscope template) II: 19.18

NIL (Litatom) I: 2.3; 9.2

NIL (Primary stream) III: 25.1

NILCOMS (Variable) II: 17.13

(NILL X 1 ... XN) I: 10.18

NILNUMPRINTFLG (Variable) III: 25.16

NLAMA (Variable) II: 18.9; 18.14

NLAMBDA (Litatom) I: 10.2

NLAMBDA (Macro Type) I: 10.22

Nlambda functions I: 10.2

Nlambda-nospread functions I: 10.6

Nlambda-spread functions I: 10.4

(NLAMBDA.ARGS X) I: 10.13

NLAML (Variable) II: 18.9; 18.14

(NLEFT L N TAIL) I: 3.9

(NLlSTP X) I: 3.1; 9.2

(NLSETQ FORM) I: 9.9; II: 14.22; 13.30

NLSETQGAG (Variable) II: 14.22

NO BINARY CODE GENERATED OR LOADED (Error

Message) II: 18.23

(FN- NO BREAK INFORMATION SAVED) (value of

REBREAK) II: 15.8

NO DO, COLLECT, OR JOIN (Error Message) I: 919

NO FILE PACKAGE COMMAND FOR (Error Message)

II: 17.40

NO LONGER INTERPRETED AS FUNCTIONAL

ARGUMENT (Error Message) II: 18.23

NO PROPERTY FOR (Error 1\t1essage) II: 17.38

NO USERMACRO FOR (Error Message) II: 17.34

NO VALU E SAVED: (Error Message) II: 13.29

NOBIND (Litatom) I: 2.2; 11.8; II: 13.28-29; 17.5

NOBREAKS (Variable) II: 15.7

NOCASEFLG (ASKUSER option) III: 26.15

NOCLEARSTKLST (Variable) I: 11.10

NODIRCORE (file device) III: 24.30

NOECHOFLG (ASK USER option) III: 26.16

NO ESC (type of read macro) III: 25.40

NOESCQUOTE (type of read macro) III: 25.40

NOEVAL (Lita tom) \I: 21.21

INDEX.27

INDEX

NOFllESPEllFlG (Variable) III: 24.32
NOFIXFNSlST (Variable) II: 21.21; 17.8; 18.12;

21.19
NOFIXVARSlST (Variable) II: 21.21; 17.8; 18.12;

21.15,19
NON-ATOMIC CAR OF FORM (Error Message) II:

18.23
Non-existent directory (Error Message) III: 24.10
NON-NUMERIC ARG (Error Message) I: 5.2;

7.3,6,11; II: 14.28
NONE (syntax class) III: 30.6
NONIMMED (type of read macro) III: 25.41
NONIMMEDIATE (type of read macro) III: 25.41
NOPRINT (Litatom) II: 13.29
(NORMALCOMMENTS FLG) III: 26.44; 26.45
NOSAVE (Function) II: 13.41
NOSAVE (Litatom) II: 13.29,40
NOSCROLlBARS (Window Property) III: 28.26;

28.25
NOSPEllFlG (Variable) II: 20.13; 21.21; III: 24.32
Nospread functions I: 10.3
NOSTACKUNDO (Litatom) II: 13.29
(NOT X) I: 9.3
NOT A BINDABLE VARIABLE (Error Message) II:

18.23

NOT A FUNCTION (Error Message) I: 10.8; II: 15.11
NOT BLOCKED (Printed by Editor) II: 16.65
(NOT BROKEN) (value of UNBREAKO) II: 15.8
not changed, so not unsaved (Printed by Editor) II:

16.69
NOT COMPILEABlE (Error Message) II: 18.22;

18.14,18
(FILE NOT DUMPED) (returned by MAKEFILE) II:

17.12
not editable (ErrorMessage) II: 16.70-71
NOT FOUND (Error Message) II: 18.22
(FN NOT FOUND) (printed by break) II: 14.7
(NOT FOUND) (printed by BREAKIN) II: 15.6-7
FILENAME NOT FOUND (printed by L1STFILES) II:

17.14
(FNl NOT FOUND IN FN2) (value of BREAKO) II:

15.4
NOT FOUND, SO IT Will BE WRITTEN ANEW (Error

Message) II: 17.51
NOT IN FILE - USING DEFINITION IN CORE (Error

Message) II: 18.22
NOT ON BLKFNS (Error Message) II: 18.22;

18.19-20

INDEX.28

NOT ON FilE, COMPILING IN CORE DEFINITION

(Error Message) II: 18.18
(FN NOT PRINTABLE) (returned by PRf7TYPRINT)

III: 26.40
NOT-FOUND: (Litatom) II: 17.7
(NOTANY SOMEX SOMEFNl SOMEFN2) I: 10.17
NOTCOMPILEDFILES (Variable) II: 17.14; 17.10-11
(NOTE VAL LSTFLG) I: 11.20
NOTE: BRKEXP NOT CHANGED. (Printed by Break)

II: 14.12
(NOTEVERY EVERYX EVERYFNl EVERYFN2) I:

10.17
NOTFIRST (DECLARE: Option) II: 17.42
nothi ng saved (Printed by Editor) II: 16.64-65
nothing saved (Printed by System) II: 13.26; 13.13
Noticing files II: 17.19
(NOTIFY.EVENT EVENTONCEONL y) II: 23.7
NOTlISTEDFllES (Variable) II: 17.14; 17.10
NOTRACE SET (Masterscope Path Option) II: 19.16
NS character I/O III: 25.22; 25.6,9,19
NScharacters I: 2.12; 4.2; III: 25.19-20,36; 27.27;

30.3,6-7,20
NS.ECHOUSER (Function) III: 31.38
NSADDRESS (Data type) III: 31.7; 31.17
NSNAME (Data type) III: 31.8; 31.17-18

(NSNAME.TO.STRING NSNAME FULLNAMEFLG) III:

31.9
(NSOCKETEVENT NSOC) II I: 31.37
(NSOCKETNUMBER NSOC) III: 31.37
(NSPRINT PRINTER FILE OPTIONS) III: 31.12
NSPRINT.DEFAUL T.MEDIU M (Variable) III: 29.2
(NSPRINTER.PROPERTIES PRINTER) III: 31.12
(NSPRINTER.STATUSPRINTER) III: 31.12
(NTH COM) (Editor Command) II: 16.26
(NTH N) (Editor Command) II: 16.17; 16.26
(NTH X N) I: 3.9
(NTHCHAR X N FLG RDTBL) I: 2.10
(NTHCHARCODE X N FLG RDTBL) I: 2.13
NUll (file device) III: 24.30
(NULL X) I: 9.3
Null strings 1:4.1
NUllDEF (File Package Type Property) II: 17.30
(NUMBE.":' X) I: 7.2; 9.1
Numbers 1:7.1;9.1;111:25.4
(NX N) (Editor Command) II: 16.16
NX (Editor Command) II: 16.16

INDEX

o
(OBTAIN.MONITORLOCK LOCK DONTWAIT

UNWINDSAVE) II: 23.9

OCCURRENCES (Printed by Editor) II: 16.61

Octal integers I: 7.4

(OCTALSTRING N) III: 31.36

(ODDP N MODULUS) I: 7.9

BLOCKTYPE OF FUNCTIONS (Masterscope Set

Specification) II: 19.12

OK (Break Command) II: 14.5; 14.6,12

OK (Break Window Command) II: 14.3

OK (DEdit Command) II: 16.10

OK (EditorCommand) II: 16.49; 16.53,72

OK (Masterscope Command) II: 19.2

OK (Prog. Asst. Command) II: 13.36

OK TO REEVALUATE (printedbyDWIM) II: 20.7

OKREEVALST (Variable) II: 20.14; 20.7

OLD (1.5. Operator) I: 9.13

OLDVALUE (Variable) II: 14.27

ON FORM (1.5. Operator) I: 9.13; 9.14

BLOCKTYPE ON FILES (Masterscope Set

Specifica tion) II: 19.12

ON OLD VAR (1.5. Operator) I: 9.13

ON PATH PATHOPTIONS (Masterscope Set

Specification) II: 19.13

Only the compiled version ... was loaded

(MAKEFILE message) II: 17.16

(\ONQUEUE ITEM Q) (Function) III: 31.41

OPCODE? - ASSEMBLE (Error Message) II: 18.23

Open functions II: 18.11

(OPENFILE FILE ACCESS RECOG PARAMETERS-)

III: 24.15

OPENFN (Window Property) III: 28.15

(OPENIMAGESTREAM FILE IMAGETYPE OPTIONS)

III: 27.9

OPENLAMBDA (Macro Type) I: 10.22

(OPENNSOCKET SKT# IFCLASH) III: 31.37

(OPENP FILE ACCESS) III: 24.4

(OPENPUPSOCKET SKT# IFCLASH) III: 31.29

(OPENSTREAM FILE ACCESS RECOG PARAMETERS

-) III: 24.2

(OPENSTREAMFN FILE OPTIONS) (Image Stream

MeU--: 1d) III: 27.43

(OPENSTRINGSTREAM STR ACCESS) III: 24.28

(OPENW WINDO'N) III: 28.15

(OPENWINDOWS) III: 28.15

(OPENWP WINDO'N) III: 28.15

OPERATION (BITBLTargument) III: 27.15

&OPTIONAL (DEFMACRO keyword) I: 10.25

INDEX

INDEX

Optional macro arguments I: 10.24

(ORX1X2",XN) 1:9.4

Order of precedence of CLiSP operators II: 21.12

(ORF PA TTERN 1 ... PA TTERN N) (Editor Command)

II: 16.22

ORI G (Litatom) III: 25.33

ORIGINAL (Break Command) II: 14.10

(ORIGINAL COMS 1 ... COMSN) (Editor Command)

II: 16.64

(ORIGINAL COM, ... COMN) (File Package

Command) II: 17.40

ORIGINAL I.S.OPR OPERAND (I.S. Operator) I: 9.17;

9.21

(ORR COMS 1 ... COMSN) (Editor Command) II:

16.61

OTHER (Syntax Class) III: 25.35

(OUTCHARFN STREAM CHARCODE) (Stream

Method) III: 27.48

(OUTFILE FILE) III: 24.15

(OUTFILEP FILE) III: 24.13

OUTOF FORM (1.5. Operator) I: 9.15; 11.18

OUTPUT (File access) Ill: 24.2

(OUTPUT FILE) III: 25.8

OUTPUT (Masterscope Command) II: 19.4

OUTPUT FILE? (Compiler Question) II: 18.2

Output functions III: 25.7

OVERFLOW (Error Message) I: 7.2; II: 14.31

(OVERFLOW FLG) I: 7.2

Overflow of floating point numbers I: 7.2

P

(P 0 N) (Editor Command) II: 16.48

(P M N) (Editor Command) II: 16.48

(P 0) (Editor Command) II: 16.48

(P M) (Editor Command) II: 16.47

P (EditorCommand) II: 16.47; 16.28

(P EXP,,,, EXPN) (File Package Command) II: 17.40

P.A. II: 13.1

.P2 THING (PRINTOUT command) III: 25.28

(PACK X) I: 2.8

(PACK* X 1 X2'" XN) I: 2.9

(PA CK C X) I: 2.1 3

\PACKET.PRJ NTERS (Variable) III: 31.41

(PACKFILENAME FJELD, CONTENTS 1 ... FJELDN

CONTENTSN) III: 24.9

(PACKFILENAME.STRJNG FIELD 1 CONTENTS 1 ...

FIELDN CONTENTSN) III: 24.8

.PAGE (PRINTOUT command) III: 25.26

"
INDEX.29

INDEX

Page holding in windows III: 28.30

(PAGEFAUL TS) II: 22.8

PAGEFULLFN (Function) III: 28.30

PAGEFULLFN (Window Property) III: 28.30

(PAGEHEIGHT N) III: 28.30

Paint (Window Menu Command) III: 28.4

.PARA LMARG RMARG LIST (PRINTOUT command)

III: 25.28

.PARA2 LMARG RMARG LIST (PRINTOUT command)
III: 25.28

PARENT (Variable) II: 20.12

Parentheses counting by READ III: 25.4; 30.9

PARENTHESIS ERROR (Error Message) I: 10.13

Parenthesis-moving commands in the editor II:
16.40

(PARSE.NSNAME NAME #PARTS DEFAUL TDOMAIN)
III: 31.8

(PARSERELATION RELATION) II: 19.23

PASSTOMAINCOMS (Window Property) III: 28.51

Passwords III: 24.39

Path options in Masterscope II: 19.16

Paths in Masterscope II: 19.15

PATLlSTPCHECK (Variable) I: 12.25

Pattern match compiler I: 12.24
Pattern matching I: 12.24

Pattern matching in the editor II: 16.18; 16.72-73

PA TVARDEFAULT (Variable) I: 12.26-27,30

PB (Break Command) II: 14.8

PB LlTATOM (Prog. Asst. Command) II: 13.17
(PEEKC FILE -) III: 25.5; 30.10

(PEEKCCODE FILE -) III: 25.5

PENGUIN (Printer type) III: 29.5

Performance analysis II: 22.1

Period ina list I: 3.3

(PF FN FROMFILES TOFILE) III: 26.41

(PF* FN FROMFILES TOFfLE) III: 26.41

PFDEFAULT (Variable) III: 26.41

Pilot floppy disk format III: 24.25
Pixels III: 27.3

PL LlTATOM (Prog. Asst. Command) II: 13.17
Place markers in pattern matching I: 12.29

(PLA YTUNE FrequencyIDuration.pairlist) III: 30.24

(PLUS Xl X2 ... XN) I: 7.3

PLVLFILEFLG (Variable) III: 25.12

POI NTER (as a field specification) I: 8.21
POINTER (record field type) I: 8.9
Polygons III: 27.20,45
(POP DATUM) (Change Word) I: 8.19
Pop (DEdit Command) II: 16.9

INDEX 30

Portra it fonts III: 27.27

(PORTSTRING NETHOSTSOCKED III: 31.35

(POSITION FILE N) III: 25.11

POSITION (Record) III: 27.1

(POSITIONP X) III: 27.1

Positions III: 27.1

(POSSIBILITIES FORM) I: 11.20

Possibilities lists I: 11.20

POSSIBLE NON-TERMINATING ITERATIVE
STATEMENT (Error Message) I: 9.20

POSSIBLE PARENTHESIS ERROR (Error Message) II:

21.19

POSTGREETFORMS (Variable) I: 12.2

(POWEROFTWOP X) I: 7.9

PP (Editor Command) II: 16.47

(PP FN1 ... FNN) III: 26.40

PP* (Editor Command) II: 16.48

(PP* X) III: 26.41

PPE (in Masterscope template) II: 19.18

ppe (used in Masterscope) II: 19.18

.PPF THING (PRINTOUT command) III: 25.28

.PPFTL THING (PRINTOUT command) III: 25.28

PPT (EditorCommand) II: 16.48; 21.17,26
(PPTX) 11:21.26;21.17

PPV (Editor Command) II: 16.48; III: 26.42

.PPV THING (PRfNTOUTcommand) III: 25.28

.PPVTL THING (PRINTOUT command) III: 25.28

Precedence rules for CLiSP operators II: 21.8

Prefix operators in CLiSP II: 21.7
PREGREETFORMS (Variable) I: 12.1

(PREPRINTFN IMAGEOBJ) (lMAGEFNS Method) III:

27.39

PRESS (Image stream type) III: 27.8

Press format I: 12.3; III: 27.8-10,12,29,31,33;
29.1-2,5

PRESSFONTWIDTHSFILES (Variable) I: 12.3; III:
27.31

PRETTYCOMFONT (Font class) III: 27.32
(PRETTYCOMPRINT X) II: 17.52

(PRETTYDEF PRTTY'FNS PRTTY'FILE PRTTY'COMS

REPRINTFNS SOURCEFILE CHANGES) II:
17.50; 15.13

PRETTYEQUIVLST (Variable) III: 26.49

PRETTYFLG (Variable) 1:12.3; II: 17.11; III: 26.48

PRETTYHEADER (Variable) II: 17.52; 17.51

PRETTYLCOM (Variable) III: 26.47; 26.48
(PRETTYPRINT FNS PRETTY'DEFLG -) III: 26.40

Prettyprinting function definitions III: 26.39

PRETTYPRI NTMACROS (Variable) III: 26.48

INDEX

PRETIYPRINTYPEMACROS (Variable) III: 26.48

PRETIYTABFLG (Variable) III: 26.47

Primary input stream III: 25.3; 24.4

Primary output stream III: 25.8; 24.4

Primary read table III: 25.33; 25.3,8; 30.6

Primary streams III: 25.1; 25.3,8

Primary terminal table III: 30.4; 30.6

(PRIN1 X FILE) III: 25.8; 25.11

(PRIN2 X FILE ROTBL) III: 25.8; 25.11

PRIN2-names I: 2.8-9,13; 4.2
(PRIN3 X FILE) III: 25.9

(PRIN4 X FILE ROTBL) III: 25.9

(PRINT X FILE ROTBL) III: 25.9; 25.11

PRINT (history list property) II: 13.33

Print names I: 2.7
(PRINT-LlSP-INFORMATION STREAM FILESTRING)

I: 12.11
(PRINTBELLS-) II: 20.3; III: 25.10

PRINTBINDINGS (Function) II: 13.17; 14.9

(PRINTBITMAP BITMAP FILE) III: 27.4

(PRINTCCODE CHARCOOE FILE) III: 25.9

PRINTCODE (Function) III: 26.2

(PRINTCOMMENT X) III: 26.45

(PRINTCONSTANT VAR CONSTANTLISTFILE PREFIX)

III: 31.35
(PRINTDATE FILE CHANGES) II: 17.51

(PRINTDEF EXPR LEFT OEF TAILFLG FNSLST FILE) III:

26.42; 26.48

(PRINTERSTATUS PRINTER) III: 29.4

(PRINTERTYPE HOSn III: 29.4

PRINTERTYPE (Property Name) III: 29.4

PRINTERTYPES (Variable) III: 29.5

(PRINTFILETYPE FILE -) III: 29.4
PRINTFILETYPES (Variable) III: 29.6; 27.9

(PRINTFNSX-) II: 17.51

(PRINTHISTORY HISTORY LINE SKIPFN NOVALUES

FILE) II: 13.42; 13.13

Printing circular lists III: 25.17

Printing documents III: 29.1

Printing numbers III: 25.13
Pri nting unusual data structures III: 25.17

(PRINTLEVEL CARVAL CORVAL) III: 25.11

PRINTLEVEL (Interrupt Channel) III: 30.3
PRINTMSG (Variable) II: 14.23

(PRINTNUM FORMAT NUMBER FILE) III: 25.15;

25.14
PRINTOUT (CLISP word) III: 25.23

PRINTOUTMACROS (Variable) III: 25.31

INDEX

(PRINTPACKET PACKET CALLER FILE PRE. NOTE

OOFILTER) III: 31.41

INDEX

(PRINTPACKETDATA BASE OFFSET MACRO LENGTH

FILE) III: 31.35

(PRINTPARA LMARG RMARG LIST P2FLAG

PARENFLAG FILE) III: 25.32

PRINTPROPS (Function) II: 13.17

(PRINTPUP PACKET CALLER FILE PRE. NOTE

OOFILTER) III: 31.33

(PRINTPUPROUTE PACKET CALLER FILE) III: 31.35
(PRINTROUTINGTABLE TABLE SORT FILE) III: 31.31

PRINTXIP (Function) III: 31.38

PRINTXIPROUTE (Function) III: 31.38

PROCESS (Window Property) II: 23.13; III: 28.30

Process mechanism II: 23.1

Process status window II: 23.16

(PROCESS.APPL Y PROC FN ARGS WAITFORRESUL n
II: 23.6

(PROCESS.EVAL PROC FORM WAITFORRESUL nil:

23.6

(PROCESS.EVALV PROCVAR) II: 23.6

(PROCESS.FINISHEDP PROCESS) II: 23.4

(PROCESS.RESULT PROCESS WAITFORRESUL nil:

23.4

(PROCESS.RETURN VALUE) II: 23.4
(PROCESS.STATUS.WINDOW WHERE) II: 23.17

Processes II: 23.1
(PROCESSP PROC) II: 23.4

(PROCESSPROP PROC PROP NEWVALUE) II: 23.2

(PROCESSWORLD FLG) II: 23.1

(PRODUCE VAL) I: 11.17

(PROGVARLSTE1E2 ... EN) 1:9.8

PROG label I: 9.8

(PROG* VARLSTEl E2'" EN) (Macro) I: 9.9

(PROG1 Xl X2'" XN) I: 9.7

(PROG2 Xl X2 ... XN) I: 9.7

(PROGN Xl X2 ... XN) I: 9.8

Programmer's assistant II: 13.1
Programmer's assistant and the editor II: 13.43
Programmer's assistant commands applied to P.A.

commands II: 13.20

Programmer's assistant commands that fail II:
13.20

Prompt character II: 13.38; 13.3,22; 14.1

Prompt window III: 28.3
PROMPT#FLG (Variable) I: 12.3; II: 13.22; 13.38

(PROMPTCHAR 10 FLG HISTORY) II: 13.38;

13.22,43

INDEX.31

INDEX

PROMPTCHARFORMS (Variable) II: 13.22; 13.38

PROMPTCONFIRMFLG (ASKUSER option) III: 26.15
(PROMPTFORWORD PROMPT.STR CANDIDA TE.STR

GENERA TE?LlST. FN ECHO. CHANNEL
DONTECHOTYPEIN.FLG URGENCY. OPTION
TERMINCHARS.LST KEYBD.CHANNEL) III:

26.9; 26.10
PROMPTON (ASKUSER option) III: 26.16
(PROMPTPRINT EXP1 ... EXPN) III: 28.3

PROMPTSTR (Variable) II: 13.22
PROMPTWINDOW (Variable) II: 23.14; III: 28.3

(PROP PROPNAME LlTATOM1'" LlTATOMN) (File

Package Command) II: 17.37; 17.45
PROP (in Masterscope template) II: 19.19
PROP (Litatom) I: 10.1Q
prop (Printed by Editor) II: 16.69
PROPCOMMANDFN (Window Property) III: 26.8
Proper tail I: 3.9
PROPERTIES (Window Property) III: 26.8
Properties of litatoms I: 2.5
Property lists I: 3.15
Property names I: 3.15; 2.5-6
Property values I: 3.15; 2.5-6
(PROPNAMESATM) I: 2.6
PROPPRINTFN (Window Property) III: 26.8
PROPRECORD (Record Type) I: 8.8

(PROPS (LlTATOMl PROPNAME1)'" (LITATOMN

PROPNAMEN» (File Package Command) II:

17.38
PROPS (File Package Type) II: 17.24
PROPTYPE (PropertyName) II: 17.24; 17.18
PROTECTION VIOLATION (Error Message) II: 14.31;

III: 24.3,39
PRXFLG (Variable) III: 25.14

(PSETQ VARl VALUE1'" VARN VALUEN) (Macro) I:

2.3
Pseudo-carriage return II: 13.32
PSW (Background Menu Command) III: 28.6
(PUP.ECHOUSER HOST ECHOSTREAM INTERVAL

NTIMES) III: 31.34
PUPIGNORETYPES (Variable) 111: 31.32
(PUPNET.DISTANCE NET#) III: 31.30
PUPONL YTYPES (Variable) III: 31.32
PUPPRINTMACROS (Variable) III: 31.33
(PUPSOCKETEVENT pupsoq III: 31.29
(PUPSOCKETNUMBER pupsoq III: 31.29
(PUPTRACE FLG REGION) III: 31.33
PUPTRACEFILE (Variable) III: 31.32
PUPTRACEFLG (Variable) III: 31.32

INDEX.32

PUPTRACETIME (Variable) III: 31.33

(PURGEDSKDIRECTORY VOLUMENAME -) III:

24.22
(PUSH DATUM ITEM 1 ITEM2 ...) (Change Word) I:

8.18
(PUSHLIST DATUM ITEMI1TEM2 ...) (Change Word)

I: 8.19
(PUSHNEW DATUM ITEM) (Change Word) I: 8.18
(PUTASSOCKEYVALALSn I: 3.15
(PUTCHARBITMAP CHARCODE FONT

NEWCHARSITMAP NEWCHARDESCENn III:

27.30
(PUTD FN DEF -) I: 10.11
PUTDEF (File Package Type Property) II: 17.30
(PUTDEF NAME TYPE DEFINITION REASON) II:

17.26
(PUTFN IMAGEOBJ FILESTREAM) (lMAGEFNS

Method) III: 27.37
(PUTHASH KEY VAL HARRA Y) I: 6.2
(PUTMENUPROP MENU PROPERTY VALUE) III:

28.43
(PUTPROP ATM PROP VAL) I: 2.5; 2.6

(PUTPROPS ATM PROPl VAL 1 ... PROPN VALN) II:

17.55
(PUTPUPBYTE PUP BYTE# VALUE) III: 31.31
(PUTPUPSTRING PUP STR) III: 31.32
(PUTPUPWORD PUP WORD# VALUE) III: 31.31

Q

Q (Editor Command) II: 16.57
Q (following a number) I: 7.4
$Q (escape-Q) (TYPE-AHEAD command) II: 13.18
(\QU EU ELENGTH 0) (Function) III: 31.41
(QUOTE X) I: 10.12
(QUOTIENT X Y) I: 7.3
Quoting file names III: 24.6

R
(R X Y) (Editor Command) II: 16.45
(R1 X Y) (Editor Command) II: 16.46
(RADIX N) I: 2.8; 7.5; III: 25.13; 25.3,8
RAID (Interrupt Channel) II: 23.15; III: 30.3
(RAISE X) (Editor Command) II: 16.53
RAISE (Editor Command) II: 16.52
(RAISE FLG TTBL) III: 30.8
(RAND LOWER UPPER) I: 7.14
(RANDACCESSP FILE) III: 25.20
Random numbers I: 7.14
Randomlyaccessible files III: 25.18

INDEX

(RANDSET X) I: 7.14

(RATEST FLG) III: 25.4

(RATOM FILE RDTBL) III: 25.4; 25.36; 30.10

(RATOMS A FILE RDTBL) III: 25.4

RAVEN (Printertype) III: 29.5

(RC X y) (Editor Command) II: 16.46

RC (MAKEFILEoption) II: 17.10

(RC1 X y) (Editor Command) II: 16.46

(READ FILE RDTBL FLG) III: 25.3; 30.10

Read macros III: ~5.39

Read tables III: 25.33; 25.3,8

READ-MACRO CONTEXT ERROR (Error Message) II:

14.30

(READBITMAP FILE) I II: 27.4

READBU F (Variable) II: 13.36; 13.38

(READC FILE RDTBL) III: 25.5; 30.10

(READCCODE FILE RDTBL) III: 25.5

(READCOMMENT FL RDTBL LSn III: 26.45

READDATE (File Attribute) III: 24.18

(READFILE FILE RDTBL ENDTOKEN) III: 25.33

(READIMAGEOBJ STREAM GETFN NOERROR) III:

27.41

(READLINE RDTBL --) II: 13.36;

13.24,32,35,37,43; 16.67

(READMACROS FLG RDTBL) III: 25.42

(READP FILE FLG) III: 25.6

(READTABLEP RDTBL) III: 25.34

READVICE (Property Name) II: 15.12-13

(READVISEX) II: 15.12; 15.13; 17.35

(REALFRAMEP POS INTERPFLG) I: 11.13

(REALMEMORYSIZE) I: 12.10

(REALSTKNTH N POS INTERPFLG OLDPOS) I: 11.13

REANALYZE SET (Masterscope Command) II: 19.4

(REBREAK X) II: 15.8; 15.4

(RECLAIM) II: 22.3

(RECLAIMMIN N) II: 22.3

RECLAIMWAIT (Variable) II: 22.3

(RECLOOK RECNAME ----) I: 8.16

Recognition of file versions III: 24.11

(RECOMPILE PFILE CFILEFNS) II: 18.15; 17.12;

18.14,18

RECOMPILEDEFAULT (Variable) II: 18.16; 18.22

Reconstruction in pattern matching I: 12.30

RECORD (in Masterscope template) II: 19.20

RECORD (Record Type) I: 8.7

Record declarations I: 8.6

Record declarations in CLISP II: 21.14

Record package I: 8.1

Record types I: 8.7; 8.6

INDEX

(RECORDACCESS FIELD DATUM DEC TYPE

NEWVALUE) I: 8.16

(RECORDACCESSFORM FIELD DATUM TYPE

NEWVALUE) I: 8.17

INDEX

(RECORDFIELDNAMES RECORDNAME -) I: 8.16

(RECORDS REC 1 ... RECN) (File Package Command)

I: 8.2,11; II: 17.38

RECORDS (File Package Type) II: 17.24

REDEFINE? (Compiler Question) II: 18.1

(FN redef.ined) (printed by system) I: 10.10

Redisplay (Window Menu Command) III: 28.4

(REDISPLAYW WINDOW REGION ALWAYSFLG) III:

28.16

REDO EventSpec UNTIL FORM (Prog. Asst.

Command) II: 13.8

REDO EventSpec WHILE FORM (Prog. Asst.

Command) II: 13.8

REDO EventSpec N TIMES (Prog. Asst. Command)

II: 13.8

REDO EventSpec (Prog. Asst. Command) II: 13.8;

13.33

REDOCNT (Variable) II: 13.9

REFERENCE (Masterscope Relation) II: 19.8

Reference-counting garbage collection II: 22.2

ReFetch (Inspect Window Command) III: 26.4

REGION (Record) III: 27.1

REGION (Window Property) III: 28.34; 28.24

(REGIONP X) III: 27.2

Regions III: 27.1

(REGIONSINTERSECTP REGIONI REGION2) III: 27.2

Registering image objects III: 27.39

(REHASH OLDHARRA Y NEWHARRA y) I: 6.3

REJECTMAINCOMS (Window Property) III: 28.51

SET RELA TlON SET (Masterscope Command) II:

19.5

Relations in Masterscope II: 19.7

(RELDRAWTO DX DY WIDTH OPERA TlON STREAM

COLOR DASHING) III: 27.18

(\RELEASE.ETHERPACKET EPKn (Function) III:

31.39

(RELEASE.MONITORLOCK LOCK EVENIFNOTMINE)

II: 23.9

(RELEASE.PUP PUP) III: ~ 1.28

(RELEASE.XIP XIP) III: 31.36

Releasing stack pointers I: 11.9

(RELMOVETO OX DY STREAM) III: 27.14

(RELMOVEW WINDOW POSITION) III: 28.19

(RELPROCESSP PROCHANOLE) II: 23.4

(RELSTK POS) I: 11.9; 11.10

if\JDEX.33

INDEX

(RELSTKP X) I: 11.9
(REMAINDER X y) I: 7.3
REMAKE (MAKEFILE option) II: 17.11
Remaking a symbolic file II: 17.15
REMEMBER EventSpec (Prog. Asst. Command) II:

13.17
(REMOVEXL) 1:3.19
(REMOVEPROMPTWINDOW MAINWINDOW) III:

28.50
(REMOVEWINDOW WINDOW) III: 28.47
(REMPROP A TM PROP) I: 2.6
(REMPROPLI ST ATM PROPS) I: 2.6
(RENAME OLD NEW TYPES FILES METHOD) II:

17.29
(RENAMEFILE OLDFILE NEWFILE) III: 24.31
Renam ing files III: 24.31
Reopening files III: 24.20
(REPACK @) (Editor Command) II: 16.53
REPACK (Editor Command) II: 16.53
REPAINTFN (Window Property) III: 28.16; 28.38
REPEAT EventSpec UNTIL FORM (Prog. Asst.

Command) II: 13.8

REPEAT EventSpec WHILE FORM (Prog. Asst.

Command) II: 13.8
REPEAT EventSpe~ (Prog. Asst. Command) II: 13.8
REPEATUNTIL N (N a number) (1.5. Operator) I: 9.16
REPEATUNTILFORM (1.5. Operator) I: 9.16
REPEATWHILE FORM (1.5. Operator) I: 9.16
Replace (DEdit Command) II: 16.7
(REPLACE @WITH E1 ... EM) (Editor Command) II:

16.33

(REPLACE @ BY E 1 ... EM) (Editor Command) II:

16.33
REPLACE (in Masterscope template) II: 19.19
REPLACE (Masterscope Relation) II: 19.9
REPLACE (Record Operator) I: 8.2; 8.3; II: 21.10
REPLACE UNDEFINED FOR FIELD (Error Message) I:

8.12
(REPLACEFIELD DESCRIPTOR DATUM NEWVALUE)

I: 8.22

Replacements in pattern matching I: 12.29
(REPOSITIONATTACHEDWI NDOWS WINDO'N) III:

28.47
Reprint (DEdit Command) II: 16.9
REREADFLG (Variable) II: 13.39; 13.38
(RESET) II: 14.20; 14.25
RESET (Interrupt Channel) II: 23.14; III: 30.3
(VARIABLE RESET) (printed by system) II: 13.28

INDEX.34

(RESET.INTERRUPTS PERMITTEDINTERRUPTS

SA VECURRENT?) III: 30.4
(RESETBU FS FORM 1 FORM 2 .. · FORM N) III: 30.12

(RESETDEDIT) II: 16.3

(RESETFORM RESETFORM FORM1 FORM2 ...

FORMN) II: 14.26

RESETFORMS (Variable) II: 13.22
(RESETLST FORM1 ... FORMN) II: 14.24

(RESETREADTABLE RDTBL FROM) III: 25.35
(RESETSAVE X y) II: 14.24
RESETSTATE (Variable) II: 14.26; 23.11
(RESETTERMTABLE TTBL FROM) III: 30.5
(RESETUNDO X STOPFLG) II: 13.30; 14.27
(RESETVAR VAR NEWVALUE FORM) II: 14.25; 18.4

(RESETVARS VARSLST E 1 E2 ... EN) II: 14.25

(RESHAPEBYREPAINTFN WINDOW OLD/MAGE

IMAGEREGION OLDSCREENREG/ON) III:

28.18
RESHAPEFN (Window Property) III: 28.17
resourceName RESOURCE (1.5. Operator) I: 12.18
Resources I: 12.19

(RESOURCES RESOURCE1 ... RESOURCEN) (File

PackageCommand) I: 12.19,23; II: 17.39
RESOURCES (File Package Type) I: 12.19; II: 17.24
RESPONSE (Variable) II: 22.12
&REST (DEFMACRO keyword) I: 10.25
(RESTART.ETHER) III: 31.38; 24.41
(RESTART.PROCESS PROC) II: 23.5
RESTARTABLE (Process Property) II: 23.2
RESTARTFORM (Process Property) II: 23.3
(RESUME FROMPTR TOPTR VAL) I: 11.19
(RETAPPL Y POS FN ARGS FLG) I: 11.9
(RETEVALPOSFORMFLG-) I: 11.9; II: 20.7
RETFNS (in Masterscope Set Specification) II: 19.12
RETFNS (Variable) II: 18.19; 18.18
(RETFROM POS VAL FLG) I: 11.8
RETRIEVE LlTATOM (Prog. Asst. Command) II:

13.15; 13.24,33
RETRY EventSpec (Prog. Asst. Command) II: 13.9;

13.33
(RETTO POS VAL FLG) I: 11.9
RETURN (ASKUSER option) III: 26.15
RETURN FORM (Break Command) II: 14.6
(RETU RN X) I: 9.8
RETU RN (in iterative statemen t) I: 9.18
RETU RN (in Masterscope templa te) II: 19.19
RETYPE (syntax class) III: 30.6
REUSING (in CREA TE form) I: 8.4

INDEX

Reusi ng stack pointers I: 11.10

(REVERSE L) I: 3.19
REVERT (Break Command) II: 14.10

revert (Break Window Command) II: 14.3

(RI N M) (Editor Command) II: 16.41

RIGHT (key indicator) III: 30.17

Right margin III: 27.11
Right-button background menu III: 28.6

Right-button window menu III: 28.3
RIGHTBRACKET (Syntax Class) III: 25.35

RIGHTBUTTONFN (Window Property) III: 28.28

RIGHTPAREN (Syntax Class) III: 25.35

(RINGBELLS N) III: 30.24

(RO N) (Editor Command) II: 16.41

Root name of a file II: 17.4

ROOTFILENAME (Function) II: 17.4,20

(ROT X N FIELDSIZE) I: 7.10
ROTATION (Font property) III: 27.27

(RPAQ VAR VALUE) II: 17.54; 13.28; 17.5

(RPAQ? VAR VA~UE) II: 17.54; 17.5

(RPAQQ VAR VALUE) II: 17.54; 13.28; 17.5,50

RPARKEY (Variable) II: 20.14; 20.6

#RPARS (Variable) III: 26.47

(RPLACAXy) /:3.2;11:21.13

(RPLACD X y) I: 3.2; II: 21.13
(RPLCHARCODE X N CHAR) I: 4.5

(RPLNODE X A D) I: 3.2; II: 13.40

(RPLNODE2 X y) I: 3.3; II: 13.40

(RPLSTRING X NY) I: 4.4

(RPTNFORM) I: 10.15

(RPTQ N FORMl FORM2 ... FORMN) I: 10.15

(RSH X N) I: 7.8

(RSTRING FILE RDTBL) III: 25.4

RUBOUT (Interrupt Channel) II: 23.15; III: 30.3

Run-encoding of NS characters III: 25.22

Run-on spelling corrections II: 20.22; 20.4
RUNONFLG (Variable) II: 20.14; 20.22

S
SLITATOM@ (EditorCommand) II: 16.29

S (Response to Compiler Question) II: 18.2

(SASSOC KEY ALSn I: 3.15

SAV/ING cursor I: 12.7
SAVE (EditorCommand) II: 16.49; 16.51,72

SAVE EXPRS? (Compiler Question) II: 18.2
(SAVEDEF NAME TYPE DEFINITION) II: 17.27

(SAVEPUT ATM PROP VAL) II: 17.55

(SAVESET NAME VALUE TOPFLG FLG) II: 13.29;

13.28

INDEX

SAVESETQ (Function) II: 13.28

SAVESETQQ (Function) II: 13.28

INDEX

SaveVM (Background Menu Command) III: 28.6

(SAVEVM -) I: 12.7

SAVEVMMAX (Variable) I: 12.7

SAVEVMWAIT (Variable) I: 12.7

Saving bitmaps on files III: 27.3
SAVINGCURSOR (Variable) I: 12.7; III: 30.15

SCALE (Font property) III: 27.28
(SCAVENGEDSKDIRECTORY VOLUMENAME SILENn

III: 24.23

(SCRATCHLIST LST X 1 X2 ... XN) I: 3.8

(SCREEN BITMAP) III: 30.22

SCREENHEIGHT (Variable) III: 30.22

Screens I: 12.4; III: 30.22
SCREENWIDTH (Variable) III: 30.22

(SCROLL.HANDLER WINDOW) III: 28.24

SCROLLBARWIDTH (Variable) III: 28.24

(SCROLLBYREPAINTFN WINDOW DEL TAX DEL TA Y

CONTINUOUSFLG) III: 28.25

ScroliDownCursor (Variable) III: 30.15
SCROLLEXTENTUSE (Window Property) III: 28.26;

28.25
SCROLLFN (Window Property) III: 28.26; 28.25,38

Scrolling III: 28.23; 27.24

ScrollLeftCursor (Variable) III: 30.16

ScroliRightCursor (Variable) III: 30.16

ScrollUpCursor (Variable) III: 30.15

(SCROLLW WINDOW DEL TAX DEL TA Y

CONTINUOUSFLG) III: 28.24

SCROLLWAITIIME (Variable) III: 28.24

Searching file directories III: 24.31

Searching files III: 25.20

Searching in the editor II: 16.18; 16.20

Searching strings I: 4.5

SEARCHING ... (Printed by BREAKIN) II: 15.7
(SEARCHPDL SRCHFN SRCHPOS) I: 11.14

SECONDS (Timer Unit) I: 12.16

(SEE FROMFILE TOFILE) III: 26.41

(SEE* FROMFILE TOFILE) III: 26.41

Segment patterns in pattern matching I: 12.27

(SELCHARQ E CLAUSE 1 ... CLAUSEN DEFAUL n
(Macro) I: 2.15

SELECTABLEITEMS (Window Property) III: 26.8

(SELECTC X CLAUSE 1 CLAUSE2 ... CLAUSEK

DEFAULD I: 9.7
SELECTIONFN (Window Property) III: 26.8

INDEX 35

INDEX

(SELECTQ X CLAUSE 1 CLAUSE2 ... CLAUSEK

DEFAUL n I: 9.6

(SEND.FILE. TO.PRINTER FILE HOST PRINTOPTIONS)

III: 29.1

(SENDPUP PUPSOC PUP) III: 31.29

(SENDXIP NSOC XIP) III: 31.37

SEPARATE SET (Masterscope Path Option) II: 19.16

Separator characters III: 25.36; 25.4; 30.10

SEPR (Syntax Class) III: 25.37

(SEPRCASE CLFLG) III: 25.22

SEPRCHAR (Syntax Class) III: 25.35

SEQUENTIAL (OPENSTREAM parameter) III: 24.3

(SET VAR VALUE) I: 2.3

SET (in Masterscope template) II: 19.18

SET (Masterscope Relation) II: 19.8

Set specifications in Masterscope II: 19.10

(SET.TTYINEDIT.WINDOW WINDOW) III: 26.33

(SETA ARRAY N V) I: 5.1

(SETARG VAR M X) I: 10.5

(SETATOMVAL VAR VALUE) I: 2.4

(SETBLlPVAL BLiPTYP IPOS N VAL) I: 11.16

(SETBRK LSTFLG RDTBL) III: 25.38

(SETCASEARRA Y CASEARRA Y FROMCODE TOCODE)

III: 25.22

(SETCURSOR NEWCURSOR-) III: 30.14

(SETDISPLAYHEIGHT NSCANLINES) III: 30.23

(SETERRORN NUM MESS) II: 14.20

(SETFILEINFO FILE ATTRIB VALUE) III: 24.17

(SETFILEPTR FILE ADR) III: 25.19

SETFN (Property Name) II: 21.28

(SETFONTDESCRIPTOR FAMIL Y SIZE FACE

ROTATION DEVICE FOND III: 27.29

SETINITIALS (Variable) II: 16.76

(SETLINELENGTH N) III: 25.11

(SETMAINTPANEL N) III: 30.24

{SETPASSWORD HOST USER PASSWORD

DIRECTORy} III: 24.40

(SETPROPLIST ATM LSn I: 2.7

(SETQ VAR VALUE) I: 2.3

(SETQQ VAR VALUE) I: 2.3

SETREADFN (Function) III: 26.28

(SETREADTABLE RDTBL FLG) III: 25.34

Sets in Masterscope II: 19.10

(SETSEPR LST FLG RDTBL) III: 25.38

(SETSTKARG N POS VAL) I: 11.7

(SETSTKARGNAME N POS NAME) I: 11.7

(SETSTKNAME POS NAME) I: 11.6

(SETSYNONYM PHRASE MEANING -) II: 19.23

(SETSYNTAX CHAR CLASS TABLE) III: 25.37

INDEX.36

(SETTEMPLATE FN TEMPLATE) II: 19.21

(SETTERMCHARS NEXTCHAR BKCHAR LASTCHAR

UNQUOTECHAR 2CHAR PPCHAR) II: 16.75;

16.18

(SETTERMTABLE TTBL) III: 30.5

(SETIIME On I: 12.15

Setting maintanance panel III: 30.24

(SETIOPVAL VAR VALUE) I: 2.4

(SETUPPUP PUP DESTHOST DESTSOCKET TYPE 10

SOC REQUEUE) III: 31.31

(SETUPTIMER INTERVAL OldTimer? timerUnits

intervalUnits) I: 12,17

(SETUPTIMER.DATE DTS OldTimer?) I: 12.17

(SETUSERNAME NAME) III: 24.40

(SHADEGRIDBOX X Y SHADE OPERA TlON GRIDSPEC

GRIDBORDER STREAM) III: 27.22

(SHADEITEM ITEM MENU SHADE DSIW) III: 28.43

SHALL I LOAD (printed by DWIM) II: 20.10

Shallow binding I: 11.1; 2.4; II: 22.6

Shape (Window Menu Command) III: 28.5

(SHAPEW WINDOW NEWREGION) III: 28.16

(SHAPEW1 WINDOW REGION) III: 28.17

SHH FORM (Prog. Asst. Command) II: 13.18

(SHIFTDOWNP SHIFn III: 30.20

(SHORT-SITE-NAME) I: 12.12

SHOULD BE A SPECVAR (Error Message) II: 18.22

SHOULDCOMPILEMACROATOMS (Variable) I:

10.28

Shouldn't happen! (Error Message) II: 14.20

(SHOULDNT MESS) II: 14.20

(SHOW X) (Editor Command) II: 16.61

SHOW PATHS PATHOPTIONS (Masterscope

Command) II: 19.5; 19.15

SHOW WHERE SET RELA TlON SET (Masterscope

Command) II: 19.6

(SHOW.CLEARINGHOUSE ENTIRE. CLEARINGHOUSE?

DONT.GRAPH) III: 31.10

(SHOWDEF NAME TYPE FILE) II: 17.27

SHOWPARENFLG (Variable) III: 26.36

(SHOWPRIN2XFILERDTBL) II: 13.13,42; III: 25.10

(SHOWPRINT X FILE RDTBL) I: 11.12; II: 14.8-9; III:

25.10

Shrink (Window Menu Command) III: 28.5

(SHRINKBITMAP BITMAP WIDTHFACTOR

HEIGHTFACTOR DES TINA TlONBITMAP) III:

27.4

SHRINKFN (Window Property) III: 28.22
Shrinki ng windows III: 28.21

IND!:X

(SHRINKW WINDOWTOWHA T ICONPOSITION

EXPANDFN) III: 28.21

SIDE (History List Property) II: 13.33; 13.40-43

SIDE (Property Name) II: 13.34

SIGNEDWORD (as a field specification) I: 8.21

SIGNEDWORD (record field type) I: 8.10

(SIN X RADIANSFL G) I: 7.13

Siteinitfile I: 12.1

SIZE (File Attribute) III: 24.17

SIZE (Font property) III: 27.27

.SKIP LINES (PRINTOUT command) III: 25.26

(SKIPSEPRS FILE RDTBL) III: 25.7

SKOR (Function) II: 20.20

(SKREAD FILE REREADSTRING RDTBL) III: 25.7

SLOPE (Font property) III: 27.27

Small integers I: 7.1; 9.1

SMALLEST FORM (1.5. Operator) I: 9.12

(SMALLPX) 1:7.1;9.1

(SMARTARGLIST FN EXPLAINFLG TAIL) I: 10.8

SMASH (in Masterscope template) II: 19.18

SMASH (Masterscope Relation) II: 19.8

(SMASHFILECOMS FILE) II: 17.49

SMASHING (in CREATE form) I: 8.4

SMASH PROPS (Variable) II: 22.12

SMASHPROPSLST (Variable) II: 22.12

SMASHPROPSMENU (Variable) II: 22.12

Snap (Background Menu Command) III: 28.6

Snap (Window Menu Command) III: 28.4

(SOFTWARE-TYPE) I: 12.12

(SOFTWARE-VERSION) I: 12.12

(SOME SOMEX SOMEFN1 SOMEFN2) I: 10.17

SORRY, I CAN'T PARSE THAT (Error Message) II:

19.17

SORRY, NO FUNCTIONS HAVE BEEN ANALYZED

(Error Message) II: 19.17

SORRY , THAT ISN'T I MPLEMENTED (Error Message)

II: 19.17

(SORT DATA COMPAREFN) I: 3.17

(SORT.PUPHOSTS.BY.DISTANCE HOSTLlSn III:

31.30

SOURCETYPE (BITBLTargument) III: 27.15

.SP DISTANCE (PRINTOUT command) III: 25.26

>pace factor III: 27.12

(SPACES N FILE) III: 25.9

Spaghetti stacks I: 11.2

(SPAWN.MOUSE -) II: 23.15

Speaker in terminal III: 30.24

SPEC (Fontproperty) III: 27.28

Special variables II: 18.5; 22.5

INDEX

INDEX

Specvars II: 18.5; 14.26

(SPECVARS VAR1 ... VARN) (File Package Command)

II: 17.37

SPECVARS (in Masterscope Set Specification) II:

19.12

SPECVARS (Variable) II: 18.5; 18.18

(SPELLFILE FILE NOPRINTFLG NSFLG DIRLSn II:

14.23,29; III: 24.32; 24.3

Spelling correction II: 20.15; 13.8,35; 14.17;

16.66,68; 17.34,~2; 20.2,19; 21.9,25

Spelling correction on file names II: 20.24; III:

24.32

Spelling correction protocol II: 20.4

Spelling lists I: 9.10; II: 20.16; 13.8,35; 14.17;

16.66,68; 17.6,34,42; 20.9-11; 21.9,25; III:

24.35

SPELLlNGS1 (Variable) II: 20.17; 20.11,18,21

SPELLlNGS2 (Variable) II: 20.17; 20.10-11,18,21

SPELLlNGS3 (Variable) II: 20.17; 13.29; 20.9,18,21

SPELLSTR1 (Variable) II: 20.18

SPLICE (type of read macro) III: 25.39

(SPLITC X) (Editor Command) II: 16.54

(SPP.CLEARATTENTION STREAM NOERRORFLG)

III: 31.15

(SPP.CLEAREOM STREAM NOERRORFLG) III: 31.15

(SPP.DSTYPE STREAM DSTYPE) III: 31.14

(SPP.OPEN HOST SOCKET PROBEP NAME PROPS)

III: 31.12

(SPP.SENDAITENTION STREAM A TTENTlONBYTE-)

III: 31.14

(SPP.SENDEOM STREAM) III: 31.14

SPP.USER.TIMEOUT (Variable) III: 31.14

(SPPOUTPUTSTREAM STREAM) III: 31.14

Spread functions I: 10.3

SPRUCE (Printer type) III: 29.5

(S Q R T N) I: 7.1 3

SQRT OF NEGATIVE VALUE (Error Message) I: 7.13

Square brackets inserted by PRETTYPRINT III:

26.47

ST (Response to Compiler Question) II: 18.2

Stack I: 11.1

Stack and the interpreter I: 11.14

Stack descriptors I: 11.4

Stack functions I: 11.4

STACK OVERFLOW (Error Message) I: 11.10; II:

14.28; 23.15

STACK POINTER HAS BEEN RELEASED (Error

Message) I: 11.5

Stack pointers I: 11.4; 11.5,9

iNDEX.37

INDEX

STACK PTR HAS BEEN RELEASED (Error Message)

II: 14.30
(STACKP X) I: 11.9

STANDARD (Font face) III: 27.26
(START.CLEARINGHOUSE RES TARTFL G) III: 31.9

STF (Response to Compiler Question) II: 18.2
(STKAPPL Y POS FN ARGS FLG) I: 11.8
(STKARG NPOS-) I: 11.7; II: 14.8
(STKARGNAME N POS) I: 11.7
(STKARGS POS -) I: 11.7
(STKEVALPOSFORMFLG-) I: 11.8; II: 14.8
(STKNAMEPOS) 1:11.6
(STKNARGSPOS-) I: 11.7
(STKNTH N POS OLDPOS) I: 11.6
(STKNTHNAME N POS) I: 11.6
(STKPOS FRAMENAME N POS OLDPOS) I: 11.5
(STKSCAN VAR IPOS OPOS) I: 11.6
STOP (attheendofa file) II: 17.6; III: 25.33
Stop (DEdit Command) II: 16.10
STOP (EditorCommand) II: 16.49; 15.6; 16.53,72
$STOP (escape-STOP) (TYPE-AHEAD command) II:

13.18
(STORAGE TYPES PAGETHRESHOLD) II: 22.3
Storage allocation II: 22.1
STORAGE FULL (Error Message) II: 14.30; 23.15
STORAGE.ARRA YSIZES (Variable) II: 22.4
(STORAGE.LEFT) II: 22.5
STOREFN (Window Property) III: 26.8
Storing files II: 17.10
(STREAMP X) III: 25.2
Streams III: 24.1
(STREQUAL X y) I: 4.1
STRF (Variable) II: 18.1; 18.2,14
String pointers I: 4.1
(STRING-EQUAL X y) I: 4.2
STRINGDELIM (Syntax Class) III: 25.35
(STRINGHASHBITS STRING) I: 6.5
(STRINGP X) I: 4.1; 9.2

(STRINGREGION STR STREAM PRJN2FLG RDTBL) III:

27.30
Strings I: 4.1; 9.2; III: 25.3
(STRINGWIDTH STR FONTFLG RDTBL) III: 27.30
(STRMBOUTFN STREAM CHARCODE) (Stream

Method) III: 27.48
(STRPOS PAT STRING START SKIP ANCHOR TAIL

CASEARRA Y BACKWARDSFLG) I: 4.5; III:

25.20
(STRPOSL A STRING START NEG BACKWARDSFLG)

I: 4.6

INDEX.38

Structure modification commands in the editor II:

16.29
.SUB (PRINTOUT command) III: 25.27
(SUB1 X) I: 7.6
(SUBATOM X N M) I: 2.8
Subdeclarations I: 8.14
SUBITEMFN (Menu Field) III: 28.39
SUBITEMS (Litatom) III: 28.39
(SUBLIS ALST EXPR FLG) I: 3.14
(SUBPAIR OLDNEWEXPRFLG) I: 3.14
SUBRECORD (in record declarations) I: 8.14
(SUBREGIONP LARGEREGION SMALLREGION) III:

27.2
(SUBSET MAPX MAPFN1 MAPFN2) I: 10.17
(SUBST NEW OLD EXPR) I: 3.13
Substitution macros I: 10.22
(SUBSTRING X N M OLDPTR) I: 4.3
SUCHTHAT (1.5. Operator) I: 9.22
SUCHTHAT (in event address) II: 13.6
SU M FORM (1.5. Operator) I: 9.11

.SUP (PRINTOUT command) III: 25.27
SURROUND (Editor Command) II: 16.37
SUSPEND (Process Property) II: 23.2

.(SUSPEND.PROCESS PROC) II: 23.6
SUSPICIOUS PROG LABEL (Error Message) II: 21.19
SVFLG (Variable) II: 18.1-2
(SW N M) (Editor Command) II: 16.47

(SWAP DATUM1 DATUM2) (Change Word) I: 8.19

Swap (DEdit Command) II: 16.8 .
(SWAP @1 @2) (Editor Command) II: 16.47

SWAPBLOCK TOO BIG FOR BUFFER (Error Message)

II: 14.31
SWAPC (Editor Command) II: 16.54
(SWAPPUPPORTS PUP) III: 31.31
Switch (DEdit Command) II: 16.7
Symbols I: 2.1
SYNONYM (in record declarations) I: 8.15
Synonyms for file package commands II: 17.47
Synonyms for file package types II: 17.32
Synonyms in spelling correction II: 20.16
Syntax classes III: 25.35
(SYNTAXP CODE CLASS TABLE) III: 25.37
SYS/OUTcursor I: 12.8
(SYSBUF FLG) III: 30.11; 30.12
SYSFILES (Variable) II: 17.6
SYSHASHARRA Y (Variable) I: 6.1
SYSLOAD (LOAD option) II: 17.5; 17.6; 20.10
(SYSOUT FILE) I: 12.8

INDEX

Sysout files I: 12.8; III: 24.25
SYSOUT.EXT (Variable) I: 12.8
SYSOUTCURSOR (Variable) I: 12.8; III: 30.15
SYSOUTDATE (Variable) I: 12.13; 12.8
SYSOUTFILE (Variable) I: 12.8
SYSOUTGAG (Variable) I: 12.9
SYSPRETTYFLG (Variable) I: 11.12; II: 13.13,42;

14.8-9; III: 25.10
SYSPROPS (Variable) I: 2.5; II: 17.38
SYSTEM (in record declarations) I: 8.15
System buffer III: 30.9; 30.11
SYSTEM ERROR (Error Message) II: 14.27
System version information I: 12.11
SYSTEMFONT (Font class) III: 27.32
(SYSTEMTYPE) I: 12.13

T
T (Litatom) I: 2.3
T (Macro Type) I: 10.23
T (PRINTOUT command) III: 25.26
T (Terminal stream) III: 25.1; 25.2
T FIXED (printed by DWIM) II: 20.6
(TAB POS MINSPACES FILE) III: 25.10
.TAB POS (PRINTOUT command) III: 25.25
.TABO POS (PRINTOUT command) III: 25.26
*TAIL * (stack blip) I: 11.16
TAIL (Variable) II: 20.12
Tail of a list I: 3.9
(TAILP X y) I: 3.9
(TAN X RADIANSFL G) I: 7.13
(TCOMPLFILES) II: 18.14; 18.15,18,21
(TCONC PTR X) I: 3.6; 3.7
TCP/IP III: 24.36
Teletype list structu re editor II: 16.1
(TEMPLATES LlTATOMl ... LlTATOMN) (File Package

Command) II: 17.39
TEMPLATES (File Package Type) II: 17.24
Templates in Masterscope II: 19.18
Terminal input/output III: 30.1; 25.3
Terminal streams III: 25.1; 25.2
Terminal syntax classes III: 30.5
Terminal tables III: 30.4
(TERMTABLEP TTBL) III: 30.5
(TERPRI FILE) III: 25.9
TEST (Editor Command) II: 16.65
TEST (in Masterscope template) II: 19.19
TEST (Masterscope Relation) II: 19.8
(TESTRELATION ITEM RELA TlON ITEM2 INVERTED)

II: 19.23

INDEX

INDEX

TESTRETURN (in Masterscope template) II: 19.19

(TEXTUREP OBJECn III: 27.7
Textures III: 27.6
THEREIS FORM (/.5. Operator) I: 9.11
(THIS.PROCESS) II: 23.4
THOSE (Masterscope Set Specification) II: 19.12
(@1 THRU @2) (Editor Command) II: 16.42

(@1 THRU) (Editor Command) II: 16.42; 16.44

THRU (/.S. Operator) I: 9.22
THRU (in event specification) II: 13.7
TICKS (Timer Unit) I: 12.16
(TIME TIMEX TlMEN TlMETYP) II: 22.8
Timestamps I: 10.9; II: 16.76
Time-sl ice of history list II: 13.31; 13.21
TIME.ZONES (Variable) I: 12.15
(TIMEALL TlMEFORM NUMBEROFTIMES TlMEWHA T

INTERPFLG -) II: 22.7
(TIMEREXPIRED? TIMER Clock Value. or. timerUnits)

I: 12.17
Timers I: 12.16
timerUnits UNITS (/.S. Operator) I: 12.18

(TIMES X1 X2'" XN) I: 7.3
TIMES (use with REDO) II: 13.8
\TimeZoneComp (Variable) I: 12.16
TITLE (Menu Field) III: 28.41
TITLE (Window Property) III: 28.33
(@1 TO @2) (Editor Command) II: 16.42

(@1 TO) (Editor Command) II: 16.42; 16.44

TO FORM (/.S. Operator) I: 9.14; 9.15
TO (in event specification) II: 13.7
TO SET (Masterscope Path Option) II: 19.16
TOO MANY ARGUMENTS (Error Message) I: 10.3;

II: 14.31
TOO MANY FILES OPEN (Error Message) II: 14.28
TOO MANY USER INTERRUPT CHARACTERS (Error

Message) II: 14.30
TOP (as argument to ADVISE) II: 15.11
TOP (inbacktrace) II: 14.9
Top margin III: 27.11
TOTOPFN (Window Property) III: 28.20
(TOTOPW WINDOW NOCALLTO TOPFNFL G) III:

28.20
(TRACE X) II: 15.5; 14.5,17; 15.1,7
TRACEREGION (Variable) II: 14.16
TRACEWINDOW (Variable) II: 14.16
Tracing functions 11:15.1
Transcript files III: 30.12
Translations in CLiSP II: 21.17

iNDEX 39

INDEX

(TRANSMIT.ETHERPACKET NOB PACKED III: 31.40

TREAT AS CLlSP? (Printed by DWIM) II: 21.15

TREATASCLlSPFLG (Variable) II: 21.16

TREATED AS CLiSP (Printed by DWIM) II: 21.16

(TRUE X 1." XN) I: 10.18

TRUSTING (DWIM mode) II: 20.4; 20.2; 21.4,6,16

(TRYNEXT PLSTENDFORM VAL) I: 11.21

TTY process III: 28.30

(TTY.PROCESSPROC) II: 23.12

(TTY.PROCESSP PROC) II: 23.12

TTY: (EditorCommand) II: 16.51; 15.6; 16.49,52,61

TTY: (Printed by Editor) II: 16.52

(TTYDISPLAYSTREAM DISPLAYSTREAM) III: 28.29

TTYENTRYFN (Process Property) II: 23.13; 23.3

TTYEXITFN (Process Property) II: 23.13; 23.3

(TTYIN PROMPT SPLST HELP OPTIONS ECHOTOFILE

TABS UNREADBUF RDTBL) III: 26.22; 26.29

(TTYIN.PRINTARGS FN ARGS ACTUALS ARGTYPE)

III: 26.34

(TTYIN.READ? = ARGS) III: 26.34

(TTYIN.SCRATCHFILE) III: 26.33

TTYIN? = FN (Variable) III: 26.34

TTYINAUTOCLOSEFLG (Variable) III: 26.33

TTYINBSFLG (Variable) III: 26.36

TTYINCOMMENTCHAR (Variable) III: 26.37; 26.24

TTYINCOMPLETEFLG (Variable) III: 26.37

{TTYINEDIT EXPRS WINDOW PRINTFN PROMPD

III: 26.32

TTYINEDITPROMPT (Variable) III: 26.29; 26.33

TTYINEDITWINDOW (Variable) III: 26.33

TTYINERRORSETFLG (Variable) III: 26.37

TTYINPRINTFN (Variable) III: 26.33

TTYINREAD (Function) III: 26.28

TTYINREADMACROS (Variable) III: 26.35

TTYINRESPONSES (Variable) III: 26.37; 26.38

TTY JUSTLENGTH (Variable) III: 26.27

TV (Prog. Asst. Command) III: 26.29

TYPE (File Attribute) III: 24.18

Type names of data types I: 8.20

TYPE·AHEAD (Prog. Asst. Command) II: 13.18

TYPE·IN? (Variable) II: 20.12

TYPE? (in record declarations) I: 8.14

TYPE? (Record Operator) I: 8.5; 8.8

TYPE? NOT IMPLEMENTED FOR THIS RECORD (Error

Message) I: 8.5

TYPEAHEADFLG (Variable) III: 26.36; 26.32

(TYPENAME DATUM) I: 8.20

(TYPENAMEP DATUM TYPE) I: 8.21

TYPERECORD (Record Type) I: 8.7

INDEX4Q

Types in Masterscope II: 19.13

(TYPESOF NAME POSSIBLETYPES IMPOSSIBLETYPES

SOURCE) II: 17.27

U
(U·CASEX) I: 2.10; II: 16.52

(U·CASEP X) I: 2.10

(UALPHORDER A B) I: 3.18

U B (Break Command) II: 14.6

UCASELST (Variable) III: 26.46

(UGLYVARS VAR1 ... VARN) (File Package

Command) II: 17.36; III: 25.18

UNABLE TO DWIMIFY (Error Message) II: 18.12

(UNADVISEX) II: 15.12;1511,13

UNADVISED (Printed by System) II: 15.9

UNARYOP (Property Name) II: 21.28

UNBLOCK (Editor Command) II: 16.65

UNBOUND ATOM (Error Message) I: 2.2-3; II: 14.31

Unboxing numbers I: 7.1

(UNBREAK X) II: 15.7; 15.5,8; 22.9

(UNBREAKO FN -) II: 15.7; 15.8

(FN UNBREAKABLE) (value of BREAK IN) II: 15.6

(UNBREAKIN FN) II: 15.8; 15.7

UNBROKEN (Printed by. ADVISE) II: 15.11

UNBROKEN (printed by compiler) II: 18.13

UNBROKEN (Printed by System) II: 15.9

UNDEFINED CAR OF FORM (Error Message) II:

14.31

UNDEFINED FUNCTION (Error Message) II: 14.31;

20.2

UNDEFINED OR ILLEGAL GO (Error Message) I: 9.8;

II: 14.28

UNDEFINED TAG (Error Message) I: 10.28; II: 18.23

UNDEFINED TAG, ASSEMBLE (Error Message) II:

18.23

UNDEFINED TAG, LAP (Error Message) II: 18.23

Undo (DEdit Command) II: 16.8

(U NDO EventSpec) (Editor Command) II: 16.66

UNDO (Editor Command) II: 16.64; 13.43

UNDO EventSpec : Xl'" XN (Prog. Asst. Command)

II: 13.14

UNDO EventSpec (Prog. Asst. Command) II: 13.13;

13.7,28,33,42-43; 20.3

Undoing II: 13.26; 13.44

Undoing DWIM corrections II: 13.14; 21.20

Undoing in the editor II: 16.64; 13.44; 16.29

Undoing out of order II: 13.27; 13.13

(UNDOLlSPX LINE) II: 13.42

(UNDOLlSPX1 EVENT FLG -) II: 13.42

INDEX

- UNDOLST (Variable) II: 16.64; 13.44; 16.50,65,72

undone (Printed by Editor) II: 16.64
undone (Printed by System) II: 13.13,42

(UNDONLSETQ UNDOFORM -) II: 13.30
(UNDOSAVE UNDOFORM HISTENTRY) II: 13.40;

13.34,41
#UNDOSAVES (Variable) II: 13.41
UNFIND (Variable) II: 16.28;

16.21,33-34,36-40,50,56,72
(UNIONXy) 1:3.11

(UNIONREGIONS REGION1 REGION2 ... REG/ONn)

III: 27.2
UNIX file names III: 24.6
UNLESS FORM (1.5. Operator) I: 9.16
(UNMARKASCHANGED NAME TYPE) II: 17.18
(UNPACK X FLG RDTBL) I: 2.9
(UNPACKFILENAME FILE -) III: 24.7
(UNPACKFILENAME.STRING FILENAME - --)

III: 24.7
(\UNQUEUE Q ITEM NOERRORFLG) (Function) III:

31.41
Unreading II: 13.38; 13.3
UNSAFE.TO.MODIFY.FNS (Variable) I: 10.10; II:

15.5; 17.26
UNSAFEMACROATOMS (Variable) I: 10.28

UNSAVED (printed by DWIM) II: 20.9-10
unsaved (Printed by Editor) II: 16.69
(UNSAVEDEF NAME TYPE -) II: 17.28; 20.9-10
(UNSAVEFNS -) II: 19.25
(UNSET NAME) II: 13.29; 13.28

UNTIL N(N a number) (1.5. Operator) I: 9.16
UNTIL FORM (1.5. Operator) I: 9.16

UNTIL (use with REDO) II: 13.8

untilDate DTS (1.5. Operator) I: 12.18
(UNTILMOUSESTATE BUTTONFORM INTERVAL)

(Macro) III: 30.18
UNUSUAL CDR ARG LIST (Error Message) II: 14.29
UP (EditorCommand) II: 16.13; 16.14,21,34
(UPDATECHANGED) II: 19.24

(UPDATEFILES --) II: 17.21
(UPDATEFN FN EVENIFVALID-) II: 19.24
Updating files II: 17.21

UPFINDFLG (Variable) II: 16.35; 16.21,23
Upper case characters I: 2.10
UPPERCASEARRAY (Variable) III: 25.22
UpperLeftCursor (Variable) III: 30.15
U pperRightCursor (Variable) III: 30.15
USE (Masterscope Relation) II: 19.8

INDEX

INDEX

USE EXPRS7 FORARGS7 AND .,. AND EXPRSN FOR

ARGSN IN EventSpec (Prog. Asst. Command)

II: 13.10
USE EXPRS FOR ARGS IN EventSpec (Prog. Asst

Command) II: 13.9
USE EXPRS IN EventSpec (Prog. Asst. Command) II:

13.9; 13.10; 13.32-33

USE AS A CLISP WORD (Masterscope Relation) II:

19.9
USE AS A FIELD (MasterscopeRelation) II: 19.9
USE AS A PROPERTY NAME (Masterscope Relation)

II: 19.9

USE AS A RECORD (Masterscope Relation) II: 19.9
USE-ARGS (History List Property) II: 13.33
USED AS ARG TO NUMBER FN? (Error Message) II:

18.23

USED BLKAPPL Y WHEN NOT APPLICABLE (Error

Message) II: 18.22
USEDFREE (CLISP declaration) II: 18.12; 2 L 19
USEMAPFLG (Variable) II: 17.56
USER BREAK (Error Message) ,,: 14.31

User data types I: 8.20
Userdefined printing III: 25.16

Userinitfile I: 12.1
User interrupt characters III: 30.3
(USERDATATYPES) I: 8.20
(USEREXEC LlSPXID LlSPXXMACROS LlSPXXUSERFN)

II: 13.35
USERFONT (Font class) II I: 27.32
USERGREETFI LES (Variable) I: 12.2

(USERLlSPXPRINT X FILE Z NODOFLG) II: 13.25

(USERMACROS LlTATOM7 ... L1TATOMN) (File

Package Command) II: 17.34; 16.64,66

USERMACROS (File Package Type) II: 17.24
USERMACROS (Variable) II: 16.64; 17.34
(USERNAME FLG STRPTR PRESERVECASE) III: 24.40
USERRECORDTYPE (Property Name) I: 8.15
USERWORDS (Variable) II: 20.17; 16.68,71;

20.18,21,23-24
USING (in CREATE form) I: 8.4

usingTimer TIMER (1.5. Operator) I: 12.18

V

$$VAL (Variable) I: 9.12
VALUE (Property Name) II: 17.28; 13.28-29
!VALUE (Variable) II: 14.5
Value cell of a (Litatom) I: 2.4; 11.1
Valueofabreak II: 14.5

INDEX_41

INDEX

VALUE OUT OF RANGE EXPT (Error Message) I:

7.13
VALUECOMMANDFN (Window Property) III: 26.8

(VALUEOF LINE) II: 13.19; 13.34

Variable bindings I: 11.1; 10.19; II: 17.54

Variable bindings in stack frames I: 11.6
(VARIABLESPOS) I: 11.7; II: 14.10

(VARS VAR1 ... VARN) (File Package Command) II:

17.35

VARS (File Package Type) II: 17.24

VARTYPE (Property Name) II: 17.22; 17.18

VAXMACRO (Property Name) I: 10.21
VERSION (File name field) III: 24.6

Version information I: 12.11
Version recognition of files III: 24.11

VertScrollCursor (Variable) III: 30.15

VertThumbCursor (Variable) III: 30.15

Video display screens I: 12.4; III: 30.22

Video taping from the screen III: 30.23

(VIDEOCOLOR BLACKFLG) III: 30.23
(VIDEORATE TYPE) III: 30.23
(VIRGINFN FN FLG) II: 15.8

Virtual memory I: 12.6

Virtual memory file I: 12.6; III: 24.21,23

(VMEM.PURE.STATE X) I: 12.10

(VMEMSIZE) I: 12.11

(VOLUMES) III: 24.23

(VOLUMESIZE VOLUMENAME -) III: 24.23

W

(WAIT.FOR.TTY MSECS NEEDWINDO'N) II: 23.12

WAITBEFORESCROLLTIME (Variable) III: 28.24

WAITBETWEENSCROLLTIME (Variable) III: 28.24
(WAITFORINPUT FILE) III: 25.6

WAITINGCURSOR (Variable) III: 30.15

(WAKE.PROCESS PROC STATUS) II: 23.5

WBorder (Variable) III: 28.14,32-33

(WBREAK ONFLG) II: 14.15
WEIGHT (Font property) III: 27.27

(WFROMDS DISPLAYSTREAM DONTCREATE) III:

27.25

(WFROMMENU MENU) III: 28.42
WHE~ :-'JRM (1.5. Operator) I: 9.15

WHENCHANGED (File Package Type Property) II:
17.31

(WHENCLOSE FILE PROP1 VAL 1 ... PROPN VALN)

III: 24.20

(WHENCOPIEDFN IMAGEOBJ
TARGETWINDOWSTREAM

INDEX.42

SOURCEHOSTSTREAM TARGETHOSTSTREAM)

(lMAGEFNS Method) III: 27.39

(WHENDELETEDFN IMAGEOBJ

TARGETWINDOWSTREAM) (lMAGEFNS

Method) III: 27.39

WHENFILED (File Package Type Property) 1\: 17.32

WHENHELDFN (Menu Field) III: 28.40

(WHENINSERTEDFN IMAGEOBJ
TARGETWINDOWSTREAM
SOURCEHOSTSTREAM TARGETHOSTSTREAM)

(lMAGEFNS Method) III: 27.39
(WHENMOVEDFN IMAGEOBJ

TARGETWINDOWSTREAM
SOURCEHOSTSTREAM TARGETHOSTSTREAM)

(lMAGEFNS Method) III: 27.38

(WHENOPERATEDONFN IMAGEOBJ
WINDOWSTREAM HOWOPERA TEDON
SELECTION HOSTSTREAM) (lMAGEFNS

Method) III: 27.39
WHENSELECTEDFN (Menu Field) III: 28.40

WHENUNFILED (File Package Type Property) II:

17.32

WHENUNHELDFN (Menu Field) III: 28.40

WHERE (1.5. Operator) I: 9.22

WHEREATTACHED (Window Property) III: 28.54

(WHEREIS NAME TYPE FILES FN) II: 17.14

(WHICHW X y) III: 28.32
WHILE FORM (1.5. Operator) I: 9.16

WHILE (use with REDO) II: 13.8

WHITESHADE (Variable) III: 27.7

&WHOLE (DEFMACRO keyword) I: 10.27

WHOLEDISPLA Y (Variable) III: 30.22; 27.2

(WIDEPAPER FLG) III: 26.48

WIDTH (Window Property) III: 28.34

(WIDTHIFWINDOW INTERIORWIDTH BORDER) III:

28.32

WINDOW (Process Property) II: 23.3

Window command menu III: 28.3

Window has no REPAINTFN. Can't redisplay.

(printed in prompt window) III: 28.16
Window menu III: 28.3

Window properties III: 28.13
Window system III: 28.2; 28.1

(WINDOWADDPROP WINDOW PROP ITEMTOADD

FIRSTFLG) III: 28.13

WINDOWBACKGROUNDSHADE (Variable) III:

30.23
(WINDOWDELPROP WINDOW PROP

ITEMTODELETE) III: 28.13

INDEX

WINDOWENTRYFN (Window Property) II: 23.13;

III: 28.27

WindowMenu (Variable) III: 28.8

WindowMenuCommands (Variable) III: 28.8

(WINDOWP X) III: 28.14

(WINDOWPROP WINDOW PROP NEWVALUE) III:

28.13

(WINDOWREGION WINDOW COM) III: 28.48

Windows III: 28.12; 28.1

(WINDOWSIZE WINDOW) III: 28.48

WindowTitleDisplayStream (Variable) III: 28.14

WINDOWTITLESHADE (Variable) III: 28.33

WINDOWTITLESHADE (Window Property) III:

28.33

(WINDOWWORLD FLAG) III: 28.1

WITH (in REPLACE editor command) II: 16.33

WITH (in SURROUND editor command) II: 16.37

WITH (Record Operator) I: 8.5

WITH (in REPLACE command) (in Editor) II: 16.33

WITH-RESOURCE (Macro) I: 12.23

{WITH-RESOURCES (RESOURCE 1 RESOURCE2 ...)

FORM1 FORM2 ...) (Macro) I: 12.23

(WITH.FAST.MONITOR LOCK FORM1 ... FORMN)

(Macro) II: 23.8

(WITH.MONITOR LOCK FORM1'" FORMN) (Macro)

II: 23.8

WORD (as a field specification) I: 8.21

WORD (record field type) I: 8.10

WORDDELETE (syntax class) III: 30.6

Working set II: 22.1

WRITEDATE (File Attribute) III: 24.18

(WRITEFILE X FILE) III: 25.33

(WRITEIMAGEOBJ IMAGEOBJ STREAM) III: 27.40

x
X offset III: 27.24

XIPIGNORETYPES (Variable) III: 31.38

XIPONL YTYPES (Variable) III: 31.38

XIPPRINTMACROS (Variable) III: 31.38

XIPTRACE (Function) III: 31.38

XIPTRACEFILE (Variable) III: 31.38

XIPTRACEFLG (Variable) III: 31.38

XKERN (lMAGEBOX Field) III: 27.37

XPOI NTE R (record field type) I: 8.10

XSIZE (lMAGEBOX Field) III: 27.37

(XTR . @) (Editor Command) II: 16.35

Y

Yoffset III: 27.24

INDEX

YDESC (lMAGEBOX Field) III: 27.37

Your virtual memory backing file is almost fulL ..

(Error Message) I: 12.11

YSIZE (lMAGEBOX Field) III: 27.37

Z

(ZEROX1",XN) /:10.18

(ZEROP X) I: 7.4

[,] inserted by PRETTYPRINT III: 26.47

\

(\ LlTATOM) (Editor Command) II: 16.28

\ (Editor Command) II: 16.28; 16.3 3

\ (in event address) \I: 13.6

\ functions I: 10.10

(\ADD.PACKET.FIL TER FIL TER) III: 31.40

(\ALLOCATE.ETHERPACKET) III: 31.39

\BeginDST (Variable) I: 12.16

INDEX

(\CHECKSUM BASE NWORDS INITSUM) III: 31.40

(\DEL.PACKET.FILTER FILTER) III: 31.40

(\DEQUEU EO) III: 31.41

\EndDST (Variable) I: 12.16

(\ENQUEUE 0 ITEM) III: 31.41

\ETHERTIMEOUT (Variable) III: 31.38; 31.30

\FILEOUTCHARFN (Function) III: 27.48

\FTPAVAILABLE (Variable) III: 24.36

\lASTVMEMFILEPAGE (Variable) I: 12.11

\lOCALNDBS (Variable) III: 31.39

(\ONQUEUE ITEM 0) III: 31.41

\P (Editor Command) II: 16.28; 16.49

\PACKET.PRINTERS (Variable) III: 31.41

(\QUEUELENGTH 0) III: 31.41

{\RELEASE.ETHERPACKET EPKn III: 31.39

\TimeZoneComp (Variable) I: 12.16

(\UNQUEUE 0 ITEM NOERRORFLG) ill: 31.41

] (use in input) II: 13.36

t
t (Break Command) II: 14.6; 14.1 7

t (Break Window Command) II: 14.3

t (CLISP Operator) II: 21.7

t (Editor Command) II: 16.16

t (use in comments) III: 26.46

+-
+- (CLISP Operator) II: 21.9

INDEX .43

INDEX

(+-PATTERN) (EditorCommand) II: 16.25

+- (Editor Command) II: 16.25; 16.27

+- (in event address) II: 13.6

+- (in pattern matching) I: 12.28

+- (in record declarations) I: 8.14

+- (Printed by System) II: 14.2

+-+- (Editor Command) II: 16.28

, (backquote) (Read Macro) III: 25.42

I
I (change character) II: 16.30; III: 26.49

I (Read Macro) I: 7.4; III: 25.43

- (CLlSPOperator) II: 21.11

- (in pattern matching) I: 12.27

! (in Masterscope template) II: 19.20

! (inPAcommands) II: 13.9

! (in pattern matching) I: 12.27-28

! (use with <,> inCLlSP) 11:21.10

!! (use with <,> in CLlSP) II: 21.10

!O (EditorCommand) II: 16.15

!E (Editor Command) II: 16.55; 13.43

!EVAL (Break Command) II: 14.6

!EVAL (Break Window Command) II: 14.3

!F (EditorCommand) II: 16.55; 13.43

!GO (Break Command) II: 14.6

!N (Editor Command) II: 16.55; 13.43

! NX (Editor Command) II: 16.16; 16.17

!OK (Break Command) II: 14.6

!Undo (DEdit Command) II: 16.8

!UNDO (EditorCommand) II: 16.64

!VALUE (Variable) II: 14.5; 14.16; 15.9-10

II (string delimiter) I: 4.1; III: 25.3-4

'"' (use in AsKUSER) III: 26.20

II < c.r. > II (in history commands) II: 13.32

#N (N a number) (in pattern matching) I: 12.29

FORM (PRINTOUT command) III: 25.30

(## COM1 COM2 ... COMN) II: 16.59; 16.24

(in INSERT, REPLACE, and CHANGE commands)
II: 16.34

INDEX 44

(Printed by System) III: 30.10

#CAREFULCOLUMNS (Variable) III: 26.47

#RPARS (Variable) III: 26.47

#SPELLINGS 1 (Variable) II: 20.18

#SPELLlNGS2 (Variable) II: 20.18

#SPELLlNGS3 (Variable) II: 20.18

#UNDOSAVES (Variable) II: 13.41; I ~._

#USERWORDS (Variable) II: 20.18

$
$ X FOR YIN EventSpec (Prog. Asst. Command) II:

13.11

$ Y-> XIN Eventspec (Prog. Asst. Command) II:

13.11

$ YTO X IN Eventspec (Prog. Asst. Command) II:

13.11

$ Y = XIN Eventspec (Prog. Asst. Command) II:

13.11

$ Y XIN EventSpec (Prog. Asst. Command) II: 13.11

$ (dollar) (in pattern matching) I: 12.27

$ (escape) (in CLlSP) II: 21.10-11

$ (escape) (in Edit Pattern) II: 16.18

$ (escape) (in Editor) II: 16.45-46

$ (escape) (in spelling correction) II: 20.15; 20.22

$ (escape) (Prog. Asst. Command) II: 13.11

$ (escape) (use in ASKUSER) III: 26.19

$$ (escape, escape) (in Edit Pattern) II: 16.18

$$ (escape, escape) (use in AsKUSER) III: 26.20

$$EXTREM E (Variable) I: 9.12

$$VAL (Variable) I: 9.12; 9.19

$1 (in pattern matching) I: 12.26

$GO (escape-GO) (TYPE-AHEAD command) II:

13.18

$Q (escape-Q) (TYPE-AHEAD command) II: 13.18
$STOP (escape-STOP) (TYPE-AHEAD command) II:

13.18

%
% I: 2.1; 4.1; III: 25.3; 25.4,38; 30.11

% (use in comments) III: 26.46

% % (use in comments) III: 26.46

&

& (in Edit Pattern) II: 16.18

& (in MBD command) 11:16.36-37

& (in pattern matching) I: 12.26

& (Printed by System) III: 25.12

& (use in ASK USER) III: 26.19

INDEX

&ALLOW·OTHER·KEYS (DEFMACRO keyword) I:

10.26
&AUX (DEFMACRO keyword) I: 10.26

&BODY (DEFMACRO keyword) I: 10.25

&KEY (DEFMACRO keyword) I: 10.25

&OPTIONAL (DEFMACRO keyword) I: 10.25

&REST (DEFMACRO keyword) I: 10.25

&Undo (DEdit Command) II: 16.8

&WHOLE (DEFMACRO keyword) I: 10.27

, (CLISP Operator) II: 21.11
, (in DWIM) II: 20.8

, (in pattern matching) I: 12.26

'LIST (Masterscope Set Specification) II: 19.11

'ATOM (Masterscope Set Specification) II: 19.10
, (Read macro) I: 10.12; III: 25.42

(in (DEdit Command) II: 16.7

(out (DEdit Command) II: 16.8

o I: 3.3
o (DEdit Command) II: 16.7

o out (DEdit Command) II: 16.7

) in (DEdit Command) II: 16.7
) out (DEdit Command) II: 16.8

*
* (as a prettyprint macro) III: 26.44

* (as a read macro) III: 26.44

* (CLlSPOperator) II: 21.7
(* . X) (Editor Command) II: 16.56

(* . TEXn (File Package Command) II: 17.40

* (Function) III: 26.42
* (In File Group) III: 24.33

* (in file package command) II: 17.44

* (in pattern matching) I: 12.26

* (use in comments) III: 26.42; 26.43

*** note: FILENAME dated DATE isn't current

version; FILENAME dated DATE is. (printed by

EDITLOADFNS?) II: 16.74
***** (in compiler error messages) II: 18.22
**BREAK* * (in backtrace) II: 14.9

COMMENT (printed by editor) II: 16.48

COMMENT (printed by system) III: 26.43

COMMENTFLG (Variable) I: 12.3; II: 16.48; III:

26.43

INDEX

DEALLOC (data type name) I: 8.21; II: 224

EDITOR (inbacktrace) II: 14.9
**TOP* * (in back trace) II: 14.9

ANY (in edit pattern) II: 16.18

INDEX

ARCHIVE (Historylistproperty) II: 13.33; 13.16

* ARGN (Stack blip) I: 11.15

ARGVAL (stack blip) I: 11.16

CONTEXT (history list property) II: 13.33

*ERROR * (history list property) II: 13.33

FN (stack blip) I: 11.16
FORM (stack blip) I: 11.16

GROUP (history list property) II: 13.33

HISTORY (history list property) II: 13.33

L1SPXPRINT (historylistproperty) II: 13.33

PRINT (history list property) II: 13.33

TAIL (stack blip) I: 11.16

+
+ (CLlSPOperator) 11:21.7

, (PRINTOUT command) III: 25.26

" (PRINTOUT command) III: 25.26

", (PRINTOUT command) III: 25.26

• (CLISP Operator) II: 21.7
•• (in Edit Pattern) II: 16.19

•• (in pattern matching) I: 12.27

•• (PrintedbySystem) III: 25.12

· > EXPR (Break Command) II: 14.11

· > (in pattern ma tching) I: 12.30

-> (printed by DWIM) II: 20.4; 20.2-3,6

-> (printed by editor) II: 16.46

· (CLISP Operator) II: 21.9
· (in a floating point number) I: 7.11

· (in a list) I: 3.3

· (in Masterscope) II: 19.2

· (in pattern matching) I: 12.28

· (printed by Masterscope) II: 19.2
PA TTERN .. @ (Editor Command) II: 16.27
.. (in Edit Pattern) II: 16.19
.. TEMPLATE (in Masterscope template) II: 19.20
... (in Edit Pattern) II: 16.19-20

... (printed by DWIM) II: 20.3,5

... (Printed by Editor) II: 16.14

... (printed during input) II: 13.37; 13.5

INDEX 45

INDEX

... VARS (Prog. Asst. Command) II: 13.10; 13.33

... ARGS (history list property) II: 13.33

.BASE (PRINTOUT command) III: 25.27

.CENTER POS EXPR (PRINTOUT command) III: 25.29

.CENTER2 POS EXPR (PRINTOUT command) III:

25.29

.FFORMA T NUMBER (PRINTOUT command) III:

25.30

.FONT FONTSPEC (PRINTOUT command) III: 25.27

.FR POS EXPR (PRINTOUT command) III: 25.29

.FR2 POS EXPR (PRINTOUT command) III: 25.29

.I FORMA T NUMBER (PRINTOUT command) III:

25.30

.N FORMAT NUMBER (PRINTOUTcommand) III:

25.30

.P2 THING (PRINTOUT command) III: 25.28

.PAGE (PRINTOUT command) III: 25.26

.PARA LMARG RMARG LIST (PRINTOUT command)

III: 25.28

.PARA2 LMARG RMARG LIST (PRINTOUT command)

III: 25.28

.PPF THING (PRINTOUT command) III: 25.28

.PPFTL THING (PRINTOUT command) III: 25.28

.PPV THING (PRINTOUT command) III: 25.28

.PPVTL THING (PRINTOUT command) III: 25.28

.SKIP LINES (PRINTOUT command) III: 25.26

:SP DISTANCE (PRINTOUT command) III: 25.26

.SUB (PRINTOUT command) III: 25.27

.SUP (PRINTOUT command) III: 25.27

.TAB POS (PRINTOUT command) III: 25.25

.TASO POS (PRINTOUT command) III: 25.26

I (CLlSPOperator) II: 21.7

I (use with @ break command) II: 14.7

I functions II: 13.26; 13.27,41

IFNS (Variable) II: 13.26

IMAPCON (Function) II: 21.13

IMAPCONC (Function) II: 21.13

INCONC (Function) II: 21.13

INCONC1 (Function) II: 21.13

IREPLACE (Record Operator) I: 8.3

IRPLACA (Function) II: 21.13

IRPLACD (Function) II: 21.13

IRPLNODE (Function) II: 13.40

IRPLNODE2 (Function) II: 13.40

o
o (EditorCommand) II: 16.15

INDEX.46

o (instead of right parenthesis) II: 20.5; 20.1,8,10

1

10MACRO (Property Name) I: 10.21

2
(2ND. @) (Editor Command) II: 16.24

3
32MSADDRESSASLE (Function) II: 22.5

(3ND . @) (Editor Command) II: 16.25

7
7 (instead of') II: 20.9

8
8 (instead of left parenthesis) II: 16.67

8044 (Printer type) III: 29.5

9

9 (instead of left parenthesis) II: 20.5; 20.1,8,10-11

(CLISP Operator) II: 21.9

(: El'" EM) (EditorCommand) II: 16.32

(:) (Editor Command) II: 16.32

: (Printed by System) II: 14.1

.. (CLISP Operator) II: 21.9

; FORM (Prog. Asst. Command) II: 13.18

<
< (CLlSPOperator) II: 21.10

<,> (use in CLlSP) II: 21.10

=
= FORM (Break Command) II: 14.10

= (CLISP Operator) II: 21.8

= (in event address) II: 13.6

= (in pattern matching) I: 12.26

= (printed by DWIM) II: 20.5

= (use with @break command) II: 14.7

= = (in Edit Patter,:.' II: 16.19

= = (in pattern matching) I: 12.26

= > (in pattern matching) I: 12.30

= E (Printed by Editor) II: 16.67

>
> (CLlSPOperator) II: 21.10

INDEX

1
1 (Editor Command) ,,: 16.48
1 (Litatom) ,: 3.11

1 (printed by DWIM) II: 20.4-5

1 (printed by Masterscope) II: 19.18

1 (Read Macro) II: 14.8; ",: 25.43
1 = (Break Command) II: 14.7
1 = (Break Window Command) II: 14.3
1 = (Editor Command) II: 16.48

1 = (in ITYIN) ",: 26.33
11 EventSpec (Prog. Asst. Command) ,,: 13.13;

13.33
1ACTIVATEFlG (Variable) ",: 26.36; 26.23

1Undo (DEdit Command) II: 16.8

@

@ (Break Command) II: 14.6; 14.12

@ (in event specification) II: 13.39

(@ EXPRFORM TEMPLA TEFORM) (in Masterscope

template) II: 19.21
@ (in pattern matching) ,: 12.26,28

@ (location specification in editor) II: 16.24

@ PREDICA TE (Masterscope Set Specification) II:

19.11
@ (use with @break command) II: 14.7

@@ (in event specification) II: 13.8; 13.16,39

INDEX

INDEX

INDEX 47

:NDEX

[This page intentionally left blank]

INDEX 48 INDEX

	0001
	0002
	00_toc_01
	00_toc_02
	00_toc_03
	00_toc_04
	00_toc_05
	00_toc_06
	13-001
	13-002
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	13-35
	13-36
	13-37
	13-38
	13-39
	13-40
	13-41
	13-42
	13-43
	13-44
	14-001
	14-002
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	15-001
	15-002
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	16-001
	16-002
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	16-23
	16-24
	16-25
	16-26
	16-27
	16-28
	16-29
	16-30
	16-31
	16-32
	16-33
	16-34
	16-35
	16-36
	16-37
	16-38
	16-39
	16-40
	16-41
	16-42
	16-43
	16-44
	16-45
	16-46
	16-47
	16-48
	16-49
	16-50
	16-51
	16-52
	16-53
	16-54
	16-55
	16-56
	16-57
	16-58
	16-59
	16-60
	16-61
	16-62
	16-63
	16-64
	16-65
	16-66
	16-67
	16-68
	16-69
	16-70
	16-71
	16-72
	16-73
	16-74
	16-75
	16-76
	17-001
	17-002
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	17-19
	17-20
	17-21
	17-22
	17-23
	17-24
	17-25
	17-26
	17-27
	17-28
	17-29
	17-30
	17-31
	17-32
	17-33
	17-34
	17-35
	17-36
	17-37
	17-38
	17-39
	17-40
	17-41
	17-42
	17-43
	17-44
	17-45
	17-46
	17-47
	17-48
	17-49
	17-50
	17-51
	17-52
	17-53
	17-54
	17-55
	17-56
	18-001
	18-002
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	18-12
	18-13
	18-14
	18-15
	18-16
	18-17
	18-18
	18-19
	18-20
	18-21
	18-22
	18-23
	18-24
	19-001
	19-002
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	19-17
	19-18
	19-19
	19-20
	19-21
	19-22
	19-23
	19-24
	19-25
	19-26
	20-001
	20-002
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	20-15
	20-16
	20-17
	20-18
	20-19
	20-20
	20-21
	20-22
	20-23
	20-24
	21-001
	21-002
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	21-09
	21-10
	21-11
	21-12
	21-13
	21-14
	21-15
	21-16
	21-17
	21-18
	21-19
	21-20
	21-21
	21-22
	21-23
	21-24
	21-25
	21-26
	21-27
	21-28
	21-29
	21-30
	22-001
	22-002
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	22-09
	22-10
	22-11
	22-12
	22-13
	22-14
	23-001
	23-002
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	23-07
	23-08
	23-09
	23-10
	23-11
	23-12
	23-13
	23-14
	23-15
	23-16
	23-17
	23-18
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	index-11
	index-12
	index-13
	index-14
	index-15
	index-16
	index-17
	index-18
	index-19
	index-20
	index-21
	index-22
	index-23
	index-24
	index-25
	index-26
	index-27
	index-28
	index-29
	index-30
	index-31
	index-32
	index-33
	index-34
	index-35
	index-36
	index-37
	index-38
	index-39
	index-40
	index-41
	index-42
	index-43
	index-44
	index-45
	index-46
	index-47
	index-48

