Genéra 7.2
Patch Notes

symbolics™

Cambridge, Massachusetts

Genera 7.2 Patch Notes
999059

February 1988

This document corresponds to Genera 7.2 and later releases.

The software, data, and information contained herein are proprietary to, and comprise
valuable trade secrets of, Symbolics, Inc. They are given in confidence by Symbolics
pursuant to a written license agreement, and may be used, copied, transmitted, and
stored only in accordance with the terms of such license. This document may not be
reproduced in whole or in part without the prior written consent of Symbolics, Inc.

Copyright © 1988, 1987, 1986, 1985, 1984, 1983, 1982, 1981, 1980 Symbolics, Inc. All
Rights Reserved.

Portions of font library Copyright © 1984 Bitstream Inc. All Rights Reserved.

Portions Copyright © 1980 Massachusetts Institute of Technology. All Rights Reserved.

Symbolics, Symbolics 3600, Symbolics 3630, Symbolics 3640, Wheels, Showcase,
SmartStore, Frame-Up, Ivory, Symbolics FORTRAN, Symbolics Pascal,
Symbolics C, and COMMON LISP MACSYMA are trademarks of Symbolics, Inc.

Genera®, Symbolics 361 0®, Symbolics 3620®, Symbolics 3645®,

Symbolics 3650®, Symbolics 3670®, symbolics 3675®,

Symbolics Common Lisp®, Symbolics-Lisp®, Zetalisp®, Dynamic Windows®,
Document Examiner®, Firewall®, SemantiCue®, S-DYNAMICS®, S-GEOMETRY®,
S-PAINT®, S-RENDER®, MACSYMA®, LISP MACHINE MACSYMA®,
CL-MACSYMA®, MACSYMA Newsletter® and Your Next Step in Computing® are
registered trademarks of Symbolics, Inc.

VAX and VMS are trademarks of the Digital Equipment Corporation.
UNIX is a trademark of AT&T Bell Laboratories.

Restricted Rights Legend

Use, duplication, and disclosure by the Government are subjsct to restrictions as set
forth in subdivision (c)(1)(ii) of the Rights in Trademark Data and Computer Software
Clause at FAR 52.227-7013.

Symbolics, Inc.
11 Cambridge Center
Cambridge, MA 02142

Text written and produced on Symbolics 3600™-family computers by the Documentation
Group of Symbolics, Inc.

Text masters produced on Symbolics 3600™-family computers using Symbolics
Concordia™, a system for supporting document development, and printed on Symbolics
LGP2 Laser Graphics Printers.

Printed in the United States of America.

Printing year and number: 908988543 2 1
gy N

iif

February 1988

Table of Contents

1 Genera 7.2: Introduction and Highlights

2 Overview of Genera 7.2

2.1 New Hardware Supported by Genera 7.2

2.2 Compatibility of Genera 7.2 with Previous Releases
2.2.1 Compatibility Terminology
2.2.2 Upward and Downward Compatibility in Genera 7.2
2.2.3 Compatibility Considerations in Genera 7.0
2.2.4 Compatibility Considerations in Genera 7.2

2.3 The Size of the Genera 7.2 World
2.3.1 Contribution of Code to the Size of the World
2.3.2 Consumers of Space in the World
2.3.3 Clearing Space After Installation

2.4 More Sources Available in Genera 7.2

2.5 New Directory for Unsupported Software

3 Changes to the Lisp Language in Genera 7.2

3.1 Improvements to Lisp in Genera 7.2
3.1.1 New Array Function in Genera 7.2
3.1.2 New Bit-Vector Functions in Genera 7.2
3.1.3 New Number Constants in Genera 7.2
3.1.4 New Number Functions in Genera 7.2
3.1.5 New String Function in Genera 7.2
3.1.6 New Table Functions in Genera 7.2
3.1.7 New Resource Conditions in Genera 7.2
3.1.8 New defstruct Option
3.1.9 dotimes and zl:dotimes Fixed
3.1.10 Improvements to Characters in Genera 7.2
3.1.11 Improvements to List Function in Genera 7.2
3.1.12 Improvement to Number Function in Genera 7.2
3.1.13 Improvements to Sequence Functions in Genera 7.2
3.1.14 Improvements to String Functions in Genera 7.2
3.1.15 Improvements to the Reader Macros #+ and #-

3.1.16 Genera 7.2 Allows Printing of TINY Character Styles

3.2 Incompatible Changes to Lisp in Genera 7.2
3.2.1 Changes in String Functions
3.2.2 make-hash-table Incompatibility

Page

FEEREo®oom-10 0o oo

SH

13

13
13
13
13
14
15
15
15
15
16
16
16
16
16
16
16
17
17
17
17

iv

February 1988

3.2.3 Hash Tables and :test

3.2.4 char and schar Functions Changed
3.2.5 once-only Requires Keyword

3.2.6 :allow-other-keys Is No Longer Valid

4 Changes to Flavors in Genera 7.2

4.1 New Features of Flavors in Genera 7.2
4.1.1 New Flavor Macro: flavor:with-instance-environment
4.2 Improvements to Flavors in Genera 7.2
4.2.1 Flavor Constructors Can Use &allow-other-keys in 7.2
4.2.2 New :Using Instance Variables Option for Show Flavor
Methods
4.2.3 compile-flavor-methods Forms Can Be Interpreted in 7.2
4.2.4 Changed Function Specs for Whoppers in 7.2
4.2.5 Clarifications to Flavors Documentation in 7.2

5 Changes to Zmacs in Genera 7.2

5.1 Incompatible Changes to Zmacs in Genera 7.2
5.2 Improvements to Zmacs in Genera 7.2
5.2.1 New Speller Features in Genera 7.2
5.2.2 Fix for Saving a Buffer to a Nonexistent Directory
5.2.3 Fixes to List Callers
5.2.4 Source Compare Can Now Ignore Whitespace or Case and
Style
5.3 New Features in Zmacs in Genera 7.2
5.3.1 Multiple Zmacs Processes New In Genera 7.2
5.3.2 New Zwei Undo Facility
5.4 Improvements to Zmacs Documentation in Genera 7.2
5.4.1 Indentation

6 Changes to Utilities in Genera 7.2

6.1 New Features in Utilities in Genera 7.2
6.1.1 New Metering Interface in Genera 7.2
6.1.2 New Display Debugger in Genera 7.2
6.1.3 The Garbage Collector Now Has Progress Notes
6.2 Improvements to Utilities in Genera 7.2
6.2.1 Improvements to the Document Examiner in Genera 7.2
6.2.2 Improvements to the Garbage Collector
6.2.3 Improvements to the System Construction Tool
6.2.4 Improvements to the Compiler
6.3 Incompatible Changes to Utilities in Genera 7.2
6.3.1 Incompatible Change to sys:meter-function-entry and
sys:meter-function-exit
6.3.2 Document Examiner Find Commands Replaced

7 Changes to the Debugger in Genera 7.2

18
19
19
19

20

20
20
20
20
20

20
20
21

22

22
23
23
25
25

27
27
27
36
36

44
44

86
89
90
90
93
95
98
100
100

101

102

February 1988

7.1 New Features in the Debugger in Genera 7.2
7.1.1 New Features for Advice
7.1.2 New Display Debugger Interface
7.1.3 New Debugger Proceed Menu in Genera 7.2
7.1.4 Changing the Character Style of the Bug Banner is Now
Possible
7.2 Incompatible Changes to the Debugger in Genera 7.2
7.2.1 dgb:fun Code Change

8 Changes to the User Interface in Genera 7.2

8.1 New Features in the User Interface in Genera 7.2
8.1.1 Free Standing Mail Buffers Are Now Retrievable
8.1.2 You Can Now Customize Your SELECT Key Assignments
8.1.3 Miscellaneous New User Interface Features
8.1.4 New Facilities in Genera 7.2
8.1.5 Improvements to User Interface Documentation
8.2 Incompatible Changes to the User Interface in Genera 7.2
8.3 User Interface Bugs Fixed in Release 7.2
8.4 The Genera 7.2 Graphics Substrate
8.4.1 Compatibility of New Graphics Substrate
8.4.2 Definition of a Generic Graphics Substrate
8.4.3 The New Graphics Imaging Model
8.4.4 Graphics Output to Windows
8.4.5 Performance of Graphics Output
8.4.6 Choosing a Technique for Graphics Output
8.4.7 Graphics Output Coordinate Systems
8.4.8 Details of Scan Conversion
8.4.9 Incompatible Calling Sequence of graphics:draw-ellipse
8.4.10 Clipping of Thin Lines
8.4.11 Erasing versus Deleting versus Painting White
8.4.12 Text as Graphics
8.4.13 Outlining with Thin Lines

9 Changes to Zmail in Genera 7.2

9.1 Incompatible Changes to Zmail in Genera 7.2
9.2 New Features in Zmail in Genera 7.2
9.21 New Commands Added to Mark Survey
9.2.2 Zmail Now Knows About c-¥
9.2.3 New Zmail Profile Options
9.2.4 New or Renamed Zmail Commands
9.2.5 Zwei Undo Facility Available From Zmail
9.3 Improvements to Zmail in Genera 7.2
9.3.1 Improvements to Zwei:preload-zmail
9.3.2 The End Key Can Now Be Customized in Zmail
9.3.3 Destructive Commands Now Ask for Confirmation

9.3.4 Converting Mail Files to Kbin Format Now Renames Them

102
102
105
108
109

110
110

111

111
11
111
111
112
113
114
116
116
117
117
118
118
120
127
128
128
132
133
133
134
134

136

136
136
136
136
138
141
141
142
142
142
142
143

vi

February 1988

9.3.5 Miscellaneous Improvements to Zmail

10 Changes to Files and Streams in Genera 7.2

10.1 New Features in Files and Streams in Genera 7.2
10.1.1 New Coroutine Stream Function for Genera 7.2
10.2 Incompatible Changes to Files and Streams in Genera 7.2
10.2.1 Obsolete Parameters for si:make-serial-stream
10.2.2 Lozenge Character
10.3 Compatibility Note: Files and Streams
10.3.1 Compatibility Note: open

11 Changes to Networks in Genera 7.2

11.1 Incompatible Changes to Networks in Genera 7.2
11.1.1 zl:site-name is Obsolete in Genera 7.2
11.2 New Features in Networks in Genera 7.2
11.3 Improvements to Networks in Genera 7.2
11.3.1 Terminal Program Offers Some Dynamic Window Features
in Genera 7.2
11.3.2 Terminal Program Offers Connection Keywords in Genera
7.2
11.4 New Documentation for the Domain System
11.4.1 The Internet Domain System

12 Changes to the FEP in Genera 7.2

12.1 Incompatible Changes to the FEP in Genera 7.2
12.1.1 FEP IDS Commands Renamed in Genera 7.2
12.1.2 Load World Changed Incompatibly to Interact with
Netbooting
12.2 New Features in the FEP in Genera 7.2
12.2.1 New FEP Commands in Genera 7.2
12.2.2 New FEP Command Documentation in Genera 7.2
12.2.3 Genera 7.2 Supports Color Consoles
12.2.4 Correction of Disk ECC Errors

13 Changes to Tape and Disks in Genera 7.2

13.1 New Features in Tape and Disks in Genera 7.2
13.1.1 New Tape Distribution and Restoration Interfaces
13.1.2 Genera 7.2 Supports New Disk
13.1.3 Genera 7.2 Supports New Tape Drive

13.2 Restore Distribution and Genera 7.0 Tapes

14 Genera 7.2: Operations and Site Management

14.1 Netbooting New in Genera 7.2

14.2 New Namespace Tools in Genera 7.2

14.3 Linking Sites Through Sync-Link Gateways New in Genera 7.2
14.3.1 Sync-Link Gateways

143

144

144
144
145
145
146
146
146

148

148
148
148
148
148

149

150
150

166

166
166
166

167
167
168
168
170

174

174
174
174
174
174

176

176
176
177
177

vii

February 1988

14.4 Console Serial I/O Port Caution
15 Changes to Documentation in Genera 7.2

16 Notes and Clarifications for Genera 7.2

16.1 Clarification on :printer-queue-control Service
16.2 New Documentation for Scheduler Function
16.3 Note About the SELECT Key

List of Figures

Dist and WDist Metering Output Subfields
Expanded Data for two-point

The Display Debugger

The Display Debugger

The Debugger Menu

Decision rule for allocating pixels

SOk W

182
184

186

186
186
187

Page
63
64
87

105
109
129

February 1988

1. Genera 7.2: Introduction and Highlights

These notes accompany the release of Genera 7.2. They describe changes made
since Genera 7.1.

A complete list of changes appears in the Table of Contents. The notes cover the
following topics:

Overview of Genera 7.2

This section discusses general issues connected with Genera 7.2:

¢ Support for new hardware

¢ World size

Compatibility with previous releases

Availability of sources

¢ The sys:unsupported; directory

Changes to the Lisp Language in Genera 7.2

This section describes changes relevant to the Lisp language.
Changes to Flavors in Genera 7.2

This section describes changes to Flavors in Genera 7.2.
Changes to Zmacs in Genera 7.2

This section describes changes in the Zmacs editor. The most important changes
are:

The addition of a complete Undo facility.

The ability to run multiple Zmacs processes, each with its own state.

New documentation of indentation.

Support for non-Symbolics character sets.

Changes to Zmail in Genera 7.2

This section describes changes in Zmail. Changes include:

e Zmail now has control-X¥ commands, such as c-X B for selecting a sequence
and c-X c-F for reading in a mail file.

February 1988

c-m-Y and c-m-sh-Y now work in Zmail.

Zmail now queries before executing time-consuming or "dangerous" commands
like Save or Expunge. A new profile option provides control over this feature.

Changes to Utilities in Genera 7.2

This section describes changes in what would be called the operating system and
utilities on other more conventional computers. This includes the Debugger, the
garbage collector, and various system keyboard features. The most important
changes are the following:

A Metering Interface is now available, enabling you to measure various aspects
of performance of programs, including speed, page faults, and consing. The
Metering Interface also supports Call Tree metering, which gives you
information on the calling behavior of functions.

The reliability and performance of the garbage collector have been improved
significantly.

Dynamic GC flipping has been sped up by a factor of 50 to 100.

To help the garbage collector reclaim more memory, you can now specify a GC
cleanup to precede dynamic or immediate garbage collection.

Document Examiner now uses Dynamic Windows and offers an improved topic
search capability. The commands in Document Examiner’s command pane have
been renamed for easier use.

Genera 7.2 introduces sct:define-distribution-system, which is the
reimplementation of the Release 6 concept of a "distribution pseudo-system".
This allows you to specify a "system" for distribution that is an arbitrary
collection of files and may have wildcard pathnames in it.

A new Display Debugger and a new Font Editor have been added in Genera 7.2.
Both use Dynamic Windows technology, and replace the old Window Debugger
and Font Editor, which remain separately loadable.

The Namespace Editor now uses Dynamic Windows, AVV menus, and more
informative prompts. It also performs extensive error checking to ensure that
the user makes valid entries.

The Printer Installation Guide is now loaded as part of the Print system.

Changes to the User Interface in Genera 7.2

This section describes changes to the user interface. Changes include:

February 1988

In Genera 7.2, more system activities (notably Document Examiner, the new
Display Debugger, the Terminal program, and the namespace editor) use
Dynamic Windows.

A new facility, the Select Key Selector, lets users assign activities to their
choice of SELECT key combinations.

Help text for SELECT HELP, FUNCTION HELP, SYMBOL-HELP, and Debugger c-HELP
is now printed in Dynamic Windows that have a uniform interface for scrolling,
searching, and exiting. In addition, the Notifications window is now dynamic.

The Notifications window is now dynamic.

A new facility, HackSaws, provides random useful bits of folklore and other
information about Genera that you can access from most system activities.

Changes to the User Interface Programming Facilities in Genera 7.2

This section describes changes to the facilities available to application program-
mers for building user interfaces. The changes include the following:

Dynamic Windows output performance has improved substantially.

Many bugs in Dynamic Windows mouse sensitivity have been fixed, and
performance of mouse sensitivity has been greatly improved.

The presentation system is much faster and more reliable than in Genera 7.1.

User interface programming facilities documentation includes much new
conceptual information and many new examples. Documentation is also provided
for new and previously undocumented old user interface programming facilities
functions.

The graphics substrate has been rewritten for 7.2. It is almost completely
compatible with previous versions. The new substrate is generic, which means
that there is a uniform interface for accessing the different facilities provided
by different graphical output devices.

Changes to the File and Streams in Genera 7.2

This section describes changes to files and streams.

Changes to Networks in Genera 7.2

This section describes changes in network implementation, interface, and protocols.
Changes include:

Performance and reliability of synchronous and asynchronous serial streams has
been improved in 7.2 for all 3600-series machines.

February 1988

¢ 3620s, 3630s, and 3650s can now be used as gateways over synchronous serial
lines for Chaos and IP.

e Genera 7.2 includes support for non-multi-homed networks in a multi-namespace
environment.
Changes to the FEP in Genera 7.2

Several new FEP commands have been added to support the new netbooting and
autobooting features. All FEP commands are now documented.

Changes to Tape and Disks in Genera 7.2
This section describes new tape and disk features.
Genera 7.2: Operations and Site Management

This section describes changes to the system and site configuration features of the
system. These changes are important to the people who are responsible for site in-
stallation and maintenance.

* Netbooting has been added. This is the ability to boot a world from a remote
machine and run it without having the booted world-load file on the local
machine.

¢ Autobooting is available on machines with the G208 FEP EPROMs. Systems
with autobooting enabled reboot automatically, without attention, after any FEP
reset, such as a power-up event.

* Genera 7.2 contains new tools to automate site installation and configuration.

Changes to Documentation in Genera 7.2

This section describes changes to the printed and online documentation.

e Books whose contents have been changed substantially for Genera 7.2 have been
republished.

e The User’s Guide to Symbolics Computers has been expanded into four guides
offering different approaches to learning how to use Genera.

e Books 7A and 7B of the documentation set have been rewritten to follow the
model used in Books 2A and 2B — conceptual information is in volume A, with
volume B a dictionary of functions.

Notes and Clarifications for Genera 7.2
This section contains explanations and clarifications of items that people found
confusing in previous releases and documentation.

February 1988

2. Overview of Genera 7.2

2.1. New Hardware Supported by Genera 7.2
Genera 7.2 supports the following new hardware:

¢ 3630 and 3653 systems

¢ Color consoles

e Maxtor XT4380 disks

e 6250 bpi tape drive

2.2. Compatibility of Genera 7.2 with Previous Releases

All programs compiled in Genera 7.1 will load and run properly in Genera 7.2, un-
less they use certain undocumented internal interfaces that very few programs use.
Programs compiled in Genera 7.2 will generally not run properly when loaded in
Genera 7.1. Files of data produced by sys:dump-forms-to-file in Genera 7.2 will
load correctly into Genera 7.1, and vice versa.

2.2.1. Compatibility Terminology

In a release version number, such as "Genera 7.2", the first number ("7") is the
major version number, while the second number ("2") is the minor version number.
In a minor release, the minor version number is incremented while the major ver-
sion number remains unchanged. In a major release, the major version number is
incremented and the minor version number is reset to zero.

"Upward compatibility" refers to the ability to take data or a program generated in
an earlier release and use it in a later release.

"Downward compatibility" refers to the ability to take data or a program generated
in a later release and use it in an earlier release.

2.2.2. Upward and Downward Compatibility in Genera 7.2

Symbolics’ general inter-release compatibility policy differentiates between program
compatibility and data compatibility. In addition, it differentiates between major re-
leases and minor releases.

Upward compatibility for data files is always provided. This includes text files,
BIN files generated by sys:dump-forms-to-file that do not contain any compiled

February 1988

functions, KBIN files, and so on. Downward compatibility for data files is generally
provided, as long as the data file does not use any features that were not present
in the older release. For example, text files that do not use characters of
non-default style and do not contain any characters in non-standard character sets
are downward compatible to older releases than text files that do contain such
characters. KBIN files are an exception to the rule of downward compatibility, as
their format is too complex for downward compatibility to be practical.

Less compatibility is provided for compiled programs than for data, on the grounds
that programs can be recompiled a lot more easily than data can be recreated.

Upward compatibility for compiled programs (in BIN files) is provided for minor
releases. In rare cases, a documented feature or a feature that is known to be used
by customers might be changed incompatibly in a minor release. This is done only
when unavoidable and is always documented in the release notes. We try not to
make incompatible changes to undocumented internal interfaces that we know cus-
tomers use, but if we aren’t aware that a customer is using an interface, and the
interface is not documented, it’s possible that we may change it incompatibly in a
minor release.

Upward compatibility for compiled programs is not provided for major releases.
The representation of compiled programs or the expansion of system macros is
often changed incompatibly at a major release in order to provide higher perfor-
mance or new features.

Downward compatibility for compiled programs is never provided, even in minor
releases. The primary reason for this is that programs are very complex entities
and it would be difficult to develop the system in such a way as to maintain such
compatibility. More importantly, it would be totally impractical to test such com-
patibility during the quality assurance process, because of the enormous number of
possible compatibility issues. Thus even if we claimed to provide downward com-
patibility for compiled programs, it would probably not work very well.

Upward compatibility for source programs is always provided for minor releases
and usually provided for major releases. In a major release there may be some
source changes necessary if an interface is changed, but this is always documented
and we attempt to minimize it. Of course, source program compatibility might not
be provided for programs that call undocumented internal interfaces. Downward
compatibility for source programs is generally also available, especially across mi-
nor releases, provided the program has not been changed to exploit new features
not present in the older release.

2.2.3. Compatibility Considerations in Genera 7.0

Genera 7.0 offered an unusually small amount of upward compatibility with the
previous release. There were two reasons for this.

1L A change of language, from Zetalisp to Common Lisp, entailed changes to the
representations of arrays and of characters. The change to characters, in
particular, necessitated broad incompatible changes throughout Genera. This
incompatibility was considered worthwhile because it made possible the
adoption of the widely accepted Common Lisp language standard.

February 1988

2. A large number of pending incompatible changes were batched together and
released in Genera 7.0 in order to deliver the incompatibilities all at once, so
users would have to make major changes to their programs only once.
Releasing these incompatible changes made possible the implementation of a
large number of features and the cleaning up of many old maintenance
problems.

Future major releases will offer a considerably greater degree of upward compati-
bility, as we do not contemplate changing language again, and we no longer have a
long list of necessary incompatible changes awaiting an opportunity for release.

2.2.4. Compatibility Considerations in Genera 7.2

Response to customer feedback is a primary reason why files compiled in Genera
7.2 might not load into Genera 7.1. For example, customers have reported the fol-

lowing:

e The expansions of the cp:define-command macro appeared excessive, and that
space was being wasted and paging performance negatively affected. Genera 7.2
introduces a number of runtime helper functions that can be shared among
more than one command. These functions do not exist in Genera 7.1.

* Aborting during define-presentation-type destroyed things so badly that you
had to reboot. The macroexpansion has been changed to protect against this, but
it depends on functions that are not present in Genera 7.1.

In some cases, changes were made to undocumented parts of the system that we
do not expect users to rely on. For example:

The Font Editor and Document Examiner programs have been converted to Com-
mon Lisp. As a result, the fed and sage packages now contain explicit external
symbols and require use of a double colon to access their internal symbols. If you
do not use symbols from fed or sage, this will not affect you. If your program
loads without warning, you are properly using the few exported symbols that were
intended as external interfaces all along. If you get a message from trying to use
an internal symbol as an external, you should check that the function you are call-
ing still works the way you require. Note that every effort has been made to keep
the functional interfaces compatible, so you will probably not run into this prob-
lem, anyway.

Symbolics is committed to maintaining and improving the new user interface sub-
strate introduced in Genera 7.0. However, in order to release Genera 7.2 on time,
this substrate has not yet reached a degree of flexibility which supports all previ-
ous styles of interaction. For this reason, both the DIred and FSEdit capabilities
are still provided in the absence of an integrated single interface that can be tai-
lored either way.

Also, a large number of programs have been converted to use a new consistent
user interface. In most cases, this conversion is upwardly compatible, as an inter-
face similar to the previous one now allows for correct mouse sensitivity and gen-

February 1988

eral scrolling. In a few instances, the new program represents a significant change
from the old. So, for instance, in Genera 7.0 and subsequent releases we have pro-
vided a Lisp Listener that does not have a scrolling output history. In Genera 7.2,
we have supplied the old Window Debugger, Namespace Editor, and Font Editor
programs in addition to the new Dynamic versions. These old programs have been
compiled and tested for this release. They have not been enhanced in any way, but
rather they will run exactly as before.

The old Font Editor program can be loaded by giving the command:
Load System FED

The Window Debugger and Namespace Editor programs can be found in the
sys:unsupported; directory. For more information: See the section "New Directory
for Unsupported Software"”, page 12. Genera 7.2 features have been designed with
compatibility considerations in mind. For example:

Genera 7.2 introduces a generalization of the graphics: drawing functions intro-
duced in Genera 7.0. The enhanced functions allow for arbitrary scaling, rotating,
thickness, and patterns just as other modern graphics standards, such as
PostScript, do. In all cases save one (graphics:draw-ellipse), the calling sequence
is an upward compatible extension of the old. In cases where some old arguments
do not fit well into the new model, such as the :draw-end-point argument to
graphics:draw-line, or the :value argument to graphics:draw-point, the old argu-
ments are supported at runtime, and style checked at compile time, with explicit
instructions on how to write them in terms of the new generalized forms.

Scan conversion has been made consistent among all new drawing functions, which
in some cases has meant a change in the actual pixels affected; details aare given
elsewhere. However, the :draw- messages to windows have not been changed in
any way since Genera 7.0, except to fix some prominent bugs. :draw-string has
been made consistent with Release 6 (this change was in Genera 7.1),
:draw-wide-curve handles the tv:alu-xor alu better, with still always draws the
same shape (even though this shape is not always the correct one). The bug where
:draw-line clips incorrectly and alters the slope of the line has not been fixed, be-
cause we could not assess how many programs might be relying on it. In all cases,
the corresponding problems have been fixed in the graphics:draw- functions. This
has almost always required introducing parallel sets of methods and functions in
the interest of compatibility.

2.3. The Size of the Genera 7.2 World

The Genera 7.2 distribution world is approximately 33,000 blocks, which is about
5,000 blocks smaller than the Genera 7.1 distribution world.

Nevertheless, Genera 7.2 introduces significant new functionality that would nor-
mally have increased the size noticeably. Symbolics realizes that world size
presents difficulties for many customers. Therefore, we have made every effort to
keep it under control, within the compatibility constraints of this minor release.

February 1988

Here is some information that may help you understand why the world is as large
as it is and the details of what we have done about it.

2.3.1. Contribution of Code to the Size of the World

If the Genera 7.2 distribution world had been constructed by Genera 7.1 standards
it would be 43,000 pages. That is, the new tools and functionality supplied with
this release could have represented an increase in world size of greater than 10
percent. This would have been consistent with past growth patterns.

The size of the actual Genera 7.2 world has been reduced by a redesign of most of
the larger system data structures. At the same time, nearly full compatibility has
been retained and no major functionality has been lost.

Actual compiled code makes up only 6000 pages (15 percent of the world). The
number of applications does not necessarily determine the size of the world. You
cannot simply count the number of entries displayed by SELECT HELP, mark off
those that you do not use, or assume your own users do not use, and conclude that
you could get them back m/n percent of the world by taking them out.

The amount contributed by various applications varies enormously. For instance,
programs like FrameUp and the Flavor Examiner take up less than 1 percent of
the code (not of the system total), the Font Editor consumes about 1 percent, and
Zmacs and Zmail each about 8 percent, to say nothing of the variability in the size
of program-related data structures.

Symbolics contemplated removing a few programs that we do not believe are used
by the large majority of our customers. As it turns out, these programs contribute
very little functionally and therefore contribute very little in size. Moreover, we
might have been wrong in our guesses, so we did not remove them.

We are aware of problems with attempting to install layered products successfully.
We did not wish to further increase this burden by making large and critical parts
of the system optional until we could better deal with the general problem of in-
stallation and the further combinatorial complications that more complex installa-
tion would require.

In a couple of instances, reimplementations of certain programs have been made

available that are not fully compatible with the old version. To maintain compati-
bility for users of these, we have not provided either version in the world by de-

fault. These removals from the world have not significantly reduced its size and

were not motivated by size considerations.

2.3.2. Consumers of Space in the World

Having said that code makes up only about 15 percent of the world, let us take a
closer look at what does consume space. We will do this by examining how much
space would have been consumed by the Genera 7.2 system according to Genera
7.1 standards and in some instances how this has been reduced in the actual sys-
tem.

10

February 1988

¢ Flavor system data structures take 7500 pages (18 percent). These structures
have been tuned in favor of execution time rather than space reduction. While
other tradeoffs along this dimension might be possible, we did not feel they
were warranted in a minor release without further investigation and also
feedback from users.

¢ Debugging information would have occupied 5200 pages (13 percent) by Genera
7.1 standards. A small fraction of this information is necessary for correct
compilation, but most of it is used only when the associated function is on the
stack in the Debugger. By putting this information into a more compact form, it
has been reduced by about 1200 pages with no loss of information or
compatibility. Only the internal storage slot in the compiled code object is
changed. The accessor function, debugging-info, converts from the compact
format to the fully expanded, compatible one.

An additional 400 pages has been saved by forgetting information used to record
the macros and constants expanded during compilation. Since this information is
used only by the who-calls database, and only when call tracing for the system
itself is enabled, it is written to a binary file that is automatically loaded by
sizenable-who-calls-database under this condition. The time to load the file
does not contribute significantly to the time needed for the code analysis this
already does.

Thus, debugging information has gone from 5200 pages by Genera 7.1 standards
to 3100 pages.

* Symbols, symbol names, and package hash tables would have occupied about
7500 pages (12 percent). A side-effect of the compact encoding of the debugging
information decreases the number of valid symbols. Some 500 pages of symbols,
300 pages of symbol names, and about 700 pages of packages have been
reclaimed, reducing the pages occupied in Genera 7.2 to 3000 pages.

¢ The documentation database would have occupied 4000 pages (10 percent) by
Genera 7.1 standards. This is because it contains complete information except
for the actual contents of the documentation, including keyword and oneliner
data. By compressing the database to include only the data necessary for topic
name completion and candidate listing, this has been reduced to about 1500
pages in Genera 7.2

¢ Pathnames, source file names, binary file attribute lists, and other artifacts
of the system take about 3000 pages (7 percent). This information remains in
the Genera 7.2 system.

e Completion tables for flavor and generic function names would have
occupied 800 pages (2 percent) by Genera 7.1 standards. By implementing
package-sensitive completion, wherein the tables store only the name, we have
halved the number of table entries, and eliminated virtually all strings (as they

11

February 1988

are now all shared with symbol names). This works out to about 50 pages used.
Needless to say, this change also fixes an important bug in the flavor-related
commands.

e Error tables for the various microcode versions for each of the possible
hardware configurations occupy 500 pages (1 percent) of the world. Since many
problems can occur while installing a distribution world on a new machine, we
did not remove the tables.

e Mouse handler tables, bit arrays for windows, fonts, and windows
themselves occupy several hundred pages (about 1 percent each).

This accounts for about 80 percent of the total size of the world. We have at-
tempted to avoid double counting anything. The remaining 20 percent is miscella-
neous data structures for all the various programs not otherwise accounted for.
There are no outstanding consumers, except perhaps the editor.

In addition to the above specific breakdown, one additional thing worth specifically
noting is the space occupied by patches. In previous releases, patch file comments
and patch file pathnames accounted for a large number of pages. Near the end of
the release, there is always a flurry of patches. Each one of these patches adds an-
other source file to the system, bloating the source file information mentioned
above. Lately, many patch comments are fat strings, meaning one word per char-
acter. In a typical development world, these account for 900 pages alone. There
are no patch files or patch comments in the Genera 7.2 distribution world. All
patches have been loaded into the distribution world.

A good accounting of the changes since the last official release is given in the
Genera 7.2 Patch Notes. In the world itself, only the base number for the world as
shipped is recorded, so that patches supplied by the Software ECO service can still
be loaded successfully.

2.3.3. Clearing Space After Installation

You may ask, "Is it possible to eliminate unwanted parts of the system after in-
stalling the basic distribution world?" Symbolics answers, "No, you can’t." The sys-
tem is highly integrated and therefore this maneuver is impractical for code and
application-specific data structures.

2.4. More Sources Available in Genera 7.2

As of Genera 7.2, all system sources previously classified as Optional or Restricted
are now Optional, and are available for purchase on a single tape. For more infor-
mation, contact your sales representative.

12

February 1988

2.5. New Directory for Unsupported Software

On your Genera 7.2 tapes, yowll find a directory called SYS:UNSUPPORTED:.

A large number of programs have been converted to use a new consistent user in-

terface with dynamic windows. In most cases, this conversion is upwardly compati-
ble, as an interface similar to the previous one now allows for correct mouse sensi-
tivity and general scrolling. The new Document Examiner interface is an example

of this.

In a few instances, the new program represents a significant change from the old.
In those cases, we have attempted to preserve the older style for the convenience
of users who rely on it, or simply are accustomed to it and do not wish to change.
For instance, we continue to provide a "static" Lisp Listener that does not have a
scrolling output history.

In Genera 7.2, there are new dynamic-window versions of the Font Editor, the
Window Debugger and the Namespace Editor, but Symbolics continues to supply
the old versions of these programs. The latter two programs are to be found in
SYS:UNSUPPORTED;. (The old Font Editor remains in SYS:101;.) These old programs
have been compiled and tested for this release. They have not been enhanced in
any way, but rather they will run exactly as before. No support is available and
bugs will probably not be fixed.

Symbolics cannot guarantee that these programs will continue to run, or even be
available, in all future releases.

13

February 1988

3. Changes to the Lisp Language in Genera 7.2

3.1. Improvements to Lisp in Genera 7.2

3.1.1. New Array Function in Genera 7.2

Here is the argument list and brief description of the new array function in Gen-
era 7.2:

sys:array-element-byte-size array
Given an array, returns the number of bits that fit into an element of that array.

3.1.2. New Bit-Vector Functions in Genera 7.2
Here are the new bit-vector functions in Genera 7.2:

bit-vector-cardinality bit-vector &key (:start 0) :end
Tests how many of the bits in the range are one’s and returns the number found.

bit-vector-disjoint-p bit-vector-1 bit-vector-2 &Kkey (:startl 0) :endl (:start2 0) :end2
Tests if two bit vectors are disjoint in a range specified by :startl :endl :start2
:end2.

bit-vector-zero-p bit-vector &key (:start 0) :end
Tests whether the bit vector is a bit vector of zeros in a range specified by :start
and :end.

bit-vector-subset-p bit-vector-1 bit-vector-2 &key (:startl 0) :endl (:start2 0) :end2
Tests if one bit-vector is a subset of another bit-vector in a range specified by
:startl :endl1 :start2 :end2.

bit-vector-equal bit-vector-1 bit-vector-2 &key (:startl 0) :endl (:start2 0) :end2
Tests if two bit vectors are equal in a range specified by :startl :endl :start2
rend2.

bit-vector-position bit bit-vector &key (:start 0) :end

If bit-vector contains an element satisfying bit, returns the index within the bit
vector of the leftmost such element as a non-negative integer; otherwise nil is
returned.

3.1.3. New Number Constants in Genera 7.2
Here is a list of new number constants in Genera 7.2:

least-positive-normalized-single-float

The value of least-positive-normalized-single-float is that normalized positive
floating-point number in single-float format closest in value (but not equal to)
zero.

14

February 1988

least-negative-normalized-single-float

The value of least-negative-normalized-single-float is that normalized negative
floating-point number in single-float format which is closest in value (but not
equal to) zero.

least-positive-normalized-double-float

The value of least-positive-normalized-double-float is that normalized positive
floating-point number in double-float format closest in value (but not equal to)
zZero.

least-negative-normalized-double-float

The value of least-negative-normalized-double-float is that normalized negative
floating-point number in double-float format which is closest in value (but not
equal to) zero.

least-positive-normalized-short-float
The value of least-positive-normalized-short-float is that normalized positive
floating-point number in short-float format closest in value (but not equal to) zero.

least-negative-normalized-short-float

The value of least-negative-normalized-short-float is that normalized negative
floating-point number in short-float format which is closest in value (but not equal
to) zero.

least-positive-normalized-long-float
The value of least-positive-normalized-long-float is that normalized positive
floating-point number in long-float format closest in value (but not equal to) zero.

least-negative-normalized-long-float

The value of least-negative-normalized-long-float is that normalized negative
floating-point number in long-float format which is closest in value (but not equal
to) zero.

3.1.4. New Number Functions in Genera 7.2

Here are the argument lists and brief descriptions of the new number functions in
Genera 7.2:

random-normal &optional (mean 0.0) (standard-deviation 1.0) (state

random-state)
Generates random numbers from the normal (Gaussian) distribution with mean
mean and standard deviation standard-deviation.

print-exact-float-value

When this variable is set to t, it prints the exact number represented by a
floating-point number, not the rounded verson which is normally printed by the
printer.

15

February 1988

3.1.5. New String Function in Genera 7.2
Here is the argument list and brief description of the new function string-thin:

string-thin string &key (:start 0) :end (:remove-style t) :remove-bits :error-if :area
Returns a substring of string with the specified character-style information and
bits removed.

3.1.6. New Table Functions in Genera 7.2
Here are the new table management functions in Genera 7.2:

sys:page-in-table table &key :type :hang-p
Brings back into main memory any swapped pages in table that have been swapped
out to disk.

sys:page-out-table table &key :write-modified :reuse
Takes out to main memory any swapped pages in table.

sys:compile-table-flavor &rest options &allow-other-keys
Pre-compiles a flavor table. Put this function into one of your system files to
pre-compile flavor tables, thus saving you some compile time.

sys:with-table-locked (table) &body body
Locks a table around code.

3.1.7. New Resource Conditions in Genera 7.2

There are three new resource conditions in Genera 7.2. These resource conditions
are documented in "Resource Errors Based on si:resource-error".

See the flavor si:resource-error in Symbolics Common Lisp -- Language Concepts.
See the flavor si:resource-extra-deallocation in Symbolics Common Lisp --
Language Concepts. See the flavor si:resource-object-not-found in Symbolics
Common Lisp -- Language Concepts.

3.1.8. New defstruct Option

:sinline is a new option for defstruct and zl:defstruct.

sinline Values can be :accessors, :constructor, :copier, :predicate,
or the name of a slot. Defaults to the compiling accessors,
constructors, and predicates inline. Note that the default is for
most functions to be compiled inline. For example:

(:inline :constructor x-pos y-pos)

This example causes the constructor functions, spaceship-x-pos,
and spaceship-y-pos, to be compiled inline. For information on
inline functions: See the section "Inline Functions".

16

February 1988

3.1.9. dotimes and zl:dotimes Fixed

dotimes and zl:dotimes have been fixed to compile properly when using the itera-
tion variables ignore and ignored.

3.1.10. Improvements to Characters in Genera 7.2

Encryption and decryption is fixed to work in Zwei buffers and Zmail messages
containing characters which have non-nil character styles.

3.1.11. Improvements to List Function in Genera 7.2

The function list is fixed to work properly when called with a large number of ar-
guments, from interpreted code.

Previously, this error message appeared when you used list with a large number of

arguments:
Trap: Attempt to make a stack frame larger than 256. words

Some special forms may still generate this error.

3.1.12. Improvement to Number Function in Genera 7.2

%logldb now loads out of bignums, allowing a byte size of up to 32 bits, including N\
the sign bit.

3.1.13. Improvements to Sequence Functions in Genera 7.2

In Genera 7.2, we have fixed a bug in the function substitute-if-not Previously,
the function gave incorrect results for vectors.

The run-time speed of Common Lisp sequence functions is also improved.

3.1.14. Improvements to String Functions in Genera 7.2

The following string functions have had their declared return-values changed in
Genera 7.2:

read-from-string now has the declared return-value: (form index)

accept-from-string now has the declared return-value: (object type index)

3.1.15. Improvements to the Reader Macros #+ and #-
The reader macros #+ and # have been fixed so that they do not signal package
errors when used on constructs such as:
H#+system: :cmu
and
H#+cl:alcatraz /’-\

17

February 1988

3.1.16. Genera 7.2 Allows Printing of TINY Character Styles

A character style is a combination of three characteristics that describe how a
character appears: family, face, and size. Prior to Genera 7.2, the LGP2 did not let
you print anything that contained TINY character styles for the FIX character
style family. This has been fixed in Genera 7.2.

3.2. Incompatible Changes to Lisp in Genera 7.2

3.2.1. Changes in String Functions

The following functions now signal an error if the argument string is anything but
a string. Previously, when passed a non-string argument, these functions tried to
coerce the argument into a string.

zl:string-capitalize-words
zl:string-upcase
zl:string-downcase
zl:string-flipcase
zl:string-nreverse

The following functions do not signal an error unless the copy-p argument is speci-
fied nil.

nstring-upcase
nstring-downcase
nstring-flipcase
nstring-capitalize
nstring-capitalize-words
string-nreverse

3.2.2. make-hash-table Incompatibility

In Genera 7.1 you could make a hash table with = as the :test, and it defaulted
the hash function to cli::xequal-hash.

An incompatibility arises if one of your programs uses the following construct
without specifying the keyword :hash-function:

(make-hash-table :test ’= ...)
Genera 7.2 requires that you specify a :hash-function.
Why Doesn’t Symbolics Common Lisp Support = in Hash Tables?

In the following examples, note the differences in the two hash codes, even though
the two numbers are =:

18

February 1988

(cli::xequal-hash 1.4e20)
=> 1626528982

(c11::xequal-hash 1400000800000008000060)
=> 179306497

(equal 1.4e20 140008000000000B00B000)
=> NIL

1.4e20 1400000000000000080860)
=T

~
1

The differences are because cli::xequal-hash corresponds to zl:equal, not =, and
Common Lisp dictates slightly different rules for these two equality functions.

You might think that a possible solution is to substitute a different hash function,
one specialized for =. This is not possible, however, since Common Lisp declares
that the = function is not transitive:

(= 1.4e20 140000000800000000800)

= T

(= 1.4e20 1400006000060000000001)
= T

(= 140000000008000000000 140000P0000CB0A00NBABT)

=> NIL
This means that the hash function for = , when applied to an integer, has to ig-
nore all digits past the ones corresponding to the precision of the smallest

floating-point representation. This makes it a poor hash function for tables that
only use integers for keys. For this reason, Symbolics Common Lisp does not sup-

port = in hash tables.

Workaround:
The following workaround, which is not semantically correct, gives the wrong an-
swers if you use floating point numbers. Customers with old versions of ILA NFS
can use this workaround to make old versions not signal an error, since NFS does
not use floating point numbers:

(cli::add-test-function-hash-function ’= ’cli::xequal-hash)

3.2.3. Hash Tables and :test

In Genera 7.1 and earlier releases, when creating a hash table with
make-hash-table, you could use any function as the :test function of the hash ta-
ble. The default hash function in Genera 7.1 was the one for zl:equal, which did
not work correctly for most other predicates. In Genera 7.2, if the :test function is
not in the list below, you must explicitly provide a :hash-function.

19

February 1988

stest Determines how keys are compared. Its argument can be any
function; eql is the default. If you supply one of the following
values or predicates the hash table facility automatically
supplies a :hash-function: eq , eql , equal , char-equal,
char=, string-equal, string=, zl:equal, zl:string-equal,
zl:string=. If you supply a value or predicate that is not on
this list, then you have to supply a :hash-function explicitly.

Note: You must supply a :hash-function if the test is =.

3.2.4. char and schar Functions Changed

char and schar are changed in Genera 7.2. Now their argument lists are:
string index

Previously their argument lists were:
array &rest subscripts

3.2.5. once-only Requires Keyword
once-only now requires the &environment keyword.

The argument list for once-only is:
((variable-name... &environment environment) &body body)

If you do not supply the &environment keyword, the following error message ap-
pears:

For Function FOO
A call to ONCE-ONLY was found with no 8ENVIRONMENT keyword.

Local macros will not expand properly inside the body.
Supply the lexical environment, derived from the &ENVIRONMENT
parameter in a DEFMACRO, MACROLET, or DEFMACRO-IN-FLAVOR.

3.2.6. :allow-other-keys Is No Longer Valid

Functions with &key arugments now allow the :allow-other-keys keyword when its
value is not nil. This is an example of a construct that used to work, but now sig-
nals an error:

((1ambda (&key x) x) :allow-other-keys nil)
The error generated is:
(:ALLOW-OTHER-KEYS is not a valid keyword)

20

February 1988

4. Changes to Flavors in Genera 7.2

4.1. New Features of Flavors in Genera 7.2

4.1.1. New Flavor Macro: flavor:with-instance-environment

Genera 7.2 makes the following macro available:
flavor:with-instance-environment (instance env) Macro
&body body

Within the body, the variable env will be bound to an interpreter
environment for the specified instance. The primary use of this is to create
a listener loop like that of the debugger when examining a method, in
which you can reference an instance’s instance variables and internal
functions directly.

4.2. Improvements to Flavors in Genera 7.2

4.2.1. Flavor Constructors Can Use &allow-other-keys in 7.2

In 7.2, you can use the &allow-other-keys keyword in the lambda-lists of flavor
constructors.

4.2.2. New :Using Instance Variables Option for Show Flavor Methods

Genera 7.2 adds a new keyword option for the Show Flavor Methods command:

:Using Instance Variables
Enables you to request only those methods that use the

specified instance variables.

4.2.3. compile-flavor-methods Forms Can Be Interpreted in 7.2

Previous to 7.2, compile-flavor-methods forms could not be interpreted, only com-
piled. This restriction is removed in 7.2.

4.2.4. Changed Function Specs for Whoppers in 7.2
In 7.2, the function specs for whoppers are in this format:
(flavor:ncwhopper generic-function flavor)
Previously the function specs for whoppers were in this format: ~

(flavor:whopper generic-function flavor)

This is a compatible change; the old function specs for whoppers continue to work,
so programs compiled in 7.0 or 7.1 will work in 7.2 without recompilation.

21

February 1988

The motivation for this change was to reduce the number of combined methods in
the Lisp world. The new type of whopper does not need a combined method to im-
plement continue-whopper.

4.2.5. Clarifications to Flavors Documentation in 7.2

Clarifications have been added to the documentation of some defflavor options: See
the section "Complete Options for defflavor" in Symbolics Common Lisp --
Language Concepts. Specifically, the following topics have been improved:

¢ The topic ":constructor Option for defflavor" has more detailed information on
the parameters of constructors.

e The topic ":ordered-instance-variables Option for defflavor" now includes an
example.

4.2.5.1. Note on make-instance and :fasd-form

Flavor instances are dumped as the forms which are evaluated to create them. As
long as the creating forms do not change, flavor instances are compatible across
releases and machine architectures. It is always possible that the syntax of
make-instance will change from one release to another. For this reason, we sug-
gest that you avoid returning make-instance from :fasd-form, but instead define
your own function with a name such as make-foo-for-loading-from-file and have
:fasd-form return a call to that function.

If you later need to change something, you can make your :fasd-form start return-
ing calls to a second function such as make-foo-for-loading-from-file-version-2.
You can keep the previous function make-foo-for-loading-from-file around for
compatibility with old files, so you can continue to load them.

22

February 1988

5. Changes to Zmacs in Genera 7.2

There are two major changes to Zmacs in Genera 7.2.

e You can now create multiple Zmacs frames, each with its own process and its
own state, simply by pressing SELECT c-E. With multiple Zmacs processes,
SELECT E cycles through the processes.

e There is now a complete Undo facility in the Zwei substrate that can be used
from Zmacs, Converse, and the Zmail editors.

In addition there are a number of bug fixes and enhancements.

5.1. Incompatible Changes to Zmacs in Genera 7.2

The old Zwei Undo command and HELP U have been replaced by a full Undo facil-
ity. The old commands only remembered one change. The new facility remembers
all changes.

The old function zwei:undo-save has been removed. Any residual calls to it will
provoke a warning at compile time and a recoverable error at run time. In most
cases you don’t have to do anything to make your changes undoable, as the primi-
tive functions such as zl-user:insert and zl-user:delete-interval record the changes
they make. Obviously if you use zl:setf of aref to store directly into editor lines,
your changes will not recorded. See the section "Zwei Undo Facility", page 27.

The several Find Candidates (n-X) commands have been replaced by one new com-
mand, Show Candidates (n-X). Any user-written Zwei commands that call
com-find-any-candidates will no longer work.

Show Candidates Zmacs Command

Show Candidates (m-¥X)

Show Candidates prompts for a word or words to search for. By default it performs
a heuristic or "smart" search for matching candidates.

With a numeric argument, Show Candidates prompts for a word or word to search
for and then asks you to specify the style of matching. Your choices are

e Heuristic matching, which is the default. This uses the words you have supplied
as stems, so that searching for "local" also finds "locative" and "location", for
example,

e Exact string matching, which means that "local" finds only "local".

23

February 1988

e Initial exact string matching, which means that "local" finds "local" only in the
initial position.

e Substring exact string matching, which means that "local" anywhere in the
string is matched.

With a numeric argument, you are also asked if you want adjacent-word-order
matching or any-word-order matching if you type more than one word. Any order
matching is the default.

The difference between "adjacent" and "any" in the above is that a adja-
cent-word-order search on "input editor” will find "Using the Input Editor" and
"The Input Editor Program Interface” but not "Editor Input" whereas with
any-word-order, it will find all three.

This command is also available in the Document Examiner.See the section "Show
Candidates Command" in Genera User’s Guide.See the section "Document
Examiner" in Genera User’s Guide.

5.2. Improvements to Zmacs in Genera 7.2

5.2.1. New Speller Features in Genera 7.2

Spell Word (m-X) now reminds you of m-$ when you type the command without
supplying a word to be spelled. Reminder:

e Use Spell Word to check the spelling of a word not in the buffer.

¢ Use m-$ (Spell This Word) to check the spelling of the word nearest point, or of
words in a region.

m-$ now checks the spelling in the region if one is selected, just like Spell Region
(n-K). Otherwise, m-$ checks the spelling of the word next to point, as always.

When checking the spelling of a single word, n-$ now informs you if the spelling
of the word has been checked against a site-specific or user-specific dictionary. If a
word has been checked against the basic Speller dictionary, the following message
appears in the minibuffer:

“tatterdemalion” is spelled correctly.

If a word has been checked against a site-specific or user-specific dictionary, the
following message appears in the minibuffer:

"Wollongong” 1is spelled correctly (according to TRADEMARKS,).
This makes Delete Word from Spell Dictionary (m-%) more useful. For more infor-

mation about speller dictionaries: See the section "Speller Dictionaries" in Text
Editing and Processing.

Several thousand words have been added to the basic dictionary, among them tat-
terdemalion, magnetohydrodynamic, android, hypersphere, yttrium, and burrito. The
names of Lisp symbols, such as defstruct and cons, have also been added.

24

February 1988

New documentation giving a recipe for creating speller dictionaries has been
added.

5.2.1.1. Quick and Dirty Guide to Adding and Maintaining a Spell Dictionary
Here’s how to add your own spell dictionary and keep it up to date:

1

7.

Go into Zmacs and use c-X c-F to create a new file called spell.dict in your
top-level directory.

Type in any words you know you want to have in your dictionary, or none at
all, if you prefer.

Write the file out using c-X c-S.

If the file is quite long, use Compile Spell Dictionary (m-X) to make a binary
dictionary, which loads faster.

Use Read Spell Dictionary (m-X) to read the new dictionary in this time.
Henceforth, it will be read in when you log in.

As you use the Speller, you can add words to your dictionary from the Speller
Menu by clicking on the dictionary name, or with Add Word to Spell
Dictionary (n-¥).

To save those new words, use Save Spell Dictionary (n-X).

If you begin to suspect that you have misspelled words in your spell dictionary,
here’s what to do:

1.

4.

5.

Issue the Zmacs command Execute Command Into Buffer (n-X) in an empty
Zmacs buffer.

Issue Show Contents of Spell Dictionary (m-X). The dictionary is written out
into the buffer.

Find the misspelled words.
Issue Delete Word From Spell Dictionary (n-¥) for each misspelled word.

Issue Save Spell Dictionary (n-X) to save the corrected dictionary.

This is deliberately simplified information on adding a dictionary and keeping it up
to date. For complete information on speller dictionaries: See the section "Speller
Dictionaries" in Text Editing and Processing.

25

February 1988

5.2.2. Fix for Saving a Buffer to a Nonexistent Directory

Formerly, when you wrote a buffer (first time) to a nonexistent directory, you were
required to follow a confusing sequence of proceed options, in which you first cre-
ated the directory, which returned to the debugger. Furthermore, when you saved
a buffer, but an underlying directory had been deleted, you got an error message.

In both of these cases, Zmacs now queries, offering to create the directory or abort
the command.

5.2.3. Fixes to List Callers

List Callers (m-X) used to not find callers of some functions whose names were
lists, because they were recorded as callers of a symbol that was an element of the
list, or in the case of defmacro-in-flavor, they were not recorded at all. This has

been fixed.

Combined methods are no longer recorded as callers because everything they do is
determined by wrappers, whoppers, and method combination, and because they do
not have source code that you can edit.

5.2.4. Source Compare Can Now Ignore Whitespace or Case and Style
With numeric arguments Source Compare (n-X) can now ignore leading whitespace

or case and style in comparing buffers or files.

5.2.4.1. Source Compare
Source Compare (n-¥X)

Compares two files or buffers, prompting for type (F or B) and name of each, and
displays the results of the comparison in the typeout window.

You can modify the behavior of the command with numeric arguments:
* 2 means ignore case and style in making the comparison
* 4 means ignore leading whitespace

* 6 means ignore case, style, and whitespace

Source Compare saves the output in a support buffer named xSource-Compare-Nx.
You can read the comparison while checking the file, for example, by going into
two window mode with the comparison in one window and the file in the other.

Example

This example shows a comparison between the file bottomley.1lisp, as it was read
into the buffer, and the buffer horatio.1isp, which contains the contents of the
file new plus changes that have been made:

26

February 1988

Source compare made by cheapjack on 12/17/87 14:59:28 -x-Fundamental -x-
of File S:>cheapjack>bottomley.lisp.1

with Buffer horatio.lisp >cheapjack S:

xxxx File S:>cheapjack>bottomley.lisp.newest, Line #4

(setq TV:xwholine-clock-delimitersx nil) ; Ki1l the "[]" around the clock
xxxx Buffer horatio.lisp >cheapjack S:, Line 4

(setg tv:xmouse-exit-target-global-enablex nil) ; Scroll blobs must die

(setq TV:xwholine-clock-delimitersx nil) ; Ki11 the “[]" around the clock
KKK KKK KKK KKK KKK
Done.

When entered with a numeric argument of 6, Source Compare ignores both leading
whitespace and case and style.

Source compare made by robin-hood on 12/17/87 15:45:89 -x-Fundamental-x-
of Buffer bud-abbott

with Buffer Tou-costello

No differences encountered.

Source compare made by robin-hood on 12/17/87 15:51:34 -x-Fundamental-x-
of Buffer lou-costello

with Buffer bud-abbott

No differences encountered.

When entered with a numeric argument of 4, Source Compare ignores only leading
whitespace.
Source compare made by robin-hood on 12/17/87 15:54:20 -x-Fundamental-x-
of Buffer bud-abbott
with Buffer lou-costello
xxxx Buffer bud-abbott, Line #11
(si:cp-on si:xcp-dispatch-modex ’si:arrow-prompt)
xxxx Buffer lou-costello, Line #11
(SI:CP-ON SI:xCP-DISPATCH-MODEx ’SI:ARROW-PROMPT)
HOKKKKK KKK KKK KKK

Done.

When entered with a numeric argument of 2, Source Compare ignores only case
and style.

27

February 1988

Source compare made by robin-hood on 12/17/87 15:53:38 -x-Fundamental-x-
of Buffer bud-abbott
with Buffer lou-costello
xxxx Buffer bud-abbott, Line #5
(setf si:xkbd-auto-repeat-enabled-px t)

xxxx Buffer lou-costello, Line §5
(setf si:xkhd-auto-repeat-enabled-px t)

XKKAOK K AOKAOK KKK KKK

Done.

5.3. New Features in Zmacs in Genera 7.2

5.3.1. Multiple Zmacs Processes New In Genera 7.2

Genera 7.2 supports multiple Zmacs frames, each with its own process and its own
state. You can create new Zmacs processes simply by pressing SELECT c-E. With
multiple Zmacs processes, SELECT E cycles through the processes.

5.3.2. New Zwei Undo Facility

There is now a complete Undo facility in the Zwei substrate that can be used from
Zmacs, Converse, and the Zmail editors.

The simplest operation of the Undo facility is to undo the most recent change to
the editor buffer. Go to a buffer, type something in, delete it, and then press
c-sh-U. The deletion is undone. Now press c-sh-R. You're back where you started.
Keep pressing c-sh-U. Previous changes to the buffer are undone. You can keep
doing this until the buffer is returned to its original state.

5.3.2.1. Zwei Undo Facility

Introduction to Undoing

The Zwei Undo facility remembers all the changes that you have made in an edi-
tor buffer and allows you to selectively undo any or all of the changes you have
made. The Undo facility is available from Zmacs, Converse, the Zmail draft editor,
and other editor buffers based on the Zwei substrate. (It is not available from the
Input Editor or in the minibuffer.)

The simplest operation of the Undo facility is to undo the most recent change to
the editor buffer. Go to a buffer, type something in, delete it, and then press
c-sh-U. The deletion is undone. Region marking shows what was undone. Now
press c-sh-R. You're back where you started. It is always safe to undo, because
you can always redo, and vice versa.

28

February 1988

The Undo (n-%) and Redo (n-%) commands are similar to c-sh-U and c-sh-R with
the added feature that a display in the minibuffer shows you what will be undone
or redone before any action is taken. HELP U also displays the change before undo-
ing it.

Keep pressing c-sh-U. Previous changes to the buffer are undone. You can keep
doing this until the buffer is returned to its original state. When you reach this
point, if the buffer contains a file, it’s no longer marked as needing to be saved.
And, if you undo all the changes to a section since it was compiled, it is no longer
marked as needing to be compiled.

And, repeated pressing of c-sh-R will successively restore the buffer until all the
undo commands have been cancelled out.

If you read in a file with no intention of changing it and accidentally type some
characters into it, use c-sh-U rather than RUBOUT to get rid of them. That way,
the buffer is no longer considered to be modified.

Undo commands operate only on the current buffer. Each buffer has an undo his-
tory, and a separate redo history. The undo history can be displayed with c-9
c-sh-U. Likewise, the redo history can be displayed with c-8 c-sh-R. Items in the
history are mouse-sensitive. You can undo or redo all changes up through a given
change or you can undo or redo any single change in the history. By default, both
histories are discarded when you save the buffer.See the section "Discard Change
History", page 34.

Of course, subsequent changes may depend on the single change that you are un-
doing or redoing, so no guarantee can be made that undoing change number 13 in
a 29-change history will have no effect on changes 14 through 29. (On the other
hand, you can always back out of any undo or redo. It is the Undo facility after
all.)

This sounds more complicated in writing than it is when you are doing it. A few
minutes experimentation in an editor buffer will make you a competent and confi-
dent user of the most important and common undoing and redoing operations.

After an undo or redo, the text that was modified is highlighted the same as if
you had marked a region, but in this case there is no region, and the highlighting
disappears when you type the next command. The history also shows you what con-
stitutes each change. See the section "What Exactly is a Change to the Undo
Facility?", page 28.

What Exactly is a Change to the Undo Facility?

To the Undo facility, a change is a recorded change to the textual contents of an
individual buffer. Each buffer has its own undo and redo histories of recorded
changes.

Most common changes are recorded. You can undo

¢ Insertions into a buffer, including Execute Into Buffer and Evaluate [and
Replace] Into Buffer (n-X).

29

February 1988

e Deletions from a buffer, including RUBOUT, m-RUBOUT, c-D, m-D and c-W .

¢ Text modifications, such as done by m-Q (fill paragraph) or c-TRB (indent
differently).

In general, the way changes are recorded is to record the previous contents of the
part of the buffer that was changed. Longer changes are compressed to minimize
the amount of storage space.

Certain changes are not recorded by the Undo facility. You can’t undo
e Renaming a file.

¢ Compiling a function.

¢ Reading a file into a buffer.

e Moving around in the buffer.

e Patch system insertions into patch buffers (and other changes to buffers made
by the system).

¢ Revert Buffer (m-K).
¢ Anything in support buffers such as xCallers-17x or xDefinitions-1x.

e Source Compare Merge (n-X) family of commands.

The Undo (n-) and Redo (n-X) commands and HELP U all display the change be-
fore making it. You can also see information about changes in the undo and redo
histories displayed by c-0 c-sh-U and c-8 c-sh-R.

You can get a good idea of what a change is by looking at the region marking that
you see after an undo. Not all undos result in a clearly marked region — an undo
of an insertion does not, for instance — but a line in the minibuffer reports the
nature of each undo or redo.

The Undo facility uses simple rules to define changes. Changes are separated by
blank lines, paragraphs, if you will. When you type or delete a single character in
a new paragraph, that single character is a change. If you then type another char-
acter, the two characters together are a change, and so on until you reach the end
of the paragraph or expression, that is, another blank line.

Likewise, successive deletions are merged, as are multiple simple commands oper-
ating on a single area of text.

There are variables to precisely define all aspects of a change. See the section
"Customizing the Undo Facility", page 34.

Undo and Redo Commands

30

February 1988

The undo and redo commands come in three styles:

e Undo and Redo (n-X) commands. These commands display the change that will
be made before making it.

¢ Quick Undo and Redo commands. These are bound to c-Sh-U and c-Sh-R,
respectively.

¢ Quick Undo and Redo in Region commands. These are bound to m-Sh-U and
m-Sh-R, respectively.

Each of these commands takes numeric arguments that allow selective undoing
and redoing and also display the undo and redo histories. Use the undo and redo

histories to make wholesale changes.
In addition, you can undo with the the HELP U key.

Undo Zwei Command

Undo (n-¥)
Undoes a change to the buffer. The change is displayed first.

The first time you issue the command, it undoes the last change to the buffer.
The next time you issue it, it undoes the previous change to the buffer. You can
continue this until all changes to the buffer are undone and the buffer is consid-
ered unmodified. And, if you undo all the changes to a section since it was com-
piled, it is no longer marked as needing compiling.

For an otherwise equivalent accelerated version of this command:See the section
"Quick Undo Command", page 31.

If you undo something you didn’t intend to, Redo (m-X) redoes any undo. See the
section "Redo Zwei Command", page 32.

With no numeric argument, Undo undoes the most recent change that has not al-
ready been undone. With a positive numeric argument, Undo undoes the n most
recent changes. An argument of 1 is the same as no argument and an argument of
n is the same as issuing the command n times.

With a negative argument, Undo undoes only the nth most recent change that has
not already been undone. This allows undoing changes out of order, but can some-
times surprise you when the undone change overlaps with a later change that was
not undone. Use at your own risk.

With an argument of 0, Undo displays the undo history. Each change is numbered
and described in abbreviated form. The undo history is mouse-sensitive. Clicking
Left undoes back to the previous change, just as in using a positive numeric argu-
ment. Clicking Middle undoes only the highlighted change, just as in using a nega-
tive numeric argument. Clicking m-Left shows you the context of a change by high-
lighting the section of the buffer affected by the change.

31

February 1988

Quick Undo Command
c-Sh-U Quick Undo

Undoes a change to the buffer. The first time you press it, it undoes the last
change to the buffer. The next time you press it, it undoes the previous change to
the buffer. You can continue this until all changes to the buffer are undone and
the buffer is considered unmodified. And, if you undo all the changes to a section
since it was compiled, it is no longer marked as needing compiling.

For an otherwise equivalent prompting version of this command: See the section
"Undo Zwei Command", page 30.

c-Sh-R redoes any undo. See the section "Quick Redo Command", page 32.

With no numeric argument, c-Sh-U undoes the most recent change that has not
already been undone. With a positive numeric argument, c-Sh-U undoes the n
most recent changes. An argument of 1 is the same as no argument and an
argument of n is the same as pressing the key n times.

With a negative argument, c-Sh-U undoes only the nth most recent change that
has not already been undone. This allows undoing changes out of order, but can
sometimes surprise you when the undone change overlaps with a later change that
was not undone. Use at your own risk.

With an argument of 0, c-Sh-U displays the undo history. Each change is
numbered and described in abbreviated form. The undo history is mouse-sensitive.
Clicking Left undoes back to the previous change, just as in using a positive
numeric argument. Clicking Middle undoes just the highlighted change, just as in
using a negative numeric argument. Clicking m-Left shows you the context of a
change by highlighting the section of the buffer affected by the change.

Quick Undo in Region
n-Sh-U Quick Undo in Region

m-Sh-U works just like c-Sh-U except that it is limited to changes in the current
region rather than in the current buffer. You are warned if an undo extends past
the region. See the section "Quick Undo Command", page 31. There is no prompt-
ing (m-X) version of this command.

With no numeric argument, n-Sh-U undoes the most recent change that has not
already been undone. With a positive numeric argument, n-Sh-U undoes the n
most recent changes. An argument of 1 is the same as no argument and an argu-
ment of n is the same as pressing the key n times.

With a negative argument, mn-Sh-U undoes only the nth most recent change that
has not already been undone. This allows undoing changes out of order, but can
sometimes surprise you when the undone change overlaps with a later change that
was not undone. Use at your own risk.

With an argument of 0, m-Sh-U displays the undo history of the region. Each
change is numbered and described in abbreviated form. The undo history is
mouse-sensitive. Clicking Left undoes back to the previous change, just as in using

32

February 1988

a positive numeric argument. Clicking Middle undoes just the highlighted change,
just as in using a negative numeric argument. Clicking m-Left shows you the con-
text of a change by highlighting the section of the region affected by the change.

Redo Zwei Command

Redo (n-X)
Redoes a change to the buffer. The change is displayed first.

The first time you issue the command, it redoes the last undo in the buffer. The
next time you issue it, it redoes the previous undo in the buffer. You can continue
this until all changes to the buffer are redone and the buffer is back where you
started from before you did the first undo.

For an otherwise equivalent accelerated version of this command: See the section
"Quick Redo Command", page 32.

If you redo something you didn’t intend to, Undo (m-X) undoes any redo. See the
section "Undo Zwei Command", page 30.

With no numeric argument, Redo redoes the most recent change that has not al-
ready been redone. With a positive numeric argument, Redo redoes the n most re-
cent changes. An argument of 1 is the same as no argument and an argument of n
is the same as issuing the command n times.

With a negative argument, Redo redoes only the nth most recent change that has
not already been redone. This allows redoing changes out of order, but can some-
times surprise you when the redone change overlaps with a later change that was
not redone. Use at your own risk.

With an argument of 0, Redo displays the redo history. Each change is numbered
and described in abbreviated form. The redo history is mouse-sensitive. Clicking
Left redoes back to the previous change, just as in using a positive numeric argu-
ment. Clicking Middle redoes only the highlighted change, just as in using a nega-
tive numeric argument. Clicking m-Left shows you the context of a change by high-
lighting the section of the buffer affected by the change.

Quick Redo Command
c-Sh-R Quick Redo

Redoes a change to the buffer. The first time you press it, it redoes the last undo
in the buffer. The next time you press it, it redoes the previous undo in the
buffer. You can continue this until all changes to the buffer are redone and the
buffer is back where you started from before you did the first undo.

For an otherwise equivalent prompting version of this command:See the section
"Redo Zwei Command", page 32.

c-Sh-U undoes any redo. See the section "Quick Undo Command", page 31.

With no numeric argument, c-Sh-R redoes the most recent change that has not
already been redone. With a positive numeric argument, c-Sh-R redoes the n most
recent changes. An argument of 1 is the same as no argument and an argument of
n is the same as pressing the key n times.

33

February 1988

With a negative argument, c-Sh-R redoes only the nth most recent change that
has not already been redone. This allows redoing changes out of order, but can
sometimes surprise you when the redone change overlaps with a later change that
was not redone. Use at your own risk.

With an argument of 0, c-Sh-R displays the redo history. Each change is
numbered and described in abbreviated form. The redo history is mouse-sensitive.
Clicking Left redoes back to the previous change, just as in using a positive
numeric argument. Clicking Middle redoes just the highlighted change, just as in
using a negative numeric argument. Clicking m-Left shows you the context of a
change by highlighting the section of the buffer affected by the change.

Quick Redo in Region
n-Sh-R Quick Redo in Region

m-5h-R works just like c-Sh-R except that it is limited to changes in the current
region rather than in the current buffer. You are warned if a redo extends past
the region.See the section "Quick Redo Command", page 32. There is no prompting
(m-%¥) version of this command.

With no numeric argument, n-Sh-R redoes the most recent change that has not al-
ready been redone. With a positive numeric argument, n-Sh-R redoes the n most
recent changes. An argument of 1 is the same as no argument and an argument of
n is the same as pressing the key n times.

With a negative argument, m-Sh-R redoes only the nth most recent change that
has not already been redone. This allows redoing changes out of order, but can
sometimes surprise you when the redone change overlaps with a later change that
was not redone. Use at your own risk.

With an argument of 0, n-Sh-R displays the redo history of the region. Each
change is numbered and described in abbreviated form. The redo history is
mouse-sensitive. Clicking Left redoes back to the previous change, just as in using
a positive numeric argument. Clicking Middle redoes just the highlighted change,
just as in using a negative numeric argument. Clicking n-Left shows you the con-
text of a change by highlighting the section of the region affected by the change.

The Undo and Redo Histories

The Undo facility keeps an undo history and a redo history for each Zwei buffer.
By default, the history is discarded when you save the buffer, but you can set the
variable zwei:*discard-change-record-after-saving* to nil if you wish to override
that behavior. There is also a Discard Change History (m-X) command.

You can display the Undo history by giving an argument of 0 to the Undo (n-%)
command or the c-Sh-U commands. A 0 argument to m-5h-U displays the undo his-
tory of the current region.

An argument of 0 to the Redo (n-X) or c-Sh-R displays the redo history of the
buffer. A 0 argument to m-Sh-R displays the redo history of the current region.

34

February 1988

Histories are mouse-sensitive. Clicking Left on a history entry undoes or redoes
back to the previous change. Clicking Middle undoes or redoes only the highlighted
change. Clicking m-Left shows you the context of a change by highlighting the sec-
tion of the buffer affected by the change.

Discard Change History

Discard Change History (m-X)

Throws away both the Undo and Redo histories of the current buffer. The buffer
is still considered modified after this command is executed, but the histories are
gone.

See the variable zwei:*discard-change-record-after-saving*, page 35.

Customizing the Undo Facility

You can customize the Undo facility by setting one or more variables. Most of
these variables affect the way the Undo facility records which changes it can undo
or redo, but there are also variables for turning the Undo facility off, for turning
off the region marking, and for changing the way the Undo facility handles yank-
ing and multiple replaces.

You can set any of these variables in Lisp programs, including your lispm-init file.
You must use setf, not setq to set these variables.

A number of these variables are also defined as Zwei variables and can be set
from inside an editor using the Set Variable (n-X) command. Using the Set Vari-
able command, you can set each variable per buffer, per mode, or globally.

zwei:*enable-change-recording* Variable
Set to nil to turn off the Undo facility. The default is t.

zwei*undo-sets-region* Variable
If t, undo and redo operations use region marking to highlight where the
change was done. The marking disappears with the next keystroke. If nil,
there is no marking.

The Zwei variable is called Undo Sets Region. Using the Set Variable (m-X)
command, you can set it per buffer, per mode, or globally.

zwei:*yank-is-separately-undoable* Variable
If t, a yank is separately undoable from any edits before or after it. If
:multi-line, which is the default, this is true only when the yanked text is
more than one line. If nil, a yank can be merged with edits before or after
it, approximately the same as if the yanked text had been typed in one
character at a time.

The Zwei variable is called Yank is Separately Undoable. Using the Set
Variable (m-X) command, you can set it per buffer, per mode, or globally.

35

February 1988

zwei:*discard-change-record-after-saving* Variable
Set to nil to cause the Undo facility to keep the change histories when a
buffer is saved. The nil setting conses a lot of garbage and may cause
results contrary to user expectations. The default is t, meaning that change
histories are cleared when a buffer is saved.

The Zwei variable is called Discard Change Record After Saving. Using the
Set Variable (m-X) command, you can set it per buffer, per mode, or
globally.

zwei:*simple-change-contiguity-range* Variable
Default = 3. This sets the maximum numbers of unchanged characters
between sections of a simple change within a line. If more unchanged
characters than this intervene between two changes, they will be considered
two undoable changes. Fewer, and it’s all one change.

zwei:*simple-change-size* Variable
Default = 50. This is the maximum number of characters in a change. Once
a change is this number of characters, a new change is begun. Changes can
be smaller than this number of characters. Edits at the end of such a
change are considered part of the same change, but edits in the middle
start a new change.

The Zwei variable is called Simple Change Size. Using the Set Variable
(m-X) command, you can set it per buffer, per mode, or globally.

zwei:*insertion-amendment-size* Variable
Default = 10. This many or fewer characters are considered an amendment
to the previous insertion and not a new change, and therefore are cannot
be undone separately.

The Zwei variable is called Insertion Amendment Size. Using the Set
Variable (m-X) command, you can set it per buffer, per mode, or globally.

zwei*insertion-breakup-lines* Variable
Default = 4. Two insertions of at least this many lines with a blank line
between them are considered two undoable changes. In other words, this is
the size of an undoable paragraph insertion.

The Zwei variable is called Insertion Breakup Lines. Using the Set Variable
(m-X) command, you can set it per buffer, per mode, or globally.

zwei:*undo-each-replace-separately* Variable
If nil, which is the default, all the changes made by a Replace String (c-2)
or Query Replace (m-2) or other member of the Query Replace (m-X)
family are undone as a unit. If t, the changes can be undone separately.
Setting this variable is a matter of taste and style.

The Zwei variable is called Undo Each Replace Separately. Using the Set
Variable (m-X) command, you can set it per buffer, per mode, or globally.

38

February 1988

5.4.1.8. Going Back to First Indented Character

n=-M Back To Indentation
c-m-M

m-RETURN

c-m-RETURN

Positions point before the first nonblank character on the current line.

5.4.1.9. Deleting Indentation

m-" Delete Indentation
c—mMm—

Deletes the newline character and any indentation at the beginning of the current

line. It tacks the current line onto the end of the previous line, leaving one space
between them when appropriate, for example, at the beginning of a sentence.

With any numeric argument, it moves down a line first, killing the whitespace at
the end of the current line.

5.4.1.10. New Line with This Indentation
m-0 This Indentation

Makes a new line after the current one, deducing the new line’s indentation from
point’s position on the current line. If point is to the left of the first nonblank \
character on the current line, it indents the new line exactly like the current one.

But if point is to the right of the first nonblank character, it indents the new line

to the current position of point. Regardless, it leaves point at the end of the newly

created line.

With a numeric argument, the new line is always indented like the current one, no
matter where point is. With an argument of zero, it indents current line to point.

5.4.1.11. Moving Rest of Line Down
c-m-0 Split Line

Moves rest of current line down one line. It inserts a carriage return and indents
new line directly beneath point. With a numeric argument n, it moves down n
lines.

5.4.1.12. Inserting Blank Line
c-0 Make Room

Inserts a blank line after point. With a numeric argument n, it inserts n blank
lines.

5.4.1.13. Deleting Blank Line
c-%¥ ¢-0 Delete Blank Lines

Deletes any blank lines around the end of the current line. I~

39

February 1988

5.4.1.14. Centering the Current Line
n-S Center Line

Centers the text of the current line within the line. With an argument n, it
centers n lines and moves past them. Do not use this command for indenting Lisp
code.

5.4.1.15. Controlling Indentation of Lisp Forms

This section shows you how to control the way that Zmacs indents Lisp forms
when you use LINE, TRB, c-m-\, c-mn-G and so forth. This information is most
useful when you are creating your own macros, which parse their arguments dif-
ferently from functions.

This information applies to Zmacs in Lisp mode only.

In indenting forms, Zmacs makes no distinction beween functions, macros, or just
data. Indentation is controlled by a property of the first symbol of the form. For
convenience, this discussion refers to these symbols as functions if the technique
applies to symbols of any type and as macros when the technique applies to
macros only.

There are four methods of controlling indentation:

1. Start the name of your function with def...
2. Use &body in your macro’s argument list
3. Use the zwei:indentation declaration

4. Use the zwei:defindentation special-form

All four methods can be used to control the indentation of macros. The def...
method and the zwei:defindentation method can be used to control the indenta-
tion of other forms as well. If you use nonc of these methods, forms beginning
with your symbol will indent like ordinary functions.

It should be noted that Zmacs will not know that you have used zwei:indentation
or &body until you compile your defmacro or evaluate the zwei:defindentation.

This discussion of indentation uses some special terminology.

For instance, indentation n means that Zmacs indents the first character of that
argument n characters to the right of the first character of the function name.
Thus, if Zmacs indents a form like this

. (elbo-macro
charm
“grace”
(beauty))

then the argument charm is getting indentation 0, the argument "grace" is getting
indentation 1, and the argument (beauty) is getting indentation 2.

40

February 1988

Standard indentation refers to the indentation behavior of elements of normal lists.
The first form on a line indents to the same column as the first argument on the
previous line which belongs to the same function. When the first argument of a
function is not on the same line as the function name, it gets indentation 1. Here
are some examples of standard indentation:
(list @
1
2)

(1ist
%}
1
2)

(1ist 9 1
2 3 4)

Controlling Indentation by Naming Your Function def...

If the name of your function begins with def..., then argument 2 (the "third" ar-
gument) is given indentation 1, and all other arguments get standard indentation,
like defun.

For example:

(defmacro define-thing (name args thing-maker thing-destroyer)
‘(progn (defun (:property ,name maker) ,args ,thing-maker)
(defun (:property ,name destroyer) ,args ,thing-destroyer)))

(define-thing sylon
(xy 2)
(...)
...))
This indentation behavior is overridden by use of &body, zwei:indentation, or
zwei:defindentation.

Controlling Indentation Using &body

When you use &body in the argument list of a macro, the first &body argument
gets an indentation of 1. All other arguments get standard indentation.

For example:

41

February 1988

(defmacro macro-with-body-arg (a b &body body)
‘(list ,a ,b ,Bbody))

(macro-with-body-arg @
1
2
3)
This indentation behavior is overridden by use of zwei:indentation or
zwei:defindentation.

&rest and &optional have no effect on indentation.

Controlling Indentation Using zwei:indentation

zwei:indentation Declaration
zweizindentation subform-index indentation subform-index indentation...
declaration

zweitindentation . indentor-function declaration

The zwei:indentation declaration (and the zwei:defindentation special
form) give you the most control over the way Zmacs indents calls to your
macros.

zweizindentation is placed in the declaration part of the defmacro which
defines your macro. When using the first syntax of zwei:indentation, the
declaration should be given an even number of arguments. Each pair of
arguments assigns a specific indentation to a particular argument. Note
that, for the purposes of this declaration, the arguments of your macro are
numbered from 0.

Here is an example using zwei:indentation:

(defmacro strangely-indented-macro (arg@ argl arg2 arg3 &rest rest)
(declare (zwei:indentation 2 3 58 6 2))
“(list ,arg@ ,arg? ,arg2 ,arg3 ,@rest))
This causes argument 2 to get indentation 3, and argument 5 to get
indentation 0. All other arguments get standard indentation, which causes
argument 1 to follow argument 0, argument 3 to follow argument 2, etc.

Here is how this example macro is indented:

42

February 1988

;8123456 <- indentation
(strangely-indented-macro @
1
2
3
4

0o N O

9)
zwei:indentation has a second syntax. When the cdr of the declaration is a
function or a symbol with a function definition, that function is called to do
the indenting.

For example,
(declare (zwei:indentation . zwei:indent-prog))
would cause the macro to indent like prog.

In addition to zwei:indent-prog, you could also use
zwei:indent-prog-or-tagbody, zwei:indent-tagbody, or zwei:indent-loop.
There is no further documentation on these function definitions. ~

Controlling Indentation Using zwei:defindentation

zwei:defindentation Spectal Form

zwei:defindentation (name subform-index indentation subform-index
indentation...)

zwei:defindentation (name . indentor-function)

zwel:defindentation is similar to zwei:indentation in that it allows you to
control the indentation of certain forms. The subform-index, indentation and
indentor-function arguments work in the same way as for zweizindentation.

zwei:defindentation differs from zwei:indentation in two ways:

» zwei:defindentation can be used to control the indentation of forms
beginning with any symbol, not just macros. The name argument
specifies the symbol whose indentation you wish to control.

» zwei:defindentation is a special form which must be compiled or
evaluated after the definition of your macro, function, or other symbol.

When defining a macro, you will probably find zwei:indentation more
convenient than zwei:defindentation , because there will be one less
definition in your source file, and because recompiling your macro will undo
any previous indentation specifications for that macro. N\

This example shows how to use zwei:defindentation to control the
indentation of a function:

43

February 1988

(defun funny-function (&rest rest)
(length rest))

(zwei:defindentation (funny-function 3 5))
(funny-function @

1

2

4)

44

February 1988

6. Changes to Utilities in Genera 7.2

6.1. New Features in Utilities in Genera 7.2

6.1.1. New Metering Interface in Genera 7.2
Genera 7.2 offers a set of flexible tools for metering programs.

Metering is the process of measuring the performance of a program, usually with
the goal of determining where performance can be improved. Genera offers tools
for metering different aspects of performance, such as time, paging, and consing.
The Metering Interface is a uniform interface which makes it convenient to use

the various metering tools.

This chapter also documents several macros that are useful for metering short
forms. See the section "Macros for Metering the Execution Time of Forms", page
81.

6.1.1.1. Overview of the Metering Interface
This section gives an overview of how to use the Metering Interface. The Metering
system is not part of the default world; it is loaded separately. To begin, load the
system:

Load System Metering
Now you can select the Metering Interface:

SELECT %

The name % was chosen because it is related to metering; you might be seeking
the percentage of time spent in one function, or some other percentage. (You can
always use SELECT HELP to remind yourself of the activities you can choose with
the SELECT key.)

You will notice that when you first select the Metering Interface, it takes a little
while for the Metering Interface to do some preparatory work. The progress note
says "Computing Fudge Factors". We suggest that you wait for this to finish be-
fore typing, using the mouse, or doing any other activity that would interfere with
this computation. See the section "Computing Fudge Factors", page 53.

Metering involves a sequence of steps. Here we briefly describe each step, and
refer to the section that describes the step in further detail.

1. Specifying what to meter

You can meter the performance of a Lisp form, a portion of a function, or one
or more functions running within a process. For example, to execute and

45

February 1988

meter a form, click on [Meter Form] and enter the form. You could also
meter one or more functions running within a process by clicking on [Meter
in Process]. See the section "Specifying What to Meter", page 47.

2. Choosing the type of metering

The Metering Interface prompts you for a metering type. The metering type
controls how the data is collected and presented. The choices are: Function
Call, Page Fault, Call Tree, Statistical Function Call, Statistical Call Tree,
and Statistical Program Counter. See the section "Choosing a Metering Type",
page 48.

3. Specifying metering parameters

This is an optional step. The keyword options to Meter Form and Meter in
Process allow you to control various aspects of the metering run. For
example, you might decide to meter the code within a without-interrupts
form, or to run the code a number of times and meter only the results of the
last time it executes. When doing a Page Fault metering run, you can flush
all pages first. The keywords available depend on which metering command
you give, and the type of metering. See the section "Meter Form Command",
page 74.See the section "Meter in Process Command", page 76.

4. Running and metering the code

When using Meter Form, once you choose the type of metering and press
RETURN, the form is immediately executed and simultaneously metered.

When using Meter in Process you can meter one or more functions whenever
they are naturally executed within a given process, instead of executing them
immediately. This is useful for metering a function that normally runs within
a process such as Zmail or a network process; the metering results are more

representative of the usual environment of the function than they would be if
you called the function explicitly.

When you use Meter Form or Meter in Process, the result is called a
metering run, which contains the data collected. The Metering Interface saves
a history of metering runs in the top pane, which makes it convenient to
show the data of a metering run later, or to repeat the metering run. The
"current" metering run is the run whose results are now being displayed. The
current metering run appears in bold face in the Metering History. See the
section "Running and Metering the Code", page 50.

5. Customizing the display of metering results
This is an optional step. The display in the bottom pane shows the results of

the metering run. The results appear in columns under headers that describe
the data. Each column is an output field. An output field shows a kind of

46

February 1988

data, such as consing, page faults, or time spent in a function. Output fields
are divided into subfields; each subfield shows one aspect of the information.

You can click Middle on a column header for information describing the data
in that output field. You can also tailor this display to request more or less
information by removing output fields from the display or adding them to the
display. See the section "Customizing the Display of Metering Results", page
51.

Often the data displayed is only a summary of the data available. You can get
expanded information on a particular portion of the data by clicking Middle
on it. See the section "Expanding Metering Data", page 61.

6. Interpreting the results of the metering run

In this step you analyze the metering results and try to identify where the
performance of your program can be improved. See the section "Interpreting
the Results of a Metering Run", page 55.

7. Saving the results of a metering run

The results of a metering run are saved in your Lisp world until you
explicitly delete the metering run or cold boot. However, sometimes it is
useful to save the results more permanently, either by printing them or by
sending the results to an editor buffer and then using a Zmacs command to
write the results to a file. To do this, use Show Metering Run and give the
:Output Destination option. See the section "Show Metering Run Command”,
page 80.

Usually when you are metering a program, you go through the cycle of metering
steps several times. You might choose other metering types to collect information
on different aspects of performance. You might modify the program on the basis of
the metering results, and then meter the program again.

When you begin using the Metering Interface, you might make use of the Meter-
ing Help facilities: See the section "Getting Help in the Metering Interface", page
47. The Metering Interface enables you to use the mouse to give many of the me-
tering commands: See the section "Using the Mouse in the Metering Interface",
page 54.

When you do a metering run of a new metering type, it takes some time for the
Metering Interface to do the necessary compilation and set-up work. However, fu-
ture metering runs of the same metering type will not have this start-up delay.

6.1.1.2. How to Use the Metering Interface

47

February 1988

Getting Help in the Metering Interface

Here are some suggestions for getting help within the Metering Interface. Most of
these suggestions are applicable in most other contexts of the Symbolics Genera
environment.

e What metering commands are available? Press the HELP key for a list.

e What does a metering command do? Enter Help command-name to see the
documentation for a given metering command. You can also click Middle on any
of the commands visible in the command menu.

e What operations can you do on a metering run? Click Right on a metering run
displayed in the History of Metering Runs pane for a menu of operations.

e What operations can you do on an output field? Click Right on an output field
displayed above the Metering Results pane for a menu of operations.

e What operations can you do on a node of a call tree display? Click Right on a
node displayed in the Metering Results pane for a menu of operations.

e What is the information presented under a output field or subfield? Click Middle
on an output field or subfield to describe its contents.

Specifying What to Meter

The first decision is whether you want to meter within the scope of a form or
within a process.

When you use Meter Form, the form is executed in the Metering Interface pro-
cess, and simultaneously metered. Metering will occur only within that form. You
can meter everything occurring within that form, or specify functions or portions
of functions to meter within that form. See the section "Meter Form Command",
page 74.

Sometimes you want to meter a function whenever it is normally called within a
process. You don’t want to use Meter Form, because that would execute and meter
the function immediately. Meter in Process allows you to meter one or more func-
tions within a process, without explicitly calling those functions. You can meter ev-
erything occurring within the process, or specify functions or portions of functions
to meter within the process. See the section "Meter in Process Command", page
76.

For both Meter Form and Meter in Process, you will be prompted for "What to
meter", which allows you to further specify the code to be metered. The choices
are:

Everything Meter everything within the form/process.

Only when Enabled Meter only the code which is surrounded by a
mi:with-metering-enabled form.

48

February 1988

N\

Within Functions Meter only within the functions specified. You will be prompted

for :Metered functions, and you should enter the functions of

interest.
Only when Enabled is used to meter only a portion of code. First you edit one or
more functions of interest to wrap mi:with-metering-enabled around the desired
portion or portions of code and compile the changed function (or functions). Then
you can use Meter Form or Meter in Process and specify :Only When Enabled.
This starts a metering run that will meter only the code in the dynamic scope of
mi:with-metering-enabled. See the section "Controlling Metering Within Lisp
Code", page 69.
Choosing a Metering Type
This section describes each metering type, and then gives some general guidelines
and suggestions about choosing the right metering type for different purposes.
Function Call Collects data on every function entry and exit. The display

indexes the data by function. This display shows the number of

times each function was called, the total amount of time spent

in each function, the total amount of consing that took place in

each function, and information on any page faults that

occurred in each function. N

Call Tree Collects the same data as Function Call, but the display
indexes the data by the stack trace. This describes the entire
calling sequence of functions that occurred. Each function is a
node of the tree; the callees of a function are displayed below
the function and indented. You can selectively conceal or
display nodes of the tree.

Page Fault Collects data related to the paging system. The display indexes
the data by page fault. The display shows how much time was
spent in each page fault, what kind of page fault occurred, the
virtual address and physical page where the page fault
occurred, and the function and/or Lisp object whose reference
caused the page fault.

Statistical Function Call
Collects and displays the same kind of data as does Function
Call. The difference is that Statistical Function Call does not
collect data on every function entry and exit; instead, it
periodically samples the process being metered.

Statistical Call Tree
Collects and displays the same kind of data as does Call Tree.

The difference is that Statistical Call Tree does not collect
data on every function entry and exit; instead, it periodically
samples the process being metered. s

49

February 1988

Statistical Program Counter
This metering type incorporates the PC Metering Tools into

the Metering Interface. It collects and displays only exclusive
time, and indexes it by function. It automatically executes the
form a number of times, gradually zooming in on the functions
where most of the time is spent.

Where to Start?

Function Call and Call Tree are the typical places to start metering. These meter-
ing types collect the same kind of data, but they display it differently. Since Func-
tion Call indexes the data by function, you can see the total amount of time spent
in each function, the total number of times a function was called, and totals for
paging and consing during each function. However, the Function Call display does
not inform you of the calling sequence. In contrast, Call Tree indexes data by the
stack trace, which informs you of the calling sequence. However, if a function was
called in more than one place in the call tree, the information on that function is
not merged together to show you the total number of times the function was
called, total paging, total consing within that function, and so on.

Metering Long Runs

You will notice immediately that when you execute and meter code, it takes much
longer than running the code normally (without metering). For a long run, it
might be prohibitively time-consuming to meter every function entry and exit.

You can use the Statistical Function Call or Statistical Call Tree metering types to
periodically sample the process being metered instead of collected data on every
function entry and exit; this enables you to identify performance problems in runs
that are too long to meter completely.

Often it is useful to use one of the statistical metering types to get a rough idea
of where the performance problems are, and then narrow the scope of the meter-
ing to focus on those problems. You can edit your program to use
mi:with-metering-enabled to specify exactly what code should be metered. You can
then use Function Call or Call Tree metering types (and supply the :Only When
Enabled keyword as Yes); much less data will be collected, and the metering run
will go faster. You can also use mi:with-metering-enabled with the statistical me-
tering types.

Function Call metering is significantly faster than Call Tree metering. Function
Call and Call Tree metering take much longer than their statistical counterparts,
but the data is deterministic, whereas the result of statistical metering is statisti-
cal data.

Metering for Paging Performance

The Function Call and Call Tree metering types give information on paging, in-
cluding the number of page faults and the time spent in the paging system. Often
that information is exactly what you are looking for, and there is no need to use
Page Fault type of metering.

50

February 1988

Page Fault metering collects and displays more detailed information on page
faults, and the activities of the paging system. It is intended for people already fa-
miliar with paging systems. Page Fault metering shows what function or object
took the page fault. It also shows information about fetching that occurred, which
is useful for programmers who control the prefetch count by using the
:swap-recommendations option to make-area.

Integration of PC Metering into the Metering Interface

The Statistical Program Counter metering type integrates the PC Metering tools
into the Metering Interface. See the section "PC Metering" in Program
Development Utilities.

PC Metering was available prior to the Metering Interface, which was introduced
in Genera 7.2. Probably for most purposes the other types of metering will collect
and display the desired kinds of data.

The Statistical Program Counter metering is useful only when the form you are
metering has strictly repeatable results. (You cannot use this type of metering for
Meter in Process, only for Meter Form metering runs.) The form is executed a
number of times. It collects and displays the percentage of exclusive time spent in
functions; this information is indexed by function.

In Statistical Program Counter metering, the sampling is supported by microcode.
This means it can meter code within a without-interrupts special form. In con-
trast, in Statistical Function Call and Statistical Call Tree metering, the sampling
is done from another process, so it cannot take place within without-interrupts.
Also, the data will show time spent in escape functions, which is not shown in the
other metering types.

Running and Metering the Code

When using Meter Form, once you have entered the arguments and pressed
RETURN, the metering run begins. The form is executed and the desired kinds of da-
ta are collected during the execution. A metering run takes significantly longer
than running the code without metering, because metering collects a lot of data.
When the metering run finishes, the results are displayed in the Metering Results
pane.

When using Meter in Process, the function being metered is not executed by the
Metering Interface. Instead, the Metering Interface meters that function within
some other process. For example, you might want to meter a function that normal-
ly runs within a network process; you would not want to call that function explic-
itly, but rather meter it whenever it normally is called. Once metering is started,
whenever the function is called within that process, it is metered. In Meter in Pro-
cess you specify explicitly when the metering should start and stop. Whenever you
stop the metering, the desired kinds of data are collected into a metering run,
which is displayed in the Metering Results pane.

51

February 1988

Customizing the Display of Metering Results

The default display of metering results is a summary of the data collected. Each
column is an output field. An output field shows a kind of data, such as consing,
page faults, or time spent in a function. Output fields are divided into subfields;
each subfield shows one aspect of the information.

You can request more detail by adding output fields or subfields to the display, or
by expanding some piece of data already shown. You can request less detail by
deleting output fields or subfields from the display. If desired, you can also set the
default output fields for a given type of run, and cause other runs of that type to
be displayed using the new defaults.

You can get information on the display itself, such as finding out what units are
being displayed. You can use the Metering History to show the results of a previ-
ous metering run.

In many cases, you can give the following commands by using a mouse gesture.
See the section "Using the Mouse in the Metering Interface", page 54.

Getting Information on the Display Itself

You can describe the meaning of a major output field or a subfield by positioning
the mouse over the field and clicking Middle.

Describe Output Field Command
Describes the meaning of the data displayed in a given output field. You can
do this by clicking Middle on an output field.

Displaying Information not Currently Visible

You can request expanded data by clicking Middle on a piece of data. You can
scroll the various window panes by positioning the mouse on the scroll bar and us-
ing the normal scrolling commands.

Expand Field Command
Expands the data identified by the output field (column) and the function
(row), for a given metering run. You can do this by clicking Middle on the
piece of data you want to expand.

Deleting Output Fields from the Display

You can delete a major field or a subfield from the display by positioning the
mouse on the field and clicking sh-(M).

Delete Output Field Command
Deletes an output field from the display of the metering run. You can do
this by clicking sh-Middle on the output field you want to delete.

Delete Output Subfield Command
Deletes an output subfield from the display of the metering run. You can do
this by clicking sh-Middle on the output subfield you want to delete.

52

February 1988

Adding Output Fields to the Display

Add Output Field Command
Adds a new field to the display of the metering run. You can do this by

clicking c-m-Left on a metering run.

Add Output Subfield Command
Adds a new subfield to the display of a metering run. You can do this by
clicking c-m-Left on an output subfield.

Freezing the Display while Adding or Deleting Fields

Lock Results Display Command
Prevents updating of the display of metering results until the Unlock
Results Display command is given. Useful when you are adding or deleting
several output fields.

Unlock Results Display Command
Re-enables the updating of the display of metering results. Use this after
you have used Lock Results Display and finished customizing the output
fields.

Changing the Defaults for Displaying

Once you have added or deleted fields from a metering run, you might want to
cause all future metering runs of that metering type to display the same fields
that this run displays. To do so, use Set Default Output Fields for Type. That sets
the default output fields for displaying runs of that metering type, but it only af-
fects future metering runs. You can use Set Output Fields of Run from Defaults to
cause an existing metering run to use the new defaults.

Set Default Output Fields for Type Command
Sets the defaults for displaying future metering runs to be the same as the
fields displayed for the given metering run. This only affects the display of
metering runs of the same metering type as this run.

Set Output Fields of Run From Defaults
Sets the output fields of the given metering-run to the defaults. This is
useful when you have changed the defaults and you want a metering run to
use the new defaults.

Using the Metering History

You can position the mouse over a metering run in the Metering History. Then
you can click Left to display the results of the run, or Middle to describe the run,

or Right for other alternatives.

Describe Metering Run Command
Describes a metering run, including the date and time of the run, what
code was metered, and the metering parameters that were used. You can do
this by clicking Middle on a metering run.

53

February 1988

Show Metering Run Command
Displays the results of a metering run. You can do this by clicking Left on a

metering run.

Delete Metering Run Command
Deletes a metering run from the Metering History. You can do this by

clicking sh-Middle on a metering run.

Re-Meter Command
Repeats a metering run, selecting the type of metering and the code to
meter from the specified metering run. You can do this by clicking s-Middle

on a metering run.

Changing Other Aspects of the Display

Move Output Field Command
Moves an output field to another position in the display of metering results.
You can do this by clicking c-n-Middle on an output field.

Set Display Options Command
Enables you to specify how the data of a metering run should be displayed,
including how the data should be sorted. You can do this by clicking on [Set
Display Options] in the menu.

Set Indentation Depth Command
Specifies how many levels not to indent for displaying a call tree metering
run. You can do this by clicking s-n-Middle on a displayed node, to start
indentation after that node.

For information on customizing the display of a call tree metering run: See the
section "Exploring a Call Tree", page 56.

Computing Fudge Factors

When you first select the Metering Interface, some initialization work goes on.
The progress note says "Computing fudge factors." Here "fudge factors" are based
on the hardware and software configuration of your machine. The goal of this com-
putation is to measure the overhead of the metering tools.

We recommend that you wait until this process has completed before you type
anything. It is important for the machine to be otherwise idle, while the fudge fac-
tors are being calculated.

The computation happens more than once, and if the results are quite similar, the
Metering Interface considers the fudge factors to be consistent and reliable. If the
results vary significantly, the computation is believed to have failed. This can hap-
pen if you move the mouse rapidly during the computation, for example, or if
something else requires action on the part of the machine, such as unusually
heavy network traffic.

When the fudge factors have not been calculated accurately, any metering results
you later obtain will not be accurate. Incorrect fudge factors can result in negative

times for short functions, for example.

54

February 1988

When the fudge factor computation fails, the Metering Interface prompts you for
what to do. The choices are:

Retry once Make one more attempt to do the computation, and prompt
again if it fails.

Retry Continue retrying the computation until the measurements are
consistent.

Ignore Use the values computed so far, even though they are possibly
inconsistent.

We advice retrying the computation. To make it more likely to succeed, you might
try moving your mouse off the screen, make sure the garbage collector is off, or
wait for network traffic to die down.

If this is not possible, you can use Ignore to proceed past this stage. However, we
recommend against using Function Call or Call Tree metering unless the fudge
factors have been computed correctly.

Before using metering types Function Call or Call Tree you can recompute the
fudge factors by evaluating the following form:
(progn
(setq metering:xfunction-entry-fudge-factor-1x @)
(metering:enable-metering-utility))

Using the Mouse in the Metering Interface

It is often convenient to use the mouse to give commands in the Metering Inter-
face. This section summarizes the available mouse gestures. The mouse gestures
are arranged in patterns so it should be easy to remember how to use them. For
example, clicking Middle on something describes that thing.

To take action on a metering run, you can click on a metering run in the Meter-
ing History. To indicate the current metering run, you can click on the header of
the Metering Results pane (where the names of the output fields appear).

Mouse Gesture Action

Left Says "do it". When used on a metering run, it displays the
results of the run. When used on a metering command in the
menu, it prompts you for the arguments to the command. This
mouse gesture can mean different things in different contexts;
it usually enables you to do the most commonly done action on
the highlighted thing. When used on a node in a call tree
display, it offers to hide or show the children (whichever is
appropriate).

Middle Gives a description. Can be used on a metering run, a
metering command in the menu, an output field or subfield, or
a piece of data (to expand the data).

55

February 1988

Right Gives a menu of commands that can be given on the
highlighted thing. Can be used on a metering run, an output
field or subfield, or a visible node in a call tree display.

sh-Middle Deletes the highlighted thing. Can be used to delete a
metering run, to delete an output field or subfield, or to hide a

node in a call tree display.

c-m-Left Adds an output field or subfield. When used on a metering
run, it adds an output field. When used on an output field, it
adds an output subfield.

c-m-Middle Moves an output field or subfield.

s-Middle On a metering run, re-meters the run.

s-Left On a node in a call tree display, shows all the node
descendants.

s-m-Left On a node in a call tree display, hoists the node. On a node
that has already been hoisted, dehoists the node.

s-m-Middle On a node in a call tree display, starts the indentation after
that node.

The Metering Interface also offers the following command keyboard accelerators,
which are based on similar accelerators in other parts of Genera:

c-sh-D Describes the current metering run. (This is based on c-sh-D,
which means describe in Zmacs and the input editor.)

c-m-R Re-Meters the current metering run. (This is based on c-m-R,
which means re-invoke in the Debugger.)

c-m-U Dehoist current node. This takes a numeric arg. An integer
greater than 0 tells how many levels to dehoist. A numeric
argument of 0 Dehoists all the way. The default is 1 level.
(This is based on c-m-U in Zmacs and the input editor, which
means "up one level of list structure".)

6.1.1.3. Interpreting the Results of a Metering Run

In general, interpreting metering results is a skill that requires practice and famil-
larity with the code being metered. We suggest that you do metering with specific,
limited questions in mind, rather than metering with too great a scope and being
overwhelmed with data, much of which is not relevant. Another approach is to
start with a general question in mind, and use the metering results to help you
limit the scope of future metering runs, thus enabling you to focus on the impor-
tant aspects of your program’s performance.

Be aware that the default display of metering results shows many fields that
might be of interest, but for any given metering run, some of those fields may not
be of interest. You might find it useful to delete fields from the display in order to
focus on the fields that are relevant to the question being asked. On the other
hand, you can also add other fields to the display.

56

February 1988

This chapter describes the important concepts that apply to interpreting metering
results. We do not document here what each of the fields of data means. We sug-
gest that you use the online documentation available within the context of the Me-
tering Interface. To find out what a field of data means, position the mouse over a
field or subfield and click Middle to describe it.

Inclusive and Exclusive Time in Metering

When interpreting metering results, it is important to understand the meaning of
inclusive time and exclusive time.

Inclusive time The amount of time spent in function, including time spent in
any functions that this function called.

Exclusive time The amount of time spent in function, excluding time spent in
any functions that this function called.

The terms "inclusive" and "exclusive" are also applied to other aspects of perfor-
mance, such as consing or page faults. "Inclusive" always means that any callees
of the function are included in the data, whereas "exclusive" means that the
callees are excluded from the data.

For an illustration of inclusive versus exclusive time, suppose you meter the form
(format t "~&hello, world.") and specify the Function Call type of metering. The
first function in the display is format. The inclusive time of format is very large;
in fact it is equal to the amount of time spent in the run. However, the exclusive
time of format is very small, because most of the time spent in format was actu-
ally spent in functions called by format.

The inclusive time of a function is the sum of the inclusive times of its callees
and the exclusive time in itself.

Exploring a Call Tree

For Call Tree and Statistical Call Tree types of metering, the output field labeled
Function contains the "call tree" of the functions. This describes the entire calling
sequence of functions that occurred. The callees of a function are displayed below
the function and indented.

Each function in a call tree display is called a node. The first function is called
the root node; this is the top-level function you metered. The callees of a function
are known as the "children" of that node. The descendants of a node include all of
its children, all of their children, and so on.

Usually the call tree is not presented in entirety because that would be too long
and hard to decipher; instead a heuristic determines which nodes should be dis-
played. The Metering Interface offers several ways to explore a call tree display.
You can open a node (show all of its children) or close it (hide all of its children).

The symbols in the call tree have the following meanings:

l This node is completely opened; all of its children are shown.

57

February 1988

- This node is not opened at all; none of its children are shown.
o This node is partially open; some of its children are shown.

. This is a terminal or "leaf" node; it has no children.

In many cases, you can give the following commands by using a mouse gesture.
See the section "Using the Mouse in the Metering Interface", page 54.

Commands for exposing nodes further

Show Node Children Command
Adds all the children of a node to a call tree metering display. You can do
this by clicking Left on a node with undisplayed children.

Show All Node Descendants Command
Adds all the descendants of a node to a call tree metering display. You can
do this by clicking s-Left on a node.

Commands for concealing nodes or portions of nodes

Hide All But Path to This Node Command
Customizes a call tree metering display to show only the path to the given
node, by removing functions from the display that do not lead directly to
this node.

Hide Node Children Command
Removes all the children of a node from a call tree metering display. You
can do this by clicking sh-Left on a node which is partially or completely
open.

Hide Node Command
Removes a node and all of its descendants from a call tree metering display.
You can do this by clicking sh-Middle on a node.

Commands for changing the root node

Hoist Node Command
Changes a call tree metering display to focus on a certain node as if it were
the root node, and removes all functions from the display which are not
descendants of this node. You can do this by clicking s-m-Left on a node.

Dehoist Command
After you have hoisted a node, you can use Dehoist to restore the display to
a different root node that is no longer displayed. You can do this by clicking
s-n-Left on a node that has been hoisted.

When you hoist a node, it is often useful to add the /Root subfield to one or more
fields of interest. For example, the /Root subfield of Exclusive Time output field
shows the fraction of exclusive time spent in a given function, with respect to the
new root (as opposed to /Run, the fraction of time in a given function with respect
to the whole run).

58

February 1988

Command for altering the indentation

Sometimes the indentation is so great that the names of the functions are pushed
off the right edge of the display. There are two solutions to this problem. First,
you can scroll the window horizontally by using the usual scrolling commands.
Second, you can use the Set Indentation Depth command to specify how many lev-
els of the tree should be displayed without indentation; the following levels will be
indented.

Set Indentation Depth Command
Specifies how many levels not to indent for displaying a call tree metering
run. You can do this by clicking s-n-Middle on a displayed node, to start
indentation after that node.

Different Views of the Same Metering Data

The Metering Interface can often give you different views of the same data. For
example, Inclusive Time is a field that can express its data in several views; each
view is expressed by a subfield of the Inclusive Time field. Some of the views in-
clude:

Total total time spent inclusively in the function

/Run a bar graph showing the proportion of time spent inclusively in this
function with respect to time spent in the whole run

%Run same as /Run, but expressed as a numerical percentage

Avg average amount of time spent inclusively in this function, per call

Notice that some of the views describe the relationship between two kinds of data.
For example, /Run shows the proportion of time spent inclusively in this function
with respect to time spent in the whole run.

The default display shows some of these subfields. You can choose to add subfields
to the display, or delete subfields from the display. See the section "Customizing
the Display of Metering Results", page 51.

Often the metering results displays a summary of the collected data, and addition-
al data is available to you. You can position the mouse over a piece of data, and
click Middle to expand it. See the section "Expanding Metering Data", page 61.

Overview of How Metering Works

This section briefly summarizes how metering works, which should help you under-
stand what the results mean. The metering substrate is the implementation under-
lying the Metering Interface.

59

February 1988

Background on Function Call and Call Tree Metering

When you start metering something, the metering substrate sets up a trap which
is entered when the code to be metered begins to execute. When this trap is en-
tered, the metering substrate notes the time when the the function begins to run;
it also begins to collect data on paging and consing. When the code being metered
finishes, the trap is exited and the metering substrate notes the time when it end-
ed (and other data).

You will notice that it takes longer to execute and meter a form than it does to
execute the form without metering it. However, it is important to note that the
metering substrate subtracts all of its own overhead from the metering results.
That is, the metering results (time, page faults, paging system, and consing) cor-
rectly exclude any work done by the metering substrate itself.

Results Collected on a Per-process Basis

Note that during the metering, the scheduler might switch processes from the pro-
cess in which the metered code is running to some other process. When this hap-
pens, the metering substrate "turns off" the collection of data on page faults, pag-
ing system, and consing. Thus the page faults, paging system, and consing results
are collected on a per-process basis, and they correctly exclude any page faults,
paging, or consing done within a different process. However, this is not the case
for the data on time: See the section "How Time Spent in Other Processes Affects
Metering Results", page 64.

Metering Overhead is Excluded when Possible

One overall design goal of the metering tools was to subtract out overhead only if
it could be done accurately, and when this is not possible, to document the possible
anomalies in the metering results. The alternative would be to attempt to estimate
the overhead, which might yield incorrect results, without the user being aware
that the results were inaccurate. One example of the metering tools not subtract-
ing out overhead is in sequence breaks.

See the section "The Effects of Sequence Breaks on Metering Results", page 66.
See the section "Metering Percentages Greater Than 100%", page 60.

See the section "Metering Overhead When :Within Functions is Used", page 60.

Background on Statistical Program Counter Metering

The Statistical Program Counter metering type (also called PC Metering) is done
at the microcode level, and it works differently than the other metering types. For
details: See the section "PC Metering" in Program Development Utilities.

PC metering divides up compiled functions into "buckets" by their locations in
memory. It repeatedly executes the form provided to Meter Form, sampling the PC
at a high rate. It increments the count of a bucket each time a PC falls within
that range. If the number of samples in a bucket is greater than a given percent-
age (the resolution percentage) of the total number of samples, it will rerun your
form and "zoom in" on this particular bucket. It "zooms in" by ignoring all PC’s

60

February 1988

outside of the bucket of interest, and therefore is able to use progressively finer
and finer resolution buckets. When a bucket contains a single function the "zoom-
ing" stops.

The resolution percentage controls how many buckets the metering interface
"searches" (it will skip all buckets that take up less than the resolution percentage
of the total), and consequently how many times it must repeat your form. The fin-
er (or smaller) the resolution, the more times it will have to repeat your form in
order to investigate more buckets.

Metering Percentages Greater Than 100%

For the output fields that give information in a ratio or percentage, such as the
/Run subfield of Inclusive or Exclusive Time, sometimes the result is greater than
100%. In theory, a result greater than 100% should never happen. However, it can
happen when the resolution of the the numerator is not the same as the resolution
of the denominator. For example, the paging time is expressed in units of 1024
microseconds.

One goal of the Metering Interface is to give the user the most complete and un-
doctored information possible. That is, the Metering Interface chooses not to round
the percentage down to 100%, but rather to give the actual data to the user, who
can then interpret them.

When a ratio greater than 100% occurs, the bar graph displays are filled in with a /-\s,
darker stipple.

Metering Overhead When :Within Functions is Used

When you use the :Within function keyword to Meter Form or Meter in Process,
the metered functions are encapsulated, and the encapsulations show up in the me-
tering results. You will see functions that are obviously part of the metering facil-
ity.

These encapsulations usually take only about 4-500 microseconds, so they are usu-
ally insignificant compared to the other data. With the default filtering, they are
almost never visible in the display. However, when you are metering code that
takes less than a couple of milliseconds, the overhead spent in these encapsula-
tions becomes significant and they appear in the display. In a call tree they are
usually top level nodes, and so you can easily ignore them by hoisting the real top
level nodes of interest. In function call metering there is currently no way to elim-
inate these functions automatically.

Metering Results Are Not Usually Repeatable

Note that although you can repeat a metering run, the results themselves are usu-

ally not repeatable. For example, paging performance depends on what pages are

currently in virtual memory, and this is constantly changing. The metering results

depend on all kinds of events that might be occurring in Genera, such as sequence

breaks, incremental garbage collection, notifications, network services, and other M\
processes. (See the section "The Effects of Sequence Breaks on Metering Results",

61

February 1988

page 66.) In addition, variations in user code itself, such as caching, often change
the metering results from one run to the next.

There are techniques for looking below the surface of the metering results, to de-
termine how reliable the results are. Sometimes it is useful to meter the same
thing several times in several different ways. If some aspect of the data seems out
of the ordinary or suspicious, you can look at a histogram to see whether all of the
data points are clustered together, or whether a few data points are at one ex-
treme. You can do this by expanding the displayed data, or (when available) adding
the output subfields Dist or WDist. See the section "Expanding Metering Data",
page 61.See the section "Distribution of Metering Data", page 61.

Expanding Metering Data

Often the metering results display a summary of the collected data, and additional
data is available to you. You can position the mouse over a piece of data, and click
Middle to expand it.

For example, in a Function Call metering run, the column Inclusive Time shows
the total amount of time spent inclusively in the function, which is a sum of the
inclusive time for each call of the function. The function might have been called
hundreds or thousands of times. Click Middle on one of those pieces of data to get
more information on the Inclusive Time. You will see information such as:

Lowest data point

Highest data point

Average

Standard deviation
Histogram of the data points

Usually you picture a histogram as having the majority of the data points gathered
around one main peak. However, sometimes the data points are gathered around
more than one recognizable peak; there might be an underflow peak (below the
main peak) and/or an overflow peak (above the main peak). When the data points
are gathered around more than one peak, the histogram is multi-modal. For
multi-modal histograms, the display shows more than one histogram, in order to
focus on each of the peaks. Thus there is always one histogram showing the main
peak, and there might be one or two more histograms, showing the underflow and
overflow peaks, if any.

For a graphic example: See the section "Distribution of Metering Data", page 61.

Distribution of Metering Data

Some output fields collect information about the distribution of the data points.
This information is available in the "Dist" and "WDist" output subfields, which are
usually not part of the default display, but can be added with the Add Output Sub-
field command

The "Dist" output subfield stands for "Distribution” and "WDist" means "Weighted
Distribution". Each shows a small graphic representation of the data points. The
middle of the graph is the average; the left-hand edge is 0, and the right-hand

62

February 1988

edge is twice the average. If there is data whose value is greater than twice the
average, a gap appears afer the right-hand edge, and a smaller horizontal bar ap-
pears to its right; this represents the data whose values are greater than twice the
average.

Dist The height of each bar is related to the call count. That is, for the
inclusive time output field, if several calls to a function fall within the
same range of time, the height of each bar is controlled by the number
of function calls within that category.

WDist The height of each bar shows how much weight that data point
contributed to the average. That is, for the inclusive time output field,
several calls to a function might fall into the same range of time; the
height of that bar is controlled both by the product of the number of
calls in that range, and the (average) amount of time the calls in that
range took.

Below we generate a metering run that has a wide distribution of data, show how
the Dist and WDist fields appear on the screen, and discuss their significance.

Generating the Metering Run

We generated these results by Meter Form, where the arguments were:

CALL-TREE Metering Run

Created: 2/18/88 17:40:12

Form: (LOOP FOR I DOWNFROM 1898 TO 8 DO (FROB (FLOOR I 48)))
What was metered: Everything

Count: 1

Process: Metering Interface 1

Without Interrupts: Yes

We defined frob as follows:

(defun frob (n)
(if (plusp n)
(let ((1imit (random n)))
(loop repeat 1limit))
(two-point)))

(defun two-point ()
(let ((n (random 2)))
(if (oddp n)
(loop repeat 18 doing (random 2)))))

The purpose of this metering run was to show a widespread distribution of data.
The functions frob and two-point have no other purpose.

63

February 1988

Visual Appearance of Dist and WDist Fields

Calls Excl Time Function
Count Total Avg /Incl Dist HWDist
1 26337 R N L | 4 NI:z:|Metered-formil |
1001 26823 . U | 2| | 4 FROB
%1 39619 41.23 JE R W 3 1 RANDOM
961 63638 65.60 _ 4 | = CLI::RANDOM-INTERNAL
%1 18484 18.91 A a1 4 & CLI:z: TYPEP-STRUCTURE
%1 11362 11.82 [N W 5 4+ NAMED-STRUCTURE-P
%1 12711 13.23 L U 6 | 4 NAMED-STRUCTURE-SYMBOL
%1 8662 9.01 N B ? | | * ARRAY-HARS-LEADER-P
7] 1444 3.10 A S Y 3 4 TUO-POINT
248 10431 43.46 [N S 4 + RANDON
248 15673 65.30 - 1 _ 5 = CLI::RANDOM-INTERNAL
248 2475 18.31 B b WL 5| + CLI:: TYPEP-STRUCTURE
240 2680 11.17 kK 6 | 4 NAMED-STRUCTURE-P
240 2900 12,68 B9 L b _ ? | | + NAMED~STRUCTURE-SYMBOL
24@ 2052 8.55 S R 81| | | | = ARRAY-HAS-LERDER-P

Figure 1. Dist and WDist Metering Output Subfields

The leftmost edge of the horizontal bar means 8. The small tick that descends
from the middle of the horizontal bar of each Dist and WDist entry marks where
the middle, or the average value is. The rightmost edge of the horizontal bar is
twice the average value.

In some cases you will notice that past the rightmost edge of the bar there is a
gap followed by another, smaller horizontal bar. This gap indicates that there are
data points whose value is greater than twice the average value. Figure 1 shows
such gaps in all of the functions except for two. In some cases so few data points
occur there that they don’t show up as a vertical bar. Still, the fact that there is a
bar beyond the right edge indicates that some amount of data is there.

Using Dist to Understand the Average

Notice that the first function was called once. Its inclusive time is 100% of the
run. Since it was called exactly once, there is only one data point. With only one
data point, the Dist field clearly shows that all the data (one value) is clustered at
the middle of the average.

The other functions were all called many times, so there are many data points.
Here the Dist field shows more useful information. Look at the Dist field for the
function two-point. The data points are clustered around two different values.
That is, there is a peak somewhere below the average and another peak above the
average. There is no data at all appearing at the average. (This is entirely due to
the definition of two-point.) Here the Dist tells you that the average was calculat-
ed based on two distinct behaviors. In cases such as these, probably the average it-
self is unimportant, but the average of each separate peak is important. You can
get that information by expanding the data (clicking Middle on the row).

The expanded data in Figure 2 confirms what we learned from the Dist output
field; the data points are clustered around two different areas. The histogram is
multi-modal (with two modes). The average of the 40 calls was 36.1. However the
average of 20 calls was 64.75, and the average of the other 20 calls was 7.45.

64

February 1988

Description of Excl Time of “TWO-POINT® in Run 2/18/B9 17:40:12
Low: 6 High: 68 Count: 48 Rvg: 36.1 Std Dev: 28.727644

This histogran is mnulti-nodal:
Main mode:

Low: 61 High: 68 Bucket-size: 1 Count: 20 Avg: 64.75 Std Dev: 1.5588436
8ucket Lount Bucket Lount
&1 1 63: 3 &5: 9 &7:
82: 84: 2 &6: 2 &8: 1
Underflow:
Low: 6 High: 9 Bucket-size: 1 Count: 20 Avg: 7.45 Std Dev: 0.8645608
fucket Count Bucket Count Bucket Count
6: 2 7: 18 8: S 9:

Figure 2. Expanded Data for two-point

Using WDist to Understand the Effect of Data Past the Gap

The Dist field shows where all the data points occurred. You can think of this as a
seesaw where the average is the fulcrum. The seesaw is balanced on the average.
If there is a gap and another horizontal bar to the far right, then the seesaw is
longer on that end. The one thing that the Dist field cannot show you is how
much longer that side is.

The data appearing past the gap affects the average. Its effect is based on two
things: the number of data points there, and their values. The Dist field shows the
number of data points there, but gives you no information about what their values.
In other words, you don’t know how long the gap is, or how much longer that side
of the seesaw is.

The WDist field shows you the weighted distribution. It gives you an idea of how
great an effect on the average the data points have. When computing an average
from many data points, a small number of data points that have a high value have
great impact on the average. On the other hand, a large number of data points
with low values have a small impact on the average.

Look at the Dist and WDist fields for cli::typep-function. The Dist field shows
that the great majority of data occurred well below the average. There is a gap, so
some amount of data happened beyond twice the average. Since there is no vertical
bar beyond the gap, very few data points occurred there. However, the WDist
shows that the weighted value of those few data points was very large. In other
words, a very few data points occurred quite far past twice the average. The right
side of the Dist seesaw is much longer than the left.

How Time Spent in Other Processes Affects Metering Results

This section describes the difference between the output fields labeled "Time" and
"Process Time". It begins by giving some background information.

When you meter a form and do not use without-interrupts, the scheduler will
probably cause other processes to run, interleaved with the process in which you
are metering. This has different effects on the metering results, depending on the
metering type.

When you do metering and any part of the function being metering uses

without-interrupts, the metering code itself is also within the scope of that
without-interrupts. Usually the metering code takes significantly longer than the

65

February 1988

user code being metered; this has one side-effect you might notice. For a function
that uses without-interrupts, scheduler preemptions are more likely to occur when
you are running metering the function than when you run your function without
metering it. This happens because of the way the scheduler works; whenever a
without-interrupts is exited, the scheduler immediately checks to see if other pro-
cesses are waiting to run, and if so, it preempts the current process. Since the
without-interrupts surrounds both the user code and the metering code (which
often takes significantly longer than your code), there is more time for other pro-
cesses to be ready to run. Thus preemptions are likely to occur immediately upon
exiting the without-interrupts form during metering.

For all metering types except for Statistical Function Call and Statistical Call
Tree:

Although the functions running within these other processes are not metered, the
time spent in those processes does appear in the metering results. You will often
see the function stack-group-resume in the metering results; this function indi-

cates the time spent in other processes.

(Note that the results on paging time, number of page faults, and consing do not
have this problem; they are collected on a per-process basis.)

When using Meter Form for short runs, it is sometimes useful to provide the
:Without Interrupts keyword as Yes, to execute and meter the form from start to
finish without allowing the scheduler to give control to other processes. This pre-
vents irrelevant data from being collected and displayed. Note that it can also be
dangerous, because your program and the metering code runs without interruption;
unless the program is short, this might take a very long time and use up a lot of
space on the machine.

For Statistical Function Call and Statistical Call Tree metering types:

These types of metering collect two kinds of data on time. The column labeled
Time includes all the time spent during the metering run; that is, both the time
when the process of interest was running, and the time when other processes were
running. This is the equivalent to the Time displayed in the other kinds of meter-
ing, as described above. However, the column labeled Process Time includes only
the time during which the process of interest was running.

The Process Time output field is usually more valuable information than the Time
output field. Another interesting piece of information is the subfield of Process
Time which shows the proportion of time spent in the process with respect to time
spent in the metering run. This gives you an idea of the proportion of computing
power that was allotted to your process during the metering run. Note that Statis-
tical Function Call collects data on exclusive time, so that subfield is called /Excl,
and it is under the field Exclusive Process Time. In contrast, Statistical Call Tree
collects data on inclusive time, so that subfield is called /Incl, and it is under the
field Inclusive Process Time.

66

February 1988

The Effects of Sequence Breaks on Metering Results

Symbolics computers periodically take a sequence break, an asynchronous interrupt.
During sequence breaks some mouse-tracking, I/O interrupts, and disk events
might occur. Also, during the sequence break control might switch to the sched-
uler, which then checks to see whether other processes are waiting to be activated.
The value of the variable si:*default-sequence-break-interval* controls how many
sequence breaks occur before the scheduler is activated.

Although sequence breaks can occur even during without-interrupts, control is
never switched to the scheduler inside a without-interrupts. However, there is
some amount of overhead due to the sequence break itself,

The metering tools cannot measure exactly the overhead due to sequence breaks,
so that overhead shows up in the metering results. The effects of sequence breaks
are quite easy to recognize in metering results. For example, if you meter a func-
tion hundreds of times, you would expect the inclusive times of the function for all
class to be very similar. However, you might notice that one call takes 250 mi-
croseconds or so (this varies from one machine to another) longer than the other
calls; this extra time is probably due to a sequence break.

Sequence breaks are not something you should try to control; they happen in the
normal operation of the machine. However, it is good to be able to recognize a se-
quence break, so you won’t be concerned when you notice this anomaly in the me-
tering results.

The Effects of Paging on Metering Results

When you are metering something, the metering code and data significantly in-
crease the working set of your program. Thus, paging occurs more frequently dur-
ing metering than it would otherwise occur.

If a page fault occurs during the execution of a function, the effect on the meter-
ing results is very large. You might notice this in a Call Tree metering run; a
function might be called ten times, and its inclusive time for nine of those calls is
approximately equal, but the inclusive time spent in one of the calls is far greater.
If you notice this, look in the PFs or PS output field for that function call; proba-
bly a page fault occurred during it.

Since the Function Call metering runs display data indexed by function, the output
fields show the total time spent in each function, not the time for each individual
call of a given function. If you notice that a page fault occurred during a Function
Call metering run, you can usually observe the effect of paging by expanding a
piece of data (by clicking Middle on it) in the Inclusive Time field. This shows a
histogram of the inclusive time in each of the calls to that function. You might no-
tice one data point at the high extreme, which is probably the function call during
which the page fault occurred. See the section "Expanding Metering Data", page

61.

We mention this for general background. If your goal in metering is to reduce
paging time, then the extreme data points that occur due to paging represent in-
formation that is directly helpful to your goal. However, the goal might be to in-

67

February 1988

crease efficiency of a program in aspects other than paging. In that case, you
would probably ignore the extreme data points caused by paging. If your goal is
more general (simply to improve performance, however it can best be done), you
would probably try to weigh the effects of paging to determine whether it is
worthwhile to spend effort in reducing paging time. In this case the histogram
would be useful because it probably gives you some idea how often page faults are
occurring by the number of data points are at the high extreme.

Page Fault Output Fields

Several of the metering types have two output fields related to paging: PFs (num-
ber of page faults) and PS (paging system time).

Usually, the time spent in the paging system is more valuable information than
the number of page faults. The performance of your program is affected by the
time spent in the paging system; you can compare the proportion of time spent
paging versus time spent in the function itself, to get an idea how significant the
effects of paging are on the function.

The data under PS is measured in microseconds, and it is also quantized in units
of 1024 microseconds. That is, if the display shows that a function spent 1024 mi-
croseconds in the paging system, in reality that amount of time could be anywhere
between 1 and 1024 microseconds. When PS data is totalled, the effects of the
quantizing are cummulative. This means the results become more accurate as the
sample size increases.

It is possible to have zero page faults but still spend a small amount of time in
the paging system. This might indicate a map miss (that is, the paging system ex-
periences a miss in the hardware cache that changes a virtual address to a physi-
cal address; it is necessary to page in that cache) or some other background activi-
ty in the paging system.

Interpreting Results of Meter in Process

Metering is implemented by noting when a function is entered and when it is ex-
ited. When using Meter Form, the form is always executed from start to finish,
and the metering data is collected in entirety.

In contrast, when you use Meter in Process, you stop and start the metering ex-
plicitly. This means there is the possibility of starting or stopping metering in the
middle of the execution of a function being metered. This is not necessarily bad,
but it does have an effect on the data.

Consider what happens if you are doing a Call Tree metering run and you start
the metering in the middle of a call tree. The function at the top of the tree (the
root) was entered before metering was started, so the metering tools cannot collect
data starting at that level of the tree. Instead, the callees of that function are me-
tered, and they appear to be roots in the metering results. (A root function has
level 1 in a call tree.) Thus the callees of the real root function appear as discon-
nected roots in the display, because the real root function was not metered from
the beginning of its execution.

68

February 1988

Now consider what happens if you are doing a Function Call metering run and you
stop the metering before a function completes its execution. If that function was
called only once, its Call Count is zero; this informs you that it was entered but
not exited. However, if the function was called more than once, data has already
been collected and will appear in the total time spent in the function, and the oth-
er fields. In this case the Call Count will be some integer which represents how
many times the function was executed completely (both entered and exited) during
metering. In this situation there is no way of knowing that the function was en-
tered one additional time without being exited.

In summary, the metering tools collect data only for functions that are both en-
tered and exited during metering. Sometimes you can control the starting and
stopping of Meter in Process runs carefully, with the goal of not starting or stop-
ping in the middle. In other cases, the metering results contain the information
you want, even if the data is incomplete.

The Effects of the Sample Size in Statistical Metering

For Statistical Function Call and Statistical Call Tree metering, the results are
more valuable as the number of samples increases. For example, if you meter a
function that runs so quickly that only one sample takes place, the metering re-
sults will not be at all representative of the function’s performance.

We suggest that you describe a metering run (click Middle on a metering run) to
find out how many times sampling occurred during the metering. In Statistical
Function Call metering you can also find out how many times a particular function
was sampled (that is, how many times that function was being executed during the
sampling) by expanding a portion of data (click Left on a piece of data).

Note that Statistical Program Counter metering runs your function again and
again, in order to achieve a representative sample. This is not done by Statistical
Function Call or Statistical Call Tree metering.

Statistical Metering of Code That Uses without-interrupts

The metering types Statistical Function Call and Statistical Call Tree do not ac-
cept the keyword :Without Interrupts. These metering types work by sampling the
function periodically. Sampling cannot take place when code is running inside a
without-interrupts form, because the scheduler will not interrupt that code in or-
der to allow the metering process to sample the code. For example, if you wrap a
without-interrupts form around a function and then try to meter that function
with either the Statistical Function Call or the Statistical Call Tree metering type,
the result will be no data. This holds for any portion of the code which is within
the scope of without-interrupts.

The Statistical Program Counter metering type is done at the microcode level, so
it can meter code within the a without-interrupts form.

69

February 1988

6.1.1.4. Controlling Metering Within Lisp Code
mi:with-metering-enabled &body body Special Form

Use this special form to specify where metering should be enabled. All code
in the dynamic scope of the body will be metered when you use Meter
Form or Meter in Process, and specify :Only When Enabled. Alternatively,
you can create a metering run by using mi:with-new-metering-run instead
of the commands in the Metering Interface.

For example, you might want to exclude from metering any code that does
preliminary set-up work, or performs a transition from one state to another,
or cleans up afterward. The following example enables metering for two
portions of the code:
(mi:with-new-metering-run (:metering-type :call-tree)
(setup-code)
(mi:with-metering-enabled
(first-step))
(transition-code)
(mi:with-metering-enabled
(second-step))
(cleanup-code))

mi:with-new-metering-run ((&key :metering-type :name :process Special Form
:without-interrupts) &body body)

Creates a new metering run without using the Metering Interface; note
that you need to use the Metering Interface to view the results. Use this
special form in conjunction with mi:with-metering-enabled. All code of the
body is executed, and any code within a mi:with-metering-enabled form is
metered. The result is a metering run, which is placed in the Metering
History pane of the Metering Interface. This metering run is not
necessarily current, so to display it you should click Left on the metering

run.

:metering-type One of the following: :function-call, :call-tree,
:page-fault, :statistical-function-call,
:statistical-call-tree. The default is :function-call. See
the section "Choosing a Metering Type", page 48.

:name A string used to identify this metering run. There is no
default for :name.

:process The process in which to execute and meter the body.

The default is the Metering Interface process.

:without-interrupts If t, the code within mi:with-metering-enabled is
executed inside a without-interrupts form. This means
that no other process can interrupt the execution of the
metering run. This should be used with caution,

70

February 1988

because it can be dangerous for any code that does a lot
of consing or takes a long time. If nil, the body is
executed normally, and the results may show time spent
in other processes. (Note that the functions running in
other processes are not shown, but the time spent in
them is shown). The default is nil. If the metering type
is :statistical-function-call or :statistical-call-tree, you
should not supply :without-interrupts as t because no
sampling would take place.See the section "Statistical
Metering of Code That Uses without-interrupts”, page
68.

See the special form mi:with-metering-enabled, page 69.
6.1.1.5. Dictionary of Commands in the Metering Interface

Add Output Field Command
Add Output Field metering-run new-field before-field

Adds a new field to the display of the metering run. The available fields depend on
the type of metering.

metering-run A metering run. You can click on a metering run in the
Metering History.

new-field A field of data not already being displayed.

before-field States where to place the new field in the display; the new

field is placed immediately to the left of the before-field.

You can do this by clicking c-m-Left on a metering run. After entering the field to
be added, a bar will appear somewhere within the output field. You can move that
bar horizontally until you have it where you want the subfield to be placed, and
then click Left to add the field to that position.

This command is available only within the Metering Interface.
Add Output Subfield Command
Add Output Subfield metering-run new-subfield before-field

Adds a new subfield to the display of the metering run. The available subfields de-
pend on the type of metering.

metering-run A metering run. You can click on a metering run in the
Metering History.

new-subfield A subfield of data not already being displayed.

before-field States where to place the new field in the display; the new

field is placed immediately to the left of the before-field.

71

February 1988

You can do this by clicking c-m-Left on an output subfield. After entering the sub-
field to be added, a bar will appear somewhere within the output field. You can
move that bar horizontally until you have it where you want the subfield to be
placed, and then click Left to add the subfield to that position.

This command is available only within the Metering Interface.

Dehoist Command

Dehoist metering-run call-tree-node keyword

After you have hoisted a node, you can use Dehoist to change the display to use a
different root node which is no longer displayed. The default is to restore the dis-
play to use the previous root node.

keyword {:number of levels)

:number of levelsAn integer or "All the way". The default is the integer that
would restore the display to its previous root. All the way
means to restore the display to reinstate the top-level function
as the root.

You can do this by clicking s-n-Left on a node that has been hoisted.

This command is available only within the Metering Interface, and only for call
tree displays.

Delete Output Field Command
Delete Output Field metering-run output-field

Deletes an output field from the display of the metering run.

metering-run A metering run. You can click on a metering run in the
Metering History.

output-field An output field, which is one of the column headers. You can
type in the name of an output field, or click on one in the
display.

You can do this by clicking sh-Middle on the output field you want to delete.

This command is available only within the Metering Interface.
Delete Output Subfield Command

Delete Output Subfield metering-run output-subfield

Deletes an output subfield from the display of the metering run.

metering-run A metering run. You can click on a metering run in the
Metering History.

72

February 1988

output-subfield An output subfield, which is one of the column sub-headers.
You can type in the name of an output subfield, or click on one
in the display.

You can do this by clicking sh-Middle on the output subfield you want to delete.
You can achieve the same effect by positioning the mouse over the

This command is available only within the Metering Interface.
Delete Metering Run Command

Delete Metering Run metering-run

Deletes a metering run from the Metering History.

metering-run A metering run. You can click on a metering run in the
Metering History.

You can do this by clicking sh-Middle on a metering run.
This command is available only within the Metering Interface.
Describe Metering Run Command

Describe Metering Run metering-run

Describes a metering run, including the date and time of the run, what code was
metered, and the metering parameters that were used.

metering-run A metering run. You can click on a metering run in the
Metering History.

You can do this by clicking Middle on a metering run.

This command is available only within the Metering Interface.
Describe Output Field Command

Describe Output Field output-field

Describes the meaning of the data displayed in the output-field.

output-field An output field or subfield, which is one of the column
headers. You can type in the name of a field, or click on one in
the display.

You can do this by clicking Middle on an output field.

This command is available only within the Metering Interface.

73

February 1988

Expand Field Command
Expand Field metering-run output-field function

Expands the data identified by output-field (a column) and function (a row), for the
given metering-run.

metering-run A metering run. You can click on a metering run in the
Metering History.
output-field An output field, which is one of the column headers. You can

type in the name of an output field, or click on on in the
display. This identifies the column of interest.

function The function spec of the function for which data should be
expanded. You can type in the function spec, or click on one in
the display. This identifies the row of interest.

You can do this by clicking Middle on the piece of data you want to expand.

This command is available only within the Metering Interface.

Help Command in Metering Interface

Help command-name

Displays the documentation about the Metering Interface command.

To get a list of the Metering Interface commands, press the HELP key.

You can do this by clicking Middle on a command that appears in the metering
command menu.

Hide All But Path to This Node Command
Hide All But Path to This Node call-tree-node

Customizes a call tree metering display to show only the path to the given node,
by removing functions from the display that do not lead directly to this node. This
does not remove any descendants of this node from the display.

You can achieve the same effect by positioning the mouse over a node, clicking
Right, and choosing this command. This command is available only within the Me-
tering Interface, and only for call tree displays.

Hide Node Children Command

Hide Node Children call-tree-node

Removes all the children of a node from a call tree metering display.

You can do this by clicking sh-Left on a node which is partially or completely
open.

74

February 1988

This command is available only within the Metering Interface, and only for call
tree displays.

Hoist Node Command

Hoist Node metering-run call-tree-node

Changes a call tree metering display to focus on a certain node as if it were the
root node. Removes all functions from the display which are not descendants of
this node. When you hoist a node, it is often useful to add the /Root subfield to
one or more fields of interest. For example, the /Root subfield of Exclusive Time
output field shows the fraction of exclusive time spent in a given function, with
respect to the new root (as opposed to /Run, the fraction of time in a given func-
tion with respect to the whole run).

You can do this by clicking s-m-Left on a node.

This command is available only within the Metering Interface, and only for call
tree displays.

Lock Results Display Command
Lock Results Display

This is useful when customizing the display of metering results. You will notice
that normally when you add or remove output fields, the Metering Interface imme-
diately updates the display. This can be cumbersome. When you know you will be
adding or deleting one output field after another, you can use this command to
prevent the updating of the display. After you have finished specifying what output
fields should be displayed, use Unlock Results Display to update the display of me-
tering results.

This command is available only within the Metering Interface.

Meter Form Command

Meter Form form metering-type what-to-meter keywords

Immediately executes and simultaneously meters the form and displays the results.
This command is available only within the Metering Interface.
form Any Lisp form

metering-type {Function Call, Call Tree, Page Fault, Statistical Function Call,
Statistical Call Tree, Statistical Program Counter.} See the
section "Choosing a Metering Type", page 48.

what-to-meter (Everything, Only when Enabled, Functions.)

Everything Meter everything within the form/process.

Only when Enabled Meter only the code which is surrounded
by a mi:with-metering-enabled form.

75

February 1988

Within Functions Meter only within the functions specified.
You will be prompted for :Metered
functions, and you should enter the
functions of interest. See the section
"Metering Overhead When :Within
Functions is Used", page 60.

keywords The keywords allow you to specify parameters that control the
metering run. The keywords vary according to the
metering-type.

All types of metering accept these keywords:

:Count {integer) Execute the form this many times, and collect data
only on the last run of the code. The default is 1. Note that
often the first time a form is executed is not a representative
run, for a variety of reasons. For example, sometimes some
compilation occurs during the first execution of a form.
Another example is paging; probably significantly more paging
is necessary the first time a form is executed than the
subsequent times. Often using this keyword is useful for
metering a more representative run.

:Name (name} A name to be used when printing and describing this
run. This name will appear in the Metering History window
pane.

The following keyword is accepted by Function Call, Call Tree, Page Fault, and
Statistical Program Counter:

:Without Interrupts
{Yes No} Yes executes the form inside a without-interrupts
form. This means that no other process can interrupt the
execution of the metering run. This should be used with
caution, because it can be dangerous for any code that does a
lot of consing or takes a long time. When No, the form is
executed normally, and the results may show time spent in
other processes. (Note that the functions running in other
processes are not metered or displayed, but the time spent in
them is shown). The default is No. Using :Without Interrupts
is useful for preventing irrelevant data from being collected
and displayed, but it does not usually make the environment
more representative (unless the code is typically executed
within a without-interrupts form).

Note that if you specify both :Only When Enabled and
:Without Interrupts as Yes, only the code within the
mi:with-metering-enabled form is surrounded by
without-interrupts.

76

February 1988

Using :Without Interrupts is particularly useful for the
Statistical Program Counter metering type, because it usually
yields more repeatable results. When doing metering by
sampling (instead of metering constantly), the results are more
valuable when all of the runs are similar. If you are metering
a form which has very different results each time it is run, the
results of metering by sampling will be only a rough
approximation of the characteristics of all the sampled runs,
and may not be a good approximation of any given run.

The following keyword is accepted by Page Fault:

:Initially Flush All Pages
{Yes No} If Yes, all pages are flushed from virtual memory
prior to the metering run. The default is No. This is useful
when trying to set up the metering to occur in an environment
in which the virtual memory does not contain the pages of
interest; this might be representative of the first time a form
is executed.

The following keyword is accepted by Statistical Program Counter:

:Resolution Percentage
{float} The default is 0.5%. The resolution percentage controls
how many buckets the metering interface "searches" (it will
skip all buckets that take up less than the resolution
percentage of the total), and consequently how many times it
must repeat your form, The finer (or smaller) the resolution,
the more times it will have to repeat your form in order to
investigate more buckets. For more information: See the
section "Overview of How Metering Works", page 58.

Meter in Process Command

Meter in Process process metering-type what-to-meter keywords

This command is useful when you want to meter some code that normally runs
within a process. For example, you might want to meter a function that normally
runs within Zmail. You don’t want to use Meter Form, because that would execute
and meter the function immediately; instead, you want the function to be metered
whenever it is normally called. Meter in Process allows you to meter one or more
functions within a process, without explicitly calling those functions.

This command offers greater control over when the metering is started and
stopped than does the Meter Form command. By default, the metering starts im-
mediately after you finish entering the Meter in Process command. To stop the
metering, you should select the Metering Interface. Either press END or answer YES
to the displayed question, which is "Do you want to stop metering now?"

This command is available only within the Metering Interface.

77

February 1988

process

metering-type

what-to-meter

keywords

The process in which to meter.

{Function Call, Call Tree, Page Fault, Statistical Function Call,
Statistical Call Tree.} Note that you cannot use the Statistical
Program Counter metering type with Meter in Process. See the
section "Choosing a Metering Type", page 48.

{Everything, Only when Enabled, Functions.}

Everything Meter everything within the process.

Only when Enabled Meter only the code which is surrounded
by a mi:with-metering-enabled form.

Within Functions Meter only within the functions specified.
You will be prompted for :Metered
functions, and you should enter the
functions of interest. See the section
"Metering Overhead When :Within
Functions is Used", page 60.

The keywords allow you to specify parameters that control the
metering run. The keywords vary according to the
metering-type.

All types of metering accept these keywords:

:Name

{name} A name to be used when printing and describing this
run. This name will appear in the Metering History window
pane.

:Only When Enabled

:Start and stop

{Yes No} Yes means to meter only those portions of the code
that occur within the dynamic scope of a
mi:with-metering-enabled form. No means to meter the
specified function specs or the whole process. The default is
No.

{Until End Chosen, Function Keys} Specifies the way in which
metering is started and stopped. The default is Until End
Chosen.

Until End Chosen means that metering is started immediately
after the command is entered, and it is stopped when the user
presses END in the Metering Interface.

Function Keys means that metering is started when the user
enters Function (and stopped when the user enters Function
). This allows you asynchronous control over when metering is
started and stopped. See below for information on how :Start
and stop interacts with :Mode lock p.

78

February 1988

:Mode lock p {Yes No} Specifies whether the MODE LOCK key controls
whether metering is on or off. Yes means that metering is
turned on only when the MODE LOCK key is depressed. No
means that the MODE LOCK key is not used to start and stop
metering. The default is No. Note that MODE LOCK does not
give an asynchronous signal to start or stop metering; instead,
it gives a synchronous signal. This means that it might take a
moment for the Metering Interface to poll for the status of
MODE LOCK, so its effect is not immediate. See below for
information on how :Start and stop interacts with :Mode lock

p.
The following keyword is accepted by Page Fault:

:Initially Flush All Pages
{yes no} If Yes, all pages are flushed from virtual memory
prior to the metering run. The default is No. This is useful
when trying to set up the metering to occur in an environment
in which the virtual memory does not contain the pages of
interest; this might be representative of the first time a form

is executed.

Interaction between :Mode lock p and :Start and stop

Usually when users specify :Mode lock p as Yes, they specify :Start and stop as
Until End Chosen. That way you cause metering to occur by pressing MODE LOCK;
you cause it to stop occurring by releasing MODE LOCK; and you finally end the me-
tering run entirely and display the data by selecting the Metering Interface and
pressing END.

If you specify :Start and Stop as Function Keys and :Mode lock p as Yes, then me-
tering is started only when you have pressed Function (and the MODE LOCK key
is depressed. In other words, each of the keywords states how metering is started,
so you must meet both requirements in order to start the metering. You can stop
metering from occurring by releasing the MODE LOCK key, and cause metering to
start again by pressing MODE LOCK again; You finally end the metering run entirely

and display the data by entering Function).
Move Output Field Command
Move Output Field metering-run output-field before-field

Moves the specified output-field to the left of before-field in the display of metering
results.
You can do this by clicking ¢-n-Middle on an output field.

This command is available only within the Metering Interface.

79

February 1988

Re-Meter Command
Re-Meter metering-run

Repeats a metering run, selecting the type of metering and the code to meter from
the specified metering run. You can then change the metering parameters, or start
metering with the same parameters.

metering-run A metering run. You can click on a metering run in the
Metering History.

You can do this by clicking on [Re Meter] in the Metering Interface menu, or by
clicking s-Middle on a metering run.

This command is available only within the Metering Interface.

Set Default Output Fields for Type Command
Set Default Output Fields for Type metering-run

Sets the defaults for displaying future metering runs of a certain metering type to
be the same as the output fields displayed for the given metering-run. Any meter-
ing runs you do from now on will use these defaults. You can cause an existing
metering run to use these defaults for display by using Set Output Fields of Run
from Defaults on that metering run.

metering-run A metering run. You can click on a metering run in the
Metering History.

This command is available only within the Metering Interface.
Set Display Options Command
Set Display Options metering-run

Enables you to specify how the data of a metering run should be displayed, includ-
ing how the data should be sorted. The display options depend on the metering
type of the run.

metering-run A metering run. You can click on a metering run in the
Metering History.

You can achieve the same effect by clicking on [Set Display Options] in the Meter-
ing Interface menu. This command is available only within the Metering Interface.

Set Indentation Depth Command
Set Indentation Depth metering-run integer

Specifies how many levels to display without indenting, when displaying a Call
Tree metering run. The levels after integer are indented. This helps you customize

80

February 1988

the display to focus on an area of interest in the call tree, which might be many
levels deep in the tree.

metering-run A metering run. You can click on a metering run in the
Metering History.

integer Number of levels not to indent in the display. Indenting starts
at the level after integer.

You can do this by clicking s-n-Middle on a displayed node, to start indentation
after that node.

This command is available only within the Metering Interface, and only for call
tree displays.

Set Output Fields of Run From Defaults

Set Output Fields of Run from Defaults metering-run

Sets the output fields of the given metering-run to the defaults. When you next
display the metering run, the output fields will be displayed according to the de-
faults for metering runs of this type. This is useful when you have changed the
defaults and you want a metering run to use the new defaults.

metering-run A metering run. You can click on a metering run in the
Metering History.

This command is available only within the Metering Interface.

Show All Node Descendants Command

Show All Node Descendants call-tree-node

Adds all the descendants of a node to a call tree metering display.
You can do this by clicking s-Left on a node.

This command is available only within the Metering Interface.
Show Node Children Command

Show Node Children call-tree-node

Adds all the children of a node to a call tree metering display.
You can do this by clicking Left on a node with undisplayed children.

This command is available only within the Metering Interface.
Show Metering Run Command
Show Metering Run metering-run keywords

Displays the results of the metering run in the Metering Results window, or if
:Output Destination is specified, sends the results to that destination.

81

February 1988

metering-run A metering run. You can click on a metering run in the
Metering History.

keywords {:Output Destination}

:Output Destination
{buffer window printer} Sends the metering results to the
specified buffer, window, or printer. Neither of the other two
usual output destinations (files and streams) are supported.
However, you can send the output to a file by first sending it
to a buffer and then saving that buffer to a file.

You can achieve the same effect by clicking on [Show Metering Run] in the Meter-
ing Interface menu, or by clicking Left on a metering run.

This command is available only within the Metering Interface.

Unlock Results Display Command
Unlock Results Display

Use this to update the display of metering results, after you have locked the dis-
play by using Lock Results Display. You can achieve the same effect by clicking on
the phrase Unlock Results Display which appears in the Metering Results pane
when the display is locked.

This command is available only within the Metering Interface.

6.1.1.6. Macros for Metering the Execution Time of Forms

Sometimes a programmer wants a simple measure of how long a Lisp form takes

to execute. It might not be worthwhile setting up the Metering Interface if only a
quick test is desired, or if the amount of data collected by the Metering Interface
is not needed. Probably the first alternative to come to mind is the Common Lisp
time function: See the function time in Genera 7.1 Patch Notes.

Often, time is not adequate for simple metering. Since the behavior of the form
varies depending on the state of the machine, one sample isn’t enough. To under-
stand the behavior of a form, it is useful to execute the form many times, and to
see a histogram of the values so you can see the effects of "noise", bimodal behav-
lor, or extreme data points. For an example: See the section "Distribution of
Metering Data", page 61.

Here we document several macros that give you more flexibility and accuracy in
metering the time of short forms. They are similar to time in the respect that
they take a single form and return some simple metering information. They are
more precise and informative than time in the measurement of time itself, al-
though they provide less information than time with regard to the storage system,
sequence-breaks, and consing.

The metering macros address the problems with using time. They enable you to
meter a form by executing it many times and computing the average execution
time. They simultaneously measure the metering overhead, which gives you an in-
dication of the accuracy of the results.

82

February 1988

Here we summarize the metering macros:

metering:with-part-of-form-measured (&key (:no-ints °t) :verbose :values
(:time-limit 1) :count-limit) &body form
Executes the form many times, and meters the subform that is
surrounded by metering:form-to-measure.

metering:with-form-measured (&key (:no-ints °t) :verbose :values (:time-limit 1)
:count-limit) &body form
Executes the form many times, and meters the whole form.

metering:define-metering-function name args (&key (:no-ints t) :verbose :values
rcount-limit :time-limit) &body form
Returns a compiled function which can be used to meter the form more
than once. Useful when you know in advance that you will be metering a
form repeatedly.

metering:measure-time-of-form (&key (:no-ints °t) :verbose :values :time-limit
:count-limit) &body form
Has the same effect as metering:define-metering-function in that it
uses a compiled function to meter the form, but instead of returning the
metering function, it runs it once to meter the form. The metering
function is not saved for further use.

Probably metering:define-metering-function is the most generally useful of the
group. It enables you to meter the form more than once. However, if you want to
execute a form and meter only a portion of it, use
metering:metering-with-part-of-form-measured.

Here we document each of the metering macros:

metering:with-part-of-form-measured (&key (:no-ints °t) :verbose Macro
:values (:time-limit 1) :count-limit) &body form

Executes the form many times, and meters the subform that is surrounded
by metering:form-to-measure. If you want to meter the whole form, the
macro metering:with-form-measured is more convenient: See the macro
metering:with-form-measured, page 83.

This tells you how many microseconds (on average) were needed to evaluate
the form or subform. It also measures the overhead of the metering code.

By default, the average time and the average overhead are printed out in a
mouse-sensitive way. You can click on these averages to display the
histogram of values that were used to compute them.

The keywords :time-limit and :count-limit can be used to control how many
times the form is evaluated. The :verbose and :values keywords control the
output of this macro. See the section "Keyword Options for Metering
Macros", page 84.

This form is most useful in compiled code. When they are used in
interpreted code, the results are primarily a measurement of the
interpreter, and not the form.

83

February 1988

See the section "Output of the Metering Macros", page 85.

metering:with-form-measured (&key (:no-ints ’t) Macro
:verbose :values (:time-limit 1) :count-limit) &body

form

Executes the form many times, and meters the whole form. This is an

abbreviation for the most common case of
metering:with-part-of-form-measured, in which the entire form is metered.
If you want to meter a subform within a form, use
metering:with-part-of-form-measured. See the macro
metering:with-part-of-form-measured, page 82.

This tells you how many microseconds (on average) were needed to evaluate
the form or subform. It also measures the overhead of the metering code.

By default, the average time and the average overhead are printed out in a
mouse-sensitive way. You can click on these averages to display the
histogram of values that were used to compute them.

The keywords :time-limit and :count-limit can be used to control how many
times the form is evaluated. The :verbose and :values keywords control the
output of this macro. See the section "Keyword Options for Metering
Macros", page 84.

This form is most useful in compiled code. When they are used in
interpreted code, the results are primarily a measurement of the
interpreter, and not the form. See the section "Output of the Metering
Macros", page 85.

metering:define-metering-function name args (&key (:no-ints t) Macro
:verbose :values :count-limit :time-limit) &body form

Returns a compiled function which can be used to meter the form more
than once. This is useful when you know in advance that you will be
metering a form repeatedly.

This is an abbreviation for the following form (where where keywordsl and
keywords2 are constructed according to the rules explained below):

(compile (defun function-name (arglist . keywordsl)
(metering:with-form-measured (keywords2) form)))

Any keywords specified in metering:define-metering-function will not be
accessible in the function function-name. Any keywords omitted from the
keyword list in metering:define-metering-function will become part of the
arglist of function-name.

The compiled function function-name can be used to execute the form many
times, and meter it. It tells you how many microseconds (on average) were
needed to evaluate the form or subform. It also measures the overhead of
the metering code.

84

February 1988

By default, the average time and the average overhead are printed out in a
mouse-sensitive way. You can click on these averages to display the
histogram of values that were used to compute them.

The keywords :time-limit and :count-limit can be used to control how many
times the form is evaluated. The :verbose and :values keywords control the
output of this macro. See the section "Keyword Options for Metering
Macros", page 84. See the section "Output of the Metering Macros", page
85.

metering:measure-time-of-form (&key (:no-ints ’t) :verbose :values Macro

;time-limit :count-limit) &body form

Has the same effect as metering:define-metering-function in that it uses a
compiled function to meter the form, but instead of returning the metering
function, it runs it once to meter the form. The metering function is not
saved for further use.

See the macro metering:define-metering-function, page 83. See the section
"Keyword Options for Metering Macros"”, page 84. See the section "Output
of the Metering Macros", page 85.

Keyword Options for Metering Macros

The metering macros accept the following keyword arguments:

:no-ints The default is t. A non-nil value causes the metering to be done inside a

without-interrupts. If the form is exceptionally long, or if it relies on
other processes to work correctly, then :no-ints should be nil. If you
specify :no-ints t, and the length of the form times :count-limit (if
specified) is greater than five minutes, you will be prompted to check if
you really want to disable the scheduler for that long.

:time-limit

Value is an integer, expressing a number of seconds. The default is 1
second. This specifies that the form should be repeated until this many
seconds of real-time have elapsed. This includes the amount of time
spent recording the metering results. :time-limit and :count-limit are
mutually exclusive keywords.

:count-limit

Value is an integer. This specifies that the form should be repeated this
many times. :time-limit and :count-limit are mutually exclusive
keywords.

:verbose The default is nil. A non-nil value causes the full histograms to be

printed out instead of just the averages. This keyword is overridden by
the :values keyword.

:values The default is nil. A non-nil value causes nothing to be printed out; the

metering results are represented by three returned values. The first is
the average time, the second is the histogram of the times for evaluation

85

February 1988

of the form, and the third is the histogram for the overhead loop. You
can get other information by using the histograms as described below.

Using the Histograms

The following functions can be done to the histograms returned when you give the
:values option:

;3 To display the results of a histogram

(metering:display-collector histogram streanm)

;; Returns the average value of the histogram
(metering:average histogram)
;; Returns the total of the data in the histogram

(metering:total histogram)

;; Returns standard-deviation of the data
(metering:standard-deviation histogram)

;; Maps over the buckets in the histogram
(metering:map-over-histogram-buckets
histogram #’ (1ambda (low high count)))

To display a number in such a way so that clicking Middle will expand the data
into a full histogram, you must present the data with the
’metering:metering-results presentation type. For example:

(dw:with-output-as-presentation (:object rainfall
:type ’‘metering:metering-results)
(format t "~&The average rainfall was ~,5F inches."
(metering:average rainfall)))

Output of the Metering Macros
By default, the output displays two or three quantities.

Average time

The first quantity, "Average time", is the time a single execution of the body took
to execute, averaged over some number of repetitions. The number of repetitions
can be controlled by using either the :count-limit or :time-limit keyword options.

Average clock overhead

The second quantity, "Avg clock overhead", is the amount of time spent by identi-
cal metering code metering the empty loop. This is provided for calibration (you
can subtract this time from the "Average time") and to provide some measure of
the significance of the result (if the "Average time" is close to the value of "Avg
clock overhead", the results are suspect.

86

February 1988

Clock variation

The third quantity may or may not be present. It begins with the phrase "A sec-
ond sampling of the clock". This is printed out when a second measurement of
the empty loop does not agree with the first. This indicates that something is mak-
ing it hard to get reproducible metering results. This can be caused by many
things. Although it does not always mean you should repeat the metering, it does
mean that you should look at the numbers produced on such a run a little more
carefully than normal.

The decision whether to print out the third value is controlled by the variable
metering:*tolerable-clock-variation*. Its value is a number between 0 and 1,
which represents a percentage. When the two numbers differ by more than this
percentage then the third value is printed.

Histograms are available

By default, the average time and the average overhead are printed out in a
mouse-sensitive way. You can click on these averages to display the histogram of
values that were used to compute them.

Usually you picture a histogram as having the majority of the data points gathered
around one main peak. However, sometimes the data points are gathered around
more than one recognizable peak; there might be an underflow peak (below the
main peak) and/or an overflow peak (above the main peak). When the data points
are gathered around more than one peak, the histogram is multi-modal. For
multi-modal histograms, the display shows more than one histogram, in order to
focus on each of the peaks. Thus there is always one histogram showing the main
peak, and there might be one or two more histograms, showing the underflow and
overflow peaks, if any.

6.1.2. New Display Debugger in Genera 7.2

There is a new version of the Display Debugger in Genera 7.2. The old Display
Debugger will be found in the SYS:UNSUPPORTED directory.

6.1.2.1. Using the Display Debugger

The Display Debugger is a version of the standard Debugger that uses its own
multi-paned window. You enter the Display Debugger from the standard Debugger
by typing c-m-W, or by using the :Window Debugger command.

Figure 4 shows the Display Debugger, entered while in the Concordia editor.
Overview

The Display Debugger divides the screen into eight panes, showing various aspects
of the program environment at the time of the error. It displays the name of the
activity you are debugging in the top-left pane.

When the Display Debugger is entered, the various panes contains the state of the
erring frame. Most common operations are available directly from the mouse.

87

February 1988

Display Debugger on Concordia 1

Proceed uithout any special action
Editor Top Level

Abort Exit Edit function Breakpoints Restart process Concordia 1
Proceed Switch windows Find Frame Hom tor
Retumn Help Backtrace Exit traps
Reinvoke Bug Report Source code Call treps
ZUEX:CON-DEBUCCER-BRERAK
f‘zﬁ:‘e’x"c:%; -DEBUGGER- BRERK @ ENTRY: O REQUIRED, @ OPTIONAL
ZUEI : CONMRND-EXECUTE 1 PUSH-‘I
ZHET : PROCESS-CONMAND-CHRR 2 BIND-SPECVAR ZWEI :s INSIDE-BREAK:
(FLAVOR:NETHOD :EDIT ZWEI:EDITOR) 3 UNWIND-PROTECT-OPEN 14
(s INTERNAL (FLW COHBINED :EDIT ZWEI:ZNACS-TOP-LEVEL-EDITOR) 4 CALL-0-IGNORE %°DBG
(FLAVOR:NCHHOPPER :EDIT ZHEI:EDITOR) » 5 CATCH-CLOSE @
(FLAVOR:CONBINED :EDIT ZMEI:ZMACS~TOP-LEVEL-EDITOR) 6 PUSH-INDIRECT ZMEI:sTYPEOUT-WINDOUs
ZHET : ZHACS-HINDOK-TOP-LEVEL ? PUSH-CONSTANT *:MAKE-COMPLETE
BAGE: : ZHACS~EDITOR-TOPLEVEL 10 FUNCALL-1-IGNORE
(FLAVOR:NETHOD BAGE: :CONCORDIA-TOP-LEVEL SAGE::CONCORDIA) 11 UNBIND-N 1
(FLAVOR:NMETHOD DH::RUN-PROGRAN-TOP-LEVEL DU::PROGRAM) 12 PUSH-INMED @
DH: PROGRAN-FRANE-TOP-LEVEL
inepect history
Breaks Arguments, locals, and specials
The l:ur‘ren: frane 1s ZWEI:CON-DEBUGCER-BRERK
s-A, GEERD: Proceed uithout any special action ZWEI : v INSIDE-BRERKe 1 T
s-0, GBED: Editor Top Level
s-Ci1 Restart process Concordis 1

-

Figure 3. The Display Debugger

In addition to using the commands listed in the Command Menu in the Display
Debugger, you can also use all of the usual Debugger commands by typing them
on the keyboard.

Display Debugger Panes
Here is a description of each pane in the Display Debugger:
The Proceed Options pane -- the top righthand pane

The proceed options displayed in this pane are the same as seen in usual Debug-
ger. Clicking [Left] on a proceed option takes that option. See the section "Using
Debugger Proceed and Restart Options" in Program Development Utilities.

The Code pane -- the middle righthand pane

This pane displays the source code of the erring frame. If the Debugger can’t find
the source code, it displays the disassembled code instead.

If the you compiled the code with source locators, then the form which caused the
Debugger to be entered is highlighted in boldface. Furthermore, the forms in the
source code are sensitive as pieces of Lisp code. This means that you can click
[Left] on a form in the source code to evaluate it in the context of the erring
frame, or you can click control-meta-[Left] on a form to set a breakpoint at that
place in the code.

If the Display Debugger is showing disassembled code, the current PC is highlight-
ed in boldface with an arrow. You can click [Left] on the names of local and spe-
cial variables to see their values, or you can click control-meta-[Left] on a PC in
the disassembly to set a breakpoint at that PC.

88

February 1988

Arguments, locals and specials pane -- the bottom righthand pane

This pane shows you all of the arguments and locals for the current frame, as well
as any special variables bound in the frame. You can describe an argument, local,
or special by clicking [Middle] on it. You can inspect it (with the Inspector) by
clicking shift-[Middle] on it. You can modify the arguments, locals, or specials by
pressing clicking control-metat-[right] on it.

Title pane -- the top lefthand pane

The Title pane shows you the name of the activity which you are debugging.

Command menu pane -- the second lefthand pane

This pane contains mouse-sensitive commands to do various things such as change
your activity or placement in the Display Debugger.

If you position your cursor on one of the command names, the mouse documenta-
tion line shows what happens if you click left, middle, or right on a particular

command.

A brief description of each of the commands in this pane follows:

Abort
Proceed
Return

Reinvoke

Exit

Switch Windows

Help
Bug Report
Edit function

Find Frame

Backtrace

Leaves the Display Debugger and aborts from the error.
Proceeds from the error using the Resume proceed handler.

Returns from the current frame. If you click [Middle] on this
command, the Display Debugger asks you which frame you
wish to return from.

Reinvokes the current frame. If you click [Middle] on this
command, the Display Debugger asks you which frame you
wish to reinvoke.

Exits from the Display Debugger back to the normal Debugger.
This neither aborts nor proceeds from the error.

Switch to the original window where the error occurred. Press
FUNCTION-S to return to the Display Debugger.

Shows a brief help display.
Allows you to create, edit, and mail a bug report.
Edit the function for the current frame.

Search down from the current frame for one whose function
name contains a specified substring. Clicking [Middle] on the
command causes the last search to be executed again from the
new starting place.

Click [Left] on this command to display an "ordinary"
backtrace, that is, a backtrace which hides invisible frames.
Click [Middle] on this command to display a backtrace which
does not hide invisible frames.

89

February 1988

Source Code Click [Left] on this command to see the source cfode for the
frames, if it is available. Click [Middle] on this command to
see disassembled code for the frames.

Breakpoints Click [Left] for a display of all the currently set breakpoints.
Click [Middle] to clear all the breakpoints. Click [Right] to get
a menu of various other breakpoint-related commands.

Monitor Click [Left] for a display of all the currently monitored
locations. Click [Right] for a menu of various other
monitor-related commands.

Exit traps Click [Left] to set trap-on-exit for the current frame. Click
[Middle] to clear trap-on-exit for the current frame. Click
[Right] for a menu of various other trap-on-exit commands.

Call traps Click [Left] to set trap-on-call for the current frame. Click
[Middle] to clear trap-on-call for the current frame. Click
[Right] for a menu of various other trap-on-call commands.

Backtrace pane -- the third lefthand pane

This pane displays the backtrace for the current error. The current frame is indi-
cated by an arrow on the left. Clicking [Left] on a frame in this pane causes the

current frame to be set to that frame. Clicking [Middle] on a frame shows the ar-
guments with which that frame was called. Clicking [Right] on a frame pops up a
menu for all the operations on that frame, such as set or clear trap-on-exit, disas-
semble the function for the frame, edit the frame’s function, reinvoke this frame,

return from this frame, and so forth.

Inspect history pane -- the fourth lefthand pane

This pane keeps track of all of the "complex" Lisp objects which you have exam-
ined. You can reexamine objects in this pane by clicking [Middle] or shift-[Middle]
on them.

Interactor pane -- the bottom lefthand pane

This pane is where interaction with the Display Debugger takes place. You can use
all of the usual Debugger commands and accelerators in this pane. For a list of
Debugger commands: See the section "Debugger Command Descriptions" in
Program Development Utilities.

6.1.3. The Garbage Collector Now Has Progress Notes

By default both the dynamic and ephemeral GC display their progress when the
current process is waiting for the garbage collector.

You can control the display of progress notes for the GC with the new function,
sizenable-gc-progress-notes, which controls the display of GC progress notes:

si:enable-gc-progress-notes &key :dynamic :ephemeral Function
Controls whether progress notes are displayed for garbage collection, and
what their priorities are in relation to other progress notes. It takes two

90

February 1988

keyword arguments, :dynamic and :ephemeral, allowing you to control the
display of progress notes for each type of garbage collection independently.
The default for both dynamic and ephemeral GC is that progress notes are
displayed when the current process is waiting for the GC to complete
(:foreground). Omitting an argument leaves its value unchanged. Each
argument can have one of the following values:

nil Progress notes are never displayed for GC.

:foreground Progress notes are displayed only when the current
process is waiting for GC to complete. This is the
default for both ephemeral and dynamic GC.

:background Progress notes are displayed for GC regardless of the
GC’s effect on the current process.

:override Like :background, but causes GC progress notes to
override all other progress notes in the status line
display. In :foreground and :background modes, any
other progress note overrides a GC progress note.

GC progress notes show the current internal state of garbage collection,
and give little indication of the Garbage Collector’s effect on the current
process.

See also tv:*show-system-internal-progress-notes* which controls progress
notes for other internal processes.

Examples:

To suppress the display of progress notes for the ephemeral GC, and allow
the dynamic GC to display progress notes when it is affecting the current
process (the default state), you evaluate the following:

(si:enable-gc-progress-notes :ephemeral nil)
The following form suppresses the display of all progress notes for the GC:
(si:enable-gc-progress-notes :ephemeral nil :dynamic nil)

6.2. Improvements to Utilities in Genera 7.2

6.2.1. Improvements to the Document Examiner in Genera 7.2

A number of improvements have been made to the Document Examiner:
¢ The Document Examiner displays now use dynamic windows.

¢ All Document Examiner commands can be entered from a menu or to a
command processor prompt.

91

February 1988

e Both the viewer pane and the overview display can be scrolled vertically and
horizontally.

¢ Overview displays now use a multiline display of topic names instead of
truncating them.

e You can show an overview of a topic in a Lisp Listener and also in the editor.
Formerly, overviews were available only in Document Examiner. At the
Command Processor, use Show Overview or click Right on a mouse-sensitive
documentation topic. Use m-X Show Overview in the editor.

¢ A new Show Candidates command replaces the former Find commands. Show
Candidates uses a heuristic searching algorithm that is more likely to find what

you’re looking for.

e Documentation topics read elsewhere in the system using the Zmacs or CP
command Show Documentation are displayed in the new Background Viewer
instead of in the default viewer.

¢ Cross-references and topic names displayed in a Lisp Listener or editor are now
mouse-sensitive. Click Left on a topic name to see its associated documentation.

¢ Find Table of Contents has been renamed. To be consistent with the rest of the
software environment, it is now called Show Table of Contents.

6.2.1.1. Document Examiner Now Uses Dynamic Windows
The Document Examiner now uses dynamic windows.

You can scroll the windows backwards and forwards using SCROLL and m-SCROLL,
or the scroll bars. You can also scroll horizontally, using the horizontal scroll bars.

You can yank text from the Document Examiner screen by pressing the CONTROL
key and dragging the mouse to mark the text you wish to yank. The click
¢-RIGHT on the mouse and put the marked text on the kill ring. Now you can put
the text in a file or mail message.

You can search for text in the Document Examiner using s-R to search up and
s-S to search down.

For more information on using dynamic windows:See the section "Using Your
Output History" in Genera User’s Guide. The Document Examiner commands menu
pane is now a command processor. Type the command name at the prompt or click
on the command name, type your lookup request, and press RETURN. Do not press
RETURN after the command name, as before. For example, type:

Show Documentation SPACE catch-error-restart RETURN

92

February 1988

6.2.1.2. New Show Candidates Command in Document Examiner

Show Candidates replaces the three documentation Find commands: Find Whole
Word Candidates, Find Any Candidates, and Find Initial Substring Candidates. The
capabilities of these commands are still provided and are available on the keywords
menu as the exact, substring, and initial substring keywords to Show Candidates.
To display the keywords menu in the commands pane, press m-COMPLETE after
typing your lookup request. Press END to execute the command, or ARBORT to abort
it.

Heuristic matching. In addition to the old capabilities, Show Candidates offers a
new default search scheme called heuristic matching. The advantage of heuristic
matching is that you no longer have to think about the form of the word to supply
as a lookup request; the heuristic approach finds singulars and plurals, gerunds,
negations, and so on.

In this strategy, the search is based on the stem of your lookup request.

Example: The stem of "move" is "mov". Show Candidates move hypothetically
matches any topic names and keywords containing "move", "moves", "moved",

"moving", *move-mumble*, ":move", and so on.

Note that with the exception of "un", syllable prefixes are not considered matches,
because it was deemed that the resulting candidates were not generally useful. So,
a heuristic search on "move" does not match any forms of "remove".

Heuristic matching nets a larger number of candidates than the other search
strategies. For example, a search based on "move" as an initial substring would
not find "moving", nor would it find "*move-mumble*" or ":move" because leading
punctuation is treated as part of the word. Substring matching (the old Find Any
Candidates) would not match "moving". An exact matching scheme (formerly Find
Whole Word Candidates) yields only "move".

Multiple-word adjacency lookup requests. Like the old Find commands, Show
Candidates accepts lookup requests of more than one word. The default for
multiple-word requests is still logical-and, any-order matching.

Unlike the old Find commands, Show Candidates suppports adjacency lookup. This
means that candidates contain all words in the lookup request, where those words
appear next to each other and in the order in which you specify them. Adjacency
lookup further restricts the scope of your search, independent of the method of
searching selected.

Example: Heuristic, any-order matching on "mouse moving" matches the topic
names and keywords containing anywhere within them ":mouse", "*mouse",

"noon (L1}

"mouse", or "mousing” as well as "move", "moves", "moved", and "moving". The
search yields four candidates:
(FLAVOR:METHOD :MOUSE-MOVES TV:ESSENTIAL-MOUSE)
Altering the FED Character Box

Mouse Documentation Line in Zmacs
Moving the Cursor with the Mouse

The candidate "Altering the FED Character Box" is found because it has keyword

93

February 1988

indexes including "mouse" and "move", as seen in the overview of the topic:

Using the Mouse on the Character Box
Move Black Font Editor Menu Item

Heuristic adjacency matching on "mouse moving" finds only one candidate:
(FLAVOR:METHOD :MOUSE-MOVES TV:ESSENTIAL-MOUSE)
Adjacency lookup is available on the keywords menu via m-COMPLETE.

6.2.1.3. Background Viewer Added to Document Examiner in Genera 7.2

Formerly, when you looked up documentation in a Lisp Listener or in the editor,
the topic was added to the end of the current Document Examiner viewer, and the
topic name was added to the end of the list of bookmarks. Now, such documenta-
tion is read into a special viewer called the Background viewer.

6.2.2. Improvements to the Garbage Collector

A bug that could cause the Ephemeral GC to crash creating a bignum after ex-
tremely large amounts of garbage have been collected has been fixed.

si:reorder-memory and the Optimize World command have been improved some-
what in Release 7.2. In particular, the paging and runtime performance of pro-
grams which use flavors will be further improved. In addition, using
si:reorder-memory and Optimize World should not increase the size of IDS files.

6.2.2.1. The Start GC Command Has Been Enhanced

Start GC Command
Start GC keywords

Controls the operation of the Garbage Collector. Start GC with no keywords turns
on both dynamic and ephemeral garbage collection.

See also "GC Cleanups", GC-ON, GC-OFF, FULL-GC, and GC-IMMEDIATELY.
keywords :Cleanup, :Dynamic, :Ephemeral, :Immediately

:Cleanup {Yes, No, Ask} Whether or not to run GC Cleanups to attempt
to free address space. The default is No. The mentioned
default is Yes, which does the maximum cleanup possible. Ask
queries you about each cleanup before performing it. Start GC
:Cleanup does not perform a GC or alter the mode of the
background GC. See the section "GC Cleanups", page 94.

94

February 1968

Command: :Start GC :Cleanup (Yes, No, or Ask [default Y
GC Cleanup Tasks
Reset all input histories? Yes No
Reset all presentation histories? Yes No
Reset all editor histories? Yes No
Reset LISP-TOP-LEVEL variables such as ’'* and ’'+? Ye
Reset interactor output histories? Yes No
Clear some resources? Yes No
aborts, uses these values

:Dynamic {Yes, No} Enables or disables the dynamic Level of
incremental GC.

:Ephemeral {Yes, No} Enables or disables the ephemeral Level of
incremental GC.

:Immediately {Yes, No, By-Area} Perform a complete garbage collection right
now. The mentioned default is Yes. Specifying By-Area offers a
list of areas that can be flipped individually. When your
address space has shrunk to where there is not quite enough
free space for a GC :Immediately to complete, By-Area
suggests some areas to flip that will maximize the amount of
space reclaimed without risking running out of space
completely. Start GC :Immediately also offers to run GC
Cleanups.

For more information about the process of Garbage Collection, see "Theory of
Operation of the GC Facilities" and "Invoking the Garbage Collection Facilities".

GC Cleanups

GC Cleanups are functions that you can request to run to make garbage collec-
tions more successful. A typical GC cleanup releases pointers to objects that are
not strictly necessary for continued operation of an application, only convenient.
Once the pointers are released, a subsequent GC can reclaim those objects. It is
not appropriate for GC cleanups to delete useful information, such as mail or edi-
tor buffers.

Predefined GC cleanups exist that remove most pointers from the Lisp System to
user objects. For example, the output histories of dynamic interactor windows are
cleared. (These keep pointers to objects for mouse sensitivity.)

GC Cleanups are run using the "Start GC Command" with the keyword :Cleanup.

Command: Start GC (keywords) :Cleanup (Yes, No, or Ask [default Yes]) R

GC Cleanups are defined using si:define-gc-cleanup.

95

February 1988

6.2.3. Improvements to the System Construction Tool

6.2.3.1. Changes to defsystem Options

There is a new syntax for the :bug-reports options to defsystem . For compatibil-
ity, the old syntax will continue to work until, at least, 8.0.

:bug-reports option for defsystem

Specifies the mailing list for bug reports for the system and the purpose of the
bug mail. The system has a bug report template with the values specified to key-
words in the :bug-reports option. All values must be strings. The acceptable key-
words are:

:name Specifies the name of the bug report template. This name is
used in all menus of bug report categories and is also used in
the bug report’s prologue describing the state of the machine
on which the report was created. The default is the pretty
name of the system.

:mailing-list The name of the mailing list to which the bug report will be
sent. The mailing list name must be specified exactly (i.e., we
don’t add "Bug-" to the string you give here). The default is
"Bug-system-name" where system-name is replaced by the actual
system name.

:documentation = The documentation associated with this bug report template.
Said documentation is visible in the wholine documentation
area when a menu of bug report categories is displayed. The
default for this option is Report problems in the pretty-name
system. where pretty-name is, of course, the pretty name of the
system.,

For example,

(defsystem ip-domain-server
(:pretty-name "IP Domain Name Server"
:bug-reports (:mailing-1ist “Bug-Domains”)
.

L)
specifies that the bug report template for the IP-Domain-Server system is called
"IP Domain Name Server", the bug reports are sent to the "Bug-Domains" list, and
the documentation string for the template is "Report problems in the IP Domain
Name Server system.".

There are some new options to defsystem:

:maintain-journals option for defsystem

Controls whether or not a system is journalled. The default is t, to maintain jour-
nal files. Using :maintain-journals nil makes the system unjournalled. An unjour-
nalled system is not patchable and has no version number, so loading it always
loads the .NEWEST version of the files in the system.

96

February 1988

:patch-atom option for defsystem

Controls how the patch-files for a system are named. Usually, the patch-file names
are derived from the short-name of a system. :patch-atom lets you override the
short-name.

:version-mapping option for defsystem

Controls the component mapping for component systems. For example:

(((:compile :newest) :released) ;compiling :NEWEST loads :RELEASED
((:x :keyword) :number) ;keywords snapshot the number
((:x :number) :number)) ;ditto for numbers

There is a refinement of the options to module dependencies, :serial-definitions,
which combines :serial and :uses-definitions-from.

6.2.3.2. Changes to Patching

There is a new CP command that allows you to see the patches that you have not
loaded. See the section "Show Additional Patches Command" in Genera Handbook.

New Interface to Finish Patch

There is a new menu interface for the Finish Patch (n-X¥) command. When you do
m-X Finish Patch, an AVV menu comes up, allowing you to see your patch com-
ment, the modified source files (if any) associated with the patch, and the patch
author.

You have the options for editing the patch comment immediately or when you
press END, and for sending mail about the patch.

You also can specify dependencies for loading the patch.
sct:require-patch-level-for-patch &rest Function
system-major-minor-specs
Enforces a patch’s dependency on some particular patch level in another
system or systems. It is used at the head of any patch file that requires a
certain patch level in some other system to load or operate correctly. For
example:
(sct:require-patch-level-for-patch ’(system 357. 518.) ’(tape 69. 10.))

If the patch level requirements are not all met, it blows out, indicating at
what level all specified systems need to be. The RESUME option skips loading
further patches for the present system. This is available via the Finish
Patch menu.

There is a new facility to control the loading of problem patches.

Dangerous Patches

Occasionally you need to make a patch to a system that, in some circumstances,
might damage the system. For example, it might make changes to very low level
internal functions or initialize parts of the system. Loading such a patch into a

97

February 1988

running system could unpleasantly affect the operation of the system. Such a patch
is referred to as a dangerous patch. You can declare a patch dangerous by placing
the form sct:dangerous-patch at the beginning of the patch file.

sct:dangerous-patch format-string &rest format-args Function
Specifies a patch as being problematic to load (a dangerous patch) in some
circumstances.

To declare a patch a dangerous patch, place a form containing
sct:dangerous-patch at the beginning of the patch file, before the contents
of the patch, to test for the conditions under which the patch should not be
loaded.

For example, if you have a program that creates a list called *my-results*
to store its results, you would not want to load a patch that reinitializes
that list if the program was running. You should put a form like this at the
beginning of the patch file:

(when (1istp xmy-resultsx)
sct:dangerous-patch "This patch cannot be loaded because it
reinitializes xmy-resultsx")

When you attempt to load the patch, load-patches checks the value of
sct:*dangerous-patch-action* to determine the action to take.

Using sct:dangerous-patch at top level (not inside a conditional form)
produces an error when you attempt to finish the patch.

sct:with-dangerous-patch-action (action) &body Function
body
Allows you to bind sct:*dangerous-patch-action* during a load-patches
operation. This is useful if you are loading patches under program control.

(sct:with-dangerous-patch-action :load (1oad-patches))
The possible values for sct:*dangerous-patch-action* are:

:skip The default. Skips loading patches for the system.

:query Queries you, allowing you to skip loading patches for
the system or load the dangerous patch.

:load Loads the patch inspite of its dangerous status.

The Load Patches CP command takes a keyword argument, :Dangerous
Patch Action, that is the same as sct:with-dangerous-patch-action.

sct:*dangerous-patch-action* Variable
Controls the action taken when a dangerous patch is encountered in loading
patches for a system. See the function sct:dangerous-patch, page 97.

:skip The default. Skips loading patches for the system.

:query Queries you, allowing you to skip loading patches for
the system or load the dangerous patch.

98

February 1988

:load Loads the patch inspite of its dangerous status.

6.2.3.3. Change in What Version of Component Systems Are Loaded When a
System is Loaded

Now when you load a system that has component systems, SCT loads the versions
of the component systems that were used to compile the system. The previous be-
havior was that if you loaded, for example, the Released version of a system, the
Released versions of the components were also loaded. The new behavior is more
consistent.

The default component map is now this:

(((:compile :newest) :released) ;compiling :NEWEST loads :RELEASED
((:x :keyword) :number) ;keywords snapshot the number
((:x :number) :number)) ;ditto for numbers

To get the old behavior, use this as the component map in the parent system
(specified with the :version-mapping option to defsystem):

(((:compile :newest) :released) ;compiling :NEWEST loads :RELEASED
((:x :keyword) :keyword) ;any other keyword passes through
((:x :number) :number)) ;number maps to snapshotted number

The Load System CP command can also be used to override the new behavior. To
load the Released version of system-name, and load the Released version of its com-
ponents instead of the versions snapshotted by the compilation of system-name, you
would use the following command:

Load System system-name :Version Released :Component Version Released

6.2.4. Improvements to the Compiler

6.2.4.1. Changes to Compiled Function Constants

In earlier releases, compiled function constants were localized with functions which
called them only by the Optimize World command. This had a number of undesir-
able side effects, such as increased working set, and increased size of IDS worlds.
In 7.2, constants are localized with functions when they are created, either by the
compiler or by the bin file loader.

One consequence of the above change is that some minor restrictions which were
previously only imposed by the bin dumper and Optimize World, are now imposed
always. In particular, circular structures can not be used as compiled function
constants, and code can not rely on constants being eq.

Completely compatible behavior with 7.1 can be achieved using the variable
si:*compiled-function-constant-mode*.

Example 1:

(defun foo () ’H#1=(#14))

In 7.1, this function could be compiled from an editor buffer, but it could not be
saved in bin files due to the circular constant. Additionally, Optimize World would
recurse infinitely trying to copy the constant.

99

February 1988

In 7.2, this function can never be compiled, since the code which localizes the con-
stant with the function will recurse infinitely. See the variable
si:*compiled-function-constant-mode*, page 99.

Example 2:

(eval-when (compile load eval)
(defvar xfoox (1ist 1 2 3)))

(defun foo ()
(eq (cdr '#,xfoox) ’'#, (cdr x*foox)))
In 7.1, (foo) would return t until the world was optimized, after which it would re-
turn nil . In 7.2, since the list constants are copied afterthe load-time-eval, this
function always returns nil. si:*compiled-function-constant-mode* Variable
Controls how constants are localized with compiled functions in normal
compiled-function creation. Its value can be one of the following:

:share This is the default. Compiled function constants are
copied and shared to be immediately after the compiled
function in memory.

:copy Compiled function constants are copied to be
immediately following the compiled function in memory.
No attempt is made to share constants. In some cases
this may result in faster loading of compiled functions
and a larger working set for the resulting functions.

:unlocalized Compiled function constants are not copied. Thus
circular structures and EQ-ness of constants are
preserved. However, the working set of running
functions loaded in this manner is guaranteed to be
larger, since the constants are guaranteed to be on
separate pages. Additionally, garbage collection overhead
wil be higher for dynamic constants, and IDS files may
be larger.

Note that the only constants which are currently copied are lists, numbers,
strings, and simple arrays.

Copying of compiled functions and this variable may be changed in a future
release.

6.2.4.2. New Compiler Optimization

(funcall #foo ...) now optimizes into (foo ...). This improves performance but
means that you can no longer use funcall to avoid inline compilation. The correct
way to prevent inline compilation is to use the notinline declaration.

100

February 1988

6.2.4.3. Changes to Cdr-Coding Behavior of Some Functions
The behavior of rplacd, zl:nreverse, nreverse, and nreconc has changed with re-
spect to cdr-coding.

rplacd now returns a cdr-coded list in the form (without-interrupts (rplacd (list
’a) (list ’b)). It usually returns a cdr-coded list when interrupts are enabled.

zl:nreverse, nreverse, and nreconc now perform much more efficiently when
passed cdr-coded lists. Usually, rplacd-forwarding no longer occurs in these func-
tions.

The exact list destruction which occurs when calling zl:nreverse, nreverse, and
nreconc is now undefined. In previous releases, it was the case that (eq (last list)
(nreverse list)) returned t. Now this may or may not be the case, depending on
the cdr-coding of the list and the machine type.

6.2.4.4. Change to throw
The system now enters the debugger in situations such as

(CATCH A
(CATCH B
(UNWIND-PROTECT
(THROW A 1)

(THROW ’B 2))))
rather than sometings returning 2 and sometimes destroying your environment.

6.2.4.5. New Sub-primitive

There is a new sub-primitive for implementation of low-level things. It is used by

the new implementation of throw sys:%multiple-value-pop Function
A function of 0 arguments. It pops a multiple group off of the stack and
returns it as its values.

6.2.4.6. Bug in Read-Time Conditionalizations Fixed
Constructs such as #+system: :cmu or f#+system:alcatraz now work. Previously they
signalled a package error.

6.3. Incompatible Changes to Utilities in Genera 7.2

6.3.1. Incompatible Change to sys:meter-function-entry and sys:meter-function-exit

Genera 7.2 includes an incompatible change to two undocumented functions. We
document this change in case users have been redefining these functions to imple-
ment their own metering facilities. This incompatible change is a system improve-
ment that prevents a race condition during trap-handling; the benefit is that me-
tering results are more accurate.

In 7.2, both sys:meter-function-entry and sys:meter-function-exit take an argu-
ment. Prior to 7.2 they did not take an argument. This argument is the old value

101

February 1988

of sys:inhibit-scheduling-flag. If you redefine these functions, they must both ac-
cept the new argument. Also, the bodies must include:

(setf si:inhibit-scheduling-flag old-inhibit-scheduling-flag)

6.3.2. Document Examiner Find Commands Replaced

The Find Commands in the Document Examiner have been replaced by a single
Show Candidates command. See the section "Improvements to the Document
Examiner in Genera 7.2", page 90.

102

February 1988

7. Changes to the Debugger in Genera 7.2

7.1. New Features in the Debugger in Genera 7.2

7.1.1. New Features for Advice

To advise a function is to tell a function to do something extra in addition to its
actual definition. Advising is achieved by means of the function advise. The some-
thing extra is called a piece of advice, and it can be done before, after, or around
the definition itself.

The advise feature has been enhanced in Genera 7.2. Here are some new functions
and variables: si:advise-permanently function class name position Function
&body forms
This form is identical to advise, except that forms advised by
si:advise-permanently cannot be removed by unadvise. They must be
removed by si:unadvise-permanent. See the function
si:unadvise-permanent in Program Development Utilities.

function Specifies the function to put the advice on. It is usually a
symbol, but any function spec is allowed. (See the section
"Function Specs"” in Symbolics Common Lisp -- Language
Concepts.)

class Specifies either :before, :after, or :around, and says when to
execute the advice (before, after, or around the execution of the
definition of the function). For more information about the
meaning of :around, :before, and :after advice:See the section
":around Advice" in Program Development Utilities.

name Specifies an arbitrary symbol that is remembered as the name of
this particular piece of advice. It is used to keep track of
multiple pieces of advice on the same function. If you have no
name in mind, use nil; then we say the piece of advice is
anonymous.

A given function and class can have any number of pieces of
anonymous advice, but it can have only one piece of named
advice for any one name. If you try to define a second one, it
replaces the first.

Advice for testing purposes is usually anonymous. Advice used
for customizing someone else’s program should usually be named
so that multiple customizations to one function have separate
names. Then, if you reload a customization that is already
loaded, it does not get put on twice.

103

February 1988

position Specifies where to put this piece of advice in relation to others
of the same class already present on the same function.

Position can have these values:

e position can be nil. The new advice goes in the default
position: it usually goes at the beginning (where it is executed
before the other advice), but if it is replacing another piece of
advice with the same name, it goes in the same place that the
old piece of advice was in,

e position can be a number, which is the number of pieces of
advice of the same class to precede this one. For example, 0
means at the beginning; a very large number means at the
end.

¢ position can have the name of an existing piece of advice of
the same class on the same function; the new advice is
inserted before that one.

forms Specifies the advice; they get evaluated when the function is
called.
sizcinterpret-advice Function

Function must be a function spec of a compiled function that is currently
advised. This specification is "sticky" until the next time all advice is
removed from function. Until then, all advice for function is interpreted.

si:advise-permanently function class name position &body forms Function
This form is identical to advise, except that forms advised by
si:advise-permanently cannot be removed by unadvise. They must be
removed by si:unadvise-permanent. See the function
si:unadvise-permanent in Program Development Utilities.

function Specifies the function to put the advice on. It is usually a
symbol, but any function spec is allowed. (See the section
"Function Specs" in Symbolics Common Lisp -- Language
Concepts.)

class Specifies either :before, :after, or :around, and says when to
execute the advice (before, after, or around the execution of the
definition of the function). For more information about the
meaning of :around, :before, and :after advice:See the section
“:around Advice" in Program Development Utilities.

name Specifies an arbitrary symbol that is remembered as the name of
this particular piece of advice. It is used to keep track of
multiple pieces of advice on the same function. If you have no
name in mind, use nil; then we say the piece of advice is
anonymous.

A given function and class can have any number of pieces of
anonymous advice, but it can have only one piece of named

104

February 1988

advice for any one name. If you try to define a second one, it
replaces the first.

Advice for testing purposes is usually anonymous. Advice used
for customizing someone else’s program should usually be named
so that multiple customizations to one function have separate
names. Then, if you reload a customization that is already
loaded, it does not get put on twice.

position Specifies where to put this piece of advice in relation to others
of the same class already present on the same function.

Position can have these values:

e position can be nil. The new advice goes in the default
position: it usually goes at the beginning (where it is executed
before the other advice), but if it is replacing another piece of
advice with the same name, it goes in the same place that the
old piece of advice was in.

e position can be a number, which is the number of pieces of
advice of the same class to precede this one. For example, 0
means at the beginning; a very large number means at the
end.

¢ position can have the name of an existing piece of advice of
the same class on the same function; the new advice is
inserted before that one.

forms Specifies the advice; they get evaluated when the function is
called.
si:zshow-permanent-advice Function

Displays all functions which currently have permanent advice.

7.1.1.1. Compiled Advice

Prior to Genera 7.2, all advice was interpreted by default. Now, the you have the

option of whether or not to compile or interpret advice. You can controll this glob-

ally, by using si:*advice-compiled-by-default*, or individually (on a function by

function basis) by using si:compile-advice and si:interpret-advice.

si:*advice-compiled-by-default* Variable
When this varible is set to t, advise and si:advise-permanently cause the
advice to be compiled. When si:*advice-compiled-by-default* is set to nil,
the advice is interpreted.

si:compile-advice function Function
Function must be a function spec of a compiled function that is currently
advised. This specification is "sticky" until the next time all advice is
removed from function. Until then, all advice for function is compiled.

105

February 1988

sizinterpret-advice Function
Function must be a function spec of a compiled function that is currently
advised. This specification is "sticky" until the next time all advice is
removed from function. Until then, all advice for function is interpreted.

7.1.2. New Display Debugger Interface

There is a new Display Debugger interface in Genera 7.2.

7.1.2.1. Using the Display Debugger

The Display Debugger is a version of the standard Debugger that uses its own
multi-paned window. You enter the Display Debugger from the standard Debugger
by typing c-m-W, or by using the :Window Debugger command.

Figure 4 shows the Display Debugger, entered while in the Concordia editor.

Display Debugger on Concordia 1 Proceed without any special action
Editor Top Level

Abort. Exit Edit function Breakpoints Restart process Concordis 1

Proceed Switch windows Find Frame Monitor

Returm Help Backtrace Exit traps

Reinvoke Bug Report Source code Call traps

Backtrace ZMETI:CON-DEBUCCER-BREAK

» ZWEI :CON-DEBUGGER-BRERK @ ENTRY: B REQUIRED, @ OPTIONAL
ZHE] : COMMAND-EXECUTE 1 PUSH-T
ZWET : PROCESS-COMMAND-CHAR 2 BIND-SPECVAR ZMWEI :s INSIDE-BREAKs
(FLAVOR:METHOD :EDIT ZWEI:EDITOR) 3 UMWIND-PROTECT-DPEN 14
(:INTERNAL (FLRVOR:COMBINED :EDIT ZWEI :ZMACS-TOP-LEVEL-EDITOR) 4 CRLL-B-IGNORE k°DBG
{FLAVOR:NCHHOPPER :EDIT ZWEI:EDITOR) » 5 CARTCH-CLDSE B
(FLRVOR :COMBINED :EDIT ZWEI :2ZMACS-TOP-LEVEL-EDITOR) 6 PUSH-INDIRECT ZWEI:eTYPEOUT-WINDODW:
ZUWET : ZMACS-WINDOW-TOP-LEVEL 7 PUSH-CONMSTANT ' :MAKE-COMPLETE
SAGE : : ZMACS-EDI TOR-TOPLEVEL 10 FUNCALL-1-IGNORE
(FLAVOR:METHOD SAGE : :CONCORDIA-T0OP-LEVEL SAGE : : CONCORDIA) 11 UNBIND-N 1

(FLAVOR:METHOD DW: :RUN-PROGRAM-TOP-LEVEL DW: :PROGRAN) 12 PUSH-INMED @
DU : PROGRAN-FRANE -TOP-LEVEL

Inapect hiatory

Break: Arguments, locals, and speciala
The current frane §s ZWEI:CON-DEBUCCER-BREAK o4 ’ ’

s=R, <RED: Proceed without any special action ZHEI :sINBIDE-BREAK®: T

-8, GIDED: Editor Top Level

s-C: Restort process Concordia 1

-

Figure 4. The Display Debugger

Overview

The Display Debugger divides the screen into eight panes, showing various aspects
of the program environment at the time of the error. It displays the name of the
activity you are debugging in the top-left pane.

When the Display Debugger is entered, the various panes contains the state of the
erring frame. Most common operations are available directly from the mouse.

In addition to using the commands listed in the Command Menu in the Display
Debugger, you can also use all of the usual Debugger commands by typing them
on the keyboard.

106

February 1988

Display Debugger Panes
Here is a description of each pane in the Display Debugger:
The Proceed Options pane -- the top righthand pane

The proceed options displayed in this pane are the same as seen in usual Debug-
ger. Clicking [Left] on a proceed option takes that option. See the section "Using
Debugger Proceed and Restart Options” in Program Development Utilities.

The Code pane -- the middle righthand pane

This pane displays the source code of the erring frame. If the Debugger can’t find
the source code, it displays the disassembled code instead.

If the you compiled the code with source locators, then the form which caused the
Debugger to be entered is highlighted in boldface. Furthermore, the forms in the
source code are sensitive as pieces of Lisp code. This means that you can click
[Left] on a form in the source code to evaluate it in the context of the erring
frame, or you can click control-meta-[Left] on a form to set a breakpoint at that
place in the code.

If the Display Debugger is showing disassembled code, the current PC is highlight-
ed in boldface with an arrow. You can click [Left] on the names of local and spe-
cial variables to see their values, or you can click control-meta-[Left] on a PC in
the disassembly to set a breakpoint at that PC.

Arguments, locals and specials pane -- the bottom righthand pane

This pane shows you all of the arguments and locals for the current frame, as well
as any special variables bound in the frame. You can describe an argument, local,
or special by clicking [Middle] on it. You can inspect it (with the Inspector) by
clicking shift-[(Middle] on it. You can modify the arguments, locals, or specials by

clicking control-meta-[right] on it.

Title pane -- the top lefthand pane

The Title pane shows you the name of the activity which you are debugging.
Command menu pane -- the second lefthand pane

This pane contains mouse-sensitive commands to do various things such as change
your activity or placement in the Display Debugger.

If you position your cursor on one of the command names, the mouse documenta-
tion line shows what happens if you click left, middle, or right on a particular
command.

A brief description of each of the commands in this pane follows:

Abort Leaves the Display Debugger and aborts from the error.
Proceed Proceeds from the error using the Resume proceed handler.
Return Returns from the current frame. If you click [Middle] on this

command, the Display Debugger asks you which frame you
wish to return from.

107

February 1988

Reinvoke

Exit

Switch Windows

Help

Bug Report
Edit function
Find Frame

Backtrace

Source Code

Breakpoints

Monitor

Exit traps

Call traps

Reinvokes the current frame. If you click [Middle] on this
command, the Display Debugger asks you which frame you
wish to reinvoke.

Exits from the Display Debugger back to the normal Debugger.
This neither aborts nor proceeds from the error.

Switch to the original window where the error occurred. Press
FUNCTION-S to return to the Display Debugger.

Shows a brief help display.
Allows you to create, edit, and mail a bug report.
Edit the function for the current frame.

Search down from the current frame for one whose function
name contains a specified substring. Clicking [Middle] on the
command causes the last search to be executed again from the
new starting place.

Click [Left] on this command to display an "ordinary"
backtrace, that is, a backtrace which hides invisible frames.
Click [Middle] on this command to display a backtrace which
does not hide invisible frames.

Click [Left] on this command to see the source cfode for the
frames, if it is available. Click [Middle] on this command to
see disassembled code for the frames.

Click [Left] for a display of all the currently set breakpoints.
Click [Middle] to clear all the breakpoints. Click [Right] to get
a menu of various other breakpoint-related commands.

Click [Left] for a display of all the currently monitored
locations. Click [Right] for a menu of various other
monitor-related commands.

Click [Left] to set trap-on-exit for the current frame. Click
[Middle] to clear trap-on-exit for the current frame. Click
[Right] for a menu of various other trap-on-exit commands.

Click [Left] to set trap-on-call for the current frame. Click
[Middle] to clear trap-on-call for the current frame. Click
[Right] for a menu of various other trap-on-call commands.

Backtrace pane -- the third lefthand pane

This pane displays the backtrace for the current error. The current frame is indi-
cated by an arrow on the left. Clicking [Left] on a frame in this pane causes the

current frame to be set to that frame. Clicking [Middle] on a frame shows the ar-
guments with which that frame was called. Clicking [Right] on a frame pops up a
menu for all the operations on that frame, such as set or clear trap-on-exit, disas-
semble the function for the frame, edit the frame’s function, reinvoke this frame,

return from this frame, and so forth.

108

February 1988

Inspect history pane -- the fourth lefthand pane

This pane keeps track of all of the "complex" Lisp objects which you have exam-
ined. You can reexamine objects in this pane by clicking [Middle] or shift-[Middle]
on them.

Interactor pane -- the bottom lefthand pane

This pane is where interaction with the Display Debugger takes place. You can use
all of the usual Debugger commands and accelerators in this pane. For a list of
Debugger commands: See the section "Debugger Command Descriptions" in
Program Development Utilities.

7.1.3. New Debugger Proceed Menu in Genera 7.2

Debugger pop up proceed menus are an alternative interface to the regular De-
bugger. When an error occurs, a menu pops up, enabling the user to select a retry
option. Debugger proceed menus are perfect for situations where there is an abor-
mal but expected error with a possible clean recovery. An example is programs
that perform long file operations where there is a good possibility of a network
break.

The following is a list of standard errors in the Genera system that causes a De-
bugger proceed menu to appear in case of an error:

fs:file-operation-failure
fs:unknown-pathname-host
fs:host-not-accessible-for-file
fs:host-not-available
sys:host-not-responding
sys:unknown-host-name
tape:mount-error

If you want to disable Debugger menus from appearing, set or bind the variable
dbg:*disable-menu-proceeding* to t.

dbg:*disable-menu-proceeding* Variable
Use this to disable Debugger menu proceeding. When set or bound to t, it
forces all error conditions to enter the standard Debugger.

If you have a condition that you want to add to the list of standard errors that
causes a pop up Debugger menu to appear, use the macro
dbg:with-extra-debugger-menu-conditions.

dbg:with-extra-debugger-menu-conditions (conditions) &body body Macro
Given a set of conditions, executes the body with the conditions added to
the standard list of conditions which cause a Debugger menu to appear,
rather than entering the Debugger.

This macro is useful for error conditions which are abnormal but expected,
and for which there is a possible clean recovery. For example, if you have a
program that is performing long file operations, and you expect that it may
run into a network break, you can use

)

109

February 1988

dbg:with-extra-debugger-menu-conditions to provide a pop-up menu of
options when it runs into the network break, rather than putting you into

the standard Debugger.
conditions is a list of flavors.
body is the code that may encounter the conditions.

Here is an example of dbg:with-extra-debugger-menu-conditions used with
code designed to save the results of a computation on a file.
dbg:with-extra-debugger-menu-conditions provides for a Debugger menu
interface in case any kind of file or network error occurs.
(dbg:with-extra-debugger-menu-conditions (fs:file-error sys:network-error)
(catch-error-restart-with-form ((fs:file-error sys:network-error)
“Skip saving file “A." name)
(abort-current-command)
(error-restart ((fs:file-error sys:network-error)
"Retry saving file “A." name)
(with-open-file (stream name :direction :output)
. <code to output data to the file> ...)

)))

To disable the Debugger menu from appearing, you can set or bind the
variable dbg:*disable-menu-proceeding* to t.

Figure 5 shows an example of a Debugger menu which occurred when a
user tried to save a file on a disk when there was not enough room. This

menu is unrelated to the code example above.

Out of room In File partition in FEP1:>)LMFS.FILE.1
For H:>sys>doc>defs>defs2.sab.22
Select a proceed option

Expunge the directory H:>sys>doc>defs (s-f)

Offer to delete excess versions of H:>sys>doc>defs>defs2.sab (s-B)

Run DIRED on H:>sys>doc>defs>x.x.x (s-()

Retry OPEN of H:>sys>doc>defs>defs5. sab.newest (@azs)

Retry OPEN using a different pathname (s-E)

Retry saving defsS.sab >sys>doc>defs H: into H:>sys>doc>defs>defs3. sab. newest (s-F)
Editor Top Level (@m®D)

Restart process Concordia 1 (s-H)

Enter the debugger (auEFED)

Send a bug report (c-M)

Figure 5. The Debugger Menu

7.1.4. Changing the Character Style of the Bug Banner is Now Possible

There is a new variable that controls the character style of the system information
inserted at the beginning of a bug message.

110

February 1988

dbg:*character-style-for-bug-mail-prologue* Variable
Creates the bug-report banner inserted into the text of bug messages,
enabling you to choose the font. The default is nil.nil.tiny, specifying a
small font for the bug-report banner.

To display a bug-report banner in a small font you can type the following:

(setq dbg:xcharacter-style-for-bug-mail-prologuex
(si:character-style-for-device-font ’fonts:quantum si:xb&w-screenx))

To display a bug-report banner in a large font you can type the following:

(setq dbg:xcharacter-style-for-bug-mail-prologuex
(si:parse-character-style ’(nil nil :huge)))

You can also type the following to specify a particular font:
(setq dbg:xcharacter-style-for-bug-mail-prologuex ’'(nil nil :huge))

This affects all the commands that send bug mail:
e c-M in the debugger.

¢ Report Bug Command Processor command.

¢ Bug (n-X) Zmail and Zmacs commands.

¢ (zl:bug)

7.2. Incompatible Changes to the Debugger in Genera 7.2

7.2.1. dgb:fun Code Change

In previous releases, the documentation for the function dbg:fun stated that it re-
turned the function object of the current stack frame. In actuality, dbg:fun re-
turned the function name.

In Genera 7.2, the code is changed so that dbg:fun returns the function object.

111

February 1988

8. Changes to the User Interface in Genera 7.2

8.1. New Features in the User Interface in Genera 7.2

tv:key-test Function Again Available

The function tv:key-test is implemented in Release 7.2. It was available in Release
7.0, but not in Release 7.1.

8.1.1. Free Standing Mail Buffers Are Now Retrievable

When you use one of the non-Zmail, non-Zmacs bug-reporting mail commands (Re-
port Bug in the CP or c-M in the Debugger), a Zmacs buffer is created called
Bug-Mail-Frame-Mail-n. This contains the draft of the message so you can re-
turn to it later if you need to add information or just retransmit it.

8.1.2. You Can Now Customize Your SELECT Key Assignments
There is a new facility that allows you to change SELECT key assignments or to

add new selectable activities to the SELECT key. See the section "Customizing the
SELECT Key" in Genera User’s Guide.

8.1.3. Miscellaneous New User Interface Features

e The interface of the Copy World command has been improved. See the section
"Copy World Command" in Genera Handbook.

® c-X c-J now has a history.
¢ The Terminal VT100 simulator has been improved.

* There are many enhancements to Carry Tape and three new CP commands to
use it:

See the section "Read Carry Tape Command" in Genera Handbook.

See the section "Write Carry Tape Command" in Genera Handbook.

See the section "Show Carry Tape Command" in Genera Handbook.
e Font loading is improved.

e Variable line height management for windows is now more like the editor’s.

¢ Users can now customize windows that are precreated.

112

February 1988

Custom keyboard mapping tables are now supported.

Clear History works better.

There is a simple mechanism for multiplexing of the mode lock key.
Terminal simulator defaulting is improved.

LGP2 font memory management is improved.

8.1.4. New Facilities in Genera 7.2

The following new user-interface facilities have been added:

dw:connect-graph-nodes
dw:command-error
dw:remove-window-typeout-window
cp:*default-command-accelerator-echo*
dw:accept-values-fixed-line
dw:accept-values-command-button

dw:define-subcommand-menu-handler

The following improvements have been made to existing facilities:

The keyword option :save-cursor-position has been added to dw:do-redisplay.

The keyword option :selectable has been added to
dw:define-program-framework.

The keyword option :tester has been added to
dw:define-command-menu-handler.

The keyword option :menu-documentation has been added to
dw:define-program-command.

The following options have been added to program frameworks: :inherit-from,
:window-wakeup, and :sub-presentation.

Incremental redisplay of graphs has been improved.

:typeout-window and :flavor are now allowed together.

113

February 1988

e Control over what goes into the history and what goes on the screen has been
generalized.

e with-underlining has been made more flexible.
¢ Graph connection drawing has been made more flexible.

o :clear-window inside dw:with-own-coordinates works as it would work in a
static window.

¢ A sample mechanism has been added to dw:accept-values-sample.
¢ :freshline inside incremental redisplay is disallowed.

e The presentation type description for large enumeration types has been
improved.

¢ The programmer now has more control over accept-values caching.
* Keyboard commands are now allowed in :accept-values panes.

Command menu centering has been made more flexible.

8.1.5. Improvements to User Interface Documentation

The following facility definitions have been added:
dw:remove-window-typeout-window window &key Function
(:prompt-p t)
Removes the typeout window from window. The removal is immediate if the
keyword option :prompt-p is nil; if :prompt-p is t, the message "Type any
character to refresh this display: " is displayed, and the window is removed
when the user presses a character.

dw:after-program-frame-activation-handler
frame

This is a generic function created for your program by
dw:define-program-framework. You can define for it a method that will be
called whenever your program frame is activated. The context in which
your method will be called is unpredictable, so you should define it only to
do simple things like set flags. For more information on this and like
functions, See the section "Handling Asynchronous Window System Events"
in Programming the User Interface -- Concepts.

dw:after-program-frame-selection-handler program Function
frame
This is a generic function created for your program by
dw:define-program-framework. You can define for it a method that will be
called whenever your program frame is selected. The context in which your

114

February 1988

method will be called is unpredictable, so you should define it only to do
simple things like set flags. For more information on this and like
functions, See the section "Handling Asynchronous Window System Events"
in Programming the User Interface -- Concepts.

dw:before-program-frame-deactivation-handler
frame

This is a generic function created for your program by
dw:define-program-framework. You can define for it a method that will be
called whenever your program frame is deactivated. The context in which
your method will be called is unpredictable, so you should define it only to
do simple things like set flags. For more information on this and like
functions, See the section "Handling Asynchronous Window System Events"
in Programming the User Interface -- Concepts.

dw:before-program-frame-deexpose-handler
frame

This is a generic function created for your program by
dw:define-program-framework. You can define for it a method that will be
called whenever your program frame is deexposed. The context in which
your method will be called is unpredictable, so you should define it only to
do simple things like set flags. For more information on this and like
functions, See the section "Handling Asynchronous Window System Events"
in Programming the User Interface -- Concepts.

dw:before-program-frame-kill-handler program Function
frame

This is a generic function created for your program by
dw:define-program-framework. You can define for it a method that will be
called whenever your program frame is killed. The context in which your
method will be called is unpredictable, so you should define it only to do
simple things like set flags. For more information on this and like
functions, See the section "Handling Asynchronous Window System Events"
in Programming the User Interface -- Concepts.

dw:set-program-frame-configuration
&optional (frame dw:*program-frame*)
Sets the configuration of program frame frame to the configuration
specified by configuration-name.

8.2. Incompatible Changes to the User Interface in Genera 7.2

115

February 1988

:data-arguments-are-disjoint Option to define-presentation-type Has New
Default

The default value for the :data-arguments-are-disjoint option to
define-presentation-type has been changed from t to nil

Using :data-arguments-are-disjoint nil for a previously defined presentation type
does not cause any code to cease working. If the data arguments really are dis-
joint, the code that searches for handlers will simply not take advantage of the
fact and will consequently search more handlers than necessary. In those cases
where this is the case and where it is important to optimize the search, you can
redefine the presentation type to set :data-arguments-are-disjoint to t.

Pane State of :accept-values Pane

The state of the :accept-values pane in a program framework has been moved
from the pane itself into the program.

Old and New Font Editors Can Coexist

Genera includes a new font editor, which replaces the older one. The older font
editor, which is not included in the system for Release 7.2, can be loaded separate-
ly and can coexist with the new editor. The two editors have the same basic func-
tionality.

GC Enhancements

Some GC enhancements to help with larger data structures have been made. The
internal data structure returned by (cdr (sys:cca-extra-info
(sys:compiled-function-cca <compiled-function>))) is no longer in the same for-
mat as the one debugging-info returns. Instead it is compressed. debugging-info
is now allowed to cons. If you have a something with a si:debug-info property that
is your own declaration, it is probably better to use the new function
si:debugging-info-user-entry than user::assq on debugging-info.

Dumping of who-calls macros-expanded Allowed

The dumping of who-calls macros-expanded is now allowed for the distribution
world. The macros-expanded properties used by who-calls are not in the world by
default. si:enable-who-calls, when invoked, reloads a special file first which con-
tains this information.

Simple Defstruct Accessor Functions Now All the Same

All simple defstruct accessor functions are now the same. This saves a few hun-
dred pages in the world by eliminating duplicate inline compiled functions. Noth-
ing is really lost in debuggability, since the functions are inline anyway. c-sh-A
and m-. still work fine. If you look at the function stored in a structure accessor,
you will find things with names like structure-array-leader-7.

116

February 1988

New Function dw:set-program-frame-configuration

The function dw:set-program-frame-configuration adds a standard mechanism for
changing configurations in a program frame.

Supdup to Waits

SUPDUP to WAITS is now able to use the meta key correctly. This means that
SUPDUP between a Lisp machine running Release 7.1 and one running Release
7.2 will not work properly. Use 3600-LOGIN instead.

8.3. User Interface Bugs Fixed in Release 7.2

¢ Mouse handlers defined with define-presentation-action are correctly saved
when a world is saved so that they are available again when the world is
booted.

¢ Filling with m-Q is much faster.

e c-Left for marking in dynamic windows is easier to use.

e The printer argument to the :Output Destination keyword for CP commands now
returns an instance so more things work.

e There is now a :character-style option for labels.

¢ Formatted output variable snapshotting now works properly.

¢ Several mouse handler gestures now work consistently.

e Several problems with source-level debugging have been eliminated.

e Flavor and generic function name completion has been improved.

8.4. The Genera 7.2 Graphics Substrate

Genera 7.2 introduces a more complete extension of the new graphics output sub-
strate introduced in 7.0. Some of the major features include:

e It is upwardly compatible with the previous version.
+ It is generic.

e It has a complete imaging model.

117

February 1988

8.4.1. Compatibility of New Graphics Substrate

The new graphics substrate is almost completely compatible with previous ver-
sions.

o All messages to windows remain completely unchanged. In any instance where
the new substrate required slightly different behavior, a new method implements
the change while the old method remains undisturbed.

o All functions in the graphics: package are upwardly compatible with those
introduced in Genera 7.0, with one exception. There are many new options, and
quite a number of cases that did not work now behave consistently. The one
function whose calling sequence has been changed is graphics:draw-ellipse. For
an explanation of this: See the section "Incompatible Calling Sequence of
graphics:draw-ellipse", page 132.

* The exact pixels affected by graphics:draw- functions are not always the same
as before, because the scan conversion methods have been tightened up. For a
more detailed explanation of this: See the section "Details of Scan Conversion",
page 128.

8.4.2. Definition of a Generic Graphics Substrate

The new graphics substrate is generic. This means that there is a uniform inter-
face for accessing the different facilities provided by different graphical output de-
vices.

The graphical output devices supported in Genera 7.2 are:
* The standard bitmap screen and its color analogues
e The LGP2 laser printer

* Raster arrays intended for copying to the screen at some later time.

To say that the substrate is generic does not mean that all programs written for
one device using the new substrate will run on all devices. In particular, there is
no guarantee that every function will degenerate cleanly when the functionality re-
quested of it does not exist. Every attempt has been made to do this where it is
practical and reasonable. For instance:

* Using the :color option on a black and white screen produces a stipple pattern
approximating the intensity of the desired color.

* Drawing with the :opaque nil option on the LGP2 draws special images to
simulate this, even though the PostScript imaging model does not normally
support color mixing.

In other cases, the limitations of the device are just too great.

118

February 1988

* The LGP2 is not capable of drawing in :alu :flip, because it does not necessarily
retain a complete image of the current partially drawn page.

¢ Graphics sent to character-only devices, for example, with-output-to-string or
ASCII terminals, is not simulated by a clever use of *, +, [, -, / and \.

If you have any concerns about the compatibility of the drawing options you are
using with the devices you need to output onto, you should check the correspond-<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>