MMJ \\\ | \\\\\\\ U

I e

W' _.__ \, o . ___:____.

Symbolics Common Lisp-
Language Dictionary

28

symbolics™

Cambridge, Massachusetts

Symbolics Common Lisp: Language Dictionary
999019

August 1986

This document corresponds to Genera 7.0 and later releases.

The software, data, and information contained herein are proprietary to, and comprise
valuable trade secrets of, Symbolics, Inc. They are given in confidence by Symbolics
pursuant to a written license agreement, and may be used, copied, transmitted, and
stored only in accordance with the terms of such license. This document may not be
reproduced in whole or in part without the prior written consent of Symbolics, Inc.

Copyright © 1986, 1985, 1984, 1983, 1982, 1981, 1980 Symbolics, Inc. All Rights
Reserved.

Portions of font library Copyright © 1984 Bitstream Inc. All Rights Reserved.

Portions Copyright © 1980 Massachusetts Institute of Technology. Ali Rights Reserved.

Symbolics, Symbolics 3600, Symbolics 3670, Symbolics 3675, Symbolics 3640,
Symbolics 3645, Symbolics 3610, Symbolics 3620, Symbolics 3650, Genera,
Symbolics-Lisp®, Wheels, Symbolics Common Lisp, Zetalisp®, Dynamic Windows,
Document Examiner, Showcase, SmartStore, SemantiCue, Frame-Up, Firewall,
S-DYNAMICS®, S-GEOMETRY, S-PAINT, S-RENDER®, MACSYMA, COMMON LISP
MACSYMA, CL-MACSYMA, LISP MACHINE MACSYMA, MACSYMA Newsletter and
Your Next Step in Computing are trademarks of Symbolics, Inc.

Restricted Rights Legend

Use, duplication, and disclosure by the Government are subject to restrictions as set
forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software
Clause at FAR 52.227-7013.

Symbolics, Inc.

4 New England Tech Center
555 Virginia Road

Concord, MA 01742

Text written and produced on Symbolics 3600-family computers by the Documentation
Group of Symbolics, Inc.

Text masters produced on Symbolics 3600-family computers and printed on Symbolics
LGP2 Laser Graphics Printers.

Cover Design: Schafer|LaCasse

Printer: CSA Press

Printed in the United States of America.

Printing year and number: 88 87869876543 21

IA

v

number &rest numbers Function
Returns t if number is not numerically equal to any of numbers, and nil
otherwise. Either argument can be of any numeric type.

The following function is a synonym of :
[=

number &rest more-numbers Function
< compares its arguments from left to right. If any argument is greater
than the next, < returns nil. But if the arguments are monotonically in-
creasing or equal, the result is t.

Arguments must be noncomplex numbers, but they need not be of the same
type. Examples:

(£5) => T
(£123) =51
(£3628) =>NIL
(£56.3) => T

The following function is a synonym of < :

<=

number &rest more-numbers Function
2 compares its arguments from left to right. If any argument is less than
the next, > returns nil. But if the arguments are monotonically decreasing
or equal, the result is t.

Arguments must be noncomplex numbers, but they need not be of the same
type. Examples:

(28) =T

(23221 =T
(2546 2) => NIL

(2 6.82s23 6.82d23) => T

The following function is a synonym of = :

>=

&rest numbers Function
Returns the product of its arguments. If there are no arguments, it
returns 1, which is the identity for this operation.

If the arguments are of different numeric types they are converted to a
common type, which is also the type of the result. See the section
"Coercion Rules for Numbers" in Symbolics Common Lisp: Language Con-
cepts.

isc

zl:*$

zl:*$

Examples:

(x) => 1

(x 4 6) => 24
(x1234) =>24

(x 2.5 4) => 10.0

(x 3.8s4 108) => 3008008.0

The following functions are synonyms of * :

zl:times
z1:*$

For a table of related items: See the section "Arithmetic Functions” in
Symbolics Common Lisp: Language Concepts.

&rest args : Function
Returns the product of its arguments. If there are no arguments, it
returns 1, which is the identity for this operation.

The following functions are synonyms of zl:*$:

zl:times
*

+ &rest numbers Function

Returns the sum of its arguments. If there are no arguments, it returns 0,
which is the identity for this operation.

If the arguments are of different numeric types, they are converted to a
common type, which is also the type of the result. See the section
"Coercion Rules for Numbers" in Symbolics Common Lisp: Language Con-
cepts.

Examples:
(+) => 10
(+ -8) => -8

(+1234) =>10
(+25.9 =17.9
(+ 572 2 2/3) => 31/6

The following functions are synonyms of + :

zl:plus
z1:+$

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

zl:+$

3
zl:+$ &rest args Function
Returns the sum of its arguments. If there are no arguments, it returns 0,
which is the identity for this operation.
The following functions are synonyms of zl:+$:
zl:plus
+
- number &rest more-numbers Function
With only one argument, - returns the negative of its argument. With
more than one argument, - returns its first argument minus all of the rest
of its arguments.
If the arguments are of different numeric types they are converted to a
common type, which is also the type of the result. See the section
"Coercion Rules for Numbers" in Symbolics Common Lisp: Language Con-
cepts.
Examples:
(- 8 => -8
(-93) =>6
(-9421) =2
(- #C(3 4) 4) => #C(-1 4
(- 9 5/6) => 49/6
The following function is a synonym of - :
zl:-$
For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.
zl:-$ arg &rest args ‘ Function
With only one argument, zl:-$ returns the negative of its argument. With
more than one argument, zl:-$ returns its first argument minus all of the
rest of its arguments.
The following function is a synonym of zl:-$:
| number &rest more-numbers Function

With more than one argument / successively divides the first argument by
all the others and returns the result. With one argument, / returns the
reciprocal of the argument: (/ x) is the same as (/ 1 x). Arguments can be
of any numeric type; the rules of coercion are applied to arguments of dis-
similar numeric types.

zl:/

Misc

{ follows
integers

normal mathematical rules, so if the mathematical quotient of two
is not an exact integer, the function returns a ratio. To obtain an

integer result, use one of these functions: floor, ceiling, truncate, round.

/
(/
/
/
/
%
%
/
/
Y%
/

4) => 1/4

4,0) => 8.25

93) =3

18 4) => 9/2 ;returns rational number in canonical form
181 19.08) => 10.1 ;applies coercion rules

181 198) => 181/10

24 4 2) => 3

36. 4. 3.) = 3

36.0 4.0 3.8) => 3.0

#c(1 1) #c(1 -1)) => #c(8 1)
#c(3 4) 5) => #c(3/5 4/5)

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

zl:/ number &rest more-numbers Function

With mo
the first

re than one argument, zl:/ is the same as zl:quotient; it returns
argument divided by all of the rest of its arguments. With only

one argument, (zl:/ x) is the same as (zl:/ 1 x).

With integer arguments, zl:/ acts like truncate, except that it returns only

a single value, the quotient.
Note that in Zetalisp syntax / is the quoting character and must therefore
be doubled.
Examples:
(21:7 3 2) => 1 ;Integer division truncates.
(z1:/7 3 -2) => -1
(21:7 -3 2) => -1
(z1:/7 -3 =2) => 1
(21:7 3 2.8) = 1.5
(z1:7 3 2.0d8) => 1.5d8
(21:/ 4 2) => 2
(21:7 12. 2. 3.) => 2
(21:/ 4.8) => .25

The following function is a synonym of zl:/ :
zl:/$

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

5 Z|:/$

zl:/$ arg &rest args Function
With more than one argument, zl:/$ is the same as zl:quotient; it returns
the first argument divided by all of the rest of its arguments. With only
one argument, (zl:/$ x) is the same as (zl:/$ 1 x).

With integer arguments, zl:/$ acts like truncate, except that it returns
only a single value, the quotient.

Note that in Zetalisp syntax / is the quoting character and must therefore
be doubled.

The following function is a synonym of zl:/$:
zl:/
/= number &rest numbers ~ Function
Returns t if all arguments are not equal, and nil otherwise. Arguments

can be of any numeric type; the rules of coercion are applied for arguments
of different numeric types.

Two complex numbers are considered = if their real parts are = and their
imaginary parts are =.

Examples:
(/= 4) => T
(/= 4 4.9) => NIL
(/= 4 #c(4.8 8)) => NIL
(/=45) =1
(/=4567) =>T
(/= 4567 4) => NIL
(/= 4547 4) => NIL

(/= #c(3 2) #c(2 3) #c(2 -3)) => T
(/= #c(3 2) #c(2 3) #c(2 -3) #c(2 3.8)) => NIL

The following function is a synonym of /=:
#

For a table of related items: See the section "Numeric Comparison
Functions" in Symbolics Common Lisp: Language Concepts.

1- number Function
(1- number) is the same as (- number 1). Note that this name might be
confusing: (1- number) does not mean 1 - number; rather, it means number
-1

isc

zl:1-$ 6

Examples:
(1- 9) => 8
(1- 4.8) => 3.0
(1- 4.0d@) => 3.0d0
(1- #C(4 5)) => #C(3 5)

The following functions are synonyms of 1- :
zl:subl
zl:1-$

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

zl:1-$ =x Function
(1-$ x) is the same as (- x 1).
The following functions are synonyms of zl:1-$:

zl:subl
1-
1+ number Function
(1+ number) is the same as (+ number 1).
Examples:
(1+ 5) => 6

(1+ 3.8d8) => 4.8d0
(14 3/2) => 5/2
(1+ #C(4 5)) => #C(5 5)

The following functions are synonyms of 1+ :

zl:addl
z1:1+$

For a table of related items: See the section "Arithmetic Functions” in
Symbolics Common Lisp: Language Concepts.

z1:1+$ «x Function
(1+$ x) is the same as (+ x 1).
The following functions are synonyms of zI:1+$:

zl:add1l
1+

sys:%1d-aloc array index Function
Returns a locative pointer to the element-cell of array selected by the in-
dex. sys:%1d-aloc is the same as zl:aloc, except that it ignores the num-
ber of dimensions of the array and acts as if it were a one-dimensional ar-
ray by linearizing the multidimensional elements.

7 sys:%1d-aref

Current style suggests that you should use (locf (sys:%1d-aref ...)) instead
of sys:%1d-aloc.

When using sys:%1d-aloc it is necessary to understand how arrays are
stored in memory: See the section "Row-major Storage of Arrays" in Con-
verting to Genera 7.0.

For an example of accessing elements of a multidimensional array as if it
were a one-dimensional array: See the function sys:%1d-aref, page 7.

sys:%I1d-aref array index Function
Returns the element of array selected by the index. sys:%1ld-aref is the
same as aref, except that it ignores the number of dimensions of the array
and acts as if it were a one-dimensional array by linearizing the mul-
tidimensional elements. copy-array-portion uses this function.

For example:

(setq xarrayx (make-array ‘(20 38 58))) => #<Art-Q-20-30-58 5923116>
(setf (aref xarrayx 5 6 7) ’foo) => FOO

;;; The following three forms have the same effect.

(aref xarrayx 5 6 7) => F0O

(sys:Z1d-aref xarrayx (+ (x (+ (x 5 38) 6) 58) 7)) => FOO
(sys:Z1d-aref xarrayx (array-row-major-index xarrayx)) => F00

When using éys:%ld-aref it is necessary to understand how arrays are
stored in memory: See the section "Row-major Storage of Arrays" in Con-
verting to Genera 7.0.

sys:%1d-aset value array index Function
Stores value into the element of array selected by the index. sys:%1d-aset
is the same as zl:aset, except that it ignores the number of dimensions of
the array and acts as if it were a one-dimensional array by linearizing the
multidimensional elements. copy-array-portion uses this function.

Current style suggests that you should use (setf (sys:%1d-aref ...)) instead
of sys:%1d-aset.

When using sys:%1d-aset it is necessary to understand how arrays are
stored in memory: See the section "Row-major Storage of Arrays" in Con-
verting to Genera 7.0.

For an example of accessing elements of a multidimensional array as if it
were a one-dimensional array: See the function sys:%1d-aref, page 7.

2d-array-blt 8

2d-array-blt alu nrows ncolumns from-array from-row from-column Function
to-array to-row to-column
Copies a rectangular portion of from-array into a portion of to-array.
2d-array-blt is similar to bitblt but takes (row,column) style arguments on
two-dimensional arrays, while bitblt takes (x,y) arguments on rasters.

The number of columns in from-array times the number of bits per element
must be a multiple of 32. The same is true for to-array.

This can be used on sys:art-fixnum or sys:art-1b, sys:art-2b,...
sys:art-16b arrays. It can also be used on sys:art-q arrays provided all the
elements are fixnums.

sys:%32-bit-difference fixnuml fixnum?2 Function
Returns the difference of fixnuml and fixnum2 in 32-bit two’s complement
arithmetic. Both arguments must be fixnums. The result is a fixnum.

For a table of related items: See the section "Machine-dependent Arith-
metic Functions" in Symbolics Common Lisp: Language Concepts.

Sys:%32-bit-plus fixnuml fixnum2 Function
Returns the sum of fixnuml and fixnum?2 in 32-bit two’s complement arith-
metic. Both arguments must be fixnums. The result is a fixnum.

For a table of related items: See the section "Machine-dependent Arith-
metic Functions" in Symbolics Common Lisp: Language Concepts.

< number &rest more-numbers Function
< compares its arguments from left to right. If any argument is not less
than the next, < returns nil. But if the arguments are monotonically
strictly increasing, the result is t.

Arguments must be noncomplex numbers, but they need not be of the same

type.
Examples:

(<34) =>T1

(<11.8) =>NIL
(<81/22.834) =>T
(<8 1324) => NIL

The following function is a synonym of < :
zl:lessp

For a table of related items: See the section "Numeric Comparison
Functions" in Symbolics Common Lisp: Language Concepts.

number &rest more-numbers Function

<= compares its arguments from left to right. If any argument is greater
than the next, <= returns nil. But if the arguments are monotonically in-
creasing or equal, the result is t.

Arguments must be noncomplex numbers, but they need not be of the same

type.

Examples:
(<=8) =T
(<=3 4) =T
(<=11) =T
(<= 11.8) => T
(<=81/22.8034) =T
(<= 8132 4) =>NIL

(<=81334) =T
The following function is a synonym of <=:
<

For a table of related items: See the section "Numeric Comparison
Functions” in Symbolics Common Lisp: Language Concepts.

number &rest more-numbers Function

Returns t if all arguments are numerically equal.

= takes arguments of any numeric type; the arguments can be of dissimilar
numeric types.

Examples:

(=8) =T

(= 3 4) => NIL

(= 33.8 3.8d8) => T

(= 4 #C(4 @) #C(4.9 9.8) #C(4.0d0 0.8d8)) => T

For a discussion of non-numeric equality predicates: See the section
"Comparison-performing Predicates" in Symbolics Common Lisp: Language
Concepts.

For a table of related items: See the section "Numeric Comparison
Functions" in Symbolics Common Lisp: Language Concepts.

> number &rest more-numbers Function

> compares its arguments from left to right. If any argument is not
greater than the next, > returns nil. But if the arguments are monotoni-
cally strictly decreasing, the result is t.

Arguments must be noncomplex numbers, but they need not be of the same

type.

Examples:

>43.08 =T
(>4321/7208) =T
(>43120) =>NIL

The following function is a synonym of > :
zl:greaterp

For a table of related items: See the section "Numeric Comparison
Functions" in Symbolics Common Lisp: Language Concepts.

>= number &rest more-numbers Function
>= compares its arguments from left to right. If any argument is less than
the next, >= returns nil. But if the arguments are monotonically decreas-
ing or equal, the result is t.

Arguments must be noncomplex numbers, but they need not be of the same

type.
Examples:

(>=8) =T
>=43.8) =T
>=432180) =T
(>=4231808) =>NIL
(>>43321/2808) =T

The following function is a synonym of >=:
>

For a table of related items: See the section "Numeric Comparison
Functions" in Symbolics Common Lisp: Language Concepts.

zl:@define &rest ignore Macro
This macro turns into nil, doing nothing. It exists for the sake of the
@ listing generation program, which uses it to declare names of special
forms that define objects (such as functions) that @ should cross-reference.

zI:\ xy Function
Returns the remainder of x divided by y. x and y must be integers.

zI:\\ acts like truncate, except that it returns only a single value, the
remainder.

Examples:

11

ZzI:\\\

zl:”

zI1:°$

zI:\\

(z1:\ 3 2) => 1
(21:\ =3 2) => -1
(z1:\ 3 -2) =>1
(z1:\ -3 =2) => -1

The following functions are synonyms for zl:\\ :

rem
zl:remainder

Note: In programs using the Zetalisp syntax you would represent zI:\\ as \.
The function is represented here as zl:\\ only because all objects in this
manual are represented as if printed by prinl with *package* bound to the
Common Lisp readtable. In Common Lisp, the backslash character (\) is
the escape character and must be doubled.

x y &rest args Function
Returns the greatest common divisor of all its arguments. The arguments
must be integers.
The following function is a synonym of zI:\\\ :

zl:ged
note: In programs using the Zetalisp syntax you would represent zI:\\ as \\
The function is represented here as zI:\\\ only because all objects in this
manual are represented as if printed by prinl with *package* bound to the
Common Lisp readtable. In Common Lisp, the backslash character (\) is
the escape character and must be doubled.

xy Function

Returns x raised to the yth power. The result is an integer if both ar-
guments are integers (even if y is negative!) and floating-point if either x
or y or both is floating-point. If the exponent is an integer a repeated-
squaring algorithm is used, while if the exponent is floating the result is
(exp (* y (log x))).
The following functions are synonyms of zl:" :

zl:expt

zl:°$
Xy Function

Returns x raised to the yth power. The result is an integer if both ar-
guments are integers (even if y is negative!) and floating-point if either x
or y or both is floating-point. If the exponent is an integer a repeated-
squaring algorithm is used, while if the exponent is floating the result is
(exp (* y (log x))).

zl:0A$

The following functions are synonyms of zl:"$:

zl:expt
zl:”

12

13

abs

acons

acos

abs

number Function
Returns [number|, the absolute value of number. For noncomplex numbers,
abs could have been defined by:

(defun abs (number)
(cond ((minusp number) (minus number))
(t number)))

Note that if number is equal to negative zero in IEEE floating-point format
the above algorithm returns -0.0.

For complex numbers, abs could have been defined by:

(defun abs (number)
(sgrt (+ (C (realpart number) 2) (= (imagpart number) 2))))

See the function phase, page 393.

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

key datum alist Function
acons constructs a new association list by adding the pair
(key . datum) onto the front of alist. See the section "Association Lists" in
Symbolics Common Lisp: Language Concepts. This is equivalent to using
the cons function on key and datum, and consing it onto the old list as fol-
lows:

(acons key datum alist) = (cons (cons key datum) alist)
Example:

(setq bird-alist ’((wader . heron) (raptor . eagle))) =>
((WADER . HERON) (RAPTOR . EAGLE))

(acons ’diver ’loon bird-alist) =>
((DIVER . LOON) (WADER . HERON) (RAPTOR . EAGLE))

bird-alist =>
((WADER . HERON) (RAPTOR . EAGLE))
For a table of related items: See the section "Functions That Operate on

Association Lists" in Symbolics Common Lisp: Language Concepts.

number Function
Computes and returns the arc cosine of the argument (that is, the angle
whose cosine is equal to number). The result is in radians.

The argument can be any noncomplex or complex number. Note that if the

acosh 14

acosh

absolute value of number is greater than one, the result is complex, even if
the argument is not complex.

The arc cosine being a mathematically multiple-valued function, acos
returns a principal value whose range is that strip of the complex plane
containing numbers with real parts between 0 and n. The range excludes
any number with a real part equal to zero and a negative imaginary part,
as well as any number with a real part equal to © and a positive imaginary
part.

Examples:

(acos 1) => 0.9

(acos 9) => 1.5707964 ; ®/2 radians
(acos -1) => 3.1415927 ; &

(acos 2) => #(€(0.0 1.3169578)

(acos -2) => #((3.1415927 -1.316958)

For a table of related items: See the section "Trigonometric and Related
Functions" in Symbolics Common Lisp: Language Concepts.

number Function
Computes and returns the hyperbolic arc cosine of the argument (that is,
the angle whose cosh is equal to number). The result is in radians.

The argument can be any noncomplex or complex number, except -1. Note
that if the value of number is less than one, the result is complex, even if
the argument is not complex. The hyperbolic arc cosine being mathemati-
cally multiple-valued in the complex domain, acosh returns a principal
value whose range is that half-strip of the complex plane containing num-
bers with a non-negative real part and an imaginary part between -m and =
(inclusive). A number with real part zero is in the range if its imaginary
part is between zero (inclusive) and = (inclusive).

Example:

(acosh 1) => 0.8 ;(cosh 8) => 1.9
(acosh -2) => #c(1.316958 3.1415927)

For a table of related items: See the section "Hyperbolic Functions” in
Symbolics Common Lisp: Language Concepts.

zl:addl x Function

(addl x) is the same as (+ x 1).
The following functions are synonyms of zl:addl:

1+
z1:1+$

15 adjoin

adjoin item list &key (test #’eql) test-not (key #identity) Function
You can use adjoin to add an element to a set provided that it is not al-
ready a member. The keywords for this function are:

stest Any predicate specifying a binary operation to be applied
to a supplied argument and an element of a target list.
The item matches the specification only if the predicate
returns t. If :test is not supplied the default operation is
eql.

:test-not Similar to :test, except the ifem matches the specification
only if there is an element of the list for which the
predicate returns nil.

:key If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

Note that, since adjoin adds an element only if it is not already a member,
the sense of :test and :test-not have inverted effect: with :test, an item is
added to the list only if there is no element of the list for which the predi-
cate returns t. With :test-not, an item is added if there is no element for
which the predicate returns nil.

When :test is eql, the default, then
(adjoin item list) = (if (member item 1ist) list (cons item list))
Here are some examples:

(setq bird-1ist ’((loon . diver) (heron . wader))) =>
((LOON . DIVER) (HERON . WADER))

(setq bird-1ist (adjoin ’(eagle . raptor) bird-list :key #’car)) =>
((EAGLE . RAPTOR) (LOON . DIVER) (HERON . WADER))

(adjoin ’(eagle . oops) bird-list :key #’car) =>
((EAGLE . RAPTOR) (LOON . DIVER) (HERON . WADER))

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

adjustable-array-p array Function
Returns t if array is adjustable, and nil if it is not. Lisp dialects supported
by Genera make most arrays adjustable even ifd the :adjustable option to
make-array is not specified; but to guarantee that an array can be ad-
justed after created, it is necessary to use the :adjustable option.

adjust-array 16

adjust-array array new-dimensions &key (element-type nil Function

element-type-specified) (initial-element nil
initial-element-specified) (initial-contents nil
initial-contents-specified) fill-pointer displaced-to
displaced-index-offset displaced-conformally

adjust-array changes the dimensions of an array. It returns an array of

the same type and rank as array, but with the new-dimensions. The number

of new-dimensions must equal the rank of the array. All elements of array

that are still in the bounds are carried over tothe new array.

:element-type specifies that elements of the new array are required to be
of a certain type. An error is signalled if array contains elements that are
not of that type. :element-type thus provides an error check.

:tinitial-element allows you to specify an initial element for any elements of
the new array that are not in the bounds of array.

The :initial-contents and :displaced-to options have the same effect as
they do for make-array. If you use either of these options, none of the
elements of array are carried over to the new array.

You can use the :fill-pointer option to reset the fill pointer of array. If ar-
ray had no fill pointer and error is signalled.

If the size of the array is being increased, adjust-array might have to al-
locate a new array somewhere. In that case, it alters array so that
references to it are made to the new array instead, by means of "invisible
pointers". See the function structure-forward in Internals, Processes, and
Storage Management. adjust-array returns this new array if it creates one,
and otherwise it returns array. Be careful to be consistent about using the
returned result of adjust-array, because you might end up holding two ar-
rays that are not the same (that is, not eq), but that share the same con-
tents. :

The meaning of adjust-array for conformal indirect arrays is undefined.

zl:adjust-array-size array new-size Function
If array is a one-dimensional array, its size is changed to be new-size. If
array has more than one dimension, its size (array-total-length) is changed
to new-size by changing only the first dimension.

If array is made smaller, the extra elements are lost. If array is made big-
ger, the new elements are initialized in the same fashion as make-array
would initialize them: either to nil, 0 or (code-char 0), depending on the
type of array.

Example:

17 sys:*all-flavor-names*

(setg a (make-array 5))

(setf (aref a 4) ’foo)

(aref a 4) => foo
(21:adjust-array-size a 2)
(aref a 4) => an error occurs

See the function adjust-array, page 16.

sys:*all-flavor-names* Variable
This is a list of the names of all the flavors that have ever been created by
defflavor.

&allow-other-keys Lambda List Keyword

In a lambda-list that accepts keyword arguments, &allow-other-keys
specifies that keywords that are not specifically listed after &key are al-
lowed. They and their corresponding values are ignored, as far as
keywords arguments are concerned, but they do become part of the &rest
argument, if there is one.

zl:aloc array &rest subscripts Function
Returns a locative pointer to the element of array selected by the sub-
scripts. The subscripts must be integers and their number must match the
dimensionality of array. See the section "Cells and Locatives".

Current style suggests using locf with aref instead of zl:aloc. For ex-
ample:

(locf (aref this-array subscripts))

alpha-char-p char Function
Returns t if char is a letter of the alphabet.

(alpha-char-p #\A) => T
(alpha-char-p #\1) => NIL

For a list of other character predicates: See the section "Character
Predicates"” in Symbolics Common Lisp: Language Concepts.

alphalessp stringl string2 Function
(alphalessp stringl string2) is equivalent to (string-lessp stringl string2).
If the arguments are not strings, alphalessp compares numbers numeri-
cally, lists by element, and all other objects by printed representation. al-
phalessp is a Maclisp all-purpose alphabetic sorting function.
Examples:

alphanumericp 18

(alphalessp "apple” “orange") => T
(alphalessp ’tom ’tim) => NIL
(alphalessp "same” “"same") => NIL
(alphalessp ’symbol "string") => NIL
(alphalessp ’(abc) ’(abd)) =T

For a table of related items: See the section "Maclisp-Compatible String
Functions" in Symbolics Common Lisp: Language Concepts.

alphanumericp char Function
Returns t if char is a letter of the alphabet or a base-10 digit.

(alphanumericp #\7) => T
(alphanumericp #\Z) => NIL

For a list of other character predicates: See the section "Character
Predicates" in Symbolics Common Lisp: Language Concepts.

always Keyword For loop

always expr

Causes the loop to return t if expr always evaluates non-null. If expr evaluates to
nil, the loop immediately returns nil, without running the epilogue code (if any, as
specified with the finally clause); otherwise, t is returned when the loop finishes,
after the epilogue code has been run. If the loop terminates before expr is ever
evaluated, the epilogue code is run and the loop returns t.

always expr is like (and exprl expr2 ...), except that if no expr evaluates to nil,
always returns t and and returns the value of the last expr. If the loop
terminates before expr is ever evaluated, always is like (and).

If you want a similar test, except that you want the epilogue code to run if expr
evaluates to nil, use while.

Examples:

(defun loop-always (my-1ist)
(Toop for x in my-list
finally (print “"what you going to do next ?“)
do
(princ x) (princ " ")
do
and always (equal x ’a))) => LOOP-ALWAYS

(loop-always (b c a d)) => B NIL

and

(loop-always '(a a)) => A A
"what you going to do next ?" T

See the section "loop Clauses", page 310.

and &rest body Special Form

Evaluates each form one at a time, from left to right. If any form
evaluates to nil, and immediately returns nil without evaluating any other
form. If every form evaluates to non-nil values, and returns the value of
the last form.

and can be used in two different ways. You can use it as a logical and
function, because it returns a true value only if all of its arguments are
true. So you can use it as a predicate:

Examples:
(if (and ’this ’that) "reaches this point") => "reaches this point”
(if (and (equal 1 1) (equal nil ’())) "equal”) => "equal”

(if (and socrates-is-a-person all-people-are-mortal)
(setq socrates-is-mortal t))

Because the order of evaluation is well-defined, you can do:

(if (and (boundp ’x)
(eq x ’foo))
(setq y ’bar)) => NIL

knowing that the x in the eq form is not evaluated if x is found to be un-
bound.

You can also use and as a simple conditional form:
Examples:
(and) => T

(and t nil) => NIL
(and t ’hi (numberp 3.14)) =T

(when (and (setq temp (assq X y))
(rplacd temp 2)))

and | 20

(when (and bright-day
glorious-day
(princ "It is a bright and glorious day.")))

Note: (and) => t , which is the identity for the and operation.

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

and &rest types Type Specifier
The type specifier and allows the definition of data types that are the in-
tersection of other data types specified by types. As a type specifier, and
can only be used in list form.

Examples:

(typep 89 ’(and integer number)) => T
(subtypep ’bit-vector ’(and vector array)) => T and T
(sys:type-arglist ’and) => (&REST TYPES) and T

See the section "Data Types and Type Specifiers” in Symbolics Common
Lisp: Language Concepts.

For a discussion of the function and: See the section "Flow of Control" in
Symbolics Common Lisp: Language Concepts.

zl:ap-1 array index Function
This is an obsolete version of zl:aloc that only works for one-dimensional
arrays. There is no reason ever to use it.

zl:ap-2 array indexl index2 Function
This is an obsolete version of zl:aloc that only works for two-dimensional
arrays. There is no reason ever to use it.

zl:ap-leader array index Function
Returns a locative pointer to the indexed element of array’s leader. array
should be an array with a leader, and index should be an integer. See the
section "Cells and Locatives".

However, the preferred method is to use locf and array-leader as shown in
the following example:

(setq xarrayx
(make-array ’(2 3) :element-type ’character
:leader-list ’(t nil)))

(locf (array-leader xarrayx 1))

21 append

append &rest lists Function
The arguments to append are lists. The result is a list that is the con-
catenation of the arguments. The arguments are not changed (see nconc).
Example:

(append *(abc¢) ’(de f) nil ’(g)) => (abcde fg)

append makes copies of the top-level list structure of all the arguments it
is given, except for the last one. So the new list shares the conses of the
last argument to append, but all the other conses are newly created. Only
the lists are copied, not the elements of the lists. The function
concatenate can perform a similar operation, but always copies

all its arguments . See also ncone, which is like append but destroys all
its arguments except the last.

The last argument does not have to be a list, but may be any Lisp object,
which becomes the tail of the constructed list. For example,

(append (a b c) ’d) => (abc . d)

A version of append that only accepts two arguments could have been
defined by:

(defun append2 (x y)
(cond ((null x) y)
((cons (car x) (append2 (cdr x) y)))))

The generalization to any number of arguments could then be made
(relying on car of nil being nil):

(defun append (&rest args)
(if (< (length args) 2) (car args)
(append2 (car args)
(apply (function append) (cdr args)))))

These definitions do not express the full functionality of append; the real
definition minimizes storage utilization by cdr-coding the list it produces,
using cdr-next except at the end where a full node is used to link to the
last argument, unless the last argument is nil in which case cdr-nil is
used. See the section "Cdr-Coding" in Symbolics Common Lisp: Language
Concepts.

To copy a list, use zl-user:copy-list (or zl:copylist); the old practice of
using

(append x *())
to copy lists is unclear and obsolete.

apply 22

append Keyword For loop

append expr {into var}

Causes the values of expr on each iteration to be appended together. When the
epilogue of the loop is reached, var has been set to the accumulated result and
can be used by the epilogue code.

It is safe to reference the values in var during the loop, but they should not be
modified until the epilogue code for the loop is reached.

The forms append and appending are synonymous.

Examples:

(defun splice-list (list1 1ist2)
(Toop for item1 in 1ist1

for item2 in list2

append (Tist item1) into result

append (1ist item2) into result

finally (return (append result)))) => SPLICE-LIST
(splice-list ’(Let not the of minds) ’(me to marriage true)) =>
(LET ME NOT TO THE MARRIAGE OF TRUE)

Is equivalent to

(defun splice-1ist (1ist1 1ist2)
(loop for item1 in 1ist1

for item2 in 1ist2

appending (1ist item1) into result

appending (list item2) into result

finally (return (append result)))) => SPLICE-LIST
(splice-list ’(Let not the of minds) ’(me to marriage true)) =>
(LET ME NOT TO THE MARRIAGE OF TRUE)

Not only can there be multiple accumulations in a loop, but a single accumulation
can come from multiple places within the same loop form, if the types of the
collections are compatible. append, collect, and nconc are compatible.

See the section "loop Clauses”, page 310.

apply function &rest arguments Function
Applies the function function to arguments. function can be any function,
but it cannot be a special form or a macro. Examples:

23 zl:apply

(setq fred ’+)

(apply fred (1 2)) => 3

(setq fred ’-)

(apply fred (1 2)) => -1

(apply ‘cons *((+ 2 3) 4)) => ((+23) . 4) not (5. 4)

Note that if the function takes keyword arguements, you must put the
keywords as well as the corresponding values in the argument list.

(apply #’(lambda (&ey a b) (list a b)) ’(:b 3) => (nil 3)

See the section "Functions for Function Invocation" in Symbolics Common
Lisp: Language Concepts. /, S A

zl:apply function args A Function
Applies the function function to the list of arguments args. args should be
a list; function can be any function, but it cannot be a special form or a
macro.

Examples:

(setq fred ’+)

(apply fred (1 2)) => 3

(setq fred ’-)

(apply fred (1 2)) => -1

(apply ’cons ((+ 2 3) 4)) => ((+23) . 4) not (5. 4)

Of course, args can be nil. Note: Unlike Maclisp, zl:apply never takes a
third argument; there are no "binding context pointers" in Symbolics Com-
mon Lisp.

See the function funcall, page 245.

See the section "Functions for Function Invocation" in Symbolics Common
Lisp: Language Concepts.

zl:ar-1 array index Function
This is an obsolete version of aref that only works for one-dimensional ar-
rays. There is no reason ever to use it.

zl:ar-2 array indexl index2 Function
This is an obsolete version of aref that only works for two-dimensional ar-
rays. There is no reason ever to use it.

aref \ 24

aref array &rest subscripts Function
Returns the element of array selected by the subscripts. The subscripts
must be integers and their number must match the dimensionality of array.

(setq this-array (make-array ’(2 3) :initial-contents

"((abc) (de f))))

(aref this-array 8 8) => A
(aref this-array 8 1) => B
(aref this-array @ 2) =>C
(aref this-array 1 8) => D

setf may be used with aref to set the value of an array element.

(setf (aref this-array 1 8) ’'x) => X
(aref this-array 1 8) => X

zl:arg «x Function
(zl:arg nil), when evaluated during the application of a lexpr, gives the
number of arguments supplied to that lexpr. This is primarily a debugging
aid, since lexprs also receive their number of arguments as the value of
their lambda-variable.

(zl:arg i), when evaluated during the application of a lexpr, gives the value
of the ’th argument to the lexpr. i must be an integer in this case. It is
an error if ¢ is less than 1 or greater than the number of arguments sup-
plied to the lexpr. Example:

(defun foo nargs ;define a lexpr foo.
(print (arg 2)) ;print the second argument.
(+ (arg 1) ;return the sum of the first

(arg (- nargs 1)))) ;and next to last arguments.

zl:arg exists only for compatibility with Maclisp lexprs. To write functions
that can accept variable numbers of arguments, use the &optional and
&rest keywords. See the section "Evaluating a Function Form" in Sym-
bolics Common Lisp: Language Concepts.

arglist function &optional real-flag Function
arglist is given an ordinary function, a generic function, or a function spec,
and returns its best guess at the nature of the function’s lambda-list. It
can also return a second value which is a list of descriptive names for the
values returned by the function. The third value is a symbol specifying the
type of function:

25 args-info

Returned Value Function Type

nil ordinary or generic function
subst substitutable function

special special form

macro macro

si:special-macro both a special form and a macro
array array

If function is a symbol, arglist of its function definition is used.

Some functions’ real argument lists are not what would be most descriptive
to a user. A function can take an &rest argument for technical reasons
even though there are standard meanings for the first element of that ar-
gument. For such cases, the definition of the function can specify, with a
local declaration, a value to be returned when the user asks about the ar-
gument list. Example:

(defun foo (&rest rest-arg)
(dectare (arglist x y &rest 2))

Note that since the declared argument list is supplied by the user, it does
not necessarily correspond to the function’s actual argument list.

real-flag allows the caller of arglist to say that the real argument list
should be used even if a declared argument list exists.

If real-flag is t or a declared argument list does not exist, arglist computes
its return value using information associated with the function. Normally
the computed argument list is the same as that supplied in the source
definition, but occasionally some differences occur. However, arglist always
returns a functionally correct answer in that the number and type of the
arguments is correct.

When a function returns multiple values, it is useful to give the values
names so that the caller can be reminded which value is which. By means
of a values declaration in the function’s definition, entirely analogous to
the arglist declaration above, you can specify a list of mnemonic names for
the returned values. This list is returned by arglist as the second value.

(arglist ’arglist)
=> (function &optional real-flag) and (arglist values type)

args-info fcn Function
args-info returns an integer called the "numeric argument descriptor” of
the function, which describes the way the function takes arguments. This
descriptor is used internally by the microcode, the evaluator, and the com-
piler. function can be a function or a function spec.

sys:%args-info 26

The information is stored in various bits and byte fields in the integer,
which are referenced by the symbolic names shown below. By the usual
Symbolics Lisp Machine convention, those starting with a single "%" are
bit-masks (meant to be zl:loganded or zl:bit-tested with the number), and
those starting with "%%" are byte descriptors (meant to be used with 1db
or 1db-test).

Here are the fields:

sys:%%arg-desc-min-args
This is the minimum number of arguments that can be passed to
this function, that is, the number of "required" parameters.
sys:%%arg-desc-max-args
This is the maximum number of arguments that can be passed to
this function, that is, the sum of the number of "required"
parameters and the number of "optional” parameters. If there is an
&rest argument, this is not really the maximum number of ar-
guments that can be passed; an arbitrarily large number of ar-
guments is permitted, subject to limitations on the maximum size of
a stack frame (about 200 words).
sys:%%arg-desc-rest-arg
If this is nonzero, the function takes an &rest argument or &key
arguments. A greater number of arguments than
sys:%%arg-desc-max-args can be passed.
sys:%arg-desc-interpreted
This function is not a compiled-code object.
sys:%%arg-desc-interpreted
' This is the byte field corresponding to the
sys:%arg-desc-interpreted bit.
sys:%%arg-desc-quoted
This is obsolete. In Release 5 this was used by the zl:"e fea-
ture.

sys:%args-info function Function
This is an internal function; it is like args-info but does not work for in-
terpreted functions. Also, function must be a function, not a function spec.

zl:argument-typecase arg-name &body clauses Special Form
zl:argument-typecase is a hybrid of zl:typecase and zl:check-arg-type.
Its clauses look like clauses to zl:typecase. zl:argument-typecase
automatically generates an otherwise clause which signals an error. The
proceed types to this error are similar to those from zl:check-arg; that is,
you can supply a new value that replaces the argument that caused the er-
Tor.

a7

array

array

For example, this:

(defun foo (x)
(argument-typecase x
(:symbol (print ’symbol))
(:number (print ’number))))

is the same as this:

(defun foo (x)
(check-arg x
(typecase x
(:symbol (print ’symbol) t)
(:number (print ’number) t)
(otherwise nil))
"a symbol or a number"))

For a table of related items: See the section "Condition-Checking and Sig-
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

&optional (element-type **) (dimensions **) Type Specifier
array is the type specifier symbol for the Lisp data structure of that name.

The types array, cons, symbol, number, and character are pairwise dis-
joint.
The type array is a supertype of the types:

simple-array
vector

This type specifier can be used in either symbol or list form. Used in list
form, array allows the declaration and creation of specialized arrays whose
members are all members of the type element-type and whose dimensions
match dimensions.

element-type must be a valid type specifier, or unspecified. For standard
Symbolics Common Lisp type specifiers: See the section "Type Specifiers"”
in Symbolics Common Lisp: Language Concepts.

dimensions can be a non-negative integer, which is the number of dimen-
sions, or it can be a list of non-negative integers representing the length of
each dimension (any of which can be unspecified). dimensions can also be
unspecified.

Note that (array t) is a proper subset of (array *). This is because
(array t) is the set of arrays that can hold any Symbolics Common Lisp ob-
ject (the elements are of type t, which includes all objects). On the other

zl:array 28

~hand, (array *) is the set of all arrays whatsoever, including for example
arrays that can hold only characters. (array character) is not a subset of
(array t); the two sets are in fact disjoint because (array character) is not
the set of all arrays that can hold characters, but rather the set of arrays
that are specialized to hold precisely characters and no other objects. To
test whether an array foo can hold a character, one should not use

(typep foo ’(array character))
but rather

(subtypep ’character (array-element-type foo))
Examples:

(setq example-array (make-array ’(3) :fill-pointer 2))
=> #<ART-Q-3 43063275>

(typep example-array ’array) => T

(typep example-array ’simple-array) => NIL
; simple arrays do not have fill-pointers.

(z1:typep #x181) => :ARRAY

(subtypep ’array t) => T‘and T
(array-has-fill-pointer-p example-array) => T
(arrayp example-array) => T

(sys:type-arglist ’array)
=> (&0PTIONAL (ELEMENT-TYPE ’x) (DIMENSIONS ’x)) and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

See the section "Arrays" in Symbolics Common Lisp: Language Concepts.

zl:array x type &rest dimlist Macro
This creates an sys:art-q type array in sys:default-cons-area with the
given dimensions. (That is, dimlists is given to zl:make-array as its first
argument.) fype is ignored. If x is nil, the array is returned; otherwise,
the array is put in the function cell of symbol, and symbol is returned.
This exists for Maclisp compatibility.

We suggest using make-array in new programs.
zl:*array x type &rest dimlist Function

This is just like zl:array, except that all of the arguments are evaluated.
It exists for Maclisp compatibility.

29 zl:array-#-dims

zl:array-#-dims array Function
Returns the dimensionality of array. For example:

(21:array-#-dims (make-array ’(3 5))) => 2
array-rank provides the same functionality.

zl:array-active-length array Function
Returns the number of active elements in array. If array does not have a
fill pointer, this returns whatever (array-total-size array) would have. If
array does have a fill pointer that is a non-negative fixnum,
zl:array-active-length returns it. See the section "Array Leaders" in Sym-
bolics Common Lisp: Language Concepts. A general explanation of the use
of fill pointers is in that section.

Note that length provides the same functionality for lists and vectors.

sys:array-bits-per-element Variable
The value of sys:array-bits-per-element is an association list that as-
sociates each array type symbol with the number of bits of unsigned num-
bers (or fixnums) it can hold, or nil if it can hold Lisp objects. This can
be used to tell whether an array can hold Lisp objects or not. See the sec-
tion "Association Lists" in Symbolics Common Lisp: Language Concepts.

sys:array-bits-per-element index Function
Given the internal array-type code numbers, returns the number of bits per
cell for unsigned numeric arrays, or nil for a type of array that can contain
Lisp objects.

array-dimension array dimension-number Function
Returns the length of the dimension numbered dimension-number of array.
dimension-number should be a non-negative integer less than the rank of
array.

array-dimension-limit Constant
Represents the upper exclusive bound on each individual dimension of an
array. The value of this is 134217728.

zl:array-dimension-n n array Function
Returns the size for the specified dimension of the array. array can be any
kind of array, and n should be an integer. If n is between 1 and the
dimensionality of array, this returns the nth dimension of array. If nis 0,
this returns the length of the leader of array; if array has no leader it
returns nil. If n is any other value, this returns nil.

array-dimensions 30

Examples:
(setq a (make-array '(3 5) :leader-length 7))
(z1:array-dimension-n 1 a) => 3
(21:array-dimension-n 2 a) => 5
(z1:array-dimension-n 3 a) => nil
(zl:array-dimension-n 8 a) => 7

Use array-dimension in new programs.

array-dimensions array Function
array-dimensions returns a list whose elements are the dimensions of ar-
ray. Example:

(setq a (make-array ‘(3 5)))
(array-dimensions a) => (3 5)

zl:arraydims array Function
zl:arraydims returns a list whose first element is the symbolic name of the
type of array, and whose remaining elements are its dimensions. array can
be any array; it also can be a symbol whose function cell contains an array
(for Maclisp compatibility).

Example:

(setqg a (make-array ’(3 5)))
(z1:arraydims a) => (sys:art-q 3 5)

Note: the list returned by (array-dimensions x) is equal to the cdr of the
list returned by (zl:arraydims x).

See the function array-dimensions, page 30.

sys:array-displaced-p array Function
Tests whether the array is a displaced array. array can be any kind of ar-
ray. This predicate returns t if array is any kind of displaced array
(including an indirect array). Otherwise it returns nil.

sys:array-element-size array Function
Given an array, returns the number of bits that fit in an element of that
array. For arrays that can hold general Lisp objects, the result is 31; this
assumes that you are storing fixnums in the array and manipulating their
bits with dpb (rather than sys:%logdpb). You can store any number of
bits per element in an array that holds general Lisp objects, by letting the
elements expand into bignums.

sys:array-elements-per-q index Function
Given the internal array-type index, returns the number of array elements
stored in one word, for an array of that type.

a1 sys:array-elements-per-q

sys:array-elements-per-q index Variable
sys:array-elements-per-q is an association list that associates each array
type symbol with the number of array elements stored in one word, for an
array of that type. See the section "Association Lists" in Symbolics Com-
mon Lisp: Language Concepts.

array-element-type array Function
Returns the type of the elements of array. Example:

(setq a (make-array ’(3 5)))
(array-element-type a) => T
(array-element-type "foo") => STRING-CHAR

zl:array-grow array &rest dimensions Function
zl:array-grow creates a new array of the same type as array, with the
specified dimensions. Those elements of array that are still in bounds are
copied into the new array. The elements of the new array that are not in
the bounds of array are initialized to nil or 0 as appropriate. If array has
a leader, the new array has a copy of it. zl:array-grow returns the new
array and also forwards array to it, like adjust-array.

Unlike adjust-array, zl:array-grow usually creates a new array rather
than growing or shrinking the array in place. (If the array is one-
dimensional and it is being shrunk, zl:array-grow does not create a new
array.) zl:array-grow of a multidimensional array can change all the sub-
scripts and move the elements around in memory to keep each element at
the same logical place in the array.

array-has-fill-pointer-p array Function
Returns t if the array has a fill pointer; otherwise it returns nil. array can
be any array.

array-has-leader-p array Function
Returns t if array has a leader; otherwise it returns nil. array can be any
array.

array-in-bounds-p array &rest subscripts Function

Checks whether subscripts is a valid set of subscripts for array, and returns
t if they are; otherwise it returns nil

sys:array-indexed-p array Function
This predicate returns t if array is an indirect array with an index-offset.
Otherwise it returns nil. array can be any kind of array. Note, however,
that displaced arrays with an offset are not considered indexed.

sys:array-indirect-p 32

sys:array-indirect-p array Function
This predicate returns t if array is an indirect array. Otherwise it returns
nil. array can be any kind of array.

array-leader array index Function
Returns the indexed element of array’s leader. array should be an array
with a leader, and index should be an integer.

array-leader-length array Function
This returns the length of array’s leader if it has one, or nil if it does not.
array can be any array.

array-leader-length-limit Constant
This is the exclusive upper bound of the length of an array leader. It is
1024 on Symbolics 3600-family computers.

(condition-case (err)
(make-array 4 :leader-length array-leader-length-1imit)
(error (princ err)))
=> Leader length specified (1824) is too large.
#<FERROR 60065043>

zl:array-length array Function
array-total-size provides the same functionality as does zl:array-length.

Returns the total number of elements in array. array can be any array.
The total size of a one-dimensional array is calculated without regard for
any fill pointer. For a one-dimensional array, zl:array-length returns one
greater than the maximum allowable subscript. For example:

(z1:array-length (make-array 3)) => 3
(z1:array-length (make-array ’(3 5))) => 15

Note that if fill pointers are being used and you want to know the active
length of the array, you should use length or zl:array-active-length in-
stead of zl:array-length.

zl:array-length does not return the same value as the product of the
dimensions for conformal arrays.

arrayp arg Function
arrayp returns t if its argument is an array, otherwise nil. Note that
strings are arrays.

33 zl:array-pop

zl:array-pop array &optional (default nil) Function
Decreases the fill pointer by one and returns the array element designated
by the new value of the fill pointer. array must be a one-dimensional array
that has a fill pointer.

The second argument, if supplied, is the value to be returned if the array
is empty. If zl:array-pop is called with one argument and the array is
empty, it signals an error.

The two operations (decrementing and array referencing) happen uninter-
ruptibly. If the array is of type sys:art-q-list, an operation similar to
nbutlast has taken place. The cdr coding is updated to ensure this.

See the function vector-pop, page 612.

zl:array-push array x Function
zl:array-push attempts to store x in the element of the array designated by
the fill pointer and increase the fill pointer by one. array must be a one-
dimensional array that has a fill pointer, and x can be any object allowed to
be stored in the array. If the fill pointer does not designate an element of
the array (specifically, when it gets too big), it is unaffected and
zl:array-push returns nil; otherwise, the two actions (storing and
incrementing) happen uninterruptibly, and zl:array-push returns the former
value of the fill pointer, that is, the array index in which it stored x.

If the array is of type sys:art-q-list, an operation similar to nconc has
taken place, in that the element has been added to the list by changing the
cdr of the formerly last element. The cdr coding is updated to ensure this.

See the function vector-push, page 612.

zl:array-push-extend array x &optional extension Function
zl:array-push-extend is just like zl:array-push except that if the fill
pointer gets too large, the array is grown to fit the new element; that is, it
never "fails" the way zl:array-push does, and so never returns nil. exten-
sion is the number of elements to be added to the array if it needs to be
grown. It defaults to something reasonable, based on the size of the array.
zl:array-push-extend returns the former value of the fill pointer, that is,
the array index in which it stored x.

See the function vector-push-extend, page 612.

zl:array-push-portion-extend to-array from-array &optional Function
(from-start 0) from-end
Copies a portion of one array to the end of another, updating the fill
pointer of the other to reflect the new contents. The destination array
must have a fill pointer. The source array need not. This is equivalent to
numerous zl:array-push-extend calls, but more efficient.

array-rank 34

zl:array-push-portion-extend returns the fo-array and the index of the
next location to be filled.

Example:

(setq to-string
(z1:array-push-portion-extend to-string
from-string
(or from 8)
to))

This is similar to zl:array-push-extend except that it copies more than one
element and has different return values. The arguments default in the
usual way, so that the default is to copy all of from-array to the end of
to-array.

zl:array-push-portion-extend adjusts the array size using adjust-array. It
picks the new array size in the same way that zl:array-push-extend does,
making it bigger than needed for the information being added. In this
way, successive additions do not each end up consing a new array.
zl:array-push-portion-extend uses copy-array-portion internally.

See the function vector-push-portion-extend, page 612.
array-rank array Function
Returns the number of dimensions of array. For example:

(array-rank (make-array ’'(3 5))) => 2

array-rank-limit Constant
Represents the exclusive upper bound on the rank of an array. The value
of this is 8.

array-row-major-index array &rest subscripts Function

Takes an array and valid subscripts for the array and returns a single posi-
tive integer, less than the total size of the array, that identifies the ac-
cessed element in the row-major ordering of the elements. The number of
subscripts supplied must equal the rank of the array. Each subscript must
be a nonnegative integer less than the corresponding array dimension.

Like aref, array-row-major-index returns the position whether or not that
position is within the active part of the array.

For example:

window is a conformal array whose 0,0 coordinate is at 256,256 of big-
array. The following code creates a 1/4 size portal into the center of big-
array.

35 sys:array-row-span

;3 —-%- Syntax: Zetalisp; Package: USER; Base: 10; Mode: LISP -x-
(setq big-array (make-array ’(1824 1824) :type ’art-q
:initial-value 8))
(setq window (make-array ’(512 512) :type ’art-q
:displaced-to big-array
:displaced-index-offset
(array-row-major-index big-array 256 256)
:displaced-conformally t))

For a one-dimensional array, the result of array-row-major-index equals
the supplied subscript.

An error is signalled if some subscript is not valid.

array-row-major-index can be used with the :displaced-index-offset option
of make-array to construct the desired value for multidimensional arrays.

sys:array-row-span array Function
sys:array-row-span, given a two-dimensional array, returns the number of
array elements spanned by one of its rows. Normally, this is just equal to
the length of a row (that is, the number of columns), but for conformally
displaced arrays, the length and the span are not equal.

(sys:array-row-span (make-array ’(4 5))) =>5
(sys:array-row-span (make-array ’(4 5)
:displaced-to (make-array ’(8 9))
:displaced-conformally t))
=> 9

Note: if the array is conceptually a raster, it is better to use
decode-raster-array instead of sys:array-row-span.

array-total-size array Function
Returns the total number of elements in array. The total size of a one-
dimensional array is calculated without regard for any fill pointer.

(array-total-size (make-array ’(3 5 2))) => 30

Note that if fill pointers are being used and you want to know the active
length of the array, you should use length or zl:array-active-length.

array-total-size does not return the same value as the product of the
dimensions for conformal arrays.

array-total-size-limit Constant
Represents the exclusive upper bound on the number of elements of an ar-
ray. The value of this is 134217728.

sys:array-type 36

sys:array-type array Function
Returns the symbolic type of array. Example:

(sys:array-type (make-array ‘(3 5))) => SYS:ART-Q

sys:*array-type-codes* Variable
The value of sys:*array-type-codes* is a list of all of the array type sym-
bols such as sys:art-q, sys:art-4b, sys:art-string and so on. The values of
these symbols are internal array type code numbers for the corresponding

type.

sys:array-types index Function
Returns the symbolic name of the array type. The index is the internal
numeric code stored in sys:*array-type-codes*.

zl:as-1 value array index Function
This is an obsolete version of zl:aset that only works for one-dimensional
arrays. There is no reason ever to use it.

zl:as-2 value array index1 index2 Function
This is an obsolete version of zl:aset that only works for two-dimensional
arrays. There is no reason ever to use it.

zl:aseii x Function
zl:ascii returns a symbol whose printname is the character x.
x can be an integer (a character code), a character, a string, or a symbol.
Examples:

(z1:ascii 2) => «
(21:ascii #\y) => |yl
(zl:ascii "Y") => Y
(zl:ascii ’a) => A

The symbol returned is interned in the current package.

This function is provided for Maclisp compatibility only.

For a table of related items: See the section "Maclisp-Compatible String
Functions" in Symbolics Common Lisp: Language Concepts.

ascii-code spec : Function
Returns an integer that is the ASCII code named by spec. If spec is a
character, char-to-ascii is called. Otherwise, spec can be a string or
keyword that names one of the ASCII special characters.

ascii-code returns an integer, for example (ascii-code #\cr) => #0l5.
ascii-code also recognizes strings and looks up the names of the ASCII

a7 ascii-to-char

“control” characters. Thus (ascii-code "soh") and (ascii-code #\)
return 1. (ascii-code #\c-A) returns #0101, not 1; there is no mapping be-
tween Symbolics character set control characters and ASCII control charac-
ters.

Valid ASCII special character names are listed below. All numbers are in
octal.

NUL 000 HT o1 DC1 021 SUB 032
SOH 001 LF 012 DC2 022 ESC 033
STX 002 NL 012 DC3 023 ALT 033
ETX 003 VT 013 DC4 024 FS 034
EOT 004 FF 014 NAK 025 GS 035
ENQ 005 CR 015 SYN 026 RS 036
ACK 006 SO 016 ETB 027 USs 037
BEL 007 SI 017 CAN 030 SP 040
BS 010 DLE o020 EM o031 DEL 177
TAB 011

ascii-to-char code Function
Converts code (an ASCII code) to the corresponding character. The caller
must ignore LF after CR if desired. See the section "ASCII String
Functions” in Symbolics Common Lisp: Language Concepts.

The functions char-to-ascii and ascii-to-char provide the primitive conver-
sions needed by ASCII-translating streams. They do not translate the
Return character into a CR-LF pair; the caller must handle that. They just
translate #\return into CR and #\line into LF. Except for CR-LF,
char-to-ascii and ascii-to-char are wholly compatible with the ASCII-
translating streams.

They ignore Symbolics Lisp Machine control characters; the translation of
#\c-g is the ASCII code for G, not the ASCII code to ring the bell, also
known as "control G." (ascii-to-char (ascii-code "BEL")) is #/r, not #c-G.
The translation from ASCII to character never produces a Lisp Machine
control character.

ascii-to-string ascii-array Function
Converts ascii-array, an sys:art-8b array representing ASCII characters,
into a Lisp string. Note that the length of the string can vary depending
on whether ascii-array contained a newline character or Carriage Return
Line Feed characters. See the section "ASCII Characters" in Symbolics
Common Lisp: Language Concepts.

Example:

zl:aset 38

zl:aset

(setq a-string-array
(z1:make-array 5 :type zl:art-8b :initial-value (ascii-code #\x)))
=> #(120 120 120 120 128)
(ascii-to-string a-string-array) => "xxxxx"
For a table of related items: See the section "ASCII String Functions" in
Symbolics Common Lisp: Language Concepts.

element array &rest subscripts Function
Stores element into the element of array selected by the subscripts. The
subscripts must be integers and their number must match the dimen-
sionality of array. The returned value is element.

Current style suggests using setf and aref instead of zl:aset. For example:

(setf (aref array subscripts...) new-value)

ash number count Function

asin

Shifts number arithmetically left count bits if count is positive, or right
-count bits if count is negative. Unused positions are filled by zeroes from
the right, and by copies of the sign bit from the left. Thus, unlike Ish, the
sign of the result is always the same as the sign of number. If number is
an integer, this is a shifting operation. If number is a floating-point num-
ber, this does scaling (multiplication by a power of two), rather than ac-
tually shifting any bits.

Examples:

(ash 1 3) => 8

(ash 18 3) => 88
(ash 18 -3) => 1
(ash 1 -3) => 0
(ash 1.5 3) => 12.0
(ash -1 3) => -8
(ash -1 -3) => -1

See the section "Functions Returning Result of Bit-wise Logical
Operations" in Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Functions Returning Result
of Bit-wise Logical Operations" in Symbolics Common Lisp: Language Con-
cepts.

number Function
Computes and returns the arc sine of number. The result is in radians.

The argument can be any noncomplex or complex number. Note that if the
absolute value of number is greater than one, the result is complex, even if
the argument is not complex.

39

asinh

zl:ass

asinh

The arc sine being a mathematically multiple-valued function, asin returns
a principal value whose range is that strip of the complex plane containing
numbers with real parts between -n/2 and n/2. Any number with a real
part equal to -n/2 and a negative imaginary part is excluded from the
range. Also excluded from the range is any number with real part equal to
7/2 and a positive imaginary part.

Examples:

(asin 1) => 1.5707964 ;n/2 radians
(asin B) => 0.0

(asin -1) => -1.5707964 ;-m/2 radians
(asin 2) => #c(1.57087964 -1.316958)
(asin -2) => #c(-1.5707964 1.3169578)

For a table of related items: See the section "Trigonometric and Related
Functions" in Symbolics Common Lisp: Language Concepts.

number Function
Computes and returns the hyperbolic arc sine of number. The result is in
radians. The argument can be any noncomplex or complex number.

The hyperbolic arc sine being mathematically multiple-valued in the com-
plex plane, asinh returns a principal value whose range is that strip of the
complex plane containing numbers with imaginary parts between -n/2 and
7/2. Any number with an imaginary part equal to -n/2 is not in the range
if its real part is negative; any number with real part equal to /2 is ex-
cluded from the range if its imaginary part is positive.

Example:
(asinh 8) => 0.0 ;(sinh @) => 8.8

For a table of related items: See the section "Hyperbolic Functions” in
Symbolics Common Lisp: Language Concepts.

predicate item alist Function
(zl:ass item alist) looks up item in the association list (list of conses) alist.
The value is the first cons whose car matches x according to predicate, or
nil if there is none such. (zl:ass ’eq a b) is the same as (zl:assq a b). See
the function zl:mem, page 345. As with zl:mem, you may use noncommuta-
tive predicates; the first argument to the predicate is item and the second
is the key of the element of alist.

For a table of related items: See the section "Functions That Operate on
Association Lists" in Symbolics Common Lisp: Language Concepts.

assert 40

assert

assoc

test-form &optional references format-string &rest Macro
format-args
assert signals an error if the value of test-form is nil. It is possible to
proceed from this error; the function lets you change the values of some
variables, and starts over, evaluating test-form again.

assert returns nil.
test-form is any form.

references is a list, each item of which must be a generalized variable refer-
ence that is acceptable to the macro setf. These should be variables on
which test-form depends, whose values can sensibly be changed by the user
in attempting to correct the error. Subforms of each of references are only
evaluated if an error is signalled, and can be re-evaluated if the error is re-
signalled (after continuing without actually fixing the problem).

format-string is an error message string.

format-args are additional arguments; these are evaluated only if an error
is signalled, and re-evaluated if the error is signalled again.

The function format is applied in the usual way to format-string and and
format-args to produce the actual error message.

If format-string (and therefore also format-args) are omitted, a default error
message is used.

For a table of related items: See the section "Condition-Checking and Sig-
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

item a-list &key (test #eql) test-not (key #identity) Function
assoc searches the association list a-list. The value returned is the first
pair in a-list such that the car of the pair satisfies the predicate specified
by :test, or nil if there is no such pair in a-list. The keywords are:

:test Any predicate specifying a binary operation to be applied
to a supplied argument and an element of a target list.
The item matches the specification only if the predicate
returns t. If :test is not supplied the default operation is
eql.

:test-not Similar to :test, except the item matches the specification
only if there is an element of the list for which the
predicate returns nil.

:key If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

Example:

41 zl:assoc

(assoc ’loon ’((eagle . raptor) (loon . diver))) =>
(LOON . DIVER)

(assoc ’diver ’'((eagle . raptor) (loon . diver))) => NIL

(assoc 2 ’((1Tabc) @bcd) (-7xy2))) = (BCD

It is possible to rplacd the result of assoc (provided that it is non-nil) in
order to update a-list. However, it is often better to update an alist by ad-
ding new pairs to the front, rather than altering old pairs. For example:

(setq values *((x . 108) (y . 288) (z . 58))) =>
((X . 180) (Y . 208) (Z . 50))

(assoc 'y values) => (Y . 280)
(rplacd (assoc '’y values) 281) => (Y . 2081)

(assoc ’y values) => (Y . 201)
The two expressions
(assoc item alist :test pred)
and
(find item alist :test pred :key #’car)

are almost equivalent in meaning. The difference occurs when nil appears
in a-list in place of a pair, and the item being searched for is nil. In these
cases, find computes the car of the nil in a-list, finds that it is equal to
item, and returns nil, while assoc ignores the nil in a-list and continues to
search for an actual cons whose car is nil. See also, find position.

zl:assoc item alist Function
(zl:assoc item alist) looks up item in the association list (list of conses)
alist. The value is the first cons whose car is zl:equal to x, or nil if there
is none such. Example:

(zl:assoc (@ b) *((x . y) ((@ab) . 7 ((c.d .e))
= ((ab) . 7)
zl:assoc could have been defined by:
(defun assoc (item list)
(cond ((null Tist) nil)

((equal item (caar list)) (car 1list))
((assoc item (cdr list)))))

This Zetalisp function is shadowed by the Common Lisp function of the
same name.

assoc-if 42

For a table of related items: See the section "Functions That Operate on
Association Lists" in Symbolics Common Lisp: Language Concepts.

assoc-if predicate a-list &key key Function
assoc-if searches the association list a-listz. The value returned is the first
pair in a-list such that the car of the pair satisfies predicate, or nil if there
is no such pair in a-list. The keyword is:

:key If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

Example:

(assoc-if #’integerp ’((eagle . raptor) (1 . 2))) =>
1. 2)

(assoc-if #’'symbolp ’((eagle . raptor) (1 . 2))) =>
(EAGLE . RAPTOR)

(assoc-if #’floatp ’((eagle . raptor) (1 . 2))) =>
NIL

For a table of related items: See the section "Functions That Operate on
Association Lists" in Symbolics Common Lisp: Language Concepts.

assoc-if-not predicate a-list &key key Function
assoc-if-not searches the association list a-list. The value returned is the
first pair in a-list such that the car of the pair does not satisfy predicate, or
nil if there is no such pair in a-list. The keyword is:

:key If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

Example:
(assoc-if-not #’integerp ’((eagle . raptor) (1 . 2))) =>
(EAGLE . RAPTOR)

(assoc-if-not #’symbolp ’((eagle . raptor) (1 . 2))) =>
1.2

(assoc-if-not #’symbolp ’((eagle . raptor) (loon . diver))) =>
NIL

For a table of related items: See the section "Functions That Operate on
Association Lists" in Symbolics Common Lisp: Language Concepts.

43 zl:assq

zl:assq item alist Function
(zl:assq item alist) looks up item in the association list (list of conses) alist.
The value is the first cons whose car is eq to x, or nil if there is none
such. Examples:

(zl:assg 'r (@ . b) (c .d) (r.x) (s.y (r.2z))
=> (r . x)

(2z1:assq ’fooo ’((foo . bar) (zoo . goo))) => nil

(zl:assq b *((abc) (becd) (xy=2)) = (bcd

You can rplacd the result of zl:assq as long as it is not nil, if your inten-
tion is to "update” the "table" that was zl:assq’s second argument. Ex-
ample:

(setqg values ’((x . 188) (y . 288) (z . 58)))
(zl:assq 'y values) => (y . 20808)

(rplacd (zl:assq ’y values) 2081)

(z1:assq 'y values) => (y . 281) now

A typical trick is to say (edr (zl:assq x y)). Since the cdr of nil is
guaranteed to be nil, this yields nil if no pair is found (or if a pair is
found whose cdr is nil.)

zl:assq could have been defined by:

(defun zl:assq (item list)
(cond ((null Tist) nil)
((eq item (caar 1ist)) (car 1list))
((assq item (cdr 1list)))))

zl:assq is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions That Operate on
Association Lists" in Symbolics Common Lisp: Language Concepts.

atan y &optional x Function
With two arguments, ¥ and x, atan computes and returns the arc tangent
of the quantity y/x. If either argument is a double-float, the result is also
a double-float. In the two argument case neither argument can be com-
plex. The returned value is in radians and is always between -n (exclusive)
and © (inclusive). The signs of y and x determine the quadrant of the
result angle.

Note that either y or x (but not both simultaneously) can be zero. The ex-
amples illustrate a few special cases.

With only one argument y, atan computes and returns the arc tangent of

zl:atan 44

y. The argument can be any noncomplex or complex number. The result
is in radians and its range is as follows: for a noncomplex y the result is
noncomplex and lies between -n/2 and n/2 (both exclusive); for a complex y
the range is that strip of the complex plane containing numbers with a real
part between -n/2 and n/2. A number with real part equal to -n/2 is not in
the range if it has a non-positive imaginary part. Similarly, a number with
real part equal to n/2 is not in the range if its imaginary part is non-

negative.

Examples:
(atan 8) => 0.0
(atan B8 673) => 9.0 ;(atan (/ y x))
(atan 1 1) => 0.7853982 ;first quadrant
(atan 1 -1) => 2.3561945 ;second quadrant
(atan -1 -1) => -2.3561945 ;third quadrant
(atan -1 1) => -8.7853982 ;fourth quadrant

(atan 1 B) => 1.5787964

For a table of related items: See the section "Trigonometric and Related
Functions” in Symbolics Common Lisp: Language Concepts.

zl:atan y x Function
Returns the angle, in radians, whose tangent is y/x. zl:atan always returns
a number between zero and 2.

Examples:

(zl:atan 1 1) => 8.7853982
(21:atan -1 -1) => 3.926991

For a table of related items: See the section "Trigonometric and Related
Functions" in Symbolics Common Lisp: Language Concepts.

zl:atan2 y x Function
Similar to atan, except that it accepts only noncomplex arguments.

Returns the angle, in radians, whose tangent is y/x. zl:atan2 always
returns a number between -n and .

For a table of related items: See the section "Trigonometric and Related
Functions" in Symbolics Common Lisp: Language Concepts.

atanh number Function
Computes and returns the hyperbolic arc tangent of number. The result is
in radians. The argument can be any noncomplex or complex number.
Note that if the absolute value of the argument is greater than one, the
result is complex even if the argument is not complex.

45

atom

atom

atom

The hyperbolic arc tangent being mathematically multiple-valued in the
complex plane, atanh returns a principal value whose range is that strip of
the complex plane containing numbers with imaginary parts between -1/2
and n/2. Any number with an imaginary part equal to -n/2 is not in the
range if its real part is non-negative; any number with imaginary part
equal to /2 is excluded from the range if its real part is non-positive.

Example:

(atanh 8) => 0.0
For a table of related items: See the section "Hyperbolic Functions" in
Symbolics Common Lisp: Language Concepts.

Type Specifier
atom is the type specifier symbol for the predefined Lisp object, atom.
atom = (not cons).

Examples:
(typep ’a ’*atom) => T
(21 :typep ’é) => :SYMBOL
(subtypep ’atom ’common) => NIL and NIL
(atom ’a) =T
(sys:type-arglist ’atom) => NIL and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

See the section "Symbols and Keywords" in Symbolics Common Lisp: Lan-
guage Concepts.

object Function
The predicate atom returns t if its argument is not a cons, otherwise nil

Note that
(atom ’())

is true because () is equivalent to nil.
(atom x)

is equivalent to
(type x ’atom)

is equivalent to

(not (typep x ’‘cons))

&aux 46

For a table of related items: See the section "Predicates That Operate on
Lists" in Symbolics Common Lisp: Language Concepts.

&aux Lambda List Keyword
&aux separates the arguments of a function from the auxiliary variables.
If it is present, all specifiers after it are entries of the form:

(variable initial-value-form)

47 zl:base

zl:base Variable
The value of zl:base is a number that is the radix in which integers and
ratios are printed in, or a symbol with a si:prine-function property. The
initial value of zl:base is 10. zl:base should not be greater than 36 or less
than 2.

The printing of trailing decimal points for integers in base ten is controlled
by the value of variable *print-radix*. See the section "Printed Represen-
tation of Rational Numbers" in Symbolics Common Lisp: Language Con-
cepts.

The following variable is a synonym for zl:base:
print-base
bignum Type Specifier

bignum is the type specifier symbol for the predefined primitive Lisp ob-
ject, bignum.

The types bignum and fixnum are an exhaustive partition of the type in-
teger, since integer = (or bignum fixnum). These two types are internal
representations of integers used by the system for efficiency depending on
integer size; in general, bignums and fixnums are transparent to the
programmer.

Examples:
(typep 1008000000600000000000000066008088 *bignum) => T
(typep 1 ’bignum) => NIL
(21:typep ’10080000000008600000000000008609) => :BIGNUM
(subtypep ’bignum ’integer) => T and T ; subtype and certain
(typep 565682366398848747848463539404874 ‘common) => T
(z1:bigp 444444444445555555555555555556666666666666) => T
(sys:type-arglist ’bignum) => NIL and T
(type-of 09889374897338373689484949494373639484099876) => BIGNUM

See the section "Data Types and Type Specifiers” in Symbolics Common
Lisp: Language Concepts.

See the section "Numbers" in Symbolics Common Lisp: Language Concepts.
zl:bigp object Function
zl:bigp returns t if object is a bignum, otherwise nil.

For a table of related items: See the section "Numeric Type-checking
Predicates" in Symbolics Common Lisp: Language Concepts.

bit 48

bit array &rest subscripts Function
Returns the element of array selected by the subscripts. The subscripts
must be integers and their number must match the dimensionality of array.
The array must be an array of bits.

bit Type Specifier
bit is the type specifier symbol for the predefined Lisp bit data type.

The type bit is a subtype of the types unsigned-byte and fixnum.,
bit is the special name for the type (integer 8 1) and the type (mod 2).
Examples: '

(typep 2 ’bit) => NIL
(typep 8 ’bit) => T

(subtypep ’bit ’unsigned-byte) => T and T ;subtype and certain
(equal-typep ’bit ’(unsigned-byte 1)) => T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

bit-and first second &optional third Function
Performs logical and operations on bit arrays. The arguments must be bit
arrays of the same rank and dimensions. A new array is created to contain
the result if the third argument is nil or omitted. If the third argument is
t, the first array is used to hold the result.

bit-andcl first second &optional third Function
Performs logical and operations on the complement of first with second on
bit arrays. The arguments must be bit arrays of the same rank and dimen-
sions. A new array is created to contain the result if the third argument
is nil or omitted. If the third argument is t, the first array is used to hold
the result. '

bit-andc2 first second &optional third Function
Performs logical and operations on first with the complement of second on
bit arrays. The arguments must be bit arrays of the same rank and dimen-
sions. A new array is created to contain the result if the third argument

is nil or omitted. If the third argument is t, the first array is used to hold
the result.

bitblt alu width height from-raster from-x from-y to-raster to-x to-y Function
bitblt copies a rectangular portion of from-raster into a rectangular portion
of to-raster. from-raster and to-raster must be two-dimensional arrays of bits
or bytes (sys:art-1b, sys:art-2b, sys:art-4b, sys:art-8b, sys:art-16b, or
sys:art-fixnum). The value stored can be a Boolean function of the new

49

bitbit

value and the value already there, under the control of alu. This function
is most commonly used in connection with raster images for TV displays.

The top-left corner of the source rectangle is:
(raster-aref from-raster from-x from-y)
The top-left corner of the destination rectangle is:

(raster-aref to-raster to-x to-y)

width and height are the dimensions of both rectangles. If width or height
is zero, bitblt does nothing.

from-raster and to-raster are allowed to be the same array. bitblt normally
traverses the arrays in increasing order of x and y subscripts. If width is
negative, then (abs width) is used as the width, but the processing of the x
direction is done backwards, starting with the highest value of x and work-
ing down. If height is negative it is treated analogously. When bitblting
an array to itself, when the two rectangles overlap, it might be necessary
to work backwards to achieve the desired effect, such as shifting the entire
array upwards by a certain number of rows. Note that negativity of width
or height does not affect the (x,y) coordinates specified by the arguments,
which are still the top-left corner even if bitblt starts at some other
corner.

If the two arrays are of different types, bitblt works bit-wise and not
element-wise. That is, if you bitblt from an sys:art-2b raster into an
sys:art-4b raster, then two elements of the from-raster correspond to one
element of the fo-raster. width is in units of elements of the to-raster.

If bitblt goes outside the bounds of the source array, it wraps around.
This allows such operations as the replication of a small stipple pattern
through a large array. If bitblt goes outside the bounds of the destination
array, it signals an error.

If src is an element of the source rectangle, and dst is the corresponding
element of the destination rectangle, then bitblt changes the value of dst
to (boole alu src dst). The following are the symbolic names for some of
the most useful alu functions:

tv:alu-seta plain copy

tv:alu-setz set destination to 0

tv:alu-ior inclusive or

tv:alu-xor exclusive or

tv:alu-andca and with complement of source

For a chart of more alu possibilities: See the function boole, page 54.

bitblt is written in highly optimized microcode and goes very much faster
than the same thing written with ordinary raster operations would. Unfor-

bit-eqv ' 50

tunately this causes bitblt to have a couple of strange restrictions.
Wraparound does not work correctly if from-raster is an indirect array with
an index offset. bitblt signals an error if the widths of from-raster and
to-raster are not both integral multiples of the machine word length. For
sys:art-1b arrays, width must be a multiple of 32., for sys:art-2b arrays it
must be a multiple of 16., and so on.

bit-eqv first second &optional third Function
Performs logical exclusive nor operations on bit arrays. The arguments
must be bit arrays of the same rank and dimensions. A new array is
created to contain the result if the third argument is nil or omitted. If the
third argument is t, the first array is used to hold the result.

bit-ior first second &optional third Function
Performs logical inclusive or operations on bit arrays. The arguments must
be bit arrays of the same rank and dimensions. A new array is created to
contain the result if the third argument is nil or omitted. If the third ar-
gument is t, the first array is used to hold the result.

bit-nand first second &optional third Function
Performs logical not and operations on bit arrays. The arguments must be
bit arrays of the same rank and dimensions. A new array is created to
contain the result if the third argument is nil or omitted. If the third ar-
gument is t, the first array is used to hold the result.

bit-nor first second &optional third Function
Performs logical not or operations on bit arrays. The arguments must be
bit arrays of the same rank and dimensions. A new array is created to
contain the result if the third argument is nil or omitted. If the third ar-
gument is t, the first array is used to hold the result.

bit-not source &optional destination Function
source must be a bit-array. bit-not returns a bit-array of the same rank
and dimensions that contains a copy of the argument with all the bits in-
verted. If destination is nil or omitted, a new array is created to contain
the result. If destination is t, the result is destructively placed in the
source array.

bit-orcl first second &optional third Function
Performs logical or operations on the complement of first with second on
bit arrays. The arguments must be bit arrays of the same rank and dimen-
sions. A new array is created to contain the result if the third argument
is nil or omitted. If the third argument is t, the first array is used to hold
the result.

51 bit-orc2

bit-orc2 first second &optional third Function
Performs logical or operations on first with the complement of second on
bit arrays. The arguments must be bit arrays of the same rank and dimen-
sions. A new array is created to contain the result if the third argument
is nil or omitted. If the third argument is t, the first array is used to hold
the result.

zl:bit-test x y Function
zl:bit-test is a predicate that returns t if any of the bits designated by the
1’s in x are 1’s in y.

The following function is a synonym of zl:bit-test:
logtest

For a table of related items: See the section "Predicates for Testing Bits in
Integers" in Symbolics Common Lisp: Language Concepts.

bit-vector &optional (size **) Type Specifier
bit-vector is the type specifier symbol for the Lisp data structure of that
name,

The type bit-vector is a subtype of the type vector; (bit-vector) means
(vector bit).

The type bit-vector is a supertype of the type simple-bit-vector.
The types (vector t), string, and bit-vector are disjoint.

This type specifier can be used in either symbol or list form. Used in list
form, bit-vector allows the declaration and creation of specialized types of
bit vectors whose size is restricted to the specified size. (bit-vector size)
means the same as (array bit (size)): the set of bit-vectors of the in-
dicated size.

Examples:

(setq array-bit-vector
(make-array '(3) :element-type ’bit :fill-pointer 2))
=> #<ART-1B-3 43815121>

(typep #x18118 ’bit-vector) => T
(typep #x101 ’(bit-vector 3)) =>T
(typep array-bit-vector ’bit-vector) => T

(subtypep ’bit-vector ‘vector) => T and T

bit-vector-p 52

(bit-vector-p #x) => T ;empty bit vector
(sys:type-arglist ’bit-vector) => (&0PTIONAL (SIZE ’x)) and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

See the section "Arrays" in Symbolics Common Lisp: Language Concepts.

bit-vector-p object Function

bit-xor

block

Tests whether the given object is a bit vector. A bit vector is a one-
dimensional array whose elements are required to be bits. See the type
specifier bit-vector, page 51.

(bit-vector-p (make-array 3 :element-type ’'bit :fill-pointer 2))
=T

(bit-vector-p (make-array 5 :element-type ’string-char))
=> NIL

first second &optional third Function
Performs logical exclusive or operations on bit arrays. The arguments must
be bit arrays of the same rank and dimensions. A new array is created to
contain the result if the third argument is nil or omitted. If the third ar-
gument is t, the first array is used to hold the result.

name &body body Special Form
Evaluates each form in sequence and normally returns the (possibly
multiple) values of the last form. However, (return-from name value) or
(return or (return (values-list list)) form) might be evaluated during the
evaluation of some form. In that case, the (possibly multiple) values that
result from evaluating value are immediately returned from the innermost
block that has the same name and that lexically contains the return-from
form. Any remaining forms in that block are not evaluated.

name is not evaluated. It must be a symbol.

The scope of name is lexical. That is, the return-from form must be in-
side the block itself (or inside a block that that block lexically contains),
not inside a function called from the block.

do, prog, and their variants establish implicit blocks around their bodies;
you can use return-from to exit from them. These blocks are named nil
unless you specify a name explicitly.

Examples:

53 block

(block nil
(print "clear")
(return)
(print "open")) => "clear" NIL

(let ((x 2400))
(block time-x
(when (= x 2480)
(return-from time-x "time to go"))
("time time time"))) => "time to go"

(defun bar ()
(princ "zero ")
(block a
(princ "one ") (return-from a "two ")
(princ "three "))
(princ "four ")
t) => BAR
(bar) => zero one four T

(block negative
(mapcar (function (lambda (x)
(cond ((minusp x)
(return-from negative x))
t (fx)))))
y))

The following two forms are equivalent:

(cond ((predicate x)
(do-one-thing))
(t
(format t "The value of X is ~S™%" x)
(do-the-other-thing)
(do-something-else-to0)))

(block deal-with-x
(when (predicate x)

(return-from deal-with-x (do-one-thing)))
(format t "The value of X is ~S™%Z" x)
(do-the-other-thing)
(do-something-else-to00))

The interpreter and compiler generate implicit blocks for functions whose
name is a list (such as methods) just as they do for functions whose name

&body 54

boole

&body

is a symbol. You can use return-from for methods. The name of a
method’s implicit block is the name of the generic function it implements.
If the name of the generic function is a list, the block name is the second
symbol in that list.

For a table of related items: See the section "Blocks and Exits Functions
and Variables" in Symbolics Common Lisp: Language Concepts.

Lambda List Keyword
This keyword is used with macros only. It is identical in function to
&rest, but it informs output-formatting and editing functions that the
remainder of the form is treated as a body, and should be indented accord-
ingly.

Note that either &body or &rest, but not both, should be used in any
definition.

op integerl &rest more-integers Function
boole is the generalization of logical functions such as logand, logior and
logxor. It performs bit-wise logical operations on integer arguments
returning an integer which is the result of the operation.

The argument op specifies the logical operation to be performed; sixteen
operations are possible. These are listed and described in the table below
which also shows the truth tables for each value of op.

op can be specified by writing the name of one of the constants listed
below which represents the desired operation, or by using an integer be-
tween 0 and 15 inclusive which controls the function that is computed. If
the binary representation of op is abcd (a is the most significant bit, d the
least) then the truth table for the Boolean operation is as follows:

integer2
I8 1
integerl 8l a ¢
11 b d
Examples:
(boole 6 8 B8) => 8 ; a=e6
(boole 11 1 8) => -2 ; a=1 and b=0
(boole 2 6 9) => 9 ; a=b=d=B c=1 therefore 1’s appear only

; when integer1 is @ and integer2 is 1

With two arguments, the result of boole is simply its second argument. At
least two arguments are required.

55

boole

If boole has more than three arguments, it is associated left to right; thus,

(boole op x y 2) = (boole op (boole op x y) 2)

(boole boole-and 8 1 1) => @

For the basic case of three arguments, the results of boole are shown in

the table below. This table also shows the value of bits abcd in the binary
representation of op for each of the sixteen operations. (For example,
boole-clr corresponds to #b0000, boole-and to #b0001, and so on.)

a b c d
Integerl 0 1 0 1

op Integer2 0 0 1 1 Operation Name

boole-clr 0 0 0 0 clear, always 0

boole-and 0 0 0 1 and

boole-andcl 0 0 1 0 and complement of integerl
with integer2

boole-2 0 0 1 1 last of more-integers

boole-andc2 0 1 0 0 and integerl with complement
of integer2

boole-1 0 1 0 1 integerl

boole-xor 0 1 1 0 exclusive or

boole-ior 0 1 1 1 inclusive or

boole-nor 1 0 0 0 nor (complement of
inclusive or)

boole-eqv 1 0 0o .1 equivalence (exclusive nor)

boole-cl 1 0 1 0 complement of integerl

boole-orcl 1 0 1 1 or complement of integerl
with integer2

boole-c2 1 1 0 0 complement of integer2

boole-orc2 1 1 0 1 or integerl with complement
of integer2

boole-nand 1 1 1 0 nand (complement of and)

boole-set 1 1 1 1 set, always 1

boole-1 56

Examples:

(boole boole-clr 3) => 3 ;with two arguments always returns
;integeri

(boole boole-set 7) => 7
(boole boole-1 1 8) => 1
(boole boole-2 1 8) => 06

As a matter of style the explicit logical functions such as logand, logior,
and logxor are usually preferred over the equivalent forms of boole. boole
is useful, however, when you want to generalize a procedure so that it can
use one of several logical operations.

For a table of related items: See the section "Functions Returning Result
of Bit-wise Logical Operations" in Symbolics Common Lisp: Language Con-
cepts.

boole-1 Constant
This constant can be used as the first argument to the function boole; it
specifies a bit-wise logical operation that returns the first integer argument
of boole.

boole-2 Constant
This constant can be used as the first argument to the function boole; it
specifies a bit-wise logical operation that returns the last integer argument
of boole.

boole-and Constant
This constant can be used as the first argument to the function boole; it
specifies a bit-wise logical and operation to be performed on the integer ar-
guments of boole.

boole-andcl Constant
This constant can be used as the first argument to the function boole; it
specifies a logical operation to be performed on the integer arguments of
boole, namely, a bit-wise logical and of the complement of the first integer
argument with the next integer argument.

boole-andc2 Constant
This constant can be used as the first argument to the function boole; it
specifies a logical operation to be performed on the integer arguments of
boole, namely, a bit-wise logical and of the first integer argument with the
complement of the next integer argument.

57 boole-c1

boole-cl Constant
This constant can be used as the first argument to the function boole; it
specifies a bit-wise logical operation that returns the complement of the
first integer argument of boole.

boole-c2 Constant
This constant can be used as the first argument to the function boole; it
specifies a bit-wise logical operation that returns the complement of the
last integer argument of boole.

boole-clr Constant
This constant can be used as the first argument to the function boole; it
specifies a bit-wise logical clear operation to be performed on the integer
arguments of boole.

boole-eqv Constant
This constant can be used as the first argument to the function boole; it
specifies a bit-wise logical equivalence operation to be performed on the in-
teger arguments of boole.

boole-ior Constant
This constant can be used as the first argument to the function boole; it
specifies a bit-wise logical inclusive or operation to be performed on the in-
teger arguments of boole.

boole-nand Constant
This constant can be used as the first argument to the function boole; it
specifies a bit-wise logical not-and operation to be performed on the integer
arguments of boole.

boole-nor Constant
This constant can be used as the first argument to the function boole; it
specifies a bit-wise logical not-or operation to be performed on the integer
arguments of boole.

boole-orcl Constant
This constant can be used as the first argument to the function boole; it
specifies a bit-wise logical operation to be performed on the integer ar-
guments of boole, namely, the logical or of the complement of the first in-
teger argument with the next integer argument.

boole-orc2 Constant
This constant can be used as the first argument to the function boole; it
specifies a bit-wise logical operation to be performed on the integer ar-
guments of boole, namely, the logical or of the first integer argument with
the complement of the next integer argument.

boole-set 58

boole-set Constant
This constant can be used as the first argument to the function boole; it
specifies a bit-wise logical set operation to be performed on the integer ar-
guments of boole.

boole-xor Constant
This constant can be used as the first argument to the function boole; it
specifies a bit-wise logical exclusive or operation to be performed on the in-
teger arguments of boole.

both-case-p char Function
Returns t if char is a letter that exists in another case.

(both-case-p #\M) => T
(both-case-p #\m) => T

boundp symbol Function
Returns t if the dynamic (special) variable symbol is bound; otherwise, it
returns nil.

boundp-in-closure closure symbol Function

Returns t if symbol is bound in the environment of closure; that is, it does
what boundp would do if you restored the value cells known about by
closure. If symbol is not closed over by closure, this is just like boundp.
See the section "Dynamic Closure-Manipulating Functions" in Symbolics
Common Lisp: Language Concepts.

boundp-in-instance instance symbol Function
Returns t if the instance variable symbol is bound in the given instance.

breakon &optional function (condition t) . Function
With no arguments, breakon returns a list of all functions with break-
points set by breakon.

breakon sets a trace-style breakpoint for the function-spec. Whenever the
function named by function-spec is called, the condition dbg:breakon-trap
is signalled, and the Debugger assumes control. At this point, you can in-
spect the state of the Lisp environment and the stack. Proceeding from
the condition then causes the program to continue to run.

The first argument can be any function spec, so that you can trace
methods and other functions not named by symbols. See the section
"Function Specs" in Symbolics Common Lisp: Language Concepts.

condition-form can be used for making a conditional breakpoint.
condition-form should be a Lisp form. It is evaluated when the function is
called. If it returns nil, the function call proceeds without signalling any-

59

break-on-warnings

thing. condition-form arguments from multiple calls to breakon accumu-
late and are treated as an or condition. Thus, when any of the forms be-
comes true, the breakpoint "goes off". condition-form is evaluated in the

dynamic environment of the function call. You can inspect the arguments
of function-spec by looking at the variable arglist.

For a table of related items: See the section "Breakpoint Functions" in
Symbolics Common Lisp: Language Concepts.

break-on-warnings Variable

This variable controls the action of the function warn. If
break-on-warnings® is nil, warn prints a warning message without sig-

nalling.

If *break-on-warnings* is not nil, warn enters the Debugger and prints
the warning message. The default value is nil.

This flag is intended primarily for use when you are debugging programs
that issue warnings.

For a table of related items: See the section "Condition-Checking and Sig-
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

dbg:bug-report-description condition stream nframes Generic Function

This generic function is called by the :Mail Bug Report (c-M) command in
the Debugger to print out the text that is the initial contents of the mail-
sending buffer. The handler should simply print whatever information it
considers appropriate onto stream. nframes is the numeric argument given
to c-M. The Debugger interprets nframes as the number of frames from
the backtrace to include in the initial mail buffer. A nframes of nil means
all frames.

The compatible message for dbg:bug-report-description is:
:bug-report-description

For a table of related items: See the section "Debugger Bug Report
Functions" in Symbolics Common Lisp: Language Concepts.

dbg:bug-report-recipient-system condition Generic Function

This generic function is called by the :Mail Bug Report (¢c-M) command in
the Debugger to find the mailing list to which to send the bug report mail.
The mailing list is returned as a string.

The default method (the one in the condition flavor) returns "lispm", and
this is passed as the first argument to the zl:bug function.

The compatible message for dbg:bug-report-recipient-system is:

butlast 60

:bug-report-recipient-system

For a table of related items: See the section "Debugger Bug Report
Functions” in Symbolics Common Lisp: Language Concepts.

butlast list Function
B This creates and returns a list with the same elements as list, excepting
Ce the last element. Examples:

(butlast ’(abcd)) == (ab c)
(butlast ’((a b) (c d))) => ((a b))
(butlast ’(a)) => nil

(butlast nil) => nil

The name is from the phrase "all elements but the last".
For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

byte size position Function
Creates a byte specifier for a byte size bits wide, position bits from the
right-hand (least-significant) end of the word. The arguments size and
position must be integers greater than or equal to zero.

The byte specifier so created serves as an argument to various byte
manipulation functions.

Examples:

(1db (byte 2 1) 9) => 8
(1db (byte 3 4) #012345) => 6

For a table of related items: See the section "Summary of Byte Manipula-
tion Functions" in Symbolics Common Lisp: Language Concepts.

byte-position bytespec Function
Extracts the position field of bytespec.
bytespec is built using function byte with bit size and position arguments.
Example:
(byte-position (byte 3 4)) => 4

For a table of related items: See the section "Summary of Byte Manipula-
tion Functions" in Symbolics Common Lisp: Language Concepts.

61 byte-size

byte-size bytespec Function
Extracts the size field of bytespec.

bytespec is built using function byte with bit size and position arguments.
Example:

(byte-size (byte 3 4)) => 3

For a table of related items: See the section "Summary of Byte Manipula-
tion Functions" in Symbolics Common Lisp: Language Concepts.

caaaar X Function

(caaaar x) is the same as (car (car (car (car x))))

caaadr x Function

(caaadr x) is the same as (car (car (car (cdr x))))

caaar X Function

(caaar x) is the same as (car (car (car x)))

caadar «x Function

(caadar x) is the same as (car (car (cdr (car x))))

caaddr «x Function

(caaddr x) is the same as (car (car (cdr (cdr x))))

caadr x Function

(caadr x) is the same as (car (car (cdr x)))

caar X Function

(caar x) is the same as (car (car x))

cadaar x Function

(cadaar x) is the same as (car (cdr (car (car x))))

cadadr x Function

(cadadr x) is the same as (car (cdr (car (cdr x))))

cadar 62

cadar x . Function
(cadar x) is the same as (car (cdr (car x)))

caddar x Function
(caddar x) is the same as (car (cdr (cdr (car x))))

cadddr «x Function
(cadddr x) is the same as (car (cdr (cdr (cdr x))))

caddr x Function

~ (caddr x) is the same as (car (cdr (cdr x)))

cadr x Function
(cadr x) is the same as (car (cdr x))

flavor:call-component-method function-spec &key apply arglist Function

Produces a form that calls function-spec, which must be the function-spec
for a component method. If no keyword arguments are given to
flavor:call-component-method, the method receives the same arguments
that the generic function received. That is, the first argument to the
generic function is bound to self inside the method, and succeeding ar-
guments are bound to the argument list specified with defmethod. Ad-
ditional internal arguments are passed to the method, but the user never
needs to be concerned about these.

arglist is a list of forms to be evaluated to supply the arguments to the
method, instead of simply passing through the arguments to the generic
function.

When arglist and apply are both supplied, :apply should be followed by t or
nil. If :apply t is supplied, the method is called with apply instead of fun-
call. :apply nil causes the method to be called with funecall.

When arglist is not supplied, the value following :apply is the argument
that should be given to apply when the method is called. (Certain internal
arguments are also included in the apply form.) For example:

(flavor:call-component-method function-spec :apply list)
Results in:
(apply #’function-spec :apply list)

In other words, the following two forms have the same effect:

63

flavor:call-component-methods

(flavor:call-component-method function-spec :apply list)
(flavor:call-component-method function-spec :arglist (list list)
:apply t)
If function-spec is nil, flavor:call-component-method produces a form that
returns nil when evaluated.

For examples: See the section "Examples Of define-method-combination”
in Symbolics Common Lisp: Language Concepts.

flavor:call-component-methods function-spec-list &key (operator Function

car

’progn)
Produces a form that invokes the function or special form named operator.
Each argument or subform is a call to one of the methods in
function-spec-list. operator defaults to progn.

x Function
Returns the head (car) of list or cons x. Example:
(car (@b c)) =>a

Officially car is applicable only to conses and locatives. However, as a
matter of convenience, car of nil returns nil

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

zl:car-location cons Function

case

zl:car-location returns a locative pointer to the cell containing the car of
cons.

Note: there is no cdr-location function; the cdr-coding scheme precludes it.

For a table of related items: See the section "Functions for Finding Infor-
mation About Lists and Conses" in Symbolics Common Lisp: Language Con-
cepts.

test-objeci &body clauses Special Form
case is a conditional that chooses one of its clauses to execute by compar-
ing a value to various constants. The constants can be any object.

Its form is as follows:

(case key-form
(test consequent consequent ...)
(test consequent consequent ...)
(test consequent consequent ...)

.

Structurally case is much like cond, and it behaves like cond in selecting

case 64

one clause and then executing all consequents of that clause. However,
case differs in the mechanism of clause selection.

The first thing case does is to evaluate test-object, to produce an object
called the key object. Then case considers each of the clauses in turn. If
key is eql to any item in the clause, case evaluates the consequents of that
clause as an implicit progn.

If no clause is satisfied, case returns nil.

case returns the value of the last consequent of the clause evaluated, or nil
if there are no consequents to that clause.

The keys in the clauses are not evaluated; they must be literal key values.
It is an error for the same key to appear in more than one clause. The or-
der of the clauses does not affect the behavior of the case construct.

Instead of a test, one can write one of the symbols t and otherwise. A
clause with such a symbol always succeeds and must be the last clause;
this is an exception to the order-independence of clauses.

If there is only one key for a clause, that key can be written in place of a
list of that key, provided that no ambiguity results. Such a "singleton key"
can not be nil (which is confusable with (), a list of no keys), t, otherwise,
or a cons.

Examples:

(let ((num 69))
(case num
((1 2) "math...ack")
((3 4) "great now we can count"))) => NIL

(let ((num 3))
(case num
((1 2) "one two")
((3 4 56) (princ "numbers") (princ " three") (fresh-line))
(t "not today”))) => numbers three
T

(let ((object-one ’candy))
(case object-one
(apple (setq class ’health) "weekdays")
(candy (setq class ’junk) "weekends")
(otherwise (setq class ’unknown) “all week long"”))) => "weekends”
class => JUNK

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

65 zl:caseq

zl:caseq test-object &body clauses Special Form
Provided for Maclisp compatibility; it is exactly the same as zl:selectq.
This is not perfectly compatible with Maclisp, because zl:selectq accepts
otherwise as well as t where zl:caseq would not accept otherwise, and be-
cause Maclisp accepts a more limited set of keys then zl:selectq does.
Maclisp programs that use zl:caseq work correctly as long as they do not
use the symbol otherwise as the key.

Examples:

(let ((a ’big-bang))
(caseq a
(1ight "day")
(dark "night"))) => NIL

(setq a 3) => 3

(caseq a
(1 lloneu)
(2 ntwon)

(t "not one or two")) => "not one or two"

(let ((a ’big-bang))
(caseq a
(1ight "day")
(dark “night")
(otherwise "night and day"))) => “night and day"

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

catch tag &body body Special Form
Used with throw for nonlocal exits. catch first evaluates fag to obtain an
object that is the "tag" of the catch. Then the body forms are evaluated in
sequence, and catch returns the (possibly multiple) values of the last form
in the body.

However, a throw (or zl:*throw) form might be evaluated during the
evaluation of one of the forms in body. In that case, if the throw "tag" is
eq to the catch "tag" and if this catch is the innermost catch with that
tag, the evaluation of the body is immediately aborted, and catch returns
values specified by the throw or zl:*throw form.

If the catch exits abnormally because of a throw form, it returns the
(possibly multiple) values that result from evaluating throw’s second sub-
form. If the catch exits abnormally because of a zl:*throw form, it
returns two values: the first is the result of evaluating zl:*throw’s second
subform, and the second is the result of evaluating zl:*throw’s first sub-
form (the tag thrown to).

zl:*catch 66

(catch *foo form) catches a (throw ’foo form) but not a (throw ’bar form).
It is an error if throw is done when no suitable catch exists.

The scope of the tags is dynamic. That is, the throw does not have to be
lexically within the catch form; it is possible to throw out of a function
that is called from inside a catch form.

For example:

(catch ’done
(ask-database <pattern>
#’ (1ambda (x) (when (nice-p x)
(throw ’done x)))))

The throw to *done returns x, the pattern searched for in the database.

For a table of related items: See the section "Nonlocal Exit Functions" in
Symbolics Common Lisp: Language Concepts.

zl:*catch tag &body body Special Form
An obsolete version of catch that is supported for compatibility with
Maclisp. It is equivalent to catch except that if zl:*catch exits normally,
it returns only two values: the first is the result of evaluating the last
form in the body, and the second is nil. If zl:*catch exits abnormally, it
returns the same values as catch when catch exits abnormally: that is,
the returned values depend on whether the exit results from a throw or a
zl:*throw. See the special form catch, page 65.

For a table of related items: See the section "Nonlocal Exit Functions" in
Symbolics Common Lisp: Language Concepts.

catch-error form &optional (printflag t) Function
catch-error evaluates form, trapping all errors.
form can be any Lisp expression.

printflag controls the printing or suppression of an error message by
catch-error.

If an error occurs during the evaluation of form, catch-error prints an er-
ror message if the value of printflag is not nil. The default value of
printflag is t.

catch-error returns two values: if form evaluated without error, the value
of form and nil are returned. If an error did occur during the evaluation
of form, t is returned.

Only the first value of form is returned if it was successfully evaluated.

67 catch-error-restart

catch-error-restart (condition-flavor format-string . format-args) Special Form
catch-error-restart establishes a restart handler for condition-flavor and
then evaluates the body. If the handler is not invoked, catch-error-restart
returns the values produced by the last form in the body, and the restart
handler disappears. If a condition is signalled during the execution of the
body and the restart handler is invoked, control is thrown back to the
dynamic environment of the catch-error-restart form. In this case,
catch-error-restart also returns nil as its first value and something other
than nil as its second value. Its format is:

(catch-error-restart (condition-flavor format-string . format-args)
form-1
form-2

o)

condition-flavor is either a condition or a list of conditions that can be
handled. format-string and format-args are a control string and a list of ar-
guments (respectively) to be passed to format to construct a meaningful
description of what would happen if the user were to invoke the handler.
The Debugger uses these values to create a message explaining the intent
of the restart handler.

The conditional variant of catch-error-restart is the form:
catch-error-restart-if

For a table of related items: See the section "Restart Functions" in Sym-
bolics Common Lisp: Language Concepts.

catch-error-restart-if cond-form (condition-flavor format-string . Special Form
format-args)
catch-error-restart-if establishes its restart handler conditionally. In all
other respects, it is the same as catch-error-restart. Its format is:

(catch-error-restart-if cond-form
(condition-flavor format-string . format-args)
form-1
form-2
.)

catch-error-restart-if first evaluates cond-form. If the result is nil, it
evaluates the body as if it were a progn but does not establish any hand-
lers. If the result is not nil, it continues just like catch-error-restart, es-
tablishing the handlers and executing the body.

For a table of related items: See the section "Restart Functions" in Sym-
bolics Common Lisp: Language Concepts.

ccase 68

ccase object &body body Special Form
The name of this function stands for "continuable exhaustive case".

Structurally ccase is much like case, and it behaves like case in selecting
one clause and then executing all consequents of that clause. However,
ccase does not permit an explicit otherwise or t clause. The form of
ccase is as follows:

(ccase key-form
(test consequent consequent ...)
(test consequent consequent ...)
(test consequent consequent ...)

)
object must be a generalized variable reference acceptable to setf.

The first thing ccase does is to evaluate object, to produce an object called
the key object.

Then ccase considers each of the clauses in turn. If key is eql to any item
in the clause, ccase evaluates the consequents of that clause as an implicit
progn.

ccase returns the value of the last consequent of the clause evaluated, or
nil if there are no consequents to that clause.

The keys in the clauses are not evaluated; literal key values must appear in
the clauses. It is an error for the same key to appear in more than one
clause. The order of the clauses does not affect the behavior of the ccase
construct.

If there is only one key for a clause, that key can be written in place of a
list of that key, provided that no ambiguity results. Such a "singleton key"
can not be nil (which is confusable with (), a list of no keys), t, otherwise,
or a cons.,

If no clause is satisfied, ccase uses an implicit otherwise clause to signal
an error with a message constructed from the clauses. To continue from
this error supply a new value for object, causing ccase to store that value
and restart the clause tests. Subforms of object can be evaluated multiple
times.

Examples:

(Tet ((num 24))
(ccase num
((1 2 3) "integer less then 4")
((4 5 6) “integer greater than 3"))) =>
Error: The value of NUM is SI:xEVAL, 24, was of the wrong type.
The function expected one of 1, 2, 3, 4, 5, or 6.

69 cdaaar

SI:xEVAL:

Arg @ (SYS:FORM): (DBG:CHECK-TYPE-1 ’NUM NUM °’#)

Arg 1 (SI:ENV): ((# #) NIL () () ...)

--defaulted args:-- '

Arg 2 (SI:HOOK): NIL B
s-A, <RESUME>: Supply a replacement value to be stored into NUM Ce
s-B, <ABORT>: Return to Lisp Top Level in dynamic Lisp Listener 1
— Supply a replacement value to be stored into NUM:

4
“integer greater than 3"

(let ((num 3))
(ccase num
((1 2) "one two")
((3 45 6) (princ "numbers") (princ " three") (terpri))
(t "not today”))) => numbers three
T

(let ((Dwarf ’Sleepy))
(ccase Dwarf
((Grumpy Dopey) (setq class "confused"))
((Bilbo Frodo) (setq class "Hobbits not Dwarfs"))
(otherwise (setq class ’'unknown) “talk to Snow White")))
=> "talk to Snow White"
class => UNKNOWN

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Condition-Checking and Sig-
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

cdaaar x Function

(cdaaar x) is the same as (cdr (car (car (car x))))

cdaadr x Function

(cdaadr x) 1is the same as (cdr (car (car (cdr x))))

cdaar x Function

cdadar

cdadar x

cdaddr =x

cdadr x

cdar x

cddaar x

cddadr =x

cddar =x

cdddar x

cddddr x

cdddr x

cddr x

cdr x

(cdaar x) is the same as (cdr (car (car x)))
(cdadar x) is the same as (cdr (car (édr (car x))))
(cdaddr x) is the same as (cdr (car (cdr (cdr x))))
(cdadr x) is the same as (cdr (car (cdr x)))

(cdar x) is the same as (cdr (car x))

(cddaar x) is the same as (cdr (cdr (car (car x))))
(cddadr x) is the same as (cdr (cdr (car (cdr x))))
(cddar x) is the same as (cdr (edr (car x)))
(cdddar x) is the same as (cdr (cdr (cdr (car x))))
(cddddr x) is the same as (cdr (cdr (cdr (cdr x))))
(cdddr x) is the same as (cdr (cdr (cdr x)))

(cddr x) is the same as (cdr (cdr x))

Returns the tail (cdr) of list or cons x. Example:

70

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

- Function

Function

71 ceiling

(cdr ’(abc)) => (bc)

Officially cdr is applicable only to conses and locatives. However, as a
matter of convenience, cdr of nil returns nil.

Note that edr is not the right way to read hardware registers, since cdr
will in some cases start a block-read and the second read could easily read
some register you did not want it to. Therefore, you should use car or
sys:%p-ldb as appropriate for these operations.

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

ceiling number &optional (divisor 1) Function
Divides number by divisor, and truncates the result toward positive infinity.
The truncated result and the remainder are the returned values.

number and divisor must each be a noncomplex number. Not specifying a
divisor is exactly the same as specifying a divisor of 1.

If the two returned values are Q and R, then (+ (* Q divisor) R) equals
number. If divisor is 1, then Q and R add up to number. If divisor is 1
and number is an integer, then the returned values are number and 0.

The first returned value is always an integer. The second returned value
is integral if both arguments are integers, is rational if both arguments are
rational, and is floating-point if either argument is floating-point. If only
one argument is specified, then the second returned value is always a num-
ber of the same type as the argument.

cerror 72

Examples:
(ceiling 5) => 5 and @
(ceiling -5) => -5 and @

- (ceiling 5.2) => 6 and -8.8080002
(ceiling -5.2) => -5 and -8.19999981
(ceiling 5.8) => 6 and -8.19999981
(ceiling -5.8) => -5 and -0.800080082
(ceiling 5 3) => 2 and -1
(ceiling -5 3) => -1 and -2
(ceiling 5 4) => 2 and -3
(ceiling -5 4) => -1 and -1
(ceiling 5.2 3) => 2 and -6.8080002
(ceiling -5.2 3) => -1 and -2.1999998
(ceiling 5.2 4) => 2 and -2.8000002
(ceiling -5.2 4) => -1 and -1.1999998
(ceiling 5.8 3) => 2 and ~B.19999981
(ceiling -5.8 3) => -1 and -2.80800082
(ceiling 5.8 4) => 2 and -2.1999998
(ceiling -5.8 4) => -1 and -1.8000082

For a table of related items: See the section "Functions That Divide and
Convert Quotient to Integer" in Symbolics Common Lisp: Language Con-
cepts.

cerror continue-format-string error-format-string &rest args Function
cerror is used to signal proceedable (continuable) errors. Like error it sig-
nals an error and enters the debugger. However, cerror allows the user to
continue program execution from the debugger after resolving the error.

If the program is continued after encountering the error, cerror returns
nil. The code following the call to cerror is then executed. This code
should correct the problem, perhaps by accepting a new value from the
user if a variable was invalid.

If the code that corrects the problem interacts with the program’s use and
might possibly be misleading it should make sure the error has really been
corrected before continuing. One way to do this is to put the call to cer-
ror and the correction code in a loop, checking each time to see if the error
has been corrected before terminating the loop.

The continue-format-string argument, like the error-format-string argument,
is given as a control string to format along with args to construct a mes-

73

cerror

sage string. The error message string is used in the same way that error
uses it. The continue message string should describe the effect of continu-
ing. The message is displayed as an aid to the user in deciding whether
and how to continue. For example, it might be used by an interactive
debugger as part of the documentation of its "continue" command.

The content of the continue message should adhere to the rules of style for
error messages.

In complex cases where the error-format-string uses some of the args and
the continue-format-string uses others, it may be necessary to use the
format directives “* and ~“@* to skip over unwanted arguments in one
or both of the format control strings.

For a table of related items: See the section "Condition-Checking and Sig-
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

change-instance-flavor 74

change-instance-flavor instance new-flavor Function
Changes the flavor of an instance to another flavor.

For those instance variables in common (contained in the definition of the
old flavor and the new flavor), the values of the instance variables remain
the same when the instance is changed to the new format. New instance
variables (defined by the new flavor but not the old flavor) are initialized
according to any defaults contained in the definition of the new flavor.

Instance variables contained by the old flavor but not the new flavor are no
longer part of the instance, and cannot be accessed once the instance is
changed to the new format.

Instance variables are compared with eq of their names; if they have the
same name and are defined by both the old flavor (or any of its component
flavors) and the new flavor (or any of its component flavors), they are con-
sidered to be "in common".

If you need to specify a different treatment of instance variables when the
instance is changed to the new flavor, you can write code to be executed at
the time that the instance is changed. See the generic function
flavor:transform-instance, page 591.

Note: There are two possible problems that might occur if you use
change-instance-flavor while a process (either the current process or some
other process) is executing inside of a method. The first problem is that
the method continues to execute until completion even if it is now the
"wrong"” method. That is, the new flavor of the instance might require a
different method to be executed to handle the generic function. The
Flavors system cannot undo the effects of executing the wrong method and
cause the right method to be executed instead.

The second problem is due to the fact that change-instance-flavor might
change the order of storage of the instance variables. A method usually
commits itself to a particular order at the time the generic function is
called. If the order is changed after the generic function is called, the
method might access the wrong memory location when trying to access an
instance variable. The usual symptom is an access to a different instance
variable of the same instance or an error "Trap: The word #<DTP-
HEADER-I nnnn> was read from location nnnn". If the garbage collector
has moved objects around in memory, it is possible to access an arbitrary
location outside of the instance.

When a flavor is redefined, the implicit change-instance-flavor that hap-
pens never causes accesses to the wrong instance variable or to arbitrary
locations outside the instance. But redefining a flavor while methods are
executing might leave those methods as no longer valid for the flavor.

We recommend that you do not use change-instance-flavor of self inside a

75

char

char

method. If you cannot avoid it, then make sure that the old and new
flavors have the same instance variables and inherit them from the same
components. You can do this by using mixins that do not define any in-
stance variables of their own, and using change-instance-flavor only to
change which of these mixins are included. This prevents the problem of
accessing the wrong location for an instance variable, but it cannot prevent
a running method from continuing to execute even if it is now the wrong
method.

A more complex solution is to make sure that all instance variables ac-
cessed after the change-instance-flavor by methods that were called before
the change-instance-flavor are ordered (by using the
:ordered-instance-variables option to defflavor), or are inherited from
common components by both the old and new flavors. The old and new
flavors should differ only in components more specific than the flavors
providing the variables.

array &rest subscripts Function
The function char returns the character at position subscripts of array.

The count is from zero. The character is returned as a character object; it
will necessarily satisfy the predicate string-char-p.

array must be a string array.
subscripts must be a non-negative integer less than the length of array.

Note that the array-specific function aref, and the general sequence func-
tion elt also work on strings.

To destructively replace a character within a string, use char in conjunc-
tion with the function setf,

Examples:

(char "a string” 1) => #\Space
(string-char-p (char "a string" 3)) => T

(char (make-array 4 :element-type ’character
:initial-element #\y) 3) => #\y
(string-char-p (char (make-array 4 :element-type ’character
:initial-element #\.) 2)) =>T

(char (make-array 4 :element-type ’character
:initial-element #\.
:fill-pointer 2) 1) => #\.

For a table of related items: See the section "String Access and
Information" in Symbolics Common Lisp: Language Concepts.

charz 76

char# char &rest chars Function
This comparison predicate compares characters exactly, depending on all
fields including code, bits, character style, and alphabetic case. If all of
the arguments are equal, nil is returned; otherwise t.

(char/= #\A #\A #\A) => NIL
(char/= #\A #\B #\C) => T

char# can be used in place of char/=.

char< char &rest chars Function
This predicate compares characters exactly, depending on all fields includ-
ing code, bits, character style, and alphabetic case. If each of the ar-
guments is equal to or less than the next, t is returned; otherwise nil.

(char<= #\A #\B #\C) =T
(char<= #\C #\B #\A) => NIL
(char<= #\A #\A) => T

char< can be used instead of char<=

char> char &rest chars Function

This comparison predicate compares characters exactly, depending on all
fields including code, bits, character style, and alphabetic case. If each of
the arguments is equal to or greater than the next, t is returned; otherwise
nil.

(char>= #\C #\B #\A) => T

(char>= #\A #\A) => T

(char>= #\A #\B #\C) => NIL

char> can be used instead of char>=. n

char/= char &rest chars Function
This comparison predicate compares characters exactly, depending on all
fields including code, bits, character style, and alphabetic case. If all of
the arguments are equal, nil is returned; otherwise t.

(char/= #\A #\A #\A) => NIL
(char/= #\A #\B #\C) => T

char# can be used in place of char/=

char< char &rest chars Function
This comparison predicate compares characters exactly, depending on all
fields including code, bits, character style, and alphabetic case. If all of
the arguments are ordered from smallest to largest, t is returned; other-
wise nil.

77 char<=

(char< #\A #\B #\C) => T
(char< #\A #\A) => NIL
(char< #\A #\C #\B) => NIL

char<= char &rest chars Function
This predicate compares characters exactly, depending on all fields includ-
ing code, bits, character style, and alphabetic case. If each of the ar-
guments is equal to or less than the next, t is returned; otherwise nil.

(char<= #\A #\B #\C) =>T
(char<= #\C #\B #\A) => NIL
(char<= #\A #\A) => T

char< can be used instead of char<=.

char= char &rest chars Function
This comparison predicate compares characters exactly, depending on all
fields including code, bits, character style, and alphabetic case. If all of
the arguments are equal, t is returned; otherwise nil.

(char= #\A #\A #\A) => T
(char= #\A #\B #\C) => NIL

char> char &rest chars Function

This comparison predicate compares characters exactly, depending on all
fields including code, bits, character style, and alphabetic case. If all of
the arguments are ordered from largest to smallest, [t] is returned; other-
wise nil.

(char> #\C #\B #\A) => T

(char> #\A #\A) => NIL

(char> #\A #\B #\C) => NIL

char>= char &rest chars Function

This comparison predicate compares characters exactly, depending on all
fields including code, bits, character style, and alphabetic case. If each of
the arguments is equal to or greater than the next, t is returned; otherwise
nil.

(char>= #\C #\B #\A) => T

(char>= #\A #\A) => T

(char>= #\A #\B #\C) => NIL

char> can be used instead of char>=. n

character 78

character Type Specifier
character is the type specifier symbol for the the predefined Lisp character
data type.

The types character, cons, symbol, and array are pairwise disjoint.
The type character is a supertype of the type string-char.
Examples:

(typep #\0 ’character) => T

(21:typep #\~) => :CHARACTER

(characterp #\A) => T

(characterp (character “1")) => T
(sys:type-arglist ’character) => NIL and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Characters” in Symbolics Com-
mon Lisp: Language Concepts.

character x Function
character coerces x to a single character. If x is a character, it is
returned. If x is a string or an array, an error is returned. If x is a sym-
bol, the first character of its pname is returned. Otherwise, an error oc-
curs. See the section "The Character Set" in Reference Guide to Streams,
Files, and I/0. The way characters are represented as integers is explained
in that section.

characterp object Function
Returns t if object is a character object. See the section "Type Specifiers
and Type Hierarchy for Characters" in Symbolics Common Lisp: Language
Concepts.

char-bit char name Function
Returns t if the bit specified by name is set in char, otherwise it returns
nil. name can be :control, :meta, :super, or :hyper. You can use setf on
char-bit access-form name.

(char-bit #\c-A :control) => T
(char-bit #\h-c-A :hyper) => T
(char-bit #\h-c-A :meta) => NIL

char-bits char Function
Returns the bits field of char. You can use setf on (char-bits access-form).

79 char-bits-limit

(char-bits #\c-A) => 1
(char-bits #\h-c-A) => 9
(char-bits #\m-c-A) => 3

char-bits-limit Constant
The value of char-bits-limit is a non-negative integer that is the upper
limit for the value in the bits field. Its value is 16.

char-code char Function
Returns the code field of char.

(char-code #\A) => 65
(char-code #\&) => 38

char-code-limit Constant
The value of char-code-limit is a non-negative integer that is the upper
limit for the number of character codes that can be used. Its value is
65536.

char-control-bit Constant
The value of char-control-bit is the weight of the control bit, which is 1.

char-downcase char Function
If char is an uppercase alphabetic character in the standard character set,
char-downcase returns its lowercase form; otherwise, it returns char. If
character style information is present it is preserved.

(char-downcase #\A) => #\a
(char-downcase #\A) => #\a
(char-downcase #\3) => #\3

char-equal char &rest chars Function
This is the primitive for comparing characters for equality; many of the
string functions call it. char and chars must be characters; they cannot be
integers. char-equal compares code and bits, ignores case and character
style, and returns t if the characters are equal. Otherwise it returns nil.

(char-equal #\A #\A) => T
(char-equal #\A #\Control-A) => NIL
(char-equal #\A #\B #\A) => NIL

Note that Common Lisp specifies that char-equal should ignore bits. This
difference is incompatible. However, it is likely that the Common Lisp
specification might change in the future so that char-equal should not ig-
nore bits.

Ch
om

char-fat-p char :

char-fat-p - \ 80

: ~ Function
Returns t if char is a fat character, otherwise nil. char must be a charac-
ter object. A character that contains non-zero bits or style information is
called a fat character. See the section "Type Specifiers and Type Hierar-
chy for Characters" in Symbolics Common Lisp: Language Concepts.

(char-fat-p #\A) => NIL
(char-fat-p #\c-A) =>T
(char-fat-p (make-character #\A :style ’(nil :bold nil))) =>T

char-flipcase char Function

If char is a lowercase alphabetic character in the standard character set,
char-flipcase returns its uppercase form. If char is an uppercase al-
phabetic character in the standard character set, char-flipcase returns its
lowercase form. Otherwise, it returns char. If character style information
is present it is preserved.

(char-flipcase #\X) => #\x
(char-flipcase #\b) => #\B

char-font char Function

The contract of char-font is to return the font field of the character object
specified by char. Genera characters do not have a font field so char-font
always returns zero for character objects.

Genera does not support the Common Lisp concept of fonts, but supports
the character style system instead. See the section "Character Styles" in
Symbolics Common Lisp: Language Concepts. To find out the character

style of a character, use si:char-style: See the function si:char-style, page
83.

The only reason to use char-font would be when writing a program in-
tended to be portable to other Common Lisp systems.

char-font-limit Constant

The value of char-font-limit is the upper exclusive limit for the value of
values of the font bit. Genera characters do not have a font field so the
value of char-font-limit is 1. Genera does not support the Common Lisp
concept of fonts, but supports the y character style system instead. See the
section "Character Styles" in Symbolics Common Lisp: Language Concepts.

char-greaterp char &rest chars Function

This primitive compares characters for order; many of the string functions
call it. char and chars must be characters; they cannot be integers. The
result is t if char comes after chars ignoring case and style, otherwise mnil.
See the section "The Character Set" in Reference Guide to Streams, Files,
and I/0. Details of the ordering of characters are in that section.

81 char-hyper—bit

This comparison predicate compares the code and bits fields and ignores
character style and distinctions of alphabetic case.

(char-greaterp #\A #\B #\C) => NIL
(char-greaterp #\A #\B #\B) => T

char-hyper-bit Constant
The name for the hyper bit attribute. The value of char-hyper-bit is 8.

char-int char Function
Returns the character as an integer, including the fields that contain the
character’s code (which itself contains the character’s set and subindex into
that character set), bits, and style.

(char-int #\a) => 97
(char-int #\8) => 56
(char-int #\c-m-A) => 58331713
(char-int
(make-character #\a :style ’(nil :bold nil))) => 65633

char-lessp char &rest chars Function
This primitive compares characters for order; many of the string functions
call it. char and chars must be characters; they cannot be integers. The
result is t if char comes before chars ignoring case and style, otherwise nil.
See the section "The Character Set" in Reference Guide to Streams, Files,
and I/0. Details of the ordering of characters are in that section.

This comparison predicate compares the code and bits fields and ignores
character style and distinctions of alphabetic case.

(char-lessp #\A #\B #\C) => T
(char-lessp #\A #\B #\B) => NIL

char-meta-bit Constant
The name for the meta bit attribute. The value of char-meta-bit is 2.

char-mouse-button char _ Function
Returns the number corresponding to the mouse button that would have to
be pushed to generate char. 0, 1, and 2 correspond to the left, middle, and
right mouse buttons, respectively.

Example:

(char-mouse-button #\m-mouse-m) ==
1

The complementary function is make-mouse-char.

Ch
om

char-mouse-equal 82

char-mouse-equal charl char2 Function
Returns t if the mouse characters charl and char2 are equal, nil otherwise.

char-name char Function
char must be a character object. char-name returns the name of the object
(a string) if it has one. If the character has no name, or if it has non-zero
bits or a character style other than NIL.NIL.NIL, nil is returned.

(char-name #\Tab) => “Tab"

char-not-equal char &rest chars Function
This primitive compares characters for non-equality; many of the string
functions call it. char and chars must be characters; they cannot be in-
tegers. char-equal compares code and bits, ignores case and character
style, and returns t if the characters are not equal. Otherwise it returns

nil.
(char-not-equal #\A #\B) => T
(char-not-equal #\A #\c-A) => T
(char-not-equal #\A #\A) => NIL
(char-not-equal #\a #\A) => NIL
char-not-greaterp char &rest chars Function

This primitive compares characters for order; many of the string functions
call it. char and chars must be characters; they cannot be integers. The
result is t if char does not come after chars ignoring case and style, other-
wise nil. See the section "The Character Set" in Reference Guide to
Streams, Files, and I/0. Details of the ordering of characters are in that
section.

This comparison predicate compares the code and bits fields and ignores
character style and distinctions of alphabetic case.

(char-not-greaterp #\A #\B) => T
(char-not-greaterp #\a #\A) => T
(char-not-greaterp #\A #\a) => T
(char-not-greaterp #\A #\4) => T

char-not-lessp char &rest chars Function
This primitive compares characters for order; many of the string functions
call it. char and chars must be characters; they cannot be integers. The
result is t if char does not come before chars ignoring case and style,
otherwise nil. See the section "The Character Set" in Reference Guide to
Streams, Files, and I/0. Details of the ordering of characters are in that
section.

This comparison predicate compares the code and bits fields and ignores
character style and distinctions of alphabetic case.

83 si:char-style

(char-not-lessp #\A #\B) => NIL
(char-not-lessp #\B #\b) => T
(char-not-lessp #\A #\A) => T

si:char-style char Function
Returns the character style of the character object specified by char. The
returned value is a character style object.

(si:char-style #\a)
=> #<CHARACTER-STYLE NIL.NIL.NIL 264084146>

(si:char-style (make-character #\a :style ’(:swiss :bold nil)))
=> #<CHARACTER-STYLE SWISS.BOLD.NIL 116835682>

sys:char-subindex char Function
Returns the subindex field of char as an integer.

char-super-bit Constant
The name for the super bit attribute. The value of char-super-bit is 4.

char-to-ascii ch Function
Converts the character object ch to the corresponding ASCII code. This
function works only for characters with neither bits nor style. See the sec-
tion "ASCII String Functions" in Symbolics Common Lisp: Language Con-
cepts.

It is an error to give char-to-ascii anything other than one of the 95 stan-
dard ASCII printing characters. To get the ASCII code of one of the other
characters, use ascii-code, and give it the correct ASCII name.

The functions char-to-ascii and ascii-to-char provide the primitive conver-
sions needed by ASCII-translating streams. They do not translate the
Return character into a CR-LF pair; the caller must handle that. They just
translate #\return into CR and #\line into LF. Except for CR-LF,
char-to-ascii and ascii-to-char are wholly compatible with the ASCII-
translating streams.

They ignore Symbolics Lisp Machine control characters; the translation of
#\c-g is the ASCII code for G, not the ASCII code to ring the bell, also
known as "control G." (ascii-to-char (ascii-code "BEL")) is #/r, not #\c-G.
The translation from ASCII to character never produces a Lisp Machine
control character.

Ch
Com

char-upcase 84

char-upcase char Function

If char, which must be a character, is a lowercase alphabetic character in
the standard character set, char-upcase returns its uppercase form; other-
wise, it returns char. If character style information is present it is
preserved.

(char-upcase #\a) => #\A
(char-upcase #\a) => #\A
(char-upcase #\3) => #\3

zl:check-arg arg-name predicate-or-form type-string Macro

The zl:check-arg form is useful for checking arguments to make sure that
they are valid. A simple example is:

(check-arg foo stringp "a string”)

foo is the name of an argument whose value should be a string. stringp is
a predicate of one argument, which returns t if the argument is a string.
"a string" is an English description of the correct type for the variable.

The general form of zl:check-arg is

(check-arg var-name
predicate
description)

var-name is the name of the variable whose value is of the wrong type. If
the error is proceeded this variable is setq’ed to a replacement value.
predicate is a test for whether the variable is of the correct type. It can be
either a symbol whose function definition takes one argument and returns
non-nil if the type is correct, or it can be a nonatomic form which is
evaluated to check the type, and presumably contains a reference to the
variable var-name. description is a string which expresses predicate in
English, to be used in error messages.

The predicate is usually a symbol such as zl:fixp, stringp, zl:listp, or
zl:closurep, but when there isn’t any convenient predefined predicate, or
when the condition is complex, it can be a form. For example:

(defun test1 (a)
(21:check-arg a
(and (numberp a) (£ a 18.) (> a 9.))
"a number from one to ten")

o)
If testl is called with an argument of 17, the following message is printed:

85 zl:check-arg-type

The argument A to TEST1, 17, was of the wrong type.
The function expected a number from one to ten.

In general, what constitutes a valid argument is specified in two ways in a
zl:check-arg. description is human-understandable and predicate is ex-
ecutable. It is up to the user to ensure that these two specifications agree.

zl:check-arg uses predicate to determine whether the value of the variable
is of the correct type. If it is not, zl:check-arg signals the
sys:wrong-type-argument condition. See the flavor
sys:wrong-type-argument in Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Condition-Checking and Sig-
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

zl:check-arg-type arg-name type &optional type-string Macro
This is a useful variant of the zl:check-arg form. A simple example is:

(z1:check-arg-type foo :number)

foo is the name of an argument whose value should be a number.

:number is a value which is passed as a second argument to zl:typep; that
is, it is a symbol that specifies a data type. The English form of the type
name, which gets put into the error message, is found automatically.

The general form of zl:check-arg-type is:

(z1:check-arg-type var-name
type-name
description)

var-name is the name of the variable whose value is of the wrong type. If
the error is proceeded this variable is setq’ed to a replacement value.
type-name describes the type which the variable’s value ought to have. It
can be exactly those things acceptable as the second argument to zl:typep.
description is a string which expresses predicate in English, to be used in
error messages. It is optional. If it is omitted, and type-name is one of the
keywords accepted by zl:typep, which describes a basic Lisp data type, then
the right description is provided correctly. If it is omitted and type-name
describes some other data type, then the description is the word "a" fol-
lowed by the printed representation of type-name in lowercase.

The Common Lisp equivalent of zl:check-arg-type is the macro:
check-type

For a table of related items: See the section "Condition-Checking and Sig-
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

check-type 86

check-type place type &optional (type-string ’nil) Macro
check-type signals an error if the contents of place are not of the desired
type. If you continue from this error, you will be asked for a new value;
check-type stores the new value in place and starts over, checking the type
of the new value and signalling another error if it is still not of the desired
type. Subforms of place can be evaluated multiple times because of the im-
plicit loop generated. check-type returns nil.

place must be a generalized variable reference acceptable to the macro setf.

type must be a type specifier; it is not evaluated. For standard Symbolics
Common Lisp type specifiers: See the section "Type Specifiers" in Sym-
bolics Common Lisp: Language Concepts.

type-string should be an English description of the type, starting with an in-
definite article ("a" or "an"); it is evaluated. If type-string is not supplied,
it is computed automatically from type. This optional argument is allowed
because some applications of check-type may require a more specific
description of what is wanted than can be generated automatically from the
type specifier.

The error message mentions place, its contents, and the desired type.
Examples:

(setq bees ’(bumble wasp jacket)) => (BUMBLE WASP JACKET)
(check-type bees (vector integer))
=> Error : The value of BEES in SI:xEVAL, (BUMBLE WASP JACKET),
was of the wrong type.
The function expected a vector whose typical element
is an integer.
(setq naards ’foo) => FOO
(check-type naards (integer @ x) "a positive integer")
=> Error : The value of NAARDS in SI:xEVAL, F00, was of the wrong
type.
The function expected a positive integer.

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

circular-list &rest args Function
circular-list constructs a circular list whose elements are args, repeated in-
finitely. circular-list is the same as list except that the list itself is used
as the last cdr, instead of nil. circular-list is especially useful with map-
car, as in the expression:

87 CIS

(mapcar (function +) foo (circular-list 5))
which adds each element of foo to 5. circular-list could have been defined
by:

(defun circular-1ist (&rest elements)
(setq elements (copylistx elements))
(rplacd (last elements) elements)
elements)

circular-list is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

cis radians Function
radians must be a noncomplex number. cis could have been defined by:

(defun cis (radians)
(complex (cos radians) (sin radians)))

Mathematically, this is equivalent to e’ "3

For a table of related items: See the section "Trigonometric and Related
Functions" in Symbolics Common Lisp: Language Concepts.

:clear-hash Message
Removes all of the entries from the hash table. This message will be
removed in the future — use clrhash instead.

:clear of si:heap Method
Remove all of the entries from the heap.

For a table of related items: See the section "Heap Functions and Methods"
in Symbolics Common Lisp: Language Concepts.

zl:closure symbol-list function Function
This creates and returns a dynamic closure of function over the variables in
symbol-list. Note that all variables on symbol-list must be declared special.

To test whether an object is a dynamic closure, use the zl:closurep predi-
cate. See the section "Predicates" in Symbolics Common Lisp: Language
Concepts. The typep function returns the symbol zl:closure if given a
dynamic closure. (typep x :closure) is equivalent to (zl:closurep x).

The Symbolics Common Lisp equivalent of this function is
make-dynamic-closure.

See the section "Dynamic Closure-Manipulating Functions" in Symbolics
Common Lisp: Language Concepts.

zl:closure-alist 88

zl:closure-alist closure Function
Returns an alist of (symbol . value) pairs describing the bindings which the
dynamic closure performs when it is called. This list is not the same one
that is actually stored in the closure; that one contains pointers to value
cells rather than symbols, and zl:closure-alist translates them back to sym-
bols so you can understand them. As a result, clobbering part of this list
does not change the closure.

If any variable in the closure is unbound, this function signals an error.

The Symbolics Common Lisp equivalent of this function is
dynamic-closure-alist.

See the section "Dynamic Closure-Manipulating Functions" in Symbolics
Common Lisp: Language Concepts.

closure-function closure Function
Returns the closed function from the dynamic closure closure. This is the
function that was the second argument to zl:closure when the dynamic
closure was created. See the section "Dynamic Closure-Manipulating
Functions" in Symbolics Common Lisp: Language Concepts.

zl:closurep arg Function
zl:closurep returns t if its argument is a closure, otherwise nil.

zl:closure-variables closure Function
Creates and returns a list of all of the variables in the dynamic closure
closure. 1t returns a copy of the list that was passed as the first argument
to zl:closure when closure was created.

The Symbolics Common Lisp equivalent of this function is
dynamic-closure-variables

See the section "Dynamic Closure-Manipulating Functions" in Symbolics
Common Lisp: Language Concepts.

clrhash table Function
Removes all of the entries from table.

For a table of related items: See the section "Table Functions" in Sym-
bolics Common Lisp: Language Concepts.

zl:clrhash-equal hash-table Function
Removes all of the entries from hash-table. This function will be removed
in the future — use clrhash instead.

89 sys:cl-structure-printer

sys:cl-structure-printer structure-name object stream depth Macro
This macro expands into an efficient function that prints a given structure
object of type structure-name to the specified stream in #S format. It
depends on the information calculated by defstruct, and so is only useful
after the defstruct form has been compiled. This macro enables a struc-
~ture print function to respect the variable *print-escape®.

(defstruct (foo
(:print-function foo-printer))
abc)

(defun foo-printer (object stream depth)
(if xprint-escapex
(sys:cl-structure-printer foo object stream depth)
other-printing-strategy))

code-char code &optional (bits 0) (font 0) Function
Constructs a character given its code field. code, bits, and font must be
non-negative integers. If code-char cannot construct a character given its
arguments, it returns nil.

To set the bits of a character, supply one of the character bits constants as
the bits argument. See the section "Character Bit Constants" in Symbolics
Common Lisp: Language Concepts.

For example:
(code-char 65 char-control-bit) => #\c-A

Since the value of char-font-limit is 1, the only valid value of font is 0.
The only reason to use the font option would be when writing a program
intended to be portable to other Common Lisp systems.

If you want to construct a new character that has character style other
than NIL.NIL.NIL, use make-character: See the function
make-character, page 323.

coerce object result-type Function
Converts an object to an equivalent object of another type.
object is a Lisp object.

result-type must be a type-specifier; object is converted to an equivalent ob-
ject of the specified type. If object is already of the specified type, as deter-
mined by typep, it is returned.

If the coercion cannot be performed, an error is signalled. In particular,
(coerce x nil) always signals an error.

Example:

Ch
om

coerce 90

(coerce ’x nil)
=> Error: I don’t know how to coerce an object to nothing

It is not generally possible to convert any object to be of any type what-
soever; only certain conversions are allowed:

Any sequence type can be converted to any other sequence type, provided
the new sequence can contain all actual elements of the old sequence (it is
an error if it cannot). If the result-type is specified as simply array, for ex-
ample, then array t is assumed. A specialized type such as string or
(vector (complex short-float) can be specified;

Examples:

(coerce '(a b c) ’vector) => #(A B [)

(coerce ’(a b c) ’array) => #(A B C)

(coerce #x181 ’(vector (complex short-float))) => #(1 8 1)
(coerce #(4 4) ’number)

=> Error: I don’t know how to coerce an object to a number

Elements of the new sequence will be eql to corresponding elements of the
old sequence. Note that elements are not coerced recursively. If you
specify sequence as the result-type, the argument can simply be returned
without copying it, if it already is a sequence.

Examples:

(coerce #(8 9) ’sequence) => #(8 9)
(eql (coerce #(1 2) °’sequence) #(1 2)) => NIL
(equalp (coerce #(1 2) ’sequence) #(1 2)) =>T

In this respect, (coerce sequence type) differs from (concatenate type
sequence), since the latter is required to copy the argument sequence.

Some strings, symbols, and integers can be converted to characters. If ob-
ject is a string of length 1, then the sole element of the string is returned.
If object is a symbol whose print name is of length 1, then the sole element
of the print name is returned. If object is an integer n, then (int-char n)
is returned.

Examples:

(coerce "b" ’character) => #\b
(coerce "ab" ’character)
=> Error: "AB" is not one character long.
(coerce ’a ’character) => #\A
(coerce ’ab ’character)
=> Error: "AB" is not one character long.
(coerce 65 ’character) => #\A
(coerce 158 ’character) => #\Circle

91 collect

Any non-complex number can be converted to a short-float, single-float
double-float, or long-float. If simply float is specified as the result-type
and if object is not already a floating-point number of some kind, then ob-
ject is converted to a single-float.

Examples:

(coerce 8 ’short-float) => 6.8
(coerce 3.5L8 ’float) => 3.5d9
(coerce 7/2 ’'float) => 3.5

Any number can be converted to a complex number. If the number is not
already complex, then a zero imaginary part is provided by coercing the in-
teger zero to the type of the given real part. If the given real part is ra-
tional, however, then the rule of canonicalization for complex rational num-
bers results in the immediate re-conversion of the the result type from type
complex back to type rational.

Examples:

(coerce 4.5s0 ’complex) => #C(4.5 0.8)
(coerce 7/2 ’complex) => 7/2

(coerce #C(7/2 8) ’(complex double-float))
=> #C(3.5d6 6.8da)

Any object can be coerced to type t.
Example:

(coerce 'house 't) => HOUSE
is equivalent to

(identity ’house) => HOUSE

Coercions from floating-point numbers to rational numbers, and of ratios to
integers are not supported because of rounding problems. Use one of the
specialized functions such as rational, rationalize, floor, and ceiling in-
stead. See the section "Numeric Type Conversions" in Symbolics Common
Lisp: Language Concepts.

Similarly, coerce does not convert characters to integers; use the special-
ized functions char-code or char-int instead.

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

collect Keyword For loop

collect expr {into var}

Causes the values of expr on each iteration to be collected into a list. When the

collect 02

epilogue of the loop is reached, var has been set to the accumulated result and
can be used by the epilogue code.

It is safe to reference the values in var during the loop, but they should not be
modified until the epilogue code for the loop is reached.

The forms collect and collecting are synonymous.

Examples:

(defun loop1 (start end)
(loop for x from start to end
collect x)) => LOOP1
(loop1 B8 4) => (B 12 3 4)

(defun loop2 (small-list)
(loop for x from B
for item in small-list
collect (1ist x item))) => LOOP2
(1oop2 ’("one" "two" "three” "four"))
=> ((0 "one") (1 "two") (2 "three”) (3 "four"))

The following examples are equivalent.

(defun loop3 (small-list)
(loop for x from @
for item in small-list
collect x into result-1
collect item into resuit-2
finally (print (1ist result-1 resulit-2)))) => LOOP3
(loop3 ’(abcdef)) =
(®@12345) (ABCDEF)) NIL

(defun loop3 (small-list)
(loop for x from @
for item in small-list
collecting x into result-1
collecting item into result-2
finally (print (list result-1 result-2)))) => LOOP3
(loop3 ’(abcdef)) =
(@12345) (ABCDEF)) NIL

Not only can there be multiple accumulations in a loop, but a single accumulation
can come from multiple places within the same loop form, if the types of the
collections are compatible. collect, nconc, and append are compatible.

93 zl:comment

See the section "loop Clauses”, page 310.

zl:comment Special Form
Ignores its form and returns the symbol zl:comment. Example:

(defun foo (x)
(cond ((null x) B)

(t (comment x has something in it)
(1+ (foo (cdr x))))))

Usually it is preferable to comment code using the semicolon-macro feature
of the standard input syntax. This allows you to add comments to your
code that are ignored by the Lisp reader. Example:

(defun foo (x)
(cond ((null x) B8)
(t (14 (foo (cdr x)))) ;X has something in it

))

A problem with such comments is that they are discarded when the form is
read into Lisp. If the function is read into Lisp, modified, and printed out
again, the comment is lost. However, this style of operation is hardly ever
used; usually the source of a function is kept in an editor buffer and any
changes are made to the buffer, rather than the actual list structure of the
function. Thus, this is not a real problem.

See the section "Functions and Special Forms for Constant Values" in Sym-
bolics Common Lisp: Language Concepts.

common Type Specifier
common is the type specifier symbol denoting an exhaustive union of the
following Common Lisp data types:

cons, symbol

(array x), where x is either t or a subtype of common
string, fixnum, bignum, ratio, short-float,

single-float, double-float long-float

(complex x) where x is a subtype of common

standard-char, hash-table, readtable, package,

pathname, stream, random-state

and all types created by the user with defstruct, or defflavor.

The type common, is a subtype of type t.

om

commonp o4

Examples:
(typep ’#c(3 4) ’common) =>T

(subtypep ’common t) => T and T
(commonp ’cons) => T
(sys:type-arglist ’common) => NIL and T

(setq four

(et ((x 4))
(closure ’(x) ’zerop))) => #<DTP-CLOSURE 1510647>

(typep four ’sys:dynamic-closure) => T

{subtypep ’sys:dynamic-closure ’common) => NIL and NIL

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

commonp object Function
The predicate commonp is true if its argument is any standard Common
Lisp data type; it is false otherwise.

(commonp %) = (typep x ’common)
Examples:

(commonp 1.5d9) => T

(commonp 1.8) => T

(commonp -12.) => T

(commonp ’3kd) => T

(commonp ’symbol) => T

(commonp #c(3 4)) => T

(commonp 4) => T 1is equivalent to (typep 4 ’common) => T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Predicates" in Symbolics Com-
mon Lisp: Language Concepts.

compiled-function Type Specifier
compiled-function is the type specifier symbol for the predefined Lisp data
type of that name.

Examples:

95

compiled-function-p object Function

compiled-function-p

(typep (compile nil ’(lambda (a b) (+ a b))) ’compiled-function)
=T

(21:typep (compile nil ’(lambda (a b) (+ a b))))
=> :COMPILED-FUNCTION

(sys:type-arglist ’compiled-function) => NIL and T
(compiled-function-p (compile nil ’(lambda (a) (+ a a)))) => T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

See the section "Functions" in Symbolics Common Lisp: Language Concepts. Ch
Co

compiled-function-p returns t if its argument is any compiled code object.

compile-flavor-methods flavor! flavor2... Macro

You can use compile-flavor-methods to cause the combined methods of a
program to be compiled at compile-time, and the data structures to be
generated at load-time, rather than both happening at run-time.
compile-flavor-methods is thus a very good thing to use, since the need to
invoke the compiler at run-time slows down a program using flavors the
first time it is run. (The compiler is still called if incompatible changes
have been made, such as addition or deletion of methods that must be
called by a combined method.)

It is necessary to use compile-flavor-methods when you use the
:constructor option for defflavor, to ensure that the constructor function
is defined.

You use compile-flavor-methods by including the forms in a file to be
compiled. This causes the compiler to include the automatically generated
combined methods for the named flavors in the resulting .bin file, provided
that all of the necessary flavor definitions have been made. Furthermore,
when the .bin file is loaded, internal data structures (such as the list of all
methods of a flavor) are generated.

You should use compile-flavor-methods only for flavors that will be instan-
tiated. For a flavor that will never be instantiated (that is, one that only
serves to be a component of other flavors that actually do get instantiated),
it is almost always useless. The one exception is the unusual case where
the other flavors can all inherit the combined methods of this flavor in-
stead of each having its own copy of a combined method that happens to be
identical to the others.

The compile-flavor-methods forms should be compiled after all of the in-
formation needed to create the combined methods is available. You should

compiler-let 96

put these forms after all of the definitions of all relevant flavors, wrappers,
and methods of all components of the flavors mentioned.

In general, Flavors cannot guarantee that defmethod macro-expands cor-

rectly unless the flavor (and all of its component flavors) have been com-

piled. Therefore, the compiler gives a warning when you try to compile a
method before the flavor and its components have been compiled.

If you see this warning and no other warnings, it is usually the case that
the flavor system did compile the method correctly.

In complicated cases, such as a regular function and an internal flavor
function (defined by defun-in-flavor or the related functions) having the
same name, the flavor system cannot compile the method correctly. In
those cases it is advisable to compile all the flavors first, and then compile
the method.

See the function flavor:print-flavor-compile-trace, page 403.

compiler-let bindlist body... Special Form
When interpreted, a compiler-let form is equivalent to let with all variable
bindings declared special. When the compiler encounters a compiler-let,
however, it performs the bindings specified by the form (no compiled code
is generated for the bindings) and then compiles the body of the
compiler-let with all those bindings in effect. In particular, macros within
the body of the compiler-let form are expanded in an environment with the
indicated bindings. See the section "Nesting Macros" in Symbolics Com-
mon Lisp: Language Concepts.

compiler-let allows compiler switches to be bound locally at compile time,
during the processing of the body forms. Value forms are evaluated at
compile time. See the section "Compiler Switches" in Program Development
Utilities. In the following example the use of compiler-let prevents the
compiler from open-coding the zl:map.

(compiler-let ((open—code—map—swifch nil))
(z1:map (function (lambda (x) ...)) foo))

See the section "Special Forms for Binding Variables" in Symbolics Com-
mon Lisp: Language Concepts.

complex &optional (type ™*) Type Specifier
complex is the type specifier symbol for the predefined Lisp complex num-
ber type.

The types complex, rational, and float are pairwise disjoint subtypes of the
type number.

This type specifier can be used in either symbol or list form. Used in list

97

complex

form, complex allows the declaration and creation of complex numbers,
whose real part and imaginary part are each of type type.

Examples:
(typep #c(3 4) ’complex) => T
(z1:typep #c(1.2 3.3)) => :COMPLEX
(subtypep ’‘complex ’number) => T and T ;subtype and certain
(typep ’(complex 3 4) ’‘common) => T
The expression

(complexp #c(4/5 7.8)) => T

Is equivalent to
(typep #c(4/5 7.8) ‘complex) => T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

See the section "Numbers" in Symbolics Common Lisp: Language Concepts.

complex realpart &optional imagpart Function

Constructs a complex number from real and imaginary noncomplex parts,
applying complex canonicalization.

If the types of the real and imaginary parts are different, the coercion
rules are applied to make them the same. If imagpart is not specified, a
zero of the same type as realpart is used. If realpart is an integer or a
ratio, and imagpart is 0, the result is realpart.

Examples:

(complex 7) => 7

(complex 4.3 8) => #C (4.3 0.0)
(complex 2 @) => 2

(complex 3 4) => #C(3 4)

(complex 3 4.8) => #C (3.0 4.0)
(complex 3.8d6 4) => #C(3.0d6 4.8d0)
(complex 5/2 4.0d0) => #C(2.5d8 4.6d8)

Related Functions:

realpart
imagpart

For a table of related items: See the section "Functions That Decompose
and Construct Complex Numbers" in Symbolics Common Lisp: Language
Concepts.

complexp 98

complexp object Function
Returns t if object is a complex number, otherwise nil.

For a table of related items: See the section "Numeric Type-checking
Predicates” in Symbolics Common Lisp: Language Concepts.

flavor:compose-handler generic flavor-name &key env Function
Finds the methods that handle the specified generic operation on instances
of the specified flavor. Four values are returned:

handler-function-spec
The name of the handler, which can be a combined
method, a single method, or an instance-variable acces-
sor.

combined-method-list
A list of function specs of all the methods called, in or-
der of execution; the order is approximate because of
wrappers.

method-combination
A list of the method combination type and parameters to
it.

error nil normally, otherwise a string describing an error that
occurred.

For example, to use flavor:compose-handler on the generic function
change-status for the flavor box-with-cell:

(flavor:compose-handler °change-status ’box-with-cell)
-->(FLAVOR:COMBINED CHANGE-STATUS BOX-WITH-CELL)
((FLAVOR:METHOD CHANGE-STATUS CELL)
(FLAVOR:METHOD CHANGE-STATUS BOX-WITH-CELL))
(:AND :MOST-SPECIFIC-LAST
NIL :

The generic function change-status and the methods for the flavors
box-with-cell and cell are defined elsewhere: See the section "Example of
Programming with Flavors: Life" in Symbolics Common Lisp: Language
Concepts.

In the second return value of sample output here, we put each method on
one line, for readability. This is not done by flavor:compose-handler.

The env parameter is described elsewhere: See the function
flavor:compose-handler-source, page 99.

99 flavor:compose-handler-source

flavor:compose-handler-source generic flavor-name &key env Function
Finds the methods that handle the specified generic operation on instances
of the flavor specified by flavor-name, and finds the source code of the com-
bined method (if any). Seven values are returned:

form A Lisp form which is the body of the combined method.
If there isn’t actually a combined method, this is nil.
handler-function-spec

The name of the handler, which can be a combined
method, a single method, or an instance-variable acces-
80T,

combined-method-list
A list of function specs of all the methods called,.in or-
der of execution; the order is approximate because of
wrappers.

wrapper-sources Information that the combined method requires so that
Flavors knows when it needs to be recompiled.

lambda-list A list describing what the arguments of the combined
method should be (not including the three interal ar-
guments automatically given to all methods).

method-combination
A list of the method combination type and parameters to
it.

error nil normally, otherwise a string describing an error that
occurred.

flavor:compose-handler-source is generally slower than
flavor:compose-handler, since the latter function can usually take advan-
tage of pre-computed information present in virtual memory.

The env parameter to flavor:compose-handler and
flavor:compose-handler-source can be used to insert hypotheses into their
computations. If env is nil, the generics, flavors, and methods in the run-
ning world are used. env can be an alist of modifications to the running
world; each element takes the form:

(name flavor-structure generic-structure (method definition)...)

Everything except name can be nil. name is the name of a generic, or a
flavor, or both. flavor-structure is nil or the internal structure that
describes the flavor. generic-structure is nil or the internal structure that
describes the generic function. The remaining elements of an alist element
refer to methods of the flavor named name; method is a function spec and
definition is nil if that method is to be ignored, t if the method is to be as-
sumed to exist, or the actual definition (expander function) in the case of a
wrapper.

flavor:compose-handler-source 100

env can also be the symbol compile, which is used internally to access the
compile-time environment.

101 concatenate

concatenate result-type &rest sequences Function
concatenate returns a new sequence that contains all of the elements of
all of the sequences in order.

The result does not share any structure with any of the argument se-
quences. The type of the result is specified by result-type, which must be a
subtype of type sequence. It must be possible for every element of the ar-
gument sequences to be an element of a sequence of type result-type.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

For example:

(concatenate ’vector "abc” #(ab) "gh") => #(#\a #\b #\c AB #\g #\h)

(setq vector (vector ’a ’b ’1 ’2)) => #(A B 1 2)

(setqg list (make-list 3 :initial-element ’blah))
=> (BLAH BLAH BLAH)

(concatenate ’1ist vector 1list)
=> (A B 1 2 BLAH BLAH BLAH)

(concatenate ’vector list vector) => #(BLAH BLAH BLAH A B 1 2)

If only one sequence argument is provided and it has the type specified by
result-type, concatenate is required to to copy the argument rather than
simply returning it. If a copy is not required, but only possible type-
conversion, then the function coerce may be appropriate.

For a table of related items: See the section "Sequence Construction and
Access" in Symbolics Common Lisp: Language Concepts.

cond &rest clauses Special Form
Consists of the symbol cond followed by several clauses. Each clause con-
sists of a predicate form, called the antecedent, followed by zero or more
consequent forms.

(cond (antecedent consequent consequent...)
(antecedent)
(antecedent consequent ...)

)

Each clause represents a case that is selected if its antecedent is satisfied
and the antecedents of all preceding clauses were not satisfied. When a
clause is selected, its consequent forms are evaluated.

cond-every 102

cond processes its clauses in order from left to right. First, the antece-
dent of the current clause is evaluated. If the result is nil, cond advances
to the next clause., Otherwise, the cdr of the clause is treated as a list of
consequent forms that are evaluated in order from left to right. After
evaluating the consequents, cond returns without inspecting any remaining
clauses. The value of the cond special form is the value of the last con-
sequent evaluated, or the value of the antecedent if there were no con-
sequents in the clause. If cond runs out of clauses, that is, if every an-
tecedent evaluates to nil, and thus no case is selected, the value of the
cond is nil

Examples:
(cond) => NIL

(cond ((= 2 3) (print "2 equals 3, new math"))
((< 3 3) (print “3 < 3, not yet !"))) => NIL

(cond ((equal °'Becky ’Becky) "Girl")
((equal ’Tom ’Tom) "Boy")) => "Girl"

(cond ((equal ’Rover ’Red) “dog")
((equal ’Pumpkin ’Pickles) “cat")

(t “rat")) => "rat”
(cond ((zerop x) ;First clause:
(+y 3) ;(zerop x) is the antecedent.
;(+y 3) is the consequent.
((null y) ;A clause with 2 consequents:
(setq y 4) ;this
(cons x 2)) ;and this.
(2) ;A clause with no consequents: the antecedent
;is just z. If z is non-nil, it is returned.
(t ;An antecedent of t
185) ;is always satisfied.
) ;This is the end of the cond.

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

cond-every &body clauses Special Form
Has the same syntax as cond, but executes every clause whose predicate is
satisfied, not just the first. If a predicate is the symbol otherwise, it is
satisfied if and only if no preceding predicate is satisfied. The value
returned is the value of the last consequent form in the last clause whose
predicate is satisfied. Multiple values are not returned.

103 condition-bind

Examples:

(cond-every) => NIL

(cond-every ((> 2 3) (print “sister”))
((= 2 3) (print "brother"))) => NIL

(cond-every ((equal ’mom ’mom) (princ "mother "))
((equal ’dog ’cat) (princ "pet dog"))
((equal ’dad ’dad) (princ "father")))
=> mother father"father"

(cond-every ((= 1 1) t) ((= 2 2) "yes!")
(otherwise "no")) => "yes!”

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

condition-bind list &body body Special Form
condition-bind binds handlers for conditions and then evaluates its body
with those handlers bound. One of the handlers might be invoked if a con-
dition is signalled while the body is being evaluated. The handlers bound
have dynamic scope.

The following simple example sets up application-specific handlers for two
standard error conditions, fs:file-not-found and fs:delete-failure.

(condition-bind ((fs:file-not-found ’my-fnf-handler)
(fs:delete-failure ’my-delete-handler))
(deletef pathname))

The format for condition-bind is:

(condition-bind ((condition-flavor-1 handler-1)
(condition-flavor-2 handler-2)

(condition-flavor-m handler-m))
form-1
form-2

form-n)
condition-flavor-j The name of a condition flavor or a list of names of con-
dition flavors. The condition-flavor-j need not be unique
or mutually exclusive. (See the section "Finding a

Handler" in Symbolics Common Lisp: Language Concepts.
Search order is explained in that section.)

condition-bind-default 104

handler-j A form that is evaluated to produce a handler function.
One handler is bound for each condition flavor clause in
the list. The forms for binding handlers are evaluated in
order from handler-1 to handler-m. All the handler-j
forms are evaluated and then all handlers are bound.
When handler is a lambda-expression, it is compiled.
The handler function is a lexical closure, capable of
referring to the lexical variables of the containing block.

form-i A body, constituting an implicit progn. The forms are
evaluated sequentially. The condition-bind form returns
whatever values form-n returns (nil when the body con-
tains no forms). The handlers that are bound disappear
when the condition-bind form is exited.

If a condition signal occurs for one of the condition-flavor-j during evalua-
tion of the body, the signalling mechanism examines the bound handlers in
the order in which they appear in the condition-bind form, invoking the
first appropriate handler. You can think of the mechanism as being
analogous to typecase or zl-user:case. It invokes the handler function
with one argument, the condition object. The handler runs in the dynamic
environment in which the error occurred; no throw is performed.

Any handler function can take one of three actions:

o It can return nil to indicate that it does not want to handle the con-
dition after all. The handler is free to decide not to handle the con-
dition, even though the condition-flavor-j matched. (In this case the
signalling mechanism continues to search for a condition handler.)

o It can throw to some outer catch-form, using throw.

e If the condition has any proceed types, it can proceed from the con-
dition by sending a sys:proceed method to the condition object and
returning the resulting values. In this case, signal returns all of the
values returned by the handler function. (Proceed types are not
available for conditions signalled with error. See the section
"Proceeding” in Symbolics Common Lisp: Language Concepts.)

The conditional variant of condition-bind is the form:
condition-bind-if

For a table of related items: See the section "Basic Forms for Bound

Handlers" in Symbolics Common Lisp: Language Concepts.

condition-bind-default list &body body Special Form
This form binds its handlers on the default handler list instead of the
bound handler list. See the section "Finding a Handler" in Symbolics Com-
mon Lisp: Language Concepts. In other respects condition-bind-default is

105 condition-bind-default-if

just like condition-bind. The default handlers are examined by the signall-
ing mechanism only after all of the bound handlers have been examined.
Thus, a condition-bind-default can be overridden by a condition-bind out-
side of it. This advanced feature is described in more detail in another
section. See the section "Default Handlers and Complex Modularity" in
Symbolics Common Lisp: Language Concepts.

The conditional variant of condition-bind-default is the form:
condition-bind-default-if

For a table of related items: See the section "Basic Forms for Default
Handlers" in Symbolics Common Lisp: Language Concepts.

condition-bind-default-if cond-form list &body body Special Form
This form binds its handlers on the default handler list instead of the
bound handler list. (See the section "Finding a Handler" in Symbolics
Common Lisp: Language Concepts.) In other respects
condition-bind-default-if is just like condition-bind-if. The default hand-
lers are examined by the signalling mechanism only after all of the bound
handlers have been examined. Thus, a condition-bind-default-if can be
overridden by a condition-bind outside of it. This advanced feature is
described in more detail in another section. See the section "Default Hand-
lers and Complex Modularity" in Symbolics Common Lisp: Language Con-
cepts.

For a table of related items: See the section "Basic Forms for Default
Handlers" in Symbolics Common Lisp: Language Concepts.

condition-bind-if cond-form list &body body Special Form
condition-bind-if binds its handlers conditionally. In all other respects, it
is just like condition-bind. It has an extra subform called cond-form, for
the conditional. Its format is:

(condition-bind-if cond-form
((condition-flavor-1 handler-1)
(condition-flavor-2 handler-2)

(condition-flavor-m handler-m))
form-1
form-2

form-n)
condition-bind-if first evaluates cond-form. If the result is nil, it evaluates
the handler forms but does not bind any handlers. It then executes the

body as if it were a progn. If the result is not nil, it continues just like
condition-bind binding the handlers and executing the hodr

condition-call 106

For a table of related items: See the section "Basic Forms for Bound
Handlers" in Symbolics Common Lisp: Language Concepts.

condition-call (&rest varlist) form &body clauses Special Form
condition-call binds handlers for conditions, expressing the handlers as
clauses of a case-like construct instead of as functions. These handlers
have dynamic scope.

condition-call and condition-case have similar applications. The major
distinction is that condition-call provides the mechanism for using a com-
plex conditional criterion to determine whether or not to use a handler.
condition-call clauses have the ability to decline to handle a condition be-
cause the clause is selected on the basis of the predicate, rather than on
the basis of the type of a condition.

The format is:

(condition-call (var)
form
(predicate-1 form-1-1 form-1-2 ... form-1-n)
(predicate-2 form-2-1 form-2-2 ... form-2-n)

(predicate-m form-m-1 form-m-2 ... form-m-n))

Each predicate-j must be a function of one argument. The predicates are
called, rather than evaluated. The form-j-i are a body, a list of forms con-
stituting an implicit progn. The handler clauses are bound simultaneously.

When a condition is signalled, each predicate in turn (in the order in which
they appear in the definition) is applied to the condition object. The cor-
responding handler clause is executed for the first predicate that returns a
value other than nil. The predicates are called in the dynamic environ-
ment of the signaller.

condition-call takes the following actions when it finds the right predicate:

1. It automatically performs a throw to unwind the dynamic environ-
ment back to the point of the condition-call. This discards the hand-
lers bound by the condition-call.

2. It executes the body of the corresponding clause.

3. It makes condition-call return the values produced by the last form
in the clause.

During the execution of the clause, the variable var is bound to the con-
dition object that was signalled. If none of the clauses needs to examine
the condition object, you can omit var:

107 condition-call-if

(condition-call () ...)

condition-call And :no-error

As a special case, predicate-m (the last one) can be the special symbol
:no-error. If form is evaluated and no error is signalled during the evalua-
tion, condition-case executes the :no-error clause instead of returning the
values returned by form. The variables vars are bound to the values
produced by form, in the style of multiple-value-bind, so that they can be

- accessed by the body of the :no-error case. Any extra variables are bound
to nil.
Some limitations on predicates:

o Predicates must not have side effects. The number of times that the
signalling mechanism chooses to invoke the predicates and the order
in which it invokes them are not defined. For side effects in the
dynamic environment of the signal, use condition-bind.

¢ The predicates are not lexical closures and therefore cannot access
variables of the lexically containing form, unless those variables are
declared special.

¢ Lambda-expression predicates are not compiled.

The conditional variant of condition-call is the form:
condition-call-if

For a table of related items: See the section "Basic Forms for Bound
Handlers" in Symbolics Common Lisp: Language Concepts.

condition-call-if cond-form (&rest varlist) form &body clauses Special Form
condition-call-if binds its handlers conditionally. In all other respects, it is

just like condition-call. Its format includes cond-form, the subform that
controls binding handlers:

(condition-call-if cond-form (var)
form
(predicate-1 form-1-1 form-1-2 ... form-1-n)
(predicate-2 form-2-1 form-2-2 ... form-2-n)

(predicate-m form-m-1 form-m-2 ... form-m-n))

condition-call-if first evaluates cond-form. If the result is nil, it does not
set up any handlers; it just evaluates the form. If the result is not nil, it

continues just like condition-call, binding the handlers and evaluating the
form.

The :no-error clause applies whether or not cond-form is nil

condition-case 108

For a table of related items: See the section "Basic Forms for Bound
Handlers" in Symbolics Common Lisp: Language Concepts.

condition-case (&rest varlist) form &rest clauses Special Form
condition-case binds handlers for conditions, expressing the handlers as
clauses of a case-like construct instead of as functions. The handlers
bound have dynamic scope.

Examples:

(condition-case ()
(time:parse string)
(time:parse-error xdefault-timex))

(condition-case (e)
(time:parse string)
Con (time:parse-error
Ct (format error-output “~A, using default time instead." e)
xdefault-timex))

(do () (nil)
(condition-case (e)
(return (time:parse string))
(time:parse-error
(setq string
(prompt-and-read
:string
“~A~ZUse what time instead? " e)))))

The format is:

(condition-case (varl var2 ...)
form
(condition-flavor-1 form-1-1 form-1-2 ... form-1-n)
(condition-flavor-2 form-2-1 form-2-2 ... form-2-n)

(condition-flavor-m form-m-1 form-m-2 ... form-m-n))

Each condition-flavor-j is either a condition flavor, a list of condition
flavors, or :no-error. If :no-error is used, it must be the last of the hand-
ler clauses. The remainder of each clause is a body, a list of forms con-
stituting an implicit progn.

condition-case binds one handler fof each clause. The handlers are bound
simultaneously.

If a condition is signalled during the evaluation of form, the signalling

109 condition-case-if

mechanism examines the bound handlers in the order in which they appear
in the definition, invoking the first appropriate handler.

condition-case normally returns the values returned by form. If a con-
dition is signalled during the evaluation of form, the signalling mechanism
determines whether the condition is one of the condition-flavor-j. If so, the
following actions occur:

1. It automatically performs a throw to unwind the dynamic environ-
ment back to the point of the condition-case. This discards the
handlers bound by the condition-case.

2. It executes the body of the corresponding clause.

3. It makes condition-case return the values produced by the last form
in the handler clause.

While the clause is executing, varl is bound to the condition object that
was signalled and the rest of the variables (var2, ...) are bound to nil. If
none of the clauses needs to examine the condition object, you can omit
varl.

(condition-case () ...)

As a special case, condition-flavor-m (the last one) can be the special sym-
bol :no-error. If form is evaluated and no error is signalled during the
evaluation, condition-case executes the :no-error clause instead of return-
ing the values returned by form. The variables varl, var2, and so on are
bound to the values produced by form, in the style of multiple-value-bind,
so that they can be accessed by the body of the :no-error case. Any extra
variables are bound to nil.

When an event occurs that none of the cases handles, the signalling
mechanism continues to search the dynamic environment for a handler.
You can provide a case that handles any error condition by using error as
one condition-flavor-j.

The conditional variant of condition-case is the form:
condition-case-if

For a table of related items: See the section "Basic Forms for Bound

Handlers" in Symbolics Common Lisp: Language Concepts.

condition-case-if cond-form (&rest varlist) form &rest clauses Special Form
condition-case-if binds its handlers conditionally. In all other respects, it
is just like condition-case. Its syntax includes cond-form, a subform that
controls binding handlers:

on

Ct

dbg:condition-handled-p 110

(condition-case-if cond-form (var)
form
(condition-flavor-1 form-1-1 form-1-2 ... form-1-n)
(condition-flavor-2 form-2-1 form-2-2 ... form-2-n)

(condition-flavor-m form-m-1 form-m-2 ... form-m-n))

condition-case-if first evaluates cond-form. If the result is nil, it does not
set up any handlers; it just evaluates the form. If the result is not nil, it

continues just like condition-case, binding the handlers and evaluating the
form.

The :no-error clause applies whether or not cond-form is nil

For a table of related items: See the section "Basic Forms for Bound
Handlers" in Symbolics Common Lisp: Language Concepts.

dbg:condition-handled-p condition Function

dbg:condition-handled-p searches the bound handler list and the default
handler list to see whether a handler exists for the condition object, con-
dition. This function should be called only from a condition-bind handler
function. It starts looking from the point in the lists from which the cur-
rent handler was invoked and proceeds to look outwards through the bound
handler list and the default handler list. It returns a value to indicate
what it found:

Value Meaning

:maybe condition-bind handlers for the flavor exist. These
handlers are permitted to decline to handle the condition.
You cannot determine what would happen without ac-
tually running the handler.

nil No handler exists.
t A handler exists.
conjugate number Function

Returns the complex conjugate of number. The conjugate of a noncomplex
number is itself. conjugate could have been defined by:

(defun conjugate (number)
(complex (realpart number) (- (imagpart number))))

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

111 | cons

cons Type Specifier
cons is the type specifier symbol for the predefined Lisp object of that
name.

The types cons and null form an exhaustive partition of the type list.

The types cons, symbol, array, number, and character are pairwise dis-
joint.
Examples:

(typep ’(a.b) ’cons) => T

(typep (@b c) ’cons) => T

(z1:1istp ’(abc)) =T

(subtypep ’cons ’list) => T and T
(subtypep ’list ’cons) => NIL and T
(sys:type-arglist ’cons) => NIL and T

(consp ’(abc)) =T
(type-of ’(signed-byte 3)) => CONS

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "List Data Types".

cons xy Function
cons is the primitive function to create a new cons, whose car is x and
whose cdris y. Examples:

(cons ’a ’b) => (a . b)
(cons ’a (cons ’'b (cons ’c nil))) => (a b c)
(cons ’a ’(bcd)) =>(abcd

cons may be thought of as creating a cons, or as adding a new element to
the front of a list.

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

cons-in-area x y area-number Function
cons-in-area creates a cons, whose car is x and whose cdr is y, in the
specified area. (Areas are an advanced feature of storage management.)
See the section "Areas" in Internals, Processes, and Storage Management,

Example:

constantp 112

(cons-in-area ’'a ’'b my-area) => (a . b)
cons-in-area is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

constantp object Function
This predicate is t if object, when considered as a form to be evaluated, al-
ways evaluates to the same thing. This includes self-evaluating objects
such as numbers, characters, strings, bit-vectors and keywords, as well as
all constant symbols declared by defconstant, such as nil, t, and pi. In ad-
dition, a list whose car is quote, such as (quote rhumba) also returns t
when it is given as object to constantp.

This predicate is nil if user::object, considered as a form, may or may not
always evaluate to the same thing.

continue-whopper &rest args Special Form
Calls the combined method for the generic function that was intercepted by
the whopper. Returns the values returned by the combined method.

args is the list of arguments passed to those methods. This function must
be called from inside the body of a whopper. Normally the whopper passes
down the same arguments that it was given. However, some whoppers
might want to change the values of the arguments and pass new values;
this is valid.

For more information on whoppers, including examples: See the section
"Wrappers and Whoppers" in Symbolics Common Lisp: Language Concepts.

copy-alist al &optional area ' ' Function
This function returns an association list that is equal to al, but not eq.
See the section "Association Lists" in Symbolics Common Lisp: Language
Concepts. Only the top level of list structure is copied; that is, copy-alist
copies in the cdr direction, but not in the car direction. Each element of al
that is a cons is replaced in the copy by a new cons with the same car and
cdr. See the function copy-seq, page 116. See the function copy-tree,
page 117.

The optional area argument is the number of the area in which to create
the new alist. (Areas are an advanced feature of storage management.)
See the section "Areas" in Internals, Processes, and Storage Management.

For a table of related items: See the section "Functions for Copying Lists"
in Symbolics Common Lisp: Language Concepts.

113 zl:copyalist

zl:copyalist list &optional area Function
zl:copyalist is for copying association lists. See the section "Lists" in
Symbolics Common Lisp: Language Concepts. The list is copied, as in
zl:copylist. In addition, each element of list that is a cons is replaced in
the copy by a new cons with the same car and cdr. You can optionally
specify the area in which to create the new copy. The default is to copy
the new list into the area occupied by the old list.

For a table of related items: See the section "Functions for Copying Lists"
in Symbolics Common Lisp: Language Concepts.

copy-array-contents from-array to-array Function
Copies the contents of from-array into the contents of to-array, element by
element. from-array and to-array must be arrays. If to-array is shorter
than from-array, the rest of from-array is ignored. If from-array is shorter
than to-array, the rest of to-array is filled with nil if it is a general array,
or O if it is a numeric array or (code-char 0) for strings. This function al-
ways returns t.

Note that even if from-array or to-array has a leader, the whole array is
used; the convention that leader element 0 is the "active" length of the ar-
ray is not used by this function. The leader itself is not copied.

copy-array-contents works on multidimensional arrays. from-array and
to-array are "linearized" and row-major order is used. See the section
"Row-major Storage of Arrays" in Converting to Genera 7.0.

copy-array-contents does not work on conformally displaced arrays.
copy-array-contents-and-leader from-array to-array : Function

Copies the contents and leader of from-array into the contents of to-array,
element by element. copy-array-contents copies only the main part of the

array.
copy-array-contents-and-leader does not work on conformally displaced ar-
rays.

copy-array-portion from-array from-start from-end to-array to-start Function

to-end
The portion of the array from-array with indices greater than or equal to
from-start and less than from-end is copied into the portion of the array
to-array with indices greater than or equal to fo-start and less than to-end,
element by element. If there are more elements in the selected portion of
to-array than in the selected portion of from-array, the extra elements are
filled with the default value as by copy-array-contents. If there are more
elements in the selected portion of from-array, the extra ones are ignored.
Multidimensional arrays are treated the same way as copy-array-contents
treats them. This function always returns t.

zl:copy-closure 114

copy-array-portion does not work on conformally displaced arrays.

Currently, copy-array-portion (as well as copy-array-contents and
copy-array-contents-and-leader) copies one element at a time in increas-
ing order of subscripts (this behavior might change in the future). This
means that when copying from and to the same array, the results might be
unexpected if from-start is less than to-start. You can safely copy from and
to the same array as long as from-start >= to-start.

zl:copy-closure closure Function
Creates and returns a new closure by copying the dynamic closure closure.
zl:copy-closure generates new external value cells for each variable in the
closure and initializes their contents from the external value cells of
closure.

The Symbolics Common Lisp equivalent of this function is
copy-dynamic-closure.

See the section "Dynamic Closure-Manipulating Functions" in Symbolics
Common Lisp: Language Concepts.

copy-dynamic-closure closure Function
Creates and returns a new closure by copying the dynamic closure closure.
copy-dynamic-closure generates new external value cells for each variable
in the closure and initializes their contents from the external value cells of
closure.

See the section "Dynamic Closure-Manipulating Functions" in Symbolics
Common Lisp: Language Concepts.

sys:copy-if-necessary thing &optional (default-cons-area Function
sys:working-storage-area)
sys:copy-if-necessary moves thing from a temporary storage area or stack
list to a permanent area. thing may be a string, symbol, list, tree, or
&rest argument. sys:copy-if-necessary checks whether thing is in a tem-
porary area of some kind, and moves it if it is. If thing is not in a tem-
porary area, it is simply returned.

This function is used especially for &rest arguments, which are not
guaranteed to be in permanent storage. Sometimes the rest-argument list
is stored in the function-calling stack, and loses its validity when the func-
tion returns. If you wish to return a rest-argument or make it part of a
permanent list structure, you must copy it first, as you must always assume
that it is one of these special lists. See the section "Lambda-List
Keywords" in Symbolics Common Lisp: Language Concepts.

sys:copy-if-necessary is a Symbolics extension to Common Lisp.

115 copy-list

For more information on stack lists: See the section "Consing Lists on the
Control Stack" in Internals, Processes, and Storage Management. See the
special form with-stack-list in Internals, Processes, and Storage Manage-
ment.

For more information on temporary storage areas see the :gc keyword of
make-area. See the function make-area in Internals, Processes, and
Storage Management.

For a table of related items: See the section "Functions for Copying Lists"
in Symbolics Common Lisp: Language Concepts.

copy-list list &optional area force-dotted Function
This function returns a list that is equal to list, but not eq. Only the top
level of list structure is copied; that is, copy-list copies in the cdr direc-
tion, but not in the car direction. Each element of list that is a cons is
replaced in the copy by a new cons with the same car and cdr. See also,
copy-alist copy-seq copy-tree copy-tree-share.

The optional area argument is the number of the area in which to create
the new list. (Areas are an advanced feature of storage management.) See
the section "Areas" in Internals, Processes, and Storage Management.

If list is a dotted list, this will be true of the returned list also. This can
be forced with the force-dotted argument. If the value of force-dotted is t,
copy-list will always return a dotted list.

For a table of related items: See the section "Functions for Copying Lists"
in Symbolics Common Lisp: Language Concepts.

zl:copylist list &optional area force-dotted Function
Returns a list that is zl:equal to list, but not eq. zl:copylist does not copy
any elements of the list: only the conses of the list itself. The returned
list is fully cdr-coded to minimize storage. See the section "Cdr-Coding" in
Symbolics Common Lisp: Language Concepts. If the list is "dotted", that is,
(cdr (last list)) is a non-nil atom, this is true of the returned list also.
You can optionally specify the area in which to create the new copy. The
default is to copy the new list into the area occupied by the old list.

For a table of related items: See the section "Functions for Copying Lists"
in Symbolics Common Lisp: Language Concepts.

copy-list* list &optional area Function
This function is the same as copy-list except that the last cons of the
resulting list is never cdr-coded. See the function copy-list, page 115. See
the section "Cdr-Coding" in Symbolics Common Lisp: Language Concepts.
This makes for increased efficiency if you nconc something onto the list
later.

on
Ct

zl:copylist* 116

The optional area argument is the number of the area in which to create
the new list. (Areas are an advanced feature of storage management.) See
the section "Areas" in Internals, Processes, and Storage Management.

copy-list* is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Copying Lists"
in Symbolics Common Lisp: Language Concepts.

zl:copylist* list &optional area Function

This is the same as zl:copylist except that the last cons of the resulting
list is never cdr-coded. See the function zl:copylist, page 115. See the sec-
tion "Cdr-Coding" in Symbolics Commeon Lisp: Language Concepts. This
makes for increased efficiency if you ncone something onto the list later.

For a table of related items: See the section "Functions for Copying Lists"
in Symbolics Common Lisp: Language Concepts.

copy-seq sequence &optional area Function

A copy is made of the argument sequence, and the result is equalp to the
argument, but not eq. The function copy-seq returns the same result as
the function subseq, when the value of the start argument of subseq is 0.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

For example:

(setq name "Bil11") => "Bill"

(setq a-copy (copy-seq name)) => "Bill”
a-copy => "Bill"

name => “Bill"

(equalp a-copy name) => T

(eq a-copy name) => NIL

The optional area argument is the number of the area in which to create
the new alist. (Areas are an advanced feature of storage management.)
See the section "Areas" in Internals, Processes, and Storage Management,

For a table of related items: See the section "Sequence Construction and
Access" in Symbolics Common Lisp: Language Concepts.

117 copy-symbol

copy-symbol symbol &optional copyprops Function
Returns a new uninterned symbol with the same print-name as symbol. If
copyprops is non-nil, then the value and function-definition of the new sym-
bol are the same as those of sym, and the property list of the new symbol
is a copy of symbol’s. If copyprops is nil (the default), then the new symbol
is unbound and undefined, and its property list is empty. See the section
"Functions for Creating Symbols" in Symbolics Common Lisp: Language
Concepts.

zl:copysymbol symbol &optional copyprops Function
Returns a new uninterned symbol with the same print-name as symbol. If
copyprops is non-nil, then the value and function-definition of the new sym-
bol are the same as those of sym, and the property list of the new symbol
is a copy of symbol’s. If copyprops is nil (the default), then the new symbol
is unbound and undefined, and its property list is empty. See the section
"Functions for Creating Symbols" in Symbolics Common Lisp: Language
Concepts.

copy-tree tree &optional area Function
copy-tree is useful for copying trees of conses. The argument tree may be
any Lisp object. If it is not a cons, it is returned; otherwise the result is a
new cons made from the results of calling copy-tree on the car and cdr of
the argument. In other words, all conses in the tree are copied recursively,
stopping only when non-conses are encountered. Circularities and the shar-
ing of substructure are not preserved.

The optional aree argument is the number of the area in which to create
the new tree. (Areas are an advanced feature of storage management.)
See the section "Areas" in Internals, Processes, and Storage Management.

For a table of related items: See the section "Functions for Copying Lists"
in Symbolics Common Lisp: Language Concepts.

zl:copytree tree &optional area Function
zl:copytree copies all the conses of a tree and makes a new tree with the
same fringe. You can optionally specify the area in which to create the
new copy. The default is to copy the new list into the area occupied by the
old list.

For a table of related items: See the section "Functions for Copying Lists"
in Symbolics Common Lisp: Language Concepts.

copy-tree-share tree &optional area (hash . Function
(zl:make-equal-hash-table)) cdr-code
copy-tree-share is similar to copy-tree; it makes a copy of an arbitrary
structure of conses, copying at all levels, and optimally cdr-coding.

on

Ct

zl:copytree-share 118

However, it also assures that all lists or tails of lists are optimally shared
when equal.

copy-tree-share takes as arguments the tree to be copied, and optionally a
storage area, an externally created hash table to be used for the equality
testing and a cdr-code. The default storage area for the new list is the
area occupied by the old list. If edr-code is t, then lists will never be
"forked" to enable sharing a tail. This wastes space but improves locality.

Note: copy-tree-share might be very slow in the general case, for long
lists. However, applying it at the appropriate level of a specific structure-
copying routine (furnishing a common externally created hash table) is
likely to yield all the sharing possible, at a much lower computational cost.
For example, copy-tree-share could be applied only to the branches of a
long alist.

Example:

(copy-tree-share *((123) (123) (8123) (82 3)))
If x = *(1 2 3), the above returns (roughly):

‘(x ,x (B8 . ,x) (B8 . ,(cdr x)))

copy-tree-share is a Symbolics extension to Common Lisp.

zl:copytree-share tree &optional area (hash Function

(zl:make-equal-hash-table)) cdr-code
zl:copytree-share is similar to zl:copytree; it makes a copy of an arbitrary
structure of conses, copying at all levels, and optimally cdr-coding.
However, it also assures that all lists or tails of lists are optimally shared
when zl:equal.

zl:copytree-share takes as arguments the tree to be copied, and optionally
a storage area, an externally created hash table to be used for the equality
testing and a cdr-code. The default storage area for the new list is the
area occupied by the old list. If edr-code is t, then lists will never be
"forked" to enable sharing a tail. This wastes space but improves locality.

Note: zl:copytree-share might be very slow in the general case, for long
lists. However, applying it at the appropriate level of a specific structure-
copying routine (furnishing a common externally created hash table) is
likely to yield all the sharing possible, at a much lower computational cost.
For example, zl:copytree-share could be applied only to the branches of a
long alist.

Example:

119 COS

(21:copytree-share ’((1 2 3) (123) (8123) (82 3)))
If x = '(1 2 3), the above returns (roughly):

*Gx,x (@ . ,x) (8 . ,(cdr x)))
For a table of related items: See the section "Functions for Copying Lists"
in Symbolics Common Lisp: Language Concepts.

cos radians Function

Returns the cosine of radians. radians can be of any numeric type.
Examples:

(cos 8) => 1.8
(cos (/ pi 2)) => -0.6d9

For a table of related items: See the section "Trigonometric and Related
Functions" in Symbolics Common Lisp: Language Concepts.

cosd degrees Function
Returns the cosine of degrees. degrees can be of any numeric type.

Examples:

(cosd 98) => -0.8 .
(cosd 45) => 8.7871068
(cosd 36.2) => B8.806396034

For a table of related items: See the section "Trigonometric and Related
Functions" in Symbolics Common Lisp: Language Concepts.

cosh radians Function
Returns the hyperbolic cosine of radians.

Example:
(cosh 8) => 1.8

For a table of related items: See the section "Hyperbolic Functions" in
Symbolics Common Lisp: Language Concepts.

count item sequence &key (test #eql) test-not (key #identity) Function
from-end (start 0) end
Counts the number of elements in a subsequence of sequence satisfying the
predicate specified by the :test keyword. count returns a non-negative in-
teger, which represents the number of elements in the specified sub-
sequence of sequence.

item is matched against the elements specified by the test keyword. item
can be any Symbolics Common Lisp object.

on
Ct

cOos

120

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

:test specifies the test to be performed. An element of sequence satisfies
the test if (funcall testfun item (keyfn x)) is true, where testfun is the test
function specified by :test, keyfn is the function specified by :key and x is
an element of the sequence. The default test is eql.

For example:
(count ’a ’(a b c d) :test-not #'eql) => 3

stest-not is similar to :test, except that the sense of the test is inverted.
An element of sequence satisfies the test if (funcall testfun item (keyfn x))
is false.

The value of the keyword argument :key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element. For example:

(count ’a ’((ab) (ab) (bc)) :key #’car) => 2

(count 1 #(1 2 31 4 1) :key # (lambda (x) (- x 1))) =>1

The :from-end argument does not affect the result returned; it is accepted
purely for compatibility with other sequence functions. For example:

(count ‘a’(aaabcd) :from-end t :start 3) => 8

(count ’a ’(aaabcd) :from-end nil :start 3) => 0

For the sake of efficiency, you can delimit the portion of the sequence to be
operated on by the keyword arguments :start and :end.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

:start indicates the start position for the operation within the sequence.
:end indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

(count ’a ’(a b a)) => 2
(count ’heron ’(heron loon heron pelican heron stork)) => 3

(count ’a ’(aabbaa) :start 1 :end 5) => 2

121 count-if

(count ’a ’(aabbaa) :start 1 :end 6) => 3

(count ’a #(abbba)) =>2
For a table of related items: See the section "Searching for Sequence
Items" in Symbolics Common Lisp: Language Concepts.
count Keyword For loop

count expr {into var} {data-type}

If expr evaluates non-nil, a counter is incremented. The data-type defaults to
fixnum. When the epilogue of the loop is reached, var has been set to the
accumulated result and can be used by the epilogue code.

It is safe to reference the values in var during the loop, but they should not be
modified until the epilogue code for the loop is reached.

The forms count and counting are synonymous.
Examples:

(defun num-entry (small-1ist)
(Toop for x in small-list
count t into num
finally (return num))) => NUM-ENTRY
(num-entry ‘(a bc d)) =>4

Is equivalent to

(defun num-entry (small-list)
(Toop for x in small-list
counting t into num
finally (return num))) => NUM-ENTRY
(num-entry ‘(@ bc d)) =>4

Not only can there be multiple accumulations in a loop, but a single accumulation
can come from multiple places within the same loop form, if the types of the
collections are compatible. count and sum are compatible.

See the section "loop Clauses", page 310.

count-if predicate sequence &key key from-end (start 0) end Function
count-if returns a non-negative integer, which represents the number of
elements in the specified subsequence of sequence satisfying the predicate.

predicate is the test to be performed on each element.

count-if-not 122

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

For example:

(count-if #’atom ’((a b) ((a) b) (nil nil)) :key #’car) => 2

(count-if #’zerop #(1 2 1) :key #’(lambda (x) (- x 1))) => 2

The :from-end argument does not affect the result returned; it is accepted
purely for compatibility with other sequence functions.

For example:

(count-if #’oddp (1 1 2 2) :start 2 :from-end t) => 0

(count-if #’oddp (1 1 2 2) :start 2 :from-end nil) => @

For the sake of efficiency, you can delimit the portion of the sequence to be
operated on by the keyword arguments :start and :end.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

:start indicates the start position for the operation within the sequence.
tend indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

(count-if #’oddp '(1 2 1 2)) => 2
(count-if #’oddp (1112 2 2) :start 2 :end 4) => 1

(count-if #’numberp ’(heron 1.8 a 2 #\Space)) => 2

For a table of related items: See the section "Searching for Sequence
Items" in Symbolics Common Lisp: Language Concepts.

count-if-not predicate sequence &key key from-end (start 0) end Function
count-if-not returns a non-negative integer, which represents the number
of elements in the specified subsequence of sequence that do not satisfy the
predicate.

123 ctypecase

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

For example:

(count-if-not #’atom ’((a b) ((a) b) (nil1 nil)) :key #’car) => 1

(count-if-not #’zerop #(1 2 1) :key #’(lambda (x) (- x 1))) => 1

The :from-end argument does not affect the result returned; it is accepted
purely for compatibility with other sequence functions.

For example:

(count-if-not #’oddp (1 1 2 2) :start 2 :from-end t) => 2

(count-if-not #’aoddp (1 1 2 2) :start 2 :from-end nil) => 2

For the sake of efficiency, you can delimit the portion of the sequence to be
operated on by the keyword arguments :start and :end.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

:start indicates the start position for the operation within the sequence.
:end indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

(count-if-not #’numberp ’(heron 1.8 a 2 #\Space)) => 3

(count-if-not #’oddp *(3 4 3 4)) => 2

For a table of related items: See the section "Searching for Sequence
Items" in Symbolics Common Lisp: Language Concepts.

ctypecase object &body body Special Form
The name of this function stands for "continuable exhaustive case".
ctypecase is similar to typecase, except that it does not allow an explicit
otherwise or t clause, and if no clause is satisfied it signals a proceedable
error instead of returning nil.

on

ctypecase | 124

ctypecase is a conditional that chooses one of its clauses by examining the
type of an object. Its form is as follows:

(typecase form
(types consequent consequent ...)
(types consequent consequent ...)

)

First ctypecase evaluates form, producing an object. ctypecase then ex-
amines each clause in sequence. types in each clause is a type specifier in
either symbol or list form, or a list of type specifiers. The type specifier is
not evaluated. If the object is of that type, or of one of those types, then
the consequents are evaluated and the result of the last one is returned (or
nil if there are no consequents in that clause). Otherwise, ctypecase
moves on to the next clause.

If no clause is satisfied, ctypecase signals an error with a message con-
structed from the clauses. To continue from this error, supply a new value
for object, causing ctypecase to store that value and restart the type tests.
Subforms of object can be evaluated multiple times.

For an object to be of a given type means that if typep is applied to the

object and the type, it returns t. That is, a type is something meaningful
as a second argument to typep. A chart of supported data types appears
elsewhere. See the section "Data Types and Type Specifiers" in Symbolics
Common Lisp: Language Concepts.

It is permissible for more than one clause to specify a given type, par-
ticularly if one is a subtype of another; the earliest applicable clause is
chosen. Thus, for ctypecase, the order of the clauses can affect the be-
havior of the construct.

Examples:

(defun tell-about-car (x)
(ctypecase (car x)
(string "string”)))=> TELL-ABOUT-CAR
(teli-about-car ’("word" "more”)) => "string"
(tell-about-car ’(a 1)) => proceedable error is signalled

125

ctypecase

(defun tell-about-car (x) ; see typecase
(ctypecase (car x)

(fixnum “number.”)

((or string symbol) "string or symbol.")

(otherwise "I don’t know."))) => TELL-ABOUT-CAR
(tell-about-car (1 a)) => "number.”
(tell-about-car ’(a 1)) => “string or symbol.”
(tell-about-car °’("word" "more")) => "string or symbol."”
(tell-about-car ’(1.8)) => "I don’t know."

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Condition-Checking and Sig-
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

debugging-info | 126

debugging-info function Function

This returns the debugging info alist of function. Most of the elements of
this alist are an internal interface between the compiler and the Debugger.

sys:debug-instance instance Function

decf

Enters the debugger in the lexical environment of instance. This is useful
in debugging. You can examine and alter instance variables, and run func-
tions that use the instance variables.

access-form &optional amount Macro
Decrements the value of a generalized variable. (decf ref) decrements the
value of ref by 1. (decf ref amount) subtracts amount from ref and stores
the difference back into ref.

decf expands into a setf form, so ref can be anything that setf understands
as its access-form. This also means that you should not depend on the
returned value of a decf form.

You must take great care with decf because it might evaluate parts of ref
more than once. (decf does not evaluate any part of ref more than once.)

See the section "Generalized Variables" in Symbolics Common Lisp: Lan-
guage Concepts.

declare &rest ignore Special Form

The declare special form can be used in two ways: at top level or within
function bodies. For information on top-level declare forms: See the sec-
tion "How the Stream Compiler Handles Top-level Forms" in Program
Development Utilities.

declare forms that appear within function bodies provide information to the
Lisp system (for example, the interpreter and the compiler) about this par-
ticular function. Expressions appearing within the function-body declare
are declarations; they are not evaluated. declare forms must appear at the
front of the body of certain special forms, such as let and defun. Some
declarations apply to function definitions and must appear as the first
forms in the body of that function; otherwise they are ignored.

Function-body declare forms understand the following declarations. The
first group of declarations can be used only at the beginning of a function
body, for example, defun, defmacro, defmethod, lambda, or flet.
(arglist . arglist)
This declaration saves arglist as the argument list of the function,
to be used instead of its lambda-list if c-sh-A or the arglist func-
tion need to determine the function’s arguments. The arglist decla-
ration is used purely for documentation purposes.

Example:

127 declare

(defun example (&rest options)
(declare (arglist &key x y 2))
(1expr-funcall #’example-2 “Print"” options))

(values . values)
This declaration saves values as the return values list of the func-
tion, to be used if c-sh-A or the arglist function asks what values it
returns. The values declaration is used purely for documentation
purposes.

(sys:function-parent name type)
Helps the editor and source-finding tools (like m—-.) locate symbol
definitions produced as a result of macro expansion. (The accessor,
constructor, and alterant macros produced by a zl:defstruct are an
example.)

The sys:function-parent declaration should be inserted in the
source definition to record the name of the outer definition of which
it is a part. name is the name of the outer definition. type is its
type, which defaults to defun. See the section "Using The
sys:function-parent Declaration” in Symbolics Common Lisp: Lan-
guage Concepts.

(sys:downward-function)
The declaration sys:downward-function, in the body of an internal
lambda, guarantees to the system that lexical closures of the lambda
in which it appears are only used as downward funargs, and never
survive the calls to the procedure that produced them. This allows
the system to allocate these closures on the stack.

(defun special-search-table (item)
(block search
(send xhash-tablex :map-hash
#’ (1ambda (key object)
(deciare (sys:downward-function))
(when (magic-function key object item)
(return-from search object))))))

Here, the :map-hash message to the hash table calls the closure of
the internal lambda many times, but does not store it into per-
manent variables or data structure, or return it "around"
special-search-table. Therefore, it is guaranteed that the closure
does not survive the call to special-search-table. It is thus safe to
allow the system to allocate that closure on the stack.

Stack-allocated closures have the same lifetime (extent) as &rest ar-

declare 128

guments and lists created by with-stack-list and with-stack-list?*,
and require the same precautions. See the variable
lambda-list-keywords, page 282.

(sys:downward-funarg varl var2 ...) or (sys:downward-funarg *)
The sys:downward-funarg declaration (not to be confused with
sys:downward-function) permits a procedure to declare its intent to
use one or more of its arguments in a downward manner. For in-
stance, zl:sort’s second argument is a funarg, which is only used in
a downward manner, and is declared this way. The second ar-
gument to process-run-function is a good example of a funarg that
is not downward. Here is an example of a function that uses and
declares its argument as a downward funarg.

(defun search-alist-by-predicate (alist predicate)
(declare (sys:downward-funarg predicate))
;; Traditional "recursive” style, for variety.
(if (null alist)
nil
(let ((element (car 1ist))
(rest (cdr list))
(if (funcall predicate (car é1ement))
(cdr element)
(search-alist-by-predicate rest predicate))))))

This function only calls the funarg passed as the value of predicate.
It does not store it into permanent structure, return it, or throw it
around search-alist-by-predicate’s activation.

The reason you so declare the use of an argument is to allow the
system to deduce guaranteed downward use of a funarg without
need for the sys:downward-function declaration. For instance, if
search-alist-by-predicate were coded as above, we could write

(defun look-for-element-in-tolerance (alist required-value tolerance)
(search-alist-by-predicate alist
#’ (1ambda (key)
(< (abs (- key required-value)) tolerance))))

to search the keys of the list for a number within a certain
tolerance of a required value. The lexical closure of the internal
lambda is automatically allocated by the system on the stack be-
cause the system has been told that any funarg used as the first ar-
gument to search-alist-by-predicate is used only in a downward
manner. No declaration in the body of the lambda is required.

129 declare

All appropriate parameters to system functions have been declared
in this way.

There are two possible forms of the sys:downward-funarg declara-
tion:

(declare (sys:downward-funarg varl var2 ...)
Declares the named variables, which must be
parameters (formal arguments) of the function in
which this declaration appears, to have their
values used only in a downward fashion. This af-
fects the generation of closures as functional ar-
guments to the function in which this declaration
appears: it does not directly affect the function it-
self. Due to an implementation restriction, var-i
cannot be a keyword argument.

(declare (sys:downward-funarg *))
Declares guaranteed downward use of all func-
tional arguments to this function. This is to
cover closures of functions passed as elements of
&rest arguments and keyword arguments.

The following group of declarations can be used at the beginning of any
body, for example, a let body.

(special syml sym2 ...)
The symbols sym1i, sym2, and so on, are treated as special variables
within the form containing the declare; the Lisp system (both the
compiler and the interpreter) implements the variables using the
value cells of the symbols.

(zl:unspecial sym1 sym2 ...)
The symbols sym1, sym2, and so on, are treated as local variables
within the form containing the declare.

Example:
(defun print-integer (number base)
(declare (unspecial base))
(when (2 number base)
(print-integer (floor number base) base))
(tyo (digit-char (mod number base) base)))

(sys:array-register variablel variable2 ...)
Indicates to the compiler that variablel, variable2, and so on, are
holding single-dimensional arrays as their values. Henceforth, each
of these variables must always hold a single-dimensional array. The

decode-float 130

compiler can then use special faster array element referencing and
setting instructions for the aref and zl:aset functions. Whether or
not this declaration is worthwhile depends on the type of array and
the number of times that referencing and setting instructions are
executed. For example, if the number of referencing instructions is
more than ten, this declaration makes your program run faster; for
one or two references, it actually slows execution.

(sys:array-register-1d variablel variable2 ...)

Indicates to the compiler that variablel, variable2, and so on, are
holding single- or multidimensional arrays as their values, and that
the array is going to be referenced as a one-dimensional array.
Henceforth, each of these variables must always hold an array. The
compiler can then use special faster array element referencing and
setting instructions for the sys:%1d-aref and sys:%1d-aset functions.
Whether or not this declaration is worthwhile depends on the type
of array and the number of times that referencing and setting in-
structions are executed. For example, if the number of referencing
instructions is more than ten, this declaration makes your program
run faster; for one or two references, it actually slows execution.

The compiler also recognizes any number of declare forms as the first
forms in the bodies of the following special forms. This means that you
can have special declarations that are local to any of these blocks. In ad-
dition, declarations can appear at the front of the body of a function defini-
tion, like defun, defmacro, defsubst, and so on.

zl:destructuring-bind multiple-value-bind
let let*
do do*
zl:do-named zl:do*-named
prog prog*
lambda
decode-float float Function

Determines and returns the significand, the exponent, and the sign cor-
responding to the floating-point argument float.

The significand is returned as a floating-point number of the same format
as float. It is obtained by dividing the argument by an integral power of 2,
the radix of the floating-point representation, so as to bring its value be-
tween 1/2 (inclusive) and 1 (exclusive). The quotient is then returned as

the significand.

The second result of decode-float is the integer exponent e to which 2
must be raised to produce the appropriate power for the division.

131 decode-raster-array

The third result is a floating-point number, of the same format as the ar-
gument, whose absolute value is one and whose sign matches that of the
argument.

Examples:

(decode-float 2.8) => 0.5 and 2 and 1.0
(decode-float -2.8) => 8.5 and 2 and -1.8
(decode-float 4.8) => 0.5 and 3 and 1.9
(decode-float 8.8) => 8.5 and 4 and 1.8
(decode-float 3.8) => 08.75 and 2 and 1.9
(decode-float 8.8) => 8.8 and 8 and 1.0
(decode-float -0.8) => 0.8 and 8 and -1.0

;33; a possible use of decode-float
;333 (log-abs float)=(log (abs float))

(defun log-abs (float)
(multiple-value-bind (significand exponent)
(decode-float float)
(+ (log significand) ;1og ab= log a + log b
(x exponent (log 2))))) ;log (expt x y)= ylogx

(log-abs 2.8) => 8.6931472 ;(log 2) => 0.6931472

For a table of related items: See the section "Functions That Decompose
and Construct Floating-point Numbers" in Symbolics Common Lisp: Lan-
guage Concepts.

decode-raster-array raster Function
Returns the following attributes of the raster as values: width, height, and
spanning width. In a row-major implementation, width and height are the
second and first dimensions, respectively. The spanning width is the num-
ber of linear array elements needed to go from (x,y) to (x,y+1). For noncon-
formal arrays, this is the same as the width. For conformal arrays, this is
the width of the underlying array that provides the storage adjusted for
possibly differing numbers of bits per element.

decode-raster-array should be used rather than array-dimensions,
zl:array-dimension-n, or sys:array-row-span for the following reasons.

o decode-raster-array does error checking by ensuring that the array
is two-dimensional.

e A single call to decode-raster-array is faster than any non-null com-
bination of the alternatives.

o decode-raster-array always returns the width and height, which are

math:decompose 132

not the first and second dimensions as returned by array-dimensions
or zl:array-dimension-n.

math:decompose a &optional lu ps ignore Function
Computes the LU decomposition of matrix a. If lu is non-nil, stores the
result into it and returns it; otherwise it creates an array to hold the
result, and returns that. The lower triangle of lu, with ones added along
the diagonal, is L, and the upper triangle of lu is U, such that the product
of L and U is a. Gaussian elimination with partial pivoting is used. The
lu array is permuted by rows according to the permutation array ps, which
is also produced by this function. If the argument ps is supplied, the per-
mutation array is stored into it; otherwise, an array is created to hold it.
This function returns two values: the LU decomposition and the permuta-
tion array.

def function &rest defining-forms Special Form
If a function is created in some strange way, wrapping a def special form
around the code that creates it informs the editor of the connection. The
form:

(def function-spec
forml form2...)

simply evaluates the forms forml, form2, and so on. It is assumed that
these forms create or obtain a function somehow, and make it the defini-
tion of function-spec.

Alternatively, you could put (def function-spec) in front of or anywhere near
the forms that define the function. The editor only uses it to tell which
line to put the cursor on.

zl:defconst variable initial-value &optional documentation Special Form
The same as defvar, except that variable is always set to initial-value
regardless of whether variable is already bound. The rationale for this is
that defvar declares a global variable, whose value is initialized to some-
thing but is then changed by the functions that use it to maintain some
state. On the other hand, zl:defconst declares a constant, whose value is
never changed by the normal operation of the program, only by changes to
the program. zl:defconst always sets the variable to the specified value so
that if, while developing or debugging the program, you change your mind
about what the constant value should be, and you then evaluate the
zl:defconst form again, the variable gets the new value. It is not the in-
tent of zl:defconst to declare that the value of variable never changes; for
example, zl:defconst is not license to the compiler to build assumptions
about the value of variable into programs being compiled. See defconstant
for that.

133 defconstant

See the section "Special Forms for Defining Special Variables" in Symbolics
Common Lisp: Language Concepts.

defconstant wvariable initial-value &optional documentation Special Form
Declares the use of a named constant in a program. initial-value is
evaluated and variable set to the result. The value of variable is then
fixed. It is an error if variable has any special bindings at the time the
defconstant form is executed. Once a special variable has been declared
constant by defconstant, any further assignment to or binding of that vari-
able is an error.

The compiler is free to build assumptions about the value of the variable
into programs being compiled. If the compiler does replace references to
the name of the constant by the value of the constant in code to be com-
piled, the compiler takes care that such "copies" appear to be eql to the
.object that is the actual value of the constant. For example, the compiler
can freely make copies of numbers, but it exercises care when the value is
a list.

In Symbolics Common Lisp, defconstant and zl:defconst are essentially the
same if the value is other than a number, a character, or an interned sym-
bol. However, if the variable being declared already has a value,
zl:defconst freely changes the value, whereas defconstant queries before
changing the value. defconstant’s query offers three choices: Y, N, and

p.

e The Y option changes the value.

¢ The N option does not change the value.

e The P option changes the value and when you change any future
value, it prints a warning rather than a query.

The P option sets sys:inhibit-fdefine-warnings to :just-warn. defconstant
obeys that variable, just as query-about-redefinition does. Use
(setq sys:inhibit-fdefine-warnings nil) to revert to the querying mode.

When the value of a constant is changed by a patch file, a warning is
printed.

defconstant assumes that changing the value is dangerous because the old
value might have been incorporated into compiled code, which is out of
date if the value changed.

In general, you should use defconstant to declare constants whose value is
a number, character, or interned symbol and is guaranteed not to change.
An example is . The compiler can optimize expressions that contain
references to these constants. If the value is another type of Lisp object or
if it might change, you should use zl:defconst instead.

documentation, if provided, should be a string. It is accessible to the
documentation function.

deff 134

See the section "Special Forms for Defining Special Variables" in Symbolics
Common Lisp: Language Concepts.

deff function definition Special Form
deff is a simplified version of def. It evaluates the form definition-creator,
which should produce a function, and makes that function the definition of
function-spec, which is not evaluated. deff is used for giving a function
spec a definition that is not obtainable with the specific defining forms
such as defun and macro. For example:

(deff foo ’bar)

makes foo equivalent to bar, with an indirection so that if bar changes,
foo likewise changes;

(deff foo (function bar))

copies the definition of bar into foo with no indirection, so that further
changes to bar have no effect on foo.

defflavor name instance-variables component-flavors &rest options Special Form
name is a symbol that is the name of this flavor. defflavor defines the
name of the flavor as a type name in both the Common Lisp and Zetalisp
type systems: See the section "Flavor Instances and Types" in Symbolics
Common Lisp: Language Concepts.

instance-variables is a list of the names of the instance variables containing
the local state of this flavor. Each element of this list can be written in
two ways: either the name of the instance variable by itself, or a list con-
taining the name of the instance variable and a default initial value for it.
Any default initial values given here are forms that are evaluated by
make-instance if they are not overridden by explicit arguments to
make-instance.

If you do not supply an initial value for an instance variable as an ar-
gument to make-instance, and there is no default initial value provided in
the defflavor form, the value of an instance variable remains unbound.
(Another way to provide a default is by using the :default-init-plist option
to defflavor.)

component-flavors is a list of names of the component flavors from which
this flavor is built.

Each option can be either a keyword symbol or a list of a keyword symbol
and its arguments. The options to defflavor are described elsewhere:

See the section "Summary of defflavor Options" in Symbolics
Common Lisp: Language Concepts.

See the section "Complete Options for defflavor” in
Symbolics Common Lisp: Language Concepts.

Several of these options affect instance variables. These options can be given in
two ways:

135 deffunction

keyword The keyword appearing by itself indicates that the option
applies to all instance variables listed at the top of this
defflavor form.

(keyword varl var2 ...)
A list containing the keyword and one or more instance
variables indicates that this option refers only to the in-
stance variables listed here.

The following form defines a flavor wink to represent tiddly-winks. The
instance variables x and y store the location of the wink. The default in-
itial value of both x and y is 0. The instance variable color has no default
initial value. The options specify that all instance variables are
:initable-instance-variables; x and y are :writable-instance-variables; and
color is a :readable-instance-variable.

(defflavor wink ((x 8) (y 8) color) ;X and y represent location
O ;no component flavors
:initable-instance-variables
(:writable-instance-variables x y) ;this implies readable

(:readable-instance-variables color))

You can specify that an option should alter the behavior of instance vari-
ables inherited from a component flavor. To do so, include those instance
variables explicitly in the list of instance variables at the top of the def-
flavor form. In the following example, the variables x and y are explicitly
included in this defflavor form, even though they are inherited from the
component flavor, wink. These variables are made initable in the def-
flavor form for big-wink; they are made writable in the defflavor form for
wink.

(defflavor big-wink (x y size)
(wink) ;wink is a component
(:initable-instance-variables x y))

If you specify a defflavor option for an instance variable that is not in-
cluded in this defflavor form, an error is signalled. Flavors assumes you
misspelled the name of the instance variable.

deffunction function-spec lambda-macro-name lambda-list body... Special Form
deffunction defines a function using an arbitrary lambda macro in place of
lambda. A deffunction form is like a defun form, except that the func-
tion spec is immediately followed by the name of the lambda macro to be
used. deffunction expands the lambda macro immediately, so the lambda
macro must already be defined before deffunction is used. For example,
suppose the ilisp lambda macro were defined as follows:

defgeneric 136

(1ambda-macro ilisp (x)
*(lambda (&optional ,@(second x) &rest ignore) . ,(cddr x)))

Then the following example would define a function called new-list that
would use the lambda macro called ilisp:

(deffunction new-list ilisp (x y 2)
(list x y 2))

new-list’s arguments are optional, and any extra arguments are ignored.
Examples:

(new-list 1 2) => (1 2 nil)
(new-list 1 2 3 4) -> (1 2 3)

defgeneric generic-function-name (argl arg2...) options... Special Form
Defines a generic function named generic-function-name that accepts ar-
guments defined by (argl arg2...), a lambda-list. The first argument, argi,
is required, unless the :function option is used to indicate otherwise. argl
represents the object that is supplied as the first argument to the generic
function. The flavor of argl determines which method is appropriate to
perform this generic function on the object. Any additional arguments
(arg2, and so on) are passed to the methods.

The arguments to defgeneric are displayed when you give the Arglist (n-X)
command or press c-sh-A while this generic function is current.

For example, to define a generic function total-fuel-supply that works on
instances of army and navy, and takes one argument (fuel-type) in addition
to the object itself, we might supply military-group as argl:

(defgeneric total-fuel-supply (military-group fuel-type)
“Returns today’s total supply
of the given type of fuel
available to the given military group.”
(:method-combination :sum))

The generic function is called as follows:
(total-fuel-supply blue-army ’:gas)

The argument blue-army is known to be of flavor army. Therefore,
Flavors chooses the method that implements the total-fuel-supply generic
function on instances of the army flavor. That method takes only one ar-

gument, fuel-type:

(defmethod (total-fuel-supply army) (fuel-type)
body of method)

The set of options for defgeneric are described elsewhere: See the section
"Options For defgeneric" in Symbolics Common Lisp: Language Concepts.

137 si:define-character-style-families

It is not necessary to use defgeneric to set up a generic function. For fur-
ther discussion: See the section "Use Of defgeneric" in Symbolics Com-
mon Lisp: Language Concepts.

The function spec of a generic function is described elsewhere: See the
section "Function Specs for Flavor Functions" in Symbolics Common Lisp:
Language Concepts.

si:define-character-style-families device character-set &rest plists Function
This function is the mechanism for defining new character styles, and for
defining which font should be used for displaying characters from
c