
1. INTRODUCTION 

Purpose 
This guide is designed to give you information about programming in a SYSTEM 
V/68 environment. It does not attempt to teach you how to write programs. 
Rather, it is intended to supplement texts on programming languages by 
concentrating on the other elements that are part of getting programs into 
operation. 

Some of the features described in this guide may not be contained in the basic 
operating system software; they are provided as "unbundled;' software. An 
example of this is Chapter 19; the Transport Interface is a part of the Network 
Supplement Extension software, which must be ordered separately. 

Audience and Prerequisite Knowledge 
As the title suggests, we are addressing programmers, especially those who have 
not worked extensively with this type of operating system. No special level of 
programming involvement is assumed. We hope the book will be useful to 
people who write only an occasional program as well as those who work on or 
manage large application development projects. 

Programmers in the expert class, or those engaged in developing system software, 
may find this guide lacks the depth of information they need. For them we 
recommend the Programmer's Reference Manual. 

Knowledge of terminal use, of an editor, and of the system directory/file structure 
is assumed. If you feel shaky about your mastery of these basic tools, you might 
want to look over the User's Guide before tackling this one. 

Organization 
The manual is divided into two parts that together include nineteen chapters, as 
follows: 

Part 1: 

• Chapter 1 - Overview 

Identifies the special features of the operating system that make up the 
programming environment: the concept of building blocks, pipes, special files, 
shell programming, etc. As a framework for the material that follows, three 

MU43815PG/D2 1-1 12/01/87 



II INTRODUCTION 

different levels of programming are defined: single-user, applications, and 
systems programming. 

• Chapter 2 - Programming Basics 

Describes the most fundamental utilities needed to get programs running. 

• Chapter 3 --::-- Application Programming 

Enlarges on many of the topics covered in the previous chapter with particular 
emphasis on how things change as the project grows bigger. Describes tools 
for keeping programming projects organized. 

Part 2: 

• Chapters 4 through 19 - Support Tools, Descriptions, and Tutorials 

Include detailed information about the use of many of the operating system 
tools. 

At the end of the text are appendices, a glossary, and an index. 

The C Connection 
SYSTEM V/68 supports many programming languages, and C language compilers 
are available on many different operating systems. Nevertheless, the relationship 
between the operating system and Chas always been and remains close. Most of 
the code in SYSTEM V/68 is C, and over the years many organizations have come 
to use C for an increasing portion of their application code. Thus, while this 
guide is intended to be useful to you no matter what language you are using, you 
will find that, unless there is a specific language-dependent point to be made, the 
examples assume you are programming in C. 

Hardware/Software Dependencies 
The text reflects the way things work on a VME-based computer running SYSTEM 
V/68 at the Release 3 level. If you find commands that work a little differently in 
your system environment, it may be because you are running under a different 
release of the software. If some commands just don't seem to exist at all, they 
may be members of packages not installed on your system. 

MU43815PG/D2 1-2 12/01/87 



INTRODUCTION 

Notation Conventions 
Whenever the text includes examples of output from the computer and/or 
commands entered by you, we follow the standard notation scheme that is 
common throughout the SYSTEM V/68 documentation: 

• Commands that you type in from your terminal are shown in bold type. 

• Text that is printed on your terminal by the computer is shown in const.ant. 
widt.h type. Constant width type is also used for code samples because it 
allows the most accurate representation of spacing. Spacing is often a matter 
of coding style, but is sometimes critical. 

• Comments added to a display to show that part of the display has been 
omitted are shown in italic type and are indented to separate them from the 
text that represents computer output or input. Comments that explain the 
input or output are shown in the same type font as the rest of the display. 

Italics are also used to show substitutable values, such as filename, when the 
format of a command is shown. 

• There is an implied RETURN at the end of each command and menu response 
you enter. Where you may be expected to enter only a RETURN (as in the 
case where you are accepting a menu default), the symbol <CR> is used. 

• In cases where you are expected to enter a control character, it is shown as, for 
example, CTRL·D. This means that you press the d key on your keyboard 
while holding down the CTRL key. 

• The dollar sign, $, and pound sign, #, symbols are the standard default 
prompt signs for an ordinary user and root respectively. A$ means you are 
logged in as an ordinary user. A# means you are logged in as root. 

• When the# prompt is used in an example, it means the command illustrated 
may be used only by root. 

MU43815PG/D2 1-3 12/01/87 



II INTRODUCTION 

Command References 
When commands are mentioned in a section of the text for the first time, a 
reference to the manual section where the command is formally described is 
included in parentheses - for example, echo(l). The numbered sections are 
located in the following manuals: 

Section (1) User's Reference Manual 

Sections (1, lM), (7), (8) System Administrator's Reference Manual 

Sections (1), (2), (3), (4), (5) Programmer's Reference Manual 

Information in the Examples 
While every effort has been made to present displays of information just as they 
appear on your terminal, it is possible that your system may produce slightly 
different output. Some displays depend on a particular machine configuration 
that may differ from yours. Changes between releases of the operating system 
software may cause small differences in what appears on your terminal. 
Appendix A describes the command packages available on VME-based computers. 
If you find yourself trying to execute a nonexistent command, check Appendix A, 
then talk to your system administrator. 

Where complete code samples are shown, we have tried to make sure they 
compile and work as represented. Where code fragments are shown, while we 
can't say that they have been compiled, we have attempted to maintain the same 
standards of coding accuracy for them. 

The Scope of This Guide 
The Programmer's Guide is about tools used in the process of creating programs in 
a SYSTEM V/68 environment. 

Tools not covered in this text: 

• the login procedure 

• SYSTEM V/68 editors and how to use them 

• how the file system is organized and how you move around in it 

• shell programming 

Information about these subjects can be found in the User's Guide and numerous 
other commercially available texts. 

MU43815PG/D2 1-4 12/01/87 



INTRODUCTION 

Tools covered here can be classified as follows: 

• utilities for getting programs running 

• utilities for organizing software development projects 

• specialized languages 

• debugging and analysis tools 

• compiled language components that are not part of the language syntax - for 
example, standard libraries, and system and function calls. 

The Shell as a Prototyping Tool 

Any time you log on to the system, you are using the shell. The shell is the 
interactive command interpreter that stands between you and the operating 
system kernel. Because of its ability to start processes, direct the flow of control, 
field interrupts, and redirect input and output, it is a full-fledged programming 
language. Programs that use these capabilities are known as shell procedures or 
shell scripts. 

Much innovative use of the shell involves stringing together commands to be run 
under the control of a shell script. The dozens and dozens of commands that can 
be used in this way are documented in the User's Reference Manual. Time spent 
with the User's Reference Manual can be rewarding. Look through it when you are 
trying to find a command with just the right option to handle a knotty 
programming problem. The more familiar you become with the commands 
described in the manual pages, the more you will be able to take full advantage of 
the operating system environment. 

It is not our purpose here to instruct you in shell programming. What we want to 
stress here is the important part that shell procedures can play in developing 
prototypes of full-scale applications. While understanding all the nuances of shell 
programming can be a complex task, getting a shell procedure up and running is 
far less time-consuming than writing, compiling, and debugging compiled code. 

This ability to get a program into production quickly is what makes the shell a 
valuable tool for program development. Shell programming allows you to ''build 
on the work of others" to the greatest possible degree, since it allows you to piece 
together major components simply and efficiently. Many times even large 
applications can be done using shell procedures. Even if the application is 
initially developed as a prototype system for testing purposes rather than being 
put into production, many months of work can be saved. 

With a prototype for testing, the range of possible user errors can be 
determined-something that is not always easy to plan out when an application is 

MU43815PG/D2 1-5 12/01/87 



II INTRODUCTION 

being designed. The method of dealing with strange user input can be worked 
out inexpensively, avoiding large recoding problems. 

An available operating system tool can accomplish with a couple of lines of 
instructions what might take a page and a half of compiled code. Shell 
procedures can intermix compiled modules and regular operating system 
commands to let you take advantage of work that has gone before. 

Three Programming Environments 
We distinguish among three programming environments to emphasize that the 
information needs and the way in which operating system tools are used differ 
from one enviro~ent to another. We do not intend to imply a hierarchy of skill 
or experience. Highly-skilled programmers with years of experience can be found 
in the "single-user" category, and relative newcomers can be members of an 
application development or systems programming team. 

Single-User Environment 

Programmers in this environment are writing programs only to ease the 
performance of their primary job. The resulting programs might well be added to 
the stock of programs available to the community in which the programmer 
works. Single-user programmers may not have externally imposed requirements, 
or coauthors, or project management concerns. The programming task itself 
drives the coding directly. One advantage of a timesharing system is that people 
with programming skills can be set free to work on their own without having to 
go through formal project approval channels and perhaps wait for months for a 
programming department to solve their problems. 

Single-user programmers need to know how to: 

• select an appropriate language 

• compile and run programs 

• use system libraries 

• analyze programs 

• debug programs 

• keep track of program versions 

MU43815PG/D2 1-6 12/01/87 



INTRODUCTION 

Most of the information required to do these functions at the single-user level can 
be found in Chapter 2. 

Application Environment 

Programmers working in this environment are developing systems for the benefit 
of other, non-programming users. Most large commercial computer applications 
still involve a team of applications development programmers. They may be 
employees of the end-user organization or they may work for a software 
development firm. Some of the people working in this environment may be more 
in the project management area than working programmers. 

Information needs of people in this environment include all the topics in Chapter 
2, plus additional information on: 

• software control systems 

• file and record locking 

• communication between processes 

• shared memory 

• advanced debugging techniques 

These topics are discussed in Chapter 3. 

Systems Environment 

Programmers in this environment are engaged in writing software tools that are 
part of, or closely related to, the operating system itself. The project may involve 
writing a new device driver, a data base management system, or an enhancement 
to the operating system kernel. In addition to knowing their way around the 
operating system source code and how to make changes and enhancements to it, 
they need to be thoroughly familiar with all the topics covered in Chapters 2 and 
3. 

MU43815PG/D2 1-7 12/01/87 



II 


