
INTR0(2) INTR0(2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
#include <errno.h>

DESCRIPTION
This section describes all of the system calls. Most of these calls have one
or more error returns. An error condition is indicated by an otherwise
impossible returned value. This is almost always -1 or the NULL pointer;
the individual descriptions specify the details. An error number is also
made available in the external variable errno. Errno is not cleared on suc­
cessful calls, so it should be tested only after an error has been indicated.

Each system call description attempts to list all possible error numbers.
The following is a complete list of the error numbers and their names as
defined in <ermo.h>.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some
way forbidden except to its owner or super-user. It is also
returned for attempts by ordinary users to do things allowed only
to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should
exist but doesn't, or when one of the directories in a path name
does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by pid in
kill(2) or ptrace(2).

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user
has elected to catch, occurred during a system call. If execution is
resumed after processing the signal, it will appear as if the inter­
rupted system call returned this error condition.

5 EIO 110 error

MU43814PR/D2

Some physical 1/0 error has occurred. This error may in some
cases occur on a call following the one to which it actually applies.

-1- 12/01/87

II

II
INTR0(2) INTR0(2)

6 ENXIO No such device or address
1/0 on a special file refers to a subdevice which does not exist, or
beyond the limits of the device. It may also occur when, for
example, a tape drive is not on-line or no disk pack is loaded on a
drive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a member
of the exec(2) family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid magic number
[see a.out(4)].

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read(2) [respec­
tively, write(2)] request is made to a file which is open only for
writing (respectively, reading).

10 ECHILD No child processes
A wait was executed by a process that had no existing or
unwaited-for child processes.

11 EAGAIN No more processes
A fork failed because the system's process table is full or the user
is not allowed to create any more processes. Or a system call
failed because of insufficient memory or swap space.

12 ENOMEM Not enough space
During an exec(2), brk(2), or sbrk(2), a program asks for more space
than the system is able to supply. This may not be a temporary
condition; the maximum space size is a system parameter. The
error may also occur if the arrangement of text, data, and stack
segments requires too many segmentation registers, or if there is
not enough swap space during a fork(2). If this error occurs on a
resource associated with Remote File Sharing (RFS), it indicates a
memory depletion wich may be temporary, dependent on system
activity at the time the call was invoked.

13 EACCES Permission denied

MU43814PR/D2

An attempt was made to access a file in a way forbidden by the
protection system.

- 2 - 12/01/87

INTR0(2) INTR0(2)

14 EFAULT Bad address II
The system encountered a hardware fault in attempting to use an
argument of a system call.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was
required, e.g., in mount(2).

16 EBUSY Device or resource busy
An attempt was made to mount a device that was already
mounted or an attempt was made to dismount a device on which
there is an active file (open file, current directory, mounted-on
file, active text segment). It will also occur if an attempt is made
to enable accounting when it is already enabled. The device or
resource is currently unavailable.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g.,
link(2).

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a
device; e.g., read a write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for
example in a path prefix or as an argument to chdir(2).

21 EISDIR Is a directory
An attempt was made to write on a directory.

22 EINV AL Invalid argument
Some invalid argument (e.g., dismounting a non-mounted device;
mentioning an undefined signal in signal(2) or kill(2); reading or
writing a file for which lseek(2) has generated a negative pointer).
Also set by the math functions described in the (3M) entries of
this manual.

23 ENFILE File table overflow

MU43814PR/D2

The system file table is full, and temporarily no more opens can be
accepted.

- 3 - 12/01/87

II
INTR0(2) INTR0(2)

24 EMFILE Too many open files
No process may have more than NOFILES (default 100) descrip­
tors open at a time.

25 ENOTTY Not a character device (or) Not a typewriter
An attempt was made to ioctl(2) a file that is not a special charac­
ter device.

26 ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program that is
currently open for writing. Also an attempt to open for writing or
to remove a pure-procedure program that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size or ULIMIT [see
ulimit(2)].

28 ENOSPC No space left on device
During a write(2) to an ordinary file, there is no free space left on
the device. In /cntl(2), the setting or removing of record locks on a
file cannot be accomplished because there are no more record
entries left on the system.

29 ESPIPE Illegal seek
An lseek(2) was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device
mounted read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of links
(1000) to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data.
This condition normally generates a signal; the error is returned if
the signal is ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is out of the
domain of the function.

34 ERANGE Result too large

MU43814PR/D2

The value of a function in the math package (3M) is not represent­
able within machine precision.

-4- 12/01/87

INTR0(2) INTR0(2)

35 ENOMSG No message of desired type II
An attempt was made to receive a message of a type that does not
exist on the specified message queue [see msgop(2)).

36 EIDRM Identifier removed
This error is returned to processes that resume execution due to
the removal of an identifier from the file system's name space [see
msgctl(2), semctl(2), and shmctl(2)].

37-44 Reserved numbers

45 EDEADLK Deadlock
A deadlock situation was detected and avoided. This error per­
tains to file and record locking.

46 ENOLCK No lock
In /cntl(2) the setting or removing of record locks on a file cannot
be accomplished because there are no more record entries left on
the system.

60 ENOSTR Not a stream
A putmsg(2) or getmsg(2) system call was attempted on a file
descriptor that is not a STREAMS device.

62 ETIME Stream ioctl timeout
The timer set for a STREAMS ioctl(2) call has expired. The cause of
this error is device specific and could indicate either a hardware or
software failure, or perhaps a timeout value that is too short for
the specific operation. The status of the ioctl(2) operation is
indeterminate.

63 ENOSR No stream resources
During a STREAMS open(2), either no STREAMS queues or no
STREAMS head data structures were available.

64 ENONET Machine is not on the network
This error is Remote File Sharing (RFS) specific. It occurs when
users try to advertise, unadvertise, mount, or unmount remote
resources while the machine has not done the proper startup to
connect to the network.

65 ENOPKG No package

MU43814PR/D2

This error occurs when users attempt to use a system call from a
package which has not been installed.

-5- 12101/87

II
INTR0(2) INTR0(2)

66 EREMOTE Resource is remote
This error is RFS specific. It occurs when users try to advertise a
resource which is not on the local machine, or try to
mount/unmount a device (or pathname) that is on a remote
machine.

67 ENOLINK Virtual circuit is gone
This error is RFS specific. It occurs when the link (virtual circuit)
connecting to a remote machine is gone.

68 EADV Advertise error
This error is RFS specific. It occurs when users try to advertise a
resource which has been advertised already, or try to stop the RFS
while there are resources still advertised, or try to force unmount
a resource when it is still advertised.

69 ESRMNT Srmounterror
This error is RFS specific. It occurs when users try to stop RFS
while there are resources still mounted by remote machines.

70 ECOMM Communication error
This error is RFS specific. It occurs when trying to send messages
to remote machines but no virtual circuit can be found.

71 EPROTO Protocol error
Some protocol error occurred. This error is device specific, but is
generally not related to a hardware failure.

74 EMULTIHOP Multihop attempted
This error is RFS specific. It occurs when users try to access
remote resources which are not directly accessible.

77 EBADMSG Bad message
During a read(2), getmsg(2), or ioctl(2) I_RECVFD system call to a
STREAMS device, something has come to the head of the queue
that can't be processed. That something depends on the system
call:

read(2) - control information or a passed file descriptor.
getmsg(2) - passed file descriptor.
ioctl(2) - control or data information.

83 ELIBACC Cannot access a needed shared library

MU43814PR/D2

Trying to exec(2) an a.out that requires a shared library (to be
linked in) and the shared library doesn't exist or the user doesn't
have permission to use it.

-6- 12/01/87

INTR0(2) INTR0(2)

84 ELIBBAD Accessing a corrupted shared library II
Trying to exec(2) an a.out that requires a shared library (to be
linked in) and exec(2) could not load the shared library. The shared
library is probably corrupted.

85 ELIBSCN .lib section in a.out corrupted
Trying to exec(2) an a.out that requires a shared library (to be
linked in) and there was erroneous data in the .lib section of the
a.out. The .lib section tells exec(2) what shared libraries are
needed. The a.out is probably corrupted.

86 ELIBMAX Attempting to link in more shared libraries than system
limit
Trying to exec(2) an a.out that requires more shared libraries (to be
linked in) than is allowed on the current configuration of the sys­
tem. See the System Administrator's Guide.

87 ELIBEXEC Cannot exec a shared library directly
Trying to exec(2) a shared library directly. This is not allowed.

DEFINITIONS

Process ID Eac_h active process in the system is uniquely identified by a
positive integer called a process ID. The range of this ID is from 1 to
30,000.

Parent Process ID A new process is created by a currently active process
[see fork(2)]. The parent process ID of a process is the process ID of its
creator.

Process Group ID Each active process is a member of a process group that
is identified by a positive integer called the process group ID. This ID is
the process ID of the group leader. This grouping permits the signaling of
related processes [see kill(2)].

Tty Group ID Each active process can be a member of a terminal group
that is identified by a positive integer called the tty group ID. This group­
ing is used to terminate a group of related processes upon termination of
one of the processes in the group [see exit(2) and signal(2)].

Real User ID and Real Group ID Each user allowed on the system is

MU43814PR/D2 -7- 12/01/87

•
INTR0(2) INTR0(2)

identified by a positive integer (0 to 65535) called a real user ID.

Each user is also a member of a group. The group is identified by a posi­
tive integer called the real group ID.

An active process has a real user ID and real group ID that are set to the
real user ID and real group ID, respectively, of the user responsible for the
creation of the process.

Effective User ID and Effective Group ID An active process has an effec­
tive user ID and an effective group ID that are used to determine file
access permissions (see below). The effective user ID and effective group
ID are equal to the process's real user ID and real group ID respectively,
unless the process or one of its ancestors evolved from a file that had the
set-user-ID bit or set-group ID bit set [see exec(2)].

Super-user A process is recognized as a super-user process and is granted
special privileges, such as immunity from file permissions, if its effective
user ID is 0.

Special Processes The processes with a process ID of 0 and a process ID of
1 are special processes and are referred to as procO and proc1.

ProcO is the scheduler. Proc1 is the initialization process (init). Procl is
the ancestor of every other process in the system and is used to control
the process structure.

File Descriptor A file descriptor is a small integer used to do I/Oona file.
The value of a file descriptor is from 0 to (NOFILES - 1). A process may
have no more than NOFILES file descriptors open simultaneously. A file
descriptor is returned by system calls such as open(2), or pipe(2). The file
descriptor is used as an argument by calls such as read(2), write(2), ioctl(2),
and close(2).

File Name Names consisting of 1 to 14 characters may be used to name an
ordinary file, special file or directory.

These characters may be selected from the set of all character values
excluding \0 (null) and the ASCII code for I (slash).

MU43814PR/D2 -8- 12/01/87

INTR0(2) INTR0(2)

Note that it is generally unwise to use •, ? , [, or] as part of file names
because of the special meaning attached to these characters by the shell
{see sh(l)]. Although permitted, the use of unprintable characters in file
names should be avoided.

Path Name and Path Prefix A path name is a null-terminated character
string starting with an optional slash (/), followed by zero or more direc­
tory names separated by slashes, optionally followed by a file name.

If a path name begins with a slash, the path search begins at the root
directory. Otherwise, the search begins from the current working direc­
tory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as if it
named a non-existent file.

Directory Directory entries are called links. By convention, a directory
contains at least two links, . and .. , referred to as dot and dot-dot respec­
tively. Dot refers to the directory itself and dot-dot refers to its parent
directory.

Root Directory and Current Working Directory Each process has associ­
ated with it a concept of a root directory and a current working directory
for the purpose of resolving path name searches. The root directory of a
process need not be the root directory of the root file system.

File Access Permissions Read, write, and execute/search permissions on a
file are granted to a process if one or more of the following are true:

MU43814PR/D2

The effective user ID of the process is super-user.

The effective user ID of the process matches the user ID of the
owner of the file and the appropriate access bit of the "owner''
portion (0700) of the file mode is set.

The effective user ID of the process does not match the user ID of
the owner of the file, and the effective group ID of the process
matches the group of the file and the appropriate access bit of the
"group" portion (0070) of the file mode is set.

- 9 - 12/01/87

II
INTR0(2) INTR0(2)

The effective user ID of the process does not match the user ID of
the owner of the file, and the effective group ID of the process
does not match the group ID of the file, and the appropriate access
bit of the "other'' portion (0007) of the file mode is set.

Otherwise, the corresponding permissions are denied.

Message Queue Identifier A message queue identifier (msqid) is a unique
positive integer created by a msgget(2) system call. Each msqid has a mes­
sage queue and a data structure associated with it. The data structure is
referred to as msqid_ds and contains the following members:

struct ipc_perm msg_perm;
struct msg *msg_first;
struct msg *msg_last;
ushort msg_cbytes;
ushort msg_qnum;
ushort msg_qbytes;
ushort msg_lspid;
ushort msg_lrpid;
time_t msg_stime;
time_t msg_rtime;
time_t msg_ctime;

msg_perm is an ipc_perm structure that specifies the message operation
permission (see below). This structure includes the following members:

ushort cuid; /• creator user id •/
ushort cgid; /• creator group id •/
ushort uid; I• user id •/
ushort gid; /• group id •/
ushort mode; I• r/w permission •/
ushort seq; I* slot usage sequence # *'
key _t key; /• key *I

msg *msg_first
is a pointer to the first message on the queue.

msg *msg_last
is a pointer to the last message on the queue.

MU43814PR/D2 -10 - 12/01/87

INTR0(2) INTR0(2)

msg_cbytes
is the current number of bytes on the queue.

msg_qnum
is the number of messages currently on the queue.

msg_qbytes
is the maximum number of bytes allowed on the queue.

msg_lspid
is the process id of the last process that performed a msgsnd
operation.

msg_lrpid
is the process id of the last process that performed a msgrcv opera­
tion.

msg_stime
is the time of the last msgsnd operation.

msg_rtime
is the time of the last msgrcv operation

msg_ctime
is the time of the last msgctl(2) operation that changed a member
of the above structure.

Message Operation Permissions In the msgop(2) and msgctl(2) system call
descriptions, the permission required for an operation is given as
"{token}", where "token" is the type of permission needed, interpreted as
follows:

00400
00200
00040
00020
00004
00002

Read by user
Write by user
Read by group
Write by group
Read by others
Write by others

Read and write permissions on a msqid are granted to a process if one or
more of the following are true:

MU43814PR/D2 - 11- 12/01/87

II

II
INTR0(2) INTR0(2)

The effective user ID of the process is super-user.

The effective user ID of the process matches msg_perm.cuid or
msg_perm.uid in the data structure associated with msqid and the
appropriate bit of the "user" portion (0600) of msg_perm.mode is
set.

The effective group ID of the process matches msg_perm.cgid or
msg_perm.gid and the appropriate bit of the "group" portion
(060) of msg_perm.mode is set.

The appropriate bit of the "other" portion (006) of
msg_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Semaphore Identifier A semaphore identifier (semid) is a unique positive
integer created by a semget(2) system call. Each semid has a set of sema­
phores and a data structure associated with it. The data structure is
referred to as semid_ds and contains the following members:

struct
struct
us ho rt
time_t
time_t

ipc_perm sem_perm;
sem *Sem_base;
sem_nsems;
sem_otime;
sem_ctime;

I* operation permission struct *I
I* ptr to first semaphore in set */
I* number of sems in set *I
I* last operation time *I
I* last change time *I
I* Times measured in secs since *I
I* 00:00:00 GMT, Jan. 1, 1970 *I

sem_perm is an ipc_perm structure that specifies the semaphore operation
permission (see below). This structure includes the following members:

ushort
ushort
us ho rt
ushort
ushort
us ho rt
key_t

MU43814PR/D2

uid;
gid;
cuid;
cgid;
mode;
seq;
key;

I* user id *I
I* group id *I
I* creator user id *I
/* creator group id *I
I* r/a permission *I
I* slot usage sequence number *I
I* key *I

- 12 - 12/01/87

INTRO(l) INTRO(l)

sem_nsems -
is equal to the number of semaphores in the set. Each semaphore lllill
in the set is referenced by a positive integer referred to as a
sem_num. Sem_num values run sequentially from 0 to the value
of sem_nsems minus 1.

sem_otime
is the time of the last semop(2) operation.

sem_ctime
is the time of the last semctl(2) operation that changed a member
of the above structure.

A semaphore is a data structure called sem that contains the following
members:

ushort
short
ushort
ushort

semval;
sempid;
semncnt;
semzcnt;

I• semaphore value •/
I• pid of last operation •/
I• # awaiting semval > cval •/
I• # awaiting semval = 0 •/

semval is a non-negative integer which is the actual value of the sem­
phore.

sempid
is equal to the process ID of the last process that performed a
semaphore operation on this semaphore.

semncnt
is a count of the number of processes that are currently suspended
awaiting this semaphore's semval to become greater than its
current value.

semzcnt
is a count of the number of processes that are currently suspended
awaiting this semaphore's semval to become zero.

Semaphore Operation Permissions In the semop(2) and semctl(2) system
call descriptions, the permission required for an operation is given as
"{token}", where "token" is the type of permission needed interpreted as
follows:

MU43814PR/D2 -13 - 12/01/87

Ill
INTR0(2) INTR0(2)

00400
00200
00040
00020
00004
00002

Read by user
Alter by user
Read by group
Alter by group
Read by others
Alter by others

Read and alter permissions on a semid are granted to a process if one or
more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches sem_perm.cuid or
sem_perm. uid in the data structure associated with semid and the
appropriate bit of the "user" portion (0600) of sem_perm.mode is
set.

The effective group ID of the process matches sem_perm.cgid or
sem_perm.gid and the appropriate bit of the "group" portion
(060) of sem_perm.mode is set.

The appropriate bit of the "other'' portion (006) of
sem_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Shared Memory Identifier A shared memory identifier (shmid) is a unique
positive integer created by a shmget(2) system call. Each shmid has a seg­
ment of memory (referred to as a shared memory segment) and a data
structure associated with it. (Note that these shared memory segments
must be explicitly removed by the user after the last reference to them is
removed.) The data structure is referred to as shmid_ds and contains the
following members:

struct ipc_perm shm_perm;
int shm_segsz;
struct region *Shm_reg;
char pad[4];
ushort shm_lpid;
ushort shm_cpid;
ushort shm_nattch;
ushort shm_cnattch;
time_t shm_atime;
time_t shm_dtime;

MU43814PR/D2

I* operation permission struct *I
I* size of segment *I
/*ptr to region structure *I
I* for swap compatibility *I
I* pid of last operation *I
I* creator pid */
I* number of current attaches */
I* used only for shminfo */
I* last attach time *I
I* last detach time *I

- 14 - 12/01/87

INTR0(2.) INTR0(2.)

time_t shrn_ctime; I* last change time *I
I* Times measured in secs since *I
I* 00:00:00 GMr, Jan. 1, 1970 *I

shm_perm is an ipc_perm structure that specifies the shared memory
operation permission (see below). This structure includes the following
members:

ushort
us ho rt
ushort
ushort
ushort
ushort
key_t

cuid;
cgid;
uid;
gid;
mode;
seq;
key;

I• creator user id */
I* creator group id *'
I• user id*'
I• group id *'
I* rlw permission *'
I* slot usage sequence # *I
I* key*'

shm_segsz
specifies the size of the shared memory segment in bytes.

shm_cpid
is the process id of the process that created the shared memory
identifier.

shm_lpid
is the process id of the last process that performed a shmop(2)
operation.

shm_nattch
is the number of processes that currently have this segment
attached.

shm_atime
is the time of the last shmat(2) operation,

shm_dtime
is the time of the last shmdt(2) operation.

shm_ctime
is the time of the last shmctl(2) operation that changed one of the
members of the above structure.

Shared Memory Operation Permissions In the shmop(2) and shmctl(2) sys­
tem call descriptions, the permission required for an operation is given as
"{token}", where "token" is the type of permission needed interpreted as
follows:

MU43814PR/D2 -15 - 12/01/87

II

Ill
INTR0(2)

00400
00200
00040
00020
00004
00002

Read by user
Write by user
Read by group
Write by group
Read by others
Write by others

INTR0(2)

Read and write permissions on a shmid are granted to a process if one or
more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches shm_perm.cuid or
shm_perm. uid in the data structure associated with shmid and the
appropriate bit of the "user'' portion (0600) of shm_perm.mode is
set.

The effective group ID of the process matches shm_perm.cgid or
shm_perm.gid and the appropriate bit of the "group" portion
(060) of shm_perm.mode is set.

The appropriate bit of the "other" portion (06) of shm_perm.mode
is set.

Otherwise, the corresponding permissions are denied.

STREAMS A set of kernel mechanisms that support the development of
network services and data communication drivers. It defines interface
standards for character input/output within the kernel and between the
kernel and user level processes. The STREAMS mechanism is composed of
utility routines, kernel facilities and a set of data structures.

Stream A stream is a full-duplex data path within the kernel between a
user process and driver routines. The primary components are a stream
head, a driver and zero or more modules between the stream head and driver.
A stream is analogous to a Shell pipeline except that data flow and pro­
cessing are bidirectional.

Stream Head In a stream, the stream head is the end of the stream that pro­
vides the interface between the stream and a user process. The principle
functions of the stream head are processing STREAMS-related system calls,
and passing data and information between a user process and the stream.

MU43814PR/D2 -16 - 12/01/87

INTR0(2) INTR0(2)

Driver In a stream, the driver provides the interface between peripheral
hardware and the stream. A driver can also be a pseudo-driver, such as a
multiplexor or log driver [see log(7)], which is not associated with a
hardware device.

Module A module is an entity containing processing routines for input
and output data. It always exists in the middle of a stream, between the
stream's head and a driver. A module is the STREAMS counterpart to the
commands in a Shell pipeline except that a module contains a pair of
functions which allow independent bidirectional (downstream and upstream)
data flow and processing.

Downstream In a stream, the direction from stream head to driver.

Upstream In a stream, the direction from driver to stream head.

Message In a stream, one or more blocks of data or information, with asso­
ciated STREAMS control structures. Messages can be of several defined
types, which identify the message contents. Messages are the only means of
transferring data and communicating within a stream.

Message Queue In a stream, a linked list of messages awaiting processing
by a module or driver.

Read Queue In a stream, the message queue in a module or driver containing
messages moving upstream.

Write Queue In a stream, the message queue in a module or driver containing
messages moving downstream.

Multiplexor A multiplexor is a driver that allows streams associated with
several user processes to be connected to a single driver, or several drivers
to be connected to a single user process. STREAMS does not provide a
general multiplexing driver, but does provide the facilities for constructing
them, and for connecting multiplexed configurations of streams.

MU43814PR/D2 -17 - 12/01/87

II

Ill
INTR0(2)

SEE ALSO
intro(3).

MU43814PR/D2

INTR0(2)

- 18 - 12/01/87

ACCESS(2) ACCESS(2)

NAME
access - determine accessibility of a file

SYNOPSIS
int access (path, amode)
char •path;
int amode;

DESCRIPTION
Path points to a path name naming a file. access checks the named file for
accessibility according to the bit pattern contained in amode, using the real
user ID in place of the effective user ID and the real group ID in place of
the effective group ID. The bit pattern contained in amode is constructed
as follows:

04 read
02 write
01 execute (search)
00 check existence of file

Access to the file is denied if one or more of the following are true:
[ENOTDIR]
[ENO ENT]

[ENO ENT]
[EACCES]

[EROFS]

[ETXTBSY]

[EACCES]

[BF AULT]

[EINTR]

[ENO LINK]

[EMULTIHOP]

MU43814PR/D2

A component of the path prefix is not a directory.
Read, write, or execute (search) permission is
requested for a null path name.
The named file does not exist.
Search permission is denied on a component of the
path prefix.
Write access is requested for a file on a read-only
file system.
Write access is requested for a pure procedure
(shared text) file that is being executed.
Permission bits of the file mode do not permit
the requested access.
Path points outside the allocated address
space for the process.
A signal was caught during the access
system call.
Path points to a remote machine and the link
to that machine is no longer active.
Components of path require hopping to multiple
remote machines.

-1- 12/01/87

II

II
ACCESS(2) ACCESS(2)

The owner of a file has permission checked with respect to the "owner"
read, write, and execute mode bits. Members of the file's group other
than the owner have permissions checked with respect to the "group"
mode bits, and all others have permissions checked with respect to the
"other" mode bits.

SEE ALSO
chmod(2), stat(2).

DIAGNOSTICS
If the requested access is permitted, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

MU43814PR/D2 - 2 - 12/01/87

ACCT(2) ACCT(2)

NAME
acct - enable or disable process accounting

SYNOPSIS
int acct (path)
char •path;

DESCRIPTION
acct is used to enable or disable the system process accounting routine. If
the routine is enabled, an accounting record will be written on an account­
ing file for each process that terminates. Termination can be caused by
one of two things: an exit call or a signal [see exit(2) and signaZ(2)]. The
effective user ID of the calling process must be super-user to use this call.

path points to a pathname naming the accounting file. The accounting file
format is given in acct(4).

The accounting routine is enabled if path is non-zero and no errors occur
during the system call. It is disabled if path is zero and no errors occur
during the system call.

acct will fail if one or more of the following are true:

[EPERM]

[EBUSY]

[ENOTDIR]

[ENOENT]

[EACCES]

[EROFS]

[EFAULT]

SEE ALSO

The effective user of the calling process is not super-user.

An attempt is being made to enable accounting when it is
already enabled.

A component of the path prefix is not a directory.

One or more components of the accounting file path
name do not exist.

The file named by path is not an ordinary file.

The named file resides on a read-only file system.

Path points to an illegal address.

exit(2), signal(2), acct(4).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value
of-1 is returned and errno is set to indicate the error.

MU43814PR/D2 - 1 - 12/01/87

II

Ill
ADVFS(2) ((Remote File Sharing)) ADVFS(2)

NAME
advfs - advertise a directory for remote access

SYNOPSIS
int advfs(dir, resource, rwflag)
char "'dir;
char "'resource;
int rwflag;

DESCRIPTION
advfs advertises dir, which points to the pathname of a local directory,
under the symbolic name resource. Resource will be used by remote
machines to identify this directory when mounting it on those machines.

The low-order bit of rwflag controls write permission by remote machines
on the advertised directory. If l, writing is forbidden, otherwise writing
is permitted according to the access permissions on individual files. If the
local file system that contains dir is mounted read-only, it must be adver­
tised read-only.

advfs may be invoked only by the super-user.

ERRORS
advfs will fail if one or more of the following are true:

[ENONET] The Shared Resource environment has not been started (see
dustart(lM)).

[EPERM] The effective user ID is not super-user.

[ENOENT] Dir does not exist.

[ENOTDIR] A component of dir is not a directory.

[EFAULT] Resource or dir points outside the allocated address space of
the process.

[EADV] Directory dir is already advertised.

[EBUSY] Resource is the name of a currently advertised resource.

IEREMOTE] Dir is a remote directory.

IENOSPC] There are no more entries in the advertise table.

MU43814PR/D2 - 1 - 12/01/87

ADVFS(2)

[EROFS]

RETURN VALUE

((Remote File Sharing)) ADVFS(2)

Attempt to advertise a read-only file system as read-write.

Upon successful completion a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
rmount(2) rumount(2) unadvfs(2)

MU43814PR/D2 - 2 - 12/01/87

II
ALARM(2)

NAME
alarm - set a process alarm clock

SYNOPSIS
unsigned alarm (sec)
unsigned sec;

DESCRIPTION

ALARM(2)

alann instructs the alarm clock of the calling process to send the signal
SIGALRM to the calling process after the number of real time seconds
specified by sec have elapsed [see signal(2)].

Alarm requests are not stacked; successive calls reset the alarm clock of
the calling process.

If sec is 0, any previously made alarm request is canceled.

SEE ALSO
pause(2), signal(2), sigpause(2), sigset(2).

DIAGNOSTICS
alann returns the amount of time previously remaining in the alarm clock
of the calling process.

MU43814PR/D2 - 1 - 12/01/87

BRK(2) BRK(2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
int brk (endds)
char •endds;

char •sbrk (incr)
int incr;

DESCRIPTION
brk and sbrk are used to change dynamically the amount of space allocated
for the calling process's data segment [see exec(2)]. The change is made
by resetting the process's break value and allocating the appropriate
amount of space. The break value is the address of the first location
beyond the end of the data segment. The amount of allocated space
increases as the break value increases. Newly allocated space is set to
zero. If, however, the same memory space is reallocated to the same pro­
cess its contents are undefined.

brk sets the break value to endds and changes the allocated space accord­
ingly.

Sbrk adds incr bytes to the break value and changes the allocated space
accordingly. Iner can be negative, in which case the amount of allocated
space is decreased.

brk and sbrk will fail without making any change in the allocated space if
one or more of the following are true:

SEE ALSO

[ENOMEM] Such a change would result in more space being
allocated than is allowed by the system-imposed
maximum process size [see ulimit(2)].

[EAGAIN] Total amount of system memory available for a read
during physical IO is temporarily insufficient [see
shmop(2)]. This may occur even though the space
requested was less than the system-imposed max­
imum process size [see ulimit(2)].

exec(2), shmop(2), ulimit(2), end(3q.

MU43814PR/D2 - 1 - 12/01/87

BRK(2) BRK(2)

DIAGNOSTICS
Upon successful completion, brk returns a value of 0 and sbrk returns the
old break value. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

MU43814PR/D2 -2- 12/01/87

CHDIR(2) CHDIR(2)

NAME
chdir - change working directory

SYNOPSIS
int chdir (path)
char •path;

DESCRIPTION
Path points to the path name of a directory. chdir causes the named direc­
tory to become the current working directory, the starting point for path
searches for path names not beginning with/.

chdir will fail and the current working directory will be unchanged if one
or more of the following are true:

[ENOTDIR]

[ENO ENT]

[EACCES]

[EFAULT]

[EINTR]

[ENO LINK]

[EMULTIHOP]

SEE ALSO
chroot(2).

DIAGNOSTICS

A component of the path name is not a directory.

The named directory does not exist.

Search permission is denied for any component of the
path name.

Path points outside the allocated address space of the
process.

A signal was caught during the chdir system call.

Path points to a remote machine and the link to that
machine is no longer active.

Components of path require hopping to multiple remote
machines.

Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

MU43814PR/D2 -1- 12/01/87

CHMOD(2) CHMOD(2)

NAME
chmod - change mode of file

SYNOPSIS
int chmod (path, mode)
char •path;
int mode;

DESCRIPTION
Path points to a path name naming a file. chmod sets the access permis­
sion portion of the named file's mode according to the bit pattern con­
tained in mode.

Access permission bits are interpreted as follows:

04000
020#0

01000
00400
00200
00100
00070
00007

Set user ID on execution.
Set group ID on execution if# is 7, 5, 3, or 1
Enable mandatory file/record locking if # is 6, 4, 2, or 0
Save text image after execution.
Read by owner.
Write by owner.
Execute (search if a directory) by owner.
Read, write, execute (search) by group.
Read, write, execute (search) by others.

The effective user ID of the process must match the owner of the file or be
super-user to change the mode of a file.

If the effective user ID of the process is not super-user, mode bit 01000
(save text image on execution) is cleared.

If the effective .user ID of the process is not super-user and the effective
group ID of the process does not match the group ID of the file, mode bit
02000 (set group ID on execution) is cleared.

If a 410 executable file has the sticky bit (mode bit 01000) set, the operat­
ing system will not delete the program text from the swap area when the
last user process terminates. If a 413 executable file has the sticky bit set,
the operating system will not delete the program text from memory when
the last user process terminates. In either case, if the sticky bit is set the
text will already be available (either in a swap area or in memory) when
the next user of the file executes it, thus making execution faster.

If the mode bit 02000 (set group ID on execution) is set and the mode bit
00010 (execute or search by group) is not set, mandatory file/record

MU43814PR/D2 - 1 - 12/01/87

CHMOD(l) CHMOD(l)

locking will exist on a regular file. This may effect future calls to open(2), Ill
creat(2), read(2), and write(2) on this file.

chmod will fail and the file mode will be unchanged if one or more of the
following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES]

[EPERM]

[EROFS]

[EFAULT]

[EINTR]

Search permission is denied on a component of the path
prefix.

The effective user ID does not match the owner of the file
and the effective user ID is not super-user.

The named file resides on a read-only file system.

Path points outside the allocated address space of the
process.

A signal was caught during the chmod system call.

[ENOLINK] Path points to a remote machine and the link to that
machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

SEE ALSO
chown(2), creat(2), fcntl(2), mknod(2), open(2), read(2), write(2).
chmod(l) in the User's Reference Manual.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value
of-1 is returned and errno is set to indicate the error.

MU43814PR/D2 -2- 12101/87

II
CHOWN(l) CHOWN(l)

NAME
chown - change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char •path;
int owner, group;

DESCRIPTION
Path points to a path name naming a file. The owner ID and group ID of
the named file are set to the numeric values contained in owner and group
respectively.

Only processes with effective user ID equal to the file owner or super-user
may change the ownership of a file.

If chown is invoked by other than the super-user, the set-user-ID and set­
group-ID bits of the file mode, 04000 and 02000 respectively, will be
cleared.

chown will fail and the owner and group of the named file will remain
unchanged if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES]

[EPERM]

[EROFS]

[EFAULT]

[EINTR]

Search permission is denied on a component of the path
prefix.

The effective user ID does not match the owner of the file
and the effective user ID is not super-user.

The named file resides on a read-only file system.

Path points outside the allocated address space of the
process.

A signal was caught during the chown system call.

[ENOLINK] Path points to a remote machine and the link to that
machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

SEE ALSO
chmod(2).
chown(l) in the User's Reference Manual.

MU43814PR/D2 - 1 - 12/01/87

CHOWN(2) CHOWN(2)

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

MU43814PR/D2 -2- 12/01/87

II

II
CHROOT(2) CHROOT(2)

NAME
chroot - change root directory

SYNOPSIS
int chroot (path)
char •path;

DESCRIPTION
Path points to a path name naming a directory. chroot causes the named
directory to become the root directory, the starting point for path searches
for path names beginning with /. The user's working directory is unaf­
fected by the chroot system call.

The effective user ID of the process must be super-user to change the root
directory.

The .. entry in the root directory is interpreted to mean the root directory
itself. Thus, .. cannot be used to access files outside the subtree rooted at
the root directory.

chroot will fail and the root directory will remain unchanged if one or
more of the following are true:

[ENOTDIR] Any component of the path name is not a directory.

[ENOENT] The named directory does not exist.

[EPERM] The effective user ID is not super-user.

[EFAULT] Path points outside the allocated address space of the
process.

[EINTR] A signal was caught during the chroot system call.

[ENOLINK] Path points to a remote machine and the link to that
machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

SEE ALSO
chdir(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

MU43814PR/D2 - 1 - 12/01/87

CLOSE(2) CLOSE(l)

NAME
close - close a file descriptor

SYNOPSIS
int close (fildes)
int fildes;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fcntl, or pipe sys­
tem call. close closes the file descriptor indicated by fildes. All outstand­
ing record locks owned by the process (on the file indicated by fildes) are
removed.

If a STREAMS [see intro(2)] file is closed, and the calling process had previ­
ously registered to receive a SIGPOLL signal [see signal(2) and sigset(2)] for
events associated with that file [see l_SETSIG in streamio(7)], the calling
process will be unregistered for events associated with the file. The last
close for a stream causes the stream associated with fildes to be dismantled.
If O_NDELAY is not set and there have been no signals posted for the
stream, close waits up to 15 seconds, for each module and driver, for any
output to drain before dismantling the stream. If the O_NDELAY flag is set
or if there are any pending signals, close does not wait for output to drain,
and dismantles the stream immediately.

The named file is closed unless one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

[EINTR] A signal was caught during the close system call.

[ENO LINK] Fildes is on a remote machine and the link to that machine
is no longer ctive.

SEE ALSO
creat(2), dup(2), exec(2), fcntl(2), intro(2), open(2), pipe(2), signal(2), sig­
set(2).
streamio(7) in the System Administrator's Reference Manual.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

MU43814PR/D2 -1- 12/01/87

II

II
CREAT(2) CREAT(2)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
int creat (path, mode)
char •path;
int mode;

DESCRIPTION
creat creates a new ordinary file or prepares to rewrite an existing file
named by the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are
unchanged. Otherwise, the file's owner ID is set to the effective user ID,
of the process the group ID of the process is set to the effective group ID,
of the process and the low-order 12 bits of the file mode are set to the
value of mode modified as follows:

All bits set in the process's file mode creation mask are cleared
[see umask(2)].

The "save text image after execution bit'' of the mode is cleared
[see chmod (2)].

Upon successful completion, a write-'only file descriptor is returned and
the file is open for writing, even if the mode does not permit writing. The
file pointer is set to the beginning of the file. The file descriptor is set to
remain open across exec system calls [see fcntl(2)]. No process may have
more than 20 files open simultaneously. A new file may be created with a
mode that forbids writing.

creat fails if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of the path prefix does not exist.

[EACCES]

[ENO ENT]

[EACCES]

MU43814PR/D2

Search permission is denied on a component of the path
prefix.

The path name is null.

The file does not exist and the directory in which the file
is to be created does not permit writing.

...; 1 - 12/01/87

CREAT(2)

[EROFS]

[ETXTBSY]

[EACCES]

[EISDIR]

[EMFILE]

[EFAULT]

[ENFILE]

[EA GAIN]

[EINTR]

[ENO LINK]

[EMUL TIHOP]

[ENOSPC]

SEE ALSO

CREAT(2)

The named file resides or would reside on a read-only file -

system. -
The file is a pure procedure (shared text) file that is being
executed.

The file exists and write permission is denied.

The named file is an existing directory.

NOFILES file descriptors are currently open.

Path points outside the allocated address space of the
process.

The system file table is full.

The file exists, mandatory file/record locking is set, and
there are outstanding record locks on the file [see
chmod(2)].

A signal was caught during the creat system call.

Path points to a remote machine and the link to that
machine is no longer active.

Components of path require hopping to multiple remote
machines.

The file system is out of inodes.

chmod(2), close(2), dup(2), fcntl(2), lseek(2), open(2), read(2), umask(2),
write(2).

DIAGNOSTICS
Upon successful completion, a non-negative integer, namely the file
descriptor, is returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

MU43814PR/D2 -2- 12/01/87

Ill

DUP(2) DUP(2)

NAME
dup- duplicate an open file descriptor

SYNOPSIS
int dup (fildes)
int fildes;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fcntl, or pipe sys­
tem call. dup returns a new file descriptor having the following in com­
mon with the original:

Same open file (or pipe).

Same file pointer (i.e., both file descriptors share one file pointer).

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec system calls [see
fcntl(2)].

The file descriptor returned is the lowest one available.

dup will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

[EINTR] A signal was caught during the dup system call.

NOFILES file descriptors are currently open. [EMFILE]

[ENO LINK] Fildes is on a remote machine and the link to that machine
is no longer active.

SEE ALSO
close(2), creat(2), exec(2), fcntl(2), open(2), pipe(2), lockf(3C).

DIAGNOSTICS
Upon successful completion a non-negative integer, namely the file
descriptor, is returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

MU43814PR/D2 - 1 - 12/01/87

Ill

EXEC(2) EXEC(2)

NAME
exec: execl, execv, execle, execve, execlp, execvp- execute a file

SYNOPSIS
int execl (path, argO, argl, ... , argn, (char •)O)
char •path, •argO, •argl, ... , •argn;

int execv (path, argv)
char •path, •argv[];

int execle (path, argO, argl, ... , argn, (char •)O, envp)
char •path, •argO, •argl, ... , •argn, •envp[];

int execve (path, argv, envp)
char •path, •argv[], •envp[];

int execlp (file, argO, argl, ... , argn, (char •)O)
char •file, •argO, •argl, ... , •argn;

int execvp (file, argv)
char •file, •argv[];

DESCRIPTION
exec in all its forms transforms the calling process into a new process. The
new process is constructed from an ordinary, executable file called the new
process file. This file consists of a header [see a.out(4)], a text segment,
and a data segment. The data segment contains an initialized portion and
an uninitialized portion (bss). There can be no return from a successful
exec because the calling process is overlaid by the new process.

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char ••argv, ••envp;

where argc is the argument count, argv is an array of character pointers to
the arguments themselves, and envp is an array of character pointers to
the environment strings. As indicated, argc is conventionally at least one
and the first member of the array points to a string containing the name of
the file.

Path points to a path name that identifies the new process file.

File points to the new process file. The path prefix for this file is obtained
by a search of the directories passed as the environment line ''PATH =" [see
environ(S)]. The environment is supplied by the shell [see sh(l)].

MU43814PR/Di - 1 - 12101/87

Ill
EXEC(2) EXEC(2)

Argo, arg1, ... , argn are pointers to null-terminated character strings.
These strings constitute the argument list available to the new process.
By convention, at least argO must be present and point to a string that is
the same as path (or its last component).

Argv is an array of character pointers to null-terminated strings. These
strings constitute the argument list available to the new process. By con­
vention, argv must have at least one member, and it must point to a string
that is the same as path (or its last component). Argv is terminated by a
null pointer.

Envp is an array of character pointers to null-terminated strings. These
strings constitute the environment for the new process. Envp is ter­
minated by a null pointer. For execl and execv, the C run-time start-off
routine places a pointer to the environment of the calling process in the
global cell:

extern char ••environ;
and it is used to pass the environment of the calling process to the new
process.

File descriptors open in the calling process remain open in the new pro­
cess, except for those whose close-on-exec flag is set; see /cntl(2). For
those file descriptors that remain open, the file pointer is unchanged.

Signals set to terminate the calling process will be set to terminate the
new process. Signals set to be ignored by the calling process will be set
to be ignored by the new process. Signals set to be caught by the calling
process will be set to terminate new process; see signal(2).

For signals set by sigset(2), exec will ensure that the new process has the
same system signal action for each signal type whose action is SIG_DFL,
SIG_IGN, or SIG_HOLD as the calling process. However, if the action is
to catch the signal, then the action will be reset to SIG_DFL, and any
pending signal for this type will be held.

If the set-user-ID mode bit of the new process file is set [see chmod(2)],
exec sets the effective user ID of the new process to the owner ID of the
new process file. Similarly, if the set-group-ID mode bit of the new pro­
cess file is set, the effective group ID of the new process is set to the
group ID of the new process file. The real user ID and real group ID of the
new process remain the same as those of the calling process.

The shared memory segments attached to the calling process will not be
attached to the new process [see shmop(2)].

MU43814PR/D2 -2- 12/01/87

EXEC(2) EXEC(2)

Profiling is disabled for the new process; see profil(2).

The new process also inherits the following attributes from the calling
process:

nice value [see nice(2)]
process ID
parent process ID
process group ID
semadj values [see semop(2)]
tty group ID [see exit(2) and signal(2)]
trace flag [see ptrace(2) request O]
time left until an alarm clock signal [see alarm(2)]
current working directory
root directory
file mode creation mask [see umask(2)]
file size limit [see ulimit(2)]
utime, stime, cutime, and cstime [see times(2)]
file-locks [see /cntl(2) and lock/(3Q]

exec will fail and return to the calling process if one or more of the follow­
ing are true:

[ENOENT]

[ENOTDIR]

[EACCES]

[EACCES]

[EACCES]

[ENOEXEq

[ETXTBSY]

MU43814PR/D2

One or more components of the new process path name
of the file do not exist.

A component of the new process path of the file prefix is
not a directory.

Search permission is denied for a directory listed in the
new process file's path prefix.

The new process file is not an ordinary file.

The new process file mode denies execution permission.

The exec is not an execlp or execvp, and the new process
file has the appropriate access permission but an invalid
magic number in its header.

The new process file is a pure procedure (shared text) file
that is currently open for writing by some process.

-3- 12/01/87

II

II
EXEC(2)

[ENOMEM]

[E2BIG]

[EFAULT]

[EFAULT]

[EFAULT]

[EA GAIN]

[ELIBACC]

EXEC(2)

The new process requires more memory than is allowed
by the system-imposed maximum MAXMEM.

The number of bytes in the new process's argument list is
greater than the system-imposed limit of 5120 bytes.

Required hardware is not present.

An a;out that was compiled with the MAU or 32B flag is
running on a machine without a MAU or 32B.

Path, argv, or envp point to an illegal address.

Not enough memory.

Required shared library does not have execute permis­
sion.

[ELIBEXEC] Trying to exec(2) a shared library directly.

[EINTR] A signal was caught during the exec system call.

[ENOLINK] Path points to a remote machine and the link to that
machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

SEE ALSO
alarm(2), exit(2), fcntl(2), fork(2), nice(2), ptrace(2), semop(2), signal(2),
sigset(2), times(2), ulimit(2), umask(2), lockf(3C), a.out(4), environ(5).
sh{l) in the User's Reference Manual.

DIAGNOSTICS
If exec returns to the calling process an error has occurred; the return
value will be-1 and errno will be set to indicate the error.

MU43814PR/D2 -4- 12/01/87

EXIT(2) EXIT(2)

NAME
exit, _exit - terminate process

SYNOPSIS
void exit (status)
int status;
void _exit (status)
int status;

DESCRIPTION
exit terminates the calling process with the following consequences:

All of the file descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait, it is noti­
fied of the calling process's termination and the low order eight bits (i.e.,
bits 0377) of status are made available to it [see wait(2)].

If the parent process of the calling process is not executing a wait, the cal­
ling process is transformed into a zombie process. A zombie process is a
process that only occupies a slot in the process table. It has no other
space allocated either in user or kernel space. The process table slot that
it occupies is partially overlaid with time accounting information (see
<sys/proc.h>) to be used by times.

The parent process ID of all of the calling processes' existing child
processes and zombie processes is set to 1. This means the initialization
process [see intro(2)] inherits each of these processes.

Each attached shared memory segment is detached and the value <;1f
shm_nattach in the data structure associated with its shared memory
identifier is decremented by 1.

For each semaphore for which the calling process has set a semadj value
[see semop(2)], that semadj value is added to the semval of the specified
semaphore.

If the process has a process, text, or data lock, an unlock is performed [see
plock(2)].

An accounting record is written on the accounting file if the system's
accounting routine is enabled [see acct(2)].

If the process ID, tty group ID, and process group ID of the calling process
are equal, the SIGHUP signal is sent to each process that has a process
group ID equal to that of the calling process.

MU43814PR/D2 - 1 - 12101/87

II
EXIT(2) EXIT(2)

A death of child signal is sent to the parent.

The C function exit may cause cleanup actions before the process exits.
The function _exit circumvents all cleanup.

SEE ALSO
acct(2), intro(2), plock(2), semop(2), signal(2), sigset(2), wait(2).

WARNING
See WARNING in signal(2).

DIAGNOSTICS
None. There can be no return from an exit system call.

MU43814PR/D2 -2- 12/01/87

FCNTL(2) FCNTL(2)

NAME
fcntl - file control

SYNOPSIS
#include <fcntl.h>

int fcntl (fildes, cmd, arg)
int fildes, cmd, arg;

DESCRIPTION
fcntl provides for control over open files. Fildes is an open file descriptor
obtained from a creat, open, dup, fcntl, or pipe system call.

The commands available are:

F _DUPFD Return a new file descriptor as follows:

F_GETFD

F_SETFD

F_GETFL

F_SETFL

MU43814PR/D2

Lowest numbered available file descriptor greater than or
equal to arg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file descrip­
tors share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors share the
same file status flags).

The close-on-exec flag associated with the new file
descriptor is set to remain open across exec(2) system calls.

Get the close-on-exec flag associated with the file descrip­
tor fildes. If the low-order bit is 0 the file will remain open
across exec, otherwise the file will be closed upon execu­
tion of exec.

Set the close-on-exec flag associated with fildes to the low­
order bit of arg (0or1 as above).

Get file status flags.

Set file status flags to arg. Only certain flags can be set
[see fcntZ(S)].

-1- 12/01/87

FCNTL(2)

F_GETLK

F_SETLK

F_SETLKW

FCNTL(2)

Get the first lock which blocks the lock description given
by the variable of type struct flock pointed to by arg. The
information retrieved overwrites the information passed to
fcntl in the flock structure. If no lock is found that would
prevent this lock from being created, then the structure is
passed back unchanged except for the lock type which will
be set to F _UNLCK.

Set or clear a file segment lock according to the variable of
type struct flock pointed to by arg [see fcntl(S)]. The and
F _SETLK is used to establish read (F _RDLCK) and write
(F_WRLCK) locks, as well as remove either type of lock
(F_UNLCK). If a read or write lock cannot be set fcntl will
return immediately with an error value of -1.

This cmd is the same as F _SETLK except that if a read or
write lock is blocked by other locks, the process will sleep
until the segment is free to be locked.

A read lock prevents any process from write locking the protected area.
More than one read lock may exist for a given segment of a file at a given
time. The file descriptor on which a read lock is being placed must have
been opened with read access.

A write lock prevents any process from read locking or write locking the
protected area. Only one write lock may exist for a given segment of a
file at a given time. The file descriptor on which a write lock is being
placed must have been opened with write access.

The structure flock describes the type (l_type), starting offset (l_whence),
relative offset (l_start), size (l_len), process id (l_pid), and RFS system id
(l_sysid) of the segment of the file to be affected. The process id and sys­
tem id fields are used only with the F _GETLK and to return the values for
a blocking lock. Locks may start and extend beyond the current end of a
file, but may not be negative relative to the beginning of the file. A lock
may be set to always extend to the end of file by setting l_len to zero (0).
If such a lock also has l_whence and l_start set to zero (0), the whole file
will be locked. Changing or unlocking a segment from the middle of a
larger locked segment leaves two smaller segments for either end. Lock­
ing a segment that is already locked by the calling process causes the old
lock type to be removed and the new lock type to take effect. All locks
associated with a file for a given process are removed when a file descrip­
tor for that file is closed by that process or the process holding that file

MU43814PR/D2 -2- 12101/87

FCNTL(2) FCNTL(2)

descriptor terminates. Locks are not inherited by a child process in a -
forkt2) system call. -
When mandatory file and record locking is active on a file, [see chmod{2)],
read and write system calls issued on the file will be affected by the record
locks in effect.

fcntl will fail if one or more of the following are true:

[EBADF]

[EINVAL]

[EINVAL]

[EACCES]

[ENOLCK]

[EDEADLK]

[EFAULT]

[EINTR]

[ENO LINK]

SEE ALSO

Fildes is not a valid open file descriptor.

Cmd is F _DUPFD. arg is either negative, or greater than or
equal to the configured value for the maximum number of
open file descriptors allowed each user.

Cmd is F_GETLK, F_SETLK, or SETLKW and arg or the data
it points to is not valid.

Cmd is F _SETLK the type of lock {Uype) is a read
{F _RDLCK) lock and the segment of a file to be locked is
already write locked by another process or the type is a
write (F _ WRLCK) lock and the segment of a file to be
locked is already read or write locked by another process.

Cmd is F_SETLK or F_SETLKW, the type of lock is a read or
write lock, and there are no more record locks available
{too many file segments locked) because the system max­
imum has been exceeded.

Cmd is F_SETLKW, the lock is blocked by some lock from
another process, and putting the calling-process to sleep,
waiting for that lock to become free, would cause a
deadlock.

Cmd is F _SETLK, arg points outside the program address
space.

A signal was caught during the fen.ti system call.

Fildes is on a remote machine and the link to that machine
is no longer active.

close{2), creat{2), dup{2), exec{2), fork(2), open{2), pipe{2), fcntl{5).

DIAGNOSTICS
Upon successful completion, the value returned depends on cmd as

MU43814PR/D2 - 3 - 12/01/87

FCNTL(2) FCNTL(2)

follows:
F _DUPFD A new file descriptor.
F_GETFD Value of flag (only the low-order bit is defined).
F_SETFD Value other than-1.
F_GETFL Value of file flags.
F _SETFL Value other than -1.
F_GETLK Value other than-1.
F_SETLK Value other than-1.
F _SETLKW Value other than -1.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

WARNINGS
Because in the future the variable errno will be set to EAGAIN rather than
EACCES when a section of a file is already locked by another process,
portable application programs should expect and test for either value.

MU43814PR/D2 -4- 12/01/87

FORK(2) FORK(2)

NAME
fork - create a new process

SYNOPSIS
int fork ()

DESCRIPTION
fork causes creation of a new process. The new process (child process) is
an exact copy of the calling process (parent process). This means the
child process inherits the following attributes from the parent process:

environment
close-on-exec flag [see exec(2)]
signal handling settings (i.e., SIG_DFL, SIG_IGN, SIG_HOLD,
function address)
set-user-ID mode bit
set-group-ID mode bit
profiling on/off status
nice value [see nice(2)]
all attached shared memory segments [see shmop(2)]
process group ID
tty group ID [see exit(2)]
current working directory
root directory
file mode creation mask [see umask(2)]
file size limit [see ulimit(2)]

The child process differs from the parent process in the following ways:

MU43814PR/D2

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the pro­
cess ID of the parent process).

The child process has its own copy of the parent's file descriptors.
F.ach of the child's file descriptors shares a common file pointer
with the corresponding file descriptor of the parent.

All semadj values are cleared [see semop(2)].

Process locks, text locks and data locks are not inherited by the
child [see plock(2)].

- 1 - 12/01/87

Ill
FORK(2) FORK(2)

The child process's utime, stime, cutime, and cstime are set to 0.
The time left until an alarm clock signal is reset to 0.

fork will fail and no child process will be created if one or more of the fol­
lowing are true:

[EAGAIN]

[EA GAIN]

[EAGAIN]

SEE ALSO

The system-imposed limit on the total number of
processes under execution would be exceeded.

The system-imposed limit on the total number of
processes under execution by a single user would be
exceeded.

Total amount of system memory available when reading
via raw IO is temporarily insufficient.

exec(2), nice(2), plock(2), ptrace(2), semop(2), shmop(2), signal(2), sig­
set(2), times(2), ulimit(2), umask(2), wait(2).

DIAGNOSTICS
Upon successful completion, fork returns a value of 0 to the child process
and returns the process ID of the child process to the parent process.
Otherwise, a value of -1 is returned to the parent process, no child pro­
cess is created, and errno is set to indicate the error.

MU43814PR/D2 -2- 12/01/87

GETDENTS(2) GETDENTS(2)

NAME
getdents - read directory entries and put in a file system independent for­
mat

SYNOPSIS
#include <sys/dirent.h>

int getdents (fildes, buf, nbyte)
int fildes;
char •buf;
unsigned nbyte;

DESCRIPTION
Fildes is a file descriptor obtained from an open(2) or dup(2) system call.

getdents attempts to read nbyte bytes from the directory associated with
fildes and to format them as file system independent directory entries in
the buffer pointed to by buf. Since the file system independent directory
entries are of variable length, in most cases the actual number of bytes
returned will be strictly less than nbyte.

The file system independent directory entry is specified by the dirent
structure. For a description of this see dirent(4).

On devices capable of seeking, getdents starts at a position in the file given
by the file pointer associated with fildes. Upon return from getdents, the
file pointer is incremented to point to the next directory entry.

This system call was developed in order to implement the readdir(3X) rou­
tine [for a description see directory(3X)], and should not be used for other
purposes.

getdents will fail if one or more of the following are true:

[EBADF] Fildes is not a valid file descriptor open for reading.

[EFAULT] Buf points outside the allocated address space.

[EINVAL]

[ENO ENT]

MU43814PR/D2

nbyte is not large enough for one directory entry.

The current file pointer for the directory is not located at
a valid entry.

- 1 - 12/01/87

Ill
GETDENTS(2)

[ENO LINK]

[ENOTDIR]

[EIO]

SEE ALSO

GETDENTS(2)

Fildes points to a remote machine and the link to that
machine is no longer active.

Fildes is not a directory.

An I/O error occurred while accessing the file system.

directory(3X), dirent(4).

DIAGNOSTICS
Upon successful completion a non-negative integer is returned indicating
the number of bytes actually read. A value of 0 indicates the end of the
directory has been reached. If the system call failed, a -1 is returned and
errno is set to indicate the error.

MU43814PR/D2 - 2 - 12/01/87

GETMSG(2) GETMSG(2)

NAME
getmsg - get next message off a stream

SYNOPSIS
#include <stropts.h>

int getmsg(fd, ctlptr, dataptr, flags)
int fd;
struct strbuf •ctlptr;
struct strbuf •dataptr;
int •flags;

DESCRIPTION
getmsg retrieves the contents of a message [see intro(2)] located at the
stream head read queue from a STREAMS file, and places the contents into
user specified buffer(s). The message must contain either a data part, a
control part or both. The data and control parts of the message are placed
into separate buffers, as described below. The semantics of each part is
defined by the STREAMS module that generated the message.

Fd specifies a file descriptor referencing an open stream. Ctlptr and dataptr
each point to a strbuf structure which contains the following members:

int maxlen; /* maximum buffer length •/
int len; /*length of data •/
char •buf; /* ptr to buffer •t

where buf points to a buffer in which the data or control information is to
be placed, and maxlen indicates the maximum number of bytes this buffer
can hold. On return, len contains the number of bytes of data or control
information actually received, or is 0 if there is a zero-length control or
data part, or is -1 if no data or control information is present in the mes­
sage. Flags may be set to the values 0 or RS_HIPRI and is used as
described below.

Ctlptr is used to hold the control part from the message and dataptr is
used to hold the data part from the message. If ctlptr (or dataptr) is NULL
or the maxlen field is -1, the control (or data) part of the message is not
processed and is left on the stream head read queue and len is set to -1. If
the maxlen field is set to 0 and there is a zero-length control (or data) part,
that zero-length part is removed from the read queue and len is set to O.
If the maxlen field is set to 0 and there are more than zero bytes of control
(or data) information, that information is left on the read queue and Zen is
set to 0. If the maxlen field in ctlptr or dataptr is less than, respectively, the
control or data part of the message, maxlen bytes are retrieved. In this

MU43814PR/D2 -1- 12/01/87

GETMSG(2) GETMSG(2)

case, the remainder of the message is left on the stream head read queue
, and a non-zero return value is provided, as described below under DIAG­
NOSTICS. If information·is retrieved from a priority message, flags is set
to RS_HIPRI on return.

By default, getmsg processes the first priority or non-priority message
available on the stream head read queue. However, a user may choose to
retrieve only priority messages by setting flags to RS_HIPRI. In this case,
getmsg will only process the next message if it is a priority message.

If O_NDELAY has not been set, getmsg blocks until a message, of the
type(s) specified by ftags (priority or either), is available on the stream head
read queue. If O_NDELAY has been set and a message of the specified
type(s) is not present on the read queue, getmsg fails and sets errno to
EAGAIN.

If a hangup occurs on the stream from which messages are to be retrieved,
getmsg will continue to operate normally, as described above, until the
stream head read queue is empty. Thereafter, it will return 0 in the Zen
fields of ctlptr and dataptr.

getmsg fails if one or more of the following are true:

[EA GAIN]

[EBADF]

[EB AD MSG]

[EFAULT]

[EINTR]

[EINVAL]

[ENOS TR]

The O_NDELAY flag is set, and no messages are available.

Fd is not a valid file descriptor open for reading.

Queued message to be read is not valid for getmsg.

Ctlptr, dataptr, or flags points to a location outside the
allocated address space.

A signal was caught during the getmsg system call.

An illegal value was specified in flags, or the stream refer­
enced by fd is linked under a multiplexor.

A stream is not associated with fd.

A getmsg can also fail if a STREAMS error message had been received at the
stream head before the call to getmsg. The error returned is the value con­
tained in the STREAMS error message.

SEE ALSO
intro(2), read(2), poll(2), putmsg(2), write(2).
STREAMS Primer
STREAMS Programmer's Guide

MU43814PR/D2 -2- 12/01/87

GETMSG(2) GETMSG(2)

DIAGNOSTICS
Upon successful completion, a non-negative value is returned. A value of
0 indicates that a full message was read successfully. A return value of
MORECTL indicates that more control information is waiting for retrieval.
A return value of MOREDATA indicates that more data is waiting for
retrieval. A return value of MORECTLIMOREDATA indicates that both
types of information remain. Subsequent getmsg calls will retrieve the
remainder of the message.

MU43814PR/D2 -3- 12/01/87

II

II
GETPID(2) GETPID(2)

NAME
getpid, getpgrp, getppid - get process, process group, and parent process
IDs

SYNOPSIS
int getpid ()

int getpgrp ()

int getppid ()

DESCRIPTION
getpid returns the process ID of the calling process.

Getpgrp returns the process group ID of the calling process.

Getppid returns the parent process ID of the calling process.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal(2).

MU43814PR/D2 - 1 - 12/01/87

GETUID(l) GETUID(l)

NAME
getuid, geteuid, getgid, getegid - get real user, effective user, real group,
and effective group IDs

SYNOPSIS
unsigned short getuid ()

unsigned short geteuid ()

unsigned short getgid ()

unsigned short getegid ()

DESCRIPTION
getuid returns the real user ID of the calling process.

Geteuid returns the effective user ID of the calling process.

Getgid returns the real group ID of the calling process.

Getegid returns the effective group ID of the calling process.

SEE ALSO
intro(2), setuid(2).

MU43814PR/D2 -1 - 12/01/87

II

Ill

IOCTL(2) IOCTL(2)

NAME
ioctl - control device

SYNOPSIS
int ioctl (fildes, request, arg)
int fildes, request;

DESCRIPTION
ioctl performs a variety of control functions on devices and STREAMS. For
non-STREAMS files, the functions performed by this call are device-specific
control functions. The arguments request and arg are passed to the file
designated by fildes and are interpreted by the device driver. This control
is infrequently used on non-STREAMS devices, with the basic input/output
functions performed through the read(2) and write(2) system calls.

For STREAMS files, specific functions are performed by the ioctl call as
described in streamio(7).

Fildes is an open file descriptor that refers to a device. Request selects the
control function to be performed and will depend on the device being
addressed. Arg represents additional information that is needed by this
specific device to perform the requested function. The data type of arg
depends upon the particular control request, but it is either an integer or a
pointer to a device-specific data structure.

In addition to device-specific and STREAMS functions, generic functions
are provided by more than one device driver, for example, the general ter­
minal interface [see termio(7)].

ioctl will fail for any type of file if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

[ENOTTY]

[EINTR]

Fildes is not associated with a device driver that accepts
control functions.

A signal was caught during the ioctl system call.

ioctl will also fail if the device driver detects an error. In this case, the
error is passed through ioctl without change to the caller. A particular
driver might not have all of the following error cases. Other requests to
device drivers will fail if one or more of the following are true.

MU43814PR/D2 - 1 - 12/01/87

Ill
IOCTL(2)

[EFAULT]

[EINVAL]

[EIO]

[ENXIO]

[ENO LINK]

IOCTL(2)

Request requires a data transfer to or from a buffer
pointed to by arg, but some part of the buffer is outside
the process's allocated space.

Request or arg is not valid for this device.

Some physical I/O error has occurred.

The request and arg are valid for this device driver, but
the service requested can not be performed on this partic­
ular subdevice.

Fildes is on a remote machine and the link to that machine
is no longer active.

STREAMS errors are described in streamio(7).

SEE ALSO
streamio(7), termio(7) in the System Administrator's Reference Manual.

DIAGNOSTICS
Upon successful completion, the value returned depends upon the device
control function, but must be a non-negative integer. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

MU43814PR/D2 -2- 12/01/87

KILL(2) KILL(2)

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
int kill (pid, sig)
int pid, sig;

DESCRIPTION
kill sends a signal to a process or a group of processes. The process or
group of processes to which the signal is to be sent is specified by pid.
The signal that is to be sent is specified by sig and is either one from the
list given in signal(2), or 0. If sig is 0 (the null signal), error checking is
performed but no signal is actually sent. This can be used to check the
validity of pid.

The real or effective user ID of the sending process must match the real or
effective user ID of the receiving process, unless the effective user ID of
the sending process is super-user.

The processes with a process ID of 0 and a process ID of 1 are special
processes [see intro(2)] and will be referred to below as procO .and proc1,
respectively.

If pid is greater than zero, sig will be sent to the process whose process ID
is equal to pid. Pid may equal 1.

If pid is 0, sig will be sent to all processes excluding procO and proc1 whose
process group ID is equal to the process group ID of the sender.

If pid is -1 and the effective user ID of the sender is not super-user, sig
will be sent to all processes excluding procO and proc1 whose real user ID
is equal to the effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is super-user, sig will be
sent to all processes excluding procO and proc1.

If pid is negative but not -1, sig will be sent to all processes whose pro­
cess group ID is equal to the absolute value of pid.

kill will fail and no signal will be sent if one or more of the following are
true:

MU43814PR/D2 -1- 12/01/87

II
KILL(2)

. [EINVAL]

[EINVAL]

[ESRCH]

[EPERM]

SEE ALSO

Sig is not a valid signal number .

Sig is SIGKILL and pid is 1 {procl).

KILL(2)

No process can be found corresponding to that specified
by pid.

The user ID of the sending process is not super-user, and
its real or effective user ID does not match the real or
effective user ID of the receiving process.

getpid(2), setpgrp(2), signal(2), sigset(2).
kill(l) in the User's Reference Manual.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value
of-1 is returned and errno is set to indicate the error.

MU43814PR/D2 -2- 12/01/87

LINK(2) LINK(2)

NAME
link - link to a file

SYNOPSIS
int link (pathl, path2)
char •pathl, •path2;

DESCRIPTION
Pathl points to a path name naming an existing file. Path2 points to a
path name naming the new directory entry to be created. link creates a
new link (directory entry) for the existing file.

link will fail and no link will be created if one or more of the following are
true:

[ENOTDIR]

[ENO ENT]

[EACCES]

[ENO ENT]

[EEXIST]

[EPERM]

[EXDEV]

[ENO ENT]

[EACCES]

[EROFS]

[EFAULT]

[EMLINK]

MU43814PR/D2

A component of either path prefix is not a directory.

A component of either path prefix does not exist.

A component of either path prefix denies search permis­
sion.

The file named by pathl does not exist.

The link named by path2 exists.

The file named by pathl is a directory and the effective
user ID is not super-user.

The link named by path2 and the file named by pathl are
on different logical devices (file systems).

Path2 points to a null path name.

The requested link requires writing in a directory with a
mode that denies write permission.

The requested link requires writing in a directory on a
read-only file system.

Path points outside the allocated address space of the
process.

The maximum number of links to a file would be
exceeded.

- 1 - 12/01/87

II
LINK(2)

[EINTR]

[ENO LINK]

[EMULTIHOP]

SEE ALSO
unlink(2).

DIAGNOSTICS

LINK(2)

A signal was caught during the link system call.

Path points to a remote machine and the link to that
machine is no longer active.

Components of path require hopping to multiple remote
machines.

Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

MU43814PR/D2 - 2 - 12/01/87

LSEEK(2) LSEEK(2)

NAME
lseek - move read/write file pointer

SYNOPSIS
long lseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

DESCRIPTION
Fildes is a file descriptor returned from a creat, open, dup, or fcntl system
call. lseek sets the file pointer associated with fildes as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus offset.

If whence is 2, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location, as measured
in bytes from the beginning of the file, is returned. Note that if fildes is a
remote file descriptor and offset is negative, lseek will return the file pointer
even if it is negative.

lseek will fail and the file pointer will remain unchanged if one or more of
the following are true:

[EBADF] Fildes is not an open file descriptor.

[ESPIPE] Fildes is associated with a pipe or fifo.

[EINV AL and SIGSYS signal]
Whence is not 0, 1, or 2.

[EINV AL] Fildes is not a remote file descriptor, and the resulting file
pointer would be negative.

Some devices are incapable of seeking. The value of the file pointer asso­
ciated with such a device is undefined.

SEE ALSO
creat(2), dup(2), fcntl(2), open(2).

DIAGNOSTICS
Upon successful completion, a non-negative integer indicating the file
pointer value is returned. Otherwise, a value of -1 is returned and errno
is set to indicate the error.

MU43814PR/D2 - 1 - 12/01/87

II

II

MKDIR(2) MKDIR(2)

NAME
mkdir - make a directory

SYNOPSIS
int mkdir (path, mode)
char •path;
int mode;

DESCRIPTION
The routine mkdir creates a new directory with the name path. The mode
of the new directory is initialized from the mode. The protection part of
the mode argument is modified by the process's mode mask [see
umask(2)].

The directory's owner ID is set to the process's effective user ID. The
directory's group ID is set to the process's effective group ID. The newly
created directory is empty with the possible exception of entries for "."
and " .. ". mkdir will fail and no directory will be created if one or more of
the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENO ENT]

[ENO LINK)

[EMULTIHOP]

[EACCES]

[ENO ENT]

[EEXIST]

[EROFS]

[EFAULT]

MU43814PR/D2

A component of the path prefix does not exist.

Path points to a remote machine and the link to that
machine is no longer active.

Components of path require hopping to multiple remote
machines.

Either a component of the path prefix denies search per­
mission or write permission is denied on the parent direc­
tory of the directory to be created.

The path is longer than the maximum allowed.

The named file already exists.

The path prefix resides on a read-only file system.

Path points outside the allocated address space of the
process.

- 1 - 12/01/87

II
MKDIR(2)

[EMLINK]

[EIO]

DIAGNOSTICS

MKDIR(2)

The maximum number of links to the parent directory
would be exceeded.

An I/O error has occurred while accessing the file system.

Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned, and errno is set to indicate the error.

MU43814PR/D2 - 2 - 12/01/87

MKNOD(2) MKNOD(2)

NAME
mknod - make a directory, or a special or ordinary file

SYNOPSIS
int mknod (path, mode, dev)
char •path;
int mode, dev;

DESCRIPTION
mknod creates a new file named by the path name pointed to by path. The
mode of the new file is initialized from mode. Where the value of mode is
interpreted as follows:

0170000 file type; one of the following:

0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file

0004000 set user ID on execution
00020#0 set group ID on execution if# is 7, 5, 3, or 1

enable mandatory file/record locking if # is 6, 4, 2, or 0
0001000 save text image after execution
0000777 access permissions; constructed from the following:

0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The owner ID of the file is set to the effective user ID of the process. The
group ID of the file is set to the effective group ID of the process.

Values of mode other than those above are undefined and should not be
used. The low-order 9 bits of mode are modified by the process's file
mode creation mask: all bits set in the process's file mode creation mask
are cleared [see umask(2)]. If mode indicates a block or character special
file, dev is a configuration-dependent specification of a character or block
I/O device. If mode does not indicate a block special or character special
device, dev is ignored.

MU43814PR/D2 - 1 - 12/01/87

II

II
MKNOD(2) MKNOD(2)

mknod may be invoked only by the super-user for file types other than
FIFO special.

mknod will fail and the new file will not be created if one or more of the
following are true:

[EPERM] The effective user ID of the process is not super-user.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of the path prefix does not exist.

[EROFS] The directory in which the file is to be created is located
on a read-only file system.

[EEXIST] The named file exists.

[EFAULT] Path points outside the allocated address space of the
process.

[ENOSPC] No space is available.

[EINTR] A signal was caught during the mknod system call.

[ENOLINK] Path points to a remote machine and the link to that
machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

SEE ALSO
chmod(2), exec(2), umask(2), fs(4).
mkdir(l) in the User's Reference Manual.

DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

WARNING
If mknod is used to create a device in a remote directory (Remote File
Sharing), the major and minor device numbers are interpreted by the
server.

MU43814PR/D2 - 2 - 12/01/87

MOUNT(2) MOUNT(2)

NAME
mount - mount a file system

SYNOPSIS
#include <sys/mount.h>

int mount (spec, dir, mflag, fstyp)
char •spec, •dir;
int mflag, fstyp;

DESCRIPTION
mount requests that a removable file system contained on the block special
file identified by spec be mounted on the directory identified by dir. Spec
and dir are pointers to path names. Fstyp is the file system type number.
The sysfs(2) system call can be used to determine the file system type
number. Note that if the MS_FSS flag bit of mflag is off, the file system
type will default to the root file system type. Only if the bit is on will fstyp
be used to indicate the file system type.

Upon successful completion, references to the file dir will refer to the root
directory on the mounted file system.

The low-order bit of mflag is used to control write permission on the
mounted file system; if 1, writing is forbidden, otherwise writing is per­
mitted according to individual file accessibility.

mount may be invoked only by the super-user. It is intended for use only
by the mount(lM) utility.

mount will fail if one or more of the following are true:

[EPERM] The effective user ID is not super-user.

[ENOENT] Any of the named files does not exist.

[ENOTDIR]

[EREMOTE]

[ENOLINK]

[EMUL TIHOP]

MU43814PR/D2

A component of a path prefix is not a directory.

Spec is remote and cannot be mounted.

Path points to a remote machine and the link to that
machine is no longer active.

Components of path require hopping to multiple remote
machines.

-1- 12/01/87

II
MOUNT(2)

[ENOTBLK]

[ENXIO]

[ENOTDIR]

[EFAULT]

[EBUSY]

[EBUSY]

[EBUSY]

[EROFS]

[ENOS PC]

[EINVAL]

SEE ALSO

Spec is not a block special device.

The device associated with spec does not exist.

Dir is not a directory.

MOUNT(2)

Spec or dir points outside the allocated address space of
the process.

Dir is currently mounted on, is someone's current work­
ing directory, or is otherwise busy.

The device associated with spec is currently mounted.

There are no more mount table entries.

Spec is write protected and mflag requests write permis­
sion.

The file system state in the super-block is not FsOKAY
and mflag requests write permission.

The super block has an invalid magic number or the fstyp
is invalid or mflag is not valid.

sysfs(2), umount(2), fs(4).
mount(lM) in the System Administrator's Reference Manual.

DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise, a value
of-1 is returned and errno is set to indicate the error.

MU43814PR/D2 -2- 12101187

MSGCTL(2) MSGCTL(2)

NAME
msgctl - message control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (msqid, cmd, buf)
int msqid, cmd;
struct msqid_ds •buf;

DESCRIPTION
msgctl provides a variety of message control operations as specified by
cmd. The following cmd s are available:

IPC_STAT Place the current value of each member of the data struc­
ture associated with msqid into the structure pointed to by
bu/. The contents of this structure are defined in intro(2).
{READ}

IPC_SET

IPC_RMID

Set the value of the following members of the data struc­
ture associated with msqid to the corresponding value
found in the structure pointed to by bu/:

msg_perm. uid
msg_perm.gid
msg_perm.mode /•only low 9 bits•/
msg_qbytes

This cmd can only be executed by a process that has an
effective user ID equal to either that of super user, or to
the value of msg_perm.cuid or msg_perm.uid in the data
structure associated with msqid. Only super user can
raise the value of msg_qbytes.

Remove the message queue identifier specified by msqid
from the system and destroy the message queue and data
structure associated with it. This cmd can only be exe­
cuted by a process that has an effective user ID equal to
either that of super user, or to the value of
msg_perm.cuid or msg_perm.uid in the data structure
associated with msqid.

msgctl will fail if one or more of the following are true:

MU43814PR/D2 -1- 12/01/87

Ill

II
MSGCTL(2)

[EINVAL]

[EINVAL]

[EACCES]

[EPERM]

[EPERM]

[EFAULT]

SEE ALSO

Msqid is not a valid message queue identifier.

Cmd is not a valid command.

MSGCTL(2)

Cmd is equal to IPC_STAT and {READ} operation permis­
sion is denied to the calling process [see intro(2)].

Cmd is equal to IPC_RMID or IPC_SET. The effective user
ID of the calling process is not equal to that of super user,
or to the value of msg_perm.cuid or msg_perm.uid in the
data structure associated with msqid.

Cmd is equal to IPC_SET, an attempt is being made to
increase to the value of msg_qbytes, and the effective
user ID of the calling process is not equal to that of super
user.

Buf points to an illegal address.

intro(2), msgget(2), msgop(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

MU43814PR/D2 -2- 12/01/87

MSGGET(2) MSGGET(2)

NAME
msgget - get message queue

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgflg)
key_t key;
int msgflg;

DESCRIPTION
msgget returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data struc­
ture [see intro(2)] are created for key if one of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a message queue identifier associated
with it, and (msgflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new message queue
identifier is initialized as follows:

Msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and
msg_perm.gid are set equal to the effective user ID and effective
group ID, respectively, of the calling process.

The low-order 9 bits of msg_perm.mode are set equal to the low­
order 9 bits of msgflg.

Msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime
are set equal to 0.

Msg_ctime is set equal to the current time.

Msg_qbytes is set equal to the system limit.

msgget will fail if one or more of the following are true:

[EACCES] A message queue identifier exists for key, but operation
permission [see intro(2)] as specified by the low-order 9
bits of msgflg would not be granted.

MU43814PR/D2 - 1 - 12/01/87

II
MSGGET(2)

[ENO ENT]

[ENOS PC]

[EEXIST]

SEE ALSO

MSGGET(2)

A message queue identifier does not exist for key and
(msgfig & IPC_CREAT) is "false".

A message queue identifier is to be created but the
system-imposed limit on the maximum number of
allowed message queue identifiers system wide would be
exceeded.

A message queue identifier exists for key but ((msgflg &
IPC_CREAT) & (msgflg & IPC_EXCL)) is "true".

intro(2), msgctl(2), msgop(2).

DIAGNOSTICS
Upon successful completion, a non-negative integer, namely a message
queue identifier, is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

MU43814PR/D2 - 2 - 12/01/87

MSGOP(2) MSGOP(2)

NAME
msgop - message operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
struct msgbuf •msgp;
int msgsz, msgflg;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
struct msgbuf •msgp;
int msgsz;
long msgtyp;
int msgflg;

DESCRIPTION
Msgsnd is used to send a message to the queue associated with the mes­
sage queue identifier specified by msqid. {WRITE} Msgp points to a struc­
ture containing the message. This structure is composed of the following
members:

long mtype; I* message type *f
char mtext[]; I* message text *I

Mtype is a positive integer that can be used by the receiving process for
message selection (see msgrcv below). Mtext is any text of length msgsz
bytes. Msgsz can range from 0 to a system-imposed maximum.

Msgfig specifies the action to be taken if one or more of the following are
true:

The number of bytes already on the queue is equal to msg_qbytes
[see intro(2)].

The total number of messages on all queues system-wide is equal
to the system-imposed limit.

These actions are as follows:

MU43814PR/D2 - 1 - 12/01/87

II
MSGOP(2) MSGOP(2)

If (msgflg & IPC_NOWAIT) is "true", the message will not be sent
and the calling process will return immediately.

If (msgflg & IPC_NOWAIT) is "false", the calling process will
suspend execution until one of the following occurs:

The condition responsible for the suspension no longer
exists, in which case the message is sent.

Msqid is removed from the system [see msgctl(2)]. When
this occurs, errno is set equal to EIDRM, and a value of -1
is returned.

The calling process receives a signal that is to be caught.
In this case the message is not sent and the calling pro­
cess resumes execution in the manner prescribed in sig­
nal (2).

Msgsnd will fail and no message will be sent if one or more of the follow­
ing are true:

[EINVAL]

[EACCES]

[EINVAL]

[EAGAIN]

[EINVAL]

[EFAULT]

Msqid is not a valid message queue identifier.

Operation permission is denied to the calling process [see
intro(2)].

Mtype is less than 1.

The message cannot be sent for one of the reasons cited
above and (msgflg & IPC_NOWAIT) is "true".

Msgsz is less than zero or greater than the system­
imposed limit.

Msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect
to the data structure associated with msqid [see intro (2)].

Msg_qnum is incremented by 1.

Msg_lspid is set equal to the process ID of the calling process.

Msg_stime is set equal to the current time.

Msgrcv reads a message from the queue associated with the message
queue identifier specified by msqid and places it in the structure pointed to
by msgp. {READ} This structure is composed of the following members:

long mtype; I* message type *I
char mtext[]; I* message text *I

MU43814PR/D2 -2- 12/01/87

MSGOP(2) MSGOP(2)

Mtype is the received message's type as specified by the sending process.
Mtext is the text of the message. Msgsz specifies the size in bytes of mtext.
The received message is truncated to msgsz bytes if it is larger than msgsz
and (msgflg & MSG_NOERROR) is "true". The truncated part of the mes­
sage is lost and no indication of the truncation is given to the calling pro­
cess.

Msgtyp specifies the type of message requested as follows:

If msgtyp is equal to 0, the first message on the queue is received.

If msgtyp is greater than 0, the first message of type msgtyp is
received.

If msgtyp is less than 0, the first message of the lowest type that is
less than or equal to the absolute value of msgtyp is received.

Msgflg specifies the action to be taken if a message of the desired type is
not on the queue. These are as follows:

If (msgflg & IPC_NOWAIT) is "true", the calling process will return
immediately with a return value of-1 and errno set to ENOMSG.

If (msgflg & IPC_NOWAIT) is "false", the calling process will
suspend execution until one of the following occurs:

A message of the desired type is placed on the queue.

Msqid is removed from the system. When this occurs,
errno is set equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught.
In this case a message is not received and the calling pro­
cess resumes execution in the manner prescribed in sig­
naZ (2).

Msgrcv will fail and no message will be received if one or more of the fol­
lowing are true:

[EINVAL]

[EACCES]

[EINVAL]

MU43814PR/D2

Msqid is not a valid message queue identifier.

Operation permission is denied to the calling process.

Msgsz is less than 0.

- 3 - 12/01/87

II

II
MSGOP(2) MSGOP(2)

[E2BIG] Mtext is greater than msgsz and (msgfig &
MSG_NOERROR) is "false".

[ENO MSG] The queue does not contain a message of the desired type
and (msgtyp & IPC_NOWAIT) is "true".

[EFAULT] Msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect
to the data structure associated with msqid [see intro (2)).

SEE ALSO

Msg_qnum is decremented by 1.

Msg_lrpid is set equal to the process ID of the calling process.

Msg_rtime is set equal to the current time.

intro(2), msgctl(2), msgget(2), signal(2).

DIAGNOSTICS
If msgsnd or msgrcv return due to the receipt of a signal, a value of -1 is
returned to the calling process and errno is set to EINTR. If they return
due to removal of msqid from the system, a value of -1 is returned and
errno is set to EIDRM.

Upon successful completion, the return value is as follows:

Msgsnd returns a value of 0.

Msgrcv returns a value equal to the number of bytes actually
placed into mtext.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

MU43814PR/D2 -4- 12/01/87

NICE(2) NICE(2)

NAME
nice - change priority of a process

SYNOPSIS
int nice (incr)
int incr;

DESCRIPTION
nice adds the value of incr to the nice value of the calling process. A
process's nice value is a non-negative number for which a more positive
value results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed
by the system. (The default nice value is 20.) Requests for values above
or below these limits result in the nice value being set to the correspond­
ing limit.

[EPERM]

SEE ALSO
exec{2).

nice will fail and not change the nice value if incr is nega­
tive or greater than 39 and the effective user ID of the cal­
ling process is not super-user.

nice{l) in the User's Reference Manual.

DIAGNOSTICS
Upon successful completion, nice returns the new nice value minus 20.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

MU43814PR/D2 - 1 - 12101/87

Ill

II

OPEN(2) OPEN(2)

NAME
open - open for reading or writing

SYNOPSIS
#include <fcntl.h>
int open (path, oflag [, mode])
char •path;
int oflag, mode;

DESCRIPTION
Path points to a path name naming a file. open opens a file descriptor for
the named file and sets the file status flags according to the value of oflag.
For non-STREAMS [see intro(2)] files, oflag values are constructed by or-ing
flags from the following list (only one of the first three flags below may be
used):

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

O_NDELAY This flag may affect subsequent reads and writes [see read(2)
and write(2)].

MU43814PR/D2

When opening a FIFO with O_RDONLY or O_WRONLY set:

If O_NDELAY is set:

An open for reading-only will return without delay.
An open for writing-only will return an error if no
process currently has the file open for reading.

If O_NDELA Y is clear:

An open for reading-only will block until a process
opens the file for writing. An open for writing-only
will block until a process opens the file for reading.

When opening a file associated with a communication line:

If O_NDELAY is set:

The open will return without waiting for carrier.

- 1 - 12/01/87

II
OPEN(2) OPEN(2)

If O_NDELAY is clear:

The open will block until carrier is present.

O_APPEND If set, the file pointer will be set to the end of the file prior
to each write.

O_SYNC

O_CREAT

When opening a regular file, this flag affects subsequent
writes. If set, each write(2) will wait for both the file data
and file status to be physically updated.

If the file exists, this flag has no effect. Otherwise, the
owner ID of the file is set to the effective user ID of the pro­
cess, the group ID of the file is set to the effective group ID
of the process, and the low-order 12 bits of the file mode are
set to the value of mode modified as follows [see creat(2)]:

All bits set in the file mode creation mask of the pro­
cess are cleared [see umask(2)].

The "save text image after execution bit" of the
mode is cleared [see chmod (2)].

O_TRUNC If the file exists, its length is truncated to 0 and the mode
and owner are unchanged.

O_EXCL If O_EXCL and O_CREAT are set, open will fail if the file
exists.

When opening a STREAMS file, ofiag may be constructed from O_NDELAY
or-ed with either O_RDONLY, O_WRONLY or O_RDWR. Other flag values
are not applicable to STREAMS devices and have no effect on them. The
value of O_NDELAY affects the operation of STREAMS drivers and certain
system calls [see read(2), getmsg(2), putmsg(2) and write(2)]. For drivers,
the implementation of O_NDELAY is device-specific. Each STREAMS dev­
ice driver may treat this option differently.

Certain flag values can be set following open as described in fcntl(2).

The file pointer used to mark the current position within the file is set to
the beginning of the file.

The new file descriptor is set to remain open across exec system calls [see
fcnt1(2)].

The named file is opened unless one or more of the following are true:

MU43814PR/D2 - 2 - 12/01/87

OPEN(2)

[EACCES]

[EACCES]

[EA GAIN]

[EEXIST]

[EFAULT]

[EINTR]

[EIO]

[EIS DIR]

[EMFILE]

[EMULTIHOP]

[ENFILE]

[ENO ENT]

[ENO LINK]

[ENOMEM]

[ENOS PC]

[ENOSR]

[ENOTDIR]

[ENXIO]

[ENXIO]

MU43814PR/D2

OPEN(2)

A component of the path prefix denies search permission.

oflag permission is denied for the named file.

The file exists, mandatory file/record locking is set, and
there are outstanding record locks on the file [see chmod
(2)].

O_CREAT and O_EXCL are set, and the named file exists.

Path points outside the allocated address space of the
process.

A signal was caught during the open system call.

A hangup or error occurred during a STREAMS open.

The named file is a directory and oflag is write or
read/write.

NOFILES file descriptors are currently open.

Components of path require hopping to multiple remote
machines.

The system file table is full.

O_CREAT is not set and the named file does not exist.

Path points to a remote machine, and the link to that
machine is no longer active.

The system is unable to allocate a send descriptor.

O_CREAT and O_EXCL are set, and the file system is out
of inodes.

Unable to allocate a stream.

A component of the path prefix is not a directory.

The named file is a character special or block special file,
and the device associated with this special file does not
exist.

O_NDELAY is set, the named file is a FIFO, O_WRONLY is
set, and no process has the file open for reading.

- 3 - 12/01/87

II

II
OPEN(2)

[ENXIO]

[EROFS]

[ETXTBSY]

SEE ALSO

OPEN(2)

A STREAMS module or driver open routine failed.

The named file resides on a read-only file system and
oflag is write or read/write.

The file is a pure procedure (shared text) file that is being
executed and oflag is write or read/write.

chmod(2), close(2), creat(2), dup(2), fcntl(2), intro(2), lseek(2), read(2),
getmsg(2), putmsg(2), umask(2), write(2).

DIAGNOSTICS
Upon successful completion, the file descriptor is returned. Otherwise, a
value of-1 is returned and errno is set to indicate the error.

MU43814PR/D2 -4- 12/01/87

PAUSE(l) PAUSE(2)

NAME
pause - suspend process until signal

SYNOPSIS
pause ()

DESCRIPTION
pause suspends the calling process until it receives a signal. The signal
must be one that is not currently set to be ignored by the calling process.

If the signal causes termination of the calling process, pause will not
return.

If the signal is caught by the calling process and control is returned from
the signal-catching function Isee signal(2)], the calling process resumes
execution from the point of suspension; with a return value of -1 from
pause and errno set to EINTR.

SEE ALSO
alarm(2), kill(2), signal(2), sigpause(2), wait(2).

MU43814PR/D2 - 1 - 12/01/87

II

II
PIPE(2) PIPE(2)

NAME
pipe - create an interprocess channel

SYNOPSIS
int pipe (fildes)
int fildes[2];

DESCRIPTION
pipe creates an VO mechanism called a pipe and returns two file descrip­
tors, fildes[O] and fildes[l]. Fildes[O] is opened for reading and fildes[l] is
opened for writing.

Up to 5120 bytes of data are buffered by the pipe before the writing pro­
cess is blocked. A read only file descriptor fildes [O] accesses the data writ­
ten to fildes[l] on a first-in-first-out (FIFO) basis.

pipe will fail if:

[EMFILE]

[ENFILE]

SEE ALSO

NOFILES file descriptors are currently open.

The system file table is full.

read(2), write(2).
sh(l) in the User's Reference Manual.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

MU43814PR/D2 - 1 - 12/01/87

PLOCK(2) PLOCK(2)

NAME
plock - lock process, text, or data in memory

SYNOPSIS
#include <sys/lock.h>

int plock (op)
int op;

DESCRIPTION
plock allows the calling process to lock its text segment (text lock), its data
segment (data lock), or both its text and data segments (process lock) into
memory. Locked segments are immune to all routine swapping. plock
also allows these segments to be unlocked. The effective user ID of the
calling process must be super-user to use this call. Op specifies the fol­
lowing:

PROCLOCK - lock text and data segments into memory (process
lock)

TXTLOCK - lock text segment into memory (text lock)

DATLOCK - lock data segment into memory (data lock)

UNLOCK - remove locks

plock will fail and not perform the requested operation if one or more of
the following are true:

[EPERM]

[EINVAL]

[EINVAL]

[EINVAL]

[EINVAL]

MU43814PR/D2

The effective user ID of the calling process is not super­
user.

Op is equal to PROCLOCK and a process lock, a text lock,
or a data lock already exists on the calling process.

Op is equal to TXTLOCK and a text lock, or a process lock
already exists on the calling process.

Op is equal to DATLOCK and a data lock, or a process
lock already exists on the calling process.

Op is equal to UNLOCK and no type of lock exists on the
calling process.

- 1 - 12/01/87

II

II
PLOCK(2) PLOCK(2)

[EA GAIN] Not enough memory.

SEE ALSO
exec(2), exit(2), fork(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned to the calling pro­
cess. Otherwise, a value of -1 is returned and errno is set to indicate the
error.

MU43814PR/D2 - 2 - 12/01/87

POLL(2) POLL(2)

NAME
poll - STREAMS input/output multiplexing

SYNOPSIS
#include <stropts.h>
#include <poll.h>

int poll(fds, nfds, timeout)
struct pollfd fds[];
unsigned long nfds;
int timeout;

DESCRIPTION
poll provides users with a mechanism for multiplexing input/output over a
set of file descriptors that reference open streams [see intro(2)]. poll identi­
fies those streams on which a user can send or receive messages, or on
which certain events have occurred. A user can receive messages using
read(2) or getmsg(2) and can send messages using write(2) and putmsg(2).
Certain ioctl(2) calls, such as l_RECVFD and l_SENDFD [see streamio(7)], can
also be used to receive and send messages.

Fds specifies the file descriptors to be examined and the events of interest
for each file descriptor. It is a pointer to an array with one element for
each open file descriptor of interest. The array's elements are pollfd struc­
tures which contain the following members:

int fd; /* file descriptor */
short events; /*requested events*/
short revents; /* returned events */

where fd specifies an open file descriptor and events and revents are bit­
masks constructed by or-ing any combination of the following event flags:

POLLIN A non-priority or file descriptor passing message (see
l_RECVFD) is present on the stream head read queue. This
flag is set even if the message is of zero length. In revents,
this flag is mutually exclusive with POLLPRI.

POLLPRI

MU43814PR/D2

A priority message is present on the stream head read queue.
This flag is set even if the message is of zero length. In
revents, this flag is mutually exclusive with POLLIN.

- 1 - 12/01/87

II

II
POLL(2) POLL(2)

POLLOUT The first downstream write queue in the stream is not full.
Priority control messages can be sent (see putmsg) at any
time.

POLLERR An error message has arrived at the stream head. This flag is
only valid in the revents bitmask; it is not used in the events
field.

POLLHUP A hangup has occurred on the stream. This event and POL­
LOUT are mutually exclusive; a stream can never be writable
if- a hangup has occurred. However, this event and POLLIN
or POLLPRI are not mutually exclusive. This flag is only
valid in the revents bitmask; it is not used in the events field.

POLLNV AL The specified fd value does not belong to an open stream.
This flag is only valid in the revents field; it is not used in the
events field.

For each element of the array pointed to by fds, poll examines the given
file descriptor for the event(s) specified in events. The number of file
descriptors to be examined is specified by nfds. If nfds exceeds NOFILES,
the system limit of open files [see ulimit(2)], poll will fail.

If the value fd is less than zero, events is ignored and revents is set to 0 in
that entry on return from poll.

The results of the poll query are stored in the revents field in the pollfd
structure. Bits are set in the revents bitmask to indicate which of the
requested events are true. If none are true, none of the specified bits is
set in revents when the poll call returns. The event flags POLLHUP, POLL­
ERR and POLLNV AL are always set in revents if the conditions they indi­
cate are true; this occurs even though these flags were not present in
events.

If none of the defined events have occurred on any selected file descrip­
tor, poll waits at least timeout msec for an event to occur on any of the
selected file descriptors. On a computer where millisecond timing accu­
racy is not available, timeout is rounded up to the nearest legal value avail­
able on that system. If the value timeout is 0, poll returns immediately. If
the value of timeout is -1, poll blocks until a requested event occurs or until
the call is interrupted. poll is not affected by the O_NDELAY flag.

poll fails if one or more of the following are true:

MU43814PR/D2 - 2 - 12/01/87

POLL(2)

[EA GAIN]

[EFAULT]

[EINTR]

[EINVAL]

SEE ALSO

POLL(2)

Allocation of internal data structures failed but request
should be attempted again.

Some argument points outside the allocated address space.

A signal was caught during the poll system call.

The argument nfds is less than zero, or nfds is greater than
NO FILES.

intro(2), read(2), getmsg(2), putmsg(2), write(2).
streamio(7) in the System Administrator's Reference Manual.
STREAMS Primer.
STREAMS Programmer's Guide.

DIAGNOSTICS
Upon successful completion, a non-negative value is returned. A positive
value indicates the total number of file descriptors that has been selected
(i.e., file descriptors for which the revents field is non-zero). A value of 0
indicates that the call timed out and no file descriptors have been
selected. Upon failure, a value of -1 is returned and errno is set to indicate
the error.

MU43814PR/D2 - 3 - 12/01/87

II

II
PROFIL(2) PROFIL(l)

NAME
profil - execution time profile

SYNOPSIS
void profil (buff, bufsiz, offset, scale)
char •buff;
int bufsiz, offset, scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by bufsiz.
After this call, the user's program counter (pc) is examined each clock
tick. Then the value of offset is subtracted from it, and the remainder mul­
tiplied by scale. If the resulting number corresponds to an entry inside
buff, that entry is incremented. An entry is defined as a series of bytes
with length sizeof(short).

The scale is interpreted as an unsigned, fixed-point fraction with binary
point at the left: 0177777 (octal) gives a 1-1 mapping of pc's to entries in
buff; 077777 (octal) maps each pair of instruction entries together.
02(octal) maps all instructions onto the beginning of buff (producing a
non-interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective
by giving a bufsiz of 0. Profiling is turned off when an exec is executed,
but remains on in child and parent both after a fork. Profiling will be
turned off if an update in buff would cause a memory fault.

SEE ALSO
prof(l), times(2), monitor(3C).

DIAGNOSTICS
Not defined.

MU43814PR/D2 - 1 - 12/01/87

PTRACE(2) PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
int ptrace (request, pid, addr, data);
int request, pid, addr, data;

DESCRIPTION
ptrace provides a means by which a parent process may control the execu­
tion of a child process. Its primary use is for the implementation of break­
point debugging [see sdb(l)]. The child process behaves normally until it
encounters a signal [see signal(2) for the list], at which time it enters a
stopped state and its parent is notified via wait(2). When the child is in
the stopped state, its parent can examine and modify its "core image"
using ptrace. Also, the parent can cause the child either to terminate or
continue, with the possibility of ignoring the signal that caused it to stop.

The request argument determines the precise action to be taken by ptrace
and is one of the following:

0 This request must be issued by the child process if it is to be
traced by its parent. It turns on the child's trace flag that
stipulates that the child should be left in a stopped state
upon receipt of a signal rather than the state specified by
func [see signal(2)]. The pid, addr, and data arguments are
ignored, and a return value is not defined for this request.
Peculiar results will ensue if the parent does not expect to
trace the child.

The remainder of the requests can only be used by the parent process.
For each, pid is the process ID of the child. The child must be in a
stopped state before these requests are made.

MU43814PR/D2

1, 2 With these requests, the word at location addr in the address
space of the child is returned to the parent process. If I and
D space are separated, request 1 returns a word from I
space, and request 2 returns a word from D space. If I and
D space are not separated, either request 1 or request 2 may
be used with equal results. The data argument is ignored.
These two requests will fail if addr is not the start address of
a word, in which case a value of -1 is returned to the parent
process and the parent's errno is set to EIO.

- 1 - 12/01/87

II

PTRACE(2)

II

MU43814PR/D2

3

PTRACE(2)

With this request, the word at location addr in the child's
USER area in the system's address space (see <sys/user.h>)
is returned to the parent process. The data argument is
ignored. This request will fail if addr is not the start address
of a word or is outside the USER area, in which case a value
of -1 is returned to the parent process and the parent's errno
is set to EIO.

4, 5 With these requests, the value given by the data argument is
written into the address space of the child at location addr.
If I and D space are separated, request 4 writes a word into I
space, and request 5 writes a word into D space. If I and D
space are not separated, either request 4 or request 5 may be
used with equal results. Upon successful completion, the
value written into the address space of the child is returned
to the parent. These two requests will fail if addr is not the
start address of a word. Upon failure a value of -1 is
returned to the parent process and the parent's errno is set to
EIO.

6 With this request, a few entries in the child's USER area can
be written. Data gives the value that is to be written and
addr is the location of the entry. The few entries that can be
written are:

the general registers

the condition codes of the Processor Status Word.

7 This request causes the child to resume execution. If the
data argument is 0, all pending signals including the one that
caused the child to stop are canceled before it resumes exe­
cution. If the data argument is a valid signal number, the
child resumes execution as if it had incurred that signal, and
any other pending signals are canceled. The addr argument
must be equal to 1 for this request. Upon successful comple­
tion, the value of data is returned to the parent. This
request will fail if data is not 0 or a valid signal number, in
which case a value of -1 is returned to the parent process
and the parent's errno is set to EIO.

-2- 12/01/87

PTRACE(2)

8

PTRACE(2)

This request causes the child to terminate with the same
consequences as exit(2).

9 This request sets the trace bit in the Processor Status Word
of the child and then executes the same steps as listed above
for request 7. The trace bit causes an interrupt upon comple­
tion of one machine instruction. This effectively allows sin­
gle stepping of the child.

To forestall possible fraud, ptrace inhibits the set-user-id facility on subse­
quent exec(2) calls. If a traced process calls exec, it will stop before execut­
ing the first instruction of the new image showing signal SIGTRAP.

General Errors
ptrace will in general fail if one or more of the following are true:

[EIO] Request is an illegal number.

[ESRCH] Pid identifies a child that does not exist or has not exe­
cuted a ptrace with request 0.

SEE ALSO
sdb{l), exec(2), signal(2), wait(2).

MU43814PR/D2 -3- 12/01/87

II

II
PUTMSG(2) PUTMSG(2)

NAME
putmsg - send a message on a stream

SYNOPSIS
#include <stropts.h>

int putmsg (fd, ctlptr, dataptr, flags)
int fd;
struct strbuf •ctlptr;
struct strbuf •dataptr;
int flags;

DESCRIPTION
putmsg creates a message [see intro(2)] from user specified buffer(s) and
sends the message to a STREAMS file. The message may contain either a
data part, a control part or both. The data and control parts to be sent are
distinguished by placement in separate buffers, as described below. The
semantics of each part is defined by the STREAMS module that receives
the message.

fd specifies a file descriptor referencing an open stream. ctlptr and dataptr
each point to a strbuf structure which contains the following members:

int maxlen;
int len;
char *buf;

/*not used */
/* length of data */
/* ptr to buffer */

ctlptr points to the structure describing the control part, if any, to be
included in the message. The buf field in the strbuf structure points to the
buffer where the control information resides, and the len field indicates
the number of bytes to be sent. The maxlen field is not used in putmsg
[see getmsg(2)]. In a similar manner, dataptr specifies the data, if any, to
be included in the message. fiags may be set to the values 0 or RS_HIPRI
and is used as described below.

To send the data part of a message, dataptr must be non-NULL and the len
field of dataptr must have a value of 0 or greater. To send the control part
of a message, the corresponding values must be set for ctlptr. No data
(control) part will be sent if either dataptr (ctlptr) is NULL or the len field of
dataptr (ctlptr) is set to -1.

If a control part is specified, and fiags is set to RS_HIPRI, a priority message
is sent. If fiags is set to 0, a non-priority message is sent. If no control
part is specified, and fiags is set to RS_HIPRI, putmsg fails and sets errno to
EINV AL. If no control part and no data part are specified, and fiags is set

MU43814PR/D2 - 1 - 12/01/87

PUTMSG(2) PUTMSG(2)

to o, no message is sent, and 0 is returned. Ill
For non-priority messages, putmsg will block if the stream write queue is
full due to internal flow control conditions. For priority messages, putmsg
does not block on this condition. For non-priority messages, putmsg does
not block when the write queue is full and O_NDELAY is set. Instead, it
fails and sets errno to EAGAIN.

putmsg also blocks, unless prevented by lack of internal resources, waiting
for the availability of message blocks in the stream, regardless of priority
or whether O_NDELAY has been specified. No partial message is sent.

putmsg fails if one or more of the following are true:

[EAGAIN] A non-priority message was specified, the O_NDELAY flag
is set and the stream write queue is full due to internal flow
control conditions.

[EAGAIN]

[EBADF]

[EFAULT]

[EINTR]

[EINVAL]

[EINVAL]

[ENOSTR]

[ENXIO]

(ERAN GE]

Buffers could not be allocated for the message that was to
be created.

fd is not a valid file descriptor open for writing.

ctlptr or dataptr points outside the allocated address space.

A signal was caught during the putmsg system call.

An undefined value was specified in flags, or flags is set to
RS_HIPRI and no control part was supplied.

The stream referenced by fd is linked below a multiplexor.

A stream is not associated with fd.

A hangup condition was generated downstream for the
specified stream.

The size of the data part of the message does not fall within
the range specified by the maximum and minimum packet
sizes of the topmost stream module. This value is also
returned if the control part of the message is larger than the
maximum configured size of the control part of a message,
or if the data part of a message is larger than the maximum
configured size of the data part of a message.

A putmsg also fails if a STREAMS error message had been processed by the
stream head before the call to putmsg. The error returned is the value con­
tained in the STREAMS error message.

MU43814PR/D2 -2- 12101/87

II
PUTMSG(2)

SEE ALSO
intro(2), read(2), getmsg(2), poll(2), write(2).
STREAMS Primer.
STREAMS Programmer's Guide.

DIAGNOSTICS

PUTMSG(2)

Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

MU43814PR/D2 -3- 12/01/87

READ(2) READ(2)

NAME
read - read from file

SYNOPSIS
int read (fildes, buf, nbyte)
int fildes;
char •buf;
unsigned nbyte;

DESCRIPTION
Fildes is a file descriptor obtained from a creat(2), open(2), dup(2), fcntl(2),
or pipe(2) system call.

read attempts to read nbyte bytes from the file associated with fildes into
the buffer pointed to by buf.

On devices capable of seeking, the read starts at a position in the file
given by the file pointer associated with fildes. Upon return from read, the
file pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current posi­
tion. The value of a file pointer associated with such a file is undefined.

Upon successful completion, read returns the number of bytes actually
read and placed in the buffer; this number may be less than nbyte if the
file is associated with a communication line [see ioctl(2) and termio(7)], or
if the number of bytes left in the file is less than nbyte bytes. A value of 0
is returned when an end-of-file has been reached.

A read from a STREAMS [see intro(2)] file can operate in three different
modes: "byte-stream" mode, "message-nondiscard" mode, and "message­
discard" mode. The default is byte-stream mode. This can be changed
using the I_SRDOPT ioctl request [see streamio(7)], and can be tested with
the I_GRDOPT ioctl. In byte-stream mode, read will retrieve data from the
stream until it has retrieved nbyte bytes, or until there is no more data to
be retrieved. Byte-stream mode ignores message boundaries.

In STREAMS message-nondiscard mode, read retrieves data until it has
read nbyte bytes, or until it reaches a message boundary. If the read does
not retrieve all the data in a message, the remaining data are replaced on
the stream, and can be retrieved by the next read or getmsg(2) call.
Message-discard mode also retrieves data until it has retrieved nbyte bytes,
or it reaches a message boundary. However, unread data remaining in a
message after the read returns are discarded, and are not available for a
subsequent read or getmsg.

MU43814PR/D2 - 1 - 12/01/87

II

II
READ(2) READ(2)

When attempting to read from a regular file with mandatory file/record
locking set [see chmod(2)], and there is a blocking (i.e. owned by another
process) write lock on the segment of the file to be read:

If O_NDELAY is set, the read will return a -1 and set ermo to
EAGAIN.

If O_NDELAY is clear, the read will sleep until the blocking record
lock is removed.

When attempting to read from an empty pipe (or FIFO):

If O_NDELA Y is set, the read will return a 0.

If O_NDELAY is clear, the read will block until data is written to
the file or the file is no longer open for writing.

When attempting to read a file associated with a tty that has no data
currently available:

If O_NDELAY is set, the read will return a 0.

If O_NDELAY is clear, the read will block until data becomes avail­
able.

When attempting to read a file associated with a stream that has no data
currently available:

If O_NDELAY is set, the read will return a -1 and set ermo to
EAGAIN.

If O_NDELAY is clear, the read will block until data becomes avail­
able.

When reading from a STREAMS file, handling of zero-byte messages is
determined by the current read mode setting. In byte-stream mode, read
accepts data until it has read nbyte bytes, or until there is no more data to
read, or until a zero-byte message block is encountered. read then returns
the number of bytes read, and places the zero-byte message back on the
stream to be retrieved by the next read or getmsg. In the two other modes,
a zero-byte message returns a value of 0 and the message is removed from
the stream. When a zero-byte message is read as the first message on a
stream, a value of 0 is returned regardless of the read mode.

A read from a STREAMS file can only process data messages. It cannot
process any type of protocol message and will fail if a protocol message is
encountered at the stream head.

MU43814PR/D2 - 2 - 12/01/87

READ(2) READ(2)

read will fail if one or more of the following are true:

[EAGAIN] Mandatory file/record locking was set, O_NDELAY was
set, and there was a blocking record lock.

[EAGAIN]

[EA GAIN]

[EBADF]

[EB AD MSG]

[EDEADLK]

[EFAULT]

[EINTR]

[EINVAL]

[ENOLCK]

Total amount of system memory available when reading
via raw IO is temporarily insufficient.

No message waiting to be read on a stream and
O_NDELAY flag set.

Fildes is not a valid file descriptor open for reading.

Message waiting to be read on a stream is not a data mes-
sage.

The read was going to go to sleep and cause a deadlock
situation to occur.

Buf points outside the allocated address space.

A signal was caught during the read system call.

Attempted to read from a stream linked to a multiplexor.

The system record lock table was full, so the read could
not go to sleep until the blocking record lock was
removed.

[ENOLINK] Fildes is on a remote machine and the link to that machine
is no longer active.

A read from a STREAMS file will also fail if an error message is received at
the stream head. In this case, errno is set to the value returned in the error
message. If a hangup occurs on the stream being read, read will continue
to operate normally until the stream head read queue is empty. Thereafter,
it will return 0.

SEE ALSO
creat(2), dup(2), fcntl(2), ioctl(2),intro(2), open(2), pipe(2), getmsg(2).
streamio(7), termio(7) in the System Administrator's Reference Manual.

DIAGNOSTICS
Upon successful completion a non-negative integer is returned indicating
the number of bytes actually read. Otherwise, a -1 is returned and errno
is set to indicate the error.

MU43814PR/D2 -3- 12/01/87

II

II
RFSTART(2) ((Remote File Sharing) RFSTART(2)

NAME
rfstart - start the Remote File Sharing environment

SYNOPSIS
int rfstart(aflag);

DESCRIPTION
rfstart starts the Remote File Sharing software on a machine. It must be
called before the adv(2), unadv(2), rfstop(2), rmount(2), or rumount(2) sys­
tem calls can be used.

The argument aflag determines whether an attempt should be made to
authenticate incoming connect requests. If afiag equals 0, incoming
requests for the Remote File Sharing environment will always be
accepted. If aflag does not equal 0, incoming requests will be verified
before the connect request is accepted.

rfstart(2) may be invoked only by the super-user.

ERRORS
rfstart will fail if one or more of the following are true:

[EEXIST] The Remote File Sharing environment has already been
started.

[EPERM] The effective user ID is not super-user.

[ECOMM] Communication error.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
advfs(2) rmount(2) rumount(2) rfstop(2) unadvfs(2)

MU43814PR/D2 - 1 - 12101/87

RFSTOP(2) ((Remote File Sharing)) RFSTOP(2)

NAME
rfstop - stop the Remote File Sharing environment

SYNOPSIS
int rfstopO

DESCRIPTION
rfstop stops the Remote File Sharing software on a machine.

rfstop may be invoked only by the super-user.

ERRORS
rfstop will fail if one or more of the following are true:

[ENONET] The Remote File Sharing environment is not currently run­
ning.

[EPERM] The effective user ID is not super-user.

[EBUSY] This machine still has one or more remote resources
mounted locally.

[EADY] This machine still has one or more local resources adver­
tised.

[ESRMNT] One or more of this machine's directories is still mounted by
a remote machine.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
rfstart(2)

MU43814PR/D2 -1- 12/01/87

Ill

II
RMDIR(2) RMDIR(2)

NAME
rmdir - remove a directory

SYNOPSIS
int rmdir (path)
char •path;

DESCRIPTION
nndir removes the directory named by the path name pointed to by path.
The directory must not have any entries other than"." and" .. ".

The named directory is removed unless one or more of the following are
true:

[EINVAL]

[EINVAL]

[EEXIST]

[ENOTDIR]

[ENO ENT]

[EACCES]

[EACCES]

[EBUSY]

[EROFS]

[EFAULT]

[EIO]

[ENO LINK]

[EMULTIHOP]

DIAGNOSTICS

The current directory may not be removed.

The "." entry of a directory may not be removed.

The directory contains entries other than those for "." and
" "

A component of the path prefix is not a directory.

The named directory does not exist.

Search permission is denied for a component of the path
prefix.

Write permission is denied on the directory containing
the directory to be removed.

The directory to be removed is the mount point for a
mounted file system.

The directory entry to be removed is part of a read-only
file system.

Path points outside the process's allocated address space.

An 1/0 error occurred while accessing the file system.

Path points to a remote machine, and the link to that
machine is no longer active.

Components of path require hopping to multiple remote
machines.

Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

MU43814PR/D2 - 1 - 12/01/87

RMDIR(2)

SEE ALSO
mkdir(2).
rmdir(l), rm(l), and mkdir(l) in the User's Reference Manual.

MU43814PR/D2 -2-

RMDIR(2)

II

12/01/87

II
RMOUNT(2) ((Remote File Sharing)) RMOUNT(2)

NAME
rmount - mount a remote directory

SYNOPSIS
int rmount(resource, dir, token, rwflag)
char *resource;
char *dir;
char *token;
int rwflag;

DESCRIPTION
rmount mounts a remote directory, identified by resource, on the directory
identified by dir. Dir is a pointer to the local pathname, and resource is the
advertised name of the remote directory.

After successful completion, references to the file dir will refer to the
remote directory advertised as resource.

The low-order bit of nvflag controls write permission on the remote direc­
tory. If 1, writing is forbidden, otherwise writing is permitted according
to the access permissions on individual files.

rmount may be invoked only by the super-user.

ERRORS
rmount will fail if one or more of the following are true:

[ENONET] The Remote File Sharing environment has not been booted.

[EPERM] The effective user ID is not super-user.

[ENOTDIR] A component of the pathname pointed to by dir is not a
directory.

[EFAULT] Resource or dir points outside the allocated address space of
the process.

[EREMOTE] Dir is a remote directory.

[ENXIO] Dir is the root of an already mounted local file system.

[ECOMM] Communications error occurred.

[ENOSPC] There are no more mount table entries.

MU43814PR/D2 - 1 - 12/01/87

RMOUNT(2) ((Remote File Sharing))

Resource is currently mounted on this machine.

Can't access remote directory.

RMOUNT(2)

[EBUSY]

[ENO DEV]

[EROFS] Attempt to mount a read-only file system as read-write.

[ENOMEM] Can't allocate space for a new resource.

[ENOENT] Resource not advertised to this machine.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
advfs(2) rumount(2) unadvfs(2)

MU43814PR/D2 - 2 - 12101/87

II

II
RUMOUNT(2) ((Remote File Sharing))

NAME
rumount - unmount a remote directory

SYNOPSIS
int rumount(resource)
char ""resource;

DESCRIPTION
rumount unmounts a remote directory, identified by resource.

rumount may be invoked only by the super-user.

ERRORS
rumount will fail if one or more of the following are true:

RUMOUNT(2)

[ENO NET]

[EPERM]

[EINVAL]

[EFAULT]

The Remote File Sharing environment has not been booted.

The effective user ID is not super-user.

[ECO MM]

[EBUSY]

RETURN VALUE

Resource is invalid.

Resource points outside the allocated address space of the
process.

Communications error occurred.

Resource is currently mounted on this machine.

Upon successful completion a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
advfs(2) rmount(2) unadvfs(2)

MU43814PR/D2 - 1 - 12101/87

SEMCTL(2) SEMCTL(2)

NAME
semctl - semaphore control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include < sys/sem.h>

int semctl (semid, semnum, cmd, arg)
int semid, cmd;
int semnum;
union semun {

int val;
struct semid_ds •buf;
ushort •array;

} arg;

DESCRIPTION
semctl provides a variety of semaphore control operations as specified by
cmd.

The following cmd s are executed with respect to the semaphore specified
by semid and semnum:

GETVAL Return the value of semval [see intro(2)]. {READ}

SETVAL Set the value of semval to arg.val. {ALTER} When
this cmd is successfully executed, the semadj value
corresponding to the specified semaphore in all
processes is cleared.

GETPID Return the value of sempid. {READ}

GETNCNT Return the value of semncnt. {READ}

GETZCNT Return the value of semzcnt. {READ}

The following cmds return and set, respectively, every semval in the set of
semaphores.

GETALL

MU43814PR/D2

Place semvals into array pointed to by arg.array.
{READ}

- 1 - 12/01/87

II

II
SEMCTL(2) SEMCTL(2)

SETALL Set semvals according to the array pointed to by
arg.array. {ALTER} When this cmd is successfully
executed the semadj values corresponding to each
specified semaphore in all processes are cleared.

The following cmds are also available:

MU43814PR/D2

IPC_STAT Place the current value of each member of the data
structure associated with semid into the structure
pointed to by arg.buf. The contents of this structure
are defined in intro(2). {READ}

IPC_SET Set the value of the following members of the data
structure associated with semid to the corresponding
value found in the structure pointed to by arg.buf:
sem_perm. uid
sem_perm.gid
sem_perm.mode I• only low 9 bits •/

This cmd can only be executed by a process that has
an effective user ID equal to either that of super­
user, or to the value of sem_perm.cuid or
sem_perm.uid in the data structure associated with
semid.

IPC_RMID Remove the semaphore identifier specified by semid
from the system and destroy the set of semaphores
and data structure associated with it. This cmd can
only be executed by a process that has an effective
user ID equal to either that of super-user, or to the
value of sem_perm.cuid or sem_perm.uid in the
data structure associated with semid.

semctl fails if one or more of the following are true:

[EINV AL] Semid is not a valid semaphore identifier.

[EINVAL]

[EINVAL]

Semnum is less than zero or greater than
sem_nsems.

Cmd is not a valid command.

- 2 - 12/01/87

SEMCTL(2)

[EACCES]

[ERAN GE]

[EPERM]

[EFAULT]

SEE ALSO

SEMCTL(2)

Operation permission is denied to the calling pro- II
cess {see intro(2)].

Cmd is SETVAL or SETALL and the value to which
semval is to be set is greater than the system
imposed maximum.

Cmd is equal to IPC_RMID or IPC_SET and the
effective user ID of the calling process is not equal
to that of super-user, or to the value of
sem_perm.cuid or sem_perm.uid in the data
structure associated with semid.

Arg.buf points to an illegal address.

intro(2), semget(2), semop(2).

DIAGNOSTICS
Upon successful completion, the value returned depends on cmd as fol­
lows:

GETVAL
GETPID
GETNCNT
GETZCNT
All others

The value of semval.
The value of sempid.
The value of semncnt.
The value of semzcnt.
A value of 0.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

MU43814PR/D2 -3- 12/01/87

II
SEMGET(2) SEMGET(2)

NAME
semget - get set of semaphores

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semflg)
key_t key;
int nsems, semflg;

DESCRIPTION
semget returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing
nsems semaphores [see intro(2)] are created for key if one of the following
is true:

Key is equal to IPC_PRIVATE.

Key does not already have a semaphore identifier associated with
it, and (semfig & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new semaphore
identifier is initialized as follows:

Sem_perm.cuid, sem_perm.uid, sem_perm.cgid, and
sem_perm.gid are set equal to the effective user ID and effective
group ID, respectively, of the calling process.

The low-order 9 bits of sem_perm.mode are set equal to the low­
order 9 bits of semfig.

Sem_nsems is set equal to the value of nsems.

Sem_otime is set equal to 0 and sem_ctime is set equal to the
current time.

semget fails if one or more of the following are true:

[EINVAL]

MU43814PR/D2

Nsems is either less than or equal to zero or greater than
the system-imposed limit.

- 1 - 12/01/87

SEMGET(2)

[EACCES]

[EINVAL]

[ENO ENT]

[ENOSPC]

[ENOSPC]

[EEXIST]

SEE ALSO

SEMGET(2)

A semaphore identifier exists for key, but operation per- II
mission [see intro(2)) as specified by the low-order 9 bits
of semflg would not be granted.

A semaphore identifier exists for key, but the number of
semaphores in the set associated with it is less than
nsems, and nsems is not equal to zero.

A semaphore identifier does not exist for key and (semflg
& IPC_ CREA T) is ,, false".

A semaphore identifier is to be created but the system­
imposed limit on the maximum number of allowed sema­
phore identifiers system wide would be exceeded.

A semaphore identifier is to be created but the system­
imposed limit on the maximum number of allowed sema­
phores system wide would be exceeded.

A semaphore identifier exists for key but ((semflg &
IPC_CREAT) and (semflg & IPC_EXCL)) is "true".

intro(2), semctl(2), semop(2).

DIAGNOSTICS
Upon successful completion, a non-negative integer, namely a semaphore
identifier, is returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

MU43814PR/D2 - 2 - 12101187

II
SEMOP(2) SEMOP(2)

NAME
semop - semaphore operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;
struct sembuf ••sops;
unsigned nsops;

DESCRIPTION
semop is used to automatically perform an array of semaphore operations
on the set of semaphores associated with the semaphore identifier speci­
fied by semid. Sops is a pointer to the array of semaphore-operation struc­
tures. Nsops is the number of such structures in the array. The contents
of each structure includes the following members:

short sem_num; f* semaphore number *'
short sem_op; f* semaphore operation *'
short sem_flg; f* operation flags *'

Each semaphore operation specified by sem_op is performed on the
corresponding semaphore specified by semid and sem_num.

Sem_op specifies one of three semaphore operations as follows:

MU43814PR/D2

If sem_op is a negative integer, one of the following will occur:
{ALTER}

If semval fsee intro(2)] is greater than or equal to the
absolute value of sem_op, the absolute value of sem_op is
subtracted from semval. Also, if (sem...flg & SEM_UNDO)
is "true", the absolute value of sem_op is added to the cal­
ling process's semadj value fsee exit(2)] for the specified
semaphore.

If semval is less than the absolute value of sem_op and
(sem...flg & IPC_NOWAIT) is "true", semop will return
immediately.

- 1 - 12/01/87

SEMOP(2)

MU43814PR/D2

SEMOP(2)

If semval is less than the absolute value of sem_op and
(sem_flg & IPC_NOWAIT) is "false", semop will increment
the semncnt associated with the specified semaphore and
suspend execution of the calling process until one of the
following conditions occur.

Semval becomes greater than or equal to the absolute
value of sem_op. When this occurs, the value of semncnt
associated with the specified semaphore is decremented,
the absolute value of sem_op is subtracted from semval
and, if (sem_flg & SEM_UNDO) is "true", the absolute
value of sem_op is added to the calling process's semadj
value for the specified semaphore.

The semid for which the calling process is awaiting
action is removed from the system [see semctl(2)]. When
this occurs, errno is set equal to EIDRM, and a value of -1
is returned.

The calling process receives a signal that is to be caught.
When this occurs, the value of semncnt associated with
the specified semaphore is decremented, and the calling
process resumes execution in the manner prescribed in
signal(2).

If sem_op is a positive integer, the value of sem_op is added to
semval and, if (sem_flg & SEM_UNDO) is "true", the value of
sem_op is subtracted from the calling process's semadj value for
the specified semaphore. {ALTER}

If sem_op is zero, one of the following will occur: {READ}

If semval is zero, semop will return immediately.

If semval is not equal to zero and (sem_flg &
IPC_NOWAIT) is "true", semop will return immediately.

If semval is not equal to zero and (sem_flg &
IPC_NOWAIT) is "false", semop will increment the
semzcnt associated with the specified semaphore and
suspend execution of the calling process until one of the
following occurs:

Semval becomes zero, at which time the value of
semzcnt associated with the specified semaphore is
decremented.

- 2 - 12101/87

II

II
SEMOP(2) SEMOP(2)

The semid for which the calling process is awaiting
action is removed from the system. When this occurs,
errno is set equal to EIDRM, and a value of -1 is
returned.

The calling process receives a signal that is to be caught.
When this occurs, the value of semzcnt associated with
the specified semaphore is decremented, and the calling
process resumes execution in the manner prescribed in
signal(2).

semop will fail if one or more of the following are true for any of the sema­
phore operations specified by sops:

[EINVAL]

[EFBIG]

[E2BIG]

[EACCES]

[EA GAIN]

[ENOSPC]

[EINVAL]

[ERANGE]

[ERAN GE]

[EFAULT]

Semid is not a valid semaphore identifier.

Sem_num is less than zero or greater than or equal to the
number of semaphores in the set associated with semid.

Nsops is greater than the system-imposed maximum.

Operation permission is denied to the calling process [see
intro(2)]

The operation would result in suspension of the calling
process but (sem_ftg & IPC_NOWAIT) is "true".

The limit on the number of individual processes request­
ing an SEM_UNDO would be exceeded.

The number of individual semaphores for which the cal­
ling process requests a SEM_UNDO would exceed the
limit.

An operation would cause a semval to overflow the
system-imposed limit.

An operation would cause a semadj value to overflow the
system-imposed limit.

Sops points to an illegal address.

Upon successful completion, the value of sempid for each semaphore
specified in the array pointed to by sops is set equal to the process ID of
the calling process.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), semctl(2), semget(2).

MU43814PR/D2 -3- 12/01/87

SEMOP(2) SEMOP(2)

DIAGNOSTICS
If sernop returns due to the receipt of a signal, a value of -1 is returned to
the calling process and errno is set to EINTR. If it returns due to the remo­
val of a sernid from the system, a value of -1 is returned and errno is set to
EID RM.

Upon successful completion, a value of zero is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

MU43814PR/D2 -4- 12/01/87

II

II
SETPGRP(2)

NAME
setpgrp- set process group ID

SYNOPSIS
int setpgrp ()

DESCRIPTION

SETPGRP(2)

setpgrp sets the process group ID of the calling process to the process ID of
the calling process and returns the new process group ID.

SEE ALSO
exec(2), fork(2), getpid(2), intro(2), kill(2), signal(2).

DIAGNOSTICS
setpgrp returns the value of the new process group ID.

MU43814PR/D2 - 1 - 12/01/87

SETUID(2) SETUID(2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
int setuid (uid)
int uid;

int setgid (gid)
int gid;

DESCRIPTION
setuid (setgid) is used to set the real user (group) ID and effective user
(group) ID of the calling process.

If the effective user ID of the calling process is super-user, the real user
(group) ID and effective user (group) ID are set to uid (gid).

If the effective user ID of the calling process is not super-user, but its real
user (group) ID is equal to uid (gid), the effective user (group) ID is set to
uid (gid).

If the effective user ID of the calling process is not super-user, but the
saved set-user (group) ID from exec(2) is equal to uid (gid), the effective
user (group) ID is set to uid (gid).

setuid (setgid) will fail if the real user (group) ID of the calling process is
not equal to uid (gid) and its effective user ID is not super-user. [EPERM]

The uid is out of range. [EINV AL]

SEE ALSO
getuid(2), intro(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

MU43814PR/D2 - 1 - 12/01/87

Ill

II
SHMCTL(2) SHMCTL(2)

NAME
shmctl - shared memory control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (shmid, cmd, buf)
int shmid, cmd;
struct shmid_ds •buf;

DESCRIPTION
shmctl provides a variety of shared memory control operations as specified
by cmd. The following cmds are available:

IPC_ST AT Place the current value of each member of the data structure
associated with shmid into the structure pointed to by buf.
The contents of this structure are defined in intro(2). {READ}

IPC_SET Set the value of the following members of the data structure
associated with shmid to the corresponding value found in the
structure pointed to by buf:

shm_perm.uid
shm_perm.gid
shm_perm.mode /•only low 9 bits•/

This cmd can only be executed by a process that has an effec­
tive user ID equal to that of super user, or to the value of
shm_perm.cuid or shm_perm.uid in the data structure asso­
ciated with shmid.

IPC_RMID Remove the shared memory identifier specified by shmid from
the system and destroy the shared memory segment and data
structure associated with it. This cmd can only be executed
by a process that has an effective user ID equal to that of
super user, or to the value of shm_perm.cuid or
shm_perm.uid in the data structure associated with shmid.

MU43814PR/D2 - 1 - 12/01/87

SHMCTL(2) SHMCTL(2)

SHM_LOCK Lock the shared memory segment specified by shmid in Ill
memory. This crnd can only be executed by a process that
has an effective user ID equal to super user.

SHM_UNLOCK
Unlock the shared memory segment specified by shmid. This
crnd can only be executed by a process that has an effective
user ID equal to super user.

shmctl will fail if one or more of the following are true:

[EINV AL] Shmid is not a valid shared memory identifier.

[EINVAL] Cmd is not a valid command.

[EACCES] Cmd is equal to IPC_STAT and {READ} operation permission
is denied to the calling process [see intro (2)].

[EPERM] Cmd is equal to IPC_RMID or IPC_SET and the effective user
ID of the calling process is not equal to that of super user, or
to the value of shm_perm.cuid or shm_perm.uid in the data
structure associated with shmid.

[EPERM] Cmd is equal to SHM_LOCK or SHM_UNLOCK and the effec­
tive user ID of the calling process is not equal to that of
super user.

[EFAULT] Buf points to an illegal address.

[ENOMEM) Cmd is equal to SHM_LOCK and there is not enough
memory.

SEE ALSO
shmget(2), shmop(2).

DIAGNOSTICS

NOTES

Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

The user must explicitly remove shared memory segments after the last
reference to them has been removed.

MU43814PR/02 - 2 - 12/01/87

II
SHMGET(2) SHMGET(2)

NAME
shmget - get shared memory segment identifier

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg [,physadr])
key_t key;
int size, shmflg;
int physadr;

DESCRIPTION
shmget returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared
memory segment of at least size bytes [see intro(2)] are created for key if
one of the following are true:

Key is equal to IPC_PRIV A TE.

Key does not already have a shared memory identifier associated
with it, and (shmfig & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new shared memory
identifier is initialized as follows:

Shm_perm.cuid, shm_perm.uid, shm_perm.cgid, and
shm_perm.gid are set equal to the effective user ID and effective
group ID, respectively, of the calling process.

The low-order 9 bits of shm_perm.mode are set equal to the low­
order 9 bits of shmfig. Shm_segsz is set equal to the value of size.

Shm_lpid, shm_nattch, shm_atime, and shm_dtime are set equal
to O.

Shm_ctime is set equal to the current time.

If (shmfig & IPC_PHYS) is "true," then shmget retrieves the physa.dr argu­
ment and creates a shared memory segment starting at that physical
memory address. This physical memory must not be within the kernel's
free memory pool. When created, a physical shared memory segment
does not remove the associated memory from the system free memory
pool. Upon removal, the memory is not returned to the system free
memory pool.

MU43814PR/D2 - 1 - 12/01/87

SHMGET(2) SHMGET(2)

For physical shared memory, if (shmflg & IPC_NOCLEAR) is "true," then Ill
the shared memory segment is not cleared on the first attach.

For physical shared memory, if (shmflg & IPC_CI) is "true," then the
hardware cache, if any, is inhibited on this shared memory segment.

shmget will fail if one or more of the following are true:

[EINVAL]

[EACCES]

[EINVAL]

[ENO ENT]

[ENOS PC]

[ENOMEM]

[EEXIST]

[EPERM]

SEE ALSO

Size is less than the system-imposed minimum or greater
than the system-imposed maximum.

A shared memory identifier exists for key but operation
permission [see intro(2)] as specified by the low-order 9
bits of shmflg would not be granted.

A shared memory identifier exists for key but the size of
the segment associated with it is less than size and size is
not equal to zero.

A shared memory identifier does not exist for key and
(shmflg & IPC_CREAT) is "false".

A shared memory identifier is to be created but the
system-imposed limit on the maximum number of
allowed shared memory identifiers system wide would be
exceeded.

A shared memory identifier and associated shared
memory segment are to be created but the amount of
available memory is not sufficient to fill the request.

A shared memory identifier exists for key but ((shmflg &
IPC_CREAT) and (shmflg& IPC_EXCL)) is "true".

A physical shared memory identifier is to be created but
the effective user ID of the calling process is not
superuser.

intro(2), shmctl(2), shmop(2).

DIAGNOSTICS
Upon successful completion, a non-negative integer, namely a shared
memory identifier is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

MU43814PR/D2 - 2 - 12/01/87

II
SHMGET(2) SHMGET(2)

NOTES
The user must explicitly remove shared memory segments after the last
reference to them has been removed.

MU43814PR/D2 -3- 12/01/87

SHMOP(2) SHMOP(2)

NAME
shmop - shared memory operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char •shmat (shmid, shmaddr, shmflg)
int shmid;
char •shmaddr;
int shmflg;

int shmdt (shmaddr)
char •shmaddr;

DESCRIPTION
Shmat attaches the shared memory segment associated with the shared
memory identifier specified by shmid to the data segment of the calling
process. The segment is attached at the address specified by one of the
following criteria:

If shmaddr is equal to zero, the segment is attached at the first
available address as selected by the system.

If shmaddr is not equal to zero and (shmfig &t SHM_RND) is "true",
the segment is attached at the address given by (shmaddr -
(shmaddr modulus SHMLBA)).

If shmaddr is not equal to zero and (shmfig &t SHM_RND) is "false",
the segment is attached at the address given by shmaddr.

Shmdt detaches from the calling process's data segment the shared
memory segment located at the address specified by shmaddr.

The segment is attached for reading if (shmfig &t SHM_RDONLY) is "true"
{READ}, otherwise it is attached for reading and writing {READ/WRITE}.

Shmat will fail and not attach the shared memory segment if one or more
of the following are true:

[EINVAL] Shmid is not a valid shared memory identifier.

MU43814PR/D2 -1- 12/01/87

Ill

II
SHMOP(2) SHMOP(2)

[EACCES]

[ENOMEM]

[EINVAL]

[EINVAL]

[EMFILE]

[EINVAL]

Operation permission is denied to the calling process [see
intro(2)].

The available data space is not large enough to accommo­
date the shared memory segment.

Shmaddr is not equal to zero, and the value of (shmaddr -
(shmaddr modulus SHMLBA)) is an illegal address.

Shmaddr is not equal to zero, (shmfig & SHM_RND) is
"false", and the value of shmaddr is an illegal address.

The number of shared memory segments attached to the
calling process would exceed the system-imposed limit.

Shmdt will fail and not detach the shared memory seg­
ment if shmaddr is not the data segment start address of a
shared memory segment.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), shmctl(2), shmget(2).

DIAGNOSTICS

NOTES

Upon successful completion, the return value is as follows:

Shmat returns the data segment start address of the attached
shared memory segment.

Shmdt returns a value of 0.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

The user must explicitly remove shared memory segments after the last
reference to them has been removed.

MU43814PR/D2 - 2 - 12101/87

SIGNAL(2) SIGNAL(2)

NAME
signal - specify what to do upon receipt of a signal

SYNOPSIS
#include <signal.h>

void (*signal (sig, func))()
int sig;
void (*func)();

DESCRIPTION
signal allows the calling process to choose one of three ways in which it is
possible to handle the receipt of a specific signal. Sig specifies the signal
and func specifies the choice.

Sig can be assigned any one of the following except SIGKILL:

SIGHUP 01 hangup
SIGINT 02 interrupt
SIGQUIT 03[l] quit
SIGILL 04[l] illegal instruction (not reset when caught)
SIGTRAP 05[l] trace trap (not reset when caught)
SIGIOT 06[l] IOT instruction
SIGEMT 07[l] EMT instruction
SIGFPE 08[l] floating point exception
SIGKILL 09 kill (cannot be caught or ignored)
SIGBUS 1of11 bus error
SIGSEGV 11 [l] segmentation violation
SIGSYS 12[11 bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGUSRl 16 user-defined signal 1
SIGUSR2 17 user-defined signal 2
SIGCLD 18[21 death of a child
SIGPWR 19[21 power fail
SIGPOLL 22[31 selectable event pending

Fune is assigned one of three values: SIG_DFL, SIG_IGN, or a function
address. SIG_DFL, and SIG_IGN, are defined in the include file signal.h.
Each is a macro that expands to a constant expression of type pointer to
function returning void, and has a unique value that matches no declarable
function.

MU43814PR/D2 - 1 - 12/01/87

II

II
SIGNAL(l) SIGNAL(l)

The actions prescribed by the values of func are as follows:

SIG_DFL - terminate process upon receipt of a signal
Upon receipt of the signal sig, the receiving process is to be
terminated with all of the consequences outlined in exit(2). See
NOTE [l] below.

SIG_IGN - ignore signal
The signal sig is to be ignored.

Note: the signal SIGKILL cannot be ignored.

function address - catch signal
Upon receipt of the signal sig, the receiving process is to exe­
cute the signal-catching function pointed to by func. The signal
number sig will be passed as the only argument to the signal­
catching function. Additional arguments are passed to the
signal-catching function for hardware-generated signals.
Before entering the signal-catching function, the value of func
for the caught signal will be set to SIG_DFL unless the signal is
SIGILL, SIGTRAP, or SIGPWR.

Upon return from the signal-catching function, the receiving
process will resume execution at the point it was interrupted.

When a signal that is to be caught occurs during a read{2), a
write(2), an open(2), or an ioctl(2) system call on a slow device
(like a terminal; but not a file), during a pause(2) system call, or
during a wait(2) system call that does not return immediately
due to the existence of a previously stopped or zombie process,
the signal catching function will be executed and then the
interrupted system call may return a -1 to the calling process
with errno set to EINTR.

signal will not catch an invalid function argument, func, and
results are undefined when an attempt is made to execute the
function at the bad address.

Note: The signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending SIGKILL
signal.

signal will fail if sig is an illegal signal number, including SIGKILL.
[EINVAL]

MU43814PR/D2 -2- 12101/87

SIGNAL(2) SIGNAL(2)

NOTES II
[1] If SIG_DFL is assigned for these signals, in addition to the process

being terminated, a "core image" will be constructed in the current
working directory of the process, if the following conditions are met:

The effective user ID and the real user ID of the receiving
process are equal.

An ordinary file named core exists and is writable or can be
created. If the file must be created, it will have the following
properties:

a mode of 0666 modified by the file creation mask
{see umask(2)]

a file owner ID that is the same as the effective user
ID of the receiving process.

a file group ID that is the same as the effective
group ID of the receiving process

[2] For the signals SIGCLD and SIGPWR, func is assigned one of three
values: SIG_DFL, SIG_IGN, or a function address. The actions
prescribed by these values are:

SIG_DFL - ignore signal
The signal is to be ignored.

SIG_IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the cal­
ling process's child processes will not create zombie
processes when they terminate {see exit(2)].

function address - catch signal
If the signal is SIGPWR, the action to be taken is the same
as that described above for func equal to function address.
The same is true if the signal is SIGCLD with one excep­
tion: while the process is executing the signal-catching
function, any received SIGCLD signals will be ignored.
(This is the default action.)

In addition, SIGCLD affects the wait, and exit system calls as follows:

MU43814PR/D2 - 3 - 12/01/87

II
SIGNAL(2)

wait

SIGNAL(2)

If the func value of SIGCLD is set to SIG_IGN and a wait is
executed, the wait will block until all of the calling
process's child processes terminate; it will then return a
value of-1 with errno set to ECHILD.

exit If in the exiting process's parent process the func value of
SIGCLD is set to SIG_IGN, the exiting process will not
create a zombie process.

When processing a pipeline, the shell makes the last process in the
pipeline the parent of the proceeding processes. A process that
may be piped into in this manner (and thus become the parent of
other processes) should take care not to set SIGCLD to be caught.

[3] SIGPOLL is issued when a file descriptor corresponding to a STREAMS
[see intro(2)] file has a "selectable" event pending. A process must
specifically request that this signal be sent using the l_SETSIG ioctl
call. Otherwise, the process will never receive SIGPOLL.

SEE ALSO
intro(2), kill(2), pause(2), ptrace(2), wait(2), setjmp(3C), sigset(2).
kill{l) in the User's Reference Manual.

DIAGNOSTICS
Upon successful completion, signal returns the previous value of func for
the specified signal sig. Otherwise, a value of SIG_ERR is returned and
errno is set to indicate the error. SIG_ERR is defined in the include file
signal.h.

MU43814PR/D2 -4- 12/01/87

SIGSET(2) SIGSET(2)

NAME
sigset, sighold, sigrelse, sigignore, sigpause - signal management

SYNOPSIS
#include <signal.h>

void (•sigset (sig, func))()
int sig;
void (•func)();

int sighold (sig)
int sig;

int sigrelse (sig)
int sig;

int sigignore (sig)
int sig;

int sigpause (sig)
int sig;

DESCRIPTION
These functions provide signal management for application processes.
sigset specifies the system signal action to be taken upon receipt of signal
sig. This action is either calling a process signal-catching handler func or
performing a system-defined action.

Sig can be assigned any one of the following values except SIGKILL.
Machine or implementation dependent signals are not included (see
NOTES below). Each value of sig is a macro, defined in <signal.h>, that
expands to an integer constant expression.

MU43814PR/D2

SIGHUP hangup
SIGINT interrupt
SIGQUIT"' quit
SIGILL * illegal instruction (not held when caught)
SIGTRAp* trace trap (not held when caught)
SIGABRT* abort
SIGFPE*
SIGKILL
SIGSYS*
SIGPIPE
SIGALRM
SIGTERM
SIGUSRl

floating point exception
kill (can not be caught or ignored)
bad argument to system call
write on a pipe with no one to read it
alarm clock
software termination signal
user-defined signal 1

- 1 - 12/01/87

II

II
SIGSET(2)

SIGUSR2
SIGCLD
SIGPWR
SIGPOLL

user-defined signal 2
death of a child (see WARNING below)
power fail (see WARNING below)

SIGSET(2)

selectable event pending (see NOTES below)

See below under SIG_DFL regarding asterisks (*) in the above list.

The following values for the system-defined actions of func are also
defined in <signal.h>. Each is a macro that expands to a constant expres­
sion of type pointer to function returning void and has a unique value that
matches no declarable function.

SIG_DFL - default system action
Upon receipt of the signal sig, the receiving process is to be
terminated with all of the consequences outlined in exit(2). In
addition a "core image" will be made in the current working
directory of the receiving process if sig is one for which an
asterisk appears in the above list and the following conditions
are met:

The effective user ID and the real user ID of the receiv­
ing process are equal.

An ordinary file named core exists and is writable or
can be created. If the file must be created, it will have
the following properties:

a mode of 0666 modified by the file creation
mask [see umask(2)]

a file owner ID that is the same as the effec­
tive user ID of the receiving process.

a file group ID that ,is the same as the effec­
tive group ID of the receiving process

SIG_IGN - ignore signal
Any pending signal sig is discarded and the system signal action
is set to ignore future occurrences of this signal type.

SIG_HOLD - hold signal
The signal sig is to be held upon receipt. Any pending signal of
this type remains held. Only one signal of each type is held.

Otherwise, fu.nc must be a pointer to a function, the signal-catching
handler, that is to be called when signal sig occurs. In this case, sigset
specifies that the process will call this function upon receipt of signal sig.

MU43814PR/D2 -2- 12/01/87

SIGSET(2) SIGSET(2)

Any pending signal of this type is released. This handler address is
retained across calls to the other signal management functions listed here.

When a signal occurs, the signal number sig will be passed as the only
argument to the signal-catching handler. Before calling the signal­
catching handler, the system signal action will be set to SIG_HOLD . Dur­
ing normal return from the signal-catching handler, the system signal
action is restored to fu,nc and any held signal of this type released. If a
non-local goto (longjmp) is taken, then sigrelse must be called to restore the
system signal action and release any held signal of this type.

In general, upon return from the signal-catching handler, the receiving
process will resume execution at the point it was interrupted. However,
when a signal is caught during a read(2), a write(2), an open(2), or an
ioctl (2) system call during a sigpause system call, or during a wait(2) sys­
tem call that does not return immediately due to the existence of a previ­
ously stopped or zombie process, the signal-catching handler will be exe­
cuted and then the interrupted system call may return a -1 to the calling
process with errno set to EINTR.

Sighold and sigrelse are used to establish critical regions of code. Sighold is
analogous to raising the priority level and deferring or holding a signal
until the priority is lowered by sigrelse. Sigrelse restores the system signal
action to that specified previously by sigset.

Sigignore sets the action for signal sig to SIG_IGN (see above).

Sigpause suspends the calling process until it receives a signal, the same as
pause(2). However, if the signal sig had been received and held, it is
released and the system signal action taken. This system call is useful for
testing variables that are changed on the occurrence of a signal. The
correct usage is to use sighold to block the signal first, then test the vari­
ables. If they have not changed, then call sigpause to wait for the signal.
sigset will fail if one or more of the following are true:

[EINV AL] Sig is an illegal signal number (including SIGKILL) or the
default handling of sig cannot be changed.

[EINTR] A signal was caught during the system call sigpause.

DIAGNOSTICS
Upon successful completion, sigset returns the previous value of the sys­
tem signal action for the specified signal sig. Otherwise, a value of
SIG_ERR is returned and errno is set to indicate the error. SIG_ERR is
defined in <signal.h>.

MU43814PR/D2 - 3 - 12101/87

II

Ill
SIGSET(l) SIGSET(l)

For the other functions, upon successful completion, a value of 0 is
returned. Otherwise, a value of -1 is returned and errno is set to indicate
the error.

SEE ALSO
kill(2), pause(2), signal(2), wait(2), setjmp(3q.

WARNING
Two signals that behave differently than the signals described above exist
in this release of the system:

SIGCLD death of a child (reset when caught)
SIGPWR power fail (not reset when caught)

For these signals, func is assigned one of three values: SIG_DFL, SIG_IGN,
or a function address. The actions prescribed by these values are as fol­
lows:

SIG_DFL - ignore signal
The signal is to be ignored.

SIG_IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the calling
process's child processes will not create zombie processes
when they terminate [see exit(2)].

function address - catch signal
If the signal is SIGPWR, the action to be taken is the same as
that described above for func equal to function address. The
same is true if the signal is SIGCLD with one exception: while
the process is executing the signal-catching function, any
received SIGCLD signals will be ignored. (This is the default
action.)

The SIGCLD affects two other system calls [wait(2), and exit(2)] in the
following ways:

wait If the func value of SIGCLD is set to SIG_IGN and a wait is exe­
cuted, the wait will block until all of the calling process's child
processes terminate; it will then return a value of -1 with errno
set to ECHILD.

MU43814PR/D2 -4- 12/01/87

SIGSET(2) SIGSET(2)

NOTES

exit If in the exiting process's parent process the func value of II
SIGCLD is set to SIG_IGN , the exiting process will not create a
zombie process.

When processing a pipeline, the shell makes the last process in the
pipeline the parent of the proceeding processes. A process that may be
piped into in this manner (and thus become the parent of other
processes) should take care not to set SIGCLD to be caught.

SIGPOLL is issued when a file descriptor corresponding to a STREAMS [see
intro(2)] file has a "selectable" event pending. A process must specifically
request that this signal be sent using the I_SETSIG ioctl(2) call [see
streamio(7)]. Otherwise, the process will never receive SIGPOLL.

For portability, applications should use only the symbolic names of sig­
nals rather than their values and use only the set of signals defined here.
The action for the signal SIGKILL can not be changed from the default sys­
tem action.

Specific implementations may have other implementation-defined signals.
Also, additional implementation-defined arguments may be passed to the
signal-catching handler for hardware-generated signals. For certain
hardware-generated signals, it may not be possible to resume execution at
the point of interruption.

The signal type SIGSEGV is reserved for the condition that occurs on an
invalid access to a data object. If an implementation can detect this condi­
tion, this signal type should be used.

The other signal management functions, signal(2) and pause(2), should not
be used in conjunction with these routines for a particular signal type.

MU43814PR/D2 -5- 12101/87

II
STAT(2) STAT(2)

NAME
stat, fstat - get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int stat (path, buf)
char •path;
struct stat * buf;

int fstat (fildes, buf)
int fildes;
struct stat •buf;

DESCRIPTION
Path points to a path name naming a file. Read, write, or execute permis­
sion of the named file is not required, but all directories listed in the path
name leading to the file must be searchable. stat obtains information
about the named file.

Note that in a Remote File Sharing environment, the information returned
by stat depends upon the user/group mapping set up between the local
and remote computers. [See idload(lM)].

Fstat obtains information about an open file known by the file descriptor
fildes, obtained from a successful open, creat, dup, fcntl, or pipe system call.

Buf is a pointer to a stat structure into which information is placed con­
cerning the file.

The contents of the structure pointed to by buf include the following
members:

MU43814PR/D2

ushort
ino_t
dev_t

dev_t

short
ushort
ushort
off_t
time_t

st_mode;
st_ino;
st_dev;

st_rdev;

st_nlink;
st_uid;
st_gid;
st_size;
st_atime;

I* File mode [see mknod(2)] *'
I* !node number *'
I* ID of device containing •/
I• a directory entry for this file *I
I• ID of device *I
I* This entry is defined only for */
I• character special or block special files *I
I• Number of links•/
I• User ID of the file's owner•/
I* Group ID of the file's group *'
I• File size in bytes *'
I* Time of last access *'
-1- 12/01/87

STAT(2)

time_t
time_t

st_mtime;
st_ctime;

I• Time of last data modification •/
I* Time of last file status change •/

STAT(2)

I• Times measured in seconds since *I
I* 00:00:00 GMT, Jan. l, 1970 *I

st_mode The mode of the file as described in the mknod(2) system call.

st_ino This field uniquely identifies the file in a given file system.
The pair st_ino and st_dev uniquely identifies regular files.

st_dev This field uniquely identifies the file system that contains the
file. Its value may be used as input to the ustat(2) system call
to determine more information about this file system. No
other meaning is associated with this value.

st_rdev This field should be used only by administrative commands. It
is valid only for block special or character special files and only
has meaning on the system where the file was configured.

st_nlink This field should be used only by administrative commands.

st_uid The user ID of the file's owner.

st_gid The group ID of the file's group.

st_size For regular files, this is the address of the end of the file. For
pipes or fifos, this is the count of the data currently in the file.
For block special or character special, this is not defined.

st_atime Time when file data was last accessed. Changed by the follow-
ing system calls: creat(2), mknod(2), pipe(2), utime(2), and
read(2).

st_mtime Time when data was last modified. Changed by the following
system calls: creat(2), mknod(2), pipe(2), utime(2), and write(2).

st_ctime Time when file status was last changed. Changed by the fol­
lowing system calls: chmod(2), chown(2), creat(2), link(2),
mknod(2), pipe(2), unlink(2), utime(2), and write(2).

stat will fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

MU43814PR/D2 - 2 - 12/01/87

II

II
STAT(2)

[ENOENT]

[EACCES]

[EFAULT]

[EINTR]

[ENO LINK]

[EMULTIHOP]

STAT(2)

The named file does not exist.

Search permission is denied for a component of the path
prefix.

Buf or path points to an invalid address.

A signal was caught during the stat system call.

Path points to a remote machine and the link to that
machine is no longer active.

Components of path require hopping to multiple remote
machines.

Fstat will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

[EFAULT]

[ENO LINK]

SEE ALSO

Bu/ points to an invalid address.

Fildes points to a remote machine and the link to that
machine is no longer active.

chmod(2), chown(2), creat(2}, link(2), mknod(2), pipe(2), read(2), time(2),
unlink(2), utime(2), write(2).

DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise, a value
of-1 is returned and errno is set to indicate the error.

MU43814PR/D2 - 3 - 12/01/87

STATF(2) STATF(2)

NAME
statf, fstatf - get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/statf.h>

int statf(path, buf, size)
char *path;
struct statf *buf;
ushort size;

int fstatf(fildes, buf, size)
int fildes;
struct statf *buf;
ushort size;

DESCRIPTION
Path points to a path name naming a file. Read, write, or execute permis­
sion of the named file is not required, but all directories listed in the path
name leading to the file must be searchable. statf obtains size bytes of
information about the named file.

Similarly, fstatf obtains size bytes of information about an open file known
by the file descriptor fildes, obtained from a successful open(2), creat(2),
dup(2), fcntl(2), or pipe(2) system call.

Buf is a pointer to a statf structure into which information is placed con­
cerning the file. The contents of the structure pointed to by buf include
the following members:

ushort st_mode;
long st_ perm;
ino_t st_ino;
dev _t st_dev;

dev_t st_rdev;

short st_nlink;
ushort st_uid;
ushort st_gid;
off_t st_size;

MU43814PR/D2

/*File mode; see mknod(2) */
/*Access permissions*/

/* Inode number*/
/*ID of a device containing a*/
/* a directory entry for a file */

/*ID of device*/
/* This entry is defined only for */
/* character or block special files */

/*Number of links*/
/*User ID of the file's owner*/
/*Group ID of the file's group*/
/*File size in bytes*/

-1- 12/01/87

II

II
STATF(2) STATF(2)

time_t st_atime; I"' Time of last access"'/
time_t st_mtime; /"' Time of last data modification "'/

/"'Time of last file status change"'/ time_t st_ctime;

short

long
char
long

st_atime

t_mtime

st_ctime

st_node

ERRORS

/"' Times measured in seconds since "'/
/"' 00:00:00 GMT, Jan 1, 1970 "'/

st_ftype; /"' Index into a file system type "'/
/"' switch table "'/

st_blksize; /"' Block size "'/
st_node[20]; /"'node on which file resides"'/
st_flag; /"'General purpose flag"'/

Time when file data was last accessed. Changed by the fol­
lowing system calls: creat(2), mknod(2), pipe(2), utime(2),
read(2).

Time when data was last modified. Changed by the follow­
ing system calls: creat(2), mknod(2), chown(2), pipe(2),
utime(2), write(2).

Time when file status was last changed. Changed by the fol­
lowing system calls: chmod(2), chown(2), creat(2), link(2),
mknod(2), pipe(2), unlink(2), utime(2), write(2).

This entry contains the name that the system is known by on
a communications network. This name should be unique.

statf will fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path pre-
fix.

[EFAULT] Buf or path points to an invalid address.

Fstat will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

[EFAULT] Buf points to an invalid address.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

MU43814PR/D2 - 2 - 12/01/87

STATF(2) STATF(2)

SEE ALSO -
chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), time(2), 1111
unlink(2), utime(2), write(2), uname(2), open(2), dupf(2), fcntl(2)

MU43814PR/D2 -3- 12/01/87

II
STATFS(l) STATFS(l)

NAME
statfs, fstatfs - get file system information

SYNOPSIS
#include <sys/types.h>
#include <sys/statfs.h>

int statfs (p-.th, buf, len, fstyp)
char *path;
struct statfs *buf;
int len, fstyp;

int fstatfs (fildes, buf, len, fstyp)
int fildes;
struct statfs * buf;
int len, fstyp;

DESCRIPTION
statfs returns a "generic superblock" describing a file system. It can be
used to acquire information about mounted as well as unmounted file sys­
tems, and usage is slightly different in the two cases. In all cases, buf is a
pointer to a structure (described below) which will be filled by the system
call, and len is the number of bytes of information which the system
should return in the structure. Len must be no greater than sizeof (struct
statfs) and ordinarily it will contain exactly that value; if it holds a smaller
value the system will fill the structure with that number of bytes. (This
allows future versions of the system to grow the structure without invali­
dating older binary programs.)

If the file system of interest is currently mounted, path should name a file
which resides on that file system. In this case the file system type is
known to the operating system and the fstyp argument must be zero. For
an unmounted file system path must name the block special file contain­
ing it and fstyp must contain the (non-zero) file system type. In both
cases read, write, or execute permission of the named file is not required,
but all directories listed in the path name leading to the file must be
searchable.

The statfs structure pointed to by buf includes the following members:
short f_fstyp; /• File system type •/
short f_bsize; /• Block size •/
short f_frsize; /• Fragment size •/
long f_blocks; /• Total number of blocks •/
long f_bfree; I• Count of free blocks •/

MU43814PR/D2 - 1 - 12101/87

STATFS(2)

long
long
char
char

f_files;
f_ffree;
f_fname[6];
f_fpack[6];

I* Total number of file nodes */
I* Count of free file nodes *I
I* Volume name */
I* Pack name */

STATFS(2)

fstatfs is similar, except that the file named by path in statfs is instead
identified by an open file descriptor filedes obtained from a successful
open(2), creat(2), dup(2), fcntl(2), or pipe(2) system call.

statfs obsoletes ustat(2) and should be used in preference to it in new pro­
grams.

statfs and fstatfs will fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path
prefix.

[EFAULT] Buf or path points to an invalid address.

[EBADF] Fildes is not a valid open file descriptor.

[EINV AL] Fstyp is an invalid file system type; path is not a block
special file and fstyp is nonzero; len is negative or is
greater than sizeof (struct statfs).

[ENOLINK] Path points to a remote machine, and the link to that
machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), time(2),
unlink(2), utime(2), write(2), fs(4).

MU43814PR/D2 - 2 - 12/01/87

II

II
STIME(2)

NAME
stime - set time

SYNOPSIS
int stime (tp)
long •tp;

DESCRIPTION

STIME(2)

stime sets the system's idea of the time and date. Tp points to the value
of time as measured in seconds from 00:00:00 GMT January 1, 1970.

[EPERM]

SEE ALSO
time(2).

DIAGNOSTICS

stime will fail if the effective user ID of the calling process
is not super-user.

Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

MU43814PR/D2 - 1 - 12/01/87

SYNC(2) SYNC(2)

NAME
sync - update super block

SYNOPSIS
void sync ()

DESCRIPTION
sync causes all information in memory that should be on disk to be writ­
ten out. This includes modified super blocks, modified i-nodes, and
delayed block 1/0.

It should be used by programs which examine a file system, for example
fsck, df, etc. It is mandatory before a re-boot.

The writing, although scheduled, is not necessarily complete upon return
from sync.

MU43814PR/D2 - 1 - 12/01/87

II

II
SYSFS(2) SYSFS(2)

NAME
sysfs - get file system type information

SYNOPSIS
#include <sys/fstyp.h>
#include <sys/fsid.h>

int sysfs (opcode, fsname)
int opcode;
char •fsname;

int sysfs (opcode, fs_index, buf)
int opcode;
int fs_index;
char •buf;

int sysfs (opcode)
int opcode;

DESCRIPTION
sysfs returns information about the file system types configured in the
system. The number of arguments accepted by sysfs varies and depends
on the opcode. The currently recognized opcodes and their functions are
described below:

GETFSIND

GETFSTYP

GETNFSTYP

translates fsname, a null-terminated file-system
identifier, into a file-system type index.

translates fs_index, a file-system type index, into a
null-terminated file-system identifier and writes it
into the buffer pointed to by buf; this buffer must
be at least of size FSTYPSZ as defined in
<sys!fstyp.h>.

returns the total number of file system types con­
figured in the system.

sysfs will fail if one or more of the following are true:

[EINVAL]

MU43814PR/D2

Fsname points to an invalid file-system identifier;
fs_index is zero, or invalid; opcode is invalid.

- 1 - 12/01/87

SYSFS(2) SYSFS(2)

[EFAULT] Buf or fsname point to an invalid user address.

DIAGNOSTICS
Upon successful completion, sysfs returns the file-system type index if the
opcode is GETFSIND, a value of 0 if the opcode is GETFSTYP, or the
number of file system types configured if the opcode is GETNFSTYP. Oth­
erwise, a value of -1 is returned and errno iJ> set to indicate the error.

MU43814PR/Al -2- 06/01/88

I

I
SYSM68K(2) SYSM68K(2)

NAME
sysm68k - machine specific functions

SYNOPSIS
#include <sys/sysm68k.h>

int sysm68k(cmd, argl, arg2)
int cmd, argl, arg2;

DESCRIPTION

I

I

sysm68k implements machine specific functions. The cmd argument deter­
mines the function performed. The number of arguments expected is
dependent on the function.

Command S68ADDMEM

When cmd is S68ADDMEM, the argument is used as the number of pages
to add to the free list. Note that this command is available to the
superuser only. If more pages are added with this command than were
deleted with S68DELMEM, only the amount previously deleted will be
added back.

Command S68BCACHEOFF

When cmd is S68BCACHEOFF, the cache on the MVME131 board is dis­
abled. Note this command is available to the superuser only.

Please note that board caching is only available on the MVME131,
MVME132, MVME132xt and MVME141. This command will fail if
attempted when executing on other processor boards.

Command S68BCACHEON

When cmd is S68BCACHEON, argument is used as the value to be written
to ~he cache mask register on the MVME131 and the cache is then
enabled. Note this command is available to the superuser only.

Please note that board caching is only available on the MVME131,
MVME132, MVME132xt and MVME141. This command will fail if
attempted when executing on other processor boards.

MU43814PR/Al - 1 - 06/01/88

SYSM68K(2) SYSM68K(2)

Command S68BRDSTAT

When cmd is S68BRDSTAT, a structure containing processor board specific
status is returned. Two arguments are required. The first argument is a
pointer to a boardid structure into which information is placed concerning
the processor board. Refer to /usr/include/syslmvmecpu.h for a declaration
of this structure. The second argument is the number of bytes to be
transferred. This should be the size of the structure for the first argument
or smaller. This command may be executed by any user. This command
is only available on some of the newer processor boards. Refer to the
specific BUG manual for the processor board being used and to the ROM
calls available, which may return similar detailed information about the
processor board.

Command S68CACHERD

When cmd is executed the current mask used for setting the cacr (cache
control register) is returned. No other arguments are necessary. This
command may be executed by any user. Refer to the next command,
S68CACHESET, and to the Motorola MC68020 or MC68030 User's Manual
for a description of the control bit values returned.

Command S68CACHESET

When cmd is S68CACHESET, the processor instruction and data caches
may be enabled or disabled with various options. A value for setting the
cacr (cache control register) is passed as the only argument. If the com­
mand is successful, this value is returned as the return value. This com­
mand may only be executed as superuser. The following control bits are
available in the cacr with the MC68030 microprocessor:

MU43814PR/Al

CACR_EI OxOOOl Enable Instruction Cache
CACR_FI Ox0002 Freeze Instruction Cache
CACR_CEI Ox0004 Clear Entry in Instruction Cache
CACR_CI 0x0008 Clear Instruction Cache
CACR_IBE OxOOlO Instruction Burst Enable
CACR_ED OxOlOO Enable Data Cache
CACR_FD Ox0200 Freeze Data Cache
CACR_CED Ox0400 Clear Entry in Data Cache
CACR_CD Ox0800 Clear Data Cache
CACR_DBE OxlOOO Data Burst Enable

-2- 06/01/88

I

I
SYSM68K(2) SYSM68K(2)

CACR_ WA Ox2000 Write Allocate
Refer to /usr/include/syslsysm68k.h for a declaration of these defines and
other cacr related information. Any flags relating to the data cache are
only available on the MC68030 and not on the MC68020. The meaning
and use of these flags is described in the Motorola MC68020 or MC68030
User's Manual. However, when running under sysV68 only certain limited
combinations of the above will be legal. Only the following flags will be
allowed to be turned on (or set to a 1):

CACR_EI Enable Instruction Cache
CACR_CI Clear Instruction Cache
CACR_IBE Instruction Burst Enable
CACR_ED Enable Data Cache
CACR_CD Clear Data Cache
CACR_DBE Data Burst Enable
CACR_WA Write Allocate

If executing on an MC68020 only those flag bits relating to the instruction
cache may be set; all others must be set to zero. Any unused bits within
the control register are reserved for future use and must be set to zero, as
well. Because of the interrelationships of these control flags the following
rules define the legal combinations:

1. If CACR_EI is set then CACR_CI must be set as well.
2. If CACR_IBE is set then CACR_EI must be set also.
3. If CACR_ED is set then CACR_CD and CACR_WA must also be set.
4. If CACR_DBE is set then CACR_ED must be set also.

Command S68CONT

When and is S68CONT, the kernel will continue with the instruction that
was interrupted by a bus error signal to the calling routine.

Command S68CPUBRD

When and is S68CPUBRD, no arguments are expected. A value
corresponding to the processor board on which the operating system is
running is returned. Refer to /usr/include/sys/mvmecpu.h for the
mnemonic names used for the cpu board values.

MU43814PR/Al - 3 - 06/01/88

SYSM68K(2) SYSM68K(2)

Command S68DELMEM

When cmd is S68DELMEM, the argument is used as the number of pages
to delete from the free list. Note that this command is available to the
superuser only. This command is intended to allow stress tests to verify
system behaviour with low free memory.

Command S68FPEX

When cmd is S68FPEX, the floating point operand that caused the floating
point exception is returned to the user at the address specified by argl.
This command should be executed only after a floating point exception
has been indicated to the caller, otherwise an undetermined operand will
be returned to the user.

Command S68FPHW

When cmd is S68FPHW, a flag is set at the address specified by the argu­
ment that indicates whether or not the floating point hardware chip is
present on the system. A flag of NOFPHW will be stored if there isn't a
floating point chip, a flag of MC68881 will be stored if there is.

Command S68ICACHEOFF

When cmd is S68ICACHEOFF, the internal cache of the MC68020 chip is
disabled. Note this command is available to the superuser only.

Command S68ICACHEON

When cmd is S68ICACHEON, the internal cache of the MC68020 chip is
enabled. Note this command is available to the superuser only.

Command S68MEMSIZE

When cmd is S68MEMSIZE, no arguments are expected. The size of the
virtual memory space and the amount of physical memory (in bytes) are
returned.

MU43814PR/ Al -4- 06/01/88

I

I
SYSM68K(2) SYSM68K(2)

Command S68RTODC

When cmd is S68RTODC, the value of the real time clock (rte) is returned
to the address specified by the argument. If there is no real time clock on
the system, the current time is returned. Note that this command is avail­
able to the superuser only.

Command S68SETNAME

When cmd is S68SETNAME, the argument is expected to be a pointer to a
character string. The system name and node name are set to the character
string specified by the argument. Note that this command is available to
the superuser only.

Command S68STACK

> > > This system call is obsolete and is included only for compatibility
with previous releases.

When cmd is S68STACK, the available stack space is increased by the
number of bytes (rounded to the nearest page boundary). If this system
call succeeds, the new value of the stack pointer is returned.

Command S68STIME

When cmd is S68STIME, the argument is used as the new value for the
system time and date. The argument contains the time as measured in
seconds from 00:00:00 GMT January 1,1970. Note that this command is
only available to the superuser. This command is redundant in that
stime(2) may also be used to set the system time but this command is
included for compatibility with previous releases.

Command S68SW AP

When cmd is S68SW AP, individual swapping areas may be added or
deleted, or the current areas determined. The address of an appropriately
primed swap buffer is passed as the only argument. (Refer to syslswap.h
header file for details of loading the buffer.)

MU43814PR/Al -5- 06/01/88

SYSM68K(2)

The format of the swap buffer is:

struct swapint {
char
char
int
int
}

si_cmd;
•si_buf;
sw_swplo;
si_nblks;

SYSM68K(2)

/• command: list, add, delete•/
/• swap file path pointer•/
/• start block•/

Note that the add and delete options of the command may only be exer­
cised by the superuser.

Typically, a swap area is added by a single call to sysm68k. First, the
swap buffer is primed with appropriate entries for the structure members.
Then sysm68k is invoked.

#include <sys/sysm68k.h> #include <sys/swap.hZ

struct swapint swapbuf;

sysm68k(S68SW AP, &swapbuf);

Command S68TODCSTAT

When cmd is S68TODCSTAT, no arguments are expected. The integer
return value reflects the status of the time of day clock. A useful time of
day clock is indicated by a return value equal to GOOD_TODC.

Command S68WPOSTOFF

When cmd is S68WPOSTOFF, write-posting is disabled. No other argu­
ments are necessary. This command may only be executed by superuser.
This command is only available on the MVME141 processor board, how­
ever, it may well become available in future processor boards. Refer to
the MVME141 User's Manual for an in depth description of write-posting.

Command S68WPOSTON

When cmd is S68WPOSTON, write-posting is enabled. No other argu­
ments are necessary. This command may only be executed by superuser.
This command is only available on the MVME141 processor board, how­
ever, it may well become available in future processor boards. Refer to

MU43814PR/Al - 6 - 06/01/88

I

SYSM68K(2) SYSM68K(2)

I I the MVME141 User's Manual for an in depth description of write-posting.

SEE ALSO
swap(lM) in the System Administrator's Reference Manual.

MU43814PR/ Al -7- 06101188

TIME(2)

NAME
time - get time

SYNOPSIS
#include <sys/types.h>

time_t time (tloc)
long •tloc;

DESCRIPTION

TIME(2)

time returns the value of time in seconds since 00:00:00 GMT, January 1,
1970.

If tloc is non-zero, the return value is also stored in the location to which
tloc points.

SEE ALSO
stime(2).

WARNING
time fails and its actions are undefined if tloc points to an illegal address.

DIAGNOSTICS
Upon successful completion, time returns the value of time. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

MU43814PR/D2 - 1 - 12/01/87

II

II
TIMES(2) TIMES(2)

NAME
times - get process and child process times

SYNOPSIS
#include <sys/types.h>
#include <sys/times.h>

long times (buffer)
struct tms *buffer;

DESCRIPTION
times fills the structure pointed to by buffer with time-accounting informa­
tion. The following are the contents of this structure:

struct tms {

};

time_t tms_utime;
time_t tms_stime;
time_t tms_cutime;
time_t tms_cstime;

This information comes from the calling process and each of its ter­
minated child processes for which it has executed a wait. All times are
reported in clock ticks per second. Clock ticks are a system-dependent
parameter. The specific value for an implementation is defined by the
variable HZ, found in the include file param.h.

Tms_utime is the CPU time used while executing instructions in the user
space of the calling process.

Tms_stime is the CPU time used by the system on behalf of the calling pro­
cess.

Tms_cutime is the sum of the tms_utimes and tms_cutimes of the child
processes.

Tms_cstime is the sum of the tms_stimes and tms_cstimes of the child
processes.

[EFAULT] times will fail if buffer points to an illegal address.

SEE ALSO
exec{2), fork{2), time{2), wait{2).

DIAGNOSTICS
Upon successful completion, times returns the elapsed real time, in clock
ticks per second, from an arbitrary point in the past {e.g., system start-up
time). This point does not change from one invocation of times to

MU43814PR/D2 - 1 - 12/01/87

TIMES(2) TIMES(2)

another. If times fails, a -1 is returned and errno is set to indicate the
error. On a VME Delta Series Computer clock ticks occur 100 times per
second.

MU43814PR/D2 -2- 12/01/87

II

II

UADMIN(l) UADMIN(l)

NAME
uadmin - administrative control

SYNOPSIS
#include <sys/uadmin.h>

int uadmin (emd, fen, mdep)
int emd, fen, mdep;

DESCRIPTION
uadmin provides control for basic administrative functions. This system
call is tightly coupled to the system administrative procedures and is not
intended for general use. The argument mdep is provided for machine­
dependent use and is not defined here.

As specified by cmd, the following commands are available:

A.....SHUTDOWN The system is shutdown. All user processes are killed,
the buffer cache is flushed, and the root file system is
unmounted. The action to be taken after the system has
been shut down is specified by fen. The functions are
generic; the hardware capabilities vary on specific
machines.

AD_HALT

AD_BOOT

ADJBOOT

Halt the processor and tum off the power.

Reboot the system, using /sysV68.

Interactive reboot; user is prompted for sys-
tem name.

A.....REBOOT The system stops immediately without any further pro­
cessing. The action to be taken next is specified by fen as
above.

A.....REMOUNT The root file system is mounted again after having been
fixed. This should be used only during the startup pro­
cess.

uadmin fails if any of the following are true:

[EPERM] The effective user ID is not super-user.

MU43814PR/D2 -1 - 12/01/87

II

II
UADMIN(2) UADMIN(2)

DIAGNOSTICS
Upon successful completion, the value returned depends on cmd as fol­
lows:

A_SHUTDOWN
A_ REBOOT
A_REMOUNT

Never returns.
Never returns.
0

Otherwise, a value of -1 is returned and errno is set to indicate the error.

MU43814PR/D2 - 2 - 12/01/87

ULIMIT(2) ULIMIT(2)

NAME
ulimit - get and set user limits

SYNOPSIS
long ulimit (cmd, newlimit)
int cmd;
long newlimit;

DESCRIPTION
This function provides for control over process limits. The cmd values
available are:

1 Get the regular file size limit of the process. The limit is in units of
512-byte blocks and is inherited by child processes. Files of any size
can be read.

2 Set the regular file size limit of the process to the value of newlimit.
Any process may decrease this limit, but only a process with an
effective user ID of super-user may increase the limit. ulimit fails
and the limit is unchanged if a process with an effective user ID
other than super-user attempts to increase its regular file size limit.
[EPERM]

3 Get the maximum possible break value [see brk(2)].

4 Get the maximum possible number of file descriptors that may be
used by a process at a time. This is normally configured to
NOFILES. (See system(lM) for reconfiguring the value of NOFILES.)

SEE ALSO
brk(2), close(2), creat(2), dup(2), open(2), sysgen(lM), write(2).

WARNING
ulimit is effective in limiting the growth of regular files. Pipes are
currently limited to 5,120 bytes.

DIAGNOSTICS
Upon successful completion, a non-negative value is returned. Other­
wise, a value of-1 is returned and errno is set to indicate the error.

MU43814PR/D2 - 1 - 12/01/87

Ill

II
UMASK(2)

NAME
umask - set and get file creation mask

SYNOPSIS
int umask (cmask)
int cmask;

DESCRIPTION

UMASK(2)

umask sets the process's file mode creation mask to cmask and returns the
previous value of the mask. Only the low-order 9 bits of cmask and the
file mode creation mask are used.

SEE ALSO
chmod(2), creat(2), mknod(2), open(2).
mkdir(l), sh(l) in the User's Reference Manual.

DIAGNOSTICS
The previous value of the file mode creation mask is returned.

MU43814PR/D2 - 1 - 12/01/87

UMOUNT(2) UMOUNT(2)

NAME
umount - unmount a file system

SYNOPSIS
int umount (file)
char •file;

DESCRIPTION
umount requests that a previously mounted file system contained on the
block special device or directory identified by file be unmounted. File is a
pointer to a path name. After unmounting the file system, the directory
upon which the file system was mounted reverts to its ordinary interpre­
tation.

umount may be invoked only by the super-user.

umount will fail if one or more of the following are true:

(EPERM] The process's effective user ID is not super-user.

(EINV AL] File does not exist.

(EINV AL] File is not a block special device.

(EINVAL] File is not mounted.

[EBUSY] A file on file is busy.

[EFAULT] File points to an illegal address.

[EREMOTE] File is remote.

[ENOLINK] File is on a remote machine, and the link to that machine
is no longer active.

(EMULTIHOP] Components of the path pointed to by file require hop­
ping to multiple remote machines.

SEE ALSO
mount(2).

DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise, a value
of-1 is returned and errno is set to indicate the error.

MU43814PR/D2 - 1 - 12/01/87

Ill

UNADV(2) ((Remote File Sharing)) UNADV(2)

NAME
unadv - unadvertise a directory

SYNOPSIS
int unadv(resource)
char •resource;

DESCRIPTION
unadv unadvertises resource, which is the advertised domain name of a
local directory. unadv withdraws the directory so that future attempts to
remotely mount it will fail. It does not affect remote users who already
have resource mounted; they may continue to access the directory nor­
mally.

unadv may be invoked only by the super-user.

ERRORS
unadv will fail if one or more of the following are true:

[ENONET] The Shared Resource environment has not been started.

[EPERM] The effective user ID is not super-user.

[ENODEV] Resource is not advertised.

[EFAULT] Resource points outside the allocated address space of the
process.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
advfs(2), rmount(2)

MU43814PR/D2 - 1 - 12/01187

UNAME(2) UNAME(2)

NAME
uname - get name of current SYSTEM V/68 system

SYNOPSIS
#include <sys/utsname.h>

int uname (name)
struct utsname •name;

DESCRIPTION
uname stores information identifying the current SYSTEM V/68 system in
the structure pointed to by name.

uname uses the structure defined in < sys/utsname.h> whose members
are:

char sysname[9];
char nodename[9];
char release[9];
char version[9];
char machine[9];

uname returns a null-terminated character string naming the current SYS­
TEM V/68 system in the character array sysname. Similarly, nodename con­
tains the name that the system is known by on a communications net­
work. Release and version further identify the operating system. Machine
contains a standard name that identifies the hardware that the SYSTEM
V/68 system is running on.

[EFAULT] uname will fail if name points to an invalid address.

SEE ALSO
uname(l) in the User's Reference Manual.

DIAGNOSTICS
Upon successful completion, a non-negative value is returned. Other­
wise, a value of -1 is returned and errno is set to indicate the error.

MU43814PR/D2 - 1 - 12/01/87

II

II
UNLINK(2) UNLINK(2)

NAME
unlink - remove directory entry

SYNOPSIS
int unlink (path)
char •path;

DESCRIPTION
unlink removes the directory entry named by the path name pointed to by
path.

The named file is unlinked unless one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCESJ Search permission is denied for a component of the path
prefix.

[EACCES] Write permission is denied on the directory containing
the link to be removed.

[EPERM] The named file is a directory and the effective user ID of
the process is not super-user.

[EBUSY] The entry to be unlinked is the mount point for a
mounted file system.

[ETXTBSY] The entry to be unlinked is the last link to a pure pro­
cedure (shared text) file that is being executed.

[EROFS] The directory entry to be unlinked is part of a read-only
file system.

[EFAULT] Path points outside the process's allocated address space.

[EINfR] A signal was caught during the unlink system call.

[ENOLINK] Path points to a remote machine and the link to that
machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

When all links to a file have been removed and no process has the file
open, the space occupied by the file is freed and the file ceases to exist. If
one or more processes have the file open when the last link is removed,
the removal is postponed until all references to the file have been closed.

MU43814PR/D2 -1- 12/01/87

UNLINK(2) UNLINK(2)

SEE ALSO
close(2), link(2), open(2).
rm(l) in the User's Reference Manual.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value
of-1 is returned and errno is set to indicate the error.

MU43814PR/D2 -2- 12101/87

Ill

II
USTAT(2) USTAT(2)

NAME
ustat - get file system statistics

SYNOPSIS
#include <sys/types.h>
#include <ustat.h>

int ustat (dev, buf)
dev_t dev;
struct ustat •buf;

DESCRIPTION
ustat returns information about a mounted file system. Dev is a device
number identifying a device containing a mounted file system. Buf is a
pointer to a ustat structure that includes the following elements:

daddr_t f_tfree; I* Total free blocks *I
ino_t f_tinode; I* Number of free inodes *I
char f_fname[6]; I* Filsys name */
char f_fpack[6]; I* Filsys pack name *I

ustat will fail if one or more of the following are true:

[EINVAL]

[EFAULT]

[EINTR]

[ENO LINK]

[ECOMM]

SEE ALSO
stat(2), fs(4).

DIAGNOSTICS

Dev is not the device number of a device containing a
mounted file system.

Buf points outside the process's allocated address space.

A signal was caught during a ustat system call.

Dev is on a remote machine and the link to that machine
is no longer active.

Dev is on a remote machine and the link to that machine
is no longer active.

Upon successful completion, a value of 0 is returned. Otherwise, a value
of-1 is returned and errno is set to indicate the error.

MU43814PR/D2 - 1 - 12/01/87

UTIME(Z) UTIME(Z)

NAME
utime - set file access and modification times

SYNOPSIS
#include <sys/types.h>
int utime (path, times)
char •path;
struct utimbuf •times;

DESCRIPTION
Path points to a path name naming a file. utime sets the access and
modification times of the named file.

If times is NULL, the access and modification times of the file are set to the
current time. A process must be the owner of the file or have write per­
mission to use utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf structure
and the access and modification times are set to the values contained in
the designated structure. Only the owner of the file or the super-user
may use utime this way.

The times in the following structure are measured in seconds since
00:00:00 GMT, Jan. 1, 1970.

struct utimbuf {
time_t actime; /• access time •/
time_t modtime; /• modification time •/

};

utime will fail if one or more of the following are true:

[ENOENT] The named file does not exist.

[ENOTDIR]

[EACCES]

[EPERM]

[EACCES]

MU43814PR/D2

A component of the path prefix is not a directory.

Search permission is denied by a component of the path
prefix.

The effective user ID is not super-user and not the owner
of the file and times is not NULL.

The effective user ID is not super-user and not the owner
of the file and times is NULL and write access is denied.

-1- 12/01/87

II

II
UTIME(2)

[EROFS]

[EFAULT]

UTIME(2)

The file system containing the file is mounted read-only.

Times is not NULL and points outside the process's allo­
cated address space.

[EFAULT] Path points outside the process's allocated address space.

[EINTR] A signal was caught during the utime system call.

[ENOLINK] Path points to a remote machine and the link to that
machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

SEE ALSO
stat(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

MU43814PR/D2 - 2 - 12/01/87

WAIT(2) WAIT(2)

NAME
wait - wait for child process to stop or terminate

SYNOPSIS
int wait (stat_loc)
int •stat_loc;

DESCRIPTION
wait suspends the calling process until until one of the immediate children
terminates or until a child that is being traced stops, because it has hit a
break point. The wait system call will return prematurely if a signal is
received and if a child process stopped or terminated prior to the call on
wait, return is immediate.

If stat_loc is non-zero, 16 bits of information called status are stored in the
low order 16 bits of the location pointed to by stat_loc. Status can be used
to differentiate between stopped and terminated child processes and if the
child process terminated, status identifies the cause of termination and
passes useful information to the parent. This is accomplished in the fol­
lowing manner:

If the child process stopped, the high order 8 bits of status will
contain the number of the signal that caused the process to stop
and the low order 8 bits will be set equal to 0177.

If the child process terminated due to an exit call, the low order 8
bits of status will be zero and the high order 8 bits will contain the
low order 8 bits of the argument that the child process passed to
exit [see exit(2)].

If the child process terminated due to a signal, the high order 8
bits of status will be zero and the low order 8 bits will contain the
number of the signal that caused the termination. In addition, if
the low order seventh bit (i.e., bit 200) is set, a "core image" will
have been produced [see signal(2)J.

If a parent process terminates without waiting for its child processes to
terminate, the parent process ID of each child process is set to 1. This
means the initialization process inherits the child processes [see intro(2)].

MU43814PR/D2 - 1 - 12/01/87

II
WAIT(2) WAIT(2)

wait will fail and return immediately if one or more of the following are
true:

[ECHILD]

SEE ALSO

The calling process has no existing unwaited-for child
processes.

exec(2), exit(2), fork(2), intro(2), pause(2), ptrace(2), signal(2).

WARNING
wait fails and its actions are undefined if staUoc points to an invalid
address.

See WARNING in signal(2).

DIAGNOSTICS
If wait returns due to the receipt of a signal, a value of -1 is returned to
the calling process and errno is set to EINTR. If wait returns due to a
stopped or terminated child process, the process ID of the child is
returned to the calling process. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

MU43814PR/D2 - 2 - 12/01/87

WRITE(l) WRITE(l)

NAME
write - write on a file

SYNOPSIS
int write (fildes, buf, nbyte)
int fildes;
char •buf;
unsigned nbyte;

DESCRIPTION
fildes is a file descriptor obtained from a creat(2), open(2), dup(2), fcntl(2),
or pipe(2) system call.

write attempts to write nbyte bytes from the buffer pointed to by buf to the
file associated with the fildes.

On devices capable of seeking, the actual writing of data proceeds from
the position in the file indicated by the file pointer. Upon return from
write, the file pointer is incremented by the number of bytes actually writ­
ten.

On devices incapable of seeking, writing always takes place starting at the
current position. The value of a file pointer associated with such a device
is undefined.

If the O_APPEND flag of the file status flags is set, the file pointer will be
set to the end of the file prior to each write.

For regular files, if the O_SYNC flag of the file status flags is set, the write
will not return until both the file data and file status have been physically
updated. This function is for special applications that require extra relia­
bility at the cost of performance. For block special files, if O_SYNC is set,
the write will not return until the data has been physically updated.

A write to a regular' file will be blocked if mandatory file/record locking is
set [see chmod(2)], and there is a record lock owned by another process on
the segment of the file to be written. If O_NDELAY is not set, the write
will sleep until the blocking record lock is removed.

For STREAMS [see intro(2)] files, the operation of write is determined by
the values of the minimum and maximum nbyte range ("packet size')
accepted by the stream. These values are contained in the topmost stream
module. Unless the user pushes [see !_PUSH in streamio(7)] the topmost
module, these values can not be set or tested from user level. If nbyte falls
within the packet size range, nbyte bytes will be written. If nbyte does not
fall within the range and the minimum packet size value is zero, write will

MU43814PR/D2 - 1 - 12/01/87

II
WRITE(2) WRITE(2)

break the buffer into maximum packet size segments prior to sending the
data downstream (the last segment may contain less than the maximum
packet size). If nbyte does not fall within the range and the minimum
value is non-zero, write will fail with errno set to ERANGE. Writing a
zero-length buffer (nbyte is zero) sends zero bytes with zero returned.

For STREAMS files, if O_NDELAY is not set and the stream can not accept
data (the stream write queue is full due to internal flow control condi­
tions), write will block until data can be accepted. O_NDELAY will prevent
a process from blocking due to flow control conditions. If O_NDELAY is
set and the stream can not accept data, write will fail. If O_NDELAY is set
and part of the buffer has been written when a condition in which the
stream can not accept additional data occurs, write will terminate and
return the number of bytes written.

write will fail and the file pointer will remain unchanged if one or more of
the following are true:

[EAGAIN] Mandatory file/record locking was set, O_NDELAY was
set, and there was a blocking record lock.

[EA GAIN]

[EAGAIN]

[EBADF]

[EDEADLK]

[EFAULT]

[EFBIG]

[EINTR]

[EINVAL]

[ENOLCK]

MU43814PR/D2

Total amount of system memory available when reading
via raw IO is temporarily insufficient.

Attempt to write to a stream that can not accept data with
the O_NDELAY flag set.

fildes is not a valid file descriptor open for writing.

The write was going to go to sleep and cause a deadlock
situation to occur.

buf points outside the process's allocated address space.

An attempt was made to write a file that exceeds the
process's file size limit or the maximum file size [see
ulimit(2)].

A signal was caught during the write system call.

Attempt to write to a stream linked below a multiplexor.

The system record lock table was full, so the write could
not go to sleep until the blocking record lock was
removed.

- 2 - 12/01/87

WRITE(2)

[ENOLINI<]

[ENOS PC]

WRITE(2)

fildes is on a remote machine and the link to that machine
is no longer active.

During a write to an ordinary file, there is no free space
left on the device.

[ENXIO] A hangup occurred on the stream being written to.

[EPIPE and SIGPIPE signal]

[ERAN GE]

An attempt is made to write to a pipe that is not open for
reading by any process.

Attempt to write to a stream with nbyte outside specified
minimum and maximum write range, and the minimum
value is non-zero.

If a write requests that more bytes be written than there is room for (e.g.,
the ulimit [see ulimit(2)] or the physical end of a medium), only as many
bytes as there is room for will be written. For example, suppose there is
space for 20 bytes more in a file before reaching a limit. A write of 512-
bytes will return 20. The next write of a non-zero number of bytes will
give a failure return (except as noted below).

If the file being written is a pipe (or FIFO) and the O_NDELAY flag of the
file flag word is set, then write to a full pipe (or FIFO) will return a count
of 0. Otherwise (O_NDELAY clear), writes to a full pipe (or FIFO) will
block until space becomes available.

A write to a STREAMS file can fail if an error message has been received at
the stream head. In this case, errno is set to the value included in the
error message.

SEE ALSO
creat(2), dup(2), fcntl(2), intro(2), lseek(2), open(2), pipe(2), ulimit(2).

DIAGNOSTICS
Upon successful completion the number of bytes actually written is
returned. Otherwise, -1 is returned and errno is set to indicate the error.

MU43814PR/D2 -3- 12/01/87

II

II

